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ABSTRACT 

The environmental menace associated with the existing eco-unfriendly 

conventional plastics prompted the exploration of natural polymers such as 

starch for the development of biodegradable plastics. These efforts have seen 

starch used in various ways, one of which is in the processing of thermoplastic 

starch (TPS).  Thermoplastic starch (also known as plasticized starch) is the 

product of the interaction between starch and a plasticizer in the presence of 

thermomechanical energy.  While starch blends with conventional plastics only 

yield products that biofragment, thermoplastic starch (TPS) offers a completely 

biodegradable option.  However, it is limited in application due to its weak 

mechanical strength and poor moisture resistance. To this end, the objective of 

this study was to determine the effects of incorporating polycaprolactone (PCL) 

and flax fiber into glycerol-plasticized pea starch. The effects of processing 

moisture content on the physical properties of glycerol-plasticized pea starch 

were also evaluated. The physical properties investigated included morphology, 

tensile properties, moisture absorption, and thermal properties. 

Accordingly, two thermoplastic pea starch mixtures containing 9.3 and 

20% processing moisture contents were prepared while maintaining starch (pea 

starch) and glycerol in ratio 7:3 by weight (dry basis). Polycaprolactone was 

then compounded at 0, 10, 20, 30, and 40% by weight in the solid phase with 

the TPS mixtures to determine the effects of processing moisture content and 

PCL incorporation on the physical properties of glycerol-plasticized pea starch. 

This experiment was structured as a 2 x 5 factorial completely randomized 

design at 5% level of significance. Subsequently, PCL and flax fiber were 
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compounded with the TPS mixture containing 20% processing moisture to 

determine the effects of PCL (0, 20, and 40% wt) and flax fiber (0, 5, 10, and 

15% wt) incorporation on the physical properties of glycerol-plasticized pea 

starch. This was structured as a 3 x 4 factorial completely randomized design at 

5% level of significance. All the samples were compressed at 140°C for 45 min 

under 25000-kg load. The compression-molded samples were characterized 

using scanning electron microscopy (SEM), tensile test, moisture absorption 

test, and differential scanning calorimetry (DSC) techniques. 

The tensile fracture surfaces showed a moisture-induced fundamental 

morphological difference between the two TPSs. The TPS prepared at 20% 

processing moisture content revealed complete starch gelatinization, thus, 

exhibiting a rather continuous phase whereas the TPS prepared at 9.3% 

processing moisture content revealed instances of ungelatinized and partly 

gelatinized pea starch granules. Consequently, the tensile strength, yield 

strength, Young’s modulus, and elongation at break increased by 208.6, 602.6, 

208.5, and 292.0%, respectively at 20% processing moisture content. The 

incorporation of PCL reduced the degree of starch gelatinization by interfering 

with moisture migration during compression molding due to its (PCL) 

hydrophobicity. At both processing moisture levels of 9.3 and 20%, PCL 

incorporation had significant impacts on the tensile properties of the plasticized 

pea starch. Flax fiber incorporation also increased the tensile strength, yield 

strength, and Young’s modulus while concomitantly reducing the elongation at 

break of the plasticized pea starch. In the TPS/PCL/flax fiber ternary 

composites, both PCL and flax fiber improved the tensile strength by acting as 
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independent reinforcing materials as no PCL-fiber interfacial bonding was 

observed. Maximum tensile strength of 11.55 MPa was reached at 10% flax 

fiber and 40% PCL reinforcement. While the PCL-TPS interfacial interaction 

was poor, some degree of TPS-flax fiber interfacial bonding was noticed due to 

their chemical similarity.  

TPS prepared at 20% moisture showed more moisture affinity than that 

prepared at 9.3% moisture. The moisture absorption of TPS dropped 

progressively with the addition of hydrophobic PCL. Fiber incorporation also 

reduced moisture absorption by the plasticized pea starch. PCL-fiber 

incorporation also yielded improved moisture resistance vis-à-vis pure TPS. 

Finally, the TPS processed at 9.3% moisture exhibited higher thermal stability 

than that processed at 20%. Individual components of the composites retained 

their respective thermal properties, thus, implying thermodynamic immiscibility. 
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1. INTRODUCTION 

Since their invention, plastics have become an essential part of our daily lives 

both in the commodity and industrial categories. Their ubiquity and prolific 

applications have established them as an indispensable engineering material. 

However, the growing environmental concerns about their non-biodegradability 

coupled with the non-renewability of their source have triggered a paradigm 

shift culminating in a search for biodegradable alternatives of renewable source.  

 

1.1 Background 

Conventional synthetic polymers such as polyethylene (PE), polypropylene 

(PP), polystyrene (PS), and polyvinyl chloride (PVC) to mention but a few, are 

petroleum-based products found in large quantities all over the globe. They 

come in various chemical compositions with different material properties and as 

such, enjoy diverse engineering applications. However, inherent in their array of 

strengths is their major weakness of non-biodegradability. Petrochemical-based 

plastics take an estimated 500 to 1000 years to biodegrade (Datta et al. 1995) 

because their molecules are too tightly bonded for microbial degradation. The 

large volumes of plastic waste products, especially single-use plastic 

commodities, churned out on a daily basis pose enormous environmental 

menace globally, with developing countries, where there are no adequate waste 

disposal management programs in place, bearing the brunt. Their non-

biodegradability also makes them potential threats to unsuspecting aquatic 
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animals which unwittingly ingest plastic waste dumped into water bodies (Laist 

1997).  

Thus, there have been widespread intense efforts to address this issue 

both policy-wise and scientifically. On the policy front, there have been outright 

bans on ultra-thin plastic bags or imposition of levies on shopping plastic bags 

in some countries like Ireland, China (in 2008), South Africa (in 2003), Rwanda, 

Somalia, and Eritrea (in 2005), Tanzania (in 2006), Kenya and Uganda (in 

2007), Belgium (in 2007), Italy, Switzerland, and Bangladesh (2002), Taiwan (in 

2003), and Australia (in 2008). Some specific cities like Mumbai, India (in 2000), 

San Francisco, USA (in 2007), and Leaf Rapids, Canada (in 2006) have also 

followed suit ultimately to discourage and cut down on the use of plastic bags in 

favor of environment-friendly alternatives such as cloth and paper bags (Perry 

2008; BBC 2008). The technical approach offers the recycling option which is 

becoming increasingly impracticable. Alternatively, researchers globally have 

been working on developing a new generation of biodegradable plastics 

commonly referred to as bioplastics or “green” plastics with a view to proffering 

a rather more practicable and sustainable solution.  

According to the American Society for Testing and Materials (ASTM), 

biodegradability refers to the capability of “undergoing decomposition into 

carbon dioxide, methane, water, inorganic compounds, or biomass in which the 

predominant mechanism is the enzymatic action of microorganisms which can 

be measured by standardized tests in a specified period of time, reflecting 

available disposal condition”. Besides biodegradable bioplastics, other classes 
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of bioplastics based on the mechanism of degradation include compostable, 

bio-erodable, photo-biodegradable, and hydro-biodegradable plastics (Nolan-

ITU 2002).  

According to the ASTM, a compostable plastic must be able to “undergo 

biological decomposition in a compost site as part of an available program, such 

that the plastic is not visually distinguishable and breaks down to carbon 

dioxide, water, inorganic compounds, and biomass, at a rate consistent with 

known compostable materials (e.g. cellulose)”. Compostable bioplastics 

biodegrade and disintegrate in a compost system during the composting 

process usually around 12 weeks at temperatures above 50oC essentially 

producing a compost without ecotoxicity and any apparent distinguishable 

residues caused by polymer breakdown (Nolan-ITU 2002). Although the 

degradation of hydro-biodegradable and photo-biodegradable plastics is a two-

step process that involves an initial hydrolysis and photo-degradation stage, 

respectively followed by biodegradation, one-step-degradation water-soluble 

and photodegradable polymers do exist. Bioerodable plastics on the other hand 

exhibit abiotic disintegration. This may include processes like dissolution in 

water, oxidative embrittlement (heat ageing) or photolytic embrittlement (UV 

ageing) (Nolan-ITU 2002). In other words, degradation warrants that the 

polymer linkages are hydrolytically unstable under specific chemical, biological 

or photochemical conditions (Wollerdorfer and Bader 1998). 

Starch and cellulose, both of which are natural polymers, have the 

advantages of unlimited availability, non-toxicity, inexpensiveness, and 
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biodegradability. They both have the generic chemical formula of (C6H10O5)n. 

For over three decades now, starch has been largely studied (see Section 2.8) 

and harnessed for the production of biodegradable plastics for various 

purposes. This longstanding quest of developing starch-based biodegradable 

plastics has witnessed the use of different starches in many ways/forms which 

include, inter alia, native granular starch, physically or chemically modified 

starch, plasticized or thermoplastic starch, and also in blends with many 

synthetic thermoplastic polymers. Similarly, synthetic biodegradable polymers 

such as polyvinyl alcohol (PVOH), polylactic acid (PLA), polycaprolactone 

(PCL), polyhydroxybutyrate (synthesized by Alcaligenes eutrophus), modified 

PET, polyester carbonate (PEC), and other aliphatic polyesters (e.g. Bionelle®, 

BAK) and aliphatic-aromatic copolyesters (e.g., Eastar BIO, Ecoflex) have also 

been successfully developed. Depending on their mode of production, 

biodegradable polymers can be generally grouped into synthetic and natural (of 

plant and microbial origins) polymers (Endres and Pries 1995). However, their 

relatively high costs encourage their blending with starch (a cheap and widely 

available biopolymer) in order to produce cheaper products (blends) with 

desirable complimentary properties (AAFC 2004).  

Starches from cereal and root/tuber crops especially corn, wheat, 

cassava, and potato have mainly been researched for this purpose. Torres and 

co-workers (2007) proved that starch source is a significant material property 

determinant; thus, studying the potentials of starchy legumes which reportedly 

contain significant proportions of starch that can be harnessed for various 
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industrial purposes including bioplastics can be quite revealing. Accordingly, 

recent studies have been conducted into the plastic potentials of pea starch with 

useful results (Ma et al. 2008a, Ma et al. 2009; Huneault and Li 2007). Emami 

and co-workers (2006) reported the starch content of pin-milled flour of 

chickpea as 47.98% (db) while Wu and Nichols (2005) reported the starch 

content for field pea as 48% (db). Lentils contain 35-53% of starch (Reddy and 

Pierson 1984) while brown cowpea contains 46.84-53.63% as reported by Preet 

and Punia (2000). Of interest to this research is field pea (Pisum sativum) for 

which Canada is the world’s largest producer (accounting for about 28% of 

world production in 2004-2005 and 2005-2006) and exporter (responsible for 

about 50% of world’s exports on average). The bulk of Canadian field pea 

production comes from Saskatchewan (about 78% in 2005 to 2006) followed by 

Alberta (about 20% in 2005 to 2006) while Manitoba and British Columbia 

contribute only a small proportion (Skrypetz 2006). Traditionally, pea undergoes 

preliminary processing involving de-podding and cleaning before being 

packaged for sale/export, primarily for human and livestock consumption, and 

also for seeds. However, the advent of commercial-scale fractionation of pea 

into its major chemical components, starch and protein, has opened up doors 

for various dynamic economic utilizations of the crop, even in the non-food 

industry.  

Plasticized or thermoplastic starch (TPS), derived from the interaction 

between starch and a plasticizer in the presence of thermomechanical energy, 

is a completely biodegradable plastic of renewable origin. Unfortunately, its poor 
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mechanical properties and moisture resistance militate against its independent 

use. Many approaches have therefore been exploited to enhance the material 

properties of thermoplastic starch as discussed in Section 2.8.2. 

Accordingly, the potentials of blending starch in native granular (Wu 

2003), modified granular (Yavuz and Babaç 2003) and plasticized (Matzinos et 

al. 2002; Shin et al. 2004; Ikeo et al. 2006) forms with poly(ε-caprolactone) 

(PCL), a synthetic semi-crystalline biodegradable aliphatic polyester (Elzein et 

al. 2004; Shimao 2001), have also been studied. These studies were mainly 

aimed at reducing and improving the cost and biodegradability, respectively, of 

polycaprolactone (PCL) with starch; in other words, PCL was used as the base 

material. Ikeo and co-workers (2006) asserted that starch flexibility and 

compatibility were enhanced using plasticized starch.  Furthermore, natural 

fibers such as flax, ramie, jute, sisal, and cabuya (Wollerdorfer and Bader 1998; 

Torres 2007) have been proven to enhance performance of TPS. In general, the 

properties of starch-based  products are influenced by many factors which 

include  starch type and form,  processing technique,  polymer orientation,  

moisture (relative humidity), amylose content, test procedure, type and method 

of reinforcement (if any),  type and amount of plasticizer, and the kind of 

composite components (Biliaderis et al. 1999; Thunwall et al. 2006b; 

Schlemmer et al. 2007; Teixeira et al. 2007; Torres et al. 2007; De Carvalho et 

al. 2001; Yu and Christie  2005).  

Extrusion technique (sometimes in combination with injection or 

compression molding) has been the most widely used processing technique in 
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the preparation of starch/polycaprolactone composites understandably because 

it allows for melt compounding, a condition that yields finely dispersed starch 

within the polymer matrix particularly when thermoplastic starch is used (Prinos 

et al. 1998). Extrusion is also mostly used for starch plasticization (Matzinos et 

al. 2002). Although extruded fiber-reinforced composites show improved 

mechanical properties compared with the unreinforced, extrusion compounding 

as well as injection molding has been found to cause some fiber damage 

(particularly fiber length and diameter reduction) during processing 

(Wollerdorfer and Bader 1998; Puglia et al. 2003; Grande and Torres 2005; 

Vilaseca et al. 2007), a condition that may limit optimum realization of fiber 

reinforcing potentials.  

 

1.2 Research Justification 

Although plasticized starch is relatively inexpensive to produce and is 

completely biodegradable, its poor mechanical properties and high 

hydrophilicity militate against its potential industrial applications. Therefore, 

improving the mechanical and hydrophobic properties of plasticized starch was 

the principal idea behind this study. Although starch source and type are an 

important determinant of material properties, pea starch was used for this study 

with the latent possibility of increasing its economic value, thus, making it more 

profitable. Property enhancers investigated included flax fiber due to its 

inexpensiveness, renewability, biodegradability, and good strength, and 

polycaprolactone based on its biodegradability, good mechanical properties, 
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and hydrophobicity. Lastly, it is expected that the demands for field pea for 

bioplastics will not be in contest with its demands as food since the quality 

needed for this process is below that needed for safe human consumption. In 

addition, the energy consumption and greenhouse gas emissions from 

bioplastics production are significantly lower than those from conventional 

plastics production (Patel 2002).  

 

1.3 Research Objectives 

The aim of this research was to ultimately improve the material properties of 

glycerol-plasticized pea starch with the incorporation of PCL and flax fiber 

achieved through solid-phase compounding followed by compression molding, 

thus, producing ternary biocomposites that are completely biodegradable. The 

specific objectives were to investigate: 

• the effects of TPS processing moisture content and PCL incorporation on 

the physical properties of glycerol-plasticized pea starch; and 

• the effects of incorporating flax fiber and PCL into glycerol-plasticized 

pea starch. 

The physical properties examined included morphology, tensile properties, 

moisture absorption, and thermal properties. Thus, the methods of 

characterization used in this study included scanning electron microscopy 

(SEM), tensile test, moisture absorption test, and differential scanning 

calorimetry (DSC). 
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1.4 Organization of the Thesis 

This chapter is followed by Literature Review which discusses the extraction 

and composition of pea starch, starch gelatinization, and the roles of starch in 

the development of biodegradable plastics. Chapter three discusses the 

materials, sample formulation and preparation, experimental design, and 

material characterization techniques involved in this study. Results of relevant 

preliminary experiments conducted are also reported in this chapter. The results 

of the main experiments are presented and fully discussed in chapter four while 

chapter five gives a summary of this study and also highlights the major 

conclusions of this research. Recommendations for further work are put forward 

in chapter six. This is immediately followed by a list of references and the 

appendix section which contains formula derivation and experimental raw data. 
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2. LITERATURE REVIEW 

Starch is an organic food reserve which occurs as granules in the chloroplasts 

of green leaves and other photosynthesis cells, and in the amyloplasts of non-

photosynthetic storage organs such as seeds, roots, and tubers (Ellis et al. 

1998; Slattery et al. 2000). Starch has a long history of being a choice raw 

material in the food, textile, paper, and pharmaceutical industries. However, its 

polymeric properties coupled with its biodegradability, renewability, and 

inexpensiveness have arguably positioned it as the most studied biopolymer in 

the quest for completely biodegradable plastics. Therefore, while this chapter 

essentially takes a broader look at the roles of starch in general in the 

development of bioplastics, some specific references are made to pea starch, 

the interest of this research. 

 

2.1 Pea starch 

In legume seeds such as field pea (Pisum sativum L.), starch granules are 

found embedded in a protein matrix in the cotyledons. Depending on the seed 

phenotype, the physicochemical properties vary. For instance, the 30 to 40% 

amylose content in smooth pea contrasts the 60 to 76% amylose in wrinkled 

pea (Colonna and Mercier 1984) with the latter having about 65 to 75% starch 

content of the former (Matters and Boyer 1982; Edwards et al. 1988).  
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2.2 Pea Starch Extraction 

The process of separating starchy legumes such as dry pea into its chemical 

components, primarily starch and protein, is generally referred to as 

fractionation. This fractionation can either be by dry processing or wet 

processing. In the case of pea, the presence of insoluble flocculent proteins and 

fine fiber which may appear as brownish deposits in the isolated starch reduces 

starch isolation efficiency (Schoch and Maywald 1968; Reichert and Youngs 

1978). Therefore, regardless of the method used, the main objective of the 

extraction is to maximally separate starch from the other chemical constituents 

like proteins, lipids, and fibers with minimal damage to the starch granules. In 

other words, there is no starch extraction process that produces 100% starch. 

Starch thus obtained is referred to as native or unmodified starch and can be 

sold in this way or modified to improve its functionality and sold as modified 

starch.  

 

2.2.1 Dry Processing/Milling 

This involves air classification of field pea into starch and protein fractions. This 

process exploits size and density differences between starch and protein 

particles to separate the flour into coarse and fine fractions (Vose et al. 1976). 

