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ABSTRACT 

 

Wood, Jason C., M.Sc. University of Saskatchewan, Saskatoon, November 2012. 

An Agent-Based Simulation of Wheat Based Ethanol Plant Location Decisions for Saskatchewan. 

Supervisor: J.F. Nolan. 

 

First generation ethanol production has experienced rapid expansion but is now at a crossroads 

facing impending industry transformation. While Saskatchewan’s ethanol industry has benefited 

from demand and policy instruments that have guided substantial growth in recent years, 

changing policy and market dynamics present new challenges which are compelling the industry 

to adjust. This thesis examines three factors that are suspected to influence ethanol plant 

locational decisions. The development of an agent-based simulation model in this thesis will 

ascertain how transportation networks, market synergies, and subsidization influence location 

stability for an ethanol plant. The long term interaction of these factors is unknown, therefore do 

tradeoffs exist between these factors or is it conditional for all to be present?  

 

Modeling factors that affect location stability through an agent-based approach creates a dynamic 

framework to understand how location attributes impact an ethanol agent’s longevity. It was 

found that location stability is affected by an ethanol agent’s distance to both primary 

transportation networks as well as product markets. Surprisingly, distance to DDGS (dried 

distillers grain with solubles) markets, a low value by-product of ethanol production, has a 

profound effect on location stability.  

 

Policy instruments and industry subsidization are considered key ethanol development drivers 

and the surge in ethanol industry growth brought hopes of rural revitalization. In Saskatchewan, 

policy was developed to support small ethanol plants, those 25 Mmly (million litres per year) or 

smaller, aimed at increasing farmer investment and alternative markets for wheat. Measuring the 

effect of subsidization on location stability was fundamental to understanding how a post 

subsidized ethanol industry may look. The research found that subsidization of Saskatchewan’s 

ethanol industry dramatically affected economies of scale and location decisions, which left 

ethanol agents unable to compete in an increasingly competitive ethanol industry.  
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CHAPTER 1 

INTRODUCTION 

1.0 Introduction 

Ethanol, a denatured alcohol used as a gasoline additive for its oxygen and octane content, is 

currently blended into all gasoline in Canada. It is considered to be a viable yet sustainable 

substitute for gasoline. Due to this, its market price should track closely with gasoline prices, 

providing that demand and supply in these markets are in concordance (Eathington and Swenson, 

2007). However, to be a useful alternative to conventional gasoline ethanol should provide a net 

energy gain, hold environmental benefits, be economically competitive, and marketable in large 

enough quantities without affecting food supplies. To address the well-known food versus fuel 

debate and expand this industry, a number of ethanol production sources have emerged, 

including: biomass, cellulosic, wheat, milo (sorghum), corn, and municipal landfill waste. In 

Canada to date, ethanol is derived mostly from corn (73%), with wheat (17%), barley (3%), 

agricultural and forestry waste (7%) comprising the remainder of production (Viju, 2008).  

 

As of August 17, 2009 the Canadian Renewable Fuels Association (CRFA) listed seven ethanol 

plants using wheat as a source material for production (Canadian Renewable Fuels Association, 

August 17, 2009). Those plants are located in Western Canada. One is in Manitoba, five are 

found in Saskatchewan and one in Alberta. If the province of Saskatchewan is considered by 

itself, the five wheat based ethanol plants there produce a total of 342 million litres per year 

(Mmly). The ethanol plants in Saskatchewan require approximately 1,026,000 tonnes of wheat 

feedstock per year. By way of comparison, a 100 Mmly wheat ethanol production plant requires 

approximately 300,000 tonnes of feedstock or an estimated 250,000 feedstock production acres, 

and would consume about 700 acres worth of production per day (Natural Resources Canada, 

February 12, 2011). Extrapolating, the five Saskatchewan ethanol plants require approximately 

855,000 acres of farm land committed to wheat production to satisfy their current input demand.  

 

1.1 Development of an Ethanol Market 

There are a number of reasons for increasing the use of ethanol in fuel. These include restrictions 

on the use of methyl tertiary butyl ether (MTBE), high energy prices, reducing societal reliance 

on gasoline, social benefit of renewable fuels, gasoline alternatives, greater recognition of the 
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environmental consequences of fossil fuels, rising oil prices, concerns about petroleum supplies, 

increasing energy imports, and political instability in the Middle East where the majority of 

crude oil is produced for gasoline (Solomon et al., 2007; Hill et al., 2006). These factors, when 

combined with increasing gasoline quality requirements, evolving clean air regulations, and a 

ban on the only other oxygen-enhancing additive, MTBE, are creating continued growth in 

demand for fuel ethanol. For example, the contamination of both ground and surface water from 

MTBE provided an initial push for more recent fuel ethanol industry growth (Russell et al., 

2009).  

 

Low and Isserman (2009) conclude that ethanol production, feedstock premiums, additional 

feedstock production, and potential livestock production increases are four possible effects a new 

ethanol plant may have on the local economy. Given the similarities between corn and wheat 

ethanol production, S&T
2
 Consultants Inc. (2003) conclude that these findings would also 

provide similar impacts for a wheat ethanol plant, based on the caveat that location dependent 

analysis is required to confirm these impacts and profitability over time.  

 

The most noticeable and positive opportunity for ethanol development in Western Canada is in 

providing a new economy for rural areas, furthering the government’s desire for rural 

revitalization. The push for biofuels as an alternative energy source has revived the idea of rural 

revitalization and that rural areas may have a comparative advantage due to their access 

advantage to feedstock materials (Lambert et al., 2008). Both rural communities and farmers 

(producers) consider ethanol an attractive venture given its potential to offset rural out migration 

and unemployment, as it can provide sources of off-farm work and could increase farm income 

through backward linkages to local agricultural production (Lambert et al., 2008). New plants 

and plant extensions create new jobs, broaden the tax base of communities, and increase local 

incomes. For example, a 50 million gallon per year (mgy) ethanol plant employs approximately 

36 individuals while a 100 mgy plant can provide 46 full time jobs, however this does not 

include indirect (suppliers) and induced jobs (due to household spending), which can range from 

98 to 124 additional regional jobs (Eathington and Swenson, 2007).  
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Ethanol use is growing, driven mainly by petroleum markets and mandated blend levels. As 

surface and ground water contamination concerns were confirmed regarding MTBE, the demand 

for a safe antiknock
1
 agent intensified. Combining this event with an environmental push for 

clean and renewable burning fuels and political drive to reduce oil dependence on other countries 

led to the dramatic increase of ethanol production. Government programs offered industry 

support and many were aimed at reducing rural out migration with the hope of revitalizing rural 

communities. Research supporting job growth and investment in rural areas as a result of ethanol 

projects varies greatly but the end result appears to be positive for selected communities.  

 

1.2 Research Objective 

There is sparse research regarding the location of ethanol plants in the Canadian context and 

much of the current research revolves around the basic economics of plant operations. The 

Canadian industry uses a variety of feedstocks to produce ethanol with locations commonly 

found in rural areas. Location is pushed by a need to minimize transportation costs, and given the 

weight losing nature of the industry where large quantities of feedstock are required, firms will 

tend to locate near areas of production to minimize costs (Huang and Levinson, 2008). 

Locational effects must also consider changing transportation networks, policy direction, and 

synergies with end users. Given this, it is imperative that locations be optimally chosen based on 

sound research to avoid high expenses or premature plant shutdown. 

 

A simulated rural landscape has been developed in this research in order to generate insight into 

the interaction of multiple factors in plant location, as well as showing how a small change in a 

certain factor can dramatically affect locational decisions. In fact, the following analysis of the 

interaction between ethanol plants and the landscape has shown that initial considerations about 

the industry in this regard are not always correct. Agent-based simulations yield results that may 

not be uncovered using static economic analysis. It is these results that potentially hold unnoticed 

insights and solutions to key industry decisions. 

 

                                                 
1
 An antiknock agent is a gasoline additive designed for internal combustion engines to prevent early ignition of 

gasoline (engine knock). 
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1.3 Research question 

As the ethanol industry continues to mature, there are a number of barriers that will need to be 

overcome to ensure success and sustainability. These hurdles include market demand, policy, 

feedstock competition, and aging transportation infrastructure. How the current and future 

industry players respond and plan for these factors will have significant effects on the size and 

financial health of their operations.  

 

The following research seeks to uncover what factors influence ethanol plant location in the 

province of Saskatchewan, and whether those locations can remain stable overtime. Specifically, 

the following three primary locational factors are considered in this analysis: 

 transportation network 

o proximity to reliable and efficient transportation is essential for stable locations 

 market synergies 

o proximity to both ethanol and dried distillers grains with solubles (DDGS) 

markets is important  

 policy effects 

o current policy initiatives have predisposed the industry to smaller ethanol plants 

and limited economies of scale necessary for efficiency and competitiveness 

This thesis utilizes an agent-based simulation to reveal the importance and effects these factors 

have on ethanol plant locational decisions in this region. Due to the nature of the problem and the 

method of analysis, the potential for emergent or unanticipated results exists and such outcomes 

may play an important role in understanding the nature of a sustainable or stable ethanol plant 

location.  

 

1.4 Motivation for Study 

Agent-based modeling (ABM) is increasingly being utilized in the social sciences to understand 

the decision making process and interactions found in social systems. ABM opens the 

opportunity to understand how complex systems evolve through agent interaction and move 

dynamically towards equilibria. The dynamic economic assumption of change in the movement 

towards equilibrium contrasts traditional static economic assumption of uniformity at a specific 

equilibrium (Kuznets, 1930). Hilletofth et al. (2009) offer that ABM is a new paradigm 
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especially suited for complex and dynamic systems distributed in time and space. It is this 

characteristic that would seem well suited to identifying potentially stable locations for ethanol 

plants in the study region.  

 

Broadly, agent-based models and specifically the NetLogo© software used in this thesis have 

been utilized recently to study a variety of related issues. These include the analysis of optimal 

supply chain configurations (Kawa and Golinska, 2010), land use (Lechner et al., 2004), the use 

of seaport container terminals (Vidal and Huynh, 2010), and traffic congestion (Hirankitti and 

Krohkaw, 2007). Agent-based models are also gaining acceptance and have already contributed 

to related literature in agricultural economics. Research areas that have benefited include the 

study of regional structural change (Happe, 2004; Freeman, 2005; Stolniuk, 2008), agricultural 

policy impacts at the farm and regional scale (Happe et al., 2006), farmland auctions (Hailu and 

Thoyer, 2007; Arsenault, 2007), and technology diffusion or adoption patterns (Berger, 2001). 

However, as of this writing, almost no research using this methodology has been applied to study 

locational issues in the growing ethanol industry.  

 

Some of the growing literature on the ethanol industry rely upon linear programming methods to 

identify the optimal number, location, and size of cellulose ethanol plants in North Dakota 

(Taylor and Koo, 2010), while others use geographical information systems (GIS) software to 

determine the optimal placement of new ethanol plants based on feedstock availability within a 

geographic area (Eathington and Swenson, 2007). Others studies use traditional top down 

empirical analysis to study localized feasibility and economic impacts of ethanol plants (Low 

and Isserman, 2009; Herbst et al., 2003). In fact, spatial aspects of the ethanol industry have also 

been examined, including analysis of spatial pricing options on industry organization (Graubner 

et al., 2011 and Sarmiento and Wilson, 2007), market welfare impacts (Van Wart and Perrin, 

2009), as well as effects on local corn prices (Katchova, 2009). However, the inclusion and 

analysis of individual ethanol plant interactions within a simulated landscape in a situation where 

more than one stable equilibrium might exist has not yet been addressed to the knowledge of this 

author. 
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This thesis contributes to the ethanol related literature by extending the research on ethanol plant 

location in a situation where heterogeneous plants try to stabilize their location decisions over 

time. This work uses the NetLogo© software in a novel manner in order to develop a better 

understanding of the ethanol industry in the region, as well as assist with future planning issues. 

Since the model assumptions are based on information and decision parameters that reflect real 

world behavior, this research also provides an opportunity to simulate future spatial 

organizational structures in the industry as key parameters are varied. 

 

1.5 Thesis Overview 

The agent-based simulation that has been developed within this thesis is slightly different from 

other agent-based models of spatial or locational issues. In most of these simulations, the 

expectation is that the agents (in this case, ethanol plants) would gradually emerge on an initially 

empty landscape because of changing market conditions over time. Given the research question, 

it was more instructive to combine together a basic optimization framework within an agent-

based simulation. On one level, what this implies is that a standard locational optimization 

method like linear programming would have difficulty identifying solutions due to the scale of 

the problem under consideration. However, when optimization heuristics are linked with an 

agent-based simulation approach, it was discovered that finding good or stable solutions is more 

manageable.  

 

The nature of discovering what one would call ‘stable’ ethanol plant locations is not a simple 

optimization problem as any number of spatial interactions and associated consequences could 

generate more than one stable location set. During model operation, the landscape is initially 

populated with many ethanol plants that are gradually eliminated through simulated time by a 

number of effects. This process of elimination eventually leads to the identification of the most 

stable plant locations in the region or space under consideration. In fact, these stable locations or 

solutions represent multiple equilibria in the model. The spatial aspect of these identified stable 

locations will provide insight not only about the actual physical location of the ethanol plant, but 

also those local factors that lead to locational stability.  
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1.6 Thesis Organization 

This thesis is divided into seven chapters. Chapter One introduces the research issue and 

provides general background information on the ethanol industry. Current location, 

transportation, and ethanol industry organization literature is reviewed in Chapter Two, while 

Chapter Three discusses and reviews agent-based models and their application in the literature. 

Development of the agent-based simulation model, the underlying structure of the simulation 

environment and its construction within the NetLogo© software is described in Chapter Four. 

Chapter Five outlines parameter settings and initialization of the base location model, as well as 

a description of the counterfactual simulation. Chapter Six discusses the simulation results and 

how they inform the location question for potential future ethanol plants across a vast Western 

Canadian landscape. Lastly, Chapter Seven concludes by discussing study limitations as well as 

areas of further research.  
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CHAPTER 2 

Review of the Ethanol Industry 

2.0 Introduction 

The main factors driving the current growth in ethanol demand include policy objectives, clean 

air regulations, and methyl tert butyl ether restrictions. However, its primary use as an antiknock 

agent in gasoline leaves ethanol pricing tied to petroleum market pricing, thus creating 

considerable price volatility in the current ethanol market. Price volatility combined with typical 

market contracts of short duration (six to twelve months) can lead to financial uncertainty in 

ethanol production and a high likelihood of industry instability in this regard.  

 

These effects of price volatility can be mitigated if ethanol plants are able to take advantage of 

economies of scale. Traditionally, larger plants in this industry have been able to outperform 

smaller plants given their lower average costs and the ability to obtain a larger number of sales 

contracts. The latter aids in spreading risk, thereby, reducing the potential effects of price 

volatility. Given these obstacles, the ethanol industry continues to grow in Canada, but how these 

factors may influence future industry structure remains to be seen. 

 

2.1 Industry Organization 

Canada’s policy objectives for expanding the biofuel industry include reducing greenhouse gas 

emissions, raise and stabilize farm incomes by increasing the demand for farm commodities, and 

promote rural development and diversification by encouraging biofuel plants in rural 

communities (Le Roy and Klein, 2007). The recent growth in ethanol production has been driven 

by both small and large scale producers. Many of the small ethanol producers in Canada have 

entered the market using direct subsidies and policy objectives aimed at rural revitalization. 

Some of the small ethanol producers have also organized as cooperative or producer (farmer) 

owned ventures, but these plants are typically under 25 Mmly and thus fail to exploit economies 

of scale present in plants that typically produce over 100 Mmly (Olar et al., 2004).  

 

From 2005, a set of policy, environmental, and industry changes have allowed ethanol 

production to increase dramatically. Data obtained from the CRFA illustrates the rise of industry 

production capacity as shown in Figure 1. The dramatic increase in production capacity 
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coincides with provincial mandates, policy and subsidy programs, consumer demand, and 

anticipation of the federal renewable fuels strategy (Canadian Renewable Fuels Association, 

2010).  

 

Figure 1: Canadian Ethanol Production Capacity
2
 

 
 

 

The majority of new ethanol plants are standalone operations. In fact, very little vertical 

integration has been seen in the North American market. Price volatility in the ethanol market 

may keep some blenders and petroleum producers from backward integrating as margins are thin 

and financial risk is high (Low and Isserman, 2008; Chan and Reiner, 2011). Also, ethanol is 

only one of the many inputs in the production of gasoline, so based on economic analysis it may 

be inefficient for petroleum producers to invest in ethanol technology. Likewise, ethanol 

producers may find it ineffective to forward integrate given the high capital cost and market 

domination found in the petroleum refining market. But as the ethanol market continues to 

evolve it may move towards larger plants, more efficient technologies, vertically integrated 

companies, and along with consolidation could drive out local inefficient plants (Low and 

Isserman, 2008).  

 

2.2 Location Theory 

Rural areas typically have not supported extensive industrialization. Kilkenny (1998) suggests 

that four factors work against rural development: 1) transport costs to market; 2) economies of 

                                                 
2
 Canadian Renewable Fuels Association, Accessed August 17, 2009 and March 8, 2012; 

http://www.greenfuels.org/en.aspx. 
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scale; 3) product differentiation; and 4) positive general equilibrium feedback due to economies 

of agglomeration. However, her conclusions may not apply to all industries because standard 

spatial location theories such as those of Hotelling, von Thünen, and Weber offer evidence that 

under certain conditions, rural locations may actually be conducive to specific industries 

(Aguilar, 2009; Asami and Isard, 1989).  

 

The ethanol industry is typically classified as an input or supply oriented industry, where the 

total cost structure is dominated by a single input, so that locating near this dominant input is 

required to effectively minimize procurement costs (Lambert et al., 2008). But uncertainty over 

feedstock prices and its effects on variable cost raises the importance of electrical, water, and 

natural gas access, access to dried distillers grains with solubles markets, and provincial and 

federal incentives and policy in the Canadian case (Lambert et al., 2008; Gallagher et al., 2005; 

Kenkel and Holcomb, 2006).  

 

Ethanol plants by nature are idiosyncratic site-specific investments where the next best use is 

limited and may only be within the industry. Therefore, the need to identify stable locations is 

essential to efficient and profitable operations. Lambert et al. (2008) discuss locational factors 

that influence manufacturing firms and offer that given the numerous similarities between food 

production and grain-based ethanol production, previous food manufacturing location studies can 

provide some understanding about factors that affect location decisions of ethanol producers. In 

any case, proximity to product markets, infrastructure, and labour market characteristics are 

generally primary location determinants for food manufactures (Lambert et al., 2008).  

 

In 1929 Hotelling modeled firm location decisions as being uniformly distributed among 

demanders (consumers), permitting consumers to ultimately choose the firm that minimized their 

transportation costs (Huang and Levinson, 2008, Carlton and Perloff, 2005). Translated to the 

ethanol problem, it may be the case that an ethanol plant locates where it is centrally located 

among its dispersed primary input, thereby avoiding direct competition with other plants and also 

minimizing procurement costs. This allows the primary input supplier (farmers) to deliver to the 

ethanol plant or agent that minimizes delivery cost. However, in the absence of some form of 

vertical integration, input suppliers would prefer more than one ethanol plant to choose from to 
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make their deliveries, while ethanol plants would prefer minimal or no competition from other 

ethanol plants.  

 

Weber characterized location theory as a process whereby the plant or firm seeks to maximize 

profits through minimization of total transport costs (Emerson, 1973). Firms can then be 

classified based on location with respect to their input and output markets. In this light, Weber 

distinguished between two categories of products in a physical sense, weight gaining and weight 

losing. If a product is weight gaining then the raw materials procured weigh less than the final 

product produced so that the optimal plant location is close to the goods market. However, if the 

product is weight losing then the raw materials procured weigh more than the final product, so 

that the optimal location will be near to where the raw material is produced (Huang and 

Levinson, 2008). Thus the modern ethanol industry would be classified as weight losing given 

that the primary input, feedstock, is heavy, bulky, and required in large quantities. All else being 

equal, ethanol agents should tend to locate near areas of feedstock production in order to 

minimize procurement (transportation) costs.  

 

Finally, Krugman (1996) suggests that firms are geographically balanced based on a basic 

physics model, what he refers to as centripetal and centrifugal forces (Huang and Levinson, 

2008). Centripetal forces cause firms to cluster and include natural advantages to a specific site, 

backward (access to markets) and forward (access to products) linkages, and external economies 

such as knowledge or information spillovers. Centrifugal forces cause firms to scatter and 

include the need to reduce costs as part of any negative effects associated with industrial 

clustering, market competition, increased competition for primary inputs, and other negative 

spillovers (Huang and Levinson, 2008). Interpreted in this context, centrifugal forces are strong 

in the ethanol industry, with the large demand for diffuse feedstock driving firms to spread out, 

avoiding procurement area competition and urban areas. This leads to greater transactional and 

input costs, including labour and utilities, along with reduced access to final markets.  

 

Given these competing theories of industrial location, the majority of the literature on ethanol 

supports the notion that production costs are minimized when an ethanol plant locates near 

feedstock production areas as well as avoids procurement area competition. Ultimately, 
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transportation costs play a significant role in these location decisions and these must be balanced 

against other production costs to ensure a stable location is selected.  

 

2.3 Transportation Considerations 

Transportation and logistical efficiency in agriculture is a spatial and temporal issue that includes 

numerous ‘what if’ scenarios requiring model flexibility. Flexibility allows inclusion of 

necessary factors needed to solve these large and complex models. The ability to address both 

spatial and or temporal dimensions, in addition to capturing details of transport and marketing 

systems, is an important concern for transportation costing (Fuller and Shanmugham, 1978). 

Linear programming models typically use network structures particularly applicable to 

agricultural transportation and these have been successfully applied by the industry to identify 

minimum cost transportation solutions.  

 

The development of linear programming optimization models are constrained by the size and 

level of operational complexity that can be incorporated. The challenge to optimization models is 

that configuring the problem often goes beyond finding the optimal cost and quickly becomes 

complex as time and structural stability is considered (Akanle and Zhang, 2008). Akanle and 

Zhang (2008) state that the application of artificial intelligence and simulation methods to solve 

these problems can help avoid the pitfalls of the aforementioned analytical methods applied to 

complex and dynamic supply chains. In addition, the layers of, and flow of, materials and 

information across and within supply chains can be more realistically represented through 

simulations (Akanle and Zhang, 2008). This is an important consideration not fully addressed in 

many linear programming models of supply chains. Lastly, the heterogeneous nature of space 

means that transportation costs will vary over the landscape for an optimizing firm because their 

inputs and outputs must be transported at positive cost (Emerson, 1973; Kilkenny and Thisse, 

1999). The latter adds computational complexity and when combined with other location factors 

that must be considered by the firm, leads to simulation being a more efficient way to identify a 

solution for this type of multi-layered decision-making.  
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2.4 Policy and Welfare Implications 

Low and Isserman (2008) examine four ways in which an ethanol plant can directly affect a local 

or rural economy: 1) the production of ethanol which entails purchasing labour and other inputs 

locally; 2) paying a premium for feedstock which can increase income for landowners; 3) 

drawing additional land into feedstock production; and 4) encouraging increased cattle 

production. Plant location can also buttress the local tax base, grow or stabilize off-farm incomes 

by increasing demand for feedstock, and promote rural development and diversification (Le Roy 

and Klein, 2007).  

 

A recent study by Van Wart and Perrin (2009) indicates that regional welfare benefits from an 

ethanol plant will vary depending on feedstock densities and spatial proximity to feedlots and 

other ethanol plants. Van Wart and Perrin (2009) find that producers benefit very little from the 

location of an individual plant, as the plant is able to attract sufficient quantities of corn with a 

very small premium (0.3%). If an ethanol plant is able to locate in an area with high feedstock 

and feedlot densities and no competing ethanol plants, then that particular ethanol plant will 

maximize its own welfare benefit. This acknowledges access to federal, provincial, and 

municipal subsidies, but the use of government subsidies to promote the ethanol industry can 

also create less than optimal situations when not properly implemented.  

 

Freeze and Peters (1999) discuss the commercial viability of the ethanol industry, pointing out 

that a number of studies and opinions suggest that without government support the industry 

would not exist, and that the promise of environmental and community development benefits 

have been used to promote it. Hill et al. (2006) state that given prices and technology in 2005, 

ethanol was not cost competitive with petroleum-based fuel without the aid of subsidies. But as 

average petroleum prices rose above 2005 levels the cost competitiveness of ethanol increased, 

but it still remains profitable only due to large subsidies (Hill et al., 2006). Another important 

factor to consider is the social welfare effects of biofuels. The environmental costs of fossil and 

biofuel energy are not currently captured in market prices, so whether there is actually a net gain 

to society from ethanol use depends on both cost competitiveness and environmental costs (Hill 

et al., 2006).  
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Even though government intervention in markets is intended to increase overall social welfare, 

subsidization of the ethanol industry has created an environment in which it is not clear if this is 

the case. In fact, many of the current policies and subsidies used to support the biofuel industry 

are subject to change as they are considered actionable with respect to trade agreements, 

particularly under Part III of the World Trade Organization’s (WTO) Agreement on Subsidies 

and Countervailing Measures (Kerr and Loppacher, 2005). When combined with the current 

Canadian government mindset of spending reductions, there exists a very real potential for 

negative effects on both ethanol production and exports. While trade effects regarding ethanol 

import and export markets are beyond the scope of this thesis, it is another area that could 

potentially alter the industry organization. 

 

2.5 Pricing and Contract Options 

When purchasing feedstock, ethanol plants typically engage in one of two pricing strategies. 

These are known as mill pricing and discriminatory pricing. Mill pricing or free on board (FOB) 

pricing, sets a fixed price with the farmer for each unit of product delivered regardless of the 

incurred transportation costs. Discriminatory pricing or cost in freight (CIF) pricing, sets a pre-

determined price with the farmer at the point of supply, plus the estimated transportation costs 

that will be incurred (Noon et al., 2002). In spatial analysis the acknowledgement and use of mill 

or FOB pricing in the model is commonly accepted without further validation required (Van 

Wart and Perrin, 2009; Graubner et al., 2011) and within this thesis FOB pricing is the pricing 

strategy employed by the ethanol plants.  

 

The sale of ethanol usually follows one of two types of marketing arrangements. These are direct 

sales to customers or movements to a strategic location. Most ethanol producers contract out the 

sale of their ethanol to marketing firms. Typically, 90 to 95% of ethanol is sold under contracts 

of 6 to 12 months between the ethanol producer or marketing firms and the petroleum companies 

(Low and Isserman, 2009). Little ethanol is sold on the spot market and most contacts are a fixed 

price or tied to gasoline prices with neither practice being standard (Low and Isserman, 2009).  

 

Most blenders (buyers of ethanol) prefer to buy in large volumes of 50 to 180 million gallons 

(189 to 680 Mmly) and deal with a firm that produces over 500 million gallons per year (1,890 
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Mmly) (Dunn et al., 2005). Marketers work to reduce search, negotiation, and monitoring costs 

by consolidating ethanol production from a number of producers into lot sizes required by 

blenders, thereby providing contractual safeguards and reducing the number of transactions 

required by the blender. In the United States (US) there are approximately six buyers and six 

marketers of ethanol, and within these two groups each buyer and seller trades with one another 

(Dunn et al., 2005). Within the group, information regarding ethanol price is collectively robust 

(Dunn et al., 2005), however the arrangement carries the potential for collusion, a situation 

which could negatively affect both forward and backward linkages in the ethanol supply chain. 

