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ABSTRACT 

Sediment quality guidelines (SQGs) or values (SQVs) are used to assess the potential risk 

of contaminants in sediment to aquatic organisms, specifically benthic invertebrates.  The 

objectives of this research were to evaluate SQGs derived specifically for use by the uranium 

industry in Canada, propose alternative SQVs for use at uranium operations in northern 

Saskatchewan using a novel approach, and investigate the potentially bioavailable fractions of 

metals in sediment which could become an alternative measurement to the typically used total 

metal concentrations. 

The screening-level concentration (SLC) approach has been used in Ontario, Canada, to 

derive lowest effect levels (LELs) and severe effect levels for use as SQGs.  This approach was 

adopted by the Canadian Nuclear Safety Commission (CNSC) to set guidelines for metals (As, 

Cr, Cu, Pb, Mo, Ni, Se, U, and V) and radionuclides (Ra-226, Pb-210, and Po-210) in sediment 

at northern Saskatchewan uranium mining and milling operations.  The SLC approach is based 

on total metal and radionuclide concentrations in sediment, and corresponding benthic 

invertebrate community composition data for a specific sampling site.  In this study, sediment 

chemistry (total metals and radionuclides) and benthic community data from northern 

Saskatchewan uranium operations were compiled and examined.  Results indicated that the 

CNSC-derived SQGs had limited relationships to observed effects, or lack thereof, on benthic 

invertebrate communities near uranium operations in Saskatchewan.  On a general basis, the 

correct alignment of at least one LEL exceedence at an effect site was observed 95% of the time, 

but on an element-specific basis many of the elements had concentrations at effect sites below 

their LELs.  Furthermore, concentrations of the evaluated elements exceeded at least one LEL at 

60% of the no-effect sites.  The high number of exceedences of LELs at reference and no-effect 

sites (false-positives) calls to question the appropriateness of the CNSC-derived SQGs. 

To address the deficiencies of the SLC approach, a new approach was developed to 

derive alternative metal SQVs for the uranium industry in northern Saskatchewan that was based 

on the use of reference and no-effect site field data.  Three different sets of NE values were 

derived using combinations of benthic invertebrate community effect criteria (abundance, 

richness, evenness, Bray-Curtis index).  Additionally, reference (REF) values were derived based 

solely on sediment metal concentrations from reference sites.  In general, NE values derived 

using abundance, richness, and evenness (NE1 and NE2 values) were found to be higher than the 
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NE values derived using all four metrics (NE3 values).  Derived NE values for Cr, Cu, Pb, and V 

did not change with the incorporation of additional effects criteria due to a lack of influence from 

the uranium operations on these metal concentrations (i.e., they were generally present at or near 

background levels).  However, a gradient of exposure concentrations was apparent for As, Mo, 

Ni, Se, and U in sediment which allowed for acceptable exposure levels of these metals in 

sediment to be defined.  The findings from this assessment proposed a set of new, alternate 

SQVs for use at the uranium industry in northern Saskatchewan.    

Often, only total metals concentrations are measured in the evaluation of contaminated 

sediment.  However, this measure may over-estimate metal exposure to benthic invertebrates.  

Using sediment cores collected from near the Rabbit Lake and Key Lake uranium operations, 

along with a series of mixed-sediments (contaminated and reference sediment), metal 

bioaccumulation experiments using Chironomus dilutus were conducted in the laboratory.  Metal 

concentrations in extracts from single extractions with either potassium phosphate or 

hydrochloric acid on wet and dried sediment, pore-water, and whole-sediment were used to 

evaluate metal bioaccumulation in test organisms.  Depending on the metal, pore-water isolated 

using peepers generally exhibited the best relationship with tissue metal concentrations.  Based 

on this finding, it is suggested that pore-water sampling using peepers (an in-situ dialysis device) 

be added to environmental sampling programs at Saskatchewan uranium operations so that 

sediment metal availability to benthic invertebrates can be better assessed.  With the eventual 

development of a larger pore-water metals dataset, SQGs based on pore-water metals 

concentrations could likely be derived as an alternative to existing SQGs based on total metal 

concentrations in sediment.   
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PREFACE 

 This thesis is organized as a series of three manuscripts related to the evaluation of 

sediment quality values, derivation of new sediment quality values using a novel no-effect 

approach, and the assessment of potential bioavailable fractions of metals in sediment to a model 

benthic invertebrate, Chironomus dilutus.  Some repetition of details among chapters was 

therefore unavoidable.   

 Chapter 2 is currently published on-line in the scientific journal, Environmental 

Monitoring and Assessment (DOI: 10.1007/s10661-011-2063-1).  Chapter 3 will be submitted to 

Environmental Monitoring and Assessment in the fall of 2011.  Chapter 4, or a portion of it, may 

be submitted to a scientific journal in the future.



 

1 

CHAPTER 1 

LITERATURE REVIEW 

 

1.1 Introduction 

Sediments are an important part of the aquatic ecosystem.  They can act as a sink for 

anthropogenic inputs, such as metals, but can also act as a source for contamination to overlying 

water and aquatic organisms.  Anthropogenic sources of metal contamination can occur from 

mining and milling of metals, such as uranium, with metals released into the aquatic environment 

through effluent and seepages.  Frequent monitoring of sediments surrounding mining and 

milling activities generally occurs to assess the effects of potential contamination.  Sediment 

quality guidelines (SQGs) or values (SQVs) are frequently used as tools to assess the potential of 

contaminants to cause adverse effects on aquatic organisms.  Comparison of SQVs to measured 

sediment concentrations at aquatic monitoring sites downstream of seepage or effluent discharge 

points illustrates the potential for those sediments to cause adverse effects on aquatic organisms.  

Although SQGs are used frequently to assess metals in sediments, they have been criticized for 

being overly conservative, not taking into account the bioavailability of metals to aquatic 

organisms, not being site-specific, and not having a single, standard derivation method. 

   

1.2 Sediment quality guidelines 

Numerous reviews of the approaches available to derive SQVs have been published, both 

in peer-reviewed journals (Burton 2002; Chapman 1989; McCauley et al. 2000; van Beelen 

2003), by government agencies world wide (ANZECC & ARMCANZ 2000; Canadian Council 

of Ministers of the Environment (CCME) 2001; Florida Department of Environmental Protection 

1994; ICES (International Council for the Exploration of the Sea) 2003), and, more recently, 

through international workshops (Wenning et al. 2005).  There are numerous approaches to 

deriving SQVs.  Differences between approaches include the amount of data required, inclusion 

of variables, procedures, statistics, and how the derived values are used.  However, in general 
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sediment quality value derivation approaches can be divided into two categories; empirical and 

mechanistic (Vidal and Bay 2005). 

 

1.2.1 Sediment quality guideline derivation approaches 

1.2.1.1 Empirical approaches 

Empirical SQV approaches are based on statistical analyses of large databases of 

sediment chemistry and toxicity data to identify relationships between chemical concentrations 

and biological effects (Vidal and Bay 2005).  These effects-based approaches to deriving SQVs 

rely on laboratory tests or field data that compare concentrations of a contaminant to the effect 

on an organism(s).  Many effect endpoints can be used (e.g., survival, growth, reproduction, 

species presence/absence, and biochemical markers), but cause-effect relationships are assumed 

rather than evaluated in empirical approaches.  Chemical speciation and bioavailability are not 

directly addressed, but are indirectly considered because a large database with a broad cross 

section of data is used (Vidal and Bay 2005).  A broad cross section of data incorporates many 

possible contaminants, sediment types, ranges of chemical concentrations, abiotic factors, 

biological organisms, and effects.  Many of these empirical approaches are very similar, with 

only small differences in how values are calculated or determined (i.e. effect centiles, data 

criteria, etc.).  

 

1.2.1.1.1 Spiked-sediment toxicity 

The spiked-sediment toxicity test method for deriving SQVs assesses the toxicity of the 

contaminant(s) of interest to multiple aquatic organisms (usually benthic invertebrates) to 

determine a concentration-response relationship.  Test sediment is spiked with increasing 

concentrations of a contaminant or contaminant mixture in a laboratory.  The concentration-

response is used to define a threshold concentration.  Contaminant concentrations below the 

threshold are less likely to cause an effect on an organism and concentrations above the threshold 

are more likely to cause an effect.  Multiple species of organisms are typically used because 

different species vary in sensitivity to a given toxicant.  This approach was based on sediment 

toxicity testing methods developed by Gannon and Beeton (1971) and Swartz et al. (1979).  A 

major assumption with this method is that laboratory experiments can realistically mimic real 

world situations (Adams et al. 1992).   
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1.2.1.1.2 Apparent effects threshold (AET) approach 

The apparent effects threshold approach uses the chemical concentrations from field-

collected sediments and laboratory test results, and at least one indicator of biological effects 

(e.g., benthic invertebrate structure, toxicity test endpoints) to determine the concentration that 

will always cause significant adverse biological effects (Adams et al. 1992; Chapman 1989).  A 

relatively large database is needed (> 30 data points) with a range of concentrations. This 

approach assumes that using a large database accounts for the inclusion of possible interactions 

between contaminants and environmental factors, and that bioavailability or bioeffects can be 

determined based on either field or laboratory data (Chapman 1989). 

 

1.2.1.1.3 Screening-level concentration (SLC) approach 

This field-based approach estimates the concentration of a contaminant in sediment 

which is predicted to be tolerable to 95% of the population of benthic infauna.  Persaud et al. 

(1993) and Thompson et al. (2005) outline this methodology, which uses co-occurring total 

contaminant concentrations in field-collected sediments and corresponding benthic community 

effect data.  Screening-level concentrations for each contaminant of interest are calculated by 

first deriving a species screening level concentration (SSLC).  This is the 90th percentile in a raw 

frequency distribution of contaminant concentrations at all sites where a species is present.  

Using all of the SSLCs for a single contaminant, another frequency distribution is constructed 

from which the lowest-effect level (LEL) and severe-effect level (SEL) are determined.  The 

LEL is the 5th percentile of this distribution and is the concentration below which harmful effects 

on benthic invertebrates are not expected.  The SEL is the 95th percentile from this distribution 

and is the concentration above which harmful effects on benthic invertebrates are expected. 

There are three assumptions to this approach, as outlined by Chapman (1989).  First, it is 

assumed that if the database is large, then the influence of modifying factors, such as habitat 

variables, water depth, and sediment grain size, should not have to be considered with respect to 

particular contaminants (i.e., variability is taken into account due to the breadth of the database).  

Secondly, it is assumed that when a species is present at a site that it is due to a lack of a 

biological effect (i.e., the contaminants at that site are not causing an effect on that specific 

species).  Lastly, the approach assumes that the assessment of a toxic response can be adequately 

measured, with appropriate sensitivity, by the presence or absence of a species (Chapman 1989). 
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1.2.1.1.4 Effects range approach (ERL and ERM) 

This approach derives environmental risk limits and was introduced by Long and Morgan 

(1990) who derived values from studies performed in both saltwater and freshwater.  A large 

database of co-occurrence data (bulk sediment chemical concentrations and related biological 

effects) is compiled to determine the level at which organisms are moderately (effects range 

median - ERM) and minimally (effect range low - ERL) effected.  The ERL is the concentration 

below which adverse effects are not likely to occur, whereas the ERM is the concentration above 

which adverse effects are more likely (NOAA (National Oceanic and Atmospheric 

Administration) 1999).  The effects-range values are derived by plotting co-occurrence data in 

ascending order, noting adverse effects for each corresponding sediment concentration.  Because 

adverse effects generally increase with increasing concentration, the ERL value is defined as the 

10th percentile whereas the ERM value is the 50th percentile.  These values are intended as 

informal benchmarks to be used in the interpretation of chemical data from sediment.   

 

1.2.1.1.5 Threshold and probable effect levels (TEL and PEL) 

The threshold and probable effect levels (TELs and PELs) approach for deriving SQGs 

was suggested by Smith et al. (1996).  Effect levels have been derived using field based 

sensitivity distributions as outlined in Leung et al. (2005).  According to Smith et al. (1996), 

SQVs are derived using a weight of evidence approach by matching biological and chemical data 

from numerous modeling, laboratory, and field studies performed on freshwater sediment and 

compiled into the biological effects database for sediments.  Two values, TEL and PEL, are 

derived from this data set.  The TEL is calculated by the geometric mean of the 15th percentile of 

the observed effect data set and the 50th percentile of the no observed effect data set.  The PEL is 

calculated by the geometric mean of the 50th percentile of the observed effect data set and the 

85th percentile of the no observed effect data set.  The TEL is the level below which adverse 

effects are unlikely and the PEL is the level above which adverse effects are estimated to 

frequently occur.  

 

1.2.1.1.6 Field-based species sensitivity distribution (f-SSD) approach 

The field-based species sensitivity distribution (f-SSD) approach was first proposed by 

Leung et al. (2005).  This approach is similar to other effects based field approaches, such as 
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AET, LEL/SEL, ERL/ERM, and TEL/PEL approaches.  For each separate chemical, the f-SSD 

values are derived by plotting the EC50s in a cumulative frequency distribution (percentiles).  

Various hazard concentrations (HCx; e.g., HC5) are determined by the nonparametric bootstrap 

method.  Because only sensitive species are used to derive the HCx, the HCxs were corrected so 

that they would not be overprotective.  This was accomplished by finding the level (x) of HCx 

that would protect 95% of the species in the community resulting in an impact of 5% of the 

community (HC5).  The adjusted community HC5 was selected as the TEL for each chemical, 

while the PEL was represented by the adjusted community HC10 from the f-SSD (Leung et al. 

2005).  The construction of f-SSDs assumes that if sensitive species are protected, then other 

more-tolerant species are protected as well.  

 

1.2.1.1.7 Consensus approach 

Consensus based SQGs were derived for a particular contaminant from various other 

empirically based SQGs and have been reviewed thoroughly (MacDonald et al. 2000a; 

MacDonald et al. 2000b; Swartz 1999).  Two levels of effect are calculated using current, 

previously derived SQGs.  The threshold effect concentration (TEC) is the concentration of a 

contaminant below which an adverse effect on sediment organisms is not expected.  This TEC 

value is based on SQGs such as TELs, ERLs, LELs, minimal effect thresholds (METs), and 

sediment quality advisory levels.  The second effect level is the probable effect concentration 

(PEC) and illustrates a concentration of contaminant above which harmful effects are expected to 

occur frequently in sediment organisms.  This PEC is based on SQGs such as PELs, ERMs, 

SELs, and toxic effect thresholds (TETs).  These effect concentrations (TEC and PEC) are 

derived by calculating the geometric mean of the published values for a chemical substance (or 

group of substances) after three or more independent SQGs have been published (MacDonald et 

al. 2000b). 

 

1.2.1.1.8 Regression models 

There are two models that use the regression-type approach.  The first model has been 

proposed as an alternative means of calculating ecotoxicological thresholds to overcome existing 

limitations of the available data (Field et al. 1999; Field et al. 2002).  The approach estimates the 

percentage of samples expected to be toxic at a given contaminant concentration.  It uses a large 
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database of co-occurring data (i.e. sediment contaminant concentrations and measurements of 

effects on benthic invertebrates) from field-collected samples, and applies logistic models and 

concentration-interval plots.  The other model estimates SQVs by regressing the bioavailable 

contaminant concentration (amount bioaccumulated or concentration in overlying water) against 

concentrations in the sediment and determining the point of intersection of the regression line 

with critical concentrations (i.e. LB25s: lethal amount bioaccumulated to effect 25 % of the 

population, or water-based LC25s) (Borgmann 2003).  

 

1.2.1.2 Mechanistic approaches 

Mechanistic approaches to SQV derivation incorporate factors that affect bioavailability 

of chemicals in sediment.  Variables such as organic carbon and amorphous sulfides are 

considered.  Because of this incorporation, mechanistically derived SQGs have a greater ability 

to determine which contaminant is causing toxicity in a mixture.  However, more chemical data 

are required which results in a reduced number of published mechanistic SQVs, compared to 

empirical SQVs. 

 

1.2.1.2.1 Equilibrium-partitioning (EqP) approach 

The EqP approach uses a correction factor for organic carbon content in order to derive 

SQVs from water quality criteria/guidelines and also considers the simultaneously extracted 

metals/acid-volatile sulfide (SEM/AVS) ratio, which is used for predicting toxicity of sediments. 

Since its original development in the 1980’s, this approach has been developed further by Di 

Toro et al. (1991).  This approach makes several assumptions which include that partitioning of 

chemicals is based on the organic carbon content in the sediment with little consideration for 

other physical or chemical factors, that water column organisms are affected in a similar way as 

sediment dwelling benthic invertebrates, and that uptake via respiratory surfaces is the only route 

of exposure without considering sediment ingestion.  Steady-state conditions are assumed to 

occur in aquatic systems and partition coefficients are assumed to be applicable to natural 

environments (Chapman 1989). 
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1.2.1.2.2 Tissue residue approach 

This approach relates the maximum acceptable concentration of a chemical in the 

sediment to an acceptable concentration in aquatic organisms or consumers.  Tissue residue 

concentrations, bioconcentration factors, and/or octanol-water partitioning coefficients (Kow) are 

used to estimate contaminant concentrations that are safe for animals or people to be in contact 

with or ingest (usually the latter).  As well, knowledge of sediment-organism partition 

coefficients, equilibrium partitioning, organism preference factors, and pharmacokinetic-

bioenergetic models are useful in accurately determining appropriate sediment concentrations 

(Adams et al. 1992). 

 

1.2.1.3 Other approaches  

1.2.1.3.1 Sediment background approach 

This SQV approach uses the premise that contaminated sediments can be compared to a 

reference (either a nearby uncontaminated site sediment or sediment from a core prior to 

contamination) to reveal chemicals of concern.  Reference sediments form the basis for the 

regulatory criteria.  This approach assumes that there is no assimilative capacity or threshold for 

toxic effects for benthic organisms and that the toxicity of contaminants in sediments are not 

influenced substantially by sediment characteristics (Chapman 1989).  In other words, benthic 

invertebrates may be able to tolerate concentrations greater than the background concentration, 

but that contaminant concentration difference between the toxicity threshold and the background 

concentration is not considered in the sediment background approach and may result in overly 

conservative SQVs. 

 

1.2.1.3.2 Water quality criteria approach 

This approach compares the contaminant concentrations in interstitial water (pore-water) 

with available water quality criteria (previously derived).  The premise is that water quality 

criteria can be used as the backbone for sediment criteria.  This approach assumes that water 

column organisms are as sensitive as benthic organisms, that information from aqueous 

bioassays are applicable to sediments, and that sediment ingestion is not a route of significant 

exposure (Chapman 1989).  According to Chapman (1989), the advantage of this approach is that 

it uses a large database so that only field measurements are required.  However, this approach is 
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limited to only those contaminants having existing water quality criteria.  Without these, SQVs 

cannot be developed using this approach.  In addition, methods for measuring interstitial water 

concentrations are not widely standardized or validated, criteria are only available for individual 

chemicals and may not be applicable to complex chemical mixtures, and this approach does not 

use toxicological data derived directly from the sediment of interest (Chapman 1989).  This 

method is used in Australia and New Zealand as an alternative to their primary method of 

deriving SQVs (ANZECC & ARMCANZ 2000). 

 

1.2.2 Uses  

1.2.2.1 Canada 

Canada currently has SQGs for the protection of aquatic life (CCME 1995; 2001; 2002).  

Some of the guideline values are “interim” (i.e., ISQG) due to limited available information, 

uncertainty, and information gaps regarding sediment toxicity.  This may change with the 

availability of more data and the development of standardized methods.  The CCME along with 

Environment Canada are responsible for these guidelines.  The SQGs are used as a nation-wide 

sediment screening tool. 

The derivation of a numerical SQG in Canada relies mainly on the National Status and 

Trends Program (NSTP; developed by the NOAA of the United States of America) or the TEL 

approach.  However, an initial weight of evidence approach is completed on the contaminant of 

concern which includes a literature search and review of environmental chemistry and fate data, 

evaluation of toxicology data for acceptability, and an evaluation/establishment of background 

concentrations.  Then, the NSTP approach is carried out whereby co-occurrence data of 

biological effect and chemical concentration data are used to establish an association between 

effects and the concentration of a contaminant in sediments.  Once these two steps are complete, 

tables of co-occurring data are derived.  If minimum data requirements are met, TEL and PEL 

values are derived.  The SQG is then recommended by the CCME and it is determined whether 

or not spiked-sediment toxicity tests are needed to either complement or validate the SQG.  If 

minimum data requirements are not met, ISQGs are adopted or default options are investigated 

and implemented, and the data gaps are identified.  The approach can be applied to both 

freshwater and estuarine (saltwater) sediments and is developed on a chemical-by-chemical 

basis.  It should be noted that SQGs for metals, refer to the “total” concentration of metal 
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recovered using a near-total (acid digestion) method.  The CCME sediment guidelines have been 

criticized by Borgmann (2003) for not being based on clear cause-effect relationships.  This 

makes it difficult to manage sediments based on these guidelines.  

Sediment quality guidelines in Canada can be used in conjunction with other sediment 

assessment tools.  No single sediment assessment tool should be used solely to predict whether 

adverse biological effects will occur, but should be used in conjunction with other assessment 

tools to make a practical and informed decision (CCME 2001).  The National Water Research 

Institute (NWRI) and Environment Canada have developed other assessment tools, such as the 

BEnthic Assessment of SedimenT (BEAST) and the sediment-toxicity (SED-TOX) index to aid 

in contaminated sediment management.  In the future, the spiked-sediment toxicity test approach 

could be used to derive SQGs in Canada, similar to the approach used in water quality guideline 

derivation, once methodological concerns are overcome.   

Other approaches used in Canada, which are different from the CCME approach, are the 

EqP and SLC approaches.  These derivation approaches are used in the province of Ontario 

(Persaud et al. 1993).  In Persaud et al. (1993), three levels of effect were established – a no-

effect level (NEL), a LEL, and a SEL.  The derivation of a NEL used the EqP approach (Section 

1.1.1.2.1) and is based on concentrations that are low enough to not be passed up the food chain.  

The LEL and SEL values are derived using the SLC approach (Section 1.1.1.1.3).  Minimum 

data requirements have been established for both methods of deriving SQGs.   

In Saskatchewan, uranium operations (as an example) are regulated according to several 

acts.  Some of these include the Fisheries Act (under which the Metal Mining Effluent 

Regulations (MMER) are enforced), the Nuclear Safety and Control Act, and the Canadian 

Environmental Protection Act.  These acts do not include regulation of sediments with regards to 

metals or radionuclides.  Therefore, the CNSC recently derived SQGs for total metals and 

radionuclides in sediment for Canadian uranium operations using the SLC approach and data 

from Canadian uranium operations (Thompson et al. 2005).  The SQGs derived by the CNSC 

and the CCME serve only as guidelines that are not enforceable under legislation, unless they are 

set as a license requirement for an operation.  Because of the specificity of the guidelines derived 

by the CNSC for the uranium industry, higher regard for adherence to the guidelines may be 

necessary to comply with the CNSC requirements even though they are not legally enforceable.  
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The CNSC SQGs are frequently used in risk assessments and evaluations of sediment data at 

uranium operations in Saskatchewan.    

 

1.2.2.2 United States 

The United States does not have an overall sediment policy, but rather multiple sub-

polices (Nord 2001).  However, the United States Environmental Protection Agency (US EPA), 

has derived EqP benchmarks for dieldrin, endrin, PAH mixtures, and metal mixtures (Cd, Cu, 

Pb, Ni, Ag, Zn) in sediment.  New York State has a technical guidance document for screening 

contaminated sediments for non-polar organic contaminants and metals.  They use the EqP 

method to derive SQGs for non-polar organic contaminants, but have adopted the SLC approach 

for metal guideline derivation as established by NOAA (Long and Morgan 1990) and the 

Ministry of Ontario (Persaud et al. 1993).  The State of Florida has sediment quality assessment 

guidelines for coastal waters which are applicable to freshwater.  Threshold effect levels and 

PELs are derived for 34 contaminants using the weight of evidence approach developed by Long 

and Morgan (1990).  In general, the approach of Long and Morgan (1990) is commonly used to 

derive SQVs.   

 

1.2.3 Future of sediment quality guidelines 

According to Adams et al. (1992), the future of SQVs rely on four key actions.  First, 

SQV derivation should be incorporated into a tiered assessment approach to evaluate the 

significance of sediment contamination.  Secondly, derived SQVs should be validated with field 

tests to assess the applicability to real situations.  Thirdly, methods for measuring contaminants 

and ways of improving chronic toxicity testing capabilities should be expanded and improved.  

Lastly, exploring ways to delineate historical contamination from current practices would be 

beneficial.  With the development of new statistical techniques and more sophisticated, 

integrated approaches for deriving SQVs, new SQVs are likely to emerge within the next decade.  

The start of this trend is the use of species sensitivity distributions and regression models for 

deriving SQVs.  Derivation approaches should continue to be based on biological responses 

which is a very important aspect of deriving scientifically defendable SQVs (Borgmann 2003; 

Giesy and Hoke 1990).   
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1.3 Behavior of metals in aquatic systems 

1.3.1 Sediment 

Given that sediments can act as a contaminant sink, the geochemistry of sediment is of 

importance downstream of effluent discharge points and in other areas of contamination around 

the globe.  Sediments can act as a source of contaminants even after industrial or municipal 

discharges cease.  Chemical changes that occur when an effluent is introduced to the 

environment can cause metals to precipitate from solution and deposit in surface sediment.  

Benthic organisms, especially invertebrates, may take up these metals either from solution, direct 

contact with the sediment, or through sediment ingestion.  If sediment is disturbed by changes in 

overlying water conditions or through dredging, metals can be released back into solution 

(depending on the physiochemical properties of the water and sediment) and carried further 

down the drainage area, causing a spread of metal contamination in the drainage basin.  

Although sediments may act as a sink for contaminants and contain high concentrations of 

metals, especially in immediate discharge areas, only a small fraction of contaminants, such as 

metals adsorbed onto sediments, may be bioavailable.  Metals may bind to a variety of ligands 

(e.g., organic matter and sediment particles) which will reduce their bioavailability (discussed 

further below).  Binding depends on the properties and affinity to other molecules and 

compounds.   

As alluded to above, numerous geochemical factors affect the chemistry of metals in 

sediment.  Physical factors include grain (particle) size, surface area, surface charge, and organic 

carbon content.  Chemical factors can be mechanistic (type of association) in nature, such as 

adsorption, precipitation, and cation-exchange, or they can be related to a chemical or physical 

phase (type and quantity of substrate), such as interstitial water, carbonates, hydrous Fe and Mn 

oxides, sulfides, and silicates (Horowitz 1991).  As examples, adsorption is the adherence of 

metals to surface of sediment particles and is major mechanism for the collection of metals in 

sediments.  Clays specifically are known to adsorb metals because they have high surface areas 

(relative to their volume) which allows numerous binding sites for metals and other metal 

“collectors”, such as organic matter and hydrous Fe and Mn oxides.  In comparison, sand has 

much lower surface area to volume ratios (comprised of larger particles) and thus will not bind 

metals to the extent that clay would.  Clearly, physical factors and chemical mechanisms that 

affect metals in sediment are strongly interrelated. 
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Additionally, metals in sediment can be influenced by the overlying water and pore-water 

chemistry.  In this scenario, sediments can act as a source for contamination rather a sink, as 

discussed above.  Dissolution and precipitation depends on the properties of the metal and the 

conditions of the aquatic environment (such as pH and hardness).  Generally, as pH decreases the 

solubility of metals increases, thus releasing metals that are adsorbed to sediment into the 

surrounding water.  High hardness concentrations in water generally decrease the availability of 

metals to aquatic organisms due to the competition of Ca and Mg ions with the uptake of other 

metal ions.  The contribution of the water associated with sediments influences the dynamic 

chemistry of metals in sediments. 

 

1.3.2 Pore-water 

Toxicants in sediment are available to benthic invertebrates via sediment pore-water.  

Dissolved pore-water metals make up a small fraction of the total metals measured in bulk 

sediment.  However, only total metal concentrations in bulk sediment are typically measured and 

reported. 

Pore-water contains water soluble and colloidally-adsorbed contaminants.  Sediment 

properties, such as AVS content, percent total organic carbon (TOC), particle size distribution 

(affects surface area and charge), and dissolved ligands (i.e., dissolved organic carbon (DOC), 

dissolved sulfide) govern the partitioning of divalent cationic metals between the solid and liquid 

phases, and hence the bioavailability of metals within pore-water (Di Toro et al. 1991; Mahony 

et al. 1996).  Once these ligands are exhausted, excess metals occur as ‘free’ (uncomplexed) 

metal in the pore-water.  This results in potential interactions of the available metal fraction and 

benthic invertebrates. 

A variety of ligands affect the availability of metals to aquatic organisms.  In oxic 

sediments, organic carbon, iron and manganese oxyhydroxides, and other components of 

geochemical processes can bind with metals to reduce their availability (Bryan and Langston 

1992; Tessier and Campbell 1987; Tessier et al. 1993).  In anoxic sediments, AVS and organic 

carbon have been found to bind with divalent, cationic metals to make them unavailable to 

aquatic organisms (Di Toro et al. 1991; Mahony et al. 1996). 

Acid volatile sulfide can play a major role in binding metals in sediment.  Acid volatile 

sulfides are defined as the sulfide liberated and collected from sediments during cold 
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hydrochloric acid treatment (Burton et al. 2007; Carbonaro et al. 2005).  Acid-volatile sulfides 

and SEM are collected at the same time (Di Toro et al. 1991).  The ratio of SEM/AVS is used as 

a tool to predict the bioavailable fraction of selected metals, such as Cd, Cu, Ni, Pb, and Zn 

(Burton et al. 2007; Hansen et al. 1996).  Ratios of SEM/AVS > 1.0 indicate sediments 

potentially toxic to benthic invertebrates (i.e., excess metals may be present which are not bound 

to AVS and may illicit toxic action on benthic invertebrates via pore-water exposure), whereas 

an SEM/AVS ratio < 1.0 indicates that sediments are likely nontoxic (i.e., excess binding sites 

for metals with no bioavailable metal fraction) (Burton et al. 2007; Di Toro et al. 1990; Di Toro 

et al. 1991; Hansen et al. 1996).   

A number of methods exist for collecting pore-water.  The whole-core squeezer method 

involves squeezing a sediment core between two pistons with pore-water being collected via a 

sample tube (Bender et al. 1987).  The centrifugation-filtration method, which is more widely 

used in research today, involves centrifuging a sediment sample and collecting the overlying 

solution which is filtered prior to analysis (Emerson et al. 1980).  As well, peepers or in situ 

dialysis samplers have become increasingly popular.  Peepers are sampling vessels filled with 

purified water and covered with a semi-permeable membrane (Hesslein 1976).  They are placed 

directly into sediment and allowed to equilibrate over time via diffusive processes.  Once 

equilibrium has been reached, the peepers are removed and the pore-water sample analyzed for 

dissolved metals.   

Benthic invertebrates are generally in contact with pore-water, which is a potential route 

of contaminant exposure for many benthic and epi-benthic invertebrates.  It has been shown that 

pore-water metal concentrations, such as copper, compared to water-only toxicity data, 

accurately predict toxicity (presence and extent) for the amphipod Hyalella azteca in test 

sediments (Ankley et al. 1993).  Likewise, ammonia toxicity was accurately predicted from pore-

water concentrations for the midge Chironomus tentans and the oligochaete Lumbriculus 

variegates (Whiteman et al. 1996).  Speciation of metals in pore-water has been correlated with 

accumulation in benthic organisms (Vink 2002).  Therefore, contaminants in pore-water can be 

used to predict or at least correlate with effects on benthic organisms.   

In light of this, SQVs based on measurements of bioavailable contaminant fractions have 

been developed.  The criteria include pore-water and associated AVS and SEM measurements 

for metals (Ankley et al. 1996; Leonard et al. 1996).  As well, they incorporate equilibrium 
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partitioning theory, which assumes that chemicals are at equilibrium and are partitioned between 

the solid and dissolved phases (Di Toro et al. 1991).  For example, using the partitioning of 

organic contaminants between organic matter and pore-water, sediment quality criteria have been 

developed for nonionic organic chemicals (Di Toro et al. 1991).  Sediment quality criteria based 

on bioavailable fractions of contaminants in sediment are thought to be a more reliable and 

scientifically defendable than those derived using total (bulk) contaminant concentrations in 

sediment. 

 

1.3.3 Bioavailability and modifying factors of toxicity 

Bioavailability can be defined as the “proportion of total metals that is available for 

incorporation into biota (bioaccumulation)” (John and Leventhal 1995) or the “degree to which a 

chemical is able to move into or onto an organism” (Benson et al. 1994).  Horowitz (2001) 

defines bioavailability as the “portion of dissolved, biologically-, or sediment-associated 

chemical constituents that are readily accessible to biota either through physical contact or by 

ingestion” which is a general and operationally defined term.   

There are many factors which can modify the availability (and toxicity) of metals in 

sediment.  These modifying factors include sediment organic matter, Fe and Mn oxyhydroxide 

and sulfide content, particle size distribution, pH, and hardness of water and pore-water.  Organic 

matter (quantified as organic carbon) is found naturally in sediment and is derived from plants, 

microbes, and animals.  Organic matter has varying sorption capacities depending on the 

composition.  Generically, when a metal binds to organic matter a complex is formed.  This 

complex has varying degrees of stability and the affinity of the metal may depend on the 

speciation of the metal and the type of organic matter.  Iron and manganese oxyhydroxides and 

sulfides bind metals in a manner similar to organic matter.  Sediment particles also have the 

ability to bind metals in a similar fashion.  Smaller sediment particles (i.e., clay, silt) have large 

surface areas relative to their volume (more binding sites) and therefore bind more metal than the 

same mass of larger sediment particles (i.e., sand).  The hydrogen ion content (pH) of pore-water 

and overlying water has an impact on bioavailability as well.  Generally, the lower the pH (more 

H+ ions) the more metals (especially cationic metals) will be in a free form (unbound) as the 

result of competition between the H+ and metal ions.  This competition results in the 

displacement (liberation) of metals from sediment.  Elevated water hardness can decrease the 
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toxicity of some metals (i.e., Cd, Co, Cu, Zn) (Mayer et al. 1994) due to competition at metal 

uptake sites.   

 

1.4 Chemical extractions 

Various chemicals can be added to sediment to extract various operationally-defined 

fractions of metals.  This typically involves mixing a chemical solution with sediment, allowing 

for a mixing period, and then isolating the aqueous phase.  This procedure may be done 

sequentially (numerous chemicals are added to a single sediment sample one after another 

following each isolation), or singly (only one chemical is added to a sediment sample).  The 

metal concentrations extracted from a sediment sample will vary depending on the process used, 

the properties of the chemicals, the metals of interest, and the characteristics of the sediment.  

 

1.4.1 Sequential extractions 

Sequential extraction is a means of partitioning sediment metals into operationally and 

chemically defined fractions, depending on speciation and binding properties of the metal and 

the type of particulate matter available.  The procedure is based on the concept that specific 

fractions could be defined with appropriate chemicals and the purpose of the sequential 

extraction procedure was to provide “detailed information about the origin, mode of occurrence, 

biological and physicochemical availability, mobilization, and transport of trace metals” (Tessier 

et al. 1979).  Tessier et al. (1979) operationally defined the metal fractions in sediment to be 

(from most to least potentially bioavailable): exchangeable, bound to carbonates, bound to iron 

and manganese oxides, bound to organic matter, and residual.  The sequential extraction 

procedures developed by Tessier et al. (1979) are well cited and used.  However, many 

subsequent studies have modified the methods of Tessier et al. (1979) in some way such that 

each similarly named extracted fraction is somewhat operationally different.   

Each subsequent fraction in a sequential extraction sequence removes metals that are 

more tightly bound to sediment particles than the previous fraction.  Extraction reagents are 

chosen based on their ability to selectively extract metals from a particular fraction.  A list of 

potential chemicals used to extract metals from sediments and soils, along with their approximate 

relative mobility and extraction strength, are listed in Figure 1.1.  A single sediment sample is 

used throughout a sequential extraction; therefore, the total sediment metal concentration is equal 
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Figure 1.1. Relationship between metal mobility in the different operationally-defined phases 
and extractant strength of common chemical reagents used in single and sequential extractions 
(modified from Filgueiras et al. (2002) and Tessier et al. (1979)).
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to the sum of all the fractions.  In other words, all the concentrations from fractions in a 

sequential extraction, ending in an hydrofluoric acid (HF) extraction as an example, should add 

up to the concentration from digestion of sediment with HF only.   

