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ABSTRACT 

Dynamic balance is a very important function of the human biological 

control system. Humans have learned to walk on uneven terrain, keeping the 

body posture in the vertical position by sensing the direction of gravity. The 

adaptation of this skill to operations of a truly unstable autonomous mobile 

robot would be useful in dealing with an unstructured environment. 

This thesis describes the dynamic balance of a single link inverted 

pendulum in flat and changing terrains. A gravity sensing technique has 

been developed and tested in simulation to measure the imbalance of the 

inverted pendulum from the vertical position regardless of the terrain 

conditions. A task oriented motion planning algorithm has been developed 

and tested. The planned motion allows the inverted pendulum system to 

perform the desired motion with an unbalance-balance cyclic motion in flat 

and changing terrains, similar to the way humans plan their motions. 

The simulation results on the developed techniques, gravity sensing 

and motion planning, have indicated that the proposed methods can be used 

to balance an unstable mobile system in motion and at rest in changing 

terrains. A self guided unstable autonomous mobile robot could be built by 

incorporating the techniques with a modest control system. 
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1. INTRODUCTION 

Dynamic balance is an important human skill that is yet to be 

satisfactorily duplicated by machines. Humans can balance themselves on 

different terrains, on slopes, and on surfaces of different consistency with or 

without an additional load. Humans can perform various motions, such as 

running, climbing, jumping, or walking on complicated surfaces according 

to changing task requirements and without falling on the ground. 

An autonomous mobile robot would be useful in the areas of tele-

operation in space and in other hazardous environments. In space, for 

example, the robot could be used to explore the surface of other planets 

where humans cannot be sent. The inspection and repair of aging nuclear 

reactors and site cleanup of radioactive waste materials are some future 

important applications of autonomous mobile robots. 

Research into machines that walk safely in difficult terrain, where 

existing vehicles cannot go, has been directed toward the problems of static 

and dynamic balance. An automated mobile robot that can balance 

dynamically can also depart from the static balanced position. Unlike a 

statically balanced robot, which always operates in or near the vertical 

position, an actively balanced robot can be an unstable machine that can for 

short times be unbalanced but is able to recover to a stable position. 

1 
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1.1 STABILITY 

Static and dynamic stability distinguishes the two types of mobile 

machines that have become active areas of research in robotics. A statically 

stable system keeps its center of mass in such a position that it never gets 
in a situation where falling is possible whereas dynamically stable systems 

keep from falling down by balancing. Statically stable systems have at least 

tripod support while dynamically stable ones may have as few as only one 

leg. The main discriminator is the use of balance in the control of body 
attitude by dynamically stable systems. Insects, alligators and other many-

legged creatures walk with statically stable gaits. Higher animals like 

horses, cats, and humans, walk with dynamically stable gaits. 

Static Stability: 

The main attraction of statically stable walking machines is that 

they are safe with the power or the control computer turned off. Regarding 

statically stable machines, it has been said that if something fails one has a 
piece of statuary, not a piece of wreckage [1]. In the modern era, early 

walking machines began with small machines that relied on static 

stability. 

There are several walking machines, relying on static balance, like 

insects or arthropods, that have been developed over the course of the last 

twenty years. Sutherland [2] built a six-legged, semi-automated crawling 

machine. This machine was statically balanced on three legs while in 

motion on a smooth terrain. McGhee at University of South California 

(USC) built a four-legged machine in 1966 [3]. Another very popular 

machine, in this category, was the Ohio State University (OSU) Hexapod 
robot which first walked in Jan. 1977 [4]. This machine had three degrees 

of freedom and was actuated by electric motors. McGhee and Pai [5] studied 

the design of a statically stable quadruped. This work was the extension of 

the work in the same area reported by McGhee and Frank [6]. Many multi-

legged walking robots have been developed [7][8] and are being used in 
industries. Such robots are balanced statically and require large amounts of 

energy to maintain their posture. Normally these types of robots are large 
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and have the capability to carry the required sources of energy to maintain 

their body attitude. A small sized insect like an ant can move around in 

difficult terrain, but large creatures like alligators cannot walk with such 

ease. There is an energy constraint in the use of such a model for a walking 

robot. 

With improvements in the understanding of the mechanics of 

locomotion and ease in controller design, research on autonomous mobile 

vehicles based on static stability began. Kessis et al. [9] reported an 

architecture of a statically stable autonomous hexapod built at the 

University of Paris in 1980. This robot uses a tripod gait used by many six-

legged arthropods. A research effort at OSU has resulted in the successful 

design, fabrication and testing of a six-legged fully computer controlled 

autonomous vehicle called Adaptive Suspension Vehicle (ASV) [10]. The 

ASV has over 100 sensors including an inertial sensor package consisting of 

a vertical gyroscope, rate gyroscope for the pitch, roll and yaw axes, and 

three linear accelerometers providing information to determine the body 

velocity and position. Pfeiffer et al. [7] investigated the gait dynamics of the 

walking stick insect (Carausius morosus) modeled by a six-legged multi-

bodied mechanical system. Advanced Robot Technology Research 

Association (ARTA) developed an intelligent autonomous multi-leg walking 

robot [8] to replace humans in tasks that have to be carried out in a hostile 

environment. 

Dynamic Stability: 

A dynamically stable mobile system preserves its balance under 

circumstances in which the machine might otherwise fall down. Humans 

and higher animals are categorized in this class. A human keeps its center 

of mass right over the feet in the balance condition. The nature of these 

systems is to be unstable. The problem of controlling a dynamic system is 

much greater than that of controlling a static one for two reasons. First, the 

mechanical system must be capable of responding fast enough to control the 

balance, and second, the controller must be very accurate otherwise the 

machine might fall into a piece of wreckage. These problems have caused a 

lack of development of dynamically balanced robots. 
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Fewer dynamically stable robots have been developed than statically 

balanced ones. The first dynamically stable robot was the four-legged 
walking truck constructed at General Electric by Ralph Mosher's group 
during the 1960s [11]. This machine was human controlled. A human 
operator provided the necessary sensing and closed loop control that 
controlled the hydraulic system. Several other dynamic and pseudo-
dynamic machines have been built in North America and abroad. Raibert's 

single legged hopping machine built at Carnegie Mellon University (CMU) 
[12] was perhaps the most prominent in this class. This machine consists of 
two main parts, a body and a springy leg. It was the first successful 
statically unstable but dynamically stable machine and it balanced 
dynamically on a single pneumatically driven leg. 

Normally unstable machines, such as biped walking machines, need 

to utilize dynamic balance to maintain an upright position. Miura and 

Shimayama [13] built a biped that walks like a human. This machine 
moves forward with a motion that can be described as a Charlie Chaplin. 

1.2 MOTIVATION OF WORK 

The maintenance of a stable posture is important to all animals. For 

humans it is challenging because of our physical structure. Humans are 

able to learn to walk on uneven terrain, keeping the body posture upright 

with respect to the line of gravity that passes through the feet and the body 

center of mass. This skill allows them to walk on different shaped surfaces 
without falling. Humans balance their body attitude in the upright position 
dynamically even though the center of mass of the human body is located 
2/3 of its height above the ground in the normal balance posture [14]. Like 
humans, some animals also maintain active balance that allows them to 
walk freely in difficult terrain. 

Balancing, in the area of robotics, has many facets, many definitions, 

and many subsets. One subset begins by simply wanting to know "Where 
am I with respect to the direction of gravity?" and then expanding upon that 

simple statement with information required on how to get from "Where am 
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I?" to "Where do I want to be?" [15]. The first question is related to knowing 

the position of the center of gravity and the second question is related to 

the control of body attitude and position in space. 

Dynamic balancing is based on the position of the body in an inertial 

frame, and the act of balancing requires detecting the direction of gravity. 

This requires a gravity sensor system that can determine the position of the 

center of mass in the inertial frame. A balance controller adjusts the body 

position on the basis of the information provided by the sensory system. In 

flat terrains, the direction of gravity remains constant with the terrain, 

however, in uneven terrains, the direction of gravity with respect to the 
terrain surface is changing. These changes depend upon the characteristics 

of the terrain. 

To develop a mobile robot that can be operated in changing terrains 

with dynamic balancing, the body attitude requires a system that detects 
the direction of gravity. An important problem in the current research on 

autonomous mobile vehicles is their inability to perceive the shape and 

structure of the terrain on which they are operating. A logical starting point 
in the realization of such machines is research on a technique to determine 

the direction of gravity. 

1.3 STATEMENT OF OBJECTIVES 

The first objective of this project is to develop and test a simulation 

of a sensory system that can determine the direction of gravity in a 
changing terrain. The obtained results will be used to model the balance of 

an inverted pendulum machine moving in changing terrains. 

The second objective of this project work is to develop and test an 

algorithm and a model for motion planning of an inverted pendulum system 

in unknown terrains. This work will involve a preliminary examination of a 
control system for motion and balance control. 

These planning techniques could be employed in bipedal autonomous 
mobile robots. 
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1.4 OVERVIEW OF THE THESIS 

A comprehensive survey of the available literature in the areas of 

human and machine balance, inverted pendulum systems, and autonomous 

mobile robot systems has been carried out. An overview of this survey is 

presented in Chapter 2. 

The mechanics and dynamics of unstable mechanical systems are 

another area of this project. Lagrangian dynamics have been used to form 

the necessary differential equations of the physical model. The dynamics of 

the physical system and the corresponding mathematical models are 

discussed in Chapter 3. 

Simulations of the mathematical model of the system, based on the 

theory of Chapter 3, have been developed in Chapter 4. The results of the 

simulations are also shown in this chapter. 

Motion planning for the inverted pendulum system has been 

discussed in Chapter 5. This chapter also describes methods for the dynamic 

control of the inverted pendulum system in changing terrain. The results of 

simulations are also shown in the chapter. 

Chapter 6 includes a brief summary and conclusions of the work 

reported in this thesis. The potential areas for further research have also 

been identified in this chapter. 

Five appendixes are also included at the end of the thesis. 



2. BALANCE IN HUMANS AND MACHINES 

2.1 INTRODUCTION 

There is a large class of robotics applications in which the robots have 

to operate in unstructured and uncertain domains. The uncertainties 

currently limit the operation of robots, however, with recent advances in 

robotics and allied sciences, more generalized mobile robots have become 

feasible and present very attractive prospects for several applications. Past 

researchers have realized the importance and use of autonomous mobile 

robots in hostile environments, for example, cleaning up radioactive waste 

in nuclear plants, where humans can not be sent to perform the desired 

task. 

Generally two types of land-based autonomous lifeforms exist in 

nature: stable and unstable. For example, alligators are stable whereas 

humans are very unstable. The mobility of these lifeforms is limited by body 

structure. Alligators cannot make complicated motions whereas humans can 

without losing balance completely. It is the human biological control system 

that balances the body in the upright position. 

Autonomous mobile robots are by definition free from external aid. 

The type and features of an autonomous mobile robot depend upon the 

required task that is to be performed by them. These robots could also be 

classified into two classes, stable and unstable. 

Most autonomous mobile robots are constructed on the basis of stable 

creatures, like alligators or arthropods. These robots can be called Stable 

Autonomous Mobile Vehicles (SAMV). Normally, these robots exist with 

more than two supports (legs or wheels). The main feature of these robots is 

their stable posture. A simple control algorithm can be used to control their 

7 
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motion. A serious disadvantage of this robot is its limited motion. These 

robots have limited motion where the terrain is unpredictable. 

Building an unstable autonomous mobile robot that could be used 

more efficiently than existing stable robots in unstructured terrain, has 

become an active area in robotics research. This robot could be used to 

replace the existing SAMVs in terrains where the SAMV cannot be 

operated. The distinction between this proposed robot and the SAMV is 

balance. 

For an autonomous robot to be like a human, it should have sensing 

mechanisms corresponding to a human's biological sensors. To clearly 

understand the human balancing techniques, the past work in posture 

and balance will be reviewed. An inverted pendulum is a classical problem 

of dynamic balance. The balancing of an inverted pendulum is basic to 

controlling the body attitude in humans. Similar ideas could be used to 

control the body position of an unstable autonomous mobile robot in motion 

or at rest in an inertial frame. 

The next section reviews some research in human biological balance. 

The dynamic balance of an inverted pendulum in different situations will be 

reviewed together with a review of inertial systems. 

2.2 REVIEW OF HUMAN BALANCE 

The human biological system maintains the body in the upright 

position regardless of the shape of the terrain. Two types of balance 

descriptions are appropriate in humans, quasi-dynamic and dynamic. 

Quasi-dynamic balance maintains the body in the balanced position during 

standing, and dynamic balance is used during motion. Humans are very 

unstable even in near-static balance; the center of gravity tends to oscillate 

about an equilibrium position no matter how still the human stands. This 

unstable angular motion, about the vertical, indicates the posture is 

constantly swaying. Since the body posture has to be upright, a controller is 

required to produce an appropriate force or torque within a short time to 

keep the body in a balanced position. This inherently unstable posture is 
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used to assist in propelling the body forward during motion. This property 

of humans has allowed them to use a comfortable and very efficient mode of 

motion [16], keeping the body mass well above the ground. Three types of 

sensory systems are involved in the human postural balance: vestibular, 

proprioceptive, and vision [14]. 

The vestibular system has been recognized as one of the prime 

biological sensors involved in postural adjustment [17]. The vestibular 

sensory systems determine the angular orientation of the human head in 

the inertial frame. This helps to determine the balance and imbalance of the 

body. The proprioceptive system provides the body with kinematics 

information, such as the degree, direction, and rate of change of the body 

position in motion. Sensors for this system are located in the muscles, 

tendons and joints and are stimulated by the motions of the body. The 

visual system provides a point of reference. The eye predicts the 

environment, for example, the terrain gradient ahead that would be the 

next environment where the motion has to be carried out. These three 

sensory systems are integrated with the system to balance the body's center 

of mass in the unstable upright position. 

The systems which maintain the dynamic balance includes the 

vestibular, visual, proprioceptive sensory systems, the central nervous 

system, and musculo-skeletal system [14]. Figure 2.1 shows a schematic 

diagram of the human postural adjustment system, 
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Figure 2.1: A conceptual schematic diagram of the postural 

control system [from [14], Fig. 1]. 

The central nervous system, and especially the cerebellum, integrates 

and evaluates the rich array of information coming from different sensory 

systems together with messages from the motor cortex of the brain. An 

appropriate action plan must be decided upon within a short time (a few 

milliseconds) before the body goes beyond control. This action plan is very 

critical in the balancing act. Researchers have tried to perceive these action 

plans by performing experiments on postural balance in a variety of 

destabilizing, imbalanced conditions [14][16]. 

The musculo-skeletal system has the responsibility to execute the 

action plan to regulate body posture to the vertical. Muscle activation 

produces the forces that correct the imbalance. The type and number of 

muscle activations are determined by the action plan that was made by the 

cerebellum. For example, the torques generated about the ankle axes of 

rotation are primarily responsible for restoring balance during the standing 

posture. 
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The objective of the regulation of body posture, near the unstable 

equilibrium, in the upright position, is that the center of gravity of the body 
remains inside the controllable region, i.e, the area of the feet. 

Perturbations of the center of gravity cause the destabilization of the body. 
In such a case the center of gravity deviates from the equilibrium position. 

Sometimes the perturbation of the center of gravity is so large that the 
center of gravity moves outside the foot area; in this condition the recovery 
of balance becomes very difficult. The corrective force is proportional to the 

magnitude of imbalance or deviation of the center of gravity from the 
upright position, thus, the magnitude of the deviation of the center of 

gravity, or sway, needs to be measured. Many researchers have employed 
different approaches to estimate the sway of the center of gravity 

[18][19][20]. 

There are a number of conditions that necessitate postural 

adjustment to maintain a reasonably balanced standing position. These 
include standing on either an up hill or down hill slope, standing on even 

and uneven terrain, and standing on a moving surface. In all of these cases, 
the normal human body can be relied upon to adjust automatically through 
the function of the sensory system and the feedback control mechanism. 

Humans exhibit typical behaviors in maintaining the body with it's 

geometrical mass right above the base of support so that the posture 

remains balanced. The human anatomical system is made of multiple link 

segments that do not have uniform densities. This contributes different 

degrees of inertial forces about the hip and ankle. Posture remains balanced 
when the sum of these moments about the ankle becomes zero. This sum 

can be made zero in different ways. 

The mathematics of postural dynamics studied a decade ago was 

mainly based on the single link inverted pendulum to represent the human 

body [18]. The first investigation was done by McGhee and Kuhner [21] in 
which they found the role of ankle and hip torque in achieving postural 
balance during standing. Later, Nashner [16] modeled the human body as 
a simple inverted pendulum to evaluate the vestibular function in the 

human body during motion. Soames and Atha [20] studied the human sway 
behavior in motion using an inverted pendulum. Koozekanani et al. [18] 
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studied the center of gravity and pressure by a mathematical model of their 

four-mass sagittal plane linkage model. Shimba [19] used a mathematical 

model to estimate the center of gravity in space. Pasteurella and Huston 

[22] modeled the human body by a ten-bodied system and studied attitude 

control in space using the principle of conservation of angular momentum. 

In kinesiology, human walking has been described as an alternating 

loss and recovery of balance [23] which is accomplished by the alternating 

action of the body's lower extremities. Nashner [16] studied the postural 

balance when walking started. His EMG experiments showed that posture 

undergoes a loss of balance when the forward motion started. From physical 

principles, under conditions of the coefficient of friction being less than one, 

the translational acceleration of the center of mass cannot exceed the 

acceleration of gravity. Research shows that the maximum speed a human 

can achieve in normal walking is approximately 2.5 in/sec [24]. The 

switching speed of human motion is 2.5 m/sec; after that walking gives way 

to a run. The running speed is dependent upon the type of run, and is in the 

range of 3 to 10 m/sec. 

During normal walking the center of gravity passes from heel to toe 

in a short time within which the postural balance deviates from the 

balanced position. Winter [25] emphasized that the balance task was the 

primary one as compared to the tasks that propel the body forward. An 

adjustment system is required to maintain the center of gravity within the 

controllable region. Nashner [16] recommended an algorithm to control the 

adjustment of posture during normal walking. His EMG responses 

elaborated the adjustment of the center of gravity so that the posture 

remains within the region of control. 

The direction of gravity on a horizontal surface is assumed to be 

constant. Balancing the body posture on such a surface is easy because of 

the non-changing angle to gravity. In contrast, the line of gravity on 

changing terrain is varying, with respect to the terrain. Balancing on a 

changing surface requires the determination of the gravity direction rather 

than the actual terrain. According to the response obtained by Nashner, the 

body attitude control mechanism requires some time to activate the control 
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muscles. Balancing during motion on a unknown terrain is difficult since 

the body orientation in the inertial frame is changing. Finding the 

orientation is the key to the control of balance in changing terrain. The 

vision sensory system provides the orientation of the body in many 

environments, but this is not sufficient in all cases. The vestibular system is 

needed to cope with different types of environment. Thus, this orientation 

sensor can be considered as the primary sensor for postural balance. 