The separation efficiency of this method has been found to be largely affected 

by two factors: lipid content and starch granule particle size distribution. It has 

been observed that the higher the lipid contents, such as 4.5 to 7.5% in 

dehulled chickpea (Chavan et al. 1986) and 4.5% in wrinkled pea, the lower the 
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separation efficiency (Colonna et al. 1980).  Similarly, the broader the starch 

granule sizes the lower the separation efficiency. For instance, the sizes of 

isolated broad bean and smooth pea starches which are narrowly distributed 

between 26.5 µm and 23.75 µm favor better separation than the broad size 

range (6 to 80 µm) of wrinkled pea (Colonna et al. 1980). However, it has been 

observed that dry processing of pea concentrates protease inhibitors, phytic 

acid (Owusu-Ansah and McCurdy 1991), and the alpha-galactosides (Vose et 

al. 1976). 

 

2.2.1.1  Dry milling procedure for pea starch 

Figure 2.1 shows a schematic diagram of a typical air classification technique. 

According to Vose et al. (1976), dehulled pea seeds are finely ground to 

subcellular level (<50 µm particle size) in a pin mill. Using alpha-amylase test 

susceptibility, Colonna and co-workers (1980) discovered that pin milling and air 

classification did not cause significant starch granule damage although some 

slight exfoliation of the granule surface was observed with the aid of scanning 

electron microscopy. The flour is then separated into fine (protein-rich) and 

coarse (starch-rich) fractions by the action of a spiral air classifier. The starch 

granules obtained from the first run still have some protein bodies attached to 

them on the surface. Therefore, this starch fraction is pin-milled and air-

classified again in order to further purify the starch. The whole process can be 

repeated several times but studies have shown that a process based on more 

than two runs is unnecessary (Gueguen 1983). With a two-run process, the pea 
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starch fraction, E, obtained by Vose and co-workers (1976) was 65% with 

protein content of 20% as indicated in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 100 kg whole peas (21% protein)   E 65 kg pea starch (20% protein) 

B I00 kg pea flour (21% protein)  F 25 kg pea protein (60% protein) 

C 75 kg pea starch (8% protein)   G 10 kg pea protein (46% protein) 

D 75 kg pea starch (8% protein)   H 35 kg pea protein (56% protein) 

 

Figure 2.1 A schematic diagram of an air classification process (Reproduced 
from Vose et al. 1976 with units converted from lb to kg). 

PIN
MILL 

C 
H 

AIR 
CLASSIFIER 

G D 

E

PIN
MILL 

A 

AIR 
CLASSIFIER 

F B 



 
 

14

2.2.2 Wet Processing/Milling 

The most widely used wet milling technique for starchy legumes is the one 

patented by Anson and Pader (1957). It involves alkaline solubilization of 

protein followed by centrifugation to separate the insoluble components, 

predominantly starch. Hydrochloric acid is added to the supernatant to 

precipitate the protein component isoelectrically. Seeds used in this method are 

dehulled in order to reduce the fiber contents of the isolated starch. Flour 

particle size range of 100 to 150 µm is considered as most suitable as larger 

sizes have been discovered to only increase the amount of protein in the starch 

isolate (Gueguen 1983). Wet processing of starchy legumes results in the 

recovery of much purer starch (and the by-product, protein). In addition, unlike 

dry milling, wet milling also yields protein isolates with fairly bland flavor since 

most of the volatile flavor compounds are flashed off during the drying stage. 

However, on a commercial scale, the primary drawback is the involvement of 

high costs of drying and effluent management (Slinkard et al. 1990).  

 

2.2.2.1  Extraction procedure for pea starch  

Figure 2.2 shows the process for the isolation of starch from pea by wet milling. 

Dehulled seeds are finely ground in water. The slurry is screened to recover cell 

wall fiber and then adjusted to pH 9 to solubilize the protein components. The 

cell wall fiber fraction is dewatered and dried (it may contain 50:50 mix of cell 

wall fiber and starch). The slurry is then centrifuged to separate starch-rich and 

protein-rich fractions. In order to purify the extracted starch fraction (to < 1% 
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protein), the residue is re-adjusted to pH 9 and then centrifuged. Starch 

obtained as residue is then washed and dried. The by-product, protein, may 

then be further extracted via isoelectric precipitation as shown (Figure 2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Figure 2.2   Starch extraction from field pea by wet processing. 

Pea Slurry (Adjusted to pH 9) 
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2.3 Starch Granule Size and Shape 

Many studies have been done to ascertain the size and shape of legume starch 

granules from different sources. Table 2.1 shows results of such investigations 

as compiled by Hoover and Sosulski (1991). The possibilities are oval, 

spherical, round, elliptical, and even irregular shapes, with oval being the most 

common. Starch particle size is an influential factor in certain composite 

applications (Lim et al. 1992). 

 

Table 2.1 Granule dimensions and shapes of legume starches (Hoover and 
Sosulski 1991). 
 

Dimension (Range) Starch 
Source Width 

(µm) 
Length 

(µm) 
Unspecified 

(µm) 
Shape 

Kidney bean 16 - 42 16 - 60   Elliptical, oval 
Northern 
bean 12 - 40 12 - 62  

Oval, irregular, 
round 

Navy bean 12 - 40 12 - 49  
Oval, round 
elliptical 

Black bean 8 - 34 8 -  55  Oval, spherical 

Mung bean 7 - 20 10 - 32  
Oval, irregular, 
round 

Pinto bean 10 - 30 12 - 48  
Oval, irregular, 
round 

Faba bean 12 - 24 20 - 48  Oval, spherical 
Horse bean   6 - 31 Oval, irregular 
Smooth pea   20 - 40 Oval, round 
Wrinkled pea   6 - 80 Round 
Chickpea   8 - 54 Oval, spherical 
Cowpea   4 - 40 Oval, spherical 

Lentil 15 - 30 10 - 36   
Oval, round, 
ellipsoid 
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2.4 Starch Composition 

According to Ellis and co-researchers (1998), starch predominantly consists of 

two main polymers of glucose namely amylose (molecular weight (MW) 105 to 

106 g/mol) and amylopectin (MW 107 to 109 g/mol), both of which possess 

distinct characteristics. The relative proportion of these polymers in starch 

influences its physicochemical properties which, in turn, determine its 

functionality and hence, its applications. Other components, though present in 

small amounts, include starch proteins and lipids. The composition and 

structure of starch granules vary considerably between crop varieties thereby 

affecting the properties and functions of starches obtained from different crops 

and/or cultivars. As mentioned earlier, smooth pea and wrinkled pea both differ 

in amylose/amylopectin ratio. For instance, Ratnayke and co-workers (2002) 

reviewed amylose contents of 33.1 to 49.6%, 8 to 72%, and 60.5 to 88% for 

smooth pea (normal pea), pea mutants, and wrinkled pea, respectively. 

 

2.4.1 Amylose 

Amylose consists of several thousands of glucose units linearly linked by α-1,4 

bonds as shown in Figure 2.3. Recent studies suggest that small number of 

branches do exist in amylose molecules too (Kennedy et al. 1983; 

Madhusudhan and Tharanathan 1996).  According to Curá and co-researchers 

(1995), the incomplete amylose degradation by β-amylase must be as a result 

of its slightly branched nature since β-amylase can only hydrolyze alpha-1,4 

bonds and not alpha-1,6 bonds. Although slightly branched to the level of about 
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1 to 2% (Cura and Krisman 1990), amylose behaves essentially like an 

unbranched entity (Eliasson and Larsson 1993; Hoseney 1994) since its 

branches are quite long and few (Hoseney 1994). Generally, amylose makes up 

20 to 30% of normal starch and its synthesis takes place within the granule by 

the granule-bound starch synthase (GBSS) which is the only starch synthase 

found exclusively within the granule (Jobling 2004). However, the amylose 

contents of legume starches are high, mostly in the range of 24 to 65% (Hoover 

and Susulski 1991). 

According to Ellis and co-workers (1998), amylose can be extracted from 

starch by leaching in hot (50oC) water. As the resultant gel or paste cools, 

recrystallization of the starch chains (also known as retrogradation) takes place 

via the alignment of linear segments of amylose chains thereby associating into 

a more thermodynamically stable form through hydrogen bonding. 

Consequently, the molecular size of the amylose increases and its solubility 

decreases, with insoluble particles eventually being formed (Ellis et al. 1998).  

 

     

 

 

 

  

  Figure 2.3  Amylose repeating unit. 

 



 
 

19

In other words, retrogradation decreases storage stability by causing shrinkage 

and the release of water (syneresis); it also decreases the eating quality of 

starch-based products (Biliaderis and Zawistowski 1990; Keetles et al. 1996).   

The tendency to retrograde is directly proportional to the amylose content 

(Fanta et al. 2002). Increasing amylose concentration decreases gel stickiness 

(Tanaka et al. 2006) but increases gel firmness; the higher the amylose content, 

the lower the swelling power1 and the smaller the gel strength for the same 

starch concentration. Furthermore, Czuchajowska and fellow researchers 

(1991) reported retrograded amylose as being more resistant to degradation by 

amylolytic enzymes than the native form. High-amylose starch can therefore be 

processed into resistant starch which is non-digestible in the small intestine but 

is fermented in the large intestine by gut bacteria, producing short-chain fatty 

acids such as butyrate which helps to prevent colon cancer (Bird et al. 2000).   

Lastly, the amylose content greatly influences other physicochemical 

properties of starch such as gelatinization, pasting, and gelation (Zeng et al. 

1997; Araki et al. 2000; Noda et al. 2001) such that the higher the amylose 

content the higher the gelatinization temperature. The helical structure of 

amylose makes it readily combine with iodine molecules to form complexes that 

absorb certain wavelengths of light. Therefore, a sample containing amylose 

produces a blue-black coloration when mixed with small amount of yellow iodine 

solution; the color intensity can be assessed with a colorimeter using a red filter 

                                                 
1 Swelling power is determined after heating the starch in excess water and is defined as the 
ratio of the wet weight of the (sedimented) gel formed to its dry weight. It depends on the 
processing conditions (temperature, time, stirring, and centrifugation) and may be thought of as 
its water binding capacity (http://www.lsbu.ac.uk/water/hysta.html). 
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(Teitelbaum et al. 1978; McGrance et al. 1998). Amylose also forms similar 

insoluble helical complexes with alcohols and lipids (fatty acids) (Milus et al. 

1946; Rundle and French 1943(a, b); Rundle 1947; Rundle and Baldwin 1943). 

Table 2.2 summarizes some properties of legume and cereal amyloses. Except 

for wrinkled pea with 79-84.7% (Biliaderis et al. 1979, 1980, 1981; Banks and 

Greenwood 1967) and mung bean 78.4% (Naivikul and D’Appolonia 1979;  

 

Table 2.2 Properties of legume and cereal amyloses. 

Starch Sources 
Properties 

Legumesa 
Wrinkled 

Peaa Wheatb Cornc 
Molecular 
weight x105 

(g/mol) 
1.65 - 3.12 1.25 2.6 2.0 

Iodine binding 
capacity (%) 16 - 22 17.99 - 19.20 18.5 - 19.90 19.2 

(amylomaize)

Iodine coloration 
λmax (nm) 625 - 630 625 660 ~660 

Degree 
polymerization 
(# glucose units) 

573 - 1900 1000 - 1100 270 - 1300 295 - 960 

β-amylolysis 
limit (%) >85 79.0 - 84.7 77.0 - 79.0 77.0 

(amylomaize)

Limiting 
viscosity 
number [ŋ] 
(mL/s) 

>180 136 - 150 330 170 

a Banks and Greenwood (1967); Biliaderis et al. (1979, 1980, 1981); Naivikul and D’Appolonia 
(1979); Lai and Varriano-Marsten (1979); Kawamura (1969); Colonna et al. (1981b) 
b Medcalf and Gilles (1965); Lii and Lineback (1977); Banks et al. (1973); Lineback and Rasper 
(1988); Sterling 1978; Banks and Greenwood (1975); Melvin (1979); Glicksman (1969); 
Greenwood and Thomson (1962) 
c Banks et al. (1973); Sterling (1978); Banks and Greenwood (1975); Melvin (1979); Glicksman 
(1969) 
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Biliaderis et al. 1979), the β-amylolysis limits of most legume amyloses exceed 

85% (Biliaderis et al. 1981) which is higher than those of cereal. This implies 

that legume amyloses are less branched than wheat and corn amyloses.  

 

2.4.2 Amylopectin 

Amylopectin is a branched polymer of glucose clustering a large amount of 

short linear (α-1,4 glucosidic) chains by α-1,6 glucosidic bonds which itself 

constitute about 5% of the total glucosidic bonds (Gallant et al. 1992). Figure 

2.4 shows the basic chemical structure of amylopectin. According to Aberle and 

fellow workers (1994), amylopectin is the predominant constituent of field pea 

starch. Amylopectin molecular weight of 107 to 109 Da makes it one of the 

largest known molecules (Banks and Greenwoods 1975; Aberle et al. 1992). 

Amylopectin is synthesized by several enzymes (such as starch synthases,  

 

 

 

 

 

 

 

 

 

Figure 2.4 Chemical structure of amylopectin. 
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branching enzymes, and debranching enzymes) each of which has multiple 

isoforms, and predominantly on the outer surface of the granule (Ball and Morell 

2003). Amylopectins from high-amylose starches have lower degree of 

branching than those from normal and waxy starches, with the highest degree 

of branching occurring in waxy maize (Salomonsson and Sunderberg 1994; 

Falk et al. 1996). Since the branch points in the amylopectin molecules are not 

randomly distributed (Hizukuri et al. 1989), adjacent linear chains are able to 

form thin crystalline lamellar domains of about 5 to 7 nm in width (Ratnayake et 

al. 2002).  

Gernat and co-workers (1993) suggested that starch granule crystallinity 

increased with amylopectin content. The chain length in high-amylose-starch 

amylopectin, as observed by Wang and co-workers (1993), is greater than that 

of normal or waxy starch. As shown in Table 2.3, the average chain length of 

most legume amylopectins is about 20 to 24 glucose units (Biliaderis et al. 

1981) with that of wrinkled pea as 34. Legume amylopectins have longer chain 

lengths that most cereal amylopectins (Colonna and Mercier 1984) with the 

exception of high amylose cultivars like amylomaize; however, they have lower 

molecular weights. Amylopectin is characterized by lower β-amylolysis limit (55 

to 60%) than amylase principally due to its branched points which cannot be 

hydrolyzed by β-amylase (Hizukuri 1986; Kobayashi et al. 1986). Generally, the 

intrinsic viscosity and weight average molecular weight of smooth pea 

amylopectin surpass those of wrinkled pea (Ratnayake et al. 2002). 
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2.4.3 Starch proteins 

Starch granules are also associated with varying amounts of proteins which are 

classified as either surface proteins or integral proteins. Surface proteins are 

readily extracted at temperatures below the gelatinization temperature while 

integral proteins are extracted at temperatures near or above the gelatinization 

temperature (Ellis et al. 1998).  

Table 2.3 Properties of legume and cereal amylopectins. 

Starch sources 
Properties 

Legumesa Wheatb Cornc 
80 (smooth pea) Molecular weight 

x106 (g/mol) 19.4 (wrinkled pea) 
~250 - 

0.9 (smooth pea) Iodine binding 
capacity (%) 1.7 (wrinkled pea) 

<1.0-2.0 - 

Iodine coloration 
λmax (nm) 540-560 530-550 ~570 (waxy) 

Degree 
polymerization (# 
glucose units) 

6195 (wrinkled pea)d 2 x 106 2 x 106 

20-24 28 

~19 (waxy) 
Chain length (# 
glucose units) 
 34 (wrinkled pea) 

17-25 
44 

(amylomaize) 
β-amylolysis limit (%) 56.1-66.5 ~55.0 ~57.2 (waxy) 

126-131 Limiting viscosity 
number [ŋ] (mL/s) 114 (wrinkled pea) 

90-150 35-100 (waxy) 

a Colonna and Mercier (1984); Colonna et al. (1981); Biliaderis et al. (1981) 
b Banks and Greenwood (1967, 1975); Banks et al. (1973); Lii and Lineback (1977); Hizukuri et 

al. (1983); Lelieve et al. (1986); Kobayashi et al. (1986). 
c Banks and Greenwood (1967, 1975); Banks et al. (1973). 
d Praznik et al. (1994) 
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By another definition, starch granule surface proteins are those that are 

susceptible to hydrolysis upon treatment of intact granules with exogenous 

proteases while internal granule proteins are those that (a) become susceptible 

to proteolysis only following thermal disruption of the starch matrix, and (b) 

resist extraction by 2% sodium dodecyl sulfate (SDS) at room temperatures 

(Denyer et al. 1993; Rahman et al. 1995; Mu-Forster et al. 1996). Friabilin, a 

granule surface protein, has been linked to kernel hardness (Anjum and Walker 

1991), a factor that affects the starch granule extraction energy costs (Ellis et al. 

1998).  

Another form of starch proteins is present as enzymes trapped within the 

starch granule which may be remnants of starch biosynthesis or enzymes 

needed for starch hydrolysis during seed germination (Eliasson and Larsson 

1993; Lineback and Rasper 1988; Lowy et al. 1981). These enzymes include 

alpha- and beta-amylases. Beta-amylase works from the non-reducing end 

cleaving the alpha-1,4 linkages,  ‘biting off’ two sugars at a time to give maltose 

while alpha-amylase can cleave the alpha-1,4 linkages at any point in the starch 

chain (Eliasson and Larsson 1993). However, the two cannot cleave the alpha-

1,6 linkages. Instead, alpha-amylase bypasses such bonds while beta-amylase, 

which cannot, leaves beta-limit dextrins (Eliasson and Larsson 1993). 

 

2.4.4 Starch lipids 

According to Ellis and co-workers (1998), lipids extracted from starch granules 

may be integral components of the granules or have originated elsewhere in the 
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tissues and become associated with the granules during the starch extraction 

process. Starch granules from cereal endosperms uniquely contain integral 

lipids whereas those from legume seeds, potato tubers, or other cereal tissues 

other than the endosperm do not (Galliard and Bowler 1987). Legume starches 

(as well as waxy cereal and tuber starches) have small amounts of surface 

lipids and little or no internal lipids, while high amylose cereal starch tend to 

have more lipid (most of which is internal) than the corresponding normal 

starch.  

Two classes of starch granule lipids exist: starch lipids and non-starch 

lipids. According to Vasanthan and Hoover (1992), non-starch lipids are surface 

lipids (easily extracted) which occur as spherosomes and membrane lipids 

which may be present on the granule surface in situ within the plant tissue. 