Bioavailable fractions often make up only a small percentage of the total metal 

concentration in sediment, depending on the metal and sediment (Lopez-Sanchez et al. 1993; 

Tessier et al. 1979).  Bioavailable fractions are thought to include those in overlying water or 

pore-water (Buykx et al. 2000), the exchangeable fraction, and the fraction bound to organic 

matter (Carapeto and Purchase 2000).  In the sequential extraction scheme shown in Figure 1.1, 

the most bioavailable fractions would be the water-soluble, exchangeable and acid-soluble 

fractions.   

Many modifications of the Tessier et al. (1979) approach have been explored with 

extraction results varying with each unique approach.  The reasoning behind such modifications 

are that the five-step sequential extraction technique (Tessier approach) is very time-consuming 

and labour-intensive (Carapeto and Purchase 2000).  The European Commission, through the 

Standards, Measurement, and Testing Programme, has developed a three-step sequential 

extraction procedure known as the BCR (Community Bureau of Reference; the old name for the 

Standards, Measurement, and Testing Programme) approach (Lopez-Sanchez et al. 1993; Pueyo 

et al. 2001; Quevauviller et al. 1997; Rauret et al. 1999).   

Sequential extraction data can be correlated with biological data to evaluate the 

relationship between extracted contaminant fractions and biological effects.  Ramos et al. (1999) 

investigated the relationship between sequentially extracted Cu, Pb, Cd, and Zn in sediments 

with tissue concentrations of exposed earthworms and the best results generally correlated well 

with the fraction where the metal was mainly associated (i.e., fraction with the highest % of the 

total concentration).  For instance, the exchangeable fraction represented about 53% of the total 

Cd concentration in sediment and the residual and organic fractions together accounting for 

about 80% of the total Cu concentration in sediment (Ramos et al. 1999).  This area of research 

has not been extensively pursued, especially for freshwater sediments. 

 

1.4.2 Single extractions 

A single extraction, as the name implies, involves a single application of a chemical 

solution to sediment.  Single extractions are similar to sequential extractions in that a chemical 
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solution is added to sediment or soil to extract an operationally-defined fraction of metal.  A 

specific fraction is targeted and the procedure can be modified to extract particular metals or 

groups of metals depending on the chemical (extractant) used.  This simpler procedure is more 

time and cost effective than sequential extractions when there is a particular fraction of interest 

rather than multiple fractions.   

Single versus sequential extractions have been compared by Tack and Verloo (1999).  

They found metal concentrations in acid extractable, reducible, and residual fractions from single 

extractions generally agreed with those from sequential extraction fractions.  Each of these 

various approaches to fractionation of soil or sediment metal concentrations use similar groups 

of chemicals to extract a particular fraction.  However, there are slight variations in extraction 

efficiency within each fraction, depending on the sediment properties (i.e., clay, sand, and 

organic matter proportions) and methods employed (i.e., mixing time, use of wet or dried 

sediment, temperature, ratios of chemicals, amount of chemical used per amount of sediment).   

 

1.5 Benthic invertebrates 

Benthic invertebrates reside in or on sediment.  Given this close association, benthic 

invertebrates are often good indictors of sediment toxicity.  Benthic invertebrates, such as H. 

azteca and Chironomus dilutus (formerly C. tentans), are routinely used in laboratory toxicity 

testing to evaluate sediments (Norberg-King et al. 2006). In the field, bioaccumulation of 

contaminants in benthic invertebrates can be used (along with other lines of evidence) to 

characterize the partitioning of metals in ecosystems (Farag et al. 2007).  More commonly, 

benthic invertebrate communities are used to measure the effects of mining activities on fish 

habitat in environmental effects monitoring programs (Environment Canada 2002).   

Summary metrics, such as family richness, abundance of organisms, the evenness index, 

and the similarity index (e.g., Bray-Curtis Index), are used to measure the difference between 

reference and exposure benthic communities.  Any significant difference between reference and 

exposure site summary metrics results in the exposure site being considered as adversely 

affected.  This would indicate that sediment, or potentially another component of the aquatic 

ecosystem, is causing an adverse effect on the benthic community which in Canada is considered 

fish habitat (Environment Canada 2009). 
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1.6 Uranium industry in northern Saskatchewan 

1.6.1 Mining process 

Methods used to mine uranium (U) ore include open pit mining, underground mining, 

and in situ recovery.  Open pit mining involves excavating the over burden to access the ore 

body and then using explosives to break up the rock which is hauled to the surface for milling.  

Underground mining involves access and ventilation shafts being dug into the ground to access 

the ore.  The ore is extracted using raise and jet boring techniques, processed underground into 

sand which is mixed with water to form a slurry, and transferred to the surface for milling.  In 

situ recovery involves pumping solutions into the ore bodies.  The solutions dissolve the U, 

which is then pumped back to the surface for U extraction. 

 

1.6.2 Milling process 

Milling is the act of processing the extracted ore to isolate U from other minerals and 

rock material.  The ore is first crushed (unless already in solution) and treated with acid to 

separate the U from other materials.  The solution is then purified with chemicals to dissolve the 

U and chemically separated to precipitate U out of solution.  The precipitate is dried with the 

resulting powder being U oxide concentrate, U3O8, more commonly referred to as yellowcake.  

Yellowcake is packed in drums and shipped to a refinery.  Before the mined U can be used in a 

nuclear reactor, it must undergo refining, conversion, and enrichment.  

 

1.6.3 Uranium operations 

The U operations in northern Saskatchewan were chosen as a case study to evaluate a 

new approach to deriving SQGs and to investigate various methods of measuring bioavailable 

metal fractions in sediment.  Within the Athabasca Basin in northern Saskatchewan, concentrated 

uranium ore is found in abundance.  The individual uranium operations are relatively similar to 

each other and are therefore satisfactory models for deriving regional SQVs.  There are presently 

five uranium operations in Saskatchewan which are operated by either Cameco Corporation or 

AREVA Resources Canada (Figure 1.2).  Currently, uranium ore is mined at the McClean Lake, 

Rabbit Lake, McArthur River, and soon, Cigar Lake, operations.  The ore is milled at McClean 

Lake, Rabbit Lake, or Key Lake operations to extract uranium.  The processed yellowcake is 

packaged and sent to refineries outside of the province.  Four other mine/mill operations (Cluff
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Figure 1.2. Locations of uranium mining and milling projects in Saskatchewan, Canada (from 
www.cameco.com). 
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Lake, Beaverlodge, Gunnar, Larado) in Saskatchewan are undergoing decommissioning, 

reclamation and remediation activities.   

 

1.6.4 Metals of potential concern 

In this case study, the metals of primary concern are uranium, selenium, arsenic, 

molybdenum, and nickel.  These specific metals co-occur in uranium ore bodies and could 

potentially cause adverse environmental effects if elevated concentrations are released in the 

mine effluent.  They are also of particular interest because they are known to be bioavailable to 

aquatic organism to varying degrees depending upon the environmental conditions.  Other metals 

of interest include chromium, copper, lead, and vanadium. 

 

1.6.5 Regulatory framework 

Uranium operations in Saskatchewan are regulated according to several provincial and 

federal acts, and require licenses through the Saskatchewan Ministry of Environment (SMOE) 

and the CNSC.  The specific acts include the Fisheries Act (under which the MMER are 

enforced), the Nuclear Safety and Control Act, the Environmental Management and Protection 

Act, and the Canadian Environmental Protection Act.  The specifics for license requirements 

vary by each operation, but they generally include mine plans, environmental monitoring 

programs, worker safety programs, and quality management systems requirements.  These acts 

and license requirements are strictly enforced and in place to protect the environment and 

mine/mill employees.     

Using data from Canadian uranium operations, the CNSC recently derived LELs using 

the SLC approach developed by Persaud et al. (1993) based on total metal and radionuclide 

concentrations in sediment (Thompson et al. 2005).  The SLC approach is reportedly suitable for 

metals and is applicable to benthic invertebrates (Persaud et al. 1993).  Co-occurring total metal 

and radionuclide concentrations in sediments and associated benthic community effects data 

from uranium mine sites in northern Saskatchewan and northern Ontario originally collected 

between 1985 and 2001 were used to derive the guidelines (Thompson et al. 2005).  The CNSC, 

using this approach, has derived SQGs for As, Cr, Cu, Pb, Mo, Ni, Se, U, V, 226Ra, 210Pb, and 
210Po.  These guidelines provide benchmarks not previously derived for some metals and 

radionuclides.  However, the approach has limitations in that the full range of species tolerances 
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for all contaminants may not be represented by the data obtained (Thompson et al. 2005).  In 

addition, total sediment metal concentrations, rather than bioavailable metal measurements, are 

correlated with species presence or absence.   

The CNSC-derived SQVs are used to determine the likelihood of adverse effects on 

benthic invertebrate communities due to sediment contamination resulting from mine/mill 

effluent.  They are also intended to facilitate decisions about effluent control and to determine 

the scale and magnitude of potential remediation efforts (Thompson et al. 2005).  If a SQV is 

exceeded, then it is anticipated that there would be an effect on the benthic community and a 

concerted effort by the company to alleviate the contamination (e.g., stop or decrease effluent 

discharge, employ remediation efforts).  These SLC SQGs derived by the CNSC are frequently 

used to evaluate sediments near uranium operations in Saskatchewan, even though they are not 

legally enforceable (unless it is specified in an operations license requirements). 

 

1.7 Research goals and objectives 

The overall goal of this research was to evaluate the current methods for deriving SQVs 

for metals and to propose a scientifically defensible and user-friendly alternative applicable to 

Saskatchewan uranium operations.  To achieve this, the following research objectives were 

completed: 

 

I) Conduct a critique and assessment of the predictive capabilities of the current SQVs 

derived for the uranium industry using data from uranium operations in northern 

Saskatchewan and identify possible options for alternative SQV derivation approaches; 

 

H0: There is no difference between the predictive capabilities of currently available SQVs 

for the uranium industry (based on Thompson et al. (2005)) and that conducted using a 

more recent data set. 

  

II)  Using a novel derivation approach, derive regionally-specific SQVs for Saskatchewan 

uranium mines based on reference and no observed-effect concentrations associated with 

benthic communities;   
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H0: There is no difference between regionally-specific NE SQVs and other no- or low-

effect SQVs currently available for each of the metals investigated (As, Cr, Cu, Ni, Pb, 

Mo, Se, U, V).   

 

III) Identify a scientifically-defensible, user-friendly approach for measuring bioavailable 

fractions of metals in sediments.   

 

H0: Pore-water or chemical extractions are no better than total sediment metal 

concentrations at predicting sediment metal bioavailability to the model benthic 

invertebrate C. dilutus. 
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CHAPTER 2 

EVALUATION OF SEDIMENT QUALITY GUIDELINES DERIVED 
USING THE SCREENING-LEVEL CONCENTRATION APPROACH 

FOR APPLICATION AT URANIUM OPERATIONS 
IN SASKATCHEWAN, CANADA* 

 

2.1 Abstract 

Sediment quality guidelines (SQGs) can be derived using different approaches and are 

commonly used in environmental management, reclamation, and risk assessment. The screening-

level concentration (SLC) approach has been used in Ontario, Canada, to derive lowest effect 

levels (LELs) and severe effect levels (SELs) for use as SQGs.  This approach was adopted by 

the Canadian Nuclear Safety Commission (CNSC) to set guidelines for metals (As, Cr, Cu, Pb, 

Mo, Ni, Se, U, and V) and radionuclides (Ra-226, Pb-210, and Po-210) in sediment at northern 

Saskatchewan uranium mining and milling operations.  The SLC approach is based on total 

metal and radionuclide concentrations in sediment, and corresponding benthic community 

composition data for a specific sampling site.  In this study, sediment chemistry (total metals and 

radionuclides) and benthic community data from northern Saskatchewan uranium operations 

were compiled and examined.  Results indicate that the CNSC-derived SQGs had limited 

relationships to observed effects, or lack thereof, on benthic invertebrate communities near 

uranium operations in Saskatchewan.  The LELs were found to correctly align with effects at 

95% of the sites that had effects, on a general basis, but on an element-specific basis many of the 

elements had concentrations at effect sites below their LELs.  Furthermore, concentrations of the 

evaluated elements exceeded at least one LEL at 60% of the no-effect sites.  The high number of 

exceedences of LELs at reference and no-effect sites (false-positives) calls to question the 

appropriateness of the CNSC-derived SQGs. It is suggested that alternatives to the SLC approach 

be explored. 

 
                                                 
* This chapter is published in the Environmental Monitoring and Assessment journal: Burnett-Seidel, C. & Liber, K. (2011). 

Evaluation of sediment quality guidelines derived using the screening-concentration level approach for application at uranium 
operations in Saskatchewan, Canada.  Environmental Monitoring and Assessment, DOI: 10.1007/s10661-011-2063-1. 
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2.2 Introduction 

Although the manner in which they are used varies, sediment quality guidelines (SQGs) 

are generally used to help protect aquatic environments from adverse effects of various stressors.  

Typically, total concentrations of contaminants in whole sediment are compared to guideline 

values to determine whether there is a potential for benthic invertebrate community impairment.  

Sediment quality guidelines can be used in environmental assessments in combination with other 

measures (e.g., water quality, concentrations of contaminants in resident biota, benthic 

community indices, in situ experimental results) to evaluate the risk to aquatic ecosystems from 

anthropogenic activities (e.g., industrial development, effluent discharges).  Sediment quality 

guidelines may also be used as target values for particular contaminants of concern during 

reclamation of contaminated sites.   

Many approaches to SQG derivation have been used to date.  These can generally be 

divided into two broad categories: mechanistic and empirical approaches.  Mechanistic SQG 

derivation approaches (e.g., the equilibrium partitioning approach (Di Toro et al. 1991; US EPA 

2005)) incorporate chemical and biological factors that are known to modify the bioavailability 

of contaminants.  Empirical SQG approaches are based on statistical analyses of large databases 

of co-occurring sediment chemistry and sediment toxicity/biology data to identify relationships 

between chemical concentrations and biological effects (Vidal and Bay 2005).  Various 

endpoints, such as survival, growth, reproduction, bioaccumulation, presence/absence of taxa, 

and biochemical markers, can be used to identify an effect.  The datasets used to derive empirical 

guidelines may incorporate many possible contaminants, sediment characteristics, chemical 

concentrations, abiotic factors, chemical interactions, and biological effects.  Examples of 

empirical approaches include the effects range approach (Long and Morgan 1990), the threshold 

and probable effect level approach (Smith et al. 1996), the consensus approach (MacDonald et 

al. 2000a, b), and the screening level concentration (SLC) approach (Persaud et al. 1993; 

Thompson et al. 2005).   

The focus of this evaluation is the SLC approach.  The Canadian Nuclear Safety 

Commission (CNSC) reported to have chosen this approach for derivation of SQGs for use at 

uranium mining and milling operations in Canada because of the abundance of historical and 

current environmental monitoring data that already existed related to that industry, and because 

the approach was reportedly applicable to situations involving benthic invertebrates and metals 
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(Thompson et al. 2005).  The CNSC guidelines presented by Thompson et al. (2005) are derived 

according to the approach of Persaud et al. (1993).  Briefly, this approach involves plotting 

species-specific benthic invertebrate distributions in relation to total contaminant concentrations 

in whole sediment.  The 90th percentiles derived from each of the various species-specific 

distributions of contaminant concentrations are then plotted in a species sensitivity distribution.  

The 5th and 95th percentiles of the species sensitivity distribution represent the lowest effect 

level (LEL) and severe effect level (SEL) SQGs, respectively.  The SQGs thus derived by 

Thompson et al. (2005) provide a set of regional SQGs to monitor and assess the condition of 

sediments near uranium operations in northern Saskatchewan.   

Although currently in use, there are limitations to the SLC approach which reflect the 

shortcomings in the SQGs derived for the uranium industry in Canada.  Specifically, the SLC-

derived SQGs may not accurately reflect the true effects of trace element concentrations on 

benthic organisms.  Trace element concentrations may be misclassified as the effect 

concentrations because an element is “guilty by association”.  For example, some benthic 

organisms may be absent at a site due to the concentration of one particular trace element.  

However, because the SLC approach does not recognize cause–effect relationships, all trace 

element concentrations present at that site would be classified as effect concentrations 

(regardless of causality).  Because the SLC approach is solely based on the presence or absence 

of taxa, the resulting SQGs have very limited application and are difficult to defend 

scientifically.  Due to their reliance on statistical and mathematical relationships between 

invertebrate community data and total sediment contaminant concentrations, and the potential for 

under sampling rare species and over representing common species, authors such as von 

Stackelberg and Menzie (2002) and Smith and Jones (2005) have previously cautioned against 

the use of the SLC approach and other similar empirical approaches when deriving SQGs. 

Guidelines derived using the SLC approach have little relationship to toxicity thresholds and can 

be similar to the background concentrations associated with the dataset used in the derivation 

process (Smith and Jones 2005).  In essence, the SQGs derived using the SLC approach are 

simply a correlational function of the data and are not based on cause–effect relationships.   

The objective of this research was to independently evaluate the SQGs derived by the 

CNSC for application at Saskatchewan uranium operations.  To achieve this, SQGs derived by 

Thompson et al. (2005) were thoroughly compared with sediment chemistry and benthic 
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invertebrate community effects data collected from Cameco Corporation uranium projects in 

northern Saskatchewan, Canada.  The data in this evaluation were independent of what was used 

in the original assessment conducted by Thompson et al. (2005).  Thompson et al. (2005) 

assessed their SQGs using a subset of the data that was used in the derivation of the SQGs.  This 

could have biased the results of the evaluation of the SQGs.  This case study of regionally 

derived SQGs will serve as a measure of how effective the empirical SLC approach is at 

predicting effects (or the lack thereof) of metals and radionuclides on resident benthic 

invertebrate communities. 

   

2.3 Material and methods 

Environmental monitoring data from sites near Cameco Corporation uranium mining and 

milling projects located in northern Saskatchewan, Canada, were used to evaluate the SLC 

approach.  Scientific reports containing the data used in the evaluation were obtained from 

Cameco Corporation, various environmental consulting firms, an academic thesis, and a field 

study completed by the authors (CanNorth Environmental Services 2001, 2005b, 2008; Conor 

Pacific Environmental Technologies Inc. 1999; Golder Associates Ltd. 2002, 2003, 2005a, b, c, 

2008a, b; Robertson 2006; Terrestrial & Aquatic Environmental Managers Ltd. 1997).  The data 

were from the Key Lake, Rabbit Lake, McArthur River, and Cigar Lake uranium operations, and 

collected between 1996 and 2007.  A total of 15 reports were reviewed which collectively 

include 33 different sampling locations and 87 different datasets of co-occurring sediment 

chemistry (total metal and radionuclide concentrations) and benthic invertebrate community 

data.  Of the 87 datasets, 28 were from reference sites and 59 were from locations downstream of 

mining and milling activities (i.e., effluent discharge, potentially contaminated seepage).  As a 

result of temporal environmental monitoring programs, 24 of the 33 sampling locations were 

sampled more than once.  The majority of the benthos sampling programs described in the 

various reports followed the procedures outlined in the Environmental Effects Monitoring 

(EEM) guidance document (Environment Canada 2002) for sampling benthic invertebrates (e.g., 

Ekman grab samples).  Sediment fractions for metals analysis were obtained from 0–2 cm to 

approximately 0–5 cm horizons and were collected using a variety of equipment (e.g., Ekman 

grab sampler, Tech-Ops extruder corer, hand-corer).  Generally, five replicate samples for 

sediment chemistry and benthic invertebrate community assessment were collected.  Sediment 
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and benthic invertebrate sampling took place throughout the year, but occurred most frequently 

in the fall.   

Collected data were compared to the SQGs derived by Thompson et al. (2005).  First, 

sediment chemistry data (mean metal concentrations) from each site were screened for 

exceedences of these SQGs.  The guideline values derived by Thompson et al. (2005) using their 

“weighted method” are presented in Table 2.1 and were used in all comparisons in this study.  

These SQGs include LELs and SELs for As, Cr, Cu, Mo, Ni, Pb, Se, U, V, Pb-210, Po-210, and 

Ra-226.  These elements were either deemed by Thompson et al. (2005) to be of concern at 

uranium operations in northern Saskatchewan, routinely monitored at metal mines, or have other 

SQGs derived for the elements using other approaches.  According to Thompson et al. (2005), if 

a total trace element concentration in sediment was less than the LEL, adverse effects on the 

benthic community were not expected, and if the concentration in sediment was greater than the 

SEL, harmful effects on the benthic invertebrate community were expected to occur.  Thompson 

et al. (2005) recommended the use of their “weighted” LEL SQGs for use in ecological risk 

assessments as concentrations below which adverse effects on the benthic invertebrate 

communities are not expected but found that their SEL SQGs were not good predictors of severe 

impacts on benthic invertebrate communities.   

The next step in the evaluation presented here was to screen the various exposure site 

benthic community data for evidence of adverse effects.  In this study, an effect on the benthic 

invertebrate community was defined as a statistical difference between a reference and exposure 

site with respect to total abundance (one report presented only mean abundance) or taxon 

richness (generally at family level).  If statistical comparisons were not made for abundance or 

richness within the report evaluated, then an effect was defined as a >20% difference in either 

abundance or richness as compared to the reference site.  These definitions were chosen to 

correspond to the effect criteria defined by Thompson et al. (2005), which defined an effect 

between reference and exposure sites as a >20% difference in either abundance or richness, and 

also the Canadian EEM Program (Environment Canada 2002) which defines an effect on the 

benthic community as a statistical difference between reference and exposure sites. 

After SQG exceedences and benthic community effects were evaluated for each dataset, 

the sediment chemistry data and benthic community effects data were integrated to determine the 

ability of SQGs to accurately predict an effect, or lack thereof, on benthic invertebrate  
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Table 2.1. Summary of select metal (μg/g dry wt) and radionuclide (Bq/g dry wt) lowest effect levels (LELs) and severe effect levels 
(SELs) from Thompson et al. (2005). 

 As Cr Cu Mo Ni Pb Se U V Pb-210 Po-210 Ra-226 

LEL 9.8 47.6 22.2 13.8 23.4 36.7 1.9 104.4 35.2 0.9 0.8 0.6 

SEL 346.4 115.4 278.8 1238.5 484.0 412.4 16.1 5874.1 160.0 20.8 12.1 14.4 
 
Table 2.2. Summary of water depth and physical sediment characteristics for sites used in the evaluation of SLC approach-derived 
sediment quality guidelines. 

 Water Depth 
(m) Gravel (%) Sand (%) Silt (%) Clay (%) Moisture 

Content (%) 
Total Organic 
Carbon (%) 

Minimum 0.5 0.01 0.3 1.0 1.0 19.1 0.2 

Maximum 78.0 0.13 98.0 89.2 67.0 98.4 27.1 

Average 5.9 0.04 28.7 50.5 21.7 84.6 8.3 

Median 2.5 0.03 17.8 55.2 16.1 89.2 7.6 
 

Table 2.3. Number of sampling sites (with the % of total number of sites) with either an effect or no-
effect on the benthic invertebrate community in relation to exceedences of the lowest effect level (LEL) 
and severe effect level (SEL) sediment quality guidelines (SQGs) derived by Thompson et al. (2005). 

Benthic Community Metal and Radionuclide 
Concentrations Number of sites (n) 

Reference/No-Effect Effect 

No exceedence of LELs  19 (22%)  17 (37%)  2 (5%) 

Exceeded at least one LEL  68 (78%)  29 (63%)  39 (95%) 

Exceeded at least one SEL  33 (38%)  15 (33%)  18 (48%) 

Total number of sites (n)  87  46  41 
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communities.  Predictive ability thus assessed how well SQGs predicted the correct outcome 

(i.e., effect or no-effect site).  This measure of reliability was assessed through four possible 

combinations of outcomes whereby benthic invertebrate communities were or were not affected 

and SQGs were or were not exceeded.  Reliability was assessed on a general and specific level.  

General predictive ability identified exceedences of any metal or radionuclide at a single site.  

Specific predictive ability identified exceedence of an individual metal or radionuclide 

(on a metal-specific basis) at a single site.   

Thompson et al. (2005) also conducted an evaluation of their SQGs based on predictive 

ability using a subset of the data used to derive their LELs and SELs.  It should be noted that the 

datasets used in the evaluation of the SLC approach in this study were not identical to the data 

used in the SQG derivation process used by the CNSC (Thompson et al. 2005).  Only four 

sampling sites (one report from 1996) overlapped between the data used in this evaluation of the 

SLC guidelines and the data used by the CNSC to derive the SLC guidelines.   

 

2.4 Results 

Of the 87 datasets used in this assessment, 28 were from reference locations.  Benthic 

communities were significantly affected at 41 of the 59 exposure site locations.  Eighteen of the 

59 exposure sites were determined to be unaffected (no measurable effect on the benthic 

invertebrate community).  Sediments in this region can vary widely in their physical 

characteristics (e.g., particle size distribution, moisture content, and total organic carbon 

content).  Sediment characteristics for the sites used in this assessment are summarized in Table 

2.2.  Graphical presentation of % organic carbon and % sand in sediments from reference and 

exposure sites illustrated that, generally, there was an even distribution of sediment physical 

characteristics at reference and exposure sites (unpublished data). 

 

2.4.1 General predictive ability 

It was anticipated that an exceedence of one or more SQGs would be found at effect sites. 

Out of all the sites evaluated (reference, no-effect, and effect), 78% had element concentrations 

that exceeded at least one LEL and 38% had concentrations that exceeded at least one SEL 

(Table 2.3).  Of the sites exceeding at least one LEL value, 57% (39/68) was found to have an 

effect on the benthic invertebrate community and 43% (29/68) was either reference or no-effect 
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sites (Table 2.3).  Of the sites exceeding at least one SEL value, 55% (18/33) was found to have 

an effect on the benthic community and 45% (15/33) where either reference or no-effect sites 

(Table 2.3).  Looking at the data in a different way, it was found that exceedences of at least one 

trace element LEL were found at 95% of the effect sites (Table 2.3).  Conversely, reference and 

no-effect sites should not have trace element concentrations exceeding either the LEL or SEL 

SQGs.  Only 37% of the reference and no-effect sites had all trace element concentrations below 

their respective LELs (Table 2.3). 

 

2.4.2 Specific predictive ability 

To further investigate the predictive ability of the SQGs derived by Thompson et al. 

(2005), the percentage of LEL and SEL exceedences were explored for each metal and 

radionuclide individually.  The percentage of reference, no-effect (including and excluding 

reference sites), or effect sites (based on benthic invertebrate community abundance and 

richness) that exceeded the LEL and SEL SQGs derived by Thompson et al. (2005) are provided 

in Table 2.4.  These values reflect the ability of the SQG for each metal or radionuclide to 

accurately predict a potential effect, or the lack of an effect, on the benthic community at the 

sites investigated. 

For As, Mo, Ni, Se, U, Pb-210, Po-210, and Ra-226, no-effect sites (including reference 

sites) were found to have concentrations of these elements in sediment that were above 

individual LELs, but below SELs, 15% to 33% of the time.  Arsenic, Cr, Mo, Ni, Se, and Po-210 

concentrations in sediment were above the SELs 2% to 27% of the time at no-effect sites 

(including reference sites).  More than 77% of the time no-effect sites (including reference sites) 

had Cr, Cu, Pb, U, V, and Ra-226 sediment concentrations below their LEL. 

At effect sites, sediment concentrations for all 12 elements were below LELs 18% to 

89% of the time.  For Cr, Cu, Pb, and V, metal concentrations at effect sites were below their 

LELs 67% to 89% of the time.  Conversely, for As, Mo, Se, and U, concentrations in sediment 

were generally greater than LELs 53% to 82% of the time.  Apart from the elements found above 

the LEL, all other elements present at effect sites would be categorized as “guilty by 

association”. 
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Table 2.4. Percent of reference, no-effect, or effect sites, based on location (reference sites) and benthic invertebrate 
community abundance and richness, which had metal or radionuclide concentrations below or above the lowest effect 
level (LEL) and severe effect level (SEL) sediment quality guidelines (SQGs) derived by Thompson et al. (2005). 

Metals and Radionuclides  
As Cr Cu Mo Ni Pb Se U V Pb-210 Po-210 Ra-226

Percent of Reference Sites that are: 
< LEL 79 96 100 85 85 100 75 85 90 67 71 88 
> LEL but < SEL 11 0 0 15 11 0 25 15 10 33 21 12 
> SEL 11 4 0 0 4 0 0 0 0 0 8 0 
n = 28 24 28 26 26 25 12 27 21 24 24 24 
Percent of No-Effect Exposure Sites (only) that are: 
< LEL 22 100 89 47 25 100 20 65 100 50 67 83 
> LEL but < SEL 56 0 11 18 63 0 20 35 0 50 33 17 
> SEL 22 0 0 35 12 0 60 0 0 0 0 0 
n = 18 17 18 17 16 16 10 17 14 12 12 12 
Percent of No-Effect Sites (including reference sites) that are: 
< LEL 57 98 96 69 62 100 50 77 94 67 69 85 
> LEL but < SEL 28 0 4 17 31 0 23 23 6 33 25 15 
> SEL 15 2 0 14 7 0 27 0 0 0 6 0 
n = 46 41 46 42 42 41 22 44 35 36 36 34 
Percent of Effect Sites that are: 
< LEL 41 84 73 18 54 89 19 47 67 57 63 63 
> LEL but < SEL 39 16 27 59 44 11 39 48 26 40 34 31 
> SEL 20 0 0 23 2 0 42 5 7 3 3 6 
n = 41 37 41 39 39 37 26 40 30 35 35 35 
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Figure 2.1. Comparison of metal (Pb, U, As) concentrations in sediment at reference (REF), no-
effect (NE) and effect (E) sites relative to the lowest effect level (LEL) and severe effect level 
(SEL) sediment quality guidelines derived by Thompson et al. (2005).
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Graphs of selected trace element concentrations at reference, no-effect, and effect sites in 

comparison to SLC SQGs illustrate the above mentioned exceedences (Figure 2.1).  Lead (Figure 

2.1a), for example, illustrates the situation where reference and no-effect sites have Pb 

concentrations below the LEL and effect sites concentrations both above and below the LEL.  

Figure 2.1b depicts numerous exceedences of the U LEL at reference and no-effect sites, and a 

range of U concentrations at effect sites which fall both above and below the LEL and SEL.  

Figure 2.1c shows the exceedence of As LEL and SEL values at all sites. 

 

2.5 Discussion 

According to Apitz et al. (2007), “The goal of SQGs is to provide a screening-level 

indication of whether contaminants at a given level in sediments are likely to be non-toxic, 

possibly toxic, probably toxic, or extremely toxic”.  In other words, they categorize a gradient of 

toxicity, from non-toxic to potentially or definitely toxic.  The Canadian Council of Ministers of 

the Environment (2001) state “Sediment quality guidelines provide scientific benchmarks, or 

reference points, for evaluating the potential for observing adverse biological effects in aquatic 

systems.”  Thus, it is generally agreed upon that SQGs should be used as a primary screening 

tool to assess the potential for adverse effects in aquatic systems.  However, Burton (2002) 

points out that chemical benchmarks, such as SQGs, are often used as a “primary decision-

making tool, with little or no site validation of biological effects”.  Therefore, the validity of 

establishing SQGs as screening tools to determine true biological effects can be debated, 

although advances have recently been made using, for example, the consensus-based approach. 

Sediment quality guidelines have been used in a variety of ways. They are used in the 

management of dredged materials (Casado-Martinez et al. 2006) and as sediment quality 

remediation targets (Crane et al. 2002; Crane and MacDonald 2003).  They are solely used or 

integrated as a line of evidence into environmental risk assessments to evaluate the potential for 

adverse effects on aquatic life (Chang et al. 2004; Long et al. 2006; Thompson et al. 2005; Apitz 

et al. 2007).  They are also a part of environmental guidance, such as the Canadian 

Environmental Quality Guidelines (Canadian Council of Ministers of the Environment 2001), 

and as such serve as national benchmarks.  Furthermore, SQGs can be used in other applications 

to assess potentially adverse effects, protect the quality of the environment, and prevent harm to 

an ecosystem.  
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Advantages of the SLC approach largely relate to the use of large databases of chemical 

and biological data in the derivation of the guidelines (Florida Department of Environmental 

Protection 1994; McCauley et al. 2000).  In addition, the approach is relatively inexpensive to 

implement, the dataset is easily collected (assuming it is available in the first place), the 

approach uses common analyses (e.g., benthic invertebrate metrics and concentrations of 

elements in sediment; McCauley et al. 2000), and it can be used with any contaminant and 

existing databases (Chapman 1989; Florida Department of Environmental Protection 1994).  

Chapman (1989) further mentions that the approach is based on an objective method which is 

similar to setting water quality criteria that do not assume any specific mechanisms of toxic 

action.  

Despite the various advantages of the SLC approach, there are limitations to this method 

of SQG derivation.  The major weaknesses to the SLC approach are that causality is not 

determined and bioavailability is not considered (Florida Department of Environmental 

Protection 1994; McCauley et al. 2000).  The approach uses a large database, but may be 

incomplete if data are not available for all contaminants of interest, all benthic organisms, or the 

specific areas of concern (Florida Department of Environmental Protection 1994).  Taxonomic 

identification of benthic invertebrates may be challenging and expensive depending on the level 

of accuracy needed and the number of samples to be analyzed (Chapman 1989).  Also, it is 

difficult to distinguish effects of mixtures of contaminants from effects of single contaminants, 

and measured contaminants may be influenced, to varying degrees, by unmeasured contaminants 

or sediment characteristics, all of which may have an effect on benthic invertebrate communities 

(Chapman 1989).  These limitations were the motivation to further explore the applicability of 

the SLC approach.   

 

2.5.1 Predictive ability of the SLC approach 

Exceedences of LELs and occasionally even SELs at reference and no-effect sites were 

routinely observed in this study.  There was only a small degree of agreement between lack of 

effects (reference and no-effect sites) and concentrations below LELs and SELs. One would 

expect that if the SLC approach generated appropriate guidelines then less false-positives should 

occur. 
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Reasons for these observed exceedences at reference and no-effect sites are twofold.  

First, some LELs (and possibly even some SELs) derived by Thompson et al. (2005) are too low 

(overly conservative), especially for those elements which appear to be “guilty by association” 

(e.g., one element may cause an effect due to an elevated concentration, but other elements with 

low concentrations are co-associated with the effect).  Secondly, no-effect sites were not truly 

“no-effect” sites.  This could result from insufficient statistical power to determine true 

differences in benthic community composition, (i.e., resulting from low replication), or because 

the indices used in the assessment of effects (i.e., abundance and richness) were not sensitive 

enough to identify true effects at exposure sites designated as no-effect sites.  Using additional 

benthic invertebrate community composition metrics (e.g., evenness, diversity, or similarity 

indices) may help identify such effects, if they truly are there.  Only abundance and richness 

were used here in order to be consistent with the SLC derivation methodology used by 

Thompson et al. (2005).  When evaluating individual metals and radionuclides, it was found that 

some elements were either below or above their LEL and SEL values at no-effect and reference 

sites more so than other elements.  For instance, Cr, Cu, Pb, V, and Ra-226 were found more 

than 80% of the time at concentrations below their LEL values at reference and no-effect sites 

(Table 2.4).  This would be expected for appropriate SQGs.  Lead is shown as an example in 

Figure 2.1a.  On the other hand, over half of the metals and radionuclides evaluated exceeded the 

LELs at reference and no-effect sites at least 20% of the time.  These elements include As, Mo, 

Ni, Se, U, Pb-210, and Po-210.  Examples of these exceedences are illustrated in Figure 2.1b and 

2.1c for U and As, respectively.  The numerous exceedences at reference and no-effect sites are 

cause to question the SLC derivation approach.  Not surprisingly, there was relatively good 

agreement between effect sites and exceedences of the LELs and SELs because these values are 

very conservative.  At effect sites, at least one of the LELs and SELs were exceeded 95% and 

48% of the time, respectively (Table 2.3).   

When the data are viewed from a different perspective, by evaluating exceedences of the 

SQGs and how this relates to benthic invertebrate community effects, it reinforces that the SLC-

derived guidelines are deficient in accurately predicting when an effect will occur.  Of the sites 

exceeding the LEL and SEL values, only 57% (39 of 68 datasets) and 55% (18 of 33 datasets), 

respectively, were found to have effects on the benthic invertebrate community (Table 2.3).  One 

would expect that if the SLC approach generated appropriate guidelines then exceedences should 



 

37 

occur more often at effect sites than seen here (in our opinion ideally ≥80% of the time for 

specific elements), if the effects are due to the elements of concern.  Furthermore, these data 

suggest that the ability of SELs to predict a greater magnitude of effect on benthic communities 

is limited, which is consistent with the findings presented by Thompson et al. (2005), who 

explicitly recommended the use of the LEL SQGs and not the SEL SQGs. 

