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ABSTRACT 

Habitat selection theory presumes that organisms are not distributed randomly in their 

environments because of habitat-specific differences in reproductive success and survival; 

unfortunately, many previous studies were either unable or failed to look for evidence of 

processes shaping nest site selection patterns.  Furthermore, little is known about adaptive 

nest site selection in northern environments where habitats often have little vegetation and 

time and climatic constraints may be pronounced.  Therefore, I investigated patterns of nest 

site selection by common eider ducks (Somateria mollissima) at an island colony in Canada’s 

Eastern Arctic, and looked for evidence of selective processes underlying these patterns by 

employing experimental and observational techniques. 

I characterized physical features of (a) non-nest sites (b) active nest sites and (c) 

unoccupied nest sites that had been used in previous years.  Habitat features that distinguished 

non-nest sites from unoccupied nest sites were also important in distinguishing between active 

and unoccupied nest sites during the breeding season.  Active nest sites were closer to herring 

gull (Larus argentatus) nests, farther from the ocean and had organic substrates.  In general, 

habitat features associated with nest use were not strongly associated with success after the 

onset of incubation.  Nests near fresh water ponds were more successful in one study year, but 

in the other two study years successful nests were initiated earlier and more synchronously 

than were unsuccessful nests.  Common eiders settled to nest first near the geographic centre 

of the colony, whereas sites near the largest fresh water pond were occupied later; distance to 

ocean had no observable effect on timing of nesting.  Nest density was greater farther from 

the ocean, but timing of nest establishment did not differ between high and low density plots. 
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I tested whether moss or duck down placed in nest bowls could increase nest 

establishment, or advance laying date.  I placed this extraneous material in bowls before 

nesting and found no difference in likelihood of nest establishment; however, bowls 

containing duck down were initiated earlier (or had higher survival) than those containing no 

nesting material.  To investigate the role of nest shelter and microclimate in nest site choices 

and female body condition, I placed plywood nest shelters over established nests.  

TTemperature probes indicated that artificially-sheltered females experienced more moderate 

thermal environments and maintained higher body weight during late incubation than did 

unsheltered females.  However, few eiders nested at naturally-sheltered sites, possibly 

because nest concealment increases susceptibility to mammalian predators.  My results 

suggest that eider nest choices likely reflect trade-offs among selective pressures that involve 

the local predator community, egg concealment, nest microclimate and energy use. 
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CHAPTER 1: GENERAL INTRODUCTION 
 

1.1 Introduction 

Theory suggests that variation in animal reproductive success and survival can lead to 

non-random patterns of habitat use, and many studies have shown positive correlations 

between habitat use and fitness (Martin 1988a, Robertson 1995, Munday 2001, Kolbe and 

Janzen 2002).  Studies of avian habitat selection have played an important role in shaping 

current understanding of adaptive habitat use, and nest site choice is a commonly studied 

aspect of avian habitat selection (Jones 2001).  If some nest sites are better than others (i.e., 

increase an individual’s fitness), relative use of those sites could be favored.  To better 

understand patterns of avian nest site use, and selective processes and trade-offs that may 

underlie these patterns, I studied the breeding ecology of female common eider ducks 

(Somateria mollissima; hereafter “eider”) in the Canadian Arctic.  Most studies of avian nest 

site use are conducted in regions with greater habitat heterogeneity than those in the Arctic 

(i.e., greater topographic relief, more complex and/or dense vegetative cover).  I investigated 

patterns of eider nest site selection using both experimental and observational techniques, thus 

furthering our understanding of selective factors that could influence nest site choices and 

breeding success among birds. 

 

1.2 Study Site 

Work was conducted on Mitivik Island (64o02’N, 81o47’W), a small (~0.23 km2), 

low-lying (< 8 m elevation) nesting colony located in East Bay, Southampton Island, Nunavut 

(Figure 1.1).  The island had numerous patches of low-lying tundra vegetation, granite rocks,  
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Figure 1.1.  Mitivik Island is located within East Bay Migratory Bird Sanctuary (black & 
white bars), approximately 4 km offshore of Southampton Island (within circle), Nunavut, 
Canada.  Asterisks (*) indicate locations of long-term study plots on island airphoto (image of 
Canada used with permission of Natural Resources Canada 6-3-2006). 
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and several small (< 0.5 ha) fresh water ponds, some of which dried out as summer 

progressed if they were not replenished with precipitation.  Mitivik Island lies just south of 

the Arctic Circle, experiences almost continuous daylight during the nesting season, and can 

attract ~4500 eider, 40 king eider (S. spectabilis), 30 herring gull (Larus argentatus), 400 

black guillemot (Cepphus grylle), 20 snow bunting (Plectrophenax nivalis), 10 Canada goose 

(Branta canadensis) and 5 brant goose (B. bernicula) pairs (Allard and Gilchrist 2002).  This 

island supports one of the largest known nesting concentrations of eiders in the Canadian 

Arctic (Abraham and Ankney 1986).  Eiders typically arrive in mid-June, nest in late 

June/early July, and few remain beyond mid-August.  A small cabin and tents are present in 

the region of lowest eider nesting density. 

 

1.3 Study Species 

Eiders are colonial-nesting sea ducks with a northern circumpolar distribution.  Adults 

feed on benthic marine macroinvertebrates, and generally remain within maritime and marine 

coastal regions throughout the year.  Eiders are seasonally monogamous, and pairing is 

thought to occur in the late winter or early spring.  Breeding habitats vary greatly, ranging 

from southerly forested regions in Maine and eastern Scotland, to Svalbard, Norway, and 

Canada’s high Arctic (Bourget 1970, Milne 1974, Prach et al. 1986, Bustnes et al. 2002).  

Arctic-nesting eiders are considered extreme capital breeders, and therefore depend almost 

exclusively on resources acquired before reproduction to meet energetic costs of egg 

production and incubation (Korschgen 1977, Bottitta 2001); consequently they undergo 

degenerative physiological and anatomical change while incubating (Korschgen 1977). 
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Eiders nest on the ground, typically in shallow depressions which they line with down 

feathers (hereafter “nest bowls”).  In the Canadian Arctic, most nests are established in pre-

existing nest bowls, while a few females construct their own (e.g., on sand beaches).  In many 

northern locations, nest bowls are well established and could reflect hundreds of years of 

occupation (Cooch 1965, Jonsson 2001).  The Mitivik Island colony has existing nest bowls 

that are re-used in different years and are easily identified before arrival by nesting females.  

Shortly after hatch, hens and ducklings leave the island colony for brood-rearing sites along 

the coasts of nearby Southampton Island (≥ 4 km away). 

Up to seven subspecies of common eider are recognized which differ slightly in colour 

and size (Goudie et al. 2000).  The eiders nesting at Mitivik Island are primarily northern 

(Somateria mollissima borealis) and Hudson Bay (S. m. sedentaria) subspecies, although 

western Arctic (S. m. v-nigrum) and Atlantic (S. m. dresseri) individuals have also been rarely 

observed. 

 

1.4 Objectives and Organization of Thesis 

My work was conducted as a component of a larger ecological study initiated in 1996.  

Complementary aspects of the larger project include investigations of eider survival, 

toxicology, behavioural ecology, and predator-prey interactions.  My overall goal was to 

investigate patterns of eider nest site use in a natural selection context.  In Chapter 2, I 

describe patterns of eider nest site use, paying particular attention to comparisons of used nest 

bowls, available unused nest bowls, and non-nest sites.  I then investigate associations 

between nest attributes and nest loss during incubation.  In Chapter 3, I discuss colony-wide 

patterns of nest settlement, and results of an experimental study to investigate the influence of 
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extraneous nest material on nest bowl use.  An appendix presents results of an experimental 

study on the effects of nest shelters on late-incubation body weight of females and incubation 

microclimate.  In Chapter 4, I discuss current understandings of relationships between habitat 

use and natural selection.  In particular, I explore proximate mechanisms through which 

natural selection could cause subsequent adaptation of habitat preferences and lead to non-

random habitat selection patterns. 
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CHAPTER 2: PATTERNS OF COMMON EIDER NEST SITE SELECTION ON 

MITIVIK ISLAND, NUNAVUT 

2.1 Introduction 

Many studies of avian habitat selection are entirely descriptive, and fail to frame 

discussions in a natural selection or evolutionary context (Clark and Shutler 1999, Jones 

2001).  Uniform and random animal distribution patterns are rare in nature, and non-random 

distribution patterns likely are shaped by diverse and often simultaneous selective forces.  

Because avian nest site choice has presumably evolved in relation to predation, local 

availability of resources and microclimate, consideration should be given to these factors (and 

possibly others) when investigating habitat selection patterns. 

Here, I examine patterns of nest site selection and incubation success by Arctic-

nesting eiders, and discuss results in light of current understanding about processes that affect 

choice of nest site (i.e., potential for natural selection).  Eiders nest across a wide range of 

habitats, but little is known about biogeography of nesting Arctic eiders.  Eiders nesting in 

southern regions frequently select nest sites with overhead vegetative cover (Bourget 1970, 

Milne and Reed 1974, Freemark 1977, Bolduc et al. 2005), but many northern breeding sites 

lack vegetation sufficiently tall to conceal nests (Cooch 1965, Prach et al. 1986).  Studies of 

nest site choice often discuss the role of nest concealment in site selection and fate (Martin 

1988b, 1996, Traylor et al. 2004, Bolduc et al. 2005), but less is known about nest site 

selection in regions with little or no vegetative cover.  Therefore, I examined what features 

were associated with eider nesting at a northern breeding colony.  Available nesting habitats 

on my study site appear surficially similar; the island has low relief with granite boulders and 

gravel interspersed with patches of moss, low-lying vascular plants and numerous freshwater 
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ponds.  I evaluated nest site selection by comparing habitat features of successful nests, 

depredated nests, previously-used nest bowls and non-nest sites.  I predicted that nests would 

be distributed non-randomly, and would occur on organic substrates and be situated near fresh 

water and other eider nests.  If ongoing selective processes shape habitat preferences, then site 

features that distinguish between nests and non-nest sites could also be those that best 

distinguish between successful and unsuccessful nests.  Timing of breeding is an important 

component of breeding success in northern birds (e.g., Lepage et al. 2000, Martin and Wiebe 

2004), so I also included it in my evaluation.  I predicted that late-nesting individuals may be 

more prone to nest failure because these may be poor quality birds that are more susceptible 

to nest loss via abandonment or predation. 

 

2.2  Methods 

2.2.1  Observation Blinds, Study Plots and Nest Monitoring 

Five long-term study plots were established in 1998 to monitor nesting across the 

range of nest densities observed within the colony (Figure 1.1).  To minimize disturbance and 

allow observation within regions of higher nesting density, plywood observation blinds 

adjacent to plots were accessed through canvas A-frame tunnels (15-100 m long), with 

openings at the colony periphery where nesting density was low.  Plywood blinds (1.2 x 1.2 x 

1.2 m) had 3 removable rectangular openings (20 x 80 cm) for observation using spotting 

scopes and binoculars.  Eiders have nested successfully within 5 m of blinds.  Plots varied in 

size (1039 to 6950 m2), and collectively encompassed ~7% of the island.  Blinds not 

associated with long-term plots were also present for behavioural research, and to aid in 

detection of nasal-tagged and banded individuals. 
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In this study, data were collected from late May to mid-August 2000-2002.  Four of 

five long-term study plots were monitored in 2002.  Following spring arrival of eiders, human 

activity within nesting regions of the colony was rare and, in many cases, the need to reduce 

human disturbance for observational studies limited data collection in specific areas.  

Additionally, eider nest density was high and nest visitation caused flushing of many females 

and subsequent aggregations of avian predators (primarily herring gulls and parasitic jaegers, 

Stercorarius parasiticus).  For these reasons, clutch size was unknown for nests within study 

plots and leg bands of incubating females were rarely observed due to high incubation 

constancy (Bottitta et al. 2003). 

All observable nest bowls within each study plot were monitored from blinds twice 

daily (morning and evening; generally ≥ 8 hours between checks) throughout nesting and 

eider presence was recorded.  Eider hens lay one egg per day and incubation starts after the 

second or third egg is laid (Cooch 1965, Swennen et al. 1993).  When eiders commence 

incubation, they no longer leave the colony to feed and incubation constancy is very high 

(99.8%; Bottitta et al. 2003).  Nest bowls were recorded as being used (i.e., females laid 

clutch and commenced incubation) if a female was observed on the bowl for 3 consecutive 

observations.  Nest bowls that did not meet these criteria were unused, or failed during laying 

or very early incubation. 

Incubation onset was the date when an eider hen began to consistently remain sitting 

on the nest bowl (i.e., for two consecutive observations; often continuously thereafter).  