The US ethanol market is comparatively more active than the Canadian ethanol market which is 

limited to a few buyers and sellers, but is expected to resemble the US market as it continues to 

grow (S&T
2
 Consultants Inc. and Meyers Norris Penny LLP., 2004).  

 

DDGS pricing and marketing is very similar with respect to the number of buyers and sellers, but 

is more localized (Dunn et al., 2005). Boaitey (2010) found long-run price similarities between 

corn and wheat distillers grains, and that the US corn market indirectly affects DDGS prices. 

Within the local DDGS markets, price volatility is based on supply and demand considerations 

given the inverse relationship between livestock density and DDGS prices. Current wheat DDGS 

supply in Western Canada is estimated at 389,000 metric tonnes while the potential market 

demand is estimated at two million metric tonnes (Boaitey, 2010). Therefore, imports play a 

large role in the Western Canadian DDGS market, specifically in the province of Alberta due to 

the large concentration of feedlots. Thus there exists a potential DDGS market in Alberta given 

its close proximity to Saskatchewan.  

 

2.6 Summary 

The ethanol industry continues to grow and meet demand based on mandated use in gasoline, as 

well as environmental policy objectives, rural revitalization, and consumer demand. These 

factors combined with federal, provincial, and municipal subsidies in Canada have created 

substantial growth since 2005. However, this growth may not be sustainable given that 

economies of scale are not being realized in a number of ethanol operations. Potential changes or 

even an end to subsidies may force a number of small ethanol producers from the market place 
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as competitive forces start to favour those with lower operating costs realized through a 

combination of good location choice and economies of scale.  

 

Spatial economic theory implies that input or supply oriented industries should locate near the 

source of their primary input. However, this solution may not be ideal in all situations as 

particular rural locations can limit access to efficient transportation, viable labour markets, and 

access to sufficient utility services. Various optimization models have been used to study the 

ethanol industry and some have found that current plant locations may not be sustainable or 

optimal given their lack of transportation access or high operating costs. Combining these factors 

with the propensity for ethanol buyers to reduce their search, negotiation, and transaction costs 

through the purchase of large long term contracts from high volume sellers may limit market 

access for small ethanol producers. Clearly the industry is at a crossroads. This research seeks to 

identify the most critical factors that will help the industry improve location decisions as the 

industry matures in Canada.  
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CHAPTER 3 

Agent-Based Modeling - Description and Literature Review 

3.0 Introduction 

Traditional economic research typically relies on static analysis of endogenous variables at a 

single equilibrium point in time, and usually assumes as well that the parameters do not change. 

Under this set of assumptions along with individual homogeneity, model parameters should 

generate the same equilibrium every period (Binger and Hoffman, 1998). Comparative static 

analysis allows economic change to be evaluated, but this only compares the change between 

two equilibrium points of an economic variable, given the change in one parameter (Binger and 

Hoffman, 1998). These standard methods do not offer any insight to understand how various 

potentially heterogeneous factors interact simultaneously to attain stability over time. Recently, 

this issue has been addressed by agent-based simulation models. These models are now used 

across physical, biological, social, and management sciences (Macal and North, 2010) and while 

these models are still relatively new to the science of economics, their use and recognition is 

increasing. 

 

Bonabeau (2002) identifies three key benefits stemming from agent-based models over other 

modeling techniques: 1) ABM captures emergent phenomena that result from the interactions of 

individual entities; 2) ABM provides a natural description of a system, bringing a model 

composed of behavioural entities closer to reality; and 3) ABM is flexible in the ability to change 

the level of aggregation and description of agents within a single model, allowing easy modeling 

of multiple dimensions. These advantages work to overcome the simplifying assumptions found 

in many traditional economic models, allowing standard assumptions from classical economics 

to be relaxed so that transient, non-equilibrium states encountered along the way can be 

investigated (Macal and North, 2010). And with these simulations, once the initial attributes of 

the agents and decision rules are in place the modeler no longer interferes with the model and 

allows it to evolve over time (Tesfatsion, 2002). 

 

3.1 What is Agent-Based Modeling and Simulation? 

Gilbert (2008) defines agent-based modeling as a computational method that enables researchers 

to create, analyze, and experiment with simulation models comprised of agents that interact 
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within an environment. The use of computer programmed models allow a simplified 

representation of reality to be constructed where the computer program and code represents the 

processes of that reality (Gilbert, 2008). Within these models, each agent individually assesses its 

own situation and makes decisions based on the programmed rules governing behavior. From 

these decisions, aggregate behaviour begins to emerge in the system coupled with information 

about the dynamic interactions taking place as the model attempts to emulate the real world 

being considered (Bonabeau, 2002). The interaction of in-silico
3
 agents within the simulated 

environment allows information to be transferred from one agent to another, enabling learning 

processes and providing insight into behavioural aspects of the agents when individual 

heterogeneity, incomplete information, and bounded rationality are present. These are the main 

reasons that computational agent-based simulation is making strides in the field of behavioral 

and applied economics. 

 

The use of agent-based modeling and simulation (ABMS) can refer to both dynamic and time 

dependent ABM processes but also includes general numerical simulations that are designed 

mostly for optimization purposes (Macal and North, 2010). To date, ABMs have been applied in 

urban location models, opinion dynamics, consumer behaviour, industrial networks, supply chain 

management, electricity markets, and participative and companion modeling (Gilbert, 2008). The 

bottom-up (or individually-based) approach of ABM allows the observed aggregate behaviour to 

be generated by the interactions of the individual agents that comprise the model. This contrasts 

with the top down approach taken by traditional economic models, which rely on broadly placed 

high-level rules within the economic system (Miller and Page, 2007). The agent-based 

simulation methodology provides an effective way to observe and explore the dynamics, 

heterogeneity, and interacting components of economic systems. Axelrod (1997) describes 

aggregation in these models as the organization of a system into patterns bringing highly 

compatible elements together and pushing less compatible elements apart. It is the actions and 

consequences of individual agents that can lead to unforeseen or complex macro-level behaviour 

or aggregate interaction within these models (Berger, 2001).  

                                                 
3
 The use of a computer simulated or virtual environment to study behaviours of interest. See: Francesco, Luna and 

Perrone, Alessandro. (2002). Agent-Based Methods in Economics and Finance: Simulations in Swarm. Kluwer 

Academic Publishers.  
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3.1.1 Agents 

Typically agent-based simulations are most applicable when: 1) agent interaction can 

dramatically alter the behaviour of another agent(s), hence interactions are complex, nonlinear, 

discontinuous, or discrete; 2) positions of economic agents are not fixed and space is germane to 

the model; 3) there is a heterogeneous agent population; 4) the interaction topology is 

heterogeneous and complex; and 5) the agents learn and adapt, creating ever more complex 

behaviour (Bonabeau, 2002). Specifically, Macal and North (2010) describe three elements of a 

typical agent-based model: 1) a particular set of agents with defined attributes and behaviours; 2) 

methods of interaction and relationships between the agents; and 3) a simulated environment 

within which the agents interact.    

 

Gilbert (2008) describes agents as characteristically endowed with perception, performance, 

memory, and policy, all of which dictate how they will interact with their environment while 

providing capacity to decide future actions based on past experiences. The computational agents 

that are part of a typical ABM generally possess features of autonomy, social ability, reactivity, 

and proactivity. These features allow them to complete their programmed actions, interact with 

other agents, react appropriately to environmental stimuli, and also to pursue goals of their own 

initiative (Gilbert, 2008). However, other than autonomy, others argue that no universal 

agreement exists within the literature regarding the precise definition of an agent in this context 

(Macal and North, 2010).  

 

3.1.1.1 Complexity 

Traditional economic models seek stable analytical solutions which minimize mathematical 

complexity and potentially ignore quasi-equilibrium solutions. Such top down approaches are 

typically linear (Durlauf, 1998), based on fixed decision rules (Tesfatsion, 2002), and bounded 

by assumptions where the primary interest is long run equilibrium using representative, 

completely rational, and homogeneous agents (Macal and North, 2010). In fact, these constraints 

are required to ensure analytical tractability (Macal and North, 2010) and to provide a stable 

equilibrium solution. However, the ease of computing stable equilibrium solutions in this case 

overlooks quasi-equilibrium states and the potential impact that short run decisions and shocks 

can have on long run or stable (if actually achievable) equilibrium states. Assumptions used for 
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top down analytical techniques often predict outcomes that only hold for special cases, while 

others argue that the inclusion of spatial considerations with emergent outcomes cannot be 

solved analytically nor for a unique equilibrium in almost all cases (Parker et al., 2003).  

 

Modeling complex systems often requires flexibility in design and experimental execution, 

highlighting the advantages of simulation models compared to closed form analytical 

equilibrium models (Parker et al., 2003). However this flexibility requires caution when 

developing model assumptions. The ability to relax and fashion assumptions specific to the 

problem is a stark contrast to standard top down approaches that require consistency between 

micro-and macro-level theory, hence additional care is required on the part of the agent-based 

modeler. Happe (2004) states a possible guideline for making agent-based modeling assumptions 

is that they be well founded in theory, justified, reasonable, and documented. Following these 

guidelines will lend credibility to both the model and results. 

 

Accounting for system complexity and assessing its potential effects on economic models 

requires an alternative methodological approach. Many authors argue that a bottom up approach, 

a characteristic of agent-based models, is an efficient way to model complex systems. Inherent 

complexity often exhibits recognizable patterns of organization across spatial and temporal 

scales (Parker et al., 2003). Interdependencies, heterogeneity, and nested hierarchies between 

agents and their environment also structurally characterize these systems (Parker et al., 2003). 

More formally, Durlauf (1998) defines a system to be complex when it exhibits some type of 

order as a result of the interactions of many heterogeneous agents.  

 

3.1.1.2 Emergence 

By definition, the phenomenon of emergence is the consequence of micro-level agent 

interactions that are not readily predictable a priori. Parker et al. (2003) describe emergence as 

the “aggregate outcomes that cannot be predicted by examining the elements of a system in 

isolation” (p. 323). Emergent behaviours and properties in this literature are often surprising to 

the researcher as they are not anticipated; emergence frequently results from generated agent 

interactions within the model that were not directly programmed as agent behaviours (Durlauf, 

1998; Gilbert and Troitzsch, 2005; North and Macal, 2007).  



21 

 

 

Emergence may also result from endogenous change, a property known as self-organization 

where the individual parts of the system interact to produce structures without external influence 

(Happe, 2004). The new structures may cause small or large deviations, such as a change in path 

dependence. As defined, path dependence is determined by historical factors and essentially its 

existence locks a system into a particular steady state or development path (Durlauf, 1998; 

Happe, 2004). But path dependence can be altered by changes in innovation or policy leading to 

system reorganization, of which both innovation and policy have the potential to dramatically 

affect the future ethanol industry. Thus analyzing potential scenarios through agent-based 

modeling could assist public and private groups to successfully navigate potential future industry 

changes. 

 

3.1.1.3 Agent Heterogeneity 

Traditionally a typical ‘agent’ in economic models is assumed to be representative of all 

individuals, but the assumption of homogeneity limits the ability of the model to generate 

important but abstract interactions as well as assess their effect on the economic system as a 

whole. Further, the simplifying assumption of agent homogeneity limits behavioural variability, 

leading to predictable macro-level behaviour that renders these models analytically tractable. In 

fact, the inclusion of heterogeneity within traditional economic models makes finding analytical 

solutions difficult (Parker et al., 2003). Relevant to this research, accounting for spatial 

considerations has been proven by some authors to be analytically intractable (Graubner et al., 

2011 (b)).  

 

Overall, the importance of modeling heterogeneous economic agents has gained attention in the 

economics literature. In the mid-1990s, estimating statistical parameters for individual agents in 

models became popular (Chen, 2012) while other developments began to consider the empirical 

significance of heterogeneous agents (Tesfatsion, 2000; Chen, 2012). Specific variance in 

experience, values, ability, and resources may be present in agents, and significant heterogeneity 

may exist in agents, the environment, as well as space and time (Parker et al., 2003). The 

recognition of heterogeneity and local interactions in economic systems is expanding the area of 
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computational economics, encouraging new methods of analysis and increasing our 

understanding of individual and group behaviour caused by and within economic interactions.  

 

3.1.1.4 Spatial Factors 

The consideration of spatial and temporal aspects of economic systems is fundamentally 

important as time only moves forward (i.e. path dependence) and it is physically impossible for 

economic agents to be in two places at the same time. The spatial dimension of the research 

question relates location within a geographical distribution, the latter specifically concerned with 

access to feedstock, transportation networks, infrastructure, and final markets (Huang et al., 

2010). Biofuel production costs related to feedstock, ethanol production, and transport are 

interdependent. Considering the entire supply chain during plant site analysis is the correct 

method of analysis, but this aspect is not widely adopted in the renewable energy planning 

literature due to tractability (Huang et al., 2010). In addition, the temporal dimension of the 

problem considers the long term planning of the biofuel system related to system transition and 

the effects that plant expansion over time will have on the ethanol production and distribution 

infrastructure (Huang et al., 2010).  

 

In this system context, the term topology describes who transfers information to whom (Macal 

and North, 2010). Considering topology dynamics during the plant location planning process is 

likely to generate future system stability or at least mitigate the effects of transition states. 

Finding overall system effectiveness in this context requires consideration of the dynamics of 

system evolution on topology during planning, a situation that renders the conventional time-

independent snapshot method of analysis lacking (Huang et al., 2010).  

 

In the context of this research, spatial considerations are important for ethanol producers. 

Competition for feedstock occurs within a plants’ procurement area. Input costs are likely to 

increase over time and space as well, since firms will offer higher prices for scarce resources or 

look farther afield to meet demand requirements. This process runs parallel to feedstock 

production densities, and as they increase so will the tendency for firms to locate. However, a 

fundamental tradeoff exists in that firms can locate in less dense production areas where they 

will face higher procurement costs, but avoid price competition (Graubner et al., 2011). 
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Ultimately, the explicit inclusion of space when modeling such agricultural systems should be 

carefully considered, given the potential negative consequences of ignoring it. On a practical 

level, some argue that firms with similar strategies that choose to ignore this will find it harder to 

maintain market share and profitability as competition for critical resources increases (Ross and 

Westgren, 2009).  

 

3.2 Relevant Applications of Computational Economics 

Versions of agent-based simulation models have been used to investigate social phenomena in 

the fields of economics, sociology, anthropology, and cognitive science (Macal and North, 

2010). In turn, agricultural economists have long recognized the importance of space ever since 

the work of von Thünen and Ricardo (Runge, 2006). There has been a more recent realization of 

the potential agent-based models can play in understanding dependencies between individual and 

collective behaviours (Happe, 2004). The field of supply chain management has made great 

strides in developing and employing agent-based approaches to the problems of location and 

spatial interdependence. Applications of supply chain management in this regard will help shed 

light on the transfer of not only the main raw material feedstock, but also ethanol and how these 

movements affect location decisions within defined transportation corridors and market 

locations.  

 

Supply chain management research uses agent-based models on a number of platforms to gain 

insight into complex factors such as clustering, information flows, and optimal spatial 

configuration. For example, Huang and Levinson (2009) investigate retail location in a market of 

two complementary goods and find that retailers of complementary goods tend to co-locate at 

supplier sites to reduce transportation costs while trying to avoid direct competition. This also 

leads to an increased customer base since consumers also consider transportation costs of having 

to buy both complementary goods (Huang and Levinson, 2009). Gjerdrum et al. (2001) develop 

a combined optimization and agent-based approach to determine the optimal manufacturing 

schedule of each factory in a supply chain based on the decisions being made by other agents 

within the system. Their focus was to investigate various inventory replenishment strategies 

characterized by different control parameters with the objective to reduce operating costs while 

maintaining a high level of customer order fulfillment. Their findings reveal a combination of 
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order lead time along with reorder point and quantity affects the use of external orders and 

system operation in the supply chain. Akanle and Zhang (2008) propose an approach that can 

cope with future customer demand while optimizing the configuration of the dynamic supply 

chain. Their simplified example found that differing resource combinations can be optimized for 

individual orders and that group orders can be clustered to create balance between various 

demands. 

 

Optimal configuration of modern supply chains strives to increase efficiency while reducing 

system costs. These are but a sampling of the relevant agent-based studies available, but they 

show the importance of simulation analysis and how it can be applied in a number of areas to 

increase our understanding of economic interactions.  

 

Agent-based models within the field of agricultural economics cover topics like the evolution of 

land-use decisions; evaluating agricultural value chains and the effects of agent interaction on 

system and firm performance; measuring potential structural change in farming and the effects of 

land scarcity, scale efficiencies, and policy impacts; and conducting adaptive ecosystem 

management measuring how land values and crop returns interact to determine land investment 

or disinvestment decisions (Nolan et al., 2009).  

 

Within the emerging biofuel industry, agent-based model development is growing with a number 

of studies coming out. Although ongoing, Scheffran et al. (2007) have developed an agent-based 

model to understand the optimal spatial arrangement of crops (both food and fuel) in the state of 

Illinois. Interestingly, their future work will include the effects of subsidies, fluctuating 

transportation costs and crop demands, and how new ethanol production facilities impact the 

industry.  

 

Graubner et al. (2011) develop an agent-based simulation to simultaneously identify an ethanol 

producer’s location as well as its price strategy in a spatial input market. Traditionally either 

location or price is considered endogenous but the authors allow both to be endogenous under a 

number of scenarios. They find that market structure, transport costs, and border effects all 

influence the degree of spatial competition.   
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With respect to other related ethanol industry studies that rely on alternative computational 

techniques, Taylor and Koo (2010) use a heuristic approach in combination with a mathematical 

optimization model to determine the optimal size, number, and location of biomass plants in 

North Dakota. While their model does account for spatial access to inputs and transportation it 

does not allow costs to vary between regions or for time to affect the optimal number of plants.  

 

Eathington and Swenson (2007) employ geographical information system software to locate 

potential ethanol plant locations in the state of Iowa. Locations are constrained by the existing 

transportation network, corn production, and competing uses for corn. Their approach highlights 

the importance of space when identifying stable ethanol plant locations and that there are clear 

and knowable limits to the size and distribution of the industry (Eathington and Swenson, 2007).  

 

Finally, Huang et al. (2010) built a multistage mixed integer linear program model that includes 

spatial and temporal dimensions to minimize total system cost throughout the planning horizon 

for bioethanol in California. They find that full chain optimization strategy is required to 

understand the many tradeoffs involved in both temporal and spatial dimensions.  

 

The above references highlight the increasing role computational methods are taking in 

understanding the spatial nature of agricultural industries and markets. Consideration of the 

entire ethanol supply chain along with spatial and temporal effects on location and firm 

operations should prove beneficial to optimizing linkages, anticipating future events, and 

planning appropriate responses in this growing industry.  

 

3.3 Challenges and Limitations 

Although the use of computational agent-based models continues to be developed and applied in 

economic research, a number of issues must still be addressed before the method will be 

considered in the mainstream of economic methodology. Foremost, the irreducibility of 

emergent properties is a major issue in developing techniques to understand how system 

components and model outcomes are related. Until sorted, this ambiguity will certainly affect 

acceptance in the broader scientific community (Parker et al., 2003; Heckbert, 2009). On a 
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practical level, the very nature of modeling complex economic systems poses unique challenges 

and limitations regarding model communication and data needs, as well as model calibration, 

verification, and validation (Nolan et al., 2009). These issues will be sorted eventually, but the 

newness of the method means that research conduct and standards still vary widely.   

 

3.3.1 Model Communication 

Agent-based models use computer software and often require significant programming efforts. 

Similar to the situation 50 years ago with the field of econometrics, this situation leads to a 

number of difficulties in fostering acceptance. First, learning and understanding a modern object-

oriented computer programming language can be a significant barrier to entry for many social 

science researchers; second, a reliance on heuristics rather than formal mathematical 

relationships challenges the author to concisely communicate model rules and mechanisms 

(Nolan et al., 2009); and lastly, the space requirements to document and explain model rules and 

mechanisms is substantial but a costly endeavor for scientific journal editors (Parker et al., 

2003). Therefore, defining the experimental frame that will guide research efforts within the 

spatial, temporal, and institutional system under study along with the degree of abstraction and 

endogenous factors (Parker et al., 2003) must be as precise as possible to ensure efficient 

communication. To this end, development of a common language that is standard and 

comprehensive for ABMs (Parker et al., 2003; Nolan et al., 2009) such as the Unified Modeling 

Language may help alleviate the current communication gap allowing cross-fertilization and 

comparisons between projects (Parker et al., 2003) where current custom in much of economics 

dictates the inclusion of formal mathematical models (Nolan et al., 2009).  

 

3.3.2 Data Needs 

A direct relationship exists between the number of micro simulations and data requirements in 

agent-based models. In order to parameterize decisions in agent-based models, fine-resolution 

individual data is generally required but this can lead to confidentiality concerns (Parker et al., 

2003) as well as potential confusion around model technique and theory application. Therefore, 

while computing power has advanced along with sophisticated analysis tools, there continues to 

be a lag in developing methods that link models to data (Parker et al., 2003). Overall, to ensure 

success, data requirements in these models should be identified based on model design. Once 
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data that meets these requirements has been identified, it should be evaluated and a decision 

made whether to accept it as is, or if further data refinement is required (North and Macal, 2007).  

 

3.3.3 Calibration, Verification, and Validation 

If available, calibration of model parameters can be done using parameter estimates from real 

world cases (North and Macal, 2007). However, the flexibility of agent-based models can make 

calibration difficult given the number of plausible parameters, leaving wide parameter ranges 

difficult to restrict based on empirical data (Heckbert, 2009). Agent-based models can be left 

with excessive degrees of freedom as well as the possibility that the model may reflect the 

modeler’s specific perspective rather than a broader understanding of the specific interests, 

beliefs, and scales of perception (Heckbert, 2009).  

 

Verification tests the model to ensure it works as intended, both conceptually and technically 

(Parker et al., 2003; Happe, 2004; North and Macal, 2007; and Nolan et al., 2009). This process 

strikes a balance between theory and data which reduces the associated flexibility concerns and 

evaluates the structure and rules employed in the simulation (Parker et al., 2003). Varying model 

parameters and configurations ensures the model does not contain programming errors, 

oversights, or bugs, ensures algorithms are properly implemented, and that incremental input 

changes are justifiable against model outputs (Parker et al., 2003; North and Macal, 2007).  

 

Validation tests how well model outputs compare to real world data or represent real system 

behaviours (Parker et al., 2003; Happe, 2004; North and Macal, 2007; and Nolan et al., 2009). 

Agent-based models are most frequently associated with situations of mathematical complexity 

and non-linear relationships, two factors that increase validation difficulty. However, these 

factors do not serve as excuses for any results that cannot be explained (Parker et al., 2003; 

Happe, 2004). So while there is no standard validation procedure in the simulation literature, 

Happe (2004) suggests comparing outcomes to a number of benchmarks. Alternatively, North 

and Macal (2007) suggest that if the model works as intended by addressing the intended 

problem and provides accurate information about the system being modeled, then the validation 

process has been successful.  
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3.4 NetLogo© Simulation Software 

NetLogo© is a programmable multi-agent modeling language that was developed to simulate 

natural and social phenomena. It is particularly well suited to modeling complex systems that 

evolve over time (Wilensky, 1999). It is a flexible modeling medium that has become widely 

accepted with applications in both educational and research settings (Lechner et al., 2004). It was 

originally developed and is currently upgraded by the Center for Connected Learning and 

Computer-Based Modeling at Northwestern University.  

 

The NetLogo© platform allows modelers to concurrently program hundreds or thousands of 

agents independently with their own user defined variables, allowing micro-level behaviours and 

macro-level patterns to be observed and explored as they emerge from the multitude of 

simultaneous agent interactions (Wilensky, 1999; Sakellariou et al., 2008). Formally, NetLogo© 

is comprised of four classes of agents – known as ‘patches’, ‘turtles’, ‘links’, and ‘the observer’ 

(Wilensky, 1999). Turtles are mobile agents that navigate and interact within the landscape or 

artificial world. In contrast, patches are stationary and divide a landscape into a spatial or 

geographic grid over which the turtles move. Links are agents that connect turtles, while the 

observer, who does not have a physical location, oversees the programmed system and gives 

instructions to the agents (turtles, patches, and links; Wilensky, 1999). The agent-based 

simulation presented in this thesis includes individual farmers and ethanol plants, represented by 

the turtle agents. Agricultural land used for crop production is represented by patches. Other 

patches include transportation and utility networks. The observer represents the various 

institutions and administers system activities such as market mechanisms, government policy 

changes, and financial constraints. Lastly, it must be noted that links are not incorporated since 

the turtles programmed within the simulation are considered to be independent of one another. 

 

3.4.1 NetLogo© Limitations 

While there are many benefits to using NetLogo© to conduct simulation research, currently the 

software has specific limitations that can prevent accurate simulation of really large or highly 

complex models. For example, the NetLogo© engine design is single-threaded, allowing only 

one task to be completed at a time (Tissue and Wilensky, 2004). In addition, when turtles receive 

a command, the single-thread means that only one move can take place at a time. Thus, turtle 
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agents do not actually move simultaneously, like they would in many real economic 

environments (Tissue and Wilensky, 2004). To compensate for these issues, the NetLogo© 

engine moves from agent to agent after each of them has performed some minimal amount of its 

programmed action, called a turn. This process is called context switching and means that overall 

model behaviour remains deterministic because the timing of context switching is also 

deterministic (Tisue and Wilensky, 2004). While the model runs, visually the illusion of 

simultaneous action or resolution is present but only because the visual interface is updated after 

all agents have completed their turn. As an example, when all turtles in a simulation are asked to 

move 10 steps forward, in Netlogo© all turtles effectively move one step at time which prevents 

any one turtle from gaining an unfair advantage through the full turn.  

 

Concurrency also affects the elemental inputs from the user interface, which when enacted can 

initiate code execution. When an input is received from the user interface, a ‘job’ is created and 

submitted to the NetLogo© engine. Since a job represents a thread or process, NetLogo© must 

choose and switch between the agents within a job, a process driven by its single-thread design 

(Tissue and Wilensky, 2004). Specifically, the coding rule for jobs is to switch from job to job 

once every agent in the first job has had a turn (Tissue and Wilensky, 2004). On a design level, 

these issues continue to be an active area of concern within NetLogo© and work continues to 

refine the software into a more realistic modeling environment. 

 

3.5 Summary 

Since the early 1960s, agricultural economists have recognized that many agricultural systems 

are actually complex dynamic systems in a mathematical sense (Happe, 2004). To this end, 

computational simulation and agent-based models are increasingly being used to study and 

understand how variables interact and evolve within these complex agricultural systems, thus 

offering alternative insights when compared to traditional static models. Through the use of 

individual interacting agents, the effects of individual heterogeneity, incomplete information, and 

bounded rationality within an economic system can be better understood while buttressing our 

understanding of complexity, emergence, and path dependence in economic systems. Modeling 

aspects such as calibration, verification, and validation still need standardization so as to increase 

acceptance in the broader economic research community. A first step towards acceptance is 
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developing a framework to design, test, and analyze bottom up agent-based models which are 

justifiable while emphasizing the nature of the results.  