When exceedences of LELs at effect sites were assessed on a per element basis it was 

found that elements below the LEL co-occurred with effects.  For instance, Cr, Cu, Pb, V, Po-

210, and Ra-226 were below the LEL at effect sites ≥ 60% of the time.  These elements are 

therefore unlikely to be the cause of toxicity at these sites, yet they are associated with an effect 

on the benthic invertebrate community.  This illustrates that using concentrations of all elements 

quantifiable at effects sites can confound the derivation of appropriate environmental guidelines. 

The evidence presented from this assessment demonstrates that the SLC SQGs performed poorly 

at predicting an absence of effect.  If SQGs are set too low, the guideline will likely predict the 

possibility of an effect when there is no real effect (Type I error).  If SQGs are set too high, 

adverse effects may occur even though not anticipated (Type II error).  Therefore, there is a need 

to balance conservatism with accuracy.  Despite a high percentage of LEL exceedences at effect 

sites, high concentrations of many elements were also found at no-effect sites.  This suggests that 

SQGs derived using the SLC approach overestimate the presence of effects on benthic 

invertebrate communities near uranium operations in northern Saskatchewan.  These false-

positives could result in unnecessary and costly additional investigation or remediation. 

However, given that each species has its own tolerance level for toxicants and that the benthic 

invertebrate community composition (species assemblage) naturally varies from site to site, 

establishing a generic SQG may not be practical, especially if based on total contaminant 

concentrations.   

One of the re-occurring problems in SQG derivation procedures is the use of total metal 

concentrations in bulk sediment as the measure of choice.  Sediment characteristics (e.g., organic 

carbon content, particle size distribution, acid-volatile sulfide content) are known to influence 

metal bioavailability in sediment and thus strongly influence site-specific benthic community 

composition.  Sediment quality guidelines derived using total metal concentrations in sediment 

are generally thought to be less effective at predicting biological effects relative to 

mechanistically derived SQGs.  Furthermore, given that there can be great uncertainty as to  
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which element(s) measured in sediment at an effect site are the actual cause(s) of an effect, it 

may be impossible to determine the cause solely by using SQGs (Borgmann 2003; Chapman and 

Hollert 2006).  With the SLC approach, if one contaminant, measured or unmeasured, causes an 

effect on the benthic community, then all contaminants measured at the site are “guilty by 

association”.  This is not scientifically defendable. 

The results presented here suggest that the SQGs developed by the CNSC for northern 

Saskatchewan uranium mining and milling operations should be revisited in an effort to improve 

their predictive capability for determining both adverse effects and the absence of effects at field 

sites.  To properly relate an effect with a measure that is biologically relevant, alternative 

approaches for deriving SQGs would ideally be based on measurement of bioavailable 

contaminant fractions (e.g., concentrations in pore-water) rather than total concentrations of 

elements in bulk sediment so that SQGs are based on more biologically relevant measurements 

of exposure and bioaccessibility.  Alternative approaches for deriving SQGs could also employ 

the evaluation of metal concentrations in sediment from no-effect sites to define potentially 

“safe”, site-specific levels.  Both of these alternative approaches are currently under 

investigation. 
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CHAPTER 3 

DERIVATION OF NO-EFFECT AND REFERENCE-LEVEL SEDIMENT QUALITY 
VALUES FOR APPLICATION AT SASKATCHEWAN URANIUM OPERATIONS 

 

3.1 Abstract 

To-date, the majority of empirical approaches used to derive sediment quality values 

(SQVs) have focused on metal concentrations in sediment associated with adverse effects on 

benthic invertebrate communities.  Here we propose the no-effect (NE) approach.  This SQV 

derivation methodology uses metal concentrations in sediment associated with unaffected 

benthic communities (i.e., from reference sites and lightly contaminated no-effect sites) and 

accounts for local benthic invertebrate tolerance and potential chemical interactions at no-effect 

exposure sites.  This NE approach was used to propose alternative regional SQVs for uranium 

operations in northern Saskatchewan.  Three different sets of NE values were derived using 

different combinations of benthic invertebrate community effects criteria (abundance, richness, 

evenness, Bray-Curtis index).  Additionally, reference (REF) values were derived based solely 

on sediment metal concentrations from reference sites.  In general, NE values derived using 

abundance, richness, and evenness (NE1 and NE2 values) were found to be higher than the NE 

values derived using all four metrics (NE3 values).  Derived NE values for Cr, Cu, Pb, and V did 

not change with the incorporation of additional effects criteria due to a lack of influence from the 

uranium operations on the concentrations of these metals.  However, a gradient of exposure 

concentrations was apparent for As, Mo, Ni, Se, and U in sediment which allowed for tolerable 

exposure levels of these metals in sediment to be defined.  The findings from this assessment 

have suggested a range of new, alternate SQVs for use at the uranium industry in northern 

Saskatchewan.   

 

3.2 Introduction 

Sediment quality values are used primarily for comparison to sediment contaminant 

concentrations to determine if there is a potential for adverse effect to aquatic life.  This 

screening process is often combined with other lines of evidence (e.g., water quality, tissue trace-



 

 40

metal concentrations, benthic community indices, in situ experiments) to determine whether 

anthropogenic contamination has impacted a site (Chapman et al. 2002; McDonald et al. 2007).  

Environmental effects monitoring programs and environmental impact assessments use SQVs to 

help characterize and predict risks to aquatic ecosystems.  In addition, SQVs can be used as 

target clean-up values for contaminants of concern in reclaiming or remediating resource 

extraction sites.   

To date, various SQV derivation approaches have been developed.  These approaches can 

generally be divided into two broad categories: mechanistic and empirical approaches.  

Mechanistic SQV derivation approaches, such as the equilibrium partitioning approach (Di Toro 

et al. 1991; US EPA 2005), incorporate chemical and biological factors known to modify the 

bioavailability of metals and metalloids (metals and metalloids will be hereafter referred to as 

metals).  Empirical SQV approaches identify relationships between chemical concentrations and 

biological effect based on statistical analyses of large datasets of co-occurring sediment 

chemistry and toxicity data (Vidal and Bay 2005).  The datasets used to derive empirical 

guidelines may incorporate many possible contaminants, sediment characteristics, chemical 

concentrations, abiotic factors, chemical interactions, and biological effects.  Various endpoints, 

such as survival, growth, reproduction, contaminant bioaccumulation, presence/absence of taxa, 

and biochemical markers, can be used to determine or predict an effect.  Examples of empirical 

approaches include the spiked-sediment toxicity approach (Gannon and Beeton 1971; Swartz et 

al. 1979), the effects range approach (Long and Morgan 1990), the threshold and probable effect 

levels approach (Smith et al. 1996), the consensus approach (MacDonald et al. 2000a; 

MacDonald et al. 2000b), and the screening-level concentration (SLC) approach (Persaud et al. 

1993; Thompson et al. 2005).  Each of these approaches can be used to calculate contaminant 

concentrations likely to be associated with low, medium and severe levels of biological effects, 

depending on the definition of an effect, the data used, and the derivation method employed. 

Variations in the derivation of no-effect level (NEL) values relate to the defined effect 

criteria, predictability of the absence or presence of effects, and how the values will be used 

(e.g., in risk assessment or as reclamation objectives).  Persaud et al. (1993) introduced NELs for 

contaminants in sediment in Ontario, Canada.  They stated that the NEL in sediment was the 

“…level at which the chemicals in the sediment do not affect fish or the sediment-dwelling 

organisms” and that there was expected to be “…no transfer of chemicals through the food chain 
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and no effect on water quality”.  Persaud et al. (1993) derived NELs for non-polar organics in 

sediment using a partitioning approach based on water quality guidelines and sediment-water 

partitioning coefficients.  Ingersoll et al. (1996) defined the no-effect concentration (NEC) as the 

“…maximum concentration of a chemical in a sediment that did not significantly adversely 

affect the particular response (e.g., survival, growth, maturation) compared to the control” and 

derived NECs for metals, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons 

(PAHs) using laboratory toxicity data associated with field-collected sediment.  The negligible 

concentration (NC) and maximum permissible concentration (MPC) for metals were derived for 

use in the Netherlands.  The NC for a metal was defined as the background concentration plus a 

negligible addition (the sediment maximum permissible addition (MPA) divided by a safety 

factor of 100).  The MPC was derived using a modified equilibrium-partitioning method based 

on the sediment background contaminant concentration, the partitioning co-efficient, and the 

calculated MPA for water (Crommentuijn et al. 2000).  Altin et al. (2008) selected 

environmentally safe threshold concentrations for offshore drilling operations near Norway by 

deriving probable no-effect concentrations (PNECs).  These PNECs were calculated and 

evaluated for metals, PAHs, and aliphatic hydrocarbons using a variety of derivation approaches 

(e.g., assessment factor, equilibrium partitioning, field-species sensitivity distributions).  

Predicted no-effect concentrations have also been derived for bisphenol A using various species 

sensitivity distribution methods (Staples et al. 2008).  Sheppard et al. (2005) recommended a 

predicted no-effect concentration for uranium in sediment of 100 μg/g based on unpublished and 

in preparation works.  They consider the limited sediment toxicity data (unpublished work) and 

Saskatchewan background concentrations in relation to the low-effect levels (LELs) suggested 

by an in preparation version of the Thompson et al. (2005) manuscript.  A summary of SQVs 

applicable to freshwater ecosystems and for select metals of interest to this assessment are listed 

in Table 3.1.  Considering that the Sheppard et al. (2005) PNEC for uranium in sediment was 

simply an adopted Thompson et al. (2005) LEL, that PNEC was not used for comparison here.  

Notably, the type of endpoint (e.g., bioaccumulation versus survival or growth), the application 

(e.g., field versus laboratory), and the breadth of organisms protected (e.g., multiple trophic 

levels versus individual organism) varies among threshold level derivation approaches for 

sediment.
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Table 3.1. Comparison of select no-effect and low-effect sediment quality values from the literature (all 
values are in μg/g dry weight). 

Element NECa MPCb NCc SLC 
LELd 

Canadian 
ISQGe 

Ontario 
LELf MELg NETh METi 

As 100 190 31 9.8 5.9 6 7  -   -  
Cr 95 1720 116 47.6 37.3 26 55  -   -  
Cu 580 73 36 22.2 35.7 16 28  -   -  
Mo  -  250 3 13.8  -   -   -   -   -  
Ni 130 44 35 23.4 18 18 35 35 35 
Pb 130 4800 132 36.7 35 35 23 23 42 
Se  -  2.9 0.72 1.9  -   -   -   -   -  
U   -   -   -  104.4  -   -   -   -   -  
V  -  56 42 35.2  -   -   -   -   -  

aNEC: No effect concentration based on 28-d Hyalella azteca tests, Ingersoll et al. (1996). 
bMPC: Maximum permissible concentration for the Netherlands, Crommentuijn et al. (2000). 
cNC: Neglible concentration for the Netherlands, Crommentuijn et al. (2000). 
dSLC LEL: Screening-level concentration approach lowest effect level using the weighted method for Canadian uranium operations, 
Thompson et al. (2005). 
eISQG: Interim sediment quality guidelines for Canada, CCME (2011). 
fLEL: Lowest effect level, Persaud et al. (1993).  
gMEL: Minor effect level, MacDonald et al. (2000).  
hNET: No effects threshold for the St. Lawrence River, CCME (1999).  
iMET: Minimal effects threshold for the St. Lawrence River, CCME (1999).  
Note: A CCME SQV for Ni was available in 1999, but not thereafter. Regardless, the CCME 1999 ISQG for Ni has been included in this table 
and discussion for comparison purposes. 
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Here, uranium operations in northern Saskatchewan, Canada, were chosen as a case-study 

for deriving regional specific no-effect (NE) SQVs.  Occasionally, sediment metal 

concentrations at reference sites within this region, which represent natural background 

conditions, exceed existing guidelines derived for use in Canada (e.g., CCME 2011; Thompson 

et al. 2005).  Regional NE values would incorporate background metal concentrations in the 

aquatic environment near uranium operations in northern Saskatchewan and thus better reflect 

the local tolerance or adaptation of benthic invertebrates to elevated sediment metal 

concentrations.   

Due to the geology of northern Saskatchewan, uranium usually co-occurs with other 

metals in sediment.  Many of these metals, which are also associated with uranium ore extraction 

and processing activities, do not have national SQVs.  Using data obtained near uranium 

operations in Ontario and Saskatchewan, Thompson et al. (2005) were the first to derive 

sediment quality guidelines (SQGs) for the protection of aquatic life for specific elements  

associated with the Canadian uranium industry (e.g., Se, Mo, U, V).  However, Burnett-Seidel 

and Liber (2011; Chapter 2) found that the SQGs derived by Thompson et al. (2005) resulted in 

numerous false-positives when compared to reference and no-effect site data which suggested 

that their SQGs are quite conservative.  Furthermore, given that there are limited peer-reviewed 

sediment toxicity data available for comparison for some of these elements, these guidelines 

should be used with some caution until additional field and laboratory toxicity information is 

available to validate the derived LEL SQGs.  Until such studies are conducted, an alternate or 

supplemental approach based on different benthic invertebrate community (BIC) effect criteria, 

as presented in this paper, would aid in setting SQVs for less investigated metals of concern 

(e.g., Mo, Se, U, V). 

The NE approach derives SQVs from total metal concentrations in sediment.  Metals, 

among other potential contaminants, are of concern downstream of effluent discharge points at 

Saskatchewan uranium operations (Muscatello et al. 2006; Robertson and Liber 2007).  Many of 

these metals (e.g., Mo, Se, U, V) have not been investigated as thoroughly as many other metals 

(e.g., Cd, Cu, Pb, Zn).  Furthermore, metals are almost exclusively measured or reported as total 

metal concentrations in sediment.  However, metal bioavailability is an important factor when 

considering metal toxicity to all organisms, especially to benthic invertebrates.  Basing 

guidelines on total sediment metal concentrations is therefore not ideal.  However, until sediment 
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sampling and analysis protocols routinely include pore-water contaminant concentrations or 

other measurements more strongly related to metal bioavailability (e.g., simultaneous-extracted 

metals and acid-volatile sulfide measurements, sequential or single chemical extractions, 

diffusional equilibration in thin–film (DET) or diffusive gradients in thin–film (DGT) technologies), 

guidelines for contaminated site evaluations and risk assessments will likely continue to be based 

on total metal concentrations in sediment. 

In this study, we propose a method for deriving regionally-specific NE SQVs for metals.  

This approach relies on co-occurring sediment chemistry data and BIC metrics from reference 

and no-effect sampling sites in northern Saskatchewan, Canada.  Three different levels of BIC 

effect criteria (based on different community metrics) were used to define NE datasets.  

Reference SQVs were derived by following the same approach, but using only reference site data 

(background concentrations).  Derived NE and REF values were compared to available SQVs 

and sediment toxicity data from the peer-reviewed literature, where appropriate.  The SQVs 

derived in this assessment can be used as screening tools in contaminated sediment assessments 

at uranium operations in northern Saskatchewan, Canada.   

 

3.3 Materials and methods 

3.3.1 Study sites 

The data used to derive NE values were gathered from consultant and research reports, 

and student theses, that investigated the aquatic environments near Cameco Corporation 

operations in northern Saskatchewan, Canada (Appendix; CanNorth Environmental Services 

2001; 2005b; 2008; Conor Pacific Environmental Technologies Inc. 1999; Golder Associates 

Ltd. 2002; 2003; 2004; 2005a; 2005b; 2005c; 2008a; 2008b; Robertson 2006; Terrestrial & 

Aquatic Environmental Managers Ltd. 1997).  Data were collected from watersheds near the Key 

Lake, Rabbit Lake, McArthur River, and Cigar Lake uranium operations between 1996 and 

2007.  A total of 15 reports were reviewed which collectively include 33 different sampling 

locations (e.g., specific areas within a waterbody) and 87 different datasets of co-occurring 

sediment chemistry (total metal and radionuclide concentrations) and BIC data.  Of these sites, 

28 were reference sites and 59 were believed to be influenced by mining activities (e.g., effluent 

discharge, seepages from tailings facilities).  Due to temporal environmental monitoring 

programs, data were available for some sites for more than one year.  Sampling sites had a broad 
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range of water depth and sediment characteristics (Table 3.2).  Upon carefully evaluating these 

sediment characteristics, no bias towards one type of sediment in either reference or exposure 

sites was found (data not shown).  Although a large range of habitat characteristics were 

apparent, reference and exposure sites were matched as best as possible during each field 

investigation to minimize the potential for observing effects from habitat differences.   

 

3.3.2 Classification of datasets 

Reference sites (REF) were identified and BIC data were screened in order to define no-

effect/effect sites based on three different BIC effects criteria (NE1, NE2, NE3).  Reference sites 

were defined as sample locations that were upstream of mining or milling sources, or were part 

of completely separate, but near by, drainage to those influenced by these activities.  For the 

derivation of No-Effect 1 (NE1) values, effects on the BIC were defined as a statistical 

difference between a reference and exposure site in terms of total organism abundance or taxon 

richness (family level) which is consistent with the methods presented in the Canadian 

Environmental Effects Monitoring (EEM) guidance document (Environment Canada 2011).  No-

Effect 2 (NE2) values were defined as a statistical difference between a reference and exposure 

site in abundance, richness, or evenness (a measure of the relative abundance of each species at a 

site).  No-Effect 3 (NE3) values were calculated using the metrics listed for NE2, but included 

the Bray-Curtis similarity index as an additional effect criterion.  Each report evaluated outlined 

the specific method used to calculate each metric which were generally consistent with the 

Canadian EEM guidance document (Environment Canada 2011).  Usually a single reference site 

was used for comparisons to exposure sites within a dataset, as outlined in each report.  Only one 

study used multiple reference sites.  In this case, a statistical difference in the above metrics 

between an exposure site and any of the reference sites was interpreted as an effect.  If a 

statistical comparison was not reported for an index in the original data source, then an effect 

was defined as a > 20% difference relative to the reference site.  These definitions of an effect 

incorporate the effects criteria defined as a > 20% difference by Thompson et al. (2005) and as a 

statistically significant difference by the Canadian EEM program for metal mines (Environment 

Canada 2002).  Both reference sites and unaffected sites (exposure sites showing no difference 

from a reference site) were classified as no-effect sites. 
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Table 3.2. Water depth and sediment characteristics for the no-effect and reference sites used in the derivation of sediment quality 
values for the uranium industry in northern Saskatchewan, Canada. 

Particle Size Distribution (%) 
  Water  

Depth (m) Sand 
(>0.062 mm) 

Silt 
(0.0039 to 0.062 mm) 

Clay  
(<0.0039 mm) 

Moisture 
Content (%) 

Total Organic 
Carbon (%) 

Average 5.9 35.7 46.1 21.1 83.8 8.9 

Median 2.5 26.8 48.9 13.9 88.0 7.5 

Minimum 0.6 1.8 1.0 1.0 19.1 0.2 

Maximum 22.0 98.0 88.2 67.0 98.4 27.1 
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The exact number of datasets used in the derivation of NE and REF SQVs varied 

depending upon the effects criterion employed and the metal of interest.  All 28 reference sites 

were used in the derivation of REF values.  The NE1 dataset included 18 NE sites and 28 

reference sites, for a total of 46 data pairs.  The NE2 dataset included 16 NE sites and 28 

reference sites (44 data pairs).  The NE3 dataset had eight NE sites and 28 reference sites (36 

data pairs).  The total number of data pairs also varied for each metal because not all of the 

metals of interest were reported in every field study. 

 

3.3.3 No-effect value derivation approach 

Three sets of NE values and one set of REF values were derived for each of nine metals 

(As, Cr, Cu, Mo, Ni, Pb, Se, U, V) using the same approach, but different data sub-sets (based on 

the above NE1 to NE3 criteria).  These metals are deemed either to be of potential concern at 

uranium operations in northern Saskatchewan or are routinely monitored at those operations.  It 

is proposed that if the total concentration of a particular metal in sediment at some northern 

Saskatchewan field site is less than its NE value, adverse effects on the local BIC due to that 

metal are unlikely.  Conversely, if the total metal concentration in sediment is greater than the 

NE value, there is increased potential for adverse BIC effects and further investigation may be 

warranted.  In addition to NE values, REF values were also derived.  The REF dataset contained 

sediment data from established reference areas only.  These data represent background sediment 

metal concentrations for the region, concentrations that are considered to have no adverse effects 

on native benthic organisms.  

For each of the nine metals evaluated, the sediment metal concentrations from the 

available datasets were plotted using a log-normal probability plot with concentration (x-axis) on 

a log scale and the cumulative frequency (centiles; y-axis) on a linear scale.  A logistic 

regression (three parameter equation) was fit to the data and the 90th centile of the regression was 

used to define each NE or REF value for that particular metal.  An example of a graph used to 

derive SQVs is depicted in Figure 3.1.  The upper 90th centile of the cumulative frequency 

distribution was selected as the SQV because it makes use of all available data and incorporates 

some conservatism.  Each NE and REF value was compared to corresponding LELs derived by 

Thompson et al. (2005) and other available LEL SQVs.   
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Figure 3.1. Example of a logistic regression line fit to total metal concentrations in 
sediment in order to derive reference (REF) and no-effect (NE) sediment quality values.  
Each point on the curve represents one mean metal concentration describing either a 
reference or no-effect site. 
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Two specific data issues resulted in minor deviations from the derivation approach 

outlined above.  First, if the curve fit of the data distribution resulted in the upper plateau falling 

below the 90th centile, then an NE or REF value could not be interpolated from the logistic 

regression line.  In these cases (9 of 36 derived values), the NE value was derived based on an 

interpolation of the 90th centile from the actual dataset (rather than fit of the logistic regression 

line) using the standard percentile method.  The standard percentile method represents the largest 

integer rather than nearest integer related to rank within the dataset (SigmaPlot 11.0, NIST 

2010).  The second issue resulting in a deviation from the primary methodology were in cases 

where measured metal concentrations were below the limit of detection (LD).  In these cases, a 

sensitivity analysis was conducted for the element of interest to determine the effect of including 

values less than the LD on SQV derivation when (i) the LD was used in place of the unknown (< 

LD) value, or (ii) when the value was excluded from the dataset.  SigmaPlot 11.0 (Systat 

Software Inc. 2008) was used for the derivation of all NE and REF values.  All SQVs are 

presented in μg/g dry weight.   

 

3.3.4 Evaluation criteria 

Once the NE and REF values were generated, it was desirable to test how strongly these 

SQVs correlated with lack of in-situ effects on the BICs.  To assess predictive ability of their 

SQVs, Thompson et al. (2005) used a subsample of the data used to derive their SQGs.  

However, given that this can result in a biased assessment, this approach was not used here.  

Ideally, northern Saskatchewan data not used in the SQV derivation process would be used to 

“validate” SQVs. 

A search for additional datasets from uranium operations in northern Saskatchewan (data 

not used here in the derivation of REF and NE values) identified four reports containing 

sediment metal concentrations and benthic invertebrate indices from two different operations not 

included in the initial assessment: Millennium (an exploration site and potential future uranium 

mine site; CanNorth Environmental Services 2009) and Beaverlodge (a decommissioned, legacy 

uranium mine and mill site; CanNorth Environmental Services 2002; 2005a; 2007) operations.  

While datasets from these locations were heavily weighted with either reference or high 

exposure sites, sediment metal concentrations from Millennium and Beaverlodge reference and 

exposure sites were compared to the REF and NE values derived here in an effort to validate the 
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proposed SQVs.  Of the exposure sites from Beaverlodge, only a single no-effect site (based on 

abundance and richness criteria) was observed in the reports evaluated.   

 

3.4 Results 

3.4.1 Reference and no-effect value trends 

As a greater number of biological effects endpoints were included and the number of data 

pairs decreased, the derived NE SQVs for As, Mo, and Se generally decreased (NE1 to NE3 

values; Table 3.3).  In other words, an increase in the number of benthic invertebrate effects 

criteria used to define each NE value generally resulted in a subsequent decrease in the NE 

value.  Exceptions included uranium where NE1 and NE3 values were similar, but the NE2 value 

was 2 to 3 times higher.  The U NE values ranged from 9- to 24-fold higher than the U REF 

value.  Nickel NE values were similar to each other (between 320 and 383 μg/g), but were 

between 15- and 18-fold higher than the Ni REF value.  Chromium, Cu, Pb, and V NE values 

remained relatively constant regardless of the effects criteria employed.   

 

3.4.2 Influence of non-quantifiable measurements on derived SQVs 

No-effect and REF SQVs were occasionally dependent on the percentage of total metal 

concentrations which were below the limit of detection.  For Cr, between 2.4 and 4.0 % of the 

total data were < LD (Table 3.3), depending on the effects criteria used to define the dataset.  

The < LD data had little influence on the derived Cr NE and REF values.  Similarly, between 2.4 

and 4.5 % of the data were < LD in the Mo datasets.  Overall, the inclusion of non-detect Mo 

values (using the LD as the <LD value) in the NE datasets decreased the REF value by 1.7 %, 

the NE1 value by 3.2 %, the NE2 value by 22.7 %, and did not change the NE3 value (0% 

change).  The Mo NE2 value changed by over 22 % due to the removal of a single data point.  

For this curve fit, the 90th centile was near the very top plateau of the logistic curves which is 

sensitive to large changes in concentrations (X-axis) with small changes in centiles (Y-axis) 

which resulted in a substantial change in the derived value.  Selenium concentrations in sediment 

were generally very low with approximately half of the Se datasets consisting of non-detect 

values.  Thus, inclusion of < LD data resulted in a decrease of all Se NE and REF values.



   

 

51 

Table 3.3. No-effect (NE) and reference (REF) sediment quality values (µg/g dry wt) derived for use at uranium 
operations in northern Saskatchewan based on various benthic invertebrate community effect criteria with 
consideration of the influence of metal values that were below the method detection limit (<LD). 

NE1 NE2  NE3  REF 
 Metal No  

<LD 
With  

<LD (%)a 
No 

<LD 
With  

<LD (%)a  No 
<LD 

With  
<LD (%)a  

No  
<LD 

With  
<LD (%)a 

Cr 25.7 25.9 (2.4)  26.0 26.2 (2.5)  24.2 24.6 (3.1) 29.9 31.5 (4.0) 

Cu 11.0 - b  11.3 - b  9.7 - b 9.1 - b 

Pb 19.2 - b  19.7 - b  24.2 - b 16.3 - b 

V 31.8 - b  31.8 - b  32.8 - b 35.1 - b 

As 592 - b  522c - b  82.6c - b 20.8 - b 

Mo 1366c  1322c  (4.5)  316 245 (2.4)  34.0 34.0 (2.9) 23.0 22.6 (3.7) 

Ni 320c  - b  326c  - b  383c  - b 21.4 - b 

Se 52.0c  31.1 c  (44.4)  52.8c  29.7 (46.5)  16.6c  5.2 (51.4) 4.0 3.6 (55.6) 

U 1012c  - b  2296 - b  839 - b 96.7 - b 
NE1: No-effect 1 value; invertebrate abundance and richness used as measures of effect. 
NE2: No-effect 2 value; invertebrate abundance, richness, and evenness index used as measures of effect.  
NE3: No-effect 3 value; invertebrate abundance, richness, evenness index, and Bray-Curtis similarity index used as measures of effect.  
REF: Reference sediment value derived using total metal concentrations in sediment from reference sites only.  
LD: Limit of detection. 
a Percentage of metal concentrations that were less than the limit of detection presented in parenthesis. 
b All metal data used were above the method detection limit. 
c Value derived from the 90th centile of the dataset rather than the logistic curve because the 90th centile was above the fit line.   
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Table 3.4. Comparison of no-effect (NE) values and reference (REF) values with select 
Canadian sediment quality values (all values in µg/g dry weight).a 
  NE and REF SQVs (this study)   Other Canadian SQVs 

Metal NE1 NE2 NE3 REF  CNSC 
SLC LEL 

Canadian 
ISQG  

Ontario 
LEL 

Cr 25.9 26.2 24.6 31.5  47.6 37.3 26 

Cu 11.0 11.3 9.7 9.1  22.2 35.7 16 

Pb 19.2 19.7 24.2 16.3  36.7 35 35 

V 31.8 31.8 32.8 35.1  35.2  -   -  

As 592 522b 82.6b 20.8  9.8 5.9 6 

Mo 1322b 245 34.0 22.6  13.8  -   -  

Ni 320b 326b 383b 21.4  23.4 18 18 

Se 31.1b 29.7 5.2 3.6  1.9  -   -  

U  1012b 2296 839 96.7  104  -   -  
a When NE and REF values were derived both with and without data <LD, the value calculated using <LD is 
presented. 
b Value derived from the 90th centile of the dataset rather than the logistic curve because the 90th centile was above 
the fit line. 
NE1: No-effect 1 value; invertebrate abundance and richness used as measures of effect. 
NE2: No-effect 2 value; invertebrate abundance, richness, and evenness index used as measures of effect.  
NE3: No-effect 3 value; invertebrate abundance, richness, evenness index, and Bray-Curtis similarity index used as 
measures of effect.  
REF: Reference sediment value derived using total metal concentrations in sediment from reference sites only.  
SLC LEL: Screening level concentration approach low effect level (CNSC), Thompson et al. (2005). 
Canadian ISQG: Canadian interim sediment quality guideline, CCME (2011). 
Ontario LEL: Ontario low effect level, Persaud et al. (1993). 
Note: A CCME SQV for Ni was available in 1999 but not thereafter. Regardless, the CCME (1999) ISQG for Ni has 
been included in this table and discussion for comparison purposes. 
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3.4.3 Comparison of reference and no-effect values with other sediment quality values 

The derived NE and REF values were compared to existing Canadian guidelines (CCME) 

and to the screening values of Thompson et al. (2005) (Table 3.4).  Arsenic, Mo, Ni, Se, and U 

NE values (NE1 through NE3 values) exceeded all Canadian guidelines.  Even the REF As value 

exceeded all Canadian guidelines by at least 2-fold which suggests that the Canadian guidelines 

may not be suitable for some regions of northern Saskatchewan due to higher naturally occurring 

concentrations of As in sediments.  The NE values for Ni were also higher than all other Ni 

guideline values, whereas the REF value for Ni was similar to the SLC LEL of 23.4 μg/g.  The 

high Ni concentrations in the datasets used to derive the NE values were influenced by a single 

no-effect site that had > 1000 μg Ni/g dry wt and was sampled on two occasions (due to temporal 

sampling).  This single site was thus responsible for the elevated Ni NE values.  Derived Ni NE 

values without these two influential points did not result in substantial changes as there were less 

than a 10% difference between the NE1 and NE2 values and a 22% difference between the NE3 

values derived with and without the two elevated Ni sediment concentrations.  The SLC LEL for 

Se was exceeded by the REF and NE values by approximately 2 to 16-fold.  The REF value for 

U was similar to the SLC LEL and the NE values for U ranged from approximately 8 to 23 times 

higher than the SLC LEL (104 μg/g).  The presence of As, Mo, Ni, Se, and U at concentrations 

above other Canadian guideline values could be due to either natural or anthropogenic 

influences.  However, it should be emphasized that the sediment metal concentrations 

represented by the derived values were not associated with measurable effects on the BIC.  In 

contrast, Cr, Cu, Pb, and V values were either similar to or below all comparative Canadian 

guidelines.     

 

3.4.4 Validation of reference and no-effect values  

Mean concentrations of metals in sediment from separate reference and exposure sites 

located at or near the Millennium and Beaverlodge operations in northern Saskatchewan (Table 

3.5) were compared to REF and NE values (Table 3.3).  Millennium and Beaverlodge reference 

site values (means) were all very similar to or lower than the REF values presented here.  Only 

maximum concentrations of Cr, Cu, and V were above the derived REF values.  Therefore, the 

presented REF values appear to be representative of reference sediment metal concentrations in 

northern Saskatchewan.  The exposure site sediment metal concentrations were solely from the 
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Table 3.5. Reference and exposure site metal concentrations from the Millennium and Beaverlodge projects in 
northern Saskatchewan, Canada (μg/g dry weight).  

Reference Sites  
(n = 11)  

No-Effect 
Site 

(n = 1) 
 Effect Sites  

(n = 9) Metal 

Mean ± SD Min Max  Mean  Mean ± SD Min Max 

Cr 15.6 ± 13.8 5.1 46.4  49.6  59.7 ± 30.5 20.2 106.6 

Cu 11.4 ± 18.9 3.3 67.6  76.0  84.8 ± 50.6 12.0 158.0 

Pb 8.4 ± 3.0 2.2 13.5  5.0  404.0 ± 507.7 9.2 1264 

V 23.0 ± 14.2 6.8 50.0  42.4  323.1 ± 291.4 29.8 704.0 

As 5.1 ± 4.4 0.7 17.8  5.0  9.7 ± 9.3 3.1 32.8 

Mo 1.7 ± 3.0 0.4 10.8  15.0  40.9 ± 76.8 0.5 206.0 

Ni 9.3 ± 4.6 5.1 20.0  30.6  43.6 ± 26.6 13.8 80.2 

Sea 1.3 ± 0.3 <0.5 1.9  2.8  32.3 ± 75.8 1.8 234.0 

U 3.2 ± 5.8 0.4 19.5  2218  4925 ± 12465 113.6 38060 
a Two sites had concentrations of Se below the limit of detection of 0.5 μg/g dry wt.  These sites were not included in the calculation of the average, 
standard deviation, or median values. 
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decommissioned Beaverlodge uranium mining operations that are currently undergoing 

reclamation.  Within the exposure dataset, only one no-effect dataset was identified (Table 3.5).  

This single no-effect site was below NE3 values for As, Mo, Ni, Pb, and Se, but above NE3 

values for the remaining metals evaluated (i.e., Cr, Cu, U, and V).  At effect sites (Table 3.5), the 

mean sediment metal concentrations were higher than derived NE3 and REF values for all metals 

evaluated except for As.  Comparisons of effect-related sediment concentrations with the less 

conservative NE1 and NE2 values showed that Cr, Cu, Pb, Se, U, and V concentrations in 

sediment were above these values and As, Mo, and Ni concentrations were below the NE values.  

This suggests that generally there are expected relationships between field data at reference and 

exposure (no-effect and effect) sites and the derived NE and REF values (i.e., more exceedences 

of NE values at effect sites than at no-effect and reference sites) and that metals of potential 

concern can be identified using the derived NE values presented here.  However, validation 

would have been stronger if more exposure sites were no-effect sites. 

 

3.5 Discussion 

There is a need to improve upon current empirical approaches for deriving SQGs, such as 

the SLC approach.  Current empirical approaches utilize the abundance of available data and 

relate co-occurring effects on BICs with concentrations of contaminants in sediment.  However, 

the use of these approaches results in some contaminant concentrations in sediment being “guilty 

by association” because not all measured contaminants in sediment at an effect site are the cause 

of the observed effect.  This can result in some guidelines being lower than necessary (over-

conservative) because constituents in the sediment that are not truly causing the effect are 

included in the datasets used to derive the guidelines.  An example of this is the SLC approach, 

which can result in numerous false-positives when field contaminant concentrations are above a 

guideline value (Chapter 2; Burnett-Seidel and Liber 2011). 

Many of the assumptions underlying the SLC approach limit the derivation of defensible 

SQGs.  For instance, if a large database is used it is assumed that factors that modify toxicity do 

not have to be taken into account, total metal concentrations in sediment adequately characterize 

exposure, all metal concentrations in sediment at a site are safe to the species if the species is 

present, all metal concentrations in sediment where a species is absent are the cause of the 

absence, contaminants act independently, the presence or absence of a species is an appropriate 
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assessment of a toxic response, and the species in the database are representative of species you 

would find elsewhere. 

This study presents a new, simple approach to deriving SQGs based on no-effect field 

data related to local BIC tolerances.  The approach utilizes data associated with reference and no-

effect sites.  The biological criteria used were consistent with effects criteria used in the 

Canadian EEM program (Environment Canada 2011) and those used in the SLC approach 

presented by Thompson et al. (2005).  Because NE values are based on BIC metrics, the derived 

NE values may not always protect individual species.  However, the derived NE values should 

be protective of aquatic habitat in general.  Using data from uranium operations in northern 

Saskatchewan, Canada, as a case-study to evaluate the NE approach, three NE values, based on 

combinations of BIC metrics, and a single REF value for each metal evaluated were derived. The 

approach reduces the number of assumptions made relative to the SLC approach.  Using only 

metal concentrations in sediment from no-effect and reference sites eliminates the assumption 

that all metal concentrations in sediment are the cause of an absence of a single species or taxon.  

In addition, the proposed approach for derivation of NE values does not try to estimate a value 

related to effects (such as the SEL), because only data related to a lack of effects are used to 

derive the SQV.  In short, contaminants can no longer be guilty by association.  Derivation of 

REF values further eliminates the assumptions related to biological effects since the values are 

based solely on sediment chemistry. 