Female attendance was recorded for the duration of incubation.  Nests were successful if 

hatch was confirmed by observing ducklings within nests, or incubation was tracked for 22 

days or more and egg membranes were present after hatch (Schmutz et al. 1983, Götmark and 
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Åhlund 1988).  A nest was classified as failed if predation was observed, if incubation lasted 

fewer than 22 days, or if bloody egg remnants were found in the nest.  I was generally unable 

to distinguish between abandoned nests and those lost to predators.  Nest success was 

classified as unknown if incubation lasted more than 22 days, but no ducklings were observed 

and no membranes were found when nest site characteristics were measured.  Because I was 

unable to document nest loss during egg laying, I use the term “incubation success” instead of 

“nest success” for clarity. 

2.2.2  Nest Site Characterization 

Bowls in which nests were established were characterized after hatch (2000-2002).  

The following variables were chosen to reflect the potential significance of nest predation, 

local availability of resources, and nest microclimate (Gloutney and Clark 1997) based on (a) 

findings of other studies and/or (b) potential biological significance at the study site. 

Distance to nearest herring gull nest: Eiders nest sympatrically with herring gulls on 

the study island.  Herring gulls did not force incubating hens off of their eggs but preyed upon 

nests during egg-laying, took eggs most often singly from unattended clutches during eider 

incubation breaks, or preyed upon ducklings during departure from the colony (K. Allard, in 

prep.).  Despite predation, herring gulls may also increase eider nest success by excluding 

other predators (Götmark and Åhlund 1988, but see Kellett et al. 2003).  In all years, initiation 

of herring gull clutches occurred before onset of common eider egg-laying. 

 Distance to fresh water pond: Time away from nest may increase susceptibility to 

egg cooling, nest disruption or predation.  Females take short incubation breaks (generally < 

15 min) and generally fly or run to drink freshwater from ponds on the island (Bottitta 2001, 

Bottitta et al. 2003).  Eiders often drink at fresh water ponds visible from their nests and will 
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return to defend their nests when predators approach (Bottitta 2001).  Furthermore, Schmutz 

et al. (1983; see also Robertson 1995) found the highest nesting densities of eiders in La 

Pérouse Bay near relatively large areas of open water which appeared to facilitate landing and 

taking flight. 

 Distance to ocean: Herring gulls nesting on the study island hold all-purpose 

breeding/feeding territories which they defend against con- and heterospecifics (K. Allard, in 

prep.).  However, territories are larger at the periphery of the island (i.e., near the ocean), and 

non-territorial gulls and other avian predators (e.g., parasitic jaegers) may be better able to 

intrude gull territories and “steal” eider eggs in areas near the ocean. 

Distance to eider nest: Having a close neighbor(s) may aid in protection and warning, 

and allow eiders to spend more time sleeping (Criscuolo et al. 2001).  Furthermore, eiders at 

this colony are known to nest near their relatives (McKinnon et al. 2006), providing an 

explanatory mechanism for group defense behaviour. 

Nest bowl substrate (rock/gravel versus organic): Although gravel is present in 

many regions of the island, organic substrates have lower thermal conductance and may 

provide insulative benefits to nesting eiders and eggs.  Loose organic substrates (i.e., loose 

moss or peat within bowls) may also help to conceal eggs from predators during laying when 

eggs are often left unattended (see Chapter 3).  Several categories of nest substrate were 

measured but were collapsed into 2 categories for analyses: organic (primarily moss or peat), 

and inorganic or “rocky” (primarily rock or gravel). 

Habitat adjacent to nest: Habitat structure (e.g., vegetation, rock) may confer 

microclimatic advantages and influence nest site choice (Hardy and Morrison 2001, Hoekman 

et al. 2002, Hartman and Oring 2003; see also Kilpi and Lindström 1997), but these 
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relationships remain poorly understood (Kim and Monaghan 2005).  Mitivik Island lacks tall 

vegetation, but rock structure might influence nest concealment and microclimate.  Habitat 

type within a one m radius of the bowl was recorded, and sites were classified as organic or 

rocky (as above). 

Nest bowl sampling was intensified in 2001, and all nest bowls within all plots were 

characterized.  In many northern locations, nest bowls are well established and could reflect 

hundreds of years of occupation (Cooch 1965, Jonsson 2001); this allowed me to document 

characteristics of bowls where nests had not been successfully established in 2001, but had 

been used previously.  Observers were unable to track all nests within plots due to limited 

visibility in some regions, so I also characterized all bowls that had nests established in them 

but could not be reliably tracked.  It was occasionally unclear whether depressions in the 

ground were nest bowls; depressions were only characterized as bowls if they appeared to 

have been used as nests previously, and eggshell was present in them (eggshells remain within 

bowls between years; P. Fast, pers. obs).  I also characterized non-nest sites (see Jones 2001), 

sampled systematically (Krebs 1999).  Within each plot, I placed ropes (knotted at 10 m 

intervals) to sample potential nest sites at 10 m grid intervals.  To ensure consistency, I was 

present for all nest bowl measurements in 2001 (some distance measurements were recorded 

by other observers).  Additional characteristics sampled at all sites in 2001 only are described 

below: 

Local bowl density: Number of nest bowls within 3 meter radius of the focal nest or 

site.  As above, neighbors (including relatives) may aid in protection and warning.  

Distance to nearest nest bowl: As above, eiders may select sites adjacent to others 

and gain protection. 
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Nest bowl rim (rock/gravel versus organic): The periphery of the nest bowl may 

also affect nest insulation.  However, it should be noted that eiders may not be selecting 

organic rims; rather, organic rims may be present because eiders have selected those nest 

sites, fertilized them through defecation and enhanced vegetation growth. 

Large adjacent rocks: My study site lacks vegetative nest cover, but eiders may nest 

adjacent to rocks, possibly to gain shelter from weather (Goudie et al. 2000; see also 

Appendix).  To document occurrence of rocks adjacent to nest bowls, one end of a one m 

stick was placed in the center of the nest bowl, oriented 45o above horizontal, and rotated 

through 360o.  Rock structure was considered present if rock obstructed this rotation within 

each of 8, 45o sectors.  For example, rock was recorded as being present to the north if stick 

movement was obstructed by rock between 337.5o and 22.5o. 

 Distance to fresh water pond at hatch: Some fresh water ponds dry up as the season 

progresses if not replenished by rain.  Because gulls remain present and prey upon unattended 

eider eggs throughout incubation, greater distances to fresh water in late incubation may 

increase susceptibility to egg loss due to increased time required by nesting eiders to travel to 

water during incubation breaks. 

The island is almost free of snow during egg-laying, so snow cover was not considered 

as a factor in nest site selection.  Because eiders hens leave the colony with their ducklings for 

brood-rearing areas on Southampton Island several km away, proximity of nest location to 

brood rearing sites was also not evaluated.  Furthermore, eiders forego feeding during 

incubation (Tinbergen 1958, Korschgen 1977, Goudie et al. 2000) and are not known to feed 

at the study island (Bottitta 2001); therefore, proximity to food source was not evaluated.  

Vegetation changes through time were also not considered because island vegetation appears 
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to change little within the nesting period, or between years.  Finally, overhead rock cover was 

also measured at nest sites because concealment correlates with nest success in other ground-

nesting ducks (Guyn and Clark 1997, Traylor et al. 2004).  However, very few sites had 

overhead rock cover and this variable was excluded from analyses (see Appendix for results 

and further discussion). 

2.2.3  Data Analysis 

Statistical analyses were performed with SAS (SAS Institute 1990).  Data collected in 

2001 included all available nest bowls (used & unused) and non-nest sites within plots.  

Before proceeding with discriminant function analyses (DFA), principal component analysis 

(PROC PRINCOMP; SAS Institute 1990) was used to test for multicollinearity among 

variables (Hair et al. 1998).  In 4 analyses restricted to 2001 data, 10 variables were of 

interest; the first principal component explained between 24.5-28.0% of the variation, lower 

than expected by chance alone (29.2%, broken stick model; Jackson 1993, Shaw 2003).  Eight 

variables were of interest in 3 analyses using data 2000-2002; the first principal component 

explained between 21.6-28.0% of the variation, also lower than expected by chance alone 

(33.9%). Therefore, I used original variables in all subsequent analyses. 

DFA (PROC DISCRIM, SAS Institute 1990) was used to discriminate among groups 

based on physical characteristics.  Several nest site variables were not normally distributed 

(PROC UNIVARIATE, SAS Institute 1990), so transformations (log, square root, arcsine, 

tangent) were conducted to improve normality where appropriate.  Differences between 

within-group covariance matrices were tested using chi-square tests of homogeneity and 

quadratic DFA was performed when group covariances were heterogeneous (Williams 1983, 

SAS Institute 1990).  Plot sizes were unequal (i.e., unbalanced design); however, initial 
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analyses showed little difference in DFA comparisons if larger plots were removed, so all 

plots were included in analyses.  DFA was used to discriminate among 3 groups (used bowls, 

unused bowls, and non-nest sites) simultaneously using site attributes.  Two-group DFAs 

were then used to determine (1) how available habitat differs from nest habitat by comparing 

nest bowls (i.e., used and unused nests combined) and non-nest sites, (2) differences between 

used and unused nest bowls and (3) differences between successful and unsuccessful nests in 

2001.  I did not obtain complete measurements in several cases, so sample size varied among 

analyses. 

DFA was also used to compare successful and unsuccessful nests using variables 

collected in all 3 years.  These models included date of incubation onset, and date of 

incubation onset relative to annual median onset (i.e., “synchrony” index; absolute value).  

These variables (a) could not be included in analyses evaluating non-nest or unused sites and 

(b) allowed me to assess the importance of a female characteristic simultaneously with nest 

bowl variables (Bolduc et al. 2005).  Up to 75% of available bowls within a plot can be used 

in one season; because I was unable to track bowls between years (despite attempts to mark 

them individually) many of the same bowls were inevitably re-measured in consecutive years.  

Therefore, years were analyzed separately to avoid pseudoreplication, and to investigate 

differences among years. 

Because successful eider nests at the study site may hatch up to 6 eggs and eggs are 

often lost singly (K. Allard in prep.), a binary measure of incubation success (i.e., failed 

versus successful) may give incomplete information.  Ordinal logistic regression (PROC 

LOGISTIC, SAS 1990; proportion odds model, Hosmer 2000) was used to evaluate 

relationships between nest characteristics and number of successfully hatched eggs (2000-

14  



 

2002; estimated as number of ducklings observed within hatched nests, or number of 

membranes in nest post-hatch).  Few nests successfully hatched 5 (n = 14) or 6 (n = 1) 

ducklings and were included in a single category (hatched ≥ 4).  To meet assumptions of 

proportional odds criteria (SAS 1990, χ2, P > 0.05), I limited analyses to 5 physical site 

characteristics. 

 

2.3  Results 

In 2001, all nest bowls (n = 794) within plots were characterized; 379 bowls were 

either unused or failed during laying or early incubation, and 401 had common eider nests 

successfully initiated (additionally, 1 brant goose, 2 Canada geese, and 6 king eiders also 

nested within plots but these nests were excluded from analysis).  Only bowls which could be 

tracked and had established nests were sampled in 2000 (n = 122) and 2002 (n = 235).  Some 

bowls could not be observed from blinds, had two nests successfully initiated within one 

breeding season, or use could not be determined; these were excluded from analyses where 

appropriate.  In addition, nests were excluded if observers were unable to determine success, 

if observers may have caused failure, or nests were used for experiments.  Non-nest sites (n = 

217) were also systematically sampled within plots in 2001. 

Initial DFA used site characteristics to discriminate between nest bowls used by eiders 

(n = 395), nest bowls unused by eiders (or in which a nest was not successfully established; n 

= 373), and non-nest sites (n = 179) in 2001.  These 3 groups were clearly distinguishable 

from one another (Wilks’ Lambda = 0.65, df = 18, P < 0.0001; Fig. 2.1), and DFA correctly 

classified 59.3% of sites (36.4% better than chance; Titus et al. 1984).  Non-nest sites tended 
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to be closer to the ocean than nest bowls, whereas nest bowls tended to have higher local nest 

bowl density and were generally closer to herring gull nests. 

Summary statistics (Table 2.1) and 2-group DFAs (Table 2.2) were used to further 

compare groups.  Nest bowls (n = 783) differed significantly from non-nest sites (n = 179), 

and were more likely to have organic substrates, be farther from the ocean, and have a higher 

density of nest bowls within 3 m (Wilks’ Lambda = 0.81, df = 10, P < 0.0001; Tables 2.1, 

2.2).  Used nest bowls (n = 396) also differed significantly from unused bowls (n = 373), and 

were more likely to be near active herring gull nests and in regions of higher local bowl 

density (Wilks’ Lambda = 0.81, df = 10, P < 0.0001; Tables 2.1, 2.2).  Successful (n = 329) 

and unsuccessful (n = 26) nests in 2001 were also compared using the full variable set, and 

the overall discrimination was insignificant (Wilks’ Lambda = 0.95, df = 10, P = 0.124; Table 

2.2). 