 

Development and application of agent-based models through more user friendly software such as 

NetLogo© is growing. The ability to independently program numerous individual agents and 

examine their interactions allows a progression from micro-level behaviour to macro-level 

patterns to be explored as part of the simulation environment. Model limitations in the software 

are continually being addressed to improve NetLogo’s© overall simulation environment.  
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CHAPTER 4 

The Simulation Model 

4.0 Introduction 

This chapter outlines and discusses the conceptual model underlying this agent-based simulation 

of ethanol plant location. An overview of the model and its underlying assumptions will be 

described along with a description of the individual agents, including behavioural and structural 

equations used that pertain to the areas of transportation, market synergies, and policy effects.  

 

An agent-based model was developed used to gain a better understanding of how decision and 

system variables specific to the ethanol industry interact over time. In turn, these variables have 

been recognized in the ethanol literature to affect both locational and operational factors within 

the industry. An agent-based simulation of location decisions allows a number of scenarios to be 

evaluated, bringing to light those variables which significantly affect ethanol plant location. 

Analyzing system dynamics using simulation will facilitate understanding of how changing 

initial parameters and variables affect agent decisions.  

 

Ethanol plants as agents form the core of the model and the agents perform actions based on 

heuristics and formal equations in order to find a sustainable or stable location within the 

simulated landscape. Their goals are to maintain adequate access to feedstock, as well as gain 

proximity to transportation and final product markets. In essence, these factors place financial 

constraints on the agents and also can limit their ability to maintain and grow their plant 

operation. The critical variables are discussed in Chapter 4, while a discussion of the remaining 

variables is contained in Appendix A. This distinction allows for greater attention to the 

variables that are germane to the simulation and also permits discussion of supporting data and 

inputs.  

 

4.1 Model Overview 

Heuristics and algorithms within the model permit ethanol plant agents to make choices that 

generate a stable or economically sustainable location. The simulation environment provides the 

opportunity to better understand locational decisions at both a micro-and macro-level. Diagram 1 
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displays the simulation model sequence and also serves as a basic overview of the modeling 

process.  

 

Diagram 1: Model Simulation Sequence (See Section 4.1) 

 
 

The model initializes such that an ethanol agent has the opportunity to begin operations on the 

site (patch) on which they are situated within the simulated landscape. Exceptions are those 

model patches committed instead to transportation networks, towns, cities, feedlots, and 

blenders. Initialization takes place at year zero, a point where each patch is endowed with a 

specified production value that is harvested once per time period (year). Each patch is 
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programmed to compute site specific criteria used by the ethanol plant agent to determine if 

operations are viable during that time.  

 

During initialization, discussed in Sections 4.5 and 4.6, one ethanol plant agent is placed on each 

patch and each agent calculates a net present value (NPV) of operations for that specific location 

to determine if that site is suitable for future operation and generates profitability. After 

calculating this site specific NPV, the ethanol agent then decides if it will start operations on that 

site. The heuristic assumed here for starting plant operations is simply that NPV ≥ 0, and if NPV 

< 0 then the ethanol agent is removed from the site.  

 

The operation phase, discussed in Section 4.7, allows all remaining ethanol plants to begin daily 

operations. Ethanol agents must meet specific financial, feedstock access, plant utilization levels, 

and operation criteria to continue operating on the landscape. In essence, high cost plants are 

removed from the landscape through various heuristics, favoring ethanol agents with the lowest 

operation costs, allowing these plants to potentially expand as demand shocks hit the system. 

 

Profit maximization drives an ethanol agent’s decision regarding site viability in the model. As 

shown below, the profit maximization equation within the operation phase of the simulation 

model is only applied when an ethanol agent successfully satisfies the NPV constraint. This 

constraint is satisfied when the locational site in consideration returns a net present value greater 

than or equal to zero during the initialization stage.  

 

The profit maximization problem is as follows:  

 

   
         

                      

 

Where: π is profit 

R is revenue (ethanol and DDGS sales) 

FPS is federal and provincial subsidies  

VC is variable cost 

FC is fixed cost 

CL is capital loan principle payment 

DP is depreciation on capital assets 

T is corporate tax 

NPV is net present value of the investment at t = 0 
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As discussed above, an ethanol agent’s ability to profit maximize is subject to the following 

constraint, NPV ≥ 0, which is required before operational procedures can begin. The NPV 

equation utilized in this model is based on the standard NPV equation presented in Ross et al. 

(1996); please see Section 4.6.1 for further discussion.  

 

The net present value equation is as follows: 

 

             ∑[
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Where: U0 is the investment capital outlay at t = 0 

SE0 is shareholder equity at t = 0 

Rt is revenue (ethanol and DDGS sales) 

FPSt is federal and provincial subsidies 

VCt is variable cost 

FCt is fixed cost 

CLt is capital loan principle payment 

DPt is depreciation on capital assets 

Tt is corporate tax 

Sv is salvage value of capital assets 

v is the planning horizon 

df is discount factor (opportunity cost of capital) 

 

These criteria provide the overarching rational for the ethanol agents in the simulation model and 

will be subsequently discussed in greater detail.  

 

4.2 Agent Overview 

As stated above, the model is comprised of farming, ethanol, blending, and feedlot agents. For 

instance, farm agents harvest and store any unsold feedstock in inventory and ship it to what are 

referred to as ‘calling’ ethanol plants. These latter agents are separately placed on patches during 

initialization that contain feedstock production and remain there for the duration of the model 

run. Farm agents also keep track of feedstock trucking costs, the number of shipments, and the 

identity of the ethanol agent receiving their feedstock production.  

 

Blender (ethanol buyers) and feedlot (DDGS buyers) agents are randomly placed on the 

landscape when the model initializes. These agents accept deliveries from the ethanol agents 
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based on market demand for the product and will not accept deliveries that exceed demand limits 

which are discussed in Section 5.5. Excess ethanol and DDGS production must be stored by the 

ethanol agent and sold at a later date. Further, it is assumed that both blender and feedlot agents 

share the cost of transportation with the ethanol agent, where this cost is based on a mix of 

contract types currently used in ethanol and DDGS markets. For example, a Chicago Board of 

Trade ethanol futures contract is based on delivery to a designated delivery point at the buyer’s 

terminal (Funk et al., 2008). However, ethanol companies may sell either FOB or CIF depending 

on negotiating strategy of the spot market or long term contract (Outlook Market Research and 

Consulting Ltd., 2008). Given that only very broad contractual market place transportation terms 

are known at this time, it is assumed here that transportation costs for ethanol and DDGS 

contracts are split in a 50-50 equal share between the buyer and seller within the model.  

 

Ethanol agents seek inputs from the simulated landscape to produce ethanol and DDGS during 

model operation. During the initialization phase each ethanol agent checks the patch it is sitting 

on to see if it is suitable for operations. The initialization period also sets the number of ethanol 

agents that will begin operations when the model starts, while the initialization code generates 

and reviews the main cost factors that affect site selection. Site selection factors include access to 

utility services (water, natural gas, and electricity), to feedstock, to transportation networks 

(primary highways and railways), as well as distance to ethanol and DDGS markets and 

competing feedstock users (TDI Projects Inc., 2004).  

 

4.3 Landscape Overview 

The simulation model attempts to replicate a major wheat producing area, with the main focus in 

this case being the province of Saskatchewan. However, flexibility has been designed into the 

model allowing the simulation to be altered to fit any wheat or even corn producing agricultural 

region. As coded, each patch is considered to be one Saskatchewan township (36 sections of 

land) with a total area of 9.6 kilometers
2
 (KM). Currently in the model there are 1,369 patches (a 

37 x 37 grid) which represent the 13.2 million hectares of seeded land in Saskatchewan 

(Statistics Canada, 2000). In turn, patches are assigned a productivity value based on the three 

main soil zones in Saskatchewan; black, dark brown, and brown. The value of productivity in 
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each soil zone is based on average wheat production per Census Agricultural Region (CAR) 

provincial data from 1976 to 2006 (Statistics Canada, Crops – Historical Data, 1976 – 2006).  

 

When the average 30 year production figures are compared to specific CAR locations within the 

three main soil zones, it was found that wheat production is relatively uniform across the 

province. Average production in each of the three soil zones was split approximately as follows: 

black 33%, dark brown 34%, and brown 33%. Therefore, differences in production values based 

on soil zone classification are deemed to be negligible and assumed not to affect the location of 

any wheat based ethanol plant. But one caveat to this finding is that nine of the 20 CARs have 

production figures above overall average production (Statistics Canada, 2006). In fact, the area 

of census agricultural regions with above average wheat production centers roughly on the 

middle of Saskatchewan’s grain growing region. Higher than average production levels in this 

area may prove to be more suitable for ethanol plant locations in reality, but this remains to be 

seen given other key factors. Additional information pertaining to the soil zones of the province 

is presented in Appendix A. 

 

4.4 Ethanol Production 

Ethanol is produced using a number of inputs. Given the weight losing nature of production in 

this industry, plants will choose to locate near their primary input, feedstock. But other high use 

production inputs can also affect location. These include inputs such as natural gas, electricity, 

and water. Thus not only production costs must be considered, but also initial fixed utility 

servicing costs for a potential production site.  

 

Ultimately, it is considered that during the planning stages of a proposed ethanol site that the 

following should be considered: average wheat production both within and surrounding a given 

procurement area; competitive operations; proximity to DDGS and ethanol markets; water, 

electrical, and natural gas supply; and type and distance to transportation system(s) (TDI Projects 

Inc., 2004). Other considerations would include environmental impact studies, local subsidies, 

and land zoning (TDI Projects Inc., 2004). To this end, local subsidies to the industry are 

typically considered site specific and may include tax concessions, education programs, or 

upgrades to water treatment facilities that are completed to entice an ethanol plant to locate. The 
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site specific nature of local subsidies and lack of traceability creates another level of complexity 

that precludes them from being included in this model. Therefore, only Canadian provincial and 

federal subsidies have been considered in this simulation. 

 

4.4.1 Conversion and Contracting 

In the model, conversion of feedstock to ethanol and DDGS takes place once ethanol agents have 

taken delivery of all called feedstock. Each unit of feedstock is considered to weigh one metric 

tonne, and this produces 372 litres of ethanol and 295 kilograms of DDGS (Bonnardeaux, 2007). 

Relevant costs associated with producing ethanol here include feedstock purchase, freight for 

inputs (which does not include feedstock delivery costs), marketing, chemicals, denaturants, 

maintenance, insurance, property tax, and labour costs. Including inflationary effects, these costs 

are calculated using the same formulas and parameters utilized in both the initialization and 

operation procedures. The primary difference between initialization and operation phases is that 

variable costs in operation phase are based on actual ethanol production as opposed to the 

initialization assumption that ethanol agents operate continually at maximum capacity. Further 

discussion of how these variables are calculated can be found in Appendix A. 

 

4.5 Model Initialization 

Model initialization generates the landscape according to a number of user input variables 

displayed on the NetLogo© interface. Software input interfaces such as sliders, switches, input 

windows, and choosers (all part of the Netlogo© package) can be changed by the user to create 

various simulation configurations to be accessed by the model agents during the setup and 

operations portion of the model. In this case, the user adjustable settings can alter the location, 

length of time, or number of agents that materialize on the landscape (as a result of the initial 

NPV analysis). Diagram 2 displays an overview of the simulation model initialization period 

followed by a discussion of the initialization sequence.  
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Diagram 2: Model Initialization Sequence (See Sections 4.5 – 4.6.1) 

 
 

As mentioned, creating the simulation landscape involves the setup of primary highways, main 

line railways, water sources (river), an electrical grid, a natural gas grid, towns, cities, feedlots, 

blenders, farmers, variables for nearest location factors, and feedstock production. The actual 

location of towns and cities in the province are approximated within the simulated landscape. On 

inspection, a map of Saskatchewan indicates that towns are typically located farther from 

primary highway and mainline rail than cities. The location assumptions made in the simulation 

are only of relative importance and have been made to reflect reality as much as possible while 

facilitating the design of the simulation model.   

 

Ready access to transportation networks appears to be critical for feedlots to help minimize 

transportation costs associated with feed access and shipment of finished livestock (Carter and 

Schmitz, 1986). As well, convention dictates that feedlot proximity to reliable and clean water 
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access is necessary as cattle consume up to eight gallons of water per day (TDI Projects Inc., 

2004).  

 

Blender location is driven by industrial location and market access. Cities are engines of growth 

where industry tends to locate because of access to transportation and markets (Ullman, 1941; 

Partridge et al., 2007). Thus it is postulated that stable locations for blenders will be near both 

transportation networks and cities granting centralized market access (TDI Projects Inc., 2004).  

 

Each patch also stores distance and cost variables that are used to generate utility servicing cost, 

along with patch distance to blenders, feedlots, railways, and highways. These variables are 

accessed by ethanol agents when they evaluate a patch as a potential operations site. Appendix A 

discusses the statistical rationale for the nearest location variables and costs used in the 

simulation. Finally, during the simulation the precise location of cities, towns, feedlots, and 

blenders is not fixed but randomized within the specified parameters across each run.  

 

During initialization, each patch is reviewed by an ethanol agent as a potential operational site. A 

formal net present value analysis is completed for the patch. If NPV ≥, 0 then a plant initializes 

at that location. If NPV < 0, the site or patch is left vacant. Investment factors
4
 such as inflation, 

capital loan interest rate, capital loan finance life, plant life, corporate tax level, subsidies, 

shareholder equity, and NPV discount rate all enter into the NPV site analysis. Interaction of 

these factors can significantly affect the number of ethanol agents that initialize. These factors 

are discussed in detail in Section 4.8 and Appendix A. 

 

Initialization of ethanol plant locations and reviews of potential sites are characterized by the 

following actions. First, the ethanol agent finds the potential nameplate capacity of a plant by 

multiplying the total production volume of the patches found in the immediate procurement area 

(as set by the slider on the simulation interface) by the number of litres of ethanol produced per 

metric tonne of feedstock (372; Bonnardeaux, 2007). The potential nameplate capacity is used in 

calculating capital building costs, salvage value, loan payments, interest, income, and expenses. 

                                                 
4
 These factors are assumed to be determinants of location but are beyond the scope of this thesis and not analyzed 

beyond this point. 
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Variables such as plant finance life affect the amortization of capital loans, while interest rates 

affect the cost of borrowing. Lastly, the level of shareholder equity affects the size of the capital 

cost loan required. All these factors affect the number of plants that materialize on the landscape.  

 

4.6 Net Present Value Calculations 

Net present value calculations are based on the initial catchment area, as set by the catchment 

area input slider on the NetLogo© interface. Catchment areas in the current ethanol industry are 

typically in the 50 – 100 KM range (Eathington and Swenson, 2007; Sarmiento and Wilson, 

2007), and this range is used for testing and operating the simulation model. During the NPV 

analysis, it is assumed the ethanol agents do not consider the effects of competition, meaning at 

early stages their only concern is determining site suitability for future operations. Competition 

effects are accounted for during the operations portion of the model. Finally, the potential 

ethanol agent’s plant output capacity is based on the total available feedstock found in the 

catchment area, and it is this amount that is used in the remaining NPV calculations. 

 

4.6.1 Present and Net Present Value Calculations 

Present value (PV) and net present value calculations are completed during the final stages of 

initialization. The present value of a potential site measures the total generated net income after 

taxes as a function of salvage value, discount factor, and plant life. As is well known, present 

value is simply the current value of future cash flows, given the chosen discount factor (Ross et 

al., 1996). The discount factor is set via the NPV-discount-factor slider on the simulation 

interface and indicates the expected rate of return on the project. In their work, Holcomb and 

Kenkel (2008) used a 12% discount factor while Herbst et al. (2002) used an 8% discount factor. 

Here, the initial discount rate used will be 10% (as in Bain, 2007).  

 

The formal present value calculation (Ross et al., 1996) is as follows: 
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Where: PV is present value 

 NRt is total net income after taxes for the life of the investment 

 df is the discount factor  

 S is the salvage value of the investment 

 t is the life of the plant (investment) 

 

Once the PV is known, it is simple to calculate the NPV of a potential site. NPV measures the 

value created today due to making the investment, and is the difference between the market value 

and cost of the investment (Ross et al., 1996). Acceptance or rejection of investments here is 

based on the NPV, where a positive value suggests the investment should be undertaken while a 

negative value would suggest rejecting it. The criteria in this model states that investment to 

build a plant at a proposed site will occur only on those sites with an NPV greater than or equal 

to zero. If NPV is computed to be negative, the site remains empty and is not considered again 

by other ethanol agents.  

 

The formal net present value calculation (Ross et al., 1996) is as follows: 

 

          ) 
 

Where: NPV is net present value 

Ro is capital cost, in this case, including utility access cost to site; this figure is negative 

to represent the initial cash outlay for the investment 

 PV is present value of the proposed site 

 

All cost figures used here align very closely with USDA’s 2002 Ethanol Cost of Production 

Survey as completed for the US dry mill ethanol industry (Shapouri and Gallagher, 2005). In 

addition, the figures fall within the numbers provided in this study for both small and large 

plants.  

 

4.7 Operations Phase 

During the operations phase, the ethanol agents who identify a NPV ≥ 0 begin operations. Here 

the plants must satisfy a number of constraints to remain viable, as illustrated in Diagram 3. 

These constraints include the need to maintain access to adequate feedstock, ensuring they are 

operating above their shutdown point, and can manage any demand shocks. If an ethanol agent is 

unable to successfully meet these constraints, the agent exits the landscape. From a system 
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feedback perspective, when an ethanol agent exits in the simulation run the remaining ethanol 

agents then get an opportunity to increase their extant market share as a result of the industry 

ethanol supply decrease.  

 

Diagram 3: Model Operation Sequence (See Sections 4.7 – 4.8.7 and Appendix A) 

 
 

 

Site has been deemed 

acceptable with NPV ≥ 0 

Ethanol agent calculates plant 

size and begins operations 

 

Based on plant size, each 

ethanol agent competes for 

feedstock by contacting 

procurement area farmers with 

available feedstock 

 

Farmers with available 

feedstock deliver requested 

amount to calling plant 

 

Ethanol agents produce 

ethanol and DDGS from 

received feedstock 

 

Ethanol is sold to blenders 

and DDGS to feedlots 

Financial analysis based on 

actual production completed  

 

Ethanol agents check 

shutdown decision as follows: 

price ≥ average variable cost 

 

Has a demand shock altered 

market requirement? 

 

Financial state allow for 

expansion?  

Ethanol agents check to see if 

feedstock demand parameters 

were met? 

  

Yes 

Ethanol agent exits 

market 

  

No 

Yes 

Expand operations to meet 

new output level  

Yes 

Continue normal operations  

No 

No 

Yes 

No 
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4.7.1 Operational Procedures 

For ethanol agents which have identified locations with an NPV ≥ 0 at t = 0, the operational 

procedures in the simulation code now begin. Operational procedures regarding income and 

expense calculations are similar in structure to many of the initialization formulas. Ethanol 

agents use this phase to decide which locations are most likely to remain stable over the 

simulation given their proximity to transportation, utilities, feedstock, competitors, and ethanol 

and DDGS markets. Other mitigating factors such as subsidy levels, interest rates, demand 

shocks, shareholder equity, and inflation will also affect plant operations, creating an 

evolutionary environment where ethanol agents either thrive or fail over time.  

 

4.8 Capital Costs 

Capital building costs are defined as the cost to build the ethanol plant, but in fact other indirect 

costs must be included. Outlook Market Research and Consulting (2008) defines indirect costs as 

land, soft costs (business planning, market development, arranging strategic alliances), project 

contingency costs, interest during construction, taxes, and plant commissioning. They estimate 

indirect costs add an additional 22% to capital building costs (Outlook Market Research and 

Consulting, 2008). However, indirect costs do not include working capital costs, items such as 

inventory, accounts receivable, and margin accounts, which are estimated at 25% of capital 

building costs (Outlook Market Research and Consulting, 2008). Thus to ensure more accurate 

project planning and complete financial requirements, ethanol projects should also account for an 

additional 47% over direct capital costs. Other studies have found that indirect and working costs 

range from 39% to 60% based on the definitions above (Kansas State University, 2002 and 

National Renewable Energy Laboratory, 2011).  

 

In creating a capital cost formula, several estimated ethanol plant building costs were compiled 

and graphed. The data presented in Herbst et al. (2002), TDI Projects Inc. (2004), Bain (2007), 

and Outlook Market Research and Consulting (2008) all showed very consistent results 

regarding ethanol plant capital costs. Graphing the data generated a representative capital cost 

curve by size of plant, shown in Figure 2. The cost curve used in the simulation does generate 

figures that are slightly above those applicable to corn ethanol capital costs. However, the 

research conducted by Outlook Market Research and Consulting (2008) shows that under 
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foreseeable conditions, ethanol plants using wheat as a feedstock will have slightly higher 

building costs than those using corn feedstock. The most likely reason for this difference is that 

the corn ethanol industry is more developed than the wheat version of same and while this 

situation may change, without any other reason to change the assumption, this thesis uses the 

data as generated.  

 

Figure 2: Capital Building Costs for Wheat Based Ethanol Plants 

 
 

Other evidence supports a slightly concave (or power) relationship between capital cost and plant 

size as presented in Figure 2. For instance, Gallagher et al. (2005) state that it is well known that 

most industries follow the 0.6 factor rule, where a 1% expansion in processing capacity yields a 

smaller 0.6% increase in capital costs. Gallaher et al. (2005) also found that dry mill ethanol 

plants in fact have a power function for capital costs closer to 0.836, which is higher than 

average for processing plants. The data used in this research follows capital costs as outlined for 

several wheat ethanol plant capacities in Bain (2007) and Outlook Market Research and 

Consulting (2008). After an extensive review of their research, a detailed capital cost profile was 

defined and developed for plant capacities. Stemming from this, a capital cost power formula 

that accounts for both direct and indirect costs was derived and found to provide the best fit. The 

resulting discovery of a power factor for wheat ethanol plants of 0.6917 suggests that capital 

costs for wheat based ethanol plants are higher than most industries but lower than that found in 

Gallaher et al. (2005). Research by Bain (2007) supports these findings where a power cost 

factor of 0.7 for wheat ethanol analysis was utilized, further supporting the power cost factor of 

0.6917 used in this research.  
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The capital cost formula for a wheat ethanol plant was estimated as: 

A = 262.87x
0.6917

 

R
2
 = 0.99 

 

Where: A is total capital building costs, CDN$ (including indirect and working capital costs) 

 x is proposed plant size in millions of litres per year (Mmly) 

 

If the capital building costs including direct and indirect costs as outlined above in Figure 2 are 

considered on a cost per litre basis related to plant size (Figure 3), it is concluded that optimal 

wheat ethanol plant size falls approximately between 240 and 275 Mmly. In turn, this suggests 

that decreasing capital costs are followed by a period of increasing capital costs past some level 

of minimum efficient scale. This aspect will be investigated later in the thesis to see if the 

assumption holds.  

 

Figure 3: Wheat Ethanol Plant Capital Cost per Litre of Nameplate Capacity 

 
 

Once the capital cost
5
 of the proposed ethanol plant is known, factors such as salvage value, 

loan, and interest payments can also be calculated. Formally, salvage value is set at 10% of 

capital cost (Outlook Market Research and Consulting, 2008) and the model uses a fixed 

declining balance method for depreciation (Ross et al., 1996). Capital loan payments are a fixed 

amount based on the amortization period of the loan, with interest being charged on the 

remaining balance.  

 

 

 

                                                 
5
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0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

0 50 100 150 200 250 300 350

C
o

st
 p

er
 li

tr
e 

(C
D

N
$

) 

Mmly 



46 

 

The capital loan payment formula (Ross et al., 1996) is as follows: 
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   )

)

 
 
 
 
 
 
 
 

 

 

Where: B is capital loan payment; CDN$ per year 

c is total capital cost of proposed ethanol plant 

 i is interest rate on capital loan 

 k is years loan is amortized (plant-finance-life) 

 

Depreciation of capital assets considers salvage value, capital cost, and amortization period. 

Therefore, the depreciation rate will vary depending on the finance period length, as set by the 

plant-finance-life slider on the model interface. Depreciation accumulates over the amortized life 

of the capital loan. The depreciation rate (Ross et al., 1996) is calculated as follows: 

 

  (  (
 

 
)
 

) 

 

Where: C is depreciation rate 

 s is salvage value  

 c is total capital cost of proposed ethanol plant 

 k is years loan is amortized (plant-finance-life) 

 

4.8.1 Capital Cost for Operations 

Capital cost is recalculated at the start of the operations phase for sites with NPV ≥ 0. In effect, 

the ethanol agents once again review production volume within the initial procurement area. 

From this figure they establish an initial plant size and then calculate capital building costs, 

salvage value, depreciation, loan, and interest payments based on model settings. The capital cost 

formula applied during the operations phase utilizes the power formula discussed in Section 4.8, 
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but now the cost for utility servicing
6
 must be included in the capital cost formula. This is 

estimated as: 

 

                  
 

Where: D is total capital building costs; CDN$ (including indirect and working capital costs) 

 x is proposed plant size in millions of litres per year (Mmly) 

 c is the total cost to connect utility service to the site 

 

Ethanol plants typically can produce 20% to 30% above their nameplate capacity if necessary 

(Swain, October 26, 2006). The ability to produce above nameplate does not affect capital cost, 

so the simulation endows ethanol agents with an additional 25% of capacity in year one. This 

flexibility also helps with model stability in the face of possible early demand shocks. Finally, 

ethanol agents set their period feedstock demand based on current feedstock and ethanol 

inventory, and this aids in preventing an oversupply of ethanol in the market.  

 

4.8.2 Revenue Streams 

Market prices for ethanol and DDGS were averaged out to help stabilize the simulation. Since 

limited price data is available for Canadian markets, South Dakota ethanol and DDGS price data 

were used, considering the proximity and similarity of the state to the province of Saskatchewan. 

Weekly price points from the Agricultural Marketing Resource Centre (Hofstrand and Johanns, 

2011) were accessed for the period of March 30, 2007 to July 29, 2011 and converted
7
 to 

Canadian dollars per litre for ethanol and metric tonnes (MT) for DDGS. The Canadian prices 

were then averaged over this sample period, yielding an overall average price of CDN$0.53/ L 

for ethanol and CDN$151.86/ MT for DDGS. This average ethanol price is similar to the TDI 

Projects Inc. (2004) forecasted ethanol price of CDN $0.50 per litre, which was computed based 

on a formula incorporating a number of factors, including gasoline markets. Figures 4 and 5 

display the converted ethanol and DDGS prices for the sample period, while Figure 6 is the Bank 

of Canada’s daily noon exchange rate, used for conversion of this data to Canadian dollars. 

