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Abstract 

NEXAFS spectroscopy has potential in the study of packing and order in organic materials, but 
only if intermolecular effects are understood. This work studies how π-π interactions between 
adjacent unsaturated groups affect their NEXAFS spectra, with a broader goal of building a 
general understanding of intermolecular effects in NEXAFS spectroscopy. These effects are 
examined using paracyclophane (PCP) molecules, in which the benzene/benzene separation 
distance is varied through the spacer length between benzene rings. NEXAFS spectroscopy and 
density functional theory (DFT) simulations are used to examine spectroscopic changes related 
to these π-π interactions. A characteristic red shift was observed as adjacent benzene rings get 
closer together. This shift is attributed to Coulombic interactions between the adjacent benzene 
rings, mediated through overlapping π and π* orbitals. 
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1. Introduction 

The near edge X-ray absorption fine structure (NEXAFS) spectra of organic molecules are 

predominantly sensitive to molecular bonding and orientation. As a consequence, many NEXAFS 

studies of organic materials focus on chemical analysis or molecular orientation, such as 

measurement of the presence of specific functional groups,1-6 chemical composition in blends, 

alloys and composites,3, 7-12 or a wide range of linear dichroism measurements of molecular 

orientation.13-21 

In contrast to these intra-molecular effects (bonding, etc.), intermolecular effects are not as 

extensively explored. These effects could be used to study molecular packing, order and disorder 

in molecular materials, and are therefore worthy of further study. Broadly, intermolecular effects 

in NEXAFS spectra of organic molecules are expected to arise from conformation and bonding 

changes (such as zwitterion formation) in the condensed state, and perturbations due to 

electronic interactions between adjacent molecules, such as quenching of Rydberg character in 

condensed phases.  

Rydberg quenching has been observed in the NEXAFS spectra of simple alkanes. The spectra of 

small gas phase alkanes (methane, ethane, etc.) are dominated by a Rydberg series (carbon 1s → 

3s, 3p, 3d, etc.),22 but their spectra is broadened and blue-shifted in the condensed phase.23 The 

origin of these differences has been controversial, but is now attributed to quenching of Rydberg 

character in the solid state, and the persistence of carbon 1s → σ*(C-H) character.23 Quenching 

effects are observed in the NEXAFS spectra of saturated polymers such as polyethylene. Schöll et 

al.24 demonstrated that the NEXAFS spectra of polyethylene copolymers vary with the degree of 

crystallinity and with disorder induced by melting, where NEXAFS features were broader in the 
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more disordered as well as less crystalline polymers. Recently, Schmidt et al25 observed Rydberg 

quenching in naphthalene through gas / solid comparisons and high-level DFT calculations. 

Hydrogen bonding also has a role in the NEXAFS spectra of condensed species, demonstrated in 

the oxygen 1s spectra of water.26-31 

In studying the NEXAFS spectra of aromatic clusters, Rühl et al. 32 observed a small red shift (50-

70 meV) in solid clusters relative to their gas phase spectra. The magnitude of this shift was found 

to depend on the size and the homogeneity of the cluster.33-34 This effect was attributed to 

dynamic stabilization, in which the deformation of the core excited cluster traps the core-excited 

molecule in a modified geometry, where the carbon 1s → π* transition will be red-shifted relative 

to the gas phase species.34 As dynamic stabilization is proposed for clusters relative to the 

individual gas phase molecules,32 this effect should be constant in the solid phase, such as the 

PCP studies described below. 

Face to face π-π interactions occur and are important for the structure and electronic property 

of organic electronic materials such as P3HT.35-37 Based on the potential of NEXAFS spectroscopy 

to see small shifts based on weak intermolecular interactions, this work explores π-π interactions 

between cofacial benzene rings, using paracyclophane (PCP) as a model system. PCP compounds 

consist of two benzene rings connected by bridging unit of variable length (see Scheme 1).38-40 

The length of the bridging unit determines the separation between the benzene rings; shorter 

bridges such as in [2,2]PCP bring the benzene rings together to a distance which is lower than the 

limit of van der Waals interactions, and this separation between the benzene rings higher for 

larger bridges such as [3,3]PCP.41-45 
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These precisely stacked π-systems held together by distinct aliphatic chains lengths, so this is a 

good model system to identify the role of intermolecular interactions in NEXAFS spectroscopy. 

Studies on direct information on π-π interactions and π orbital overlap in these materials by using 

NEXAFS spectroscopy are limited in literature.40 Studies of the carbon 1s NEXAFS spectra of 

monolayer and multilayers of the [2,2]PCP and [4,4]PCP by Batra et al40 showed an energy shift 

between the two species, but did not account for this in terms of π-π interactions. 

