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Abstract 
Precipitation phase is fundamental to a catchment’s hydrological response to precipitation events 

in cold regions and is especially variable over time and space in complex topography. Phase is 

controlled by the microphysics of the falling hydrometeor, but microphysical calculations require 

detailed atmospheric information that is often unavailable and lacking from hydrological 

analyses. In hydrology, there have been many methods developed to estimate phase, but most are 

regionally calibrated and many depend on air temperature ( ௔ܶ) and use daily time steps. Phase is 

not only related to ௔ܶ, but to other meteorological variables such as humidity. In addition, 

precipitation events are dynamic, adding uncertainties to the use of daily indices to estimate 

phase. To better predict precipitation phase with respect to meteorological conditions, the 

combined mass and energy balance of a falling hydrometeor was calculated and used to develop 

a model to estimate precipitation phase. Precipitation phase and meteorological data were 

observed at multiple elevations in a small Canadian Rockies catchment, Marmot Creek Research 

Basin, at 15-minute intervals over several years to develop and test the model. The mass and 

energy balance model was compared to other methods over varying time scales, seasons, 

elevations and topographic exposures. The results indicate that the psychrometric energy balance 

model performs much better than ௔ܶ methods and that this improvement increases as the 

calculation time interval decreases. The uncertainty that differing phase methods introduce to 

hydrological process estimation was assessed with the Cold Regions Hydrological Model 

(CRHM). The rainfall/total precipitation ratio, runoff, discharge and snowpack accumulation 

were calculated using a single and a double ௔ܶ threshold method and the proposed physically 

based mass and energy balance model. Intercomparison of the hydrological responses of the 

methods highlighted differences between ௔ܶ based and psychrometric approaches. Uncertainty of 

hydrological processes, as established by simulating a wide range of ௔ܶ methods, reached up to 

20% for rain ratio, 1.5 mm for mean daily runoff, 0.4 mm for mean daily discharge and 160 mm 

of peak snow water equivalent. The range of ௔ܶ methods showed that snowcover duration, snow 

free date and peak discharge date could vary by up to 36, 26 and 10 days respectively. The 

greatest hydrological uncertainty due to precipitation phase methods was found at sub-alpine and 

sub-arctic headwater basins and the least uncertainty was found at a small prairie basin.  
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CHAPTER 1. Introduction 

1.1 Statement of Problem 
Information pertaining to precipitation intensity, duration, quantity and phase is crucial to 

hydrological analysis and prediction in cold regions (Gray, 1970). The uncertainty of 

hydrological predictions is strongly influenced by the quality of the input data (Zehe et al., 

2005). Rainfall and snowfall initiate very different hydrologic processes which leads to large 

variations in catchment responses to precipitation events. Rainfall immediately begins to be 

separated by hydrological processes into evaporation, runoff and infiltration, ultimately leading 

to stream flow generation and to groundwater storage. In contrast, the hydrological response of a 

basin to snowfall is delayed by the seasonal snowpack accumulation and its subsequent melt. 

The rate of snowmelt input to other processes is moderated by the energy available for melt, but 

there is no moderation of a rainfall input. Rain on snow events require a detailed understanding 

of precipitation phase, as energy advection from rainfall to the snowpack can lead to large 

snowmelt rates which can significantly augment the runoff due to rainfall (Marks et al., 1998). 

Precipitation phase varies widely over space and time and this heterogeneity is especially large in 

complex topography. Elevation exerts a strong control on air temperature ( ௔ܶ) and consequently 

relative humidity (RH) which in turn controls precipitation phase. The elevation dependency of 

precipitation phase is best visualized in the snow line of a storm, the elevation where 

precipitation transitions from snow to rain, which is a consequence of the interaction of ௔ܶ and 

humidity lapse rates, meteorological mechanisms, upslope or downslope synoptic events and 

topography (Marks et al., 2013; Minder et al., 2011). Unfortunately, most automated 

meteorological stations do not directly observe precipitation phase but rather report rainfall or 

total precipitation. Identification of precipitation phase is required but there is no standardized 

approach to do this.  

 

Commonly utilized methods to identify precipitation phase in hydrology rely on empirical 

correlation of surface ௔ܶ with observations of precipitation phase. Often these correlations are 

parameterised as thresholds which partition all precipitation as rainfall above, and as snowfall 

below, specific air temperatures. There are many problems with current empirical ௔ܶ 
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precipitation phase methods. Thresholds in ௔ܶ methods are based upon observation, or 

calibrations, at specific sites which limits their spatial transferability. When observations of 

phase are not available, ௔ܶ thresholds are often assigned arbitrarily. Phase partitioning 

approaches that are restricted to ௔ܶ ignore important physical processes controlling precipitation 

phase by not incorporating observations of humidity. All precipitation phase methods restricted 

to near surface observations are simplistic and do not fully represent precipitation phase 

processes as precipitation phase is controlled by atmospheric processes. The uncertainties 

introduced by these precipitation phase partitioning methods are unknown and need to be 

quantified to improve hydrological modelling. 

 

The 2013 flooding in Alberta demonstrates the effect of precipitation phase on hydrological 

responses. Over the interval of June 19-22 2013, portions of Southwestern Alberta received in 

excess of 300 mm of precipitation (AESRD, 2013) leading to catastrophic flooding which caused 

100,000 people to be evacuated, 4 fatalities and damage estimated to be up to $5 billion 

(Livingstone, 2013). The majority of precipitation came as rainfall, which was augmented by 

snowmelt from rain on snow in the upper reaches of the basin, leading to rapid flooding. 

Transition from rainfall to snowfall at higher elevation with cooling ௔ܶ was observed at the end 

of the event which decreased runoff generation (J. Pomeroy, personal communication, June 21, 

2013). Understanding when and where this transition to snowfall took place is useful from a 

hydrological and a flood management perspective. If the transition had occurred earlier in the 

event the streamflow generated would have been smaller in magnitude. From a flood forecasting 

perspective, had the operational forecast model estimated an earlier transition than had been 

observed, the subsequent forecast would have underestimated the streamflow, which could 

potentially have reduced the effectiveness of the downstream preparations.  

1.2  Rationale 
Although traditional methods to identify the phase of precipitation have been dependent on ௔ܶ 

methods, the fields of meteorology and micrometeorology have developed physical 

understandings of the controls on the phase of a hydrometeor, which is an individual ice or water 

particle. Examples of psychrometric phase partitioning approaches have been proposed in 

European and Asian hydrological literature (Steinacker, 1983; Sugaya, 1991). The rationale for 
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this thesis is to apply the known physics of hydrometeors to develop a more physically 

appropriate model, compared to empirical ௔ܶ models, to identify precipitation phase. A semi-

physical model to identify precipitation phase is developed using hydrometeor mass and energy 

balances developed for snow sublimation modelling. The combined mass and energy balance 

takes into account the latent and sensible heat fluxes that act to modify the hydrometeor 

temperature which is physically related to the phase of the hydrometeor. The hydrometeor 

temperature is thereafter fitted to observations of phase. Utilizing the proposed model and 

selected empirical ௔ܶ methods, the identification of precipitation phase in a North American 

context and the uncertainty that is introduced into hydrological modeling is assessed.  

1.3  Nature and Scope of Research 
The phase of precipitation is a function of the atmospheric processes acting on a hydrometeor as 

it falls from the cloud to the surface. Recent scientific advances (Pietroniro et al., 2007) allow 

the coupling of hydrological models and atmospheric models which can diagnose precipitation 

phase directly, but these approaches still have challenges in terms of scaling hydrological 

processes appropriately. A better phase partitioning method is needed as uncoupled hydrological 

models will always be required. As the observations typically available in uncoupled 

hydrological models are restricted to near the surface, this study will focus on the use of near 

surface observations to develop a phase partitioning model that can be readily implemented in 

uncoupled hydrological models. The phase partitioning model represents the well measured 

conditions in a mountain research basin in the Canadian Rockies. Analysis of modeling 

uncertainty will consider a selection of small headwater research basins located in western 

Canada. 

1.4 Objectives  
Given the use of surface observations to quantify an atmospheric process and the practical 

difficulties associated with applying empirical techniques to separate precipitation by phase, the 

objectives of this thesis are: 

1. To propose a combined energy and mass balance model to estimate precipitation phase 

that is consistent with the known thermodynamics of falling hydrometeors. 
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2. To assess the accuracy and temporal scale dependence of this phase estimation model 

using field measurements and compare the model to various approaches used in 

hydrological practice. 

3. To quantify the uncertainties that empirical phase methods introduce into cold regions 

hydrological modelling. 

The overall goal of the thesis is to propose a semi-physical, spatially transferable phase 

partitioning method, which can be readily implemented by hydrologists as an alternative to non-

physical ௔ܶ methods. To address the objectives, the remainder of the thesis is divided into four 

chapters. Chapter 2 comprises the literature review which addresses the physics of precipitation 

phase, commonly utilized phase methods in hydrological models and the sensitivity of 

hydrological processes to variations in phase methods. The physical relationship between 

precipitation phase and the hydrometeor temperature ( ௜ܶ) is described with the derivation of the 

௜ܶ from a psychrometric mass and energy balance approach. Chapter 3 describes the site 

characteristics, data quality assurance and control and methodology utilized to develop the 

proposed ௜ܶ phase model to address Objectives 1 and 2. Discussion focuses on the temporal scale 

dependence of precipitation phase and compares the proposed model to commonly implemented 

approaches. Chapter 4 addresses Objective 3 through a hydrological modeling exercise. Basin 

models, the modeling platform and the modeling approach are described and the relationships 

observed in the uncertainty analysis, model performance and the limitations of the modeling 

approach are discussed. Chapter 5 summarizes the findings of the previous sections and presents 

the conclusions of the thesis. 
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CHAPTER 2. Literature Review 

2.1 Precipitation Phase Physics 
The phase of precipitation at the ground surface is influenced by the properties of the atmosphere 

that precipitation must pass through. These properties include the temperature, vertical thickness 

of atmospheric layers, humidity, atmospheric stability, hydrometeor fall velocity, structure and 

size and interactions among hydrometeors (Gray and Prowse, 1992). The relative importance of 

these properties varies with synoptic conditions. The factors influencing phase in the 

condensation region of an air mass are of less influence to the phase at the surface than the 

characteristics of the rest of the atmosphere through which the hydrometeor travels (Thériault 

and Stewart, 2010). During its fall, a hydrometeor can be thought of as a drop of water (frozen or 

liquid) falling through a dynamic water vapour continuum. Latent heat is added to the 

hydrometeor through condensation or removed though evaporation or sublimation depending on 

the vapour pressure deficit and the ventilation of a falling hydrometeor, which is a function of its 

fall velocity and of the prevailing wind conditions within the atmosphere (Stewart, 1992). 

Sensible heat can also be added or removed primarily through forced convection which is driven 

by the temperature gradient between the hydrometeor and the atmosphere and which is enhanced 

by the ventilation of the hydrometeor falling through the atmosphere (Stewart, 1992). The 

sensible and latent heat fluxes determine the temperature and rate of mass and energy change of 

the hydrometeor which ultimately controls its phase. If the energy available is enough to supply 

the latent heat of fusion required to melt or freeze the hydrometeor, then the phase will change. 

Hydrometeors exist in a range of size distributions which can cause different precipitation types 

to exist concurrently and with differing rates of melt or refreezing, leading to mixed precipitation 

events (Thériault and Stewart, 2010). In temperate and cold region environments precipitation is 

typically formed in the atmosphere as a solid (snowfall) and the phase at the surface is 

determined by whether the snowfall melts into rainfall (liquid) or not (Stewart, 1992).  

2.2 Precipitation Phase Methods 
Several approaches have been developed to quantify the phase of precipitation. The most 

physically comprehensive approaches are typically implemented by numerical micro-physical 

schemes over multiple vertical layers in dynamic atmospheric models, such as numerical weather 
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models or general circulation models (Thériault and Stewart, 2010; Minder et al., 2011). 

Conditions at the ground surface are often used to identify phase in hydrological models that are 

uncoupled from atmospheric processes (Feiccabrino and Lundberg, 2008). The full solutions 

implemented in atmospheric models to resolve the phase of hydrometeors require information on 

atmospheric conditions, topographic influences, atmospheric lapse rates and surface interactions 

with the atmosphere (Marks et al., 2013), which has limited their application in hydrological 

models.  

 

Precipitation phase partitioning methods specifically for hydrology have generally focused on 

relating the precipitation phase to mean values of meteorological variables measured near the 

ground surface. Early work by the US Army Corps of Engineers (1956) and Auer (1974) showed 

the snowfall to rainfall transition occurring for daily mean ௔ܶ varying between 0 °C and 6 °C. 