 

                                                 
6
 Further discussion regarding utility servicing can be found in the Appendix A. 

7
 Ethanol was converted from gallons to litres and DDGS remained in MT. Daily noon exchange rates from the 

Bank of Canada were also applied. 
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Figure 4: Ethanol Prices (CDN$) March 30, 2007 – July 29, 2011 

 
 

Figure 5: DDGS Prices (CDN$) March 30, 2007 – July 29, 2011 

 
 

Figure 6: Bank of Canada Daily Noon CDN-USD Exchange Rate; March 30, 2007 – July 29, 

2011 

 
 

Subsidies are another potential source of revenue for ethanol agents since both provincial and 

federal subsidies in Canada are available to ethanol agents. Two important subsidy programs 

have been incorporated into the simulation model. These are the EcoEnergy and Ethanol Grant 

Program. EcoEnergy is a federal program that offers qualifying plants up to $0.10/ L for up to 7 

years. This program uses a fixed declining rate per litre of production grant that is applicable to 

both ethanol and biodiesel. Table 1 shows the applicable rate per year for ethanol agents. Given 
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the years remaining in the program, ethanol agents receive this grant for the full 7 years, based 

on operations starting in a simulated 2008 – 2009 year.  

 

Table 1: EcoEnergy Program Incentive Rate for Ethanol Producers
8
 

Incentive Rate ($ per L) 

Fiscal 

Year* 

2008 2009 2010 2011 2012 2013 2014 2015 2016 

- - - - - - - - - 

2009 2010 2011 2012 2013 2014 2015 2016 2017 

Renewable 

Alternatives 

to Gasoline 

0.1 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 

Renewable 

Alternatives 

to Diesel 

0.26 0.24 0.2 0.18 0.14 0.1 0.08 0.06 0.04 

* April 1 of a year to March 31 of the following year. 

 

The Ethanol Grant Program (EGP) subsidy is a Saskatchewan provincial program that is 

designed to encourage rural revitalization. Smaller ethanol plants (25 Mmly and less) must 

receive 30% of blender sales for ethanol sold and blended in Saskatchewan (Canadian Centre of 

Policy Alternatives – SK, 2008). Currently the mandated level of ethanol in Saskatchewan is 

7.5%, meaning that based on gasoline consumption there is an ethanol market of approximately 

135 Mmly. Therefore, 30% of this market, or 40.5Mmly (135 Mmly times 30%) is being given 

to these smaller ethanol plants. The program pays a subsidy of $0.15/ L up to the ethanol market 

limit of 135 Mmly (Canadian Centre of Policy Alternatives – SK, 2008). The EGP has a budget 

of approximately $23 million per year and is renewed on yearly basis.   

 

In the agent-based simulation, the latter subsidy is received over the life of the plant during the 

initialization stage. However, once operations begin, options are programmed into the interface 

to limit the number of years this program can operate. During initialization the ethanol agents are 

split into two groups, those with proposed output capacities above 25 Mmly and those below 25 

Mmly. The groups then share the EGP as follows; small plants (below 25 Mmly) receive 30% of 

the 135 Mmly ethanol market, while large plants receive the balance of funding (70% of the 135 

                                                 
8
 Natural Resources Canada: http://oee.nrcan.gc.ca/transportation/alternative-fuels/programs/ecoenergy-

biofuels/biofuels-incentive.cfm?attr=16. 
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Mmly ethanol market). This ensures equal access for all simulated ethanol agents to the 

provincial EGP subsidy. 

 

4.8.3 Market Sales of Ethanol and DDGS 

Sales of ethanol and DDGS are connected to the ethanol agents’ operational size and market 

demand constraints, implying that total production at best should only slightly exceed the 

applicable demand. Therefore, each ethanol agent will only expand and produce to that level it 

can sell, thereby limiting its total market share to production capabilities. Based on this 

assumption, market share is computed as a percentage of an individual ethanol agent’s 

production and inventory compared to total production and inventory of all ethanol agents. 

Should an ethanol agent’s share of market demand exceed its production, then this demand is 

met by drawing from that agent’s inventory, if available. But excess market demand also creates 

expansion opportunities for ethanol agents, a point discussed in more detail in Appendix A. 

Being a byproduct of ethanol production, DDGS market share is handled in the same manner as 

ethanol and is assumed to track the same demand changes found in the ethanol market.  

 

Sales of ethanol and DDGS take place based on the allocated market share. Ethanol and DDGS 

prices are based on an average price derived from data in South Dakota. Prices are adjusted for 

the effects of inflation after year one, whereby inflationary effects can be further set by the 

inflation-on-revenue slider found on the NetLogo interface. Once sales have been calculated, 

corporate income taxes are applied to positive net income and the tax rate is set from the 

interface slider corporate-tax-rate.  

 

4.8.4 Ethanol Breakeven Price Analysis 

A breakeven ethanol price is calculated, which is the ethanol market price required for the 

ethanol agent to cover their average variable costs as computed. The ethanol breakeven price is 

driven by the price of ethanol and the breakeven decision is not affected by revenues from 

subsidies and DDGS. Removal of DDGS and subsidy revenue for each plant provides a more 

realistic snapshot of the agent’s financial situation given that both DDGS revenue and subsidies 

are not guaranteed. As is well known, subsidies can be removed from the marketplace and 

DDGS revenue can be quite volatile given the number of alternative feed sources available. 
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Perrin et al. (2009) state that an ethanol plant would presumably shutdown when the price of 

ethanol falls below its variable average cost. Without considering the effect of corporate income 

tax and observing the work of Perrin et al. (2009), the ethanol breakeven price is calculated as 

follows: 

 

      ((
 

  
)  )  (        )    

 

Where: Pe is ethanol breakeven price 

OC is average variable cost per litre of ethanol produced (note that when  

corporate income tax is considered, it is added to average variable cost per litre) 

 EY is ethanol yield (litre) per kilogram (kg) of processed feedstock (0.372)
9
 

 Pw is the price of wheat per kg 

 DY is DDGS yield (kg) per kg of processed feedstock (0.793)
10

 

 Pddgs is the price of DDGS per kg 

 S is total subsidies received by the ethanol agent per litre of ethanol production 

 

Perrin et al. (2009) found that since corn and DDGS are essentially substitute feeds, the price of 

DDGS is closely related to the price of corn. Based on the assumption that wheat feedstock and 

DDGS produced from wheat based ethanol plants are also substitutes, the Perrin et al. (2009) 

findings are applied to this wheat ethanol market. Therefore, the price of DDGS is approximated 

as follows: 

 

      (
     
̅̅ ̅̅ ̅̅ ̅

  ̅̅ ̅
)    

 

Where:      
̅̅ ̅̅ ̅̅ ̅ is the average price of DDGS per kg 

   ̅̅ ̅ is the average price of wheat per kg 

 Pw is the price of wheat per kg 

 

As stated, the average price of DDGS used in the model is $151.86/ MT (Hofstrand and Johanns, 

2011) or $0.15186/ kg and the average price of wheat used is $154.69 (Saskatchewan Ministry of 

Agriculture) or $0.15469/ kg.  

 

                                                 
9
 Ethanol production for one MT of wheat feedstock is 372 L or 0.372 L of ethanol per kg. 

10
 DDGS production for 372 litres of ethanol is 295 kg or 0.793 kg of DDGS per litre. 
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4.8.5 Financial Analysis/ Operational Health 

Given that the ethanol agents have calculated income and expenses, a number of other 

assessments are completed regarding the financial health of their operations. These assessments 

will help decide whether an ethanol agent will continue or discontinue its operations. And it is 

assumed that if an ethanol agent discontinues operations, any inventory levels belonging to that 

particular agent are removed from the marketplace. Operational efficiency and profitability are 

reviewed by assessing whether the ethanol agent has reasonable access to feedstock to meet plant 

capacity, and that the ethanol agent is able to meet its short and long term financial obligations.  

 

The work of Outlook Market Research and Consulting Ltd. (2008) offers that it may take up to 

five years for ethanol production to stabilize after startup, but most studies consider a two year 

startup period for production to attain nameplate capacity (Herbst et al., 2003). During this time, 

access to feedstock is key to survival in this market. If procurement area competition limits 

access to feedstock, then an ethanol agent faces increasing costs, either by operating below 

capacity or through additional search costs incurred in order to acquire feedstock from greater 

distances. Therefore, feedstock requirements are slowly phased-in to reflect market reality and 

aid with model stability within the first few years of the simulation.  

 

Staging feedstock access in the model during startup entailed numerous trials to ensure model 

stability while continuing to emulate market reality. Allowing the ethanol agents to initially 

secure feedstock requirements lower than their individual feedstock capacity constraint eased 

initial competition effects and promoted model reliability. Thus, the ethanol agent is only 

required to secure enough feedstock to meet 50% of their feedstock capacity constraint in year 

one, 60% in year 2, 70% in year 3, and for year 4 and beyond this constraint increases to a user 

setting between 80% and 100% of plant feedstock capacity, the latter being set by slider on the 

interface called plant-size-variability
11

. This process allowed the simulation to carefully assess 

the effects of competition and smoothly remove ethanol agents which were not able to meet their 

nameplate capacity levels.  

 

                                                 
11

 The variable plant-size-variability was included to allow ethanol agents operational flexibility resulting from 

competition and demand shifts. 
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The remaining assessments focus on the financial strength of the ethanol agent. At specified time 

periods, the ethanol agent compares average income per litre of produced ethanol with average 

variable cost, average fixed cost, and total average cost. Each of these financial assessments is 

administered individually to ensure the ethanol agent continues to meet both their short and long 

term financial obligations. In other words, is the ethanol agent operating above their shutdown 

point in the short term and financially solvent in the long term? Should they be unable to meet 

their financial obligations then the plant immediately shuts down. Once an ethanol plant has 

shutdown, it is removed from the landscape
12

.  

 

Options built into the NetLogo© interface also allow the user to specify the time periods when 

revenue and average costs will be compared. In simulation runs, average variable costs can be 

checked every 0, 3, or 5 years and average costs can be checked every 0, 5, 10, 25, 35, 45, or 55 

years. However, it was found that shorter durations between revenue/cost checks will severely 

limit the number of successful ethanol agents on the landscape, especially when demand shocks 

lead to plant expansions. Given the low margins found in general in the ethanol industry, it is 

observed that average cost should be checked every 25 years (preferably 35 years), allowing 

ethanol agents the opportunity to stabilize their operations and ultimately take advantage of 

economies of scale. Lastly, an overall profitably check is completed to see if an ethanol agent has 

been able to net out profits and losses. The year chosen for this check is set using an input box on 

the interface called profitability-year-check. For the simulation results shown in this thesis, this 

parameter was set at 50 years since this duration was found to offer the highest level of model 

stability in generating solutions. Additional discussion of these variables will be found in Section 

5.6.  

 

4.8.6 Feedstock Access 

Given that plant capacity remains set at the limit found during the initialization phase, the effects 

of procurement area competition will start to be felt during the first year (or tick) of the 

simulation. Ethanol agents in the model are permitted to call deliveries from farmers outside 

their initially assigned procurement area, but this will increase feedstock transportation costs. In 

                                                 
12

 Allowing inefficient (shutdown) plants to remain on the landscape for the purpose of starting at a later date or 

being acquired by another ethanol agent was considered beyond the scope of this research, given that the objective is 

to examine factors that promote stable locations over time. 
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turn, it is assumed in the model that farmers are responsible for the cost of feedstock delivery and 

that they are price takers, meaning that at even greater distances, there always exists a pool of 

farmers who would be willing to deliver
13

.  

 

4.8.7 Feedstock Delivery 

As discussed in the literature review, there are simultaneity of computation limitations within 

NetLogo© which prevent actual concurrent agent actions. To mitigate this issue, the algorithm 

used for feedstock delivery (illustrated in Diagram 4) spreads the call for feedstock across 

farmers with inventory in a particular procurement area. This creates a situation that mimics 

actual farmer deliveries and more importantly prevents one buyer from dominating an area. In 

the author’s real life experience, very few farmers deliver to only one buyer, rather they seek out 

various buyers based on price, distance, or loyalty for example. This supports competition within 

overlapping procurement areas of competing ethanol agents and also permits farming agents to 

have contracts with multiple buyers. However, a more detailed analysis of price competition in 

input procurement between ethanol agents is beyond the scope of this research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
13

 Please see Appendix A for more details on bulk trucking rates and distances. 
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Diagram 4: Ethanol Agent Feedstock Delivery Algorithm (See Section 4.8.7) 

 
 

The call for feedstock is comprised of four algorithms. Each call corresponds to a specific 

procurement area. The first feedstock call is comprised of farmers with feedstock inventory 

found in the first procurement area. The ethanol agent then creates of list of farmers with 

feedstock inventory and allocates its input demand among those farmer agents. It is assumed that 

a farmer agent only delivers what is called. However, if a farmer agent’s inventory does not meet 

the specified call, then that farmer can only deliver their current feedstock inventory. Once a 

farmer agent has delivered their entire feedstock inventory, they are no longer contacted by 
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ethanol agents for the remainder of that cycle. To reiterate, the model assumes FOB pricing to 

minimize the net cost of feedstock, where this is the amount paid for feedstock minus the amount 

received for DDGS byproduct (Van Wart and Perrin, 2009). 

 

The ethanol agents then compare their feedstock inventory to required input demand. If 

additional feedstock is needed, they can move to a second call which is sent to farmers in the 

second procurement area. Feedstock calls to farmers in the second, third, and forth procurement 

areas follow the same procedure. Once an ethanol agent’s feedstock requirement is met, no 

additional calls are made. During the call process it is possible, if competition is heavy, for an 

ethanol agent to be unable to meet their feedstock input demand. Should this happen, the ethanol 

agent operates below capacity through the remaining operation procedures. This will increase 

variable and fixed costs for the ethanol agent since they are not able to operate at maximum 

efficiency. Depending on their financial situation, this may lead to plant shutdown.  

 

4.9 Nearest Location Factors 

Within the simulation model there exist a number of heuristics specific to distance calculations. 

The measurement of the distance within a simulated landscape can either be based on a grid 

pattern typical of most transportation networks, often referred to as the Manhattan distance, or a 

more direct route where obstacles do not impede movement, often referred to as Euclidian or ‘as 

the crow flies’ distance. The grid based patch pattern found within NetLogo©, based off an (x, y) 

coordinate plane, can be used to mimic real transportation routes. This happens to be quite 

representative of Saskatchewan’s actual rural transportation system, where both north/south and 

east/west movements are typically required to move between two points. Thus the Manhattan 

distance heuristic will be utilized in the simulation and is subsequently discussed.  

 

4.9.1 Transportation Calculations 

The value of the distance between two points is found using the absolute x and y coordinates of 

the first location, less the absolute x and y coordinates of the second location. Using an exact 

heuristic (with absolute values) means that the distance is the shortest grid path between two 

points and therefore the lowest transportation cost (Patel, 2012). The Manhattan distance 

heuristic is considered standard for square grids (Patel, 2012), and is a superior representation of 
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transportation routes in Saskatchewan and most rural locations, since roadways in the province 

typically run in an east/west and north/south grid pattern. Manhattan distance also allows for 

travel around obstacles by following roadways, as compared to Euclidian distance which takes 

the shortest path across the landscape (Teahan, 2010). For example, in this simulation farm 

agents calculate distance from their location to the ‘calling’ ethanol plant using the following 

NetLogo© code:  

 

set feedstock-truck-dist (abs ([xcor] of self - [xcor] of ethanol-delivered-too) +  

   abs([ycor] of self - [ycor] of ethanol-delivered-too)) 

 

Within this Manhattan distance heuristic, the variable feedstock-truck-dist stores the calculated 

distance value which will later be used in subsequent transport cost calculations. Distance is 

calculated from the x and y coordinates of the farm agent, denoted by the command of self, to the 

absolute x and y coordinates of the ethanol plant, denoted by the variable ethanol-delivered-too. 

Subtracting the respective x and y distances and summing the absolute value of each produces 

the requested distance from each farm to an ethanol plant agent. Using the shortest grid path 

between the farmer and ethanol plant, the projected outcome is to source inputs with the lowest 

transportation cost. This distance value is then used to calculate other associated costs.  

 

The Manhattan distance algorithm is also used to find nearest location variables which are held 

at the patch level. These variables are accessed by other agents within various procedures during 

model initialization and operations. Finding the distance between a fixed patch location and an 

agent follows a similar procedure as described above, only now the built in patch location 

variables pxcor and pycor are compared to the built in turtle location variables xcor and ycor. 

These patch variables hold the (x, y) coordinate location of the patch and remain constant 

throughout the simulation since patches cannot move. In contrast, turtle coordinate variables can 

change as the turtle moves over the landscape.  

 

During the simulation, distances to site specific variables such as mainline railway, primary 

highway, feedlot, blender, water (river), electrical, and natural gas access must be calculated to 

allow an ethanol agent to efficiently evaluate a potential production location. Distances to these 
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nearest locational factors for a particular site are calculated in NetLogo© using the Manhattan 

heuristic. By way of example, here is the NetLogo© code used in the simulation to find nearest 

location factors:  

 

(abs([xcor] of nearest-location-factor - pxcor) + (abs([ycor] of nearest-location-factor - 

pycor))) 

 

The term nearest-location-factor represents one of the site specific location factors used to 

evaluate the ethanol production potential of a location. As site distance to these location factors 

increase so does associated costs. For instance, as patch distance increases from location factors 

such as transportation networks, utilities, or markets the costs associated with those distances 

will have to be weighed against access to procurement area feedstock for example. These 

locational constraints are included to imitate fact within the simulation model. Ignoring these 

types of locational cost factors during site selection can have a dramatic effect on operational 

efficiency and costs.  

 

4.9.2 Ethanol and DDGS Transloading Costs 

Some well cited prior literature indicates that ethanol loading and transfer costs can be on 

average approximately US$0.05/ gallon (Low and Isserman, 2008). However, when additional 

US data on ethanol trucking costs were reviewed, loading costs actually averaged CDN$0.0122/ 

litre
14,15

 (National Academy of Sciences, 2009). This rate includes cost per litre to load and 

unload, coupled with the time dependent cost of the truck driver. In turn, average time dependent 

cost of a truck driver is approximately CDN$33.73/ hour
14,15

 (National Academy of Sciences, 

2009), which includes labour and capital considerations when the truck is stationary. Distance 

rate on a per kilometer basis averages CDN$0.8516
14,15

 (National Academy of Sciences, 2009), 

including fuel, insurance, maintenance, and acquiring permits. Pump volume for loading ethanol 

                                                 
14

 All figures have been converted to metric from imperial using conversion figures of 3.7844 for gallons to litres 

and 1.609344 for miles to kilometers. 
15

 Average dollar calculations have been adjusted with Bank of Canada Monthly Consumer Price Index over a 22 

month time period and converted to CDN$ using Bank of Canada Monthly Exchange Rates. The period chosen 

coincides with and builds upon National Academy of Sciences (2009) research dates allowing current day prices to 

be generated using the Consumer Price Index and Exchange Rate. 
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averages out at 2,460
14

 litres per min (lpm) and unloading pump volume is averaged at 1,514
14

 

lpm (Abengoa Bioenergy, 2003).  

 

Product characteristics dictate that transloading costs are different for ethanol and DDGS. 

Ethanol transloading costs typically involve shipment loading and storage facility fees, and 

within the simulation model the following two cost factors were considered. The cost to load and 

unload at an ethanol facility (CDN$0.0056/ litre (L)) was used as a proxy for transloading, as 

well as a storage fee of CDN$0.002/ L (OECD, 2004). The storage fee covers the cost of holding 

ethanol until the volume required for a large order (or unit train, for example) is met. This leads 

to a total transloading cost per litre of CDN$0.0076/ L. To complete this process, under current 

conditions it was calculated that 3.75
16

 tanker trucks are required to fill one tanker railcar. 

Therefore, each ethanol agent must consider additional shipping costs for rail movements when 

evaluating a location not directly adjacent to a rail line on the landscape. Finally, it is assumed 

that the cost to transload a truck shipment of DDGS is fixed rate at $398.00
17

 (Informa 

Economics, 2007), while the ethanol agent must ship 2.28
18

 DDGS truck shipments to fill one 

covered hopper railcar.  

 

4.9.3 Ethanol Transportation Methods 

The total cost of shipping ethanol by tanker truck is considered to be an increasing linear 

relationship (as shown in Figure 7), which translates into a declining per-unit cost as distance 

increases. An ethanol tanker truck in the simulation holds 30,275 litres
19

, a figure converted from 

US tanker truck capacity of 8,000 gallons (National Academy of Sciences, 2009). Shipment cost 

is estimated as follows
20

:  

 

                                                 
16

 One ethanol tanker truck carries 30,275 L and one ethanol rail tanker car carries 113,562 L, dividing 113,562 by 

30,275 equates to 3.75, the number of tanker trucks required to load one rail tanker car.  
17

 Rate quoted in USD $375.00, used an average exchange rate of 1.06, based on weekly exchange rates for the 

period March 2007 to July 2011 (Bank of Canada, www.bankofcanada.ca/rates/exchange/10-year-lookup/, accessed 

August 30, 2011. 
18

 One DDGS bulk truck carries 24.9 MT of and one DDGS covered hopper railcar carries 56.74 MT, dividing 56.74 

by 24.9 equates to 2.28, the number of bulk trucks required to load one covered railcar. 
19

 All figures have been converted to metric from imperial using conversion figures of 3.7844 for gallons to litres 

and 1.609344 for miles to kilometers. 
20

 The relationship of shipping ethanol by transport truck is deterministic (R
2
 = 1) due to the use of flat (average per 

unit) costs (as outlined in section 4.9.2) for loading/unloading, labour (driver), and cost/KM (distance) figures, 

which only increase linearly with distance. 
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E = 0.8516x + 371.07 

 

Where: E is total rate per loaded tanker truck; CDN$ 

 x is distance in kilometers 

 

 

Figure 7: Ethanol Tanker Truck Transportation Cost 

 
 

Rates for ethanol rail shipments are also set using an increasing linear relationship. Figure 8 

graphs recent ethanol rail rates for Canadian National Railway
21

 applicable to a loaded tanker 

car. Ethanol rail rates were calculated using CN’s online Carload Tool, where a total of 25 routes 

were searched based on extant ethanol plant and market locations. The data generated was very 

similar to rail rates acquired from USDA Agricultural Marketing Service’s Biofuel 

Transportation Database. Therefore, the choice to use the Canadian data was made given the 

similar results
22

. A simple relationship for ethanol rail shipping cost was estimated using this 

data. This produced the following relationship:  

 

F = -0.0009x
2
 + 4.0872x + 1441.90 

R
2
 = 0.91 

 

Where: F is total rate per loaded railcar; CDN$ 

 x is distance in kilometers 

 

 

 

 

 

                                                 
21

 CN Rail Rates are for shipping 4909159 (Ethanol (Alcohol Ethyl)), UN1170. 
22

 One outlier was removed from the dataset obtained from CN’s Carload Tool. This point biased the results leading 

to what was found to be undervalued outcomes from the estimated relationship. 
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Figure 8: Ethanol Tanker Railcar Transportation Cost 

 
 

Note that the movement of ethanol in the simulation is converted from litres to metric tonnes, 

and this was done to ease computation and maintain consistency for movements through the 

supply chain. By volume, one MT of ethanol is equivalent to 1,262 litres (Oak Ridge National 

Laboratory, 2008). Using this figure, a loaded tanker truck carries 23.99 MT (30,275 L divided 

by 1,262 L) while a tanker railcar carries 89.99 MT (113,562 L divided by 1,262 L).  

 

4.9.4 DDGS Transportation Methods 

DDGS shipments are treated in a very similar fashion to ethanol. Given that DDGS are moved in 

bulk shipments, freight costs for feedstock shipments were used as a proxy but altered slightly to 

reflect the lower haul weight - a bulk truckload of DDGS has been calculated to weigh 24.9 

MT
23

. DDGS bulk truck shipping cost is shown in Figure 9 and was estimated as follows: 

 

G = -0.0009x
2
 + 2.8246x + 251.58 

R
2
 = 0.99

24
 

 

Where: G is total rate per loaded bulk truck; CDN$ 

 x is distance in kilometers 

 

                                                 
23

 Wheat has a bulk density of 48.18 lbs./cubic foot and DDGS 30lbs./cubic foot. Therefore, DDGS bulk density is 

62.27% of wheat. A super B bulk transport truck is assumed to haul 40 MT of wheat. Therefore, the same bulk truck 

can haul 40 MT * 62.27% = 24.9 MT of DDGS. This assumption implies that the trucking rate for wheat will be the 

same for DDGS. Even though less weight is hauled, the available hauling volume is still being utilized, which leads 

to an increase cost per MT. A $1.10/ MT charge for shoveling has been included to further create an accurate cost 

estimate considering the problems of unloading DDGS at the final destination. 
24

 Data for transport truck shipment of bulk DDGS was based on bulk grain shipping costs obtained from Weyburn 

Inland Terminal. These costs were adjusted to reflect the lower hauling weight of DDGS (24.9 MT) and to 

rationalize the known difficulties with unloading DDGS (such as bridging, where the DDGS product refuses to flow 

out at unload), an additional cost of $1.10 per MT was added for shoveling (a surchargeable cost listed for grain 

transport by Weyburn Inland Terminal).  

F = -0.0009x2 + 4.0872x + 1441.9 
R² = 0.91 
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Figure 9: DDGS Bulk Truck Transportation Cost 

 
 

DDGS rail shipments (shown in Figure 10) were obtained once again from Canadian National 

Railway
25

. DDGS rail rates were calculated using CN’s online Carload Tool, with a total of 25 

routes searched based on current ethanol plant and DDGS market locations. Again, the data was 

very similar to DDGS rail rates acquired from USDA Agricultural Marketing Service’s Biofuel 

Transportation Database. As with ethanol, the choice to use Canadian data was made given the 

similarity of the results
26

. One covered hopper railcar holds 56.74 MT (Ileleji, 2010) of DDGS, 

leading to the following estimates of rail costs: 

  

H = -0.0006x
2
 + 3.3057x + 1161.60 

R
2
 = 0.97 

 

Where: H is total rate per loaded hopper railcar; CDN$ 

 x is distance in kilometers 

 

Figure 10: DDGS Bulk Covered Hopper Railcar Cost 

 
 

                                                 
25

 CN Rail Rates are for shipping 2085940 (Dist Mash (Spt)). 
26

 Outliers for one destination were removed from the dataset obtained from CN’s Carload Tool. This destination 

skewed the dataset leading to undervalued outcomes. 
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4.10 Summary 

This chapter outlined the economic, financial, and transportation concepts used in the simulation 

model, as well as the key underlying heuristics and algorithms as coded into the software. The 

model is designed to simulate and evaluate location potential for ethanol plants, with the goal of 

identifying stable or sustainable ethanol plant locations on the representative landscape. The 

econometric relationships used in the model are estimated using applicable data and are also 

designed to help emulate actual decisions to locate ethanol plants in Saskatchewan, Canada. In 

the interest of continuity, discussion of any remaining variables and relationships used in the 

model but not specifically mentioned in this chapter are provided in Appendix A.   
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CHAPTER 5 

Base Model Parameter Settings 

5.0 Introduction 

Next attention is given to the initial parameter settings used for what will be referred to as the 

base simulation model run. Ethanol agents perform the majority of interactions and decisions 

within this model, and the success of an agent is founded upon factors aimed at discovering 

stable or sustainable plant locations on the landscape. Factors influencing these decisions include 

the presence of economies of scale in production, feedstock production, procurement area 

competition, and government policy and subsidies.  