DFA was also used to compare successful and unsuccessful nests in 2000-2002 using 

variables collected in all 3 years (except distance to fresh water pond at hatch, which was not 

measured in 2000).  In 2000 (20 unsuccessful nests, 88 successful nests), nests near fresh 

water ponds were more likely to be successful (Wilks’ Lambda = 0.85, n = 108, df = 8, P = 

0.0424; Table 2.3).  In 2001 (14 unsuccessful nests, 276 successful nests), nests where 

females began incubating near median incubation onset date were more likely to be successful 

(Wilks’ Lambda = 0.91, n = 290, df = 9, P = 0.0026; Table 2.3).  In 2002 (22 unsuccessful 

nests, 153 successful nests), nests with earlier incubation onset were more likely to be 

successful (Wilks’ Lambda = 0.88, n = 175, df = 9, p = 0.0092; Table 2.3).  Ordinal logistic 

regression was used to evaluate relationships between physical site characteristics and number 

of successfully hatched eggs.  Only one of 3 models was significant; nests established closer 
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Figure 2.1.  Distribution of discriminant function scores for non-nest sites (n = 179), unused 
nest bowls (n = 373), and nest bowls used by common eiders (Somateria mollissima; n = 395) 
on Mitivik Island, East Bay Migratory Bird Sanctuary, Nunavut, Canada, in summer 2001.  
Non-nest sites (black bars) were more likely than used nest bowls (gray bars) to be closer to 
the ocean, have lower local nest density, and be farther from gull nests; unused bowls (white 
bars) had intermediate characteristics.  The multivariate habitat gradient (x-axis) ranged from 
sites close to the ocean, farther from gull nests and with low common eider nest density (left, 
negative values) to sites nearer the centre of the island, closer to gull nests and with higher 
nest densities (right, positive values). 
 



 

 
 
Table 2.1.  Means (± 1 SD) for variables measured at systematically-selected non-nest sites, available but unused nest bowls, and nest 
bowls with successfully initiated common eider (Somateria mollissima) nests.  Percentage occurrence of organic substrate and 
presence/absence of large rocks adjacent to bowls/sites are also shown for each sample group.  Data were collected summer 2001 on 
Mitivik Island, East Bay Migratory Bird Sanctuary, Nunavut, Canada. 
 
 
 
Site variable 

Non-nest sites 
(n = 215) 

Unused bowls 
(n = 377) 

Used bowls 
(n = 398) 

   Distance to nearest herring gull nest (m) 76.2 ± 29.8 71.6 ± 29.3 57.5 ± 26.4 
   Distance to fresh water pond during nest initiation (m) 26.0 ± 19.0 25.2 ± 20.1 28.8 ± 16.9 
   Distance to fresh water pond during nest hatch (m) 67.6 ± 24.2 71.0 ± 23.9 62.4 ± 22.9 
   Distance to ocean (m) 74.7 ± 24.5* 82.8 ± 20.1 93.4 ± 21.0 
   Distance to nearest nest bowl (m) 5.1 ± 4.1 4.3 ± 3.9 2.8 ± 2.6 
   Number of nest bowls available within 3 m 1.3 ± 1.6 1.9 ± 1.8 2.7 ± 2.0 
   Organic substrate at nest bowl/site (% occurrence) 40% 69% 87% 
   Organic substrate of nest bowl rim or 15 cm site radius (% occurrence) 23% 31% 35% 
   Organic substrate within 1 meter of nest bowl/site (% occurrence) 16% 14% 6% 
   One or more large rocks adjacent to nest bowl/site (% occurrence) 24% 39% 46% 
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Table 2.2.  Discriminant function coefficients for models discriminating between non-nest sites, unused nest bowls, and nest bowls 
used by common eiders (Somateria mollissima) at Mitivik Island, East Bay Migratory Bird Sanctuary, Nunavut, Canada in summer 
2001.  Shown for each variable is the canonical coefficient for models discriminating between (a) systematically sampled non-nest 
sites & all available nest bowls (b) nest bowls used & unused by eiders (c) successful & unsuccessful nests.  Larger absolute values of 
coefficients imply that the variable has a stronger influence in discriminating between groups.  Negative values suggest nest bowls, 
used nest bowls or successful nests were more likely to be closer to feature of interest(1-5) and were more likely to have rocky 
substrate(9).  Positive values suggest these sites had more nest bowls available nearby(6), were more likely to have organic substrate(7-8) 
and have one or more large rocks adjacent to nests(10). 
 
 
 
Site variable 

All nest bowls vs. 
non-nest sitesa

  

Used vs. unused 
nest bowlsb

Successful vs. 
unsuccessfulc

   1Distance to nearest herring gull nest -0.343 -0.580  0.139 
   2Distance to fresh water pond during nest initiation -0.056  0.300 -0.271 
   3Distance to fresh water pond during nest hatch  0.143 -0.389  0.227 
   4Distance to ocean  0.506  0.543  0.340 
   5Distance to nearest nest bowl -0.342 -0.156  0.125 
   6Number of nest bowls available within 3 meters  0.423  0.439 -0.007 
   7Nest bowl / site (rocky/organic)  0.682  0.467  0.695 
   8Nest bowl rim or w/in 15 cm of site (rocky/organic)  0.122  0.084 -0.107 
   9Substrate w/in 1 meter of nest bowl / site (rocky/organic) -0.192 -0.260 -0.119 
   10One or more large rocks adjacent to nest  0.304  0.156  0.096 
    
Percent correct classification 84.3 66.7 91.5 
Percent improvement on chance discrimination (± 95% C.I.) 50.0 ± 7.5 33.0 ± 6.8 32.4 ± 23.6 
Significance of overall discrimination <0.0001 <0.0001 0.124 
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a coefficients with loadings > |0.150| are significant; in bold (P < 0.05, two-tailed) 

b coefficients with loadings > |0.105| are significant; in bold (P < 0.05, two-tailed) 
c coefficients with loadings > |0.374| are significant; in bold (P < 0.05, two-tailed) 
Note: sample sizes are given in text 
 

  



  

 
 
Table 2.3.  Discriminant function coefficients for models discriminating between successful and unsuccessful nests used by common 
eiders (Somateria mollissima) at Mitivik Island, East Bay Migratory Bird Sanctuary, Nunavut, Canada, 2000-2002.  Larger absolute 
values of coefficients imply that the variable has a stronger influence in discriminating between groups.  Negative values suggest 
successful nests were more likely to be closer to feature of interest(1-5), were more likely to have rocky substrate(6-7), timed nesting 
earlier than the median incubation onset date(8), or timed nesting synchronously with the median incubation onset date(9). 
 
 
               Successful vs. Unsuccessful nests
Site variable 2000a 2001b 2002c

  1Distance to nearest herring gull nest -0.276  0.313  0.075 
  2Distance to fresh water pond at nest initiation -0.848 -0.240  0.075 
  3Distance to fresh water pond at nest hatch --------  0.065  0.202 
  4Distance to ocean -0.081  0.079  0.287 
  5Distance to nearest common eider nest -0.074  0.129  0.136 
  6Nest bowl / site (rocky/organic) -0.072  0.351  0.065 
  7Substrate w/in 1 meter of nest bowl / site (rocky/organic) -0.020 -0.040 -0.182 
  8Timing of nesting  0.207 -0.483 -0.720 
  9Synchronous timing of nesting   0.109 -0.640 -0.325 
    
Percent correct classification 87.0 96.6 86.9 
Percent improvement on chance discrimination (± 95% C.I.) 53.4 ± 23.2 64.9 ± 21.8 33.8 ± 25.7 
Significance of overall discrimination 0.0424 0.0026 0.0092 
 
a coefficients with loadings > |0.423| are significant; in bold (P < 0.05, two-tailed) 

b coefficients with loadings > |0.497| are significant; in bold (P < 0.05, two-tailed) 
c coefficients with loadings > |0.404| are significant; in bold (P < 0.05, two-tailed) 
Note: sample sizes are given in text 
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to fresh water ponds were more likely to hatch more eggs in 2000 (Table 2.4). 

Given relationships between distance to fresh water pond at nest initiation, as well as 

between nesting synchrony with incubation success in 2000 and 2001, respectively (Table 

2.3), I tested for a putative adaptive response in the subsequent year (Clark and Shutler 1999).  

Linear regression was used to evaluate the relationship between incubation onset date and 

distance to fresh water pond at nest initiation (n = 293, r2 = 0.001, p = 0.59) and at hatch (n = 

293, r2 = 0.05, P < 0.0001).  In 2001, nests were likely to be successful if they were initiated 

during peak egg-laying, but in 2002 nesting was not more synchronous (2000, 3 July ± 5.5 

SD, n = 111; 2001, 25 June ± 4.5 SD, n = 293; 2002, 4 July ± 5.2 SD, n = 229). 

 

2.4  Discussion 

I found strong evidence of nest site selection in eiders (Table 2.1).  Active nests were 

closer to herring gull nests, farther from the ocean, and were more likely to have organic 

substrates than non-nest sites.  However, no consistent linkages between pattern and process 

were evident across study years.  This could have occurred for several reasons.  First, I was 

unable to document nest loss during egg laying (see methods), and egg loss could be related to 

nest features during this period.  Eider nests are poorly attended during laying (Goudie et al. 

2000), and certain nest types may have been chosen to reduce egg loss risks during that period 

(see Chapter 3).  Second, although habitat choices may reflect ongoing selective pressures, I 

would suggest they may also reflect innate habitat preferences that are vestiges of selective 

forces experienced earlier, but which no longer play a role in fitness and for which there are 

no current costs (or insufficient time has passed for their loss).  Lastly, given the annual 

variation I observed, certain pressures may have fitness significance in some years but not



  

 
 
Table 2.4.  Ordinal logistic models showing relationships between ordinal measure of nest success (hatched one egg, 2 eggs, … ≥4 
eggs) and nest site variables of common eiders (Somateria mollissima).  Data were collected on Mitivik Island, East Bay Migratory 
Bird Sanctuary, Nunavut, Canada, 2000-2002. 
 
 
 
Site variable 

2000 
χ2             P 

2001 
χ2             P 

2002 
χ2             P 

   Distance to nearest herring gull nest 2.08 0.15 0.61 0.43 2.94 0.09 
   Distance to fresh water pond at initiation 13.82 0.002 0.01 0.93 0.05 0.82 
   Distance to fresh water pond at nest hatch ------- ------- 0.42 0.23 0.004 0.95 
   Distance to ocean 0.02 0.89 0.54 0.46 1.73 0.19 
   Distance to nearest common eider nest 0.46 0.50 0.26 0.61 0.04 0.84 
   Nest bowl / site (rocky/organic) 0.04 0.84 0.38 0.54 0.11 0.74 
            Whole model    
                 Wald χ2 16.6 5.31 8.10 
                     df 5 6 6 
                     N 88 320 157 
                     P 0.005 0.51 0.23 
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others.  Habitat selection is a process that operates at the level of individual organisms, and 

population level selection patterns result from a summation of responses of individuals with 

varied experiences (Wiens 1985).  Habitat use patterns may reflect optimal responses to 

differential fitness among habitats (thereby including responses to resource availability, 

competition, and predation), but environmental variability within and between years may 

change fitness associated with certain habitat types (see Wiens 1985, Clark and Shutler 1999). 

2.4.1  Inter-annual Variation 

Different variables were associated with likelihood of incubation success in each study 

year, and this pattern has generally been observed in other years.  Studies began on the island 

in 1996, and several years were defined largely by individual events; in 1997, polar bears 

(Ursus maratimus) swam to the island and caused catastrophic egg loss through direct 

predation; in 2005, 200 dead eiders were found on the colony and all 21 sent for testing were 

confirmed to have died from avian cholera (Pasteurella multocida; H.G. Gilchrist, pers. 

comm.).  Proportion of successful nests varied between years: 73.0% (89/122) in 2000, 89.4% 

(344/385) in 2001, and 82.1% (193/235).  During 2000-2002, no “catastrophic” nest failures 

were documented.  An examination of nest failure dates showed that in all 3 study years, there 

were only two occasions when more than 4 nest failures occurred on a single day, and on one 

of these occasions failures were likely caused by investigator activity (observations excluded 

from analyses; see Methods). 