They may also be monoacyl non-starch lipids which have become bound to the 

carbohydrate surface of starch granules, perhaps as amylose-inclusion 

complexes (Morrison 1983). Internal starch lipids, also known as true starch 

lipids, reside inside the starch granules and are thought to exist as amylose-

inclusion complexes. They are difficult to extract and are predominantly 

monoacyl lipids which primarily include lysophospholipids and free fatty acids 

(Morrison 1983). 

           

2.5 Gelatinization 

The outer layer of each starch granule consists of closely packed starch 

molecules that are impervious to cold water. When starch slurry is heated, 
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water penetrates the outer layers of the granules and the granules begin to 

radially swell. The swelling may continue until the granule volume is as much as 

five times the original volume (SSC 2006). During this process, the bundles of 

starch molecules separate as the granule absorbs water and the slurry viscosity 

increases until the granular state of the starch has largely disappeared leaving 

behind an amorphous mass of starch and water bound together forming a gel.  

Gelatinization is therefore the collapse (disruption) of molecular order 

within the starch granule manifested in irreversible changes in properties such 

as granular swelling, native crystallite melting, loss of crystallinity, loss of 

birefringence (optical anisotropy or double refraction under polarized light), and 

starch solubilization (Atwell et al. 1988; Zobel 1984). In other words, 

gelatinization is an irreversible process and it requires excess water to occur. 

According to Ellis and fellow researchers (1998), the energy required to break 

up the molecular order differs between granules and as a result, gelatinization 

occurs over a range of temperatures; individual granules gelatinize over a range 

of 1 to 2°C and there are considerable variations between granules; hence, the 

need to quote a temperature range, a parameter that is source dependent 

(Ratnayake et al. 2002). Jenkins (1994) postulated that in the presence of 

excess water, granular swelling, which destabilizes the amylopectin crystallites 

within the crystalline lamellae (happening rapidly for an individual crystallite and 

over a range for the whole granule), drives gelatinization.  

In a more detailed and comprehensive way, the mechanism of 

gelatinization has been broken down into some phases (Xie et al. 2006). The 
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first phase involves gradual and reversible granule absorption of water with 

water mobility decreasing as the temperature increases from 20 to 60°C. Any 

granule change at this stage is reversible (Gough and Pybus 1971). In other 

words, this process takes place prior to the onset of gelatinization and does not 

result in the disruption of the starch granules as water is believed to be 

reversibly complexed with starch molecules in the granule (Olkku and Rha 

1978). However, as the temperature of starch slurry increases up to the initial 

gelatinization temperature, the hydrogen bonds within the granule weaken to an 

extent, thereby, allowing for further granule water absorption (Tester and Debon 

2000). Concomitantly, dissociation of double helices predominantly in the 

crystalline region, irreversible granule swelling and loss of granule birefringence 

result (Tester and Debon 2000). This irreversible transformation, which starts in 

the intercellular areas having the weakest hydrogen bonds, takes place over a 

range of temperature depending on the starch under study (Olkku and Rha 

1978). Loss of birefringence has been shown to precede granule rupture (Yeh 

et al. 1996).  

Furthermore, as the heating of the starch slurry progresses, the 

hydrogen bonds of the starch molecules continue to be severed thus allowing 

for water molecules to bind with the starch –OH by hydrogen bonding. 

Consequently, there is crystallite melting and greater granule swelling (Lim et al. 

2000) which, in turn, leads to an increase in starch solubility, paste consistency, 

and clarity (Tester and Debon 2000). It has been observed that swelling also 

makes the granule prone to shear disintegration. According to Tester and 
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Debon (2000), as the end of gelatinization temperature (Tc) is surpassed, total 

breakdown of all the amylopectin double helices would have occurred but not 

necessarily the rupturing of the swollen granules, a process that may require 

higher temperature and applied shear. Olkku and Rha (1978) noted that hot 

starch pastes contained swollen starch granules, granule fragments, and starch 

molecule colloids (attributable to soluble components, essentially amylose, 

leached out during the process). The above mechanism essentially applies to 

an excess water scenario.   

Nonetheless, gelatinization is also possible in limited water situation as it 

is in the processing of thermoplastic starch only that it will require higher 

temperature and shear forces to produce a microscopically homogeneous 

material since granule swelling and disintegration are severely impeded by 

insufficient water (Hullemen et al. 1998). In the same vein, Ratnayake and co-

workers (2002) concurred that gelatinization in the presence of limited water 

has the same mechanism only that there is insufficient water for total 

gelatinization to occur; however, melting of the remnant crystallites occurs at 

higher temperatures. Burt and Russell (1983) also observed that gelatinization 

endpoint temperature increased with decrease in water content.  

Gelatinization can also occur in the presence of shear stresses which 

physically separate the starch molecules in the granule, thereby, allowing water 

to be absorbed. Furthermore, alkaline reagents such as a hydroxide or 

hypochlorite can gelatinize starch because they are capable of initializing the 
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oxidization of starch molecules thereby disrupting the composition of the starch 

granule which, in turn, facilitates water absorption (PA 2006). 

 

2.6 Flax Fiber 

In addition to the oil extractable from flax (Linum usitatissimum L.) seeds, flax is 

also recognized as a veritable source of industrial fibers that are processed into 

long-line fibers used in manufacturing high value linen apparel and short fibers 

used for less value products (van Sumere 1992). Two traditional methods 

employed in flax fiber extraction are water retting and dew retting; the former 

which produces high quality fiber has nevertheless been discontinued in 

western countries decades ago owing to associated stench and pollution (from 

fermentation) coupled with high cost of drying (Brown 1984).  

Water retting involves submerging flax stems into river and lake followed 

by anaerobic breakdown of the pectins and other matrix substances, thus, 

freeing up individual fibrils. Dew retting, on the other hand, entails spreading the 

stems out in the field for selective fungal attack over several weeks.  However, 

this procedure results in heavily contaminated, coarser, and lower quality fiber 

than water retting. Other associated problems include poor consistency in fiber 

characteristics and occupation of agricultural fields for several weeks (van 

Sumere 1992). Hence, enzyme retting technique (which involves the use of 

enzyme mixtures such as Flaxzyme in controlled tanks with the advantage of 

producing fibers with fineness, strength, color, and waxiness comparable to the 

best water-retted fiber and without the issues of stench and pollution) was 
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developed. Other advantages of enzyme retting include time savings (of four to 

five days) and fiber consistency (van Sumere and Sharma 1991).  

 

2.6.1 Reinforcement functionality of natural fibers 

Sequel to economic and environmental concerns associated with synthetic 

fibers such as glass fiber as plastic reinforcement, there has been huge interest 

in developing inexpensive ‘green’ substitutes. The natural role natural fibers 

(also known as biofibers) play in providing support to the plant parts where they 

are found (with the exception of seed fibers) is currently being harnessed in 

polymer reinforcement. However, in order to maximally exploit the 

reinforcement potentials of any biofiber in fiber-polymer composites, the fiber 

content should not exceed an optimum value which is obtainable 

experimentally. Beyond this value, stress transfer is impeded due to 

agglomeration and, hence, the composite properties drop, even below those of 

the pure polymer (Indicula and Thomas 2004).  

 Bast fibers run through the stem impacting structural firmness and 

strength, and so do leaf fibers. Physical properties of plant fibers are basically a 

function of fiber chemistry such as cellulose content, degree of polymerization, 

orientation, and crystallinity, all of which depend on plant growing conditions 

and extraction methods. These properties have also been found to vary largely 

with respect to the source plant part, plant quality, and location (Herrera Franco 

and Valadez-González 2005). The mechanical properties of some natural fibers 

in comparison to some synthetic fibers are as given in Table 2.4.  
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 Natural fibers are light-weight, non-abrasive (thus prolonging the 

service-life of fabrication equipment), and exhibit good mechanical properties 

(De Carvalho and Curvelo 2002). In fact, biofibers are preferred alternatives to 

the widely used glass fiber in that they are inexpensive, recyclable, renewable, 

and biodegradable, while possessing high strength-to-weight ratio (Morton and 

Hearle 1975; Bürger et al. 1995). This high strength-to-weight ratio property 

coupled with low cost favorably disposes them for consideration and 

subsequent adoption in large-volume engineering applications like automobile, 

aircraft and construction industries (Gouanve et al. 2006). Biofibers can readily 

be used with polar matrices without the need for compatibilizing agents (De 

Carvalho and Curvelo 2002). 

However, unlike glass fiber that starts to degrade at temperature about 

2000°C, they exhibit low thermal stability: their first degradation occurs at 

temperatures above 180°C. Therefore, they are only suitable for processing 

conditions at or below this temperature; hence their use with plastic matrixes 

such as polyethylene, polypropylene, and polyvinylchloride with melting points 

equal or below the degradation temperature (Gassan and Bledzki 2001). Their 

relatively high sensitivity to heat makes the recycling option for fiber-reinforced 

composites less feasible (De Carvalho and Curvelo 2002). They are also used 

to reinforce thermoset polymers like polyester, epoxies, and phenolics (Herrera 

Franco and Valadez-González 2005). Some of the changes that take place 

when a cellulose-based material is heated to temperatures at about 100 to 

250°C can be attributed to physical or chemical changes such as 
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depolymerization, hydrolysis, oxidation, dehydration, decarboxylation, and 

recrystallization (Zeronian 1977).   

 
Table 2.4     Mechanical properties of some natural and synthetic fibers (Bledzki 
and Gassan (1999); Paul et al. (1997); Frederick and Norman (2004); Murali 
Mohan Rao et al. (2007)). 
 
 

Fiber Fiber Density 
(g/cm3) 

Elongation 
(%) 

Tensile 
Strength 

(MPa) 

Young's 
Modulus 

(GPa) 
Cotton 1.50–1.6 3.0–10.0 287–597 5.5–12.6 

Jute 1.30–1.46 1.5–1.8 393–800 10.0–30.0 

Flax 1.40–1.50 1.2–3.2 345–1500 27.6–80.0 

Hemp 1.48 1.6 550–900 70.0 

Ramie 1.50 2.0–3.8 220–938 44.0–128.0 

Sisal 1.33–1.5 2.0–14.0 400–700 9.0–38.0 

Coir 1.20 15.0–30.0 175–220 4.0–6.0 

Softwood 
kraft 1.50 - 1000 40.0 

Banana 1.35 1.0–3.5 529-759 8.0–20.0 

Elephant 
grass 0.82 2.5 185 7.4 

E-glass 2.50 2.5–3.0 2000-3500 70.0 

S-glass 2.50 2.8 4570 86.0 

Aramide 
(normal) 1.40 3.3–3.7 3000-3150 63.0–67.0 

Carbon 
(standard) 1.40 1.4-1.8 4000 230.0–240.0 
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Furthermore, the highly polar nature of cellulose fibers renders them 

incompatible with nonpolar polymers. The more dissimilar the components of a 

polymer composite are, the less compatible they will be. Since strong adhesion 

at the interface between two phases is essential for an effective stress transfer 

and load distribution throughout the interface, poor compatibility ultimately 

results in composites with poor mechanical properties (Herrera Franco and 

Valadez-González 2005). Cellulose is a polyhydroxy substance and is, 

therefore, very hydrophilic since the polar hydroxyl groups provide sites for 

interaction/bonding with water molecules (Kondo 1994). Consequently, natural 

fibers are less compatible with non-polar matrices. They also possess poor 

moisture resistance which makes them less suitable for exterior applications. To 

these end, techniques involving surface modification of cellulosic fibers (not 

discussed in this thesis) have been investigated. 

 

2.7 Poly(ε-caprolactone) 

Poly(ε-caprolactone) (PCL) is a commercially available synthetic biodegradable 

polyester that possesses good mechanical strength and is hydrophobic (Hung 

and Edelman 1995; Wu 2003). It has the chemical formula of (C6H10O2)x. 

Poly(ε-caprolactone) is a highly crystalline polymer prepared through ring 

opening polymerization of ε-caprolactone (Núñez 2004; Hong et al. 2005). It has 

a low melting point of about 60°C (Wu 2006) which militates against its 

widespread industrial applications (Vertuccio et al. 2009) and a glass transition 

temperature of about -60°C. PCL is relatively expensive (Wu 2006) and is quite 
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suitable for biomedical applications due to its physiological hydrolytic 

degradability (Ratner 1997). It has also been found to be compatible with some 

other polymers (Hung and Edelman 1995). 

 

2.8 Developing Biodegradable Plastics – Role of Starch  

The disposal problems associated with the non-biodegradation of conventional 

oil-based plastics constitute grave environmental menace across the globe 

considering the amounts churned out as waste on a regular basis. While taking 

cognizance of the fact that some plastics (particularly thermosets) are 

intrinsically not recyclable, it is important to mention that plastic recycling faces 

additional problems of high energy consumption and difficulties arising from 

contaminants and fiber reinforcements (Widmer 2003). Difficulties in plastic 

removal, collection, and classification prior to recycling are also issues of 

concern (Prinos et al. 1998). In addition, the production of complex multi-

phased products makes recycling increasingly infeasible.  

In 2005, the US alone generated about 28.9 billion kg of plastic waste 

(11.8% of the total 245.7 billion kg of municipal solid waste) with only a very 

small amount of about 1.7 billion kg (5.7% of the total plastic waste) recovered 

for recycling while discarding the remaining 27.3 billion kg (about 16.4% of the 

total municipal solid waste discards) to landfills, with the container and 

packaging category constituting the highest tonnage (EPA 2006). This is 

understandably so because these products are mostly single-use items.  
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Therefore, the current revolution taking place in the plastics industry 

focuses on developing novel plastics possessing material properties 

comparable to their conventional counterparts in addition to the added 

advantage of biodegradability. Sustained scholarly efforts have been directed 

towards building and perfecting a new generation of plastics that have 

renewable resources as the base material. The idea of bioplastics is rooted in 

the quest for eco-friendly products. For instance, bioplastics are capable of 

significantly reducing environmental impact such as energy consumption and 

greenhouse effect in certain applications (Bastioli 2001).  

At the core of this effort is starch, an abundant naturally occurring 

biopolymer. Starch, a biomass only second to cellulose in availability (Jane 

1995), consists predominantly of two polymers of glucose, namely, amylose and 

amylopectin (Figures 2.3 and 2.4, respectively). The amylose/amylopectin ratio, 

which is a function of the starch source, is significant as it influences other 

physicochemical properties of starch which, in turn, determine starch overall 

functionality and eventual applications. Of these physicochemical properties, 

gelatinization is of importance to starch plastic prospects and is defined 

according to Atwell and co-workers (1988) as the collapse (disruption) of 

molecular order within the starch granules manifested in irreversible changes in 

properties such as granular swelling, native crystallite melting, loss of 

crystallinity, loss of optical birefringence, and starch solubilization. The amylose 

content is known to influence starch gelatinization as well as gelation and 

retrogradation (starch chain realignment on cooling after gelatinization) 
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(Fredriksson et al. 1998; Varavinit et al. 2003). Other factors that affect 

gelatinization and swelling properties according to Tester (1997) include 

amylopectin molecular structure (in terms of unit chain length, molecular weight, 

degree of branching, and polydispersity), lipid-complexed amylose chains, 

phosphorous content, and granule structure (crystalline/amorphous ratio).  

The advantages of starch exploited in plastic production include its 

renewability, good oxygen barrier in the dry state, abundance, and low cost 

(Thunwall et al. 2006). In the past three decades, starch has been incorporated 

into petroleum-based plastics to enhance their after-use degradation. In starch-

synthetic polymer blends, starch has played roles as filler in the granular form, 

matrix directly as in thermoplastic starch (TPS), and indirectly as in the 

production of poly (lactic acid), a synthetic biodegradable polymer made from 

ring-opening polymerization of lactic acid obtained from starch fermentation.  

 

2.8.1 Starch as fillers 

Starch has been incorporated into conventional plastics in an attempt to impart 

some level of biodegradability on the resultant composites. Starch is a good 

biodegradable filler candidate because it possesses satisfactory thermal 

stability and causes minimum interference with melt-flow properties of most 

materials used in the plastics industry unlike common cellulosic fillers such as 

wood flour and paper pulp that were found to interfere with flow properties. A 

remarkable success was recorded when starch was experimented with low-

density polyethylene even during critical film extrusion process (Griffin 1974).  
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 Since starch is hydrophilic, unlike plastics that are generally hydrophobic, 

there is therefore poor starch-polymer interfacial interaction with a resultant loss 

of mechanical properties (Albertsson and Karlsson 1995) in starch-filled 

polymer composites. In other words, high surface energy between the 

hydrophobic polymer (say, polyethylene) and hydrophilic starch yields low 

degree of adhesion; in a perfect adhesion scenario, loading stresses would be 

transferred to the filler phase without any reduction in effective surface area 

(Willet 1994).  

 However, a stronger interaction between the starch granules and the 

plastic matrix can be achieved with gelatinized or ‘destructured’ starches (Ellis 

et al. 1998). In addition, using chemically modified starch offers improved 

mechanical properties (Takagi et al. 1994; Kim and Lee 2002) of starch-filled 

composites. Upon exposure to microbial activities, the composite structure is 

weakened as a result of the degradation of the starch component (Vallini et al. 

1994), thus leading to a partial breakdown process referred to as 

biofragmentation. The granule size is an important factor in choosing the 

appropriate starch for composite use especially in the production of thin films 

(Lim et al. 1992). At constant filler content, modulus, tensile stress, and yield 

stress decrease with increase in particle size. Nonetheless, Willett (1994) noted 

that adhesion played a greater role than particle size on starch-polyethylene 

composite tensile strength. On the other hand, Nielsen (1974) earlier opined 

that good adhesion was not that important provided the frictional forces 

between the phases were not surpassed by the applied external stresses. 
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These two schools of thought proposed by Willet (1994) and Nielsen (1974) 

may differ in perspective but they indeed converge in tenet, in that they both 

underscore the importance of effective stress transfer between the polymer 

matrix and the filler.  