 

During the net present value and operations phase of the simulation, a number of variables can 

be adjusted by the user to evaluate aspects of system dynamics. These variables include inflation, 

capital loan interest rate, capital loan finance life, plant life, corporate tax rate, subsidies, 

shareholder equity, discount rate (applies to NPV analysis only), and demand shocks. These 

variables will affect the number of ethanol agents that initialize in the simulation on locations 

with an NPV ≥ 0, and during operations these variables can affect success or failure of plant 

location.  

 

5.1 Base Run Parameterization 

The base run is designed to reflect the current ethanol market in Canada, specifically applied to 

the province of Saskatchewan. The chosen parameters are an attempt to emulate a current market 

scenario and will be tested to see if a situation resembling the current market structure in this 

industry can be replicated within the simulation. The opportunity to perform additional model 

runs can help identify the effect of potential system shocks and help build a greater 

understanding of industry reaction over time as a result of these shocks. Most notable among 

these are the effect that government intervention through subsidies may have had on the 

organization of this industry. To this end, Tables 2 and 3 show the initial settings used in the 

model, including both adjustable and landscape parameters.  
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Table 2: Base Run Variable Settings 

Variable Setting Reference Notes 

Plant-finance-life 20 years Bain (2007) Herbst et al. (2002) uses 10 years 

Interest-rate 8% Herbst et al. (2002) Capital loan interest rate 

Plant-life-years 60 years Nilles (2006) Range of 30 – 60 years 

Expansion-plant-finance-life 10 years Herbst et al. (2002) Expansion loan, half of start up 

Inflation-on-revenue 1.9% Bain (2007) Holcomb & Kenkel (2008) use 1% 

Inflation-on-expenses 1.9% Bain (2007) Herbst et al. (2002) and Holcomb & 

Kenkel (2008) use 1% 

Inflation-on-labour 2% Holcomb & Kenkel 

(2008) 

 

NPV-discount-factor 10% Bain (2007) Herbst et al. (2002) use 8%; 

Holcomb & Kenkel (2008) use 12% 

Corporate-tax-rate 30% Herbst et al. (2002); 

Holcomb & Kenkel 

(2008) use 30% 

S&T
2
 Consultants Inc. (2004) 

suggest a rate of 32.12% 

Plant-size-variability 90%  Slack variable to allow for intake 

variability  

Shareholder-equity? On  Switch (either on or off) 

Level-shareholder-equity 50% Herbst et al. (2002) Literature suggests 25-100% 

shareholder equity with majority at 

50% (Herbst et al. (2002); S&T
2
 

Consultants Inc. (2004); TDI 

Projects Inc. (2004)) 

Profitability-year-check 50 years Model instability 

results if checked 

earlier when in 

expansion mode 

Input window. With expansion, an 

early overall profitability check can 

cause model instability 

Subsidy? Yes  Switch: on = yes; off = no 

Provincial-subsidy-years 60 years Currently renewed 

each year, assume 

this will continue 

Drop down chooser menu 

Market-demand-on? Yes   Switch: on = yes; off = no 

Ethanol-market-demand 135 

Mmly 

Canadian Centre of 

Policy Alternatives 

– SK (2008) 

Input window. Based on current 

Saskatchewan gasoline demand and 

mandated ethanol content level 

Timed-demand-shock 5 years  Drop down chooser menu. Demand 

will increase every five years 

Percent-increase-in-demand 10% Adds 162 Mmly 

over 60 year life 

Drop down chooser menu. Amount 

that demand will increase based on 

timed demand shock setting 

AVC-year-check 3 years  Drop down chooser menu. Every 

three years average variable costs 

will be reviewed (shutdown point) 

AFC-year-check 5 years  Drop down chooser menu. Check to 

see if average fixed costs are being 
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covered 

AC-year-check 35 years  Drop down chooser menu. Check to 

see if average costs are being 

covered. Earlier dates cause model 

instability in expansion mode 

 

Table 3: Base Run Landscape Variable Settings 

Landscape Variables Setting Notes 

Procurement-area 10 Eathington & Swenson (2007); Sarmiento & 

Wilson (2008). Equates to a 100 km zone 

Total-production 4,000,000 MT Feedstock production – see discussion below; 

S&T
2
 Consultants Inc. (2004) 

Primary-road 8 Location on landscape 

Main-rail 6 Location on landscape 

Power-grid 6 Location on landscape 

Natural-gas-grid 6 Location on landscape 

River 7 Location on landscape 

Number-of-towns 10 Number located on landscape 

Number-of-cities 5 Number located on landscape 

Number-of-feedlots 4 Number located on landscape 

Number-of-blenders 2 Number located on landscape 

Total-runs 1,000 Number of runs in base simulation 

 

5.2 Endogenous and Exogenous Variable Effects 

The variables or factors mentioned throughout this research are all postulated to have an effect 

on where and how an ethanol plant will locate within the landscape. Few of them are decisive 

elements on their own, but collectively they can influence what characterizes a sustainable or 

stable plant location. Many of these variables are considered exogenous to locational choices for 

ethanol plants and also generate a level of risk, given that no control over the variable can be 

exerted by the agent. Within this simulation, such exogenous variables include feedstock (wheat) 

price and production levels, ethanol and DDGS market prices, bank interest rate, inflation rate, 

subsidies, corporate tax rate, and mandated ethanol levels.  

 

Endogenous variables are those that the ethanol plant can influence and potentially use to their 

advantage. Endogenous variables include nameplate capacity and production level, plant life, and 

ethanol contract type. These variables are considered influential within the model for the 

following reasons. During planning stages, there exists an opportunity to appropriately plan 

nameplate capacity within required input constraints, while the operations phase allows ethanol 
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plants opportunities to choose maintenance schedules along with contract types and lengths that 

best suit their operation. Within this model, ethanol plants are able to choose nameplate capacity 

and output levels within predetermined constraints, but for tractability maintenance and ethanol 

contract types are fixed.  

 

The inclusion of these endogenous and exogenous variables in the simulation will extend our 

understanding of how such variables can help decide sustainable or stable ethanol plant locations 

over both time and space. To reiterate, other studies including those by Noon et al. (2002), 

Freeze and Peters (1999), Tyner and Taheripour (2008), and Herbst et al. (2002) have also 

identified a number of these variables, again providing strong evidence of their importance to the 

decision-making process in this industry.  

 

5.3 Financing 

Financial requirements for ethanol agents must consider several factors. Typically, capital cost 

requirements in the industry are split evenly with 50% borrowed funds and 50% contributed 

equity or equity capital from perspective investors (Herbst et al., 2002). Herbst et al. (2002) state 

this ratio of borrowed to owned equity is an industry standard, with most lenders requiring 

borrowed equity to be split between three or four financial institutions to reduce risk. The base 

run simulation model assumes that 50% of required equity will be obtained through shareholders, 

where shareholder equity can take the form of local investors, primary producers, or private 

enterprises.  

 

Financing term length for capital building costs will also affect an ethanol agent’s success in this 

model. For example, if the chosen term is too short, the ethanol plant may fail as it struggles with 

high debt servicing requirements. If it is too long, then inherently inefficient ethanol plant agents 

may be allowed to continue operations. The literature offers a number of suggestions about 

capital loan repayment periods. For example, Bain (2007) uses 20 years, which offers ethanol 

agents a lower principle payment amount, a factor that may help alleviate cash flow dilemmas 

during startup stages. Interest rates on borrowed equity range from 6% to 10% (Herbst et al., 

2002; S&T
2
 Consultants Inc., 2004; TDI Projects Inc., 2004; Bain, 2007; Holcomb & Kenkel, 

2008; Hofstrand, 2011), while this base run scenario will use an interest rate of 8% (Herbst et al., 
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2002). The same rate will also apply to expansion loans, but here the repayment period is set at 

10 years. Expansion costs are approximately 32% (Shapouri and Gallagher, 2005) of new capital 

building costs, and when combined with changing demand factors allows ethanol agents a better 

chance to respond to market opportunities while reducing loan carrying time. This translates to 

an increased number of expansion opportunities for successful ethanol agents within their 

simulated 60 year plant life.  

 

Production life for an ethanol plant is continually shifting forward given the industry’s relative 

youthfulness. Nilles (2006) states that most experts suggest 30 to 60 years of useful life 

expectancy for dry-mill fuel ethanol facilities, while the low end of the range seems conservative 

with the industry now reaching its 30 year milestone. A quality and adaptable plant that follows 

manufacturer recommendations for maintenance, is likely to be the key to extended ethanol 

facility life past 50 years. An adaptable plant with a flexible design will allow future expansions 

to take advantage of new technologies and efficiencies, leading to greater competiveness while 

increasing industry knowledge regarding future plant design (Nilles, 2006).  

 

5.4 Operating Cost Factors 

Inflationary effects on variable operating costs and revenue must be included in any capital 

investment analysis. The long life of capital projects generally implies that price inflation or 

deflation will occur, and while it is possible that positive and negative inflationary effects on 

capital investment price levels may net to zero over time, this is not guaranteed (Ross et al., 

1996). In the base model, inflation is set at 1.9% for operating costs and revenue (Bain, 2007), 

whereas other authors have suggested an inflation rate of 1% for the industry (Herbst et al., 2002; 

Holcomb & Kenkel, 2008). The higher rate used in the base model more accurately reflects the 

current inflation rate of approximately 2.6% (Bank of Canada, 2012). Holcomb & Kenkel (2008) 

suggest a wage inflation rate of 2% which reflects the additional costs associated with 

administering salary increases due to inflationary adjustments, an area that does not concern the 

current research but could be worth noting for future work given its financial effect on 

operations.  
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Income tax rates vary based on provincial boundaries and affect investor returns through lowered 

earnings. The simulation assumes a generic rather than a specific type of business structure in 

this regard, and while a specific business structure may provide a tax shield, building that into 

the current model is beyond the scope of this research. Related literature specifies that corporate 

tax rates are location dependent (Bain, 2007) which creates variability during site selection. 

However, the suggested tax rate for such analysis is 30% (Herbst et al., 2002; S&T
2
 Consultants 

Inc., 2004; Holcomb & Kenkel, 2008). Therefore profits here will be taxed at 30%, an amount 

consistent with shareholders or partners paying taxes on their earnings (Herbst et al., 2002). 

 

5.5 Market Demand 

Ethanol market demand factors will affect the number of ethanol agents operating in the 

simulated landscape and influence future expansion plans. Ethanol facilities typically experience 

a production ramp up period where ethanol output is less than nameplate capacity. Herbst et al. 

(2002) suggest that plants follow a 50% operational capacity in the first year, followed by 100% 

capacity thereafter. Others have suggested that it takes up to five years to bring a new plant fully 

online. Within the simulation, plant-size-variability essentially functions as a kind of slack 

variable that facilitates model stability and allows agents to continue operations during cycles 

where they are unable to secure required feedstock to meet nameplate capacity output. In other 

words, this variable allows the plant to operate at less than efficient levels due to exogenous 

factors such as decreased ethanol demand or low feedstock supply, while taking into account 

current plant feedstock (delivered but not yet processed) and ethanol (unsold) inventory levels. In 

additional to operating below nameplate capacity, ethanol plants are also able to produce 125% 

of nameplate capacity (a typical industry standard) during operations, allowing plants to meet 

small demand increases without financing an initial expansion.  

 

Market demand is assumed to grow for three main reasons: 1) increased adoption of flex-fuel 

vehicles; 2) potential export opportunities; and 3) an increase in mandated blend levels 

(Urbanchuk, 2006). Given these factors, demand shocks have been designed to occur at various 

yearly intervals and at certain percentage levels. For example, the base model imposes a demand 

increase of 10% over current market demand every five years, and it is assumed that these 

increases are absorbed by the market. As mentioned, ethanol demand in Saskatchewan is 
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estimated at 135 Mmly (Canadian Centre of Policy Alternatives – SK., 2008) given current 

mandate levels and gasoline demand. This figure is the base market demand level off of which 

future demand increases are based. Without any specific guidance, an industry growth rate of 

10% every five years is assumed, which seems reasonable given current demand and mandate 

levels. This means market expansion will be slow and consumable given reasons for ethanol 

demand increases listed above.  

 

5.6 Ethanol Subsidies 

Subsidization of the ethanol industry is currently available from both federal and provincial 

programs. Subsidies promote the creation and growth of the ethanol industry but shield the 

industry from competitive market conditions. While these subsidies have affected the 

organization of the current ethanol industry, their purpose is to promote rural revitalization, 

increase farm incomes, create new markets for agricultural producers, and reduce environmental 

impacts (Canadian Centre of Policy Alternatives – SK., 2008).  

 

The base model assumes that subsidies are available for the entire 60 year plant life, as outlined 

in Chapter Four. However should these subsidies end, what will be the effect on the industry? 

Will the current industry structure be sustained or will a new structure emerge? These outcomes 

could have drastic effects on ethanol facilities, given potential changes to world trade agreements 

and pressure from low cost ethanol producers from countries such as Brazil who seek export 

markets. In fact, many of the policies and subsidies used in today’s biofuel industry are subject to 

change since they are considered actionable under Part III of the WTO’s Agreement on Subsidies 

and Countervailing Measures (Kerr & Loppacher, 2005). Should policies and subsidies change, 

the local ethanol market could be flooded with cheaper imports that could spell disaster for 

domestic ethanol producers. 

 

5.7 Proposed Site and Operational Monetary Assessments 

Ethanol plants are by nature idiosyncratic site specific investments where their next best use is 

limited and usually only within the industry. Given this, profitability is essential for guaranteed 

financing and operations. To ensure that ethanol agents operate according to sound business 

principles, a number of financial tests are administered in the model at specified intervals. 
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During the initialization phase, a site under consideration must meet specific returns on 

investment before a construction commitment can be made. By discounting future cash flows to 

their present value, a comparison of investment market value and cost can be made. Once present 

value is calculated investment capital costs can be deducted, leaving net present value. The rule 

used here is to accept an investment if it returns a positive NPV, whereby the latter is a widely 

used decision criterion in industry (Ross et al., 1996). Suggested NPV levels for the ethanol 

industry range from 8 to 12% (Herbst et al., 2002; Bain, 2007; Holcomb & Kenkel, 2008). Here, 

the base model will use an NPV of 10% (Bain, 2007).  

 

During operations, the goal of an ethanol agent is to create an efficient and profit maximizing 

venture over both the short and long run. The short run is defined as the length of time during 

which the ethanol agent’s plant and equipment are fixed, namely the scale of plant cannot be 

changed (Mansfield, 1997). In the short run, the ethanol agent should only produce if it is more 

profitable than not producing, thereby covering its variable costs. If variable costs are not being 

covered in the short run, then the ethanol agent should shutdown. This means the shutdown 

decision in the simulation occurs if the ethanol market price is less than computed average 

variable costs (AVC). Bain (2007) uses a construction period of three years in his analysis. In our 

base scenario, the shutdown decision will similarly be evaluated every three years, as this seems 

to be the required period of time to bring changes to plant scale in this industry.  

 

The long run is defined as the period of time in which all inputs are variable and thus an ethanol 

agent can make complete adjustment to any change in its operating environment (Mansfield, 

1997). As stated above, the ethanol industry requires a large capital base and is slow to respond 

to market changes which require plant scale to be altered. The high cost and low margins create 

situations where a plant may be covering its variable costs in the short run but not total average 

costs in the longer run. An agent’s response to potential changes in demand and competition will 

affect fixed and total costs, especially if an expansion opportunity is presented. Therefore, 

reviewing average total costs at later periods in the base simulation model will allow agents an 

opportunity to take advantage of early expansion opportunities and create economies of scale 

that may be necessary to continue successful operations, thus ensuring that ethanol agents’ 

actions do not generate total costs that affect long term financial solvency.    
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Lastly, a parameter has been included to test if an agent has achieved profitability during 

operations. At the 50 year mark, each ethanol agent sums previous profits and losses to see if 

their overall profitability is greater than or equal to zero. This check was added to see if a site 

that returned an NPV greater than zero was actually profitable over the operational life of the 

plant. Year 50 has been chosen for this check in the base simulation, as this will mean the plant 

is nearing the end of its useful life according to current estimates.   

 

5.8 Landscape Parameters 

A number of parameters pertain directly to the location of other entities on the landscape. These 

entities serve as reference points for ethanol agents to use when searching for stable or 

sustainable locations. The co-location mixture of primary highways, mainline rail, utilities, and 

market access points create tradeoffs for ethanol agents as they search for a viable location.  

 

During the model initialization and operation phases, ethanol agents acquire feedstock from their 

initial procurement area as set by the procurement-area slider. Current feedstock procurement 

areas seem to range from 50 to 100 km (30 to 60 miles) in the literature (Eathington and 

Swenson, 2007; Sarmiento and Wilson, 2008), and within this buffer zone potential plants will 

want to avoid feedstock competition with other plants to minimize costs. Sarmiento and Wilson 

(2008) find that spatial competition in input procurement is essentially zero at 60+ miles (100+ 

km), which is an important consideration given the supply orientated nature of the ethanol 

industry. For the base simulation, plant procurement area has been set at 100 kilometers in the 

landscape. This means that during initialization only this area is available to help determine if a 

potential site has an NPV ≥ 0, but during operations this procurement area is extended in the 

manner described in Chapter Four.  

 

For the base simulation, feedstock production of 4 million metric tonnes (as set by slider value 

on the interface) is spread amongst a total of 1,369 patches distinguished by soil zone 

parameters. The landscape area translates approximately to the seeded acreage in Saskatchewan 

and the production level reflects the level of ethanol quality wheat that is likely available. This is 

computed by considering that ethanol producers are interested in starch and fermentable content 

of wheat (S&T
2
 Consultants Inc., 2004). Protein and starch content typically move in opposite 
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directions, therefore low protein wheat would generally have high starch content and be of 

interest to ethanol producers. In fact, this type of wheat is usually less expensive and typically 

would be considered a grade of Canadian Grain Commission (CGC) #3 or lower. On average this 

quality level accounts for 30% of the crop in the province (S&T
2
 Consultants Inc., 2004). In 

Saskatchewan, wheat production has averaged 13,347,032 MT per year from 1976 to 2006. 

Therefore based on the 30% low wheat grade figure, it is calculated that approximately 

4,004,110 MT of applicable wheat per year is typically available for ethanol production in the 

province.  

 

The base model results will be based on the average of 1,000 runs of the simulation. These 

results will be used to build understanding about the relative importance of factors that affect 

location decisions in the foreseeable ethanol industry.  

 

5.9 Counterfactual Simulation 

In addition to the base scenario, a second set of simulations were developed to examine the 

effects of policy and subsidization. This counterfactual simulation retained all the base run 

variable settings as outlined in Tables 2 and 3, with the exception of those variables related to 

government subsidization of the ethanol industry. So in the counterfactual simulation, both 

federal and provincial subsidies were turned off and removed from initialization and operation 

phases. The counterfactual results give us an opportunity to examine the overall effect that 

government intervention through subsidization has had on the development of the ethanol 

industry in Saskatchewan.  

 

5.10 Summary 

A base case simulation has been programmed to represent as much as possible the current 

ethanol industry and its market structure as found in Saskatchewan. Parameters settings include 

financial, operating, demand, subsidies, fiscal monitors, and landscape location features. These 

are used by the ethanol agents to help identify viable plant locations. Both the base and a 

counterfactual simulation will be run 1,000 times with generated output collated to better 

understand the factors leading to stable plant location decisions over time, both with and without 

the presence of government intervention through subsidization.   
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CHAPTER 6 

Simulation Results and Discussion 

6.0 Introduction 

The ethanol industry is heavily influenced by location, whether this means proximity to 

feedstock, transportation systems, or markets, since all these spatial factors must be considered in 

a location decision. This agent-based simulation model of ethanol plant location, as described in 

Chapter Four, was initially run using parameters as discussed in Chapter Five. The simulation 

results for both the base and counterfactual scenarios are examined and compared, allowing us a 

better understanding of the factors that affect both ethanol plant operation and location over time.  

 

Each simulation was run for 60 years, where one year is equivalent to one cropping year, and the 

whole system was re-run for a total of 1,000 iterations. An overview of both simulated 

landscapes is presented below. The first or base scenario simulates the Saskatchewan ethanol 

market as it currently operates. The second or counterfactual scenario removes both federal and 

provincial subsidies. The results appraise the impact of transportation networks, market 

synergies, and policy on the Saskatchewan ethanol industry.  

 

6.1 Overview of the Simulated Landscape 

Both the base and counterfactual scenarios were repeated over one thousand runs of a sixty year 

ethanol plant lifecycle. Initially, the greatest influence appeared to be proximity to feedstock. But 

without further analysis on the effect of transportation networks, market synergies, or explicit 

subsidies on location decisions, it is not clear which of these factors might factor more heavily in 

the location decision.  

 

Figures 11 and 12 display the appearance of the simulated landscape after 1,000 runs. In both 

instances, one notices that there are a number of visible elements on the landscapes. In both 

simulations the location of transportation networks, utility networks, and feedstock (wheat) 

production levels were kept constant. The transportation networks are identifiable by the light 

blue lines for main-line railways, while the dark blue lines denote primary highway routes. To 

prevent clutter on the visual landscape, utility networks have been layered under the 

transportation networks, farmland, and ethanol agents. Lastly, white spaces indicate sites where 
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an ethanol agent did not locate during the simulation. This latter outcome results from the 

existence of towns and cities, or else blenders and feedlots holding these locations during the 

simulations.  

 

As discussed previously, there are number of factors that can render a specific location to be 

lucrative. The colours in Figures 11 and 12 both show and rank desirable and undesirable 

locations based on the number of ethanol plant agents that were able to successfully operate. Red 

areas indicate an increased density of ethanol agents (plants) while lighter green areas indicate a 

lower density of ethanol agents. The figures provide insight into what makes for a suitable or 

stable location, and the factors behind these suitable or stable locations will be discussed next.  

 

Figure 11: Ethanol Agent Density Map (Base Scenario)
27

 

 

Legend:  

 

                                                 
27

 Density map displays the number of times an ethanol agent successfully located on a particular site (patch). 
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Initially in Figure 11 the increased tendency for ethanol agents to locate in the hinterland
28

 is 

evident, indicative of a possible tradeoff between feedstock access and transportation proximity. 

However, as it is argued later, when the influence of subsidies are considered as part of the 

location analysis, the efficiency and long-term profitability of hinterland locations may not yield 

the most stable locations.  

 

Note that in the counterfactual scenario without subsidies (Figure 12), we see an immediate drop 

in the number of distant hinterland plants that were generated using the base scenario. In the 

latter case, the removal of subsidy revenue seems to have caused plants to locate even closer to 

transportation corridors, indicative of the importance of transportation costs to locational 

success, all else equal.  

 

Figure 12: Ethanol Agent Density Map (Counterfactual Scenario, without Subsidies)
29

 

 

Legend:  

                                                 
28

 These are typically remote or rural areas that are on the fringe or detached from major urban locations. 
29

 Density map displays the number of times an ethanol agent successfully located on a particular site (patch). 
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Table 4 contains the descriptive statistics for average plant size of ethanol agents when subsidies 

are present, and then removed during the simulations. The statistics are based on the 1,000 runs 

generated for each simulation. In sum, the average ethanol plant size with subsidies was 249.5 

Mmly, compared to 257 Mmly without subsidies. To test that these differences in means are 

statistically significant a two-sample t-test
30

 assuming unequal variances was performed. The 

results in Table 5 show that the means are statistically different from one another at 5%, as are 

the variances in Table 6. In addition, a fully non-parametric Wilcoxon/Mann Whitney U Test 

was also conducted, showing that the data are normal from non-identical populations, further 

supporting the t and F-test results.  

 

Furthermore, the results in Table 4 on plant size distribution show a positive kurtosis, implying a 

higher peak with fatter tails, an outcome that occurs with frequent extremes. While both 

simulations are similar in many respects, the inclusion of subsidies leads to slightly fatter tails 

than when subsidies are not present. Both simulations are also positively skewed, suggesting a 

greater concentration to the left of the distribution, the lower end of the ethanol plant size 

distribution. One can see that the removal of subsidies increases average plant size and moves 

the distribution further to the right, possibly indicating greater operational efficiencies, 

economies of scale, and competitiveness.  

 

Table 4: Descriptive Statistics: Average Ethanol Plant Size (Litres) with/without Subsidies
31

  

Statistical Parameters Subsidy On Subsidy Off 

Mean 249517545.5 257039996.3 

Median 247258542 256199004 

Mode 266601240 #N/A 

Standard Deviation 28203029.06 25214812.04 

Kurtosis* 0.32 0.29 

Skewness* 0.44 0.36 

Range 173261380.8 164985162   

Minimum 175996771.2 187350360   

Maximum 349258152 352335522   

Observations* 1000 1000 

*Not shown in litres 

                                                 
30

 See: Schedecor, George W. and Cochran, William G. (1989). Statistical Methods, Eighth Edition. Iowa State 

University Press. 
31

 Base simulation incorporates federal and provincial subsides (Subsidy On) while counterfactual simulation 

excludes federal and provincial subsidies (Subsidy Off). 
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Table 5: Two Sample T-Test of Simulation Means with/without Subsidies 

t-Test: Two-Sample Assuming Unequal Variances 

df 1973 

t Stat 6.29 

P(T<=t) two-tail 0 

t Critical two-tail 1.96 

 

Table 6: Two Sample F-Test for Variance of Simulations with/without Subsidies 

F-Test Two-Sample for Variances Subsidy On Subsidy Off 

df 999 999 

F 1.25 

 P(F<=f) one-tail 0 

 F Critical one-tail 1.11   

 

The influence on location stability of transportation networks, market synergies, and policy 

through subsidization will be examined in detail in the next three sections.  

 

6.2 Transportation Network Proximity 

As identified in the relevant literature about ethanol markets, proximity to primary highway 

and/or mainline rail service seems to be essential to ensure market access and plant survival 

within the industry. Primary highway and mainline rail are located on the simulated landscape 

and ethanol agents do incur additional transportation related costs as plant distance increases 

from this infrastructure. In fact, the simulations show some tradeoff is made between the distance 

of a plant to a primary highway and mainline rail by the ethanol agents. Here, Tables 7 and 8 

display descriptive statistics for plant access distances to the two modes within the transportation 

network.  
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Table 7: Descriptive Statistics: Primary Highway Access
32

 

Statistical Parameters Subsidy On Subsidy Off 

Mean 4.52 4.20 

Median 4.60 4.20 

Mode 5.00 4.00 

Standard Deviation 1.33 1.21 

Kurtosis -0.46 -0.12 

Skewness -0.12 0.07 

Range 7.00 7.50 

Minimum 1.00 1.00 

Maximum 8.00 8.50 

Observations 1000 1000 

 

Table 8: Descriptive Statistics: Mainline Rail Access
32

 

Statistical Parameters Subsidy On Subsidy Off 

Mean 4.95 4.48 

Median 5.00 4.50 

Mode 5.00 4.00 

Standard Deviation 1.40 1.29 

Kurtosis -0.17 0.08 

Skewness 0.10 0.14 

Range 8.67 8.41 

Minimum 1.00 1.00 

Maximum 9.67 9.41 

Observations 1000 1000 

 

Access to primary highway dominates rail access in both simulations, as indicated by the 

comparatively lower mean and median values of highway access. It is concluded from this that 

primary highway access plays a more important role in determining a stable plant location than 

access to mainline rail. When subsidies are removed in the counterfactual simulation, a dramatic 

decrease in plant distance from transportation infrastructure occurs with little variation. The 

impact of subsidies on location relative to transportation network access is apparent, with 

distributional mode decreasing by twenty percent and standard deviation falling by nine percent 

for both highway and rail access. With the majority of ethanol agents locating 20% closer to 

primary transportation networks in this scenario, subsidization of the ethanol industry has 

allowed these plants to locate farther from transportation corridors. Thus in the current ethanol 

                                                 
32

 Figures list the average number of patches between the ethanol agent and the transportation mode. As previously 

discussed each patch is 9.6 KM
2
, therefore multiplying the listed numbers by 9.6 will yield the kilometer distance.  
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industry, the sudden removal of these subsidies may leave many hinterland plants unprofitable 

due to high transportation costs.  