2.3 REVIEW OF MACHINE BALANCE 

2.3.1 Inverted Pendulum 

The inverted pendulum is a classic example of a highly nonlinear, 

coupled, and inherently unstable dynamic system. The center of gravity 

must be kept directly above the hinging point or point of support of the 

system. The system dynamics are basic to understanding tasks involving 

the postural control in humans with an unstable equilibrium at the upright 

position. A single linked inverted pendulum has often been used to 

represent the human standing posture. Many researchers [2][18][20] have 

used the model of an inverted pendulum, of various degrees of freedom, to 

study the basic balance control in humans. 

There have been many experiments performed on inverted 

pendulums to understand the balancing act in the human biological system. 

The earliest mathematical work on the dynamics of postural control was 

based on a single link inverted pendulum [18]. Soames et al. [20] studied 

the relationship between the sway and torque about the human ankle in 

unbalance using a single link inverted pendulum. Raibert et al. [2] showed 

the balancing of a single leg hopping robot based on the inverted pendulum. 

Humans can be modeled by a three link inverted pendulum corresponding 

respectively to the leg, thigh and the trunk. Hemami et al. [26] proposed the 

method of controlling postural stability using a three links inverted 

pendulum with physical parameters chosen to correspond to those of an 

average human. The attitude control of a multi-linked inverted pendulum is 
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similar to the attitude control of human posture. Furuta et al. [27] studied 

the balance of a triple inverted pendulum by applying forces on each of the 

links. 

The standing posture of an inverted pendulum can be used to model 

the human standing posture. In balanced posture, the center of gravity of 

the inverted pendulum, which is somewhere above the point of support, has 

to be maintained. The reaction force generated by the pendulum with the 

ground has to be made equal to the weight force of the inverted pendulum. 

The goal of postural stability is to maintain the inverted pendulum directly 

above the ground support point where the total moment becomes zero. 

The pendulum remains balanced while its position is aligned with the 

line of gravity passing through the center of mass and the point of hinging. 

Normally, the point of hinging is not like that of human feet. Thus the 

inverted pendulum becomes more unstable than the human posture. In the 

upright condition, the moment about the hinging point becomes zero 

because the reaction force and gravity forces become equal and aligned in 

the opposite direction. Any force acting externally on the inverted pendulum 

contributes a non-zero moment that causes destabilization of the inverted 

pendulum; a control force is required to correct such destabilization. The 

unstable system dynamics requires a dynamic balance controller to adjust 

the sway of the pendulum by driving the pendulum in the opposite direction 

to the sway. Many experiments have been performed on balance control of 

inverted pendulums of single link [28][29], and multiple link [26][27][30] 

design. 

The basic idea of balance is shown in the broom balancing technique. 

The method of balancing a broom dynamically on a finger is to move the 

finger back and forth, depending upon the direction of the tipping. This 

translational motion results in a torque about the point of contact that 

causes deceleration in the broom's motion. When the force applied becomes 

more than enough for the broom's angular motion, the broom changes its 

direction of acceleration and eventually accelerates towards the vertical. 

The magnitude of the force depends upon the angular position, and its 

derivatives, of the broom with the vertical. Thus a variable magnitude of 
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force is required to adjust the postural imbalance. 

The first machines that balanced actively were automatically 
controlled inverted pendulums. Claude Shannon [31] was probably the first 
researcher to use the idea of broom balancing to balance a iron rod, an 

inverted pendulum hinged on top of a truck. He used the same technique as 
a human uses in balancing the broom on a finger by making truck motions 
back and forth. Figure 2.2 shows the basic cart-pole model. 

Vertical 

-x 

- ► Force 

g 
+x 

Figure 2.2: The cart pole system [from [32], Fig. 1]. 

Cannon [33] studied the effect of a single applied force in Shannon's 
experiments. Cannon was interested to know how a single force that drove 
the cart motion could control the angle of two pendulums and the position of 
the cart. The region of controllability of the inverted pendulum is a 
deterministic factor depending upon the length of the pendulum. A long 
pendulum has a larger inertia about the point of support than a short 
pendulum. Thus, the region of controllability of the long pendulum is close 
to the vertical, whereas the short pendulum has a wider region of 
controllability. A long pendulum is more stable about the vertical than a 
short pendulum. The region from where the pendulum can be brought back 
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into the original position was studied at the Computer Science department, 
Massachusetts Institute of Technology (MIT) by Connel and Utgoff [32]. 
They set up an experiment for balancing a pendulum within the region of ± 
12 degrees, 0(t) for particular system parameters. Their experiment showed 

that the controllability declines if the tipping is more than 12 degrees. 

The cart-pole experiments have been a very popular area of research 

into balance. The cart-pole experiments are basically the same as balancing 
a broom by applying a translational force at the axis of rotation, or the point 

of contact. The control force is applied in response to pendulum postural 

destabilization. The instability occurs when the line of gravity does not pass 

through both the center of gravity and the point of support. Any sway in 

posture causes the center of gravity to deviate from the equilibrium which 

causes the center of mass to accelerate towards the ground. Thus, an active 
controller is needed to sense the sway and apply a reversing force to counter 

the force of gravity. This has been a very popular experiment in control 

engineering. The control systems tested in these experiments determine the 

ability of the controller to control such a very unstable non-linear system. 
Pfeiffer et al. [7] used a walking stick insect model to study balance control. 

Hemami and Jaswa [26] studied nonlinear feedback in the inverted 

pendulum to achieve postural stability where the first and higher 

derivative components all become zero. 

The traditional approach in balance control is the linearization 
approach. The force applied is a linear function of four state variables, 8(t), 

8(t), x(t), and ±(t) with constant coefficients [32]. This linearization 

approach provides the stability of the inverted pendulum for a certain 

limited range of operation. Anderson [28] suggested the control force, in the 

same problem, required using a different approach, rather than linearizing 

the problem. Lin and Sheu [29] studied the balance of an inverted 
pendulum from the rest (pendant) position, 180 degrees to the vertical 

unstable equilibrium. Mori et al. [34] also proposed a control method to 

bring the inverted pendulum to the unstable vertical position from its stable 

pendant position. 
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In all experiments discussed above, the inverted pendulums were 
balanced on a plane where terrain is constant or horizontal, i.e., no 
changing slopes. Balancing in such an environment does not require 
information about the direction of gravity. The vertical y axis was taken as 

the reference from which the tipping angle of the pendulum was measured. 
However, bringing the pendulum about the y-axis, vertical, is only one 
objective of the work. The maintenance of attitude in a changing terrain is 
another problem. The system dynamics become very unstable in this case 
because the direction of gravity with the terrain is not fixed but changing. 
This changing causes the center of mass of the inverted pendulum to 
deviate from the direction of the gravity. 

Now many mobile robots are required to be operated in an uneven 
terrain where the terrain is not flat. While the direction of gravity is 
constant, despite the geographical conditions, in horizontal terrain the 
direction of gravity is orthogonal to the plane of the terrain, while in 

changing terrain the line of gravity does not align with the orthogonal axis 
to the terrain. Balancing is required to bring the inverted pendulum 

towards the line of gravity, not vertical to the terrain. Hence, the direction 
of gravity has to be determined to make the inverted pendulum upright in 
such a changing environment. In a variant of this case, Furuta et al. [30] 
showed the balance of a double inverted pendulum on a constant inclined 

surface. 

2.3.2 Walking Machine 

The balancing problem is very important in walking [35]. The control 
algorithm required is quite different from the algorithm used in postural 

balance during the standing condition. Walking is the mechanical process of 
propelling the body's center of gravity forward with the aid of the legs. 
Many walking machines have been developed in the last two decades. The 
first machine, Phony Pony, with four legs was built at the USC [36]. 
Mosher's group [37] at General Electric built a quadruped walking machine 
that operates purely upon a static balancing technique. Sutherland [2] built 
the first six-legged, semi automated crawling machine. This machine was 
statically balanced on three legs while in motion on a smooth terrain. The 
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realization of such semi-automatic machines in a changing terrain 

environment was difficult because of the complex control system required to 

allow the machine to walk on unstructured terrain. 

Developed static machines had limitations in their application. The 

stability of such machines defined only in a known terrain causes the 

machines to be unable to work in the environment where the terrain is not 

constant. Another very important factor is the cost of operation of such 

heavy machines which require large amounts of energy to perform the 

desired work. The speed of these machines was limited by their large body 

mass. Because of these situations, researchers decided to work in the area of 

active balance [2][36]. The importance of active balance in walking robots 

had been widely recognized, but progress in building physical legged 

systems that employ active balance was retarded by the perceived difficulty 

of the task. It was not until the late 1970s that experimental work on 

balance in legged systems began [12]. 

Raibert and Sutherland [2] studied the role of active balance in 

running and walking. Raibert [12] at CMU built a one legged hopping 

machine that runs like a kangaroo in a series of leaps. This machine 

consists of two main parts, a body and a springy leg. It was the first 

successful statically unstable but dynamically stable machine that balanced 

dynamically on a single pneumatically driven leg. Later Raibert [12] 

developed a quadruped machine based on the hopping principle. 

2.3.3 Biped 

The developments on legged machines inspired the scientific 

community to do research on a human like walking machine; a biped robot 

[12][36][38] has larger applications than multi-legged machines. Kato et al. 

[39] built one of the earliest biped robots. It was a statically stable machine 

relying on keeping its center of gravity always above one of its large feet. 

Miura and Shimoyama [13] built a biped that employed a dynamic 

balancing technique by allowing the robot to depart from the line of gravity. 

This robot uses a continuous stepping method to maintain the body attitude 

within the equilibrium or upright position. After the successful operation of 
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a one legged hopping machine that balanced dynamically, Raibert [12] built 

a biped robot that could run with the speed of 4 m/s keeping the machine 

balanced. It applied the principle used by Miura, leaning the robot in the 

direction of motion to keep the posture within the region from where the 

robot body could be brought back into an upright position. 

Kajita et al. [40] studied the active control of biped robots. They 

introduced a trajectory, called a potential energy conserving orbit to 

maintain postural stability during walking. Postural regulation within the 

balanced region is very important during walking since external 

disturbances cause the biped to be unstable and lose balance. Zheng [38] 

proposed an acceleration compensation method to improve the postural 

adjustments due to perturbations. 

Early walking biped robots [13][39] were successful human-made 

machines that walked on a flat floor. The problem of balancing a walking 

robot on a difficult terrain was realized by many researchers. Unlike in 

standing, the center of gravity in walking bipeds moves between the two 

legs when walking takes place. When terrain is not flat, the center of 

gravity may move outside the boundary of the two legs causing the system 

to become unstable. Zheng and Shen [41] studied the balance problem of a 

biped robot on a slope. The controller they have used works on the 

information obtained from force sensors, which detect the slope from 

different points, especially, the heel and toe. 

2.4 REVIEW OF INERTIAL SYSTEM 

Every particle in the universe has a reference frame; the motion and 

displacement of the point are measured with respect to this frame. Newton's 

laws provide the basic laws of mechanics in inertial frames in which bodies 

with no net force acting on them move in straight lines at constant speed or 

stay at rest. According to Newton's first law, every particle has an inertia 

that allows it to be at rest or in constant motion until an external force acts 

on it. Connected group of particles free from external forces always project 

their center of mass towards the origin of the inertial frame passing through 

the vertical or line of gravity. 
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Inertial systems have universal applications ranging from the science 

laboratory to a commercial wall clock. Humans today live on the outer 

surface of planet earth, and are held there by gravitational forces pulling 

towards the earth center. Each activity performed by humans is based on 

the inertial frame, including the balancing of their own body upright 

against gravity. A human obtains inertial information from the vestibular 

system of the inner ear [42], which finds the point of reference, the vertical 

in the inertial frame. 

Inertial systems have also been used in the navigation of airplanes, 

the stabilization of an erected body on a vehicle, motion planning of ships, 

etc. Because of their self-contained, non-radiating, non-jammable and 

interference free features, these systems are attractive to the area of 

modern robotics navigation and stabilization. The needs of the Intelligent 

Autonomous Vehicles (IAV) to operate in large, unstructured and uncertain 

domains, for example, fire-fighting, repair and cleaning operation in nuclear 

plant, have become a main focus in research. The realization of such an 

autonomous vehicle requires an array of information. The angular 

orientation in the inertial frame is a part of the important information 

required to control the stability of the vehicle's body. The main property of 

an inertial sensing system is its ability to determine the direction of gravity. 

Thus the vehicle's orientation could be regulated in any terrain by the aid of 

an inertial sensor. 

2.4.1 Physical Pendulum 

A physical pendulum is a rigid mechanical body of any shape pivoted 

at some point other than its center of gravity. The equilibrium point of a 

pendulum is on the line of gravity passing through the pivot point. Any 

external force about the pivoted point makes the pendulum oscillate about 

the vertical. The period of oscillation is determined by physical parameters, 

mainly the length of the pendulum from the pivoted point to the center of 

mass, whereas the amplitude of oscillation is determined by the magnitude 

of the applied forces and the presence of frictional forces. The system 

transfers energy from potential energy to kinetic energy and vice versa. 
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Once it is started, it keeps on oscillating until the energy stored becomes 
zero due to dissipation. 

Inertial based instrumentation is used in detecting soil vibration 

during seismic events. Most seismological instruments are based on a 
pendulum that transforms seismic events into human readable variables to 
predict and analyze the appearance of unusual natural forces. Many 
researchers have used pendulum based seismic instruments to measure the 
translational and rotational motions of earth segments [43]. The gyroscope 
is an example of an inertial sensor that has the ability to show the vertical 
position or earth's reference frame. Navigational systems often use the 
gyroscope and accelerometers to answer the question " where am I?" in the 
inertial frame [15]. 

Like humans, robotic motion can be based on inertial information. 
There are two types of inertial information to be computed in a mobile robot; 
one is the orientation of robot attitude and the second is the instantaneous 
motion of the robot. This information is used in postural adjustment and the 
stabilization of the robot in different working environments. An autonomous 
robot requires something other than the postural balance, and that is 
trajectory planning. An inertial accelerometer can be used to control that 
task. Thus a complex navigational system is required for autonomous 

mobile mechanical systems. 

2.5 CONCLUDING REMARKS 

This chapter has been devoted to a discussion of active postural 

balance. The acts of postural balance in humans, during standing and 

walking, have been reviewed in the chapter. A survey of research work 

carried out in the area of active balance, particularly balance of an inverted 
pendulum has been conducted. The need for autonomous mobile robots in 
hostile environments, where humans need to be replaced by an autonomous 
robot, has been discussed. The importance of active balance in legged, 
walking robots has been stated; the recent developments of human-like 
biped robots has also been presented. The importance of sensing the line of 
gravity in a changing terrain has also been highlighted. The importance 
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and use of inertial sensing systems and their types were also discussed. The 

research problem on balancing an inverted pendulum in a changing terrain 

has been briefly stated. 



3. DYNAMICS 

3.1 INTRODUCTION 

The inverted pendulum is a very unstable system. It has been studied 

by many researchers as a tool to help understand the control of the human 

balance system. The balancing task requires the maintenance of the inverted 

pendulum in an upright position against the pull of gravity. Such a task 

requires the pendulum to be balanced dynamically, especially in a changing 

terrain, where the direction of gravity is not easily determined. A dynamic 

balance controller could be used to balance the inverted pendulum. Past 

researchers have successfully balanced the inverted pendulum in flat terrain, 

where the direction of gravity is known, by applying a force in the direction 

of tipping. 

In this project the direction of gravity will be sensed using a simple 

pendulum pivoted on the hinging axis of the inverted pendulum. This 

chapter deals with the mechanics and dynamics of inverted pendulums in 

flat and changing terrains. The dynamic behavior of the inertial element will 

also be discussed in the chapter. 

The first section of this chapter is devoted to mechanics and dynamics. 

Newton's method of writing the mathematical model of a physical system is 

complex. Another way to form the differential equation of a system is the 

Lagrange method. The second section deals with developing the 

mathematical model of the inverted pendulum in various situations. The 

dynamic behavior of the inverted pendulum in different conditions will be 

discussed in section three. The dynamic behavior of a simple pendulum, with 

a fixed and moving pivoting point will be discussed in the fourth section. 

23 
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3.2 MECHANICS AND DYNAMICS 

Mechanics consists of both static and dynamic approaches; the static 

case deals with the equilibrium of the system at rest or in constant motion, 

while the dynamic case deals with the system in non-uniform motion. Rigid 

body dynamics have been used in the analysis of the mechanical systems. In 

this approach, the dynamic performance of an n degree of freedom (DOF) 

system is generally represented by n second order, coupled, non-linear 

differential equations. 

3.2.1 Lagrangian Dynamics 

There are a variety of approaches that can be employed to derive the 

dynamic equations of physical systems such as robots; these are (1) 

Newtonian method, (2) D'Alembert's principle, (3) Hamilton's equations, and 

(4) Lagrange's equations. 

All are basically equivalent in nature, based on Newton's three laws of 

motion. Newtonian methods are convenient for the treatment of simple rigid 

body systems while Hamilton's principles and equations are mostly used in 

the theoretical analysis of quantum mechanics. The Lagrangian method of 

writing differential equations of a dynamic system is powerful and often 

more direct than other methods. 

The Lagrangian method is applicable to an n degree of freedom rigid 

body mechanical system. The advantages of this procedure over conventional 

methods, like Newton's dynamics, is that this method allows a much simpler 

way to study the dynamic behavior of a rigid body. 

The Lagrangian method uses a generalized coordinate system to form 

the system dynamic equations. The key idea of forming dynamic equations in 

the Lagrangian method is to consider the scalar quantities; potential energy, 

kinetic energy, virtual work and dissipative work. This idea is simple 

because expressing these scalar quantities is not difficult. The basic form of 

Lagrange dynamics is given in Eq. 3.1; the derivation of Eq. 3.1 is given in 

Appendix A. In general, 
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d ,aT, aT D V ap , 
— — — = r 
dt aq,. aq, aq,. aqr 

4r (3.1) 

where T is the kinetic energy of the system, V is the potential energy, D is 
the total dissipative energy, qr is a generalized coordinate and Fqr is a non-

conservative force or torque appearing externally in the coordinate of 

interest. 

3.2.2 Inverted Pendulum 

The inverted pendulum is an inherently unstable mechanical system 

that has an unstable equilibrium at the vertical position. An inverted 

pendulum appears in many physical forms that have the center of mass well 

above a narrow base of support. The system dynamic is also very non-linear. 