In this work, π-π interactions will be examined through high-resolution carbon 1s NEXAFS spectra 

of PCP structures with different bridge lengths separating the facing benzene rings. These 

spectroscopic studies will be coupled with high quality DFT simulations of the NEXAFS spectra of 

these PCP models. This work will be used to examine the origin and magnitude of π-π interactions 

as a function of benzene / benzene separation. The knowledge of this work could be also applied 

to the spectroscopy of industrially important organic electronic polymers, such as P3HT, and 

could provide unique information on structure and order.35-37 

  

2. Experimental 

2.1.  Samples and Sample Preparation  

Samples: The paracyclophane (PCP) molecules used in this study are [2,2]PCP (Sigma-Aldrich 

97%) and [3,3]PCP (˃ 95%) where [n,n] refers to the length of the alkane bridge between the 

benzene rings (see Scheme 1).  [3,3]PCP was obtained from Prof. Henning Höpf (Technische 

Universität Braunschweig, Germany). The structures of [2,2] PCP and [3,3] PCP were verified by 

NMR, and used without further purification. Commercially available [5,5] PCP was found by NMR 

spectroscopy to not be compound claimed, and was not used in this study. 
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Sample Preparation: Samples were prepared by pressing the powder form onto clean indium foil 

(5 x 5 mm squres), and loading into a vacuum of the endstation on the SGM beamline. 

2.2. NEXAFS spectroscopy  

NEXAFS spectra of the [n,n] paracyclophane compounds were recorded on the SGM beamline 

(11ID-1) at the Canadian Light Source.46 Spectra were recorded in Total Electron Yield (TEY) 

detection mode. TEY C 1s NEXAFS spectra were normalized by taking the ratio of sample current 

(I) and gold reference current (IR), where the gold reference spectrum was acquired by a separate 

scan. To remove the normalization artifacts in the carbon 1s spectra, the intensity of the gold 

reference spectrum was modified such that its intensity in the pre-edge region was superimposed 

with the sample spectrum (I), as previously described by Otero et al.47 Spectral analysis was 

performed using aXis 200048 and spectra were plotted for presentation using Origin 7.5. The 

entrance and exit slit for these measurements were 5µm and 3µm, corresponding to a resolving 

power greater than 5000.  

The SGM monochromator energy scale was calibrated to the first CH peak in the carbon 1s 

NEXAFS spectra of n-tetracontane (n-C40H82), as previously calibrated in measurements on the 

Scanning Transmission X-ray Microscope on the SM beamline.49 The calibrated energy scale was 

determined by measuring the spectrum of CO2 (g) along with that of n-tetracontane. The carbon 

1s → 3s (ν=0)  and carbon 1s → 3p (v=0) transitions in CO2 (g) were set to 292.74 eV and 294.96 

eV respectively, after the measurements of Ma et al. 50 On this basis, the first peak [289.15(5) eV] 

in the carbon 1s NEXAFS spectrum of n-tetracontane (n-C40H82) was calibrated to 287.48(5) eV. 

Measurements of n-tetracontane on the SGM beamline, recorded at the same time as the PCP 

spectra, were used to calibrate the energy scale for these spectra. 
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3. Computational Section 

3.1 Methodology 

To aid spectral assignments, DFT51-52 calculations were carried out using deMon2k package.53-54  

NEXAFS simulations were initially performed using the transition potential (TP-DFT) method,55-56 

which uses a half core hole. Subsequently, carbon 1s ionization potentials and the energy to 

create the lowest energy [C 1s-1; π*] core excited state were calculated with the ΔKS method.55 

This method provides more accurate energies than the Koopmans’ theorem (for ionization 

potentials) and the transition potential (for excitation energies) approaches. Spectra obtained 

from TP-DFT calculations were recalibrated by setting the energy of the first transition to that 

calculated for the [C 1s-1; π*] core excited state by the ΔKS method. 

Molecular geometries of benzene and [n,n] PCP (n = 2, 3, and 4) species were lowest energy 

structures, determined by ω B97X-D DFT calculations at the 6-31G* level, performed with the 

program Spartan’ 14.57 No imaginary frequencies were observed. For studies of benzene / 

benzene separation, two benzene molecules were manually placed in a cofacial structure, at 

different fixed benzene – benzene separation distances. 

For all DFT calculations, the PBE GGA exchange and correlation functional58-59 was used, with the 

GEN-A4* auxiliary basis set for the core excited carbon atom, and the GEN-A2* basis set for all 

other atoms.60-61 The orbital basis sets used are IGLO-III62 for the excited carbon atom, TZVP for 

hydrogen atoms, and effective core potentials (ECP)63 for all other carbon atoms. The augmented 

diffuse basis set (XAS-I) was used for the core exited atom.55 The intensity of the spectral lines is 

obtained from the computed dipole transition matrix elements for excitations from the core 

(carbon 1s) orbitals. Only the core excitation carbon 1s → π* transitions are considered and 
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simulated spectra were obtained from the DFT calculations of each non-equivalent sites by 

broadening the lower carbon 1s → π* feature as a Gaussian line. These spectra then summed 

according to its stoichiometric proportions to form a simulated spectrum of the π* band.  