 Furthermore, the fact that rigid fillers such as granular starch are capable 

of improving certain physical properties, essentially dimensional stability and 

stiffness (tensile modulus), of the polymers to which they are added (Nielsen 

and Landel 1994) is noteworthy. Corn starch granule has a modulus of 15 GPa 

as estimated by Willet (1994), a value more than those of most unfilled 

commercial polymers (1 to 4 GPa) but less than those of cellulose fibers. By 

incorporating dried native sago starch (average size of 20 µm) into linear low 

density polyethylene (LLDPE) via melt-mixing, Nawang and co-researchers 

(2001) observed a reduction in mechanical properties such as tensile strength, 

yield strength, and elongation at break, but an increase in modulus (stiffness) 

with increase in filler (starch) content. Even at the optimum filler content of 15% 

wt (the proportion beyond which a steep decline in mechanical properties was 

recorded), a scanning electron microgram (SEM) of the composite fracture 

surface revealed poor interaction (poor wettability) between the starch granules 

and the polymer matrix and a non-uniform distribution of the granules, a 

situation that led to the formation of stress concentration points.  

 In a further work, Abdul Khalil and co-workers (2001) investigated the 

mechanical and water absorption properties of composites of LLDPE and sago 

starches modified separately by esterification with 2-dodecen-1-yl succinic 
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anhydride (DSA) and propionic anhydride (PA) using N,N-dimethylformamide 

(DMF) as solvent. It was observed that the tensile moduli of both the DSA- and 

PA-modified starch-LLDPE composites increased as starch content increased 

(with the latter showing higher stiffness), and were greater than those of the 

native starch-LLDPE composites for the measured starch range. Decrease in 

tensile strength and elongation at the break was also noticed for all the 

composites with unmodified starch showing the most reduction in tensile 

strength, PA-modified starch composite showing the most reduction in 

elongation at break, and unmodified starch the least, an overall indication that 

modification improved starch-LLDPE interfacial interaction.  

 Kim and Lee (2002) reported similar improvements in tensile strength 

and percent elongation with cross-linked potato starch over native starch (starch 

as is) in starch-filled LLDPE composites. In addition, the modifications 

expectedly improved water stability of the composites since starch was made 

more hydrophobic (Abdul Khalil et al. 2001). In a related study, Szymanowski 

and co-researchers (2005) reported an improvement in the tensile strength of 

radio-frequency methane plasma-modified potato starch-LDPE composite over 

the unmodified, regardless of starch content. The modification did not only 

increase the starch hydrophobicity but also produced a substantially de-

agglomerated starch, the main reason adduced for the observed improved 

strength. It therefore goes without saying that starch modifications (both 

chemical and physical) yield positive, yet differing, results. 
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Willet (1994) also reported that the use of compatibilizer (ethylene-co-

acrylic acid copolymer, EAA) remarkably increased the tensile modulus but did 

not significantly affect the tensile strength and elongation of native granular corn 

starch-LDPE composites; thus, it was concluded that the improvement in 

adhesion was only effective within the elastic range. According to Dubnikova 

and co-workers (1997), in any filled polymer, three factors that influence the 

specific stress interval over which filler debonding takes place include the size 

of the filler particles, interfacial strength, and filler volume fraction. More 

complex multi-phase composites have been investigated in the hope of 

improving the composite mechanical properties (Kolarik and Jancar 1992; 

Benderly et al. 1995). In a ternary (three-phase) composite system, there are 

two possibilities; these include: (1) both the filler and the minor components 

being separately dispersed in the continuous matrix; or (2) the minor component 

encapsulating the filler particles. The latter has been shown to improve some 

composites mechanical performance provided there is strong interaction 

between the coating on the filler and the matrix (Alberola et al. 1997).  

Lawrence and co-workers (2004) investigated the tensile properties of 

some binary and ternary composites prepared using corn starch, LDPE and 

poly(hydroxyester ether) (PHEE) composites and reported that the tensile 

strength of starch-PE-PHEE composite was greater than that of starch-PE 

composite, and both decreased with increase in starch volume fraction. At total 

filler volume fraction below 0.20, the yield strengths differed in the following 

order: starch-PE-PHEE>starch-PE>pure PE, an indication that the minimum 
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debonding energy was greater than the matrix (PE) yield stress. It was also 

observed that the PHEE interlayer (coating) on the starch granules raised the 

debonding stress interval (or in other words, enhanced filler-matrix interfacial 

interaction) which in turn translated into better tensile and yield strengths for the 

starch-PE-PHEE blend. An SEM of the fracture surface of the starch-filled 

blends revealed that the debonded starch granules still had PHEE coating on 

them, an indication that the starch-PHEE bond was stronger than the PHEE-PE 

bond (Lawrence et al. 2004).  

 

2.8.2 Thermoplastic Starch (TPS) 

The production of TPS (also known as plasticized starch, PS) basically involves 

three essential components, namely: starch, plasticizer, and thermomechanical 

energy. According to Xie and co-workers (2006), developing TPS is more 

involved than conventional thermoplastics as it entails gelatinization, melting, 

volume expansion, molecular degradation, and various starch physicochemical 

changes. The thermoplastification of starch entails the collapse of starch 

crystallinity (which in general is about 15-45% of the granule molecular order) 

through the formation of hydrogen bonds between the plasticizer and starch 

molecules in the presence of some energy, invariably severing the hydrogen 

bonds between the hydroxyl groups of the starch molecules to form TPS (Yang 

et al. 2006).  Therefore, the crystallinity observed in TPS is due to the hydrogen 

bonds formed between starch and the plasticizer molecules and according to 

Thunwall and co-researchers (2006a), this degree of crystallinity is expected to 
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be rather low. It is important to mention that there must be sufficient amount of 

plasticizer (30% wt for glycerol-plasticized starch) for the formation of a 

homogeneous (continuous) phase to occur, otherwise some starch granules will 

remain intact in the TPS, a condition that can make the TPS fracture under 

tension at very low strains (Yang et al. 2006).  

Plasticizers impart pliability by modifying the free volume (that is, 

increasing intermolecular distances) of the matrix such that starch chains enjoy 

more mobility (Torres et al. 2007). The use of starch alone is not encouraged 

because of its lack of melt-processability and humidity-resistance which in turn 

militates against its suitability for extrusion or injection molding (Wang et al. 

2003). The most common plasticizers used are water and glycerol, which often 

times are used together. The TPS thus produced exhibits two major drawbacks, 

namely, poor mechanical properties and moisture resistance (Carvalho et al. 

2003; Schlemmer et al. 2007; Huneault and Li 2007).  

To this end, five areas of consideration are being explored; these include 

plasticizers, starch type and form (in relation to chemical modification and 

amylose/amylopectin ratio), reinforcements (organic and inorganic), polymer 

orientation, and blends with other synthetic polymers (discussed in the following 

Sections).  

Accordingly, chemicals such as ethylenebisformamide (Yang et al. 

2006), urea (Kazuo et al. 1998), formamide (Ma and Yu 2004b), sorbitol (Wang 

et al. 2000), and xylitol (Kirby et al. 1993) have been investigated for their 

plasticizing abilities. Using corn starch, Yang and co-workers (2006) reported 
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that extruded ethylenebisformamide-PS showed better moisture resistance than 

glycerol-PS but rather lower corresponding tensile strengths at plasticizer 

contents measured, with both decreasing in strength with increase in plasticizer 

contents. The glass transition of the ethylenebisformamide-PS was found higher 

than that of glycerol-PS (63.3°C against 38.3°C) since ethylenebisformamide 

formed stronger hydrogen bonds with starch than glycerol.  

Thunwall and co-researchers (2006b) reported that glycerol-plasticized 

potato starch produced using hydroxypropylation/oxidation-modified starch 

exhibited a modestly higher moisture resistance than that of native starch. 

However, increase in glycerol content reduced the moisture resistance of the 

TPS regardless of the type of starch used. Modified native potato starch and 

high amylose starch offered reduced viscosity levels (measured at 140°C) for 

starch melts containing 30% (dry mass) glycerol. In comparison with a high-

density polyethylene, Thunwall and co-workers (2006b) further noted that 

polyethylene melt at 180°C had lower viscosity than native potato PS and 

hydroxypropylation/oxidation-modified high amylose PS but higher than that of 

hydroxypropylation/oxidation modified native potato PS, all at 140°C. 

Interestingly enough, Govindasamy and co-workers (1996) implied that 

increased viscosity could translate into increased degree of gelatinization 

because of its resultant increased residence time in the extruder barrel. 

Thunwall and co-workers (2006b) also discovered that starch melt drawability, a 

crucial property in film production, generally increased with glycerol and 

chemical modification but decreased with temperature; but in comparison with 
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PE melt, PS melt was very much low in extensibility. It is important to mention 

that it is rather difficult to make thin blown films with granular starches as fillers 

in polymer composites due to their big particle size range (5-100 µm) (Hwan-

Man et al. 2003), hence the preference for TPS.  

Schlemmer and fellow researchers (2007) approached the issue slightly 

differently by blending cassava starch (74.70 ± 1.76%) plasticized with water 

and glycerol, and another with water and buriti oil, all in ratio 50:15:35 

(mass/vol/vol) with polystyrene in different ratios by mass. It was observed that 

blends with TPS plasticized by buriti oil were apparently more thermally stable 

than those by glycerol. A reduction of up to 60% in the water uptake of TPS 

could be achieved by replacing glycerol with sugar/water mixture as plasticizer 

with a concomitant reduction in the TPS crystallinity though (Teixeira et al. 

2007).  

One property peculiar to TPSs plasticized with polyols (such as glycerol, 

sorbitol, glycol, and sugars) is their retrogradation (recrystallization due to 

reformation of hydrogen bonds between starch molecules) propensities as they 

age, a condition that leads to embrittlement. This phenomenon could be 

inhibited using formamide as plasticizer (since it could form stronger or more 

stable hydrogen bonds with starch –OH groups), however with a reduction in 

tensile strength and modulus against an increase in energy break and 

elongation at break vis-à-vis glycerol plasticized starch (Ma and Yu 2004b).  

Amides generally form stronger hydrogen bonds with starch -OH groups than 

polyols in the following order: urea > formamide > acetamide > polyols (Ma and 
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Yu 2004a). Although with a compromise on tensile stress, similar result of 

inhibited retrogradation coupled with reduced shear viscosity (improved fluidity) 

of TPS, improved elongation, thermal stability, and moisture resistance at high 

relative humidities was achieved by Yu and co-researchers (2005) when 

glycerol-plasticized TPS was modified with citric acid in comparison with the 

unmodified. 

The natural role biofibers (with the exception of seed fibers) play in 

providing support to the plant parts where they are found has also been 

harnessed to reinforce TPS. Generally, good wettability and compatibility of 

fiber with the matrix are paramount to fiber’s performance as a reinforcing 

material. According to Vilaseca and fellow researchers (2007), fiber-matrix 

interaction can be due to mechanical friction, van der Waals forces, hydrogen 

bonds, and covalent bond formation between the fiber and matrix. Natural fibers 

are more suited to this purpose than synthetic ones because they bear similar 

surface polarity (arising from the –OH groups on both which, in turn, facilitates 

the formation of hydrogen bonds between the fiber and the matrix TPS) with 

starch, a property that promotes good interfacial interaction (Wollerdorfer and 

Bader 1998; Vilaseca et al. 2007). In addition, they are inexpensive, light-

weight, non-abrasive, renewable, and biodegradable, and also possess high 

strength-to-weight ratio (Morton and Hearle 1975; Bürger et al. 1995). However, 

unlike glass fiber that starts to degrade at temperatures about 2000°C, natural 

fibers exhibit low thermal stability: their first degradation occurs at temperatures 

above 180°C (around 200 - 220°C for flax fiber) (Wielage et al. 1999; Gassan 
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and Bledzki 2001). Therefore, they are only suitable for processing conditions at 

or below this temperature. Worse still, Fleming and co-workers (1995) pointed 

out that mechanical properties of biofibers vary significantly with climatic and 

growing conditions, preparation methods, and water adsorption.  

Torres and fellow workers (2007) explored some natural fibers 

reinforcing potentials for thermoplastic starch in their work published recently. 

Three material variables were considered, namely: starch (sweet potato, corn, 

and potato starches), plasticizer (ethylene glycol, glycerol, chitosan, water, and 

propylene glycol), and fiber (jute, sisal, and cabuya with fiber lengths of 5 ± 1 

mm). All these factors coupled with processing (compression molding) 

conditions such as time and temperature were found to affect the tensile 

strength of the TPS. Individual assessments (done keeping other variables 

constant) showed that potato starch, sisal, and ethylene glycol gave the highest 

tensile strength results whereas water and cabuya fiber gave the highest impact 

strength. Earlier studies by Wollerdofer and Bader (1998) with thermoplastic 

wheat starch (sorbitol and glycerol as plasticizers) reinforced with flax and ramie 

fibers via the combination of extrusion and injection molding techniques yielded 

significant improvements in the tensile strength and modulus, but a reduction in 

elongation.  

Karmaker and Youngquist (1996) postulated that while tensile strength is 

significantly affected by fiber-matrix interaction, Young’s modulus (stiffness) is 

dependent on fiber content and dispersion within the matrix and not significantly 

by fiber-matrix interaction. Results from Vilaseca and co-workers’ (2007) studies 
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with a starch-based biopolymer reinforced with NaOH-treated jute fiber 

concurred with this postulation. Specifically, in addition to impurities removal, 

the NaOH treatment was reported to have resulted in partial delignification of 

the jute fiber thereby exposing more fiber surface –OH groups for hydrogen 

bonding with the matrix, thus leading to improved tensile strength. These 

findings are at sharp contradiction to earlier work by Cyras and fellow 

researchers (2003) that reported a reduction in the tensile strength of TPS-

based biodegradable polymer reinforced with NaOH-treated sisal fiber. They 

rationalized this underperformance to be a consequence of reduced fiber 

compatibility with the matrix caused by increased fiber surface –OH groups.  

Furthermore, besides discrete macrofibers as reinforcements for TPS, 

cellulosic nanofibers, such as cellulose microfibrils (Dufresne and Vignon 1998) 

and tunicin whiskers (Angles and Dufresne 2001) have also been investigated. 

Two types of wood pulps (bleached Kraft pulp from Eucalyptus urograndis and 

unbleached thermomechanical pulp of Eucalyptus grandis) were evaluated by 

De Carvalho and co-researchers (2002) in reinforcing TPS produced with corn 

starch (28% amylose) and glycerol. It was found that although increase in 

glycerol (above 30%) decreased both the tensile strength and modulus, 

increase in fiber (pulp) contents (from 5-15% of matrix mass) remarkably 

increased both the tensile strength and modulus in all cases. On the other hand, 

the tensile strains of the composites decreased with the addition of fiber or 

glycerol to the raw matrix. Interestingly, regardless of glycerol amounts, fiber 

breakage as against debonding was observed on all fracture surfaces, an 
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indication of a strong fiber-matrix interfacial bonding. In agreement with similar 

work, the water absorption at equilibrium of the TPS matrix increased with 

glycerol and was found higher than those of TPS-fiber composites (thus, 

implying improved moisture resistance with fiber inclusion), which were similar 

irrespective of formulation.  

Apart from organic materials like natural fibers, the potentials of inorganic 

minerals such as hydroxyapatite (Reis et al. 1997) and kaolin (De Carvalho et 

al. 2001) as reinforcement materials for TPS have also been reported. The 

reinforcing potentials of clay were examined by Hwan-Man and co-workers 

(2003) whereby TPS/clay nanocomposites produced from native potato starch 

and natural montrorillonite (clay) were found to possess higher tensile strength 

and thermal stability, and lower water vapor transmission rate than ordinary 

TPS. The hydrophilicity of clay makes it compatible with plasticized starch (Ikeo 

et al. 2006). In addition, Ma and co-researchers (2007), in their recent study of 

the effectiveness of fly ash in reinforcing corn PS prepared with glycerol and 

formamide-urea as plasticizers, observed considerable increase in the tensile 

stress, Young’s modulus, and moisture resistance, although with a 

corresponding decrease in ductility. Fly ash was also found to inhibit 

retrogradation. 

 Lastly, Yu and Christie (2005) exploited polymer orientation technique in 

improving extruded corn TPS sheet. The orientation was achieved by drawing 

at different speeds TPS sheet extrudates from the die under positive tension by 

a three-roller system in front of the die after which the mechanical properties 
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were measured along and across the extrusion direction. Unlike elongation, 

both tensile modulus and yield strength improved in both directions. However, 

the effect of orientation was influenced by amylose/amylopectin ratio, such that 

differences in modulus and yield stress in the two directions widened with 

increase in amylose while differences in elongation became pronounced at 

higher amylopectin contents. These directional differences in tensile properties 

are much higher in conventional polymers and for instance, may be in the order 

of 10 times in polypropylene (Nadella et al. 1978). On a broader view, amylose 

contents have actually been found to proportionately influence mechanical 

properties such as tensile modulus, tensile strength, and elongation of TPS (van 

Soest and Essers 1997; Yu and Christie 2005). Amylose/amylopectin ratio 

affects the degree of conversion of starch into homogeneous mass during 

extrusion (van Soest and Essers 1997).  

 

2.8.3 TPS/non-biodegradable synthetic polymers blends 

Towards achieving more environmentally friendly polymer products, another 

area of research that has captured the attention of researchers in recent times 

is TPS/conventional non-biodegradable polymer blends. In this case, starch is 

blended with the synthetic polymer matrix in the plasticized form and not as 

granules. The approach can potentially reduce cost, improve biodegradation of 

conventional plastics (St-Pierre et al. 1997), and also lower dependence on 

non-renewable resources (essentially crude oil). From literature, adding starch 

granules to conventional polymers as fillers increases the tensile modulus but 



 
 

50

causes significant reduction in tensile strength and ductility. For plastic bag 

applications, two mechanical properties, namely, tensile strength and ductility, 

are of paramount importance. One way of achieving improved elongation at 

break for starch/conventional polymer composites is by using TPS in lieu of 

granular starch. St-Pierre and co-researchers (1997) investigated the properties 

of TPS/LDPE and TPS/LLDPE composites using wheat starch and glycerol-

water combination as plasticizer and observed very high elongation properties 

even at high TPS loadings.  

However, when blending TPS with non-polar synthetic polymers, the 

question of immiscibility arises. There is bound to be high interfacial tension 

(surface energies) between the polar TPS and the non-polar polymer.  Wang 

and co-workers (2007) approached the issue with the inclusion of citric acid as 

an additive in glycerol TPS/PE blends. They reported that citric acid improved 

the dispersion of TPS with a corresponding decrease in TPS particle volume. 