 

The results also show that proximity to a reliable transportation network affects an ethanol 

agent’s production and average variable cost structure. As plant locations grow increasingly 

distant from primary highway and mainline railway, a significant decline in ethanol production is 

observed
33

 (Figure 13). However, one interesting finding is the consistently higher ethanol 

production volumes when subsidies are removed, a fact also evident in Figure 13.  

 

In sum, subsidization of the ethanol industry has downgraded the importance that access to 

reliable transportation networks has on ethanol production (Figure 13), a point that is supported 

by increasing average variable costs (see Figure 14). Average variable costs of ethanol agents not 

receiving subsidies are marginally lower, which would be indicative of better economies of 

scale, especially for smaller plants located away from primary transportation networks in 

hinterland regions.  

 

Figure 13: Ethanol Agent Production Contingent on Transportation Network Access
34

 

 

 

 

 

 

                                                 
33

 As ethanol production volume declines so does DDGS production (given its by-product nature) and plant 

nameplate capacity of the ethanol agents.  
34

 Average ethanol production given ethanol agent’s distance to primary highway and mainline railway access. 
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Figure 14: Ethanol Agent Average Variable Cost Contingent on Transportation Network Access 

 

    

6.3 Market Synergies and Plant Location 

In the simulation, ethanol agent proximity to market varies based on transportation mode. An 

interesting finding from the simulation is that DDGS market access dominates ethanol market 

access in both scenarios. DDGS is characteristically a lower value, bulky product with inherent 

transportation difficulties such as bridging
35

. Thus closer DDGS markets are preferred to 

efficiently market and transport at least cost, thereby reducing potential shipment difficulties. 

Comparatively, the ease of transporting ethanol in liquid form using designated truck and railcar 

containers appears to reduce location constraints related to ethanol market proximity. But given 

that ethanol contracts can account for up to 80% of a plant’s revenue (Coltrain, 2004), spatial 

market proximity must be duly considered, especially if contractual shipping terms favour the 

ethanol buyer.  

 

Typically ethanol markets are not located in proximity to plants. Shipping ethanol by tanker 

truck is usually cost effective at distances less than 300 kilometers, whereas beyond this distance 

rail becomes more cost effective (OECD, 2004). The simulation results are consistent with these 

observations, showing that ethanol agents stabilize on locations that average about 175 KM 

shipment distance when subsidies are in place, and approximately 169 KM as subsidies are 

removed for highway shipments to ethanol markets. Shipping ethanol short distances by rail in 

the simulation is not advantageous to stable plant locations. Rather in the simulation, it appears 

                                                 
35

 Bridging takes place during shipment of DDGS. Bridging means the product binds and compacts during shipment 

reducing flowability and leading to potential unloading problems (see Section 4.9.4). 
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that rail shipments begin to support an ethanol agent’s location at distances greater than 

approximately 700 KM
36

.  

 

The comparison of ethanol shipment by road and rail clearly displays the cost efficiency of short 

distance shipments by tanker truck compared to longer distance rail shipment. The mix of local 

shipments by tanker truck and more distant shipments by rail create greater savings for stable 

locations and optimize transportation cost efficiency. However, one caveat to this discussion 

relates to smaller ethanol plants. Without the model assumption that all plants can access storage 

and transloading terminals, smaller plants may find rail shipment especially ineffective given 

they will usually be unable to produce the typically required unit train volumes. Without this 

assumption, smaller plants may be additionally disadvantaged if they rely on rail shipments. 

 

Proximity to DDGS markets generates similar findings. However, ethanol agents tend to favour 

local DDGS markets even more so than ethanol markets. This was an interesting outcome from 

the model considering that DDGS contracts typically only account for up to 20% of an ethanol 

plants revenue stream (Coltrain, 2004). Feedlots are the traditional buyers of DDGS and are 

usually concentrated in select areas. Concentration of feedlots can create a locational constraint 

that when combined with the high production of DDGS from the ethanol industry can lead to a 

highly competitive feed market and a likely reduction in DDGS revenue. Therefore, the agents 

seem to discover that minimizing transportation costs and concentrating on local markets is 

extremely important. 

 

Access and proximity by primary highway to DDGS markets is helpful in generating stable 

ethanol plant locations. Simulation findings show that ethanol agents stabilize on locations that 

average 146 KM (with subsidies) and 140 KM (when subsidies are removed) for DDGS market 

access via primary highway. Shipping DDGS via rail may be cost effective at very long distances 

but it is not favoured by the ethanol agents in this model. This supports the previous finding that 

the ability to use local bulk truck shipments via primary highway seems to be more conducive to 

identifying a stable location. The benefit of shipping DDGS long distances via rail was 

                                                 
36

 At this point the MT cost per KM to move ethanol via rail falls below the MT cost per KM to ship ethanol via 

highway. This observation is supported by highway and rail rates obtained for use in the model, as the small number 

of observations generated in the simulation could not be used alone to draw a firm conclusion.  
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inconclusive in the simulation, specifically at distances greater than 300 KM where the number 

of observations was insufficient to confidently draw conclusions. It must also be noted that in the 

simulation model, ethanol agents not located on mainline rail must also pay a transloading fee to 

ship by rail, so it is possible this may be generating these inconclusive results. Based on highway 

and rail rates obtained for use in the model it appears that DDGS shipment via rail is cost 

effective at distances greater than approximately 300 KM
37

. Given these considerations, this is 

an area worthy of future research.  

 

In this light, the descriptive statistics displayed in Tables 9 and 10 indicate that proximity to 

DDGS markets by both primary highway and mainline rail are sought by ethanol agents over 

those locations closer to ethanol markets. In fact, these findings show that ethanol agents located 

twenty percent closer to DDGS markets, a result that was not affected by industry subsidization.  

 

Table 9: Descriptive Statistics: Average Market Distance via Primary Highway Network 

Statistical 

Parameters 
Blender Feedlot 

Subsidy On Subsidy Off Subsidy On Subsidy Off 

Mean 18.27 17.63 14.61 14.00 

Median 18.00 17.40 14.50 14.00 

Mode 19.00 16.00 15.00 15.00 

Standard Deviation 3.82 3.75 3.09 2.84 

Kurtosis 1.05 1.00 0.50 0.32 

Skewness 0.44 0.52 0.09 0.02 

Range 32.75 26.67 22.00 20.17 

Minimum 5.50 6.33 2.00 3.50 

Maximum 38.25 33.00 24.00 23.67 

Observations 1000 1000 1000 1000 
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 At this point the MT cost per KM to move DDGS via rail falls below the MT cost per KM to ship DDGS via 

highway. 
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Table 10: Descriptive Statistics: Average Market Distance via Mainline Rail Network 

Statistical 

Parameters 

Blender Feedlot 

Subsidy On Subsidy Off Subsidy On Subsidy Off 

Mean 15.65 15.68 11.98 11.96 

Median 15.25 15.50 11.75 11.80 

Mode 14.00 15.00 11.00 12.00 

Standard Deviation 3.75 3.89 2.95 3.12 

Kurtosis 0.86 0.91 0.29 0.71 

Skewness 0.44 0.52 0.31 0.29 

Range 30.00 28.83 21.83 24.67 

Minimum 2.50 6.67 1.50 2.00 

Maximum 32.50 35.50 23.33 26.67 

Observations 1000 1000 1000 1000 

 

All considered, proximity to DDGS markets in the simulation appears to help generate stable 

ethanol plant locations. Reasons for this location preference could include higher relative per unit 

transport costs, transportation difficulties, and the fact that DDGS buyers (i.e. feedlots) 

considered in the simulation typically locate in rural areas since feed supply and cost is one 

major economic factor considered in the feedlot location decision (Carter and Schmitz, 1986). So 

while these findings indicate agent preferences for DDGS market access, the underlying cause 

may be that both ethanol plants and feedlots share similar locational traits, striking a balance 

between feedstock access and final market proximity.  

  

The removal of subsidies in the counterfactual simulation did not produce a large effect on mean 

distance to markets via highway or rail. This could be due to the scale of the simulation or the 

cost effective nature of rail transport, where movement by highway means considerably higher 

costs compared to rail. Market distance via highways showed a 4 – 5% decrease when federal 

and provincial subsidies were removed. This supports the supposition that subsidies may in fact 

be affecting the location decision of ethanol plants, and the potential removal of subsidies could 

alter the industry through the removal of plants operating at or near the shutdown point.  

 

Plant production levels are affected by geographical distance to markets. Simulation results were 

consistent at generating an inverse relationship between distance to market and production 
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levels. As shown in Figures 15 and 16, ethanol and DDGS
38

 production as a function of market 

distance declines. This declining relationship was consistent for both simulations.   

 

Figure 15: Average Distance to Ethanol Markets as a Function of Ethanol Production 

 

 

Figure 16: Average Distance to DDGS Markets as a Function of DDGS Production 

 

 

The removal of subsidies resulted in a slight increase in production and the ability for some 

ethanol agents to successfully operate at greater distances to both ethanol and DDGS markets. 

These findings are consistent with simulated results regarding transportation network access. It is 

concluded that these increases in production and market distances can be attributed to ethanol 

agents getting more rigorous in their location decisions as the simulation progresses. This 

typically leads to lower cost structures through the achievement of economies of scale, thus 

increasing their marketplace competitiveness.  

                                                 
38

 Given DDGS is a by-product of ethanol production this finding would be consistent with ethanol demand.  

40

50

60

70

80

90

100

110

120

10 50 90 130 170 210 250 290 330 370 410

Et
h

an
o

l P
ro

d
u

ct
io

n
 M

m
ly

 
 

Distance KM 
Subsidy On Subsidy Off

40

50

60

70

80

90

100

10 50 90 130 170 210 250 290 330 370D
D

G
S 

P
ro

d
u

cc
ti

o
n

 T
h

o
u

sa
n

d
s 

o
f 

M
T

 

Distance KM 

Subsidy On Subsidy Off



86 

 

6.4 Policy, Prices, and Plant Operations 

The role policy has played through subsidies of fostering rapid growth of the ethanol industry in 

the last five to ten years is clear. However, what is also clear is that desired social or political 

impact of such subsidies may not have been achieved. Subsidies benefit both small and large 

ethanol producers, but it seems the small producers have the most to lose should subsidies end. 

Specific to Saskatchewan, provincial subsidy targets rural revitalization by ensuring small 

ethanol producers are guaranteed thirty percent of provincial market share. Small producers 

receive a higher subsidization level, but when compared to most simulation runs where no small 

producers
39

 survive, it seems the intended outcome of rural revitalization policy will ultimately 

fall short. The variability in subsidy payments is further compounded by industry competition, as 

strategically located firms expand, with ethanol imports from highly efficient firms reaching the 

local market. These factors indicate that subsidy dependent plants will find it difficult to compete 

and remain financially viable should subsidies be reduced or removed from the current 

marketplace.  

 

The costs associated with ethanol plant operation in the simulation seem to vary mostly based on 

economies of scale, location, and market access. The following section gives a brief overview of 

costs in the model – including average variable costs, average costs, revenue/income, breakeven 

ethanol price, along with the distribution of both small and large ethanol plants within the 

simulations.  

 

Locational effects on operating costs can be significant, and can lead to plant closures when not 

carefully considered by the agents. During startup, high fixed costs raise average costs above 

average revenues, leading to short run deficits. When combined with procurement area 

competition, this situation leads to a number of plant closures. As financial responsibilities 

associated with capital building costs are overcome over time average costs decrease, leading to 

profits (that are taxed). The effects of demand increases are indicated by higher revenue, and 

when combined with small decreases in average costs, creates situations where economies of 

scale can be realized by a plant. The outcome of this process will ultimately reduce average 

operational costs.  

                                                 
39

 Small ethanol producers are classified as having a plant nameplate capacity of 25 Mmly or less. 
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With respect to the magnitude of production costs, the generated average variable costs are 

CDN$0.64/ L in the baseline simulation and CDN$0.635/L when subsides are removed (Table 

11). These are close to the cost levels listed in a recent study by Perrin et al. (2009). But 

interestingly, in a number of other studies, net operating costs are usually presented in a manner 

where DDGS sales, carbon dioxide sales, and subsidy revenue have been deducted. The latter 

combined effects mean that the average cost results of this study appear to be elevated by 

comparison. However, when deduction information is taken into consideration along with higher 

production costs for wheat ethanol than corn ethanol (Outlook Market Research and Consulting 

Ltd., 2008), it turns out that the base simulation average variable costs are very much in line with 

the Perrin et al. (2009) results.  

 

Table 11: Descriptive Statistics: Ethanol Agent Average Variable Cost per Litre Produced 

Statistical Parameter Subsidy On Subsidy Off 

Mean 0.64 0.635 

Median 0.64 0.635 

Mode #N/A #N/A 

Standard Deviation 0.027386128 0.024494897 

Kurtosis -1.2 -1.2 

Skewness 0 0 

Range 0.08 0.07 

Minimum 0.6 0.6 

Maximum 0.68 0.67 

Observations 9 8 

 

Average costs by plant size vary greatly, as shown by the descriptive statistics (see Table 12). 

The removal of subsidies reduces average costs by $0.06 per litre and narrows the range of plant 

cost variability. In the simulation, as plants take advantage of the effects of economies of scale 

we see plant size increase as average cost per unit declines (see Figure 17).  
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Table 12: Descriptive Statistics: Ethanol Agent Average Cost per Litre Produced 

Average Cost Subsidy On  Subsidy Off 

Mean 1.116836735 1.055116279 

Median 1.115 1.055 

Mode #N/A #N/A 

Standard Deviation 0.287583594 0.249902306 

Kurtosis -1.139546941 -1.195889797 

Skewness 0.040448723 0.002852086 

Range 1.04 0.86 

Minimum 0.63 0.63 

Maximum 1.67 1.49 

Observations 98 86 

 

Figure 17: Average Cost per Litre of Ethanol Produced 

 

 

Also of interest is the dramatic reduction in the maximum average cost (Table 12). The removal 

of subsidies reduces average cost to $1.49 per litre from $1.67 per litre. Thus, the removal of 

subsidies dramatically reduces the number of high cost inefficient ethanol plants, effectively 

driving them out of the industry. One consistency is that subsidization of the industry often keeps 

inefficient ethanol plants operational. This knowledge can be used to infer that high subsidy 

rates, which are currently at about $0.25 per litre in Saskatchewan, are leading the market away 

from competition and cost efficiency, and instead are creating widespread inefficiencies in 

ethanol production. 

 

Income or revenue per litre of ethanol output is the final indicator of industry status examined 

here. As costs increase and subsidies are removed, an immediate decrease in average income is 

observed among the plants. Average income drops across scenarios by approximately $0.28 per 
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litre (Table 13). But within the average income variable, we find a wide range even after the 

removal of subsidies, again indicating the importance of economies of scale in maintaining stable 

plant locations. In Figure 18 there is a distinct group of high and low income plants, but once 

subsidies are removed, these widespread groupings begin to cluster. The end result is a high 

concentration of ethanol agents with an approximate nameplate capacity of 260 Mmly earning an 

average net income of approximately $0.33 per litre without the aid of subsidies.  

 

Table 13: Descriptive Statistics: Ethanol Agent Average Income per Litre Produced 

Average Income Subsidy On Subsidy Off 

Mean 0.762857143 0.479464286 

Median 0.8 0.335 

Mode #N/A #N/A 

Standard Deviation 0.34855392 0.335908102 

Kurtosis -1.296837934 -1.049026561 

Skewness -0.081972662 0.539682744 

Range 1.16 1.11 

Minimum 0.18 0.06 

Maximum 1.34 1.17 

Observations 105 56 

 

Figure 18: Average Income by Nameplate Capacity 

 

 

When subsidies are not present, the range between average income and average costs narrows 

dramatically. This implies that only those plants that ultimately realize substantial economies of 

scale remain viable.  
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The removal of subsidies has a similar effect on breakeven ethanol price. This price
40

 is the 

ethanol market price required for the firm to cover its variable costs in the short run. The removal 

of subsidies leads to a smaller variation in plant size, with inefficient plants closing down. As 

seen in Table 14, the removal of subsidies leads to an average increase in the ethanol breakeven 

price of $0.12 per litre. Note that without subsidy the industry does not collapse, but rather the 

efficient plants continue to operate and exploit their economies of scale to dominate the market.  

 

Table 14: Descriptive Statistics for Ethanol Breakeven Price Comparison 

Ethanol BE Price Subsidy On Subsidy Off 

Mean 1.2366 1.355357143 

Median 1.235 1.355 

Mode #N/A #N/A 

Standard Deviation 0.292910232 0.244547511 

Kurtosis -1.151124542 -1.187183708 

Skewness 0.03360921 0.008915524 

Range 1.05 0.85 

Minimum 0.74 0.94 

Maximum 1.79 1.79 

Observations 100 84 

 

Figure 19 shows the effect of subsidization on the ethanol industry. As subsidies are removed, 

high cost plants exit the industry resulting in an evident inverse relationship between ethanol 

breakeven price and name plate capacity. Clearly, efficiencies realized through economics of 

scale are important in the ethanol industry, meaning that overall, the simulated counterfactual 

outcome generates a more economically efficient marketplace due to the removal of subsidies.  

 

 

 

 

 

 

 

                                                 
40

 The ethanol breakeven price only includes the sale of ethanol, whereas sales of DDGS and subsidy income are not 

included since these are not guaranteed given the high level of competition in the feed market and that government 

policy can change without notice. See Section 4.8.4 for further discussion. 
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Figure 19: Ethanol Breakeven Price by Nameplate Capacity 

 
 

In the simulations a wide range exists between the minimum and maximum ethanol breakeven 

prices. These are $1.05 per litre when subsidies are available, and $0.85 per litre when removed 

(Table 14). As the ethanol agents meet simulated operational challenges and adjust to market 

forces, they strive for operational efficiency to avoid premature industry exit. The effect of these 

adaptations results in a narrowing of ethanol breakeven price spreads. To illustrate this point, 

Figures 20 and 21 show average ethanol breakeven price at simulated years ten and sixty. 

Efficient ethanol agents (those with lower breakeven prices) show very little variation in 

efficiency, whereas the ethanol breakeven price for inefficient ethanol agents varies dramatically, 

which may be an indicator of either poor location choices or unrealized economies of scale. Note 

also that the ethanol breakeven price decreases over time as agents become more competitive, 

operate at or near nameplate capacity, and reduce fixed costs related to capital building expenses.  

 

Figure 20: Ethanol Breakeven Price at Year 10 
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Figure 21: Ethanol Breakeven Price at Year 60 

 

 

Ultimately, even though DDGS and subsidy income are not part of the data used to generate 

Figures 20 and 21, the effects of subsidies on average ethanol price are apparent. The breakeven 

price spread is greater when subsidies are present, indicating their strong influence on daily 

operational costs. And as seen in Figure 21, the breakeven price spread is narrows significantly 

after the removal of subsidies. This produces a concentration of firms around an ethanol 

breakeven price of approximately $0.97/L, as compared to approximately $0.93/L when 

subsidies are included.  

 

6.4.1 Plant Scale and Profitability 

As might be expected, ethanol plant size plays an important role in attaining profitability and 

economies of scale. During the simulations, a number of plant sizes where generated based on 

the location attributes of the individual ethanol agent. Figures 22, 23, 24, and 25 display the 

frequency and production levels for which small and large ethanol agents successfully located at 

stable locations during each scenario. The production of ethanol at a specified level is identified 

by the vertical axis, with the horizontal axis indicating specific operational years. Within Figures 

22, 23, 24, and 25, each bar identifies the total number of ethanol agents that were operating in a 

particular year and their average ethanol production level. For example, from Figure 22 we 

observe that over time the number of small ethanol plant agents decline, while their production 

levels modestly grow. However, there were no small ethanol agents who survived the entire 60 

year time frame of a simulation run.  
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Figure 22: Ethanol Production Growth by Count of Small Plants
41

 (Subsidy On) 

 

 

Figure 23: Ethanol Production Growth by Count of Small Plants
41

 (Subsidy Off) 

 

 

Once again, we see that the removal of subsidies significantly affected small ethanol agents. 

Comparing Figures 22 and 23, without subsidization small plants exit the industry an average of 

10 years sooner as well as generating reduced ethanol production levels. While subsidization in 

the simulation allows small ethanol plants to flourish initially, the effects are not long lasting. In 

most cases, the failure of small plants to gain economies of scale is the most likely cause of their 

decline.  

 

The simulation results also show that although small production plants are not successful in the 

simulations, larger production plants are very successful. Large plants dominate in the majority 

of the runs, with small plants initially making up what appears to be a competitive fringe. Figures 

24 and 25 present production levels for large plants at specified time periods. In both base and 

counterfactual simulations, large ethanol agents increase their production levels over time taking 

advantage of economies of scale, and this situation is even more pronounced when subsidies are 

removed (Figure 25). While the distribution of ethanol agents occupying the simulated landscape 

between the two simulations shows similarities, one interesting result is apparent. That is, when 

subsidies are available, we obtain two ethanol agents with dominant levels of production (Figure 
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24), while with the removal of subsidies we obtain only one ethanol plant/agent with a dominant 

level of production (Figure 25).  

 

While somewhat unexpected, this finding is not surprising when previous research has shown 

that subsidization of the industry allows firms to operate below their efficient output level. The 

removal of subsidies allows a dominant firm to continue operating in a significant number of the 

simulation runs (Figure 25). Over the long run, this emergent oligopolistic industrial organization 

is representative of industries that produce homogeneous goods, and where the dominant firm 

finds it more profitable to keep price above the shutdown price and not drive fringe firms out of 

the industry (Cherry, 2000). In the simulation model, each firm is aware of the production of 

others in the market but all are competing for more market share. Moreover, efficient firms are 

able to increase their market share and produce more ethanol at the expense of their competitors. 

As such, relatively few small ethanol plants survive in the model, as their high cost structure 

limits their ability to produce ethanol at a competitive price and compete with those firms that 

have managed to achieve economies of scale.  

 

Figure 24: Ethanol Production Growth by Count of Large Plants
42

 (Subsidy On) 

 

 

Figure 25: Ethanol Production Growth by Count of Large Plants
42

 (Subsidy Off) 
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Both simulations produced a wide variety of plant sizes over all runs. Descriptive statistics 

displayed in Table 15 present average ethanol plant sizes across both simulations. The negative 

kurtosis across both simulations implies flatter peaks and shorter tails suggesting relatively 

infrequent size extremes. But variation in nameplate capacity is evident given the substantial 

range between minimum and maximum plant capacities, while subsidization further amplifies 

this variation.  

 

Table 15: Descriptive Statistics: Average Nameplate Capacity
43

 (Litres) 

Statistical Parameter Subsidy On Subsidy Off 

Mean 208924164.2 231991965.1 

Median 209763960.9 235776239.4 

Mode #N/A #N/A 

Standard Deviation 69741197.52 53220747.46 

Kurtosis* -1.94723775 -2.013948019 

Skewness* -0.06673191 -0.105133142 

Range 173274102 129029085.1 

Minimum 119055996 165628164 

Maximum 292330098 294657249.1 

Observations* 9 8 

*Not shown in litres 

 

Interestingly, the simulation produces an average minimum plant size of 119 Mmly (Table 15) 

with subsidy, a level larger than the current average plant size of about 70 Mmly in 

Saskatchewan (Canadian Renewable Fuels Association, August 17, 2009). With the removal of 

subsidies, average plant size increases approximately eleven percent, but the most notable 

change is a twenty-eight percent increase in minimum plant size. The substantial minimum plant 

size yielded by the simulation would also seem to indicate that economies of scale are not being 

fully realized within the current subsidized Saskatchewan ethanol industry.  

 

Figures 26 and 27 complement the preceding nameplate capacity discussion and display the 

frequency at which small and large ethanol agents appear on the simulated landscape over the 

1,000 runs of each simulation. Small production plants (Figure 26 – those with a nameplate 

capacity less than or equal to 25 Mmly at t = 1), decline rapidly without the aid of subsidies. As 

                                                 
43

 Table 15 uses average cost per litre as the base to retrieve average nameplate capacity. 
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discussed previously (see Figures 22 and 23), these small plants exited the industry by year 40 

with subsidization, while industry exit decreased to year 30 when subsidies were removed. In 

fact, small ethanol plants did not emerge in over a third of the base simulation runs even when 

subsidies were present, while this amount grew to over half of the simulation runs when 

subsidies were removed (Figure 26).  

 

Figure 26: Emergence of Small Ethanol Agent Plants (≤ 25 Mmly at t=1) 

 
 

Large ethanol agents (Figure 27) dominate both scenarios in the simulations. While fewer plants 

emerge with the elimination of subsidies, these large plants were significantly larger in size, as 

shown in Figure 25. These findings also further reinforce the heavily concentrated nature (by 

number of firms) of the industry that emerges when subsidies were removed. This suggests 

economies of scale are crucial to the industry, a situation favoring the survival of larger ethanol 

plants, even though subsidization policies specific to small plants geared to rural revitalization 

were present in the base simulation.  

 

Figure 27: Emergence of Large Ethanol Agent Plants (> 25 Mmly at t=1) 
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In Figures 28 and 29, capital costs are illustrated as a function of output. This data again 

confirms the presence of significant economies of scale in the simulation model. Initially it 

appears that gains in economies of scale are significant, but this effect appears to become less 

important as plant size approaches 300 Mmly. These findings again support the supposition that 

specific subsidization policy currently in-place may not in fact be realizing the desired effects on 

this industry.  

 

Figure 28: Ethanol Agent Capital Building Costs (Subsidy On) 

 
 

Figure 29: Ethanol Agent Capital Building Costs (Subsidy Off) 

 
 

An optimal nameplate capacity of 240 – 275 Mmly was suggested in Section 4.8, but the model 

expanded optimal nameplate capacity to over 350 Mmly. While capital costs begin to flatten at 

this point, there is no indication of increasing costs beyond that point, implying that true 

minimum efficient scale may still not have been attained during the simulations. In fact, 

minimum efficient scale may not have been identified due to the rather limited ethanol market in 

Saskatchewan. For instance, the inclusion of export markets may allow minimum efficient scale 

to be identified in the model, a point that should be a consideration for future research. 
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Profitability of the ethanol agent ultimately decides their success or failure in the industry. Table 

16 displays the average net income after taxes (NIAT) for each litre of ethanol produced. The 

effects of industry subsidization are readily apparent, with subsidized NIAT seventy percent 

higher than non-subsidy results. Even though profits are lower without subsidies, as previously 

shown, cost efficiency levels are higher through attainment of both economies of scale and stable 

location attributes.  