Many other approaches have been suggested since which vary in complexity. The simplest and 

most commonly used model is to define a single threshold that defines all precipitation as rainfall 

above, and snowfall below, a specified threshold ௔ܶ (Leavesley et al., 1983). The method, 

hereafter referred to as T0, is:  

 ௔ܶ ൒ ௧ܶ | ܴ݂݈݈ܽ݅݊ܽ (2.1)

 ௔ܶ ൏ ௧ܶ | (2.2) ݈݈݂ܽݓ݋݊ܵ

௧ܶ  is the threshold air temperature which can range from -1 °C to 4 °C as a daily value (Saelthun, 

1996). Values of ௧ܶ  are site specific (Marks et al., 2013) and dependent on atmospheric stability 

(Olafsson and Haraldsdottir, 2003) and the factors mentioned previously. Double thresholds are 

also used, where a lower threshold defines all precipitation as snowfall and an upper threshold 

defines all precipitation as rainfall with the range between thresholds considered to be mixed 

phase. Pipes and Quick (1977), in the UBC watershed model, suggest 0.6 °C and 3.6 °C as 

thresholds with a linear interpolation in the mixed phase range. The method, hereafter referred to 

as UBC, is:  

 ௔ܶ ൒ 3.6 | ܴ݂݈݈ܽ݅݊ܽ (2.3)

 0.6 ൐ ௔ܶ ൏ 3.6 | ௥݂ ൌ ሺ ௔ܶ/3ሻ െ 0.2 (2.4)

 ௔ܶ ൑ 0.6 | (2.5) ݈݈݂ܽݓ݋݊ܵ

Where ௥݂ is the rain ratio which is the ratio of rainfall divided by total precipitation (i.e. snowfall 

+ rainfall). Kienzle (2008) proposed a more complex double threshold approach which uses a 
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seasonally variable curvilinear approach. The shape of the transition curve is parameterised by a 

௧ܶ value (the ௔ܶ where rainfall and snowfall amounts are equal) and a transition temperature 

range ( ௥ܶ) which quantifies the ௔ܶ range in which both rainfall and snowfall are observed. The 

method, hereafter referred to as Kienzle, is:  

 
௔ܶ ൒ ௧ܶ | ݂ݎ ൌ  5 כ ൬

ܶ െ ௧ܶ

1.4 כ ௥ܶ
൰
ଷ

െ 6.76 כ ൬
ܶ െ ௧ܶ

1.4 כ ௥ܶ
൰
ଶ

൅ 3.19

כ
ܶ െ ௧ܶ

1.4 כ ௥ܶ
൅ 0.5 

(2.6)

 
௔ܶ ൏ ௧ܶ | ݂ݎ ൌ  5 כ ൬

ܶ െ ௧ܶ

1.4 כ ௥ܶ
൰
ଷ

൅ 6.76 כ ቆ
ܶ െ ௧ܶ

1.4 כ ௥ܶ

ଶ

ቇ ൅ 3.19

כ
ܶ െ ௧ܶ

1.4 כ ௥ܶ
൅ 0.5 

(2.7)

The ௧ܶ  and ௥ܶ  parameters, default or calibrated, vary over the course of the year with sinusoidal 

functions, which are:  

 
௧ܶ ൌ ௧ܶ௜ ൅ ௧ܶ௜ כ ݊݅ݏ ൬

݄ݐ݊݋݉ ൅ 2
1.91 ൰ 

(2.8)

 ௥ܶ ൌ ௥ܶ௜ כ ሺ0.55 ൅ ݄ݐ݊݋ሺ݉݊݅ݏ ൅ 4ሻሻ כ 0.6 (2.9)

Where ௧ܶ௜ is the initial threshold temperature (default value is 2 °C) and ௥ܶ௜ is the initial 

transition temperature range (default value is 13 °C). To calibrate Kienzle a plot of daily ௔ܶ 

versus ݂ݎ is required for the site in question from which values of ௧ܶ௜ and ௥ܶ௜ values can be 

estimated (Kienzle, 2008). Other empirical methods consider the diurnal ௔ܶ range (Leavesley et 

al., 1983) and the ௔ܶ structure of the near surface atmospheric boundary layer (Gjertsen and 

Odegaard, 2005). The daily time step of most of these methods is a legacy of non-automated 

mountain weather stations with max-min thermometers and is less relevant with the advent of 

modern automated weather stations. The lack of high altitude weather stations with detailed 

observations of the precipitation phase in many parts of the world make phase- ௔ܶ calibrations, 

such as with Kienzle, impossible for most catchments. Further, these ௔ܶ proxies need to be 

recalibrated regularly to provide effective estimates as the climatic characteristics affecting the 

phase vary over time (Marks et al., 2013) especially in the mountains of western North America 

(Mote et al., 2005), which adds uncertainty to the application of these proxies in hydrologically 

non-stationary conditions (Milly et al., 2008).  
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Other methods include observation of atmospheric humidity by use of other properties such as 

dew point ( ௗܶ) and thermodynamic wet bulb temperature ( ௪ܶ) (Marks et al., 2013). Marks et al. 

(2012) found that within a single precipitation event, the phase transition timing was better 

estimated by a 0 °C ௗܶ threshold than by a 0 °C ௪ܶ or ௔ܶ threshold at Reynolds Creek, Idaho. A 

daily dataset at the Grove site (2056 m), in Reynolds Creek, from 1996 to 2008 showed 

insignificant differences in the fraction of precipitation as snowfall among ௔ܶ, ௗܶ and ௪ܶ 

thresholds (Marks et al., 2013). These differences in results between the long term and event 

scale suggest that there is temporal scale dependence to precipitation phase estimates and some 

dependence of phase on humidity (Marks et al., 2013). The USGS Hydrological Simulation 

Program Fortran model empirically calculates a ௧ܶ that varies with ௔ܶ and ௗܶ (Bicknell et al., 

1997). The method, hereafter referred to as HSPF, is: 

 ௧ܶ ൌ ௧ܶ௜ ൅ ሺ ௔ܶ െ ௗܶሻ כ ሺ0.12 ൅ 0.008 כ ௔ܶሻ (2.10)

Units for all variables in Equation 2.10 are in degrees Fahrenheit and ௧ܶ௜ is the initial temperature 

threshold (typically 31 to 33 °F or -0.5 to 0.5 °C). Although this model considers humidity, it 

does so empirically and so the spatial and temporal transferability of the model are uncertain. 

Empirical approaches can be used to identify phase but are limited in that they may not consider 

mixed precipitation (HSPF and T0), temporally variable meteorological conditions (HSPF, UBC 

and T0) and may be overly parameterised (Kienzle).  

 

Studies comparing existing observations to phase methods demonstrate differences in their 

performance and errors. Feiccabrino and Lundberg (2008), found the best performance with 

polynomial relationships followed by double thresholds then single thresholds. By contrast, the 

temporally variable polynomial method of Kienzle (2008) was demonstrated to be superior but 

the error of the single threshold, double threshold and a complex algorithm integrating maximum 

and minimum ௔ܶ thresholds (as described by Leavesley et al., 1983) were quite similar. The 

precipitation with misclassified phase varies between 7.1% and 9.6% for the Kienzle (2008) 

study and 3.2% to 11% for the Feiccabrino and Lundberg (2008) study. As the magnitude of 

these errors is large, the fact that the more advanced methods show only small improvements and 

the disagreement among the performance of methods by studies and sites all serve to 

demonstrate the difficulty and uncertainty associated with current approaches to identify 

precipitation phase with surface observations of ௔ܶ. 
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2.3 Psychrometric Relationships and Phase 
The hydrometeor temperature ( ௜ܶ) has a physical relationship with the phase of precipitation 

(Steinacker, 1983; Stewart, 1992; Sugaya, 1991). ௜ܶ is controlled by the surface energy fluxes 

which are governed by the energy and mass balance of the falling hydrometeor. The gradient of 

vapour pressure between a saturated surface, such as a hydrometeor, and an unsaturated air mass 

controls the rates of evaporation or sublimation. In contrast when the vapour pressure gradient 

reverses in saturated conditions, condensation may occur. Assuming adiabatic conditions in the 

atmosphere the latent heat flux will be balanced by the sensible heat flux and therefore a 

difference in temperature between the air and a saturated surface will exist. Adiabatic conditions 

are not always present particularly if there is a flux of net radiant energy to the hydrometeor. The 

psychrometrically controlled steady state relationship among ௔ܶ, ௗܶ and ௜ܶ in unsaturated 

conditions is: 

 ௗܶ ൏ ௜ܶ ൏ ௔ܶ (2.11)

In saturated conditions the relationship is: 

 ௗܶ ൌ ௜ܶ ൌ ௔ܶ (2.12)

The saturation of the air is taken to be with respect to ice when the ௔ܶ is below 0 °C and with 

respect to water when ௔ܶ is above 0 °C. In regions with frequently saturated conditions, ௜ܶ and 

ௗܶ follow ௔ܶ closely thus the differences between those methods that consider only ௔ܶ and those 

that also consider humidity will be small (Yamazaki, 2001; Fuchs, 2006). ௗܶ or ௔ܶ methods are 

often applied to unsaturated conditions where they are invalid (Eq. 2.11). ௔ܶ methods cannot be 

physically based as they do not incorporate the effects of humidity on latent heat transfer 

(Stewart, 1992). Although ௗܶ is a function of ௔ܶ and humidity, it describes the cooling necessary 

for an unsaturated parcel of air to reach saturation over constant pressure. ௗܶ does not consider 

sensible and latent heat fluxes to the hydrometeor and thus does not correspond directly to ௜ܶ, 

though it can be used to improve empirical methods to estimate phase and has shown some 

success in this regard in one field study (Marks et al., 2013).  

 

௜ܶ can be calculated using near-surface meteorological variables, ௔ܶ and relative humidity (ܴܪ), 

which are normally collected at weather stations. Any calculation from station level data 

presumes that the near-surface meteorology represents an equilibrium condition for the falling 

hydrometeor. Early methods of calculating the ௪ܶ, upon which calculations of ௜ܶ are based, used 
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a classic application of the coupled energy and mass balance with psychrometric charts, based on 

the existing understanding of the ௪ܶ depression developed by Carrier in the early 1900s (Gatley, 

2004). Common calculation approaches since then have considered equations which require 

implicit solutions (Fuchs, 2006; Olsen, 2003) or over-simplified parameterisations (Yamazaki, 

2001). Alternative solutions to quantify ௜ܶ are available as a result of the laboratory sublimation 

rate experiments of Thorpe and Mason (1966) which were modified by Schmidt (1972) and 

Pomeroy et al. (1993) for application to blowing snow particles moving in the atmosphere. 

Pomeroy and Gray (1995) conceptualised the mass balance of a sublimating hydrometeor as an 

ice sphere:  

 ݀݉
ݐ݀ ൌ ௔்ߩ൫݄ܵܦݎߨ2 െ  ௦௔௧ሺ்௦ሻ൯ߩ

(2.13)

where ݀݉ is the change in mass [kg], ݀ݐ is the change in time [s], ݎ is hydrometeor radius [m], ܦ 

is the diffusivity of water vapour in air [m2 s-1], ݄ܵ is the Sherwood number which is the ratio of 

convective and diffusive water vapour transfer from a particle surface to air, ்ߩ௔ is the water 

vapour density in the free atmosphere [kg m-3] and ߩ௦௔௧ሺ்௦ሻ is the saturated water vapour density 

at the hydrometeor surface [kg m-3]. The energy balance of a sublimating ice sphere (Pomeroy 

and Gray, 1995) is: 

 
ܮ ൬
݀݉
ݐ݀ ൰ ൌ ሺݑ௧ܰߣݎߨ2 ௦ܶ െ ௔ܶሻ 

(2.14)

where ܮ is the latent heat of sublimation or vaporisation [J kg-1], λt is the thermal conductivity of 

air [J m-1 s-1 K-1], Nu is the Nusselt number which is the ratio of convective and conductive 

energy transfer from a particle surface to air, ௔ܶ is in [K] and ௦ܶ is the surface temperature of the 

hydrometeor [K]. Combining 2.13 and 2.14 gives: 

௔்ߩ൫݄ܵܦݎߨ2ܮ   െ ௦௔௧ሺ்௦ሻ൯ߩ ൌ ሺݑ௧ܰߣݎߨ2 ௦ܶ െ ௔ܶሻ (2.15)

assuming ܰݑ ൌ ݄ܵ for a blowing snow particle in a turbulent atmosphere (Lee, 1975) or a 

falling raindrop (Tardif and Rasmussen, 2010) and ௦ܶ is equal to ௜ܶ due to the large surface 

area/volume relationship and weak heat conduction within the hydrometeor (Chang and Davis 

(1974) and Watts and Farhi (1975) in Tardif and Rasmussen (2010)) then 2.15 simplifies to: 

௔்ߩ൫ܦܮ  െ ௦௔௧ሺ்௜ሻ൯ߩ ൌ ௧ሺߣ ௜ܶ െ ௔ܶሻ (2.16)

Rearranging 2.16 to solve for ௜ܶ gives: 
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௜ܶ ൌ ௔ܶ ൅

ܦ
௧ߣ
௔்ߩ൫ܮ െ  ௦௔௧ሺ்௜ሻ൯ߩ

(2.17)

Solution of 2.17 can be achieved iteratively using methods such as the Newton–Raphston 

approach to increase the efficiency of solution. Following Thorpe and Mason (1966) ܦ is 

estimated by:  

 
ܦ ൌ 2.06 כ 10ିହ כ ൬ ௔ܶ

273.15൰
ଵ.଻ହ

 
(2.18)

Applying the ideal gas law ்ߩ௔ is quantified by:  

௔்ߩ  ൌ
݉௪݁௔
തܴ ௔ܶ

 (2.19)

where ݉௪ is the molecular weight of water 0.01801528 [kg mol-1], തܴ is the universal gas 

constant of 8.31441 [J mol-1 K-1] and ݁௔ is the actual vapour pressure [kPa]. The ߩ௦௔௧ሺ்௜ሻ in Eq. 

2.17 is calculated the same as ்ߩ௔ but uses ௜ܶ in place of ௔ܶ and assumes a ܴܪ of 100%. Care 

must be taken when calculating ߩ as saturation vapour pressure varies if taken with respect to 

water (݁௦௔௧௪ሻ when ௔ܶ ൒ or ice (݁௦௔௧௜ሻ when ௔ܶ ܥ° 0 ൏   :Following Dingman (2002) .ܥ° 0

 
݁௦௔௧௪ ൌ 0.611݁

ଵ଻.ଷ்ೌ
ଶଷ଻.ଷା்ೌ  

(2.20)

where ௔ܶ is in K. Following Buck (1981): 

 
݁௦௔௧௜ ൌ 0.61115݁

ଶଶ.ସହଶ்ೌ
ଶ଻ଶ.ହହା்ೌ  

(2.21)

where ௔ܶ is in ° C. As ܴܪ is typically observed with respect to water, when ௔ܶ ൒  ௔ is݁ ,ܥ° 0

calculated by: 

 ݁௔ ൌ
ܪܴ
100 ݁௦௔௧௪ (2.22)

and when ௔ܶ ൏  :௔ is calculated by݁ ܥ° 0

 
݁௔ ൌ

ሺܴܪ 100ሻ⁄ ݁௦௔௧௪
݁௦௔௧௜

݁௦௔௧௜ 
(2.23)

Following List (1949) ߣ௧ is quantified by: 

௧ߣ  ൌ 0.000063 כ ௔ܶ ൅ 0.00673 (2.24)

௦, ௔ܶܮ) has a ௔ܶ dependency, thus for heat of sublimation ܮ ൏  :ሻ (Rogers and Yau, 1989) ܥ0° 

௦ܮ  ൌ 1000ሺ2834.1 െ 0.29 ௔ܶ െ 0.004 ௔ܶ
ଶሻ (2.25)

and for heat of vaporisation (ܮ௩, ௔ܶ ൒   (ܥ0° 

௩ܮ  ൌ 1000ሺ2501 െ 2.361 ௔ܶሻ (2.26)
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The depression of ௜ܶ relative to ௔ܶ is a function of ௔ܶ and ܴܪ (Figure 2.1 a). ௔ܶ and ܴܪ control 

the vapour density gradient between the atmosphere and the hydrometeor: ௔ܶ by varying the 

maximum vapour density (as a function of saturation vapour pressure) and ܴܪ by defining the 

vapour density deficit between the atmosphere and hydrometeor. The magnitude of ܦ ⁄௧ߣ  [m3 K 

kg-1], termed the psychrometric exchange ratio, increases non-linearly with that of ௔ܶ (Figure 2.1 

b) and quantifies the turbulent exchange of mass and energy between the atmosphere and 

hydrometeor. The form of Eq. 2.17 is similar to that of the thermodynamic ௪ܶ (Monteith and 

Unsworth, 2008). 

