
Decimal Floating-point Fused Multiply

Add with Redundant Number Systems

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

By

Liu Han

©Liu Han, May, 2013. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Electrical and Computer Engineering

University of Saskatchewan

57 Campus Drive

Saskatoon, Saskatchewan

Canada

S7N 5A9

i

Abstract

The IEEE standard of decimal floating-point arithmetic was officially released in 2008.

The new decimal floating-point (DFP) format and arithmetic can be applied to remedy the

conversion error caused by representing decimal floating-point numbers in binary floating-

point format and to improve the computing performance of the decimal processing in commer-

cial and financial applications. Nowadays, many architectures and algorithms of individual

arithmetic functions for decimal floating-point numbers are proposed and investigated (e.g.,

addition, multiplication, division, and square root). However, because of the less efficiency

of representing decimal number in binary devices, the area consumption and performance of

the DFP arithmetic units are not comparable with the binary counterparts.

IBM proposed a binary fused multiply-add (FMA) function in the POWER series of pro-

cessors in order to improve the performance of floating-point computations and to reduce

the complexity of hardware design in reduced instruction set computing (RISC) systems.

Such an instruction also has been approved to be suitable for efficiently implementing not

only stand-alone addition and multiplication, but also division, square root, and other tran-

scendental functions. Additionally, unconventional number systems including digit sets and

encodings have displayed advantages on performance and area efficiency in many applications

of computer arithmetic.

In this research, by analyzing the typical binary floating-point FMA designs and the

design strategy of unconventional number systems, “a high performance decimal floating-

point fused multiply-add (DFMA) with redundant internal encodings” was proposed. First,

the fixed-point components inside the DFMA (i.e., addition and multiplication) were studied

and investigated as the basis of the FMA architecture. The specific number systems were also

applied to improve the basic decimal fixed-point arithmetic. The superiority of redundant

number systems in stand-alone decimal fixed-point addition and multiplication has been

proved by the synthesis results. Afterwards, a new DFMA architecture which exploits the

specific redundant internal operands was proposed. Overall, the specific number system

improved, not only the efficiency of the fixed-point addition and multiplication inside the

FMA, but also the architecture and algorithms to build up the FMA itself.

ii

The functional division, square root, reciprocal, reciprocal square root, and many other

functions, which exploit the Newton’s or other similar methods, can benefit from the proposed

DFMA architecture. With few necessary on-chip memory devices (e.g., Look-up tables) or

even only software routines, these functions can be implemented on the basis of the hardwired

FMA function. Therefore, the proposed DFMA can be implemented on chip solely as a key

component to reduce the hardware cost. Additionally, our research on the decimal arithmetic

with unconventional number systems expands the way of performing other high-performance

decimal arithmetic (e.g., stand-alone division and square root) upon the basic binary devices

(i.e., AND gate, OR gate, and binary full adder). The proposed techniques are also expected

to be helpful to other non-binary based applications.

iii

Acknowledgements

The entire research is sponsored by the Electrical and Computer Engineering department

in University of Saskatchewan and the Natural Science and Engineering Research Council

(NSERC) of Canada. All the toolkits and standard cell libraries used in this research are

provided by CMC Microsystems, Canada.

First of all, I would like to thank my supervisor Dr. Seok-Bum Ko. In the first year of my

Ph.D. program, I took one course which is lectured by Dr. Ko. We discussed a lot about my

Ph.D. project during that time. He provided me many inspirations by his experiences on not

only research but also life philosophy. Without Dr. Ko’s support, this research would not be

finished or even started. I would like to thank other professors in our university. Without the

helps from Dr. Li Chen, the evaluation works may not be finished quickly. Dr. Aryan Saadat

Mehr, Dr. Anh van Dinh, Dr. Chip Hong Chang (Nanyang Technological University), and

Dr. Raymond J. Spiteri provided many helpful ideas and suggestions to improve the quality

of the research and the thesis. The lab manager, Trevor Zintel, also showed his patience to

guarantee that the toolkits were working properly. I would like to thank my friends in our lab

for their kind advices, helps, and supports. Finally, I would like to thank my wife, Lidan Hu,

and my parents for their patience and supports which accompanied me during the hardest

time in my life.

iv

To my father, Han Shuyu, and my son, Han Tianen.

Rest in peace.

v

Contents

Permission to Use i

Abstract ii

Acknowledgements iv

Contents vi

List of Tables ix

List of Figures x

List of Abbreviations xii

I Preface 1

1 Introduction 2
1.1 Background of the Decimal Floating-point 2

1.1.1 Floating-point Number . 2
1.1.2 Why is Decimal Floating-point Arithmetic Necessary? 4

1.2 Motivation of Research . 7
1.3 Overview of Research . 8

II Research Background 11

2 Decimal Floating-point Standard 12
2.1 Basics of Decimal Floating-point Standard 12

2.1.1 Basic Format . 12
2.1.2 Special Format . 14
2.1.3 Rounding Modes . 15
2.1.4 Flags . 15

3 Fused Multiply-Add 17
3.1 Basics of Fused Multiply-Add . 17
3.2 FMA Designs of Binary Floating-point . 20

3.2.1 Original Binary Floating-point FMA Architecture 20
3.2.2 Multiple-path Binary Floating-point FMA Architecture 20
3.2.3 Binary Floating-point FMA with Reduced Latency 23
3.2.4 Combined Decimal and Binary Floating-point FMA 25

3.3 Applications of Binary FMA . 25

vi

4 Number Systems 29
4.1 Binary Number System . 29
4.2 Decimal Number System . 31
4.3 Redundant Number System . 33

III Designs 37

5 Previous Designs 38
5.1 Decimal Fixed-point Addition . 38
5.2 Decimal Fixed-point Multiplication . 42

5.2.1 Analysis of Previous Parallel Designs 42
5.2.2 Analysis of Previous Sequential Designs 43

5.3 Decimal Floating-point FMA . 45

6 Proposed Designs 47
6.1 Decimal Fixed-point Addition . 47

6.1.1 Carry Free Addition . 47
6.1.2 Absolute Value Digit-Set Conversion 52

6.2 Parallel Decimal Fixed-point Multiplication 56
6.2.1 Signed Digit Partial Product Generation 58
6.2.2 SD Partial Product Reduction . 63
6.2.3 SD-BCD Conversion . 74

6.3 Sequential Decimal Fixed-point Multiplication 79
6.3.1 Signed Digit Partial Product Generation 80
6.3.2 Partial Product Accumulation . 82

6.4 Decimal Floating-point FMA . 84
6.4.1 Pre-Alignment . 91
6.4.2 Post-Alignment and Sticky Bits Generation 97
6.4.3 Rounding . 106

7 Comparison and Discussion 113
7.1 Decimal Fixed-point Addition . 113
7.2 Decimal Fixed-point Multiplication . 115

7.2.1 Parallel Multiplication . 116
7.2.2 Sequential Multiplication . 123

7.3 Decimal Floating-point FMA . 125
7.3.1 Performance Evaluation . 125
7.3.2 Comparison and Discussion . 126
7.3.3 Pipeline Configuration . 128

IV Conclusion 130

8 Summary and Future Research 131
8.1 Summary and Conclusion . 131

vii

8.2 Future Research . 134

References 135

viii

List of Tables

2.1 Parameters of decimal floating-point numbers 13
2.2 The rounding directions of different rounding modes 15

4.1 The signed numbers in different representations 31
4.2 The decimal digits in different representations 32

6.1 Range division directly based on operands 49
6.2 Signed digit representation of the proposed multiples 59
6.3 Analysis of the number of operands of SD addition 67
6.4 Proposed SD addition algorithm . 68
6.5 Proposed transfer digit and interim sum recoder 70
6.6 Delay analysis of each digit of the proposed partial product reduction 72
6.7 Selection of the easy-multiples . 81
6.8 Conversion from BCD to the specific digit set 81
6.9 Iterative Conversion . 84
6.10 Selection algorithm of the shifted addend . 96
6.11 Scenarios of one digit error on leading one position 103
6.12 Node functions for the positive and negative detection trees 104
6.13 Rounding increment generation algorithm of “TiesToAway” and “TowardPos-

itive” modes . 108
6.14 Rounding increment generation algorithm of “TiesToEven” and “TowardNeg-

ative” modes . 109
6.15 Rounding increment generation algorithm of “TowardZero” mode 110

7.1 Synthesized results and comparison of 16-digit adders 114
7.2 Delay analysis of 16× 16-digit decimal fixed-point multipliers 118
7.3 Performance comparison of 16× 16-digit decimal fixed-point multipliers . . . 119
7.4 Critical path of the proposed 16× 16-digit multiplier 120
7.5 The critical delay path of the proposed multiplier (ns) 123
7.6 Area consumption of the proposed 16-digit multiplier 123
7.7 Comparison of the 16-digit multipliers . 124
7.8 Delay and area partition of the proposed architecture 126
7.9 Performance comparison . 128

ix

List of Figures

1.1 The layout of the floating-point axis . 3
1.2 Example of round off error . 4
1.3 Representation errors created in the computation of decimal data in binary

system . 5
1.4 Example of the 1 ulp error in decimal processing 5

2.1 The layout of the bits to represent decimal floating-point 14

3.1 Basic FMA architecture . 19
3.2 Binary FMA architecture of [26] . 21
3.3 Shifting range of alignment . 22
3.4 Binary FMA architecture of [34] . 24
3.5 Combined Decimal and Binary FMA architecture 26

4.1 Example of calculation with redundant number system 34
4.2 Example of calculation with redundant number system: reduced digit set in

output . 34
4.3 Example of calculation with redundant number system: signed digit set . . . 35
4.4 Consideration of the number system . 36

5.1 Decimal floating-point fused multiply-add architectures 46

6.1 Proposed n-digit signed digit decimal adder 51
6.2 Proposed absolute value digit-set converter 55
6.3 Adjust and correction logics of the proposed digit-set converter 55
6.4 Top level architecture of the proposed parallel decimal multiplication 57
6.5 Example of the proposed 4× 4-digit multiplication algorithm 58
6.6 Proposed architecture of partial product generation 63
6.7 Restructure of the proposed partial product reduction 64
6.8 Dot notation of the proposed two levels of multi-operand SD additions . . . 69
6.9 Hardware structure of the proposed 1st level multi-operand SD adder 71
6.10 Hardware structure of the proposed 2nd level multi-operand SD adder 73
6.11 Top level architecture of the proposed partial product reduction unit 74
6.12 Simplified 4-bit CLA and G, P generation circuit 76
6.13 Proposed hybrid prefix network in the SD-BCD converter 78
6.14 Final conditional constant adder . 79
6.15 Recoding of the multiplier . 80
6.16 The proposed partial product generation . 82
6.17 The dot-notation of partial product accumulation (digit-slice) 83
6.18 The circuitry of partial product accumulation (digit-slice) 83
6.19 The proposed parallel conversion . 85
6.20 The proposed sequential decimal multiplier 86

x

6.21 Proposed architecture . 87
6.22 Details of structure . 88
6.23 Details of calculation . 89
6.24 Decimal floating-point fused multiply-add architectures 92
6.25 Left and right shifting range of the pre-alignment. 93
6.26 Architecture of the pre-alignment . 95
6.27 Layout of the aligned product and addend 96
6.28 Post-alignment shift amount decision . 101
6.29 Detailed structure of the post-alignment shift amount calculation 102
6.30 Hardware structure of the correction detection unit 105
6.31 Architecture of the rounder . 111

7.1 Area-Delay Comparison . 115
7.2 Power-Delay Comparison . 116
7.3 Delay-area space of the decimal multipliers 120
7.4 Evaluation of speed, area, power consumption of the proposed sequential mul-

tiplier . 125
7.5 A regular pipeline configuration of the proposed architecture 129

xi

xii

List of Abbreviations

ADP Area Delay Product
BCD Binary Coded Decimal
BFA Binary Full Adder
BFP Binary Floating-point
CFA Carry Free Adder
CLA Carry Lookahead Adder
CPA Carry Propagate Adder
CSA Carry Save Adder
DFP Decimal Floating-point
DFMA Decimal Floating-point Fused Multiply-Add
DPD Densely Packed Decimal
DSD Decimal Signed Digit
FA Full Adder
FADD Floating-point Addition
FDIV Floating-point Division
FMA Fused Multiply-add
FMUL Floating-point Multiplication
FSQRT Floating-point Square Root
FXP Fixed-point
HA Half Adder
LSB Least Significant Bit
LSD Least Significant Digit
LUT Look-up Table
LZA Leading Zero Anticipator
LZD Leading Zero Detector
MSB Most Significant Bit
MSD Most Significant Digit
NaN Not a Number
PDP Power Delay Product
PPA Partial Product Accumulation
PPG Partial Product Generation
PPR Partial Product Reduction
RISC Reduced Instruction Set Computing
RTA Round Ties to Away
RTE Round Ties to Even
RTN Round Toward Negative
RTP Round Toward Positive
RTZ Round Toward Zero
SD Signed Digit
SDDA Signed Digit Decimal Adder
SIMD Single Instruction Multiple Data
TZD Trailing Zero Detection
ulp unit of least precision

xiii

Part I

Preface

1

Chapter 1

Introduction

This chapter introduces the basic principles of floating-point arithmetic. Afterwards, the

necessity of decimal floating-point arithmetic is revealed by analyzing the limits of binary

floating-point processing in section 1.1. High-performance computational demands are re-

quired by financial and commercial applications in which decimal computing is dominant;

moreover, limited efficiency restricts the existing decimal floating-point solutions. These con-

ditions lead to in the motivations of this research which are described in section 1.2. Finally,

section 1.3 provides the layout of this thesis.

1.1 Background of the Decimal Floating-point

Computer arithmetic is a vital element in the functionality of any computer system. Two

major types of data, integer and floating-point, are processed by computer to mimic compu-

tation of the real number. An integer is simply defined and processed by the basic binary

devices. However, floating-point arithmetic involves procedures much more complicated than

these underlying integer data.

1.1.1 Floating-point Number

A floating-point number is comprised of four elements: sign, significand, exponent, and an

implicit base number. Therefore, a floating-point number F is defined as:

F = (−1)S × C ×BE (1.1)

2

where S,C,E, and B represent sign, significand, exponent, and base number respectively.

In representing an infinite real number (i.e., π = 3.141592 . . .) with a finite hardware

resource, the precision problem emerges. However, a floating-point number has two important

attributes, which are range and precision. The range that defines the maximum and minimum

representable numbers in a given floating-point format depends mainly on the number of bits

to represent the exponent. Note that the exponent represents the power of the base number,

and the floating-point axis is therefore not divided equally by the numbers on it. Additionally,

the zero is a special case in floating-point, having an arbitrary exponent. Consequently, the

maximum number far away from zero is represented as ±Cmax × BEmax , and the minimum

number close to zero is represented as ±Cmin ×BEmin . A fragment of the floating-point axis

is shown in Fig. 1.1:

0 Fmin

...

-Fmin B×Fmin

......

B
2
×Fmin

Figure 1.1: The layout of the floating-point axis

Once an exponent is given, the precision of a floating-point format indicates how many

non-zero numbers (i.e., BP − 1, where P is the number of digits in the significand) can be

exactly represented in the given exponent window which is defined by BE. For example, 9

numbers (e.g., .1 to .9) are exactly representable if P is 1, B is 10, and E is 0.

The precision of a given floating-point format always implies another useful parameter,

which is the so-called unit of least precision (ulp). The ulp is defined as the non-zero minimum

value of the least significant digit. If the decimal point is implicitly on the left of the most

significant digit, 1 ulp equals 1/(BP). Note also that there are several slightly different

definitions of ulp summarized in [1]. In this thesis, the definition mentioned above is chosen.

Since infinite real numbers (e.g., π = 3.141592 . . .) cannot be exactly represented by the

floating-point format, the difference between a real number and the corresponding floating-

point number termed the round off error is able to be measured by the ulp. In Fig. 1.2,

the differences between the exact result (Rexact) and the possible rounded results (Rrounded)

3

are shown. In different rounding modes, the exact result will be rounded to the left or right

closest number which is exactly represented within the format. Therefore, the maximum

round off error could be 1 ulp, or 0.5 ulp at maximum, depending on different modes and

the value of the exact result.

Rexact

... ...

Rrounded

1 ulp

Rrounded

round off error

Figure 1.2: Example of round off error

Currently, the binary floating-point which employs 2 as base (i.e., it uses “0” and “1” in

significand) is dominant in computer systems. A technical standard (i.e., IEEE 754) about

the floating-point arithmetic was established by the IEEE in 1985, whereafter it was revised

in 2008.

1.1.2 Why is Decimal Floating-point Arithmetic Necessary?

Although binary arithmetic has shown its advantages in processing speed, hardware com-

plexity, and storage compactness (as everyone knows), decimal arithmetic has already been

used in the first days of modern electronic computers [2, 3]. In the applications where bi-

nary arithmetic is dominant, either the fixed-point (e.g., integer) arithmetic is competent for

the tasks, or the tasks are tolerant of the rounding error. Nonetheless, this situation is not

always true in some specific applications. For example, in financial computing, both very

small numbers, such as 2.6 × 10−5, and very large numbers, such as 1.9 × 109, need to be

dealt with according to the amount and unit in the transactions. Note that these monetary

data are represented in scientific notation with a decimal base. Consequently, a representa-

tion error could arise when converting the decimal monetary data to binary floating-point

format. For instance, a decimal number 0.4 in binary floating-point single precision format

is about “0.4000000059604645...”. The small difference between the binary approximation

and original decimal number could cause a 1 ulp error or even more than that in some cases.

Furthermore, such a tiny difference could be accumulated during the computation and may

4

cause serious problems.

Binary System
Binary

Operands

Binary

Results

(round off error)

(a) Processing binary data in binary system

Binary System
Decimal

Operands

Decimal

Results

Dec to Bin

Conversion

Bin to Dec

Conversion

(round off error)(conversion error) (conversion error)

(b) Processing decimal data in binary system

Decimal System
Decimal

Operands

Decimal

Results

(round off error)

(c) Processing decimal data in decimal system

Figure 1.3: Representation errors created in the computation of decimal data in binary
system

In Fig. 1.3, three computation models are given to illustrate the error generation dur-

ing the decimal processing. The traditional binary floating-point processing is shown in

Fig. 1.3(a). The computation error occurs mainly because of the finite precision of the

hardware, which can be solved by iterative computations in software. Prior to the decimal

floating-point standard, the decimal floating-point data are processed in the binary system,

as shown in Fig. 1.3(b). However, the conversion error, as described in the first paragraph

of this section, makes the problem complicated. First, this conversion error is fed into the

binary system. After computations inside the binary system, the error could then become

accumulated. Second, once rounded and converted from the binary number back to decimal

form, if the exact result and the hardware result are not on the same side of the half ulp, a

1 ulp error may be created in some rounding modes. This error is shown in Fig. 1.4.

Rexact
... ...

RN(Rcomputed) RN(Rexact)

Rcomputed

Figure 1.4: Example of the 1 ulp error in decimal processing

In financial applications, the monetary data sometimes is necessary to be rounded to

5

cent. For example, if a cell phone call costs 1.3 CAD, with 5 percent of tax, the bill of this

call will be 1.3 × 1.05 = 1.365 CAD, and the rounded bill is 1.37 CAD. However, the real

computation in a binary system with single precision binary floating point library can be

1.2999999523162842 · · ·×1.0499999523162842 · · · = 1.364999771118164 . . . , and the rounded

result is 1.36 CAD. The error is much larger than 1 ulp. A benchmark demonstrated that in

a large telephone bill system, the errors could be accumulated up to about 5 million dollars

for every single year [4].

To solve the errors caused by representing decimal fractional numbers in binary floating

point format, software solutions can be applied to obtain more accurate results by iterative

algorithms or converting operands to integer space. For instance, Intel provided a software

library to define and process the DFP numbers in Windows, Linux, and HP-UX [13]. Other

programming languages and open source libraries that support DFP arithmetic can be found

in [14–16]. The benefit of software solution is the flexibility on various platforms. However,

the hardware solution is superior in processing speed and energy efficiency. The experiments

on different benchmarks showed that the hardware solution can be typically 100 to 1000

times faster than the software solution [16, 18, 19].

In 2003, IBM proposed a decimal floating-point (DFP) hardware solution for financial

computing and other similar commercial applications [5]. Meanwhile, some decimal fixed-

point and floating-point arithmetic units were implemented and integrated into IBM’s pro-

cessors and mainframes [7–12]. Recently, many basic arithmetic operations of hardware

solutions were proposed. For example, Wang et al. proposed a DFP adder and multifunc-

tion unit with injection-based rounding [20, 21]. Hickmann et al. provided an parallel DFP

multiplier in [22], and Lang et al. announced a 16-digit decimal SRT division algorithm

in [23]. The architectures and algorithms for transcendental functions are also investigated

in [24, 25]. With continuously increasing demands in decimal computation and decreasing

sizes of the transistor on the integrated chip, the hardware solution has gained popularity

for commercial and financial applications.

Because of the importance seen in decimal arithmetic, in 2008, DFP format and opera-

tions were included in the latest version of the IEEE standard for floating-point arithmetic

(IEEE 754-2008) [17]. In this thesis, a pure hardware architecture for decimal floating-point

6

processing as shown in Fig. 1.3(c) is discussed.

1.2 Motivation of Research

There are several different methods for implementing decimal floating-point arithmetic on

chip. First, a decimal adder with necessary logics can be implemented on chip, and other

functions can be computed serially (i.e., digit-by-digit) by the decimal adder. The advan-

tage of this method is its much lessened hardware area in comparison to that taken by any

other methods. However, the processing speed is worse than the levels achieved by the other

methods. Second, separate function units can be implemented on chip. Therefore, the func-

tions on chip can be performed simultaneously to achieve a better performance. In contrast

to the previous method, the hardware area, local routing, and power consumption may be

considerable. Third, a fused multiply add (FMA) function can be implemented on chip, and

other functions can reuse the FMA hardware with necessary hardware or software support.

With the on-chip FMA, the hardware requirement of other functions would be minimized or

even eliminated. For example, the addition and multiplication could be implemented simply

by setting the operands of the FMA function properly (i.e., (A× 1) + C and (A× B) + 0).

Furthermore, the other numerical functions can then be mathematically evaluated by a series

of additions and multiplications, as shown in equation 1.2:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n

= a0 + x(a1 + x(a2 + · · ·+ x(an−1 + anx) . . .))
(1.2)

Since this method provides a hardware solution which is balanced on performance and

cost, it has been supported in several commercial processor architectures, such as Intel Ita-

nium and IBM POWER series microprocessors [28, 29].

In the past decade, many such decimal hardware solutions have been investigated. In

these designs, unconventional encoding systems have shown the advantages on processing

performance. Since the traditional binary decimal encoding (BCD) that applies 4 binary bits

to represent 10 decimal numbers is not fully exploited, the representation space is wasted,

which causes a lower performance. Additionally, the computational efficiency of the decimal

7

processing upon binary hardware devices (e.g., AND, OR gates, and full adder) is limited by

the inefficient representation of the decimal numbers. In this thesis, we focus on the efficient

number systems for decimal processing on binary devices. The redundant number systems

that include unconventional digit sets and encodings are studied and examined, not only to

represent the decimal number efficiently, but also to process the decimal data on a register

transistor level and on an architectural level.

As analyzed above, the research covers the following topics:

1, the number system and related hardware design to improve the efficiency of basic

decimal processing,

2, the high performance algorithm and architecture of basic decimal arithmetics, such as

addition and multiplication,

3, the high performance architecture of decimal floating-point fused multiply-add.

In a word, the efficient algorithms, architectures, and encodings encouraging a better

decimal floating-point fused multiply-add are studied and investigated in this research in

order to improve the performance of decimal floating-point processing.

1.3 Overview of Research

In this thesis, the decimal fixed-point addition and multiplication are firstly studied. The

application of the unconventional digit sets and encodings is therefore examined. Afterwards,

a new two steps non-speculative carry free decimal adder is proposed to decrease the delay

and hardware cost at the same time. Additionally, a new decimal fixed-point parallel multi-

plier for high throughput application is proposed to create less partial products without carry

propagation. A hybrid carry propagation network is also created to efficiently accumulate

the final product at the last step of the proposed parallel multiplier. Furthermore, a fixed-

point sequential decimal multiplier utilizing two necessary multiples and an on-the-fly digit

set converter is proposed to perform decimal multiplication with less hardware cost. Subse-

quently, the decimal floating-point fused multiply-add which exploits our fixed-point addition

and parallel multiplication is investigated. With the help of the unconventional number sys-

tem, the architecture of the proposed FMA can be significantly optimized. Moreover, the

8

proposed design follows the definition of such an operation in the IEEE standard. Thus,

all necessary flags and special operands are supported in such designs. By exploiting the

unconventional digit sets and encodings in our designs, not only the performance of decimal

processing is improved, but the understanding of redundant number system for non-binary

data processing is also expanded.

This thesis is organized as follows to present the research works:

Part I: Preface includes:

Chapter 1: Introduction presents the basics of the floating-point number, why

the decimal floating-point is needed, and the motivation of the research.

Part II: Research Background includes:

Chapter 2: Decimal Floating-point Standard introduces the IEEE 754-2008

standard which defines the basics of the decimal floating-point format, the special

cases of the operands, the rounding modes, and the exception handling.

Chapter 3: Fused Multiply-Add gives basic concepts of the fused multiply-

add operation. Additionally, the state-of-the-art algorithms and architectures

proposed in the binary designs are briefly introduced to draw the consideration

of the decimal designs.

Chapter 4: Number Systems bring the fundamentals of the number system

(i.e., digit-sets and encodings) which is part of the scope of this research.

Part III: Designs include:

Chapter 5: Previous Designs discuss the state-of-the-art designs, which include

the decimal fixed-point addition, multiplication, and the decimal floating-point

fused-multiply-add, proposed in the literature. These previous works are reviewed

to analyze the possible improvement on these existing designs.

Chapter 6: Proposed Designs describe the new designs proposed during this

9

research. The algorithms and architectures of the new designs are discussed in

details.

Chapter 7: Comparison and Discussion analyze the differences between the

previous designs and our proposed designs. The improvement to achieve the bet-

ter performance is discussed.

Part IV: Conclusion includes:

Chapter 8: Summary and Future Research conclude the research result and

propose the future works.

10

Part II

Research Background

11

Chapter 2

Decimal Floating-point Standard

This chapter introduces the basics of the IEEE standard of floating-point arithmetic (i.e.,

IEEE 754-2008). As a warm up, the format is first described briefly. Furthermore, the special

operands, rounding modes, exception conditions, and flags are introduced respectively. The

details of the contents described in this chapter are reviewed and discussed in later chapters.

2.1 Basics of Decimal Floating-point Standard

The representation error caused by the conversion from decimal floating-point to binary

floating-point was introduced in section 1.1. However, in the database systems in the fields

of banking, financial analysis, retail sales, and etc, over 55% of data are in decimal format [5].

Because of the inefficiency of the current binary hardware, the decimal processing overhead

could be over 90% in order to achieve accurate results in decimal format [4]. A decimal

floating-point specification was introduced in 2001 for obtaining accurate decimal floating-

point results with appropriate efficiency in financial and commercial applications [6]. New

data type and necessary arithmetics of the data were further introduced by M. F. Cowlishaw

in [5]. By the help of many researchers, a new floating-point industry standard (i.e., IEEE

754-2008) has been released in 2008 [17]. In IEEE 754-2008, a family of commercially fea-

sible ways to perform decimal floating-point arithmetic was defined. Four basic aspects are

introduced in next subsections.

2.1.1 Basic Format

In IEEE 754-2008, a decimal floating-point number is represented by sign (S), significand

(M), exponent (E), and implied base (B = 10). A signed decimal floating-point number is

12

therefore represented as:

(−1)S ×M ×BE (2.1)

where,

S is 0 or 1,

E is in [Emin, Emax],

M is in [0,B), and M is represented as d0 · d1d2...d(p−1) (p means the precision).

If M is represented as shown above, the decimal floating-point is viewed as a scientific

form, in which a radix point is right after the first digit. In some cases, it is convenient to

represent the significand as an integer. Thus, the signed decimal floating-point number is

represented as:

(−1)S × C ×BQ (2.2)

where,

S is 0 or 1,

Q is any integer Emin ≤ Q+ p− 1 ≤ Emax,

C is any integer 0 ≤ C < Bp (p means the precision).

By defining the maximum and minimum exponents and different precisions, the decimal

floating-point numbers are divided into three formats.

Table 2.1: Parameters of decimal floating-point numbers

parameter decimal32 decimal64 decimal128

p, digits 7 16 34

Emax +96 +384 +6144

In Table 2.1, only Emax is defined. The Emin is calculated by 1 − Emax. In hardware,

13

a decimal floating-point number is represented in three segments (i.e., the base number is

implicit). The layout of the hardware representation of a decimal floating-point number is

illustrated in Fig. 2.1. Since the range of the exponent is fixed, a bias is added to exponent

in each format in order to simplify the exponent processing. The details of the number of

bits for each segment can be found in [17].

S E C

1 bit MSB LSB MSB LSB

(significand field) (combination field) (sign)

Figure 2.1: The layout of the bits to represent decimal floating-point

2.1.2 Special Format

In IEEE 754-2008, several special numbers are defined. These numbers have to be processed

correctly in the hardware solution which is standard compliant.

Infinity

Every finite number can be represented in the equation (2.2). However, if the magnitude

of a decimal floating-point number is larger than that of the representable largest number,

it is defined as infinity. The computations with infinity are usually exact. For example,

(∞ + x) = ∞ and (∞ × x) = ∞. Therefore, the exception signals are not set for these

computations. However, in some special cases, the exception signals will be set up. For

example, (x÷ 0) = ∞, or overflow raised by finite computations. The detailed definition of

such a number can be found in section 6.1 in [17].