 

Table 16: Descriptive Statistics: Average per Litre Net Income After Tax 

Statistical Parameters Subsidy On Subsidy Off 

Mean 0.066 0.020 

Median 0.064 0.02 

Mode 0.06 0.01 

Standard Deviation 0.022 0.0115 

Kurtosis 4.71 2.53 

Skewness 0.79 1.45 

Range 0.24 0.08 

Minimum 0 0 

Maximum 0.24 0.08 

Observations 43057 34660 

 

The mean generated NIAT findings in Table 16 are comparable to industry results listed in a 

report by Outlook Market Research and Consulting Ltd. (2008). In this study, the average 

NIAT
44

 was CDN$0.051 per litre for a proposed ethanol plant in Alberta, again supporting the 

overall simulation model results. The lower mean NIAT generated when subsidies are removed 

(CDN$0.020/L) is probably quite reliable, given that the Outlook Market Research and 

Consulting Ltd. (2008) findings include access to federal and provincial subsidies. While 

subsides in this industry are targeted to support the development of rural locations, these 

locations typically support smaller plants that typically cannot achieve economies of scale and 

thus suffer from marginal profitability. The simulation results indicate that subsidies do increase 

the likelihood that an ethanol plant can survive in rural areas, but the potential termination of 

such a policy will also almost surely signal the end of smaller ethanol plants that are unable to 

                                                 
44

 The results presented in Outlook Market Research and Consulting Ltd. (2008) were for an estimated net income 

before taxes. From their findings a 30% corporate tax rate was applied (as used in the simulations) to acquire an 

average net income after tax of $0.051/L (based on the five scenarios presented in their analysis). 
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take advantage of economies of scale or locate in superior places close to transportation and 

market access.  

 

6.5 Summary 

The set of base and counterfactual simulation results presented in this chapter illustrate the 

characteristics of stable, cost effective, and efficient ethanol plant operations as generated by the 

model. Locational access to transportation and markets was found to lead to plant stability, with 

(cost) economies of scale growing as distance to road and rail decreases. DDGS market access 

was also found to be preferential as ethanol agents selected locations that were on average 

twenty percent closer to DDGS than ethanol markets.  

 

Simulated and sustainable ethanol plant size was found to be larger than found in the current 

Saskatchewan market. The average simulated plant size of 208 Mmly (subsidy on) and 231 

Mmly (subsidy off) is much larger than the current market average of 70 Mmly in the province. 

These results seem to indicate that economies of scale are not being realized within the extant 

Saskatchewan ethanol industry. This finding also brings into question whether the current or 

future market can appropriately deal with policy shocks such as altered or zero ethanol subsidy 

levels or less expensive ethanol imports. While this work did not examine the latter, the research 

found that the former has the potential to drastically change the composition of this industry.  

 

Finally, the results strongly indicate that the intended social goal of ethanol subsidies is not being 

met. The majority of successful ethanol operations in both base and counterfactual simulations 

were large plants, suggesting that current attempts at rural revitalization through subsidization of 

the ethanol industry is not likely to be successful over the long run. Overall, the simulation 

results also show that identified stable plant locations will need to be located close to 

transportation networks and output markets, while simultaneously avoiding procurement area 

competition for wheat inputs. Interestingly, DDGS markets were found to influence location 

choice more so than ethanol. Ultimately, the latter may be the result of higher DDGS freight 

costs per unit, or alternatively that both ethanol plants and feedlots share similar location traits.     
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CHAPTER 7 

Summary and Conclusions 

7.0 Summary 

The ethanol industry is currently in a period of rapid growth fueled by methyl tertiary butyl ether 

restrictions, high energy prices, gasoline alternatives, recognition of environmental consequences 

of fossil fuels, concerns about gasoline supplies, and governmental policy and subsidies. These 

factors have pushed ethanol production in Canada from approximately 300 Mmly per year in 

2005 to over 1.8 billion litres in 2011. This dramatic increase has brought hope of wide-spread 

rural revitalization and new markets for farm production, but to date has also required large 

subsidies and has also placed additional strain on aging transportation infrastructure. The 

direction of specific policy has supported the entrance of many ethanol plants without much 

regard for choosing sustainable or stable locations that properly support ethanol production. The 

effects of such actions on the future state of industry could be very dramatic, and given the 

current political and economic environment, understanding these potential outcomes has never 

been more important. 

 

Due to the complexity and dynamic nature of this problem, in this research an agent-based 

simulation model was developed to uncover better understanding of those factors influencing 

ethanol plant location decisions over time. The model effectively merges an industry level cost 

optimization problem with a simulation of interacting plant agents competing for scarce 

resources. In addition, previous optimization work in this area has centered on the use of linear 

programming models, geographical information system applications, and traditional econometric 

top down methods. However, these methods cannot readily incorporate explicit spatial factors at 

the individual decision-making level. Finally, the simulated landscape was intended to be 

representative of the province of Saskatchewan, but it could be readily modified for other regions 

and ethanol location scenarios. 

 

The inclusion of spatial factors in the simulation allows location to be studied in relation to 

certain geographical characteristics that may affect the market. In this case, spatial access to 

feedstock, transportation networks, infrastructure, and final markets is of primary concern to 

plant location (Huang et al., 2010). Capturing these spatial effects along with the inherent 
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heterogeneity of the plant agents modeled within this framework allows near equilibrium stable 

states to emerge and be identified. The desire to model this complex problem in this manner was 

one of the key motivations for performing this analysis. The approach has provided an 

opportunity to better understand how site location decisions within the ethanol industry evolve 

through individual interactions while moving towards a number of stable locational states. 

 

7.1 Conclusions 

The main components of sustainable or stable ethanol plant locations are access to dependable 

transportation networks, proximity to final markets, adequate feedstock access, and aversion to 

procurement competition. The research found that the importance of proximal access to 

transportation networks is essential with primary highway access exceeding the need to secure 

mainline rail access. Changing policy through the removal of subsidies dramatically decreases 

transportation network distances but preference for primary highway access is maintained. The 

research also found that as distance between plant location and transportation networks increased 

there was a significant decrease in ethanol production. While these impacts were pronounced, the 

removal of subsidies heightened this inverse relationship.  

 

As distance to markets increases, so do operating costs with a noticeable decrease in profitability 

and nameplate capacity. Stable locations were supported by better access to markets, specifically 

DDGS markets. The latter was a somewhat surprising result. It was anticipated that ethanol 

market placement should dominate the location decision given that it accounts for approximately 

eighty percent of typical plants revenue stream. However, the simulations confirmed that stable 

plant locations were on average twenty percent closer to DDGS markets, a finding that was 

consistent with and without subsidization of the industry.  

 

A generated average ethanol market distance of 175 KM with industry subsidization, and 169 

KM without subsidies supported locational stability. In addition, DDGS market proximity 

averaged 146 KM with and 140 KM without subsidies respectively. The locational stability that 

DDGS market proximity appears to add is that it reduces costs and issues associated with 

transport. However another underlying cause may be that ethanol plants and feedlots share 

similar locational traits related to balancing feedstock access and final market proximity. Lastly, 
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ethanol plant rail usage was not favoured for DDGS movement, but was beneficial for accessing 

distant ethanol markets.  

 

Ethanol production costs are significantly affected by economies of scale, location, and market 

access. The research generated average variable costs of CDN $0.64/L when subsidies are 

available to ethanol agents, a result similar to that of Perrin et al (2009). The removal of 

subsidies reduces average variable costs to CDN $0.635/L, indicating increased operating 

efficiencies within a highly competitive industry. Further, it was shown that subsidies have a 

dramatic effect on average costs in the simulation. Removal of industry subsidization reduces 

average cost by CDN $0.06/L as ethanol agents respond to economies of scale through increased 

nameplate capacity and ethanol production levels, forcing high cost inefficient plants to exit the 

industry. These findings suggest that subsidies are preventing the industry from operating at an 

efficient level. 

 

The variance in average nameplate capacity of ethanol plants was significant, with larger plants 

dominating in both scenarios. Subsidization of small plants, those designated as 25 Mmly or less 

production at t=1 in the simulations, repeatedly exited the industry before year 50, and the 

severity of industry exit increased to below year 40 after the removal of subsidies.  

 

While large ethanol agents, those designated as 25 Mmly or larger production at t=1 in the 

simulations, dominated the landscape there was a significant difference in industry organization. 

Subsidization not only lowered nameplate capacities, it also increased the number of large 

ethanol agents operating during simulations. The base findings point to a minimum of two large 

ethanol agents, but with the removal of subsidies this number drops to one in a significant 

number of counterfactual runs. While the concentrated market structure generated by the 

simulations is representative of industries that produce homogeneous goods, it was still a 

surprising result and one that could signal major changes in a post subsidized ethanol industry in 

Saskatchewan.  

 

The removal of subsidies increased mean nameplate capacity by 23 Mmly, indicating that 

economies of scale play an important role in this industry. Gaining economies of scale had a 
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dramatic effect on capital cost per litre, with this value ranging from approximately $0.49/ L 

down to $0.29/ L. This is an important finding because it signifies that the current Saskatchewan 

ethanol industry is not exploiting potential economies of scale and therefore operates with 

excessive operating costs. The potential effects of a changing marketplace could radically alter 

the ethanol industry in Saskatchewan, given the low margins of smaller plants with a high level 

of competition.  

 

Saskatchewan has a unique subsidy program where small ethanol producers (25 Mmly and less) 

receive 30% of the provincial ethanol market, thereby guaranteeing market access. The goal of 

this subsidy is to promote rural revitalization, but the desired effect may not be realized over the 

long run. Potentially this creates subsidy dependent firms that may be unable to compete should 

the subsidy be withdrawn. If provincial subsidies were removed from the marketplace, it is 

concluded that this would lead to closure of small ethanol producers as their production levels 

would easily be picked up by the larger and more efficient ethanol plants.  

 

At this time, subsidies and policy decisions have set the ethanol industry to its current 

development path. But as changes in policy come forward this path may change. Current weather 

related events in the US and other high volume exporting countries are affecting corn and wheat 

production estimates for the 2012/13 crop year. These events are creating potential demand 

rationing scenarios for feed corn as the major input in US ethanol production and livestock feed 

industry. In the US, the ethanol industry is now estimated to use 40% of the dwindling US corn 

crop (McMillan, July 19, 2012) which will put additional pressure on increasing the use of wheat 

in feed rations leading to increased wheat prices. The potential fallout from this scenario is that 

livestock feeders may start to lobby for a reduction in the ethanol mandate to free up additional 

corn for feed (McMillan, July 19, 2012).  

 

What does a reduced corn crop in the US mean for the Canadian ethanol industry? The potential 

for increased use of wheat in feed rations along with an increased price may push both small and 

inefficient plants to shut down, especially if current demand for gasoline decreases, thereby 

reducing demand for additives such as ethanol. Should policy decisions reduce ethanol subsidies, 

the outcome would drastically change the industry. In this authors’ opinion, such a scenario 
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would again lead to closures of small rural plants that are unable to take advantage of economies 

of scale while reducing margins for large efficient plants. In that situation, the industry would be 

mainly composed of large ethanol plants competing on an output basis.  

 

In Saskatchewan, the combination of tightening margins due to increased feed wheat price and 

decreased demand may significantly strain the industry. If the US acted on the potential call for 

mandate reductions, the outcome could seriously harm the current Saskatchewan ethanol 

industry. A mandate reduction in the US would potentially lead to increased exports that may 

find their way into the Canadian market, thereby reducing demand for wheat based ethanol. A 

more serious threat though would be a change in Canadian ethanol policy to match that of the 

US. If mandates or subsidies were reduced in Canada and Saskatchewan, the impact would 

dramatically change the wheat based ethanol industry. Closure of small and inefficient plants 

would affect rural areas where the majority of small plants are located, but this would also create 

growth opportunities for efficient plants. Either way, a change in policy will affect the wheat 

based ethanol industry, potentially upsetting the current policy goal of rural revitalization.  

 

7.2 Limitations 

The continued development and application of agent-based models in applied agricultural 

economic research faces a number of hurdles. This highly flexible and adaptable computational 

toolkit has led to advances in the study of complex agricultural systems, but issues regarding 

model communication, data needs, calibration, verification, and validation provide unique 

limitations. While the model in this thesis is built upon specific financial and behavioural 

equations, striking a balance between model realism and tractability proved challenging. Lastly, 

the limited, dispersed, and isolated nature of ethanol industry data provided additional challenges 

when creating a model designed to reflect as much as possible Saskatchewan’s current industry 

environment. 

 

While the model does reflect reality, certain assumptions made may have played a major part in 

generating these results. For example, the use of large land plots may have limited the number of 

ethanol plants operating on the landscape, which in turn may have had some effect on the 

number of potential stable locations. While the landscape does represent soil and growing 
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conditions in Saskatchewan, specific areas within the assumed soil zones do have actual higher 

wheat production levels but were not individually identified within the broad soil zones. And 

while the transportation network mapped within the simulation approximately represents major 

road and rail passages within the province, limitations prevented all useable routes form being 

included, and this likely affected the identification of stable ethanol plant locations within the 

simulation. 

 

The combination of an optimization problem within the agent-based simulation framework offers 

many benefits but may also have limited the results. The model starts with ethanol agents 

populated on the landscape, and through predetermined constraints these agents gradually 

identify stable plant locations over time. However, this algorithmic assumption may have 

prevented other suitable locations from emerging, since ethanol agents were not given the option 

to regenerate or emerge at favourable situations after the simulation began.  

 

Agent-based modeling was an appropriate modeling tool within the context of this research, but 

it is acknowledged that it was not exploited to its full potential given the steep learning curve 

associated with learning efficient language programming skills. While the NetLogo© language is 

relatively uncomplicated to learn, it still benefits from knowledge of efficient and effective 

programming methods. Future work with agent-based simulation would benefit greatly from 

prior programming knowledge and additional programming resources. This will help ensure this 

style of modeling is completed in a more timely and efficient manner.  

 

7.3 Suggestions for Future Study 

The research conducted within this thesis focused on the location of individual ethanol plants and 

the factors that promote stable locations over time. Within the current industry, a number of new 

developments are centered on co-location relationships, with either high-throughput elevators or 

feedlots. Including location options for co-location with high-throughput elevators may change 

the location equation. High-throughput elevators share similar procurement area features and co-

location may reduce feedstock competition, while easing producer deliveries by offering a 

central delivery location for the majority of local grain producers. Inclusion of co-located 

feedlots offers a direct market for DDGS output while reducing natural gas costs. The close 
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proximity of a feedlot would allow transport of wet distillers grains (WDG) which can reduce 

natural gas usage by approximately 35%, providing a substantial costs savings (Perrin et al., 

2009b) along with reduced transportation costs for distillers grains.  

 

Nevertheless, the transportation of WDG over short distances may be viable. Bonnardeaux 

(2007) found that in Australia the transportation of WDG was usually viable up to 200 km from 

the ethanol plant. This finding offers alternative location choice to ethanol plants that are unable 

to locate adjacent to a feedlot but may benefit from the costs savings associated with WDG. 

Simulating potential effects on location due to the shipment of WDG within close proximal 

distance of an ethanol plant may increase sustainability and competiveness within the industry.  

 

The exchange rate effect between Canada and US is a potential area of concern regarding the 

viability of wheat DDGS in the Canadian market. Boaitey (2010) found that as the Canadian 

dollar appreciates wheat DDGS is displaced by lower cost imported corn DDGS for use in feed 

rations. Increased DDGS imports from the US may affect wheat ethanol plant locations in 

Saskatchewan since the Southern Alberta feedlot area was assumed to be a major DDGS market 

in this simulation model. Therefore, the exchange rate effect on sustainability and competiveness 

within the industry should be considered in future simulations given that the Canadian dollar is 

currently near par with the US dollar.  

 

Understanding the effects of reduced trade barriers and the potential entry of lower cost ethanol 

imports would allow formation of improved ethanol policy as well as better understanding of 

industry competitiveness. Future changes to national and international policy may dramatically 

alter the current industry structure. The inclusion of import and exports of ethanol may lead to 

changes in capital cost structure beyond what was done in this research. Simulating how these 

effects could alter the industry would likely increase ethanol plant survivability while improving 

overall competitiveness. Understanding how ethanol plants ultimately respond to policy and 

competition changes will surely improve the future of this relatively new industry. 
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APPENDIX A 

The Simulation: Variables and Equations 
 

A.0 Introduction 

A number of key variables are assumed to affect ethanol plant location and form part of the 

simulated locational analysis during both initialization and operations. These variables are 

detailed with reference to the discussions in Chapter Four. The following Appendix provides a 

more complete description of the simulation environment, including assumptions and specific 

relationships utilized.  

 

A.1 Feedstock Movement 

The cost of transporting feedstock by truck from the farmer to the ethanol plant is based on a per 

(metric) tonne rate. These costs are recorded but are assumed to be the responsibility of the farm 

agent. In turn, feedstock trucking rates are separated into primary and secondary weight costs 

based on the distance to the nearest primary highway. It is assumed that if the patch in question 

is located less than or equal to 1.5625 patches from a primary highway, then the primary weight 

applies, but a distance greater than 1.5625 patches implies secondary weight restrictions. This is 

done in the simulation because of what is known as the 15 km rule used in the province. This 

rule, allows primary weights to be moved without penalty on secondary roads up to a distance of 

no more than 15 km from initial primary/secondary intersection (Government of Saskatchewan, 

May 16, 2011). So within the simulated landscape, each patch is 9.6 km
2
 in area (one township), 

and this fact combined with the distance factor of 1.5625 emulates the 15 km rule. The 

applicable truck transport rate, if needed, can be accessed by all agents that locate on a particular 

patch. Primary and secondary truck transportation rates are shown below. Michaels et al. (1982) 

provide evidence that bulk trucking rates increase with distance, but at a decreasing rate. This 

quadratic relationship was estimated for primary and secondary rates using data obtained from 

Weyburn Inland Terminal (August, 2011), and these results are shown in Figures 30 and 31.  

 

Feedstock primary truck rate per MT: 

 

I = -0.0000227x
2
 + 0.0706x + 5.6048 

R
2
 = 0.99 
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Where: I is rate per MT; CDN$ 

 x is distance in kilometers 

 

Figure 30: Primary Highway Cost per MT for Bulk Feedstock Shipment 

 
 

Feedstock secondary truck rate per MT: 

 

J = -0.000027x
2
 + 0.08243x + 6.645776 

R
2
 = 0.99 

 

Where: J is rate per MT; CDN$ 

 x is distance in kilometers 

 

This secondary rate was altered to reflect that on average, non-primary shipment weight is 16% 

lower than primary shipment weight (Government of Saskatchewan, July 25, 2002).  

 

Figure 31: Secondary Highway Cost per MT for Bulk Feedstock Shipment 
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The shipment cost for a single primary weight load of bulk feedstock over increasing distances 

results in significant costs savings as shown in Figure 32
45

. Initial shipment cost is high when the 

truck is loaded, but dramatically decreases until approximately 200 km when these cost 

decreases begin to level off.  

 

Figure 32: Bulk Feedstock Shipping Cost as a Function of Distance 

 
 

 

A.2 Utilities: Access and Rates 

Location factors related to utility services include the cost of acquiring water, electrical, and 

natural gas service to a potential plant site. Water access cost is based on laying an industrial 

water pipeline to the potential site
46

 and includes trench excavation and backfill, pressure pipe, 

and pressure pipe fittings. Based on recent engineering estimates for industrial contracts in the 

province of Saskatchewan, this cost is assumed to be $151,145.00 per km and does not include 

water usage costs (Associated Engineering, 2010). Thus the water access formula
47

 used in the 

simulation is: 

 

K = 151145x 

 

Where: K is total water access infrastructure cost; CDN$ 

 x is distance in kilometers 

 

                                                 
45

 Data used in this analysis was obtained from Weyburn Inland Terminal (August, 2011) and is based on a primary 

weight bulk shipment of feedstock (grain).  
46

 Pumping costs were not included in this calculation as it is assumed that water could be allocated from an urban 

site or an established pumping station. 
47

 Linearity has been assumed for tractability.  
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Water use for the plants in this simulation is based on corn ethanol production data. Given 

similarities between wheat and corn ethanol production, it is assumed here that wheat ethanol 

production operates on the same 4:1 ratio, meaning four litres of water is required to produce one 

litre of ethanol (Kenney, 2007). Industrial water use cost data for applications in the province of 

Saskatchewan was obtained from Associated Engineering (2008), with an estimated cost per 

cubic meter of $0.0462
48

. This implies water cost associated with one litre of ethanol production 

is $0.0001848, therefore access to water is more important than actual water cost.  

 

Ethanol production requires 0.004 m
3
 of water to produce one litre of ethanol, thus the following 

water cost formula was used in the simulation: 

 

          )         

 

Where: L is water cost/expense; CDN$ per year 

 x is ethanol production (litres) 

 

For a point of reference based on these assumed cost figures, a 130 Mmly ethanol plant would 

use approximately 520,000 m
3
 of water at an approximate cost of $24,000 per year

49
.  

 

Electrical access cost includes building infrastructure to the potential site and varies based on the 

MVA (Megavolt-Ampere) service required. Most ethanol plants up to 100 MGY (378 Mmly) 

can be serviced by the nearest 138 kV interconnection (Alliant Energy, February 23, 2007). This 

model assumes that ethanol agents will not become larger than 378 Mmly, therefore access cost 

is limited to the commonly found 138 kV interconnections. Should agents become larger than 

378 Mmly, the additional cost to access the larger 230 kV interconnection would add minimal 

fixed costs to an operation of that scale (SaskPower, October 14, 2011; Alliant Energy, February 

23, 2007). This level of service can be obtained from most urban centres, but rural locations may 

in fact require installation of a substation to serve the increased load. If this is the case, then 

additional costs beyond those assumed here would be required and this could be done on a case 

                                                 
48

 Cost applies to untreated water. 
49

 Water use calculated as follows: [(130,000,000 * 0.004m
3
) * 0.0462]. 
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by case basis. Estimated construction and metering costs
50

 for service from the 138 kV 

interconnections are $289,000 per KM (SaskPower, October 19, 2011). Thus the electrical access 

cost formula
51

 used in the simulation is: 

 

M = 289000x 

 

Where: M is total electrical infrastructure access cost; CDN$ 

 x is distance in kilometers  

 

Based on industry references, electrical use is assumed to be 0.3 kWh (kilo-watt hour) per litre 

(S&T
2
 Consultants Inc., 2003). SaskPower rates for non-residential and non-farm use are levied 

on a tiered system, meaning that as demand increases, the average rate declines per kWh. For 

instance, use up to 15,500 kWh costs $0.09185/ kWh and over 15,500 kWh the charge is 

$0.05602/ kWh, plus a basic monthly metering charge of $55.00 (SaskPower, Supplied 

Transformation). For a 130 Mmly ethanol plant, approximately 39,000,000 kWh (130,000,000 

times 0.3 kWh) would be required at an estimated cost of $2,192,104 (including basic monthly 

metering charges).  

 

Natural gas access infrastructure costs are significantly less than electrical. Estimated 

construction cost
52

 for an ethanol plant to access natural gas is $10,000 per KM (SaskEnergy, 

October 14, 2011). The natural gas access cost formula
53

 is then: 

 

N = 10000x 

 

Where: N is total natural gas infrastructure access cost; CDN$ 

 x is distance in kilometers 

 

Natural gas use is estimated at 11.98 MJ (mega joules) per litre (S&T
2
 Consultants Inc., January 

2003). Natural gas sales are done in cubic meters, and one cubic meter produces 3.2 litres
54

 of 

                                                 
50

 Winter construction costs, environmental reviews, road crossings, and type of terrain can impact and can lead to 

increased costs.  
51

 Linearity has been assumed for tractability. 
52

 Winter constructions costs can be double or triple the estimated shown, also environmental reviews, road 

crossings, and type of terrain also impact and can lead to increased costs. 
53

 Linearity has been assumed for tractability. 
54

 There are 38.3MJ/ m
3
 (NVG Global); therefore it follows that 38.3 ÷ 11.98 = 3.2. 
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ethanol. SaskEnergy rates for commercial customers are levied on a tiered system and as demand 

increases the average rate decreases per cubic meter. Natural gas use up to 40,000 m
3
 is $0.039/ 

m
3
 and for use over 40,000 m

3
, the rate is $0.0333/ m

3
, plus a delivery charge of $0.1725/ m

3
 and 

a basic monthly metering charge of $216.00 (SaskEnergy Business Rates, 2010). For a 130 

Mmly ethanol plant, approximately 40,663,000 m
3
 of natural gas

55
 is required at an estimated 

cost of $8,373,812 (including basic monthly delivery and metering charges). As is evident, the 

use and cost of electricity and natural gas has a significant effect on an ethanol plant’s variable 

costs
56

.  

 

A.3 Farm Agents 

Farm agents locate on patches that do not contain other items like primary highways, rail lines, 

cities, towns, blenders, or feedlots. They are endowed with feedstock production based on 

specific criteria that will be discussed below. Farm agents produce feedstock, store it in farm 

inventory, and then ship it to ethanol plants when called by the plant to deliver. Since farmer 

agents are considered to be price takers in this market, no other actions by these agents are 

considered in the simulation
57

. 

 

Feedstock production is set based on patch location within the landscape. As mentioned, slight 

differences have been coded into the model to mimic the effects of various growing regions. Soil 

types are first classified (black, dark brown, and brown) and then the total production slider on 

the software interface sets wheat feedstock production. This is then split based on the average 

percent figures for each soil zone (black 33%; dark brown 34%; brown 33%). Furthermore, 

production levels for each soil zone are split equally among the patches located within.  

 

Average production by census agricultural regions is shown in Figure 33 and as can be seen, 

specific CARs do have higher production levels. The latter run mostly through the centre of the 

crop production region of the province. These particular CARs may have a somewhat higher 

possibility of gaining and keeping an ethanol plant, but each of them possess the ability to 

                                                 
55

 Natural gas required: 130,000,000 divided by 3.2 litres of produced ethanol per cubic meter. 
56

 It should be noted that sales of wet distillers grain were not considered in this thesis. Wet distillers grain may 

reduce variable costs associated with electricity and natural gas as they do not require the high volumes of energy 

needed to reduce moisture content to 10% associated with dried distillers grains with solubles (Perrin et al., 2009). 
57

 During the simulation farm agents do not increase their land size or change their feedstock production quantities.  
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support at least one ethanol plant under the assumptions made in this model. Table 17 lists CARs 

by soil zone as used in the simulation. For illustrative purposes, Figure 34 is an overview of 

Saskatchewan’s soil zones and CAR locations. 