 
௪ܶ ൌ ௔ܶ െ

1
ߛ ൫݁௦௔௧ሺ்ೢ ሻ െ ்݁ೌ ൯ 

(2.27)

Where γ is the psychrometric constant [~0.066 kPa K-1] and ݁௦௔௧ሺ்ೢ ሻ and ்݁ೌ are the vapour 

pressures for saturated conditions at ௪ܶ and actual vapour pressure at ௔ܶ. Two differences exist 

between Eq. 2.17 and Eq. 2.27. First, the degree of saturation is quantified with vapour pressure 

[kPa] for ௪ܶ rather than a specific humidity [kg m-3] for ௜ܶ. Second, the exchange in heat and 

vapour transfer between a surface and the atmosphere is equated by γ for ௪ܶ and the 

psychrometric exchange ratio for ௜ܶ. The γ term directly relates the change in vapour pressure to 

a change in temperature. In contrast the psychrometric exchange ratio relates the change in water 

vapor to temperature as ratio of vapour and heat exchange, which are not equal and vary with 

temperature. This is similar to the concept of the modified psychrometric constant (כߛሻ, which 

considers the resistance ratio of vapour to heat diffusion between a surface and the atmosphere, 

and is used to quantify the measured ௪ܶ relative to the thermodyanimc ௪ܶ (Monteith and 

Unsworth, 2008). Calculation of כߛ follows Monteith and Unsworth (2008): 

 
כߛ ൌ

ܴ௏
ܴு

ߛ ൎ ߛ0.93 ൎ
0.93൫ܿ௣݌൯

ܮߝ  
(2.28)

Where ܴ௏ is the resistance to vapour transfer, ܴு is the resistance to heat transfer, ܿ௣ is the 

specific heat capacity of air [1.0035 kJ kg-1 K-1], ݌ is atmospheric pressure [kPa] and ߝ is the 

molecular ratio of water vapor to air [0.622]. In contrast to the psychrometric exchange ratio, 

which is a function of ௔ܶ, כߛ is a function of windspeed (Monteith and Unsworth, 2008). The 

difference between ௜ܶ and ௪ܶ (for both ߛ and כߛ) over a range of ௔ܶ and ܴܪ, Figure 2.2, shows 

that ௜ܶ will estimate colder temperatures than both the modified and unmodified ௪ܶ and that the 

difference increases with ௔ܶ. 
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Figure 2.1: (a) Hydrometeor temperature ( ௜ܶ) and (b) psychrometric exchange ratio (ܦ ⁄௧ߣ ) is 

plotted versus air temperaure ( ௔ܶ). The hydrometeor temperature (a) is plotted for values of 

relative humidity between 100% (straight line) and 0% in 10% increments. 

 
Figure 2.2: Difference between hydrometeor temperature ( ௜ܶ) and (a) thermodynamic wet bulb 

temperature ( ௪ܶ) and (b) wet bulb temperature with modified psychrometric constant ( ௪ܶ
כ ) versus 

air temperature ( ௔ܶ). The differences are plotted for values of relative humidity between 100% 

(straight line) and 0% in 10% increments. 
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The proposed ௜ܶ approach assumes thermodynamic equilibrium and insignificant net radiant 

energy to falling hydrometeors, which may not always be true (Schmidt, 1972). If a hydrometeor 

is falling through atmospheric layers of different properties the actual ௜ܶ can vary from ௜ܶ at 

thermodynamic equilibrium. The time lag for the hydrometeor to reach a new thermodynamic 

equilibrium ௜ܶ is a function of RH, ventilation and drop size and can vary between fractions of a 

second for cloud droplets to a few seconds for hydrometeors (Kinzer and Gunn, 1951). The time 

lag to reach thermodynamic equilibrium is ignored in this analysis as it is impossible to assess 

whether or not hydrometeors are in fact at thermodynamic equilibrium without profiles of 

atmospheric structure. In cases where the assumptions are invalid, the proposed calculation will 

overestimate ௜ܶ  relative to actual conditions. Nevertheless the psychrometric energy balance 

should provide a more robust and more physically based index of precipitation phase than using 

௔ܶ or ௗܶ. 

2.4 Hydrological Modeling and Phase Algorithms 
The separation of precipitation into rainfall or snowfall is one of the most sensitive 

parameterisations in simulating cold region hydrological processes (Loth et al., 1993). Studies of 

varying precipitation phase methods in hydrological models have focused almost exclusively on 

the effects on snowpack processes, the largest being changes in the depth and density of a 

snowpack (Loth et al., 1993; Lynch-Stieglitz, 1994; Fassnacht and Soulis, 2002; Wen et al., 

2013). A common suggestion to reduce error is to use locally derived or calibrated ௔ܶ-phase 

relationships (Fassnacht and Soulis, 2002) but this is problematic in areas without precipitation 

phase observations. A consequence of using phase methods that do not reflect local conditions is 

that the consequent errors propagated in snowpack simulation are cumulative, which leads to 

systematic over or under-estimation of snow water equivalent (SWE) and depth that increase 

with time (Lynch-Stieglitz, 1994). In addition to changing the depth and density of a snowpack, 

varying the phase method causes errors in the calculated energy balance of a snowpack (Loth et 

al., 1993; Fassnacht and Soulis, 2002). Overestimating the rainfall adds more energy to the 

snowpack by advection, increases the snowpack water content, leads to earlier ripening, 

increases latent heat transfer to the snow, reduces the albedo and increases the snow surface 

temperatures relative to reality (Loth et al., 1993). Phase methods that define greater values of 
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the ௔ܶ thresholds (reducing the rainfall) result in less energy being transferred from the 

atmosphere into the snowpack leading to greater latent and ground heat fluxes to the atmosphere 

(Fassnacht and Soulis, 2002). Snowcover has a tremendous influence on land atmosphere 

interactions and thus changes in rainfall and snowfall cause land-atmosphere feedbacks (Wen et 

al., 2013). Using greater values of ௔ܶ thresholds in a coupled atmospheric-land surface model 

simulates higher albedos, leading to cooler surface temperatures (Wen et al., 2013). As a result 

the feedbacks that occur when coupling surface and atmospheric processes increase the 

sensitivity of snowcover properties to precipitation phase methods (Wen et al., 2013). The 

translation of differences in snowcover due to different precipitation phase methods affects 

streamflow estimation in cold regions. Generally the greater the ௔ܶ threshold used, the larger and 

later will be the snowmelt streamflow peak (Fassnacht and Soulis, 2002). 

2.5 Summary  
The physical processes governing the phase of a hydrometeor at the ground surface are complex 

and common precipitation phase methods are oversimplifications of reality. The interaction of 

physical processes with meteorological patterns and terrain introduces phase uncertainty in even 

the most comprehensive atmospheric models (Minder et al., 2011). Hydrology has often taken a 

more simplified approach and has focused on the available near surface data, rather than 

atmospheric model output, to identify phase. Over-reliance on ௔ܶ precipitation phase methods 

that lack a physical basis and spatial transferability has developed. In humid regions ௔ܶ 

precipitation phase methods can work well (as ௜ܶ and ௔ܶ are similar at saturation) but fail in sub-

humid regions. Psychrometric approaches hold promise in being able to identify phase through 

the demonstrated physically-based relationship between phase and ௜ܶ. 
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CHAPTER 3. Psychrometric Energy Balance Phase Model 

Development 
The development of a semi-physical psychrometric energy balance phase model is described in 

this chapter, which begins with a description of the site and data utilized and the quality 

assurance and control procedures followed. The first two objectives are addressed with a novel 

precipitation phase model and results pertaining to the temporal scale dependence and 

comparison with other empirical methods are presented. The chapter concludes with a discussion 

of the results.  

3.1 Marmot Creek Research Basin 
The data utilized in the analysis of the precipitation phase were collected in the Marmot Creek 

Research Basin (MC) by the University of Saskatchewan Centre for Hydrology which began 

installing instrumentation in 2005 (Pomeroy et al., 2012). MC is situated in the Kananaskis 

Valley, Alberta, located approximately 70 km west of Calgary in the Front Ranges of the 

Canadian Rockies (Figure 3.1). The vegetation includes sparsely vegetated alpine tundra, alpine 

meadows and sub alpine and montane forests (Swanson et al., 1986). The climate is dominated 

by long cold winters and cool wet summers. Mean daily ௔ܶ (1968-2012) at a mid elevation site 

(Upper Clearing: 1845m) ranges from 11.7 °C in July to -10.7 °C in January and is observed to 

be increasing (Harder et al., 2013). Annual mean precipitation of 638 mm is recorded at the 

valley bottom and up to 1100 mm at upper elevations (Storr, 1967).  

3.1.1 Hydrometeorological Observation Program 

To estimate precipitation phase from field observations, reliable precipitation and other 

meteorological data are required at high temporal resolution. A comprehensive suite of 

hydrometeorological variables was obtained from weather stations that are regularly visited and 

maintained by field staff. The three automatic weather stations used in this analysis are the Hay 

Meadow (HM, large pasture in a valley bottom mixed-wood forest, 1436 m), Upper Clearing 

(UC, large clearing in coniferous forest, 1845 m), and Fisera Ridge (FR, alpine treeline site, 2325 

m) stations. The observations considered in this study included ௔ܶ, ܴܪ, incoming and outgoing 

radiation, snow depth, total precipitation and tipping bucket rainfall. Observations have been 

taken every 10 seconds at UC since 2005, FR since 2007 and HM since 2008 with subsequent  
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Figure 3.1: Marmot Creek Research Basin showing selected meteorological stations, basin 

boundary, mountain peaks and topographic contours and location in western Canada. 

averaging to 15 minute intervals. Data up to July 9, 2012 were utilized in analysis. The Vaisala 

HMP probes utilize a thin film capacitive sensor whose dielectric properties are sensitive to 

relative humidity. The relative humidity is measured with respect to water with an operating 

range, appropriate to the study of precipitation phase change, between -20 °C and 60 °C 

(Anderson 1994). Total precipitation at all sites was measured with an Alter-shielded Geonor T-

200B Series weighing gauge that uses a vibrating-wire weighing transducer to measure 

accumulated precipitation, but not phase. A mixture of anti-freeze and oil in the storage gauge 

inhibits the liquid in the gauge from freezing in the winter and reduces the evaporative losses in 

summer. 
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Data from a Meteorological Service of Canada weather station with automatic and manual 

observations at the Biogeoscience Institute Barrier Lake Field Station (BGSI), located 10 km east 

of MC, are used to provide an independent validation dataset for the daily timescale. A Nipher 

storage gauge and a Meteorological Service of Canada standard rain gauge are used to observe 

snowfall and rainfall manually in a small forested clearing. Nipher gauges consist of a copper 

cylinder surrounded by an inverted bell shaped shield to reduce wind induced undercatch errors 

(Goodison, 1978). Snow captured in the cylinder is melted after each observation interval and is 

then measured by a graduated cylinder. The Nipher snowfall was not corrected for wind effects 

as precipitation is only reported daily and appropriate wind speed data are unavailable.  

 

Table 3.1: Marmot Creek Meteorological Stations and their Instrumentation  

Site 

Fisera Ridge (FR) Upper Clearing 
(UC) 

Hay Meadow 
(HM) 

BGSI 

Record length 10/2006- present* 6/2005- present* 7/2006- present* 1999- 2010 
UTM (11U) 626107 5646559 628150 5646577 630742 5645259 637814 5654723 
Elevation (m) 2325 1845 1436 1391 
     

Variable     

௔ܶ/ ܴܪ Vaisala 
HMP45C212 

Vaisala HMP35C Vaisala 
HMP45C212 

Vaisala 
HMP45CF 

Outgoing and 
Incoming 
shortwave 
radiation 

Kipp & Zonen 
CNR1a 

LI-COR LI200S Kipp & Zonen 
CNR1 

n/a 

Snow Depth SR50 SR50 SR50-45 n/a 
Rainfall Hydrological 

Services TBRGd 
TB4 

Hydrological 
Services TBRG 
TB4 

Texas Electronics 
TE525M 

MSC standard 
rain gauge 

Total Precip. 
(rainfall & 
snowfall) 

Geonor T-200B b Geonor T-200B Geonor T-200B c Nipher Snow 
Gaugee 

* data up to July 9, 2012 used in the analysis, a instrument added October 2007, b instrument 
added October 2008, c instrument added July 2005, d Tipping Bucket Rain Gauge, e Nipher 
gauge only observes snowfall 
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Systematic errors such as wetting losses are associated with Nipher snow gauges unlike the 

Geonor gauges within MC (Goodison, 1978). Reported precipitation phase is observed or 

estimated by the site observer who may or may not be observing the entire precipitation event, 

which is another source of uncertainty. Hourly ௔ܶ and ܴܪ, which are subsequently averaged to 

daily values, are measured separately at a site located approximately 100 meters to the northwest 

of the precipitation gauges in low brush. A summary of site instrumentation and data periods is 

given in Table 3.1.  

3.1.2 Data Quality Assurance and Quality Control 

Weighing precipitation gauge measurements have a high degree of precision, but may contain 

large systematic errors, and therefore must be carefully quality controlled to remove wind 

induced jitter effects and evaporative losses, as shown in Figure 3.2. A supervised data quality 

assurance and control procedure was instituted to remove obvious errors and noise from the 

Geonor precipitation datasets. The quality assurance and quality control procedure applied the 

following rules sequentially to the raw accumulated precipitation observations, the implications 

of these rules follow: 

1. If changes in raw cumulative precipitation greater than 10 mm (very high and rare 

precipitation intensity) and less than 10 mm (an impossibly high rate for evaporative 

losses) occur over a 15 minute interval then the observation was removed. 

2. If the raw accumulated precipitation observation was greater than 620 mm (the capacity 

of Geonor) it was removed.  

3. All missing/removed accumulated observations were assumed to be equal to the last 

previous observed accumulated observation. 

4. After removal of spurious data (1-2) and gap filling (3) differences of greater than 20 mm 

or less than -20 mm (the threshold being determined by trial and error) in adjacent values 

the 15 minute accumulated precipitation data were assumed to be due to emptying or 

recharging of Geonor liquid and these differences were removed to form a continuous 

accumulated precipitation record. 

5. Removal of data during problematic time periods, e.g. damaged sensor, power or 

datalogger failure. 
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6. Jitter was removed from accumulated precipitation through application of a rolling 

maximum, where a cumulative precipitation observation is only retained if greater than 

the previous maximum observed cumulative precipitation. 

7. Supervised correction of gauge evaporative losses. 

 

 

Figure 3.2: Examples of Upper Clearing raw and corrected cumulative precipitation from Geonor 

T-200B weighing gauge. (a) Significant evaporation (manual correction of 1.95 mm over four 

day period) with negligible jitter and (b) diurnal variability (no correction) with minor jitter. 