In 2000, nests established near wetlands had a higher chance of success (average 

distance to wetland at initiation was 28 m ± 16 SD successful vs. 48 m ± 19 SD failed).  Gulls 

are more likely to leave the island during low tide, presumably to access food resources in the 

intertidal zone (K. Allard, in prep.).  Ice break up within East Bay was also the latest in the 3 
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study years (2000-July 9, 2001-June 24, 2002-July 8), and gulls were more likely to forage on 

the colony than in 2001 (K. Allard, in prep.).  If predation pressure was higher in 2000 (for 

example, due to scarcity of alternative, non-eider food sources for gulls), proximity to fresh 

water ponds may have played a role in egg loss susceptibility.  Females with nests located 

farther from fresh water ponds may have spent longer periods away from their nests on brief 

drink breaks, increasing susceptibility to egg loss (Bottitta 2001; see also Cooch 1965, Bolduc 

et al. 2005).  I was unable to measure clutch size in this study, but Bolduc et al. (2005) found 

eider nests with large clutch sizes and early laying dates were associated with poorly 

concealed nest sites that were close to the shorelines of St. Lawrence River islands. 

In 2001 and 2002, the best predictors of incubation success were relative timing of 

nesting (Table 2.3).  Timing of nesting is likely important for Arctic-nesting birds in general 

given short breeding seasons (Martin and Wiebe 2004) and should be based on several 

reliable cues, especially in single-brooded species (Svensson 1995) such as eiders.  The 

relationship between timing of nesting and nest success in greater snow geese (Anser 

caerulescens atlanticus, a single-brood species) also varies between years, favoring early 

nesters in some years, synchronous nesting in others, and showing little pattern in others years 

(Lepage et al. 2000).  Number of young geese surviving to the first winter was also very low 

among late-nesting birds, with early-nesters also showing a slight decline; unfortunately, little 

is known about how timing of breeding might influence survival to fledging and subsequent 

recruitment in eiders. 

Herring gulls may increase eider nest success by excluding other predators (Götmark 

and Åhlund 1988), but the placement of nests near gull nests may be a result of shared habitat 

preferences (Kellett et al. 2003).  At my study colony, between 30 and 40% of eider eggs laid 
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may be depredated by gulls in some years, and about 75% of eggs were observed to be taken 

singly (K. Allard, pers. comm.).  Most eggs are taken during laying, when eiders do not 

defend their nests and gulls have easy access to prey.  Nesting in synchrony with other eiders 

on the colony may reduce risk of egg loss because more eggs become available than gulls are 

capable of consuming (Sovada et al. 2001).  Relatively few eider eggs are taken once their 

incubation commences, and gulls appear to exploit other food resources later in the season (K. 

Allard, in prep.).  In 2001, eider nests established nearest to median clutch initiation date had 

higher chances of incubation success (Table 2.3).  During early laying in 2001, numerous 

early-season nest failures were also likely attributable to periodic visits of arctic fox (Alopex 

lagopus) before ice break-up (see Sovada et al. 2001).  The visits may have been by the same 

fox, that was observed flushing hens from nests and cacheing their eggs on several occasions 

over the course of about one week.  In 2002, no arctic fox was observed on the island during 

eider egg-laying.  Early-nesting eiders in 2002 may have had higher incubation success 

because they were higher quality individuals; unfortunately, habitat quality and individual 

quality are often confounded in correlative studies because high quality individuals may nest 

first and obtain better nest sites (Kim and Monaghan 2005).  This may also be true of eiders; 

females with high body reserves have been found to lay larger clutches and nest relatively 

early (Spurr and Milne 1976, Yoccoz et al. 2002, Hanssen et al. 2003a, Hanssen et al. 2004).  

Bolduc et al. (2005) concluded that eiders rely principally on attendance to protect nests 

because nest success was only marginally related to nest site characteristics such as nest 

concealment.  The observation that late-nesting individuals in 2001 and 2002 had higher 

probability of nest failure (Table 2.3) is consistent with these observations, as is the 

importance of timing of nesting at my study site. 
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At the study colony, eiders had choices between available nest bowls in all years.  

However, laying was synchronous (Bottitta 2001, this study) and, if high quality nesting sites 

are limited, individuals may select higher quality nests in an ideal despotic or pre-emptive 

manner (Fretwell 1972, Dias 1996; see also Freemark 1977, Robertson 1995).  Female eiders 

generally show high fidelity to breeding areas but not nest sites (Goudie et al. 2000), and data 

from the study colony are similar (H.G. Gilchrist, unpublished).  Furthermore, if numerous 

bowls of similar quality are available, there may be little benefit for a female to select a bowl 

she has used previously, and it may be more advantageous to nest at high densities or in 

relation to kin (McKinnon et al. 2006). 

2.4.2  Nesting Strategies 

Inter-annual variation in pressures, that appear to have occurred at my study site 

(Table 2.3), could favor flexible nesting strategies among individuals across years.  Eiders are 

long-lived sea ducks (Goudie et al. 2000), and individuals would therefore have opportunities 

to adapt strategies based on genetic or learned information (see discussion Chapter 4).  

Adapting behavioural strategies presumed to be based on learning have been documented in 

birds (Danchin et al. 2004), largely through studies of breeding dispersal (e.g., Jackson et al. 

1989, Powell and Frasch 2000).  Given that other behaviours with genetic bases are 

circumstance-specific (e.g., migration and control of its timing), genetic templates of habitat 

choice could presumably be adjusted depending upon circumstance.  I was unable to detect 

broad patterns of adaptive responses, and the capacity of eiders to adapt nesting strategies 

between years remains poorly understood. 

McKinnon et al. (2006) reported that female kin groups at the study site may arrive 

together and that kinship is a factor in nest site selection.  They evaluated genetic relatedness 
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of nesting females to nearest neighbors (that had nested slightly earlier) and found that female 

associations were not random and aggregations of female eiders were often composed of 

related individuals during nesting.  Furthermore, 5 of 13 focal females had one or more full 

sibling-equivalent relationships as one of their three nearest neighbors.  These eiders may 

subsequently benefit from communication and detection of predators such as herring gulls, 

arctic fox, parasitic jaegers and polar bears (Criscuolo et al. 2001), as well as group defense 

against herring gulls.  Given that eiders can nest in family groupings, perhaps they choose the 

highest quality nesting region available at time of arrival (McKinnon et al. 2006).  Although 

female eiders “prospect” for potential nest sites with males (Goudie et al. 2000), the type of 

bowl females selected was not influenced by males (McKay 2004).  Some benefits of nest site 

choice may also accrue after nest site departure.  For example, some sites may offer improved 

access to fresh water (DeVink et al. 2005) or brood-rearing sites. 

2.4.3  Energy Conservation and Nest Microclimate 

Because eiders rely on stored reserves throughout incubation, energy conservation 

may have shaped evolution of their nest site choices and incubation behaviours (see 

Korschgen 1977, Criscuolo et al. 2001, Hanssen et al. 2003a).  As in other waterfowl species 

(Mallory and Weatherhead 1993, Blums et al. 1997), eider nest abandonment is thought to be 

condition-dependent (Tinbergen 1958, Korschgen 1977), although Bottitta (2001) found 

eiders whose nests failed at the study site had higher predicted late-incubation body weight 

than those that successfully hatched (~300 g difference).  Bottitta (2001) also found that, 

among females for which incubation was experimentally extended, those that abandoned their 

nests had higher predicted late incubation body weight than those that hatched.  However, 

experience was a confounding factor and could not be sampled.  Poor body condition may 
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also lower eider nest success (Bottitta et al. 2003, Hanssen et al. 2003b), increase likelihood 

of duckling abandonment (Bustnes and Erikstad 1991, Bustnes et al. 2002, Hanssen et al. 

2003c), and decrease likelihood of breeding in subsequent years (Yoccoz et al. 2002).  I was 

unable to distinguish between abandoned and depredated nests (as in other studies; see 

Maddox and Weatherhead 2006), but eider nest abandonment can be a significant cause of 

nest failure (Korschgen 1977, Bourgeon et al. 2006). 

Both incubation behaviour (Criscuolo et al. 2001) and nest microclimate are likely 

important determinants of eider energy expenditure (Kilpi and Lindström  1997).  Local 

habitat features can influence nest microclimate (see Appendix), and energy loss by thermal 

conductivity could also influence incubation energetics (White and Kinney 1974, McCracken 

et al. 1997).  I found that nest bowls used by eiders were more likely to have organic 

substrates than either unused nest bowls or non-nest sites.  Eiders may have selected such 

sites for insulative benefits and/or these sites may have organic substrates because eiders have 

been consistently selecting them for other reasons and fertilizing the local area with feces. 

 

2.5  Conclusions 

Physical features of nests were generally poor predictors of incubation success 

compared with timing of nesting at my study site.  Females may reduce predation risk by 

nesting synchronously and in proximity to conspecifics.  Selecting bowls with organic 

substrates could aid in egg concealment (see Chapter 3) and reduce energy loss (see 

Appendix).  Access to fresh water was a correlate of success in 2000, but eiders weren’t found 

to strongly select sites adjacent to fresh water ponds.  Although costs and benefits of using 

habitats with certain characteristics may vary spatially or temporally, habitat choices 
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influenced by natural selection could reflect long-term optima (Clark and Shutler 1999).  

Different biotic and abiotic factors appeared to influence eider incubation success on Mitivik 

Island; given variations between study years, I suggest eiders are likely facing ongoing 

refinements of nesting strategies in response to selection.  Results from this study suggest that 

physical characteristics of nest sites may have some influence on eider nest success, although 

our results are consistent with Bolduc et al. (2005), who suggested that eiders rely principally 

on nest attendance to protect their nests.  Further study into relationships between individual 

quality, site choice, and breeding success would aid our understanding of adaptive habitat use. 
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CHAPTER 3: NEST CONTENTS AND COLONY-WIDE SETTLEMENT PATTERNS 

3.1 Introduction 

Avoiding detection by predators is one way that ground-nesting birds increase their 

fitness.  Although waterfowl often nest conspicuously in Arctic colonies (e.g., McCracken et 

al. 1997, Goudie et al. 2000), incubation constancy is typically high and eggs are often only 

available to small and mid-size predators when nest attendance is interrupted.  Concealment 

may aid in preventing egg losses during nest absences by hindering detection by predators 

(Lancaster 1964, Greenquist 1982).  Observational research conducted on the study colony 

has determined that eider eggs are most susceptible to predation during laying (K. Allard, 

pers. comm.) when nests are attended intermittently by eider hens (Goudie et al. 2000). 

Goudie et al. (2000) suggested that female eiders churn up old material within a nest 

bowl before laying to permit air circulation and drying of the nest bowl, but I suggest this 

material could also serve an additional egg concealment function.  Although most nest bowls 

at the colony contain little extraneous material immediately before nesting (presumably due to 

storms which remove the previous year’s nesting material), eider hens have frequently been 

observed adding loose materials, such as moss, to line nest bowls during the laying period (P. 

Fast, pers. obs), possibly to conceal eggs.  Eiders may also preferentially choose bowls with 

evidence of previous use or success, which could include old body down or loose vegetation 

within bowls.  Therefore, I evaluated this hypothesis by testing the predictions that eiders 

may: a) preferentially choose sites containing cues of previous use or success; and, b) prefer 

and/or be more successful at initiating nests in bowls that contain materials to conceal eggs 

because this decreases predation risk during laying.  Because eiders could add concealing 

materials such as moss or down to desirable nest bowls, I predicted further that addition of 
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nesting material would not increase likelihood of nest initiation.  However, desirable nest 

bowls already containing extraneous material would be immediately available to hens for egg 

concealment; therefore, I predicted that nests containing nest materials would be used first.  

Due to synchronous nesting by Arctic eiders, addition of down to nests was unlikely to be 

interpreted as within-season failure.  Rather, it might be an indicator of previous use, 

presumably enhancing attractiveness of down-filled nests. 

Second, I describe colony-wide patterns of nest initiation.  Nest density varied among 

five long-term study plots, but variation in density and timing of nesting within other regions 

of the colony was poorly understood.  Evidence from other seabirds (Hipfner 1997, Wendeln 

1997, Morbey and Ydenberg 2000, Arnold et al. 2004) and anatids (Lepage et al. 2000, Blums 

and Clark 2004) suggests that timing of breeding may be related to parental quality, and that 

late-nesting birds breed less successfully than those nesting early.  Furthermore, nesting 

densities are often uneven within avian breeding colonies, possibly reflecting differences in 

nest site quality (microclimate, predation risk; e.g., Gaston et al. 2002).  High quality nesting 

regions may be limited, and individuals may select higher quality nests, producing nesting 

patterns that match distributions expected under ideal despotic or pre-emptive models (Dias 

1996).  Nesting near colony edges may increase risk of nest loss (e.g., Gaston et al. 2002), and 

individuals of poorer quality may be relegated to these areas (Coulson 1968).  Therefore, in 

2003, I evaluated differences in timing of nesting and nest density to describe colony-wide 

settlement patterns in relation to habitat features on Mitivik Island. 
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3.2 Methods 

3.2.1  Egg Concealment During Laying 

I experimentally manipulated 90 nest bowls before nesting in 2003.  All loose nest 

materials were removed from nest bowls under observation (i.e., dead vegetation, egg 

membranes, down), and bowls were randomly assigned to one of three treatments: (1) feather 

down added (one liter, uncompressed) (2) moss added (one liter, uncompressed) (3) nothing 

added; bowl remained empty.  Experimentally-placed moss was obtained before the 2003 

nesting season from wetland fringes and broken into ~8cm2 pieces; down (frozen over two 

winters to kill ectoparasites) was obtained from the colony following hatch in 2001, and egg 

shells and membranes were removed by hand.  I moistened each 1L parcel of down and moss 

with 250 mL of water (obtained from a wetland on the island) to prevent it from being blown 

away after placement, and to simulate materials available in and adjacent to unmanipulated 

bowls.  One liter of nesting material represents approximately the maximum amount that 

would be available in unmanipulated nest bowls immediately prior to nesting.  Nests were 

manipulated on 18 June 2003, with a brief visit to each nest bowl on 22 June to ensure that 

feather down and moss were still in nest bowls. 