The tensile strength and elongation greatly improved over the non-citric TPS/PE 

blends. Earlier work by Wang and co-researchers (2005) revealed that maleic 

anhydride (MAH) could improve compatibility of TPS with PE and of course with 

attendant improvement of the mechanical properties in relation to non-MAH 

TPS/PE blend. According to them, MAH, though relatively costly, is arguably the 

most effective compatibilizer for starch and PE. Other compatibilizers include 

ethylene-acrylic acid (EAA) copolymer and ethylene-vinyl alcohol (EVA) 

copolymer. Ethylene-acrylic acid (EAA) copolymer comprises both polyethylene 

segments and acrylic acid units and is capable of forming stable V-type 
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complexes with starch due to hydrogen bond formation between the carboxylic 

groups of acrylic acid and hydroxyl groups of starch (Prinos et al. 1998).  

 

2.8.4 Starch/biodegradable synthetic polymer blends 

In addition to non-biodegradable synthetic polymers, TPS blends with 

biodegradable synthetic polymers have also been explored. Examples of 

biodegradable synthetic polymers include polyvinyl alcohol (PVOH), polylactic 

acid (PLA), polycaprolactone (PCL), modified polyethylene tetraphthalate 

(PET), polyester carbonate (PEC), and other aliphatic polyesters (e.g., 

Bionelle®, BAK) and aliphatic-aromatic copolyesters (e.g., Eastar BIO, Ecoflex).  

These products are relatively expensive and thus, blending with starch can help 

reduce cost. For instance, PLA, which is produced through the polymerization of 

lactic acid obtained from the fermentation of carbohydrate crops such as corn, 

wheat, barley, cassava, and sugar cane (Chandra and Rustgi 1998), is 

hydrophobic, expensive, and degrades slowly compared to the accumulation 

rate of solid waste (Wang et al. 2003). It can be blended with starch to slash 

cost and accelerate biodegradation of the composite (Jacobsen and Fritz 1996) 

but not without some compromise on the composite properties such as an 

increase in moisture sensitivity due to the hydrophilic nature of native starch 

and a reduction in mechanical properties such as tensile strength and 

elongation (Griffin 1974; Evangelista 1991).  

Although improved biodegradation accompanies higher starch contents, 

the problem of incompatibility between starch granules and PLA matrix, 
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essentially due to their difference in polarities, still lingers. To this end, several 

compatibilizers such as methylenediphenyl diisocyanate (MDI) (Wang et al. 

2002), maleic anhydride (MAH) (Zhang and Sun 2004) and acrylic acid (AA) 

(Wu 2005) have been investigated with a view to promoting better interfacial 

bonding between the starch granules and PLA matrix. For starch/PCL blends, 

similar effect could be obtained with the use of PCL-co-pyromellitic anhydride 

as compatibilizer (Avella et al. 2000) and also by grafting PCL with MAH 

thereby producing PCl-g-MAH (a modified PCL) which has greater compatibility 

with starch (Wu 2003). In addition, an NMR study by Spevacek and co-workers 

(2007) revealed that O-formylation of starch (starch modification into starch 

formate) could also enhance starch miscibility with PCL in starch/PCL 

composites.  

In an attempt to completely go ‘green’, Chen and co-researchers (2003) 

explored blending cellulose acetate with chemically modified potato starch. 

Cellulose acetate, a derivative of cellulose, is considered fit for plastics owing to 

its relatively high stiffness and low density (Bledzki and Gassan 1999) and is 

capable of improving the mechanical properties and moisture resistance of 

products (Gross and Kalra 2002). Chen and co-workers (2003) discovered that 

blending cellulose acetate with acetylated potato starch resulted in increased 

tensile strength and moisture stability of the composite. It was also observed 

that the composite tensile strength, which decreased with increase in 

equilibrium moisture content, when equilibrated at relative humidity lower than 

93% was higher than low density polyethylene (LDPE) and high density 
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polyethylene (HDPE) values. In addition to being higher than LDPE and HDPE 

values, the tensile strength of the composite when equilibrated below 76% RH 

was found to be in polystyrene tensile strength range. They explained that high 

moisture content in the composite caused an increase in intermolecular 

freedom for the starch acetate and cellulose acetate molecules, thereby, 

resulting in decreased tensile strength.  

 Furthermore, the possibilities of blending biodegradable polymers with 

TPS have also been researched. Two synthetic biopolymers namely PLA and 

PCL are in the forefront of this exploration. Although Ikeo and co-workers 

(2006) asserted that starch compatibility is enhanced using plasticized starch, 

Martin and Avérous (2001) still encountered the problem of low level of 

compatibility between PLA and TPS. This perhaps informed a recent work by 

Huneault and Li (2007) on MAH grafting of PLA to enhance its compatibility with 

TPS. Better elongation at break of 100 to 200% (against 5 to 20% for 

unmodified PLA/TPS and pure PLA) was reported and was attributed to 

improved dispersion of TPS in the PLA matrix together with improved 

interphase bonding.  

Interestingly, some degree of compatibility was observed between 

plasticized corn starch and PCL (Matzinos et al. 2002; Shin et al. 2004), 

although the blend was thermodynamically immiscible because the melting and 

glass transition temperatures of PCL were not affected by blending with TPS 

(Shin et al. 2004). This low compatibility could be as a result of formation of 

hydrogen bonds between the ester carbonyl groups of PCL and starch hydroxyl 
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groups (Matzinos et al. 2002; Shin et al. 2004). Nonetheless, as TPS contents 

increased, both tensile strength and elongation decreased while modulus 

showed an upward trend. More so, Ikeo and co-researchers (2006) reported 

that the addition of MAH could enhance PCL compatibility with TPS. Clay has 

also been used to further improve the properties of PCL/TPS composites (Ikeo 

et al. 2006; Perez et al. 2007). 

 

2.9 Summary 

From the foregoing review, it is evident that quite a lot has been done in the 

development of starch-based products in the move towards developing 

biodegradable plastics.  Accordingly, starch has basically been used in two 

forms; these include granular (native or modified) form and thermoplastic 

(plasticized) form. Blends of starch in these two forms with synthetic 

biodegradable and non-biodegradable polymers have been explored. Virgin 

thermoplastic starch suffers poor mechanical and moisture properties. Many 

factors reportedly affect the performance of starch-based products, some of 

which include starch particle size, starch modification, amylose/amylopectin 

ratio, plasticizer, processing method and conditions, moisture, type and amount 

of reinforcement, and compatibilizer.  

Although some branded thermoplastic starch blends such as Bioplast®, 

Cereloy®, and Mater-Bi® are now available, many of these materials have not 

been able to make their way to the market. The deficiencies still experienced by 

these starch-based composites is not easy to overcome owing to the complex 
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interplay between the performance factors such that an increase in one factor 

may improve one performance property while decreasing another, and vice 

versa. The elusiveness of a panacea therefore necessitates the optimization of 

these performance factors. This may require maintaining a well-organized rich 

database. As evident in the review, most of the work done is on cereal and 

root/tuber crops. There is therefore the need to widen the scope of this research 

by investigating other sources of starch like the legumes.  

In conclusion, while acknowledging the great efforts of researchers in this 

worthy course, the need for more work especially in the area of mechanical 

strength, moisture resistance, and thermal stability cannot be over-emphasized 

in the bid towards developing bioproducts that can successfully supersede 

existing eco-unfriendly petroleum-based plastics in functionality and economics. 
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3. MATERIALS AND METHODS 

The ultimate aim of this research was to improve on the properties of 

thermoplastic pea starch with the incorporation of flax fiber and 

polycaprolactone (PCL). The methodology thus involved two aspects namely, 

material preparation and characterization. Material preparation involved material 

(such as pea starch, glycerol, flax fiber, and polycaprolactone) procurement and 

compression molding of the starch-based composites while the techniques of 

characterization were tensile test, DSC, moisture absorption test, and SEM. 

Some relevant preliminary experiments were also conducted. 

 

3.1 Materials 

Pea starch (Accu-Gel, 95% purity, 35% amylose) isolated from Canadian yellow 

pea via wet milling was supplied by Nutri-Pea Limited (Portage La Prairie, MB) 

while glycerol (≥99.5% purity) was purchased from Sigma-Aldrich, (St. Loius, 

MO). Chemical composition of Accu-Gel is given in Appendix A. Poly (ε-

caprolactone) (PCL) powder, (CAPA® 6506, 50000 molecular weight, Appendix 

A) was obtained from Perstorp UK Ltd. (Cheshire, UK). Short flax fiber (10 mm 

long) was procured from Saneco (Nieppe, France), washed in a 10% (vol/vol) 

detergent (Tide detergent) solution at 65°C for 30 min and then rinsed with de-

ionized water at room temperature. The washed fiber was drained and 

subsequently oven-dried at 75°C for 24 h, after which it was further ground with 

a knife mill using a 4-mm screen. Material mixing was done using a Hamilton 

Beach 5 Speed OptiMixTM hand/stand mixer (Hamilton Beach, Washington, 
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NC) while the samples were compressed using an automatic hydraulic press 

Model 3891 Auto M (Carver Inc., Wabash, IN).  

 

3.2 Preliminary Experiments 

In order to obtain useful information needed for effective material processing, 

some relevant properties of the base material, pea starch, were evaluated. 

These properties included moisture content, particle size distribution, 

gelatinization properties, and particle density. The particle densities of PCL and 

flax fiber were measured. In addition, thermal behavior of PCL (glass transition 

and melting temperatures) and flax fiber was also evaluated. 

 

3.2.1 Moisture content of pea starch  

Samples of the supplied pea starch with initial mass, mo, of 1.72 to 3.05 g were 

placed in pans, oven-dried at 110°C, and periodically measured until constant 

mass (final mass) was reached. The final mass of the dried starch, mf, was 

recorded and the moisture content, M1, (in percent wet basis) of the starch was 

determined as follows: 

 

 1001 ×
−

=
o

fo

m
mm

M        (3.1) 

 

The moisture content of the pea starch was obtained as an average of five 

replications and was found to be 12.76 ± 0.14% wb. 
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3.2.2 Particle size distribution of pea starch using laser diffraction 

Ten percent aqueous suspension of pea starch was prepared at room 

temperature by stirring a mixture of starch and water at 950 rpm for 20 min 

using a magnetic stirrer. The sample dispersion unit of the Mastersizer 2000 

(Malvern Instruments, Malvern, UK) was rinsed thoroughly before use.  

Mastersizer 2000 operates on the principle that a laser beam gets scattered by 

particles passing through it at angles and intensities inversely and directly 

proportional to their sizes, respectively (Malvern 2008). The starch suspension 

was fed in drops into the small sample volume dispersion unit until the laser 

obscuration was between 10 to 20% before running the particle size 

determination experiment. The equipment was set to perform two scans of the 

same sample and return their average. 

The volumetric particle size distribution of the pea starch as obtained 

using laser diffraction technique is shown in Figure 3.1. The starch particles 

were predominantly between 10 and 100 µm in diameter with the average size 

being 31 µm. 

 

3.2.3 Particle densities of pea starch, flax fiber, and polycaprolactone 

A nitrogen-operated multipycnometer (Quantachrome Instruments, Boynton 

Beach, FL) was used to determine the particle densities of both pea starch and 

PCL. Pea starch was used as is. A sample cell was first of all weighed empty, 

filled to about two-thirds of its volume with starch, flax fiber or PCL and re-

weighed in order to obtain the sample mass. The procedure outlined in the 
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multipycnometer  manual  was  followed  for  the  particle density determination. 

 

 

Figure 3.1 Particle size distribution of pea starch using laser diffraction 
technique. 

 

The operational equation as obtained from the equipment manual is as given 

below: 

 

P

P

V
MD =  

where: 

D = sample (pea starch or PCL) particle density, g/cm3 

MP = sample (pea starch or PCL) mass, g
 

VP = sample (pea starch or PCL) volume, cm3
 

and 

)1)((
2

1 −−=
P
PVVV RCP

 

(3.2)

(3.3)
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where: 

VP = volume of powder (pea starch or PCL), cm3 

VC = volume of sample cell, cm3 

VR = reference volume, cm3 

P1 = pressure reading after pressurizing the reference volume, psi 

P2 = pressure reading after including VC, psi 

The particle densities of pea starch, flax fiber, and PCL taken as average 

of three measurements were found to be 1.46 ± 0.02, 1.41 ± 0.02, and 1.15 

g/cm3, respectively. This shows the starch particles were heavier than PCL 

particles. 

 

3.2.4 Gelatinization properties of the supplied pea starch 

Aqueous suspensions containing 17.45 and 26.17% by weight of the supplied 

pea starch were prepared with distilled water and left to hydrate for 12 h. Ten to 

20 mg of the samples were placed in aluminum hermetic pans, crimped tightly 

to avoid vapour escape and then run through a DSC Q2000 (TA Instruments, 

New Castle, DE) from 20 to 150°C at a scan rate of 5°C/min under nitrogen 

atmosphere. Endothermic peaks attributable to gelatinization transition were 

obtained and the gelatinization properties such as onset, mid-point, and end-

point gelatinization temperatures were obtained from the endotherms. The 

gelatinization enthalpy was obtained by finding the area under the graph within 

the gelatinization transition boundaries.  
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The gelatinization transitions obtained by the DSC are shown in Figure 

3.2. The DSC thermograms show endotherms typical of starch gelatinization in 

excess water (Stevens and Elton 1971; Wooton and Bamunuarachchi 1980; 

Donovan 1979; Eliasson 1980; Fukuoka et al. 2002; Yu and Christie 2001). 

From Figure 3.2a, pea starch onset, peak (mid-point), and end of gelatinization 

temperatures were found to be 57.60°C, 68.24°C, and 80.33°C, respectively. 

The enthalpy of gelatinization obtained as the area under the curve between the 

transition limits was 2.87 J/g.  

It is however important to emphasize that starch gelatinization is a 

function of water and temperature (Fukuoka et al. 2002). This is evident in the 

presence of two endothermic peaks when the starch (dry mass) concentration 

was increased to 26.17% as shown in Figure 3.2b. The enthalpies of 

gelatinization obtained from the first and second endotherms were 1.24 J/g and 

5.65 J/g, respectively. Although there was a decrease in the specific enthalpy of 

gelatinization from 2.87 to 1.24 J/g with decrease in moisture content, the onset, 

mid-point, and end point gelatinization temperatures remained fairly the same 

for the common first endothermic peak. These results are in agreement with 

Fukuoka and fellow workers’ (2002) observation.  

Possibilities of three endothermic peaks have been reported in limited 

water conditions (Fukuoka et al. 2002; Donovan 1979). The first and second 

(which unlike the first shifts further to the right with decrease in moisture 

content) endothermic peaks are due to moisture-induced breakdown of starch 

crystallites and subsequent “melting” of remnant crystallites, respectively  
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               (a) 17.45% aqueous suspension of pea starch 

 

 

 

 

 

 

 

 

 

                                  

(b) 26.17% aqueous suspension of pea starch 

Figure 3.2 Effects of moisture content on the gelatinization of pea starch using 
differential scanning calorimetry technique. 
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(Donovan 1979; Fukuoka et al. 2002). The order-disorder transition of amylose-

lipid complexes is essentially believed to be responsible for the third peak 

(Biliaderis 1990). By and large, the first peak is usually analyzed for 

gelatinization parameters (Fukuoka et al. 2002). 

 

3.2.5 Thermal behavior of the supplied PCL and flax fiber 

PCL powder of 11.81 mg was placed in hermetic aluminum pans, crimped 

tightly, and run through the DSC Q2000. A heat-cool-heat method was 

employed. The sample was heated to 100°C and cooled to -80°C at a scan rate 

of 15°C/min, and then heated to 400°C at 10°C/min under nitrogen atmosphere. 

The first heating cycle was to erase the thermal history of the sample (Wielage 

et al. 1999) and therefore, only the second heating cycle was used for analytical 

purposes. Similarly, 4.38 mg of washed flax fiber was placed in aluminum 

hermetic pan and run through the DSC from -80 to 400°C under nitrogen 

atmosphere at a scan rate of 10°C/min to determine its thermal behavior. 

 The DSC thermogram obtained for PCL is as shown in Figure 3.3a. PCL 

is known to undergo three thermal transitions when heated. These are glass 

transition, melting, and thermal decomposition. As shown in Figure 3.3, the 

glass transition and melting temperatures were found to be -62.63°C and 

58.96°C (Appendix A) while at about 400°C, the material exhibited thermal 

decomposition. Similar results have been obtained in previous studies 

(Chrissafis et al. 2007; Polo Fonseca et al. 2007; Shin et al. 2004; Sarazin et al. 

2008). Figure 3.3b shows the thermal behavior of flax fiber using DSC. The 
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Figure 3.3 Differential scanning calorimetry thermograms of (a) 
polycaprolactone; (b) flax fiber. 
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broad peak could be attributed to moisture vaporization from the fiber which is 

then followed by thermal degradation beyond 350°C. Similar thermal 

degradation of flax fiber has been reported using DSC and thermogravimetric 

analysis (TGA) in previous studies (Manfredi et al. 2006; Wielage et al. 1999). 

 

3.3 TPS Preparation 

Two separate TPS mixtures (primarily containing starch and glycerol) differing 

in moisture contents were prepared: the one containing 9.3% moisture (no extra 

water addition) was designated as S and the other, which had its moisture 

raised to 20% wb, as S20 (Table 3.1). This approach was important to ascertain 

the effects of processing moisture content and hence, starch gelatinization on 

the properties of the composites thus produced, thereby, determining the 

optimum moisture level. (TPS mix containing 30% moisture contained lots of air 

bubbles after compression thus making the material unfit for testing. Hence, two 

moisture content levels of TPS mixture were studied).  

Since the pea starch contained 12.76% moisture (as is) as determined in 

Section 3.2.1, the extra water needed to obtain an S20 mix was calculated 

using Equation 3.4 (Appendix B) and mixed with the appropriate amount of 

glycerol. The glycerol-water combination was then mixed with pea starch. In 

both compositions, the ratio of dry starch to glycerol was fixed at 7:3 by weight 

(Table 3.1; Equation 3.5). Pea starch was mixed with the plasticizers (glycerol in 

the case of S and glycerol-water combination for S20) using Hamilton Beach 5 

Speed OptiMixTM hand/stand mixer (Hamilton Beach, Washington, NC) for 
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about 15 min. The mixtures, which contained some hard lumps, were put in 

plastic bags, sealed, and left for at least 48 h. This step allowed starch granules 

to sufficiently absorb the plasticizers thus yielding mixtures with easily 

disintegratable lumps. The elimination of lumps was quite crucial as 

experimental trials conducted revealed that pressing lumpy samples yielded 

TPS with brittle spots, that is, samples with uneven stiffness.  
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where  wa = weight of extra water needed to achieve 100x% TPS 

processing moisture content, g 

  x = targeted TPS processing moisture level (in decimal) 

  M = moisture content of starch (w.b., in decimal) 

  ds = mass of dry starch, g 

pds 3
7

=  

where  p = amount of glycerol, g 

 

Table 3.1  Formulation of glycerol-plasticized pea starch. 