 



21 
 

The rolling maximum filter is intended to remove all remaining jitter from the dataset. It operates 

by retaining a cumulative precipitation observation for a time step only if it is greater than the 

previous maximum observed cumulative precipitation. Otherwise the previous maximum is 

assumed to be the cumulative precipitation. The rolling maximum works well in that it preserves 

the cumulative change and the timing of precipitation events. Unfortunately in the presence of 

evaporative losses (Figure 3.2a) the rolling maximum can mask precipitation events if the total 

evaporation is larger than the subsequent precipitation event. In addition, the filter may not catch 

the precise start of a precipitation event as precipitation must first exceed the rolling maximum 

which can take several time steps with precipitation. A rolling maximum filter by itself 

introduces a bias to underestimate precipitation. An intercomparison of the auto-filtered and raw 

data was employed to identify erroneous departures between the two datasets. These departures 

were then corrected by manually replacing the auto-filtered accumulated precipitation data with 

the actual change from the raw data. These corrections were usually implemented to capture the 

beginning of precipitation events especially when there was a long interval between events 

during which evaporation effects became important.  

 

Other procedures to remove noise and fill gaps in Geonor precipitation are available including 

those suggested by Nayak et al. (2008) which corrects precipitation by comparing low and high 

frequency noise and of Lamb and Durocher (2004) who present noise threshold and filter 

methods. The final purpose of the precipitation data dictates which correction method should be 

utilized. Thus the uncertainties that the Nayak et al. (2008) and Lamb and Durocher (2004) 

methods introduce by either shifting timing of precipitation or omitting evaporative losses makes 

them inappropriate for this analysis. The correct timing of precipitation events and the amount 

for each interval is deemed to be more important than imputing values for missing observation 

intervals.  

3.1.3 Phase Identification 

With the development of a high temporal resolution precipitation dataset it was then possible to 

identify the precipitation phase by using the suite of other hydrometeorological variables. 

Following the determination of phase, the Geonor precipitation identified as snowfall was 

corrected for wind induced gauge undercatch. Deformation of the wind field over a gauge orifice 

causes displacement and acceleration of snow particles leading to an undercatch in recorded 
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snowfall (Thériault et al., 2012). The snowfall was corrected for wind undercatch using the 

algorithm developed for Alter-shielded Geonor gauges by MacDonald and Pomeroy (2007). In 

theory, only concurrent observations from a total (liquid and solid) precipitation gauge and 

tipping bucket rain gauge (only liquid) are required to identify phase, however in practice these 

measurements are too uncertain to be used exclusively. Error in the timing of rainfall from 

tipping bucket rain gauges (TBRG) in cold weather mean that rainfall observations alone cannot 

be used to determine precipitation phase. Therefore, phase was manually identified for each 15 

minute measurement of precipitation from the Geonor using measurements of rainfall ௔ܶ, ܴܪ, 

albedo (outgoing/incoming shortwave radiation), and snow depth. Identification of precipitation 

phase was limited to solid or liquid phase and did not identify mixed phase. Confidence in phase 

identification was increased when observations from more than one instrument indicated 

agreement on the phase. The general approach employed the following logic: 

• Geonor Weighing Gauge: is a cumulative record of rainfall and snowfall events. Geonor 

precipitation (corrected for wind induced undercatch using the method of MacDonald and 

Pomeroy (2007)) is assumed to be the true amount of precipitation relative to TBRG and 

so phase was only identified if the Geonor recorded precipitation. 

• Tipping Bucket Rain Gauge: is a measure of the amount of liquid precipitation during an 

interval. Rainfall was identified if the TBRG and Geonor recorded precipitation in 

approximately the same magnitude and timing. Snowfall was identified if a TBRG event 

occurred after a Geonor precipitation event and if the TBRG event was determined to be 

due to melt of snow accumulation in the gauge orifice due to either the solar heating of 

the instrument or an increase in ௔ܶ. 

• Albedo: Rainfall was identified if the magnitude of the albedo was small (0.1-0.2 over 

bare ground and < 0.6 for rainfall on a snowpack) or decreasing. Snowfall was identified 

if the albedo was greater than 0.8. When the calculated albedo exceeded 1.0 it was 

assumed that this was due to snowfall covering the incoming radiometer. 

• Snow Depth: an ultrasonic depth gauge (Campbell Scientific Canada SR50) was used to 

measure distance to the surface (ground or snowpack surface). An increase in snow depth 

was used to identify snowfall, while no change or a decrease in snow depth was used to 

identify rainfall. 
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As an example of the uncertainty in tipping bucket rain gauge observations of rainfall and the 

usefulness of other meteorological variables to estimating phase, a mixed-phase precipitation 

event starting September 16, 2010 is shown in Figure 3.3. The accumulated total precipitation 

from the Geonor weighing gauge (black line) shows a 20 mm event spanning from the early 

morning of September 16, 2010 to noon September 17, 2010. The tipping bucket (blue line) 

recorded low intensity rainfall during September 16th that was smaller in accumulation than the 

higher intensity precipitation observed by the Geonor and then a large accumulation, high 

intensity event, on the afternoon of the 17th (after the event as described by the Geonor has 

ended). From the difference in TBRG and Geonor it can be inferred that the precipitation event 

began as rainfall but that the phase changed to snow throughout the 16th and the spike in the 

tipping bucket rain gauge was actually caused by snow melting in the orifice of the tipping 

bucket gauge. In this event, the snow depth (black dots) confirms the occurrence of snowfall due 

to the observed snowpack accumulation but due to scatter in the observations, the actual point of 

phase change cannot be determined from the snow depth observations. Using the albedo 

observations (red line) the phase change is clearly identified as occurring when the albedo 

jumped from 0.2 to 1.0 at 15:45 on September 16th. The increase in albedo coincides with fresh 

snow on the ground, or more likely, the incoming radiometer being covered by fresh snowfall. 

The observations available do not provide information on fraction of rain or snow in the same 

interval, mixed phase is not identified and is assumed to negligible. By using the four available 

instruments, the phase of the precipitation was determined and the time of the phase change was 

identified.  

 

The phase of precipitation was identified at the UC, FR and HM sites from 2005 to 2012 (Figure 

3.1). Personal judgment, considering seasonal trends, patterns and timing in the observations, 

was required in some situations when the sensor behaviour was unclear or contradictory. The 

longest and highest quality dataset was UC, which was used to develop the ௜ܶ phase relationship; 

HM and FR had shorter usable records due to their missing data and were only used for 

verification. At the HM and FR sites, phase identification primarily relied on observations of 

albedo and snow depth, which were the most reliable indicators of phase as the TBRG 

observations were intermittent at FR due to the harsher environment and were highly unreliable 

at HM due to rodent damage. The greatest source of error in this analysis is in the manual 
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determination of phase but this is considered negligible because of the redundancy due to the use 

of multiple sensors and because the cumulative errors are small on 15 minute intervals.  

 
Figure 3.3: Meteorological data used to identify precipitation phase. 

3.2 Analysis and Results 

3.2.1 Temporal Scale dependence of Hydrometeor Temperature and Phase  

To demonstrate the temporal scale dependence of precipitation phase with respect to ௔ܶ and ௜ܶ 

cumulative snowfall and rainfall at UC are plotted as histograms for ௔ܶ and ௜ܶ (Figure 3.4). It is 

apparent that the mode of the precipitation occurs at air temperatures near 0 °C indicating the 

importance of accurate phase determination at this site. Temporal scale dependence is evident 

when comparing the 15 minute (Figure 3.4 a and c) and daily time intervals (Figure 3.4 b and d). 

The transition range is greater for the daily interval than the 15 minute interval as the number of 

bins having total rainfalls and snowfalls greater than 5 mm is 4 for the 15 minute interval data 

(Figure 3.4a) versus 7 for the daily interval data (Figure 3.4b) for ௜ܶ. A similar pattern is 

observed for ௔ܶ (Figure 3.4 c and d). In addition the 15 minute interval ௜ܶ has a smaller transition 

range than ௔ܶ, number of bins having total rainfalls and snowfalls greater than 5 mm is 4 for ௜ܶ 

(Figure 3.4a) versus 6 for ௔ܶ (Figure 3.4). The 5 mm threshold is selected to avoid the 
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cumulative effects of hydrologically insignificant events. Therefore observations available to 

estimate the precipitation phase require a phase determination methodology that can take into 

account the effects of the time scale. The range of phase uncertainty is a function of time interval 

and type of temperature observation, suggesting that the ௜ܶ, especially for shorter time scales, 

should be a better predictor of precipitation phase than ௔ܶ. 

 

A Kolmogorov-Smirnov (KS) test, which is a non-parametric test to determine if two samples 

come from the same distribution, compared the 15 minute, hourly and daily data sets (Table 3.2). 

A significance criterion of p ≤ 0.05 was used. The 15 minute and hourly rainfall distributions 

were statistically similar but were different from the daily distribution. In contrast the 

comparison of snowfall distributions between timescales were all observed to be significantly 

different distributions.  

 

Snowfall and rainfall histograms were plotted with respect to the ௜ܶ and ௔ܶ from the UC dataset 

for large and small events (Figure 3.5). The amount of precipitation in an event influences the 

importance of the hydrological response to the precipitation input; thus an understanding of the 

temporal scale dependence of large and small events is important. By categorizing the dataset by 

precipitation event sizes it is shown that the phase transition range narrows for large events 

(Figure 3.5). The number of 1 °C bins with more than one rain and snow event varied between 

14 and 15 for the small events (Figure 3.5 a, c and e) and between 4 and 5 for the large events 

(Figure 3.5 b, d and f). Less error can be expected in the identification of the precipitation phase 

of larger precipitation events.  

 

Table 3.2: Kolmogorov-Smirnov p values of hydrometeor temperature ( ௜ܶሻ histograms 

 Rainfall Snowfall 

Time Interval 1 Hour 15 Minute 1 Hour 15 Minute 

Daily 0.04 0.01 0.00 0.00 

1 Hour  0.47  0.03 

p ≤ 0.05 means distributions are significantly different 
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Figure 3.4: Total snowfall and rainfall histograms for the (a and c) 15 minute and (b and d) daily 

time intervals for (a and b) hydrometeor ( ௜ܶሻ and (c and d) air temperatures ( ௔ܶሻ at Upper 

Clearing for 2005-2011. 
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Figure 3.5: Histograms of hydrometeor temperature ( ௜ܶ) versus precipitation phase for small (a < 

5 mm, c < 2 mm and e < 0.25 mm) and large (b ≥ 5 mm, d ≥ 2 mm and f ≥ 0.25 mm) events on 

the (a and b) daily, (c and d) hourly and (e and f) 15 minute time intervals at Upper Clearing for 

2005-2011. 
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3.2.2 Hydrometeor Temperature and Precipitation Phase Relationship 

Figures 3.4 and 3.5 show that in the case of the sample datasets there is no distinct phase change 

measured at ௜ܶ ൌ 0 and so no strictly physical calculation of phase is possible using Equation 

2.17. The ௜ܶ transition range is due to variability in local precipitation and meteorological 

conditions over the observation intervals, lack of thermodynamic equilibrium in falling 

hydrometeors, errors in physical understanding and/or measurement errors. To relate the ௜ܶ to 

precipitation phase while taking into account these uncertainties, the fraction of precipitation as 

rainfall, ௥݂, was calculated from UC observations for each 0.1 °C ௜ܶ increment. Rainfall fraction 

is expressed as: 

 
௥݂ሺ ௜ܶሻ ൌ

∑ ሺ݉݉ሻ்೔݈݈݂ܽ݊݅ܽݎ
∑ ሺ݉݉ሻ்೔݈݈݂ܽ݊݅ܽݎ ൅ ∑ ሺ݉݉ሻ்೔݈݈݂ܽݓ݋݊ݏ

 
(3.1)

where ௜ܶ is the mean temperature of each 0.1 °C ௜ܶ increment. The shape of the measured 

relationship between ௜ܶ and the rainfall fraction, ௥݂, appeared to be sigmoidal and so was fitted to 

the following function: 

 
௥݂ሺ ௜ܶሻ ൌ

1
1 ൅ ܾ כ ்ܿ೔ 

(3.2)

where b and c are coefficients and ௜ܶ is the hydrometeor temperature defined in Equation 2.17. 

 

The rainfall ratios versus ௜ܶ at UC for 2005 to 2011 are used to fit Equation 3.2 curves with a 

nonlinear least square approach, using the nls function in R, over five time intervals as plotted in 

Figure 3.6. The proposed semi-physical model was fitted using the UC dataset and then validated 

with the FR and HM datasets at 15 minute, hourly and daily time intervals. The BGSI dataset 

was included in the validation of the daily time interval. Performance was assessed with the root 

mean square difference (RMSD) and mean bias (MB): 

 
ܦܵܯܴ ൌ ඨ∑ሺܺ௦ െ ܺ௢ሻଶ

݊  
(3.3)

 
ܤܯ ൌ

∑ܺ௦
∑ܺ௢

െ 1 
(3.4)

Where ܺ௢ and ܺ௦ are observed and simulated values and ݊ is the number of values. The RMSD 

is a weighted measure of the difference between observation and simulation and has the same 

units as the observed and simulated values. The MB indicates the ability of the relationship to 
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identify precipitation phase; positive or negative values of MB imply systematic over prediction 

or under prediction, respectively, of simulated values with respect to observations. The values of 

b and c and the RMSD and MB for each relationship are presented in Figure 3.6. The ௜ܶ 

transition range and scatter increases with the time interval. The same methodology was used to 

fit curves with respect to ௔ܶ (Figure 3.7) to see if ௜ܶ, which varies with degree of saturation, 

makes any difference in partitioning precipitation as most precipitation events occur in saturated 

or near saturated conditions. The ௜ܶ relationships are stronger at all timescales analyzed as they 

have lower RMSD and MB values than the ௔ܶ relationships. Combining Equation 2.17 and 

Equation 3.2 yields a semi-physical relationship for the rainfall ratio that relies on the 

psychrometric energy balance calculation of ௜ܶ and fitting to adjust for scatter due to time scale, 

observation error, deviation from thermodynamic equilibrium assumptions and other factors. The 

proposed model is hereafter referred to as PSY. Although PSY is fitted to measured data, its 

physical basis should provide robustness in application to other environments and the temporal 

scale dependence of the model is useful in applying it to observations at differing intervals. 
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Figure 3.6: Hydrometeor temperature ( ௜ܶ) and precipitation phase for the Upper Clearing (2005-

2011) and the root mean square difference (RMSD) and mean bias (MB) of the fitted 

relationship for (a) 15 minute, (b) hourly, (c) 3 hour, (d) 6 hour and (e) daily time scales. 
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Figure 3.7: Air temperature ( ௔ܶ) and precipitation phase for the Upper Clearing (2005-2011) and 

the root mean square difference (RMSD) and mean bias (MB) of the fitted relationship for (a) 15 

minute, (b) hourly, (c) 3 hour, (d) 6 hour and (e) daily time scales. 
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3.2.3 Phase Method Intercomparison 

The proposed semi-physical psychrometric energy balance relationship fitted to UC (Equation 

3.2) was tested and compared to the other hydrological approaches for phase estimation, 

described in the literature review (T0, UBC, HSPF and Kienzle), using observations from FR, 

HM and BGSI. An additional method utilising a single ௜ܶ threshold ( ௧ܶ ൌ  ܥ0° ௜ܶ) is included and 

is hereafter referred to as Ti0. The validation of the proposed method at FR (high elevation) and 

HM (low elevation) sites tested the performance of phase partitioning methods at varying 

elevations, and the use of the BGSI data tested the relationships outside of the research basin. All 

of the comparison methods were originally developed for the daily time scale, making 

application to sub-daily timescales potentially problematic. All methods were employed on daily, 

hourly and 15-minute time steps. PSY is temporally scale dependent thus the b and c parameters 

were varied for each time step length.  