Following manipulation, nests were observed daily (21 June - 10 July) from 

observation blinds to document the likelihood of occupation and timing of nest initiation 

within individual nest bowls.  To avoid misclassification of non-nests as nests, my criterion 

for a successful nest initiation was three consecutive observations of a hen sitting on a specific 

nest cup.  Time constraints prevented establishment of unmanipulated control nests within 

experimental plots, so mean nest initiation date of unmanipulated bowls was estimated using 
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observations from the nearest long-term study plot.  Differences in timing of nest initiation 

were examined using one-way ANOVA (PROC ANOVA, SAS Institute 1990). 

3.2.2  Colony-Wide Settlement Patterns 

I monitored 21 plots (each 20 x 20 m) from 6 blinds daily during nest initiation (23 

June – 15 July 2003).  I was unable to observe some areas of the colony due to local 

topography, so plots were selected based on visibility from blinds and to provide 

representative sites throughout the colony.  I monitored each plot throughout nest initiation to 

evaluate differences in timing of nesting and nest density between different regions of the 

colony.  During daily nest observations, I recorded number of females that appeared to be 

sitting on nests within each of the 21 plots. 

Differences in timing of nesting and nest densities were evaluated in relation to three 

physiographic features thought to be of potential biological significance.  Distance to the 

closest edge of the largest fresh water pond on the island was evaluated because eiders often 

nest near water, and large water bodies may facilitate take-off and landing (Schmutz et al. 

1983).  Distances to ocean (high tide line) and geographic centre of the island were also 

measured because nesting success may be higher at central locations within colonies, and 

poor quality individuals may be relegated to sites on the margins of the colony (Coulson 

1968, Gaston et al. 2002). 

To evaluate timing of nesting between groups (e.g., near versus far from ocean), 

proportions of nests established over the initiation period were compared using Kolmogorov-

Smirnov two-sample tests.  For these 2-group comparisons, plots were assigned to categories 

evenly (e.g., half assigned ‘nearest ocean’ and half assigned ‘farthest from ocean’).  

Relationships between nest density and plot location were investigated using regression.  For 

33  



 

high density plots, I developed logistic growth curves (Hoehler 1995) to estimate number of 

established nests within each plot (estimated as asymptote; PROC NLIN, SAS Institute 1990). 

Plots with few established nests (< 5) violated model convergence criteria, so nest density was 

estimated from raw data. 

 

3.3 Results 

3.3.1  Egg Concealment During Laying 

A total of 69 nests was successfully initiated (measured by onset of incubation) in 90 

experimental nest bowls; 25 nests were initiated in bowls with down, 24 in bowls with moss, 

and 20 where nesting material had been removed.  No difference in likelihood of successful 

initiation was detected among groups (χ2 = 2.61, df = 2, P = 0.27), however there was a 

difference in timing of nest initiation among treatments (one-way ANOVA; Fdf=3,124 = 6.21, P 

= 0.019).  Nest bowls containing down had earlier incubation onset than unmanipulated bowls 

(Figure 3.1; Tukey test, df = 124, k = 4, P < 0.001).  Because incubation onset dates from 

unmanipulated bowls were estimated from a long-term study plot in an adjacent region of the 

colony, differences in timing of initiation between treatment groups were also evaluated 

separately using one-way ANOVA (Fdf=2,66 = 4.19, P = 0.019).  Bowls containing 

experimentally-placed down had earlier incubation onset than bowls containing no nesting 

material (Figure 3.1; Tukey test, df = 66, k = 3, P = 0.014).  On average, hens successfully 

initiating in bowls containing down began incubating 2.6 days before hens in nests lacking 

added materials. 
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Figure 3.1.  Mean dates (± 95% CI) of incubation onset for common eider (Somateria 
mollissima) females on Mitivik Island, Nunavut, Canada in June and July 2003.  Nest bowls 
were randomly assigned to three experimental treatments before nest initiation: (1) containing 
down (2) containing moss, (3) cleaned of nesting material (n = 25, 24, 20, respectively).  
Estimates of unmanipulated control nests (4) were obtained from adjacent non-experimental 
plot (n = 59). 
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3.3.2  Colony-Wide Settlement Patterns 

In 2003, no eiders successfully initiated nests in 2 of 21 study plots, and these were 

excluded from analyses when appropriate.  Plots nearest the colony centre had a higher 

proportion of earlier incubated eider nests than did plots located on the periphery (K-S Test, 

two sample: DMAX = 0.059, nnear = 1728, nfar = 1632, P = 0.006), while plots closer to the main 

pond had a lower proportion of earlier incubated eider nests than did plots farther from main 

pond (K-S Test, two sample: DMAX = 0.068, nnear = 1921, nfar = 1439, P = 0.001).  There was 

no difference in timing of nest incubation onset between plots closer to or farther from the 

ocean (K-S Test, two sample: DMAX = 0.040, nnear = 1531, nfar = 1829, P = 0.13). 

No difference was found in timing of nest establishment between low (≤ 8 nests 

established; 9 plots) and high (≥ 9 nests; 10 plots) density plots (K-S Test, two sample: DMAX 

= 0.039, nlow = 650, nhigh = 2710, P = 0.40; Figure 3.2).  Nest density was not correlated with 

distance to colony centre or distance to the main pond (linear regression; n = 21, r2 = 0.12, P = 

0.13 and n = 21, r2 = 0.13, P = 0.11, respectively).  Nest density was somewhat higher in plots 

located farther from the ocean (linear regression; n = 21, r2 = 0.18, P = 0.056). 

 

3.4  Discussion 

I studied relationships between nest use, timing of nesting and nest features at very 

different scales.  At the scale of nest sites, presence of duck down in nest bowls resulted in an 

earlier onset of incubation but neither down nor moss produced higher nest bowl use relative 

to controls.  At the scale of the colony, nests were established earlier near the geographic 

centre of the island, whereas sites near the largest wetland were occupied later.  Nest density 

increased in areas farther from the ocean, but timing of successful nest establishment did not 
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Figure 3.2.  Proportion (mean ± SE) of incubated common eider (Somateria mollissima) nests 
in low (≤8 nests established; 9 plots) and high (≥9 nests; 10 plots) density plots in relation to 
date in 2003.  Frequency distributions of between groups were not different (K-S Test, two 
sample: DMAX = 0.039, nlow = 650, nhigh = 2710, P = 0.403).  Data collected on Mitivik Island, 
East Bay Migratory Bird Sanctuary, Nunavut, Canada. 
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differ between high and low density plots. 

3.4.1  Egg Concealment During Laying 

Control nests, which contained little nesting material before laying, and treatment 

bowls with all nesting material removed had similar mean incubation onset dates (Figure 3.1).  

Mean incubation onset differed between bowls containing down and unmanipulated ones; 

nests were successfully initiated earlier in nest bowls containing down; this result maybe due 

to locational differences between the experimental nests and unmanipulated nests 

(experimental nests located nearer geographic centre of the colony; see below).  However, I 

found a similar result when comparing only experimentally manipulated bowls.  Bowls with 

down had nests successfully initiated in them earlier than bowls containing no nesting 

material, likely because they either survived better to the incubation stage (i.e., through egg 

laying), or were preferentially selected by early-laying females, or both.  Down may provide 

better egg concealment than moss, and/or it may be preferentially used by early nesting 

females because it may indicate to laying hens that a bowl was used successfully in a previous 

year.  Nest bowls with down may also be selected because of insulative benefits to females 

and their eggs.  Moss-treated bowls appeared to have an intermediate incubation onset relative 

to other treatments, and larger sample sizes would likely aid in resolving possible differences 

between groups. 

3.4.2  Colony-Wide Settlement Patterns 

In 2003, nests were established earlier in some regions of the colony than others; plots 

nearer the geographic centre of the colony were occupied first, whereas plots nearer the main 

pond were filled later.  Distance to ocean had no observable effect on timing of nesting.  

Higher quality females may have nested earlier at the colony interior (Coulson 1968; see also 
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Discussion Chapter 2), but I was unable to test this.  Main pond was evaluated because it is 

used by a large number of eiders for landing, swimming, occasional copulations, the margin 

of the pond serves as a loafing area, and it appears to facilitate eider take-off and landing (see 

Schmutz et al. 1983, Robertson 1995).  Perhaps few nests were established near main pond 

during early laying due to disturbances associated with high use by all species including gulls 

and geese, both known predators of eider eggs (Allard and Gilchrist 2002).  Because my 

methods cannot account for nest abandonment or predation, my results would be confounded 

if higher nest loss occurred during egg laying in certain geographic regions.  For example, 

peripheral regions of the colony may be more accessible to ‘floater’ herring gulls without 

established territories possibly resulting in higher predation rates. 

No differences in timing of nesting between high and low density plots were observed 

(Fig 3.2).  Although density is often used as a surrogate for habitat quality, this may be an 

incorrect assumption even among colony-nesting birds (Van Horne 1983).  Nest density 

increased farther from the ocean.  Again, this may be due to differences in predation risk, but 

no differences in relative egg capture rates (number of individual eggs captured by gulls per 

180 minutes per 100 nests) between plots of different densities were detected at the colony in 

2000 and 2001 (K. Allard pers. comm.).  Unfortunately, I was only able to analyze nests in 

which laying was complete and incubation had commenced.  Thus, further work is needed to 

address this problem. 

 

3.5  Conclusions 

Based on observations of eider females pushing loose materials (incl. moss, small 

rocks, vegetation, soil) into nest bowls during egg laying and my experimental results, I 
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conclude extraneous nest materials play a role in timing of eider nest establishment.  

Experimental results showed that bowls containing down were more likely to have nests 

successfully initiated in them earlier than empty bowls, but I am unsure whether this was due 

to increased nest survival during laying, preference for bowls with down, or a combination of 

these factors. 

Nest density did not vary strongly in relation to habitat variables measured, although 

density appeared to increase with increasing distance from ocean.  Higher quality individuals 

may have nested earlier nearest the colony center (Coulson 1968), but no differences in timing 

of nest initiation were observed between high and low density regions.  This is consistent with 

the finding that relative egg capture rates by gulls do not vary with different eider nesting 

densities at the colony (K. Allard pers. comm.), and suggestive that higher density regions 

may not have higher quality individuals.  
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CHAPTER 4: SYNTHESIS 

4.1 Introduction 

A basic assumption underlying habitat use studies is that increased fitness within 

certain habitats leads to increased use, producing non-random distribution patterns (Martin 

1998, Clark and Shutler 1999).  Non-random patterns of habitat use are often cited as 

evidence of causal selective processes, but proximate mechanisms underlying relationships 

between habitat use and natural selection are not fully understood.  In other words, although 

numerous studies have evaluated whether habitat selection patterns are consistent with forces 

presumed to be selective (e.g., nest loss: Martin 1998, Brua 1999, Clark and Shutler 1999, 

Misenhelter and Rotenberry 2000), ecologists lack a comprehensive understanding of how the 

process of selection causes subsequent adaptation of habitat preferences and leads to non-

random patterns of habitat use that they observe.  Results of this study suggest that eider nest 

choices may reflect selective pressures involving the local predator community, egg 

concealment, nest microclimate and energy use, but mechanisms through which these 

preferences arose remain unclear.  Although this discussion focuses primarily on nest site 

selection in birds, it could be extended further to avian habitat selection in general. 

For evolution by natural selection to occur, there must be variation in a trait or 

attribute among individuals, a relationship between that trait and fitness, and inheritance of 

the trait (see Endler 1986 for further discussion).  Clark and Shutler (1999) suggest natural 

selection could result in nest site and other habitat preferences that are genetic, imprinted, or 

learned.  For this discussion, I will use Beltman and Metz’s (2005) distinction between (4.2) 

“genetic habitat preference” and (4.3) “learned habitat preference,” the latter of which I will 

further divide into preferences shaped by learning through (4.3.1) “imprinting” or “natal 
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habitat preference induction” (NHPI; Davis and Stamps 2004) (4.3.2) individual experiences 

or “personal information” (4.3.3) experiences of others or “social information” (Danchin et al. 