NaNs

The NaN, which stands for Not a Number, includes two different cases (i.e., signaling and

quiet). The signaling NaN or sNaN provides representations for uninitialized variables in

memory and other enhancements of arithmetic which are not defined in the standard. The

quiet NaN or qNaN provides diagnostic information for invalid or unavailable results. For

example, (0×∞), (+∞+−∞), and (0÷0) have no valid results. The invalid flag is therefore

14

set and an NaN can be given as the result. The detailed definition of such a number can be

found in sections 6.2 and 7.2 in [17].

2.1.3 Rounding Modes

If the result cannot be exactly represented in a give format (i.e., decimal64 or decimal128),

the result has to be rounded to the number which is the closest to the true result. The

difference between the rounded result and the true result is the so-called rounding error. The

standard defines five rounding modes that have different maximum rounding errors. The

examples of the rounding modes are given in Table 2.2.

Table 2.2: The rounding directions of different rounding modes

inputs RTP RTN RTZ RTE RTA

5.4 6 5 5 5 5

5.5 6 5 5 6 6

6.5 7 6 6 6 7

5.6 6 5 5 6 6

-5.4 -5 -6 -5 -5 -5

-5.5 -5 -6 -5 -6 -6

-6.5 -6 -7 -6 -6 -7

-5.6 -5 -6 -5 -6 -6

Therefore, the maximum rounding errors of “roundTowardPositive (RTP)”, “roundTo-

wardNegative (RTN)”, and “roundTowardZero (RTZ)” modes are less than one ulp, and the

maximum rounding errors of “roundTiesToEven (RTE)” and “roundTiesToAway (RTA)”

modes are less than half ulp.

2.1.4 Flags

The standard also defines five flags to provide diagnostic information for exceptions. The

Invalid Operation is raised once the result is not usefully definable or any operand of the

operation is invalid. In the meantime, an NaN is given as the result. For example, square

15

root of a number less than zero or (∞÷∞). The Division by Zero is simply defined as if any

number is divided by zero, and an infinity is given as the result with a appropriate sign. The

Overflow is set if the result is larger than the maximum representable magnitude. In this

case, the result is rounded first and the signal is set according to the rounding direction. On

the other hand, if the result is less than the minimum representable magnitude, the signal

Underflow is set. In the given format, the precision is always fixed. However, in some cases

(e.g., multiplication, division, and etc), the exact result cannot be completely represented

in the given precision. Therefore, the result is rounded to the closest representable number,

and the signal Inexact is set. The details of the exception handling and flags are introduced

in section 7 in [17].

16

Chapter 3

Fused Multiply-Add

A high performance decimal floating-point fused multiply-add (DFMA) is one of the target

in this research. Reviewing the architectures of the existing binary floating-point fused

multiply-add designs may be helpful to understand why such a function is useful and to

obtain inspirations for designing a DFMA. The basics of the fused multiply-add function

is therefore introduced first in section 3.1. Subsequently, several previous typical binary

floating-point designs are analyzed and summarized in section 3.2. Finally, the applications

of such a function in binary designs are discussed in section 3.3.

3.1 Basics of Fused Multiply-Add

The Fused Multiply-Add (FMA), which is also known as Multiply-Add Fused (MAF) and

Multiply-Accumulator (MAC), was first proposed by IBM in the floating-point processor on

its RISC System/6000 (RS/6000) in 1990 [26]. The key feature of the floating-point FMA is

a merged floating-point addition and multiplication able to minimize the rounding error for

the chained binary floating-point multiplications and additions (i.e., (A×B) +C), and also

to reduce the hardware area and on-chip busing of binary floating-point processors.

The individual addition and multiplication could be easily implemented on FMA by

setting B as one (i.e., A + C = (A × 1) + C) and setting C as zero (i.e., A × B = (A ×

B) + 0). Moreover, many computations, such as division, square root, reciprocal, and many

transcendental functions, can be iteratively calculated based on the FMA architecture with

the Newtons method or other similar methods [27]. Thus, these functions are able to be

implemented with very little or even no extra area cost. Because of the benefits on accuracy,

latency, and hardware cost, in several high performance commercial processors, only the

17

FMA architecture is implemented in the floating-point unit [28, 29].

The basic data flow of binary floating-point FMA is shown in Fig. 3.1. The product of

the significands of A and B is created by a fixed-point multiplier array. Mean while, the

shifting amount to align the product and addend C is calculated in parallel. The following

operations are similar to those of a floating-point addition. The product and addend are

first swapped and shifted. An addition or subtraction is then performed by considering the

effective operation. Subsequently, the number of leading zeros in the result is detected, and

the result is shifted in order to make it normalized. Finally, the a rounded result is obtained

by adding the possible increment to the normalized result.

Because of the advantages of binary floating-point FMA, such an architecture gained at-

tentions in last 20 years. P. W. Markstein has proved that the accuracy improvement by

FMA is the prerequisite to obtain the correctly rounded result of the division and square

root in Newton-Raphson approach and the elementary function evaluation [27]. Thus, the

characteristic of FMA makes it possible to cut off the hardwired division and square root

unit on chip. In [30], R. M. Jessani et al. discussed the effect on area and performance of the

floating-point FMA with a reduced multiply array, namely dual-pass. Such an FMA with

a halved multiplier reduces 40% of the chip size, and also decreases the performance unfor-

tunately. P. M. Seidel proposed a multiple-path algorithm on FMA by following the basic

ideas used in the dual-path adder [31] in which two shifters in alignment and normalization

are divided into different data paths. By reallocating the normalizer and rounder, T. Lang

and J. D. Bruguera reduced the delay of the FMA in [32, 33], and further the improved

architecture with two paths makes the floating-point addition faster than the floating-point

multiplication and FMA [34]. E. Quinnell et al. presented a bridge architecture that reuses

the components in the existing floating-point adder (FADD) and floating-point multiplier

(FMUL) on chip [35, 36]. The single instruction multiple data (SIMD) feature of FMA is

also discussed and implemented by L. Huang et al. in [37, 38]. So far many commercial

general purpose processors support this instruction in hardware, such as the IBM PowerPC,

the HP PA-8000, and the HP/Intel Itanium [39]. Since the FMA function is included in the

IEEE standard 754-2008 as a primitive operator, more processors will realize this instruction

in the future.

18

Multiplication
Alignment

Addition

Leading Zero Detection

Normalization

Rounding

A B C

Result

Operands Swapping

Alignment Shifting

Calculation

Figure 3.1: Basic FMA architecture

19

3.2 FMA Designs of Binary Floating-point

After the first FMA, which was introduced in 1990 [26], several novel binary designs are

proposed to speed up such a function because of its superiority on floating-point processing.

The typical designs are reviewed in this section to summarize the ideas in hardware design.

3.2.1 Original Binary Floating-point FMA Architecture

The first FMA arithmetic unit which was implemented in 1990 [24] is shown in Fig. 3.2.

As described before, such an architecture was announced to increase the accuracy due to

one less rounding operation. The multiplication inside FMA first produces a double-length

product (i.e., A × B). To add the product with doubled width to the third operand C

with the single width, the alignment range has to be enlarged which implies a wider data

path or a larger delay. This problem is shown in Fig. 3.3. However, such a wider data

path which includes shifter, adder, and normalizer keeps all the necessary information to the

final rounding operation. Therefore, the accuracy is improved compared to the individual

FMUL and FADD. To shorten the total latency, the alignment operation, which shifts the

significands of the product and addend to perform the addition on the operands with the

same exponent, can be placed in parallel to the multiplication path. Since the delay of the

alignment is normally less than that of the multiplier tree, the latency of FMA is reduced

by hiding the delay of the alignment shifting. Moreover, the leading zero anticipation (LZA)

can be applied to save part of the delay of obtaining the leading zero before normalization.

Finally, only one rounding operation is performed for one fused multiplication and addition.

3.2.2 Multiple-path Binary Floating-point FMA Architecture

In 2004, P. M. Seidel proposed a theoretical analysis in [31], in which a multiple-path al-

gorithm similar as that in his dual-path adder was applied. Since the alignment is just to

shift two operands (i.e., (A× B) and C) to get rid of the difference between the exponents,

an algorithm regarding the difference between the exponents is discussed. In the algorithm,

only part of the data paths is enabled during the calculation, and each sub-path is simpler

20

MUX MUX

A B+INCR B

Latch

Adder

Hex Normalize

Latch

Shifter

Binary normalize

IEEE round

Register file

Shifter

Latch

Leading-zero
anticipator

A B C

Basic structure

IBM one

Alignment

Figure 3.2: Binary FMA architecture of [26]

21

A B

Alignment Range of C

Bit width of A B

Figure 3.3: Shifting range of alignment

than the combined path to cover all cases. Thus, the delay and power could be reduced with

the cost of larger area.

The cases are split based on the difference among the exponents, which is defined by δ

(i.e., δ = (EA + EB)− EC + bias, where EA,EB, and EC are the exponents of operands

A,B, and C).

1. δ ≤ −54, where the exponent of the product is too small to affect the addend as the

intermediate result, and the product only can form the sticky bit to generate the increment

bit in some rounding modes. In this case, the adder can be disabled.

2. −53 ≤ δ ≤ −3, where part of the product will be added into the low weight bits of

the addend, and the exceeding bits of the product is added/subtracted to all trailing zeros,

thus the operation could be simplified to an negation (for subtraction). Only the high 53

bits need to be handled in the adder.

3. −2 ≤ δ ≤ 1, where the cancelation would generate the leading zero in the result in the

subtraction, thus a relative big normalization would be applied after the adder. However,

the big shifter in alignment is not needed in this case.

4. 2 ≤ δ ≤ 52, where the low-weight bits of product and the addend need to be added

together. But actually only the high 53 bits form the intermediate result, and the exceeding

part only affects the rounding result. The addition could be simplified to only determine the

increment for rounding.

5. 53 ≤ δ, where the intermediate result is formed totally by the product, the addend

only forms the sticky bit. Thus the adder can be disabled. In [35], the authors proposed a

22

three-path design in which the Far path is further divided into two paths (i.e., Adder Far

path and Product Far Path). This design will not be discussed since it is theoretically similar

to the dual-path design proposed in [34, 40].

3.2.3 Binary Floating-point FMA with Reduced Latency

In [32, 33], the authors proposed an improved architecture to combine the addition and the

rounding. In such an architecture, the final adder with carry propagation and the rounding

unit are parallel by using the compound adder which can simultaneously calculate the sum

and sum+ 1. Thus the correct result can be selected by the increment bit generated by the

rounding logic. In the architecture, the final addition is placed at the end of the dataflow.

Therefore, the normalization has to be performed before the addition, and the LZA cannot

be placed parallel with the adder. Consequently, a new normalization scheme is proposed for

shifting two operands which is obtained by adding three operands (i.e., the sum and carry of

the multiplier and the addend) with a carry save adder. Moreover, the authors also designed

a modified LZA structure to fit the proposed normalization and avoid the increasing on delay.

The brief architecture is shown in Fig. 3.4.

In all the designs referenced previously, the FADD and FMUL take the same latency as

the FMA unit does. Thus designs enlarge the latency of the individual FADD and FMUL

instruction compared to implementing them in individual floating-point adder and floating-

point multiplier. In [34], the authors discussed a method to shorten the latency of FADD in

a FMA unit by bypassing the multiplier (i.e., a recoder and a CSA tree) when running the

addition instruction individually. To do so, the alignment in previous designs is no longer

parallel with the multiplier and delayed. Furthermore, to avoid the two shifters in align-

ment and normalization on critical path, a dual-path design for the addition part separates

the shifters in alignment and normalization into two paths. Finally, the compound adder,

which calculates the sum and sum + 1 simultaneously, makes the rounder parallel with the

significand adder as discussed in [32, 33].

23

Multiplier Tree

A B

Alignment

C

Carry Save Adder

bit-invert
HAs and

part of adder

normalization

shifter

sign

detection

rounding

unit
dual
adder

MUX

LZA

Result

Figure 3.4: Binary FMA architecture of [34]

24

3.2.4 Combined Decimal and Binary Floating-point FMA

Since some designs of the decimal FADD and decimal FMUL have been proposed and imple-

mented in last several years, the decimal FMA could borrow some ideas from those state-of-

the-art decimal designs. P. K. Monsson has proposed a FMA with encodings for combined

decimal and binary processing [41]. The author chose a non-speculative multi-operand adder

which has been proposed in [42] to reduce the partial product array in the multiplier. The

data path is divided into decimal path and binary path in the partial product generation.

These two paths share the reduction tree, since the size of it is relatively big compared to the

entire architecture. To support combined decimal and binary processing, the data path has

to be constructed in an ordinary structure, which means less optimization. The traditional

encodings in reduction tree causes an extra delay in the decimal correction unit. Further-

more, the optimization method in [34] cannot be applied to implement an elaborate rounding

and addition unit. The brief architecture of the combined decimal and binary FMA is shown

in Fig. 3.5. The units for decimal or binary computations are marked by the letter “D” or

“B” on the right bottom.

The synthesis results of the dual-radix design show that the design costs too many tran-

sistors compared to the individual designs. The area of the combined FMA is about 282%

of that of the FMUL in [22] and 1240% of that of the FADD in [20]. Furthermore, compared

to the binary FMA, the area of the combined FMA is about 1267% of that of the binary

FMA in [43]. The results violated one of the motivations of the FMA which is to implement

FMUL and FADD with a small total area.

3.3 Applications of Binary FMA

In previous sections, only how FMA can improve the performance and accuracy of continuous

individual FADDs and FMULs are introduced. Actually, other functions (e.g., floating-point

division (FDIV), floating-point square root (FSQRT), and etc.) can be implemented based

on the FMA unit. This is also one of the benefits of the RISC processor in which only

key arithmetic units are implemented in hardware and other functions are implemented in

25

Multiplier Tree Alignment

Carry Propagate Adder Leading

Normalization

Rounding

Zero
Anticipation

DECA DECB DECC

Result

DPD2BCD DPD2BCD DPD2BCD

Partial Product

Generation

MUX

BINA BINBBINC

MUX

Partial Product
Generation

Decimal correction

Addition on digit
and

Carry Save Adder

MUX MUX

DDD

D

D

D

D

DD

D

B

B
D B

B

B

B B

B

Figure 3.5: Combined Decimal and Binary FMA architecture

26

software with the support of the library and the assisting hardware. Additionally, several

papers have demonstrated that the binary FMA is the requisite component to get correct

results of some functions.

P. W. Markstein in [27] introduced the Newton-Raphson’s (NR’s) method to perform the

division and square root with FMA instruction and analyzed the correctness of such a method.

Previously, without the FMA instruction, using the NR approach for division required a

special corrective action at the end of iterations to get the last bit rounded correctly. If

the corrective action is not applied, the result can be rounded incorrectly [44]. Additionally,

in the computation of the elementary functions, the FMA instruction is also very useful to

improve the accuracy of the argument reduction which is important for the accuracy of the

elementary function evaluation.

F. G. Gustavson et al. in [45] proposed an algorithm in order to correctly calculate the

four basic operations (i.e., ADD, SUB, MUL, and DIV) with good performance. Because of

the conversion error (representation error) which is the difference between the binary approx-

imated number and decimal floating-point number, the error will be propagated during the

calculation. The authors proposed a method to process the result in two parts (i.e., extended

precision), and showed that the FMA instruction is the key to perform exact floating-point

multiplication and division.

To obtain a higher frequency, more stages of pipeline can be applied. However, such a

feature increases the latency of the operation. In NR’s algorithm, the refining guesses of

quotient and the reciprocal of divisor in one iteration can be interleaved inside the multiply-

add architecture, and the different pipeline stages of the multiplier can be used in every

iteration. But since the multiplications between two iterations can not be run independently,

the utilization ratio of the multiplier decreases as the pipeline increases.

R. C. Agarwal et al. proposed a method based on power series approximation on the IBM

POWER3 [46]. In such a method, the authors used a table to first create an approximation of

the reciprocal of divisor, and applied the power series of the error to refine the approximated

reciprocal of the divisor. Since the error can be calculated, and the initial approximation is

obtained depending on the range of the divisor, the refining formula can be rearranged to a

series of multiply-add operations on the known variables. Hence, the dependence between

27

the multiply-add iterations is decreased. The results also showed that the performance is

much better in a longer pipelined architecture.

The key benefits obtained from such high-level functions implemented based on FMA

are less area and simple hardware design that also means the faster speed. This is also

why FMA alone is included in the floating-point unit of RISC processors. The algorithm for

implementing high-level functions in software with the assistance of the FMA instruction may

also be implemented in hardware. Such a strategy balances the complexities of the hardware

design (i.e., area consumption) and the compiler design. The computing latency and memory

access may be also minimized. Moreover, the exclusive usage of the dedicated unit can be

solved somehow by multi-core and multi-issue architectures, which are the popular trend of

RISC processors.

28

Chapter 4

Number Systems

For designing a high performance DFMA architecture, unconventional number systems are

considered as a encouraging technique in order to improve the performance and area efficiency.

Therefore, in this chapter, the basics of number system are introduced as a preliminary study

before going to the decimal designs. The binary, decimal, and redundant number systems

are briefly introduced in sections 4.1, 4.2, and 4.3 respectively.

4.1 Binary Number System

Number System is comprised of the methods to represent numbers and the rules to perform

arithmetic operations on the numbers. Nowadays, the central processing units inside com-

puters are abundantly built by bistable devices, which have two stable states (e.g., high level

voltage and low level voltage). The binary numbers and arithmetics are therefore widely

used in today’s computer systems.

In the binary number system, which has 2 as the radix, two elements (i.e., “0” and “1”)

are used to represent numbers. For example, the decimal number 5 can be represented in

binary number as 101 or 0101.

(101)2 = 1× 22 + 0× 21 + 1× 20 = 4 + 1 = (5)10 (4.1)

In a conventional number system, the radix always implies the elements can be used to

represent numbers in such a system. Since every numbers which are larger than or equal

to the radix number generate carries to the higher position, the available elements of a

conventional number system with a given radix are [0, r − 1], where r is the radix. The set

of the elements is called digit set. In binary system, the digit set is therefore [0,1]. Note that

29

the unit of the element can be special in different number systems. For example, in binary

system, “bit” is applied, and in decimal system, “digit” is usually used. So in equation (4.1),

we say “a 1-digit decimal number, 5, is represented in a 3-bit binary number as 101”.

Another very important attribute of a number system is encoding, which means how the

numbers in a given number system are represented with the basic elements. For example, how

is the negative decimal number “-8” represented with binary bits? To answer this question,

let’s first look at the basic methods to represent signed numbers that can be positive or

negative.

Signed magnitude representation employs one sign bit, which is usually the most signifi-

cant bit, to indicate the sign of a number (e.g., “0” means a positive number, and “1” means

a negative number). The rest of the bits are therefore used for the magnitude or the absolute

value of a number. For example, the decimal number “-8” can be represented as “11000”.

Complement representation in binary system includes one’s complement and two’s com-

plement. The positive number in one’s complement has a “0” at the most significant bit,

and the rest of the bits are exactly the same as those of the unsigned representation. The

negative number in one’s complement is represented by inverting each bit of the correspond-

ing positive number. For example, the decimal number “8” in one’s complement is “01000”,

and “-8” in one’s complement is “10111”. Alternatively, the negation of a number in one’s

complement can be done by subtracting the number from 2n − 1, where n is the bit width of

the number. For example, “-8” can be negated from “8” in one’s complement by:

25 − 1− “01000” = “11111”− “01000” = “10111” (4.2)

On the other hand, two’s complement represents negative number with an extra 1 at

the least significant bit on the basis of the one’s complement. For example, the negation of

“8” is done by inverting “01000” to “10111”, and adding the extra “1” to obtain “11000”.

Alternatively, the negation of a number in two’s complement can be done by subtracting the

number from 2n, where n is the bit width of the number. For example, “-8” can be negated

from “8” in two’s complement by:

25 − “01000” = “100000”− “01000” = “11000” (4.3)

30

Table 4.1: The signed numbers in different representations

Binary representation Signed Magnitude One’s complement Two’s complement

“000” +0 +0 0

“001” +1 +1 +1

“010” +2 +2 +2

“011” +3 +3 +3

“100” -0 -3 -4

“101” -1 -2 -3

“110” -2 -1 -2

“111” -3 -0 -1

In Table 4.1, the signed numbers can be represented with 3 bits signed magnitude, one’s

complement, and two’s complement are listed. In the first two representations, two ‘0’s

(i.e., positive and negative zeros) exist. Thus one representation symbol is wasted and the

computation on these numbers is more complicated. However, the symmetry of these numbers

may simplify the negation. On the other hand, only one ‘0’ exists in two’s complement

representation. Additionally, the addition or subtraction on the numbers in two’s complement

is straightforward. But the representable numbers are no longer symmetrical around zero.

The further knowledge about the binary number system can be found at [47, 48].

4.2 Decimal Number System

Since the decimal numbers are used by human, the binary coded decimal (BCD) numbers

are used to represent the decimal numbers in radix 10 system or decimal number system.

Actually, binary number system is very efficient on decimal integer calculation. However, the

conversion between decimal and binary numbers has to be performed at the first beginning

and the last steps. Furthermore, the binary integer is inefficient on decimal shifting and

rounding. For example, (80)10 right shifted by 1 digit is (08)10.

In the conventional decimal number system, the digit set is [0,9] implied by the radix 10.

To represent these ten digits, many encodings have been investigated. The BCD numbers

31

apply binary bits to represent a decimal digit as mentioned by its name. The most common

one is BCD-8421 system, where “8421” means the weight on each binary bit. For example,

the decimal number “9” can be represented by 4 binary bits as:

(1001)2 = 1× 23 + 0× 22 + 0× 21 + 1× 20 = (9)10 (4.4)

However, the weights on 4 binary bits do not have to be “8421”. Some unconventional

BCD encodings are available. For example, in BCD-4221, the decimal number “5” can be

represented as “1001” or “0111”. Another useful encoding is called Excess-3 BCD, which

adds 3 to each number in BCD-8421 encoding. For example, the decimal number “0” is

represented as “0011”, and “9” is represented as “1100”.

Table 4.2: The decimal digits in different representations

Binary representation BCD-8421 BCD-4221 Excess-3 BCD

“0” “0000” “0000” “0011”

“1” “0001” “0001” “0100”

“2” “0010” “0010” or “0100” “0101”

“3” “0011” “0011” or “0101” “0110”

“4” “0100” “1000” or “0110” “0111”

“5” “0101” “1001” or “0111” “1000”

“6” “0110” “1010” or “1100” “1001”

“7” “0111” “1011” or “1101” “1010”

“8” “1000” “1110” “1011”

“9” “1001” “1111” “1100”

In Table 4.2, the decimal digits from 0 to 9 are represented in three different encodings.

Note that only ten representation symbols are used in the BCD-8421 system. The unused

symbols cause two disadvantages. First, 37.5% (i.e., 6/16) of representation space is wasted

which means a lower encoding efficiency. Second, the carry and the sum may be generated

incorrectly in the addition on these numbers. The example below shows what is the problem.

32

(3)10 + (9)10 = (0011)BCD8421 + (1001)BCD8421 = (1100)BCD8421 (4.5)

In equation (4.5), the encoding “1100” is not used in BCD-8421 system. The correct

result (e.g., 11) can be obtained by adding 6 on the intermediate result if it is over the

representable range. For example,

(1100)BCD8421 + (0110)BCD8421 = (0001 0010)BCD8421 = (12)10 (4.6)

The first disadvantage is solved by the unconventional BCD encodings, such as BCD-

4221 mentioned above or BCD-5211. The second disadvantage can be partially solved by the

excess-3 BCD encodings. Since each number in excess-3 is added by 3 to each corresponding

number in BCD-8421, the addition on two excess-3 operands is added by 6. Therefore the

carry is always correct in excess-3 addition. However, the correction on sum is still necessary.

A notable advantage of the excess-3 encoding is that the nine’s complement is simply inverting

each bit as the one’s complement in binary system.

4.3 Redundant Number System

In previous two sections, the radix, digit-set, and encoding of the conventional number sys-

tems are introduced. If given a radix, the number of elements in the digit set is larger than

the radix, then the number system is redundant. Two examples are first provided to show

the redundant number system. In the first example in Fig. 4.1, suppose that 4 binary bits

are used to represent a decimal digit. But the decimal digit set is extended to [0,11]. If two

operands addition is performed, the digit set of the result is therefore in [0,22]. Consequently,

2 is the largest carry in this number system (i.e., carry digit is in [0,2]). After extracting the

carry, the intermediate sum is [0,9]. Finally, the result of the addition, which is the sum of

the digit sets of carry and intermediate sum, is in [0,11]. With the given number system, the

carry only propagates to the higher one digit. Thus, the long term carry propagation which

causes a big timing delay is eliminated.

However, the digit set of the result does not have to be the same as that of input operands.

In the second example shown in Fig. 4.2, the digit set of operands is extended by one digit.

33

[0,11]

[0,11]+

[0,22]

[0,2]

[0,9]

[0,2]+

[0,11]

Digit

i+1

Digit

i

Digit

i-1

Figure 4.1: Example of calculation with redundant number system

After calculation, the digit set of the result is less than that of operands. If the digit set

of the result is not larger than that of the operands, the continuous additions without long

term carry propagation can be performed.

[0,12]

[0,12]+

[0,24]

[0,2]

[0,9]

[0,2]+

[0,11]

Digit

i+1

Digit

i

Digit

i-1

Figure 4.2: Example of calculation with redundant number system: reduced digit set
in output

In binary number system, carry save addition is widely used in many applications. In

binary carry save addition, three binary bits are added together, and 1 bit sum and 1 bit

carry are obtained. If a digit set (e.g., [0,2]) and the corresponding encoding with 2 binary

bits (e.g., 0=“00”, 1=“01” or “10”, and 2=“11”) are defined, the binary carry save addition

can be considered as an addition on incomplete redundant operands.

The two’s complement or ten’s complement numbers are efficient to perform subtrac-

tions. However, in redundant number system, the subtraction can be performed easily with

34

symmetrical digit sets (i.e., include negative digits). Suppose a redundant decimal number

system with a symmetrical digit set [-6,6]. The carry propagation of the addition is shown in

Fig. 4.3. Note that if subtraction is performed on this digit set, the carry propagation is the

same as that shown in Fig. 4.3. This advantage reduces the complexity of subtraction on the

redundant number system by eliminating the complement operation. This kind of numbers

is called signed digit numbers. However, the conversions from traditional digit set (redundant

digit set) to redundant digit set (traditional digit set) might be needed at the first and last

operations. More information about redundant number system can be found in [49].

[-6,6]

[-6,6]+

[-12,12]

[-1,1]

[-5,5]

[-1,1]+

[-6,6]

Digit

i+1

Digit

i

Digit

i-1

Figure 4.3: Example of calculation with redundant number system: signed digit set

When the specification is determined, what need to be considered in a number system

and what are these considerations about are illustrated in Fig. 4.4. In previous sections,

digit set and the corresponding encoding are discussed. Actually, an implicity factor, which

is related to digit set and encoding, is not introduced. Once a digit set is applied to represent

numbers or an encoding is applied to represent the digit set, how many binary bits are used

is directly related to the size of the memory and the width of the data path that means the

representation efficiency. Furthermore, how to perform the basic operations (e.g., addition

and subtraction) on a given digit set and encoding is directly related to the complexity of

the hardware design. For example, a binary full adder, which includes two XOR gates and

one carry circuit, is necessary for 1 bit carry save addition. In the scope of digit set, the

best contribution is eliminating the carry propagation. However, encoding is very important

to determine the arithmetic rules and to further determine the complexity of the hardware

35

design. These two problems will be examined in later chapters.

Specification

Numbers

(Radix)
Digit sets Encodings Arithmetic rules

Representation

Efficiency

Operation

Efficiency

Hardware Cost and Processing Speed

Number System

Figure 4.4: Consideration of the number system

36

Part III

Designs

37

Chapter 5

Previous Designs

Prior to presenting the proposed decimal designs, the existing decimal fixed-point and floating-

point designs related to ours are introduced as a literature review. The contents in this

chapter describe the leading edge of the decimal designs which are the basis and also ref-

erence for comparison of our research. Since the entire research is divided into three parts

(i.e., addition, multiplication, and fused multiply-add), the following three sections describe

decimal fixed-point addition, multiplication, and floating-point FMA respectively.

5.1 Decimal Fixed-point Addition

In the decimal floating point arithmetic, the operation on the significand encoded in densely

packed decimal (DPD) format, which express 1000 decimal numbers in 10 binary bits instead

of 12 binary bits in BCD encoding, could be implemented in the same technique as in the

decimal fixed point arithmetic. Among the fixed point decimal arithmetics, addition is the

most important one since it is the basis of all other operations. For instance, in the sequen-

tial multiplication and digit recurrence division, the partial product for each iteration are

accumulated by the adder. Moreover, in the parallel multiplication and functional division,

partial products are reduced by the adder tree. In [58], the authors show that the logics

related to the significand computation units occupy 51% timing delay and 41% area of the

decimal floating point adder. Since an improvement in addition can benefit to many other

decimal operations, many methods and algorithms were applied to boost the performance of

the decimal adder.

Traditionally, a decimal digit zi, where zi ∈ {0, 1, . . . , 8, 9}, is represented in the 4-bit

binary coded decimal (BCD) encoding. Alternatively, the signed digit set {−α,−(α −

38

1), . . . , α − 1, α} is applied to represent the decimal numbers. If 2α + 1 > r, where r is

the radix, the number system is redundant. For a redundant number system, one number

has more than one representation which allows the carry free addition. The conventional SD

carry free addition/subtraction algorithm is given as follows [49]:

Algorithm 5.1: One Digit Conventional Carry Free Addition

Data: SD operands Xi, Yi, transfer digit Ti and operation op.