4. Results 

4.1 Carbon 1s NEXAFS Spectra of [n,n]Paracyclophanes 

Figure 1 presents the experimental C 1s NEXAFS spectra for [2,2] and [3,3] paracyclophanes, 

recorded using TEY detection. Transition energies and assignments for the carbon 1s → π* band 

are presented in Table 1. The energy in the carbon 1s → π* region shows a red shift in the 

spectrum of [2,2] PCP relative to that of [3,3] PCP. At the same time, the shape of the π* changes. 

The decreased alkane tether length brings the benzene rings closer together, which is correlated 

in a decreased carbon 1s → π* transition energy.  

4.2 DFT simulations of the NEXAFS Spectra of [n,n] Paracyclophanes 

NEXAFS simulations were obtained from ΔKS-DFT calculations of [2,2], [3,3], and [4,4] PCP, in 

order to interpret features observed in their experimental spectra. These simulated carbon 1s 

NEXAFS simulations are presented in Figure 2. Calculated carbon 1s ionization potentials, 

transition energies and, orbital term values (TV) for the lowest energy carbon 1s → π* transition, 

for the C-H and C-R sites are presented in Table 2.  

The ΔKS-DFT simulations reproduce the trend as observed in experiment, where the carbon 1s 

→ π* transition moves to lower energy as the benzene ring separation decreases, from [4,4] PCP 

to [2,2] PCP. The carbon 1s → π* transition energy shifts are larger between [4,4] PCP and [3,3] 

PCP than between [3,3] PCP and [2,2] PCP. The magnitude of the energy shift between [3,3] PCP 
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and [2,2] PCP is underestimated by the ΔKS-DFT calculations (ΔKS-DFT: 0.045 eV versus 0.2 eV in 

experiment). Nevertheless, the direction of the energy shift is consistent.  

The calculated carbon 1s ionization potentials and the π* orbital term values help interpret the 

experimental observations. The π* orbital term values increase as the bridging group length 

decreases, from [4,4] PCP to [2,2] PCP. A larger term value indicates that the π* orbital occurs at 

lower energy, relative to the ionization potential. In a simple molecular orbital picture, stronger 

bonds will have a lower energy highest occupied molecular oribital (HOMO; π) and a higher 

energy lowest unoccupied molecular orbital (LUMO; π*). As the NEXAFS transitions probe the π* 

LUMO, a decrease in the LUMO energy can be attributed to a weakening of the benzene ring π-

bonding as the rings come closer together. The carbon 1s ionization potentials show a smaller 

but opposite shift, increasing between [3,3] PCP and [2,2] PCP, and shifting the core → π* 

transition to higher energy. The term value and ionization potential shifts will partially cancel, 

but the overall trend remains, where core → π* transition shifts to lower energy as the benzene 

rings move closer together. 

The carbon 1s (C-R) → π* transition occurs at higher energy than the carbon 1s (C-H) → π* on 

account of the weak inductive effect of the alkyl spacer. This inductive effect increases the 

ionization potential (IP) of the C-R site relative to the C-H site.64 The energy difference between 

the C-H and C-R carbon 1s → π* transition is similar (0.24 – 0.25 eV) for [2,2] PCP and [3,3] PCP, 

but smaller (0.15 eV) for [4,4] PCP. This suggests that the orbital environment in [4,4] PCP is 

somewhat different from the two species with the rings closer together. 
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5. Discussion 

The tether or bridging group [n,n] attached to the two benzene rings of the PCP molecule creates 

two non-equivalent carbon atom sites in the PCP molecule (C-H and C-R, see Scheme 1). A 

doublet structure (see Figure 1 and 2) arises in the carbon 1s ® p* region from this C-H/C-R 

splitting. The shape of the simulation and experimental spectra differ, as experiment is further 

convoluted by unresolved vibronic features.65 This p* band shape was observed in previous 

NEXAFS measurements of Batra et al.40 Our ΔKS calculations reproduce the experimentally 

observed energy shift, albeit with a different magnitude, and attribute this shift largely from 

changes to the energy of the π* orbital term value with ring separation. 

The benzene rings in [2,2] PCP are 3.09 Å apart.41-42, 45 This is significantly smaller than the van 

der Waals separation for the two benzene rings (e.g. two times the van der Waals radii of carbon, 

or 3.40 Å). The benzene/ benzene separation in [3,3] PCP is 3.30 Å,43 which is slightly smaller than 

this van der Waals separation. Only in [4,4] PCP are the benzene rings are further apart than the 

van der Waals radius (3.99 Å).  

The nature of the interaction between adjacent benzene rings in the PCP molecules can be 

examined by using molecular orbital plots of the LUMO, which are presented in Figure 3 for the 

ground state and C-H / C-R core excited state LUMO in the three PCP molecules. The ground state 

π* LUMO for all PCP molecules are delocalized between the top and bottom benzene rings, with 

an in-phase overlap of the orbitals in the space between the two benzene rings. In the MO plots 

of the C-H / C-R core excited states, the LUMO becomes localized onto the ring with the core 

hole. An orbital interaction is observed between the benzene rings in [2,2] PCP; less in [3,3] PCP, 

and non-existent in [4,4] PCP. The observed orbital overlap is a function of the magnitude of the 
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isosurface density, but the interaction is clearly greater in [2,2] PCP. The MO plots indicate that 

the carbon 1s à π* transition in PCP is sensitive to orbital interactions between the adjacent 

benzene rings, with a stronger interaction as the rings get closer together. Specifically, the orbital 

interaction is a bonding (in phase) orbital interaction between the rings, and an antibonding (π*) 

within each ring. This interaction will scale with the closeness of the benzene rings. 