2004).  Natural selection could act to produce non-random distribution patterns through these 

proximate mechanisms either singly or in concert.  In organisms for which habitat use 

preferences have direct genetic bases, differential fitness between individuals in different 

habitats should lead to changes in frequencies of alleles responsible for habitat choices 

(Beltman and Metz 2005).  In contrast, natural selection may act through “learned habitat 

preferences” by means of increased fitness among individuals that learn adaptive strategies, 

provided learning traits are heritable (Figure 4.1; note that learning ultimately has a genetic 

basis). 

 

4.2 Genetic/Innate Habitat Preferences 

There is some evidence that habitat choices by arthropods and mollusks have genetic 

bases (Jaenike and Holt 1991), but bases of avian habitat selection are poorly understood 

(Martin 1988b, Clark and Shutler 1999).  Cross-fostering experiments would aid in 

understanding processes underlying avian habitat choices (Davis and Stamps 2004).  For 

example, they would help researchers determine if offspring choose nest sites/breeding 

habitats similar to those in which they were produced (i.e., prior to cross-fostering), or in 

which they were fostered. 

When habitat choices are innate, maintenance of genetic variation could have 

evolutionary importance; Jaenike and Holt (1991) discuss the evolution of habitat preferences 

and explore adaptive mechanisms through which genetic variation for habitat preference 
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Figure 4.1  Habitat preferences can be shaped by information acquired genetically and 
through learning (nongenetically acquired information).  Learned information is personal if it 
is acquired through individual experiences, or social if acquired vicariously (see Danchin et 
al. 2004).  A special case of learning is information gained through imprinting, which may 
include both personal and social informationa.  Note that learning ultimately has a genetic 
basisb. 
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could be maintained.  In general, habitat choices may reflect long-term optima (Clark and 

Shutler 1999) but individual differences in traits may make certain individuals more suitable 

to different niches (Davis and Stamps 2004), high quality habitats may be limited, and 

individuals may be relegated to suboptimal habitats.  Furthermore, it is likely that switching 

strategies may also have adaptive benefits (Martin 1988a), which may further explain some of 

the variability in nest site choices I documented. 

 
4.3 Learned Habitat Preferences 

Learned habitat preferences may be proximate behavioural mechanisms through which 

natural selection can act to produce non-random distribution patterns (Beltman and Metz 

2005).  Even in the absence of inheritance, learning habitat preferences could lead to non-

random habitat use patterns but this would not be reflective of true natural selection.  The role 

of learning in nest building was highlighted by Scott (1902), who found hand-reared 

American robins (Turdus migratorius) capable of laying eggs were unsuccessful at building 

nests when presented with appropriate materials; in contrast, many species reared in novel 

habitats are capable of building species-characteristic nests (Sargent 1965). 

4.3.1  Imprinting or Natal Habitat Preference Induction 

Davis and Stamps (2004) argued that a unified understanding of natal experience 

effects on habitat preferences has been hampered in part by inconsistent terminologies across 

disciplines; although the term “imprinting” is most common in the vertebrate literature, they 

recommend “natal habitat preference induction” as a more inclusive term.  NHPI is a 

potentially important source of individual variation in habitat selection, and the phenomenon 

has been observed in several avian species (Davis and Stamps 2004).  Sargent (1965) found 

that natal experiences of zebra finches (Taeniopygia guttata) influenced nest building in some 
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circumstances, but not in others.  Cross-fostered European cuckoos (Cuculus canorus; 

Teuschl et al. 1998) and village indigobirds (Vidua chalybeata; Payne et al. 2000), both brood 

parasites, spent more time in habitats in which they were reared than either habitats from 

which they were taken or novel habitats, and were more likely to lay in nests of species they 

were raised in.  Natal experience may also influence preference for perching (Klopfer 1963), 

feeding (Greenberg 1984), and breeding (Tonnis et al. 2005) habitats.  NHPI provides a 

mechanism by which individuals are more likely to select habitats to which they are suited, 

and has been shown to be an important source of individual variation in avian habitat 

selection (review in Davis and Stamps 2004).  Although NHPI could be considered personal 

information, this information is gained in a unique context and may also include induction of 

social information. 

4.3.2  Individual Experiences or “Personal Information” 

Experience may also inform habitat use preferences.  Danchin et al. (2004) 

distinguished between two types of experience, “personal information” and “social 

information.”  Numerous studies have investigated the influence of prior experience on avian 

breeding dispersal (Greenwood and Harvey 1982, Drake 2006); increased likelihood and 

distance of breeding dispersal in response to negative experience would provide evidence that 

individual experience can influence subsequent habitat choices.  Nest failure has been shown 

to increase likelihood and distances of breeding dispersal both within (see Jackson et al. 1989) 

and between (Clark and Shutler 1999, Powell and Frasch 2000, Winkler et al. 2004) seasons, 

although not in all studies (Shutler and Clark 2003, Fisher 2005).  Experience with predators 

also can influence subsequent choice of nest cover type and quantity (Wiebe and Martin 

1998).  There may be advantages to site familiarity (Davis and Stamps 2004), which may 
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explain why some birds remain faithful to breeding sites despite being unsuccessful.  This 

may be especially true among colonial nesters such as eiders that nest near kin (McKinnon et 

al. 2006), and are prone to catastrophic but random nest morality events (e.g., polar bear 

predation).  Furthermore, probability and distance of dispersal are likely influenced by both 

genetic and environmental factors (Weisser 2001, Pasinelli et al. 2004), and other factors 

including mate switching, nest ectoparasites and fluctuating food sources may also play 

important roles in dispersal (Fisher 2005). 

4.3.3  Experiences of Others or “Social Information” 

Animals may also base choices on what they have learned through the experiences of 

others.  This is known as social information, which may include public information about 

resource quality (Danchin et al. 2004, Bednekoff 2005, see also Dall 2005, Danchin et al. 

2005, Laland et al. 2005, Lotem and Winkler 2005).  Little attention has been given to social 

information and its possible role in shaping habitat choices by birds, but recent information 

suggests it may inform breeding site choices in some species (Danchin et al. 1998, Doligez et 

al. 2002, Danchin et al. 2004, Ward 2005). 

 

4.4 Conclusions 

Despite demonstrating non-random nest site choice patterns amongst eiders, the extent 

to which eiders may use genetic or learned information to inform habitat choices is unknown.  

Several studies have highlighted the importance of evaluating habitat use patterns in the 

context of processes shaping habitat choices (Martin 1998, Clark and Shutler 1999, 

Misenhelter and Rotenberry 2000, Jones 2001, Davis 2005), but our understanding of 

proximate linkages between process and pattern remains inadequate.  The role of learning in 
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habitat selection may have been underappreciated previously, but numerous studies have 

shown that both learned and genetic mechanisms may shape habitat preferences (although 

even learned preferences ultimately have genetic bases).  Beltman and Metz (2005) suggest 

habitat selection could evolve through a genetic mechanism or by means of learning.  Using 

theoretical models, they demonstrated that learned habitat preferences are likely to be 

characteristic of generalist populations, wherein they predict increased likelihood of 

disruptive selection and speciation.  However, different costs of learning would have different 

implications for evolution and speciation with each mechanism (Beltman and Metz 2005).  

Eiders may adapt habitat choices based on learned information, but inheritance of traits is 

necessary to complete the criteria for natural selection (Endler 1986), and little is known 

about how habitat preferences are passed on. 

In addition to further developing modern natural selection theory, understanding 

mechanisms underlying distribution of organisms among habitats would have great practical 

value when evaluating potential for adaptive evolution of habitat selection traits in response to 

anthropogenic and climate-driven habitat changes.  Phenotypic plasticity can allow 

individuals to respond to short-term environmental changes, but microevolution (changes in 

gene frequencies between generations) through natural selection allows population adaptation 

to long-term changes (see Berteaux et al. 2004).  In changing environments, selection could 

act to favor individuals better able to learn which habitats increase fitness and/or those with 

genetic/innate predisposition (i.e., alleles responsible for habitat preferences) to choose certain 

habitats where fitness is enhanced.  Rate of habitat change and adaptive significance of 

different habitat selection strategies would likely have different implications for r- versus k-

selected species (see Berteaux et al. 2004).  If environmental conditions change, information 
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inherited genetically may not be useful (Danchin et al. 2004).  In addition, reliance on genetic 

information when choosing habitat could lead to ecological traps (see review in Schlaepfer et 

al. 2002).  Unfortunately, very little is known about mechanisms underlying habitat choice or 

the strength of phenotypic selection on behavioural traits (Kingsolver et al. 2001, see also 

Berteaux et al. 2004). 
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ABSTRACT 

Evaluating consequences of habitat selection is an important step in understanding life history 

strategies and behavioural decisions of animals.  Kilpi and Lindström (1997) found that 

incubating common eiders Somateria mollissima on exposed, treeless islands lost weight 

faster than females nesting on wooded islands and proposed that this difference was due to 

adverse incubation conditions at exposed nests.  Therefore, we tested whether common eiders 

gained an advantage when nesting in sheltered habitats by placing artificial shelters over 

randomly-selected females after the onset of incubation within an eider colony in arctic 

Canada.  We predicted that sheltered females would be heavier on completion of incubation 

than control hens lacking shelters.  Females nesting in artificial shelters experienced a more 

moderate thermal environment at both cold and warm temperature extremes.  Eiders nesting 

in shelters were heavier than control females during late incubation, consistent with habitat-

specific rates of weight loss reported by Kilpi and Lindström.  Natural overhead cover was 

available at potential nests but few eiders used those sites.  We suspect that microclimatic 

advantages offered by sheltered sites may be offset by costs of increased female vulnerability 

to predators.  Further work is needed to test this hypothesis, and to determine mechanisms 

responsible for lower weight loss in eiders attending well concealed nests. 
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Introduction 

Natural selection should favor habitat choices that maximize fitness.  For example, nest site 

selection by oviparous animals likely reflects trade-offs between egg loss to predators, egg 

temperature maintenance (and thus egg viability), energetic costs to nest incubators, and adult 

survival.  Nest predation, egg microclimate, embryonic development, and energetic costs of 

incubation have been well studied in birds (Williams 1996, Deeming 2002), but little is 

known about the energetic consequences of variation in nest microclimate among wild birds 

(Gloutney and Clark 1997).  It has been presumed that many birds select nest sites to 

minimize energy expenditure, and limited evidence from several avian taxa suggests that 

protection of both embryos and nesting adults from heat stress may influence nest site 

placement and orientation (Hardy and Morrison 2001, Hoekman et al. 2002, Kim and 

Monaghan 2005).  Energy expenditure increases above or below a homeotherm’s thermal 

neutral zone, and birds are expected to choose nest sites within this zone to reduce 

thermoregulatory energy expenditure, thus leaving more energy for body maintenance and 

incubation. 

The common eider Somateria mollissima is an appropriate species to study energetic 

consequences of nest site microclimate.  Degree of shelter at nest sites varies considerably 

depending on local substrate and vegetation, and females may be exposed to wind, 

precipitation, and varying amounts of solar radiation.  Furthermore, only females incubate 

(Goudie et al. 2000), typically females do not feed while incubating (Parker and Holm 1990, 

Bottitta 2001) and incubation constancy is among the highest observed among waterfowl 

species (reviewed in Afton and Paulus 1992, see also Bottitta 2001, Criscuolo et al. 2002, 
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Bolduc and Guillemette 2003a).  Therefore, it is possible to study common eider incubation 

without having to account for off-nest energy expenditure and feeding. 

Females undergo degenerative physiological and anatomical changes and may to lose 

up to 45% of their total pre-incubation body weight (Cantin et al. 1974, Korschgen 1977, 

Parker and Holm 1990) during 24-26 days of incubation (Goudie et al. 2000).  Kilpi and 

Lindström (1997) found that common eiders nesting on sparsely-vegetated, wind-exposed 

islands lost weight faster than did females nesting on wooded islands, and hypothesized that 

eider hens gained an energetic advantage by nesting in sheltered habitats.  Therefore, we 

evaluated the importance of nest shelter on incubation weight loss by experimentally 

manipulating nest site characteristics.  We set out artificial shelters on a random sample of 

eider nests in a treeless environment just after onset of incubation.  Nest shelters provided 

overhead concealment and protection on two sides of the nest (east and west in all cases).  

Temperatures beside nest bowls in shelters and beside adjacent control nests were monitored 

using data loggers.  We expected that shelters would ameliorate both hot and cold temperature 

extremes at the nest, and predicted that females nesting in shelters would be heavier than 

those without shelters near the end of incubation.  We also predicted that eiders would choose 

nest sites based in part on local microclimate characteristics by selecting nest sites adjacent to, 

or beneath natural rock shelter. 