Result: SD result Si and transfer digit Ti+1.

1. Compute Pi = Xi op Yi

2. Divide Pi into Ti+1 and Wi = Pi − r × Ti+1

3. Compute Si = Wi + Ti

where Pi is the position sum, Ti+1 is the transfer digit, Wi is the temporary sum and r is

the radix.

The signed digit (SD) number system could be applied to eliminate the carry chain in

the carry free addition. After the first published decimal signed digit adder designed by A.

Svoboda in 1969 [50], some papers were presented in the last decade.

B. Shirazi et al. in [59] proposed a redundant binary coded coded decimal (RBCD) adder

in digit set [−7, 7]. Since BCD encoding only applies 4 binary bits to present from 0 to 9 as

an unsigned number, six encoding symbols are wasted. In the RBCD, the authors treat the

4 binary bits as a signed number. Therefore [-8,7] can be represented within the 4 binary

bits. However, to perform the subtraction on a symmetrical digit set, “-8” is not used in

RBCD addition. To perform the addition, a binary full adder with carry propagation in 4

bits is applied first to get the intermediate sum (i.e., a+ b) of the two operands. Afterwards,

a combinational logic unit is used to detect if the intermediate sum is out of range (i.e., over

[-6,6]) and to decide the transfer digit or carry to the next digit. Since the intermediate

sum has to be corrected by considering the carry out to the next digit and the carry in to

the current digit, another combinational logic unit is performed to create a correction signal

39

based on carry in and carry out. Finally, the final redundant result in [-7,7] is obtained by

adding the correction signal to the intermediate sum in a 4 bits binary carry propagation

adder. All these operands mentioned above are in serial. Note that, the conversions have to

be performed before and after the RBCD, since the BCD numbers “8” and “9” are not in

the range of the RBCD encoding.

H. Nikmehr et al. provided the decimal signed digit (DSD) adders in digit set [−9, 9] in

[51]. In this DSD adder, a speculative method which creates all possible results and selects

the correct one based on the carry in and carry out signals is applied. For instance, in [51],

the intermediate sum p is firstly created by adding the operands a and b. Subsequently,

p + 9, p + 10, p − 1, p − 10, and p − 11 are calculated at the same time. A combinational

logic is then performed to decide the transfer digit to next digit. Finally, the correct result is

selected from the pre-calculated result by the carry signals. Note that, to represent a decimal

signed digit, two 4-bit binary numbers are used. The extra bits to represent numbers and

the pre-calculated result both mean less area efficiency.

J. Moskal et al. also provided a non-speculative method to perform decimal signed digit

addition in digit set [−9, 9] in [56]. The digit set and number representation are similar to

the design in [51]. However, since non-speculative method is used, the final result is not

selected from pre-calculated result but corrected from the intermediate result. Therefore,

the two operands are firstly compressed (added) to obtain the intermediate. After that, the

correction signal is created by considering the sign signal which is obtained by a bit-wise

carry propagation network. Finally, a signed digit binary adder array is applied to correct

the intermediate sum. However, due to the complicated representation, some combinational

logics (i.e., multiplexor, inverter, reduction logic) have to be used inside the adder.

In [52], A. Kaivani provided a fully redundant decimal addition based on stored unibit

transfer (SUT) encoding in [−8, 9]. In the SUT encoding, an extra binary bit so called unibit

is applied to represent “-1” and “1”. Thus, together with a 4-bit signed binary number, the

digit set is enlarged to [-8,9]. Note that, the 4-bit signed binary has negative weight on each

bit (i.e., “8 -4 -2 -1”) compared to a traditional signed binary number. Therefore without the

unibit, the signed binary is in [-7,8]. To perform the addition, the unibits of two operands

are firstly extended to a 4-bit signed binary number. A binary carry save adder is therefore

40

applied to add up the three 4-bit operands. Subsequently, to compress the result, a 3-bit

binary carry propagation has to be used after the carry save adder. Finally, the result is

divided into two parts to be corrected at the last stage. The unibit is therefore “stored” in

the result.

There are two branches of the architectures as mentioned above. The speculative archi-

tecture shows disadvantage on the hardware area efficiency. Additionally, if the encoding is

complicated, the timing delay to compute all the necessary pre-calculated result could be

large. On the other hand, the non-speculative architecture generally has a smaller hardware

area. However, the selection of the encoding is also very important in this architecture.

Let’s review the conventional signed digit addition/subtraction algorithm. Since the

transfer digit Ti+1 to the next stage is independent on Ti from the last stage, the carry chain

is eliminated, and the delay is no longer related to the digit width of the input. However,

this algorithm still could be improved in following two aspects:

Deciding Ti+1 without Pi

Once Pi is obtained, the transfer digit Ti+1 is generated according to the range of the position

sum. Hence, a carry chain for calculating Pi limits the performance of the adder. In this

thesis, an algorithm to decide the transfer digit directly on the range of the operands, Xi

and Yi, is introduced. The method for range division is discussed in section 6.1.

Calculating Si without Wi

After generating the Ti+1, a compensation in decimal addition (i.e., ±10) is applied to cor-

rectly calculate the temporary sum, Wi. Further, the transfer digit Ti from the last stage is

added to obtain the final result Si. In this process, these two continuous additions imply a

complicated and slower design. A method to merge them into one add operation which leads

to a better performance on area and delay is proposed in section 6.1.

41

5.2 Decimal Fixed-point Multiplication

Multiplication is one of the four basic arithmetic operations. An analysis of benchmarks

shows that the percentage of execution time of decimal multiplication could reach over 27%

in some applications [18]. Due to the importance of multiplication, some decimal fixed-point

designs are proposed in [42, 63–70]. Furthermore, decimal floating-point multipliers based

on those fixed-point designs are published in [22, 73, 74, 93, 94].

5.2.1 Analysis of Previous Parallel Designs

In [65], to avoid complicated multiples of X, the operand Y is recoded into two parts,

Yi = YHi + YLi, where YH ∈ {0, 5, 10} and YL ∈ {−2,−1, 0, 1, 2}. Therefore, only the

−2X,−X, 2X, and 5X need to be implemented in logic gates. Since the multiples are repre-

sented in 10’s complement format, the negation is implemented by a 9’s complement recoder,

and the incremental one is only applied on the least significant digit (LSD). Furthermore, to

generate the partial products from 1X to 9X in BCD carry save (BCD-CS) format, a decimal

CSA has to be applied. The parallel PPR for 2n partial products (i.e., n sums and n carries)

is implemented by 6 levels of BCD full adders (BCD-FA) for a 16× 16-digit multiplication.

Half of the decimal carries of partial products are added separately by carry-counters. Two

outputs of PPR, 2n-digit sum and 2n-bit carry, are added together by a prefix network with

a conditional adder. Furthermore, an improved PPR algorithm based on a multi-operand

decimal addition in [71] is provided by L. Dadda in [66]. The partial products in columns

are firstly added in a binary form with the binary carry save adder. Subsequently, a binary

to decimal conversion algorithm is applied to convert the binary result to decimal encoding.

In [67], G. Jaberipur et al. propose a new PPG algorithm which only generates 2X and

5X to compose other multiples from 1X to 7X. The 8X and 9X are divided into two parts

in which the 8X is implemented by E = 10Eh +El, and the 9X is implemented in the same

way as N = 10Nh + Nl. Therefore, the algorithm avoids not only the negation logic for

−2X and −X, but also the 4X (double times 2X) to generate 8X and 9X. Furthermore,

by analyzing the range of the computation and gate level representation, the BCD-FA in the

PPR unit is simplified. The two outputs of the PPR unit are further reduced to one 2n digits

42

and one (2n− l)-digit BCD numbers, where l is the number of levels of the BCD-FA in the

PPR structure. Hence, for the final product computation, only 2n− l digits are involved in

the carry propagation adder to generate the final multiplication result.

In [70], the authors propose a redundant decimal addition algorithm based on a specific

encoding, namely weighted bit-set encoding. With such an addition algorithm, a multiplier

based on the redundant number system is provided. The double-BCD format multiples are

firstly created by combining the easy decimal multiples (i.e., 2X, 4X, and 5X). In the

PPR unit, two-operand redundant adder is applied to reduce 2n BCD partial products to

a redundant number in the range of [0, 15], so called overloaded decimal digit set (ODDS).

Furthermore, in the last step, the redundant product is converted to the BCD encoding by

a digit set converter with a propagation process.

In [68], A. Vázquez et al. propose an improved design of their previous work published

in [76]. In the improved new family parallel decimal multiplier, two unconventional decimal

encodings (i.e., BCD-4221 and BCD-5211) and two architectures (i.e., radix-10 and radix-

5) are applied to generate and reduce the partial product. In radix-10 architecture, the

operand Y is recoded into SD digit-set [−5, 5], and n + 1 partial products are selected by

the recoded Y . Alternatively, in radix-5 architecture, the second operand is encoded into

two parts, Yi = Y U
i · 5 + Y L

i , where Y U
i ∈ {0, 1, 2} and Y L

i ∈ {−2,−1, 0, 1, 2}. Therefore,

in this scheme, there are 2n partial products need to be reduced. In the PPR unit, only

the binary full adders and combinational recoders are applied due to the specific encodings.

Finally two 2n-digit results are added together with a quaternary tree (Q-T) adder based on

the conditional speculative decimal addition proposed by the same authors in [75].

In [74], another variant of the design proposed in [76] (i.e., the radix-10 architecture) is

introduced. The author applied the idea and basic architecture of Vázquez’s radix-10 design

to create a decimal floating-point multiplier. The only difference is that the final product

accumulation is replaced by a decimal adder with a Kogge-Stone carry network.

5.2.2 Analysis of Previous Sequential Designs

The sequential multipliers generate partial products gradually (i.e., one per iteration) and

accumulate them sequentially. This architecture, although not very fast, is popularly used

43

whenever cost efficiency is the main intention. All the sequential multipliers consist of two

main steps 1) partial product generation (PPG) and 2) partial product accumulation (PPA).

The most popular algorithm for decimal PPG is based on the generation of easy-multiples

of the multiplicand X i.e., the multiples which can be generated as a non-redundant decimal

number via a carry-free approach (e.g., X, 2X, 4X, 5X). The concept of generation of these

multiplies is very similar to that in the parallel multipliers.

In order to achieve the final product one needs to generate and sum up the partial prod-

ucts for all digits of the multiplier. This step, also known as partial product accumulation,

usually consists of a carry-propagating or carry-free decimal adder which is much simpler than

the partial product reduction array in parallel multiplier. However, as mentioned above, the

performance (i.e., latency and throughput) is limited due to the sequential processing strat-

egy. It should be noted that a final conversion to non-redundant representation is required,

in case of using a carry-free decimal adder.

For example, Erle et al. propose a traditional method of decimal multiplication in [63].

The design borrows the idea from binary multiplication which reduces the partial products

in a carry save adder (CSA) based structure. Furthermore, to reduce the complexity of

the multiples generation, a so-called secondary set which contains {X, 2X, 3X, 4X, 8X} is

applied, and all the missing multiples could be generated based on the elements in the

secondary set with no more than one carry save addition. The decimal 3:2 CSA and 4:2

compressor are described in [63]. Furthermore, the partial product for each iteration could be

added iteratively within the delay of a decimal 4:2 compressor. An n×n-digit multiplication

can be finished in n+ 4 cycles.

Another sequential decimal multiplier with easy multiples (i.e., {X, 2X, 4X, 5X}) is pro-

posed in [42]. Additionally, a 2-stage overloaded decimal adder which can sum two partial

products and one iteration result with less delay than a decimal 4:2 compressor is presented.

By doing so, a clean-up block has to be applied to finally correct the decimal encoding before

the carry propagated addition in the final step. Thus, in such a multiplier, the latency of

one operation is up to n+ 8 cycles.

An alternative sequential redundant multiplication is described in [64]. The authors

present an algorithm which recodes both operands into the SD digit-set [−5, 5] to generate the

44

SD operands with simple logic. Further, a digit multiplier block on the range of [2, 5]× [2, 5]

is proposed to generate the partial products in SD format. Hence, a Svoboda’s signed digit

adder with a restricted range is consequently applied to add signed digit partial products

iteratively. The SD sequential multiplier takes n+ 4 cycles to finish one multiplication.

5.3 Decimal Floating-point FMA

To the best of our knowledge, four pure decimal floating-point fused multiply-add (DFMA)

designs have been announced previously. In [103], the author described a top level design of

the DFMA which is based on a previous binary FMA architecture with decimal sub-modules

[33]. In [93], the authors provided a conventional DFMA comprising a parallel decimal

multiplier proposed by the same research group in 2008 [94], a decimal carry propagation

adder (CPA) to accumulate the intermediate results, and a decimal rounder which creates the

final significand after the decimal FMA core. In [95], the authors proposed a new leading zero

anticipation (LZA) algorithm which starts the detection and decision of the post-alignment

shift amount in parallel with the decimal adder. In [102], the author introduced a new FMA

architecture which combines the addition and the rounding operations into a single unit.

Since there are no descriptions about the detailed structures in the first two designs, only

the latter two designs are referred to be introduced in this section.

Two previous architectures of the DFMA operation proposed in [102] and [95] are shown

in Figures 5.1(a-b). In Fig. 5.1(a), the alignment shifting is performed in parallel with the

multiplier array. Therefore, the pre-alignment is excluded from the critical path. To figure

out the rounding position before the final addition is performed, in the following selection and

adder modules, the proper range of the operands are selected and a 4221-BCD decimal carry

save adder is applied to add one product in carry-save format and one addend. A leading

zero anticipator and shift controller are therefore created to decide the possible exponent and

rounding position. The final result is then obtained by a combined adder and rounder. On

the other hand, in Fig. 5.1(b), a new leading zero anticipation algorithm is introduced. In

this architecture, a swapping module and a shifting module are placed after the multiplier

array. Afterwards, the carry propagation adder and the leading zero anticipation unit are

45

DPD Decoder

Mul Array
Pre-Align

Op Selection

Combined Add Round

DPD Encoder

X Y Z

SXCX EXSZCZ EZSYCY EY

CZsh

Post-processing

LSH & RSH

R

4221-BCD CSA

LZA

shamt1

Productsum

Sum1carry

shamt2

Sum2carry

Result

Resultpost

Op0 Op1 Op2

Shamt
Calculation

LSH & RSH

Productcarry

Sum1sum

Sum2sum

(a) Architecture proposed in [102]

DPD Decoder

Mul Array
Pre-Align

Rounding

DPD Encoder

X Y Z

SXCX EXSZCZ EZSYCY EY

ProductBCD shamt1

Post-processing

Swap Unit

R

LSH & RSH

LZAAdder (CPA)

LSH

Shamt

Op0

Op1shOp0sh

Op1

Sum1

shamt2

Sum2

Result

Resultpost

LZD

Calculation

(b) Architecture proposed in [95]

Figure 5.1: Decimal floating-point fused multiply-add architectures

applied in parallel. The following post-alignment shifter creates and transmits a 2n-digit

intermediate result to the final rounder.

46

Chapter 6

Proposed Designs

This chapter describes the details of the proposed designs. The fixed-point addition and

multiplication with redundant internal encodings are firstly designed to reduce the latency

of the major components in a DFMA. Additionally, the architecture and algorithms of the

proposed DFMA are beneficial from not only the new addition and multiplication but also

the specific number system. The detailed descriptions of the addition, multiplication, and

DFMA are provided in sections 6.1, 6.3, and 6.4.

6.1 Decimal Fixed-point Addition

The addition is the basis of all the other arithmetics. Therefore, a fixed-point carry free

addition is firstly studied and investigated to increase the performance of decimal floating-

point processing. Additionally, a new final digit-set conversion is described in order to apply

the carry free addition solely.

6.1.1 Carry Free Addition

In the conventional carry free addition algorithm, to obtain the transfer digit Ti+1, the

operands Xi and Yi have to be added together and compared with the threshold value.

A carry chain in this process limits the performance of the carry free adder. To improve it,

a speculative method could be used (e.g., [51], [53] and [54]). In this method, all possible

results which depend on different transfer digits Ti and Ti+1 are calculated simultaneously

and the correct one is selected by the value of the transfer digits. The redundancy on hard-

ware in aforementioned designs implies the bigger area and higher power consumption. On

the other hand, the nonspeculative method for maximally redundant SD addition (e.g., [55])

47

provided a faster design in binary world (i.e., radix-2h). In this section, a new nonspeculative

decimal SD addition which directly calculates the result without the hardware redundancy is

introduced. The proposed adder which works in digit set [−9, 9] has a simple range division

logic. Moreover, the operands and result are encoded in 5-bit two’s complement to reuse the

binary circuit as much as possible.

The Algorithm

To unify the addition and subtraction, a new operand Y opi is defined in equation (6.1).

Hence, the adder and subtractor could be represented by a unified model as shown in equa-

tion (6.2).

Y opi =

 Yi if operation is add

−Yi if operation is sub
(6.1)

Xi ± Yi = Xi + Y opi (6.2)

In the traditional carry free algorithm, the transfer digit Ti+1 and the temporary sum Wi

are generated from the position sum Pi. The process could be represented by equation (6.3).

Ti+1 = f(Pi) = f(Xi + Y opi)

Wi = g(Pi) = g(Xi + Y opi)
(6.3)

To reduce the timing delay and parallelize the transfer digit generation with the position

sum calculation, the temporary sumWi and transfer digit Ti+1 could also be directly expressed

in terms of Xi and Y opi as shown in equation (6.4).

Ti+1 = f ′(Xi, Y opi)

Wi = g′(Xi, Y opi)
(6.4)

In decimal sign digit number system, ±9 should be avoided in temporary sum, otherwise,

an incoming transfer digit could lead to a carry to the next digit. The position sum which

is equal to ±9 is called an exception in the proposed design. Furthermore, the exception

detection will pull down the performance of the decimal SD adder compared with its binary

counterpart. Hence, the less number of exceptional cases, the better it is.

48

T
a
b
le

6
.1
:
R
an

ge
d
iv
is
io
n
d
ir
ec
tl
y
b
as
ed

on
op

er
an

d
s

R
an

g
e

o
f

T
i
+
1

W
i

S
i

C
o

rr
ec

ti
o

n
S

ig
n

al

X
i

an
d
Y
o
p
i

T
i
=
−
1
=

“
1

1
”

T
i
=

0
/
1
=

“
0

0
/1
”

co
r
4
.
.
.
1
=

ca
se

1
X

i
≥

1
,Y

o
p
i
≥

1
1

P
i
−

1
0

P
i
+

(−
1
1
)
=

P
i
+

(−
1
0
)/
(−

9
)
=

1
0

1
0

,
if
T

1 i
=

1
an

d
(0
,9

),
(9
,0

)
P
i
+

1
0
1
0

1
P
i
+

1
0
1
1

0
/1

1
0

1
1

,
if
T

1 i
=

0
ca

se
2

X
i
≥

0
,Y

o
p
i
≤

0
0

P
i

P
i
+

(−
1
)
=

P
i
+

0
/
1
=

1
1

1
1

,
if
T

1 i
=

1
X

i
≤

0
,Y

o
p
i
≥

0
P
i
+

1
1
1
1

1
P
i
+

0
0
0
0

0
/1

0
0

0
0

,
if
T

1 i
=

0
ex

cl
u

d
e
(0
,±

9
),
(±

9
,0

)
ca

se
3

X
i
≤
−
1
,Y

o
p
i
≤
−
1

-1
P
i
+

1
0

P
i
+

9
=

P
i
+

1
0
/
1
1
=

0
1

0
0

,
if
T

1 i
=

1
an

d
(0
,−

9
),
(−

9
,0

)
P
i
+

0
1
0
0

1
P
i
+

0
1
0
1

0
/1

0
1

0
1

,
if
T

1 i
=

0

49

To implement the range division and exception detection efficiently, a scheme to divide

the cases for generating different values of transfer digit Ti+1 is proposed in Table 6.1. In

this method, there are four pairs of Xi and Y opi need to be detected as an exception.

Therefore, only six multi-input gates are applied to implement the exception detecting circuit.

Furthermore, these gates could be reused to decide the transfer digits. Consequently, besides

the exception detecting logic, only the most significant bits for Xi and Y opi and simple logic

are needed to determine the transfer digit.

In Algorithm I, once the transfer digit is obtained, Wi is generated by adding a correction

value to Pi, and then, the result Si is calculated by adding Wi with Ti. In this process, those

two serial computations cause a limit on speed. To combine these two additions into one

computation efficiently (i.e., the three operands addition Si = Pi− r×Ti+1+Ti), an analysis

for the effect of the input range and incoming transfer bits on the decimal correction value

is provided in Table 6.1.

To generate the correction signal, the transfer digit Ti from the last digit is used. There-

fore, the decimal correction signal can be decided directly by T 1
i and the range of input

operands Xi and Y opi, then the further computation for adding Ti is removed. The bold

numbers in Table 6.1 show that the least significant bit of the correction signal is equal to

T 0
i .

The Hardware Implementation

To reuse the well optimized circuits in binary world as much as possible, the operands Xi

and Yi are encoded in 2’s complement. Therefore, the Y opi is obtained by inverting Yi with

XOR gates controlled by the operation signal op which is the penalty of the subtraction. The

increment on the least significant bit could be added as an incoming carry to the right most

full adder.

In this design, the exception logic is minimized to four pairs of operands detection, and

to improve the speed, the operands Xi and Yi are directly used for the exception handling.

In equation (6.5), the signals Ep and En are for positive exception (i.e., (0, 9) or (9, 0)) and

negative exception (i.e., (0,−9) or (−9, 0)) respectively.

50

*FA FA FA FA FA

op

4

i
X 4

i
Y 3

i
X 3

i
Y 2

i
X 2

i
Y 1

i
X 1

i
Y 0

i
X 0

i
Y

*FA **FA HA

0

iT
Transfer &

iX i
Y 1

i
T

1

1 i
T
0

1 iT

24cor

1cor
3cor

cor24 cor24cor3 cor1

0

iS
1

iS
2

iS
3

iS
4

iS

op

Correction
Generator

* The two full adders only contain the logic for sum

SDDA

1
X

1
Y

1
S

SDDA

0
X

0
Y

0
S

1
T

SDDA

1-nX 1-n
Y

1-n
S

SDDA

2-n
X

2-n
Y

2-n
S

1-n
T

2
T

n
T

00" "

55

5
2

Carry Chain

c1c2c3c4

pg1pg2pg3

1p1g2p2g3p3g
1c

2c3c4c
Carry Chain

**FA **FA

' &** The three full adders contain the logic for () and ()p a b g a b

X
Y

82

45-

X

Yop
82

45

P 47

T 010

cor 1a

S 033

P 47
Example:

op

Figure 6.1: Proposed n-digit signed digit decimal adder

Ep =
(
Xi = 0 ∧

(
(Yi = 9 ∧ op) ∨ (Yi = −9 ∧ op)

))
∨

(Xi = 9 ∧ Yi = 0)

En =
(
Xi = 0 ∧

(
(Yi = −9 ∧ op) ∨ (Yi = 9 ∧ op)

))
∨

(Xi = −9 ∧ Yi = 0)

(6.5)

case1 =
(
(X4

i ∧Xi = 0) ∧ (Y op4i ∧ Yi = 0)
)
∨ Ep

case3 =
(
X4

i ∧ (Y op4i ∧ Yi = 0)
)
∨ En

case2 =
((

X4
i ∧ (Y op4i ∨ Yi = 0)

)
∨
(
(X4

i ∨Xi = 0)∧

(Y op4i ∨ Yi = 0)
))

∧ Ep ∧ En

(6.6)

In Table 6.1, the operands’ range division for generating Ti+1 is not right on zero, thus,

the zero input should be excluded for some cases. The zero detection logic in equation (6.5)

could be reused, and the range division logic is given in equation (6.6).

The transfer digit only depends on the range division, and it can be obtained at the same

time as Pi is ready. Thus, the critical path only passes one of the two units for transfer

digit generation and position sum addition. Equation (6.7) shows the logics to generate the

51

transfer bits.

T 1
i+1 = case3

T 0
i+1 = case1 ∨ case3

(6.7)

According to the analysis in Table 6.1, the decimal correction signals are decided by

operands range and incoming transfer bits. The conditional adder with multiplexor which is

controlled by Ti and casei could be applied. Nevertheless, to reduce the area, combinational

logics shown in equation (6.8) are used to directly generate the correction signal and to

connect it to the second level of binary full adders. An example of the process of the proposed

adder is shown in Fig. 6.1.

cor4 = case1 ∨ (T 1
i ∧ case2)

cor3 = case3 ∨ (T 1
i ∧ case2)

cor2 = cor4

cor1 = T 1
i ⊕ case2

cor0 = T 0
i

(6.8)

Since the critical path passes through the second level of full adders, to further improve

the performance of the proposed design, a simplified carry chain which is similar to the prefix

network is applied as shown in Fig. 6.1.

Finally, the hardware implementation of the proposed decimal SD adder is given in

Fig. 6.1. The bold dash line is the critical path which passes through the transfer and

correction logic and an optimized carry chain. The full adders with the asterisk only contain

the logics for sum. Furthermore, in the second level of full adders, the critical path only pass

through one XOR gate in the left most full adder.

6.1.2 Absolute Value Digit-Set Conversion

Since the decimal data stored in memory are generally encoded in BCD format, to use the

decimal carry free adder, the operands in BCD encoding should be converted into the internal

encoding scheme used in the proposed design. Similarly the final result coming from the SD

adder needs to be converted back to BCD format before sending to the memory.

52

In the IEEE 754-2008 Standard, the absolute value of the mantissa is represented in the

significant digits section. However for the signed digit subtraction, the result could be less

than zero. Hence, before sending to the memory, the result which is less than zero must be

converted to it’s absolute value.

In [58], a negation unit and prefix network are applied to correctly calculate the final result

in BCD format. In [59] and [52], to convert the BCD encoding to the internal encoding, 9-

level and 1-level of gates are used respectively. Further, the authors proposed two algorithms

to convert from internal encoding to BCD encoding with a carry propagation chain. The

negation unit for the redundant number system could be implemented digit by digit.

In this section, a merged algorithm which can directly convert the negative result to it’s

absolute value in BCD encoding with a less penalty on delay is introduced.

The Algorithm

In our design, since the digit set is encoded in 5-bit 2’s complement, and the input operands

in BCD encoding are always in digit set [0, 9], thus the front conversion which is only a

1-bit sign extension does not cost any logic. For converting from the internal 5-bit format to

the BCD encoding, a borrow (negative carry) propagation which passes through the entire

word-width logics is involved.

For the negative SD result, before converting to the BCD encoding, the absolute value of

it is obtained by inverting all signs on each digit. For example,

∣∣(1234010)SD∣∣ = (1234010)SD = (0833990)BCD.

To merge the negation algorithm with the digit set conversion algorithm and improve the

performance of the converter, an absolute value digit set conversion algorithm which includes

a prefix network and a correction unit is proposed. The algorithm leads to a logarithmical

timing delay which is more suitable for high precision computation. An example is provided

in Fig. 6.2.

Algorithm 6.1.2: Absolute Value Digit Set Conversion

53

Data: SD number S.

Result: BCD number R (R = |S|).

1. Compute generate bit (Gi) and propagate bit (Pi) for each digit of the result.

Gi =

 1 if Si < 0

0 otherwise,
Pi =

 1 if Si = 0

0 otherwise,

Gi:j =

 Gi if i = j

Gi ∨ (Pi ∧Gi−1:j) if i > j,

Pi:j =

 Pi if i = j

Pi ∨ Pi−1:j if i > j.

(6.9)

2. Compute the negative carry Ci.

Ci+1 = Gi:j ∨ (Pi:j ∧ Cj), C0 =

 0 if S ≥ 0

1 if S < 0.
(6.10)

3. Generate the result Ri in BCD format.

Ri =



Si if Ci+1Ci = 00 and S ≥ 0

Si − 1 if Ci+1Ci = 01 and S ≥ 0

Si + 10 if Ci+1Ci = 10 and S ≥ 0

Si + 9 if Ci+1Ci = 11 and S ≥ 0

Si + 10 if Ci+1Ci = 00 and S < 0

Si + 11 if Ci+1Ci = 01 and S < 0

Si if Ci+1Ci = 10 and S < 0

Si + 1 if Ci+1Ci = 11 and S < 0,

(6.11)

where the symbol Si is the bit inversion of the digit Si.

The Hardware Implementation

The architecture of the proposed convertor for a p-digit input is given in Fig. 6.2. The C ′
msb

which is the sign of the SD result is obtained at the output of the prefix tree. Therefore

if the SD result contains trailing zeros, then the C0 which is C ′
msb cannot be propagated

54

correctly. To fix this problem, a trailing zero detection is placed in parallel with the prefix

tree, and a two-gate logic is applied to adjust the result coming from the prefix tree as shown

in Fig. 6.3a.

In BCD encoding, only 4 bits are used to represent a number. Thus, the fifth bit S4
i of

each digit in the SD result is discarded in the final 4-bit adder to compensate the result. The

Fig. 6.3b shows the logic for the 4-bit correction signal for each digit which is obtained based

on the equation (6.21) in Algorithm 6.1.2.