Another way to investigate the shift in carbon 1s à π* transition energy with benzene – benzene 

separation is to use a dibenzene model with different separation distances. Figure 4 presents a 

plot of the lowest energy carbon 1s à π* transition energy (ΔKS DFT) for this dibenzene species 

as a function of inter-ring distance, from 2.6 Å - 4.0 Å. This plot shows a clear red shift as the rings 

get closer together, with a larger slope below the van der Waals separation distance (3.4 Å). As 

the separation increases, the carbon 1s à π* transition energy increases and tends to an 

asymptote. This indicates a relatively long range effect on the carbon 1s à π* transition energy, 

with a larger shift below near the van der Waals separation distance. 

6. Conclusions 

The carbon 1s NEXAFS spectroscopy of [2,2] PCP and [3,3] PCP have been recorded and 

interpreted with the aid of DFT calculations. PCP compounds are used to provide a careful 

examination of π-π interactions, as they provide an experiment model defined benzene-benzene 

separation distances. The systematic spectral trend in the carbon 1s → π* transition energies was 

explored as a function of benzene-benzene separation distances. These observed trends of the 

were interpreted with ΔKS-DFT calculations. Variations in both core binding and π* orbital 

energies arose from magnitude of π-π interactions, which increase for PCP molecules with a 

smaller bridging unit.  



 11 

The knowledge of this work can be used to simply and understand the spectroscopy of complex 

organic electronic polymers, and could provide unique information on structure and order. 
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Table 1: Experimental Carbon 1s → π* Transition Energies from the NEXAFS Spectra of [2,2] and 

[3,3] PCPs. 

[n,n]PCP Carbon 1s → π* Transition 

Energy (eV) 

C-H site C-R site 

[2,2]PCP 284.8 284.9 

[3.3]PCP 285.0 285.3 
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Table 2: The Calculated ionization potential, transition energies, and term values of [2,2], [3,3] 

and [4,4] PCP from the Δ(KS) method. 

 

 

  

[n,n]PCP Ionization Potential 

(eV)  

Carbon 1s → π* Transition 

Energy (eV)  

π* Orbital Term value 

 (eV) 

C-H site (eV) C-R site (eV) C-H site (eV) C-R site (eV) C-H site (eV) C-R site (eV) 

[2,2] PCP 288.772 288.891 284.087 284.328 4.685 4.563 

[3,3] PCP 288.644 288.798 284.132 284.390 4.512 4.408 

[4,4] PCP 288.732 288.847 284.382 284.532 4.350 4.315 
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Figure captions 

 

Scheme 1: Chemical structures of [2,2]paracyclophane and [3,3]paracyclophane. 

 

Figure 1: Carbon 1s NEXAFS spectra of [2,2] and [3,3] paracyclophane, recorded with total 

electron yield (TEY) detection. 

 

Figure 2: Δ(KS) DFT simulations of the NEXAFS spectra of [2,2], [3,3] and [4,4] paracyclophane. 

 

Figure 3 (a-c) Iso-surface plots of the LUMOs for [2,2]PCP, [3,3]PCP and [4,4]PCP, respectively, 

from ground state DFT calculations. (d-f) Iso-surface plots of the core excited state LUMOs for 

[2,2]PCP, [3,3]PCP and [4,4]PCP, respectively, from DFT calculations  The Iso-surface value for all 

the plots set to 0.03. 

 

Figure 4 Variation in the calculated carbon 1s à 𝜋* transition energy in dibenzene molecule as 

a function of inter-ring distance. Energies were calculated by the Δ(KS) DFT method. 

 

  