 

Methods 

Field Site 

Work was conducted on Mitivik Island (64o02’N, 81o47’W) in the East Bay Migratory Bird 

Sanctuary, Nunavut, Canada in 2001 and 2003.  The small (~800x400 m), low-lying (< 8 m 

elevation) island lies just south of the Arctic Circle, experiences almost continuous daylight 
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during the nesting season, and consists of  granite rock interspersed with small patches of 

tundra, and several small ponds (< 0.5 ha).  This island supports the largest known nesting 

colony of common eiders in the Canadian Arctic (up to 4000 pairs annually; Abraham and 

Ankney 1986). 

 

Nest Shelter Experiment 

Common eiders are known to nest under human-made shelters, and this method has been used 

to increase eider nesting density (Clark 1968, Jonsson 2001).  In 2003, we used plywood nest 

shelters to provide individual nests with protection and shade.  Shelters consisted of a 46 by 

46 cm roof (with 12, 2.5 cm diameter holes to facilitate air flow), 25 cm high with 46 cm wide 

east and west facing walls (Figure A.1).  In all cases, shelters were entirely open to the north 

and south. 

Four regions of the island were used for study, each containing 30, 30, 28, and 12 

nests under observation.  Sheltered and control nests were randomly assigned in pairs, 

generally <10 m apart, so that they experienced similar sun exposure, temperature, humidity, 

and local nest density.  Nests containing eggs with similar initiation date and incubation stage 

(number of days after onset of incubation) were alternately assigned as treatment or control 

(1st pair: control-shelter; 2nd pair: shelter-control, and so on).  During shelter placement, we 

recorded clutch size and candled eggs to estimate incubation stage (Weller 1956).  Nests too 

early or late in incubation and those with nearby rocks that prevented shelter placement were 

excluded as either shelter or control nests. 

We were unable to obtain individual body weight at time of shelter placement because 

females trapped in early incubation frequently abandoned their nests in our preliminary trials,  
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Figure A.1.  An example of a common eider Somateria mollissima nest protected with a 
plywood shelter.  Shelters were placed over nests during early incubation on Mitivik Island, 
Nunavut, Canada, 2003. 
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as has been reported previously (Criscuolo 2001, Bolduc and Guillemette 2003b).  Therefore, 

we obtained weights and body measurements of eiders captured 10-15 days after shelter 

placement.  Shelters were placed and control nests assigned on 7-8 July, 2003.  Plots were re-

visited once within 2-4 days of shelter placement.  Shelters from abandoned nests were placed 

on other nests that 1) were nearest to those abandoned, 2) met previous criteria, and 3) were 

slightly later in incubation (at ~10 days of incubation).  Nests were not revisited until females 

were captured.  Analyses exclude nests abandoned due to shelter placement except where 

stated. 

 

Nest Temperatures 

We placed waterproof “Stowaway TidbiT® Temperature Loggers” (Onset Computer 

Corporation) immediately beside nests and recorded temperature at 15 minute intervals.  

TidbiTs® were attached using plastic cable ties to 7.6 cm screws and anchored into the 

ground at the south edge of nest bowls during shelter placement.  Loggers were positioned to 

ensure they would not be covered by nest down or incubating females, and were in contact 

with the rim of the nest bowl to allow for conduction (see Shine and Kearney 2001, 

Dzialowski 2005). 

 

Naturally-Occurring Nest Shelter 

Common eiders nest on the ground; typically in shallow depressions which they line with 

down feathers (hereafter, ‘nest bowls’).  In the Canadian Arctic, most nests are established in 

pre-existing nest bowls, while a few females construct their own (e.g., on sand beaches).  In 

many northern locations, nest bowls are well established and could reflect hundreds of years 
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of occupation (Cooch 1965, Jonsson 2001).  Existing nest bowls at this colony are re-used in 

different years and are easily identified prior to arrival by nesting females. 

Following hatch in 2001, physical characteristics were recorded for all nest bowls 

present within five long-term study plots (bowls used by nesting eiders n = 404; unused n = 

385) and at non-nest sites (n = 217) sampled systematically (Krebs 1999) in plots at 10 meter 

grid intervals.  Due to lack of tall vegetation (none > 8 cm), rocks provided the only direct 

overhead cover for nesting eiders at this colony.  Consequently, we recorded whether 

overhanging rocks provided direct overhead shelter at each site, and also the occurrence of 

rocks adjacent to nest bowls.  To evaluate presence/absence of direct overhead nest cover, an 

observer stood directly over each nest bowl (from 1 meter above bowl) and recorded if a 

round plate (diameter 20 cm, centered in nest bowl) was partially obstructed by overhead 

rock.  To document occurrence of rocks adjacent to nest bowls, one end of a meter-long stick 

was placed in the center of the nest bowl, oriented 45o above horizontal, and rotated through 

360o.  Rock structure was considered present if rock obstructed this rotation at any time.  For 

example, rock was recorded as being present to the north if stick movement was obstructed by 

rock between 337.5o and 22.5o. 

 

Statistical Methods 

Principal components analysis (PCA) was used to develop an index of female structural size 

using tarsus (length of the tarsometatarsus bone only), flattened wing, and total head-bill 

(length from the occipital ridge to the tip of the bill) lengths.  The first component accounted 

for 62% of the total original variance and described positive covariation among tarsus, wing, 

and head lengths (loadings of 0.53, 0.57, and 0.63, respectively).  We captured 65 birds (34 
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sheltered, 31 control).  Single morphological measurements were missing from two birds, so 

these measurements were estimated using the regression relationship between PC1 scores and 

body measurements.  Morphological measurements were missing entirely for two birds.  

Akaike’s Information Criterion adjusted for small sample size (AICc) was used to 

select models that best fit the data (Akaike 1985, Burnham and Anderson 2002).  Analysis of 

Covariance (ANCOVA, SAS PROC GLM, SAS Institute 1990) evaluated differences in 

female weight between treatments (group variable) while simultaneously controlling for 

effects of incubation stage and body size (covariates).  All 2-way interaction terms were 

included when developing the candidate model set.  Unbiased estimates of mean weight of 

control and sheltered females are given as least squares means ± SE (LSMEANS, SAS 

Institute 1990). 

Differences in daily maximum, minimum, and mean nest site temperatures between 

control and sheltered nests were evaluated using repeated measures Multivariate Analysis of 

Variance (MANOVA; SAS PROC GLM).  Treatment was the explanatory variable of 

interest, day was the repeated factor for each nest, and maximum, minimum, and mean daily 

temperatures were response variables.  An initial model considered effects due to treatment, 

day, and treatment*day interaction. 

Fisher’s exact test was used to compare differences in frequency of nest bowls having 

direct overhead cover from rocks at all nest bowls (occupied and unoccupied combined) 

versus non-nest sites.  In addition, differences in frequency and orientation of rock structure 

adjacent to nest bowls were evaluated using G-tests and Raleigh’s test for circular uniformity. 
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Results 

Nest Shelter Experiment 

Nests were observed 2-4 days after initial shelter placement; 25 hens with shelters abandoned 

their nests.  Clutch size of sheltered birds did not differ between those that abandoned and 

those that did not (G-test, G1 = 5.08, d f= 5, P = 0.41) but, as expected, abandonment may 

have been more likely to occur at nests disturbed earlier in incubation (Days incubating 5.8 ± 

3.5 SD abandoned versus 7.4 ± 2.1 SD accepted; t-test, t = 1.87, df = 48, P = 0.068). 

We captured 65 females (34 experimental, 31 control) in mid to late incubation.  Body 

weight was weakly related to size index (r2 = 0.136, n = 61, P = 0.004).  There were no 

differences in structural measures between treatment or control groups (tarsus, wing length, 

head-bill; t-tests, all Ps > 0.7).  There were also no differences in clutch size between 

treatment and control groups, either upon shelter placement or at capture (G-tests, Ps > 0.37).  

Incubation stage at time of shelter placement was approximately 2.5 days earlier for controls 

(7.2 ± 3.3 SD control versus 9.6 ± 2.6 SD sheltered; t-test, t = 3.34, df = 63, P = 0.001).  

Estimated nest initiation date was marginally advanced for sheltered hens (175.4 ± 3.3 SD 

sheltered versus 176.6 ± 3.5 SD control; t-test, t = 1.76, df = 63, P = 0.084).  Incubation stage 

did not differ between controls and sheltered nests at capture (21.7 ± 1.5 SD versus 21.7 ± 1.5 

SD, respectively; t-test, t = 0.17, df = 63, P = 0.87). 

 Fifteen candidate models were developed to assess the importance of sheltering nest 

sites (Treatment), Incubation Stage (Stage), and Body Size in explaining late incubation body 

weight.  The top five models (ΔAICc ≤ 4) all included Treatment (i.e., shelter), Stage, and 

Body Size (Table A.1).  Two of 5 also included the Stage*Treatment interaction, and 3 of 5 

included Stage*Body Size interaction.



 

 

 
 
Table A.1.  Ranking of models assessing the importance of sheltering nest sites (Treatment), incubation stage (Stage), and body size in 
explaining late-incubation body weight of common eider females captured on Mitivik Island, Nunavut, Canada, 2003.  Models are 
ranked using Akaike’s Information Criterion adjusted for sample size (AICc).  RSS = Residual Sum of Squares, n = number of females 
measured, K = number of parameters, ∆AICc = difference in AICc between model and the one with minimum AICc, Weight = Akaike 
weight. 
 
 
Modela RSS n K AICc ∆AICc Weight 
Treatment, Stage, Body Size, Stage*Body Size, Stage*Treatment 389524 63 7 581.35 0 0.368 
Treatment, Stage, Body Size, Stage*Body Size 415702 63 6 583.07 1.71 0.156 
Globalb 384747 63 8 583.11 1.76 0.153 
Treatment, Stage, Body Size, Stage*Treatment 420161 63 6 583.76 2.40 0.111 
Treatment, Stage, Body Size 442051 63 5 584.63 3.27 0.072 
 
a includes only models < 4 ∆AICc
b includes Treatment, Stage, Body Size and all two-way interactions 
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Based on these results, we conducted an analysis of covariance (ANCOVA) in which 

eider body weight was the dependent variable, treatment was a categorical variable, and body 

size and incubation stage were covariates (Treatment, Stage, Body Size, Stage*Treatment, 

Stage*Body Size).  After controlling for covariate effects, females with shelters (Least 

squares mean 1312.4 ± 14.2 SE grams)  were about 45g heavier than control females (1266.0 

± 15.4 SE grams) near the end of incubation (P = 0.033). 

The relationship between incubation stage and weight differed between treatment and control 

females (ANCOVA interaction, F1,57 = 3.83, P = 0.055).  Late incubation body weight 

declined with incubation stage among sheltered hens (Yt = 2082.5 (± 179.9 SE) – 35.7 (± 8.3 

SE), r2 = 0.35, n = 34, P < 0.001).  Control birds were lighter, but collectively their weights 

did not appear to decline as rapidly (Yc = 1460.5 (± 279.2 SE) – 9.3 (± 12.8 SE), r2 = 0.02, n = 

31, P = 0.48) (Figure A.2).  ANCOVA also indicated a significant interaction between 

Incubation Stage and Body Size (ANCOVA interaction, F1,57 = 4.48, P = 0.039).  To explore 

this interaction we combined both treatment and control birds and classified individuals into 

“large” (PC1 ≥ 0) and “small” (PC1 < 0) categories.  Late incubation body weight declined 

among small females (Ysm = 1923.0 (± 215.3 SE) – 30.4 (± 9.8 SE), r2 = 0.19, n = 37, P = 

0.004), but weights among large females did not show this trend (Ylg = 1531.4 (± 254.3 SE) – 

9.6 (± 11.6 SE), r2 = 0.01, n = 28, P = 0.43). 

 

Nest Temperatures 

Temperature data were obtained for 10 sheltered and 10 control nests where we 

captured females.  In 2 control nests and 1 sheltered nest, temperature loggers rarely (0.37%  

of observations) exceeded maximum recording temperature (~ 38oC) but when this occurred 
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Figure A.2.  Stage-specific weights of 65 incubating female common eiders Somateria 
mollissima nesting in human-made plywood shelters placed between 4 and 15 days incubation 
(filled triangles, solid line; n = 34) and at adjacent, unmanipulated sites (open circles, dashed 
line; n = 31).  Females were captured 10-15 days after shelter placement.  Work was 
conducted on Mitivik Island, Nunavut, Canada in 2003. 
 