During the derivation process and the evaluation of the results, certain factors were found 

to influence the resulting NE and REF values.  Firstly, an increase in the number and general 

sensitivity of the benthic community metrics used in the datasets for each NE value was found to 

result in a decrease of the calculated NE value.  For example, NE1 value datasets were selected 

based on invertebrate abundance or richness and generally consisted of higher sediment metal 

concentrations than NE3 values that were derived using abundance, richness, evenness, and the 

Bray-Curtis index.  Secondly, some level of contamination above reference (background) levels 

was necessary for a threshold concentration to be derived.  Without elevated metal 

concentrations in sediment, the NE values derived were indistinguishable from the derived REF 

values, which was the case for the Cr, Cu, Pb, and V NE values.  Therefore, these four metals are 

not influenced by the uranium operations.  A tolerable metal concentration in sediment greater 

than background concentrations likely exist for each of these metals and could be derived if a 
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larger range of metal concentrations in sediment were available at field locations.  Lastly, a 

sensitivity analysis on the influence of below detection limit metal concentrations in sediment on 

the NE values derived revealed that excluding below detection limit data from the dataset or 

using the method detection limit as a surrogate for the non-detect value can influence the derived 

NE value depending on the percentage of non-detects in the dataset.  Generally, the higher the 

percentage of non-detects in the dataset, the greater the variation in derived NE or REF values.  

Overall, the BIC metrics used to determine biological effects, the level of contamination present 

in sediment, and the prevalence of below detection limit concentrations can influence the NE or 

REF values derived and should be considered during the threshold derivation process.   

While considering the above-mentioned factors that influence SQV derivation, the results 

presented here yield two distinct groups of metals – those that are present at no-effect sites at 

concentrations similar to background, and those that represented elevated but apparently 

tolerable concentrations in sediment based on BIC-metrics.  For instance, Cr, Cu, Pb, and V NE 

values were similar to REF values indicating that these metals were not influenced by the 

uranium operations at these exposure sites.  On the contrary, As, Mo, Ni, Se, and U NE values 

were elevated above REF values indicating that some level of contamination was present at no-

effect sites although there was no observed effect on the BIC based on the selected effect criteria 

(e.g., abundance, richness, evenness, Bray-Curtis index).  Because of these elevated metal 

concentrations in sediment, a tolerable metal concentration in sediment to BICs could be derived.  

Based on this, the threshold values for As, Mo, Ni, Se, and U are recommended for local use in 

the evaluation of sediment quality.  The NE values for Cr, Cu, Pb, and V provide no more useful 

information than if comparisons were made to reference sediment concentrations and they are 

therefore not recommended for the evaluation of acceptable metal concentrations in sediment.   

Within these two groups of NE values, variation results from the datasets used to derive 

the NE values (based on the selected BIC metrics).  Invertebrate abundance and richness are 

measures of presence and absence of certain species and are the criteria used in the derivation of 

NE1 values.  In addition to abundance and richness, NE2 values also included the evenness 

metric.  This resulted in some NE1 exposure no-effect site(s) being reclassified as effect sites, 

thereby removing some metal concentrations in sediment from each dataset (i.e., the NE2 dataset 

was smaller than the NE1 dataset for each metal).  The NE2 values were generally lower than the 

NE1 values.  The NE3 values used an additional effects criterion, the Bray-Curtis similarity 
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index, which is known to be a sensitive indicator of changes in BICs (Faith et al. 1991) and has 

elsewhere resulted in an erroneous conclusion that two unexposed lakes of similar habitat 

characteristics were different (CanNorth Environmental Services 2009).  As expected, the 

addition of the Bray-Curtis index as an indictor of effects on BICs resulted in further reduction in 

the number of values in the NE3 datasets.  This resulted in NE3 values that were generally the 

lowest derived NE values, often quite similar to REF values (background sediment metal 

concentrations).  Therefore, the derived SQVs were found to be influenced, as expected, by the 

effects criteria employed.   

To evaluate the SQVs derived in this study, comparisons were made to select low effect 

level guidelines used in Canada (Table 3.4).  The group of metals which had NE values that were 

similar to REF values (Cr, Cu, Pb, and V NE values) were all below other comparable SQVs.  

This should be expected.  Furthermore, NE levels for this group of metals do not represent effect 

thresholds for BICs.  The other group of NE values were above background concentrations (As, 

Mo, Ni, Se, and U NE values) and therefore can be used to estimate a threshold response.  These 

NE values were all above the comparable national and international guideline values.  Even the 

REF values for As, Mo, and Se were above published guidelines.  This calls to question the 

utility of the current LELs and ISQGs at northern Saskatchewan uranium operations, especially 

where reference areas naturally have elevated concentrations of some metals in sediment.  

Furthermore, it can be expected that BICs would have some level of tolerance to metals above 

background sediment concentrations, which is why the NE values of As, Mo, Se, Ni, and U are 

above REF values and other comparable guidelines values, yet still represent “safe” sediment 

metal concentrations to local BICs. 

It is important to keep in mind that the premise of the NE approach presented here is that 

a BIC (as a whole) can tolerate some level of metals in sediment, and that sublethal and food 

chain transfer effects are not fully accounted for.  Benthic invertebrate communities represent an 

indicator for aquatic habitat status for fish.  If a single invertebrate species is lost, the ecological 

function of the system is likely to not impaired.  However, if multiple species or families are 

affected, which should be detected with the chosen BIC metrics, then the effect could be due to 

metals (or some other constituent) in sediment.  The derived NE values do not fully take into 

account sublethal effects (e.g., growth, reproduction) because the criteria used in this approach 

are based on presence/absence of species.  If sublethal effects are developing at an exposure site, 
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then BIC metrics would not indicate that there is an effect until the community structure was 

significantly altered.  Furthermore, the presented NE values do not consider the effects of metals 

in sediment which biomagnify in higher trophic levels.  

While the derived NE values were not intended to be directly compared to spiked 

sediment toxicity data from the literature, comparisons are made to put the derived NE values 

into context.  Sediment toxicity tests evaluate exposure of a single element under controlled 

conditions (which may or may not be representative of field conditions) to a specific species.  

For instance, the 10-d IC25s (inhibition concentrations of 25% of the organisms tested) for 

Chironomus dilutus and Hyalella azteca exposed to As were 174 and >462 but <724 μg/g dry 

weight (Liber et al. 2011).  These IC25s are at or below the NE1 (592 μg/g) and NE2 (522 μg/g) 

values presented here, indicating that sublethal effects on these two species could potentially 

occur at the NE values, but that in-situ the NE values appear to be tolerable to the BIC.  For Mo, 

10-d IC25s for C. dilutus and H. azteca were both >3742 μg/g dry weight (Liber et al. 2011) 

indicating that some invertebrate species are able to tolerate Mo concentrations in sediment well 

above the derived NE values which ranged from 34.0 to 1322 μg/g.  A wide range of 10-d and 

28-d IC50s have been reported for Ni (40 to 1281 μg Ni/g dry weight), with H. azteca being the 

most sensitive and C. tentans (now known as C. dilutus) the most tolerant of the five species 

tested (Milani et al. 2003; Liber et al. 2011).  The Ni NE concentrations derived here ranged 

from 320 to 383 μg/g dry weight which suggests that some individual species could potentially 

be affected at these Ni concentrations based on sublethal endpoints.  A similar observation was 

made for uranium in sediment where 10- to 12-d IC/EC50 values for Chironomus riparius, T. 

tubifex, H. azteca, and C. tentans (now known as C. dilutus) range from 547 to 2695 μg/g dry 

weight (Lagauzere et al. 2009; Liber et al. 2011) and the derived NE values ranged from 839 to 

1012 μg/g dry weight.  Overall, these comparisons show that the proposed NE values, which are 

based on the assessment of entire BICs in-situ, are in reasonable agreement with available 

spiked-sediment toxicity data.   

Another way that the proposed NE and REF values were validated was through a 

comparison with metal concentrations in sediment from northern Saskatchewan sites that were 

not included in the datasets used to derive the NE and REF values.  The mean metal 

concentrations in sediment from Millennium and Beaverlodge reference sites were all below the 

REF values (Table 3.5) with the exception of Cu.  However, the median Cu concentration of 4.6 
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μg/g at these reference sites (data not shown) was below the REF value of 9.1 μg/g.  This 

suggests that the calculated REF values are representative of reference/background metal 

concentrations near uranium operations in northern Saskatchewan.  As for the NE values, the 

more conservative NE3 values were compared to data from exposure sites near the Beaverlodge 

properties.  The exposure sites consisted of only a single no-effect site, which provides limited 

confidence in comparing derived NE values to this exposure dataset.  Nonetheless, this single no-

effect site had sediment metal concentration that were below the NE3 values for As, Mo, Ni, Pb, 

and Se, but above values for the remaining metals evaluated (Cr, Cu, U, V; Table 3.5).  This 

indicates that NE3 values were likely reasonable for identifying sediment metal concentrations 

that should not cause adverse effects on BICs.  Overall, comparisons with data not included in 

the derivation of the proposed SQVs suggested that the REF and NE values represent reasonable 

SQVs for use at uranium operations in northern Saskatchewan.   

The REF and multiple NE values derived in this study can be used as initial screening 

tools to assess the condition of aquatic habitats near northern Saskatchewan uranium operations.  

Although only data related to a specific industry and region were used in this case-study to 

highlight this new derivation approach, this flexible and easy to use approach can potentially be 

used with any no-effect and/or reference dataset to derive suitable, alternate SQVs.  Specifically, 

this approach should improve risk assessment of contaminated sediments near Saskatchewan 

uranium operations (less false-positives).
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CHAPTER 4 

ASSESSMENT OF METHODS FOR THE ESTIMATION OF BIOAVAILABLE 
METALS FRACTIONS IN SEDIMENT 

 
4.1 Abstract 

Two approaches were used to assess metals bioavailability across a gradient of sediment 

metals concentrations.  The first approach involved mixing contaminated and reference 

sediments (both field-collected) in different ratios to create a gradient of metals exposure 

(“mixed-sediment experiment”).  The second approach used sediment cores collected from a 

variety of contaminated and reference sites, spanning a range of sediment metals concentrations 

(“field-core experiment”).  Midge larvae (Chironomus dilutus) were exposed to the sediments of 

both experiments and then analyzed for whole-body (“tissue”) metals accumulation.  Metal 

concentrations in tissues were then correlated with various metal fractions to determine the 

usefulness of these fractions for assessing metal bioavailability in sediment.  The sediment 

phases evaluated in each of the experiments included pore-water (isolated using both 

centrifugation and peepers) and the extracts from single chemical extractions performed on both 

wet and dry sediment subsamples.  A broader variety of extractions were evaluated in a 

preliminary experiment, with potassium phosphate and hydrochloric acid being selected for 

further evaluation in the mixed-sediment and field-core experiments.  In the mixed-sediment 

experiment, tissue-metals correlations with metals concentrations in each sediment phase were 

very strong (all correlation coefficients were greater than 0.890 and positively correlated).  This 

was likely the result of co-correlation of both sediment characteristics and metals concentrations 

due to the dilution of one contaminated sediment in a step-wise fashion.  Conversely, the 

correlation coefficients were inconsistent (range of 0.066 to 0.999) in the field-core experiment 

and the slopes were both positive and negative.  This was likely due to the variability in sediment 

characteristic and metal concentrations among the different sediments.  For the subset of metals 

evaluated (As, Mo, Ni and U), pore-water metal concentration had the best relationship with 

tissue metal concentration (both experiments).  Based on these findings, it is suggested that 

single chemical extractions (e.g., HCl and KH2PO4) would be useful in focused, single-metal 
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sediment studies, where a particular metal (e.g., Ni and U) is targeted for an investigation but 

that pore-water may be useful more broadly.  

 
4.2 Introduction 

Metals in sediment are most commonly measured and expressed as a total (or bulk) 

concentration; however, it is well accepted that total sediment metal concentrations are often 

poorly correlated with metal bioavailability.  Cause-effect relationships between metals in 

sediment and adverse effects on benthic invertebrates would be better described using a measure 

of metals (some fraction of the total concentration) that is more descriptive or predictive of metal 

bioavailability to these organisms.  The bioavailable fraction can be defined as “the degree and 

rate at which a substance (as a drug) is absorbed into a living system or is made available at the 

site of physiological activity” (Merriam-Webster 2010).  In the context of sediments, Horowitz 

(1991) describes the bioavailable fraction as “… that portion of dissolved, biologically-, or 

sediment-associated chemical constituents that are readily accessible to biota either through 

physical contact or by ingestion; this is an operationally defined term.”  Horowitz refers to 

“operationally defined” as “the quantitation of a physical or chemical constituent or property 

which is dependent on the method used for its determination.  If the method is altered the 

measurement changes also; many of the physical and chemical determinations performed on 

sediment/solid samples fall into this category.”  When discussing the bioavailability of metals in 

sediment to benthic invertebrates in an in situ setting, bioavailable metals is considered to be an 

operationally defined fraction of the total sediment metal concentration that is available for 

uptake by organisms.   

Bioavailable metal fractions can be estimated and quantified in numerous ways using 

different methods.  These methods include measuring dissolved pore-water metal concentrations 

and quantifying the extraction of metals from sediments using various chemicals.  Pore-water is 

the water found between sediment particles and is more commonly extracted by centrifuging 

sediment (Emerson et al. 1980) or by using passive-diffusion devices such as peepers (Hesslein 

1976).  The relationship between pore-water measurements and toxicity or bioaccumulation of 

contaminants in aquatic invertebrates has been previously demonstrated (Ankley et al. 1993; 

Vink 2002; Whiteman et al. 1996).  In addition to being present in pore-water, metals in 

sediment can be associated with various solid phases (organic matter, iron and manganese 



    

62 

oxides, sulfides, clay surfaces, etc.).  Chemical extractions (single chemicals or chemicals in 

combination) seek to subdivide the total metal concentrations in sediment into specific 

operationally-defined metal fractions.  This process can provide insight into trace metal origin, 

biological and physicochemical availability, mobilization, and transport in sediment (Tessier et 

al. 1979).  Examples of operationally-defined metal fractions extracted from dry sediments that 

are most likely available for uptake by benthic invertebrates include the exchangeable (Tessier et 

al. 1979), organic-associated (Carapeto and Purchase 2000), or mobile (Maiz et al. 1997) 

fractions.  These fractions can be extracted in a single step and represent metals that are weakly-

bound or adsorbed to sediment particles and are readily dissolved in aqueous solution.  They 

likely represent the metals already found in pore-water of wet sediment.  Although these 

fractions are only a portion of the total metal concentration in sediment, dissolved and weakly-

bound metal fractions in sediment are thought to represent that portion of sediment metal that is 

most available to benthic invertebrates.  Weakly-bound metals partition between the solid and 

dissolved phases and can therefore be taken up either indirectly by benthic invertebrates through 

respiration (the gill surface), particle ingestion (the gut epithelium), or directly through dermal 

contact with sediment.  Extraction procedures do not directly estimate metal exposure, but 

generate metal measures that potentially co-vary with benthic invertebrate metal uptake and 

accumulation.  For example, Ramos et al. (1999) found that the exchangeable Cu fraction in 

contaminated sediment was best correlated with the tissue concentrations of Cu in earthworms 

(Allolophora mollen) exposed to this sediment.  Although studies such as Ramos et al. (1999) 

have investigated the bioavailability of various metal fractions in sediment, this topic has not 

been broadly studied, and the data are particularly limited for freshwater sediments. 

The objective of this investigation was to evaluate different methods of estimating the 

bioavailable fraction of metals in sediment to the benthic invertebrate Chironomus dilutus 

(formerly C. tentans) (H0: Pore-water or chemical extractions are no better than total sediment 

metal concentrations at predicting sediment metal bioavailability to the model benthic 

invertebrate C. dilutus).  Given the limitations of using total metal concentrations in sediment to 

evaluate metal bioavailability and toxicity, and the previous successes linking specific metal 

fractions in sediment with metal availability, the intent of this investigation was to identify a 

simple, one-step method to better evaluate the risk that a sediment may pose to the associated 

benthic invertebrate community (BIC).  It is believed that for a relatively small amount of 
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additional effort (in addition to a complete sediment digestion), a single chemical extraction 

could provide much needed information on metal bioavailability and associated risk.  

Based on a literature review, two metal fractions (metals in pore-water and metals 

weakly-adsorbed to sediment particles) were identified as having the greatest potential for 

assessing metal availability.  These two fractions likely account for the majority of metals taken 

up by benthic invertebrates through either aqueous or dietary routes of exposure.  Larvae of the 

benthic invertebrate C. dilutus were exposed under controlled laboratory conditions to a gradient 

of metal concentrations in sediments using field sediments (reference and contaminated) 

collected near uranium operations in northern Saskatchewan.  The contaminants of interest 

included those metals and metalloids already having sediment quality guidelines (SQGs; As, Cr, 

Cu, Pb, Mo, Ni, Se, U, and V); however, emphasis was placed on those metals having sediment 

concentrations clearly elevated compared to the reference sediments.  Two approaches were used 

to achieve a gradient of metals concentrations in sediments: i) sediments cores were collected 

from known contamination gradients downstream of uranium mining and milling operations in 

northern Saskatchewan and ii) a highly contaminated sediment was mixed with a reference 

sediment in various ratios.  The relationships between whole-body metal concentrations in midge 

larvae exposed to these sediments and either pore-water metals concentrations (isolated using 

centrifugation and peepers) or metal concentrations in the chemical extractions were then 

evaluated and compared. 

 

4.3 Materials and methods 

As stated above, two approaches were used to assess metal bioavailability across 

gradients of sediment contamination.  The first approach involved mixing contaminated and 

reference sediments (both field-collected) in different ratios to create a gradient of metals 

exposure.  This is referred to hereafter as the “mixed-sediment” experiment.  The second 

approach used sediment cores collected from a variety of contaminated and reference sites 

(spanning a range of sediment metals concentrations) and is referred to hereafter as the “field-

core” experiment.  Midge larvae (C. dilutus, a common benthic invertebrate test organism) were 

exposed to the sediments from both experiments and then analyzed for whole-body metals 

accumulation (“whole-body” will be referred to as “tissue” hereafter).  Metal concentrations in 

tissues were then correlated with various metal fractions to determine the usefulness of these 
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fractions in assessing metal bioavailability in sediment.  The metal fractions evaluated in both of 

the experiments included pore-water (isolated using both centrifugation and peepers, two 

commonly used pore-water extraction methods) and the extracts from two different single 

chemical extractions.  A variety of extraction options were evaluated in a preliminary 

experiment, with potassium phosphate (KH2PO4) and hydrochloric acid (HCl) being selected for 

further evaluation in the mixed-sediment and field-core experiments (discussed further below).  

Extractions were performed on both wet and dry sediment subsamples.  It is a common practice 

to dry sediment samples prior to digestion or chemical extraction; however, drying can alter the 

speciation of metals in sediment and thus confound our understanding of metal bioavailability in 

sediments in situ.  In addition to dry sediment subsamples, wet sediment subsamples were 

therefore extracted to evaluate the effects of sediment drying on tissue-metal concentration and 

extractant-metal concentration relationships. 

 

4.3.1 Sediment collection and processing 

4.3.1.1 Field sediments (grab samples) 

Bulk sediments used in this study were collected near two uranium mining and milling 

operations in northern Saskatchewan, Canada.  Contaminated sediment was collected from 

Horseshoe Pond (HP) on September 18, 2007.  Located near the Rabbit Lake Operation, this 

pond has received treated effluent since the 1970s and is known to have elevated concentrations 

of metals in sediment.  Bulk reference sediment was collected from David Lake (DVD; August 

23, 2007) located near the Key Lake Operation.  This lake is upstream of any influence from 

mining and milling operations.  Both sediments were collected using a small Ekman grab 

sampler and were stored in sealed plastic pails at 4°C until use.  Prior to use, excess pore-water 

(resulting from sediment consolidation) was gently decanted and the sediment homogenized with 

a large plastic spoon.  The two sediments were combined in different ratios to create a gradient 

of metals exposure for the mixed-sediment experiments (described below).  Only Horseshoe 

Pond sediment was used in the extractant selection experiment (described in Section 4.3.2.3)   

 Using a plastic spoon, aliquots of wet sediment (600 g total per bottle) were added to pre-

cleaned 1-L wide-mouth HDPE bottles.  Each bottle contained a different mixture of DVD and 

HP sediment, mixed on a wet-weight basis.  The treatments included a control (DVD sediment 



    

65 

only), 25% HP (25% HP sediment + 75% DVD sediment), 50% HP (50% HP sediment + 50% 

DVD sediment), 75% HP (75% HP sediment + 25% DVD sediment), and 100% HP sediment.   

Each sediment treatment was homogenized with a clean, plastic spoon and shaken for 1 h 

at 300 oscillations per minute on a Mighty Magnum Wrist-Action® Shaker with Snap-N-Lock 

container clamps (Burrell Scientific, Inc., Pittsburgh, PA).  All treatments were then stored in the 

dark at 4°C for 27 days to allow metals to re-partition.  After 27 days, each treatment was again 

shaken for 5 minutes at 300 oscillations/minute to ensure that all sediments were well mixed.    

  

4.3.1.2 Field sediment (core samples) 

Sediment cores were collected from two uranium operations, Key Lake (August 21 to 23, 

2007) and Rabbit Lake (September 18 and 19, 2007), in northern Saskatchewan, Canada.  

Sample locations near the Key Lake operation included DVD (reference), Fox Lake (FOX), 

Unknown Lake (UNK), and Delta Lake (DTA).  Rabbit Lake sampling sites included Raven 

Lake (RAV; reference), HP, and Parks Lake at the outflow (PLO) and near a seepage point 

(PLS).  Contaminated waters from a seepage point from the above ground tailings management 

facility enter Parks Lake at the north-west end of the lake.   

Sediment samples were collected in 5-cm diameter acrylic core-tubes (Wildlife Supply 

Company, Buffalo, NY, USA) using a custom-made hand-held corer.  All sediment cores were 

sealed with plastic caps with minimal head space after retrieval.  Sediment cores were stored 

upright in the dark at 4°C until used (~15 months after sampling).  Although the sediment-core 

storage period was longer than recommended for sediments intended for contaminant analysis, 

the intent of core sampling was to collect a gradient of sediment metal concentrations and to 

assess metal bioavailability across this gradient.  Given that the speciation and bioavailability of 

the metals in the sediment cores could have changed during storage (not evaluated), results from 

the core experiments presented here may not reflect exact field conditions at the time of 

sampling; however, the purpose here was to evaluate the relationship between bioavailable 

fractions of metals in sediment and C. dilutus tissue concentrations, not to describe the change(s) 

in metal speciation or bioavailability related to the aging of sediments.   
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4.3.2 Sediment metal fractions 

4.3.2.1 Peeper pore-water 

The peeper is an in-situ dialysis device used to sample dissolved metal concentrations in 

water and sediment.  Miniature peepers (mini-peepers) modified for use in laboratory toxicity 

tests (Doig and Liber 2000) were used to sample dissolved metals immediately above and below 

the sediment-water interface.  Each of the two chambers of the mini-peeper (simply called a 

peeper hereafter) was filled with ultrapure (Barnstead® 18.2 Ω) water and covered with a semi-

permeable membrane (0.45-μm pore size, Supor® polyethersulfone filter membrane, Pall Life 

Sciences, East Hills, NY, USA).  The membrane was held in place by a thin face plate secured 

by small stainless steel screws.  After assembly, the peepers were placed in deionized water and 

bubbled with nitrogen for > 12 hours to remove any oxygen, which has the potential to alter 

metal speciation in anoxic sediment.  The peepers were than placed vertically into test sediment 

such that one chamber was above and one chamber was below the sediment-water interface.  

Solutes (i.e., metals) pass through the membrane allowing the peeper cells to equilibrate over 

time with either the pore-water or overlying water.  When peepers are removed from sediment, 

they are gently rinsed with deionized water to remove sediment particles.  Each chamber is 

sampled by puncturing the membrane with a 1-mL pipette tip and the cell contents transferred to 

a pre-cleaned 8-mL Nalgene® bottle.  A new pipette tip was used to sample each chamber in this 

study.  Each sample for metals analysis was preserved with high-purity HNO3 (to approximately 

2%).     

 

4.3.2.2 Centrifuged pore-water 

Pore-water was also isolated using centrifugation of sediment collected from both the 

mixed-sediment and field-core experiments.  The top 2.5-cm of sediment were sampled from test 

beakers using a small scoop and placed into a new glass beaker.  This sediment was then 

homogenized and a sub-sample removed and centrifuged at 3000 rpm (Eppendorf Centrifuge 

Model 5810, Mississauga, ON, Canada) at room temperature for 15 minutes to isolate the pore-

water.  Once centrifuged, pore-water (supernatant) was collected using a pipette and transferred 

to a plastic vial.  Pore-water samples for metals analysis were filtered through a 0.45-μm pore 

size syringe filter (Supor® polyethersulfone filter membrane) and preserved with high-purity 

HNO3 (to approximately 2%) in a pre-clean 8-mL Nalgene® bottle.  The pore-water sample was 
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also analyzed for dissolved organic carbon (DOC; Shimadzu Total Organic Carbon Analyser, 

Model TOC-5050A, Mandel Scientific, Guelph, ON, Canada), pH (ORION® perpHect Ross 

Sure-Flow electrode, Model 8272BN, Thermo Scientific, Beverly, MA, USA connected to a 

ORION® PerpHect LogR meter, Model 370, Thermo Scientific, Beverly, MA, USA), ammonia 

(Thermo Orion® ammonia electrode, Model 9512 BN, Thermo Scientific, Beverly, MA, USA 

connected to a VWR meter, Model SB301, VWR International, Arlington Heights, IL, USA), 

hardness, and alkalinity (both alkalinity and hardness were measured using a Hach Digital 

Titrator, Model 16900, Hach Company, Loveland, CO, USA) when the volume of pore-water 

was sufficient to conduct these analyses (sandy sediments contains less pore-water than clay or 

silt-type sediments).      

 

4.3.2.3 Chemical extractions 

Extraction selection experiment 

A preliminary experiment was conducted to evaluate which extractants to use in 

subsequent experiments.  Using bulk sediment collected from Horseshoe Pond (previously 

described), this experiment evaluated five extractants (deionized water, 1M MgCl2, 0.1M 

KH2PO4, 0.05M EDTA, 1M HCl) for their efficacy in extracting metals from wet and dry 

sediment during a single chemical extraction.  Deionized water was evaluated because it could 

theoretically be used as a surrogate for pore-water in a dry sediment extraction.  Magnesium 

chloride was used to isolate the exchangeable metal fraction (Tessier et al. 1979).  

Ethylenediaminetetraacetic acid (EDTA), a chemical known for binding metals, was used to 

evaluate the carbonate or oxidizable (organic and sulfide-bound) metal fractions in sediment 

(Filgueiras et al. 2002).  Potassium phosphate (KH2PO4) has previously shown potential for 

extracting Se species (oxy-anions; Sharmasarkar and Vance 1997), a metal of concern 

downstream of northern Saskatchewan uranium operations.  Potassium phosphate also has 

potential to extract other oxy-anions such as Mo.  Hydrochloric acid was evaluated because it is 

likely to represent a fraction of the total metal concentration in sediment that would not under-

estimate metal bioavailability and it can liberate metals from Fe and Mn oxides, organic phases, 

and sulfides (Snape et al. 2004).  Based on the overall percentage of the total metals extracted, 

two chemicals were chosen for use in subsequent bioaccumulation experiments.  For comparison 

to these chemical extractions, pore-water was isolated using peepers and sediment centrifugation 
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and analyzed for dissolved metals.  No test organisms were used in this experiment.  This static, 

renewal experiment was conducted using nine replicate 250-mL glass beakers.  Each beaker 

contained ~150 mL of contaminated field sediment (depth of ~3.5 cm) and ~200 mL of 

overlying reconstituted hard water formulated to mimic field site water quality (pH = 7, 

alkalinity = 13 mg CaCO3/L, hardness = 1310 mg CaCO3/L).  Peepers were added to three of the 

nine replicates to isolate pore-water.  All replicates had an equilibration period of 12 days in the 

test beakers with renewal of the overlying water on day six to mimic water changes in the mixed-

sediment and field-core experiments.  Overlying water temperature and dissolved oxygen were 

monitored throughout the experiment and samples for measurement of pH, conductivity, 

alkalinity, total hardness, ammonia and metals were collected on day 0 and day 12 of the 

experiment.  Both overlying-water and pore-water peeper samples, and the pore-water collected 

from centrifugation of sediment, were collected on day 12 and subsequently processed and 

analyzed for dissolved metals.  Three replicates were used for wet sediment extractions and three 

replicates were used for dried sediment extractions.  For these six replicates, the top 2.5 cm of 

sediment were isolated, homogenized, subsampled, and extracted using the procedures described 

previously.   

Comparisons of the metals concentrations in the different chemical extractants (μg metal 

per g pore-water) were made based on the change in concentration of each metal (As, Cr, Cu, Pb, 

Mo, Ni, Se, U, and V) relative to peeper pore-water concentrations (expressed as μg metal per g 

pore-water).  The measurement units were standardized on a per gram of pore-water basis so that 

chemical extracts and pore-water could be directly be compared.  In the extract of EDTA, a 

precipitate formed after acidification with nitric acid which could not be dissolved with hydrogen 

peroxide.  Thus, EDTA extracts could not be analyzed.  In general, the order of extraction 

efficiency was: water < MgCl2 < KH2PO4 < HCl.  Extractions using dried sediment yielded 

higher concentrations of metals than extractions using wet sediment.  Because KH2PO4 and HCl 

extracted a moderate (0.04 to 46%, depending on the metal) to high proportion (0.78 to 96%, 

depending on the metal), respectively, of the metals in HP sediment, these reagents were selected 

for use in subsequent laboratory sediment bioaccumulation experiments.  In addition, HCl should 

extract only a portion than the total metal concentration in sediment, but should not under-

estimate the potentially bioavailable fraction.  Potassium phosphate will most likely extract 

metals that are anions.  The intent of the extraction selection experiment was to select two 
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extractants for use in subsequent bioaccumulation experiments.  As such, the results of the 

extractant selection experiment are not presented herein. 

 

Single chemical extractions (wet and dry sediments) 

Single chemical extractions were conducted on wet and dry sediments from the mixed-

sediment and field-core bioaccumulation experiments to evaluate the effect(s) of drying sediment 

prior to chemical extraction and metals analysis.  In these experiments, a single replicate from 

each sediment treatment was subsampled for chemical extraction of both wet and dry sediment.  

The overlying water from these replicates was first sampled for water quality analysis (described 

further below) and then completely removed using a pipette or siphon.  If the depth of the 

sediments was >2.5 cm (as in the field-core experiment), the top 2.5-cm of sediment was 

removed from each beaker (using a plastic scoop), transferred to a new beaker, and homogenized 

using a plastic spoon.  In the mixed-sediment experiment, where the total sediment depth was 

~2.5 cm across treatments and replicates, the sediments were not transferred to a clean beaker 

before homogenization.  Sediment samples (from both experiments) destined for sediment 

chemical extractions were each transferred to a 30-mL wide-mouth Nalgene® bottle.  Those 

samples destined for wet sediment extraction were refrigerated at 4°C until chemical extraction 

could be completed (within 24 h).  The remaining subsamples for chemical extractions and 

sediment characterization were dried for > 48 h at 60°C.   

Two chemicals, 0.1 M potassium phosphate (KH2PO4) and 1 M hydrochloric acid (HCl), 

used individually, were used to extract metals from both wet and dried sediment.  For chemical 

extraction on dry sediment, 1 g of dried sediment was added to a clean, pre-weighed 30-mL 

Nalgene® bottle followed by 10 mL of extractant.  For chemical extraction on wet sediment, 

approximately 8 g of wet sediment (exact weight was recorded) was added to a clean, pre-

weighed 30-mL Nalgene® bottle.  The volume of extractant added to the wet sediment subsample 

was corrected for sediment moisture content such that for every 1 g dry weight of sediment, 10 

mL of extractant was added to the wet sediment.  The weights of the sediment and extractant 

added in each vial were recorded.  Using these weights, the metal concentrations in the 

extractants were corrected on a per gram of dry sediment basis. Extract metal concentrations 

from chemical extraction of dry sediment were corrected using the metal concentration of the 

extract, the weight of the extract, and the dry weight of the sediment used in the extraction.  
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Extract metal concentrations from chemical extraction of wet sediment were corrected using the 

metal concentration of the extract, the weight of the extract, the theoretical weight of the pore-

water based on the wet weight of the sediment and percent moisture content, and the dry weight 

equivalent of the wet sediment used in the extraction.  All extractions were performed on a 

Mighty Magnum Wrist-Action® Shaker for 2 h at 300 oscillations per minute and then left for 30 

minutes to allow the sediment to settle.  Chemical extracts were filtered using a 5-mL syringe 

and a 0.45-μm pore size syringe filter (VWR® polyethersulfone filter membrane).  The KH2PO4 

extracts were preserved with high-purity HNO3 (2% of sample volume) and stored at 4°C until 

analyzed using by ICP-MS.   Extracts using HCl were also stored at 4°C until analyzed directly 

(without the addition of HNO3) using ICP-MS.    

The sediment subsamples for sediment characterization were also taken from the same 

replicates used for chemical extractions.  These subsamples were dried for > 48 h at 60°C.  They 

were analyzed for total organic carbon (TOC) content using a Leco C632 organic and total 

carbon analyzer (Leco, St. Joseph, MI, USA).  In addition, they were digested using a 

microwave-assisted (MARS 5 Accelerated Microwave Reaction System, CEM Corporation, 

Matthews, NC, USA) digestion protocol (Wu et al. 1996, Wiramanaden et al. 2010) (nitric acid, 

hydrogen peroxide, and hydrofluoric acid digestion).  The resulting solution was analyzed for 

metals using an ICP-MS as described in Section 4.3.4.     

 

4.3.3 General sediment bioaccumulation experiment procedures 

The test organism used in this study was C. dilutus larvae.  Organisms were cultured in-

house at the Toxicology Centre, University of Saskatchewan (Saskatoon, SK, Canada) following 

protocols similar to those outlined in Environment Canada (1997).  Briefly, C. dilutus were 

cultured in 20-L aquaria with each tank being fed 20 mL of a 100 g/L Nutra-Fin® (Rolf Hagen, 

Montreal, QC) fish food slurry three times per week.  The culture water was carbon-filtered 

municipal water (Saskatoon, SK, Canada) which was aerated for a minimum of 24 h in a 50-L 

Nalgene® carboy before use.  For breeding, isolated C. dilutus adults were added from the main 

colony via aspiration to a 1-L glass jar with a screened lid, a small Parafilm® floating platform, 

~100 mL of culture water, and a piece of rectangular plastic mesh to provide a mating surface.  

The breeding jar was surrounded with cardboard to reduce visual disturbances.  The morning 

after the addition of adults, egg masses laid in the breeding jar were added to new 20-L tanks 
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containing aerated culture water and a 1-cm deep layer of clean silica sand (particle size of ~250 

to 425 μm).  Food was introduced 48 h after the egg masses were placed in the tanks.  These 

animals were fed three times per week with 5 ml of a 100 g/L Nutra-Fin® fish food slurry.  The 

tank water was changed after ~1 week.  Twelve days from the time the egg masses were added 

(approximately 10 days post-hatch), larvae were transferred to a glass pan containing culture 

water and were gently teased out of their cases for use in experiments.  Larvae were isolated this 

way for all bioaccumulation experiments.  Endpoints evaluated after exposure to sediments for 

10 days were survival, growth (as dry weight), and whole-body bioaccumulation of metals 

(referred to as tissue metals).   

 

4.3.3.1 Mixed-sediment bioaccumulation experiment 

The mixed-sediment experiment consisted of six treatments.  A sand control, a reference 

sediment from DVD, and four mixed-sediment exposure treatments (25, 50, 75, and 100% HP 

sediment), as described previously.  Each treatment consisted of six replicate beakers with ten C. 

dilutus larvae per beaker.   

Each replicate consisted of approximately 100 g of sand or sediment added to a 300-mL 

tall-form glass beaker with approximately 175 mL of overlying water (carbon-filtered municipal 

water, Saskatoon, SK, Canada) added to the beaker using a funnel to minimize sediment 

disturbance.  Each beaker was covered with Parafilm® to prevent evaporation and stored in the 

dark at 4°C for six days.  The beakers were then placed in a controlled environmental chamber 

(~23°C) for 24 h.  After 24 h, the overlying water was siphoned off and a peeper (described in 

Section 4.3.2.1) inserted into four of the six replicates per treatment.  Clean carbon-filtered 

municipal water was then added to each beaker with minimal re-suspension of the sediment.  All 

beakers were aerated to maintain adequate dissolved oxygen levels.  After 48 h, the water was 

changed again prior to adding the test organisms to remove metals that had leached into 

overlying water.   