 15 

References 

1. Dhez, O.; Ade, H.; Urquhart, S. G., Calibrated Nexafs Spectra of Some Common Polymers. Journal 
of Electron Spectroscopy and Related Phenomena 2003, 128, 85-96. 
2. Urquhart, S., Nexafs Spectroscopy and Microscopy of Natural and Synthetic Polymers. Chemical 
Applications of Synchrotron Radiation 2002, 285. 
3. Rightor, E. G.; Urquhart, S. G.; Hitchcock, A. P.; Ade, H.; Smith, A. P.; Mitchell, G. E.; Priester, R. 
D.; Aneja, A.; Appel, G.; Wilkes, G., Identification and Quantitation of Urea Precipitates in Flexible 
Polyurethane Foam Formulations by X-Ray Spectromicroscopy. Macromolecules 2002, 35, 5873-5882. 
4. Singh, B.; Fang, Y.; Cowie, B. C. C.; Thomsen, L., Nexafs and Xps Characterisation of Carbon 
Functional Groups of Fresh and Aged Biochars. Organic Geochemistry, 77, 1-10. 
5. Gainar, A.; Stevens, J. S.; Jaye, C.; Fischer, D. A.; Schroeder, S. L. M., Nexafs Sensitivity to Bond 
Lengths in Complex Molecular Materials: A Study of Crystalline Saccharides. The Journal of Physical 
Chemistry B, 119, 14373-14381. 
6. Heymann, K.; Lehmann, J.; Solomon, D.; Schmidt, M. W. I.; Regier, T., C 1s K-Edge near Edge X-
Ray Absorption Fine Structure (Nexafs) Spectroscopy for Characterizing Functional Group Chemistry of 
Black Carbon. Organic Geochemistry, 42, 1055-1064. 
7. Lipton-Duffin, J.; Miwa, J. A.; Urquhart, S. G.; Contini, G.; Cossaro, A.; Casalis, L.; Barth, J. V.; 
Floreano, L.; Morgante, A.; Rosei, F., Binding Geometry of Hydrogen-Bonded Chain Motif in Self-
Assembled Gratings and Layers on Ag(111). Langmuir 2012, 28, 14291-14300. 
8. Qaqish, S. E.; Urquhart, S. G.; Lanke, U.; Brunet, S. M. K.; Paige, M. F., Phase Separation of 
Palmitic Acid and Perfluorooctadecanoic Acid in Mixed Langmuir−Blodgett Monolayer Films. Langmuir 
2009, 25, 7401-7409. 
9. Iyer, G. R. S.; Wang, J.; Wells, G.; Bradley, M. P.; Borondics, F., Nanoscale Imaging of 
Freestanding Nitrogen Doped Single Layer Graphene. Nanoscale 2015, 7, 2289-2294. 
10. Hitchcock, A. P.; Berejnov, V.; Lee, V.; West, M.; Colbow, V.; Dutta, M.; Wessel, S., Carbon 
Corrosion of Proton Exchange Membrane Fuel Cell Catalyst Layers Studied by Scanning Transmission X-
Ray Microscopy. Journal of Power Sources 2014, 266, 66-78. 
11. Meier, R.; Schindler, M.; Muller-Buschbaum, P.; Watts, B., Residual Solvent Content in 
Conducting Polymer-Blend Films Mapped with Scanning Transmission X-Ray Microscopy. Physical 
Review B, 84, 174205/1-174205/6. 
12. Zhong, J.; Zhang, H.; Sun, X.; Lee, S. T., Synchrotron Soft X-�Ray Absorption Spectroscopy Study 
of Carbon and Silicon Nanostructures for Energy Applications. Advanced Materials, 26, 7786-7806. 
13. Ney, A.; Ney, V.; Ollefs, K.; Schauries, D.; Wilhelm, F.; Rogalev, A., X-Ray Linear Dichroism: An 
Element-Selective Spectroscopic Probe for Local Structural Properties and Valence. Journal of Surfaces 
and Interfaces of Materials, 2, 14-23. 
14. Rossi, G.; d'Acapito, F.; Amidani, L.; Boscherini, F.; Pedio, M., Local Environment of Metal Ions in 
Phthalocyanines: K-Edge X-Ray Absorption Spectra. Physical Chemistry Chemical Physics, 18, 23686-
23694. 
15. Marchetto, H.; Schmidt, T.; Groh, U.; Maier, F. C.; Levesque, P. L.; Fink, R. H.; Freund, H.-J.; 
Umbach, E., Direct Observation of Epitaxial Organic Film Growth: Temperature-Dependent Growth 
Mechanisms and Metastability. Physical Chemistry Chemical Physics, 17, 29150-29160. 
16. Baio, J. E.; Jaye, C.; Fischer, D. A.; Weidner, T., High-Throughput Analysis of Molecular 
Orientation on Surfaces by Nexafs Imaging of Curved Sample Arrays. ACS Combinatorial Science, 16, 449-
453. 
17. Patel, S. N.; Su, G. M.; Luo, C.; Wang, M.; Perez, L. A.; Fischer, D. A.; Prendergast, D.; Bazan, G. C.; 
Heeger, A. J.; Chabinyc, M. L., Nexafs Spectroscopy Reveals the Molecular Orientation in Blade-Coated 
Pyridal [2, 1, 3] Thiadiazole-Containing Conjugated Polymer Thin Films. Macromolecules, 48, 6606-6616. 