Incubation Stage (days)

18 19 20 21 22 23 24 25

Fe
m

al
e 

W
ei

gh
t (

gr
am

s)

1000

1100

1200

1300

1400

1500

1600

 
 
 

 76



 

we used a value of 38oC.   There was no interaction effect for maximum, minimum, and daily 

mean temperatures in our initial MANOVA model (all Ps ≥ 0.16), so the interaction term was 

dropped from further analyses.  Birds in sheltered nests experienced more moderate 

environmental temperatures compared to controls; daily maximum and mean temperatures 

were lower in sheltered nests (F1,252 = 35.99, P < 0.0001 and F1,252 = 40.39, P < 0.0001, 

respectively) and daily minimum temperatures were higher in sheltered nests (F1,252 = 51.66, P 

< 0.0001; see Figure A.3 for example).  Mean daily maximum and mean temperatures of 

sheltered nests were cooler than controls by approximately 5.0oC (LS Means, 95% CI 3.3 to 

6.6) and 2.3oC (LS Means, 95% CI 1.6 to 3.0), respectively.  Mean daily minimum 

temperatures of sheltered nests were warmer than controls by approximately 1.1oC (LS 

Means, 95% CI 0.8 to 1.4). 

 

Naturally-Occurring Nest Shelter 

Although few sites of any type had naturally occurring overhead cover (5 of 217 non-nest 

sites; 4 of 787 nest bowls, occupied and unoccupied combined), non-nest sites were more 

likely than nest bowls to have overhead cover in 2001 (Fisher’s exact test, 2-tailed, P = 

0.026).  Furthermore, few occupied (2 of 404) or unoccupied nest bowls (2 of 383) had 

overhead rock cover.  However, eiders preferentially selected nest sites near rocks.  Nest 

bowls (used and unused combined) were more likely to be situated adjacent to rocks (≥ 1 

nearby rock detected) than non-nest sites (n = 787 and 217, respectively; G-test, G1 = 27.54, 

df = 1, P < 0.001).  Further, 42.6% of nest bowls (335 of 787; used and unused combined) had 

nearby adjacent rocks, compared to 23.5% (51 of 217) of non-nest sites.  Active nests were 

also more likely to have nearby rocks when compared with unused bowls (n = 404 and 383, 
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Figure A.3.  Mean hourly nest temperatures (oC ± SE; recorded at nest bowl edges July 15-19, 
2003) at two adjacent common eider Somateria mollissima nests (8.5 m apart) on Mitivik 
Island.  Unsheltered control hen (open circles) experienced higher daily maximum and mean 
temperatures, and lower daily minimum temperatures when compared to hen nesting under 
human-made plywood shelters (filled triangles).  This general pattern was observed 
experiment-wide (see results). 
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respectively; G-test, G1 = 5.28, df = 1, P = 0.021).  Specifically, 46.5% (188 of 404) of active 

nests had nearby adjacent rocks, compared to 38.6% (148 of 383) of unused nest bowls. 

Although eiders were more likely to select nest sites adjacent to rocks, no directional 

preference was detected when comparing the orientation of rock structure adjacent to active 

nests versus unused nest bowls (i.e., direction of nearby rocks in relation to each nest bowl; 

G-test, G1 = 7.88, df = 7, P = 0.34).  Furthermore, the orientation of rock structure was 

uniformly distributed among active nest bowls having nearby rock (Raleigh’s test for circular 

uniformity, z0.05,500 = 2.302, P > 0.10). 

 

Discussion 

Our experimental results are consistent with habitat-specific rates of weight loss in common 

eiders first reported by Kilpi and Lindström (1997).  As predicted, eiders nesting under 

shelters maintained better body condition during mid incubation.  The differences in weight 

we detected may be explained by the more moderate temperatures experienced by hens 

nesting under shelters.  Similar to Kim and Monaghan’s (2005) results, temperature data 

indicated that nest shelter moderated both hot and cold temperatures experienced by nesting 

females, often by 10oC or more (Figure A.3).  Eiders under shelters may have lost weight at a 

faster rate during late incubation than lighter control hens.  Perhaps control hens lost weight at 

faster rates earlier in incubation, and then responded to this by altering incubation behaviours 

which slowed their rate of weight loss later in incubation as has been observed among eiders 

previously (Bottitta 2001, Criscuolo et al. 2002). 

Disturbance of eiders during early incubation is known to induce nest abandonment 

(Criscuolo 2001, Bolduc and Guillemette 2003b), consistent with our observation that 
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abandonment may have been more likely to occur at nests disturbed earlier in incubation.  

Consequently, we were unable to weigh birds prior to shelter placement and could not directly 

assess if abandonment of some sheltered birds was related to their body condition (Criscuolo 

2001).  In other words, the pattern we observed could have been produced if only the best 

quality females had remained following shelter placement.  We presume abandonment 

occurred randomly and was not related to female quality for the following reasons.  Evidence 

from other seabirds (Hipfner 1997, Morbey and Ydenberg 2000, Arnold et al. 2004) and 

anatids (Erikstad and Tveraa 1995, Dalhaug et al. 1996, Lepage et al. 2000) suggest that 

timing of breeding and clutch size is frequently related to parental quality, and that late-

nesting birds are less successful than those that nest early.  There was no detectable difference 

in clutch size between birds that abandoned and those that did not, and both groups made 

similar nest site choices (i.e., similar nesting regions, nest habitat, local macroclimate, and 

nesting densities).  Moreover, had abandonment been more likely to occur in poor-condition 

birds, we would have expected to find differences in nest initiation date, clutch size, and body 

size between control and sheltered birds within our experiment (see Milne 1976, Erikstad and 

Tveraa 1995, Hanssen et al. 2002, Yoccoz et al. 2002, Hanssen et al. 2003a).  However, we 

detected no differences between any of the groups (see results), and have no reason to suspect 

that female quality differed between control and sheltered hens, or among sheltered hens that 

abandoned and those that did not. 

 

Nest Temperatures 

Operative temperature (Te) is a better measure of thermal environments experienced by birds, 

as it integrates convection (combined effect of air temperature and wind), radiation (solar and 
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thermal), and conduction (Bakken et al. 1985, see also Gloutney and Clark 1997).  

Taxidermic mounts and animal models have been developed to estimate avian Te (e.g. Fortin 

et al. 2000), but this approach would have been impractical at our remote field site.  We are 

not aware of any studies that test the utility of TidbiT® Loggers in estimating avian Te, but 

they produce sets of Te nearly identical to models that mimic North American lizards (Vitt 

and Sartorius 1999). 

Lower critical temperature of eiders from Svalbard was estimated in summer 

(Gabrielsen et al. 1991) and winter (Jenssen et al. 1989) at 7oC and 0oC, respectively.  In our 

study, 46.2% of temperatures beneath shelters were below 7oC compared with 43.5% at 

control nests.  Furthermore, 0.3% of temperatures recorded beneath shelters were below 0oC 

compared with 3.6% at control nests.  Energy expenditure also increases at higher 

temperatures (Conway and Martin 2000).  Jenssen et al. (1989) experimentally induced heat 

stress in 3 common eiders, and demonstrated that metabolic heat production increased 

drastically at 32oC.  1.8% of temperatures recorded beneath shelters were above 32oC 

compared with 3.2% at control nests.  Eiders at our colony were frequently observed 

“panting” on warm days, and we suggest that heat stress and dehydration may also be 

energetically costly to eiders.  Therefore, it is likely that eiders nesting under shelters gained 

an additional advantage by experiencing lower daily maximum temperatures.  Furthermore, 

increased ambient temperatures lead to more rapid dehydration, presumably increasing 

frequency of incubation breaks which are known to put eggs at greater predation risk (see 

Bottitta 2001). 
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Late Incubation Body Weight 

Fitness costs of reduced body condition during incubation may be significant; eiders in poor 

condition may have lower nest success (Bottitta et al. 2003, Hanssen et al. 2003b see also 

Erikstad and Tveraa 1995, Hanssen et al. 2003a), be more likely to abandon their ducklings in 

crèches to be guarded by other females (Bustnes et al. 2002, Hanssen et al. 2003c), and be less 

likely to breed in subsequent years (Yoccoz et al. 2002).  Small differences in late incubation 

body weight have been shown to influence probability of nest abandonment in other 

waterfowl (Blums et al. 1997).  Although Erikstad and Tveraa (1995) suggested that common 

eiders do not compensate for depletion of body reserves when mass reaches a critical point, 

recent evidence suggests that eiders are capable of modifying incubation behaviours to slow 

weight loss during late incubation (Criscuolo et al. 2001, Criscuolo et al. 2002, Bottitta et al. 

2003).  Typically, the daily rate of weight loss declines as common eider incubation 

progresses (Gabrielsen et al. 1991, Criscuolo et al. 2002) and, in late incubation, female eiders 

in poor condition may slow rate of weight loss by increasing water intake (Gabrielsen et al. 

1991), recess frequency (Bottitta 2001), or sleep frequency and duration (Criscuolo et al. 

2001).  In our study, control eiders weighed less than sheltered birds but appeared to have 

lower rates of daily weight loss late in incubation (Figure A.2), suggesting that control 

females may have employed strategies including sleep changes or increased water 

consumption to maintain body weight late in incubation.  Eiders in poor condition may also 

change incubation habits; eiders whose incubation was experimentally prolonged re-initiated 

feeding (Criscuolo et al. 2002), and increased frequency and duration of incubation recesses 

often to drink (Criscuolo et al. 2002, Bottitta et al. 2003).  Consequently, females whose 

incubation was experimentally extended lost weight at a slower rate than during their normal 
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incubation period.  Furthermore, manipulated females that were successful took fewer 

incubation breaks than unsuccessful ones, who likely lost their eggs to herring gulls Larus 

argentatus while away from the nest (Bottitta et al. 2003).  In this study, unsheltered eiders in 

poor condition may also have increased frequency and/or duration of incubation recesses, or 

abandoned their nests (Korschgen 1977, Criscuolo et al. 2002). 

 

Nest Concealment and Predator Community 

Despite demonstrating that temperatures were more moderate under shelters and that naturally 

occurring sheltered nest sites were available on the study island, few eiders (< 1%) nested at 

sites with direct overhead shelter.  Perhaps a trade-off exists for common eiders at this colony, 

in which sheltered sites offer microclimatic advantages to nesting eiders (Kilpi and Lindström  

1997, Figure A.3) but increase risk of female mortality or egg loss because it could be more 

difficult to detect and monitor predators from beneath sheltered sites.  Eiders are long-lived, 

and would be expected to sacrifice eggs or duckling care in order to prevent mortality and loss 

of future breeding opportunities in an effort to maximize lifetime reproductive success 

(Bustnes et al. 2002).  We would therefore predict that eiders would choose against concealed 

nest sites if they increased risk of adult mortality by “trapping” females at nest sites.  Nest 

cover has been shown to increase nest success in common eiders at breeding locations with 

few or no mammalian predators (Choate 1967, Milne and Reed 1974, Schmutz et al. 1983), 

but may decrease success on islands accessible to arctic fox (Alopex lagopus; Noel et al. 

2005).  Eiders nesting on islands with few mammalian predators in Maine and Nova Scotia 

also readily used artificial plastic and wooden nest shelters, which also increase nest success 

(Clark 1968, Woolaver 1997).  In contrast, eiders appear to avoid nest sites with artificial and 
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natural overhead cover where mammals are common nest predators (see Laurila 1989, Divoky 

and Suydam 1995, Noel et al. 2005).  We found eiders select sites with no direct overhead 

cover despite possible microclimatic (Kilpi and Lindström  1997, this paper) and concealment 

advantages (Choate 1967, Milne and Reed 1974, Noel et al 2005; but see Gerell 1985), 

suggesting that nest concealment may be costly to eiders and/or monitoring predator activity 

may be beneficial at this colony.  Herring gulls were the primary nest predator (K. Allard, in 

prep.); although continued observer presence in recent summers appears to have deterred their 

visitation to the colony, Arctic fox and polar bears Ursus maratimus are also known to visit 

the study island and prey upon eiders and their nests (P. Fast, pers. obs).  In contrast, Cooch 

(1965) reports common eiders nesting on nearby islands off southwest Baffin Island “selected 

sites surrounded by rock, or under an overhang, or, preferably, both” but doesn’t report 

mammalian predators on these islands.  If costs of nesting in sheltered habitats are lowered 

due to absence of mammalian predators, trade-offs between thermoregulation, concealment 

from predators, and visibility (Götmark et al. 1995) would be altered and could influence site 

choice patterns.  Our findings appear to reflect these trade-offs; eiders at our study site chose 

sites that provided some microclimatic advantages, but not to an extent where observation of 

their surroundings was compromised.  Further investigation into the trade-offs between 

microclimate, energy use by incubating birds, and predation risk would add greatly to our 

understanding of habitat choice trade-offs.  Furthermore, behavioural (e.g., nest attendance) 

and body composition data would aid in elucidating both our results and those of Kilpi and 

Lindström’s (1997). 
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