 

The RMSD and MB statistics for the modelled phase methods are shown for calibration datasets 

in Figure 3.8 and validation datasets in Figure 3.9. With the exception of Kienzle_adj and PSY, 

which were fitted to UC data, all other methods used default values of their parameters. The 

calibration comparison results, plotted in Figure 3.8, show that the semi-physical PSY method 

works best for daily time scales. At hourly intervals, the Kienzle methods worked equally well, 

with Kienzle_adj showing slightly better scores for RMSD and the Kienzle having a better MB. 

For the 15 minute scale the semi-physical PSY method worked best, showing better scores for 

RMSD and the Kienzle having slightly better MB values. Kienzle can have better performance 

than the calibrated Kienzle_adj as fitted parameters are determined visually from a plot rather 

than through a formal calibration technique that optimises an objective function. The weak 

physical basis of the ௔ܶ-phase relationship makes Kienzle and its calibration approach 

inconsistent and unreliable. Assessing the performance of the method across time scales is not 

possible for RMSD as varying the time interval changes the properties of the dataset. Decreasing 

the time interval leads to a larger sample size, more time steps, and a smaller error for each time 

interval; less precipitation in smaller time intervals reduces the error. However, the MB values 

are comparable between time scales. 
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Figure 3.8: Precipitation phase determination methods intercomparison at calibration site (UC) 

with statistics against observations showing (a) root mean square difference (RMSD) and (b) 

mean bias (MB). The best result for each time interval and test is denoted by an arrow. 

The comparison of phase partitioning methods plotted in Figure 3.9 shows that Kienzle_adj and 

PSY perform better using calibration than without. On the daily time interval UBC was most 

accurate, though its MB performance degraded over shorter time intervals. The failure of the 

UBC method on the sub-daily scale illustrates the sensitivity of phase identification to the time 

interval. The UBC method fails when the observed transition range narrows, for the sub-daily 

time intervals. Omitting UBC due to its degraded performance at short time intervals, the semi-

physical PSY model is the most accurate model for the daily and hourly intervals, showing that 

its physical basis provides a robustness that transcends site characteristics, time scales and minor 

calibration. 
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Figure 3.9: Precipitation phase determination methods intercomparison at validation sites (FR, 

HM and KFS) with statistics against observations showing (a) root mean square difference 

(RMSD) and (b) mean bias (MB). The best result for each time interval and test is denoted by an 

arrow. 

3.3 Discussion 

3.3.1 Precipitation Phase Dynamics 

The temporal scale dependence of precipitation affects its estimation. Over 15 minute intervals 

the mixed-phase transition ranges are quite small, being 2.9 °C and 4.9 °C for ௜ܶ and ௔ܶ, 

respectively, but are greater over the daily time intervals, at 7.6 °C and 10.7 °C respectively. 

Precipitation events are believed to occur under temperature conditions that differ from the mean 

daily temperature, leading to large differences in transition range. The uncertainty of the large 

daily mixed phase transition range needs to be understood to properly inform precipitation phase 

method selection. As improvements in hydrological modelling necessitate the use of high 

temporal resolution meteorological observations (Marks et al., 1999) there is little reason to use 

longer time scales given the much greater scatter in relationship between phase and ௜ܶ or ௔ܶ at 

longer intervals.  
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3.3.2 Model Intercomparison 

Quantifying the predictive power of the phase methods, while considering their complexities and 

data requirements, permits the relative merits of each method to be assessed. The commonly 

used T0 is simple to use and requires only ௔ܶ but provides a very poor approximation of phase. 

As suggested by Marks et al. (2013), replacing the ௔ܶthreshold with a ௜ܶ threshold appreciably 

increases the accuracy, but also requires humidity measurements. Daily ௔ܶmethods calibrated 

from large datasets (UBC) performed well and could outperform the proposed semi-physical 

psychrometric method on daily time steps where no local calibration was available. Where a 

local calibration was available, the Kienzle method performed well because of its non-linear 

functions, but at sites without local calibration its performance was degraded despite it being 

derived on the eastern slopes of the Canadian Rockies near to MC. The proposed semi-physical 

psychrometric energy balance model (PSY) was consistently the most robust and accurate at 

most time steps and sites and shows little loss in performance between calibration and validation 

sites. At sub-daily time intervals it consistently performed better than any other method. 

Although the model performance improved as time step length decreased there was little 

difference between hourly and 15 minute time steps, suggesting that use of hourly data is 

adequate for phase estimation using the PSY model. 
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CHAPTER 4. Uncertainty of Phase Methods in Hydrological 

Process Modelling 
 This chapter addresses the third objective to quantify the uncertainty that empirical phase 

methods introduce into cold regions hydrological modelling. The chapter describes the model 

used, the Cold Regions Hydrological Modeling platform (CRHM), the various sites modelled, 

the modelling approach, analysis methodology and the results. The discussion focuses on the 

hydrological response unit (HRU) and basin scale uncertainty relationships, assessment of model 

performance and limitations. 

4.1 Cold Regions Hydrological Model  
The Cold Regions Hydrological Modeling platform (CRHM) was used to assess the effect of the 

uncertainty of precipitation phase models on HRU and basin scale hydrological processes. 

CRHM is a physically based modular hydrological modeling platform based on decades of 

coordinated cold region hydrological process research in western and northern Canada (Pomeroy 

et al., 2007). The model’s process representations include blowing snow, snow interception, 

sublimation, snowmelt, infiltration into frozen soils, hillslope water movement over permafrost, 

actual evaporation, radiation exchange to complex surfaces, soil moisture balances and 

streamflow routing. CRHM links hydrologic processes to meteorological observations and basin 

characteristics and allows a model’s complexity to vary, from conceptual to physically-based 

representations, to match the data availability and uncertainty in the parameters of the basin in 

question. CRHM uses hydrological response units (HRU) which comprise spatial units of mass 

and energy balance calculations that are related to biophysical landscape units. The platform is 

useful for hydrological prediction, diagnosing the adequacy of hydrological understanding and 

for assessing the uncertainty of hydrological process algorithms.  

4.2 Hydrological Models 
The effect of precipitation phase uncertainty in hydrological modelling was assessed at HRU and 

basin scales. HRU scale simulations for four hydrologically distinct HRUs in a CRHM model of 

MC give insight into how differing hydrological process are affected by precipitation phase 

uncertainty. Basin scale CRHM models simulated the hydrology of several basins (Figure 4.1) 
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• snow albedo decay (Verseghy, 1991) 

• canopy processes including rainfall and snowfall interception, sublimation and sub-

canopy radiation (Pomeroy et al., 1998; Ellis et al., 2010) 

• blowing snow redistribution and sublimation (Pomeroy and Li, 2000) 

• snowmelt from an energy-balance model (SNOBAL) (Marks et al., 1998) 

• all-wave radiation for evapotranspiration (Granger and Gray, 1990)  

• frozen soil infiltration (Zhao and Gray, 1999) and rainfall infiltration (Ayers, 1959) 

• actual evapotranspiration from unsaturated surfaces using an energy balance and 

extension of Penman’s equation to unsaturated conditions (Granger and Gray, 1989; 

Granger and Pomeroy, 1997) and evaporation from saturated surfaces (Priestley and 

Taylor, 1972) 

• hillslope processes based on a soil moisture balance developed by Leavesley et al. (1983) 

and modified by Dornes et al. (2008) and Fang et al. (2010) to quantify surface –

groundwater interactions and sub-surface flow. The subsurface is divided into recharge 

and lower soil layers, which interact with surface hydrological processes. These upper 

layers in turn interact with a saturated groundwater layer. Lateral and vertical flows are 

calculated between all layers with an implementation of Darcy’s law taking into account 

differences in HRU slope, saturated hydraulic conductivities and pore size distribution (to 

quantify unsaturated hydraulic conductivities via the Brooks and Corey (1964) 

relationship)  

• water routing among the HRUs and between sub-basins using the Muskingum method 

(Chow, 1964)  

The precipitation phase methods were also evaluated at a HRU scale in MC to calculate the 

effect that phase uncertainty had on HRUs with differing dominant hydrological processes (as 

shown in Table 4.1). The HRU models were similar to the basin model except that: 

• UC did not include canopy processes or blowing snow redistribution and sublimation as 

it represents a forested clearing. 

• UF did not include blowing snow redistribution and sublimation as it represents a forest. 

• RT did not include canopy processes as it represents an exposed alpine ridge. 
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Figure 4.2: Flow chart of physically based hydrological modules for simulating hydrological 

processes at Marmot Creek (Fang et al., 2013). 

Table 4.1: MC HRU Scale Hydrological Response Units 

HRU Abbreviation Description Important 
Hydrological 
Processes 

Snow Course 
Point 

Spacing (m) 

Number of 
Snow Course 
Depth Points 

Upper 
Forest 

UF mid elevation 
forest (10000 
m2) 

interception 5 13-16 

Upper 
Clearing 

UC mid elevation 
clearing (10000 
m2) 

snow 
accumulation 

5 12-21 

Fisera 
Ridge 
Ridgetop 

RT upper elevation 
alpine ridgetop 
(36.9 m2) 

blowing snow 
(source) 

3-5 6-32 

Fisera 
Ridge 
Forest 

FO upper elevation 
tree line larch 
forest (15 m2) 

blowing snow 
(sink), 
interception 

3-5 4-19 
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The locations of these sites are shown in Figure 3.1. The soil moisture state variables, for the 

HRU and basin scale, were reinitialised from observations each model year. The years modelled 

spanned 2006-2011 for the entire basin and 2008-2011 for the HRU scale. Streamflow and snow 

survey data were used to evaluate the model performance. Streamflow data (1963-present) was 

taken from a Water Survey of Canada hydrometric station, which was a v-notch weir, at the 

mouth of the Marmot Basin. The snow courses consist of fixed transects with observation of 

snow depths (ruler) and densities (typically taken using ESC-30 snow tubes). The spacing and 

number of points varies considerably among survey sites and are summarized in Table 4.1. A 

density measurement was typically taken every three points but this varied by snow survey.  

4.2.2 Wolf Creek  

The Wolf Creek Research Basin (WC) is located in the Upper Yukon River Basin near 

Whitehorse, Yukon. The headwater basin, in the northern Coast Mountains, ultimately 

contributes to the regionally significant Mackenzie River system. The basin area is ~195 km2 and 

spans alpine tundra, subalpine taiga and boreal forest ecosystems. The climate is cold and dry. 

Climate normals (1971-2000) reported from the Whitehorse International Airport (WIA), located 

15 km north of WC, show the daily annual mean ௔ܶ value is 0.7 °C with the coldest (January) 

and warmest months (July) having daily mean ௔ܶ values of -17.7 °C and +14.1 °C respectively 

(MacDonald et al., 2009). The annual precipitation is between 300 and 400 mm, of which 

approximately 40% is snowfall (Pomeroy and Granger, 1999). Hydrometeorological 

observations, by a consortium of researchers from Yukon Environment, Environment Canada 

and the University of Saskatchewan amongst others, began in 1993 in order to develop 

hydrological models suitable for the region (Pomeroy et al., 2010). Observations available for 

this analysis spanned 1994 to 2002. Pomeroy et al. (2010) give a complete discussion of WC 

model setup and parameter selection. The WC model is much simpler than the MC model as 

there is larger parameter uncertainty due to less information on the spatial distribution of 

hydrologically relevant biophysical factors, a smaller number of observation sites and the larger 

basin area negating the advantages of more HRUs and complexity. The hydrological processes 

that the WC model calculates are similar to the MC model with the only differences being:  

• incoming shortwave radiation is estimated with a semi-empirical approximation 

(Annandale et al., 2004, Shook and Pomeroy, 2011) 
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• snowmelt calculated with the Energy-Budget Snowmelt Model (Gray and Landine, 1988) 

• snow albedo calculated with method from Gray and Landine (1987) 

• soil routine modified by Dornes et al. (2008) for tundra soils 

• all routing quantified with Clark’s lag and route algorithm (Clark, 1945) 

Only three HRUs are utilized (Alpine, Tundra and Shrub) which correspond to the ecosystem 

units determined by Janowicz (1999).  

4.2.3 Granger Basin 

Granger Basin (GB), a small (8 km2) alpine sub-basin of WC, was also modelled. The GB model 

was developed to study snow processes, redistribution and melt, in subarctic environments 

(Dornes et al., 2008; MacDonald et al., 2009). The model uses five HRUs which comprise the 

upper basin, plateau, valley bottom, north and south facing slopes. As well as the differences in 

HRUs and basin size, the GB model differs from the WC model in that it does not include the 

CRHM canopy module due to the lack of forest cover in GB. A complete discussion of model 

setup and parameter selection is given by Dornes et al. (2008), MacDonald et al. (2009) and 

Pomeroy et al. (2010). Modeled water years spanned 1999-2001.  

4.2.4 Bad Lake 

Bad Lake (BL) is an internally drained basin near Totnes in southwestern Saskatchewan. The 

Creighton tributary of the basin (11.4 km2) was the site of an International Hydrological Decade 

research basin that had observations from the 1960s to 1980s (Figure 1). The Creighton tributary 

basin is dominated by silty clay and clay loam soils with ~85% of the basin area consisting of 

cultivated agricultural land with the remainder being grassland (Gray et al., 1985). The modeled 

Creighton tributary is characterized by poorly drained level open land and highland with rolling 

topography. The tributary is drained by a grassland ‘coulee’, a sharply incised valley in the 

upland plain. Like most prairie streams it flows intermittently with the majority of discharge 

associated with the snowmelt period. The basin is semi-arid with ~300 mm of annual 

precipitation (Gray and Granger, 1986). The BL model quantified the following hydrological 

processes for a prairie environment:  

• incoming radiation to slopes (Garnier and Ohmura, 1970) 

• snow albedo calculated from method from Gray and Landine (1987) 

• blowing snow redistribution and sublimation (Pomeroy and Li, 2000) 
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• snowmelt calculated with the Energy-Budget Snowmelt Model (Gray and Landine, 1988) 

• snowmelt frozen soil infiltration (Zhao and Gray, 1999) and rainfall infiltration (Ayers, 

1959)  

• actual evapotranspiration from unsaturated surfaces using an energy balance and 

extension of Penman’s equation to unsaturated conditions (Granger and Gray, 1989; 

Granger and Pomeroy, 1997)  

• soil moisture balance based on Leavesley et al. (1983) which calculates the soil moisture 

balance, groundwater storage, subsurface and groundwater discharge, depressional 

storage, and runoff for control volumes of two soil layers, and a groundwater layer 

• surface water routed with the Clark’s lag and route algorithm (Clark, 1945)  

For a complete discussion of model setup and parameter selection readers are directed to 

Pomeroy et al. (2007). Modeling spanned the 1974 and 1975 water years. 