 16 

18. Masnadi, M.; Urquhart, S. G., Indirect Molecular Epitaxy: Deposition of N-Alkane Thin Films on 
Au Coated Nacl (001) and Hopg (0001) Surfaces. Langmuir, 29, 6302-6307. 
19. Urquhart, S. G.; Lanke, U. D.; Fu, J., Characterisation of Molecular Orientation in Organic 
Nanomaterials by X-Ray Linear Dichroism Microscopy. International Journal of Nanotechnology 2008, 5, 
1138-1170. 
20. Fu, J.; Urquhart, S. G., Linear Dichroism in the X-Ray Absorption Spectra of Linear N-Alkanes. The 
Journal of Physical Chemistry A 2005, 109, 11724-11732. 
21. Ade, H., Nexafs and X-Ray Linear Dichroism Microscopy and Applications to Polymer Science. In 
X-Ray Microscopy and Spectromicroscopy: Status Report from the Fifth International Conference, 
Würzburg, August 19–23, 1996, Thieme, J.; Schmahl, G.; Rudolph, D.; Umbach, E., Eds. Springer Berlin 
Heidelberg: Berlin, Heidelberg, 1998; pp 219-229. 
22. Urquhart, S. G.; Gillies, R., Rydberg−Valence Mixing in the Carbon 1s near-Edge X-Ray Absorption 
Fine Structure Spectra of Gaseous Alkanes. The Journal of Physical Chemistry A 2005, 109, 2151-2159. 
23. Urquhart, S. G.; Gillies, R., Matrix Effects in the Carbon 1s near Edge X-Ray Absorption Fine 
Structure Spectra of Condensed Alkanes. The Journal of Chemical Physics 2006, 124, 234704. 
24. Scholl, A.; Fink, R.; Umbach, E.; Mitchell, G. E.; Urquhart, S. G.; Ade, H., Towards a Detailed 
Understanding of the Nexafs Spectra of Bulk Polyethylene Copolymers and Related Alkanes. Chemical 
Physics Letters 2003, 370, 834-841. 
25. Schmidt, N.; Wenzel, J.; Dreuw, A.; Fink, R. H.; Hieringer, W., Matrix Effects in the C 1s 
Photoabsorption Spectra of Condensed Naphthalene. The Journal of Chemical Physics, 145, 234307. 
26. Nilsson, A.; Pettersson, L. G. M., The Structural Origin of Anomalous Properties of Liquid Water. 
Nature communications, 6. 
27. Fransson, T.; Zhovtobriukh, I.; Coriani, S.; Wikfeldt, K. T.; Norman, P.; Pettersson, L. G. M., 
Requirements of First-Principles Calculations of X-Ray Absorption Spectra of Liquid Water. Physical 
Chemistry Chemical Physics, 18, 566-583. 
28. Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Näslund, L.; 
Hirsch, T. K.; OjamÃ¤e, L.; Glatzel, P., The Structure of the First Coordination Shell in Liquid Water. 
Science 2004, 304, 995-999. 
29. Prendergast, D.; Galli, G., X-Ray Absorption Spectra of Water from First Principles Calculations. 
Physical Review Letters 2006, 96, 215502. 
30. Cai, Y. Q.; Mao, H. K.; Chow, P. C.; Tse, J. S.; Ma, Y.; Patchkovskii, S.; Shu, J. F.; Struzhkin, V.; 
Hemley, R. J.; Ishii, H., Ordering of Hydrogen Bonds in High-Pressure Low-Temperature H 2 O. Physical 
Review Letters 2005, 94, 025502. 
31. Leetmaa, M.; Ljungberg, M. P.; Lyubartsev, A.; Nilsson, A.; Pettersson, L. G. M., Theoretical 
Approximations to X-Ray Absorption Spectroscopy of Liquid Water and Ice. Journal of Electron 
Spectroscopy and Related Phenomena 2010, 177, 135-157. 
32. Bradeanu, I. L.; Flesch, R.; Kosugi, N.; Pavlychev, A. A.; Ruhl, E., C 1s --> Pi* Excitation in Variable 
Size Benzene Clusters. Physical Chemistry Chemical Physics 2006, 8, 1906-1913. 
33. Flesch, R.; Pavlychev, A. A.; Neville, J. J.; Blumberg, J.; Kuhlmann, M.; Tappe, W.; Senf, F.; 
Schwarzkopf, O.; Hitchcock, A. P.; Ruhl, E., Dynamic Stabilization in Excited Nitrogen Clusters. Physical 
Review Letters 2001, 86, 3767. 
34. Pavlychev, A. A.; Flesch, R.; Ruhl, E., Line Shapes of Excited Molecular Clusters. Physical Review A 
2004, 70, 015201. 
35. Kim, D. H.; Park, Y. D.; Jang, Y.; Yang, H.; Kim, Y. H.; Han, J. I.; Moon, D. G.; Park, S.; Chang, T.; 
Chang, C., Enhancement of Field Effect Mobility Due to Surfaceâ€ Mediated Molecular Ordering in 
Regioregular Polythiophene Thin Film Transistors. Advanced Functional Materials 2005, 15, 77-82. 