 GenerationG Pi i

Prefix Trailing Zero

Adjust

S

R

C

GP P

!C

Sign

Correction

Generator

FA HA*FA

!S

!
msb
C

3!
iS

2!
iS

1!
i
S 0!

i
S

3
cor
i

3

i
R 2

iR
1

i
R 0

i
R

2
cori

1
cori

0
cor
i

5p"4p"

4p"

Z

4p"

2p" p

pp

p

* The full adder only contains the logic for sum

Network Detection

Logic

Signal

1234010S:
0000101P:
1011000G:

1011000!C :
0000001Z:
10110011C:

0 10 1Cor: b ab

1:Sign

0 23!S : + d fef

0833990R:

!# msbC

Cor

FA

Figure 6.2: Proposed absolute value digit-set converter

1!pZ"msbC

2!p
Z
1!
"
p
C

1
Z
2
"C

0
Z
1
"C

1
C

2
C

1!pCmsb
C

0
C

Sign

(a) Adjust logic

msb
C

1 i
C

i
C

3

i
cor

2

i
cor

1

i
cor

0

i
cor

(b) Correction logic

Figure 6.3: Adjust and correction logics of the proposed digit-set converter

Before converting SD result to the BCD encoding, an exclusive-OR gate is applied on

each bit of Si to do the bit inversion for the negative result. In Fig. 6.2, the bold dashed line

is the critical path which passes through the PG generation block, the prefix network, the

adjustment logic, the correction signal generator and three full adders in the final converting

unit. On the critical path, only the delay in prefix network is proportional to the width of

55

the input.

6.2 Parallel Decimal Fixed-point Multiplication

In the proposed parallel multiplication, one of the two operands is encoded into the digit-set

[−5, 5], and represent the multiples of the other operand from −5X to 5X in the digit-set

[−8, 8]. By doing so, all the multiples could be obtained in a constant delay, and only n+ 1

partial products, namely PP , are generated. Furthermore, to reduce the n+1 levels of partial

products into the final SD result, a multi-level multi-operand SD addition is discussed. To

reduce the delay and area of the hardware in PPR unit, binary arithmetic units and com-

binational recoders are applied in the multi-operand SD adder. Finally a digit-set converter

with hybrid carry propagation network is applied to convert the product from SD to BCD

encoding. In the proposed hybrid prefix tree, different prefix trees with less digit width are

applied to construct a big prefix carry propagation network. Consequently, in the prefix tree,

the levels of prefix nodes after the longest column in the PPR unit are reduced. Overall, the

structures of the PPG, PPR and final converter are balanced, and the delay of the proposed

multiplier is optimized. The top level architecture of the proposed multiplication is shown

in Fig. 6.4.

In the first stage, the n-digit operand YBCD is recoded into (n+ 1)-digit YSD in digit-set

[−5, 5]. The 5-bit “one hot” selection signal Y si for each digit is generated based on the

recoded operand, YSD. In the proposed design, only the positive multiples, X through 5X,

are implemented by logic gates. The negative multiples, −X, −2X, −3X, −4X, and −5X,

could be represented in the similar way. However, to reduce the area of the multiplier, the

negative multiples are generated by inverting the sign on each digit of the positive multiples.

Since the digit in the proposed SD multiples is represented in 2’s complement encoding, the

inversion is done by an XOR gate controlled by Y ni which is also the increment bit for each

digit to invert the sign of the multiples. Note that only one bit is enough to invert a partial

product, therefore the increment bits for all digits in a partial product are identical.

The second stage in the proposed multiplication is a PPR unit implemented by multiple

levels of multi-operand SD adders. For example in a 16 × 16-digit multiplication, after

56

Partial Product Generation

1X2X3X4X5X

[-5,5] SD Recoder

4(2)n 4(2)n 4(2)n 4(2)n 4(2)n

Partial Products Reduction

2 -digit SD-BCD Convertern

BCD
X

BCD
Y

BCD
R

SD
R

Ys Yn

5 1n

4 2n !

4 2n !

4(2) (4 1)n n n !

n

4n 4n

Selection Generator

SD
PP

n

n

Selector

Figure 6.4: Top level architecture of the proposed parallel decimal multiplication

the PPG unit, there are 17 partial products need to be reduced. the layout of the partial

product array is rearranged to apply two levels of SD adders to generate the final product

in SD format. In such an multi-operand SD addition, the operands could be firstly reduced

by the binary arithmetic unit, and in the end, a recoder is applied to correct the transfer

digit and interim sum within the decimal manner. Thus in the proposed multiplication, the

decimal correction is compacted as much as possible.

In the third stage, to convert the SD product back to BCD encoding efficiently, a hybrid

carry propagation network which consists of several small carry prefix networks is provided to

counterbalance the different delays on different bits of the result of the PPR unit. Compared

to traditional methods, the hybrid prefix tree has less level by more level of nodes on the

middle and less significant digits of the result from the PPR unit. Since the middle columns

in a partial product array consume more delay than the ending columns, the overall delay of

the multiplier could be further reduced with the proposed hybrid prefix tree. An example to

illustrate each component of a proposed 4× 4-digit multiplier is provided in Fig. 6.5.

57

9234
BCD
X "

1 : 011234
SD
X

011234

032318

021532

011234

011234

0143310434
SD
R "

 62689626
BCD
R "

2 : 021532
SD
X

3 : 032318
SD
X

4 : 043144
SD
X

5 : 166230
SD
X

6789
BCD
Y "

: 13211
SD
Y

1
SD
X

1
SD
X

2
SD
X

3
SD
X

1
SD
X

Inputs:

PPG:

PPR:

SD-BCD

Convert:

Output:

Generator

 SD

Rec.:

 Sel.

Gen.:

SD
PP

Figure 6.5: Example of the proposed 4× 4-digit multiplication algorithm

6.2.1 Signed Digit Partial Product Generation

In the proposed multiplier, we follow the SD radix-10 method described in [68] to recode YBCD

into the SD digit-set [−5, 5]. To represent multiples, a new method which generates n + 1

partial products without carry propagation is proposed. In Table 6.2, the positive multiples

from 1X to 5X are represented in the SD digit set [−8, 7]. Thus a 4-bit 2’s complement

number could be applied to represent each digit in the multiples from 1X to 5X. To reduce

the area of the PPG unit, the negative multiples are generated by inverting the sign on each

digit of the corresponding positive multiples, and the digit-set for all multiples from −5X

to 5X is extended to [−8, 8] (i.e., {[−8, 7] ∪ [−7, 8]} ∈ [−8, 8]). Unlike the binary signed

digit encoding proposed in the decimal signed digit number system in [51], to invert the sign

of each digit, an increment bit is involved in the proposed encoding system. Therefore one

signed digit in the proposed multiples is represented by 5 bits. However, the penalty on the

hardware area is minimized, since the increment bits for all digits in a partial product are

58

Table 6.2: Signed digit representation of the proposed multiples

BCD 1Xi 2Xi 3Xi 4Xi 5Xi Yi

Operand Ti+1 Wi Ti+1 Wi Ti+1 Wi Ti+1 Wi Ki+2 Ti+1 Wi Ti+1 Wi

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 2 0 3 1 -6 0 0 5 0 1

2 0 2 1 -6 1 -4 1 -2 0 1 0 0 2

3 0 3 1 -4 1 -1 1 2 0 1 5 0 3

4 0 4 1 -2 2 -8 2 -4 1 -8 0 0 4

5 0 5 1 0 2 -5 2 0 1 -8 5 1 -5

6 1 -4 1 2 2 -2 3 -6 1 -7 0 1 -4

7 1 -3 1 4 2 1 3 -2 1 -7 5 1 -3

8 1 -2 2 -4 3 -6 3 2 1 -6 0 1 -2

9 1 -1 2 -2 3 -3 4 -4 1 -6 5 1 -1

Ti +Wi [−4, 6] [−6, 6] [−8, 6] [−6, 6] [−5, 5]

Ki + Ti +Wi [−8, 7]

identical.

Generation of Multiples

In Table 6.2, all the multiples could be divided into two parts except the 5Xi which is divided

into three parts. To simplify the representation of the multiplies generation, three variables

are defined in Table 6.2, where Wi represents the residual number which has the same weight

as the current BCD digit. Ti+1 and Ki+2 are the transfer digits to the next two digits which

have 10 and 100 times weight of the current BCD digit respectively. The sum of the three

variables is restricted in the range of [−8, 7] to form one digit in SD number. Since the

variables can be directly generated according to different inputs, and the carry (transfer

digit) never propagates exceeding three neighbor digits, the delay of the proposed PPG is

independent on the width of the operand. In addition, for an n-digit operand, each multiple

contains n+2 SD digits. The SD multiple could be obtained by adding Ki, Ti and Wi with a

59

4-bit adder after a recoder generating these variables. Due to the specific converting pattern

in Table 6.2, the conversion can be assumed as a constant addition. Thus, the 4-bit add

operation is optimized and converted to the combinational logic to reduce area and delay.

The equations of one digit of the positive multiples are listed below. Note that the signals

on the right side of the equal sign is in BCD encoding, and the signals on the left side of the

equal sign is in proposed SD encoding. The hardware implementation can be optimized with

logic gates with less delay (e.g., NAND, NOR, XNOR gates).

1X: Since the digit-set [−8, 7] is applied to generate the positive multiples in the pro-

posed PPG algorithm, 1X has to be converted to the target digit-set. In the equation, the

signal Ti represents the incoming transfer digit which is determined by the previous one digit.

Ti = X3
i−1 +X2

i−1X
1
i−1

1X3
i = X3

i (X
0

i + T i) +X2
i X

1
i

1X2
i = TiX

1
i X

0
i +X3

i (X
0

i + T i) +X2
i

1X1
i = TiX

0
i (X

3

iX
1

i +X2
i)+

(X
0

i + T i)(X
2

iX
1
i +X3

i)

1X0
i = Ti ⊕X0

i

(6.12)

2X: In the proposed algorithm, since the transfer digit from last digit in multiple 2X

could be from 0 to 2, two bits (i.e., T 1
i and T 0

i) are needed to represent the incoming transfer

digit.

T 1
i = X3

i−1

T 0
i = X2

i−1 +X1
i−1

2X3
i = X

0

i (T
1

iX
2
i X

1

i +X3
i) +X

2

iX
1
i + T

1

iX
3
i

2X2
i = X0

i (T
1
i X

3

iX
2

i +X1
i) + T 1

i X
1
i +

X
0

i (T
1

iX
2
i X

1

i +X3
i) + T

1

iX
3
i

2X1
i = X

2

iX
1

i (T
1
i X

0

i + T
1

iX
0
i)+

(T
1

iX
0

i + T 1
i X

0
i)(X

1
i +X2

i)

2X0
i = T 0

i

(6.13)

5X: To generate multiple 5X in digit-set [−8, 7], two transfer digits which have 10 and

100 times weight of the current digit are needed. Since only two elements are in the digit-sets

60

of the residual number Wi and the transfer digit Ki, the logic could be simplified as shown

in equation (6.14).

Wi = X0
i

Ki = X3
i−2 +X2

i−2

5X3
i = X3

i−1(Ki +W i) +X2
i−1

5X2
i = Wi(X

3

i−1 +Ki)

5X1
i = WiKiX

3

i−1 +X3
i−1(Ki +W i)+

X1
i−1(Ki +Wi)

5X0
i = X1

i−1 ⊕ (Wi ⊕Ki)

(6.14)

3X: By applying the redundant number system to represent the partial product, the 3X

logic does not contain the carry propagation in digit level any more. Thus a constant delay

in PPG could be achieved.

T 1
i = X3

i−1 +X2
i−1

T 0
i = X3

i−1 +X
2

i−1X
1
i−1

3X3
i = X3

i (X
0

i + T
0

i + T
1

i) +X2
i X

1

i+

X1
i (T

0

iT
1

iX
2

i +X
0

i (X
2

i + T
1

i))

3X2
i = T 1

i X
3
i X

0

i +X1
i (T

0

iT
1

iX
2

i +X
0

i (X
2

i + T
1

i))+

X0
i (T

0
i T

1
i X

2
i +X

1

i (T
0
i X

3

i + T 1
i T

0

i) + T
1

iX
3
i)

3X1
i = X

3

i (T
1

iT
0

iX
0
i + T 1

i (X
0

i + T 0
i))(X

1

i +X
2

i)+

(T 1
i T

0

iX
0
i + T

1

i (X
0

i + T 0
i))(X

2
i X

1
i +X3

i)

3X0
i = T 0

i X
0

i + T
0

iX
0
i

(6.15)

4X: The multiple 4X in the proposed work is not generated based on two times of 2X

61

as in other works. A direct and simple method is shown below.

4X3
i = X

3

iX
2

iX
1

iX
0
i +X2

i X
1
i X

0

i+

X
0

i−1(X
2

iX
1

iX
0
i +X2

i X
0

i)+

X
3

i−1(X
1
i X

2

i−1(X
0

i +X2
i) +X

2

iX
1

iX
0
i +X2

i X
0

i)

4X2
i = X3

i (X
3
i−1X

0

i−1 +X2
i−1)+

X0
i (X

3

iX
3
i−1(X

1

iX
0
i−1 +X

2

i)

+X
3

i−1(X
2
i X

1
i X

2

i−1 +X3
i) +X

2

iX
2
i−1)+

X
0

i (X
2

i (X
1

iX
3
i−1X

0
i−1 +X1

i X
3

i−1X
2

i−1)

+X2
i (X

3
i−1(X

0

i−1 +X1
i) +X

1

iX
3

i−1 +X2
i−1))

4X1
i = X

2

i−1(X
0
i−1 +X

3

i−1)(X
3
i X

0

i +X
3

iX
2

iX
0
i +X1

i)+

(X3
i−1X

0

i−1 +X2
i−1)(X

1

i (X
3

iX
0

i +X2
i) +X3

i X
0
i)

4X0
i = X

3

i−1X
2

i−1X
0
i−1 +X3

i−1X
0

i−1 +X1
i−1

(6.16)

Selection of Partial Product

In the proposed multiplier, a minimally redundant radix-10 digit-set [−5, 5] is applied to

represent the operand Y . Since the recoded set is symmetrical, and the multiples are encoded

in signed digit number, the selection signals for the negative multiples are the same as the

positive multiples (i.e., Y s4...0i indicate the signals to select ±5X, . . . ,±1X). If a negative

multiple is selected, a one-bit negation signal Y ni for each selected partial product is applied

to invert the signs of all digits in the corresponding positive multiple. The equations for the

selection signal and negation signal are given in equation (6.17).

Ti = Y 2
i−1(Y

0
i−1 + Y 1

i−1) + Y 3
i−1

Y s4i = Y
2

iY
1

i (TiY
0

i + T iY
0
i)

Y s3i = TiY
0
i (Y

3

iY
2

iY
1

i + Y 2
i Y

1
i)+

T iY
0

i (Y
2

iY
1
i + Y 3

i)

Y s2i = Y 1
i (TiY

0

i + T iY
0
i)

Y s1i = TiY
0
i (Y

2
i Y

1

i + Y
2

iY
1
i) + T iY

2
i Y

0

i

Y s0i = Y 2
i Y

1

i (TiY
0

i + T iY
0
i)

Y ni = Y 3
i (Y

0

i + T i) + Y 2
i (Y

0
i + Y 1

i)

(6.17)

62

In Table 6.2, the column for the Ti+1 of Yi shows that an n-digit operand YBCD could

generate an (n+1)-digit SD recoded operand YSD, and the (n+1)th digit in YSD can only be

0 or 1. Thus for the (n+1)th partial product can only be 0X (all zeros) or 1X. Furthermore,

since the (n + 2)th digit of the multiple 1X is always zero, and the (n + 1)th digit of the

1X can only be 0 or 1, only 1 bit is enough to represent the most significant two digits in

the (n + 1)th partial product, PPn. Thus, the selection logic for PPn could be simplified.

Additionally, the actual bit-widths on the output of the PPG are 4× (n+2)×n+(4×n+1)

for the partial product PP and n for the inversion signal Yn. The detailed structure of the

PPG is shown in Fig. 6.6.

5 GenX 4 GenX 3 GenX 2 GenX 1 GenX

SD Recoder

Selection

4(2)n 4(2)n 4(2)n 4(2)n 4(2)n

BCD
X

BCD
Y

4...0
i

Ys i
Yn

4(2)n

4(2)n (0... 1)i i n
PP

! "

1 GenX

BCD
X 1BCDn

Y
"

0
n

Ys

4 1n
n

PP

4n 4n

1

4n 4

Generator

SD Recoder

Selection
Generator

0
1...0{1 ,1 }

n n
X X

"

4 1n 1

Selector

5

Figure 6.6: Proposed architecture of partial product generation

6.2.2 SD Partial Product Reduction

To illustrate the proposed algorithm, a PPR scheme of a 16 × 16-digit multiplier is imple-

mented and discussed. First, the layout of the partial product array and the basic structure

of the PPR unit are introduced. Subsequently, a PPR algorithm based on multi-operand SD

addition is discussed. Finally, a hardware implementation of the proposed PPR unit for a

16× 16-digit multiplier is addressed. Additionally, the delay model in terms of the delay of

a binary full adder is analyzed to guide in designing of the proposed SD-BCD converter.

63

3
2

1
0

16
16

16
16

p
p
p
p

0
I
P

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

0h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

 u
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

h
h

p pp p p p p p p p p p p p p ph

h

h

2
-d

ig
it

n

1-digit n!

:
o
n
e

d
ig

it
 o

f
p
a
rt

ia
l
p
ro

d
u
ct

s
(P

P
s)

,
[

8,
8
].

p
p

"
#

:
o
n
e

d
ig

it
 o

f
th

e
17

p
a
rt

ia
l
p
ro

d
u
ct

,
[

4,
6
].

th
h

h
"

#

:
th

e
m

os
t

si
gn

if
ic

an
t

d
ig

it
 o

f
a

p
ar

ti
ta

l
p
ro

d
u
ct

,
[

1,
1]

.
u

u
"

#

:
th

e
1
7

d
ig

it
 o

f
th

e
1
7

p
a
rt

it
a
l
p
ro

d
u
ct

,
[0

,1
].

th
th

h
h

"

,
:
co

m
b
in

at
io

n
s

of
 o

n
e

d
ig

it

,
[

2,
2
],

[0
,1

].
h
h

h
h

h

"

#
"

h

(16) n$

h

2
1

0
h
h
h

%
&

a
%

&
c

%
&

d

 a
n

:
in

cr
em

en
t

b
it
 o

f
d
ig

it
s

in
 t

h
e

p
ar

ti
al

 p
ro

d
u
ct

.
th

Ii
P

i

3
2

1
0

15
15

15
15

p
p
p
p

1
I
P

3
2

1
0

14
14

14
14

p
p
p
p

2
I
P

3
2

1
0

13
13

13
13

p
p
p
p

3
I
P

%
&

b

p
ar

ti
al

 p
ro

d
u
ct

 g
en

er
at

o
r

S
D

 a
d
d
er

S
D

 a
d
d
er

!!

S
D

 a
d
d
er

B
C
D

X
B
C
D

Y

S
D

R

p
p
p
p

p
p
p
p

h

h

F
ig
u
re

6
.7
:
R
es
tr
u
ct
u
re

of
th
e
p
ro
p
os
ed

p
ar
ti
al

p
ro
d
u
ct

re
d
u
ct
io
n

64

Partial Product Reduction Array

As described in section 4, for the multiplication of two n-digit operands, n+1 partial products

in (n+2)-digit are generated from the PPG unit in the proposed algorithm. Then the n+1

partial products need to be shifted according to the weight of each digit in the second operand.

Finally, these n+ 1 shifted partial products are added by the SD multi-operand adders.

An example of the layout of partial products for the proposed 16×16-digit multiplication

is shown in Fig. 6.7(a). The partial product 0ḣh . . . hh indicates the partial product generated

by the most significant digit (MSD) of the recoded operand YSD. Recalling the description

in section 6.3, the MSD of YSD only can be 1 or 0, and the 18th digit of PP16 is always zero

for a 16× 16-digit multiplication. Furthermore, the 17th digit of PP16, ḣ, is in [0, 1] as shown

in Table 6.2. The up . . . pp represents the partial products generated according to the least

16 significant digits of YSD. Since the 18th digit may be ±1 only in ±5X, the range of u is

restricted to [−1, 1].

In Fig. 6.7(b), the layout of the partial product array is rearranged. Thus, except the

middle two partial product columns, all other columns are not more than 16 digits. For a

16×16-digit decimal multiplication, the result is maximally in 32 digits which is the product

of two operands with 16 consecutive nines. If the product in SD format is not going to be

used by other SD arithmetic units before converting back to BCD format, then the digits

beyond the least 32 digits can be discarded (e.g., the digits in a dashed rectangular). For

example, in a 16× 16-digit multiplication, the least 33 digits of the SD product can only be

in one of the formats shown in equation (6.18). Otherwise, after converting back to BCD

format, it will be larger than 32 digits.

RSD =



1d . . . , or

10 . . . 0d . . . , or

0d . . . , or

00 . . . 0d

(6.18)

where d is a positive decimal digit, and d is the negation of d. The range of d is dependent

on the digit set applied (e.g., d ∈ [1, 5] for the digit set [-5,5]).

65

The leading one in the first case in equation (6.18) will be reduced by one to form a ten

in the less significant digit to cancel out the negative digit d. The 32nd digit of the SD result

should be converted to (10 + d) or (10 + d − 1) only depending on the value of the digits

on the same position and less significant positions. In the second case, the 0-sequence on

the right side of the leading one should be converted to a 9-sequence to cancel out the first

negative digit on its right side with the same manner as mentioned in the first case. In the

latter two cases, the most significant positive digit will be converted to d or d− 1 depending

on less significant digits. Furthermore, the most significant positive digit guarantees that no

extra borrow is propagated to its left side. Hence, the conversion of an SD digit only depends

on the sign of itself and the less significant digits. Consequently, in all of the cases the 33rd

digit is always zero in the result in BCD format. The details of the conversion algorithm to

correctly generate the result in BCD format is discussed in section 6.

16 partial products can be divided into four groups in which a 4-operand SD adder is

applied. Subsequently, 4 results of the first level of 4-operand SD adders are summed up by

a 4-operand SD adder in the second level. In the middle two columns in the partial product

array, there are 17 partial products which potentially cause a complicated design. In the

proposed algorithm, the 17th operand is recoded into four subtle numbers (i.e., h′, h′′) as

shown in Fig. 6.7(c), and issue them into four SD adders in the first level. The maximum

number of operands for the first level of SD adder is shown in the dashed circle. Note that

the increment signals PIi for all digits in one partial product are identical. The dataflow

of the PPR algorithm is given in Fig. 6.7(d). As shown in Fig. 6.7(d), two levels of SD

adders are applied in the proposed PPR unit. Furthermore, as shown in the next section,

the multi-operand adder to process four p and one h′ has the same complexity as the adder

for four p.

Multi-Operand SD Addition Algorithm

In the proposed multiplier, the n + 1 partial products are encoded in SD digit-set [−8, 8]

within 4 bits 2’s complement number and 1 bit increment. The partial product reduction is

indeed a multi-operand SD addition. Although in principle, the result of the multi-operand

SD addition could be in the same digit-set as the input operands, to reduce the number of

66

internal wires, the result of the SD addition is retained in [−8, 7] in which the 1-bit increment

signal is removed. An SD addition could be simply summarized into three steps, which are

adding operands to get position sum psi, extracting transfer digit ti+1 and obtaining interim

sum wi = psi − 10ti+1 (suppose radix is 10), and computing final sum si = wi + ti. Actually,

a two-operand SD adder can be applied as the minimum element in the PPR unit, and

the position sum is corrected (i.e., psi − 10ti+1) for each addition. However, the correcting

operation is not immediately needed, and can be postponed to reduce the delay and area of

the PPR. In Table 6.3, the cases for multiple operands in the SD addition are shown. The

range of psi limits the selection of ti, and the range of wi cannot be decreased infinitely to

cover all the digits in a decimal range [0,9]. Table 6.3 shows that as the range of psi increases,

the ranges of ti and si increase. To restrict the range of si in [−8, 7], the maximum number

of operands in [−8, 8] is four.

Table 6.3: Analysis of the number of operands of SD addition

#Op. Range of psi Range of ti Range of wi Range of si

2 [−16, 16] [−1, 1] [-6,6] [-7,7]

3 [−24, 24] [−2, 2] [-5,5] [-7,7]

4 [−32, 32] [−3, 3] [-5,4] [-8,7]

5 [−40, 40] [−4, 4] [-5,4] [-9,8]

If the ti and wi are in the ranges of [−3, 3] and [−5, 4] in the proposed algorithm, the

maximum range of the position sum psi can reach to [−35, 34]. The extra range out of

[−32, 32] (i.e., sum of four numbers in [−8, 8]) implies that the number of operands of the

addition on [−8, 8] may be between 4 and 5. In Fig. 6.7(c), the 17th operand, h ∈ [−4, 6], is

recoded into four parts, and the maximum range of the subtle numbers (i.e., the h′ and h′′)

is [−2, 2]. Thus, it is possible to add four operands with the subtle number together without

overflow on the number system. The process of the SD addition according to our proposed

number system is listed in the Table 6.4. In the proposed SD addition, the operands are

summed up with binary arithmetic. To do the decimal correction, a recoder which maps the

binary position sum ps (ps′) to the decimal transfer digit t (t′) and interim sum w (w′) is

applied in each level of SD addition.

67

Since the signed digit operands are involved in the multi-operand addition, the addition

algorithm of weighted bit-set (WBS) encoding proposed in [78] is applied and extended for

multiple operands and multiple bit-widths in our algorithm. In Fig. 6.8, the proposed two

levels of SD additions are illustrated by the dot notation representation which is proposed in

[78]. In Fig. 6.8 the white circle represents a binary bit with negative weight, namely negabit,

and the black circle represents a binary bit with positive weight, namely posibit. Additionally,

the carry save half adder, full adder, and 4:2 compressor are respectively represented by the

dashed rectangles with 2, 3, and 4 circles. The solid line, solid double-line, and bold solid line

represent one level of carry save arithmetic units, a carry lookahead adder, and a recoder,

respectively.

Table 6.4: Proposed SD addition algorithm

Addition Steps
SD addition operands

Digit +1i Digit i
level1-step1:

sum the partial products
ps p p p p h ! " " " "

level1-step2:

1generate and iit w
"

calculate i i is t w! "

level2-step1:

sum the four SD results
ps s s s s ! " " "

level2-step2:

1generate and iit w
"

calculate i i is t w ! "

4 [8, 8]# $

[2, 2]$

[34, 34]$

"

[5, 4]$

[3, 3]$

[8, 7]$

"

4 [8, 7]# $

[32, 28]$

[5, 4]$

[3, 3]$

[8, 7]$

"

Symbols

p
h

ps

w
t
s

ps

w

t

s

4 [8, 8]# $

[2, 2]$

[34, 34]$

"

[5, 4]$

[3, 3]$

[8, 7]$

"

4 [8, 7]# $

[32, 28]$

[5, 4]$

[3, 3]$

[8, 7]$

"

As shown in Fig. 6.8, the transfer digits and interim sums from the first level of SD

addition are summed up directly in the second level of SD addition to avoid the delay cost

of a carry lookahead adder to add w and t. Therefore, the step 2 of the first level of addition

and the step 1 of the second level of addition proposed in Table 6.4 are merged together.

Furthermore, to reduce the number of the arithmetic units in the hardware implementation,

the sign bit of the operands (i.e., h′ and PI) is not extended. Thus the position sum ps (ps′)

is given in hybrid posibit-negabit encoding. For example, the third bit and sixth bit of ps

have negative weight −22 and −25. Note that in Fig. 6.8(a), the increment signal PI for

68

p
p
p
p
h "

I
P

w
i

1
t
i# t

i

ps
i

(a) First level

w
i

t
iw

i

w
i

w
i

t
i

t
i

t
i

1
t
i
"
#

t
i
"

w
i
"

ps
i
"

(b) Second level

Figure 6.8: Dot notation of the proposed two levels of multi-operand SD additions

each digit is summed up by a binary counter to reduce the number of operands in the least

significant bit of each SD adder. Such a counter can be applied right after the Radix-10

operand recoder of the operand Y , thus it cannot affect the critical path. Additionally, since

the increment bits for all digits in a partial product are identical, the number of the counters

can be minimized.

The hybrid posibit-negabit encoded binary to signed digit decimal recoder which is a

one-to-one mapping can be implemented in the combinational logic. A segment of the map

in binary bits to recode psi and ps′i is given in Table 6.5. As shown in Fig 6.8, the ps is

represented in hybrid posibit-negabit encoding, and the negative weighted bits are placed

at the third and sixth binary positions. Thus, in the recoder, an input of “1100010” (34)

generates “011” (3) as t and “0100” (4) as w.

Hardware Implementation and Delay Model of the Proposed PPR

As shown in Fig. 6.8(a), the maximum bits of operands of the first level SD adder are six,

which can be reduced to one carry-sum pair by 3 levels of binary full adders (FA) and half

adders (HA) as shown in Fig. 6.9. By applying the WBS adder, the inverters are placed on

the input or output of the traditional arithmetic unit, such as a full adder. As shown in [79],

69

Table 6.5: Proposed transfer digit and interim sum recoder

Recoder in 1st-level SD adder Recoder in 2nd-level SD adder

psi ti+1 wi ps′i t′i+1 w′
i

“1100010” “011” “0100” “1111100” “011” “1110”

“1100001” “011” “0011” “1111011” “011” “1101”

“1100000” “011” “0010” “1111010” “011” “1100”

“1100111” “011” “0001” “1111001” “011” “1011”

“1100110” “011” “0000” “1111000” “010” “0100”

“1100101” “011” “1111” “1110111” “010” “0011”

“1100100” “011” “1110” “1110110” “010” “0010”

“0011011” “011” “1101” “1110101” “010” “0001”

“0011010” “011” “1100” “1110100” “010” “0000”

“0011001” “011” “1011” “1110011” “010” “1111”

“0011000” “010” “0100” “1110010” “010” “1110”

.