Vertical Vertical 

cm 

(center of mass) 

Inverted pendulum 

point of rotation 

Line of gravity 

(a) 

• 0 

0 

= pendulum length 
in meters 

m = pendulum mass 
in kg 

/, = moment of inertia 

'T in kg
-m2 

(about the 
center of mass) 

Line of gravity 

(b) 

Figure 3.1: Inverted pendulum in horizontal terrain (a) 

balanced, and (b) unbalanced. 

Fig. 3.1(a) shows an inverted pendulum standing or balanced on a 
horizontal surface whereas Fig. 3.1(b) shows the pendulum in an unbalanced 
condition where the center of mass is accelerating towards the ground. 
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Throughout this analysis all of the mass of the inverted pendulum is 
assumed to be concentrated at the end opposite to the support point. Theta 
(0) is the angle of the inverted pendulum with the vertical or line of gravity, g 

is the acceleration of gravity, 9.8 m / sec2 and its direction is orthogonal or 
n/2 to the terrain surface, m is the mass of the body in kg, 1 is the distance 

(meters) of the center of mass from the axis of rotation assumed to be the 
base of pendulum, and II, is the moment of inertia of the inverted pendulum 

about the axis of rotation or base of support in kg-m2. 

The equation of planar motion of the inverted pendulum, Fig. 3.2, has 
been derived using the Lagrangian method, assuming a fixed axis of rotation, 

mgl sin (0) — (m12 + = ti. (3.2) 

Balancing of the inverted pendulum in the vertical position requires 

bringing it to upright, (0 = 0, 8 = 0), against the gravitational force. This task 

also involves maintaining the center of mass directly over the base of 

support. Any angular departure of the center of gravity from the upright 
position makes the inverted pendulum accelerate towards the ground, which 
is the only stable equilibrium position. 

Displacement of the inverted pendulum from the upright position 

requires, for restitution, a counter force of the same magnitude as the 
displacing force. The magnitude of the restitution force depends upon the 0 

and 6 for a given set of parameters of the inverted pendulum. In Eq. 3.2, the 
left side of the equation shows the unbalanced torques appearing at the base 
that makes the center of mass accelerate towards the minimum energy point, 
that is, the ground. An external torque needs to be applied about the base of 

support, to oppose the gravity force. The direction of this restitution torque is 
in the opposite direction to the tipping of the pendulum. The control torque, 

forces the inverted pendulum towards the vertical. Hence, a control torque 

of a different magnitude, depending upon the state variables, 0 and 8 , is 
required all the time to keep the inverted pendulum upright. Thus, an active 
controller is required to control the balance. 
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In Fig. 3.1 the line of gravity is orthogonal to the terrain surface. The 

center of gravity and the base of support of the balanced pendulum are 

aligned with the line of gravity. In horizontal terrain the direction of the line 

of gravity, passing through the base of support, is known so it is easier to 

bring and keep the pendulum in the upright position since the angle to the 

surface can be measured and used to ascertain the direction of gravity. The 

situation will be different if the terrain or surface is not horizontal but 

changing. Fig. 3.2 shows the inverted pendulums in balanced and 

unbalanced positions in a changing terrain. The pendulum is in a balance 

condition when the line of gravity passes through the base of support and 

passes through the center of mass. 

Vertical Vertical 

• 

Inverted pendulum 

a = terrain slope 

/ = pendulum length 
in meters 

m = pendulum mass 
in kg 

Ip = moment of inertia 

in kg-m2

Line of gravity Line of gravity 

(a) (b) 

Figure 3.2: Inverted pendulum in changing terrain (a) 

balanced and (b) unbalanced 

The direction of gravity is assumed inertially constant despite 

geographical changes. This constant is always orthogonal to the terrain 

surface in horizontal terrain. Unlike in horizontal terrain, (Fig. 3.1), the 

direction of gravity is not necessarily orthogonal to the surface in changing 

terrain. Hence, the line of the gravity is at an angle ir2 ± a with the terrain 

surface. Balancing the inverted pendulum against gravity requires the 

determination of the direction of gravity. The slope, or the terrain gradient, 

that determines the offset of the vertical with the terrain surface must be 
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known to balance the inverted pendulum in changing terrain if the control is 

with respect to the supporting structure. Hence, the angle, a, determines the 

terrain dynamics and the angle, a, in the system equation is the key factor in 

positioning the inverted pendulum upright. 

3.2.3 Inverted Pendulum with Moving Support in 
Horizontal Terrain 

When the point of support of the inverted pendulum is allowed to move 

the dynamic behavior of the inverted pendulum will be different from that in 

the standing position. The system becomes more unstable and the required 

control torque will depend upon the angular position and the linear position 

of the inverted pendulum. The system dynamics become more non-linear, 

and coupled. Eq. 3.3(a) and Eq. 3.3(b) represent the system dynamics of the 

inverted pendulum in linear motion. 
Vertical 

• 

/ = pendulum length 
in meters 

m = pendulum mass 
in kg 
moment of inertia 

in kg-m 2

Line of gravity 

Figure 3.3: Inverted pendulum with linear motion in 

horizontal terrain. 

Fig. 3.3 shows the inverted pendulum with linear motion of the point 

of rotation. This system has two degrees of freedom, the angular position, 

and the linear position of the support, x. System dynamics have been formed 

using the Lagrange method; two dynamic equations represent the system, 
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+ mi cos(3 )6 — sin(0 )8 2 = Fs, and (3.3-a) 

//I/ cos(0 )i + (m/ 2 + ///, )6 — m lg sin (0 ) = . (3.3-b) 

Solving, 

. = {Fx +m I [sin -- )6 2 coo )6 11 

and e — mlgsin(9)—lcos(e)[Fx +m /sin (0 )6 2] 
(ml 2+4 ) — m /2 cos ) 

(3.4-a) 

(3.4-b) 

The forward motion is represented by z and the rotational motion of 
the inverted pendulum about the point of hinging by 6 in the equations of 
motion. Many researchers [27][40][44] have used these mathematical 
equations, Eq. 3.3, to study the dynamic balance of the most unstable, non-

linear, and coupled dynamic system; the cart-pole is an example of this 
system. The balance task requires the forced acceleration of the point of 

hinging in the forward or the reverse direction. The resulting effective 
torque, about the point of hinging, decelerates the inverted pendulum. The 

necessary acceleration depends upon the initial state (Os, 60 , xo and i o ) of the 

inverted pendulum, so the angular acceleration vector of the inverted 

pendulum with the vertical can be written as a function of (0, 6, x, 

3.2.4 Inverted Pendulum with Moving Support in Changing 
Terrain 

The balancing of an inverted pendulum in changing terrain is a more 
complex task. Since the terrain is changing, the direction of gravity with 
respect to the terrain surface is not known. The terrain slope, a, is the only 

determining factor of the terrain. Since the terrain is not known, another 
degree of freedom is added to the system dynamics. 
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Figure 3.4: Inverted pendulum with linear motion in 

changing terrain. 

Fig. 3.4 shows the inverted pendulum with motion in a changing 

terrain. As shown in Fig. 3.4, the direction of the gravity with the terrain is 

not orthogonal to the surface. The system dynamics become very complex, as 

shown in Eq. 3.5(a) and Eq. 3.5(b), 

m2/ cos(0 + a)ii + (m2/2 + )15 — m2/x'sin (0 + 2m2/sin (0 + a)6 — 

m2/x' cos(0 + oc)a2 — m2 1g sin (0) = 0, 

(mi + m2 )3i + m2/ cos(0 + a)o — m2/ sin (0 + cc)0 2

+m2 )x'oc 2 + m2 )g sin(a) = Fx,. 

(3.5-a) 

(3.5-b) 

The above two equations show the system dynamics of the inverted 

pendulum in Fig. 3.4. The equations are non-linear and coupled. The angle 0 

is measured with the true vertical. The direction of the gravity reference is 

not available in this case so the terrain gradient a is not known. These 

equations show that balancing of the inverted pendulum in the upright 

position is possible only if the vertical reference is known. 
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3.3 INERTIAL ELEMENT 

The direction of the force of gravity is generally assumed constant for 

small changes in location. This constant, the direction of gravity, could be 

detected by the aid of an enclosed inertial element, such as in systems that 

have been used in the navigation of ships, airplanes, and other vehicles. Most 

commercially available inertial system are very expensive. The gyroscope is 

an example of an inertial system. A less expensive alternative is a simple 

pendulum. The simple pendulum is an example of an inertial element that 

experiences a simple harmonic motion (SHM) and comes to rest on the line of 

gravity that passes through the pivoting point and the center of mass. 

3.3.1 Simple Pendulum 

The simple pendulum is a mechanical object of arbitrary shape pivoted 

at some point other than its center of gravity. The pendulum will deviate 

from equilibrium when it is excited by an external force. Once it is excited, it 

will go into SHM. The pendulum may exist as a simple, mass less string with 

a bob or as a rigid rod that acts like a pendulum. Fig. 3.5 shows a simple 

pendulum having a mass or bob attached to the free end of a mass-less 

string. 

m = bob mass in kg 

/ = pendulum length in meters 

Bob 

Line of gravity 

Figure 3.5: Simple pendulum. 

The pendulum makes an angle with the vertical, f, in the presence of 

an external force. The magnitude of this angle depends upon the amplitude 
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of the initial push on the bob by the external force. The pendulum continues 

swinging back and forth about the vertical as defined by the direction of 

gravity for an indefinite time if the damping friction is zero. Friction at the 

pivoting point results in a damped SHM about the vertical, and the 

pendulum will come to rest at the vertical position. Thus the direction of 

gravity can be determined from the dynamic behavior of the pendulum. 

The dynamic equation of a simple pendulum is given in Eq. 3.6. This 

equation has been formed using Lagrangian dynamics, 

mil3+mg/sin((3)=0. (3.6) 

The period of the SHM can be expressed by the following series [45], 

I R 1 2 1 

2

2 x3 2
T= 27r  1+ —sin - 9+ 

' 
x42 sin 9+ 

g 22

where 9 is half the maximum angle of (3. The period depends upon the 

amplitude of the swing indicating that the system is non-linear. For, a small 

swing, fl, the second and third terms become negligible. Thus, the period T, 

can be written as, 

T 

3.3-2 Rigid Simple Pendulum 

(3.7) 

The rigid pendulum has a distributed mass that is centered at some 

point other than the point of support. The analysis of the period of swing of a 

rigid pendulum is different from that of a simple pendulum. The moment of 

inertia of the pendulum body affects the period of SHM. Fig.3.6 shows the 

physical pendulum having mass m centered at a distance 1 from the pivot 

point. 
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c.m 
m = pendulum mass in kg 

/ = distance from c.m to pivot point 

in meters 
/ = moment of inertia in kg-m 

Line of gravity 

Figure 3.6: Rigid Simple pendulum. 

The dynamic equation and the period of SHM are given in Eq.3.8 and 

Eq.3.9 respectively using the Lagrangian method. Ip is the moment of inertia 

of the pendulum about the pivot point and fc is the velocity dependent 

friction at the pivoting point,. 

(m/2 -F/p)l+a+mg/sin((3)=0. (3.8) 

The period of SHM, for small angles is given as, 

T= 27C l(M12 + P) 

mgl 
(3.9) 

Fig. 3.7 shows the SHM of a friction-less rigid simple pendulum, 

physical parameters listed in Table 3.1, when it is left oscillating from an 

initial point 130=1 degree, 

Table 3.1: System Parameters

m2 
l 

Ip

0.1 kg 

0.1 meter 
0.001 kg-m2 



34 

1 
ca 0.8 

a 
0.6 

CD 0.4 
• 0.2 
as 0 
a)  •-0.2 
(2) -0.4 

7:340 -0.6 
-0.8 

-1 
0 0.33 0.67 1 1.33 1.67 2 2.33 2.67 3 

Time in Seconds 

Figure 3.7: Simple harmonic motion of undamped simple pendulum. 

The vertical axis in Fig. 3.7 is the angular offset of the simple 

pendulum from the line of gravity, i.e., zero. The offset is periodic because the 

pendulum is not damped. A small friction at the pivoting point results in 

damped SHM of the pendulum and eventually the pendulum comes to rest at 

the line of gravity, as shown in Fig. 3.8. The time required to come to rest or 

become aligned with the line of gravity after the initiation of motion depends 

upon the coefficient of friction at the pivoting point and the magnitude of the 

smallest observable motion. 

1.00 
ca 0.80 

0.60 
ci) 0.40 

0.20 
0.00  

act 
4.4 
co -0.20 
41) -0.40 

Too -0.60 
-0.80 
-1.00 

0.00 0.33 0.67 1.00 1.33 1.67 2.00 2.33 2.67 3.00 

Time in Seconds 

Figure 3.8: Simple harmonic Motion of damped pendulum. 
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3.3.3 Rigid simple Pendulum with Dynamic Support 

The dynamic behavior of a pendulum will be different when its point of 

support moves. Fig. 3.9 shows the rigid pendulum with an accelerated point 

of support. The linear acceleration of the pivoting point effectively 

contributes a torque about the support of the pendulum that forces it to 
deviate from the SHM about the reference vertical line. Normally, a 

pendulum oscillates about the line of gravity, however if the pivoting point 

has a linear acceleration, the reference line about which the pendulum 

oscillates in response to an external disturbance will be offset from the line of 

gravity. Thus the reference line about which the pendulum oscillates depends 

upon the linear acceleration of the pivoting point. The direction of this offset 

also depends upon the direction of the linear acceleration of the pivoting 

point. 
Vertical 

Pivotin point 
or 

support 

c.m 

Force, FL

m1 = mass of support in kg 
m2 = mass of pendulum 

in kg 
Ip = moment of 

inertia in kem 
1 = distance from c.m to pivot 

Line of gravity in meters 

Figure 3.9: Rigid pendulum with moving pivoting point. 

System dynamic equations for a horizontal acceleration of the pivot 

point and a rigid pendulum have been formed using the Lagrangian method 

and are given in Eqs. 3.10. 

and, 
m2 /cos(13 —(m2 /2 +/p )0—m2 /gsin(0 )— (3=0, 

(ml +m2 )1—m2/cos((3 )0 + m2 /sin(0 )0 2= Fx. 

(3.10-a) 

(3.10-b) 
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The relation between the linear acceleration of the pivoting point, z 

and the angular acceleration of the pendulum, 0 is shown by Eq. 3.10(c), 

tn2 /cos(f3 )x —m2 igsin(13 ) - 
• 

on2 l2 +Id 
(3.10-c) 

The solution of Eq. 3.10(c) has been carried out by using Euler's 

numerical integration method (given in Appendix B.). Fig. 3.10 to Fig. 3.18 

shows the simulation of Eq. 3.10(c) for different linear acceleration functions 

and different amounts of friction. The system parameters are listed in Table 

3.1. 

Fig. 3.10 shows the acceleration function of the pivoting point. The 

acceleration increases linearly for 0< t5. 4, constant for 4< t5.. 6, decreases 

linearly for 6< t5. 10, and zero for t > 10. 

0.12 

-.4c) 
'' j' 0.1 
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0 1 2 3 4 5 6 7 8 9 10 11 12 

Time in Seconds 

Figure 3.10: Linear Acceleration function of pivoting point. 

The angular offset of the reference line about which the pendulum 

swings follows the acceleration function of the pivoting point, as shown in 

Fig. 3.11. The amplitude of the oscillation in this case increases at the 

discontinuities in the acceleration of the pivoting point. 



37 

A
ng

le
 B

et
a 

in
 R

ad
ia

ns
 

0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

0 

-0.02 
2 3 4 5 6 7 8 9 10 11 

Time in Seconds 

Figure 3.11: Angular offset of the reference without damping friction. 

Small, velocity dependent, friction at the pivoting point damped the 

SHM of the pendulum as shown in Fig. 3.12. Thus, it may be possible to 

measure the offset of the reference line from the vertical position, if the 

pendulum is sufficiently damped. 

4 

0.12 

0.1 

0.08 

0.06 

0.04 

ao 0.02 

0 

-0.02 

Friction=0.001 

Friction=0.01 

1 2 3 4 5 6 7 8 9 10 11 

Time in Seconds 

Figure 3.12: Offset of the damped pendulum. 
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Fig. 3.13 shows a quadratic acceleration function of the pivoting point. 
For 0< 4 acceleration is increasing, for 4< t5.. 6 constant acceleration, for 

6< t5. 10 decreasing acceleration, and for t> 10 acceleration is zero, 

0.5 
.0  0.45 

0.4 
cNsi 

v., 0.35 

0.3 

.5 0.25 

O 0.2 

tz' 0.15 
1.4 

• 0.1 

8 0.05 

4'4 0 
0 1 2 3 4 5 6 7 8 9 10 11 12 

Time in Seconds 

Figure 3.13: Quadratic acceleration function of pivot point. 

Fig. 3.14 shows the angular offset of the pendulum. The dynamic 

behavior of the pendulum is similar to the acceleration function from 0 to 4 

seconds, though the pendulum is not damped. 
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Figure 3.14: The behavior of the pendulum for the acceleration 

of pivoting point shown in Fig 3.13. 
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Fig. 3.15 shows the behavior of the pendulum for the acceleration 

function shown in Fig. 3.13, when the pendulum is damped, 

0.5 

0.4 

co
0.3

▪ 5 
cz 0.2 

4-a 

12:1 
cu 

0
•
1 

121) 

• 0 

-0.1 

Friction=0.001 

  Friction=0.01 

1 2 3 4 5 6 7 8 9 10 11 12 

Time in Seconds 

Figure 3.15: Angular offset of the pendulum with damping 
friction for Fig. 3.13. 

Fig 3.17 shows the behavior of the pendulum when the pivoting point 

is oscillating at a frequency significantly lower than the natural frequency of 

the pendulum, Fig. 3.16, without damping friction at pivoting point. The 

pendulum experiences a SHM about the reference line that has been 

sinusoidally offset from the vertical position. 

0.1 

0.08 
0.06 v-4 

M 0.04 
c,i"" 0.02 
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0 0 0 
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Figure 3.16: Sinusoidal acceleration of pivoting point. 
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Figure 3.17: Angular offset of the pendulum with undamped SHM. 

The SHM dies out after one period of the pivoting point when there is 

a sufficient velocity dependent friction at the pivoting point. The wave form 

of the pendulum's offset is a exact replica of the acceleration function, as 

shown in Fig. 3.18, 

0.15 

0.1 

as 0.05 

0 

CC1 -0.05 
61) 
A -0.1 

-0.15 

— — — — Friction=0.001 

Friction=0.01 

1 2 4 5 7 8 9 11 12 
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Figure 3.18: The offset of the pendulum with damping friction for Fig. 3.16. 