TPS mix Dry starch 
(%) 

Glycerol 
(%) 

Water 
(%) 

S 63.5 27.2 9.3 
S20 56 24 20 

 

(3.4)

(3.5)
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Further mixing for another 10 min was needed to achieve well-pulverized TPS 

mixtures suitable for compression molding and subsequent compounding with 

PCL and flax fiber.  

 

3.4 Experimental Design 

In order to achieve the two stated objectives, the whole experiment was divided 

into two modules.  

• Module one was to determine the effects of TPS processing moisture 

content and PCL incorporation into glycerol-plasticised pea starch. 

• Module two was to determine the effects of flax fiber and PCL 

incorporation into glycerol-plasticised pea starch.  

The two experimental modules were structured as two-way factorial completely 

randomized designs (CRD) to determine the effects on the tensile and moisture 

absorption properties. Module one had two factors, namely moisture and PCL at 

levels two and five, respectively, thus, having a 2 X 5 factorial treatment 

structure (Table 3.2). Module two equally had two factors namely PCL and fiber 

at levels three and four, respectively, thus, having a 3 X 4 factorial treatment 

structure (Table 3.2). Only TPS mix S20 was used for module 2. The respective 

composites were prepared as outlined in Section 3.5. The statistical analysis 

was done using SAS 9.1 Mixed Model procedure (Statistical Analysis System, 

Inc., Cary, NC) at 5% level of significance. Tukey’s method was used for means 

separation for both the tensile and moisture absorption properties. 
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Table 3.2  Experimental design to determine the effects of moisture, 
polycaprolactone and flax fiber incorporation into plasticized pea starch. 
 

Module 1 (2 X 5 factorial completely randomized 
design) 

Factor 
Sample Code Processing 

Moisture (%) 
Polycaprolactone 

(%) 
T 9.3 0 

1P9T 9.3 10 
2P8T 9.3 20 
3P7T 9.3 30 
4P6T 9.3 40 
T20 20 0 

1P9T20 20 10 
2P8T20 20 20 
3P7T20 20 30 
4P6T20 20 40 

Module 2 (3 X 4 factorial completely randomized 
design) 

Factor 
Sample Code Polycaprolactone 

(%) Flax Fiber (%) 

T20 0 0 
1F 0 5 

10F 0 10 
15F 0 15 

2P8T20 20 0 
5F20P 20 5 
10F20P 20 10 
15F20P 20 15 
4P6T20 40 0 
5F40P 40 5 
10F40P 40 10 
15F40P 40 15 
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3.5 Composite Preparation 

Results of the preliminary experiments discussed previously came in handy in 

the preparation of the composites. Two separate binary composites of TPS/PCL 

and TPS/flax fiber, and a ternary composite of TPS/PCL/flax fiber composites 

were prepared for subsequent characterizations. The equipment for sample 

preparations are shown in Figure 3.4.  

 

3.5.1 TPS/PCL composites 

Since no mechanical mixing takes place during compression molding, effective 

mixing of PCL and the TPS mixtures (S and S20) prior to compression was 

expedient. Therefore, for PCL/TPS binary composites, PCL powder was 

compounded separately with S and S20 at 10, 20, 30, and 40% by weight as 

shown in Table 3.2 using a laboratory scale ceramic mortar and pestle (Figure 

3.4b). The density, particle size, and moisture affinity differentials between the 

two components necessitated the choice of mortal and pestle for this solid-

phase compounding. The particle size of the polycaprolactone was 98% <600 

µm (as specified by the manufacturer) and that of the pea starch was 31 µm 

(mean particle size diameter as determined in Section 3.2.2 using Mastersizer 

2000, respectively while their densities were 1.15 and 1.46 g/cm3, respectively 

(as determined above with a gas-operated multipycnometer. PCL is 

hydrophobic while starch is hydrophilic. The PCL/S and PCL/S20 mix for each 

sample were thoroughly compounded for about 10 min to ensure homogeneity 

before and after compression molding. 
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                 (c)  

Figure 3.4 Sample preparation equipment and tool (a) Hamilton Beach 5 Speed 
OptiMixTM hand/stand mixer; (b) laboratory scale mortar and pestle; (c) 
automatic hydraulic press. 
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3.5.2 TPS/fiber and TPS/PCL/fiber composites 

For the TPS/fiber binary composites, the ground fiber was initially mixed with 

S20 at levels 5, 10, and 15% using the Hamilton Beach 5 Speed OptiMixTM 

hand/stand mixer (Figure 3.4a) for 10 min. Water of about 25% of the fiber 

weight in each formulation was sprayed to the mixture to aid mixing. The 

mixture which still contained starch and fiber clumps at this stage was further 

compounded with a steel mortar and pestle until the mixture became 

homogeneous, thus putting it in good shape for compression molding. The 

same procedure was followed for the preparation of TPS/PCL/fiber ternary 

composites but with the inclusion of PCL at levels 20 and 40%. 

 

3.5.3 Compression molding 

The composites were prepared by compression molding at 140°C for 45 min 

under a load of 25000 kg into 0.89 to 1.42-mm thick sheets using an automatic 

hydraulic press (Carver Inc., Wabash, IN) (Figure 3.4c). The processing 

temperature and pressure were arrived at after several experimental trials (not 

reported). In addition, it can be seen from the DSC thermograms of pea starch, 

PCL, and flax fiber discussed earlier that 140°C is within the safe temperature 

ranges for these individual components as no thermal degradation is apparent. 

The effective contact area of the mold was 152 mm x 152 mm. Before each hot 

pressing, the plates of the press were stabilized at 140°C. For sheets made 

from S-TPS mix, it was observed that compressing immediately after placing 

the mold on the press led to bubbles being trapped in the sheets. Therefore, a 
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particular approach was adopted to avoid this. Accordingly, the mix was well-

laid on the mold and then placed on the lower hot plate. The upper hot plate 

was immediately lowered to press the mold lightly leaving a small opening to 

allow for moisture escape as the whole set-up was left until the press 

temperature indicator restabilized at 140°C. Afterwards, the mold was fully 

closed under a load of 25000 kg. This procedure avoided bubble formation in 

the prepared composites. Bubbles serve as weak points, thereby, causing 

materials to fracture at lower-than-expected stress and strain (Torres et al. 

2007). However, this procedure was not necessary for the sheets made from 

S20-TPS mix as it was observed that the increased viscosity of the gelatinized 

starch due to the higher water content allowed bubbles to readily exit the mold 

through its side grooves.   

 

3.6 Specimen Preparation and Characterization 

The functionality and applications of a material are largely hinged on its 

properties. Accordingly, four different techniques were used to characterize 

some of the material properties of the prepared composites. These included 

tensile test, moisture absorption test, SEM, and DSC.  

 

3.6.1 Tensile test 

The tensile tests were carried out on an Instron testing machine Model 5500R 

(Instron Corporation, Grove City, PA) (Figure 3.5a) according to ASTM D 3039 

specifications. The composite samples were cut into dogbone-shaped test 



 
 

73

specimens using a commercial wood router and a dogbone-shaped patterning 

jig and then conditioned at 22 ± 1°C and 50 ± 2% relative humidity for six days 

in an environment chamber (Model UY 150, Angelantoni Climatic Systems, 

Massa Martana, Italy) before testing. The tests were conducted at crosshead 

speed of 4 mm/min. The crosshead displacement was used to estimate tensile 

elongation. The ambient conditions of the lab at the time of testing were 21°C 

 

            

 

 

 

 

 

 

  (a)                                                           (b)  

                            (c)                                                            (d) 

Figure 3.5 Specimen characterization equipment  (a) Instron testing machine; 
(b) Environmental chamber;  (c) Scanning electron microscope;  (d)  
Differential scanning calorimeter. 
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and 21% RH. The data were acquired real-time and the desired mechanical 

properties, namely, Young’s modulus (E), ultimate tensile strength (UTS), yield 

strength (σy), and elongation at break (εb) (Equations 3.6 to 3.11) were 

computed automatically by the operating software, Bluehill 2.5 (Instron 

Corporation, Grove City, PA). Ten replications of each formulation were carried 

out (Appendix C). 
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where 

σ = Engineering stress, MPa  

ε = Engineering strain 

σmax = Ultimate tensile stress, MPa 

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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Fmax = Maximum load, N 

lo = Gauge length, mm 

lb = Length at point of break, mm 

l = Length at any instant of loading, mm 

Ao = Initial cross-sectional area of the specimen, mm2 

F = Load at any instant, N 

Fy = Load at 0.2% offset, N 

σmax = Yield stress at 0.2% offset, MPa 

 

3.6.2 Moisture absorption test 

The samples were cut into 20 x 20 x 1-mm pieces, dried in a VWR gravity oven 

Model 1370 GM (Sheldon Manufacturing Inc., Cornelius, OR) at 45°C for 48 h 

and their mass, mo1, taken. They were subsequently transferred into the ESPEC 

environment chamber Model SH-641 (ESQEC, Osaka, Japan) (Figure 3.5b) 

already stabilized at 22°C and 97 ± 2% relative humidity for the moisture uptake 

measurements. After three days, the samples were taken out, the water 

condensation/layer on the surfaces of the samples was carefully wiped, and 

their mass, mf1, taken. The measurements were taken as fast as possible to 

limit error arising from the samples losing their absorbed moisture due to the 

low ambient relative humidity of about 21% at the time of experimentation. 

Three replications were made for each formulation (Appendix D).  
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Moisture absorbed during the period, M', was calculated thus: 

 

  100'
1

11 ×
−

=
o

of

m
mm

M  

 

3.6.3 Scanning electron microscopy 

A JEOL scanning electron microscope Model 8AOA (JEOL Ltd, Akishima, 

Tokyo, Japan) (Figure 3.5c) was used to study the morphologies of the tensile 

fracture surfaces of the composites. Prior to feeding into the microscope, the 

non-conductive composites were cleaned in an ultrasound bath and coated with 

about 200 Å of gold using an Edwards Gold Coater (Wilmington, MA). The 

purpose of the gold coating was to make the samples conductive, thereby 

avoiding electron build-up on the surface during examination. The images were 

captured at 500X magnification.  

 

3.6.4 Differential scanning calorimetry 

A DSC Q2000 V23.3 Build 61 (TA Instruments, New Castle, DE) (Figure 3.5d) 

was used to study some of the thermal properties of the materials, namely, 

glass transition and melting. The glass transition which is linked directly to 

molecular mobility is not only important because it affects other thermal 

properties such as specific heat, coefficient of thermal expansion, enthalpy, and 

entropy, but it also affects mechanical properties such as Young’s and shear 

moduli. For instance, the Young’s modulus of a material drops drastically as it 

(3.12)
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transits from the glassy phase to the rubbery phase (Sperling 1986). Samples 

were conditioned at room temperature of 22 ± 1°C and at relative humidity of 50 

± 2% for six days before testing. Ten to 15 mg of each sample was placed in 

hermetic aluminum pans, crimped, and fed into the heating chamber of the 

differential scanning calorimeter. A heat-cool-heat procedure was adopted for 

the samples: heated from 20 to 140°C and cooled to -80°C both at 20°C/min 

and then heated at the rate of 10°C/min from -80 to 400°C. The first heating 

was to remove the specimens’ thermal history (Wielage et al. 1999). Glass 

transition temperature was taken as the mid-point of the glass transition while 

melting point corresponded to the peak of the melting endotherm. 
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4. RESULTS AND DISCUSSION 

Completely biodegradable bubble-free plasticized pea starch and its composites 

with polycaprolactone and flax fiber were prepared and characterized. The 

outcomes of the material characterizations are hereby presented and analyzed. 

The effects of the factors investigated, which included TPS processing moisture 

content, flax fiber, and PCL reinforcements, were closely studied. Statistical 

analyses were conducted essentially on tensile properties (which includes 

ultimate tensile stress, yield stress, Young’s modulus, and elongation at break) 

and amount of moisture absorbed to ascertain if any difference observed was of 

any statistical significance (P<0.05).  

 

4.1 Morphological Characteristics 

The scanning electron micrograms of the tensile fracture surfaces, as depicted 

in Figure 4.1, reveal the morphological effects of processing moisture content 

and PCL reinforcement on compression-molded plasticized pea starch. Figures 

4.1a-e were outcomes of 9.3% processing moisture content while Figures 4.1a’-

e’ resulted from 20% processing moisture content. Figures 4.1a-e as well as 

Figures 4.1a’-e’ reveal a progressive increase in PCL content from 0 to 40%.  

Figure 4.1a’ shows a fully gelatinized TPS while Figure 4.1a contains intact and 

partly destructured starch granules. This implies that under the applied 

processing conditions, TPS containing 20% water (Figure 4.1a’) was able to 

proceed to complete gelatinization while 9.3% moisture content TPS could not. 
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(a)  0% polycaprolactone            (a’) 0% polycaprolactone 

 

 

 

 

 

 

         (b)  10% polycaprolactone                         (b’) 10% polycaprolactone 

 

  

  

        

      

            

          (c)  20% polycaprolactone                    (c’) 20% polycaprolactone 

Figure 4.1 Scanning electron micrograms (500X) of the tensile fracture surfaces 
of plasticized pea starch prepared at 9.3% (left column) and 20% (right 
column) processing moisture content and reinforced with 
polycaprolactone. 
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           (d) 30% polycaprolactone                    (d’) 30% polycaprolactone 

          (e) 40% polycaprolactone                      (e’) 40% polycaprolactone              
   

Figure 4.1 (Cont’d) 
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This underscores the importance of moisture to starch gelatinization mechanism.   

In spite of its high gelatinization and plasticizing effects on starch, water 

alone is not recommended for the production of thermoplastic starch due to its 

volatility; hence, its combination with other non-volatile plasticizers such as 

glycerol with comparatively low plasticizing effects (Forssell et al. 1997; Sarazin 

et al. 2008). However, starch destructurization in this case of limited water took 

place at higher temperature than that in the case of excess water and was 

indeed facilitated by the induced shear stresses (Xie et al. 2006). In addition to 

playing the role of a plasticizer, glycerol is capable of effecting starch 

gelatinization but the onset temperature of gelatinization is higher with decrease 

in water content (Nashed et al. 2003). With the incorporation of PCL, 

ungelatinized starch granules became more evident. This was more 

pronounced with TPS/PCL composites made from S TPS mix (Figure 4.1b-e). 

In fact, ungelatinized and partly destructured starch granules did not become 

apparent until at 20% PCL level for TPS/PCL composites made from S20 TPS 

mix. This therefore implies that PCL interfered with the gelatinization 

mechanism of pea starch.  

The fact that PCL melted (~58°C) before the onset of starch 

gelatinization was, on the one hand, desirable as the molten PCL would be able 

to penetrate the TPS mix interstices, thereby, laying out a reinforcing structure. 

On the other hand, the molten PCL, due to its hydrophobicity, expectedly 

interfered with moisture diffusion within the TPS mix, a condition crucial to 

starch gelatinization mechanism. The higher the PCL content, the greater the 
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interference and hence, the lower the degree of starch gelatinization during 

compression molding. It could also be seen that gelatinization improved the 

interaction between PCL and starch phases. Similar improvement in 

compatibility (although still poor) between starch and PCL due to starch 

plasticization was reported by earlier studies (Matzinos et al. 2002; Shin et al. 

2004; Ikeo et al. 2006). This poor compatibility was attributed to possible 

formation of hydrogen bonds between the ester carbonyl groups of PCL and 

starch hydroxyl groups (Matzinos et al. 2002; Shin et al. 2004). Better still, 

maleic anhydride had been found to further enhance PCL compatibility with 

TPS (Ikeo et al. 2006). All the scanning electron micrograms (Figure 4.1) show 

stretched PCL strands which could be attributable to the ability of PCL to form a 

rather continuous reinforcing network throughout the plasticized starch during 

compression molding regardless of the TPS processing moisture content. 

 Figure 4.2 shows the tensile fracture surface morphologies of the 

plasticized pea starch reinforced with flax fiber. The scanning electron 

micrograms reveal multi-directionally dispersed fiber in well-gelatinized TPS 

matrices for the fiber content range investigated.   It is evident that compatibility 

between fiber and TPS and fiber was better than that between TPS and PCL. 

This was largely due to the chemical similarities between both the TPS and fiber 

as suggested by Wollerdorfer and Baker (1998) because both fiber and starch 

are polyhydroxyl materials. However, instances of fiber pull-out as noticeable in 

Figure 4.2 suggests that the interfacial bonding between TPS and fiber was not 

as strong as to cause fiber breakage instead of pull-out. This weak interfacial 
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interaction could partly be attributable to thermal stress (which is a function of 

temperature, dwelling time, and water content available for starch plasticization 

(Wiedmann and Strobel 1991), developed in the TPS as the material cured. 

 Figure 4.3 shows the scanning electron micrograms of the tensile 

fracture surfaces of TPS/PCL/fiber composites. Figures 4.3a, b, and c and 

Figures 4.3a’, b’, and c’ represent 20 and 40% PCL levels, respectively with 

increasing fiber 

   

     (a) 5% fiber      (b) 10% fiber 
 
 
 
 
 

  
 
 
 
 
 
 

           (c) 15% fiber 

Figure 4.2   Scanning electron micrograms (500X) of the tensile fracture 
surfaces of plasticized pea starch reinforced with flax fiber. 
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   (a) 5% fiber, 20% polycaprolactone  (a’) 5% fiber, 40% polycaprolactone    

   (b) 10% fiber, 20% polycaprolactone  (b’) 10% fiber, 40% polycaprolactone 
                   

   (c) 15% fiber, 20% polycaprolactone  (c’) 15% fiber, 40% polycaprolactone 
 
Figure 4.3   Scanning electron micrograms (500X) of the tensile fracture 

surfaces of plasticized pea starch/polycaprolactone/flax fiber. 
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contents from 5 to 15%. As mentioned above, it would have been expected that 

the lower the PCL content, the greater the degree of starch gelatinization. 