 17 

36. Obata, S.; Shimoi, Y., Control of Molecular Orientations of Poly(3-Hexylthiophene) on Self-
Assembled Monolayers: Molecular Dynamics Simulations. Physical Chemistry Chemical Physics, 15, 
9265-9270. 
37. Seok, J.; Balik, C. M.; Ade, H. In Improved Crystalline Orientation of Poly (3-Hexyl Thiophene) in 
Bulk Hetero-Junction Polymer Solar Cells, 240th ACS National Meeting and Exposition. 
38. Hu, W.; Gompf, B.; Pflaum, J.; Schweitzer, D.; Dressel, M., Transport Properties of [2, 2]-
Paracyclophane Thin Films. Applied Physics Letters 2004, 84, 4720-4722. 
39. Bachrach, S. M., Dft Study of [2.2]-,[3.3]-, and [4.4] Paracyclophanes: Strain Energy, 
Conformations, and Rotational Barriers. The Journal of Physical Chemistry A, 115, 2396-2401. 
40. Batra, A.; Kladnik, G.; Vazquez, H.; Meisner, J. S.; Floreano, L.; Nuckolls, C.; Cvetko, D.; Morgante, 
A.; Venkataraman, L., Quantifying through-Space Charge Transfer Dynamics in Pi-Coupled Molecular 
Systems. Nature Communications, 3, 1086. 
41. Hope, H.; Bernstein, J.; Trueblood, K. N., The Crystal and Molecular Structure of 1, 1, 2, 2, 9, 9, 
10, 10-Octafluoro-[2, 2] Paracyclophane and a Reinvestigation of the Structure of [2, 2] Paracyclophane. 
Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 1972, 28, 1733-1743. 
42. Lonsdale, D. K.; Milledge, H. J.; Rao, K. V. K. In Studies of the Structure, Thermal Expansion and 
Molecular Vibrations of Di-P-Xylylene, Proceedings of the Royal Society of London A: Mathematical, 
Physical and Engineering Sciences, The Royal Society: 1960; pp 82-100. 
43. Gantzel, P. K.; Trueblood, K. N., The Crystal and Molecular Structure of [3.3] Paracyclophane. 
Acta Crystallographica 1965, 18, 958-968. 
44. Lyssenko, K. A.; Korlyukov, A. A.; Antipin, M. Y., The Role of Intermolecular H... H and C ... H 
Interactions in the Ordering of [2.2] Paracyclophane at 100 K: Estimation of the Sublimation Energy from 
the Experimental Electron Density Function. Mendeleev Communications 2005, 15, 90-92. 
45. Brown, C. J.; Farthing, A. C., Preparation and Structure of Di-P-Xylylene. Nature 1949, 164, 915-
916. 
46. Regier, T.; Krochak, J.; Sham, T. K.; Hu, Y. F.; Thompson, J.; Blyth, R. I. R., Performance and 
Capabilities of the Canadian Dragon: The Sgm Beamline at the Canadian Light Source. Nuclear 
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and 
Associated Equipment 2007, 582, 93-95. 
47. Otero, E.; Wilks, R. G.; Regier, T.; Blyth, R. I. R.; Moewes, A.; Urquhart, S. G., Substituent Effects 
in the Iron 2p and Carbon 1s Edge near-Edge X-Ray Absorption Fine Structure (Nexafs) Spectroscopy of 
Ferrocene Compounds. The Journal of Physical Chemistry A 2008, 112, 624-634. 
48. Hitchcock, A. P. Axis2000, 2017. 
49. Kaznatcheev, K. V.; Karunakaran, C.; Lanke, U. D.; Urquhart, S. G.; Obst, M.; Hitchcock, A. P., Soft 
X-Ray Spectromicroscopy Beamline at the Cls: Commissioning Results. Nuclear Instruments and Methods 
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2007, 
582, 96-99. 
50. Ma, Y.; Chen, C. T.; Meigs, G.; Randall, K.; Sette, F., High-Resolution K-Shell Photoabsorption 
Measurements of Simple Molecules. Physical Review A 1991, 44, 1848. 
51. Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. 
Physical Review 1965, 140, A1133. 
52. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136, B864. 
53. Geudtner, G., et al., Demon2k. Wiley Interdisciplinary Reviews: Computational Molecular Science 
2012, 2, 548-555. 
54. Koster, A. M.; Geudtner, G.; Calaminici, P.; Casida, M. E.; Dominguez, V. D.; Flores-Moreno, R.; 
Gamboa, G. U.; Goursot, A.; Heine, T.; Ipatov, A. Demon2k, Version 3; the Demon Developers, Cinvestav: 
Mexico City, 2011. 