From above results, it is evident that a relation between the 

acceleration function of the pivoting point and the offset angle can be made. 
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3.4 CONCLUDING REMARKS 

This chapter has been devoted to the development of the mathematical 

model of the dynamic system. The importance of gravity direction in balance 

and the relationships between the terrain and the line of gravity were also 

shown and discussed. The dynamic behavior of a simple pendulum has been 

discussed. The behavior of a damped and undamped rigid pendulum has 

been shown. The new reference line used by the pendulum is offset, from the 

line of the gravity, when its pivoting point goes into motion. That makes the 

pendulum oscillate about a new reference line other than the line of gravity. 

The offsets of the pendulum from the vertical for various accelerations have 

been shown and discussed. 

The next chapter uses the behavior of the simple pendulum and selects 

a model to achieve the dynamic balance of the inverted pendulum regardless 

of terrain conditions. 



4. DESIGN OF INVERTED PENDULUM SYSTEM 

4.1 INTRODUCTION 

Balancing an inverted pendulum requires a reference; this reference is 

the line of gravity that passes through the point of hinging and the center of 

gravity of the inverted pendulum. The direction of gravity in horizontal 

terrain is orthogonal to the terrain surface; the gravity direction in a 

constant slope is fixed with respect to the terrain. The line of gravity in 

changing terrain is not necessarily orthogonal to the terrain surface, and the 

angle with the surface depends upon the terrain gradients. Thus, the balance 

task in horizontal terrains is to bring the inverted pendulum into an 

orthogonal position. This requires a control torque which is applied in the 

opposite direction of the pendulum's angular acceleration. On the other hand, 

the balancing of the inverted pendulum in changing terrains requires the 

detection of the line of gravity. 

The dynamic behavior of a simple pendulum could be used to detect 

the line of gravity in changing terrain. As described in Chapter 3, a simple 

pendulum with velocity dependent friction at the pivoting point always 

returns to rest on the line of gravity. The inertial information obtained from 

the simple pendulum could be employed to locate the direction of gravity in a 

changing terrain. Hence, the balancing of the inverted pendulum in changing 

terrain could be carried out by using an enclosed inertial element. 

This chapter deals with the design of an inverted pendulum system 

which balances itself in a changing terrain. 

42 
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4.2 DESIGN OF AN ACTIVELY BALANCED INVERTED 
PENDULUM SYSTEM 

4.2.1 Purpose 

Robot carts, which have stable posture, have been in used for decades 

in automated factories and other highly-structured environments. Most of the 

automated carts in present use, however, are not really autonomous but rely 

on "tracks" imbedded in or painted on the floor for navigation. These carts 

have a stable attitude on four wheels or tripod systems which gives a static 

stability. Their mobility has been confined to a pre-planned, structured 

trajectory, and the statically stable cart is mobile only in structured terrains. 

Thus, these carts can not be operated safely in an environment where the 

terrain is changing and unstructured. 

Environmental uncertainties dominate the problem domain of the 

autonomous mobile robot; the terrain is one of the uncertainties that limit 

the operation of these robots. Researchers have realized the importance of an 

autonomous mobile robot that acts like a human or other higher animal in 

dealing with unstructured and hostile environments where statically stable 

robots might not be suitable. 

Balancing the body attitude of an unstable autonomous mobile vehicle 

is a primary task. The body is required to be balanced in the vertical position 

regardless of the terrain shape and structure. The body of such robots can be 

considered like an inverted pendulum hinging at the support. 

The purpose of this design is to test a method of detecting the direction 

of gravity so that the balancing of an inverted pendulum could be achieved 

regardless the terrain conditions. This design could be employed to solve the 

balance problem of an unstable autonomous mobile robot. 
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4.2.2 The Inverted Pendulum System 

Generally, a single link inverted pendulum system consists of a 

distributed mass rigid pole hinging on a free support. The center of mass, 

above the point of hinging, causes the pole to be very unstable about the 

vertical. The inverted pendulum becomes more unstable if the point of 

hinging is dynamic. In this condition, the system has two degrees of freedom. 

The angular position of the inverted pendulum with the vertical can be 

considered to be a function of the first and second derivatives of the angular 

position of the inverted pendulum and the linear position of the hinging 

point. The system could be represented by two degrees of freedom and two 

dynamic equations. The cart-pole system is an example of an inverted 

pendulum with a dynamic point of hinging. 

4.2.3 Design Consideration 

An important consideration in the design of an inverted pendulum 

system is the mode of operation. An inverted pendulum system can be made 

to operate in a constrained or structured environment where the direction of 

gravity is known. Only a control torque is then needed about the point of 

hinging of the inverted pendulum to regulate the body position about the 

balanced position. The inverted pendulum system in this study is required to 

be mobile in an unstructured environment. Four wheel carts may not always 

be suitable in changing terrains since without adjustments they may fall 

over. A single wheel mobile system, a unicycle, is better than a multi-wheel 

system and can make various types of motion. 

The second consideration in the design is the orientation of the 

inverted pendulum in the inertial frame. The angular position of the inverted 

pendulum should be measured from the vertical in the inertial frame. Thus, 

a reference line is required to measure the angular position of the inverted 

pendulum with the vertical, regardless of terrains. 

The third consideration in the design is sensing the direction of 

gravity. The direction of gravity is always orthogonal to the surface in 
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horizontal terrain because of the zero gradient, but not orthogonal to the 

surface of terrain in changing terrains. 

4.2.4 Sensor 

The balance task for the inverted pendulum is to keep it in the vertical 

position against the pull of gravity and other perturbing forces appearing 

externally. As discussed and shown in the third chapter, a simple pendulum 

behaves like an inertial element to detect the vertical. Its dynamic behavior 

could be used to detect the direction of the gravity in a changing terrain. 

The pendulum experiences a SHM about the line of gravity when it is 

excited and eventually comes to rest at the line of gravity if damping is 

present at the pivoting point. The pendulum with a dynamic pivoting point 

will experience this SHM about a new reference line which is offset from the 

line of gravity. The angular position of this new reference line with the 

vertical, about which the pendulum oscillates, depends upon the linear 

acceleration of the pivoting point. This important dynamic behavior will be 

used in this design to detect the direction of gravity. 

The dynamic behavior of the simple pendulum, represented by Eq. 3.8 

shows the offset of the pendulum from the vertical position. This offset can be 

estimated by measuring the acceleration of the pivoting point, as shown in 

Fig. 3.10 through Fig. 3.18. The relationship between the offset angle and the 

acceleration of the pivoting point can be established within the constrained 

motion. 

Two types of sensing techniques are required to locate the vertical; the 

accelerometer for translational motion of the hinging point and the inertial 

sensor for the angular position of the inverted pendulum. The information 

extracted from these systems, is used to find the vertical in a changing 

terrain, where the direction of the gravity is not necessarily constant with 

respect to the terrain surface. 
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4.3 SYSTEM MODELING AND DESCRIPTION 

An inverted pendulum system hinging at the axle of a wheel has been 

used to study the balance problem in changing terrain. A simple rigid 

pendulum is used as a sensor to detect the direction of gravity. The proposed 

system has been studied in flat and unknown terrains. 

4.3.1 The Inverted Pendulum System in a Horizontal 
Terrain 

The mathematical model of the inverted pendulum system that is 

being used consists of the following mechanical components: 

i) a distributed mass, /nip, inverted pendulum. The center of mass is located 

at the distance 6, measured from the point of support 

ii) a wheel of mass, me , concentrated in a ring at radius r, 

iii) an inertial element, basically a rigid simple pendulum of mass, mp, 

located at 1p (measured from pivot point) pivoting at the axle of the 

wheel. 
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Figure 4.1: Model of an inverted pendulum system with an 

inertial element. 

The mathematical model of the system, shown in Fig. 4.1, in a 

horizontal terrain is represented by three non-linear coupled differential 

equations. These equations have been constructed using the Lagrangian 

method under the following assumptions: 

i) All mechanical parts are rigid and the system is two dimensional. 

ii) The driving torque about the point of hinging of the inverted pendulum 

has been applied between the axle and the inverted pendulum. Thus a 

single driving system is used. 

iii) A velocity dependent damping force has been used to damp the SHM of 

the simple pendulum ( inertial element). 
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iv) Friction force is exerted by the ground, and the friction force generated at 

the pivot of the simple pendulum is velocity dependent. 

v) Three generalized coordinates 0, (3, and x represents the three degrees of 

freedoms in the system. 

vi) The system parameters are defined in the Table 4.1. 

Table 4.1 Nomenclature for the system, Fig. 4.1 

Symbol Description Unit 

x distance traveled by cart meter 

0 angular offset of inverted pendulum from vertical radian 

0 angular offset of simple pendulum from vertical radian 

miP mass of inverted pendulum kg 

mp mass of simple pendulum kg 

me mass of cart, wheel kg 

Jip moment of inertia of inverted pendulum kg-m2

Jp moment of inertia of simple pendulum kg-m2

El w moment of inertia of wheel kg-m2

lip distance of center of mass from point of hinging meter 

1p distance of center of mass from pivot meter 

r radius of wheel meter 

g gravity acceleration 9.8 meter I sec2

c1 friction coefficient of inverted pendulum kg-m2 /sec 

c2 friction coefficient at pivoting point of regular kg-m2 /sec 

c3 friction coefficient exerted by ground on wheel kg-m2 I sec 

x linear velocity of cart meter /sec 

6 angular velocity of inverted pendulum radian /sec 

13 angular velocity of simple pendulum radian /sec 
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Mathematical Model 

The mathematical model of Fig. 4.1 is shown in Eq. 4.13. The kinetic, 

potential, and dissipative energies are given for the inverted pendulum, 

simple pendulum, and for the cart as follows: 

1) for the inverted pendulum, 

kinetic energy, 

1 • 2 1 {[ d 
2 

\ 
2 

=-2 JIP° +-
2

mil, —
dt

lx+ lip sin (6 ))] +[—(/p cos(0 ))] }, (4.1-a) 
dt 

potential energy, 

= m il, l p gcos(0 ), 

dissipation energy, 

1 • 
D = 2-03 2 , 

(4.1-b) 

(4.1 - c) 

where c1 is the coefficient of friction of the inverted pendulum on the axle as 

defined in Table 4.1. 

2) for the simple pendulum, 

kinetic energy, 

2 
7; =iJ p 2 + -17/lp {[VX 1p sin(f3 ))] 2 +[1(lp COO ))] }, (4.2-a) 

potential energy, 

P2 = — m p lp g cos ((3 ), (4.2-b) 
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dissipation energy, 

1 • 
D2 =-2 c2 2 , (4.2-c) 

where c2 is the coefficient of friction of the simple pendulum at the pivot as 

defined in Table 4.1. 

3) for the wheel, 

kinetic energy, 

7;=-1-m I 2 -F1-J''' co 2, 
-  

where the subscript IP and P denote the inverted pendulum and simple 

pendulum respectively: 

If the wheel is rolling on the ground and the ground is exerting 

sufficient static friction to avoid slip, the linear acceleration of the wheel is 

limited by the relation: 

where 1.t, is the coefficient of static friction, and Nis the normal force. 

If the wheel is rolling without slip, the relation between the linear 

acceleration of the axle and the angular acceleration of the wheel can be 

given as, 

x=r$w =rw, co = 
r 

= r if) = r =—,
r 

where 4:•,„ or w is the angular velocity of the wheel in rad/sec. 
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Therefore, 

2 
7,3 = l in i 2 J. (±) 

2 

potential energy

2

, P 3 = 0 

Total kinetic energy T, 

3 

T=ET, 

i=1 

- ll ni
- 2 

+/71p + + —3- 
J. -2 1

X +-2 (nin , 121p + ll, )6 2 + 

2 
_1(mp /2p + jp)A 2 + ma, 

l ip COO )A.-6 - mp 1p cos(13 

Total potential energy P, 

3 

P =If; , 

=mp lip gcos(0)-mp 1p gcos((3). 

Total dissipation energy D, 

3 

D=EA, 

__1(ce
- 2 

2
+C2 

(4.3-a) 

(4.4) 

(4.5) 

(4.6) 

From the Lagrangian method, Appendix A, the system equations can 

be written as: 

(mip +mp + me +-12-"j  + mip l p cos(9 )9 -mp /p cos((3 )1 

sin(9 )6 2 +m p sino )01 2 = F x , 

(4.7) 
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In .& lip COS(e )3i 4 .  (MAT 12 IP + J 

+cio = 

e —mil, lip gsin(9 ) 

mp 1,, cosa3 )i—(mp 12P + Jp )5—Mp lP gsin((3 )— c2 0=0, 

(4.8) 

(4.9) 

In Eq. 4.7 the force F. is the resultant reaction force appearing in x 

coordinate. Similarly, c is the applied torque between the inverted pendulum 

and the axle. 

The above three equations, (4.7), (4.8), and (4.9) can be written in 

matrix form as: 

KIM= K2[4]+ K3{42 I+ K4, (4.10) 

where, 
q = [x 9 OF, and 

( 

M +M += r2vj IP P c 

K1 = m 1, l ip COO ) 

mp 1p cos(3 ) 

mu, l,P cos(0 ) — mp 1p cos((, ) 

(..„,"I 
_,_ 7

N IP) 

0 

0 

— (mp 1 2  P • p) 

0 0 0 

K2 = 0 — c1 0 

0 0 c2 _ 

K3 =[
0

0 

MN lip sin(9) 

0 

—mp lP sin(13 ) 

0 

0 0 0 
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[F. 
K 4 = Mip l ip g sin (0) — t . 

mp 1p gsin((3) 

The mathematical model of the inverted pendulum system, Fig. 4.1, in 

horizontal terrain is given by, 

[4]= KIK2[4]+ K3{421+ K4]. (4.11) 

4.3.2 Relation Between The Control Torque and Linear 
Force 

The system is driven by a control torque about the pivot point. This 

control torque, applied to the axle with respect to the inverted pendulum, 

produces a force that causes the axle to move, as shown in Fig. 4.2, 

Figure 4.2: Wheel. 

The relationship between the control torque, T, and the translational 

force, Fx can be written as, 

T=.1,AL+F, r, 

or, 

r r 

since, 



54 

therefore, 

(4.12) 
r r 

Eq. 4.7 and Eq. 4.8 can be modified considering single torque applied 

between the inverted pendulum and the axle appears in Eq. 4.7. Thus the 

torque component in the Eq. 4.8 is zero, because a single torque is applied in 

the system. 

Hence, Eq. 4.7 and Eq. 4.8 can be rewritten as, 

(m/p +mp +mc +2-4  rz+mip 1p r cos(3 )6 —mp 1p r cos((3 )04 
(4.7)' 

—mip 1p rsin(0 )6 z +mp 1p rsina3 )A 2+c3 r = 

/7hp cos(6 )3C +(Mip 12IP ± ip - rrhp gsin(0 ) 
and (4.8)' 

+ c1O = 0, 

4.3-3 Inverted Pendulum System in Changing Terrain 

The system dynamics are different in a changing terrain where the 

slope angle, a, is included in the system characteristics, 
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Figure 4.3: Inverted pendulum system in slope. 

Fig. 4.3 shows the inverted pendulum system, Fig. 4.1, on a slope or in 

changing terrain. 

Mathematical Model 

The mathematical model of above system, Fig. 4.3, is similar to the 

mathematical model of Fig. 4.1 except the slope angle, a, can be included as, 

( mil, + mp +m, +4 .i'+m,/, lip cos(E) + a )6 — mp 1p cos((3+ a )0, 
r 

— mu, 4 sin (0 + a )6 2 + mp tp sin ((3 + a )i 2 = 

F xi— ()n ip + Mp + Mc ) g sin (a), 

mp cos(8 + a )i'+(m,p 12p + ip )6 my, lip g sin (0 ) 

+ CIO = —'C, 

(4.13) 

(4.14) 
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mp 1p cos(I3 +a )1 '  — (mp / 2 p +Jp)5 — mp 1p g sin 03 ) — c 2 0 = 0, (4.15) 

where is the acceleration of axle in slope. 

The mathematical model of the inverted pendulum system, Fig. 4.3, is 

still given by, 

[4]= K,-1[K 2[4]+ K 3{4 2 ]+ K 4 ], (4.16) 

where, 

= 

M +in IP P  
r

m IP /11, cos(6 +a) — mp /p cos((3 +a ) 

m li, /ll, cos(0 +a ) ( m il,  /2 /P + IP ) 0 

mp /p cos(13+ a ) 0 — (mp / 2 p + p) 

0 0 0 

K 2 = 0 — c, 0 

0 0 c2

0 m IP l ip sin (0 + a ) —mp II, sin ((3 +a )-

K 3 = [0 0 0 , and 

0 0 0 

[F x — (Mip + Mp + Mc ) gSln(a) 
X . - 

K 4 = Mip l ip g sin (0 ) —'L 

mp 11, g sin 03) 
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The system equations, Eq. 4.11 and Eq. 4.16, are very non-linear and 

coupled. The analytical solution of the non-linear coupled equations has been 

solved using a numerical method. 

4.4 EULER-TRAPEZOIDAL NUMERICAL SOLUTION 

The Euler-Trapezoidal method is a predictor-corrector numerical 

method in which an initial prediction of the system variable is corrected by 

an iterative process to find a new point in the solution. The algorithm for this 

method is given by [47], 

00) = h 
Yo+ —kf (xo,Y0)+ f (x +h y (r)

2 , . 

The derivation of Eq. 4.17 is given in Appendix B. 

4.5 SIMULATION 

(4.17) 

Several preliminary simulations were carried out for the system in a 

variety of initial conditions. These simulations were done to help understand 

the behavior of the inverted pendulum system. They also served as a check 

on the validity of the models. 

Simulations based on the mathematical model Eq. 4.11 have been 

carried out using the Euler-Trapezoidal numerical integration and 

Backward-Difference method, given in Appendix C, for numerical 

differentiation, on a customized software written in C++ on a SUN 

workstation. This simulation has been carried out in near real time with a 

time increment of two hardware clock tics, 32 ms of the UNIX workstation. 

The samples were taken at the rate of 20 samples per period of system 

characteristics frequency. The simulations have been done during low traffic 

so that the CPU is involved primarily in the simulation. This consideration 

satisfied the requirements for real time simulation of the system 

mathematical model. The simulation results for different initial conditions 

are given below, with the parameters of the simulation listed in Table 4.2. 
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This simulation considers the system dynamic behavior when the 

inverted pendulum starts from an initial state. The inverted pendulum is 

allowed to fall by only ±5 degrees from the vertical in the simulation 

program. A control torque has not been used in this simulation. 

Table 4.2 System Parameters 

M rp 10.0 kg t 0.0 N-m 

Inp 0.1 kg j 7P 3.33 kg-m2

1.0 kg Jp 3.3 x 10-4 kg-m2

lip 1.0 m J „, 5 x10-3 kg-m2

1p 

r 

0.1 m 

0.1 m 

c, 

c, 

0.0 kg-m2/sec 

0.0 kg-m2/sec 

The ground plane provides sufficient amount of static friction, µs to 

avoid wheel slip. All velocity dependent friction coefficients are set to zero in 

this simulation. 