“0100110” “101” “1100” “0100000” “101” “1110”

70

[80], and [78], the inverters in between the arithmetic units can be canceled. The remaining

inverters at the input and output of the calculation unit could be absorbed by the previous

logic. For example, the inverters of the negabits p3i...i+3 can be removed by the XOR gates at

the output port of the PPG with inverted logic (i.e., XNOR gate). To save the delay on the

critical path, the transfer digit ti and the interim sum wi generated by the first level of SD

adders is kept. Additionally, the eight internal parameters are added by two levels of binary

4:2 compressors as shown in Fig. 6.10. Since the recoder inside the PPR unit is a simple

one-to-one mapping from the inputs to the outputs, the recoders described in Table 6.5 are

simply created by the combinational logic gates. Note that, except two middle columns of

operands as shown in Fig. 6.7(b), all other columns can be reduced with elements no more

complicated than the adders on the critical path which are shown in Fig. 6.9 and Fig. 6.10.

For example, 12 operands can be reduced by four 3-operand SD adders on the first level

and one 4-operand SD adder on the second level. Thus the area of the PPR is potentially

reduced. Finally, a segment of the top level architecture of the SD adders in the PPR unit

for a 16× 16-digit multiplier is given in Fig. 6.11.

FA FAFAFA

FA FAFA HA

HA FA FAFA

3-bit CLA

3
... 3{ }
i i
p

!

0
... 2{ }
i i
p

!

0 0 0
3{ , , }

I i
P h p

!

Transfer Digit & Interim Sum Generator

3
i
w0

1it !
1

1it !
2

1it !
2
i
w 1

i
w 0

i
w

0
i
ps1

i
ps2

i
ps3

i
ps4

i
ps

5
i
ps6

i
ps

1
... 2{ }
i i
p

!
2
... 2{ }
i i
p

!
1 1 1

3{ , , }
I i
P h p

!

2 2 2
3{ , , }

I i
P h p

!

O

A

I

O

A

I

a[0]b[0]a[1]b[1]a[2]b[2]b[3]

a[1]
b[1]

a[2]
b[2]

2
i
ps3

i
ps4

i
ps5

i
ps6
i
ps

3-bit CLA

Figure 6.9: Hardware structure of the proposed 1st level multi-operand SD adder

In addition, the different structures of columns of PPR unit make the result signals of

different digits of the PPR available at different time. To analyze the delay on each digit

71

T
a
b
le

6
.6
:
D
el
ay

an
al
y
si
s
of

ea
ch

d
ig
it
of

th
e
p
ro
p
os
ed

p
ar
ti
al

p
ro
d
u
ct

re
d
u
ct
io
n

L
og
ic

C
ol
u
m
n
P
os
it
io
n

M
o
d
u
le

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

B
in

3:
2

1
1

3
3

3
3

3
3

B
in

4:
2*

1.
5

1.
5

3
1.
5

1.
5

1.
5

1.
5

3
4.
5

4.
5

3
3

3
3

3
3

B
in

5:
2*

2
2

2
2

2

3-
b
it
C
L
A

*
2

2
1

1
1

1
1

1
1

4-
b
it
C
L
A

*
1.
25

1.
25

1.
25

1.
25

1.
25

2.
5

2.
5

2.
5

2.
5

2.
5

2.
5

2.
5

1.
25

1.
25

R
ec
o
d
er
s*

2.
5

2.
5

2.
75

3
3

3
3

3
3

3
3

3
3.
25

3.
25

3.
5

3.
5

eq
u
iv
al
en
t
B
F
A
s

7
7

8
9.
75

9.
75

9.
75

9.
75

10
.5

10
10

10
.5

10
.5

10
.7
5

10
.7
5

11
.7
5

11
.7
5

L
og
ic

C
ol
u
m
n
P
os
it
io
n

M
o
d
u
le

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

B
in

3:
2

3
1

B
in

4:
2*

3
3

3
3

4.
5

4.
5

4.
5

1.
5

1.
5

3
1.
5

1.
5

B
in

5:
2*

2
2

2
2

2
2

2
2

3-
b
it
C
L
A

*
1

1
1

1
1

4-
b
it
C
L
A

*
2.
5

2.
5

2.
5

2.
5

2.
5

2.
5

2.
5

1.
25

1.
25

1.
25

1.
25

2.
5

1.
25

1.
25

R
ec
o
d
er
s*

3.
25

3.
25

3
3

3
3

3
3

2.
5

2.
5

2.
75

2.
5

1.
5

1.
5

1.
25

1

eq
u
iv
al
en
t
B
F
A
s

10
.7
5

10
.7
5

10
.5

10
.5

10
10

10
10
.2
5

8.
25

8.
25

8
6.
5

4.
75

4.
25

3.
25

1

*
T
h
e
d
el
ay

is
re
p
re
se
n
te
d
in

th
e
n
u
m
b
er

of
eq
u
iv
al
en
t
B
F
A
s.

72

4-bit CLA

Transfer Digit & Interim Sum Recoder

3
i
w 0

1it !
 1

1it !
 2

1it !
 2

i
w 1

i
w 0

i
w

3
... 3{ }
i i
w

!

2
... 3{ }
i i
w

!

2
... 3{ }
i i
t

!
1
... 3{ }
i i
w

!

1
... 3{ }
i i
t

!
0
... 3{ }
i i
w

!

0
... 3{ }
i i
t

!

HAFA

0
i
ps 1

i
ps 2

i
ps 3

i
ps 4

i
ps 5

i
ps 6

i
ps

4:2

4:2

4:2

4:2

4:2

4:24:2

4:24:24:2 O

A

I

O

A

I

O

A

I

a[0]b[0]a[1]b[1]a[2]b[2]a[3]b[3]b[4]

a[1]
b[1]

a[2]
b[2]

a[3]
b[3]

1
i
ps 2

i
ps 3

i
ps 4

i
ps 5

i
ps 6

i
ps

4-bit CLA

Figure 6.10: Hardware structure of the proposed 2nd level multi-operand SD adder

of the output of the PPR, a list of equivalent binary full adders in modules on the critical

paths in each column is shown in Table 6.6. We assume that the binary 4:2 compressor has a

delay of 1.5 binary full adder (BFA), and the binary 5:2 compressor has a delay which equals

to 2 BFAs’ delay [77]. According to the delay analysis, we assume that the 3-bit and 4-bit

carry lookahead adder (CLA) have delay of 1 BFA and 1.25 BFAs on the critical path which

passes through ps4i and ps′4i , respectively. The delay of the combinational recoders is also

represented in terms of the 3:2 BFA which is obtained by the delay analysis. Thus, the brief

estimation of the delay on each digit of PPR could be obtained in terms of the equivalent

binary full adders. In Table 6.6, the delay from connected neighbor columns is considered.

Additionally, since the latency to generate each partial product in PPG and the delay of the

CLA to add w′ and t′ for each digit are almost the same, the influence of the delay of the

PPG stage and the final CLA in Table 6.6 is not considered.

For a 34×34-digit multiplication, at most 35 partial products should be reduced. The 35

partial produces could be divided into three groups (i.e., double 17 partial products and one

extra partial product). For the double 17 partial products, the proposed structure could be

applied to obtain two SD results. Thus one more level of 3-operand SD adders are applied

on the critical path to reduce the two SD results of the 17 : 2 SD addition and the extra one

73

st1 Level
SD Adder

st1 Level
SD Adder

nd2 Level
SD Adder

1i i

1i

1 4
i
w

"

1 4
i
t

"

4
i
w "

SD Adder
i

nd2 Level

1iw
!

1it
!

i
w !

partial product digits

!! !!

i
t !

Figure 6.11: Top level architecture of the proposed partial product reduction unit

partial product.

6.2.3 SD-BCD Conversion

The partial products in a signed digit-set can be reduced to one SD result with the multi-

operand SD adders. Unlike in other works, a digit-set converter is proposed to convert back

the SD result into the conventional BCD encoding. Moreover, in such an SD-BCD conversion

algorithm, a hybrid carry propagation network is discussed in detail.

SD-BCD Conversion Algorithm

In the proposed multiplier, the 2n-digit result of the PPR is in digit-set [−8, 7]. If the digit

is negative, a borrow (i.e., negative carry) occurs. To convert it back to the digit set [0, 9] in

BCD encoding, the negative digit is increased by 10, and the first non-zero digit with higher

weight is reduced by one. All the continuous zeros in between the current negative digit and

the first non-zero digit on its left side are converted to 9. An example is provided below:

(10048023)SD = (09952017)BCD

Thus to convert the SD result into BCD encoding, the negative digit (i.e., generates

74

the negative carry) and zero digit (i.e., propagates the negative carry) need to be detected.

Furthermore, a carry propagation network and necessary logics are applied to determine and

convert the SD digits into BCD encoding. The conversion algorithm is shown as follows:

Algorithm 6.2.3: SD to BCD Encoding Conversion

Data: SD number S.

Result: BCD number R.

1. Detect borrow generation bit (Gi) and propagation bit (Pi) for each digit of S.

Gi =

 1 if Si < 0

0 otherwise,
Pi =

 1 if Si = 0

0 otherwise,

Gi:j =

 Gi if i = j

Gi + (Pi ·Gi−1:j) if i > j,

Pi:j =

 Pi if i = j

Pi · Pi−1:j if i > j.

(6.19)

2. Compute the negative carry Ci of S (C0 = 0).

Ci+1 = Gi:j + (Pi:j · Cj). (6.20)

3. Convert the result S to BCD encoding.

Ri =



Si if Ci+1Ci = 00

Si − 1 if Ci+1Ci = 01

Si + 10 if Ci+1Ci = 10

Si + 9 if Ci+1Ci = 11

(6.21)

Hardware Implementation of the Converter

In Algorithm 6.2.3, the first step is to detect the negative and zero digits. Since in the

proposed multiplier, the outputs of the PPR can be added into an SD number in the 4-bit

two’s complement encoding, the negative detection is simply a fourth-bit detection. To detect

75

a zero digit in two’s complement encoding, all four bits are needed. Since inside the 4-bit

CLA to sum up the final transfer digit t′ and interim sum w′, the results on different bits in

a digit are available at different time, only one extra OR gate on critical path for the zero

detection could be achieved by connecting three OR gates in cascade as shown in Fig. 6.12.

0

i
w

0

i
t

1

i
w

2

i
w

3

i
w

1

i
t

2

i
t

0

i
S

1

i
S

2

i
S

3

i
S

i
Pi

G

Figure 6.12: Simplified 4-bit CLA and G, P generation circuit

For the traditional method in the carry propagation step, a ⌈log(an)⌉-level prefix network

is applied to quickly generate the final carry. The parameter a depends on the processing

scope (e.g., in [75] the proposed quaternary tree unit works in bit level, thus a ⌈log(4n)⌉-

level prefix tree is applied). No matter how many levels are in the prefix tree, the critical

path passes through all levels of internal nodes. On the other hand, in the PPR stage, the

longest path is potentially on the middle columns of the partial product array, and the rest of

columns have shorter paths. It implies that the digits in final product which are close to the

least and most significant digits are available earlier and can be processed before the digits in

the middle part of the partial products array are ready. In section 5.3, a delay model on each

digits of the final product is shown in Table 6.6. According to the estimated delay, the 32-

digit SD result is divided into five groups which are gp0 = {S11, . . . , S0}, gp1 = {S15, . . . , S12},

gp2 = {S17, S16}, gp3 = {S21, . . . , S18}, and gp4 = {S31, . . . , S22}. For each group, a small

traditional carry propagation tree is applied. Thus the well optimized prefix tree circuit for

76

binary design could be reused. The carry propagation process is described in the following

equations:

Ci =



0 if i = 0

Gi−1:0 if 12 ≥ i ≥ 1

Gi−1:12 + Pi−1:12 · C12 if 16 ≥ i ≥ 13

Gi−1:16 + Pi−1:16 · C16 if 18 ≥ i ≥ 17

Gi−1:18 + Pi−1:18 · C18 if 22 ≥ i ≥ 19

Gi−1:22 + Pi−1:22 · C22 if 32 ≥ i ≥ 23

(6.22)

where the Ci is the carry-in of the i digit, and note that the carry-in to the least significant

digit is always zero.

In Fig. 6.13, a detailed structure of the proposed prefix network is shown. The white dot

represents the logic to create the generation bit Gi and propagation bit Pi for each digit. The

black dot represents the logic to create the group generation bits Gi:j and group propagation

bits Pi:j described in equation (6.19). For the lower 12 digits, a Ladner-Fischer network is

applied to minimize the number of levels and the area cost. Since the carry-in on the least

significant digit is always zero, the carry-in to 13th digit equals to G11:0. For the digits from

S12 to S15, a two-level Ladner-Fischer network is used to create the group-carry-in generation

and propagation signal, G15:12 and P15:12. To further calculate the carry, only an AND-OR

gate is needed. For carry C18 and C17, a 2-bit carry look-ahead structure is used. In higher

14 digits, the same technique as the one in the lower 16 digits is used. Note that to reduce

the fanout of gates from low weight inputs through high weight outputs, a Han-Carlson

network is applied to calculate the group-carry propagation and generation signals. In the

16-digit multiplication, at least 5-level of internal nodes should be on the critical path in

a conventional method. In the proposed architecture, about 3-level of nodes are connected

after the outputs of the middle columns in partial products array, and the level of nodes

after the most significant columns are kept as 5. Although for less significant columns, the

connected prefix tree nodes would be greater than five, the shorter delay on those columns

could counterbalance the delay of the nodes in the prefix network. Note that the architecture

77

0
S

1
1
S

1
2
S

1
5
S

1
7

1
7

,
G

P

1
8
S

2
1

S

2
2

S
3
1

S

0
0

C
"

1
2

1
1:
0

C
G

"

1
3

C

1
C

1
6

C
1
7

C
1
8

C
1
9

C
2
2

C
2
3

C
3
2

C

1
6

1
6

,
G

P

F
ig
u
re

6
.1
3
:
P
ro
p
os
ed

h
y
b
ri
d
p
re
fi
x
n
et
w
or
k
in

th
e
S
D
-B

C
D

co
n
ve
rt
er

78

of the hybrid prefix network highly depends on the structure of PPR. An improved structure

would provide a better performance if the PPR structure is changed.

1
{ , }

i i
C C

!

3

i
S

2

i
S

1

i
S

0

i
S

"1111"
i
S !

3

i
S

2

i
S

1

i
S

0

i
S

"1010"
i
S ! "1001"

i
S !

3

i
S

2

i
S

1

i
S

0

i
S

Selector

4444

4 i
S

4
i
R

2

Figure 6.14: Final conditional constant adder

In the third step of the Algorithm 6.2.3, the SD result which is converted into BCD

encoding by the conditional adder is selected by the carry signals of two neighbor digits in

S. To convert the SD result into BCD encoding, since the correction signals (i.e., “0000”,

“1111”, “1010”, and “1001”) for the four different carry-in cases are constant, the correction

process could be designed as a conditional constant addition which could be comparatively

simplified. In Fig. 6.14, the circuit of one digit conditional constant adder which consists of

three constant adder and a combinational selector is shown.

6.3 Sequential Decimal Fixed-point Multiplication

In contrast to the parallel multiplication described in section 6.1, the sequential multiplication

shows the advantage of the area efficiency. Thus, if the hardware cost is more sensitive, the

sequential design could be applied in DFMA to achieve a new balance between cost and

performance.

79

6.3.1 Signed Digit Partial Product Generation

The PPG of the proposed multiplier is based on the generation of easy-multiples of the

multiplicand; thus, the required easy-multiples have to be determined. The representation of

the multiplier Y plays a pivotal role in selecting the appropriate easy-multiples. Consequently,

digit-set [-4,5] is selected to represent the multiplier Y in order to reduce the number of

required easy-multiples and hence ameliorate the complexity of the PPG. This, however,

calls for a recoder to convert the multiplier from digit-set [0,9] to [-4,5]. The recoder is

implemented based on equation (6.23) where yci + ysi constitute the ith digit of the multiplier

Y in [-4,5] digit-set.

 ysi = yi; y
c
i+1 = 0 if yi ≤ 5

ysi = yi − 10; yci+1 = 1 if yi > 5
(6.23)

Given that the recoded multiplier needs to be ready iteratively (one digit per iteration),

the carries in equation (6.23) (yci+1) are stored in a latch and used in the next iteration as

shown in Fig. 6.15.

Shift Register

Y

LatchRecoder

yi
c

yi

[-4,5]yi
y
c
i+1

Figure 6.15: Recoding of the multiplier

Given the digit-set of the multiplier i.e., [-4,5], computing X,±2X and ±4X, as easy-

multiples, is sufficient for generating a partial product as a sum of two decimal numbers (i.e.,

Pi = Ui + Vi). It should be noted that the addition Ui + Vi is actually performed in the PPA

step. Finally, a combinational logic is required to select the appropriate easy-multiples based

80

on the value of the multiplier’s digit. Table 6.7 describes the selection rules for generating

Ui and Vi.

Table 6.7: Selection of the easy-multiples

yi -4 -3 -2 -1 0 1 2 3 4 5

Ui 0 1X 0 1X 0 1X 0 1X 0 1X

Vi −4X −4X −2X −2X 0 0 2X 2X 4X 4X

With the intention of reducing the complexity of the PPG, the easy-multiples is gener-

ated in the encodings shown in Table 6.8; thereby simplifying the carry-free addition of the

PPA step (see details on Section 6.3.2). Particularly, easy-multiple X is kept as BCD and

±2X,±4X are encoded into digit-set [-6,6] and represented as a signed-digit two’s comple-

ment. In this approach, first, each digit (e.g., ith) is divided into a transfer ti+1 and a sum

wi (as shown in Table 6.8); next wi + ti generates the converted ith digit.

Table 6.8: Conversion from BCD to the specific digit set

Xi

2X 4X

ti+1 wi ti+1 wi

0 0 0 0 0

1 0 2 1 -6

2 1 -6 1 -2

3 1 -4 1 2

4 1 -2 2 -4

5 1 0 2 0

6 1 2 3 -6

7 1 4 3 -2

8 2 -4 3 2

9 2 -2 4 -4

According to Table 6.8, the generation of the easy-multiples 2X and 4X is performed via

the logical expressions which are similar to equations (6.13) and (6.16).

81

Regarding the symmetric signed-digit 2’s complement representation of 2X and 4X, the

−2X and −4X multiples are generated through a simple two’s complement per digit. How-

ever, the two’s complement operation is partially deferred until the PPA step. The overall

architecture of the proposed PPG is illustrated in Fig. 6.16, where ci is stored for the two’s

complement operation (per digit) performed in the PPA step.

Shift Register

Y

Recoder

yi
c

y
c
i+1

2X 4X

X

Selector

AND

lsb

Ui

XOR

Vi

msb

ci

y
s
i

Figure 6.16: The proposed partial product generation

6.3.2 Partial Product Accumulation

Partial product accumulation is meant to add, properly, the generated partial product (i.e.,

Ui + Vi + Ci, according to Section 6.3.1) to the accumulated previous products P [i]. This is

resembled in the recurrence equation 6.24, where Ci is the word-wide extension of ci (1-bit

ci per digit).

P [i+ 1] = 0.1× P [i] + Ui + Vi + Ci (6.24)

With the intention of reducing the latency of the PPA step, one can use a multi-operand

redundant adder as to implement equation 6.24, where P [i] and P [i+1] are represented in a

carry-save format. Figures 6.17 and 6.18 illustrates the dot-notation and the circuitry of the

82

multi-operand redundant addition used in the proposed PPA where (4:2) compressors with

asterisk are the simplified one.

[0,9]Ui

[-6,6]Ci+Vi

[-6,6]P[i]

[-12,21]

Wi

Figure 6.17: The dot-notation of partial product accumulation (digit-slice)

4:24:24:24:2

CLA

Recoder

Ui+Vi+Wi+Ti

Ci

WiTi+1

Figure 6.18: The circuitry of partial product accumulation (digit-slice)

Finally, after n iterations, the generated product P [n + 1] should be converted to the

standard BCD format. This conversion is performed iteratively (a digit per iteration) for the

lower part of the product PL (based on Table 6.9), and in parallel (in two cycles) for the

higher part PH .

The parallel conversion consists of two main parts each of which with the following duties.

Part I: Preparing generate and propagate signals (i.e., g and p) to be used by the paral-

lel prefix tree in Part II. Moreover, A 4-bit carry-look-ahead adder (CLA) is responsible to

generate the appropriate digit value.

Part II: A parallel prefix tree computes the carry of each digit position; then a combina-

tional logic (based on Table 6.9) produces the final converted product.

Fig.6.19 depicts the architecture of the proposed parallel conversion.

83

Table 6.9: Iterative Conversion

Digit in Carry in Digit out Carry out Digit in Carry in Digit out Carry out

4 0 4 0 4 -1 3 0

3 0 3 0 3 -1 2 0

2 0 2 0 2 -1 1 0

1 0 1 0 1 -1 0 0

0 0 0 0 0 -1 9 -1

-1 0 9 -1 -1 -1 8 -1

-2 0 8 -1 -2 -1 7 -1

-3 0 7 -1 -3 -1 6 -1

-4 0 6 -1 -4 -1 5 -1

-5 0 5 -1 -5 -1 4 -1

In a nutshell, the whole architecture of the proposed sequential multiplier (including the

PPG and PPA) is shown in Fig. 6.20, where concatenating PL and PH produces the final

product.

6.4 Decimal Floating-point FMA

The top level architecture of the proposed DFMA is shown in Fig. 6.21. After the operand

decoder, two significands CX and CY are fed into the multiplier array. Meanwhile, the align-

ment shifting operation is done in parallel with the multiplication. Subsequently, a decimal

carry free adder sums up the redundant product and the addend which is inverted according

to the effective operation. With the internal redundant number system, the carry propaga-

tion in the final digit-set converter of the multiplier array is eliminated. Moreover, a simpler

leading zero decision algorithm can be applied on the carry free result. The propagation in

the decimal addition is therefore eliminated before the rounding position is obtained. In the

post-alignment shifter, the digits which exceed the required precision are moved out, and the

(n+1)-digit result is sent to the final rounder. In the final rounding unit, the absolute value

conversion, the digit-set conversion, and the rounding operation are performed at the same

84

Parallel Prefix Tree

Carries

Digit

Values

PH

4-bit CLA

4n

2

n

4n

P
ar

t
I

Combinational Logic

g&p

G&P Generation

2 4

2n 4n

P
ar

t
II

. . .2 2 2 2 2

Figure 6.19: The proposed parallel conversion

time. A detailed structure of the proposed DFMA for Decimal64 format is given in Fig. 6.22.

The characteristics and process of the proposed FMA computation are described as follows.

1. In the multiplier array, the multiplication structure which has been proposed in [96] is

exploited. Since the redundant intermediate product is further used in following units, the

final digit-set conversion proposed in [96] which involves a carry propagation is not needed

anymore. A (2n+ 1)-digit product on digit-set [−8, 7] is therefore retained.

2. In the meantime, the pre-alignment of the addend which is performed in parallel with

the multiplier array no longer exists on the critical path. First, the exponent difference

between the product and addend is obtained by binary prefix tree adders. Subsequently, the

addend is shifted to right or left depending on the sign and absolute value of the exponent

difference. Since the product consists of 2n + 1 redundant digits, to guarantee the required

precision and rounding information of the final result, the shifting range of alignment is

extended to 4n+2 digits. After all, the XOR gates are applied to negate the shifted addend

for effective subtraction.

3. In the addition module, the nonspeculative decimal adder proposed in [97] is modified

to add two operands in [−8, 7] and [−9, 9] and create a result in [−8, 7]. Since the number

of shifting digits in post-alignment is detected based on the redundant result, the carry

propagation is not necessary anymore.

85

Selector

Sel Gen

On the fly Conversion

Dec. SD Adder

Conversion C1

Conversion C2

C
o

n
tro

ller

P2S

S2P

REG

REG

REG*

REG

REG

PH

PL

REG*

REG

REG

REG*

4n4n

4(n+1) 4(n+1) 4(n+1)

4(n+1)4(n+1)

2(n+1)

4(n+1)

4n

4n

4

4

4n

1

4

1

1

1

4n

Wi

Si

Wi

X Y

4X2X1X

PPR
i

PPL
i

T
i

#Cycle

1

2

to

n+2

n+3

n+4

Figure 6.20: The proposed sequential decimal multiplier

86

DPD Decoder

Mul Array
Pre-Align

Decimal Carry Free Adder

Combined Conver. Round

DPD Encoder

X Y Z

SXCX EXSZCZ EZSYCY EY

CZsh

Post-processing

RSH

R

LSH & RSH

shamt1

Productcf

Sum1

shamt2

Sum2

Result

Resultpost

LZA

Shamt
Calculation

Figure 6.21: Proposed architecture

87

CZ

CZsh

CZ

CZlsh CZrsh

Select

12 12

4*49D 4*33D

4*66D

CYCX EZ-EP EP-EZ

Product

Correct Digit

Generation

Intermediate Signals Generation

Multiplier Array

Multiplexer Array

Sel. Gen.

Misc. Signals

Generation

CR

SR

EOP
EOP

Exp1

Sticky1

Misc. Signals

Generation

Sign2

Sign2
RD

Sticky2

ER

LZD TZD CD Sticky Gen.

Post-Alignment
Calculation

Lsa1 Rsa1

Rsa2

Negation 15-bit

Prefix Tree

Inc,C_lsd

Generation

Carry Generation

Correction Generation

4-bit CLA Array

Sign

Generation

Exponent

Generation

Lsa1

Sum1

Sum2

gp

Multiplier

Array

Pre-alignment

Carry Free

Addition

Post-alignment

Rounding

LSH RSH

RSH RSH

4*67D

4
4

4*33D

4*17D 2

C_lsd

C17

2*15D
1

Cor24*16D

4*16D

PSum
Cor1

1

10

Exp2

4b Add

4b Add

12b Add 12b Add

Sum2'4*16D

PPG

PPR

XOR Array

Figure 6.22: Details of structure

88

Sel. Gen.

Misc. Signals

Misc. Signals

0SX 0963625485443960CX 18EX

0SY 1EY "

1SZ 31EZ

Input:

Calculation:

012463432142204420125102041301120

Product

11...11 99998877654311...11CZsh aaaa

1EOP 1 00 (zero)Sticky 1 1Exp

1, Multiplication:

2, Pre-Alignment:

3, Addition:

012463432142204420125102041301120

4, Post-Alignment:

2 31Rsa

345656323043112312Sum

2 0Sign 2 01 (positive)Sticky 2 32Exp

5, Rounding:

1RD

0incRD 1lsdC

11111100100010110C

6543443170429077CR 0SR 32ER

7828178241591672CY

9999888877665432CZ

17EP 31EZ

1 14 (active)Lsa 1 14Rsa "

Output:

00...00999988887766543200...00#

00...00134565632304311231251020413011200...00

Figure 6.23: Details of calculation

89

4. The post-alignment unit shifts the intermediate result after addition to achieve the

preferred exponent and guarantee the required precision. Since the digits ±(radix − 1)

(i.e. ±9 in this radix-10 system) are not used, the long-term cancelation does not exist.

Consequently the leading zero detection of the proposed digit-set is simple. However, the

sticky digit is harder to be examined than it in other architectures, since the moved out digits

may represent a negative value. A method to obtain the sticky bits, which represent a signed

sticky digit, with almost the same delay as the post-alignment shifting is introduced.

5. The result from the post-alignment shifter can be positive or negative, and the digit-set

is redundant. Therefore, the absolute value of the non-redundant result has to be obtained

before performing the rounding decision in a straightforward method. More than one carry

propagation might be involved in this process. In this work, an algorithm which negates,

converts, and rounds the redundant intermediate result into the BCD format with one long-

term carry propagation and constant delay logics is described.

To illustrate the principle of the computation in the proposed FMA, an example is given

in Fig. 6.23. Once all the operands are ready, CX×CY is firstly performed in the multiplier

array, and the redundant Product is obtained. In the meantime, the difference on exponent

is calculated by two adders. If EZ − (EA + EB) is positive, the left shifting is active,

otherwise the right shifting is active and selected. Since the effective operation EOP is

subtractive, the shifted addend is further negated by the XOR gates after the multiplexer

array to achieve two’s complement on every digit. The missing increment one for every digit

is therefore sent to the adder by EOP . Note that the negated addend digit a actually means

10 (i.e 9 if includes the increment 1 in EOP). However, in hardware only 4 bits are used

for each digit, and a is represented as “0110” without the fifth bit. After alignment, the

intermediate exponent Exp1 = 1 is calculated by adding or subtracting the right or left shift

amount on EZ and subtracting 16 for moving decimal point. Subsequently, two operands

from alignment unit and multiplier are added, and a redundant result is obtained in Sum1.

At the same time, the right shift amount for the post-alignment is calculated. Since the result

Sum1 has more than 16 significant digits which is larger than the required precision, only

a 16-digit significand, a 1-digit rounding digit and a 2-bit sticky digit are retained in Sum2

after the shifter. Due to the post-alignment, the intermediate exponent Exp2 is updated

90

by adding Exp1 with the Rsa2. In the final rounding unit, the rounding digit 1 and the

positive Sticky2 cause a zero increment in the least significant digit (LSD) of the significand.

Consequently, the negative carry C for converting the digit-set with the consideration of

the rounding increment is obtained. Finally, the absolute value of the rounded result in the

conventional digit-set is achieved by adding the correction value of 10’s complement decided

by C to the negated Sum2 obtained by the XOR gate.

To illustrate the differences between our proposed design and other previous designs on

the top level architecture. The simplified architectures of three designs are given in Fig. 6.24.