Once the final pre-test change was complete, ten 8 to 10-d post-hatch C. dilutus larvae 

were added to five of the six replicates per treatment.  The remaining replicate in each treatment 

was used for initial sediment characterization (total metals, pore-water isolation via 

centrifugation, and chemical extractions).  Throughout the experiment, larvae were fed 0.1 mL of 

fish-food slurry (Nutra-Fin® 10 g/L of dechlorinated water) each day until excess food was 
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visible in the overlying water (feeding was reduced to limit ammonia build-up in the overlying 

water).  The experiments were conducted in a light (16 h light: 8 h darkness) and temperature 

controlled (~23°C) environmental chamber in the Toxicology Centre (University of 

Saskatchewan, Saskatoon, SK, Canada).  Overlying water was changed in each replicate every 

two days to reduce potential ammonia build-up (i.e., maintain good overlying water quality).  

Routine water chemistry (pH, ammonia, hardness, alkalinity, dissolved oxygen, and temperature) 

and metal concentrations in overlying water were monitored throughout the experiment in both 

old and new water when water was changed (every two days).   

At the completion of this experiment (day 10), all mini-peepers were removed and 

processed as previously described to sample pore-water.  Each of these replicates was then 

sieved to retrieve all surviving larvae.  These larvae were gut-purged for 24 h in beakers 

containing clean, carbon-filtered municipal water and a sand substrate.  Food was added (0.1 mL 

of fish-food slurry) to enhance gut clearance.  Gut purging was done to reduce the influence of 

gut contents (e.g., sediment particles) on measured whole-body metals concentrations.  After gut 

purging, larvae were dried at 60°C for > 48 h and then weighed and digested for metals analysis 

(ICP-MS; described in Section 4.3.4).  Tissues were cold digested by adding increments of nitric 

acid (5 mL, Omnitrace Ultra; EM Science) and peroxide (1.5 mL, 30%, Super Pure; EMD 

Chemicals), evaporated to near-dryness on a hot plate at no more than 75°C after reagent 

additions, and then diluted in 5 mL of 2% nitric acid for metals analysis.  To verify the tissue 

digestion method, Tort-2 lobster hepatopancreas (National Research Council) was used as a 

certified standard reference material.  The remaining replicate from each treatment was used to 

subsample the sediment for final total metals analysis, moisture content and TOC, pore-water 

isolation via centrifugation, and chemical extractions.  The centrifuged pore-water was analyzed 

for dissolved metals and routine water quality (pH, ammonia, DOC, hardness, and alkalinity).  

Some sediments had low pore-water sample volumes; for these sediments the full suite of 

analyses could not be performed.   

 

4.3.3.2 Field-core bioaccumulation experiment 

The field-core sediment experiment consisted of nine treatments.  A laboratory sand 

control was used to verify larvae survival and growth.  Sediment cores from the Key Lake and 

Rabbit Lake operations (described in Sections 4.3.1.1 and 4.3.1.2) made up the remaining 
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treatments and were described previously.  Each treatment had five replicates.  Cores were 

allowed to warm up to room temperature for about 4 h before transfer (with overlying water) into 

individual 300-mL tall-form beakers.  The cores were extruded into the tall-form beakers in a 

manner that reasonably maintained the profile of each core.  After transfer, the contents of the 

beaker were allowed to settle overnight.  The overlying water was then siphoned off and replaced 

with approximately 175 mL of carbon-filtered municipal water.  Peepers were then added to four 

replicates per treatment.  After 48 h, the overlying water was once again siphoned off and 

replaced with clean water to remove metals that had diffused into overlying water.  Ten C. 

dilutus larvae (8 to 10-d old) were then added to each replicate.  The standard experimental 

procedures detailed above (Section 4.3.3) were followed.  One replicate from each treatment was 

sampled on Day 0 of the experiment for total metals analysis, pore-water metals (by 

centrifugation) analysis, and to conduct chemical extractions.  This experiment was maintained 

for 10 days with water changes every two days (~75% water replacement).  Routine water 

chemistry (pH, ammonia, hardness, alkalinity, dissolved oxygen, and temperature) and metal 

concentrations in the overlying water were monitored throughout the experiment in both old and 

new water on water change days.   

Upon termination of the experiment, the peepers were removed and processed (as 

described previously) and larvae were isolated from three replicates per treatment.  Larvae were 

rinsed with dechlorinated water to remove sediment particles (rather than gut-purging) and dried 

at 60°C for > 48 h.  Tissues were cold digested as previously described.  The dried larvae were 

weighed, digested and analyzed to determine tissue metals concentrations.  The remaining 

replicate was sampled to analyze sediment subsamples for total metals, percent moisture, TOC, 

isolate pore-water by centrifugation, and perform chemical extractions.  Dissolved metals and 

routine water quality analyses (pH, ammonia, dissolved organic carbon, hardness, and alkalinity) 

were performed on the centrifuged pore-water.  Some sediments had low pore-water sample 

volumes; for these sediments the full suite of analyses could not be performed.  

 

4.3.4 Metals analysis 

Metals of interest in this study were As, Cr, Cu, Mo, Ni, Pb, Se, U, and V.  These metals 

were selected because there are SQGs available for these metals for uranium mines and mills in 

Canada, as per Thompson et al. (2005).   
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All metals analyses were conducted on an inductively coupled plasma mass spectrometer 

(ICP-MS; Thermo Fisher Scientific X-Series, Waltham, MA, USA) housed in the Toxicology 

Centre at the University of Saskatchewan, Canada.  Blanks, standard reference material (SRM) 

for sediment (PACS-2 [National Research Council Canada]) and water (1640 [National Institute 

of Standards and Technology] and SLRS-4 [National Research Council Canada]), duplicates, 

and calibration standard samples were analyzed alongside test samples to verify the accuracy of 

all metals analyses.  For the extractant samples, standards were made in each extractant to 

account for matrix interferences.  In general, if the majority of metals of interest were within 

±20% of the quality assurance samples (e.g., SRM, duplicates, standards), then all data for all the 

metals were presented and used in the data analysis.  Some metals (some As, U, and V 

concentrations in the HCl extractions) were consistently more than 20% higher than the SRM.  

Despite this, these data were presented and used to investigate general trends in sediment 

exposure-C. dilutus metal accumulation relationships.  The instrument detection limits for each 

sample run are provided rather than method detection limits.  

  

4.3.5 Statistics and data analysis 

All treatment data were tested for normality (Kolmogorov-Smirnov Test) and equal 

variance (Levene Median test) prior to statistical analysis, such as Analysis of Variance 

(ANOVA) or a t-test (Systat Software Inc., 2008).  If these assumptions were not met, then the 

data were log-transformed.  If statistical assumptions were not met following transformation, 

then a non-parametric statistical test was used (e.g., Mann-Whitney Rank Sum Test).  Post-hoc 

tests, such as Tukey or Dunnett’s, were conducted if a statistical difference among treatments 

was found.  Percent survival data were arcsin square-root transformed prior to statistical analysis.     

Correlations between metal concentrations in tissue and each of the sediment phases were 

only evaluated for a subset of metals that were present in sediment above background 

concentrations and yielded a sufficient gradient (As, Ni, Mo, U).  Each dataset was tested for 

normality (Kolmogorov-Smirnov Test or Shapiro-Wilk Test) prior to conducting correlation 

analysis on non-transformed data.  Correlations were determined using the Pearson Product 

Moment Correlation to evaluate potential relationships between metal concentrations in 

chironomids and measured metal concentrations in whole-sediment, pore-water, and chemical 

extractions.  Of all the data evaluated, there were only three sets of data from the field-core 
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experiment that did not meet normality: molybdenum concentrations in HCl extracts, nickel 

concentrations in centrifuged pore-water samples, and uranium concentrations in KH2PO4 

extracts.  To keep the method of statistical analysis consistent among the metals and sediment 

phases evaluated, the Pearson Product Moment Correlation was still used to analyze these non-

normal sets of data.   

For data that were not quantifiable, half the method detection limit was used for all 

statistical analyses.  An alpha value of 0.05 was used in all statistical comparisons.  All statistical 

analyses were completed using SigmaPlot Version 11.0 (Systat Software Inc., 2008).   

 

4.4 Results 

4.4.1 Mixed-sediment experiment 

With few exceptions, overlying water quality in the mixed-sediment experiment was 

relatively consistent during the 10-day exposure period and similar across all control and 

exposure treatments.  The mean ranges across treatments were: DO concentration of 7.1 to 7.3 

mg/L, pH of 8.0 to 8.3, alkalinity of 85 to 119 mg CaCO3/L, total hardness of 139 to 181 mg 

CaCO3/L, and DOC of 5.2 to 9.3 mg/L.  Substantial differences were noted for ammonia 

concentrations in new (0.43 to 0.84 mg N/L) and old (2.19 to 3.37 mg N/L) water samples 

collected during water changes.  Metal concentrations in overlying water were generally higher 

on Day 10 than Day 0 in all treatments, which was attributed to leaching of metals from 

sediment.   

Sediment physical characteristics and total metal concentrations from the mixed-sediment 

experiment are listed in Table 4.1.  Generally, whole-sediment metal concentrations were fairly 

constant between Day 0 and Day 10 samples (i.e., low standard deviation) with As, Mo, and U 

concentrations being somewhat more variable.  Thus, metal concentrations were calculated as an 

average of Day 0 and Day 10 measurements.  Sediment metal concentrations and TOC content 

increased with an increased percentage of contaminated HP sediment.  Arsenic, Mo, Ni, and U 

were significantly elevated in HP sediment and as a result, produced only a good range of metals 

concentrations for these elements among the mixed-sediments.  Chromium, Cu, and V were only 

slightly elevated in HP sediment and as such produced a small metals gradient.  Lead and Se 

concentrations in HP sediment were low and did not result in a measurable gradient in the 

mixed-sediment experiment. 
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Table 4.1. Mean whole-sediment metal concentrations and physical sediment characteristics (± standard deviation) from the mixed-
sediment experiment (n = 2; Day 0 and Day 10).  

Control  Reference 
Sediment  Mixed-sediment Treatments Variable 

Sand   100 % DVD  25% HP 50% HP  75% HP  100% HP 
As 0.03 ± 0.02  1.03 ± 0.22 3.82 ± 0.46 9.30 ± 3.45 24.60 ± 1.72a 31.76 ± 5.09a 
Cr 0.24 ± 0.33  2.89 ± 0.64 2.76 ± 0.57 4.93 ± 1.74 12.49 ± 0.65 13.71 ± 3.57 
Cu 0.64 ± 0.22  1.00 ± 0.15 2.24 ± 0.46 4.52 ± 0.58  13.08 ± 1.16  15.30 ± 1.79 
Mo 0.02 ± 0.02  0.23 ± 0.20 86.30 ± 2.09a 240.29 ± 138.86a  681.51 ± 13.11a  877.62 ± 177.49a 

Ni 0.74 ± 0.08  0.60 ± 0.11 3.17 ± 0.25 9.07 ± 4.83  21.53 ± 0.95  27.55 ± 3.86a 
Pb 0.45 ± 0.04  1.98 ± 0.35 2.09 ± 0.02 2.68 ± 0.31  3.79 ± 0.12  3.89 ± 0.86 
Se <0.001  <0.001 <0.001 1.00 ± 0.83  4.29 ± 0.25a  5.83 ± 0.95a 
U 0.20 ± 0.03  0.48 ± 0.10 58.89 ± 3.95 150.32 ± 72.46a  449.38 ± 17.61a  577.22 ± 94.32a 
V 0.36 ± 0.05   1.78 ± 0.58  2.86 ± 0.20 5.05 ± 1.67  11.05 ± 0.47  12.62 ± 2.28 

Moisture  19.05 ± 1.59  48.70 ± 2.02 57.49 ± 2.1 62.45 ± 4.69 79.07 ± 0.99 82.15 ± 0.26 
TOC 0.03 ± 0.01   2.28 ± 0.08  3.24 ± 0.28 4.05 ± 0.3  8.81 ± 0.64  11.7 ± 0.49 

All metal concentrations in μg/g dry weight. 
Moisture and TOC in %. 
TOC = Total organic carbon. 
a Exceeds lowest effect level (LEL) sediment quality guidelines listed in the Appendix (CCME 2011). 
Mixed-sediment treatments presented as percentage (mixed on a wet weight basis) of contaminated Horseshoe Pond (HP) sediment added to the reference 

sediment from David Lake (DVD). 
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Table 4.2. Mean centrifuged pore-water variables (± standard deviation; n = 2) from the mixed-sediment experiment. 
Reference 
Sediment   Mixed-sediment Treatments Water Quality Variable 

100 % DVD  25% HP  50% HP   75% HP   100% HP 
Ammonia (mg N/L) Day 0a NA   3.21  3.69   3.17   3.59 
Ammonia (mg N/L) Day 10a 4.68  2.99  3.09  4.57  3.40 
pH 6.5 ± 0.8  6.8 ± 0.9  6.9 ± 0.8  7.1 ± 0.7  7.0 ± 0.6 
Hardness (mg CaCO3/L) 40a  124 ± 45  204 ± 147  292 ± 209  363 ± 258 
Alkalinity (mg CaCO3/L) NA  75a  66 ± 13  72 ± 3  96 ± 9 
DOC (mg/L) 9.3 ± 3.7   12.6 ± 3.7  19.3 ± 2.3   25.3 ± 3.7   26.3 ± 3.4 
DOC = Dissolved organic carbon.             
NA = Not measured because sample volume was too small.           
a  n = 1 for each treatment.             
Sand control pore-water sample volume was too low for these analyses. 
Mixed-sediment treatments presented as percentage (mixed on a wet weight basis) of contaminated Horseshoe Pond (HP) sediment added to the reference 

sediment from David Lake (DVD). 
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Table 4.3. Mean centrifuged (n = 2) and peeper pore-water (n = 3) metal concentrations (± standard deviation; μg/L) from the mixed-
sediment experiment. 

Control Reference Sediment  Mixed-sediment Treatments 
Sand 100% DVD  25% HP Metal 

CPW1  Peeper CPW Peeper CPW Peeper 
As 2.80  <1.2 2.02 ± 0.75 <1.2  20.22 ± 4.28a  3.39 ± 0.32 
Cr 4.56  4.34 ± 0.48 2.89 ± 0.27 6.05 ± 4.69  3.90 ± 1.47  3.33 ± 0.81 
Cu 14.10a  9.06 ± 3.91a 0.80 ± 0.13 2.75 ± 0.30a  1.01 ± 0.02  2.38 ± 0.43a 

Mo 2.53  3.03 ± 0.04 <1.9 <2.4  430.94 ± 608.10a  568.30 ± 45.90a 

Ni 4.36  4.54 ± 2.42 <3.4 <3.9  5.09 ± 1.92  <3.9 
Pb 0.09  0.44 ± 0.07 <0.002 0.34 ± 0.00  0.01 ± 0.01  0.33 ± 0.05 
Se <0.76  <1.5b <0.76 <1.5b  <0.76  <1.5b 

U 1.74  1.23 ± 0.13 0.09 ± 0.01 <0.006  14.87 ± 6.44  22.88 ± 1.27a 

V 2.39  1.61 ± 0.27 0.93 ± 0.04 1.01 ± 0.01  1.02 ± 0.06  1.06 ± 0.05 
Mixed-sediment Treatments 

50% HP 75% HP 100% HP Metal 
 CPW    Peeper  CPW  Peeper  CPW  Peeper 

As 30.18 ± 16.28a   14.06 ± 5.79a  41.59 ± 17.84a  25.97 ± 4.81a  45.83 ± 15.16a 31.42 ± 14.28a 

Cr 4.18 ± 1.18  4.84 ± 2.78 4.88 ± 1.39 4.61 ± 1.72 10.50 ± 7.06a 4.55 ± 0.79 
Cu 1.07 ± 0.14  1.75 ± 0.33 1.39 ± 0.72 1.70 ± 0.32 2.17 ± 1.69a 2.33 ± 0.90a 

Mo 2550 ± 1373a  1312.7 ± 293.64a 5196 ± 2804a 2192.2 ± 378.59a 7203 ± 4217a 3115.0 ± 325.3a 

Ni 7.17 ± 2.81  4.41 ± 2.48 10.16 ± 1.74 5.65 ± 0.28 11.55 ± 1.89 8.67 ± 1.27 
Pb <0.002  0.39 ± 0.05 0.05 ± 0.07 0.35 ± 0.03 <0.003 1.10 ± 1.22a 

Se 0.86 ± 0.02  <1.5b 1.37 ± 0.13a <1.5b 1.56 ± 0.08a <1.5b 

U 111.37 ± 97.93a  131.32 ± 59.35a 598.85 ± 549.97a 148.31 ± 16.71a 1926 ± 2118a 359.22 ± 47.58a 

V 1.54 ± 0.46   1.76 ± 0.42  1.95 ± 0.49  1.63 ± 0.04  2.55 ± 0.83  1.92 ± 0.53 
a Exceeds water quality guidelines outlined in the Appendix. 
b The method detection limit exceeds the water quality guidelines outlined in the Appendix (CCME 2011). 
CPW = centrifuged pore-water. 
1 n = 1. 

Mixed-sediment treatments presented as percentage (mixed on a wet weight basis) of contaminated Horseshoe Pond (HP) sediment added to the reference sediment from David 
Lake (DVD). 
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Due to the limited peeper sample volume, general pore-water chemistry (Table 4.2) was 

characterized only for the centrifuged pore-water samples.  In addition, pore-water chemistry 

(Table 4.3) could not be measured in the sand treatment due to the limited pore-water volume 

isolated during centrifugation (only 19% moisture in sediment).  Pore-water As, Mo, Ni, and U 

concentrations (peepers and centrifuged) were elevated and, similar to the whole-sediment 

concentrations of these metals, they were present in a gradient among the mixed-sediment 

treatments.    

Metal concentrations in the KH2PO4 and HCl extracts are presented on a sediment dry-

weight basis (Table 4.4 and Table 4.5).  In the KH2PO4 extracts, Cr, Cu, and Pb were below the 

method detection limit in the majority of sediments.  Metals that had a broad range in 

concentration in the mixed-sediment KH2PO4 extracts included As and Mo.  Although Ni, Se, 

and U were similarly present in a gradient of concentrations in the KH2PO4 extracts, the range in 

the concentrations of these elements was narrower.  Arsenic, Mo, Ni, and U displayed a good 

gradient of concentrations in the HCl extracts.  For both KH2PO4 and HCl extractions, dry 

sediment yielded higher concentrations of metals than wet sediment, although the difference was 

sometimes marginal.  For example, among all sediments, As, Cu, and Mo concentrations in HCl 

extractions and Mo, Ni, Se, U, and V concentrations in KH2PO4 extractions performed on dry 

sediment were higher than those performed on wet sediment.  Of the four metals that displayed a 

good gradient of concentrations in the HCl extracts, Ni and U were found at much higher 

concentrations in HCl extracts compared to the KH2PO4 extracts.  There was no discernable 

difference in As and Mo concentrations between the HCl and KH2PO4 extracts (the data were 

quite variable).  Likely due to potential polyatomic interferences with the ClO ion, V was not 

quantifiable in the HCl extracts using ICP-MS. Matrix spike samples (spiked extracts) were used 

for quality assurance.   

There was no statistical difference in survival (P = 0.500; one-way ANOVA on Ranks) or 

growth (P = 0.642; one-way ANOVA) among the mixed-sediment treatments and either the sand 

or field sediment controls.  The tissue-metal concentrations in C. dilutus larvae exposed to the 

mixed-sediment treatments are summarized in Table 4.6.  Of the metals evaluated, only V and Cr 

tissue concentrations did not vary statistically among treatments (P = 0.543 for V; P = 0.162 for 

Cr).  Tissue metal concentrations generally increased with increasing whole-sediment, overlying  
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Table 4.4. Metal concentrations in potassium phosphate (KH2PO4) extractions preformed on wet 
and dry sediment from the mixed-sediment experiment (μg metal/g dry sediment; n = 1). 

Control Mixed-sediment 
Experimenta 

Sand DVD Sediment 25% HP Metal 

Wet   Dry  Wet  Dry  Wet   Dry 
As <0.004  <0.004  0.050  0.050  1.77  1.54 
Cr <0.004  <0.004  <0.004  <0.004  <0.004  <0.004 
Cu <0.003  0.011  <0.003  <0.003  <0.003  <0.003 

Mob <0.013  <0.013  0.115  0.209  2.31  4.11 
Ni 0.004  0.006  <0.001  <0.001  0.029  0.069 
Pb <0.0002  <0.0002  <0.0002  <0.0002  <0.0002  <0.0002 
Se <0.001  0.001  <0.001  0.006  0.021  0.044 
Ub <0.001  <0.001  <0.001  <0.001  0.597  1.77 
V 0.004  0.006  0.006  0.010  0.010  0.018 

Mixed-sediment Experimenta 

50% HP 75% HP  100% HP Metal 
Wet   Dry  Wet  Dry  Wet   Dry 

As 2.82   2.43  8.14  8.34  13.8  12.5 
Cr <0.004  <0.004  <0.004  <0.004  <0.004  <0.004 
Cu <0.003  <0.003  <0.003  0.059  <0.003  0.097 

Mob 4.91  8.03  23.5  28.4  45.8  46.1 
Ni 0.042  0.116  0.118  0.300  0.186  0.402 
Pb <0.0002  <0.0002  <0.0002  <0.0002  <0.0002  <0.0002 
Se 0.027  0.062  0.060  0.124  0.086  0.159 
Ub 0.720  2.41  1.31  3.99  1.84  4.49 
V 0.011   0.021  0.022  0.042  0.031   0.054 

a Mixed-sediment treatments presented as a percentage (mixed on a wet weight basis) of contaminated Horseshoe 
Pond  (HP) sediment added to the reference sediment from David Lake (DVD). 

b Some matrix spike quality assurance samples did not meet general acceptability criteria (within ± 20% of nominal 
value). 
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Table 4.5. Metal concentrations in hydrochloric acid (HCl) extractions preformed on wet and dry 
sediment from the mixed-sediment experiment (μg metal/g dry sediment; n = 1). 

Control Mixed-sediment 
Experimenta 

Sand Sediment (DVD)  25 % HP Metal 

Wet   Dry  Wet  Dry  Wet   Dry 
Asc 0.299  0.449 1.42  1.48 6.76  7.34 
Cr <0.024  <0.024 <0.024  <0.024 <0.024  <0.024 
Cu 0.078  0.083 0.245  0.266 0.364  0.990 

Moc 0.002  <0.001 0.006  0.010 10.9  30.0 
Ni 0.025  0.030 0.120  0.113 2.16  2.09 
Pb 0.141  0.139 1.22  1.00 1.50  1.17 
Se <0.0013  <0.0013 <0.0013  <0.0013 <0.0013  <0.0013 
Uc 0.060  0.062 0.191  0.169 213  172 
V NQ  NQ NQ  NQ NQ  NQ 

Mixed-sediment Experimenta 

50% HP 75% HPb  100 % HP Metal 
Wet   Dry  Wet  Dry  Wet   Dry 

Asc 6.34  11.2 2.25  26.8 1.58  37.3 
Cr <0.024  <0.024 0.539  0.684 0.946  1.09 
Cu 0.200  1.42 <0.0013  3.93 <0.0013  5.55 

Moc 11.2  46.8 10.4  121 5.79  164 
Ni 2.27  3.15 6.39  11.1 11.9  15.1 
Pb 1.04  1.14 1.58  2.27 1.23  2.09 
Se <0.0013  <0.0013 <0.0013  0.048 <0.0013  0.062 
Uc 232  286 419  972 804  1710 
V NQ  NQ NQ  NQ NQ  NQ 

NQ = not quantifiable due to matrix interference. 
a Mixed-sediment treatments presented as percentage (mixed on a wet weight basis) of contaminated Horseshoe 

Pond  (HP) sediment added to the reference sediment from David Lake (DVD). 
b Reanalyzed run due to instrumental problems during initial analysis. 
c Some matrix spike quality assurance samples did not meet general acceptability criteria (within ± 20% of nominal 

value). 
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Table 4.6. Mean metal concentrations (± standard deviation; μg/g dry wt) in Chironomus dilutus 
larvae on initiation of the experiment (Day 0) and after 10 days of exposure to control, reference, 
and mixed-sediment treatments (n = 3) and 24 h of gut-purging. 

Mixed-sediment Treatments Metal 25% HP   50% HP  75% HP   100% HP 
As 2.24 ± 0.71b  3.28 ± 1.18b  4.16 ± 0.74b  4.95 ± 0.17b 

Cr 0.85 ± 0.20  0.74 ± 0.30 0.87 ± 0.12  1.50 ± 0.82 
Cu 13.92 ± 3.11  8.83 ± 3.49c  8.94 ± 2.49c  9.23 ± 2.18c 
Mo 50.42 ± 11.62b  73.52 ± 39.21b  92.88 ± 14.50b  114.10 ± 2.57b 
Ni 1.65 ± 0.50c  2.24 ± 1.18b  2.35 ± 0.34b  3.10 ± 0.36b 

Pb 0.87 ± 0.22  0.68 ± 0.33  0.68 ± 0.03  0.67 ± 0.17 
Se 3.86 ± 0.38  4.62 ± 1.82  6.02 ± 0.57  7.00 ± 0.47b 

U 37.22 ± 4.11b   40.20 ± 20.18b  46.04 ± 10.01b  51.52 ± 7.54b 

V 0.74 ± 0.22  0.62 ± 0.31 0.71 ± 0.03  0.72 ± 0.05 
 Control Reference Sediment         Metal Day 0   Sanda  100% DVD     

As <0.001  0.58 ± 0.17 0.30 ± 0.04     
Cr 3.52 ± 4.88  1.54 ± 0.62 0.70 ± 0.62     
Cu 26.62 ± 6.09  56.22 ± 4.82 22.32 ± 0.24     
Mo 0.05 ± 0.09  0.25 ± 0.03 0.25 ± 0.05     
Ni 0.72 ± 1.24  0.91 ± 0.29c 0.62 ± 0.07     
Pb 1.47 ± 0.60  3.22 ± 1.20c 0.60 ± 0.16     
Se 0.93 ± 0.06  0.71 ± 0.05 0.64 ± 0.05     
U 0.23 ± 0.14   1.13 ± 0.31  0.84 ± 0.12        
V 0.19 ± 0.08  0.67 ± 0.28  0.44 ± 0.05     

a n = 5. 
b Statistically significant different (P < 0.05) from both of the controls. 
c Statistically significant different (P < 0.05) from the sediment control. 
Mixed-sediment treatments presented as percentage (mixed on a wet weight basis) of contaminated Horseshoe Pond 

(HP) 
sediment added to the reference sediment from David Lake (DVD). 
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water, and pore-water metal concentrations, with the exception of Cu and Pb.  Tissue metal 

concentrations ranged the most for As, Mo, Ni, Se, and U (at least a factor of 10). 

Tissue metal concentrations were correlated (Pearson Product Moment correlations) with 

whole-sediment metal concentrations (μg/g dry weight), pore-water concentrations (mg/L) and 

metal concentrations in the KH2PO4 and HCl extracts on a sediment dry weight basis (μg/g dry 

weight) (Table 4.7).  Correlations are presented for only those metals that were elevated above 

background metal concentrations and that had a good gradient of concentrations in both the 

different sediment phases and the chironomid tissues.  As such, the metals evaluated included 

As, Mo, Ni, and U and the correlations were based on the 25% HP, 50% HP, 75% HP, and 100% 

HP treatment data.  Despite there sometimes being a good gradient in the tissue-Se 

concentrations among sediments, Se was excluded from the evaluation since it is known that 

dietary exposure via ingestion of biofilm and detritus is the primary mode of accumulation in 

benthic macroinvertebrates, not exposure to pore-water and whole-sediment (Wiramanaden et al. 

2010).  In order to determine which relationship best describes the bioavailability of As, Mo, Ni 

and U in sediment to C. dilutus, the two highest R-values for each metal were identified (Table 

4.7).   

The majority of correlations for the metals evaluated were statistically significant 

relationships (R > 0.890; P < 0.05).  Peeper and centrifuged pore-water metal concentrations had 

the strongest correlations with tissue-metal concentrations for As, Mo, and Ni.  As for U, the 

strongest correlations were with whole-sediment and the extract from the KH2PO4 extraction 

performed on wet sediment.  The strong relationship among all of the sediment phases and 

tissue-metal concentrations was likely due to the mixed-sediment being created by diluting a 

single contaminated sediment.  As a result, all phases were somewhat co-correlated with one 

another, including the fraction most likely responsible for most of the metal availability (e.g., 

pore-water dissolved metal concentration).   

     

4.4.2 Field-core sediment experiment 

Overlying water chemistry was relatively constant for the duration of the exposure within 

treatments of the field-core sediment experiment.  Overlying water alkalinity, hardness, and 

DOC concentration varied among treatments (alkalinity = 49 to 112 mg CaCO3/L; total hardness 
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Table 4.7. Relationships (Pearson Product Moment correlation) between select 
metal concentrations in Chironomus dilutus and different sediment phases from the 
exposure sediments (25%, 50%, 75%, and 100% Horseshoe Pond sediment) in the 
mixed-sediment experiment (n = 4). 

R Values 
Sediment Phase 

As Mo Ni U 
Sediment (dw) 0.978 0.976 0.920a 0.988 

Centrifuged PW 0.991 0.997 0.926a 0.946 

Peeper PW 0.994 0.997 0.994 0.940a 

HCl-D (dw) 0.966 0.968 0.890a 0.974 

HCl-W (dw) NQ  NQ  0.915a 0.958 

KP-D (dw) 0.954 0.963 0.909a 0.980 

KP-W (dw) 0.949 0.948 0.923a 0.994 
Shaded boxes highlight the two strongest relationships for each metal evaluated.  Only metals that 

were substantially elevated in Horseshoe Pond sediment were evaluated. 
PW = pore-water.     
dw = dry weight.     
HCl-D = Hydrochloric acid extraction on dry sediment. 
HCl-W = Hydrochloric acid extraction on wet sediment. 
KP-D = Potassium phosphate extraction on dry sediment. 
KP-W = Potassium phosphate extraction on wet sediment. 
NQ = No quantifiable relationship due to unexplainable analytical results. 
a Not statistically significant; P > 0.05. 
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= 86 to 225 mg CaCO3/L; DOC = 5.0 to 12.3 mg/L).  Ammonia concentrations differed between 

water changes with ammonia concentrations in new water ranging from 0.31 to 0.81 mg N/L and 

old water ranging from 1.57 to 3.90 mg N/L.  In general, metal concentrations in overlying water 

increased slightly from Day 0 to Day 10 with the greatest changes noted for As, Cr, Mo, and Ni. 

The field-cores evaluated had a range of whole-sediment metal concentrations and 

different TOC concentrations (Table 4.8).  Metal concentrations varied depending on the metal, 

sediment type, and proximity of the sampling site to the effluent discharge point (e.g., Fox Lake 

was nearest to the treated effluent discharge point; Delta Lake was the furthest site downstream).  

Metal concentrations in whole-sediment from Parks Lake (both sampling areas) were not 

substantially different from the reference sediment.  A good gradient of whole-sediment metal 

concentrations existed among Delta Lake, Unknown Lake, Fox Lake, and Horseshoe Pond 

sediments.  Metals elevated above background concentrations in these four sediments were As, 

Ni, Mo, and U.  A comparison between field sediment cores processed soon after sampling 

(referred to in the Appendix) and the field sediment cores used in the bioaccumulation 

experiment described here indicated that despite the length of time the cores were stored (~15 

months), whole-sediment metal concentrations in the cores did not change substantially.   

Centrifuged pore-water total hardness, alkalinity, pH, and DOC (Table 4.9) varied among 

sediment field-cores from the various lakes.  Similar to the overlying water results, pore-water 

ammonia concentrations were higher on Day 10 than Day 0.  Generally, pore-water collected 

using centrifugation yielded similar dissolved metal concentrations between Day 0 and Day 10 

(Table 4.10) with the exception of Mo, which increased in concentration over the course of the 

experiment.  Metal concentrations in pore-water from peepers (Table 4.11) were slightly lower 

than those concentrations in pore-water isolated via sediment centrifugation for most metals.  

The metals that were elevated above background in pore-water were As, Mo, Ni, and U.  

Overall, pore-water metal concentrations remained relatively stable throughout the experiment, 

the two methods of pore-water isolation were generally comparable, and As, Mo, Ni, and U 

appear to be the metals of greatest concern in the pore-water of the sediments evaluated.  

Metal concentrations in the KH2PO4 and HCl extracts from the field-core sediments are 

presented on a sediment dry weight basis in Table 4.12 and Table 4.13.  In the KH2PO4 extracts, 

As, Mo, Ni, Se, and U were the metals having the largest range in concentrations among the 
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Table 4.8. Mean whole-sediment metal concentrations and physical sediment characteristics (± standard 
deviation) from the field-core experiment (n = 2; Day 0 and Day 10).  

Control  Key Lake Field-Cores Variable Sand  David Lake  Delta Lake   Unknown Lake  Fox Lake 
As 0.63 ± 0.02 1.41 ± 0.07 10.77 ± 6.51a  197.19 ± 46.38a 31.81 ± 4.12a 

Cr 0.33 ± 0.36 2.41 ± 0.21 5.58 ± 1.62  18.52 ± 0.48 4.62 ± 0.01 
Cu 3.15 ± 4.42 1.39 ± 0.25 2.56 ± 0.31  5.67 ± 2.29 1.54 ± 0.21 
Mo <0.001 0.05 ± 0.01 453.2 ± 265.79a  597.19 ± 115.78a 153.09 ± 34.81a

Ni <0.003 0.90 ± 0.13 12.85 ± 8.98  41.83 ± 13.87 3.82 ± 0.45 
Pb 3.05 ± 0.39 2.13 ± 0.48 4.99 ± 0.93  7.25 ± 0.83 4.01 ± 0.24 
Se <0.005 <0.005 3.52 ± 2.77a  19.56 ± 6.96a 3.18 ± 0.50a 

U 18.64 ± 3.41 <0.008 19.61 ± 4.96  26.85 ± 3.06 16.50 ± 1.58 
V 0.36 ± 0.01  2.72 ± 0.07  6.84 ± 2.96   18.50 ± 1.75  7.78 ± 3.69 

Moistureb 21.0 ± 1.4  68.8 ± 1.7  75.6 ± 12.4   91.9 ± 1.5  52.3 ± 14.2 
TOC 0.03 ± 0.01  3.1 ± 0.7  3.7 ± 2.3   19.9 ± 0.4  0.9 ± 0.5 

Rabbit Lake Field-Cores  Variable Raven Lake  Park Lake Outflow  Park Lake Seepage   Horseshoe Pond  
As 2.60 ± 0.67  2.80 ± 0.05  2.54 ± 0.04   81.66 ± 31.46a      
Cr 12.27 ± 1.13 17.19 ± 0.22 17.11 ± 2.31  19.78 ± 0.20  
Cu 6.52 ± 4.10 8.92 ± 0.01 3.82 ± 0.22  31.71 ± 7.81a  
Mo 1.32 ± 0.95 0.91 ± 0.11 1.00 ± 0.10  1857.73 ± 518.25a  
Ni 6.34 ± 0.05 14.74 ± 1.04 8.04 ± 0.41  57.26 ± 6.37a  
Pb 8.99 ± 0.08 13.55 ± 0.53 14.36 ± 0.20  5.46 ± 0.33  
Se <0.005 <0.005 <0.005  18.05 ± 6.07a  
U 69.90 ± 30.20 21.00 ± 1.42 20.61 ± 0.36  1335.25 ± 412.52a  
V 31.00 ± 10.49  19.37 ± 0.27  19.34 ± 0.08   16.87 ± 0.80      

Moistureb 78.1 ± 10.1  71.8 ± 3.0  60.7 ± 6.6   89.6 ± 2.5  
TOC 3.7 ± 2.0  4.2 ± 0.3  1.1 ± 0.02   13.1 ± 1.0  

TOC = Total organic carbon. 
All metal concentrations in μg/g dry weight. 
Moisture and TOC in %. 
a Exceeds Screening-Level Concentration approach sediment quality guidelines (Thompson et al. 2005; Appendix). 
b n = 3. 

 



 

 

87 

 
Table 4.9. Mean centrifuged pore-water quality variables (± standard deviation; n = 2) from the field-core 
experiment.  Sediment field-cores collected near the Key Lake and Rabbit Lake uranium operations. 