4.5.1 Simulation in Flat / Horizontal Terrain 

Simulation 1 

The simulation in Fig. 4.4 through Fig. 4.6 has been done using the 

initial conditions for the system in Fig. 4.1, listed in Table 4.3. 

Table 4.3 Initial value 

00 =1.7 x10-4 radians 

60 = 0.0 radian /sec. 

Q0 = 0.0 radians 

= 0.0 radian I sec. 

= 0.0 meter I sec. 

The initial angle, 00, of the inverted pendulum with the vertical allows 

it to accelerate towards the ground; the inverted pendulum accelerates 

rapidly after 0.4 second, as shown in Fig. 4.4, 
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Figure 4.4: Angular acceleration of inverted pendulum with 

vertical. 

Fig. 4.5 shows the angular position of the inverted pendulum with the 

vertical, 
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Figure 4.5: Angle of inverted pendulum with vertical. 

The acceleration of the inverted pendulum affects the linear acceleration of 

the axle, as shown in Fig. 4.6, 
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Figure 4.6: Linear acceleration of axle 

The two curves, Fig. 4.4 and Fig. 4.6 show that there is close relationships 

between the dynamics of the inverted pendulum and the axle. This 

information is necessary for balance control. 

Simulation 2 

The simulation in Fig. 4.7 through Fig. 4.9 has been done using the 

initial conditions for the system in Fig. 4.1, listed in Table 4.4, 

Table 4.4: Initial value 

0 0 = 0.0 radians 

O0 =0.0 radian I sec. 

130 =1.7 x10-3 radians 

A0 =0.0 radian I sec. 

i o = 0.0 meter/sec. 

Initially, the angle 00 =0, and the lower pendulum is oscillating about 

the vertical starting with an initial angle of 0.1 degree. This oscillation 
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makes the axle to move, as shown in Fig. 4.7, which results in the 

acceleration of the inverted pendulum, as shown in Fig. 4.8, 

0 

0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 

Time in Seconds 

Figure 4.7: Linear acceleration of axle. 
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Figure 4.8: Angular acceleration of inverted pendulum with 

vertical. 

Fig. 4.9 shows the angular position of the inverted pendulum with the 

vertical, 
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Figure 4.9: Angle of inverted pendulum with vertical. 

Hence, from the above results, it can be seen that the acceleration of 

the inverted pendulum is dependent both upon the initial angular position of 

the inverted pendulum and the motion of the simple pendulum. 

4.5.2 Simulation on a Slope 

The dynamic behavior of the inverted pendulum is different when it is 

operating on a slope, as shown in Fig. 4.3; the terrain gradient is very 

important as can be seen in the following cases. Simulation of the 

mathematical model, Eq. 4.16, of Fig. 4.3 has been carried out with the 

system parameters listed in the Table 4.5. The slope gradient is known in the 

simulation program. 

The simulation in Fig. 4.10 through Fig. 4.12 has been done using the 

initial conditions for the system in Fig. 4.3, listed in Table 4.5. 
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Table 4.5 Initial value 

0 0 = 1.7 x10-4 radians 

60 = 0.0 radian /sec. 

130 = 0.0 radians 

= 0.0 radian I sec. 

= 0.0 meter I sec. 

a = 87.26 x10-3 radians 

The terrain slope is 5 degrees and the applied control torque is zero. 

These conditions result in the axle accelerating in the reverse direction, as 

shown in Fig. 4.10, 
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Figure 4.10: Linear acceleration of axle 

In this situation the inverted pendulum accelerates towards the forward 

direction, as shown in Fig. 4.11, 
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Figure 4.11: Angular acceleration of inverted pendulum 

with vertical. 

Fig. 4.12 shows the angular position of the inverted pendulum with the 

vertical, 
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Figure 4.12: Angle of inverted pendulum with vertical. 

All the above simulations were carried out taking the known vertical 

as a reference. This reference is always constant if the terrain is flat. The 

measurement or localization of this vertical position now has to be done when 

the system is operating in a changing terrain. 
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4.6 MEASUREMENT OF POSITION OF THE INVERTED 

PENDULUM IN CHANGING TERRAIN 

The simulation, so far, was carried out on the assumption of a, the 

terrain gradient. The assumption of this angle is not possible when the 

terrain gradient is not previously known. The task of balancing the inverted 

pendulum is to regulate it within a small angular offset from the vertical or 

upright position. The vertical position or line of gravity, with respect to the 

terrain, depends upon the terrain gradient, a; this gradient is very important 

in the balance of the inverted pendulum. 

The inertial element, the simple pendulum has been used in the 

proposed model, Fig. 4.3, to locate the direction of gravity. Hence, the angular 

offset of the inverted pendulum can be measured, only with the simple 

pendulum Fig. 4.13. 

0 

0 7 

Line of Gravity 

Figure 4.13: Measurement of imbalance of inverted pendulum. 
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Fig. 4.13 shows the position of the inverted pendulum. The angle 0 can 

be measured by the relation, 

= 180+13 — y degrees (4.18) 

where y is the angle measured between the inverted pendulum and the 

simple pendulum. 

At the rest condition, 13=0 degrees, so 

0.180—y 

and in motion, 0, 

so in general, 

0=180+13—y. (4.19) 

4.6.1 Measurement of Gravity Direction in Changing 
Terrain 

It has been assumed here that the direction of gravity on a slope is not 

perpendicular to the terrain surface but is offset by an angle a. The problem 

becomes more complex if the angle a is changing, as shown in Fig. 4.14, 

90 +a 90 - a 

Terrain Gravity 

Figure 4. 14: The direction of gravity in changing terrain. 
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4.6.2 Estimation of Offset Angle, f3 

The natural behavior of the simple pendulum is to oscillate about the 

line of gravity that passes through the pivoting point and the center of mass 

of the pendulum. This behavior will be altered when the pivoting point is in 

motion, since the motion of the pivoting point causes an offset of the 

reference line from the vertical position. The pendulum experiences 

oscillation about the new reference line. The offset angle depends upon the 

linear acceleration of the pivoting point in the inertial frame, as shown in 

section 3.3.3 in third chapter. 

4.6.3 Estimation of 11 in Horizontal Terrain 

The system behavior of the simple pendulum in flat terrain, Fig. 4.1, is 

represented by the differential equation, Eq. 4.9, 

mp 1p cos((3 ).z—(mp Pp + Jp )(3—mlp gsin((3 )—c2 0. (4.9) 

Eq. 4.9 is nonlinear and coupled with the linear acceleration, i. Thus, 

it can be used to show the relation between the pendulum's offset and the 

linear acceleration of axle. If the linear acceleration is limited to a maximum 

of 1 meter/sect then it can be shown that the offset to the vertical will be 

confined within an acceptable range. Then Eq. 4.9 could be linearized as, 

mp (nip 1 2 P +Jp )i.•—mp 1p g(3 —c2(3 =0. (4.20) 

with cos((3 ) 1, sin(13 , for 13 5 5 degrees 

If the damping coefficient, c2, at the pivoting point is sufficient then 

the pendulum's oscillation will be damped, Fig. 3.9. In order to make 

pendulum offset a function only of linear acceleration, the condition given 

below should be satisfied, 

c2 f3=—(mp 12 p + JP 
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or 
C2 

onpi2p+Jo' 

then Eq. 4.20 can be written as, 

mp 1p x = mp 1p g13, 

E-.& 
g 

(4.21) 

Thus, the ratio of the linear acceleration to the acceleration of gravity 

is the angular offset of the reference line from the line of gravity. Eq. 4.21 is 

only valid in flat terrain. 

4.6.4 Estimation of in Changing Terrain 

In changing terrains the direction of gravity is not known In order to 

keep the inverted pendulum in balance position the direction of gravity must 

be known. The 13 is measured against the reference line which is the direction 

of gravity. Since the reference line, the direction of gravity, is not known in 

changing terrain a method must be used to estimate the in unknown 

terrains. The system differential equation, Eq. 4.15, represents the system 

dynamic behavior of the simple pendulum when on a slope, Fig. 4.3, 

mp /p cos([3+oc )z'—(mp +Jp )fj•—mp 1p g sin(f3 )—c213 =O. (4.15) 

After using the conditions used above, Eq. 4.15 can be linearized as shown in 

the following steps. The value of is given in Eq. 4.22, 

cos(a+(3 )i i
13 = (4.22) 

g 

so the linear acceleration in changing terrain has two components in the 

inertial frame, as shown in Fig. 4.15, 
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y 

Figure 4.15: Acceleration vector. 

In this case, 
= i'cos(a ), 

j;=i'sin(a ), 

hence, Eq. 4.22 can be written as, 

and, 

R

COS(I3  j;sin (f3 )).

With cos(f3) =1 and sin ((3 ) then, 

therefore, 

g

R = • 
g+i  ji 

(4.23) 

The difference between Eq. 4.21 and Eq. 4.23 is the vertical 

acceleration of the pivoting point appearing in the denominator and the 

linear horizontal acceleration in the numerator. In order to find the offset 

angle of the simple pendulum, the linear acceleration is needed in terms of 

acceleration components in the inertial frame, i.e., z and y. Since the angle a 

is unknown, the component can not be split into two natural components. 

Thus, a method is required to separate these components. 
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4.6.5 Estimation of Vertical Acceleration ji 

The motion of the system, Fig. 4.1, requires some energy to be supplied 

to a torque generating system, for example, an electric motor. This energy 

input makes possible the balancing of the inverted pendulum and also the 

forward motion of the cart. In flat terrain, the system accelerates only in the 

horizontal direction, while on a slope or in changing terrain additional 

energy is needed to compensate for the changes in potential energy. The 

required additional energy depends upon the vertical acceleration of the 

system in the changing terrain. 

Energy  = Energyi + Energy2, (4.24) 

where, Energyi is the energy required for the system in motion on a flat 

terrain, and Energy2 is the additional energy for the same system parameters 

and conditions in the sloped or changing terrain. 

The torque, T1, causes a displacement of the wheel, Ow, thus the total 

work done in flat terrain is, 

W1 = TrOw, 

and the additional work done in unknown terrain is, 

W2 = (Ma, +Mp + mc )g h, 

W2 = T2•4)w, 

or, 

where T2 is the additional torque needed. 

The total work required by the system on a slope is, 

WTota1 = W1+W2/ 
='Cl. 4)w+ (Mil, +Mp 4- Mc )g h, 

WTotal = (C1+ T2) Ow. (4.25) 
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The power, P, is the rate of change of work, 

P = dt WT° tai 

=—dt [;.4)„, + (ma, + mp + mc)g h}, 

=Ti c ,+(m,p +mp +mc)g 

Since 9  it, the rate of change in vertical distance, 

therefore, 

P totai="Ci (i)w (Mu , Mp me )g 51, and 

P total TI(i)w 

(m ill + nip + nz, )g 

(4.26) 

(4.27) 

The simulation results for the calculation of the additional torque, tie in 

Eq. 4.25 is shown in Fig. 4.16 through Fig. 4.18. 

out. 

Fig 4.16 shows the terrains in which the simulations have been carried 
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Figure 4.16: Terrains. 
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Fig. 4.17 shows the additional torque required to move the inverted 

pendulum in the terrains shown in Fig. 4.16. 
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Figure 4.17: Additional torque. 

Fig. 4.18 shows the total control torque that is required to move the inverted 

pendulum system in changing terrains, shown in Fig. 4.16, 
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Figure 4.18: Total control torque. 
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4.6.6 Calculation of 

In order to estimate the offset angle, j3, the linear acceleration of the 

cart, in the inertial frame is also required. 

From Fig. 4. 15, 

where P,I,and 3-; are vector representation of the acceleration components, 

= x=x —y, 

therefore the magnitude of acceleration, z, is, 
j,2 5;2

also, the angle, a, 

a = sin -1[1;

(4.28) 

(4.29) 

With all above expressions and results the 13 vector can be estimated. 

Some results of these calculations are given in section 4.6.8 of this chapter. 

4.6.7 Calculation of Linear Acceleration, 

Assuming that the terrain surface provides enough static friction to 

avoid slip, the relation between the linear acceleration and the angular 

acceleration of the wheel is given as, 

=Pi; „, 

where r is the radius of the wheel. 

The measurement of the angular acceleration of the wheel thus gives 

the linear acceleration of the axle. The measurement of acceleration of the 
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wheel needs a reference. Since the reference is unknown as the wheel rolls 

over changing terrain, one possible way of measuring the angular 

acceleration of the wheel is a measurement relative to the angular position of 

the inverted pendulum which is almost always vertical. This measurement 

gives a angular acceleration between the wheel and the inverted pendulum. 

An opto-sensor could be used to measure this difference. 

• 

Figure 4.19: Measurement of angular acceleration. 

From Fig. 4.19, 

therefore, 

(4.30) 

where, 45 is the difference angular acceleration between the inverted 

pendulum and the wheel. 
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Thus Eq. 4.19 can be solved to a close approximation to find the 

imbalance of the inverted pendulum, 

0=180+13 —y, (4.19) 

since 

i3 = g+y ' 

from Eq. 4.28 and 4.29, 

13= 
.51177 

g + 

2 

X,2 [ d {(  Ptotal " w  )1] 

dt (mu, + mp + mc)g 

g + 
d {(  P wtal (I) w  )} 

dt (mil, + mp + mc )g 

therefore, the final expression for angle (3 can be written as, 

f
11{4 ±6 )12 [d Ptotal-T1 (p+6 ))}

dt (mu, + mp + mc )g 

i3 = 
8+.4r otal -T1 (ep+6 ))}

dt (mu, + mp + mc )g 

4.6.8 Simulation of f Estimation, Eq. 4.31 

(4.23) 

(4.31) 

(4.32) 

The method of finding the vertical offset of the simple pendulum has 

been shown in Eq. 4.31. This equation has been simulated in near real time, 

sample taken every after 32 ms, in the SUN workstation. The simulation 

results are shown in Fig. 4.20 through Fig. 4.25. This simulation uses the 

same parameters as used in previous simulations. 
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Fig. 4.20 shows the type of terrain profile in which the simulation has 

been carried out, 
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Figure 4.20: Terrain profile. 

Fig. 4.21 shows the calculated angle 0, 
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Figure 4.21: Calculated angle 0. 

The estimated angle 13 using the Eq. 4.31 is shown in Fig. 4.22, 
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Figure 4.22: Estimated angle [3. 

A similar simulation has been carried out in a changing terrain (Fig. 

4.23). Fig 4.23 shows a changing terrain in which the simulation has been 

carried out 
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Figure 4.23: Terrain profile. 

Fig. 4. 24 shows the calculated angle [3 

1 0.11 
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Figure 4.24: Calculated angle D. 

The estimated angle 3 using the Eq. 4.31 is shown in Fig. 4. 25 
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Figure 4. 25: Estimated angle D. 

The results of simulation indicate that the value of R can be obtained 

with this estimation technique. Thus the method of finding the direction of 

gravity, Eq. 4.31, can be employed to find the imbalance of the inverted 

pendulum, Eq. 4.19, in changing terrain where the terrain is not always 

orthogonal to the line of gravity. 
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4.6.9 Error Between Calculated and Estimated 

The simulation result shows that the required angle, 13, for the 

estimation of the imbalance of the inverted pendulum could be found by the 
estimation method. The velocity dependent friction at the pivoting point 

causes the suppression of SHM of the simple pendulum. This suppression 
eliminates the uncertainty which could cause the wrong estimation of 0, and 

give the estimated offset angle within an acceptable value. 

The error angle, between the calculated and the estimated value 13 is 

very small, as shown in Fig. 4.26. The error is high at the discontinuity in the 

acceleration but is very small during continuous motion. The average 
difference between calculated and estimated 13 during continuous motion is 

about 2% of the calculated value. 
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Figure 4.26: Error between calculated and estimated 13 

4.7 CONCLUDING REMARKS 

This chapter has been devoted to the design of an inverted pendulum 

system that can be balanced in changing terrains. The design considerations 

for a proposed model have been highlighted, followed by the necessary 
sensory systems. Simulations of the mathematical model of the proposed 

system have been carried out. The necessity of a gravity sensor has been 



80 

highlighted. The inertial sensor, used for gravity sensing, and its dynamic 

behavior in motion and at rest are also shown. An estimation method that 

can be used to find the direction of gravity was formulated. The simulation 

results of the proposed method and the comparison of the simulated result 

with the calculated value has been developed. 



5. MOTION PLANNING AND CONTROL 

5.1 INTRODUCTION 

Motion planning in robotics is one of the important problems one has 

to solve in order to create a truly autonomous robot. This motion plan chooses 

the type of motion which is required to meet the goal. This task involves the 

generation of task oriented motion strategies. The motion required by the 
robot must be coordinated with the control system. 

Humans usually plan their motion ahead of the required task. The 

type of motion depends upon the objective of the task. Humans propel their 

body in the desired direction by unbalancing the body in the direction of 

motion and balancing the body in the vertical position at the end of the 

motion. Thus the human body is in balance and unbalance condition during 

motion. The biological controller regulates the body's center of mass within 

the acceptable region from where the body can be brought back into the 

balanced position at the end of the motion. 

A similar idea could be used to plan the motion of the inverted 

pendulum system. This chapter deals with the motion planning of an 

inverted pendulum system which has been described in the previous chapter. 

A preliminary examination of a controller that controls the system in motion 

and stabilizes the system at rest will be presented in this chapter. 

81 
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5.2 MOTION PLANNING IN HUMANS 

The attitude of the human body is in an unbalanced and balanced 

position during motion. To accomplish motion the human generates a motion 
plan before the motion task starts. Generally, this motion plan consists of 

three phases, unbalanced, constant, and balanced. The motion controller 

executes the plan to achieve the desired motion in the desired time. The 
unbalancing phase, known as the initial phase, starts before the motion by 

leaning the body's center of mass in the direction of the desired motion. The 

duration and degree of unbalance depends upon the motion plan. During 

constant motion, the angular position of the body's center of mass, in the 

inertial frame, remains unchanged. The balancing phase starts when the 
desired task is nearly over and the desired distance is about to be covered. 
When the goal is about to be reached the controller stabilizes the body in a 

vertical balance position. 

The actions of unbalance and balance in motion can be understood by 
analyzing the reaction forces developed by the body's center of mass which 

push the body in the direction opposite to the motion. This could cause the 
fall of the body in the opposite direction beyond the control range. To avoid a 
fall, the body's center of mass needs to be unbalanced in the direction of the 

motion to cancel the reaction force, that pushing the body in reverse, with the 

gravitational force. When these two forces become equal, there will be a 

constant motion of the body's center of mass. Balancing is required when the 

magnitude of motion decreases which causes the decrease in reaction force so 
a smaller amount of gravitational force is needed to cancel the reaction force. 
This will stabilize the center of mass. 
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Fig. 5.1 shows the position of the human body during the motions, 

0

(a) 

x=0 I X>0 

(b) (c) 

Figure 5.1: Human in Motion. 