The core architecture of the proposed DFMA is partitioned into five sub-modules, which

are multiplication, pre-alignment, addition, post-alignment, and rounding unit. Since the

major works of the multiplier and adder have already been proposed in previous sections,

in this section, these two basic computations are simplified by two models which create

(n+m+1)-digit result for n-digit×m-digit redundant multiplication and (k+1)-digit result

for n-digit+m-digit redundant addition, where k = max{n,m}. The rest components of the

design, which include addend alignment, decision of the rounding position, and rounding the

redundant result with direct conversion, are described in details including algorithms and

hardware structures in this section.

6.4.1 Pre-Alignment

In the proposed DFMA, the pre-alignment block is in parallel with the multiplier array.

Therefore the pre-alignment shifting is only processed on the addend CZ, and the product is

kept in its position while CZ is shifting. In principle, the pre-alignment algorithm shifts the

operand to make the following addition upon two operands which have the same exponent

or guarantees the result of the addition equals to what it is supposed to be once the shifting

range is too large. Since the decimal operand is not normalized, the number of significant

digits of the non-zero product obtained after the multiplier can be from 1 to 2n + 1. Thus,

to guarantee the precision and the correct rounding digit, the necessary shifting width of

the addend can be 4n + 2 digits, which are decided in two extreme cases. In the first case,

the least significant digit of the addend is shifted 3n digits to left, and n digits precision are

therefore guaranteed on the left of the product. Note that if more digits are required to be

91

D
P

D
 D

ec
o
d
er

M
u
l
A

rr
a
y

P
re

-A
li
g
n

O
p
 S

el
ec

ti
o
n

C
o
m

b
in

ed
 A

d
d
 R

o
u
n
d

D
P

D
 E

n
co

d
er

X
Y

Z

S
X

C
X

E
X

S
Z

C
Z

E
Z

S
Y

C
Y

E
Y

C
Z
sh

P
o
st

-p
ro

ce
ss

in
g

L
S
H

 &
 R

S
H

R

4
2
2
1
-B

C
D

 C
S
A

L
Z
A

sh
a
m
t1

P
ro
d
u
ct
su
m

S
u
m
1
ca
rr
y

sh
a
m
t2 S
u
m
2
ca
rr
y

R
es
u
lt

R
es
u
lt
p
o
st

O
p
0

O
p
1

O
p
2

S
h
a
m

t
C

a
lc

u
la

ti
o
n L
S
H

 &
 R

S
H

P
ro
d
u
ct
ca
rr
y

S
u
m
1
su
m

S
u
m
2
su
m

(a
)
A
rc
h
it
ec
tu
re

p
ro
p
os
ed

in
[1
02
]

D
P

D
 D

ec
od

er

M
u
l
A

rr
a
y

P
re

-A
li
gn

R
o
u
n
d
in

g

D
P

D
 E

n
co

d
er

X
Y

Z

S
X

C
X

E
X

S
Z

C
Z

E
Z

S
Y

C
Y

E
Y

P
ro
d
u
ct
B
C
D

sh
a
m
t1

P
o
st

-p
ro

ce
ss

in
g

S
w

ap
 U

n
it

R

L
S
H

 &
 R

S
H

L
Z
A

A
d
d
er

 (
C

P
A

)

L
S
H

S
h
a
m

t

O
p
0

O
p
1
sh

O
p
0
sh

O
p
1

S
u
m
1

sh
a
m
t2

S
u
m
2

R
es
u
lt

R
es
u
lt
p
o
st

L
Z
D

C
al

cu
la

ti
on

(b
)
A
rc
h
it
ec
tu
re

p
ro
p
o
se
d
in

[9
5
]

D
P

D
 D

ec
o
d
er

M
u
l
A

rr
a
y

P
re

-A
li
g
n

D
ec

im
a
l
C

a
rr

y
 F

re
e

A
d
d
er

C
o
m

b
in

ed
 C

o
n
v
er

.
R

o
u
n
d

D
P

D
 E

n
co

d
er

X
Y

Z

S
X

C
X

E
X

S
Z

C
Z

E
Z

S
Y

C
Y

E
Y

C
Z
sh

P
o
st

-p
ro

ce
ss

in
g

R
S
H

R

L
S
H

 &
 R

S
H

sh
a
m
t1

P
ro
d
u
ct
cf

S
u
m
1

sh
a
m
t2

S
u
m
2

R
es
u
lt

R
es
u
lt
p
o
st

L
Z
A

S
h
a
m

t
C

a
lc

u
la

ti
o
n

(c
)
P
ro
p
o
se
d
a
rc
h
it
ec
tu
re

F
ig
u
re

6
.2
4
:
D
ec
im

al
fl
oa
ti
n
g-
p
oi
n
t
fu
se
d
m
u
lt
ip
ly
-a
d
d
ar
ch
it
ec
tu
re
s

92

shifted to left, the first digit lower than the most 16 significant digits are implied to be zero.

In the second case, the most significant digit of the addend is shifted 2n digits to right. If

the exponent difference between product and addend is larger than the necessary range of

alignment shifting, the extra digits other than the necessary shifting range do not affect the

correctness of the final result. Additionally, the decimal point is shifted n digits to right to

guarantee that the final result is an integer.

Product

CZ

left shift [0,2n+LZD(CZ)+1] digits

right shift [0,2n] digits

n digits

Figure 6.25: Left and right shifting range of the pre-alignment.

If the product is zero, the result should be numerically equal to the addend. However

the preferred exponent which is defined in the standard should be achieved. If EP ≥ EC,

the absolute value of the result is exactly equal to the addend which has a less exponent. If

EP < EC, the significand of Z has to be shifted to left to reduce the exponent of the addend.

The final result will be normalized to get the possible maximum number of significant digits or

the possible minimum exponent which is close to EP . If the addend is zero, the precision and

preferred exponent of the final result will be guaranteed by the digits in product and the post-

alignment algorithm regardless of the shifting direction and shifting digits of the zero addend.

In the first case, the final result can be directly figured out, and in the latter two cases, the

computing process follows the pre-alignment rule analyzed in the previous paragraph. The

post-alignment algorithm to guarantee the rounding position and the preferred exponent is

described in next section. The shifting range to align two operands are shown in Fig. 6.25.

In the proposed architecture, the pre-alignment algorithm is divided into four cases, which

are 1) left shifting with overflow, 2) left shifting without overflow, 3) right shifting without

overflow, and 4) right shifting with overflow. In the case 1), the exponent of the added is

larger than the exponent of the product, and the difference is larger than the maximum left

shifting amount. In this case, the addend is shifted 2n+1+LZD(CZ) digits to left. The OV

signal is therefore set to indicate a left shifting overflow occurs. In the case 2), the exponent

93

Algorithm 6.4.1: Pre-alignment algorithm

Data: EX,EY,EZ,CZ.

Result: Left and right shift amount Lsa1, Rsa1.

Overflow signal OV .

if (2n+ 1 + LZD(CZ) < EZ − EP) then

Lsa1 = 2n+ 1 + LZD(CZ);

OV = “10”;

else if (0 ≤ EZ − EP ≤ 2n+ 1 + LZD(CZ)) then

Lsa1 = EZ − EP ;

OV = “00”;

else if (0 < EP − EZ ≤ 2n) then

Rsa1 = EP − EZ;

OV = “00”;

else if (2n < EP − EZ) then

Rsa1 = 2n;

OV = “01”;

end

where LZD() means the leading zero detection function, and EP = EX + EY ;

of the added is larger than the exponent of the product, but the difference is smaller than

the maximum left shift amount. Hence, the difference on the exponent is set to the left

shifting amount (Lsa1). In the latter two cases, the exponent of the product is larger than

the exponent of the addend, thus, right shifting is performed. The mathematical description

of the pre-alignment algorithm is given in Algorithm 6.4.1.

The hardware implementation of the proposed pre-alignment unit is depicted in Fig. 6.26(a).

The left and right shifting amount Lsa1 and Rsa1 are calculated simultaneously by two bi-

nary prefix tree adders. Since the maximum shift amount to right or left are constant, only

lower bits of the results from two carry propagating adders are fed into the shifters. To re-

duce the timing delay, the number of leading zeros in the addend LZD(CZ) is not considered

to obtain the Lsa1 before the left shifter. Instead, the addend without the leading zeros

94

(CZwolz) is created by a separate shifter, and selected out as the most significant digits if left

overflow occurs (i.e. OV = “10”). To select the correct shifted addend from the shifters, a

selection signal generator and a multiplexors array are applied aside and after the shifters.

The selection signal generator decides the real shifting direction, and selects out the corrected

shifted addend from the results of the three shifters. The selection signal can be easily figured

out by the sign of EZ − EP and the overflow signal OV .

LZD Binary 4:2

CZ EZ EX EY

Prefix Tree

Shifter
Left

CZ

Sel Gen

Multiplexer Array

CZsh

EZEX EY BiasBias

Right

CZ

Shifter Shifter

Binary 4:2

Prefix Tree
Left EZ-EP EP-EZ

CZwolz CZlsh CZrsh

EZ-EP

select signal

LZD(CZ)

12 12

68 196 132

264

6 6

4

64 0 LZD(CZ)

(a) Hardware implementation of the pre-alignment

1 0

oxxo

1 0

xx
xxoo ooxx

2 bits

4 bits

[0]sel

[1]sel

xxxx

(b) Hardware implementation of a simplified left shifter in the pre-alignment

Figure 6.26: Architecture of the pre-alignment

Since the widths of the input and output of the two shifters in Fig. 6.26(a) are different,

it is possible to elaborate the structure and reduce the hardware cost of the shifter. In

Fig. 6.26(b), a simplified model of the proposed left shifter is shown to shift one bit input x

to left. Since the lower bits of result are obtained earlier than the higher bits in the binary

adder, the multiplexors for shifting less digits are placed on the top of the shifter. The right

shifter has a symmetrical structure. In contrast to the original shifter which has the same

width on both input and output, the refined shifter saves about 37% of the multiplexors.

95

Table 6.10: Selection algorithm of the shifted addend

{Sign1a, OV } CZsh.S3
b CZsh.S2 CZsh.S1 CZsh.S0

000 CZlsh.S3 CZlsh.S2 CZlsh.S1 0

001 x x x x

010 CZwolz 0 0 0

011 x x x x

100 0 0 CZrsh.S1 CZrsh.S0

101 0 0 0 0

110 x x x x

111 x x x x

a Sign1=The sign of (EZ − EP)

b S.S3 = S{65 : 49};S.S2 = S{48 : 33};S.S1 = S{32 :

17};S.S0 = S{16 : 0}

After the pre-alignment, the layout of the aligned addend and product and the shifted

decimal point are shown in Fig. 6.27. The exponent after pre-alignment Exp1 (i.e. the

exponent of the result after the carry free adder) is adjusted by subtracting 16. There are

some signals which are used out of the critical path can be calculated in pre-alignment unit

as well. The equations of these signals are given below:

Product

CZsh

n digits

OR

Sticky14n+2 digits

Figure 6.27: Layout of the aligned product and addend

EOP = SX ⊕ SY ⊕ SZ (6.25)

96

if (OV = “10”)

Exp1 = EC − LZD(CZ)− 49;

else

Exp1 = EP − 16;

endif

(6.26)

if (RSHOR(CZ) = 0)

Sticky1 = “00”;

else

if(EOP = 1)

Sticky1 = “11”;

else

Sticky1 = “01”;

endif

endif

(6.27)

where RSHOR() means the bit-by-bit OR of all right shifted digits out of the CZrsh.

In equation (6.26), if left shifting overflow occurs (i.e. OV = “10”), the real left shifting

amount is only 2n + 1 + LZD(CZ) digits. In this case, Exp1 is adjusted by the real left

shifting amount and the shifting of the decimal point.

6.4.2 Post-Alignment and Sticky Bits Generation

Post-Alignment Shifting Amount Decision

The result from the adder may have a large number of significant digits which exceed the

required precision. Thus a post-alignment unit is applied to decide a proper exponent and

truncate the significand to fit the required precision. Moreover, if the result is inexact,

enough information has to be kept to decide the increment to the least significant digit

in the following rounding unit. In the decimal floating-point standard, both of the input

operands and output result are not normalized. Therefore, the post-alignment processing

in the decimal floating-point is more complicated than the normalization processing in the

97

Algorithm 6.4.2: Analysis of the shifting direction and range to achieve preferred
exponent

if (EP ≥ EC) then

/* right shift addend */

Exp1 = EP − 16;

Expp = EC;

DIFFpre = EC − EP + 16;

DIFFpre = −DIFFabs + 16;

DIFFpre ≤ 16;

else

/* left shift addend */

if (OV = 0) then

Exp1 = EP − 16;

Expp = EP ;

DIFFpre = EP − EP + 16;

DIFFpre = 16;

else

Exp1 = EC − LZD(CZ)− 49;

Expp = EP ;

DIFFpre = EP − EC + LZD(CZ) + 49;

DIFFpre = −DIFFabs + LZD(CZ) + 49;

DIFFpre ≤ 16;

end

end

DIFFpre = Expp− Exp1;

DIFFabs = ABS(EP − EC);

Expp = MAX(−398,MIN(EP,EC));

ABS() means the absolute value function.

98

binary floating-point. The most difficult problem is to decide if the preferred exponent can

be achieved or not. In a conventional method, the leading zero anticipation algorithm needs

to detect the place of the most significant one, and detect the decimal cancelation in parallel.

For example, if the significand is “199...9234...”, the sequence of 9 after the leading 1 will

have to be canceled in the final result, and the width of the significand is reduced accordingly.

In the proposed number system, the digit 9 or 9 are not existing. Therefore, the cancelation

only causes one-digit error on the basis of the conventional leading one detection algorithm.

For example, “18...123...” will be converted to “02...123...”.

Algorithm 6.4.3: Post-alignment algorithm

LOP ′ = LOP + 1needcorrect;

if (LOP ′ − TZD ≤ 16 and TZD −DIFFpre ≥ 0) then

if (LOP ′ −DIFFpre ≤ 16) then

/* case 1 */

Rsa2 = DIFFpre;

else if (LOP ′ −DIFFpre > 16) then

/* case 2 */

Rsa2 = LOP ′ − 16;

end

else if (LOP ′ − TZD ≤ 16 and TZD −DIFFpre < 0) then

/* case 3 */

Rsa2 = TZD;

else if (LOP ′ − TZD > 16 or DIFFpre < 0) then

/* case 4 or 5 */

Rsa2 = LOP ′ − 16;

end

To figure out the cases of the shifting in post-alignment, the exponent of the temporary

result of the addition and the preferred exponent are analyzed in Algorithm 6.4.2. First of

all, two parameters are created. DIFFpre is defined as the difference between the preferred

exponent and the temporary exponent. If DIFFpre is larger than zero, it means the necessary

99

right shifting digits to achieve the preferred exponent. DIFFabs is defined as the absolute

value of the difference between the exponents of the product and the addend. In the first

case, the addend is right shifted and DIFFpre ≤ 16. If 0 ≤ DIFFpre ≤ 16, the number of

right shifting digits in post-alignment depends on the significant digits between leading and

trailing zeros. If DIFFpre < 0, the temporary result has to be shifted to left to achieve the

preferred exponent. But after moving the decimal point, significant digits are always enough

to guarantee the required precision. Therefore, in this case the preferred cannot be achieved,

and the number of right shifting digits depends on the most significant non-zero digit. In the

second case, whereDIFFpre = 16, it is similar to the first case. In the third case, LZD(CZ)+

49 means the possible maximum left shifting digits in the proposed pre-alignment. Since left

overflow happens in this case, DIFFabs is always larger than LZD(CZ) + 33 according to

Algorithm 6.4.1. Thus DIFFpre is less than 16, and the analysis of shifting is similar to the

first case.

In Figures 6.28(a-e), the post-alignment algorithm is illustrated into five cases, and the

mathematical description is given in Algorithm 6.4.3. In the first two cases, the result can

be exactly represented in 16 digits. Therefore, the preferred exponent might be reached. In

case 1, the number of significant digits, which is equal to the difference between the leading

one position (LOP) and the number of trailing zeros (TZD), is less than 16 digits, and the

difference between the temporary exponent and the expecting exponent (DIFFpre) is smaller

than the number of trailing zeros in the redundant result. Note that the LOP ′ means the

real position of leading non-zero digit, which is obtained by correcting LOP . Additionally,

after shifting the result of the addition to right by DIFFpre digits, the exponent reaches the

preferred one, and the result still keeps all the significant digits. In case 2, after shifting

DIFFpre, not all the significant digits can be restored, and more digits need to be shifted. In

this case, only the most significant 16 digits are retained. In case 3, the DIFFpre is greater

than the number of trailing zeros. Thus, the maximum right shifting amount only can be

TZD to keep all the significant digits. The preferred exponent cannot be reached in this

case, and the adjusted exponent (Exp2) is less than and closest to the preferred exponent.

In the previous three cases, the result is exact. In case 4, the significant digits are larger

than 16 digits. Hence, the preferred exponent cannot be reached and the final result is

100

16D 16D 16D 16D

1D

2
pre

Rsa DIFF

LOP !

TZD

pre
DIFF

1 :Sum

2 :Sum

(a) Case 1

16D 16D 16D 16D

1D

LOP !

TZD2 16Rsa LOP ! "

1 :Sum

2 :Sum
pre

DIFF

(b) Case 2

16D 16D 16D 16D

1D

2Rsa TZD

LOP !

TZD

1 :Sum

2 :Sum

pre
DIFF

(c) Case 3

16D 16D 16D 16D

1D

2 16Rsa LOP ! "
LOP !

TZD

1 :Sum

2 :Sum
pre

DIFF

(d) Case 4

16D 16D 16D 16D

1D

1 :Sum

2 :Sum

LOP !

TZD2 16Rsa LOP ! "
pre

DIFF

(e) Case 5

Figure 6.28: Post-alignment shift amount decision

101

inexact. In case 5, if the preferred exponent is smaller than the temporary exponent, the

preferred exponent cannot be reached, since the LOP has 16 digits at minimum. Therefore,

left shifting is not possible in the proposed architecture. Consequently, any digits out of the

required precision are moved out.

DIFFpre

LOP TZD

Rsa2

LOP TZD LOP TZD

Intermediate signals

LOD TOD CD

Rsa

Decision

1

Rsa

Decision

2

C
o
n
d
.

D
e
t
e
c
t

C
o
n
d
.

D
e
t
e
c
t

-16LOP -15LOP

needcorrect

DIFFpre DIFFpre

Figure 6.29: Detailed structure of the post-alignment shift amount calculation

The hardware implementation is shown in Fig. 6.29. The data path is divided into two

branches, which are selected by detecting the one digit error of the leading one position

in Sum1. The left path covers the five cases if the possible one-digit error doesn’t exist.

Otherwise, the right path is selected. There are three blocks upon the shifting amount

decision unit. The leading zero detector (LOD), which generates the position of the leading

non-zero digit minus one (LOP ′ − 1), is similar to the detector applied in binary designs.

The trailing zero detector (TZD) similarly creates the number of the trailing zeros. The

correction detector (CD) is introduced in the next section.

Leading One Position Correction

To detect the possible one digit error on the leading one position in Sum1, two cases have to be

recognized. As shown in Table 6.11, if the pattern of the Sum1 is zk1zln(x) or zk1zlp(x), the

leading one or leading minus one will be converted to zero in the rounding unit. The position

of the leading non-zero digit is therefore reduced by one. To detect these two patterns,

a binary tree structure is applied for both positive and negative Sum1. The principle of

the correction detector is similar to the algorithm described in [98]. The difference is that

the result of the radix-10 signed-digit subtraction is more complicated than the one in the

102

radix-2 signed-digit subtraction proposed in [98]. In Table 6.12 and equations (6.28 and

6.29), the algorithm and logic of the basic node on the detection tree for both positive and

negative Sum1 are given. Similar to the logic proposed in [98], x is represented by setting

all the output signals to zero. A simplified hardware structure for positive Sum1 is shown

in Fig. 6.30. In the last level, only the correction signal y is needed, and the final correction

signal is ORed by two correction signals for both Sum1 > 0 and Sum1 < 0. A leading zero

anticipation algorithm for binary redundant encodings can be found in [104]..

Table 6.11: Scenarios of one digit error on leading one position

Sign of Sum1 Sum1 String pattern No. of LZ Example

Sum1 > 0

zk1zlp(x) k 0...012...

zk1zln(x) k + 1 0...012...

zkp+(x) k 0...022...

Sum1 < 0

zk1zln(x) k 0...012...

zk1zlp(x) k + 1 0...012...

zkn−(x) k 0...022...

z : (s = 0); p : (s > 0); n : (s < 0); p+ : (s > 1); n− : (s <

1);

k >= 0, l >= 0; x: don’t care

Sum1 > 0 =>



p+ = p+l · zr + zl · p+r

po = zl · por + pol · zr

z = zl · zr

n = nl + zl · nr

y = yl + zl · yr + pol · nr

(6.28)

103

Table 6.12: Node functions for the positive
and negative detection trees

Sum1 > 0
right branch

p+ po z n x y

left branch

p+ x x p+ x x x

po x x po y x x

z p+ po z n x y

n n n n n n n

x x x x x x x

y y y y y y y

Sum1 < 0
right branch

n− no z p x y

left branch

n− x x n− x x x

no x x no y x x

z n− no z p x y

p p p p p p p

x x x x x x x

y y y y y y y

po : (s = 1); no : (s = −1); y: need

correction

104

Sum1 < 0 =>



n− = n−l · zr + zl · n−r

no = zl · nor + nol · zr

z = zl · zr

p = pl + zl · pr

y = yl + zl · yr + nol · pr

(6.29)

where sl means the signal s is from the left branch, and sr means the signal s is from the

right branch; “ · ” means logic and, “ + ” means logic or.

Basic Node

{ , , , , }p po z n y

Basic Node

Basic Node

……

…
…

left right

{ , , , , }p po z n y

{ , , , , }p po z n y

{ }y

Figure 6.30: Hardware structure of the correction detection unit

To decide the post-alignment shifting amount Rsa2, there are some intermediate signals

that have to be generated first. As shown in Fig. 6.29, the intermediate signals are generated

and fed into three detection units. Afterwards, the corresponding variables are obtained,

and the shifting amount is therefore decided. All the intermediate signals have been already

introduced in Table 6.11 and Table 6.12. These seven signals, z, p, n, p+, p−, po and no are

directly generated from the Sum1.

Sticky Bits Generation

Since the digit-set of the result Sum1 is redundant in [−8, 7], if right shifting is applied in

post-alignment, the shifted out digits can be positive, zero or negative. For example, after

105

right shifting, the shifted out digits after the rounding digit of the string “123...90...56.5432...”

is “432...”. The rounding digit 5 after the point is therefore reduced by one due to the negative

sticky digit. Consequently, the rounding process is more complicated than the one in the

conventional architecture. To correctly round the result, a signed sticky with two bits has to

be detected.

If the signal pi is set to 1, the value from the ith digit to right digits is larger than zero or

positive, and if zi is set to 1, the value from the ith digit to right digits equals zero. If both

signals are 0, the value is negative. For example, the p and z signals are set to “0011...” and

“0000...” for string “0321...”. The detection algorithm is similar to the carry propagation

process, in which a positive (negative) digit will be propagated to the left by another positive

(negative) digit or a zero digit and killed by a negative (positive) digit. A prefix tree structure

is applied to generate the sticky signals. The logic of a basic cell on the prefix tree is given in

equation (6.30). Once the signals p and z are ready, the correct sticky digit can be obtained

by right shifting it with Rsa2 digits. Therefore, the right shifter for obtaining sticky only

contains 2 bits at the output.

p = pl + zl · pr

z = zl · zr
(6.30)

6.4.3 Rounding

In the proposed DFMA, the redundant result which is shifted in the post-alignment unit

is sent to the rounding block to obtain the final rounded result in the conventional BCD

encoding. Since the digit of the result Sum2 can be positive or negative, two major problems

are emerged in the proposed system. First, the digits shifted out of the rounding digit can be

positive or negative. In some rounding cases, this might affect the value on the rounding digit

and hence the rounded result. For example, “ssss...ssss51234...” and “ssss...ssss51234...”

have same digits on the most significant 16 digits (ssss...ssss) and the rounding digit (5)

and different rest of digits on the right side (1234... and 1234...). In the Ties-to-Away mode,

the first result will be rounded to “ssss...ssss + 1”, and the latter one will be rounded to

“ssss...ssss”. Second, the final result can be a negative number which needs to be inverted

106

first. In this case, all the consideration of the rounding algorithm is based on the nega-

tion of the current result. For example, if “ssss...ssss51234...” is negative, it is negated to

“ssss...ssss51234...”, and rounded it to “ssss...ssss−1” in the Ties-to-Away rounding mode.

However, the simplicity of the proposed number system should be noticed. In the proposed

digit-set, there is no positive carry propagation at all. The only consideration is the negative

carry propagation or borrow propagation. The final result is divided into two parts (i.e. the

most significant 15 digits and the least significant 1 digit). In the most significant 15 digits,

the only processes are the negation of the negative result and the negative carry propagation

for digit-set conversion. On the other hand, the least significant digit can be added by “±1”

or retained according to the rounding increment.

The rounding algorithm is therefore divided into two steps, obtaining rounding increment

and converting the result with the consideration of the rounding increment. An algorithm

which generates the increment accordingly is given in Tables 6.13-6.15. Suppose a positive

final result with a negative intermediate sum “1000...0003.51234...” creates an increment

“+ 1” in Ties-to-Away mode. But since the intermediate sum is less than zero, it is negated

to “1000...0003.51234...”. Moreover the increment is negated to “ − 1”. The final result is

therefore rounded and converted to “1000...0002”. The complicated computation is encap-

sulated in the following conversion algorithm. The signal SignF means the sign of the final

result, and the logic is optimized by “Sign2⊕ (SX ⊕ SY)”.

The top level structure of the proposed rounder is given in Fig. 6.31. Since the digit-set

of the post-aligned sum is in [−8, 7], after adding the increment from the rounding digit, no

positive carry will be generated from Sum2lsd. Instead, a negative carry might be generated

(e.g. “1200...0003” or “1200...0000” with increment −1). Therefore, the propagation bits and

generation bits of the negative carry for the most 15 significant digits are generated first by a

prefix tree structure. In the meantime, the possible negative carry (NClsd) from Sum2lsd is

generated as shown in equation (6.31). Once the negative carry C for all the 16 digits of CR

is obtained, the digit-set conversion with absolute value conversion algorithm is performed

as given in the equations (6.32 and 6.33). The correction value Cor2 is simply obtained by

the nine’s complement conversion algorithm with borrow consideration. Since the LSD of

CR will be adjusted by the rounding increment, the correction value for the LSD is different

107

Table 6.13: Rounding increment generation al-
gorithm of “TiesToAway” and “TowardPositive”
modes

Ties to Away

Sign2 = 0 Sign2 = 1

RDa SDb inc RD SD inc

[6, 7] xc +1 [6, 7] x -1

5 0 or 1 +1 5 1 -1

5 -1 0 5 0 or -1 0

[0, 4] x 0 [0, 4] x 0

[−4,−1] x 0 [−4,−1] x 0

-5 0 or 1 0 -5 1 0

-5 -1 -1 -5 0 or -1 +1

[−8,−6] x -1 [−8,−6] x +1

Toward Positive

Sign2 = 0, SignF = 0 Sign2 = 0, SignF = 1

RD SD inc RD SD inc

[1, 7] x +1 [1, 7] x 0

0 1 +1 0 1 or 0 0

0 0 or -1 0 0 -1 -1

[−8,−1] x 0 [−8,−1] x -1

Sign2 = 1, SignF = 0 Sign2 = 1, SignF = 1

[1, 7] x 0 [1, 7] x -1

0 1 or 0 0 0 1 -1

0 -1 +1 0 0 or -1 0

[−8,−1] x +1 [−8,−1] x 0

a RD=Rounding Digit

b SD=Sticky Digit

c x=don’t care

108

Table 6.14: Rounding increment generation algorithm
of “TiesToEven” and “TowardNegative” modes

Ties to Even

Sign2 = 0 Sign2 = 1

RD SD LEa inc RD SD LE inc

[6, 7] x x +1 [6, 7] x x -1

5 1 x +1 5 1 x -1

5 0 0 +1 5 0 0 -1

5 0 1 0 5 0 1 0

5 -1 x 0 5 -1 x 0

[0, 4] x x 0 [0, 4] x x 0

[−4,−1] x x 0 [−4,−1] x x 0

−5 1 x 0 −5 1 x 0

−5 0 0 -1 −5 0 0 +1

−5 0 1 0 −5 0 1 0

−5 -1 x -1 −5 -1 x +1

[−8,−6] x x -1 [−8,−6] x x +1

Toward Negative

Sign2 = 0, SignF = 0 Sign2 = 0, SignF = 1

RD SD inc RD SD inc

[1, 7] x 0 [1, 7] x +1

0 1 or 0 0 0 1 +1

0 -1 -1 0 0 or -1 0

[−8,−1] x -1 [−8,−1] x 0

Sign2 = 1, SignF = 0 Sign2 = 1, SignF = 1

[1, 7] x -1 [1, 7] x 0

0 1 -1 0 1 or 0 0

0 0 or -1 0 0 -1 +1

[−8,−1] x 0 [−8,−1] x +1

a LE=LSD is Even
109

Table 6.15: Rounding increment generation algo-
rithm of “TowardZero” mode

Toward Zero

Sign2 = 0, SignF = 0 Sign2 = 0, SignF = 1

RD SD inc RD SD inc

[1, 7] x 0 [1, 7] x 0

0 1 or 0 0 0 1 or 0 0

0 -1 -1 0 -1 -1

[−8,−1] x -1 [−8,−1] x -1

Sign2 = 1, SignF = 0 Sign2 = 1, SignF = 1

[1, 7] x -1 [1, 7] x -1

0 1 -1 0 1 -1

0 0 or -1 0 0 0 or -1 0

[−8,−1] x 0 [−8,−1] x 0

than the other 15 digits. If the intermediate result Sum2 is less than zero, the XOR gates

are necessary to negate the digit. Note that, in the digit-set conversion algorithm, the least

significant bit of the negative carry signal C is equal to the sign of the Sum2. Therefore,

if Sign2 = 1, the negative carry might be propagated through Sum2{1}. Subsequently, the

negative carry for higher 15 digits can be obtained by the equation: NCi:0 = gi:0&(pi:0|NClsd).