 18 

55. Triguero, L.; Pettersson, L. G. M.; Ågren, H., Calculations of near-Edge X-Ray-Absorption Spectra 
of Gas-Phase and Chemisorbed Molecules by Means of Density-Functional and Transition-Potential 
Theory. Physical Review B 1998, 58, 8097. 
56. Leetmaa, M.; Ljungberg, M.; Nilsson, A.; Pettersson, L. G. M., X-Ray Spectroscopy Calculations 
within Kohn–Sham Dft: Theory and Applications; Wiley-VCH Verlag GmbH & Co. : Weinheim, Germany, 
2009, p 221-264. 
57. Spartan' 14, Wavefunction Inc.: Invine, CA. 
58. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. 
Physical Review Letters 1996, 77, 3865. 
59. Hammer, B.; Hansen, L. B.; Narskov, J. K., Improved Adsorption Energetics within Density-
Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Physical Review B 1999, 59, 7413. 
60. Calaminici, P.; Janetzko, F.; Kaster, A. M.; Mejia-Olvera, R.; Zuniga-Gutierrez, B., Density 
Functional Theory Optimized Basis Sets for Gradient Corrected Functionals: 3 D Transition Metal 
Systems. The Journal of Chemical Physics 2007, 126, 044108. 
61. Calaminici, P.; Flores-Moreno, R.; Koester, A. M., A Density Functional Study of Structures and 
Vibrations of Ta3o and Ta3o. Computing Letters 2005, 1, 164-171. 
62. Kutzelnigg, W.; Fleischer, U.; Schindler, M., The Iglo-Method: Ab-Initio Calculation and 
Interpretation of Nmr Chemical Shifts and Magnetic Susceptibilities. In Deuterium and Shift Calculation, 
Springer: 1990; pp 165-262. 
63. Pettersson, L. G. M.; Wahlgren, U.; Gropen, O., Effective Core Potential Parameters for First 
�and Second Row Atoms. The Journal of Chemical Physics 1987, 86, 2176-2184. 
64. Cooney, R. R.; Urquhart, S. G., Chemical Trends in the near-Edge X-Ray Absorption Fine Structure 
of Monosubstituted and Para-Bisubstituted Benzenes. The Journal of Physical Chemistry B 2004, 108, 
18185-18191. 
65. Urquhart, S. G.; Ade, H.; Rafailovich, M.; Sokolov, J. S.; Zhang, Y., Chemical and Vibronic Effects 
in the High-Resolution near-Edge X-Ray Absorption Fine Structure Spectra of Polystyrene Isotopomers. 
Chemical Physics Letters 2000, 322, 412-418. 

 



1

1
2 1

2

Scheme 1



Figure 1: 

284.5 285.0 285.5 286.0

2 2
1 1

No
rm

ali
ze

d I
nt

en
sit

y (
a.u

)

Photon Energy (eV)

 [2,2]Paracyclophane
 [3,3]Paracyclophane

2



3

284.0 284.5 285.0

1
1

1

222

Photon Energy (eV)

 [2,2]Paracyclophane
 [3,3]Paracyclophane
 [4,4]Paracyclophane

Figure 2: 

QUESTION: why does the trace of 3,3 and 2,2 cut off at low energy
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Table S1 Calculated ionization potential, transition energies, and term values of [2,2], [3,3] and 
[4,4] PCPs, from TP-DFT calculations. 

 

a.) Transition energy = Energy of the core hole orbital (Ionization potential) – energy of the 
lowest unoccupied molecular orbital (Term value) 

 
 
 
  

[n,n]PCP Ionization Potential 
(eV)  

Carbon 1s → π* 
Transition Energy (eV)  

π* Orbital Term valuea 

(eV) 

C-H site C-R site C-H site C-R site C-H site C-R site 

[2,2] PCP 290.363 290.529 286.232 286.556 4.131 3.973 

[3,3] PCP 290.241 290.439 286.293 286.624 3.948 3.815 

[4,4] PCP 290.325 290.480 286.550 286.793 3.774 3.687 



Table S2: Calculated ionization potential, transition energies, and term values of dibenzene 
with different benzene-benzene separation from TP-DFT calculations for carbon 1s → π* 
transition (C-H site). 

 
a.) Transition energy = Energy of the core hole orbital (Ionization potential) – energy of 
the lowest unoccupied molecular orbital (Term value) 

 
 
  

Dibenzene molecule 
with different benzene-
benzene separations (Å) 

Ionizatio 
Potential 

(eV) 

Carbon 1s → π* 
Transition Energy  

(eV) 

π* Orbital Term valuea 

(eV) 

2.6 290.382 285.718 4.664 

2.8 290.488 286.036 4.452 

3.0 290.562 286.240 4.316 

3.2 290.616 289.377 4.239 

3.4 290.660 286.449 4.201 

3.6 290.695 286.507 4.188 

3.8 290.722 286.532 4.190 

4.0 290.747 286.548 4.199 



Table S3: Calculated ionization potential, transition energies, and term values of dibenzene with 
different benzene-benzene separation from Δ(KS) method for carbon 1s → π* transition (C-H 
site). 

 
 
 

Dibenzene molecule 
with different benzene-
benzene separations (Å) 

Ionization 
Potential 

(eV) 

Carbon 1s → π* 
Transition Energy 

(eV) 

π* Orbital Term value 

(eV) 

2.6 288.742 283.594 5.147 

2.8 288.855 283.862 4.993 

3.0 288.934 284.036 4.898 

3.2 288.993 284.147 4.846 

3.4 289.038 284.217 4.821 

3.6 289.074 284.260 4.814 

3.8 289.104 284.286 4.818 

4.0 289.130 284.303 4.827 