>0 

In the balanced position (zero motion) the reaction force at the center 

of mass is zero and the gravitational force is through the body's point of 

support and center of mass, Fig. 5.1(a). Thus the body is in a balanced 

position. When forward motion starts from this position, Fig. 5.1(b), the 

reaction force developed at the center of mass pushes the body in a reverse 

direction. This unbalances the body's center of mass in the reverse direction 

of motion. To prevent the body from falling, the body's center of mass must 

lean forward before the motion is started, Fig. 5.1(c). Thus the angular offset 

of the body's center of mass from the vertical position depends upon the 

magnitude of the motion. 
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5.3 MOTION PLANNING OF INVERTED PENDULUM 
SYSTEM 

The inverted pendulum has been considered as a single link human 
posture hinging about the ankle. A similar idea to that used by humans to 
plan motion could be employed to plan the motion of an inverted pendulum 
system. A similar algorithm, unbalance and balance action, could be used to 
achieve the motion of the system. Fig. 5.2 shows the behavior of the inverted 
pendulum in the various motions, 

-r 

-I " 1= 0 - I P > 0 

I I 

X X > x1 
2 1 

(a) (a) (b) (c) (d) 
Figure 5.2: The position of inverted pendulum in various motion. 

The inverted pendulum is initially in a balanced position with zero 
motion, Fig. 5.2(a). The inverted pendulum starts to fall in the opposite 
direction of the motion when linear acceleration starts, Fig. 5.2(b). Similar to 
the case of human motion, the inverted pendulum should be unbalanced in 

the direction of motion before the motion starts, Fig. 5.2(c). The imbalance of 

the inverted pendulum starts when the linear acceleration of the axle starts. 
This causes the stabilization of the inverted pendulum against the rapid fall 
due to gravity. An algorithm is required to control the motion of the inverted 
pendulum system. 
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5.3.1 Piece Wise Motion Planning 

Fig. 5.3 shows a graphical representation of a motion plan to achieve 
the distance, xd, covered in the desired time, td, 
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Figure 5.3: Motion planning (a) the distance traveled profile, 

(b) the desired velocity profile, and (c) acceleration 

of axle. 

A servo control on the linear velocity could be used to cover the desired 
distance. Piece-wise velocity functions have been shown in Fig. 5.3(b) and the 
corresponding distance traveled in Fig. 5.3(a). The velocity function has been 
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divided into three segments, (1) linear increasing, (b) constant, and (c) linear 

decreasing, as shown in Fig. 5.3(b). Fig 5.3(c) shows the required acceleration 

function of the axle for the above plan. 

The ideal angular position of the inverted pendulum with the vertical 

is linearly dependent on the axle acceleration, as shown in Fig. 5.4(a). The 

corresponding ideal angular velocity and accelerations are shown in Fig. 
5.4(b) and Fig. 5.4(c) respectively. 
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Figure 5.4: Angular profile of the inverted pendulum with the 

vertical (a) angular position,(b) the angular 

velocity, and (c) angular acceleration. 
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In the motion plan, as shown in Fig. 5.3 and Fig. 5.4, the acceleration 

of the axle is abrupt which causes a stability problem for the inverted 

pendulum. Thus the above plan is physically not possible. Hence a plan 

which is close to the plan shown in Fig. 5.3 and Fig. 5.4, except at the 

transitions, could be employed to achieve the desired motion. Such a plan is 

shown in Fig. 5.5 and Fig. 5.6. 
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velocity profile, and (c) the distance traveled. 
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Fig. 5.6 shows the angular position, velocity and acceleration of the inverted 

pendulum. 
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Figure 5.6: Angular profile of the inverted pendulum with the 

vertical (a) angular position,(b) the angular 

velocity, and (c) angular acceleration. 
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The entire motion plan can be expressed in the seven piece-wise terms, 

(1) unbalance in forward direction, (2) constant unbalance, (3) recovering, (4) 
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balanced, (5) unbalance in reverse direction of motion, (6) recovering, and (7) 
stabilization. 

(1) Unbalance in forward direction:- In order to start the motion of 

the inverted pendulum system, the axle must be accelerated in the forward 
direction. The magnitude of the acceleration depends upon the angular 

displacement of the inverted pendulum from the vertical in the direction of 
the motion. The inverted pendulum must be unbalanced. This phase starts at 
t=0 and ends at t = t1, Fig. 5.6(a). 

(2) Constant unbalance:- The velocity or speed of the axle depends 
upon the acceleration. A constant acceleration develops a linear velocity with 
time, as shown in Fig. 5.5(b). The required speed can be achieved by keeping 

the acceleration constant. The angular position of the inverted pendulum 
remains unchanged when the acceleration of the axle is constant, thus in this 
phase, t=ti to t=t2, the unbalance of the inverted pendulum is constant. The 
degree of unbalance depends upon the magnitude of the constant 

acceleration of the axle. 

(3) Recovering:- The angular offset of the inverted pendulum 

decreases as the time advances. This phase recovers the inverted pendulum 
from the unbalance position, phase2, towards the balanced position, t=t2 to 
t=t3. 

(4) Balanced:- In this phase, t=t3 to t=t4, the acceleration of the axle is 
zero thus the inverted pendulum remains in the balanced position. 

(5) Unbalance in reverse direction:- When the distance is about to 
be covered, the forward speed of the axle must be reduced so that the system 
can stop at the desired position. In order to accomplish this, a braking force is 
required on the axle. This brake force decelerates the axle. Since the braking 
force is applied to the axle with respect to the inverted pendulum, the 
inverted pendulum must be unbalanced in the reverse direction of the motion 
for a duration, t=t4 to t=t5. The degree of unbalance depends upon the amount 
of braking force. Generally, the inverted pendulum must remain near the 
vertical to stabilize it in the balance position at the end of the motion. Thus a 
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small unbalance of the inverted pendulum corresponds to a small braking 

force. This small braking force, applied on the axle decreases the speed of 

axle. Thus the duration of this phase depends upon the speed of the axle and 

the magnitude of the braking force. 

(6) Recovering:- In this phase, t=t5 to t=t6, inverted pendulum comes 

towards the balanced position. The speed of the axle also continuously 

decreasing in this phase. 

(7) Stabilization:- In this phase, the inverted pendulum is stabilized 

in the vertical balanced position. A small correction of angular offset will be 

done. The inverted pendulum remains balanced all the time until a new 

motion cycle is started. 

Fig. 5.7 shows the motion plan of the system. The entire motion cycle 

has been divided into seven phases, 

1.1111mr 

0 0 
0 

0 > < X4 = 0 X6 --IP' X 6 = 0 
2 1 3 2 

Balanced Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 
Position 

  Motion cycle  

Figure 5.7: Position of the inverted pendulum in different phases. 

Fig. 5.7 shows the inverted pendulum in different phases during the 

motion. Phase1 represents the unbalance of the inverted pendulum for 
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05 t < to Fig. 5.6(a). The inverted pendulum is in constant imbalance position 

in phase2, t, 5 t < t2 , Fig. 5.6(a). The recovering, phase3, t2 5 t < t3, brings the 

inverted pendulum towards the vertical position, Fig. 5.6(a). During phase 4, 

t3 5 t < t4 , the inverted pendulum remains in the balanced position. Phase 5, 

t4 5 t < t5, represents the inverted pendulum in the unbalance position in the 

reverse direction of the motion. The recovering phase, t5 5 t < t6, brings the 

inverted pendulum towards balanced position. The stabilization phase 

t6 5t<t, balances the inverted pendulum in the vertical position. This 

stabilization will end the motion cycle. The inverted pendulum will be in the 

balanced position until a new motion cycle is started. 

Phasel 05t<t, 

Phase2 t1 5 t < t2

Phase3 t2 5 t < t3

Phase4 t3 t < t4

Phase5 t4 5 t < is

Phase6 t5 5 t < t6

The acceleration function, in Fig. 5.5(b), can be written as, 

= K i t 

= K 2

= K 2 — K 3 (t — t 2 ) 

1 4 = 

is = — K 4 (t — t 4 ) 

05t<t1

ti t < t2

t2 t < t3

t3 t < t4

t4 5 t < ts

X6 = —K4 (15 — 10+ K 5(1 - 14 ) t 5 5 t < t6

Eq. 5.1 can be written in matrix form, as shown below, 

x1 K1 0 0 0 0 

X2 0 K 2 0 0 0 
t

1 
1 3 0 (K 2 + K 3 t 2 ) — K 3 0 0 

t 

i 4 0 0 0 0 0 
t 

0 K 4 t 4 0 — K 4 0 
t 

i 6 0 —(K4ts —Kst4 +Kst4 ) 0 0 K5 _ 

} (5.1) 
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therefore, 

= [K][e] 

where, x2 1 3 14 is i 6 [e] = ft 1 t t t] T

— K 1 0 

0 K 2

0 

0 

0 

0 

0 

0 

and [IC] = 
0 (K 2 4- K 3t 2 ) — K 3 0 0 

0 0 0 0 0 

0 K4t4 0 — K 4 0 

0 — (K 4t 5 — K 4t 4 K 5t ) 0 0 K 5

5.3.2 Simulation of motion plan in Horizontal Terrain 

(5.2) 

The simulation of the piece-wise motion planning for a horizontal 

terrain uses Eq. 4.7' and Eq. 4.8'. The system physical parameters and 

coefficients for Eq. 5.2 are listed in Table 5.1 and Table 5.2 respectively. This 

simulation has been carried out to understand the behavior of the inverted 

pendulum during a piece-wise motion of the axle. 

Table 5.1: System parameters 

Mass, mn, 10 kg 

Mass, mp 0.1 kg 

Length, //p 1.0 m 

Length, /p 0.1 m 

Inertia, J1 3.33 kg-m2

Cl 0.0 

C 2 0.005 
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Table 5.2: Coefficients for Eq. 5.2 

t1 1.0 seconds 

t 2 3.0 seconds 

t 3 5.0 seconds 

t4 7.0 seconds 

t 5 19.2497 seconds 

t6 41.9767 seconds 

IC/ 0.5 

K2 0.5 

K 3 0.25 

K4 -0.008163 

K 5 0.004704 

Distance covered, xd 35.85 meters 

Time taken, td 41.98 seconds 

Fig. 5.8 shows the resultant acceleration of the axle during the motion. The 

coefficients for Eq. 5.2 for the simulation have been used from Table 5.1 and 

Table 5.2. 
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Figure 5.8: Acceleration of Axle. 

In Fig. 5.8 the initial acceleration is very high and is in the opposite 
direction of the motion. This acceleration is required to initiate the angular 
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motion of the inverted pendulum in the forward direction from the rest 

position. The relationship between the acceleration of the axle and the 

angular position of the inverted pendulum is assumed to be linear for the 

motion planning. Thus the angular position of inverted pendulum follows the 

acceleration function of the axle, as shown in Fig. 5.9. At discontinuities, the 

accelerations of the axle is very high. This is the acceleration which is 

required to change the motion of the inverted pendulum from one state to the 

next state. 
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Figure 5.9: Angular position of Inverted Pendulum during motion. 

The resultant velocity of the axle is as shown in Fig. 5.10, 
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Figure 5.10: Axle Speed. 
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Fig. 5.11 shows the distance traveled by the inverted pendulum system 

during the motion task. 
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Figure 5.11: Distance traveled by the Inverted Pendulum system.

Fig. 5.12 and Fig. 5.13 show the angular velocity and acceleration of the 

inverted pendulum during this motion plan. 
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Figure 5.12: Angular velocity of Inverted Pendulum during motion. 
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Figure 5.13: Angular acceleration of Inverted Pendulum 

during motion. 

Fig. 5.13 shows that the angular acceleration of the inverted pendulum at the 

discontinuities is very high. This higher acceleration could make the inverted 

pendulum to become more unstable than in continuous motion. 

As expressed in Eq. 4.9, the dynamic equation of the lower pendulum, 

the resultant offset [3 of the pendulum, in this situation, from the vertical 

position is shown in Fig. 5.14, 
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Figure 5.14: Angular offset of the simple pendulum from vertical. 
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The error angle between calculated, solving Eq. 4.9, and the estimated, 
solving Eq. 4.32, 0 for the motion plan shown in Fig. 5.8 is as shown in Fig. 
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Figure 5.15: Error Angle between Calculated and Estimated f3. 

In Fig. 5.15 the error of the estimated 0 at the discontinuities is high. 

The magnitude of the error depends upon the magnitude of accelerations at 

the discontinuities. 

The drawback of the above planning is the sharp change in the 

angular velocity of the inverted pendulum at discontinuities, as shown in 

Fig. 5.12, which could cause a problem of stability. The angular offset of the 

simple pendulum has been used to estimate the location of direction of 

gravity, however due to the abrupt change in the motion, the simple 

pendulum experiences a SHM. This oscillation has been damped by velocity 

dependent friction at the pivoting point, but the settlement of the oscillation 

of the pendulum, even though it is damped, takes a considerable time, as 
shown in Fig. 5.14. Thus the estimation of the angle 0 at the discontinuity 

results in some error, as shown in Fig. 5.15. This gives an inaccurate 

estimation of the direction of gravity. 
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The discontinuity in the motion should be avoided to make the system 

more stable and to make a better estimation of the direction of gravity. Thus, 

a continuous motion plan could be considered for the motion planning. 

5.3.3 Continuous Motion Planning 

Fig. 5.16 shows a graphical representation of a improved piece-wise 

motion plan. 
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Figure 5.16: Continuous motion plan (a) linear acceleration 
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The plan, shown in Fig. 5.16, is similar to a theoretical continuous 

motion plan. The acceleration function, Fig. 5.16(a), has been chosen for each 

time interval so that the boundaries of adjacent intervals meet closely. This 

assumption assures continuity in the acceleration of the axle. Since the 

angular position of the inverted pendulum is linearly related to the 

acceleration of the axle, the angle a is also continuous with time, as shown in 

Fig. 5.16(b). 

The above plan can be expressed in mathematical equations. 

i2 t 3 K i3 t 41 1 = K 1 1 1.2 K 0<_t<t 1

= K it 4 2 t i 4+ K 12 1.13 t i 5. t < t 2

1 3 = 1 2 - [K 31 (t r2 ) 2 + K 32 (t t 2 ) 3 + K 33 (t 1.2 ) 4 t 2 t <t 3

14 =0 t3 t < t 4

= —[ K 5 (t — t4 ) 2 + K 52(I -0 3 + K 53(t - 0 4] t4 5_ t < t5

X6 =15 + [Km(t-t5 ) 2 + (t 4)3 +K63 (t - ( 5 t5 5. t < t6 

} (5.3) 

5.3.4 Simulation of Continuous Motion Plan in Horizontal 
Terrain 

This simulation uses the system parameters and coefficients listed in 

Table 5.3 and Table 5.4 respectively. 

Table 5.3: System parameters 

Mass, mjp 10 kg 

Mass, mp 0.1 kg 

Length, lll, 1.0 m 

Length, /p 0.1 m 

Inertia, ei Ip 3.33 kg-m2

Cl 0.0 

C2 0.005 
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Table 5.4: Coefficients for Eq. 5.3 

t1 4.0 seconds 

t2 4.2 seconds 

t3 9.0 seconds 

t 4 9.2 seconds 

t5 22.76 seconds 

t 6 59.033 seconds 

K11 0.1875 

K 12 -0.0625 

K 13 0.0059 

K 31 0.1302 

K 32 -0.0362 

K33 0.0028 

K 51 0.0033 

K 52 -0.0003 

K53 0.0 

K 6i 0.0005 

K 62 -0.00002 

Kw 0.0 

Distance covered, xd 51.97 meters 

Time taken, td 59.033 seconds 

Fig. 5.17 shows acceleration function of the axle using Eq. 5.3 with 

system parameters and coefficients listed in Table 5.3 and Table 5.4 

respectively, 
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Figure 5.17: Axle acceleration. 

The velocity and position of the axle during motion are shown in Fig. 5.18 

and Fig. 5.19, 
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Figure 5.18: Axle speed during motion. 
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Figure 5.19: Distance covered. 

The angular position of inverted pendulum during the motion is shown in 

Fig. 5.20, 
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Figure 5.20: Angular position of Inverted Pendulum. 

The angular velocity and acceleration are shown in Fig. 5.21 and 5.22 

respectively, 
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Figure 5.21: Angular Velocity of Inverted Pendulum. 
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Figure 5.22: Angular acceleration of Inverted Pendulum. 

As expressed in Eq. 4.9, the dynamic equation of the lower pendulum, the 
resultant offset 13 of the pendulum, in this motion plan, from the vertical 

position is shown in Fig. 5.23, 
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Figure 5.23: Offset of Simple Pendulum from vertical during the motion. 

The error angle between calculated and estimated 13 in this planning is as 

shown in Fig. 5. 24, 
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Figure 5.24: Error angle between calculated and estimated 13. 

From the above two simulations a comparison between continuous and 

piece wise planning can be done. The continuous motion planning shows 

some advantages over piece wise planning. The continuous planning gives 
greater stability to the system and a lower error in the 13 estimation is 

obtained. 



105 

5.4 MOTION PLANNING 

Fig 5.17 shows a continuous motion plan to be employed to obtain the 

desired trajectory in the motion of the inverted pendulum system. This 

motion plan includes the acceleration function of the axle and the angular 

position of the inverted pendulum. The generated plan commands the servo 

control system, which produces the control torque to make the system move 

according to the plan. 

As shown in the graphical representation of the motion plan, Fig. 5.17 

different types of velocity function for a time, t, have been used. The 

magnitude of the acceleration vector depends upon the required task, i.e., the 

required distance, xd to be traveled in time td. This requires the generation of 

the acceleration functions for the different intervals. This task requires a 

considerable amount of time to find the necessary acceleration functions and 

interval time for each motion task. 

The motion plan should be generated before the motion task starts so 

the control system could follow the plan to complete the motion in real time. 

There are several algorithms that could be used to generate the motion 

plan. Among them, a Knowledge Base System is one of the preferable 

techniques. Generally, a Knowledge Base System consists of a knowledge 

data base, knowledge reasoning, a knowledge base planner, and a learning 

system. In this project, an overview of the knowledge based approach will be 

given as a possible solution to the problem of control implementation for the 

motion of the inverted pendulum system. 

Fig. 5.25 shows a knowledge based motion planning system. The 

knowledge base consists of past experience plans called knowledge data base, 
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Figure 5.25: Knowledge Base Motion Planner. 