4.3 Methodology 

4.3.1 Precipitation Phase Determination in CRHM 

Selected precipitation phase methods were implemented in CRHM to understand their 

differences and uncertainty when used in hydrological process estimation. The standard CRHM 

model structure uses a double threshold approach whereby a lower temperature (tmax_allsnow) 

defines all precipitation as snowfall and an upper temperature (tmax_allrain) defines all 

precipitation as rainfall, with linear interpolation between the two defining mixed phase. A single 

threshold can be defined with this structure when the tmax_allsnow and the tmax_allrain 

parameters are the same. Phase methods that do not fit this structure can be implemented rapidly 

using the macro feature in CRHM. The phase methods implemented in the CRHM models were 

the single threshold air temperature (T0), the UBC double threshold and the proposed 

psychrometric energy balance model (PSY). All methods were implemented through 

manipulation of the tmax_allsnow and the tmax_allrain parameters with the exception of PSY 

which was implemented through the macro feature (see Appendix A for the macro). These 

methods are plotted in Figure 4.3a as rain ratio versus ௔ܶ; as PSY is a psychrometric function the 

figure includes PSY rain ratio for several values of relative humidity. 
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Figure 4.3: (a) Specific precipitation phase methods implemented in CRHM and (b) range of air 

temperature ( ௔ܶ) methods to evaluate uncertainty (all permutations of tmax_allsnow (0 °C to 2.5 

°C) and tmax_allrain (0 °C to 6 °C) parameters for every 0.5 °C interval) plotted as rain ratio 

versus air temperature. 

4.3.2 Uncertainty analysis 

To quantify the uncertainty of ௔ܶ based models all permutations of tmax_allsnow (0 °C to 2.5 

°C) and tmax_allrain (0 °C to 6 °C) parameters for every 0.5 °C interval, for a total of 63 

combinations, were used to run CRHM, as shown in Figure 4.3b. This range in parameters 

corresponds to the transition range reported by Auer (1974) and many commonly implemented 

precipitation phase partitioning methods (Wen et al., 2013). The uncertainty of the hydrological 

processes as a result of varying the ௔ܶ methods, hereafter uncertainty, is calculated as follows: 

 
ݕݐ݅݊݅ܽݐݎ݁ܿ݊ݑ ൌ

∑ ሺݔܽܯ௜ െ ௜ሻ௡݊݅ܯ
௜ୀଵ

݊  
(4.1)

Where ݊݅ܯ and ݔܽܯ refers to the lowest and highest values of a model output variable for each 

time step from the 63 model runs, ݅ is the index (timestep) of the value and ݊ is the number of 

values (timesteps). The units of each uncertainty are the same as for the hydrologic variable. The 

hydrologic variables considered are summarized in Table 4.2. The total and peak volumetric 
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discharge vary with basin size and climate and therefore the uncertainty for discharge was 

normalized by the basin area expressing volumetric discharge (and volumetric peak) as discharge 

with units of depth (mm). The uncertainty and differences between specific methods are 

summarized as mean water year (October 1 to September 30) values. 

 

Table 4.2: Hydrologic Variables Considered 

Variable Units Description 

Rain Ratio % Rainfall percentage of precipitation  

Daily Runoff mm Cumulative daily runoff * 

Daily Discharge mm Daily discharge (basin discharge as depth = discharge/basin 

area)** 

Peak Discharge mm Greatest observed water year daily discharge** 

Peak Discharge Day Days Date of greatest observed water year daily discharge** 

Peak SWE mm Maximum annual value of SWE 

Snow Free Date Days First day in spring when SWE reaches zero (even if 

subsequent snow accumulation takes place) 

Snow Cover Duration Days Number of days each water year in with snow on ground, 

including days of intermittent snowcover in summer 

*HRU scale only. Runoff quantifies HRU outflows, **Basin scale only. Discharge quantifies all 

HRU outflows at basin outlet. 

 

There is a large body of literature on parameter uncertainty in hydrological models (Beck 1987; 

Melching 1995; Tung 1996; Mcintyre et al., 2002). Common uncertainty estimation techniques 

include the computationally intensive Monte Carlo methods and generalised likelihood 

uncertainty estimation (GLUE) (Mcintyre et al., 2002). These methods are effective in 

quantifying the range of values a suite of parameters can have that can lead to adequate 

representation of hydrological processes in a calibrated model. The physical basis of CRHM 

means that the model is not calibrated. All parameters, other than the precipitation phase 

parameters, did not change throughout the modelling exercise. Monte Carlo and GLUE methods 

are inappropriate to analyse the uncertainty introduced by ௔ܶ phase methods as the range of 

possible ௔ܶ thresholds is known from observation, and does not need to be estimated, and the 
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variation in hydrological processes is what is of interest. A Monte Carlo approach that randomly 

samples a parameter distribution has the potential to be useful in this uncertainty analysis. But, as 

the range in parameters values can be limited by observations, and the range of model output for 

this parameter space is of interest, the complexities of a Monte Carlo approach are not beneficial 

and a simple approach that regularly samples the parameter space, as discussed previously, is 

justified.  

4.3.3 Performance Evaluation 

To assess the performance of a variety of precipitation phase methods, the model outputs were 

compared to observations. The MC site dataset was used to assess performance as it has an 

extensive dataset of reliable streamflow and snow survey observations. The model performance 

was assessed by quantifying the ability of the model to simulate SWE at the HRU scale and 

discharge at the basin scale at MC. The model’s performance was assessed with the described 

RMSD and MB. 

4.4 Results 

4.4.1 Uncertainty at HRU Scales 

The effects of phase methods at a HRU scale were assessed using selected HRUs in MC. The 

uncertainties of the methods are summarised in Tables 4.3 and 4.4 respectively. The largest 

consequence of varying the phase methods is to change the rain ratio (Figure 4.4). At a HRU 

scale, the uncertainty can be large with the greatest uncertainty occurring during the summer 

months. During winter months less uncertainty is estimated at UF and UC with even less 

uncertainty estimated at RT and FO. Over the modeling period, uncertainty was slightly greater 

at UF and UC (representing 18.5% and 20.2% of their respective rain ratios) than RT and FO 

(17.9% and 17.2% of their rain ratios). The UBC and PSY models (Table 4.4) have smaller rain 

ratios than T0 with the differences greater in summer months and less during winter months at 

UF and UC and nearly identical at RT and FO. Slight differences between UBC and PSY are 

evident with PSY rain ratios being slightly greater for summer months and smaller for shoulder 

(fall and spring) and winter months.  
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Table 4.3: Uncertainty of air temperature methods in hydrological process simulations. 

Variable Units Uncertainty 
HRUs  UC UF RT FO 
Rain Ratio % 20.2 18.5 17.2 17.9 
Daily Runoff mm 0.47 0.21 0.58 1.48 
Peak SWE mm 43.9 18.6 63.8 159.6 
Snow Free Date Days 25.5 20.2 15.5 20.8 
Snow Cover duration Days 35.8 30.5 28.2 35.2 
Basins  MC GB WC BL 
Rain Ratio % 18.3 18.6 16.4 10.5 
Daily Discharge mm 0.40 0.12 0.03 0.15 
Peak Discharge mm 4.6 6.6 1.0 2.2 
Peak Discharge Date Days 7 10.0 5.9 0.0 
Peak SWE mm 35.4 7.4 4.2 2.0 
Snow Free Date Days 16.2 5.7 11.4 -2.0 
Snow Cover duration Days 24.8 16.3 35.2 3.0 

Note: values correspond to the mean water year uncertainty and bold values represent the 

greatest uncertainty. 

 

The uncertainty in the daily runoff, as plotted by Figure 4.5, varies directly with the amount of 

runoff, as both greatest in spring and summer months. The uncertainty range for annual runoff 

over the modeling period is quite large, as is shown in Table 4.3. The UBC and PSY models give 

similar results and generally estimate more runoff than T0, although UBC simulated runoff 

events during the summer months at UC and UF that PSY and T0 do not. 

 

The uncertainty in daily SWE increases over the course of the winter season and peaks during 

the spring snowmelt, and is shown in Figure 4.6. The uncertainty in the peak SWE can vary by 

up to 160 mm (Table 4.3). The annual snow free date and snowcover duration can vary 

significantly by up to 26 and 36 days respectively at UC. The T0 method coincides with the 

lower bound of the uncertainty, and PSY model consistently simulates higher SWEs with a later 

and higher peak SWE and a later snow free day. UBC simulates a slightly higher later peak SWE 

than T0.  
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Table 4.4: Method comparison of phase methods in hydrological process simulations. 

Variable Units UBC T0 
HRUs  UC UF RT FO UC UF RT FO 
Rain Ratio % -2.3 -3.8 -2.7 -2.9 7.7 5.9 6.8 7.0 
Daily Runoff mm 0.003 0.02 0.04 0.01 -0.08 -0.03 -0.06 -0.11 
Peak SWE mm -42.3 -21.4 -41.7 -67.7 -59.7 -31.3 -71.3 -127 
Snow Free Date Days -14.8 -10.2 -6.8 -9.0 -28.5 -21.2 -15.5 -20.5 
Snow Cover duration Days -6.0 -2.2 0.2 -10.2 -25.8 -17.5 -16.2 -27.8 
Basins  MC GB WC BL MC GB WC BL 
Rain Ratio % -3.4 -5.1 -2.0 -1.40 5.9 5.5 5.7 2.7 
Daily Discharge mm -0.05 -0.04 -0.003 0.04 0.03 0.03 0.003 -0.01 
Peak Discharge mm -0.6 -3.0 -0.2 -0.2 0.4 2.7 -0.2 -1.2 
Peak Discharge Date Days 1.3 4.70 -0.2 0.0 -2.3 -5.3 -4.4 -0.5 
Peak SWE mm -17.4 0.0 0.4 0.2 -31.7 -4.6 -2.5 -1.0 
Snow Free Date Days -4.2 2.0 -1.4 -1.0 -14.0 -3.0 -8.1 0.5 
Snow Cover duration Days 0.2 3.3 -11.2 0.0 -14.0 -5.3 -33.2 -1.5 
Note: UBC and T0 values presented as absolute difference from PSY 
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Figure 4.4: Monthly rain ratio for (a) Upper Forest (1848 m), (b) Upper Clearing (1845 m), (c) 

Fisera Ridgetop (2323 m), and (d) Fisera Forest (2294 m). Uncertainty is plotted as grey area 

overlain by UBC (green), PSY (blue) and T0 (red) lines. 
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Figure 4.5: Daily runoff for (a) Upper Forest (1848 m), (b) Upper Clearing (1845 m), (c) Fisera 

Ridgetop (2323 m), and (d) Fisera Forest (2294 m). Uncertainty is plotted as grey area overlain 

by UBC (green), PSY (blue) and T0 (red) methods. 
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Figure 4.6: Daily SWE for (a) Upper Forest (1848 m), (b) Upper Clearing (1845 m), (c) Fisera 

Ridgetop (2323 m), and (d) Fisera Forest (2294 m). Uncertainty is plotted as grey area overlain 

by UBC (green), PSY (blue) and T0 (red) methods. Observed SWE is plotted as black dots. 

4.4.2 HRU Scale Performance 

Simulations of SWE over the four HRUs in question show large uncertainty that directly affects 

the performance of SWE simulations. The uncertainty is greater in some years than others 

(Figure 4.6b). Figure 4.6b shows little uncertainty in 2009, but much greater uncertainty in 2010. 

This difference is believed to be due to more precipitation events occurring near the phase 

transition thresholds increasing the uncertainty in rain ratio, Figure 4.4b and in turn snow 
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accumulation, Figure 4.6b. The statistical performance of a select group of methods is presented 

in Figure 4.7. Statistical performance varies among the HRUs with the smallest MB at UF and 

RT followed by UC and FO. The RMSD is similar to MB with best performances at UF followed 

by UC and RT, which are very similar, with a large increase in error at FO. The FO RMSD and 

MB values show that the performance for the FO HRU model is degraded relative to other 

HRUs. The relative performance of the methods with respect to one another at these HRUs 

shows some patterns. Generally UBC (T0) showed better performance at UC (FO). Method 

performance was less clear at UF and RT where T0 produced smaller RMSD while UBC 

produced smaller MB. PSY, which overestimates snow accumulation, consistently shows the 

poorest statistical performance.  

  
Figure 4.7: (a) Root mean square error (RMSD) and (b) mean bias (MB) of UBC (green), PSY 

(blue) and T0 (red) methods to simulate SWE on the HRU scale at various HRUs including 

Upper Forest (UF), Upper Clearing (UC), Fisera Ridge: Ridgetop (RT), and Fisera Ridge: Forest 

(FO). The arrows show the methods having best performance for each test and HRU. 

4.4.3 Uncertainty at Basin Scales  

The effects of differing phase methods on basin scale models were assessed at MC, WC, GB and 

BL. The uncertainty for the ௔ܶ models is summarised in Table 4.3 and the differences among 
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methods are summarised in Table 4.4. As in the HRU tests, the phase method used has a large 

effect on the rain ratio, weighted by area, at the basin scale as shown in Figure 4.8. The 

uncertainty varies seasonally, showing the greatest uncertainty over the summer months for the 

MC, GB and WC models. The BL model is different from the others as it has the greatest 

uncertainty in rain ratio during the shoulder months due to the extreme climate. The WC and GB 

models show reduced rain ratio uncertainty in the winter months. The uncertainty due to the ௔ܶ 

methods across the modeling period showed the rain ratio varied the most in the MC model and 

least in the BL model. UBC and PSY consistently estimated a smaller rain ratio than did T0. The 

differences among the models were greater in summer months for the MC, GB and WC models 

while differences were minimal during winters in the GB, WC and BL models. In the MC model 

the PSY estimated a smaller rain ratio than did UBC during the winter months.  

 

The uncertainty in the daily basin discharge, as shown in Figure 4.9, is similar to the runoff 

patterns observed on the HRU scale in that it is related to the magnitude of modelled discharge; 

both the discharges and uncertainties are greatest in spring and summer months. The uncertainty 

in the discharge over the modeling period is smaller in magnitude than that associated with HRU 

scale runoff and is greatest in the MC model. The T0 tends to estimate more discharge, while 

UBC tends to estimate less than PSY. The BL model is opposite with T0 simulating less 

discharge (-0.01 mm) and UBC simulating more discharge (0.04 mm) relative to PSY. The 

uncertainty in absolute peak discharge is greatest in the GB model. 