However, the additional water (about 25% of fiber weight per formulation) added 

to aid fiber mixing significantly offset the gelatinization interference that PCL 

would have caused. Both fiber and PCL acted as independent reinforcements 

as no interfacial interaction was observed between them. Flax fiber and TPS 

tended to readily bind together due to their chemical similarities (Wollerdorfer 

and Baker 1998) unlike PCL. In other words, homogeneity of TPS/PCL/fiber 

ternary composites was markedly affected as PCL content increased. 

 

4.2 Tensile Properties 

As mentioned earlier in Section 3.4, to determine the tensile effects of the 

investigated variables, namely, TPS processing moisture, PCL reinforcement, 

and flax fiber reinforcement, tensile tests were set up in two modules. Module 

one compared the effects of TPS processing moisture content and PCL content 

on the tensile properties of TPS/PCL composites while module two was 

designed to investigate the effects of flax and PCL reinforcements at 20% TPS 

processing moisture content on the tensile properties of TPS/PCL/fiber 

composites.  The two modules were set up as CRD at 5% level of significance 

and means separation was done using Tukey’s method. Tensile properties 

measured included tensile stress (ultimate tensile strength), 0.2% offset yield 

stress, Young’s modulus, and elongation at break. 
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4.2.1 TPS/PCL composites 

The effects of processing moisture content and PCL reinforcement on the 

tensile properties of plasticized pea starch are shown in Figure 4.4. The tensile 

strength curve significantly shifts upwards with increase in processing moisture 

content (Figure 4.4a). At 0% PCL, the tensile strength was more than tripled 

(precisely 208.6% increase) at 20% moisture content. The reason for this can 

be seen in the morphological differences of the two materials as shown in 

Figure 4.1a and a’. While Figure 4.1a’ shows a well-gelatinized continuous TPS 

phase Figure 4.1a reveals the presence of intact and partly gelatinized starch 

granules.  

Ungelatinized granules constituted structural defects in the TPS by acting 

as weak points or points of stress concentration, a condition that most likely 

resulted in the failure of the plasticized pea starch obtained from 9.3% moisture 

mix, T, at comparatively low stress. In addition, at ambient condition of about 

21oC and 23% relative humidity, T was brittle and rigid while T20 (obtained from 

20% moisture mix) was ductile and tough (although both were brittle when 

oven-dried). Yang and co-authors (2006) reasoned that ungelatinized starch 

granules could cause such brittleness. As mentioned earlier, addition of PCL 

interfered with the starch gelatinization mechanism, with the effect being more 

pronounced with T composites (Figure 4.1). Unlike 1T9T20, the ungelatinized 

starch granules in 1P9T perhaps allowed PCL to form a better reinforcing 

network through the TPS structure (Figure 4.1b and b’). This could explain why 

at 10% PCL, T exhibited a significant increase in tensile strength while T20 did 
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                                   (a)                     (b) 

 

 

 

 

 

         (c)                                   (d) 

Figure 4.4  Tensile effects of processing moisture content and polycaprolactone incorporation on glycerol-
plasticized pea starch. Means having the same letters on the same graph are not significantly different 
(P<0.05) based on Tukey’s method of means separation. Error bars indicate standard deviation. 
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not. The tensile curves remain fairly horizontal between 10 and 30% PCL. This 

could mean the reinforcing potentials of PCL at both moisture levels were 

sufficiently offset by poor compatibility between starch and PCL, and the weak 

points caused by ungelatinized starch granules. However, beyond this range, 

the curves tilt upwards possibly marking the beginning of PCL phase reversal 

from dispersed to continuous phase. 

The tensile strength, yield strength, Young’s modulus, and elongation at 

break of pure PCL (prepared using the same technique) were found to be 15.7 

MPa, 7.38 MPa, 184.77 MPa, and >800%, respectively. Furthermore, the 

incorporation of PCL decreased the yield strength (elastic limit) for T20 while 

increasing that of T (Figure 4.4b). Similar results were observed for the Young’s 

modulus (stiffness) but with PCL effect being statistically insignificant (P<0.05) 

at 20% moisture (Figure 4.4c). The elongation at break of the plasticized pea 

starch was remarkably improved by 292% with increase in processing moisture 

content at 0% PCL (Figure 4.4d). This could be because more water, like any 

other plasticizer, in the system created more free volume, thus allowing for a 

higher degree of starch chain mobility which, in turn, translated into higher 

degree of flexibility/ductility. Similar results of increase in elongation at break 

prompted by increase in plasticizer content have been reported by other 

researchers (Yang et al. 2006; Teixeira et al. 2005). However, the elongation at 

break largely dropped with PCL incorporation. 
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4.2.2 TPS/flax fiber composites 

The tensile effects of reinforcing plasticized pea starch with flax fiber denoted as 

0% PCL curves could be seen in Figure 4.5. The tensile strength remained fairly 

constant up to 10% fiber content beyond which a relatively sharp increase of 

41.2% was observed at 15% fiber content (Figure 4.5a). This could be ascribed 

to the complex interplay of some factors. Accordingly, better fiber dispersion in 

the TPS matrix was noticed at 15% fiber content than at any other fiber levels. 

In general, low bulk density of fiber poses a challenge towards achieving highly 

homogeneous mixing with matrix, thus, partly militating against the 

reinforcement potentials of flax fiber. Similar pattern was observed for the 

Young’s modulus of TPS/fiber (0% PCL) composites (Figure 4.5c). Wollerdorfer 

and Bader (1998) also hinted an analogy between tensile strength and Young’s 

modulus of thermoplastic starch on fiber reinforcement. However, earlier work 

by Karmaker and Youngquist (1996) reported that while tensile strength was 

significantly affected by fiber-matrix interaction, Young’s modulus (stiffness) was 

dependent on fiber content and dispersion within the matrix and not significantly 

by fiber-matrix interaction. The yield strength (Figure 4.5b) of the plasticized pea 

starch improved significantly from 2.67 to 4.68 MPa with fiber incorporation 

while elongation at break (Figure 4.5d) dropped from 93.52 to 11.17%. 



 
 

        

 

 

 

 

 

 

   (a)                              (b) 

 

 

 

 

 

         (c)                (d)   

Figure 4.5  Tensile effects of polycaprolactone and flax fiber incorporation on glycerol-plasticized pea starch. 
Means having the same letters on the same graph are not significantly different (P<0.05). Tukey’s method 
was used for means separation. Error bars indicate standard deviation. 
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4.2.3 TPS/PCL/flax fiber composites 

Figure 4.5 shows the tensile effects of reinforcing plasticized pea starch with 

both flax fiber and PCL. The tensile performances of the composites at 20 and 

40% PCL levels were fairly identical particularly the tensile strength and 

elongation at break. Unlike TPS/fiber composites, the tensile strength increased 

until 10% fiber, beyond which it dropped at both 20 and 40% PCL levels. In fact, 

the optimum tensile strength of 11.55 MPa was reached at 10% flax fiber and 

40% polycaprolactone. As shown earlier in Figure 4.3c, fiber bonded more 

readily with TPS due to their chemical similarity (both have –OH functional 

group) than PCL. Although both PCL and fiber acted as independent 

reinforcements due to the absence of interfacial bonding between the two, the 

fact that their reinforcing domains intertwined or interlocked is noteworthy.  

Dissimilarities in polarity and moisture affinity between TPS and fiber on 

the one hand and PCL on the other could be responsible for the phase 

separation noticed in the ternary composites which became more noticeable 

with fiber and PCL increase (most pronounced for 15F40P), thus, hampering 

microscopic homogeneity (Figure 4.6). Although the tensile strength, Young’s 

modulus, and yield strength all increased while the elongation at break 

decreased with fiber and PCL incorporation into the plasticized pea starch, 

better results could have been obtained had there been effective homogeneous 

dispersion of fiber and PCL in the TPS matrix. In spite of the fact that the 

elongation at break of PCL (>800%) far exceeded that of TPS matrix (93.52%), 
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the elongation at break of fiber-PCL-reinforced TPS composites fell way below 

that of pure TPS. 

 

4.3 Moisture Absorption 

One of the major drawbacks of thermoplastic starch is its high moisture affinity. 

As such, moisture sensitivity reduction is crucial to developing starch-based 

products of acceptable standards. The effects of processing moisture content 

and PCL reinforcement on plasticized pea starch are as indicated in Figure 4.7. 

It is evident that increase in processing moisture content produced TPS more 

susceptible to moisture absorption. For instance, moisture absorbed by the TPS 

increased by 55.7% as the processing moisture content increased from 9.3 to 

20%. This was because additional water molecules increased the total number 

of –OH functional groups (with characteristic high moisture affinity) available for  

 

    (a) 15% fiber, 20% polycaprolactone       (b) 15% fiber, 40% polycaprolactone                  

Figure 4.6 Compression-molded glycerol-plasticized pea starch reinforced 
with polycaprolactone and flax fiber (1X). The dark spots denote 
areas of fiber population. 
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hydrogen bonding with atmospheric moisture, thus, increasing the overall 

moisture affinity of the TPS. Generally, increase in plasticizer content results in 

increase in TPS moisture absorption owing to plasticizer-water interactions 

(Lourdin et al. 1997; Mathew and Dufresne 2002; De Carvalho et al. 2002; Yang 

et al. 2006, Thunwall et al. 2006b).  

However, with the incorporation of PCL, moisture absorption capacity of 

the TPS dropped progressively at both processing moisture levels. Since PCL is 

hydrophobic and is not known to chemically react with starch and glycerol, both 

of which are hydrophilic, the observed reduction in moisture absorption capacity  

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Effects of processing moisture content and polycaprolactone 
incorporation on the moisture absorption properties of glycerol-
plasticized pea starch. Means having the same letters on the same 
graph are not significantly different (P<0.05). Tukey’s method was 
used for means separation. Error bars indicate standard deviation. 
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could be attributed to the reduction in the number of –OH functional groups per 

unit volume of the specimens available for hydrogen bonding with the 

atmospheric moisture.  This could be ascribed to PCL forming a hydrophobic 

blanket around the starch and glycerol molecules, thus limiting their exposure to 

the surrounding moisture and/or directly reducing TPS content per unit volume 

of the specimens. Similar results have been reported using fly ash (Ma et al. 

2007) and clay (Hwan-Man et al. 2003) as TPS reinforcements. At 10, 20, 30, 

and 40% PCL, the percentage decreases in moisture absorption for TPS at 9.3 

and 20% processing moisture contents were 55.1, 66.6, 70.7, and 85.6%, and 

34.7, 52.9, 66.6, and 75.7%, respectively. These values indicate that PCL was 

more effective in reducing moisture absorption at 9.3% than at 20% processing 

moisture level. 

Furthermore, the effects of PCL and flax fiber reinforcements on TPS 

moisture absorption were also investigated (Figure 4.8). At 0% PCL, the 

incorporation of 5% flax fiber dropped the TPS moisture absorption by 27.2%, 

but subsequent fiber addition yielded little or no further significant changes. 

Carvalho and co-authors (2002) also reported that fiber presence and not fiber 

content yielded reduction in TPS moisture absorption. Similarly, fiber 

reinforcement at 20% PCL did not alter the moisture absorption capabilities of 

the plasticized pea starch while at 40% a slight elevation which was constant 

regardless of the fiber content was recorded. However, all TPS/fiber and 

TPS/fiber/PCL composites had lower moisture absorption than pure TPS.  
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Figure 4.8 Effects of flax fiber and polycaprolactone incorporation on the 

moisture absorption properties of glycerol-plasticized pea starch. Means 
having the same letters on the same graph are not significantly different 
(P<0.05). Tukey’s method was used for means separation. Error bars 
indicate standard deviation. 
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4.4 Thermal Properties 

The thermal properties of the two TPSs (T and T20) as measured using DSC 

are presented in Figure 4.9. Between 120 and 280°C, three thermal events, 

namely, glass transition, Tg, (162.5°C), crystallites melting (198.9°C), and onset 

of thermal degradation (which took place concurrently as the sample melted), 

Tod, (223.7°C) were detectable for sample T (Figure 4.9a) whereas only Tod 

(192.6°C) was detectable for sample T20 (Figure 4.9b). Since the two TPSs (T 

and T20) differ only in their degree of gelatinization, the two different events 

could be attributed to the glass transition and crystallites melting of the 

ungelatinized pea starch granules in sample T. The lower Tod for sample T20 

implied lower degree of thermal stability apparently due to its higher moisture 

content.   

The thermal properties of TPS reinforced with PCL are presented in 

Table 4.1. The fact that TPS and PCL retained their respective thermal 

properties in the composites implied that they were thermodynamically 

immiscible (Shin et al. 2004). The melting point of PCL increased slightly as its 

content increased at both moisture levels. Similar results have been reported by 

other researchers (Matzinos et al. 2002; Wu 2002). However, the glass 

transition for pure PCL (-62.6°C) was effectively suppressed for all the TPS/PCL 

composites. This might be attributable to the equipment’s low sensitivity in that 

range of temperature. Likewise, the thermal properties of plasticized pea starch 

reinforced with PCL and flax fiber (Table 4.1) suggest thermodynamic 

immiscibility of the TPS, PCL, and fiber. PCL characteristic glass transition 
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temperature (~60°C) became detectable with fiber reinforcement, increasing 

with increase in PCL content. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

           (a) 
           
         
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                      (b) 
Figure 4.9  Differential scanning calorimetry thermograms of glycerol-plasticized 

pea starch prepared at processing moisture contents of (a) 9.3% and (b) 
20%.  
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Table 4.1 Thermal properties of plasticized pea starch/polycaprolactone and 
plasticized pea starch/polycaprolactone/flax fiber composites. 
 

Sample 
code 

Tm
1 due to 

PCL (°C) 
Tg

2 due to 
PCL (°C) 

Tod
3 due to 

starch (°C) 
Tg due to 

starch (°C) 

1P9T 56.3 Not detected 194.4 151.5 

2P8T 56.9 Not detected 190.9 146.7 
3P7T 56.6 Not detected 196.0 150.1 
4P6T 57.9 Not detected 198.1 158.0 

1P9T20 56.0 Not detected 207.8 Not detected 
2P8T20 56.4 Not detected 211.4 Not detected 
3P7T20 57.1 Not detected 204.8 Not detected 
4P6T20 58.4 Not detected 178.8 Not detected 
5F20P 56.2 Not detected 216.5 Not detected 

10F20P 55.7 -61.4 214.9 Not detected 
15F20P 55.6 -63.1 201.7 Not detected 
5F40P 56.1 -63.0 192.6 Not detected 

10F40P 56.8 -63.0 199.9 Not detected 
15F40P 56.9 -62.8 214.1 Not detected 

1 Melting point 
2 Glass transition temperature 
3 Onset of thermal degradation 
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5. SUMMARY AND CONCLUSIONS  

In this study, efforts were geared toward overcoming the two major drawbacks 

of thermoplastic starch, namely, weak mechanical properties and high moisture 

affinity. For this purpose, pea starch was plasticized with glycerol in ratio of 7:3 

(dry weight) and then reinforced with PCL (10, 20, 30, and 40% wt) and flax 

fiber (5, 10, and 15% wt) both individually and collectively. Two processing 

moisture levels of 9.3 and 20% were considered in order to determine the 

effects of processing moisture content on the physical properties of plasticized 

pea starch. Sample preparation involved compounding the materials in the solid 

phase followed by compression molding. The compression molding parameters 

of 140oC, 45 min, and 25000 kg were arrived at after some experimental trials 

while giving adequate consideration to the results of preliminary experiments on 

the thermal properties of pea starch, PCL, and flax fiber, in order to avoid 

thermal decomposition of these materials during compression molding. The 

prepared samples were then characterized using SEM, tensile test, moisture 

absorption, and DSC techniques. 

 The scanning electron micrograms of the tensile fracture surfaces 

revealed that the TPS prepared at 20% moisture content was able to form a 

rather continuous phase because complete gelatinization was attained, while at 

9.3% moisture, intact and partly gelatinized starch granules were evident. In 

other words, the gelatinization and, in turn, the morphology of plasticized pea 

starch were significantly affected by the processing moisture content. This 

morphological difference translated into higher tensile strength, yield strength, 
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Young’s modulus, and elongation at break at 20% processing moisture content. 

However, the moisture affinity of the plasticized pea starch was higher at 20% 

processing moisture content while the thermal stability was higher at 9.3% 

processing moisture content. Although the effects of PCL reinforcement on the 

tensile properties of the plasticized pea starch varied depending on the 

processing moisture content, the effect on the moisture absorption was the 

same. Due to its hydrophobicity, the addition of PCL successfully reduced the 

moisture absorption of plasticized pea starch.  

Similarly, the flax fiber reinforcement increased the tensile strength, yield 

strength, and Young’s modulus while decreasing the elongation at break of the 

plasticized pea starch. Fiber incorporation desirably decreased the moisture 

absorption of the plasticized pea starch. Furthermore, higher improvements in 

the tensile strength, yield strength, and Young’s modulus were recorded when 

reinforcing plasticized pea starch with both PCL and flax fiber than with fiber 

alone. In these ternary composites, decline in moisture absorption was 

observed and this was attributed to the hydrophobic PCL content. In addition, 

the prepared composites were thermodynamically immiscible as each 

composite component retained its individual thermal characteristics. 

Although the tensile strength of plasticized pea starch improved when 

reinforced with PCL, this increase could largely be ascribed to the ability of PCL 

to form a rather continuous reinforcing network through the TPS matrix as 

against the presence of good TPS-PCL interfacial interaction. Similarly, no 

interfacial interaction was noticed between PCL and flax fiber, thus, implying 
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PCL and flax fiber acted as independent reinforcing agents. Due to their 

chemical similarity (both having –OH groups), some degree of TPS-fiber 

interfacial bonding was observed but evidence of fiber pull-out suggested the 

bonding was weak. This poor interfacial interaction between the PCL on the one 

hand and the polyhydroxy TPS and fiber on the other hand, hampered effective 

dispersion of the reinforcing components in the TPS matrix. Unfortunately, 

achieving composites with good mechanical performance demands that the 

reinforcing materials have strong interfacial bonding with the matrix and also be 

effectively dispersed in the matrix. In other words, it is logical to assert that the 

reinforcing potentials of PCL and flax fiber were not optimally harnessed.  

Therefore, the following conclusions can be drawn from this study: 

• At 20% processing moisture content, there was complete starch 

gelatinization, hence the formation of a rather continuous single-phase 

(homogeneous) TPS matrix. Instances of ungelatinized and partly 

gelatinized starch granules were noticed at 9.3%. 