To clarify the rounding and conversion algorithm, the example provided in Fig. 6.23 is

considered. Since the leading positive one in Sum1 will be corrected, it is not shifted in the

17-digit Sum2, and the sign of the Sum1 is positive. In the rounder, the 15-bit propagation

“000000000100000” and generation “111111001000101” signals for the negative carry of the

most 15 significant digits are first created. In the Ties-to-Away rounding mode, no increment

is generated from the rounding digit 1. Subsequently, the LSD “3” creates a negative carry to

the higher digits. The 15-bit propagation and generation signals, together with the negative

carry from LSD and the positive Sign2, create a final negative carry “11111100100010110”.

Afterwards the correction signal “99999a0fa00faf9a” is further created by the equations

110

15-bit Prefix

Carry Generation

Correction Gen.

4-bit CLA Array

CR

Sticky2Sign2Sum2Sign2

g NClsd

C[16:0]

Cor2Sum2'

 Gen.
lsd

NCXOR

p

Sum2{1:0}Sum2{16:1} Sum2{16:2}

15 15 1

4*16D4*16D

SignF

Figure 6.31: Architecture of the rounder

(6.32 and 6.33). After all, the final rounded significand is obtained by adding the bit-inverted

Sum2′ = “3456563230431123” with the correction signal.

NC+1
lsd =


1 if Sum2{1} < −1 or

(Sum2{1} = −1&Sign2 = 1)

0 otherwise

NC0
lsd =


1 if Sum2{1} < 0 or

(Sum2{1} = 0&Sign2 = 1)

0 otherwise

NC−1
lsd =


1 if Sum2{1} < 1 or

(Sum2{1} = 1&Sign2 = 1)

0 otherwise

NClsd =


NC+1

lsd if RDinc = +1

NC0
lsd if RDinc = 0

NC−1
lsd if RDinc = −1

(6.31)

111

Cor2{0} =



1 if C1:0 = 00 & RDinc = 1,

10 if C1:0 = 01 & RDinc = 1,

11 if C1:0 = 10 & RDinc = 1,

0 if C1:0 = 11 & RDinc = 1,

0 if C1:0 = 00 & RDinc = 0,

11 if C1:0 = 01 & RDinc = 0,

10 if C1:0 = 10 & RDinc = 0,

1 if C1:0 = 11 & RDinc = 0,

−1 if C1:0 = 00 & RDinc = −1,

12 if C1:0 = 01 & RDinc = −1,

9 if C1:0 = 10 & RDinc = −1,

2 if C1:0 = 11 & RDinc = −1.

where C = {NC[15 : 0], Sign2}

(6.32)

Cor2{15 : 1} =



0 if Ci+1:i = 00 & C0 = 0,

−1 if Ci+1:i = 01 & C0 = 0,

10 if Ci+1:i = 10 & C0 = 0,

9 if Ci+1:i = 11 & C0 = 0,

10 if Ci+1:i = 00 & C0 = 1,

11 if Ci+1:i = 01 & C0 = 1,

0 if Ci+1:i = 10 & C0 = 1,

1 if Ci+1:i = 11 & C0 = 1.

(6.33)

112

Chapter 7

Comparison and Discussion

In this chapter, all the proposed designs are firstly evaluated by synthesizing the Verilog model

with Synopsys tools. Furthermore, the differences on performance between the proposed

designs and previous corresponding designs are illustrated and analyzed. The organization of

rest sections are addition (section 7.1), multiplication (section 7.2), and DFMA (section 7.3).

7.1 Decimal Fixed-point Addition

A model of the proposed decimal SD adder is implemented in VHDL. The exhaustive test to

ensure the correctness is performed. Subsequently, the proposed design was synthesized by

Synopsys Design Compiler in STM 90 nm CMOS technology with normal case parameters

(1.2V, 25℃).

To compare with other designs, the designs in [51], [56], [52] and [59] were also imple-

mented in the same technology. The implementation results, including timing delay, hardware

area, power consumption, area delay product (ADP) ratio and power delay product (PDP)

ratio are listed in Table 7.1. On the timing delay, the proposed design has at least a 34%

improvement. On the performance in terms of the ADP and PDP, our design could have

more than 32% and 76% improvement compared with the referenced designs, respectively.

For further evaluation, the hardware area and power consumption under different timing

constraints of the designs in [51], [56], [52], [59] and the proposed one are listed in Fig. 7.1 and

Fig. 7.2. The less area and less timing delay compared with all other works could be obtained

simultaneously once the timing constraint is larger than 0.3 ns. Since currently the decimal

computation is mostly used on high performance server [57], we focus on computation speed

rather than hardware cost which could be improved in the future.

113

T
a
b
le

7
.1
:
S
y
n
th
es
iz
ed

re
su
lt
s
an

d
co
m
p
ar
is
on

of
16
-d
ig
it
ad

d
er
s

D
ig
it
S
et

D
el
ay

R
at
io

A
re
a

R
at
io

A
D
P
R
at
io

P
ow

er
R
at
io

P
D
P
R
at
io

F
W

-C
on

v
B
W

-C
on

v

(n
s)

(µ
m

2
)

(m
W

)
(∆

G
)

(∆
G
)

[5
1]

[−
9,
9]

0.
49

1.
69

35
56
1

2.
76

4.
66

57
.9
4

3.
55

5.
99

0
N
/A

[5
6]

[−
9,
9]

0.
51

1.
76

22
07
8

1.
71

3.
01

35
.6
7

2.
18

3.
84

0
N
/A

[5
2]

[−
8,
9]

0.
39

1.
34

12
65
4

0.
98

1.
32

21
.3
9

1.
31

1.
76

1
2n

+
8

[5
9]

[−
7,
7]

0.
45

1.
55

12
78
1

0.
99

1.
54

20
.0
1

1.
22

1.
90

9
2n

+
10

P
ro
p
os
ed

[−
9,
9]

0.
29

1
12
89
8

1
1

16
.3
4

1
1

0
2
lo
g
n
+
10

114

Since our design works on the digit set [−9, 9] and the operands are encoded in two’s

complement, no extra forward converter which converts the BCD inputs to the proposed

digit set is needed at all. In [52], the authors use the digit set [−8, 9], so there is an OR gate

in the front converter mentioned in their paper. In [59], a combinational logic to generate

the correction signal and a 4-bit adder are proposed to convert BCD to RBCD encoding with

9∆G (i.e., level of gates) delay.

For the backward converter which converts the digit set in the proposed design to the

conventional BCD encoding, in [52] and [59], the authors proposed two algorithms which

process in linear timing delay proportional to the digit width of the input. Furthermore,

to generate the absolute value, the aforementioned designs need more logics to check the

sign of the result and invert the result digit by digit which are not counted in Table 7.1.

The proposed converter in this thesis could generate the absolute value of the result in BCD

encoding with a timing delay logarithmically proportional to the digit width.

5000

10000

15000

20000

25000

30000

35000

0.24 0.3 0.36 0.42 0.48 0.54 0.6 0.66 0.72

A
re
a
�o
f�
1
6
�D
ig
it
�A
d
d
e
r�
(u
m

2
)

Delay�(ns)

Proposed

[51]

[52]

[56]

[59]

5000

10000

15000

20000

25000

30000

35000

0.24 0.3 0.36 0.42 0.48 0.54 0.6 0.66 0.72

A
re
a
�o
f�
1
6
�D
ig
it
�A
d
d
e
r�
(u
m

2
)

Delay�(ns)

Proposed

[51]

[52]

[56]

[59]

Figure 7.1: Area-Delay Comparison

7.2 Decimal Fixed-point Multiplication

To compare the proposed multiplication algorithm with other designs, a delay model is

firstly created in terms of fanout-of-4 inverter’s delay on the estimated critical path. Thus

the effects from fanout gates and the gate scaling are ignored in the theoretical comparison.

115

0

10

20

30

40

50

60

0.24 0.3 0.36 0.42 0.48 0.54 0.6 0.66 0.72

P
o
w
e
r�
o
f�
1
6
�D
ig
it
�A
d
d
e
r�
(m

W
)

Delay�(ns)

Proposed

[51]

[52]

[56]

[59]

Figure 7.2: Power-Delay Comparison

To obtain a more accurate comparison, a Verilog-HDL model of the proposed 16× 16-digit

multiplier is synthesized with STM 90 nm standard cell normal case library (1.0V, 25℃). For

fairly comparing with previous works implemented in different technologies, the fanout-of-4

inverter’s delay and NAND2 gate’s area are applied to measure the performance of different

designs in different technologies. Since the values of 1 unit of these two metrics change as

the technology, these units provide a comparison among different designs on an identical

reference. A discussion on the differences of performance between our proposed architecture

and other designs is given afterwards.

7.2.1 Parallel Multiplication

Performance Evaluation

In Table 7.2, the numbers of logic gates (i.e., NAND2 gate or ∆G) for different stages of the

parallel 16×16-digit multipliers from other designs are listed. We assume that an AND2/OR2

gate equals to one NAND2 gate, and an XOR gate equals to two NAND2 gates. The PPG

unit in Table 7.2 is used to generate the partial products in the format which can be directly

processed by the PPR unit in the next stage. For example, the decimal carry save adder,

to reduce the multiples from double-BCD format (i.e., double-four-bit) to BCD-CS format

(i.e., one-four-bit) applied in the sequential design in [63] and the parallel design in [65],

116

is counted into the PPG stage. Additionally, to fairly analyze the efficiency of the PPR

methods, we suppose that the outputs of the PPR unit are two numbers in arbitrary formats

(e.g., double-BCD or BCD-CS format). Thus, the fourth level of the ODDS adder in [70] and

the final simplified CLA shown in Fig. 6.12 are assumed as the adder setup unit in the final

stage. Finally, for the three sequential multipliers in the bottom of Table 7.2, only the ratio

(e.g., marked by an asterisk) between the ∆G involved in iterative cycles and the proposed

design is provided, since other non-iterative cycles can be pipelined without reducing the

overall efficiency of the multiplier. As shown in Table 7.2, some algorithms may be faster

than our proposed design on PPG or PPR, but by considering the trade-off among three

multiplication stages, our design can perform the best.

To obtain a more accurate performance on not only timing delay but also hardware cost, a

hardware model for a 16×16-digit multiplier is implemented by Verilog-HDL and synthesized

using Synopsys Design Compiler and STM 90 nm CMOS standard cells library which has

45ps as the delay of an inverter with fanout of 4 inverters and 4.4um2 as the area of the

smallest NAND2 gate. 500,000 random cases and 100 manually created boundary cases are

verified in the Verilog-HDL model to guarantee the correctness. The delay in picosecond of

each module on the critical path is shown in Table 7.4. Furthermore, the delay-area values

which are measured under Design Compiler within the range from 1.94ns and 49900 NAND2

to 2.65ns and 36655 NAND2 are shown in Fig. 7.3. The delay-area values of other parallel

designs are also provided. The latest designs of the architectures of Radix-10 and Radix-5 in

[68] and the architecture in [70] are implemented and evaluated with our library and synthesis

environment.

Comparison and Discussion

In Table 7.3, the state-of-the-art decimal multipliers for 16-digit operands are listed in terms

of timing delay, hardware area, throughput, and latency. In [65], the design is synthesized

using the STM 90 nm library which is the same library as used in our design. The latency

provided by the authors is 2.65ns, which equals to about 58.9 FO4. In [66], the authors

improve the design in [65] and reduce the latency to 2.51ns (55.8 FO4) by an elaborated

PPR tree and a binary to decimal converter. Both of these designs have the area of 68000

117

T
a
b
le

7
.2
:
D
el
ay

an
al
y
si
s
of

16
×

16
-d
ig
it
d
ec
im

al
fi
x
ed
-p
oi
n
t
m
u
lt
ip
li
er
s

A
rc
h
it
ec
tu
re

P
P
G

R
at
io

P
P
R

R
at
io

S
et
u
p
+

F
in
al

A
d
d
er

R
at
io

T
ot
al

R
at
io

(∆
G
)

(∆
G
)

(∆
G
)

(∆
G
)

P
ar
al
le
l

[6
5]

20
1.
67

60
1.
28

17
1.
06

97
1.
29

[7
4]

37
3.
08

54
1.
15

25
1.
56

11
6

1.
55

[6
7]

9
0.
75

57
1.
21

19
1.
19

85
1.
13

[7
0]

11
0.
92

46
0.
98

29
1.
81

86
1.
15

R
ad

ix
-1
0
[6
8]

39
3.
25

42
0.
89

23
1.
44

10
4

1.
39

R
ad

ix
-5

[6
8]

11
0.
92

53
1.
13

23
1.
44

87
1.
16

P
ro
p
os
ed

12
1

47
1

16
1

75
1

S
eq
u
en
ti
al

[4
2]

11
-

13
×

17
-

43
-

27
5

2.
95

*

[6
4]

13
-

31
×

17
-

-
-

-
7.
03

*

[6
3]

20
-

20
×

17
-

17
-

37
7

4.
76

*

*
R
at
io
=
∆

P
P
R
/∆

p
ro
p
o
se
d
to
ta
l

118

T
a
b
le

7
.3
:
P
er
fo
rm

an
ce

co
m
p
ar
is
on

of
16

×
16
-d
ig
it
d
ec
im

al
fi
x
ed
-p
oi
n
t
m
u
lt
ip
li
er
s

A
rc
h
it
ec
tu
re

#
C
y
cl
es

C
y
cl
e
T
im

e
L
at
en
cy

T
h
ro
u
gh

p
u
t

A
re
a

(F
O
4)

(F
O
4)

R
at
io

M
u
lt
./
C
y
cl
e

(N
A
N
D
2)

R
at
io

P
ar
al
le
l

B
in
.
R
ad

ix
-4

[6
5]

1
-

31
.1

0.
72

1
34
00
0

0.
68

[6
5]

1
-

58
.9

1.
37

1
68
00
0

1.
36

[6
6]

1
-

55
.8

1.
29

1
68
00
0

1.
36

[7
4]

1
-

54
.4

1.
26

1
60
50
0

1.
21

[6
7]

1
-

53
.5

1.
24

1
79
60
0

1.
60

[7
0]

1
-

48
.1

1.
12

1
49
50
0

0.
99

R
ad

ix
-1
0
[6
8]

1
-

48
.4

1.
12

1
44
40
0

0.
89

R
ad

ix
-5

[6
8]

1
-

47
.8

1.
11

1
50
90
0

1.
02

P
ro
p
os
ed

1
-

43
.1

1
1

49
90
0

1

S
eq
u
en
ti
al

[4
2]

24
12
.7

30
5

5.
00

*
1/
17

31
50
0

0.
63

[6
4]

20
16

32
0

6.
31

*
1/
17

16
00
0

0.
32

[6
3]

20
14
.7

29
4

5.
80

*
1/
17

18
55
0

0.
37

*
R
at
io
=
(F
O
4 D

el
a
y
/T

h
ro
u
gh

p
u
t)
/F

O
4 p

ro
p
o
se
d

119

Table 7.4: Critical path of the proposed 16× 16-digit multiplier

Gen. of mult. Sel.+Inv. PPR GP gen.+Prefix Tree+Sel.

160ps 140ps 1230ps 410ps

40000

45000

50000

55000

60000

65000

70000

75000

80000

A
re
a
�(
#
�N
A
N
D
2
)

Proposed

Radix 5![68]

Radix 10![68]

[67]

[65]

[66]

[74]

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

42.5 45 47.5 50 52.5 55 57.5 60

A
re
a
�(
#
�N
A
N
D
2
)

Delay�(#�FO4)

Proposed

Radix 5![68]

Radix 10![68]

[67]

[65]

[66]

[74]

[70]

Figure 7.3: Delay-area space of the decimal multipliers

NAND2 gate. Our PPG algorithm avoids the decimal CSA in the PPG unit applied in those

designs. Furthermore, the PPG which consists of six levels of BCD-FAs in [65] involves six

levels of carry propagations in 4-bit width which lower the performance of the multiplier.

These two radix-10 combinational multipliers cost at least 29% more timing delay and 36%

bigger area than our proposed design.

In [74], the authors propose a parallel decimal floating-point multiplier by applying the

fixed-point design with radix-10 architecture proposed in [76]. Such a parallel decimal mul-

tiplier applies new decimal encodings (i.e., BCD-4221 and BCD-5211) to simplify the design

of the PPR tree. In the proposed radix-10 design in [76], a carry propagation through all

bits in an operand is involved in the PPG stage. Besides, the proposed 17:2 reduction tree

with binary CSAs and encoding converters is slower than our proposed PPR unit with two

levels of SD adders. Overall, our proposed algorithm reduces about 26% timing delay and

21% area compared to the radix-10 design applied in [74].

120

In [67], the authors propose a method to represent 8X and 9X in two digits to avoid the

long path in PPG. Consequently, the delay of the PPG is reduced significantly. To reduce

the partial products, the authors present an architecture within 6-level simplified BCD-FA.

Additionally, after the PPR unit, a narrower result is obtained. However, the level of prefix

tree applied in the final addition cannot be reduced, since the reduction on the result of

PPR is not over half of the width. The BCD-FA used in the PPG in [65] is replaced by

a simplified BCD half adder. Nevertheless, the digit-level reduction tree based BCD-FA

shows the disadvantage of the relatively large delay and big area as described for the design

proposed in [65]. The synthesized design in [67] under TSMC 130 nm standard cells library

costs about 53.5 FO4 and 79600 NAND2, respectively. Although the PPG unit which has no

XOR gate and a simple selection circuit is faster than our proposed PPG, due to the slower

PPR and final addition in [67], our multiplier could gain about 24% less delay with 60% less

hardware cost overall.

In the SD multiplier proposed in [70], the efficiency of the PPG and PPR units are

guaranteed as in our proposed design. However, the double-BCD format partial product

array takes off the advantage of the overall performance on timing delay in [70]. Furthermore,

the final overloaded decimal digit set adder with the following traditional digit converter is

slower than the simplified 4-bit CLA and the converter proposed in our design. Finally, the

synthesis result shows that our design takes 12% less delay with almost the same area cost.

In [68], the authors improve the design they proposed in [76]. The PPR trees are optimized

for both radix-10 and radix-5 architectures in [76]. Thus as shown in Table 7.2, the number

of gates for the 17:2 reduction tree in radix-10 architecture is faster than our proposed PPR.

However, the 32:2 reduction tree for radix-5 architecture is still slower than our design, since

about twice operands are processed in such a structure. Moreover, the carry propagation

which affects the overall performance in the PPG of the radix-10 architecture cannot be

avoided. In the radix-5 architecture, the partial products are generated by a couple of recoders

within a small delay. Additionally, the unconventional encodings avoid the complicated

decimal correction in most of other works. Thus, the proposed PPR tree could be arranged

as the binary CSA tree (i.e., Wallace-like structure based on binary CSAs and encoding

converters). However, our design balances the delay of PPG and PPR and applies a simpler

121

final conversion compared to the designs in [68]. Overall, our design has about 11% less delay

with 2% less area compared to the fastest state-of-the-art design (radix-5) in [68], and has

about 12% less delay with 11% more area compared to the radix-10 architecture in [68].

The sequential designs of the fixed-point decimal multiplication are also listed in Table 7.7.

The latency ratio with asterisk is calculated according to the FO4 spent on iterative cycles.

Such sequential designs show the advantage on the area cost and disadvantage on latency

and throughput as expected.

Generally speaking, the output format of a PPG algorithm can be a single-BCD (e.g.,

the radix-10 architecture in [68]), a single-BCD with identical carry for each partial product

(e.g., the proposed method), a BCD-CS (e.g., the method applied in [65]), or a double-BCD

(e.g., the algorithms used in [67, 70], and the radix-5 architecture in [68]). In general, the less

bits in the output of a PPG, the more complexities in the PPG, and the less complexities in

the PPR. For example, the single-BCD result of the PPG in the radix-10 architecture in [68]

provides the chance to apply the simplest PPR unit, but it cannot avoid the carry propagation

in the PPG. On the other hand, the double-BCD result of the simplest PPG in [67] involves

a complicated PPR unit. Our proposed PPG method generates the partial product which

has the bit-width close to the single-BCD format without the carry propagation. Thus, the

complexity of the PPR is potentially reduced. Moreover, since only simple combinational

logic is applied to convert the digit-set in the proposed PPG, the BCD-FA used in the PPG

of [65] is eliminated. The PPR algorithm highly depends on the encoding of the result of

the PPG. Besides, in the PPR, the less input width the better, and the less bit-level carry

propagation the better. Our proposed PPR design based on the multi-operand SD addition

which involves two bit-level carry propagation is a bit more complicated than the design in

[68] with the same input width (i.e., n + 1 digits), and is simpler than the design in [68]

with the double-sized input width and the designs based on BCD-FA in [65, 67]. The carry

propagation in the final addition cannot be avoided in any method, since the result of the PPR

is in the redundant format. However, the efficiency of the final addition or conversion can be

affected by the complexity of the setup logic and the prefix tree. The proposed conversion

method involves a 4-bit carry propagation to generate the propagation and generation bit

for each digit, but by applying the hybrid carry prefix tree, the logic on the critical path is

122

minimized. After all, although the proposed method is not the simplest on some stages of a

multiplication, the overall delay of the proposed multiplication is minimized by considering

the trade-off of the complexity in each stage.

7.2.2 Sequential Multiplication

The proposed multiplier, according to Fig. 6.20, consists of three main parts namely PPG,

PPA and Conversion each of which consumes 1, n+1 and 2 cycles, where n is the digit width

of the input. This concludes that the entire single multiplication can be performed in n+ 4

cycles with the initiation interval of n+ 1 cycles.

The cycle time, thus the clock frequency, determined by the critical delay path of the

PPA, is equal to the latency of the multi-operand adder shown in Fig. 6.18. The details of

the critical delay path are tabulated in Table 7.5.

Table 7.5: The critical delay path of the proposed multiplier (ns)

(4:2) Compressor 4-bit CLA Recoder Register Total

0.17 0.13 0.15 0.18 0.63

The area consumption of the proposed 16-digit multiplier is evaluated as the sum of the

area cost of various constituent parts tabulated in Table 7.6.

Table 7.6: Area consumption of the proposed 16-digit multiplier

Area (um2)

PPG 6900

PPA 20100

Conversion 4500

Registers 7680

Misc 220

Total 39400

123

Comparison and Discussion

The multiplier described in [63] requires n + 4 cycles per multiplication where the cycle

time of is equal to the latency of a BCD (4:2)-compressor plus registers. According to the

evaluation in [68], the cycle time and the area of this design is 16 FO4 and 16000 NAND2

gates, respectively, for a 16-digit multiplication.

In [42], the multiplier using the overloaded decimal representation calls for a special

decimal carry-free adder which brings about a critical delay path of a (4:1) multiplexer, a

+6 increment block, a binary full-adder plus registers. This concludes to the latency of 12.7

FO4 where the number of required cycles is n + 8. The area of this multiplier for 16-digit

operands is reported as 31500 NAND2 gates.

Another multiplier proposed by Erle in [64] takes the advantage of the decimal signed-

digit adder which is introduced in [50] for the iterative portion of the PPA. Thus the latency

of the redundant adder plus registers (i.e., 14.7 FO4) determines the cycle time. The number

of required cycles is the same as [63] (i.e., n + 4) and the area cost is reported as 18550

NAND2 gates for a 16-digit multiplication.

In accordance with the above discussions, Table 7.7 illustrates the details of the evaluation

results and compares the proposed design with others in terms of latency and area. Moreover,

the simulation results of the proposed multiplier based on delay constraints are depicted in

Fig. 7.4. It is shown that the proposed design consumes lower area in comparison with the

previous works. The evaluation and comparison results reveal the undisputed area advantage

of the proposed sequential decimal multiplier over the previous sequential designs.

Table 7.7: Comparison of the 16-digit multipliers

Cycle time Ratio No. of cycles Total Latency Ratio Area Ratio

(FO4) (FO4) (NAND2)

[63] 16 1.14 20 320 1.14 16000 1.79

[42] 12.7 0.91 24 305 1.09 31500 3.52

[64] 14.7 1.05 20 294 1.05 18550 2.07

Proposed 14 1 20 280 1 8960 1

124

5

6

7

8

9

10

11

12

13

14

15

15000

20000

25000

30000

35000

40000

45000

0.6 0.7 0.8 0.9 1 1.1

A
re
a
�C
o
st
�(
u
m

2
)

Clock�Speed�(nS)

Area Cost

Power

Consumption

Power/Delay

P
o
w
e
r
(m

W
o
r�

m
W
/G

H
z)

Figure 7.4: Evaluation of speed, area, power consumption of the proposed sequential
multiplier

7.3 Decimal Floating-point FMA

To analyze the performance of the proposed architecture, a Verilog-HDL model is created and

verified by a test package with 425599 vectors [101] and 50K random vectors generated by

Python decimal library. Furthermore, the Verilog model is synthesized by Synopsys Design

Compiler with the normal case of the STM 90 nm standard cell library [100] (1.0V, 25℃)

which has 45ps as the delay of an inverter with fanout of 4 inverters and 4.4um2 as the area

of the smallest NAND2 gate.

7.3.1 Performance Evaluation

In this section, only the synthesis result of the combinational logic of the proposed architec-

ture, which does not contain the registers at the input and output, is provided. In Table 7.8,

the delay and area of the entire design which contains six major blocks are shown. If only

the combinational configuration is considered, the pre-alignment is not on the critical path.

Additionally, the exception processing unit includes the DPD/BCD conversions at the front

and end of the design and the post processing unit which handles the exceptions and creates

the flag signals.

125

Table 7.8: Delay and area partition of the proposed architec-
ture

Component Delay (ns) Ratio Area (um2) Ratio

Multiplier Array 1.75a 44.6% 211362 66.9%

Pre-alignment 1.75 - 19341 6.1%

Adder 0.38a 9.7% 38095 12.1%

Post-alignment 0.8a 20.4% 33092 10.5%

Rounding 0.5a 12.8% 6002 1.9%

Exception Proc. 0.49a 12.5% 7933 2.5%

Total 3.92 100% 315825 100%

a The units on the critical path.

7.3.2 Comparison and Discussion

To explain the advantages of the proposed architecture, two previously published designs

are compared in details in this section. In [95], first, the multiplier involves a final partial

product accumulation which is a decimal quaternary tree adder. In our design, the redundant

product obtained from the partial reduction of the multiplier is directly used by the following

units. Second, since only addend is shifted in our design, the swapping unit to exchange

the operands is not necessary, and the pre-alignment shifters are totally moved out from the

critical path which passes through the multiplier. However, since both left and right shiftings

are performed in [95], the data path is therefore restricted in 2n digits which may reduce

the area in DFP128 format. Third, the “pre-correction” of the decimal adder, two prefix

networks, one 4-bit binary adder, and some combinational logics are involved in the decimal

leading zero anticipator which is simultaneously performed with the adder in [95]. On the

other hand, in our design the carry free adder is applied before the leading zero anticipator.

However less units (i.e., one prefix network, one 4-bit binary adder, and some combinational

126

logics in the “Transfer digit generation” and “Intermediate signals generation”) are applied

to figure out the number of leading and trailing zeros in our design. The rounding unit is

not analyzed since the detailed design in [95] is not provided.

In [102], although the top level architecture is similar to our design, the complexity of

the circuits in sub-modules is different. First, the multiplier which does not include the

final partial product accumulation has a similar complexity to our multiplier. However, the

multiplexer in the selection unit and two encoding converters in the decimal 4221-BCD CSA

take more delay than the correction signal generator in our decimal carry free adder. Second,

in the LZA of [102], four steps anticipation algorithm is proposed. However, in our LZA

design, the input signals are directly generated from the only one redundant result with 4-bit

two’s complement on each digit. Additionally, in our design, only binary leading zero detector

is performed on critical path to obtain the possible position of the non-zero leading digit. The

pattern is only used for correcting the possible one digit error at the end of shifting amount

generator for post-alignment. Moreover, the post-alignment shifter in our design is simply

a right shifter with optimization to reduce the delay on critical path and hardware area.

Finally, the combined addition and rounding unit in [102] employs a binary compound adder

with pre-/post-corrections which are bitwise constant adders with multiplexors, whereafter

the final result is selected by the rounding increments. On the other hand, the final rounding

and conversion unit in our design applies three generation units with only small constant

delay and one bitwise binary CLA.

In Table 7.9, a comparison on the synthesis results of three combinational designs and the

performance of corresponding software libraries evaluated in [99] are provided. The actual

delay of the designs in [102] and [95] under 65nm technology are 5.4ns and 4.6ns which are

slower than that of our design under 90nm technology. Since previous works are synthesized

under different standard cell libraries, the delay and area are unified by 35ps of FO4’s delay

and 1.44um2 of NAND2’s area in 65nm technology. Under the same metric, our design takes

about 66% of timing delay and 83% of hardware area of the previous fastest design proposed

in [95]. Additionally, the power estimation of our design is about 114mW . Note that the

number of cycles of the software libraries depends on the processor and compiler.

127

Table 7.9: Performance comparison

Design Delay (FO4) Ratio Area (NAND2) Ratio

[102] 154.3 1.77 107708 1.50

[95] 131.4 1.51 86061 1.20

Proposed 87.1 1 71778 1

decDouble[99] 785a - - -

idfpl64[99] 879a - - -

decNum[99] 1683a - - -

a The performance of software libraries is measured by the num-

ber of cycles.