Compared to PSY, UBC estimates a lower annual peak and T0 tends to estimate a larger value 

for the annual peak with the exception of the WC and BL models which show peaks -0.2 and 1.2 

mm less than PSY. The uncertainty of the annual timing of the discharge peak varies the most, 

by 10 days in the GB model. The T0 method simulates an earlier annual peak relative to PSY. 

The UBC method shows variability with respect to PSY in that annual peak occurs 1.3 and 4.7 

days after for the MC and GB models with minimal difference for the WC model. The BL model 

shows very little uncertainty in terms of annual peak timing.  
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Figure 4.8: Monthly rain ratio for (a) Marmot Creek, (b) Granger Basin, (c) Wolf Creek, and (d) 

Bad Lake. Uncertainty is plotted as grey area overlain by UBC (green), PSY (blue) and T0 (red) 

methods. 
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Figure 4.9: Daily discharge for (a) Marmot Creek, (b) Granger Basin, (c) Wolf Creek, and (d) 

Bad Lake. Uncertainty is plotted as grey area overlain by UBC (green), PSY (blue) and T0 (red) 

methods. 
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Figure 4.10: Daily SWE for (a) Marmot Creek, (b) Granger Basin, (c) Wolf Creek, and (d) Bad 

Lake. Uncertainty is plotted as grey area overlain by UBC (green), PSY (blue) and T0 (red) 

methods. 

Over the modeling period, the uncertainty of daily SWE, Figure 4.10, varied the most in the MC 

model. This observation is confirmed by the uncertainty of the peak SWE being greatest in the 

MC model with a value of 35.4 mm. As seen at the HRU scale, the T0 method coincides with the 

lower bound of the uncertainty. On average, UBC estimates less peak SWE in the MC model 

relative to PSY (-17.4 mm), in contrast to simulating very similar SWE at the GB, WC and BL 

models. Seasonally there is complexity in the UBC-PSY relationship as during the GB winters 
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PSY simulates greater, and in shoulder and summer seasons, less SWE. The annual snow free 

day and snowcover duration uncertainties also vary between basins. The uncertainty shows that 

annual snow free day varies the most (least) in the MC (BL) models. Both UBC and T0 annual 

snow free day tends to occur earlier than PSY. The uncertainty associated with the duration of 

annual snowcover on average varies by up to 36 days in the WC model. The T0 simulates annual 

snowcover duration that is shorter than those simulated by PSY, up to 33 days in the WC model. 

In contrast, UBC does not vary from PSY for the MC and BL models while duration is simulated 

to be 3 days longer for the GB model and 11 days shorter for the WC model.  

4.4.4 Basin Scale Performance 

To assess the basin scale performance of the precipitation phase methods, the MC basin 

discharge was simulated and compared to observations (Figure 4.11). Although continuous 

simulations were generated for MC, streamflow is only observed from May to October by a 

Water Survey of Canada gauge, so the statistical comparison was restricted to the open water 

season as plotted in Figure 4.11. Figure 4.12 shows that all methods overestimate discharge 

(RMSD and MB) as the CRHM model tends to overestimate the late season recession limb of the 

annual hydrograph. The best performance is found with the UBC method.  
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Figure 4.11: Marmot Creek observed discharge (black line) relative to modeled uncertainty for 

water years 2006 through 2011.  
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Figure 4.12: (a) Root mean square error (RMSD) and (b) mean bias (MB) of UBC (green), PSY 

(blue) and T0 (red) methods to simulate seasonal discharge on the basin scale over Marmot 

Creek.  

4.5 Discussion 
Varying the phase methods in a hydrological model changes the estimated quantities of rainfall, 

snowfall and total precipitation. The phase methods affect the timing of rainfall and snowfall, 

complicating the understanding of a hydrologic response to varying phase. The hydrological 

response to these changes varies considerably by basin and by variable. 

 

As discussed in Chapter 3, the PSY and T0 models tend to estimate more rainfall (and less 

snowfall) than double threshold models like UBC. The UBC identifies more precipitation as 

snowfall than T0, which identifies as rainfall all precipitation above 0 °C. The UBC and T0 

methods disregard the atmospheric humidity during precipitation and are difficult to directly 

relate to the PSY model, which includes RH. Generally PSY identifies more precipitation as 

rainfall than T0. In addition the smaller transition range from snowfall to rainfall for PSY begins 

and ends at lower ௔ܶ than UBC resulting in less precipitation being identified as snowfall with 

PSY (Figure 4.3a). 
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The identification of phase affects the amount of precipitation modeled, due to wind-induced 

undercatch, which is a consequence of the deformation of the wind field over a gauge orifice, 

causing displacement and acceleration of snow particles and reduced effective fall velocities 

(Thériault et al., 2012). Undercatch is often corrected for in hydrological modeling and varies 

with the amount of snowfall identified. The uncertainty of undercatch due to differing phase 

methods varies by basin as it is influenced by the wind speeds and the fraction of precipitation 

occurring near the transition range. Due to data limitations at Wolf Creek and Granger Basin, 

wind-induced undercatch was corrected by direct correlation to a corrected precipitation record 

at WIA prior to the CRHM runs. Only the Marmot Creek and Bad Lake CRHM models handled 

the undercatch correction, Marmot Creek with a method from MacDonald and Pomeroy (2007) 

and Bad Lake with a method from Goodison (1978), resulting in annual total precipitation 

differing by 20 mm and 12 mm between the UBC and T0 models for the basins respectively. 

4.5.1 HRU scale Relationships 
The influence of elevation on phase separation is apparent in Figure 4.4. As ௔ܶ generally 

decreases with elevation, due to adiabatic expansion, the warmer winter air temperatures at lower 

elevations are nearer the transition range leading to greater rain ratio uncertainty. Upper 

elevations sites show almost no uncertainty in winter as conditions are much colder than the 

phase thresholds.  

 

The high uncertainty of simulated runoff is largely due to how phase identification affects short-

term differences in runoff generation processes. Uncertainty in hydrological processes is 

determined by calculating the daily maximum and minimum output values from the range in ௔ܶ 

models for the variable of interest. As a result the timing of runoff can have a large role in 

increasing the uncertainty of runoff. If one model shows runoff occurring a day later than another 

then the runoff uncertainty for those two days will have a minimum value of 0 and a large 

maximum value on both days. The total runoff is closely associated with amount of snowmelt at 

MC which in turn can be related to the amount of snow accumulation and specific processes at 

work. The FO model, which simulates a treeline drift, shows the largest uncertainty, as blowing 

snow deposition is very sensitive to precipitation phase. RT (blowing snow source), UC (no 

interception) and UF (interception) show less runoff uncertainty. Hydrological processes which 
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remove mass (interception and blowing snow for source HRUs) lead to a reduction in uncertainty 

while processes that add mass (such as blowing snow for sink HRUs) are more sensitive to phase 

methods. 

 

The uncertainties depicted in Table 4.3 of peak SWE, snow free date and snowcover duration, 

demonstrate that RT and FO have the greatest uncertainty while UC and UF have the smallest 

uncertainty. This difference in uncertainty among the sites is due to the same processes affecting 

the runoff uncertainty described previously. The snow accumulations (due to snowfall and 

blowing snow) are typically greater at RT and FO while increasing their uncertainties. In 

addition, FO is a problematic HRU in the MC model. Treeline hydrology is very sensitive to 

blowing snow deposition and interception processes, making it difficult to parameterise. For 

example, the 2010 SWE is greatly overestimated by the model. Fang et al. (2013) investigated 

the model failure for this year at this HRU. A potential reason for the SWE overestimation is that 

the blowing snow processes in CRHM do not consider wind direction and in this year synoptic 

systems may have acted to vary wind direction from the normal, changing the upwind fetch area 

for FO (Fang et al., 2013). 

 

Among the PSY, UBC and T0 models at the HRU scale, T0 generally predicts more rainfall and 

less snowfall and runoff than UBC and PSY. The SWE simulations demonstrate the effect of 

these different PPM biases upon hydrological prediction. T0 estimates less snowfall than UBC, 

resulting in smaller SWE accumulation than UBC, as shown in Figure 4.3. By contrast PSY, 

which estimates smaller annual snowfalls than UBC but similar snowfall over the winter season, 

estimates greater SWE accumulation. This behaviour is due to PSY being dependent upon Ti in 

contrast to UBC which is dependent on Ta. The difference between Ti and Ta is primarily 

dependent upon RH but the magnitude of the difference increases with warming Ta. Thus winter 

snowfall identified by PSY will be similar to UBC in contrast to summer snowfall where PSY 

will predict less snowfall than UBC. PSY identifies slightly more snowfall during the snow 

accumulation season leading to greater estimates of SWE even though it does not identify greater 

annual snowfall.  
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4.5.2 Basin Scale Relationships 

The modeled basins vary in terms of climate, topography and area all of which influence the 

model structure and hydrological processes considered. The uncertainty due to the phase 

methods can be seen to be largely a function of climate and topography. WC, GB and BL are 

relatively cold and dry climates while MC is warmer and much wetter. MC, WC and GB have 

more relief than BL. WC is a large basin (195 km2) while MC, GB and BL are all relatively 

small basins. The MC model is the most complex, with 36 HRUs, followed by GB, with 5 HRUs 

and WC and BL (both having 3 HRUs). The small alpine basins, MC and GB, have the greatest 

uncertainty in terms of rainfall, snowfall and thereafter snow accumulation processes. The 

uncertainty of Marmot Creek (1600 m to 2825 m) and Granger Basin (1310 m to 2100 m) can be 

related to the lapse rates observed, or applied, to the elevation differences between HRUs. With a 

range of ௔ܶ spanning the elevations of a basin, phase methods, both ௔ܶ based and psychrometric, 

have a higher degree of probability than basins with little relief of varying precipitation phase 

identification across the basin at some elevations in many events. BL, which has little relief, has 

a much lower uncertainty as ௔ܶ is assumed to be uniform over the basin which reduces the 

uncertainty of rainfall, snowfall and snow processes. All other basins show long periods of phase 

uncertainty which coincide with large amounts of precipitation, but BL only shows a short period 

of phase uncertainty in the shoulder months that do not have large depths of precipitation or 

snowmelt. The duration of phase uncertainty at BL is reduced by the continental climate of the 

prairies which experiences very cold winter and hot summers with only limited periods of time 

near the phase thresholds. At a HRU scale, T0 tends to simulate greater values of rain ratio than 

PSY and UBC although at basin scales PSY rain ratio has greater values in summer and lower 

values in winter than UBC. PSY results in a sharper distinction in rainfall and snowfall between 

seasons compared to UBC and is more physically appropriate. 

 

The snow processes at MC, compared to other basins, are generally the most uncertain as a 

consequence of the direct impact of the increased uncertainty in rain ratio in this basin. The 

occurrence of most of this basin’s precipitation near the transition range means that the SWE 

simulations are more sensitive to phase methods than other basins. At MC PSY simulated greater 

peak SWE than did UBC followed by T0. In the GB and WC basins which have colder winters 

and cooler summers the UBC method simulates less SWE in winter and more in summer than 
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PSY. UBC assigns summer precipitation as rainfall less frequently than PSY due to the 

psychrometric nature of PSY which incorporates the lower summer relative humidities. BL 

shows very little uncertainty, except at the end of the spring melt, in the amount and number of 

snow free days or duration, due to the climatic extremes. By contrast, the high degree of 

uncertainty of snowcover duration for WC is attributed to the increased occurrence of snowfall 

being simulated in summer months due to the cooler weather in northern Canada. The 

uncertainty of snowcover duration and snow free date at MC is largely due to the occurrence of 

most precipitation occurring near the transition range, 60% of precipitation occurs between -5 °C 

and 5 °C at UC, thus any changes in method will have large impacts on the duration of 

snowcover.  

 

Daily discharge at MC and peak discharge and timing of peak at GB show much greater 

uncertainty than at other basins. This is believed to be a consequence of climate. MC consistently 

generates considerably more discharge, thus greater uncertainty, than the other basins which 

have ephemeral streamflow. By increasing the amount of snowfall and changing some snowfall 

events to rainfall-runoff events the model can simulate entirely new and separate discharge 

events in the ephemeral basins. Thus while the daily discharge may vary more at MC, which has 

more discharge to begin with, the relative differences in discharge for the basins with ephemeral 

streamflow is much larger. For MC, GB and WC basins, T0 produces the most discharge, and 

higher and earlier peak flows, followed by PSY and UBC implying that these models are able to 

produce more discharge with methods that simulate more rainfall. In addition the interaction of 

phase and precipitation intensity can be important. A high intensity precipitation event identified 

as snowfall will not have any effects on discharge processes as the snowfall will merely be added 

to the snowpack, while high intensity precipitation identified as rainfall results in high flow 

events to be simulated. The spring season in the western cordillera (where MC, GB and WC are 

located) is typically when high intensity precipitation events occur which coincides with a period 

of greater phase uncertainty amplifying the uncertainty of discharge from these alpine basins. 

The prairie basins such as BL are typically ineffective at transforming rainfall into discharge in 

the summer due to flat topography and soils with large water holding capacities. Therefore 

methods which identify more snowfall, UBC and PSY, will lead to greater discharge in prairie 

basins.  
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4.5.3 Model performance 

In the simplest case of the UC model (no interception or blowing snow) the methods that 

considered mixed phase (UBC) performed better than T0. For the other sites which address 

interception and blowing snow processes T0 performance is best. The increase in uncertainty due 

to additional processes masks the improvements in performance caused by using more accurate 

methods. 

 

CRHM has some difficulty in estimating the hydrograph correctly at MC (Figure 4.11) as it has a 

tendency to overestimate streamflow response to individual snowmelt or rainfall events and to 

underestimate the main snowmelt event and can be attributed to problems in the modeling of 

streamflow routing and soil water processes (Fang et al., 2013). Given that there are problems 

with timing in routing and groundwater processes, a more appropriate relationship to examine is 

the comparison of the seasonal observed versus estimated discharge. Most methods tend to 

produce more discharge than what is observed. In general T0 produces the most discharge 

followed closely by PSY and finally UBC, and therefore the methods which estimate the most 

rainfall will lead to greater discharge.  

 

Since CRHM is a physically based model it is useful to diagnose the adequacy of hydrological 

understanding (Pomeroy et al., 2007). Although empirical methods outperformed PSY this does 

not mean that empirical methods are necessarily more accurate as they require parameters which 

are unidentifiable. The range of appropriate rainfall and snowfall ௔ܶ threshold parameters is 

known but as phase- ௔ܶ relationships do not have a physical basis it is not possible to accurately 

determine these parameters for a given case. The simulation of hydrological processes is 

improved with the PSY phase model which is physically based and has no parameters to set; 

therefore no uncertainty. The elimination of a previously unknown parameter uncertainty with 

the PSY method constitutes an improvement in simulation which will lead to correction of 

previously unknown deficiencies.  