Control  Key Lake Field-Cores 
Water Quality Variable Sand  David Lake Delta Lake  Unknown 

Lake  Fox Lake

Ammonia (mg N/L) Day 0a NA  0.20  0.10  1.02  0.48 
Ammonia (mg N/L) Day 10a NA  4.82 5.79  5.72  4.26 
pH 7.1a  4.4 ± 0.8 5.2 ± 1.0  5.7 ± 0.2  5.7 ± 1.6
Hardness (mg CaCO3/L) NA  37 ± 16 202 ± 99  550a  NA 
Alkalinity (mg CaCO3/L) NA  1132a 3 ± 4  0a  NA 
DOC (mg/L) NA  7.9 ± 2.3  9.6 ± 3.7  15.4 ± 2.2  15.1 ± 2.8

Rabbit Lake Field-Cores   
Water Quality Variable Raven Lake  Park Lake  

Outflow  Park Lake 
Seepage  Horseshoe 

Pond   

Ammonia (mg N/L) Day 0a 0.98  0.05  0.08  0.25   
Ammonia (mg N/L) Day 10a 6.56  4.88 2.31  6.70   
pH 5.9 ± 0.5  5.0 ± 0.0 6.3 ± 0.4  6.8 ± 0.0   
Hardness (mg CaCO3/L) 30a  143 ± 78 112 ± 11  480a   
Alkalinity (mg CaCO3/L) 34a  38 ± 3 48 ± 6  NA   
DOC (mg/L) 16.7 ± 1.5  9.8 ± 2.9  11.3 ± 1.0  15.5 ± 7.3      
DOC = Dissolved organic carbon .                   
NA = Not measured because sample volume was too small.               
Means are an average of Day 0 and 10 data. 
a n = 1.                    
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Table 4.10. Mean centrifuged pore-water metal concentrations (± standard deviation; μg/L) from the field-core 
experiment (n = 2). 

Control   Key Lake Field-Cores Metal Sand   David Lake Delta Lake  Unknown Lake  Fox Lake 
As 2.90 ± 0.14  1.41 ± 0.17  8.61 ± 0.02  138.26 ± 29.72a  66.36 ± 53.69a 

Cr 3.18 ± 0.06  3.88 ± 0.71  4.45 ± 2.69  4.12 ± 1.23  4.32 ± 1.34 
Cu 5.16 ± 3.33a  0.89 ± 0.75  0.18 ± 0.10  0.20 ± 0.13  1.19 ± 0.55 
Mo 2.46 ± 0.16  <1.9  813.33 ± 878.25a  663.41 ± 837.76a  2804.76 ± 1490.97a

Ni 3.31 ± 2.28  <3.4  6.02 ± 2.37  10.69 ± 6.87  61.63 ± 75.92a 

Pb 0.02 ± 0.03  1.14 ± 1.61a  <0.002  <0.002  0.01 ± 0.02 
Se <0.76  <0.76  <0.76  0.78 ± 0.00  4.30 ± 1.07a 

U 2.71 ± 0.78  0.10 ± 0.00  0.18 ± 0.02  0.63 ± 0.02  1.42 ± 0.02 
V 4.41 ± 2.12   0.78 ± 0.14  1.20 ± 0.06  1.88 ± 0.50  6.95 ± 6.36 

Rabbit Lake Field-Cores   Metal Raven Lake   Park Lake Outflow  Park Lake Seepage  Horseshoe Pond   
As 1.73 ± 0.08   2.86 ± 0.82  2.50 ± 1.36  52.72 ± 9.87a   
Cr 3.00 ± 0.36  4.10 ± 1.71  7.34 ± 6.86  3.57 ± 0.10   
Cu 1.44 ± 0.79  1.97 ± 1.36  1.02 ± 0.26  0.67 ± 0.15   
Mo 2.82 ± 2.64  <1.9  <1.9  3338.44 ± 1036.48a   
Ni <3.4  3.64 ± 0.21  <3.4  10.26 ± 3.43   
Pb <0.002  0.24 ± 0.32  0.17 ± 0.02  <0.002   
Se <0.76  <0.76  <0.76  0.91 ± 0.05   
U 4.21 ± 2.22  0.42 ± 0.28  0.44 ± 0.15  412.91 ± 454.44a   
V 5.20 ± 2.95   1.38 ± 0.59  1.71 ± 0.39  2.03 ± 0.29      

a Exceeds water quality guidelines outlined in the Appendix (CCME 2011). 
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Table 4.11. Mean peeper pore-water metal concentrations (± standard deviation; μg/L) in sediment pore-water 
samples (collected using peepers) from the field-core experiment (n = 3). 

Control   Key Lake Field-Cores Metal Sand   David Lake  Delta Lake  Unknown Lake  Fox Lake 
As 1.53 ± 1.61  0.94 ± 0.59  8.24 ± 4.93  86.75 ± 24.77a  86.19 ± 65.90a 

Cr 6.20 ± 3.25  9.03 ± 8.85a  4.56 ± 1.40  6.19 ± 3.30  9.28 ± 3.27a 

Cu 8.44 ± 0.15a  1.97 ± 2.10  11.77 ± 19.18a  0.65 ± 0.24  3.15 ± 0.38a 

Mo 3.77 ± 1.55  <2.4  4401.6 ± 5590.6a  684.60 ± 127.87  6532.1 ± 672.56a

Ni 5.93 ± 0.60  5.69 ± 6.47  7.75 ± 3.94  5.38 ± 1.16  10.99 ± 2.09 
Pb 0.32 ± 0.05  2.21 ± 3.09a  1.31 ± 1.49a  0.27 ± 0.02  0.56 ± 0.16 
Se <1.5b  <1.5b  <1.5b  <1.5b  7.71 ± 2.56a 

U 1.52 ± 0.24  <0.006  0.23 ± 0.16  0.77 ± 0.24  4.22 ± 3.34 
V 2.79 ± 0.43   1.09 ± 0.16  1.18 ± 0.25  1.58 ± 0.51  2.89 ± 1.68 

Rabbit Lake Field-Cores   Metal Raven Lake   Park Lake Outflow  Park Lake Seepage  Horseshoe Pond   
As <1.2   <1.2  <1.2  25.08 ± 16.74a   
Cr 4.31 ± 0.65  3.25 ± 0.28  5.51 ± 0.80  7.29 ± 1.79   
Cu 1.66 ± 0.65  1.20 ± 0.19  1.79 ± 0.39  0.85 ± 0.09   
Mo 6.11 ± 0.82  <2.4  <2.4  3320.6 ± 1684.7a   
Ni <3.9  2.63 ± 1.17  4.37 ± 2.14  6.33 ± 1.62   
Pb 0.37 ± 0.04  0.35 ± 0.11  0.48 ± 0.10  0.32 ± 0.00   
Se <1.5b  <1.5b  <1.5b  <1.5b   
U 6.73 ± 3.84  0.18 ± 0.11  0.25 ± 0.15  278.72 ± 280.30a   
V 4.62 ± 0.73   1.30 ± 0.38   0.93 ± 0.27   1.79 ± 0.14       

a Exceeds water quality guidelines outlined in the Appendix (CCME 2011). 
b The method detection limit exceeds the water quality guideline (CCME 2011). 
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Table 4.12. Metal concentrations in potassium phosphate (KH2PO4) extractions performed on wet 
and dry sediment from the field-core experiment (μg metal/g dry sediment; n = 1). 

Key Lake Sediment 
David Lake  Delta Lake Unknown Lake  Fox Lake Metal 

Wet  Dry  Wet Dry Wet Dry  Wet Dry 
As 0.045  0.058  6.83 4.02 81.9 50.7  8.40 6.00 
Cr <0.004  <0.004  <0.004 <0.004 <0.004 <0.004  <0.004 <0.004 
Cu <0.003  <0.003  <0.003 <0.003 <0.003 <0.003  <0.003 <0.003 

Moa 0.140  0.253  31.2 27.0 19.5 16.5  8.62 6.39 
Ni <0.001  <0.001  0.172 0.535 0.378 0.621  0.129 0.138 
Pb <0.0002  <0.0002  <0.0002 <0.0002 <0.0002 <0.0002  <0.0002 <0.0002
Se <0.001  <0.001  0.039 0.133 0.151 0.355  0.261 0.274 
Ua <0.0009  <0.0009  <0.0009 <0.0009 <0.0009 0.037  0.086 0.087 
V 0.006  0.011  0.016 0.039 0.048 0.055  0.052 0.037 

Rabbit Lake Sediment 
Raven Lake  Parks Lake Outflow Parks Lake Seepage  Horseshoe Pond Metal 

Wet  Dry  Wet Dry Wet Dry  Wet Dry 
As <0.004  <0.004  0.115 0.123 0.045 0.061  32.1 21.5 
Cr <0.004  <0.004  <0.004 <0.004 <0.004 <0.004  <0.004 0.086 
Cu <0.003  0.032  <0.003 0.036 0.069 0.105  <0.003 0.209 

Moa <0.013  0.256  0.184 0.267 0.264 0.310  107 101 
Ni 0.012  0.019  0.050 0.094 0.087 0.116  0.416 0.961 
Pb <0.0002  <0.0002  <0.0002 <0.0002 <0.0002 <0.0002  <0.0002 <0.0002
Se <0.001  0.012  <0.001 0.015 0.014 0.019  0.165 0.250 
Ua 0.494  1.114  <0.0009 0.031 <0.0009 0.011  3.59 7.41 
V 0.101  0.147  0.029 0.047 0.047 0.045  0.050 0.088 

Control         
Sand       Metal 

Wet  Dry         
As <0.004  <0.004         
Cr 0.028  <0.004         
Cu <0.003  0.006         

Moa 0.027  0.023         
Ni 0.006  0.006         
Pb <0.0002  <0.0002         
Se <0.001  <0.001         
Ua <0.0009  <0.0009         
V 0.003  0.005         

a Some matrix spike quality assurance samples did not meet general acceptability criteria (within ± 20% of nominal 
value). 
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Table 4.13. Metal concentrations in hydrochloric acid (HCl) extractions preformed on wet and dry 
sediment from the field-core experiment (μg metal/g dry sediment; n = 1). 

Key Lake Sediment 
David Lake  Delta Lake Unknown Lake  Fox Lake Metal 

Wet   Dry   Wet  Dry  Wet  Dry   Wet  Dry 
Asa 2.36  2.01  5.76 20.4 17.5  25.3 25.9 
Cr <0.024  <0.024  0.415 0.626 <0.024  0.332 0.374
Cu 0.337  0.289  <0.001 0.858 <0.001  0.533 0.559

Moa 0.010  0.012  9.82 225 3.38  77.6 77.5 
Ni 0.187  0.150  9.39 12.9 21.9  2.46 2.44 
Pb 0.758  0.554  1.55 1.71 2.25  0.413 0.456
Se <0.001  <0.001  <0.001 <0.001 <0.001  0.132 0.162
Ua 0.253  0.202  2.86 9.69 8.75  4.26 4.16 
V NQ  NQ  NQ NQ NQ 

NA 

 NQ NQ 
Rabbit Lake Sediment 

Raven Lake  Parks Lake 
Outflow 

Parks Lake 
Seepage  Horseshoe Pond Metal 

Wet   Dry   Wet  Dry  Wet  Dry   Wet  Dry 
Asa 1.97  2.31  4.23  4.96  2.52  2.55  2.16  70.3 
Cr 0.225  <0.024  0.397  0.600  0.42  0.615  1.29  1.74 
Cu 2.91  2.79  3.29  4.28  1.68  1.57  <0.001  7.67 

Moa 0.033  0.056  0.042  0.065  0.064  0.092  15.2  283 
Ni 0.509  0.555  3.22  4.21  1.11  1.16  19.8  33.8 
Pb 0.670  0.600  1.86  1.88  1.44  1.40  1.19  1.95 
Se <0.001  <0.001  <0.001  <0.001  <0.001  <0.001  0.023  0.117
Ua 78.6  65.4  5.15  6.10  2.97  3.22  1347  3802 
V NQ  NQ  NQ  NQ  NQ  NQ  NQ  NQ 

Control                     
Sand       Metal 

Wet   Dry         
Asa 0.371   0.482             
Cr <0.024  <0.024             
Cu 0.048  0.063             

Moa 0.001  0.003             
Ni 0.029  0.035             
Pb 0.099  0.122             
Se <0.001  -0.003             
Ua 0.060  0.064             
V NQ   NQ                     

NA = Not available. 
NQ = Not quantifiable. 
a Some matrix spike quality assurance samples did not meet general acceptability criteria (within ± 20% of nominal 

value). 
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field-collected sediments.  In the HCl extracts, As, Mo, Ni, and U had the largest range in 

concentrations.  The other metals analyzed in each of the chemical extractions evaluated were 

either not quantifiable or had concentrations very similar to the metal concentrations measured in 

the reference sediment extracts.  Metal concentrations were usually marginally higher in 

extractions performed on dry sediment compared to wet sediment, across all metals and both 

chemical extractants evaluated.  Metal concentrations in HCl extracts were generally higher than 

those found in the KH2PO4 extracts.  Similar to the mixed-sediment experiment, some analytical 

problems were encountered in the metals analyses of extract samples (discussed in Section 4.3.4) 

and, as such, the metals data are intended to evaluate general trends and correlations rather than 

absolute metals concentrations.       

Chironomus dilutus survival was only significantly reduced in the Parks Lake Seepage 

sediment, compared to the Raven Lake reference treatment (P < 0.50; ANOVA with Dunnett’s 

post-hoc).  Final weight of C. dilutus larvae, measured as dry weight, showed no statistical 

difference among any of the sediment treatments (P = 0.16; ANOVA on Ranks across all 

treatments).  Tissue metal concentrations (Table 4.14) were generally highest in larvae exposed 

to Fox Lake and Horseshoe Pond sediment.  Tissue metal concentrations from both Parks Lake 

sediments were similar to the tissue concentrations from the reference sediment.  For other 

sediments, tissue concentrations generally increased with whole-sediment metal concentrations.  

The metals that showed the greatest degree of accumulation (a factor of at least 10) were As, Mo, 

Ni, Se, and U.  

The relationships between larval tissue metal concentrations and metal concentrations 

measured in the sediment phases evaluated (whole-sediment, pore-water, and chemical 

extractions) are described using correlations (Pearson Product Moment Correlations; R-values) 

and are listed in Table 4.15.  Similar to the mixed-sediment experiment, As, Mo, Ni, and U, had 

the greatest range in metal concentrations in the various sediments and phases tested and were 

the metals most often present in the sediment phases at concentrations above those of the 

reference sediments.  As such, only correlations for As, Mo, Ni, and U are presented.  Data from 

Delta Lake, Unknown Lake, Fox Lake and Horseshoe Pond treatments were chosen for inclusion 

in the correlations analysis because these sediments have trace metals concentrations that cover a 

broad range of contamination; however, U concentrations in the various sediment phases of 
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Table 4.14. Mean metal concentrations (± standard deviation; μg/g dry wt) in Chironomus dilutus larvae on initiation of the experiment 
(Day 0) and after 10 days of exposure to a sand control and sediments collected near the Key Lake and Rabbit Lake uranium operations 
(n = 3; not gut-purged). 

  Key Lake Field-Cores - Day 10 Metals Control - Day 0a    David Lakeb Delta Lakeb Unknown Lakec Fox Lakec 
As 0.01 ± 0.02  1.02 ± 0.04 13.21 ± 7.45 50.27 ± 8.13 190.63 ± 55.32‡ 
Cr 0.63 ± 1.24  1.02 ± 0.07 2.15 ± 0.08*† 2.24 ± 0.50*† 9.73 ± 0.91*† 
Cu 71.86 ± 11.02  16.60 ± 0.67* 12.39 ± 3.10* 17.05 ± 2.62* 18.18 ± 2.20* 
Mo <0.001  0.84 ± 0.87 919.72 ± 575.83*† 133.82 ± 20.90*† 954.92 ± 469.77*† 
Ni 0.85 ± 0.79  0.99 ± 0.10 9.98 ± 1.48*† 6.75 ± 1.64*† 4.79 ± 1.05*† 
Pb 2.21 ± 0.26  0.98 ± 0.03‡ 1.22 ± 0.11 1.32 ± 0.48 1.49 ± 0.21 
Se 1.13 ± 0.23  0.59 ± 0.03 9.01 ± 2.45*† 11.51 ± 2.98*† 44.77 ± 4.77*† 
U 0.46 ± 0.11  0.44 ± 0.04* 2.62 ± 0.15*† 4.62 ± 1.07*† 13.14 ± 0.93*† 
V 0.23 ± 0.05  1.96 ± 0.33* 2.63 ± 0.41* 2.95 ± 0.55* 12.45 ± 2.14*† 

Control - Day 10   Rabbit Lake Field-Cores - Day 10 
Metals Sandc   Raven Lakec Park Lake 

Outflowb 
Park Lake 
Seepagec 

Horseshoe 
Pondb 

As 0.41 ± 0.11   0.90 ± 0.03* 0.91 ± 0.14* 0.80 ± 0.18* 28.95 ± 11.03*† 
Cr 1.36 ± 0.34  3.61 ± 2.30* 2.88 ± 0.63 2.45 ± 0.44 3.09 ± 0.83* 
Cu 50.14 ± 13.25  20.72 ± 2.08* 19.48 ± 1.95* 19.93 ± 3.48* 21.51 ± 1.85* 
Mo 0.36 ± 0.44  0.92 ± 0.15 0.65 ± 0.90 0.57 ± 0.13 616.76 ± 229.81‡ 
Ni 1.14 ± 0.75  1.93 ± 0.24 4.41 ± 0.78* 3.22 ± 1.08* 12.88 ± 4.00*† 
Pb 2.92 ± 1.23  1.21 ± 0.41* 1.26 ± 0.26* 1.17 ± 0.31* 0.55 ± 0.03*† 
Se 0.72 ± 0.14  1.20 ± 0.22* 0.92 ± 0.07 1.10 ± 0.04* 21.35 ± 2.66*† 
U 0.77 ± 0.20  40.17 ± 5.99*† 2.56 ± 0.36*† 1.94 ± 0.49*† 287.38 ± 28.29*† 
V 0.59 ± 0.15   8.73 ± 1.08* 3.24 ± 0.48*† 2.82 ± 0.67*† 2.70 ± 0.66*† 

Comparisons to the Control - Day 0 tissue concentrations were not made and are listed for qualitative comparisons only. 
a n = 5. 
b n = 3. 
c n = 4. 
* = Statistically significant difference between the Sand (Day 10) treatment (P < 0.05; One-way ANOVA; Tukey post-hoc). 
† = Statistically significant difference between the reference sediment (Raven Lake for Rabbit Lake and David Lake for Key Lake treatments (P < 0.05; One-way 

ANOVA; Tukey post-hoc). 
‡ = Statistically significant difference between the Sand (Day 10) treatment (P < 0.05; One-way ANOVA on Ranks; Dunn's post-hoc). 
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Table 4.15. Relationships (Pearson Product Moment correlation) between select 
metal concentrations in Chironomus dilutus and different sediment phases from the 
exposure sediments (Horseshoe Pond, Delta Lake, Unknown Lake, and Fox Lake) 
in the field-core experiment (n = 4). 

R Values 
Sediment Phase 

As Mo Ni Ucd 

Sediment (dw) -0.210 -0.257 0.641 -0.598 

Centrifuged PW 0.184 0.368 -0.716 0.983 

Peeper PW 0.705 0.945a -0.536 0.999a 

HCl-D (dw)c -0.336 -0.778 0.939 b 

HCl-W (dw) 0.866 0.596 0.491 -0.132 

KP-D (dw) -0.276 -0.073 0.878 0.967 

KP-W (dw) -0.282 -0.066 0.534 0.984 
Shaded boxes highlight the two strongest relationships for each metal evaluated.  Only metals that 

were substantially elevated among the field-core sediments were evaluated. 
PW = pore-water.     
dw = dry weight.     
HCl-D = Hydrochloric acid extraction on dry sediment. 
HCl-W = Hydrochloric acid extraction on wet sediment. 
KP-D = Potassium phosphate extraction on dry sediment. 
KP-W = Potassium phosphate extraction on wet sediment. 
a Statistically significant; P < 0.05. 
b n = 2; no sample for Unknown Lake in addition to the exclusion of Horseshoe Pond for these 

relationships. 
c n = 3; no sample for Unknown Lake.  
d Correlations conducted using only Delta Lake, Unknown Lake, and Fox Lake sediment .  
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Horseshoe Pond sediment were more than two orders of magnitude higher than the 

corresponding phases from other contaminated sediments.  Given that this would overly 

influence the outcome of the analyses, Horseshoe Pond U data were excluded from the 

correlations.  

Compared to the mixed-sediment experiment, the correlations in the field-core 

experiment were weaker and inconsistent.  Correlation coefficients among those metals and 

sediment phases evaluate ranged from 0.066 (no relationship) to 0.999 (almost perfect 

relationship).  Tissue U concentrations were the best correlated and tissue Mo concentrations 

were the worst correlated with the various sediment phases.  The various correlations had a mix 

of positive slopes (increase in tissue metal concentration with increase in the sediment phase 

concentration) and negative slopes (decrease in tissue concentration with increase in the 

sediment phase concentration).  Furthermore, the majority of the correlations were not 

statistically significant (P > 0.05) and the only statistically significant relationships were related 

to peeper pore-water relationships.  Taken together, the correlations of metal concentrations in 

tissues with sediment phases measured in field-sediment were highly variable and inconsistent 

across the metals and sediment phases evaluated.    

The highest two correlation coefficients for each metal evaluated are highlighted in Table 

4.15.  The best overall relationship with tissue metal concentrations, among all metals evaluated, 

was the peeper pore-water sediment phase.  This finding was consistent with the results from the 

mixed-sediment experiment.  Peeper pore-water metal concentration best correlated with tissue 

metal concentrations for As, Mo, and U.  Nickel concentrations in chironomid tissues best 

correlated with the metal concentrations in dry sediment HCl extracts.  Overall, there is no 

evidence to conclude that the two chemical extractions evaluated were better correlated with 

chironomid tissue concentrations than currently used alternatives such as pore-water.   

 

4.5 Discussion 

Total metal concentration in whole-sediment is typically used to evaluate the risk that 

sediment poses to the associated benthic organisms.  Pore-water dissolved metals concentrations 

are used similarly, but are analyzed less often.  In addition to these traditional analyses, this 

study evaluated the usefulness of single-step chemical extractions in estimating metal 

bioavailability in sediments.  The two chemicals evaluated, HCl and KH2PO4, were each 
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intended to isolate an operationally-defined fraction of sediment metals.  For instance, HCl was 

used to extract metals associated with Fe and Mn oxides and sulfides in sediment.  Weaker 

KH2PO4 extractions (expected to extract a smaller fraction of the total metals in sediment) were 

used to extract metals present in anionic form, such as As, Se, Mo, and V.  

Although the primary intent of this study was to evaluate the relationships between metal 

concentrations in different sediment phases and metal accumulation in C. dilutus, the influence 

of two different sample preparation approaches (dried versus wet sediment) was also 

investigated.  Drying is commonly performed in sediment sequential extraction procedures 

(Tessier et al. 1979; Rauret et al. 1999).  Although drying sediment does not affect the total metal 

concentration, drying can change the speciation and bioavailability of the metals within 

sediment.  For example, Zhang et al. (2001) found that drying sediment, regardless of the 

method, altered the chemical speciation of metals in the sediment tested and that use of a fresh 

wet sample best preserved the original speciation distribution of the metals.  Artefacts due to 

drying might therefore obscure those relationships of interest between benthic organisms and 

sediment metals in situ.  Among those metals evaluated here (As, Cr, Cu, Pb, Mo, Ni, Se, U, and 

V), slightly more metal was extracted from dry sediment compared to wet sediment.  In addition 

to the possible influence of sediment drying on metal speciation, another reason for this 

observation could be a difference in molarity of the extractant.  The amount of chemical added to 

both wet and dry sediment was standardized on a sediment dry weight basis rather than 

standardizing on the molarity of the extractant after addition to the sediment sample.  Therefore, 

the pore-water present in the wet sediment would have diluted the extractant resulting in a lower 

molarity.  It is possible that if molarity had been standardized, more metals would have been 

extracted from the wet sediment.  Regardless, these small differences did not result in a 

noticeable change in the relationships between sediment phase (pore-water, whole-sediment, and 

chemical extracts) and tissue metals concentrations. 

Of the complete list of metals having CNSC SQGs (As, Cr, Cu, Pb, Mo, Ni, Se, U, and 

V), only As, Ni, Mo, Se and U were evaluated in this study.  These metals were found to be both 

elevated above background (useful in creating a gradient in the mixed-sediment experiment) and 

present at a range of concentrations among the various field-collected cores (those used in field-

core experiment).  These metals were also previously identified (Chapter 3) as having a 

concentration gradient in sediments downstream of uranium operations in northern 
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Saskatchewan.  The concentrations of the remaining metals were similar to those of the reference 

sediments or below limits of quantification and as such not useful in this study.  However, Se 

was excluded from the evaluation since it is known that dietary exposure via ingestion of biofilm 

and detritus is the primary mode of accumulation in benthic macroinvertebrates, not exposure to 

pore-water and whole-sediment (Wiramanaden et al. 2010).  In addition, Se gradients in some 

sediment phases were not as great as for other metals.   

Although the concentrations of most metals in each of the sediment phases remained 

relatively constant over the duration of the exposure period (Day 0 versus Day 10 data), the 

overlying water metal concentrations increased between Day 0 and Day 10.  This was likely due 

to the dissociation of metal from sediment particles into the aqueous phase and diffusion of pore-

water metals into the overlying water.  This phenomenon is common in laboratory sediment 

experiments (Van Geest et al. 2010).  

 

4.5.1 Mixed-sediment experiment 

Despite metal concentrations in all sediment phases having strong relationships with 

metal concentrations in chironomid tissue, metal concentration in pore-water had the best 

correlations overall when all four metals (As, Mo, Ni and U) were considered.  However, it 

should be noted that the relationships between HCl-extract metal concentrations and tissue metal 

concentration were high, with pore-water metal concentrations being only slightly better at 

estimating tissue metal concentration for As, Mo, and Ni. 

Although metal concentration in pore-water had the best overall correlation with tissue 

metal concentration, all sediment phases investigated were strongly correlated with tissue metal 

in the mixed-sediment experiment.  Based on this, all of the measures evaluated (pore-water, 

whole-sediment or chemical-extraction metals concentrations) are similarly predictive of metal 

bioaccumulation in C. dilutus.  Never the less, the strong positive correlations in this experiment 

are likely related to the nature of the sediment exposure gradient, which was created by diluting a 

single contaminated sediment with a reference sediment.  All sediment characteristics and metal 

concentrations therefore varied similarly among treatments, and this likely resulted in co-

correlation of the metal concentrations in tissue with the metals concentration in all of the 

sediment phases investigated.  This ultimately limits the usefulness of these results in assessing 

the various approaches used to evaluate sediment metal availability.     
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4.5.2 Field-core sediment exposure 

Contrary to the mixed-sediment experiment, the relationships between tissue metal 

concentrations and the metal concentrations in the sediment phases investigated were weaker and 

inconsistent in the field-core experiment (Table 4.15).  Of the sediment phases evaluated (pore-

water, whole-sediment, chemical extractions of wet and dry sediment), peeper pore-water metal 

concentrations were again most strongly correlated with C. dilutus tissue concentrations for the 

four metals evaluated (As, Mo, Ni and U).   

Although chemical extractants (HCl or KH2PO4) were chosen to target the fraction of the 

total sediment metal that is most likely available to benthic organisms (either directly or 

indirectly), there was no clear and consistent relationship between metal concentration in the 

extractant and tissue metal concentration for each sediment phase evaluated.  Despite eliminating 

variability in the correlations due to field-cores that represented either very low levels (Raven 

Lake, Parks Lake sediments, and David Lake) or, in the case of U, very high levels (Horseshoe 

Pond) of metals contamination, neither of the chemical extractions appeared useful for 

evaluating bioavailability of the four metals to C. dilutus.  However, some extraction 

combinations showed promise in the evaluation of individual metal bioavailability.  For example, 

despite the good relationship between pore-water and tissue-metal concentrations among the 

majority of metals evaluated, the HCl extraction yielded the best relationship for Ni.  Similarly, 

the U concentration in KH2PO4 extracts (both wet and dry sediments) yielded a better 

relationship with tissue U concentration than did total sediment U concentration.  Based on this, 

HCl and KH2PO4 extractions could be useful in studies targeting Ni or U, respectively, but are 

not likely useful to evaluate larger suites of metals.  It is unlikely that any single chemical 

extractant or any single sediment phase would be sufficient to evaluate the bioavailability of a 

complex mixture of metals in field-collected sediments.   

In place of chemical extractions, pore-water dissolved metal concentrations are likely a 

better measure for estimating the bioavailable metal fraction in sediment across a broad range of 

sediment characteristics and metals.  However, this measure of metal bioavailability does not 

directly take into account the dietary route of exposure.  To evaluate the metal bioavailability 

related to the dietary route, a solvent that simulates uptake from the animal gut could be used to 

extract metals from sediment (Peng et al. 2004).   
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4.6 Conclusions 

Using field-core and mixed-sediments in metal bioaccumulation experiments, it was 

found that chemical extractions (HCl and KH2PO4) of sediment were not superior to other 

methods for estimating the bioavailability of a suite of metals related to the Saskatchewan 

uranium industry (As, Mo, Ni and U).  Pore-water dissolved-metals concentrations generally had 

the best relationship with midge tissue metals concentrations among those metals and sediments 

evaluated.  Correlations for metals concentrations in tissue and sediment phases were stronger in 

the mixed-sediment experiment, likely due to the experimental methods used.  In the field-core 

experiment, correlations were highly variable and inconsistent due to the variability in sediment 

metal concentrations and sediment characteristics.  Based on the findings from this study, it is 

suggested that single chemical extractions (e.g., HCl and KH2PO4) could be useful in focused, 

single-metal sediment studies, where a particular metal is targeted for an investigation, but 

overall, pore-water is a better choice for assessing bioavailability of metals in sediment to 

benthic invertebrates, such as C. dilutus.  
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CHAPTER 5 

GENERAL DISCUSSION 

5.1 Project rationale and goals 

The rationale for this research was the lack of scientifically defensible sediment quality 

guidelines (SQGs) for application at uranium operations in Saskatchewan.  Using the screening-

level concentration (SLC) approach, specific SQGs for metals and radionuclides relevant to the 

uranium mining and milling industry in Canada were previously derived by Thompson et al. 

(2005).  The SLC approach is based on the presence and absence of benthic invertebrate taxa 

which are associated with individual element concentrations.  This approach does not take into 

account that not all elements in the sediment at an effect site are the cause of an observed effect 

or absence of a species.  The SLC approach therefore results in SQGs that are often overly 

conservative and difficult to defend.  As a result, a new approach to derive SQGs based on total 

sediment metal concentrations from no-effect and reference sites was evaluated.  In addition, the 

majority of existing SQGs are based on total element concentrations in sediment rather than 

bioavailable metal fractions.  Therefore, we also investigated the relationship between metal 

concentrations in sediment phases (including whole sediment) and metals in Chironomus dilutus 

tissues exposed to contaminated sediment to identify the best correlation.  Using Cameco 

Corporation uranium operations in northern Saskatchewan as a case study, the goals of this 

research were to evaluate a new approach to derive SQGs for use at uranium operations in 

northern Saskatchewan and to investigate alternate methods to quantifying metal bioavailability 

in sediment to benthic invertebrates.  The specific research objectives were as follows:  

 

i) Conduct a literature review of existing sediment quality value (SQV) derivation 

approaches and, based on these findings, identify possible alternative SQV derivation 

methods that can make use of pre-existing data;  
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ii) Using field-collected benthic invertebrate community data from reference and mildly 

contaminated areas, derive regionally-specific SQVs based on no observed-effect 

concentrations, and compare these SQVs to those derived by the Canadian Nuclear 

Safety Commission (CNSC) for use at Saskatchewan uranium mining and milling 

operations, and;  

 

iii) Using chemical extractions and pore-water isolation techniques, investigate the 

possibility of identifying a simple, scientifically-defensible approach for quantifying 

metal exposure in sediments that can be better linked to metal bioaccumulation in 

benthic invertebrates than total, whole-sediment metal concentrations.   

 

5.2 Synthesis and integration of project results 

Upon review of various published methods for SQG derivation, it was noted that there 

are many similarities among current derivation approaches, as well as numerous common 

deficiencies.  Utilizing sediment metal concentrations associated with benthic invertebrate 

community effects is standard practice for many empirical approaches.  An over-arching 

uncertainty of such SQGs is that an appropriate threshold of no-effect has been defined; one that 

is protective without being overly conservative.  This uncertainty can result from various factors, 

including the range of contaminant sediment concentrations, interactions between metals in 

sediment, and modifying factors in sediment (such as sediment particle size, organic carbon 

content, pH, and redox potential) that can alter metal availability and toxicity to benthic 

invertebrates.  The majority of existing SQG derivation techniques lack consideration and 

incorporation of such factors.  One exception to this is the equilibrium-partitioning approach, 

which incorporates metal partitioning between the solid and aqueous phases to derive SQGs.  

Additionally, the outcome of empirical SQG derivation processes is affected by slight 

differences in the percentile used to derive the SQG from the dataset (e.g., 90th or 95th 

percentile), the criteria used to select data (e.g., effect or no-effect sites), and the actual sets of 

data used to derive the SQG (addition or exclusion of data will change the derived value).    

Using sediment metal concentrations and benthic invertebrate community data from 

uranium operations in northern Saskatchewan, it was concluded that the LELs derived by 

Thompson et al. (2005) more accurately predicted effect sites than no-effect sites.  For example, 
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on a general basis, the correct alignment of at least one LEL exceedence at an effect site was 

observed 95% of the time, but on an element-specific basis many of the elements had 

concentrations at effect sites below their LELs (Chapter 2; Burnett-Seidel and Liber 2011).  

Observed no-effect sites were often incorrectly predicted to have effects based on exceedences of 

the LELs.  Concentrations of the evaluated elements exceeded at least one LEL at 60% of the no-

effect sites (Chapter 2; Burnett-Seidel and Liber 2011).  When an effect on the benthic 

invertebrate community is detected it is often difficult to determine the exact cause associated 

with that effect.  Various metals typically co-occur in sediments, many of which are not likely 

responsible for the observed effect.  Because empirical methods attribute toxicity (effects) to all 

metals present, many of the SQGs derived using these approaches are often overly conservative.  

Such false-positives could prove costly to a company required to investigate sites having SQG 

exceedences.   

As an alternative to the SLC approach, this project evaluated the derivation of new SQGs 

based on sediment metal concentrations associated with benthic invertebrate communities at 

reference and no-effect field sites.  Using data from uranium operations in northern 

Saskatchewan, the no-effect level derivation approach used a variety of benthic invertebrate 

community metrics to define an effect (and lack thereof).  Overall, it was found that suitable no-

effect levels could only be derived when the dataset contained an appropriate range of sediment 

metal concentrations (i.e., a gradient of contamination) which ideally approached benthic 

invertebrate community effect threshold levels.  For instance, derived NE values for Cr, Cu, Pb, 

and V did not change with the incorporation of additional effects criteria (evenness and the Bray-

Curtis index) due to a lack of influence from the uranium operations on the concentrations of 

these metals (i.e., they were only present at or near background levels).  However, a gradient of 

exposure concentrations was apparent for As, Mo, Ni, Se, and U in sediment which allowed for 

acceptable exposure levels of these metals in sediment to be defined.  In general, NE values 

derived using abundance, richness, and evenness (NE1 and NE2 values) were found to be higher 

than the NE values derived using these three metrics plus the Bray-Curtis index (NE3 values).  

No-effect values for As, Mo, Ni, Se, and U were between three and 95-times higher than the 

SQGs presented by Thompson et al. (2005), depending on the no-effect level and metal.   The 

findings from this assessment have suggested a set of new, alternate SQVs for use at the uranium 

industry in northern Saskatchewan.   
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A set of laboratory experiments revealed that of sediment pore-water and single-chemical 

extractions of whole-sediment in relation to metal concentrations in the test organism, 

Chironomus dilutus, metal concentrations in peeper pore-water generally had the best overall 

correlation with tissue metal concentrations.  In an experiment where a contaminated sediment 

was diluted to different degrees with a reference sediment, no single sediment phase evaluated 

was substantially better correlated with tissue metal concentrations than the other phases 

evaluated, although pore-water had the best correlation with tissue concentrations.  While there 

was substantially more variability in the correlations from an exposure where sediment cores 

were collected from several contaminated lakes, pore-water metal concentrations were again 

found to have the strongest correlation with tissue metal concentrations, for the subset of metals 

evaluated.  Metal concentrations in chemical extractions did not have strong, consistent 

correlations with tissue metal concentrations, and are therefore not recommended for use in a 

broad assessment of metal bioavailability in sediment at this time.  No single chemical is likely 

to represent the bioavailable fraction for all metals.  However, chemical extractions may be 

useful in focused, element-specific studies where previous knowledge of sediment geochemistry 

can be used to guide the correct chemical for use in extractions (operationally-defined fraction).  