• Plasticized pea starch and its composites produced at 20% processing 

moisture content had higher tensile strength, yield strength, Young’s 

modulus, and elongation at break than those at 9.3% processing 

moisture content. 

• Higher moisture affinity was observed for samples prepared at 20% than 

at 9.3% processing moisture content. 

• Independently and jointly incorporating PCL and flax fiber generally 

improved the tensile properties while lowering the moisture absorption 
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properties of the prepared samples. PCL performed better in reducing 

moisture absorption of plasticized pea starch than flax fiber. 

• For the plasticized pea starch/PCL/flax fiber composites, maximum 

tensile strength of 11.55 MPa was observed at 10% flax fiber and 40% 

PCL reinforcement. 

• Both flax fiber and PCL acted as independent reinforcements for the 

plasticized pea starch as no interfacial bonding between the two was 

observed. 

• Plasticized pea starch processed at 9.3% moisture exhibited higher 

thermal stability than that at 20%. 

• The individual components of the prepared composites displayed their 

characteristic thermal properties, thus, suggesting thermodynamic 

immiscibility.   
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6. RECOMMENDATIONS 

The major limitation observed in this study was the poor compatibility 

between TPS and fiber on the one hand and PCL on the other hand. This 

affected the dispersion of the reinforcing material in the TPS matrix. Since good 

interfacial bonding and effective dispersion of reinforcing material are crucial to 

the mechanical performance of any composite, it could be asserted that the 

reinforcing potentials of PCL and flax fiber were not optimally realized. To this 

end, some compatibilizers such as maleic anhydride (MAH) could be 

incorporated in the formulation to enhance the bonding between PCL and TPS 

for better mechanical performance. Compatibilizers could also enhance PCL-

fiber interfacial bonding, thus, exploiting the synergistic reinforcing potentials of 

both the PCL and flax fiber. In addition, the use of surface-treated flax fiber may 

be investigated on both the strength and moisture absorption fronts. Related 

studies have reported improved fiber-matrix interfacial bonding and moisture 

resistance using chemically treated fibers. 

Finally, further work should be conducted on facilitating pea starch 

gelatinization during compression molding in order to reduce processing time. 

This could mean using pre-gelatinized pea starch as the starting material in lieu 

of native pea starch. Extrusion molding technique could also be used for sample 

preparation. Extrusion produces relatively high degree of starch gelatinization 

due to the presence of shear stresses and could also enhance better fiber and 

PCL dispersion in the TPS matrix. 
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APPENDIX A DATA SHEETS FOR PEA STARCH (ACCU-GEL) 

AND POLYCAPROLACTONE 
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APPENDIX B DERIVATION OF THE EQUATION FOR THE 
ADJUSTMENT OF TPS PROCESING MOISTURE CONTENT 
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Derivation of moisture adjustment equation 
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t = total amount of TPS mix containing the desired processing moisture level, g 

wa = amount of extra water needed to achieve 100x% TPS processing moisture 

content, g 

ws = amount of water in starch, g 

x = targeted TPS processing moisture level (in decimal) 

M = moisture content of starch (in decimal) 

ds = mass of dry starch, g 

s = mass of starch 

p = amount of glycerol, g 

(B12) 
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APPENDIX C TENSILE TESTS DATA  
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Table C1    Tensile properties of plasticized pea starch prepared at 9.3% 
processing moisture content. 
 

Tensile Properties 

Replication Tensile 
Strength 

(MPa) 

0.2% Yield 
Strength 

(MPa) 

Young's 
Modulus 

(MPa) 
Elongation 

at Break (%)

1 2.44 0.40 33.18 21.73 
2 1.73 0.26 29.69 28.83 
3 2.12 0.32 34.59 18.22 
4 2.18 0.36 32.11 19.34 
5 2.78 0.48 27.65 28.83 
6 2.75 0.40 29.29 30.19 
7 2.35 0.40 31.21 18.42 
8 2.72 0.43 30.91 28.35 
9 2.17 0.30 32.09 16.60 
10 3.03 0.48 28.59 28.10 

 
 
TABLE C2 Tensile properties of plasticized pea starch prepared at 20% 
processing moisture content. 
 

Tensile Properties 

Replication Tensile Strength 
(MPa) 

0.2% Yield 
Strength 

(MPa) 

Young's 
Modulus 

(MPa) 

Elongation 
at Break 

(%) 

1 7.72 3.32 87.51 94.22 
2 8.21 3.04 114.15 93.71 
3 7.67 2.88 96.92 107.63 
4 7.20 2.67 87.72 89.21 
5 7.10 2.62 90.18 85.39 
6 7.36 2.95 118.32 95.48 
7 6.71 2.30 65.95 101.47 
8 8.16 2.82 71.98 77.27 
9 7.70 2.90 106.26 104.77 
10 7.18 1.22 115.34 86.00 

 



 
 

TABLE C3  Tensile properties of pure polycaprolactone. 
 

Tensile Properties 

Replication Tensile 
Strength 

(MPa) 

0.2% Yield 
Strength 

(MPa) 

Young's 
Modulus 

(MPa) 

Elongation 
at Break 

(%) 
1 15.65 7.94 186.71 >800 
2 15.55 7.13 194.19 >800 
3 15.74 7.49 180.59 >800 
4 15.34 7.49 184.81 >800 
5 16.25 7.17 177.68 >800 
6 15.46 7.06 184.63 >800 

 
 
TABLE C4 Tensile properties of plasticized pea starch prepared at 9.3% 
processing moisture content and reinforced with polycaprolactone. 
 

Tensile Properties 
PCL (%) Tensile 

Strength 
(MPa) 

0.2% Yield 
Strength 

(MPa) 

Young's 
Modulus 

(MPa) 

Elongation 
at Break 

(%) 

10 4.94 1.38 125.14 9.13 
10 4.62 1.10 124.28 9.39 
10 5.12 1.01 122.75 11.03 
10 5.12 1.08 132.50 11.17 
10 4.90 1.10 132.30 9.34 
10 4.72 1.26 134.12 9.12 
10 4.94 1.19 113.47 10.76 
10 5.02 1.33 116.43 9.91 
10 4.59 0.97 121.40 8.93 
10 5.09 1.25 117.34 11.45 
20 4.27 3.72 164.57 3.55 
20 4.52 3.47 158.91 3.88 
20 4.67 3.84 155.50 3.97 
20 4.46 3.24 168.62 3.96 
20 4.61 3.43 156.15 3.80 
20 4.68 3.48 169.30 3.79 
20 4.32 3.51 175.56 3.43 
20 4.54 3.46 174.76 3.57 
20 4.25 3.50 159.55 3.64 
20 4.95 3.46 168.32 4.23 
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TABLE C4 (Cont’d). 
 

Tensile Properties 

PCL (%) Tensile 
Strength 

(MPa) 

0.2% Yield 
Strength 

(MPa) 

Young's 
Modulus 

(MPa) 
Elongation at 

Break (%) 
30 4.72 3.05 166.95 4.85 
30 4.61 3.58 172.72 4.05 
30 5.06 3.46 219.91 4.37 
30 5.01 3.71 160.17 4.11 
30 4.51 4.09 224.10 4.32 
30 4.44 4.24 206.08 4.29 
30 5.13 - 156.15 4.58 
30 4.92 - 169.07 4.11 
30 5.38 - 200.04 4.14 
40 5.61 2.50 147.81 6.85 
40 6.45 3.54 153.38 7.49 
40 5.48 3.91 150.95 6.40 
40 6.02 4.53 137.61 6.58 
40 6.09 4.09 190.28 7.62 
40 5.68 3.76 128.22 7.41 
40 6.16 4.49 165.28 6.73 
40 6.15 3.81 141.85 7.57 
40 5.84 4.35 179.99 6.99 
40 5.92 - 138.55 6.90 
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TABLE C5 Tensile properties of plasticized pea starch prepared at 20% 
processing moisture content and reinforced with polycaprolactone. 
 

Tensile Properties 

PCL (%) Tensile 
Strength (MPa) 

0.2% Yield 
Strength 

(MPa) 

Young's 
Modulus 

(MPa) 

Elongation 
at Break 

(%) 
10 7.15 1.14 90.33 48.92 
10 8.15 1.33 105.38 33.04 
10 7.42 1.29 98.51 48.20 
10 6.85 1.36 64.30 39.62 
10 7.32 1.30 110.23 40.62 
10 7.71 1.32 116.21 41.38 
10 8.11 1.13 77.91 34.24 
10 7.06 1.17 101.51 51.00 
10 6.77 1.19 120.60 47.50 
10 7.76 1.01 76.14 45.50 
20 7.58 1.40 82.77 45.81 
20 7.27 1.40 87.51 46.46 
20 7.19 1.23 70.58 51.60 
20 7.94 1.50 66.74 47.25 
20 6.99 1.21 70.64 49.75 
20 7.05 1.28 75.37 46.82 
20 7.67 1.31 80.90 47.40 
20 7.17 1.21 86.26 46.30 
20 7.03 1.35 83.61 46.00 
20 7.14 1.33 89.66 47.85 
30 7.64 1.32 77.97 38.64 
30 7.82 1.32 83.92 42.80 
30 7.40 1.38 74.97 39.48 
30 7.82 1.39 82.48 37.11 
30 7.80 1.42 85.56 41.49 
30 7.54 1.31 78.00 37.45 
30 7.45 1.30 70.68 36.78 
30 7.87 1.34 92.83 39.13 
30 7.57 1.46 73.88 36.91 
30 7.85 1.36 84.00 40.50 
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TABLE C5 (Cont’d). 
 

Tensile Properties 

PCL (%) Tensile 
Strength (MPa)

0.2% Yield 
Strength 

(MPa) 

Young's 
Modulus 

(MPa) 

Elongation 
at Break 

(%) 
40 9.39 3.26 92.77 31.13 
40 9.48 3.50 92.05 30.69 
40 9.56 3.52 94.53 32.07 
40 9.64 3.62 103.51 30.92 
40 9.57 3.55 93.20 34.21 
40 9.90 3.48 90.04 33.52 
40 9.90 3.45 91.21 35.12 
40 9.49 3.41 88.21 31.54 
40 9.33 3.29 90.91 32.00 

 
 
TABLE C6 Tensile properties of plasticized pea starch prepared at 20% 
processing moisture content and reinforced with polycaprolactone and flax fiber. 
 

Tensile Properties 
PCL 
(%) 

Flax 
Fiber 
(%) 

Tensile 
Strength 

(MPa) 

0.2% Yield 
Strength 

(MPa) 

Young's 
Modulus 

(MPa) 

Elongation 
at Break 

(%) 
0 5 7.74 2.32 70.63 22.49 
0 5 7.37 2.79 77.80 21.29 
0 5 7.44 1.37 118.69 20.91 
0 5 8.59 1.38 94.57 20.61 
0 5 7.94 1.24 88.95 24.92 
0 5 8.21 1.44 102.48 20.45 
0 5 7.63 1.43 87.14 20.02 
0 5 7.52 2.95 112.13 26.75 
0 5 6.86 1.25 87.19 23.23 
0 5 8.63 1.43 110.02 23.26 
0 10 7.56 3.03 107.96 13.61 
0 10 7.25 3.19 115.06 12.35 
0 10 8.40 3.67 115.24 13.74 
0 10 6.79 3.14 123.49 14.72 
0 10 8.15 3.05 117.45 14.24 
0 10 8.91 3.93 93.65 15.89 
0 10 8.69 3.67 107.09 13.35 
0 10 7.02 2.71 103.90 14.58 
0 10 8.05 3.20 112.86 15.75 
0 10 7.93 3.05 104.25 12.95 
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TABLE C6 (Cont’d). 
Tensile Properties 

PCL 
(%) 

Flax 
Fiber 
(%) 

Tensile 
Strength 

(MPa) 

0.2% Yield 
Strength 

(MPa) 

Young's 
Modulus 

(MPa) 

Elongation 
at Break 

(%) 
0 15 9.87 4.80 231.77 12.95 
0 15 11.69 4.86 213.47 10.45 
0 15 10.76 4.66 195.70 11.51 
0 15 11.30 4.96 221.76 12.27 
0 15 10.24 4.39 172.49 10.26 
0 15 10.50 4.69 196.35 12.40 
0 15 9.97 4.26 170.01 10.24 
0 15 10.30 4.82 222.36 9.47 
0 15 10.85 5.01 247.14 11.64 
0 15 10.40 4.31 166.87 10.52 
20 5 7.61 1.39 108.20 17.27 
20 5 8.12 1.32 105.22 18.51 
20 5 8.63 1.27 125.95 19.52 
20 5 8.32 1.58 116.08 19.67 
20 5 7.57 1.40 117.50 16.77 
20 5 7.97 1.38 109.53 20.53 
20 5 8.50 1.47 123.42 19.04 
20 5 8.13 1.47 119.04 20.97 
20 5 8.13 1.47 117.65 20.35 
20 5 8.30 1.40 112.09 21.81 
20 10 10.03 3.76 134.08 12.92 
20 10 10.22 4.27 143.65 14.08 
20 10 9.09 4.75 136.28 11.59 
20 10 10.25 3.67 144.62 12.30 
20 10 9.15 3.75 132.04 12.68 
20 10 9.88 3.89 139.06 14.02 
20 10 10.02 3.99 146.18 13.90 
20 10 9.82 4.13 155.14 12.60 
20 10 10.88 4.92 158.04 13.24 
20 10 10.62 4.44 144.08 13.69 
20 15 8.43 4.34 230.19 8.86 
20 15 7.19 4.58 208.23 7.97 
20 15 9.35 4.00 260.15 8.68 
20 15 9.11 4.95 225.58 7.53 
20 15 9.00 4.60 226.05 7.48 
20 15 9.07 4.08 241.11 9.56 
20 15 9.23 5.58 266.47 7.92 
20 15 10.75 4.55 220.11 7.75 
20 15 9.36 4.33 202.49 10.25 
20 15 9.25 5.30 246.73 9.11 
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TABLE C6 (Cont’d). 
 

Tensile Properties 
PCL 
(%) 

Flax 
Fiber 
(%) 

Tensile 
Strength 

(MPa) 

0.2% Yield 
Strength 

(MPa) 

Young's 
Modulus 

(MPa) 

Elongation 
at Break 

(%) 
40 5 10.21 3.95 120.41 16.56 
40 5 10.26 3.90 114.48 15.64 
40 5 9.96 4.11 118.98 14.85 
40 5 10.04 4.27 128.22 14.11 
40 5 9.80 3.76 122.97 14.59 
40 5 10.24 4.10 131.95 14.93 
40 5 10.70 3.90 128.89 14.99 
40 5 10.14 4.40 129.01 16.36 
40 5 10.44 4.10 136.21 16.08 
40 10 11.95 5.25 197.84 11.29 
40 10 11.01 5.12 191.94 10.98 
40 10 11.27 5.22 195.42 11.02 
40 10 11.08 5.06 188.38 10.69 
40 10 11.74 5.07 189.53 12.28 
40 10 11.54 5.40 196.67 10.59 
40 10 11.82 5.64 188.34 10.57 
40 10 11.99 5.52 196.99 10.94 
40 10 11.48 5.05 190.30 11.24 
40 10 11.59 5.36 198.38 11.63 
40 15 11.13 5.87 274.99 7.54 
40 15 10.61 6.87 273.73 7.87 
40 15 11.91 6.15 268.34 7.15 
40 15 10.72 5.72 280.12 7.95 
40 15 10.55 5.78 261.89 7.79 
40 15 10.85 5.85 273.56 7.83 
40 15 10.81 5.93 279.30 7.68 
40 15 11.29 5.90 274.87 7.42 
40 15 10.58 6.15 256.76 7.66 
40 15 12.11 5.93 259.08 7.55 
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APPENDIX D MOISTURE ABSORPTION TEST DATA 
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TABLE D1    Moisture absorption properties of plasticized pea starch prepared 
at 9.3% processing moisture content and reinforced with polycaprolactone. 
 

PCL (%) Initial Mass, 
mo1 (g)  

Final Mass, 
mf1 (g) 

Moisture 
Absorbed (%) 

0 0.716 0.942 31.56 
0 0.725 0.952 31.31 
0 0.723 0.940 30.01 

10 0.570 0.641 12.46 
10 0.606 0.696 14.85 
10 0.608 0.695 14.31 
20 0.577 0.638 10.57 
20 0.554 0.613 10.65 
20 0.551 0.605 9.80 
30 0.484 0.532 9.92 
30 0.472 0.511 8.26 
30 0.477 0.520 9.01 
40 0.519 0.542 4.43 
40 0.504 0.526 4.37 
40 0.505 0.528 4.55 
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TABLE D2    Moisture absorption properties of plasticized pea starch prepared 
at 20% processing moisture content and reinforced with polycaprolactone. 
 

PCL (%) Initial Mass, 
mo1 (g) 

Final Mass, 
mf1 (g) 

Moisture 
Absorbed (%)

0 0.596 0.885 48.49 
0 0.583 0.862 47.86 
0 0.588 0.872 48.30 

10 0.497 0.652 31.19 
10 0.512 0.673 31.45 
10 0.502 0.662 31.87 
20 0.487 0.597 22.59 
20 0.473 0.584 23.47 
20 0.485 0.592 22.06 
30 0.464 0.536 15.52 
30 0.463 0.540 16.63 
30 0.453 0.526 16.11 
40 0.435 0.488 12.18 
40 0.449 0.503 12.03 
40 0.447 0.496 10.96 
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TABLE D3 Moisture absorption properties of plasticized pea starch prepared 
at 20% processing moisture content and reinforced with polycaprolactone and 
flax fiber. 
 

PCL (%) Flax Fiber 
(%) 

Initial Mass, 
mo1 (g) 

Final Mass, 
mf1 (g) 

Moisture 
Absorbed (%) 

20 5 0.508 0.617 21.46 
20 5 0.514 0.622 21.01 
20 5 0.529 0.644 21.74 
20 10 0.507 0.619 22.09 
20 10 0.523 0.635 21.41 
20 10 0.506 0.619 22.33 
20 15 0.481 0.594 23.49 
20 15 0.483 0.590 22.15 
20 15 0.476 0.585 22.90 
40 5 0.458 0.517 12.88 
40 5 0.453 0.515 13.69 
40 5 0.453 0.513 13.25 
40 10 0.467 0.535 14.56 
40 10 0.465 0.534 14.84 
40 10 0.464 0.531 14.44 
40 15 0.492 0.562 14.23 
40 15 0.487 0.562 15.40 
40 15 0.496 0.565 13.91 

 