4.5.4 Uncertainty Attribution 

The uncertainty analysis attributed the differences between basins to the phase partitioning 

methods. The basins modelled all have different model structures, which may be a source of 
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some of the uncertainty observed, but these differences are considered negligible for two 

reasons. First, both small alpine basins (MC and GB) had the highest uncertainty even though the 

model structures are very different. This shows that the interaction between precipitation phase 

partitioning methods and basin physiography and climate are consistent regardless of model 

structure. Second, a test to compare BL to UC (a HRU of MC) with both models using the 

EBSM snowmelt module reveals the inability of EBSM to model the deep alpine snowcover; 

EBSM accumulated 2.5 times the snowpack of Snobal; the EBSM snowmelt and albedo models 

were developed for shallow prairie, not deep alpine, snowcovers. This shows that environments 

with different manifestations of the same hydrological processes need to be represented with the 

appropriate models otherwise the uncertainty due to model structure will overwhelm the 

uncertainty due to different phase partitioning methods. The uncertainty due to differences in 

model structure, when using the most appropriate process representations, will be secondary to 

the uncertainty due to the precipitation phase partitioning methods. 

4.5.5 Limitations 

The approach CRHM uses to assign precipitation phase and amounts are tied to limitations in the 

analysis of hydrologic uncertainty introduced by differing phase methods. To better assess the 

impact various methods have on precipitation phase and its uncertainty, CRHM should be run 

with an independently identified phase dataset. Comparing the independently identified phase 

method output to other phase methods would give stronger estimates of uncertainty, which is not 

possible for basins, or sites, where the precipitation phase is not observed. Another limitation 

exists in the temporal resolution of precipitation data. MC has hourly precipitation data but GB, 

WC and BL only have daily precipitation data. By using daily precipitation divided across all 

hours of the day, the mass of water that is entering the basin is conserved but the uncertainty in 

phase identification is increased. A precipitation event is likely occurring over a period of time 

shorter than 24 hours, at varying intensities, and thus daily meteorological conditions that 

identify phase may not correspond to the actual, phase controlling, meteorological conditions in 

which the precipitation occurred. The time scale dependence of precipitation phase identification 

demonstrates differences between daily and hourly phase methods of up to 5% of the annual 

precipitation. 



65 
 

CHAPTER 5. Conclusions 
Accurate determination of precipitation phase is important for quantifying snow processes and 

rainfall-runoff relationships. Falling hydrometeors are subject to turbulent transfer of heat and 

water vapour with the atmosphere and so ௜ܶ, as estimated from the psychrometric mass and 

energy balance, is a more physically based method of calculating precipitation phase than ௔ܶ 

alone. A psychrometric energy balance calculation of ௜ܶ was developed from existing blowing 

snow sublimation turbulent transfer equations. The relationship between phase and ௔ܶ or ௜ܶ was 

examined for several years using a high quality dataset from a Canadian Rockies catchment and 

found to be time scale dependent, in that there was a smaller mixed-phase ௜ܶ transition range at 

shorter time intervals; the transition range was 2.9 °C versus 7.6 °C for ௜ܶ for 15 minute and 

daily scale respectively. This suggests that precipitation phase methods, which can adjust for the 

time step of observations, have increased power at shorter time steps. To take advantage of this 

temporal scale dependence, the values of ௜ܶ estimated by the psychrometric mass and energy 

balance equation fitted to observations of precipitation phase were used to estimate rainfall 

fraction at various time steps using a sigmoidal function whose parameters are dependent on the 

time interval. A detailed examination of precipitation phase dynamics at several elevations in a 

Canadian Rockies catchment showed that this new method can be a stronger predictor of phase 

than ௔ܶ, with the degree of improvement increasing as the length of the time interval decreases.  

 

Many methods have been used in hydrological modeling to identify precipitation phase and the 

uncertainty a selection of these methods introduce into hydrological modelling was compared 

over a variety of basins and scales. The magnitude of the uncertainty associated with ௔ܶ models 

is up to 20% for rain ratio, 1.5 mm for mean daily runoff, 0.4 mm for mean daily discharge and 

160 mm of peak SWE. The timing of selected variables showed considerable uncertainty with 

variations of up to 36 days for the length of snowcover duration, 26 days for snow free date and 

10 days for date of peak discharge. The magnitude of the uncertainty among basins was largely a 

function of climate and topography. The most sensitive basins, due to their having more 

precipitation occurring in the transition temperature range and their topography influencing ௔ܶ 

lapse rates, were MC and BG, which are small alpine basins. In contrast BL, being flatter and 

having a more extreme climate showed the least uncertainty in most variables. Generally, those 
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HRUs which had processes that added mass (FO, which was a blowing snow sink) had greater 

uncertainty than those that had processes which removed mass (UF, which had snow interception 

and RT, which was a blowing snow source). Statistical assessment of the performance of the 

HRU scale SWE simulations did not identify any method to be consistently better than the 

others; PSY and UBC were very similar and T0 performed better in some situations. Assessment 

of the simulated seasonal discharges at MC showed that all methods overestimated discharge, 

with UBC doing the best. The uncertainty introduced with setting unidentifiable parameters for 

empirical methods is reduced with PSY, which has no parameters to set. The relationship 

between empirical and physically based methods is temporally variable resulting in complex 

relationships between empirically and physically based hydrologic simulations. Errors in the 

identification of precipitation phase constitute a significant source of potential error in 

hydrological modeling and this uncertainty has been underappreciated in previous research.  

 

Although PSY was shown to work well at MC the spatial transferability of the model needs 

further study. Testing of PSY against precipitation phase observations in areas that experience 

differing synoptic and climatic conditions is needed. Potential sites are limited to locations where 

high quality hydrometeorological observations exist, especially observations of precipitation 

phase. By extending application of the PSY to other regions an understanding of its spatial 

transferability will be gained. The semi-physical basis of the method and its testing in MC 

suggest that it will be a more reliable method in other locations but this needs to be confirmed.  

 

A semi-physical precipitation phase model, rather than empirical ௔ܶ methods, provides more 

accurate and less uncertain estimates of precipitation phase. The dynamic nature of meteorology 

within precipitation events affects the on accuracy of methods; thus phase should be estimated on 

hourly time steps, which corresponds to the recording interval of most modern meteorological 

stations. The uncertainty introduced by phase methods is observed to propagate and increase in 

magnitude through the model with each transformation of mass, from snowfall to snowpack to 

snowmelt discharge. The quantification of the phase uncertainty clearly shows that the 

hydrological modeling community needs be aware of the effects, uncertainty and errors 

associated with using ௔ܶ phase methods. The proposed semi-physical psychrometric method 

provides a more accurate alternative that can be easily implemented in hydrological models. 
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APPENDIX A: Hourly Psychrometric Phase Parameterisation: 

CRHM Macro 

Rain_Snow_Icebulb PH 03/21/2013 
declgetvar,*, hru_t, (°C) 
declgetvar,*, hru_rh, (%), 
declgetvar,*, hru_p, (mm/int) 
declputvar, *, hru_rain,(mm/int) 
declputvar, *, hru_snow,(mm/int) 
declputvar, *, cumhru_rain,(mm) 
declputvar, *, cumhru_snow,(mm) 
declputvar, *, hru_newsnow,(), int 
declvar,hru_icebulb, NHRU, "Estimates ice bulb temperature", (°C) 
declvar,ratio, NHRU, "rain/snow ratio", (%),Int 
decllocal,D, NHRU, "Diffusivity", () 
decllocal,L, NHRU, "Latent Heat", (J/kg) 
decllocal,lamda, NHRU, "thermal conductivity", () 
decllocal,pta, NHRU, "atmospheric specific humidity", () 
decllocal,Ti1, NHRU, "Initial guess of Ti", () 
decllocal,T1, NHRU, "Newton-Raphston iteration slope1", () 
decllocal,T2, NHRU, "Newton-Raphston iteration slope2", () 
decllocal,Ti2, NHRU, "Ti resulting from Ti1", () 
decllocal,crit, NHRU, "absolute value of crit1 threshold", () 
decllocal,crit1, NHRU, "difference between Ti1 and Ti2", () 
decllocal,Tk, NHRU, "Temperature in Kelvin", () 
decllocal,a, NHRU, "Newton-Raphston term for Ti1", () 
decllocal,b, NHRU, "Newton-Raphston term for T1", () 
decllocal,c, NHRU, "Newton-Raphston term for T2", () 
command 
Tk[hh] = hru_t[hh]+273.15 
D[hh] = 0.0000206*(Tk[hh]/273.15)^1.75 
lamda[hh] = 0.000063*Tk[hh]+0.00673 
pta[hh] = 
18.01528*((hru_rh[hh]/100)*0.611*exp((17.3*hru_t[hh])/(237.3+hru_t[hh])))/(0.00831441*(hru
_t[hh]+273.15))/1000 
if(hru_t[hh] > 0.0) 
      L[hh] = 1000*(2501-(2.361*hru_t[hh])) 
    else 
      L[hh] = 1000*(2834.1-0.29*hru_t[hh]-0.004*hru_t[hh]^2) 
endif 
Ti1[hh] = 250 
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crit[hh] = 9999 
while(crit[hh] > 0.0001) 
T1[hh] = Ti1[hh]+0.001*Ti1[hh] 
T2[hh] = Ti1[hh]-0.001*Ti1[hh] 
a[hh]=(-Ti1[hh]+Tk[hh]+(L[hh]*D[hh]/lamda[hh])*(pta[hh]-
(18.01528*(0.611*exp((17.3*(Ti1[hh]-273.15))/(237.3+(Ti1[hh]-
273.15))))/(0.00831441*Ti1[hh])/1000))) 
b[hh]=(-T1[hh]+Tk[hh]+(L[hh]*D[hh]/lamda[hh])*(pta[hh]-
(18.01528*(0.611*exp((17.3*(T1[hh]-273.15))/(237.3+(T1[hh]-
273.15))))/(0.00831441*T1[hh])/1000))) 
c[hh]=(-T2[hh]+Tk[hh]+(L[hh]*D[hh]/lamda[hh])*(pta[hh]-
(18.01528*(0.611*exp((17.3*(T2[hh]-273.15))/(237.3+(T2[hh]-
273.15))))/(0.00831441*T2[hh])/1000))) 
Ti2[hh]= Ti1[hh]-(a[hh]/((b[hh]-c[hh])/(0.002*Ti1[hh]))) 
crit1[hh] = Ti1[hh]-Ti2[hh] 
if(crit1[hh] < 0) 
crit[hh]= crit1[hh]*-1 
else 
crit[hh]= crit1[hh] 
endif 
Ti1[hh] = Ti2[hh] 
endwhile 
hru_icebulb[hh] = Ti1[hh]-273.15 
if(hru_icebulb[hh]<-10)//Eoverflow if ratio calculated with icebulb < -39C 
ratio[hh]=0 
else 
ratio[hh]=(1/(1+2.50286*0.125006^hru_icebulb[hh]))*100 
endif 
hru_snow[hh] = 0.0 
hru_rain[hh] = 0.0 
if(hru_p[hh] > 0.0) //rain or snow determined by ice bulb ratio 
hru_rain[hh] = hru_p[hh]*(ratio[hh]/100) 
hru_snow[hh] = hru_p[hh]*((100-ratio[hh])/100) 
if(hru_snow[hh] > 0.0) 
hru_newsnow[hh] = 1 
else 
hru_newsnow[hh] = 0 
endif 
endif 
end 
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APPENDIX B: Hydrometeor Temperature Solution: R Code 

############################################### 
#Hydrometeor Temperature (Ti) Iterative Solution 
#R Code 
#October 17, 2013 
#Phillip Harder 
############################################### 
 
#Input 
Ta<--10 #Air Temperature [C] 
RH<-75 #Relative Humidity wrt to water [%] 
 
#Constants 
mw<- 18.01528 #Molar mass of water [gmol-1] 
Ru<-0.00831441 #Universal gas constant [m3kPag-1mol-1K-1] 
 
#Corrections with respect to Ta 
#Latent Heat [J kg-1] 
if(Ta > 0){ 
L<-1000*(2501-(2.361*Ta)) 
} else { 
 L<-1000*(2834.1-0.29*Ta[which(Ta<0)]-0.004*Ta[which(Ta<0)]^2)  
} 
#Buck (1981) correction for saturation wrt to ice when Ta < 0 C 
if(Ta<0){ 
 ew<-(RH/100)*0.61121*exp((17.502*Ta)/(240.97 + Ta))# actual vapour pressure wrt to water 
[kPa] 
 eisat<-0.61115*exp((22.452*Ta)/(272.55+Ta))# saturated vapour pressure wrt to ice [kPa] 
 RH<-(ew/eisat)*100 
} 
 
#Functions 
#water vapour density (ASHRAE,1993)[gm-3] 
phivfun<-function(mw,RH,Ta,Ru){ 
 phiv<-mw*(RH/100*0.611*exp((17.3*Ta)/(237.3+Ta)))/(Ru*(Ta+273.15))/1000 
} 
#saturated water vapour density (ASHRAE,1993)[gm-3] 
phivtfun<-function(mw,Ta,Ru){ 
 phivt<-mw*(0.611*exp((17.3*Ta)/(237.3+Ta)))/(Ru*(Ta+273.15))/1000 
} 
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#Diffusivity of water vapour in air [m2 s-1] 
Dvfun<-function(Ta){  
 Dv<-2.06*10^-5*((Ta+273.15)/273.15)^1.75 
} 
#Thermal conductivity of air [J m-1 s-1 K-1] 
Kafun<-function(Ta){ 
 Ka<-0.000063*(Ta+273.15)+0.00673 
} 
#Newton-Raphston Iteration Functions 
ffun<-function(Ta,Ti1){ 
 ff<--Ti1+Ta-(L*Dvfun(Ta)/Kafun(Ta))*(phivtfun(mw,Ti1,Ru)-phivfun(mw,RH,Ta,Ru)) 
}  
fpfun<-function(Ta,Ti1){ 
 T1<-Ti1+0.001*Ti1 
 T2<-Ti1-0.001*Ti1 
 fp<-(ffun(Ta,T1)-ffun(Ta,T2))/(0.002*Ti1) 
} 
Tifun<-function(Ti1){ 
 Ti2<-Ti1-ffun(Ta,Ti1)/fpfun(Ta,Ti1) 
} 
 
#Ti Iterative Solution 
Ti1<-Ta-5.0001 #Initial guess of Ti 
crit<-99999 #Initial critical value for while loop 
while(crit>0.000001){ 
 Ti2<-Tifun(Ti1) 
 crit<-abs(Ti1-Ti2) 
 Ti1<-Ti2 
} 
Ti<-Ti1 
Ti #Hydrometeor Temperature [C] 
 
 

 