Based on the results of the two extraction experiments, it is recommended that sediment pore-

water sampling be added to environmental sampling programs at Saskatchewan uranium 

operations so that a better correlant of sediment metal availability is available for interpretation 

of benthic invertebrate community effects.  More focus on bioavailable fractions (pore-water and 

weakly adsorbed metal concentrations) rather than total metal concentrations in whole-sediment 

will allow for better estimation of metal bioaccumulation and toxicity, and for trophic transfer 

modeling in ecological risk assessment.  

 

5.3 Application of findings 

Overall, this research begins to address the deficiencies inherent in many current 

approaches used to derive SQGs.  The new approach presented here using sediment total metal 

concentrations associated with no-effects on the benthic invertebrate community avoids the 

problems associated with confounded effects data.  Although this approach complements 

existing  SQG derivation approaches, metal bioavailability should also be incorporated into 

future SQGs, for example, by creating a database containing pore-water metals concentrations 
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along with measurements of factors that modify toxicity at no-effect and effect sites (based on 

benthic invertebrate community metrics).  Such a database would better characterize benthic 

invertebrate exposure to a better estimator of bioavailable metals in sediment and would aid in 

the development of pore-water based SQGs, rather than SQGs based on total metal 

concentrations in sediment.  

Results presented herein demonstrate that, where appropriate data exist, regional SQGs 

can be derived using a no-effect approach.  However, in order to derive accurate SQGs the set of 

data must contain a range of exposure concentrations related to a suite of potential effects.  Use 

of data from additional uranium operations in Saskatchewan, such as the McClean Lake 

operation, and use of data generated since this assessment was conducted, would enhance the 

data set and strengthen the validity of the derived SQVs derived herein.   

Effects on benthic invertebrate communities were evaluated based on endpoints used in 

Canadian Environmental Effects Monitoring (EEM) programs.  It was assumed that the 

endpoints used (abundance, richness, evenness, and Bray-Curtis similarity index) and the criteria 

of a statistical or 20% difference from a reference site together adequately defined an adversely 

affected benthic invertebrate community.  However, Green and Chapman (2011) recently 

criticized the use of indices, suggesting that simpler measurements, such as abundance and 

richness, provide a better description of the response of benthic invertebrate communities to 

pollution and that if indices must be used (e.g., regulatory requirement) that they are used 

alongside statistical methods that retain information about the biological dataset (e.g., 

multivariate approaches).  As well, the use of critical effect sizes (25% difference or two 

standard deviations) between reference and exposure endpoints has been suggested for use in 

monitoring programs (Munkittrik et al. 2009) in place of a statistical difference.  Thus, there are 

simple options for defining benthic invertebrate community effects, any of which, if adopted, 

would redefine the no-effect dataset used here and alter the derived SQG.   

Of the three sets of NE values presented here, the NE values most applicable to the 

uranium industry in Saskatchewan would be the set of NE2 values for As, Mo, Ni, Se, and U.  

The NE1 values (based on abundance and richness) could be used, but the addition of the 

evenness metric in the derivation of the NE2 values provides some conservatism to the NE 

values and a greater link to the Canadian EEM program endpoints.  The NE3 values were not 

seen as the most suitable for broad use because the Bray-Curtis similarity index has been shown 
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to be very sensitive to differences in benthic invertebrate community habitat (Faith et al. 1991; 

Robertson 2006) and even when habitats were quite similar between two reference sites, 

differences based on the Bray-Curtis index, among other indices, have been observed (CanNorth 

Environmental Services 2009).  Based on the sensitivity of the Bray-Curtis index, along with the 

observation that the NE3 values were often similar to or approached the derived reference 

values, the NE3 values can not be recommended for use by the uranium industry in 

Saskatchewan.  Derived NE values for Cr, Cu, Pb, and V did not change with the incorporation 

of additional effects criteria due to a lack of influence from the uranium operations on the 

concentrations of these metals in sediment.  Thus, NE value for these four metals can not be 

recommended for use by the uranium industry.   

The derived REF values provide a good indicator of the natural background metal 

concentrations in sediment in the region and are recommended as an additional tool for assessing 

whether sediments contain elevated concentrations of metals.  They serve to negate LEL values 

for As, Mo, and Se as the REF values for these metals were greater than the LEL values.  Based 

on this, if the NE2 values are not use, a minimum, the REF values for these three metals should 

be used. 

The derived NE values are higher (potentially less conservative) than the SQGs derived 

by Thompson et al. (2005) and are more site-specific.  The use of the NE values in ecological 

risk assessments for uranium operations in northern Saskatchewan would result in a more 

realistic assessment of risk of elevated metal concentrations in sediment to aquatic life, 

especially benthic invertebrates.  Overall, it is anticipated that hazard quotients, which are 

primarily used as an indicator in environmental risk assessments, would be lower and more 

appropriate if the NE values presented herein were used in place of the SQGs derived by 

Thompson et al. (2005).  Along with this reduction in hazard quotients could be a reduction in 

the potential costs associated with mitigation measures needed to reduce metal concentrations in 

the environment to reach a hazard quotient of less than or equal to one.  Thus, there is great value 

in using these NE values as a supplement to or alternative to the Thompson et al. (2005) SQGs. 

The NE values presented herein are not guidelines or objectives that are supported by a 

federal or provincial regulatory agency.  However, through Environment Canada (EC), Canadian 

Nuclear Safety Commission (CNSC), and the Saskatchewan Ministry of Environment (SMOE), 

the regionally-specific NE values presented herein could be adopted as suitable objectives for the 
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uranium industry in Saskatchewan and for assessing potential effects of contaminated sediments 

on benthic invertebrate communities.  In the interim, the presented NE values can be used to 

evaluate field sediments near uranium operations in Saskatchewan in a similar manner as how 

the Thompson et al. (2005) values are currently used in environmental monitoring programs and 

site-specific risk assessments. 

 

5.4 Areas for further research 

Overall, sediment is a very complex medium to evaluate.  General knowledge of factors 

modifying metal bioavailability and toxicity, and of factors influencing benthic invertebrate 

presence or absence are necessary to evaluate the potential for adverse effects.  Scientists should 

focus on further describing the influence of factors modifying metal bioavailability in sediment 

(e.g., pH, organic carbon, particle size distribution) and specific relationships so that more 

accurate predictions of biological effects (or lack thereof) can be made.  To fill in knowledge 

gaps, the toxicity of less researched metals (from an ecotoxicological perspective), such as 

uranium, molybdenum, and arsenic, to name a few, should be investigated on multiple species 

and over a range of sediment types.  This research would inform risk assessments and potentially 

result in the development of new SQGs or derivation techniques.   

Along with gaining more knowledge of lesser studied elements, no-effect values for other 

elements in sediment could be derived and evaluated.  For example, no-effect values could be 

derived for different radionuclides using the same approach as presented here and comparisons 

could be made to the radionuclide SQGs derived by Thompson et al. (2005), although the total 

radiation dose (cumulative effects) should also be considered.  Ultimately, no-effect values could 

be developed for any element with sufficient data.  This could fill gaps where no benchmarks or 

guidelines exist. 

Ultimately, future SQGs should be based only on those metal fractions that are 

bioavailable to benthic invertebrates.  Guidelines based on such measures would account for the 

main factors modifying metal bioavailability and toxicity in sediment (e.g., organic carbon 

content, particle size, mineral composition, pH, redox potential); however, the importance of 

these factors would likely vary among elements.  Toxicity testing with relevant Canadian species 

followed by field validation of both individual elements and metal mixtures in sediment, over a 

range of conditions (e.g., pH, DOC, particle size distributions), need to be further evaluated prior 
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to the development of SQGs based on factors modifying metal bioavailability and toxicity.  

Although this approach would require much more effort, it should result in the derivation of 

more scientifically-defensible SQGs.   

The applicability of using existing water quality guidelines to evaluate the risk associated 

with pore-water metal concentrations should be further investigated.  The procedures for 

deriving water quality guidelines in Canada are standardized (CCME 2007); however, the 

methods for pore-water collection and analysis are not.  Pore-water isolated from sediment is 

operationally defined and differences in pore-water collection and processing can result in 

differences in measured pore-water metal concentrations.  It is critical, therefore, that before 

water quality guidelines are routinely compared to pore-water metal concentrations as a method 

of evaluating metal bioavailability in sediment, that the various pore-water isolation methods are 

critically evaluated under a range of conditions.  Pore-water-specific SQGs could also be 

developed and potentially be related to factors that modify the toxicity of dissolved metals (e.g., 

hardness, dissolved organic carbon, pH).   

In both natural and contaminated areas, multiple metals in sediments occur together.  

However, single metal guidelines are compared to metal concentrations in sediment containing a 

mixture of metals.  There is little consideration for how metals interact with each other and this is 

not taken into account when SQGs are used to assess risk.  As such, more research is needed on 

the interactions and associated biological effects of metal mixtures in sediment, and mixtures of 

metals and other constituents such as radionuclides or organic compounds.  This is an important 

area of field-relevant research with limited studies conducted to date; additional research could 

provide valuable information for predictive modeling of the interaction of metals in sediment.  

 

5.5 Summary   

Overall, this research outlines deficiencies with one current approach used to derive 

SQGs for use at Canadian uranium operations and provides an alternative derivation approach, 

along with a new set of SQVs which could be used in local risk assessments and the evaluation 

of contaminated sediments.  Furthermore, to address an underlying issue with the majority of 

empirically-derived SQGs (the use of total metal concentrations in sediment as a measure of 

exposure), the bioavailability of metals in sediment were explored by looking at the relationship 

between metal accumulation in a model benthic invertebrate and potentially bioavailable 
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fractions of metals in sediment (pore-water isolation, chemical extractions, whole-sediment).  

Together, this research provides alternatives to previously suggested SQGs, derivation 

approaches, and the measurement of metals in sediment.  Ultimately, use of these alternatives 

could result in more defensible assessment of field sediments at northern Saskatchewan near 

uranium operations.
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APPENDIX 

FIELD INVESTIGATION OF BENTHIC INVERTEBRATE COMMUNITY 
IMPAIRMENT AT TWO SASKATCHEWAN URANIUM OPERATIONS 

 

A.1 Abstract 

Uranium is currently mined and milled at several operations in northern Saskatchewan 

Canada.  These activities can pose a risk to aquatic ecosystems due to either planned effluent 

discharge or seepage from tailings facilities.  This study investigated benthic community 

impairment at two Saskatchewan uranium operations, Key Lake and Rabbit Lake, and the 

potential for metals in overlying water, porewater, and bulk sediment to be the cause of any 

observed effects.  The Key Lake operation discharges effluent into Wolf Lake which flows into 

Fox Lake, then Unknown Lake, and into Delta Lake, all of which are in the David Creek 

drainage system.  David Lake, located upstream of the discharge point, served as a reference site.  

At the Rabbit Lake operation, Horseshoe Pond receives effluent via Horseshoe Creek and 

Unknown Pond.  The reference lake, Raven Lake, was located away from the effluent discharge 

area.  A known source of seepage from an above ground tailings management facility into Parks 

Lake, near the Rabbit Lake operation, had previously resulted in deviation in water chemistry 

from baseline values so samples were also collected near the suspected seepage point (Parks 

Lake Seepage) and at the lake outflow (Parks Lake Outflow).   

At the Key Lake operation, the benthic community at Fox Lake, the high exposure site, 

was significantly affected.  This was possibly due to low pH levels and elevated concentrations 

of ammonia, Mo and Se in overlying water, and elevated concentrations of As, Mo, and Se in 

sediment and porewater.  Although the overlying water, porewater and sediment were elevated in 

some trace metals, the benthic community was only mildly affected in Unknown Lake and was 

unaffected in Delta Lake.  At the Rabbit Lake operation, likely due to effluent discharge, there 

were high concentrations of As, Mo, U, and Se in Horseshoe Pond sediment and porewater, and 

significant effects were observed on the associated benthic community (relative to the reference 

site).  At Parks Lake, significant benthic community differences were found between the Parks 
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Lake Outflow site and the reference site, but no significant differences were found between the 

two Parks Lake sites.  Although Parks Lake sediment was elevated in Ni and Pb relative to the 

reference site, the concentrations of both metals were consistent with historical concentrations 

(collected in 1993).  Overall, this assessment showed that there were differences in the benthic 

invertebrate communities downstream of both operations.    

 

A.2 Introduction 

Uranium is currently mined and milled at multiple operations in northern Saskatchewan, 

Canada.  Mining occurs as either underground (e.g., McArthur River) or open pit mines (e.g., 

Rabbit Lake).  The extracted ore is milled at nearby facilities such as the Key Lake and Rabbit 

Lake operations.  During the milling process, the ore is treated with acid to separate the uranium 

from the ground-up rock.  The resulting solution is chemically treated to separate the uranium 

from other constituents and to precipitate out the uranium.  The isolated uranium is then dried to 

form the final mining product, uranium oxide concentrate, U3O8, also known as yellowcake 

(www.cameco.com).  The yellowcake is then sent to be refined (at a separate refinery) and the 

liquid waste produced during the milling process is treated to meet specific discharge criteria.  

Watersheds receiving effluent discharge are routinely monitored for chemical changes and 

biological effects.   

Benthic communities are often used as an indicator of aquatic health.  The Canadian 

Environmental Effects Monitoring (EEM) Program uses benthic invertebrate community density, 

taxa richness, an evenness index (Simpson’s evenness), and the Bray-Curtis similarity index to 

aide in the assessment and protection of aquatic ecosystems potentially affected by metal mining 

(Environment Canada 2009).  In Canada, regulated mines must carry out an EEM program under 

the Metal Mining and Effluent Regulations (MMER), which are part of the federal Fisheries Act 

(Environment Canada 2009).  Using EEM recommended methods, many studies near the Key 

Lake and Rabbit Lake uranium operations have used benthic community indicators to assess 

effects of milling operations on aquatic habitat (Golder Associates Ltd. 2008; 2005a; 2005b; 

2003; 2002; Robertson 2006). 

Potential metals of concern downstream of uranium milling operations include As, Mo, 

Ni, Se, and U.  Pyle et al. (2001; 2002) stated that As, Mo, Ni, and Se are contaminants of 

concern associated with uranium operations in northern Saskatchewan.  Muscatello et al. (2006) 
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found that elevated Se levels downstream of the Key Lake operation likely caused an increased 

frequency in deformities and edema in northern pike fry.  Robertson (2006) found that porewater 

total ammonia and As were potential stressors on the benthic invertebrate communities at Key 

Lake.  Robertson (2006) also concluded that porewater total ammonia, Mn, Fe, As, and U were 

potential stressors at the Rabbit Lake operation.  However, it was unclear whether any overlying 

water constituents contributed to benthic community impairment.  Further investigation by 

Robertson (Robertson 2006; Robertson and Liber 2007) with caged Hyalella azteca in an in-situ 

study revealed that the observed toxicity at Key Lake was likely due to a pulse of organic mill-

process chemicals (kerosene, amine, and isodecanol) in the overlying water during the time of 

the study, and that the toxicity at Rabbit Lake was likely due to elevated uranium concentrations 

in overlying water, sediment, and porewater.  Thus, benthic community impairment may be due 

to a variety of factors in the receiving environments at each of the uranium operations.   

The objective of this study was to identify benthic invertebrate communities potentially 

affected by uranium mining effluent or seepages at the Key Lake and Rabbit Lake operations, 

and relate observed effects to metal concentrations in overlying water, bulk sediment, and 

sediment porewater.  This field investigation would provide valuable information for the 

assessment of the sediment quality guidelines (SQGs) published by Thompson et al. (2005) and 

for the development of alternate SQGs for the uranium industry in northern Saskatchewan using 

a new approach.   

 

A.3 Materials and methods 

A.3.1 Study sites 

All study sites were located in northern Saskatchewan, Canada, near two uranium mining 

and milling operations, Key Lake and Rabbit Lake.  Open pit mining was conducted at Key Lake 

until the reserves were exhausted in 2002.  Key Lake currently mills only ore from the McArthur 

River mine.  The Rabbit Lake operation has an operable underground mine and mill facilities and 

has been in operation since 1975.  The locations of the different uranium operations are shown in 

Figure A.1.  Water, sediment, benthos, and porewater were collected at both operations from 

reference and potential exposure lakes.  Lakes were considered to be exposure lakes if they were 

either downstream of an effluent discharge point or near a seepage point.
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Figure A.1. Locations of uranium mining and milling operations in Saskatchewan, Canada, 2011  
(From www.cameco.com).
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A.3.1.1 Key Lake 

Samples were collected near the Key Lake operation, within the David Creek drainage 

area, between August 21 and 23, 2007.  The reference site, David Lake, was located upstream of 

the effluent discharge point (Figure A.2).  The exposure sites, Fox Lake, Unknown Lake, and 

Delta Lake, are located in a gradient of exposures downstream of the effluent discharge (Figure 

A.2).  Effluent is discharged directly into Wolf Lake (not sampled) which flows into Fox Lake, 

through a boggy area into Unknown Lake, and continues downstream into Delta Lake.   

 

A.3.1.2 Rabbit Lake 

Samples were collected near the Rabbit Lake operation on September 18 and 19, 2007.  

The reference site, Raven Lake, was located away from the effluent discharge area (Figure A.3).  

At the time of sampling, an exploration camp was set up next to Raven Lake with drilling going 

on near but not adjacent to the lake.  The high exposure site was Horseshoe Pond, which is the 

second water body downstream from the effluent discharge point (Figure A.3).  Two potential 

exposure sites were also located downstream of a seepage point in Parks Lake (Figure A.4).  The 

seepage is thought to originate from a tailings pond located adjacent to the lake, the suspected 

source of elevated metal concentrations in sediment (Ni and Pb) and elevated major ion 

concentrations in surface water (Terrestrial & Aquatic Environmental Managers Ltd. 1994).  In 

this study, the Parks Lake Seepage site was near the seepage point and the Parks Lake Outflow 

sample site was near the outflow of Parks Lake, downstream of the seepage point (Figure A.4). 

 

A.3.2 Field characterization 

A.3.2.1 Overlying water 

Surface/overlying water was sampled using a Wildco® 3.2-L Van Dorn horizontal, 

acrylic beta water sampler (Wildlife Supply Company, Buffalo, NY, USA) from ~20 cm above 

the sediment surface and filtered through a 53-μm sieve (n = 3).  Dissolved oxygen and 

temperature were measured in the field  (n = 3) using a Thermo Orion® dissolved oxygen meter 

(Model 835, Thermo Scientific, Beverly, MA, USA).  Water samples were analyzed within two 

weeks of surface water collection.  pH was measured using an ORION® perpHect Ross Sure-

Flow electrode (Model 8272BN, Thermo Scientific, Beverly, MA, USA) and ORION® PerpHect 

LogR meter (Model 370, Thermo Scientific, Beverly, MA, USA).  Conductivity was measured
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Figure A.2. Lakes sampled at the Key Lake operation, Saskatchewan, Canada. Map from 
Robertson (2006). 
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Figure A.3. Reference (Raven Lake) and high exposure (Horseshoe Pond) sample lakes at the 
Rabbit Lake operation, Saskatchewan, Canada.  Map adapted from Robertson (2006). 

 to Hidden Bay 
 (Wollaston Lake) 

Raven Lake 
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Figure A.4. Parks Lake sampling locations (Parks Lake Seepage and Parks Lake Outflow) at the 
Rabbit Lake operation. Map adapted from TAEM (1994). 

● 

● 
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using an ORION® ATI conductivity cell (Model 017010, Thermo Scientific, Beverly, MA, USA) 

and ORION® ATI meter (Model 170, Thermo Scientific, Beverly, MA, USA).  Ammonia was 

measured using a Thermo Orion® ammonia electrode (Model 9512 BN, Thermo Scientific, 

Beverly, MA, USA) connected to a VWR meter (Model SB301, VWR International, Arlington 

Heights, IL, USA).  Hardness and alkalinity were measured using a Hach Digital Titrator (Model 

16900, Hach Company, Loveland, CO, USA).  Dissolved organic carbon was measured using a 

Shimadzu Total Organic Carbon Analyser (Model TOC-5050A, Mandel Scientific, Guelph, ON, 

Canada).  Overlying water samples collected for metals analysis were filtered through a 0.45-μm 

membrane (Supor® polyethersulfone syringe filter; Pall Life Sciences, East Hills, NY, USA), 

acidified with high purity nitric acid, and stored at 4°C until analysis.  

 

A.3.2.2 Sediment 

Six sediment samples for porewater extraction and total metals analysis were collected in 

5-cm diameter acrylic core-tubes (Wildlife Supply Company, Buffalo, NY, USA) using a hand-

held corer and sealed with plastic caps at each sample area.  Sediment cores were stored with no 

headspace (site water was added to the top of the core if necessary) and stored in the dark at 4°C 

until they were processed (within 2 weeks).  Processing included isolating the top 2.5-cm horizon 

of the sediment cores, homogenizing the sample (combining two cores together for each 

replicate), and removing sub-samples for porewater isolation and for analysis of total metals, 

total organic carbon (TOC; Leco C632 organic and total carbon analyzer, Leco, St. Joseph, MI, 

USA), particle size (performed by ALS, Saskatoon, SK, Canada), and water content.  Three 

replicates were analyzed for each lake.  Sediment samples for total metals and TOC were oven-

dried at 60°C for >48 hrs.  Dried sediment samples for total metals analysis were digested using 

nitric acid, peroxide, hydrofluoric acid, and boric acid in a microwave digestion system (MARS 

5 Accelerated Microwave Reaction System, CEM Corporation, Matthews, NC, USA) following 

the protocol described by Wu et al. (1996) and Wiramanaden et al. (2010).  PACS-2 (Natural 

Resources Canada, Ottawa, ON) was used as a standard reference material during the digestion 

process and analysis.  After sediment digestion, the solution was analysed for total metals at the 

Toxicology Centre (University of Saskatchewan, Canada) using ICP-MS (discussed in Section 

A.3.2.4). 
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A.3.2.3 Centrifuged porewater 

Porewater was isolated from sub-samples of surficial (2.5-cm horizon) sediment (n = 3) 

via centrifugation (International Centrifuge Universal Model UV, International Equipment Co., 

Needham Heights, MA, USA) at 3000 rpm at room temperature for 15 min.  Porewater was 

filtered through a 0.45-μm membrane Supor® polyethersulfone syringe filter and sub-samples 

isolated for analysis of total metals, dissolved organic carbon, and porewater chemistry.  

Porewater chemistry included redox potential (Micro Eh probe, Lazar Research Laboratories, 

Los Angeles, CA, USA and Beckman 250 meter, Beckman-Coulter Mississauga, ON, Canada), 

pH, ammonia, and total hardness.  Dissolved metals samples were acidified with high purity 

nitric acid (2.5% v/v) and stored at 4°C until analysis. 

 

A.3.2.4 In-situ dialysis porewater 

In-situ dialysis devices (peepers) were used to sample overlying water and sediment 

porewater profiles vertically.  Acrylic peepers with seven rectangular sample compartments (1-

cm x 8-cm) separated vertically by 1 cm were filled with ultra-pure (Barnstead NANOpure®, 

Thermo Scientific, Waltham, MA, USA) water and covered with a 0.45-μm Supor® 

polyethersulfone membrane.  Prior to field deployment, assembled peepers were stored in a 

plastic pail in ultra-pure water that was bubbled with nitrogen gas (>24 hrs).  Three or four 

peepers were placed vertically in the sediment in each lake (3 = David Lake and Delta Lake; 4 = 

Unknown Lake, Fox Lake, all Rabbit Lake sample sites) so that two compartments were above 

the sediment surface and five compartments were below the sediment surface.  Peepers were 

allowed to equilibrate in-situ for 12 days.  After 12 days, the peeper were retrieved and the 

compartment membranes pierced with a 1-mL pipette and the water samples carefully 

withdrawn.  Sub-samples from each compartment were measured for Eh and pH while in the 

field.  Dissolved organic carbon subsamples were analyzed in the lab.  Samples for metals 

analysis were acidified to approximately 2.5% high purity nitric acid and stored at 4°C until 

analysis.   

 

A.3.3 Benthic community assessment 

Benthic invertebrate community samples were collected with a standard Ekman grab 

sampler (6" x 6" x 6", Wildlife Supply Company, Buffalo, NY, USA) and sieved through a 500-
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μm sieve bucket (Wildlife Supply Company, Buffalo, NY, USA).  Three replicate samples from 

an approximately 3 m2 area were collected at each sampling site (one sample site per lake).  Each 

sample was preserved with 10% neutral buffered formalin in separate 1-L polyethylene 

containers.  Benthos samples were sorted, identified, and enumerated in the laboratory of Dr. Jan 

Ciborowski (University of Windsor, ON, Canada) to at least the family level using standard 

protocols and keys. 

 

A.3.4 Metals analysis 

All water, porewater, and sediment metals samples were analyzed using an inductively 

coupled plasma-mass spectrometer (ICP-MS; Thermo Fisher Scientific X-Series, Waltham, MA, 

USA) at the Toxicology Centre (University of Saskatchewan, Saskatoon, SK).  Quality assurance 

and quality control (QA/QC) standards were maintained throughout all analysis (e.g., 

measurements within 20% of the specified standard reference material concentrations for the 

majority of metals analyzed, blanks less than the method detection limit).  Standard reference 

materials used were PACS-2 (National Research Council Canada) for sediment and 1640 

(National Institute of Standards and Technology, Gaithersburg, MD, USA) and SLRS-4 

(National Research Council Canada) for water.  Standard reference materials, duplicates, blanks, 

and standards were analyzed with each batch of samples.  At least one of these quality control 

samples were analyzed approximately every 10 samples.   

 

A.3.5 Data analysis and statistics 

Benthic community metrics were calculated to describe the benthic invertebrate 

community composition.  Density (organisms/m2), taxon richness, Simpson’s diversity, 

evenness, and the Bray-Curtis similarity index were calculated using the formulas found in the 

Canadian Metal Mining Guidance document for Aquatic Environmental Effects Monitoring 

(Environment Canada, 2002).  Metrics were calculated based on taxonomy to the family level. 

All statistical analyses were completed using SigmaPlot Version 11.0 software (Systat 

Software Inc.).  If normality and equal variance assumptions were met, statistical significance 

between reference and exposure sites was tested using a one-way ANOVA.  If assumptions were 

not met, a one-way ANOVA on ranks was used.  If a significant difference between sites was 

found, a Dunnett’s post-hoc test was used to determine which exposure sites differed from the 
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reference site.  This approach was used for both the Key Lake and Rabbit Lake benthic 

community data.  A t-test was used to assess the difference in benthic community metrics 

between Parks Lake Outflow and Parks Lake Seepage.   

Water quality guidelines (WQGs) and SQGs were used to screen the water, porewater, 

and sediment concentrations of constituents (primarily metals) that may be of concern.  These 

guidelines are presented in Table A.1.  

  

A.4 Results 

A.4.1 Key Lake 

A.4.1.1 Physicochemical characterization 

Results of the water quality analyses are listed in Table A.2.  The reference sampling site 

depth (69 cm) was shallower than that of the exposure sites (102 to 136 cm).  The pH was lower 

at the exposure sites (4.0 to 5.3) relative to the reference site (7.2).  Ammonia, conductivity, and 

total hardness measurements were elevated at the exposure sites relative to the reference site and 

increased with proximity to the effluent discharge point (Fox Lake > Unknown Lake > Delta 

Lake).  Dissolved organic carbon content was relative low across all sampling sites, although 

David Lake had the highest concentrations.   

Overlying water metal concentrations from the various Key Lake locations are listed in 

Table A.3.  Chromium, Pb, and Cu concentrations were relatively constant among sites.  Arsenic, 

Mo, Ni, U, and V concentrations generally increased with proximity to the effluent discharge 

point.  Metals that had concentrations below available WQGs included As, Cr, Cu, Ni, Pb, U and 

V.  Unknown and Fox Lakes exceeded the WQG for Mo and Al.  Selenium concentrations in 

overlying water were difficult to interpret because the limit of detection was higher than the 

WQG; however, Fox Lake had an overlying water concentration that was quantifiable and well 

above the WQG.  Boron, Al, Sr, Sb, and Ba were elevated (twice that of other exposure or 

reference concentrations) in Fox Lake. 

Sediment quality characteristics and sediment metal concentrations are listed in Table 

A.4 (only metals that had a SQG were evaluated).  David Lake and Fox Lake sediments were 

sandier than Delta Lake and Unknown Lake sediments, which were classified as clay loam and 

clay, respectively.  Unknown Lake had the highest total organic carbon content (19.1 ± 1.5 %) 

followed by Delta Lake (9.2 ± 4.2 %), David Lake (6.7 ± 3.0 %) and Fox Lake (1.0 ± 0.1 %).  
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Table A.1. Water quality guidelines (WQGs; μg/L) and sediment 
quality guidelines (SQGs; μg/g dry wt) used in this study for 
comparison to measured variables in overlying water, porewater, 
and sediment from the Key Lake and Rabbit Lake sites. 

SQGs Variable WQGs LEL ISQG 
Ag 0.1  -   -  

Al 5 if pH < 6.5;  
100 if pH ≥ 6.5  -   -  

As 5 9.8 5.9 
B 1500  -   -  
Cd Equationa  -   -  
Co 0.9b  -   -  
Cr 8.9c, 1.0d 47.6 37.3 
Cu 2e 22.2 35.7 
Fe 300  -   -  
Hg 0.026f  -   -  
Mo 73 13.8  -  
NH3 0.021 - 231g  -   -  
Ni 25h 23.4 18 
Pb 1i 36.7 35 
pH  6.5 - 9.0  -   -  
Se 1 1.9  -  
Tl 0.8  -   -  
U 15 104.4  -  
V 6bj 35.2  -  
Zn 30  -   -  

WQGs = Water quality guidelines for the protection of aquatic life derived by 
the CCME (2011) 
SQGs = Sediment quality guidelines 
LEL = Lowest effect level derived by the Canadian Nuclear Safety 
Commission, Thompson et al. (2005) 
ISQG = Interim sediment quality guideline derived by the CCME (2002) 
a Cadmium WQG = 100.86[log10(hardness)]-3.2 μg/L 

b Derived by the Ontario Ministry of Environment (1994) 

c Chromium III 

d Chromium VI 

e  Copper WQG = e0.8545[ln(hardness)]-1.465 * 0.2 µg/L; minimum of 2 µg/L regardless 
of water hardness 
f  WQG for inorganic mercury 

g Temperature and pH dependent; Total ammonia in units of mg NH3/L. 
h Nickel concentration = e0.76[ln(hardness)]+1.06 µg/L; minimum of 25 µg/L regardless 
of water hardness 
i Lead WQG = e1.273[ln(hardness)]-4.705 µg/L; minimum of 1 µg/L regardless of water 
hardness 
j Interim guideline 
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Table A.2. Mean (± SD; n = 3) water quality variables measured in overlying water sampled near the 
Key Lake uranium operation in 2007. 

  Key Lake Sampling Sites 
Variable Units David Lake Delta Lake Unknown Lake Fox Lake 
Depth cm 69 ± 1 102 ± 3 136 ± 5 109 ± 4 
DOa mg/L 7.88 9.06 7.79 7.96 

Temperaturea °C 13.6 16.8 15.8 15.5 
pH   -  7.2 ± 0.0 4.0 ± 0.0b 5.3 ± 0.1b 4.8 ± 0.0b 

Conductivity μS/cm 24 ± 0 1236 ± 11 1411 ± 14 2723 ± 12 
Ammonia mg/L as N 0.09 ± 0.15 1.37 ± 0.13 3.82 ± 0.08 9.53 ± 1.25
Alkalinity mg/L as CaCO3 8 ± 1 < 1 4 ± 1 4 ± 1 
Hardness mg/L as CaCO3 7 ± 2 362 ± 4 444 ± 1 977 ± 6 

DOC mg/L 5.4 ± 0.8 < 1.34a 4.1 ± 0.2 < 2.68 
DO = Dissolved oxygen         
NA = Sample not available         
DOC = Dissolved organic carbon         
a n = 1          
b Not within water quality guidelines as summarized in Table A.1 
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Table A.3. Summary (mean ± SD; n = 3) of metal concentrations (μg/L) in overlying water 
sampled near the Key Lake uranium operation in 2007. 
 

Key Lake Sampling Sites Metal David Lake Delta Lake Unknown Lake Fox Lake 
Ag 0.104 ± 0.012 0.094 ± 0.006 0.089 ± 0.001 0.094 ± 0.007 
Al 6.8 ± 3.0 68.0 ± 3.8c 79.4 ± 0.37c 188 ± 2.7c 
As <0.23 1.2 ± 0.084 2.4 ± 0.22 6.2 ± 0.44c 
B <11 315 ± 3.1 433 ± 2.4 939 ± 16.6 
Ba 3.6 ± 0.03 23 ± 0.13 17 ± 0.11 40 ± 0.21 
Cr 0.22 ± 0.14 0.37 ± 0.12 0.27 ± 0.070 0.49 ± 0.17 
Cu 2.5 ± 0.081c 3.2 ± 0.35 2.5 ± 0.079 2.6 ± 0.040 
Hg 0.10 ± 0.0095 0.11 ± 0.0089 0.11 ± 0.0042 0.13 ± 0.011 
Mo <0.19 10 ± 0.21 148 ± 1.4c 403 ± 2.8c 
Mn 4.9 ± 0.14 131 ± 2.3 69 ± 1.0 84 ± 1.4 
Ni 0.39 ± 0.16 11 ± 0.24 11 ± 0.18 25 ± 0.29 
Pb 0.018 ± 0.016 0.30 ± 0.059 0.049 ± 0.010 0.18 ± 0.018 
Sb <0.012b 0.060 ± 0.0078 0.136 ± 0.0017 0.401 ± 0.0092 
Se <5 <5 <5 8.7 ± 0.5ac 
Sn 0.09 ± 0.0079 0.07 ± 0.010 0.14 ± 0.090 0.09 ± 0.018 
Sr 12 ± 0.17 221 ± 1.8 255 ± 1.5 561 ± 5.8 
U 0.019 ± 0.0020 0.44 ± 0.0015 0.33 ± 0.0021 2.290 ± 0.012 
V 0.23 ± 0.020 0.24 ± 0.10 0.23 ± 0.084 0.44 ± 0.10 

a One replicate < limit of detection (LD); used half the LD in calculating the mean and standard deviation 
b Two out of three replicates < LD; therefore, no mean and standard deviation could be calculated, so stated that 
concentrations reported as < LD 
c Exceedence of water quality guidelines summarized in Table A.1 
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Table A.4. Summary (mean ± SD; n = 3) of sediment quality characteristics and sediment metal concentrations (μg/g 
dry wt) near the Key Lake uranium operations in 2007. 

Key Lake Sampling Sites Variable David Lake Delta Lake Unknown Lake Fox Lake 
Sanda (%)  81 43 4 96 
Silta (%) 9 29 29 1 

Claya (%) 10 28 67 2 
Texture Loamy sand Clay loam Clay Sand 

TOC (%) 6.7 ± 3.0 9.2 ± 4.2 19.1 ± 1.5 1.0 ± 0.1 
Moisture (%) 76.1 ± 5.8 86.6 ± 3.7 NA 48.2 ± 4.2 

As 2.90 ± 1.83 60.60 ± 19.80bc 466.02 ± 153.36bc 61.79 ± 13.98bc 
Cr 2.38 ± 0.81 11.47 ± 3.01 26.78 ± 5.98 3.85 ± 0.78 
Cu 2.89 ± 1.54 3.24 ± 0.55 7.01 ± 1.09 1.56 ± 0.79 
Mo 0.22 ± 0.08 4293.70 ± 1049.5b 1655.1 ± 602.3b 377.40 ± 36.41b 
Ni 2.08 ± 0.95 60.88 ± 22.44bc 100.84 ± 32.61bc 3.07 ± 1.47 
Pb 4.27 ± 1.42 5.51 ± 1.39 7.13 ± 1.16 1.85 ± 0.08 
Se <0.0067 19.25 ± 7.70b 42.39 ± 15.59b 3.76 ± 0.63b 
U 1.11 ± 0.38 11.41 ± 3.84 47.15 ± 13.74 5.04 ± 0.80 
V 5.99 ± 1.77 11.84 ± 2.52 26.54 ± 5.42 8.60 ± 2.86 

NA = Sample not available 
TOC = Total organic carbon 
a Only one composite sample analyzed 
b Exceeds the lowest effect level (LEL) as derived by Thompson et al. (2005) 
c Exceeds interim sediment quality guideline (ISQG) as derived by CCME (2011) 
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Sediment metal concentrations exceeded the LELs and ISQGs (Table A.1) for As, Mo, 

and Se at all three of the exposure sites.  Delta and Unknown Lakes exceeded the Ni LEL and 

ISQG.  Sediment metal concentrations at David Lake (reference site) were all below the SQGs.  