Each element in the knowledge data base represents the coefficients of 

motion, Eq. 5.3, and the corresponding time interval. The values tit, ti2, ti3, 

44, ti,5, ti6 represent the intervals of the different phases and Kii„ 420 K113,
Ki,„ Ki32, K131, If151, Ki„ If153, Ki„, 1C162, Kis., represent the coefficients for Eq. 5.3. 

The elements, xid and tid represent the corresponding required distance to be 

covered and the duration of time respectively. This stored knowledge could be 

obtained from the past experience of the planner. The most important layer 

of the knowledge base planning system is the knowledge reasoning. This 
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section is responsible for the determination of the parameters required for 

the current task, xd in td. The reasoning takes place using the linear 

interpolation method for the estimation of required parameters from the 

stored knowledge. The motion planner develops the motion vectors, ryilrk, 

[Cl]rk, and Ririe. The new knowledge will be stored in the knowledge data base 

for future use by a feedback loop from the knowledge planner to the 

knowledge data base. 

5.4.1 Knowledge Data Base 

This is the computer data base where the knowledge acquired during 

past experience has been organized in two row vectors of Rn and Rm of 

dimensions n and m respectively. The row vector Rn is called Desired Vector, 

[ DV ], and Rm vector is the corresponding Knowledge Vector, [ KV ]. 

[ DV ] ===> [ KV ] 

Rn Rm 

therefore, 

[ DV ] ====> [ xid tid], and 

[ KV ]==> [ ti1 ti2 43,44 ti5 ti6 Kin Kin Kim Ki31, Ki32, Ki31, Ki51, Ki52, 

Ki., Ki.] 

i = 0,1,2, ,N 

N is the total number of knowledge vectors in the knowledge data base. 

5.4.2 Data Base Structure 

The knowledge data base is organized in hierarchical fashion in a top 

down method. This method makes it easier to search the knowledge in the 

data base during the reasoning period. The entries in the knowledge base 

have been structured as shown in Table 5.5, 
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Table 5.5: Knowledge Data Base 

Cell i= 1,2 , N Desired Vector Knowledge Vector 

1 [DM [ KV ii 

2 [ DV]2 { IW ]2 

. . . . 

N-1 [ DV ' (l. ].) [ IW ](N-1) 

N [ DV ]isT [ ICV ]isi 

Each data row vector is known as a data cell, i = 1,2,...,N. So, each 

data cell consists of [ DV ] and [ KV ] vectors R2 and R18 respectively. The 

new set of data will be augmented in the knowledge data base. This way the 

knowledge data base becomes more and more experienced. This experienced 

data base can then produce more accurate motion planning. 

5.4.3 Reasoning 

The reasoning method is very important in the generation of a motion 

plan. The qualitative knowledge from the knowledge data base is very 

important. The first and most important task of the reasoning algorithm is to 

get all the knowledge and the desired vector, for corresponding td from the 

knowledge data base. After getting all required vectors, the linear 

interpolation in xid's will be applied. In this way, the approximated 

knowledge vector for the corresponding desired vector [ xd td ] will be 

developed. The reasoning algorithm is as shown in Fig. 5.26 and Fig. 5.27, 
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Figure 5.26: Reasoning algorithm, flow diagram. 
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Figure 5.27: Reasoning algorithm, star diagram. 

5.4.4 Motion Planner 

This section generates the final motion plan, i.e., the linear 
acceleration function, rib*, the angular position vector, [ q Irk and the time 

interval vector, [ t ]rk. These vectors are generated on the basis of knowledge 

generated from the knowledge reasoning with the equation Eq 5.3. 

5.5 CONTROL 

This section will describe a preliminary control strategy that could 

allow the inverted pendulum system to move autonomously over variable 

terrain. The overall control of the inverted pendulum system, Fig. 4.1, could 

be divided into the motion phase and stabilization phase. 

5.5.1 Motion Phase 

This controls the motion of the inverted pendulum system, Fig. 4.1, 

according to the plan developed by the knowledge base motion planning 

system. The controller controls the linear acceleration of the axle and the 

angular position of the inverted pendulum, determined by the equation, Eq. 

5.3. This constrained motion requires a control torque that is to be applied 
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between the inverted pendulum and the axle of the wheel. The required 

linear acceleration and the angular position need to be regulated according to 
the motion plan. Thus a control system is required to regulate both these 

variables. 

Fig 5.28 shows the basic block diagram of a feedback control system, 

[e 

Controller 
[T] k Inverted Pendulum 

System 

Sensors 

Figure 5.28: Basic Feedback Control system for motion phase. 

where, 

Pik is the required acceleration of the cart ( from motion plan), 

[i]k is the actual acceleration of the cart at time k (measured), 

and [i]k is the feedback acceleration of the cart at time k. 

5.5.2 Stabilization Phase 

This phase is responsible for balancing the inverted pendulum in the 
vertical position. This phase starts at time t6 in the motion plan. In this 

phase the importance of linear velocity of the axle will no longer be valid 

and only the angular position and velocity of the inverted pendulum becomes 
important. At the balanced position, both 8 and 6 should be zero so that the 

inverted pendulum remains in the absolute vertical position. The angular 

deviation of the inverted pendulum from the vertical position must be 

adjusted to keep the inverted pendulum in a balanced position. Thus, an 
active controller is required to control the balance of the inverted pendulum. 
This controller remains active until the new motion cycle starts. 
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Fig. 5.29 shows a block diagram of a feedback controller for 

stabilization of the inverted pendulum in a balanced vertical position, 

[q irk =oah [ e lk
Controller 

I Inverted Pendulum 
System 

[ q 1k 

Sensors 

Figure 5.29: Feed Back Control for stabilization of the 

inverted pendulum. 
where, 

[ q Irk is the desired vector [o 9 T, 

[q]k is the output vector [e 6]:, 

and [ q]'k is the feedback vector [e 9 ] 'T. 

Fig. 5.28 and Fig. 5.29 show the basic block diagram of a conventional 

feedback control system. The controller generates a control torque vector 

depending upon the task. The motion control torque is developed during the 
motion of the system and the stabilizing torque during the stabilization 

phase. 

5.6 CONTROLLER DESIGN 

The overall control system consists of two different control algorithms, 
motion and stabilizing. These control systems must be coordinated to control 

the inverted pendulum system dynamically during the motion and at rest. 
Thus, the above two control systems, Fig. 5.28 and 5.29 can be combined into 
a single unit with a switching system that changes the mode of the controller, 
as shown in Fig. 5.30, 
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Figure 5.30: Integrated feedback control. 

[x [q 

The coordinator or switch changes the controller mode at the 

beginning of motion cycle and at the end of the motion cycle, i.e., t6. The 

switch action can be represented by the timing diagram, as shown in Fig. 

5.31. 

Motion 

Stabilizing 

t=0 

Motion cycle 

t t =0 t
6 6 

1  Stabilization —I-Motion cycle 

Figure 5.31: Timing diagram of switching. 
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The torque required on a flat terrain depends only upon the magnitude 
and derivatives of 0 and the linear acceleration of the axle, I. As the wheel 

rolls on a slope, the required torque also depends upon the slope gradient in 

addition to the torque in the horizontal plane; the required torque is non-

linear. A servo control system is needed to cope with the non-linearity 

appearing in the system to reduce the stability problem. The conventional 

PID controller has been widely used in servo systems. The PID servo system 

is fairly good if the speed and the accuracy are not critical. The algorithm of 

the PID control system is mainly based on the system mathematical model. 

Thus the performance of the PID controller is heavily dependent upon the 

exactness of the mathematical model of the corresponding physical system. 

However, the mathematical model of any physical system depends upon the 

availability of the information and also the inclusion of the possible 

coefficients and dynamics at the time of system modeling. The exact modeling 

of a physical system is very difficult when the system undergoes changes. 

The Model Reference Adaptive Control (MRAC) technique could be 

employed to cope with the environmental uncertainties. Its algorithm is to 

develop an error signal by comparing the reference input with the process 

output and adjusting the parameters of the controller through a suitable 

adaptation algorithm based on a parameter estimation method. This 

technique has a disadvantage in that it requires the transfer function of the 

system. The transfer function of the system is very difficult to model if the 

system is operating under uncertainties. So the one disadvantage of this 

technique is the transfer function of the uncertainties that can not be 

modeled and another disadvantage is storing and processing the large 

amount of data needed to adapt the controller. Thus this system is also not 

very suitable if the degree of uncertainties and the non-linearity is high. 

Incorporating human intelligence into an automatic control system 

could be a more efficient solution in the control of non-linear system in 

uncertainty environments. Car-driving in foggy day is an example of control 

of a non-linear system with uncertainty. The driver uses his intelligence to 

navigate the car rather than the solution of differential equations of the road 

and fog in that particular time. Humans use symbolic or qualitative 
descriptions of control rather than mathematical solutions. Motion control is 
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an another example of non-linear control by humans using qualitative 

knowledge. 

5.6.1 Servo Control System 

In order to control the balance of the inverted pendulum during 
motion and at rest a control torque is needed. This control torque is applied 
in the inverted pendulum with respect to the axle. Thus, only one torque is 

applied in the system. The open loop configuration of the system with the 

driving system, DC motor, can be expressed in a block diagram, as shown in 

Fig. 5. 32, 

Reference i/p 
Driving System 
( DC Motor ) 

Inverted 
Pendulum 

Output 

Figure 5. 32: Open Loop Model. 

The characteristics of driving system, DC Motor, is given in Appendix 
D and also a preliminary design method of a closed-loop controller for Fig. 

5.32 is given in Appendix E. 

5.7 CONCLUDING REMARKS 

This chapter has been devoted to the development of a motion 

planning algorithms for the inverted pendulum system. Two types of motion 

planning algorithms were discussed followed by the simulations of the 

system mathematical model for a prescribed planning. Some advantages of 

continuous motion planning over piece-wise motion planning were 

highlighted. An overview of Knowledge Based motion planning algorithm 

was also studied. 

A preliminary examination of a controller that controls the system in 

motion and stabilizes the system at rest was also discussed. 



6. SUMMARY, CONCLUSIONS AND FUTURE 
DIRECTIONS 

6.1. SUMMARY 

This thesis has described the simulation of an inverted pendulum 

system that could stably traverse both flat and changing terrain. The 
required task, that of balancing the center of mass of the proposed model 

(inverted pendulum) into the line of gravity that passes through the axle and 

the center of mass, has been carried out by applying a control torque on the 

inverted pendulum with respect to the wheel axle. The imbalance of the 
inverted pendulum from the vertical position has been measured with respect 
to the reference direction of gravity. 

The maintenance of a stable posture is important to all unstable 
mobile systems. For humans it is challenging because of our physical 
structure. A human's center of body mass lies 2/3 of the body height over two 
spindly structures, the legs. This mass is required to be balanced along the 
line of gravity that passes through the pivot point. This line of gravity is the 
reference line for balancing the body posture. The balancing of a human body 
into an upright position requires the sensing of the direction of gravity. 

To establish the dynamic balance of an inverted pendulum in different 
terrains, during motion and at rest, a method of sensing the direction of 

gravity has been developed and tested. An inertial element, a rigid simple 
pendulum, has been used as a sensor to do this task. Several simulations 
were carried out to estimate the direction of gravity in horizontal and 
changing terrains. 

A mathematical expression has been formulated to find the direction of 
gravity in various terrains when the pivot point of the simple pendulum is in 

116 
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motion. The offset of the pendulum's center of mass from an absolute 
equilibrium, assumed to be the line of gravity that passes through the center 

of mass and the pivot point at zero motion, has been measured in terms of 

possible available information from the sensory system. This offset, the angle 
of a simple pendulum with the vertical during motion, then was used to 
measure the imbalance of the inverted pendulum from the vertical position. 

An algorithm for task oriented motion planning of the proposed model 
has been developed and tested in simulation. The continuous motion 

planning used by humans has better stability than piece-wise motion 

planning; the same logical ideas have been considered to plan the motion of 
the unstable mechanical system. A learning program was executed, in near 
real time, to simulate the control torque that is required for the desired 
motion, and the balance of the inverted pendulum model, studied in this 
project. This simulation was carried out in flat and changing terrains with 

sufficient static friction provided by the surface of the terrain to avoid wheel 
slip. 

The importance of dynamic balance for an unstable mobile system in 

unstructured terrain has been outlined in Chapter 2. This includes the 
importance and uses of an inertial sensing system to detect the direction of 

gravity in changing terrain which is needed to accomplish the dynamic 

balance. 

Modeling of a physical system is important in order to represent the 
system in an equivalent mathematical model for analysis of dynamic 

behavior. Several techniques exist to find the system dynamics. One popular 

technique, Lagrangian dynamics, was used to model the proposed dynamic 
system in this project. The dynamic behavior of the simple pendulum, which 
has a dynamic pivot point, in different conditions was studied in Chapter 3. 
Some important simulation results were also included. 

The design of an inverted pendulum system has been described in 

Chapter 4. The design considerations and the required sensory system for 

balance have been examined. Several simulation results for different initial 

conditions of the system were also shown. A mathematical expression was 
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formulated to estimate the direction of gravity during the motion of the 
inverted pendulum in different terrains. Some simulation results of the 
estimation of the direction of gravity, in flat and changing terrains were also 
shown and discussed. 

Planning the motion of an unstable mobile system while keeping its 
body within a balanced position is a task oriented problem. By incorporating 

the inertial information, an algorithm for motion planning was developed to 
move the inverted pendulum system to accomplish the desired motion in 
various terrains. The idea used in the development of such an algorithm was 
similar to the assumed motion plan used by a human. The algorithm of this 
motion planning was discussed in Chapter 5. The entire control of the system 
was divided into two phases: motion and stabilization. An overview of a 
control system that could be used to control the motion of an inverted 
pendulum, coordinated with the task oriented motion plan, has been 
discussed. 

6.2. CONCLUSIONS 

The objectives of this project have been to develop and test a 

simulation of a sensory system that can determine the direction of gravity in 

a changing terrain, and to develop and test an algorithm and a model for 

motion planning of an inverted pendulum system in unknown terrains. Both 

of these objectives were attained in the project. 

The work reported in this thesis describes a technique to find the 

direction of gravity in a changing terrain. The detected inertial information, 
the direction of gravity, has been used to find the imbalance of an inverted 
pendulum from the unstable equilibrium position, the vertical. This 
imbalance has been successfully used to plan the motion of the inverted 

pendulum system, in a way similar to human motion. The developed 
algorithm, for a task oriented motion plan, has been successfully employed 
in simulation to move the inverted pendulum system with balanced posture. 
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6.3. FUTURE DIRECTIONS 

From the various simulation results, the gravity sensing system for 
locating the direction of gravity is highly affected by the motion of the point 
where the sensor is pivoted. The error in the estimation of the direction of 

gravity is significant at the transition in the motion which cannot be 
neglected. This error is small in the continuous motion. Further improvement 
in the gravity sensing technique, based on the inertial element could be done 

to avoid the error at the transition. Furthermore, a continuous motion plan 

could be developed to make the system stable during the motion. 

Future work envisaged in the area of dynamic balance includes the 
integration of this technique with a control system to build a truly unstable 

autonomous mobile robot, that could be used more efficiently than existing 

stable robots in unstructured terrain. 
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APPENDIX A 

LAGRANGIAN DYNAMICS 

This appendix shows the Lagrangian method of writing the dynamic 

equations of an n degrees of freedom (DOF) system. Using Lagrangian 

method, it is easy to express the dynamic behavior of simple to complex 

dynamic systems. This method is based on the scalar quantities kinetic 

energy, potential energy, and dissipative energy. Each of these quantities can 

be expressed in any coordinate system. The Lagrangian method 

automatically takes full account of vector quantities force, velocity, 

acceleration, etc. This method consists of proper components, force, torque, 

and acceleration expressed in the selected coordinates regardless of system 

complexities [46]. 

Derivation of Lagrangian equations 

The Newtonian equations of motion define the force acting on a 

particle of mass, m in terms of its resulting acceleration. Assuming a 

constant force, F, with three components in the inertial frame, the equations 

of motion can be expressed as, 

F = iFx + jFy + kFz , 

and, 

Fy =my, P., =mi, (A.1) 

where m is the mass of the particle, z, y, and z are the linear accelerations 
in x, y, and z coordinates. 

These forces result in the displacement of the mass an amount ds, with 

components 8 x,8 y, and 8 z . Thus the virtual work done on the mass, m is , 
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8w=m(i8x+5;8y+i5z)=Fx 8x+F),Sy+Fz i5z, 

or, 

m(18x+ji8y+18z) =Fx 8x+F),Sy+Fz5z. (A.2) 

The right side of Eq. A.2 shows the work done by the applied force and 

left side shows the change in energy of the mass. This relation is known as 

D'Alembert's equation. 

A great variety of coordinates may be required to represent the n DOF 

physical system and the corresponding dynamic equations. Hence, for 

convenience, a letter q has been used to represent the coordinates regardless 

of their nature. This letter q is referred to as a generalized coordinate. 

When there are two degrees of freedom, the x,y,z coordinates of mass 

m can be written as the functions of two generalized coordinates q1 and q2 , 

therefore, 

x=x(q1,q2 ), y= y(q02 ), z=z(q1,q2). (A.3) 

Eq. A.3 can be written in differential form, 

c ax ax 
ox=—oq1 +—oq2, 

a qi aq2

y a y 
SY =—aq, 8q1+—aq2 8q2, 

, az az , oz=-0q 1 +---- 0q2 , 
aq, aq2

substituting these equations in D'Alembert's equation Eq. A.2 gives: 

ax +y  y +7-.2.48 ,72ax +y  ----FY 
aq2 aq2 

6 w=no y ach
aa q1 a q1  472 

(A.4.1) 

(A.4.2) 

(A.4.3) 
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a y a z ax ay az , 
= (F Fy Fz )8 + (Fx + F y F )o q2 . (A.5) x a qi a ql a qi aq2 aq2 aq2 

Considering the work done when only q1 is allowed to vary, thus q2 = 0, Eq. 