7.3.3 Pipeline Configuration

The proposed DFMA can also be regularly configured to perform efficiently. In Fig. 7.5,

a possible configuration is shown. In this case, the multiplier array can be divided into 3

cycles. If addition is performed, the multiplier array can be bypassed by the multiplexor at

the end of the third cycle in the multiplier array. The following three units can be partitioned

accordingly. The minimum cycle time is therefore decided by the timing delay of the pre-

alignment unit and pipeline registers. Consequently, the decimal floating-point addition may

be finished in 4 cycles at 1.1GHz (i.e., 0.9ns per cycle). On the other hand, if the decimal

floating-point multiplication is performed, all the components on the critical path have to

be enabled by setting Z to 0. Hence, the DFP multiplication may be finished in 6 cycles at

1.1GHz.

128

Mul Cycle 1

Mul Cycle 2

Mul Cycle 3

Pre-Alignment

Addition
Post-Align 1

Post-Align 2

Rounding
Post-Align 3

X Y Z

R

Bypass

Enable

Figure 7.5: A regular pipeline configuration of the proposed architecture

129

Part IV

Conclusion

130

Chapter 8

Summary and Future Research

8.1 Summary and Conclusion

In this thesis, the architectures and algorithms to perform decimal fixed-point addition and

both parallel and sequential multiplications are first proposed. Afterwards, a new decimal

floating-point FMA architecture is described in detail. The study’s motivations are recalled

before the research and theoretical work appear summarized in the conclusion. In section 1.2,

the demands of high performance decimal floating-point arithmetic are discussed. Further,

the decimal floating-point processing with hardwired fused multiply-add function is proposed

as the major work of this research. Decimal processing with unconventional number systems

is also considered and seen to be the competitive technique for performance improvement.

During this research, the previous designs of decimal fixed-point carry free addition and

of parallel/sequential multiplications have both been studied. On the basis of previous tech-

niques, our own ideas to further improve the performance of the decimal fixed-point addition

and multiplication were proposed.

In the proposed addition, a new nonspeculative decimal carry free adder, which calculates

the operands in digit set [−9, 9] with two’s complement binary encoding, was discussed.

This design determines the transfer digit directly on the input operands instead of on the

position sum, the ordinary process used in the conventional carry free signed digit addition

algorithm. The digit range of the operands to minimize the cost of exception handling

was also analyzed. Furthermore, to improve the speed and reduce the area of the adder,

a new algorithm to calculate the result digit without the temporary result was proposed.

The synthesized results demonstrate the superiority of the proposed design in terms of the

area delay product as well as those of the power delay product. Overall, about 25% of

131

the delay is reduced in comparison to the fastest state-of-the-art decimal redundant adder.

Furthermore, a digit set conversion algorithm that directly converts the absolute value of

the signed digit result to the conventional BCD encoding was introduced in detail to solely

apply the proposed carry free addition (i.e., without the subsequent processing unit). The

new conversion algorithm, which has only one propagation with logarithmical timing delay,

is more suitable for high precision computation.

In the proposed multiplications, a new technique to implement the parallel decimal mul-

tiplication is first introduced. Unlike other designs, in the proposed algorithm, the multiples

(i.e., from −5X to 5X) are represented in a redundant digit-set [−8, 8]. Thus, the signed

digit partial products could be generated without the carry propagation in 3X. To reduce the

partial products into one signed digit result, a partial product reduction unit based on the

multi-operand signed digit addition was discussed. Moreover, all of the components inside

the multi-operand signed digit adder, except for two combinational recoders, could be reused

in binary designs. The combinational recoders are currently implemented with logic gates.

However, the customized circuits can be applied to further improve the performance. More-

over, the proposed hybrid prefix network displayed the advantages of squeezing more delay

from the critical path in the final digit-set conversion for standalone application. Overall, the

synthesis result under STM 90nm technology showed that the proposed parallel multiplier

could achieve about 11% less delay with 2% less hardware cost even when compared to the

fastest state-of-the-art parallel decimal multiplier. In the proposed sequential multiplication,

we exploited the signed digit multiples generation algorithm for 1X, 2X, and 4X. Further-

more, the partial product generation algorithm (which uses only these three easy multiples)

was proposed by introducing redundancy into the second operand in the multiplication (i.e.,

Y). Following this step, a partial product accumulation architecture, including a series of

multi-operand carry free adders, was given to iteratively sum up the partial product in every

iteration. At the same time, the lower half digits of the product are converted simultane-

ously. After the last iteration of the partial product accumulation, the higher half digits of

the product are generated by a parallel conversion algorithm with prefix network. Finally,

the evaluation of the proposed design illustrated that our design achieves about 52% of less

area and 0.5% of less latency compared to the fastest state-of-the-art design.

132

Meanwhile, three decimal floating-point fused multiply-add designs have been published.

After finishing the fixed-point addition and multiplication, this work discusses such FMA de-

signs. Subsequently, a new technique to improve the performance of the decimal floating-point

fused multiply-add is proposed. The fixed-point adder and parallel multiplier were therefore

reused and modified in the new DFMA. Applying the specific number system required that

the digit-set conversion inside the proposed DFMA be minimized as much as possible. There-

fore, only two stages–partial product generation and partial product reduction–are retained

in the parallel multiplier. Moreover, the pre-alignment could be further moved out of the

critical path by shifting only the addend. The modification of our proposed decimal carry free

adder also allows different digit sets on the operands and the result. In the post-alignment

unit, the rounding position was decided by detecting the number of leading/trailing zeros

and the possible cancellation with simple logics due to the application of the specific number

system. Since the digits ±(radix − 1) do not exist in the proposed digit set, only one digit

error may happen in the leading zero detection of the accumulation result. Therefore, the

shifting amount decision is relatively simple in the post-alignment unit. Finally, the rounder

combined the absolute value conversion, digit-set conversion, and the rounding operation in

one carry propagation process. The synthesis result of the Verilog model shows that about

33.7% of delay and 16.6% of area were reduced in comparison to results from the previous

fastest designs.

So far, the advantage of unconventional number systems in decimal arithmetic has been

exhibited in previous chapters. With the specific redundant number system and the careful

hardware design, both processing speed and area efficiency (i.e., hardware cost) of decimal

fixed-point addition and multiplication were improved. Furthermore, both the proposed

fixed-point functions and the specific number system were applied in order to design a new

decimal floating-point fused multiply-add with a better performance. The decimal floating-

point arithmetic was therefore enriched by the proposed designs and techniques. In the thesis,

the proposed ideas (e.g., two steps non-speculative adder, multiplies without carry generation,

hybrid carry propagation, easy leading zero anticipation, and etc.) can be also applied or

extended in other non-binary computing systems in order to improve the performance of such

systems which are built up with binary devices.

133

8.2 Future Research

The decimal floating-point fused multiply-add itself is discussed in this thesis. However,

the application of such a hardwired design may be a topic for future work. For example,

the functional division, square root, reciprocal, and reciprocal square root operations which

exploit a series of fused multiply-add operations with Newton’s or similar methods could

benefit from the proposed DFMA. Both software and hardware solutions are applicable.

In order to improve the area efficiency, the parallel multiplier can be replaced by the

sequential design. However, the latency and especially the throughput are going to worsen

from this step. Furthermore, if the sequential multiplier is applied, the carry free adder that is

currently used in the DFMA may no longer be necessary. The architecture and corresponding

algorithms of the DFMA should be changed. The pros and cons of the DFMA architectures

with parallel and sequential multipliers suggest another future research topic.

To perform the standalone decimal floating-point addition and multiplication efficiently,

the hardware of the proposed DFMA could be optimized. The techniques that have been

applied in existing binary design could be exploited in the future.

Alternatively, the similar concept of the unconventional number system applied to im-

prove the performance of the DFMA could be considered for other functions (e.g., sequential

division, square root, reciprocal, and even reciprocal square root).

134

References

[1] J. M. Muller, “On the definition of ulp (x)”, URL:
http://ljk.imag.fr/membres/Carine.Lucas/TPScilab/JMMuller/ulp-toms.pdf, Last ac-
cess: May 17, 2013.

[2] H. H. Goldstine and A. Goldstine, “The electronic numerical integrator and computer
(ENIAC)”, IEEE Annals of the History of Computing, vol. 18, no. 1, pp. 10-16, 1996.

[3] G. Gray, “UNIVAC I instruction set”, Unisys History Newsletter, vol. 5, no. 3, 2001.

[4] M. F. Cowlishaw, “The ‘telco’ benchmark”, URL:
http://speleotrove.com/decimal/telco.html, Last access: May 17, 2013.

[5] M. F. Cowlishaw, “Decimal floating-point: Algorism for computers”, in 16th IEEE Sym-
posium on Computer Arithmetic, pp. 104-111, Jun. 2003.

[6] M. F. Cowlishaw, E. M. Schwarz, R. M. Smith, and C. F. Webb, “A Decimal Floating-
Point Specification”, in 15th IEEE Symposium on Computer Arithmetic, pp. 147-154, Jun.
2001.

[7] A. Y. Duale, M. H. Decker, H. G. Zipperer, M. Aharoni, and T. J. Bohizic, “Decimal
floating-point in z9: An implementation and testing perspective”, IBM Journal of Re-
search and Development, vol. 51, no. 1/2, pp. 217-228, Jan.-Mar. 2007.

[8] C. F. Webb, “IBM z10: The next-generation mainframe microprocessor”, IEEE Micro,
vol. 28, no. 2, pp. 19-29, Mar.-Apr. 2008.

[9] E. M. Schwarz, J. Kapernick, and M. Cowlishaw, “Decimal floating-point support on
the IBM z10 processor”, IBM Journal of Research and Development, vol. 53, no. 1, pp.
4:1-4:10, Jan. 2009.

[10] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J. Ronchetti, W.
M. Sauer, E. M. Schwarz, and M. T. Vaden, “IBM POWER6 microarchitecture”, IBM
Journal of Research and Development, vol. 51, no. 6, pp. 639-662, 2007.

[11] J. Friedrich, B. McCredie, N. James, B. Huott, B. Curran, E. Fluhr, G. Mittal, E.
Chan, Y. Chan, D. Plass, S. Chu, H. Le, L. Clark, J. Ripley, S. Taylor, J. Dilullo, and M.
Lanzerotti, “Design of the POWER6 microprocessor”, in IEEE International Solid-State
Circuits Conference (ISSCC), pp. 96-97, Feb. 2007.

135

[12] L. Eisen, J. W. Ward, III, H.-W. Tast, N. Mading, J. Leenstra, S. M. Mueller, C. Jacobi,
J. Preiss, E. M. Schwarz, and S. R. Carlough, “IBM POWER6 accelerators: VMX and
DFU”, IBM Journal of Research and Development, vol. 51, no. 6, pp. 663-684, Nov. 2007.

[13] M. Cornea, “Intel Decimal Floating-Point Math Library”, URL:
http://software.intel.com/en-us/articles/intel-decimal-floating-point-math-library/, Last
access: May 17, 2013.

[14] “Class BigDecimal”, URL:
http://download.oracle.com/javase/1,5.0/docs/api/java/math/BigDecimal.html, Last
access: May 17, 2013.

[15] “Decimal fixed point and floating point arithmetic”, URL:
http://docs.python.org/library/decimal.html, Last access: May 17, 2013.

[16] “The decNumber Library”, URL:
http://speleotrove.com/decimal/decnumber.html, Last access: May 17, 2013.

[17] IEEE Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-2008, 2008.

[18] L.-K. Wang, C. Tsen, M. J. Schulte, and D. Jhalani, “Benchmarks and Performance
Analysis of Decimal Floating-Point Applications”, in 25th International Conference on
Computer Design, pp. 164-170, Oct. 2007.

[19] M. Anderson, C. Tsen, L.-K. Wang, K. Compton, and M. J. Schulte, “Performance anal-
ysis of decimal floating-point libraries and its impact on decimal hardware and software
solutions”, in 26th International Conference on Computer Design, pp. 465-471, Oct. 2009.

[20] L.-K. Wang and M. J. Schulte, “Decimal floating-point adder and multifunction unit
with injection-based rounding”, in 18th IEEE Symposium on Computer Arithmetic, pp.
56-68, Jun. 2007.

[21] L.-K. Wang and M. Schulte, “A decimal floating-point adder with decoded operands and
a decimal leading-zero anticipator”, in 19th IEEE Symposium on Computer Arithmetic,
pp. 125-134, Jun. 2009.

[22] B. J. Hickmann, A. Krioukov, M. J. Schulte, and M. A. Erle, “A parallel IEEE P754
decimal floating-point multiplier”, in 25th International Conference on Computer Design,
Oct. 2007, pp. 296-303.

[23] T. Lang and A. Nannarelli, “A radix-10 digit-recurrence division unit: Algorithm and
architecture”, IEEE Transactions on Computers, vol. 56, no. 6, pp. 727-739, Jun. 2007.

[24] D. Chen, L. Han, Y. Choi, and S. Ko, “Improved Decimal Floating-Point Logarithmic
Converter Based on Selection by Rounding”, IEEE Transactions on Computers, vol. 61,
no. 6, pp. 607-621, May 2012.

[25] A.Vazquez, J. Villalba, and E. Antelo, “Computation of Decimal Transcendental Func-
tions Using the CORDIC Algorithm”, in 19th IEEE Symposium on Computer Arithmetic,
pp. 179-186, June 2009.

136

[26] R. K. Montoye, E. Hokenek, S. L. Runyon, “Design of the IBM RISC System/6000
floating-point execution unit”, IBM Journal of Research and Development, vol. 34, no. 1,
pp. 59-70, Jan. 1990.

[27] P. W. Markstein, “Computation of elementary functions on the IBM RISC System/6000
processor”, IBM Journal of Research and Development, vol. 34, no. 1, pp. 111-119, Jan.
1990.

[28] M. Cornea, J. Harrison, and P. Tang, “Intel Itanium floating-point architecture”, Inter-
national Symposium On Computer Architecture, Article 3, 2003.

[29] S. Anderson, R. Bell, J. Hague, H. Holthoff, P. Mayes, J. Nakano, D. Shieh, and J. Tuc-
cillo, “RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning
Guide”, IBM Corporation, International Technical Support Organization, First edition,
Oct. 1998.

[30] R.M. Jessani, M. Putrino, “Comparison of single- and dual-pass multiply-add fused
floating-point units”, IEEE Transactions on Computers, vol. 47, no. 9, pp. 927-937, Sep.
1998.

[31] P.-M. Seidel, “Multiple path IEEE floating-point fused multiply-add”, in 2003 IEEE
International Symposium on Micro-NanoMechatronics and Human Science, vol. 3, pp.
1359-1362, Dec. 2003.

[32] T. Lang and J. D. Bruguera, “Floating-Point Fused Multiply-Add with Reduced La-
tency”, in IEEE International Conference on Computer Design: VLSI in Computers and
Processors, pp. 145-150, 2002.

[33] T. Lang and J. D. Bruguera, “Floating-Point Multiply-Add-Fused with Reduced La-
tency”, IEEE Transactions on Computers, vol. 53, no. 8, pp. 988-1003, Aug. 2004.

[34] J. D. Bruguera and T. Lang, “Floating-point fused multiply-add: reduced latency for
floating-point addition”, in 17th IEEE Symposium on Computer Arithmetic, pp. 42-51,
June 2005.

[35] E. Quinnell, E.E. Swartzlander, C. Lemonds, “Floating-Point Fused Multiply-Add Ar-
chitectures”, in 41th Asilomar Conference on Signals, Systems and Computers, pp. 331-
337, Nov. 2007.

[36] E. Quinnell, E.E. Swartzlander, C. Lemonds, “Bridge Floating-Point Fused Multiply-
Add Design”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
16, no. 12, pp. 1727-1731, Dec. 2008.

[37] L. Huang, L. Shen, K. Dai, and Z. Wang, “A New Architecture For Multiple-Precision
Floating-Point Multiply-Add Fused Unit Design”, in 18th IEEE Symposium on Computer
Arithmetic, pp. 69-76, Jun. 2007.

[38] L. Huang, S. Ma, L. Shen, Z. Wang, and N. Xiao, “Low Cost Binary128 Floating-Point
FMA Unit Design with SIMD Support”, IEEE Transactions on Computers, Apr. 2011.

137

[39] J.-M. Muller et al., Handbook of Floating-point Arithmetic, ISBN 978-0-8176-4704-9,
Boston : Birkhuser, 2010.

[40] P.-M. Seidel, G. Even, “On the design of fast IEEE floating-point adders”, in 15th IEEE
Symposium on Computer Arithmetic, pp. 184-194, Jun. 2001.

[41] P. K. Monsson, Combined Binary and Decimal Floating-point Unit, Master Thesis, Dept.
of Information and Mathematical Modeling, Technical University of Denmark, Aug. 2008.

[42] R. D. Kenney, M. J. Schulte, and M. A. Erle, “A high-frequency decimal multiplier”, in
IEEE International Conference on Computer Design: VLSI in Computers and Processors,
pp. 26-29, Oct. 2004.

[43] H. He, Z. Li, and Y. Sun, “Multiply-add fused float point unit with on-fly denormalized
number processing”, in 48th Midwest Symposium on Circuits and Systems, vol. 2, pp.
1466-1468, Aug. 2005.

[44] W. Kahan, Check Whether Floating-Point Division Is Correctly Rounded, monograph,
Dept. of Computer Science, University of California, Berkeley, 1956.

[45] F. G. Gustavson, J. E. Moreira, and R. F. Enenkel, “The fused multiply-add instruc-
tion leads to algorithms for extended-precision floating point: applications to java and
high-performance computing”, in 1999 conference of the Centre for Advanced Studies on
Collaborative research, 1999.

[46] R.C. Agarwal, F.G. Gustavson, and M.S. Schmookler, “Series approximation methods
for divide and square root in the Power3TM processor”, in 14th IEEE Symposium on
Computer Arithmetic, pp. 116-123, 1999.

[47] I. Koren, Computer Arithmetic Algorithms, 2nd Edition, ISBN 9781568811604, A. K.
Peters, 2002.

[48] M. Ercegovac and T. Lang, Digital Arithmetic, ISBN 1558607986, Elsevier Science
(USA), 2004.

[49] B. Parhami, Computer Arithmetic - Algorithms and Hardware designs, ISBN
0195125835, Oxford University Press, 2004.

[50] A. Svoboda, “Decimal adder with signed digit arithmetic”, IEEE Transactions on Com-
puters, C-18(3), pp. 212-215, 1969.

[51] H. Nikmehr, B. Phillips and C.C. Lim, “A decimal carry-free adder”, in SPIE conference
on Smart Materials, Nano-, Micro-Smart Systems, pp. 786-797, 2004.

[52] A. Kaivani and G. Jaberipur, “Fully redundant decimal addition and subtraction using
stored-unibit encoding”, Integration, the VLSI journal, pp. 34-41, 2010.

[53] H. Fahmy and M.J. Flynn, “The case for a redundant format in floating-point aritmetic”,
in 16th IEEE Symposium on Computer Arithmetic, pp. 95-102, June 2003.

138

[54] G. Jaberipur and M. Ghodsi, “High Radix Signed Digit Number Systems: Representa-
tion Paradigms”, Scientia Iranica , 10(4), pp. 383-391, 2003.

[55] G. Jaberipur and S. Gorgin, “A Nonspeculative Maximally Redundant Signed Digit
Adder”, The 13th international CSI Computer Conference, pp. 235-242, 2008.

[56] John Moskal, Erdal Oruklu and Jafar Saniie, “Design and Synthesis of a Carry-Free
Signed-Digit Decimal Adder”, IEEE International Symposium on Circuits and Systems,
pp. 1089-1092, 2007.

[57] L-K. Wang, M. A. Erle, C. Tsen, E. M. Schwarz, M. J. Schulte, “A survey of hardware
designs for decimal arithmetic”, IBM Journal of Research and Development, vol. 54, no.
2, Mar. 2010.

[58] L-K. Wang, M. J. Schulte, J. D. Thompson and N. Jairam, “Hardware Designs for Deci-
mal Floating-Point Addition and Related Operations”, IEEE Transactions on Computers,
vol. 58, no. 3, Mar. 2009.

[59] B. Shirazi, D. Yun, C. N. Zhang, “RBCD: redundant binary coded decimal adder”, in
IEE Proceedings, vol. 136, no. 2, March 1989.

[60] F. Y. Busaba et al., “The IBM z900 Decimal Arithmetic Unit”, in Conference Record
of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, vol. 2, pp.
1335-1339, 2001.

[61] E. M. Schwarz, J. S. Kapernick, and M. F Cowlishaw, “Decimal floating-point support
on the IBM System z10 processor”, IBM Journal of Research and Development, vol. 53,
no. 1, pp. 4:1-4:10, Apr. 2010.

[62] M. Cornea et al., “A software implementation of the IEEE 754R decimal floating-point
arithmetic using the binary encoding format”, IEEE Transactions on Computers, vol. 58,
no. 2, pp. 148-162, 2009.

[63] M. A. Erle and M. J. Schulte, “Decimal Multiplication Via Carry-Save Addition”, in
IEEE International Conference on Application Specific systems, Architectures, and Pro-
cessors, pp. 348-358, Jun. 2003.

[64] M. A. Erle, E. M. Schwarz, and M. J. Schulte, “Decimal multiplication with efficient
partial product generation”, in 17th IEEE Symposium on Computer Arithmetic, pp. 21-28,
2005.

[65] T. Lang and A. Nannarelli, “A Radix-10 Combinational Multiplier”, in 40th Asilomar
Conference on Signals, Systems and Computers, pp. 313-317, Oct. 2006.

[66] L. Dadda and A. Nannarelli, “A Variant of a Radix-10 Combinational Multiplier”, in
IEEE International Symposium in Circuits and Systems (ISCAS 2008), pp. 3370-3373,
May 2008.

[67] G. Jaberipur and A. Kaivani, “Improving the Speed of Parallel Decimal Multiplication”,
IEEE Transactions on Computers, vol. 58, no. 11, pp. 1539-1552, Nov. 2009.

139

[68] A. Vázquez, E. Antelo, and P. Montuschi, “Improved Design of High-Performance Par-
allel Decimal Multipliers”, IEEE Transactions on Computers, vol. 59, no. 5, pp. 679-693,
May 2010.

[69] I. D. Castellanos and J. E. Stine, “Decimal partial product generation architectures”, in
51st Midwest Symposium on Circuits and Systems, pp. 962-965, Aug. 2008.

[70] S. Gorgin and G. Jaberipur, “A fully redundant decimal adder and its application in
parallel decimal multipliers”, Microelectronics Journal, vol. 40, no. 10, Oct. 2009.

[71] L. Dadda, “Multioperand Parallel Decimal Adder: a mixed Binary and BCD Approach”,
IEEE Transactions on Computers, vol. 56, pp. 1320-1328, Oct. 2007.

[72] I. D. Castellanos and J. E. Stine, “Compressor Trees for Decimal Partial Product Re-
duction”, in 18th ACM Great Lakes Symposium on VLSI, pp. 107-110, May 2008.

[73] M. A. Erle, M. J. Schulte, and B. J. Hickmann, “Decimal floating-point multiplication
via carry-save addition”, in 18th IEEE Symposium on Computer Arithmetic, pp. 25-27,
2007.

[74] M. A. Erle, B. J. Hickmann, and M. A. Schulte, “Decimal Floating-Point Multiplica-
tion”, IEEE Transactions on Computers, vol. 58, no. 7, pp. 902-916, Jul. 2009.

[75] A. Vázquez and E. Antelo, “Conditional Speculative Decimal Addition”, in 7th Confer-
ence on Real Numbers and Computers (RNC 7), pp. 47-57, Jul. 2006.

[76] A. Vázquez, E. Antelo, and P. Montuschi, “A New Family of High-Performance Parallel
Decimal Multipliers”, in 18th IEEE Symposium on Computer Arithmetic, pp. 195-204,
June 2007.

[77] C. H. Chang, J. Gu, and M. Zhang, “Ultra low-voltage low-power CMOS 4-2 and 5-2
compressors for fast arithmetic circuits”, IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 51, no. 10, pp. 1985-1997, 2004.

[78] G. Jaberipur and B. Parhami, “Constant-time addition with hybrid-redundant numbers:
Theory and implementations”, Integration, the VLSI journal, vol. 41, pp. 49-64, 2008.

[79] T. Aoki et al., “Signed-weight arithmetic and its application to a field-programmable
digital filter architecture”, IEICE Transactions on Electronics, vol. E82-C, no.9, pp. 1687-
1698, 1999.

[80] P. Kornerup, “Reviewing 4-to-2 Adders for Multi-Operand Addition”, Journal of VLSI
Signal Processing, vol. 40, pp. 143-152, 2005.

[81] Decimal IP, SilMinds, URL:
http://www.silminds.com/decimal-products, Last access: May 17, 2013.

[82] GNU C compiler library URL:
http://gcc.gnu.org/onlinedocs/gcc/Decimal-Float.html, Last access: May 17, 2013.

140

[83] J. Thompson, M. J. Schulte, and N. Karra, “A 64-bit decimal floating-point adder”, in
IEEE Computer society Annual Symposium on VLSI, pp. 297-298, Feb. 2004.

[84] A. Vazquez and E. Antelo, “A high-performance significand BCD adder with IEEE 754-
2008 decimal rounding”, in 19th IEEE Symposium on Computer Arithmetic, pp. 135-144,
Jun. 2009.

[85] S. Gorgin and G. Jaberipur, “Fully redundant decimal arithmetic”, in 19th IEEE Sym-
posium on Computer Arithmetic, pp. 145-152, Jun. 2009.

[86] L.-K. Wang, M. J. Schulte, J. D. Thompson, and N. Jairam, “Hardware designs for dec-
imal floating-point addition and related operations”, IEEE Transactions on Computers,
vol. 58, no. 3, pp. 322-335, Mar. 2009.

[87] L.-K. Wang and M. J. Schulte, “A decimal floating-point divider using Newton-Raphson
iteration”, Journal of VLSI Signal Processing Systems, vol. 49, no. 1, pp. 3-18, Oct. 2007.

[88] L.-K. Wang and M. J. Schulte, “Decimal Floating-Point Square Root Using Newton-
Raphson Iteration”, in 16th IEEE International Conference of Application-Specific Sys-
tems, Architectures and Processors, 2005.

[89] A. Vázquez, E. Antelo, and P. Montuschi,“A radix-10 SRT divider based on alternative
BCD codings”, in IEEE International Conference on Computer Design, pp. 280-287, Oct.
2007.

[90] R. C. Agarwal, F. G. Gustavson, and M. S. Schmookler, “Series approximation methods
for divide and square root in the Power3TM processor”, in 14th IEEE Symposium on
Computer Arithmetic, pp. 116-123, 1999.

[91] R. M. Jessani and M. Putrino, “Comparison of single- and dual-pass multiply-add fused
floating-point units”, IEEE Transactions on Computers, vol. 47, no. 9, pp. 927-937, Sep.
1998.

[92] J. D. Bruguera and T. Lang, “Floating-point fused multiply-add: reduced latency for
floating-point addition”, in 17th IEEE Symposium on Computer Arithmetic, pp. 42-51,
June 2005.

[93] R. Samy, H. A. H. Fahmy, R. Raafat, A. Mohamed, T. ElDeeb, and Y. Farouk, “A deci-
mal floating-point fused-multiply-add unit”, in 53rd IEEE International Midwest Sympo-
sium on Circuits and Systems, pp. 529-532, Aug. 2010.

[94] R. Raafat, A. M. Abdel-Maheed, R. Samy, T. ElDeeb, Y. Farouk, M. Elkhouly, and H.
A. H. Fahmy, “A decimal fully parallel and pipelined floating point multiplier”, in 42
Asilomar Conference on Signals, Systems, and Computers, Asilomar, Oct. 2008.

[95] A. Akkas and M. J. Schulte, “A decimal floating-point fused multiply-add unit with
a novel decimal leading-zero anticipator”, in 22nd IEEE International Conference on
Application-specific Systems, Architectures and Processors, Sep. 2011.

141

[96] L. Han and S. Ko, “High Speed Parallel Decimal Multiplication with Redundant Internal
Encodings”, IEEE Transactions on Computers, vol. 62, no. 5, pp. 956-968, May 2013.

[97] L. Han, D. Chen, K. A. Wahid, and S. Ko, “Nonspeculative decimal signed digit adder”,
in 2011 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1053-1056,
May 2011.

[98] J. D. Bruguera and T. Lang, “Leading-one prediction with concurrent position correc-
tion”, IEEE Transactions on Computers, vol. 48, no. 10, Oct. 1999.

[99] M. Cowlishaw, “Decimal library Performance v1.12”, URL:
http://speleotrove.com/decimal/decperf.pdf, Last access: May 17, 2013.

[100] STMicroelectronics, 90nm CMOS Design Platform, 2007.

[101] A. S. Ahmed and H. A. H. Fahmy, “2010 07 d64 fma.zip”, URL:
http://eece.cu.edu.eg/∼hfahmy/arith debug/#vectors, Last access: May 17, 2013.

[102] A. EITantawy, Decimal floating point arithmetic unit based on a fused multiply add
module, MS.c. dissertation, Electronics and Electrical Communications Engineering De-
partment of Cairo University, 2011.

[103] A. Vázquez, High-performance decimal floating-point units, Ph.D. dissertation, Elec-
tronics and Computer Engineering Department of University of Santiago de Compostela,
2009.

[104] H. A. H. Fahmy, A Redundant Digit Floating Point System, Ph.D. dissertation, Stanford
University, June 2003.

142