 

Figure 33: Average Wheat Production for 30 Years by CAR
58

 

 
 

 

Table 17: CAR Location by Soil Zone
59

 

 Black Soil Zone Dark Brown Soil Zone Brown Soil Zone 

CAR 1B; 5A; 5B; 

8A; 8B; 9A; 9B 

1A; 2A; 2B; 6A; 6B; 

7B 

3AN; 3AS; 3BN; 

3BS; 4A; 4B; 7A 

 

 

 

 

 

 

 

 

 

 

 

                                                 
58

 Statistics Canada, November 2006 Crop Survey. 
59

 Saskatchewan Ministry of Agriculture, 2009. 
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Figure 34: Saskatchewan Soil Zones and Census Agricultural Regions
60

 

 
 

A.4 Inflation 

All production costs in the simulation are assumed to be subject to inflation. This can be set by 

the user via the inflation-on-expenses slider programmed into the NetLogo© interface. Inflation 

is applied during both the NPV initialization and operation phases. Given the long lifespan of a 

typical ethanol project, ignoring inflation could lead to a bias against accepting these projects. 

                                                 
60

 Saskatchewan Ministry of Agriculture, 2009. 
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Inflation reduces buying power and therefore the return on investment from a proposed plant 

(Mills, 1996; Ross et al., 1996). Therefore, inflation must be considered during the NPV analysis 

conducted in the simulation given that it is multiplicative and not additive (Mills, 1996). The 

general inflation equation (Mills, 1996) for both revenue and expenses used here is: 

 

        )  
 

Where: C* is nominal or inflated cash or expense flow 

 Q is actual average price at t – 1  

 p is inflation rate for expenses or revenue 

 t is time period (relative to base year or t = 0) 

 

A.5 Feedstock Cost 

One of the main costs to operate an ethanol plant is feedstock. Average feedstock price was 

calculated from 30 years of Saskatchewan wheat price data. An average price
61

 of $4.21/ bushel 

or $154.69/ MT was found (Saskatchewan Ministry of Agriculture, 2008) and this value is used 

in the model. Note again that using an average price/cost also helps to maintain stability within 

the model. During the NPV initialization phase, the total feedstock use is derived from the 

available feedstock in the procurement area, while issues concerning competition for feedstock 

are not considered until the operation stage. 

 

A.6 Freight 

Freight cost for the ethanol agents include delivery of supplies required during plant operations. 

This includes items such as chemicals, denaturant, and other inputs. Hofstand (2011) estimates 

this cost at USD $825,000/ year for a 100 MGY corn ethanol plant. Based on this work, the 

converted freight cost used in the simulation is CDN $0.0021/ L of produced ethanol. 

 

A.7 Marketing of Ethanol and DDGS 

Tiffany (2007) estimated marketing cost for corn based ethanol plants at US$0.20/ gallon. When 

converted to CDN$/ L, the estimated marketing cost is $0.056/ L of ethanol produced. This cost 

covers marketing of both ethanol and DDGS products.  

                                                 
61

 Saskatchewan average wheat prices, detrended, 2008 dollar equivalent, 1968 – 2008. 
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A.8 Chemical Inputs 

The production of ethanol requires specific chemicals, enzymes, and yeast. It is likely there are 

purchasing economies present due to plant size, but for reasons of tractability, that possibility has 

not been incorporated into the simulation. Alternatively, a simple cost per litre of ethanol 

produced has been used for individual plant decision making. On aggregate, these inputs cost 

CDN $0.0196/ L of ethanol produced and are converted from equivalent corn ethanol 

requirements (Bain, 2007; Hofstrand, 2011).  

 

Denaturant is natural gasoline and is blended with ethanol to render it undrinkable (Kotrba, 

2008). Natural gasoline is a byproduct of natural gas production and usually follows the liquefied 

petroleum gas price (Kotrba, 2008). The quantity needed is a function of ethanol production and 

costs CDN$0.01/ L, as converted from equivalent corn ethanol requirements (Herbst et al. 2002; 

Hofstrand, 2011).  

 

A.9 Maintenance, Insurance, and Property Taxes 

Maintenance, repairs, and other direct costs associated with keeping the plant operational are 

critical to ensuring costly down time is avoided. Bain (2007) and Hofstrand (2011) estimated 

these costs are approximately CDN $0.0126/ L, derived from corn ethanol data.  

 

While improving, insurance companies typically lack experience regarding the special needs and 

liability issues found in the ethanol industry, therefore given this risk, insurance premiums can be 

costly for ethanol plants (Bresnahan, 2006). Bain (2007), Outlook Market Research and 

Consulting (2008), and Hofstand (2011) all derived approximate insurance rates of 0.5% in their 

various economic cost analyses. Therefore, a basic insurance rate of 0.5% of capital cost seems 

to be consistent and well documented, and is employed in this simulation model. 

 

The use of local tax breaks to entice an ethanol plant to build can be represented in the 

simulations in a number of ways. In reality, property tax abatements are usually offered, which 

creates difficulty in establishing an industry average for property taxes. Previous related studies 

have represented property taxes as a percentage of capital cost, ranging from 0.1% to 0.5% 

(Holcomb and Kenkel, 2008; Outlook Market Research and Consulting, 2008; Hofstand, 2011). 
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Based on this research, a property tax rate equivalent to 0.5% of capital cost (Holcomb and 

Kenkel, 2008) is used in the simulation model. This level seems to capture the average locational 

variability of this expense. 

 

A.10 Labour 

Economies of scale have some effect on labour costs for ethanol plants, but in fact labour use is 

also related to the age of the plant. Data indicates that doubling ethanol plant size from 50 MGY 

to 100 MGY requires only 14% more labour - with 40 employees needed compared to 35 

employees for the smaller plant (University of Illinois, 2007). Shapouri and Gallagher (2005) 

assert that new ethanol plants use labour more efficiently with increased use of automated 

technology. Labour and management costs used in the simulation have been estimated from Bain 

(2007)
62

 and Holcomb and Kenkel (2008). Employee benefits are an important consideration for 

both employers and employees that create additional operational costs, and Holcomb and Kenkel 

(2008) state that labour benefit costs are 40% of wages. The cost of employee benefits has been 

included in the calculation of wages to form the following labour cost relationship (Bain, 2007; 

Holcomb and Kenkel, 2008): 

 

               
R

2
 = 0.99 

 

Where: P is total labour cost; CDN$ per year 

 x is plant size (Mmly) 

 

Figure 35 displays the inverse relationship of labour cost to plant size and illustrates the effect 

that economies of scale have on this variable. 

 

 

 

 

 

 

                                                 
62

 Review of figures from Shapouri and Gallagher (2005), Noramera Bioenergy, and Husky Energy are very similar 

to labour costs presented by Bain (2007). 
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Figure 35: Labour Cost per Production Litre 

 
 

A.11 Corporate Taxes 

Corporate taxes are only calculated during years when the ethanol agent has positive net income. 

The level of taxation is set on the simulation interface using the corporate-tax-rate slider, and a 

range of applicable rates between 27% to 38% based on various regions have been identified 

(S&T
2
 Consultants et al. 2004; Holcomb and Kenkel, 2008). S&T

2
 Consultants et al. (2004) list a 

manufacturing and processing income tax rate of 32.12% for Saskatchewan, but state that federal 

and provincial governments generally enact a lower rate to stimulate manufacturing and 

processing activities. Given this, an initial corporate tax rate of 30% has been used in the 

simulation, as this rate is most commonly mentioned in the literature. 

 

A.12 Marketplace Shocks 

Demand shocks for energy are common and from a good business practice perspective it is 

imperative that associated industries can respond proactively rather than reactively. To emulate a 

proactive response system in the simulation, demand shocks are averaged over the operating 

ethanol agents and the simulation targets those agents with a stronger financial position for future 

expansion. Interval and intensity of demand shocks can be set via two inputs on the model 

interface. Timed-demand-shock sets the yearly interval and percent-increase-in-demand sets the 

level of the demand shock. The level of these settings can have a profound impact on the market 

and ethanol agent operation, with very “intense” settings often leading to model instability.  

 

If an increase in demand is detected, the model calculates the percentage market share of the 

ethanol agents based on their production compared to total industry production. From an 
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evolutionary perspective, in this model the ethanol agent on the landscape with the highest 

average cost and breakeven price is allotted a zero percent market share of the given demand 

increase. The basic premise here is that it is unlikely that an organization with higher than 

average industry costs would be able to successfully implement a timely or viable expansion 

strategy.  

 

Next, a check is done regarding the allocated size of the market increase to ensure that 

expansions do not continually occur. If expansions continually occur in the simulation then this 

can lead to model instability, where the ethanol agents expand at every opportunity thereby 

risking financial solvency. During model testing this outcome led to a high failure rate among the 

ethanol agents. Therefore, in the simulation each ethanol agent ensures that a potential expansion 

is larger than 10% of their current production capacity. If the allocated output expansion is less 

than 10% of current capacity then the expansion does not occur for that plant. However, if the 

expansion is greater than 10% of current production, then the ethanol agent is permitted to 

increase the potential expansion size by an additional 25% of the awarded amount. Heuristically, 

the additional capacity allows ethanol agents to handle any small future demand increases and 

creates some excess industrial capacity.  

 

Financially, potential plant expansion plans can only be finalized if the agent does not currently 

hold more than two capital expansion loans. Two options are assumed to exist for capital 

expansion loans during model operation. Expansion loans are financed over a period of up to 10 

years and are set by an expansion-finance-plant-life slider on the interface. The method for 

calculating expansion capital costs is the same as when an ethanol agent first built the plant, but 

it is assumed that the final cost is approximately one third of new building costs. Shapouri and 

Gallagher (2005) state that average capital cost for ethanol plants in the US at startup was USD 

$1.57 per gallon and that expansion costs averaged USD $0.50 per gallon. Based on Shapouri 

and Gallagher (2005), it was computed that the average cost of expansion used in the model is 

equivalent to about 32%
63

 of capital cost to build an ethanol plant
64

. Acquiring technology, 

                                                 
63

 Expansion cost percentage found by comparing Shapouri and Gallagher (2005) startup and expansion costs (USD 

0.50/USD 1.57 = 0.32). This percentage is then applied to capital cost figures previously identified in the thesis to 

acquire expansion costs. 
64

 As discussed in section 4.8. 



132 

 

finding greater efficiencies, and generating lower costs seems to be the business rationale behind 

plant expansion in this industry versus purchasing an existing (but out of commission) plant. 

Expansion capital building costs are calculated as follows (Shapouri and Gallagher, 2005; 

Outlook Market Research and Consulting, 2008): 

 

                )       
 

Where:  Y is total expansion capital building costs; CDN$ 

 x is proposed plant expansion size in millions of litres per year 

 

Salvage value, interest, and principal repayment calculations are completed using the same 

methods described during plant startup. To maintain a set of heuristics that remain responsive to 

demand shifts and allows all ethanol agents equal opportunity to expand, a second expansion 

option is available and operates in an identical manner. Thus, an ethanol agent can expand a 

second time, but may only hold two expansion loans at one time. Expansion costs become part of 

fixed costs, therefore regulating expansion is necessary to ensure ethanol agents are able to 

remain financially solvent in the long term.  

 

If a given demand shock results in decreased market demand, then the current plants will hold 

excess production in inventory. The simulation is designed to stabilize to the lower demand level 

as ethanol agents only seek feedstock that sets their production equal to the difference between 

nameplate capacity and inventory. However, this will increase operating costs for ethanol agents 

and may result in some agents exiting the industry. It is at that point where the remaining agents 

will obtain increased market share and possibly a return to their respective full production levels, 

until the next shock sets the process in motion all over again.  

 

A.13 Summary 

Appendix A provides more detailed information on the construction of this agent-based 

simulation of ethanol plant location and duration, including highlighting the various assumptions 

and statistical relationships. The Appendix is a supplement to the information found in Chapter 

Four. The description of additional factors specific to the simulated ethanol plants during both 

initialization and operational stages completes the agent-based model description.  
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APPENDIX B 

NetLogo© Agent-based Model Variables and Descriptions 

 

Global Variables: 

Variable Description 

run-number Number of simulation runs completed 

year Simulation year 

procurement-area-2 Second procurement area for ethanol agents to call farm agents, 

multiple of procurement-area slider on interface 

procurement-area-3 Third procurement area for ethanol agents to call farm agents, 

multiple of procurement-area slider on interface 

procurement-area-4 Fourth procurement area for ethanol agents to call farm agents, 

multiple of procurement-area slider on interface 

timed-year-demand-increase Variable that captures the years that a demand increase will 

happen as set by the chooser timed-demand-shock; the 

corresponding demand increase is shown by the chooser percent-

increase-in-demand on the interface 

 

Patch Variables: 

Variable  Description 

prod-volume Total production as set by production slider on the interface 

prod-volume-black Production volume of the black soil zone on landscape 

prod-volume-dark-brown Production volume of the dark brown soil zone on landscape 

prod-volume-brown Production volume of the brown soil zone on landscape 

prim-hwy-access Variable showing if patch is located within 1 patch distance of 

primary highway 

nearest-ethanol Nearest ethanol to the patch, used by the farmer to calculate 

distance 

nearest-main-rail Nearest mail rail to patch, used by ethanols when reviewing a 

potential site 

nearest-prim-hwy Nearest primary highway to patch, used by ethanols when 

reviewing a potential site 

nearest-feedlot Nearest feedlot to patch, used by ethanols when reviewing a 

potential site 

nearest-blender Nearest blender to patch, used by ethanols when reviewing a 

potential site 

main-rail-distance   Distance from patch to nearest mail rail, used for site review 

feedlot-distance-rail   Distance from patch to nearest feedlot by mail rail, used for 

site review 

blender-distance-rail   Distance from patch to nearest blender by mail rail, used for 

site review 

prim-hwy-distance   Distance from patch to nearest primary highway, used for site 

review 

feedlot-distance   Distance from patch to nearest feedlot, used for site review 

blender-distance   Distance from patch to nearest blender, used for site review 
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nearest-water-access Nearest water access to patch, used by ethanols when 

reviewing a potential site 

nearest-electrical-grid Nearest electrical access to patch, used by ethanols when 

reviewing a potential site 

nearest-natural-gas-grid Nearest natural gas access to patch, used by ethanols when 

reviewing a potential site 

water-access-cost Cost to access water to potential site 

electrical-access-cost Cost to access electrical to potential site 

natural-gas-access-cost Cost to access natural gas to potential site 

feedstock-truck-dist distance for farmers to ship feedstock from patch to ethanol 

plant 

feedstock-truck-prim-rate-MT Cost for farmers to ship feedstock from patch to ethanol plant, 

based on patch located on primary highway 

feedstock-truck-sec-rate-MT  Cost for farmers to ship feedstock from patch to ethanol plant, 

based on patch located on secondary highway 

patch-truck-trans-rate Rate for farmers to ship feedstock from patch to ethanol plant, 

based on whether patch is on primary or secondary highway 

ddgs-truck-rate-MT   Cost to ship one MT of ddgs by truck 

ethanol-truck-rate-MT   Cost to ship on MT of ethanol by truck 

ddgs-transloading-cost-MT   Cost to transload one MT of ddgs from truck to rail if not 

located on mail rail line 

ddgs-rail-rate-MT   Rail rate per MT for ddgs 

ethanol-rail-rate-MT   Rail rate for one MT of ethanol 

ethanol-transloading-cost-MT   Cost per MT to transload ethanol from a truck to rail if not 

located on a main rail line 

 

Farm Agent Variables: 

Variable  Description 

farm-inventory  Inventory on farm that has not been shipped 

farmer-can-deliver-inventory  Amount that farmer can deliver, balance of inventory not 

accepted by another ethanol agent 

farmer-delivery-cost Cost for farmer to deliver to plant, it is assumed farmers cover 

the cost of delivery to the plant 

ethanol-delivered-too The ethanol plant that the farmer delivered to 

farmer-delivery-rate Rate per MT for feedstock to deliver to the ethanol plant 

 

Ethanol Agent Variables: 

Variable Description 

payment-period-interest Interest ethanols pay on yearly capital loan payments 

capital-loan-principal Principal capital loan cost for ethanol plant 

salvage-value Salvage value of the plant, 10% of capital cost 

rate Depreciation rate  

depreciation Deprecation figure, based on calculated rate over 20 

years 

accumulated-depreciation Deprecation accumulated over the life of the plant 
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ethanol-price Ethanol price, set at average price 0.53 cents per L 

ethanol-indexed-revenue Price for ethanol including inflation 

ddgs-price Average ddgs price as calculated from price data 

ddgs-indexed-price Average ddgs price - set at $151.86/ MT 

npv-prov-subsidy Amount of provincial subsidy per litre 

npv-fed-subsidy Amount of federal subsidy per litre 

feedstock-price Feedstock price, average Saskatchewan wheat price 

over 30 years 

feedstock-avail-for-npv  Available feedstock for npv analysis during 

initialization, based on procurement-area slider 

feedstock-indexed-price Indexed feedstock price over npv life of plant 

freight-cost Freight cost for moving items needed to the plant like 

chemicals, does not include any transport costs for 

feedstock, ethanol or ddgs 

freight-indexed-cost Indexed freight cost over npv plant life 

mktg-cost Marketing cost for to sell ethanol and ddgs 

mktg-indexed-cost Indexed marketing cost over npv plant life 

chemical-costs Chemical cost used in ethanol production 

chemical-indexed-cost Indexed chemical cost over npv plant life 

denaturant-costs Denaturant cost used in ethanol production 

denaturant-indexed-cost Indexed denaturant cost over npv plant life 

maintenance-costs Maintenance cost of keeping plant operational 

maintenance-indexed-cost Indexed maintenance cost over npv plant life 

insurance-costs Insurance costs as required for operations 

insurance-indexed-cost Indexed insurance costs over npv plant life 

property-tax-cost Property taxes as levied 

property-taxes-indexed-cost Indexed property taxes over npv plant life 

labour-cost Labour cost to operate plant 

labour-cost-indexed-cost Indexed labour costs over npv plant life 

water-use-cost Water cost for production of ethanol 

water-cost-indexed-cost Indexed water cost over npv plant life 

electric-use-cost Electric cost for production of ethanol 

electric-cost-indexed-cost Indexed electrical cost over npv plant life 

natural-gas-use-cost Natural gas cost for production of ethanol 

natural-gas-cost-indexed-cost Indexed natural gas cost over npv plant life 

net-income Net income from operations 

net-expenses Net expenses of operations 

corp-tax-list Corporate taxes, rate based off slider on interface 

net-income-before-tax-list  Net income before tax rate applied 

net-income-after-taxes-list Net income after tax rate applied 

Ro Capital cost and utility access costs to proposed site, 

listed as a negative number in net present value 

calculation of project, based on total available 

feedstock in procurement area 

S Salvage value of ethanol plant, coded at 10% 
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NIBT Net income before tax variable used in npv analysis 

corp-tax Corporate tax rate, set at 30% 

NRt Net income after tax, used in Present value and net 

present value calculations 

Df Discount factor used in present value calculations 

total-operational-fs-availble Feedstock available in initial procurement area as 

specified by the interface slider, used for initial plant 

setup during operations 

in-radius-farmers First group of farmers called, contained in the original 

procurement area 

out-radius-farmers Second group of farmers for potential delivery 

expansion-radius-farmers Third group of farmers for potential delivery 

farmers-outside-largest-radius Fourth group of farmers for potential delivery 

in-radius-farmers-with-inventory An agent set from the first group of farmers with 

deliverable inventory 

out-radius-farmers-with-inventory An agent set from the second group of farmers with 

deliverable inventory 

expansion-radius-farmers-with-

inventory 

An agent set from the third group of farmers with 

deliverable inventory 

farmers-outside-largest-radius-with-

inventory 

An agent set from the fourth group of farmers with 

deliverable inventory 

ethanol-feedstock-capacity Plant feedstock capacity required to meet nameplate 

capacity 

plant-size-operations Plant size determined in year 1 of operations, based on 

feedstock capacity multiplied by 372 litres (amount of 

ethanol produced per MT of feedstock received) 

ethanol-feedstock-space Feedstock required to meet nameplate capacity 

ethanol-feedstock-inventory Feedstock currently in inventory 

remaining-feedstock-space Additional feedstock required that must be obtained 

outside of current procurement area 

capital-cost-operations Operational capital cost of ethanol plant based on 

initial procurement area available feedstock 

salvage-value-operations Salvage value of plant at end of operational life, 10% 

of capital value 

capital-loan-payment-operations Operational payments made to capital loan 

payment-period-interest-operations Interest paid each year, based on remaining balance, 

payment increases as interest decreases 

rate-operations Depreciation rate during operations 

depreciation-operations Amount of depreciation expense each year, fluctuates 

depending on accumulated depreciation as it compares 

to salvage value, loan amount and payments 

accumulated-depreciation-operations Total accumulated depreciation 

feedstock-price-operations Price of feedstock for operations, based on average 

wheat price over 30 years in Saskatchewan 

feedstock-cost-operations Cost of feedstock, based on feedstock delivery 
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numbers 

freight-cost-operations Cost of freight for chemical and other inputs needed in 

the production of ethanol, does not include feedstock 

mktg-cost-operations Cost of marketing ethanol and ddgs 

chemical-costs-operations Chemical cost per litre of ethanol produced 

denaturant-costs-operations Denaturant cost per litre of ethanol produced 

maintenance-costs-operations Cost of maintenance, repairs, and other direct costs 

associated with keeping the plant operational and 

avoiding costly down time 

insurance-costs-operations Insurance costs, charged as a percentage of capital cost 

property-tax-cost-operations Property taxes, charged as a percentage of capital cost 

labour-cost-operations Labour cost, based on litres of ethanol produced 

water-use-cost-operations Water cost, based on litres of ethanol produced 

electric-use-cost-operations Electric cost, based on litres of ethanol produced 

natural-gas-use-cost-operations Natural gas cost, based on litres of ethanol produced 

ethanol-price-operations Price of ethanol, average price based off of USDA 

data out of South Dakota 

ddgs-price-operations Price of ddgs, average price based off of USDA data 

out of South Dakota 

income-operations Income for the plant from ethanol sales, ddgs sales and 

subsidies 

expense-list-combined-operations Both expense lists combined for use in calculated net 

income. Combines average and fixed expenses 

corp-tax-list-operations Corporate taxes as per rate set by slider 

total-net-income-after-taxes-operations Total net income after corporate taxes of plant during 

operations 

operation-cost-per-litre-no-tax Cost per litre to produce ethanol before deducting 

corporate taxes, used for checking if plant is exceeding 

average variable costs, fixed costs, or average costs 

average-variable-cost-with-

transportation 

Average variable cost per litre for the ethanol agent 

average-cost-with-transport Average cost per litre for the ethanol agent 

average-fixed-costs Average fixed costs per litre of ethanol produced. This 

includes maintenance, property taxes, insurance, etc. 

Costs that would happen even if the plant shut down in 

the short run 

my-percent-share-of-sales Gives each plant a percentage of market demand 

(sales) based on their production capacity 

my-share-of-ethanol-demand The litres of ethanols the plant can sell based on the 

calculated percentage market share figure 

my-ethanol-sale Ethanol sale made by the agent 

ethanol-inventory Ethanol inventory that the plant was unable to sell 

when supply exceeds demand 

ethanol-inventory-demand When production does not meet market demand, as 

calculated based on market share and if ethanol 
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inventory > 0 then inventory will be accessed for sales 

average-income-per-litre Average income based on ethanol, ddgs, and subsidies 

remaining-market-demand Amount of demand left unfulfilled by plants, may be a 

result of demand shocks from increased demand and/ 

or plant closures 

my-ddgs-sale ddgs sale for the plant, based off of market percentage 

share calculated for the ethanol market, ddgs market is 

assumed to follow the ethanol market given the 

number of competing options in the feed market 

my-share-ddgs-market-demand Share of ddgs that can be sold by the plant into the 

market place, found using my-percent-share-of-sales 

variable used for ethanol market share 

ddgs-inventory ddgs inventory that is unable to be sold is held in 

inventory for futre sales 

ddgs-inventory-demand If ddgs demand exceeds ddgs production then this is 

the demand required from inventory to meet sales 

ddgs-b/e-price Breakeven price for ddgs, required for calculation of 

ethanol breakeven price 

ethanol-b/e-price Breakeven price for ethanol after corporate taxes, 

ethanol market price required continued operations 

ethanol-truck-rate-MT-operations Rate to ship a MT of ethanol by truck in the operations 

portion of the model 

ethanol-rail-rate-MT-operations Rate to ship a MT of ethanol by rail in the operations 

portion of the model 

ddgs-truck-rate-MT-operations Rate to ship a MT of ddgs by truck in the operations 

portion of the model 

ddgs-rail-rate-MT-operations Rate to ship a MT of ddgs by rail in the operations 

portion of the model 

ethanol-market-output-increase Increased market demand due a demand shock 

increased-ethanol-demand Variable that is set via a slider on the interface, if 

ethanol-market-demand-increase slider is increased 

this is the additional amount of demand over and 

above current market demand required 

ethanol-with-highest-cost Selects plants with highest average cost, these plants 

are shown as a cirlce on the interface, low cost plant 

are a displayed as a star (visual only) 

low-cost-my-percent-share-of-

increased-demand 

When there is demand shock the plant with the highest 

average cost does not receive a demand increase as it 

is assumed that it will not be able to finance an 

expansion, therefore the additional demand it would 

receive is split between the remaining plants with 

lower average cost figures 

my-percent-share-of-increased-demand Share of excess demand when the supply drops due to 

plant closures or demand increases 

plant-expansion-size  Size of plant expansion based on market share to meet 

excess demand in the market place, listed in litres 
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additional-fs-needed  Additional feedstock needed to meet planned plant 

expansion 

expansion-capital-cost Capital cost of first expansion option 

expansion-salvage-value Salvage value of first expansion option 

expansion-capital-loan-payment Capital loan payment for first expansion option 

expansion-payment-period-interest Interest on first capital expansion loan option 

expansion-rate Depreciation rate for first expansion option 

expansion-depreciation Depreciation expense on first expansion option 

expansion-accumulated-depreciation-

list 

Accumulated depreciation on first expansion option 

average-fixed-expansion-costs Average fixed cost per litre of ethanol produced based 

on total production, after first expansion option 

second-plant-expansion-size Size of second expansion option 

second-additional-fs-needed  Additional feedstock needed to satisfy second 

expansion option 

second-expansion-capital-cost Capital cost of second expansion option 

second-expansion-salvage-value Salvage value of second expansion option 

second-expansion-capital-loan-payment Capital loan payment on second expansion option 

second-expansion-payment-period-

interest 

Interest on second expansion capital loan option 

second-expansion-rate Depreciation rate on second expansion option 

second-expansion-depreciation Depreciation expense for second expansion option 

second-expansion-accumulated-

depreciation-list 

Accumulated depreciation for second expansion 

option 

average-fixed-second-expansion-costs Average fixed cost per litre of ethanol produced, based 

on total production, after second expansion option 

ethanol-converted-fs Ethanol production as converted from feedstock 

deliveries 

ddgs-converted-fs ddgs production as converted from feedstock 

deliveries 
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APPENDIX C 

NetLogo© Simulation Code 

 

The SKETHANOL-ABM NetLogo© simulation source code and documentation is available via 

open source at www.openabm.org or by contacting the author of this thesis.  

 