A.5 will reduces to, 

8w —+y 
a x ,ay

r  -_In( x y 
ax + Fay —)8 (A.6) - 

q 

1=inkx 

aq, a  q 1 a qi qi a qi 
a z 
aq1 

Now, since, 

.. a x _ d (a (i2 /2)) a / 2) 
x a q1 dt a 4, a ql

(A.7) 

substituting Eq. A.7 with similar relations involving y and z in Eq. A.6 then 

Eq. A.6 can be written as, 

=[d { a ( i 2 +5,2 +±2)} m a ( .i2 +5,2+±.2
awg1

)] 

dt m a 41 2 a qi  2
 8

= (Fx ax
+  ̀

h-Y 
z 

a y+ F -- aq, qi qi

since,
1 
2 

. 
—m(x2 + 572 + i 2 ) is the kinetic energy T of the particle. Thus, 

and 

d (a a T F ax +F ay +F az 

Tit a 4, a a qi y  qi a qi

d(aT) a T F ax +F ay +F az

Tit  042) aq2 x a q2 y aq2 Z a '72 

Eq. A.9.1 and A.9.1 can be written in general form as, 

(A.8) 

(A.9.1) 

(A.9.2) 
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where, 

d a 7-) D T - F
dt0 4, ) a qr  q 

ay 
Fq = 

Fxax 
+ FY -1-  F; 

az 
• a q, 

(A.10) 

(A.11) 

Fq is called the generalized force. The generalized force may consist of 

conservative, non-conservative and dissipative forces in the coordinate of 

interest. Thus Fq can be written as, 

Fq = conservative + dissipative + non-conservative, 

av a D 
+ r+— , a qr a qr 

qr 

where V and D are potential and dissipative energy respectively, 

thus the Lagrange generalized system equation is given as: 

d (a DT_ ay a Lo 
+ a 4 r +dt D 4 r a q„ a q,  qr

d (a DT ap DV r
or 

—d7 a 4, q, a 4, ± qr =

(A.12.1) 

(A.12.2) 

where Fq,. is the non-conservative (applied force or torque in the coordinate of 

interest, qr). 
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Inverted Pendulum (standing) 

Vertical 

• 

0 

/ = pendulum length 
in meters 

m = pendulum mass 
in kg 

l ip= moment of inertia 
in kg-m2

Line of gravity 

Figure A.1: Inverted pendulum, standing. 

In this case, there is only one generalized coordinate, the angle of 
rotation of the inverted pendulum about the pivot point, 0. 

Total kinetic energy of the system, T, for rotation about pivot point, 

1 2 • 2 , T = 2—(ml + p )0 

a T N• 
so Tr) =(m/ 2 +//p)e, 

and, 

T 
ae =0,

thus, the equation of motion for rotation has a term, 

_c a T) a T 
dt a o +in, )6 = Fe. 

(A.13) 

(A.14) 

The potential energy, V, 
V=mg/cos(0 (A.15) 
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so DO 
a v =—mg/sin(0 ). 

In the absence of friction, 

Fe =mg/sin(O ) — 'T, (A.16) 

So, the dynamic equation of the inverted pendulum Eq. 3.1 is, 

mgl sin (0) — (m/2 + )6 = (A.17) 

where g is the acceleration of gravity and t is the external torque about the 

point of support to counter the acceleration of the inverted pendulum 

towards the ground. 

Inverted Pendulum with Linear motion in flat terrain 

Vertical 

• 

1 = pendulum length 
in meters 

m = pendulum mass 
in kg 

IP = moment of inertia 

in kg-m
2 

—10.Forc 

Line of gravity 

F 

Figure A.2: Inverted pendulum with motion. 

In this case, there are two generalized coordinates, 8 and x. Total 

kinetic energy of the system is, T, 

• 1 
T= —1 mi2 + ml cos(0 ).±0 +-2 (ml` + I p )6 , (A.18) 

2

a T 
a =lid-Fin/coo )6, 
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d =mx+m/coo )6- ml sin (0 ) 8 2, 
dt ax 

and, 

The potential energy, V, 
V= mg/cos(0 ), (A.19) 

av 

a v 
x = r x, 

a x 

44a T) a T _ F
d a i a x -

so the dynamic equation of the inverted pendulum in the x direction is, 

m1+ m/ cos(e ) 8 -m/ sin (0 ) 8 z = F. (A.20-a) 

Now, finding the equation of rotation of inverted pendulum about the 

point of support, 

a T 
-a-cr mIcos(0 )i+(m12 +Ill) )6, 

d(aT o--5-6)=m/co -m/sin(3)ice +(m/ 2 +De, 

a T 
=-ml sin(8 )i 6, ae 
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a v 
=  ae —migsin(0 ), 

v F; = a—=m/gsin(0 ), 

d (a T) T _ F
dt a6 a e "' 

mlcos(0 - mig sin(0 )=0. (A.20-b) 

Thus we have two degrees of freedom system, x and 0, and have two dynamic 

equations, Eq. A.20(a) and Eq. A.20(b). 

Inverted Pendulum with Linear motion in changing terrain 

Vertical 

A . 

1 = pendulum length 
in meters 

m = pendulum mass 
in kg 

F I ip= moment of inertia 

in kg-m2

Line of gravity 

Figure A.3: Inverted Pendulum on a slope. 

Kinetic energy of the system, T: 

T 2 
 

+-1 mx'a2 + m/ cos(0+ — 

mix' sin (0 +a)68 + 
2 

(m/ 2 + /, p )02
(A.21) 
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a x' 

where x' is the distance traveled in the slope, 

a T = mi' + ml cos(8 )6 , 
a i' 

d (a T) = mx — m/ sm 
. cii (0 + a)(6 + + m/ cos(0 + oc)6 , 

a T = Inf «2 — ml sin (0 + a)a 6, 

the potential energy of the system, 

V = mgx' sin (a)+ ml g cos(0) , (A.22) 

a v 
a x' = mgsin(a), 

d (a T) D T 
dt a ax' 

+Int coo + - mi sin (0 + a)62 — mx'a2

=F ,+mgsina 

The equation of linear motion of point of support is, 

mx'+ m/ cos(0 + a)e — m/ sin (0 + WO' — mx'a2 = F. + mg sin a, 

In a similar way we can write the equation for angular motion, 

m/cos(0+ a).Z' — 2 m/ sin (0+ a).i'a — 

mbc' cos(0 + cc)a2 — mix' sin (0+ o)a + (m/2 + I ip ) 

= ml g sin (0) 

(A.23) 

(A.24) 
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a3

Simple pendulum with moving pivoting support 

Vertical 

Pivoting point 
or 

support 

Rigid pedulum 

Force, Fx

in/ = mass of support in kg 

m2 = mass of pendulum 
in kg 

P = moment of 
2 

inertia in kg-m 
/ = length of 

Line of gravity pendulum in meters 

Figure A. 4: Simple pendulum with moving support 

Kinetic energy of the system, T: 

1 • 1 • T =-
2

mx2 —mlcos((3 )13 + 
2
— (m/ 2 + /d 2ri , 

a T 2—5i. (m1 + Ip )13 —m/ cos((3 ), 

d (aT) a T
dt aA —a0" Aq" 

cl i(1k1 (n12 + p)i, Mi c o s(3 ) + nil sin (0 ) , 

T 
=m1sin((3).* 

potential energy of the system, V, 

(A.25) 

V =—mlgcos(13), (A.26) 

a V 
Fq,=--=—m/ gsin(I3 ), 
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therefore, 

mi cos(r3 — (m/ 2 + Ip )I3— m1G sin ((3 ) = O. (A.27) 

In the same way, the dynamic equation of the pivoting point can be written 
as, 

nd—m/cos((3 )1.:i+misin(13)0 2= F x . (A.28) 



APPENDIX B 

NUMERICAL INTEGRATION 

The rate of change of a variable frequently occurs in physical 

systems. The mathematical equations, associated with physical systems, 
are often expressed in terms of nth order differential equations. The 
nature of the equations depends upon the complexities of the physical 
system that is being modeled. A robotics system is expressed in terms of 
highly non-linear dynamic differential equations. The analytical solutions 
of such a set of equations are often not possible. Approximate methods of 
solution are the only available approach. 

This appendix describes the Euler-Trapezoidal method of numerical 

integration or solution of differential equations. This method was used in 

the work of the project. 

The Euler-Trapezoidal method is a predictor-corrector numerical 

method in which an initial prediction (initial value of integration) is 
corrected by an iterative process to find the new starting point in the 
solution. The number of iterations in the process depends upon the 

required accuracy in the solution. 

The expression y = f (x,y,y',y", ,y ) is a general form of an 

nth order non-linear differential equation The analytical solution of this 
equation is very difficult. Generally, the numerical solution involves 
finding the gradient in the solution curve. The gradient is calculated after 
an increment in the time, h. The new calculated point will be a function of 

the initial point. The Trapezoidal method uses the average gradient 
method to find the new starting point for the next calculation [47]. The 
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Euler-Trapezoidal method of numerical integration can be written in the 

following steps, 

1) find y1(0) = yo +h f (xo, yo), 

2) calculate the derivative at the points (x0 +h, y1(0) ), 

3) use the average of the derivatives at the ends of the intervals, yi(°) and 

y0 to a new approximation y1O), 

y1(1) 
= Yo +-

2
h tf (xo, yo)+ f (xo + h yim)), 

4) further corrections can be made until the error reduces to a sufficiently 

low value, 

= h (xo ,Y0)+ f (xo +h y (r) )) 
2

where r =1,2,  is the iteration to correct the error, 

5) after a sufficient number of corrections the new value, y I can be 

taken as the starting point of the next interval and the process is 

continued until the end of the interval is reached. 



APPENDIX C 

BACKWARD DIFFERENCE METHOD 

An analytical method of differentiation is possible only if there exists a 
analytical function which can be differentiated. Finding first, second and nth 

derivative of a function which is defined only by tabulated data or 
experimentally determined curves, a numerical method of differentiation 
could be used. Three types of numerical differentiation are possible 
depending upon the available data points: forward, backward and central. 
Forward differentiation only possible if the future data points are available 
in advance. This type of differentiation is only possible in off-line calculation 
where the data are available previously. Backward differentiation uses the 
gradient of the curve by taking the differentiation of past and present data 
[48]. This type of differentiation is useful in on-line calculation. The past 
data must be stored in memory. Central differentiation is more accurate than 
both forward and backward, however it uses both past and future data so 
this type of method is useful for off-line calculation. This appendix shows the 
calculation of first and second derivatives from stored data using the 
backward difference method. 

(a) backward- difference expression with error of order h, 

Yi-2 
Yr= 

h2
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(b) backward difference expression with error of order h2 

y: . 3y; — 4y + ;-2 

2h 

2Y — 5Y i-l+ 4Y;-2 — Yi-3 
Yi= h2

where h is the time interval between two data points. 



APPENDIX D 

DC MOTOR CHARACTERISTICS 

The torque needed to drive the wheel could be obtained from a d-c 

motor. The speed and torque of a DC motor can be varied by controlling the 

motor input voltage. The DC motor converts electrical energy into mechanical 

energy. The amount of mechanical energy depends upon the motor 

characteristics and the supplied electrical energy. 

E (t)  a 
Electrical energy  

D-C 
Motor 

 ► m(t) 

Mechanical energy 

Figure Dl: Relation between electrical and mechanical energy 

Electrical Equivalent Model 

An electrical equivalent model of a DC motor is shown in Fig. D.2, 

Rm

Fa(t) 
i
a
(t 

Lm

Em 

Figure D.2: Electrical model of a DC motor. 

t m(t) 
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The electrical equation can be written as, 

a (t) 
Ea(t) = Rrnia(t)+ 

didt
E.(t) (DI.) 

where, Ea(t) is the armature input voltage at time t. Rm, Lm and ia(t) are 

the armature resistance, inductance and current respectively. t m(t) is the 

torque developed by motor. The mechanical energy developed from the motor 

in the response of applied electrical energy is given as torque, t m(t). The 

Em(t) is the armature back emf and is expressed as, 

4)d . 
E.(t)= KEG), = KE

dt 
(D2) 

where, KE is the motor voltage constant in v/rpm, o is the angular velocity 

and Ora is the angle of the shaft in rad/sec and radian respectively. 

The torque developed by the motor is proportional to the magnitude of 

the armature current, ia(t), 

tia(t) = Kr ia (t), (D3) 

where, KT is the motor torque constant in torque/amp. 

The wheel and motor are coupled by a gear which is defined as 

coupling ratio, 

(Ow K — CR - 
Am 

where, (Ow is the angular position of the wheel. 

(D4) 

The relation between the distance traveled in the x direction and the 

angular position of the wheel is given by, 
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x(t) = (nd).(-1 ).4) 
2n 

=(2nr).(-1 ).4) 
27c 

therefore, 

(D5) 

x(t) = r4). 

provided the ground kinetic friction is enough avoid slippage of the wheel. 

Eq. D1 can be combined with Eqs. D2,D3,D4, and D5, 

R. d C d 
Eg(t)=—T.(t)+---(T.(t))+—F---(x(t)). 

KT KT d rICal dt 

Dynamic Equation 

The dynamic equations of the motor can be written as, 

d / 
'Cm (t) + .1L)—kco.)+Tho.+7;.+7i, 

dt 

with co„, = Ka co„ then, 

d / 
T.(t) = (./„, +./L )1C,R —

dt
(con,)+ Kall)o),,+Tf +Tv

(D1)' 

(D6) 

where, of and D are the load opposing torque, friction torque and velocity 

dependent friction torque respectively. J. and J L are the motor and load 

moment of inertia respectively [49]. 

Transfer Function Between Motor Speed to Voltage 

Eqs. D1 and D5 describe the electrical and dynamic models of the 

motor. The relation between the voltage and the speed is necessary for 
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designing a servo controller that provides control on the speed of the motor. 

Thus the transfer function of the motor is required to be evaluated. 

The transfer function of the motor, the ratio between motor speed to 

armature applied voltage, can be written as, 

G„,(s)=
co

'
(s)  

, 
Ea (s) 

with T/4=0, •Tf =0 then, and J=J,.+4, 

G„,(s)= 
KT 

(sI,,,,+ R,,,)(sJ D)+ K E ICT

The transfer function has two poles [55], and Eq. D6 can be written as, 

Gm(s) 
= 

K
T 

1 

(s — Pi )( — P2 ) .

The poles p1 and p2 are the solution of characteristic equation, 

(D7) 

L„Js2 + (L„D+ R J)s+(R,,,D+ KEKT)= O. (D8) 

With the inductance L. is much smaller than the term 

approximate solution of Eq. D8 can be found with: 

therefore, 

= KEKT , and 
„,JR

P2 = 

KT

G„,(s)= 
LmJ 

+ K 4. R.) 
L„ 

Rm2J 
KEKT

the 

(D9) 



APPENDIX E 

STABILITY ANALYSIS 

The motion and the balance control for the inverted pendulum system, 

studied in this project required a controller that generates necessary control 

torque. This control torque is applied between the inverted pendulum and 

the axle. This single torque is responsible for the motion control, control of 

angular motion of inverted pendulum during the motion, and the 

stabilization of inverted pendulum after the motion period. 

In order to select a controller that performed the required task, the 

physical characteristics of the system must first be analyzed. This appendix 

shows the analysis of the system in S-domain. The open-loop stability of the 

system and necessary requirements for closed loop stability will be shown 

with the aid of Root-Locus method. 

Recalling, Eq. 4.8, 

and Eq. D1', 

coo ).5i+(m1  PIP + - ?nipliP  g sin (0 ) 
• 

+ c10 = 

Ea(t)= 
Rm

t„, (t)+ d — (c.(t))+ KE d  (x(t)). 
KT KT dt C dt 

with 5 degrees, c 1 =0 , Eq. 4.8 can be linearized, 

(4.8) 

(D1)' 
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M1P 11P rthw +(nZIP 121? + • M1P 11P ge 

and with Eq. D4, and Lm .•-• 0, the Eq. (D1)' can be written as, 

.. 
o)Ea(t)= 

R. 
T. 

K4
(t) (t)+---- ,,, 

KT KCR 

Converting above two equations into s-domain for analysis, 

or, 

and 

or, 

mil' 

mu,

l IP rsCO,,,(s)+(mw 2 ip+ ip)s2 e(S) "" 1flip ,g0(s)=—T(s), 

rs CO„,(s)+Rmii, 12 + ip )S2 Mip 11P de(s)=—T(s), (E.1) 

Ea(s)= 
R. 
—T.(s)+ E 0)„(s), 
KT KCR 

t„,(s)= Ea(s)--r-+ K K T E . 
R„, R. Kai

Combining Eqs. E.1 and E.2 then, 

Ri T (m11, lli, rs K 
K 

T E )C0„,(s) 
R„, KCR

2n' 
ini ip 12 IP + ip)S2 mill lip 43(s) = —Ea (s). 

KT

(E.2) 

(E.3) 

Eq. E.3 has been approximated as a second order system with one 

input, Ea(s), and two outputs, cow(s) and 0(s). There are two controlled 

variables cow and 0. A separate controller could be designed for each of these 

variables. 
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Analysis for Angular Position Controller Design 

The open loop transfer function for angular position to input voltage 

can be derived by neglecting the horizontal component of Eq. E.3. Thus, 

R„ 
0(s) KT (E.4) 
Ea(s) [mil, l,P g—(mn, 121P + j1p)s 2 } 

this transfer function has two real poles at ± ( mil'img ) . These poles are ill(m,p/2/p + 42) 

located both in left and right hand sides in the s-plane, as shown in Fig. E.1, 

S - plane 

1 
0 +a 

P2 

Figure E.1: Poles in S - plane. 

From the location of the open loop poles, it is apparent that the system 
is unstable. The system could be made stable by adding an open loop zero, z, 

left to the open loop pole p1, 



147 

0(s)  

Ea (s) [inn, 
K 

Rni 
— (S-EZ) 

lIP g — (mip ZZ IP + Jip)s2] 
(E.5) 

The root-locus of open loop transfer function with added zero is shown 

in Fig. E.2, 

z 
1 P2 

Figure E.2: Root-Locus diagram of open loop transfer 

function with added zero. 

cr 

The system can be made stable by choosing a closed loop pole left to the 

imaginary axis. The closed loop pole should intersect on the root-locus, Fig. 

E.2. 

Analysis for Linear Velocity Controller Design 

The open loop transfer function for linear velocity to input voltage can 

be derived by neglecting the angular component of Eq. E. 3.6. Thus, 
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KT
0). w.(S) 

Ea(s) (KT KE
mj  r s) 

R. KcE

(E.6) 

This transfer function has a pole at 
KT  KE

as shown in Fig. E.3, 
Rm Ka ma, ln, r 

JO) 

S - plane 

a 0 

Figure E. 3: Poles in S - plane. 

From the location of the open loop pole, it is apparent that the system is 

unstable. The system could be made stable by adding an open loop zero, z, 

left to the imaginary axis and an open loop pole at the origin in original 

transfer function, Eq. E.6, 



149 

w(S) 
K

r (s + z) 
 =  Rm 
Ea(s) s(ICT  E mip

l ip rs) 

(E.7) 

The root-locus of open loop transfer function with added zero and pole is 

shown in Fig. E.4, 

1 P2 

Figure E.4: Root-Locus diagram of open loop transfer 

function with added zero and pole. 

a 

The system can be made stable by choosing a closed loop pole left to the 

imaginary axis. The closed loop pole should intersect on the root-locus, Fig. 

E.4. 
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