Sediment metal concentrations in Fox Lake were lower than in the two other exposure lakes 

which are located further downstream from the treated effluent discharge point. 

Porewater characteristics and metal concentrations in porewater from centrifuged whole-

sediment are listed in Table A.5.  Ammonia and hardness generally increased with proximity to 

the effluent release point (Fox Lake > Unknown Lake ≥ Delta Lake > David Lake).  Metal 

concentrations in porewater were compared to available WQGs for the protection of aquatic life.  

Arsenic porewater concentrations were highest in Unknown Lake and all exposures sites were 

above the WQG of 5 μg/L.  Chromium porewater concentrations were highest in Unknown Lake 

and all sampling sites exceeded the WQG for hexavalent chromium, but were below the WQG 

for trivalent chromium (only total chromium concentrations were measured).  Copper porewater 

concentrations exceeded the WQG (2 μg/L) at all sites with David Lake yielding the highest Cu 

concentrations of 14.7 ± 6.1 μg/L.  All exposure sites had porewater Mo concentrations that 

exceeded the WQG and that were substantially elevated relative to the reference site, David 

Lake.  Porewater Se concentrations were generally difficult to interpret since the limit of 

detection was greater than the WQG of 1 μg/L.  However, Fox Lake had a porewater Se 

concentration of 8.9 ± 0.6 μg/L which was above the WQG.  The WQG for U was exceeded only 

in Unknown Lake porewater, although both Fox Lake and Unknown Lake showed elevated 

concentrations of U in the porewater relative to David Lake and Delta Lake.  Other elements that 

exceeded available WQGs were Al, Co, Fe, and Hg.   

Porewater characteristics, including metal concentrations, collected using peepers are 

listed in Table A.6.  The number of sample replicates varied among sites since two peepers had 

been pulled out of the sediment in Unknown Lake by unknown causes.  David Lake and Delta 

Lake had only three replicates deployed and retrieved due to the limited number of peepers 

available at the time of deployment.  Chromium concentrations were above the WQG for 

hexavalent Cr, but less than the WQG for trivalent Cr (only total chromium concentrations were 

measured).  Both As and Mo had elevated concentrations at all exposure sites compared to the 

reference lake (David Lake) and were well above their respective WQG.  Again, Se porewater 

concentrations were difficult to interpret due to the high limit of detection (above the WQG).  
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Table A.5. Summary (mean ± SD; n = 3) of porewater characteristics and metal concentrations measured in centrifuged 
porewater from sediment (top 2.5 cm) sampled near the Key Lake uranium operations in 2007. 

Key Lake Sampling Sites Variable Units 
David Lake Delta Lake Unknown Lake Fox Lake 

pH   - 7.7 ± 0.1 5.7 ± 0.2a 7.0 ± 0.1 5.4 ± 0.1a 
Ammonia mg N/L  0.26 ± 0.29 1.51 ± 0.17 6.85 ± 0.26 8.88 ± 0.26 
Hardness mg CaCO3/L  17 ± 2 379 ± 24 393 ± 18 962 ± 20 

DOC mg/L 5.2 ± 1.4 6.3 ± 1.5 17.3 ± 1.3 7.4 ± 1.2 
Ag μg/L 0.12 ± 0.01a 0.11 ± 0.01a 0.11 ± 0.00a 0.11 ± 0.00a 

Al μg/L 89.42 ± 40.17 12.37 ± 5.57a 9.72 ± 0.40 641.27 ± 130.64a 

As μg/L 0.86 ± 0.10 10.93 ± 2.87a 183.33 ± 35.78a 21.32 ± 7.03a 
B μg/L 14.7 ± 3.2 372.6 ± 21.1 541.2 ± 30.2 1098.3 ± 15.2 
Ba μg/L 4.12 ± 1.20 46.94 ± 6.40 28.82 ± 8.51 43.38 ± 0.55 
Be μg/L <1.6 <1.6 <1.6 <1.6 
Cd μg/L <0.014c 0.04 ± 0.06d 0.05 ± 0.03 0.13 ± 0.02 
Co μg/L 0.09 ± 0.04 0.36 ± 0.06 0.21 ± 0.02 3.41 ± 0.96 
Crb μg/L 1.71 ± 0.15 2.03 ± 1.16 3.61 ± 1.27 2.69 ± 2.82 
Cu μg/L 14.66 ± 6.06a 6.79 ± 0.49 5.87 ± 0.11 6.70 ± 0.26 
Fe μg/L 384 ± 179 19800 ± 7751 1996 ± 73 208 ± 199 
Hg μg/L 0.03 ± 0.00a 0.04 ± 0.00a 0.47 ± 0.09a 0.04 ± 0.01a 

Mn μg/L 24.2 ± 8.5 248.5 ± 85.5 126.7 ± 45.2 87.4 ± 6.4 
Mo μg/L 0.3 ± 0.0 987.1 ± 651.2a 1366.0 ± 605.0a 472.9 ± 71.0a 

Ni μg/L 2.19 ± 0.86 16.98 ± 2.15 6.22 ± 0.81 53.73 ± 23.82a 

Pb μg/L 0.19 ± 0.05 0.02 ± 0.01 0.07 ± 0.04 0.27 ± 0.21 
Sb μg/L 0.04 ± 0.01 1.02 ± 0.48 2.42 ± 0.67 0.78 ± 0.18 
Se μg/L <3.2 <3.2 <3.2 8.93 ± 0.63a 

Sn μg/L 0.17 ± 0.02 0.13 ± 0.02 0.12 ± 0.01 0.15 ± 0.02 
Sr μg/L 6.96 ± 1.80 219.50 ± 17.34 217.87 ± 6.67 501.50 ± 3.13 
Tl μg/L 0.01 ± 0.00 0.05 ± 0.03 0.01 ± 0.00 1.84 ± 0.70 
U μg/L 0.03 ± 0.02 0.09 ± 0.02 8.56 ± 1.75 2.91 ± 0.60 
V μg/L 0.71 ± 0.65 0.19 ± 0.06 0.88 ± 0.12 0.85 ± 0.34 
Zn μg/L 1.75 ± 0.79 4.14 ± 0.82 1.88 ± 0.41 15.83 ± 3.03 

DOC = Dissolved organic carbon 
a Not within water quality guidelines as summarized in Table A.1 
b Speciation analysis was not measured in samples so can not determine if samples exceed water quality guidelines 
c Two out of three replicates < limit of detection (LD); therefore, no mean and standard deviation could be calculated, so concentrations listed as < LD 
d One replicate <LD; used half the LD in calculating the mean and standard deviation 
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Table A.6. Water quality characteristics and concentrations of select variables (mean ± SD) from sediment 
porewater collected from peepers sampling to the 0 - 2 cm fraction of sediment at sites near the Key Lake 
uranium operation in 2007. 

Key Lake Sampling Sites Variable Units David Lake Delta Lake Unknown Lake Fox Lake 
pH  -  6.3 ± 0.1a 6.5 ± 0.3 7.0 ± 0.1 5.2 ± 0.4a 

DOC mg/L 8.3 ± 1.9 7.1 ± 3.2 37.3 ± 5.3 5.2 ± 0.6 
As μg/L 0.64 ± 0.48 6.11 ± 1.97 126.55 ± 34.72a 133.50 ± 253.87a 
Crb μg/L 1.01 ± 0.27 1.10 ± 0.14 2.56 ± 1.15 1.83 ± 1.06 
Cu μg/L 0.23 ± 0.14 0.20 ± 0.13 1.17 ± 1.49 0.53 ± 0.37 
Mo μg/L 0.26 ± 0.07 3101.30 ± 1701.38a 424.35 ± 401.99a 4249.38 ± 7708.24a 
Ni μg/L 0.12 ± 0.06 3.38 ± 3.03 2.97 ± 0.99 20.78 ± 4.31 
Pb μg/L 0.06 ± 0.05 0.48 ± 0.97 0.08 ± 0.03 0.09 ± 0.06 
Se μg/L <6 <6 <6 8.98 ± 2.14a 
U μg/L 0.02 ± 0.01 0.66 ± 0.78 3.62 ± 0.33 3.54 ± 1.24 
V μg/L 0.29 ± 0.18 0.20 ± 0.07 4.40 ± 1.12 1.17 ± 1.83 
n  -  3 3 2 4 

a Exceeds water quality guidelines as summarized in Table A.1 
b Speciation analysis was not measured so can not determine if samples exceed a water quality guideline 

 
 

Table A.7. Mean (± SD, n = 3) benthic invertebrate community metrics for samples collected near the Key Lake 
uranium operation in 2007. 

Key Lake Sampling Sites 
Metric David Lake  Fox Lake Unknown Lake Delta Lake 

Family Richness 11 ± 2 4 ± 1* 9 ± 1 9 ± 1 
Density (individuals/m2) 9609 ± 4917 8478 ± 4570 6449 ± 3871 9087 ± 2711 
Simpson's Diversity 0.54 ± 0.08 0.25 ± 0.16* 0.54 ± 0.09 0.46 ± 0.12 
Bray-Curtis Index 0.19 ± 0.16 0.41 ± 0.09 0.68 ± 0.11* 0.37 ± 0.10 
Evenness 0.21 ± 0.01 0.38 ± 0.06* 0.26 ± 0.05 0.22 ± 0.03 
* Statistically different (ANOVA, Dunnett's post-hoc test, p ≤ 0.05) from the reference site (David Lake) 
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However, the Se concentrations in Fox Lake were greater than at the other sample sites and 

exceeded the WQG.   

 

A.4.1.2 Benthic invertebrate communities 

The benthic invertebrate community generally varied with proximity to the effluent 

discharge point based on the metrics used (Table A.7).  Fox Lake was statistically different from 

David Lake in family richness (lower), Simpson’s diversity (lower), and evenness (higher).  

There was no significant difference between exposure and reference sites in benthic invertebrate 

density.  The Unknown Lake Bray-Curtis index was statistically different (elevated) from that of 

the reference lake.   

 

A.4.2 Rabbit Lake 

A.4.2.1 Physicochemical characterization 

Results of the water quality analyses are listed in Table A.8.  Water sampling depths were 

between 87 and 108 cm over all sites at Rabbit Lake.  Dissolved oxygen and temperature were 

similar across all sites, averaging 12.0 ± 1.6 mg/L and 6.0 ± 1.7 °C, respectively.  Overlying 

water pH was fairly consistent among sampling sites with only Horseshoe Pond having a low pH 

of 6.2.  Conductivity and water hardness were lowest at the reference site, Raven Lake, slightly 

elevated at both of the Parks Lake sample sites, and highest at Horseshoe Pond.  All sites had 

low buffering capacity (alkalinity below 20 mg/L).  Ammonia concentrations at all sampling 

sites were below 0.2 mg N/L.  Overlying water metal concentrations are listed in Table A.9; 

concentrations were below WQGs at all sites for As, Cr, Ni, Pb, and V.  Copper was above 

available WQGs at Raven Lake and at both Parks Lake sampling sites.  Horseshoe Pond did not 

exceed the WQG for Cu because of its high water hardness.  Horseshoe Pond exceeded the 

WQGs for Al, Mo and U.  Parks Lake Seepage and Outflow sites were very similar in overlying 

water metal concentrations.  Most elements increased with proximity to the seepage or effluent 

discharge point.  Horseshoe Pond had the highest metal concentrations in the overlying water. 

Sediment characteristics and whole-sediment metal concentrations are listed in Table 

A.10.  The sediment types ranged from sandy loams (Raven Lake, Parks Lake Seepage), and silt 

loam (Parks Lake Outflow), to clay (Horseshoe Pond).  The sediment total organic carbon 

content was highest in Horseshoe Pond (11.5 ± 1.2%), with the other sites having approximately 
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Table A.8. Mean (± SD; n = 3) water quality variables measured in overlying water sampled near the Rabbit 
Lake uranium operation in 2007. 
    Rabbit Lake Sampling Sites 

Variable Units Raven Lake Horseshoe Pond Parks Lake Seepage Parks Lake Outflow
Depth cm 108 ± 3 87 ± 3 101 ± 1 94 ± 1 
DOa mg/L 13.8 11.3 NA 10.8 

Temperaturea °C 5.3 6.7 NA 5.9 
pH   -  7.1 ± 0.1 6.2 ± 0.0b 6.9 ± 0.0 6.9 ± 0.1 

Conductivity  μS/cm 58 ± 0 3400 ± 46 245 ± 0 235 ± 2 
Ammonia mg/L as N 0.09 ± 0.02 0.17 ± 0.00 0.12 ± 0.03 0.03 ± 0.02 
Alkalinity mg/L as CaCO3 18 ± 1 7 ± 1 6 ± 1 7 ± 1 
Hardness  mg/L as CaCO3 18 ± 3 1317 ± 12 66 ± 1 65 ± 1 

DOC  mg/L 7.8 ± 1.8 4.8 ± 0.1 7.7 ± 0.2 8.2 ± 0.6
DO = Dissolved oxygen         
NA = Sample not available         
DOC = Dissolved organic carbon         
a n = 1          
b Not within WQGs as summarized in Table A.1 
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Table A.9. Metal concentrations (μg/L) in overlying water sampled near the Rabbit Lake 
uranium operation in 2007 (mean ± SD; n = 3). 

Rabbit Lake Sampling Sites Metal Raven Lake Horseshoe Pond Parks Lake Seepage Parks Lake Outflow 
Ag 0.094 ± 0.003 0.089 ± 0.001 0.090 ± 0.003 0.092 ± 0.002 
Al 12.29 ± 0.07 85.41 ± 5.95a 24.29 ± 1.01 20.95 ± 0.87 
As <0.23 2.91 ± 0.11 <0.23 <0.23 
B <11 182.37 ± 13.70 <11c < 11 
Ba 3.92 ± 0.08 23.86 ± 0.35 6.25 ± 0.02 6.13 ± 0.11 
Cr 0.18 ± 0.01 0.65 ± 0.13 0.19 ± 0.05 0.20 ± 0.02 
Cu 2.42 ± 0.02a 2.68 ± 0.15 2.58 ± 0.14a 2.82 ± 0.18a 
Hg 0.09 ± 0.00 0.11 ± 0.00 0.09 ± 0.01 0.09 ± 0.01 
Mn 1.76 ± 0.08 172.13 ± 7.54 36.92 ± 0.15 31.29 ± 0.89 
Mo 0.28 ± 0.01 1932.0 ± 36.1a 0.46 ± 0.34 0.49 ± 0.03 
Ni 0.35 ± 0.07 16.29 ± 0.53 1.19 ± 0.01 1.05 ± 0.03 
Pb 0.13 ± 0.11 0.03 ± 0.01 <0.006 0.02 ± 0.00 
Sb <0.012c 0.214 ± 0.023 0.012 ± 0.005b 0.011 ± 0.004b 
Se <5 <5c <5 <5 
Sn 0.09 ± 0.00 0.12 ± 0.02 0.05 ± 0.00 0.06 ± 0.01 
Sr 17.83 ± 0.24 485.43 ± 13.83 25.09 ± 0.41 24.43 ± 0.19 
U 1.41 ± 0.02 89.10 ± 1.23a 0.24 ± 0.00 0.26 ± 0.00 
V 0.22 ± 0.04 0.36 ± 0.12 0.27 ± 0.08 0.19 ± 0.05 

a Exceeds water quality guidelines as summarized in Table A.1 
b One replicate < limit of detection (LD); used half the LD in calculating the mean and standard deviation 
c Two out of three replicates < LD; therefore, no mean and standard deviation could be calculated, so  concentrations 
listed as < LD 
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Table A.10. Sediment characteristics and metal concentrations (μg/g dry wt) sampled near the Rabbit Lake uranium 
operations in 2007 (mean ± SD; n = 3). 

Rabbit Lake Sampling Sites Variable Raven Lake Parks Lake Outflow Parks Lake Seepage Horseshoe Pond 
Sanda (%)  75 37 60 20 
Silta (%) 11 50 32 38 

Claya (%) 15 13 9 42 
Texture Sandy loam Silt loam Sandy loam Clay 

TOC (%) 2.9 ± 0.7 2.7 ± 0.6 2.0 ± 0.5 11.5 ± 1.2 
Moisture (%) 82.9 ± 8.3 73.6 ± 1.6 61.3 ± 4.2 85.6 ± 2.5 

As 1.62 ± 0.66 1.84 ± 0.53 2.11 ± 1.84 72.34 ± 42.41bc 
Cr 12.58 ± 1.59 17.41 ± 0.35 14.29 ± 4.11 19.58 ± 2.17 
Cu 7.19 ± 0.65 7.36 ± 0.30 3.60 ± 0.36 27.20 ± 6.30b 
Mo 2.13 ± 0.26 2.01 ± 0.28 1.25 ± 0.35 1520.70 ± 517.99b 
Ni 6.04 ± 0.27 15.24 ± 0.36 9.37 ± 1.32 53.33 ± 22.48bc 
Pb 8.22 ± 0.61 12.64 ± 0.31 9.73 ± 6.43 4.60 ± 0.08 
Se <0.0067 <0.0067 <0.0067 14.59 ± 6.17b 
U 77.69 ± 8.78 6.84 ± 0.68 3.94 ± 0.65 1234.28 ± 425.44b 
V 44.48 ± 8.86b 19.84 ± 0.34 18.33 ± 3.40 17.81 ± 1.47 

TOC = Total organic carbon 
a Only one composite sample analyzed 
b Exceeds the lowest effect level (LEL) as derived by Thompson et al. (2005) 
c Exceeds interim sediment quality guideline (ISQG) as derived by CCME (1999) 
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2 to 3 % organic carbon.  Horseshoe Pond yielded the highest metal concentrations as compared 

to the other sites and exceeded the As, Cu, Mo, Ni, Se, and U LELs and ISQGs.  Raven Lake 

was the only site to exceed the V LEL.  Generally, sediment metal concentrations at Parks Lake 

sample sites were similar to each other and to Raven Lake.   

Porewater characteristics and metal concentrations collected from centrifuging whole 

sediment are found in Table A.11.  Ammonia, hardness, and DOC increased with proximity to 

anthropogenic inputs (Raven Lake < Parks Lake Outflow < Parks Lake Seepage < Horseshoe 

Pond).  All sites were either at or below the WQGs for Cr, Ni, Pb, and V.  Horseshoe Pond 

generally had the highest concentrations of metals in centrifuged porewater and exceeded the 

WQG for As, Mo, U, B, Fe, and Zn.  Raven Lake marginally exceeded the WQG for Al.  Parks 

Lake Seepage and Outflow sample sites exceed the Al, Fe, and Co WQGs.  All sites exceeded 

the WQG for Cu.     

Porewater characteristics and metal concentrations collected using peepers are listed in 

Table A.12.  There are uneven replicates at sampling sites because one peeper had been pulled 

out of the sediment by unknown causes in the Parks Lake Outflow sampling site.  Peeper 

porewater ranged from a pH of 6.2 to 6.8 and DOC ranged from 5.0 to 9.8 mg/L.  Horseshoe 

Pond generally had the highest metal concentrations in peeper porewater and exceeded the 

WQGs for As, Mo, and U.  All sites nearly or just exceeded the available WQG for hexavalent 

Cr, but not for the trivalent form of Cr.  Only total metal concentrations of Cr were measured but 

comparisons to the speciation based Cr WQG were made as it is the only available WQG. 

 

A.4.2.2 Benthic invertebrate communities  

Metrics used to evaluate the benthic invertebrate community generally varied with 

proximity to the influence of mine waters (Table A.13).  There was no significant difference 

between Raven Lake (reference) and the other sampling locations in family richness, density, 

and evenness.  Horseshoe Pond and Parks Lake Outflow were statistically different from Raven 

Lake based on the Simpson’s diversity metric.  The Bray-Curtis similarity indices were not 

statistically different among all potential exposure sites and the reference site, Raven Lake (an 

ANOVA on Ranks was conducted since assumptions of normality and equal variance could not 

be met even when the data was log-transformed).  When Parks Lake Seepage and Parks Lake 
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Table A.11. Summary (mean ± SD; n = 3) of porewater characteristics and metal concentrations measured 
in centrifuged porewater from sediment (top 2.5 cm) sampled near the Rabbit Lake uranium operations in 
2007. 

Rabbit Lake Sampling Sites Variable Units Raven Lake Parks Lake Outflow Parks Lake Seepage Horseshoe Pond 
pH  -  6.9 ± 0.2 6.6 ± 0.0 6.6 ± 0.0 7.2 ± 0.3 

Ammonia mg N/L  0.61 ± 0.15 0.58 ± 0.24 1.94 ± 0.46 5.87 ± 1.42 
Hardness mg CaCO3/L 20 ± 3 53 ± 1 99 ± 2 1127 ± 28 

DOC mg/L 5.0 ± 0.5 8.7 ± 2.3 15.1 ± 3.3 16.0 ± 1.2 
Ag μg/L 0.11 ± 0.01b 0.12 ± 0.01b 0.11 ± 0.00b 0.13 ± 0.04b 

Al μg/L 100.94 ± 52.98b 448.40 ± 102.49b 679.73 ± 163.95b 13.57 ± 0.54 
As μg/L 0.53 ± 0.25 1.43 ± 0.37 2.79 ± 0.91 31.18 ± 1.08b 

B μg/L 24.9 ± 9.9 <11c <11c 285.4 ± 21.6 
Ba μg/L 8.97 ± 1.94 25.10 ± 1.75 19.21 ± 2.54 33.36 ± 5.38 
Be μg/L <1.6 <1.6 <1.6 <1.6 
Cd μg/L <0.014c 0.08 ± 0.02 0.04 ± 0.02 0.13 ± 0.04 
Co μg/L 0.10 ± 0.05 1.25 ± 0.33b 2.44 ± 0.22b 0.69 ± 0.13 
Cra μg/L 0.99 ± 0.48 1.59 ± 1.02 1.62 ± 0.13 1.13 ± 0.54 
Cu μg/L 15.58 ± 6.24b 10.32 ± 0.72b 9.40 ± 0.74b 5.90 ± 0.08 
Fe μg/L 197 ± 111 949 ± 99b 2665 ± 521b 13814 ± 5072b 
Hg μg/L 0.02 ± 0.00 0.03 ± 0.00b 0.03 ± 0.00b 0.24 ± 0.07b 

Mn μg/L 25.6 ± 6.0 1374.0 ± 365.2 1373.0 ± 227.3 468.6 ± 120.3 
Mo μg/L 0.6 ± 0.1 0.6 ± 0.0 3.0 ± 2.2 4285.3 ± 779.1b 

Ni μg/L 2.06 ± 0.86 3.61 ± 1.01 2.83 ± 0.31 12.22 ± 1.36 
Pb μg/L 0.29 ± 0.09 0.95 ± 0.17 1.35 ± 0.29b 0.05 ± 0.02 
Sb μg/L 0.05 ± 0.00 0.06 ± 0.01 0.08 ± 0.01 0.69 ± 0.22 
Se μg/L <3.2 <3.2 <3.2 <3.2 
Sn μg/L 0.15 ± 0.04 0.13 ± 0.00 0.12 ± 0.01 0.18 ± 0.01 
Sr μg/L 10.03 ± 1.50 22.92 ± 0.77 34.51 ± 1.58 469.20 ± 6.96 
Tl μg/L 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 
U μg/L 4.5 ± 2.4 0.8 ± 0.2 1.6 ± 0.7 2483.3 ± 230.6b

V μg/L 1.07 ± 0.18 1.19 ± 0.19 3.13 ± 0.82 0.31 ± 0.04 
Zn μg/L 2.73 ± 0.80 5.12 ± 1.06 5.05 ± 1.45 24.99 ± 38.68b

DOC = Dissolved organic carbon 
a Speciation analysis was not measured in samples so can not determine if samples exceed water quality guidelines 
b Exceeded water quality guidelines as summarized in Table A.1 
c Two out of three replicates < Limit of Detection (LD); therefore, no mean and standard deviation could be calculated, so concentrations 
listed as < LD 
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Table A.12. Water quality characteristics and concentrations of select elements (mean ± SD)  from sediment 
porewater collected from peepers exposed to the 0 - 2 cm fraction of sediment at sites near the Rabbit Lake 
uranium operation in 2007. 

Rabbit Lake Sampling Sites Variable Units Raven Lake Parks Lake Outflow Parks Lake Seepage Horseshoe Pond 
pH  -  6.4 ± 0.1a 6.3 ± 0.1a 6.2 ± 0.4a 6.8 ± 0.1 

DOC mg/L 5.0 ± 1.6 8.2 ± 1.5 9.8 ± 2.6 7.5 ± 2.8 
As μg/L <0.18 0.14 ± 0.07 0.29 ± 0.17 5.46 ± 4.78a 
Crb μg/L 1.03 ± 0.31 1.48 ± 1.47 0.77 ± 0.15 0.97 ± 0.22 
Cu μg/L 0.17 ± 0.03 0.28 ± 0.14 0.25 ± 0.13 0.35 ± 0.17 
Mo μg/L 0.52 ± 0.16 0.71 ± 0.45 0.44 ± 0.19 1700.75 ± 233.76a 
Ni μg/L 0.12 ± 0.08 1.01 ± 0.34 2.25 ± 0.27 14.73 ± 5.54 
Pb μg/L 0.08 ± 0.02 0.04 ± 0.02 0.08 ± 0.07 0.12 ± 0.06 
Se μg/L <6 <6 <6 <3.6 
U μg/L 1.72 ± 1.45 0.10 ± 0.07 0.53 ± 0.68 424.96 ± 641.53a 
V μg/L 0.26 ± 0.12 0.25 ± 0.04 0.36 ± 0.16 0.23 ± 0.22 
n  -  4 3 4 4 

a Exceeds WQGs as summarized in Table A.1 
b Speciation analysis was not measured so can not determine if samples exceed a water quality guideline 

 
 

Table A.13. Mean (± SD, n = 3) benthic invertebrate community metrics for samples collected near the Rabbit Lake 
uranium operation in 2007. 

Rabbit Lake Sampling Sites 
Metric Raven Lake Horseshoe Pond Parks Lake Seepage Parks Lake Outflow 

Family Richness 11 ± 2 7 ± 4 7 ± 3 9 ± 2 
Density (individuals/m2) 5246 ± 1750 4986 ± 2985 4580 ± 3112 7188 ± 3240 
Simpson's Diversity 0.73 ± 0.03 0.33 ± 0.24* 0.57 ± 0.05 0.38 ± 0.15* 
Bray-Curtis Index 0.20 ± 0.19 0.60 ± 0.06 0.56 ± 0.09 0.60 ± 0.08 
Evenness 0.35 ± 0.08 0.26 ± 0.10 0.40 ± 0.24 0.19 ± 0.06 
* Statistically different (ANOVA, Dunnett's post-hoc test, p ≤ 0.05) from the reference site (Raven Lake) 
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Outflow were compared, there was no significant difference between the two sites for family 

richness, density, diversity, evenness, and Bray-Curtis indices. 

 

A.5 Discussion 

Environmental quality guidelines are used as primary screening tools to evaluate the 

potential for an element or substance to have harmful effects on organisms and their habitat.  

Water and sediment quality guidelines are intended to protect aquatic life.  Such guidelines are 

among the management tools used to monitor and prevent environmental damage to aquatic 

ecosystems due to anthropogenic activities, such as effluent discharge or seepages from tailings 

facilities.  Examples of other tools used to monitor aquatic ecosystems include benthic 

community composition, fish tissue contaminant concentrations, fish health, in-situ studies, and 

laboratory toxicity testing.   

The purpose of this study was to identify benthic invertebrate communities that were both 

affected and not affected by treated effluent or tailings facility seepage at two Saskatchewan 

uranium operations.  The results from this field study would then be used in the assessment of 

SQGs derived by Thompson et al. (2005) (Chapter 2) and in the derivation of proposed no-effect 

SQGs (Chapter 3).  Linking reference and no-effect benthic invertebrate communities (based on 

EEM metrics) with co-occurring whole-sediment metal concentrations should identify total metal 

concentrations that are tolerable for benthic invertebrate communities at these locations in 

northern Saskatchewan.  As well, co-occurring overlying water and porewater samples were 

collected alongside benthic invertebrate community measures for additional characterization of 

metal exposure.  

 

A.5.1 Key Lake 

Benthic invertebrate community structure can be influenced by habitat (i.e., sediment 

type) (Hartwell and Claflin 2005; Hartwell and Hameedi 2006).  David Lake, the reference lake, 

had a loamy sand sediment type and was most similar to Fox Lake, whereas the other two sites 

had clay type sediment.  Although particle size distribution can influence benthic invertebrate 

community composition, the differences in community composition between reference and 

exposure sites were most likely due to overlying water and/or sediment contamination (and the 

associated porewater contaminant concentrations).  This conclusion is supported by the 
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observation that half of the invertebrate metrics calculated for Fox Lake were statistically 

different from the reference site, even though these sediments were physically similar.  This, 

along with the elevated concentrations of metals in overlying water, sediment, and porewater, 

suggests that the benthic invertebrate community in Fox Lake was influenced by effluent from 

the Key Lake milling operation rather than by habitat differences.  However, the observed 

difference in the benthic invertebrate community in Unknown Lake could have been influenced 

by the different sediment particle size and total organic carbon content.  Based on the benthic 

invertebrate community metrics, Delta Lake does not appear to be adversely affected and could 

be classified as a no-effect site.  Overall, there is a gradient of effects downstream of the effluent 

discharge point in the David Creek drainage which receives treated mill effluent from the Key 

Lake operation. 

The gradient of effects does not necessarily align with exposure concentrations or the 

derived SQGs.  Although Delta Lake was the furthest downstream, sediment concentrations of 

As, Mo, Ni, and Se exceeded SQGs and this lake had the highest concentration of Mo of all sites 

sampled.  Additionally, Delta Lake peeper porewater exceeded As and Mo WQGs.  This could 

indicate that either benthic invertebrates are able to tolerate high concentrations of Mo, or that 

the SQG for Mo could be overly conservative.  One may therefore question the appropriateness 

of the WQGs and SQGs for these elements, at least when applied in this region, considering that 

there where no biological effects observed with these exceedences.  

Potential stressors in the Key Lake drainage area varied depending on the matrix 

evaluated.  In overlying water, pH, conductivity, ammonia, Cu, Mo, Se, and Al were notably 

different at exposure sites relative to the reference lake.  Concentrations of As, Mo, Ni, and Se in 

sediment exceeded available SQGs.  The pH in centrifuged porewater at all exposure sites were 

lower than the recommended range for the protection of aquatic life (Canadian Council of 

Ministers of the Environment 2011).  Porewater ammonia was elevated at all exposures sites, as 

compared to the reference site, but was at or below available LC50s for Hyalella azteca (9.2 – 18 

mg as N/L; Besser et al. 2009; Whiteman et al. 1996; Borgmann 1994).  Centrifuged porewater 

exceeded WQGs for As, Cu, Mo, Ni, Se and U, whereas peeper porewater exceeded the WQGs 

for only As, Mo, and Se.  Previous studies have also determined that sediment centrifugation 

tends to result in higher porewater metal concentrations relative to porewater isolated by peepers 

(Robertson 2006).  Based on this information, metals that exceed available guideline values in all 
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compartments were pH, ammonia, As, Mo, and Se.  These elements can be identified as the 

constituents of most concern in the Key Lake drainage area.  This is consistent with findings 

from previous studies (Robertson 2006; Pyle et al. 2001; Muscatello et al. 2006; Robertson and 

Liber 2007). 

 

A.5.2 Rabbit Lake 

Habitat differences among sites, as mentioned above, can influence benthic community 

structure.  Raven Lake, the Rabbit Lake reference site, had a loamy sand sediment.  The 

sediments in Parks Lake were similar between the two sampling locations and similar to the 

reference site, although Parks Lake Outflow had more silt and less sand than Parks Lake Seepage 

and Raven Lake.  Horseshoe Pond had a clay sediment type, which was a different sediment type 

than Raven Lake.  The higher percentage of TOC, and clay and silt sized particles, could have 

resulted from the treated effluent which was also noted by Robertson (2006).  Despite the 

differences in sediment composition, the influence of treated effluent (containing high 

concentrations of metals) may have had the greatest effect on benthic invertebrate community 

composition at the Horseshoe Pond sample site.     

As expected, Horseshoe Pond usually had the highest metal concentrations in the various 

compartments analyzed and the benthic community composition reflected this.  Effects on the 

benthic invertebrate community in Horseshoe Pond were identified based on a statistical 

difference in Simpson’s diversity relative to the reference site.  Metals of concern, based on 

exceedences of environmental quality guidelines, were Al, Mo, and U in overlying water; As, 

Cu, Mo, Ni, Pb, Se, U, and V in sediment; and As, Mo, and U in porewater (parameters that were 

exceeded in both methods of isolating porewater).  The common metals among the different 

phases were Mo and U.  These two metals were therefore considered to be of most concern and 

could be contributing to or be the cause of the observed differences in the benthic invertebrate 

community.   

Despite the similar contaminant profiles between sampling sites in Parks Lake, and in 

comparison to the reference site, Parks Lake Outflow was statistically different from Raven Lake 

(reference) in Simpson’s diversity.  In a statistical analysis between the two Parks Lake sampling 

sites, it was found that there was no difference between the two sites in any of the metrics 

calculated in this study.  This shows that within Parks Lake, the benthic invertebrate community 
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is not notably different.  The conflicting evidence provided regarding the Parks Lake sites makes 

it difficult to draw definitive conclusions based on EEM benthic invertebrate community 

endpoints and contaminant exposure concentrations. 

Elevated concentrations of two metals, as compared to SQGs, were found at the reference 

site, Raven Lake (U and V, 78 μg/g dry wt and 45 μg/g dry wt, respectively), but only V 

exceeded the SQG LEL.  The concentrations of these metals were likely due to their natural 

abundance in the sediment and rock in the region.  It should be noted that a uranium exploration 

camp was setup adjacent to Raven Lake with drilling taking place a few kilometers away.  The 

location of the camp demonstrates that naturally elevated concentrations of uranium in the area 

are very likely.  Despite the elevated concentrations, Raven Lake served as a suitable reference 

site because it is not influenced by anthropogenic activities (e.g., seepages, treated effluent) and 

should be reasonably representative of the benthic invertebrate communities found in this region 

of northern Saskatchewan.   

At the sampling sites near the Rabbit Lake uranium operation, potential stressors on the 

benthic invertebrate community were similar to those at the Key Lake operation, but were unique 

in some respects.  Overlying water concentrations of Al, Cu, Mo, and U exceeded WQGs at one 

or more of the sampling sites, with Cu the most frequently exceeding the WQG.  Sediment 

quality guidelines for As, Cu, Mo, Ni, Se, and U were exceeded at Horseshoe Pond, whereas 

Raven Lake exceeded the SQG for V.  Park Lake Outflow and Seepage sites had fairly similar 

concentrations of metals in sediment which did not exceed SQGs.  Metals in centrifuged 

porewater which exceeded WQGs at one or more sample sites were Al, As, B, Co, Cu, Fe Mo, 

U, and Zn, whereas peeper porewater only exceeded As, Mo, and U.  Selenium may be an issue 

in porewater, but due to high limits of detection, which were above the WQG, conclusions 

cannot be drawn regarding the possible influence of Se.  Parks Lake Seepage and Horseshoe 

Pond had elevated levels of ammonia in porewater, but these were below concentrations likely to 

cause effects on benthic invertebrates (Whiteman et al. 1996).  These elements and parameters 

are similar to the potential stressors identified for Key Lake sampling sites.   

 

A.6 Conclusions 

In conclusion, effects observed on the benthic invertebrate communities near the Key 

Lake were likely due to, or substantially influence by, elevated sediment and porewater 
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concentrations of pH, ammonia, As, Mo, and Se whereas observed effects near the Rabbit Lake 

uranium operations were likely due to Al, As, Cu, Mo, U, and Se.  This is consistent with 

findings from previous studies evaluating the environmental effects of these operations 

(Robertson 2006; Terrestrial & Aquatic Environmental Managers Ltd. 1994).  In addition, 

concentrations of some metals in sediment and porewater at a reference or no-effect site were 

elevated, which was somewhat unexpected.  Overall, the number of guidelines exceeded or not 

exceeded did not necessarily correlate with statistical differences in benthic invertebrate 

community structure.  This somewhat calls to question the adequacy of the environmental quality 

guidelines used for evaluating aquatic environments.   
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