

SYSTEM ARCHITECTURE

 AND HARDWARE IMPLEMENTATIONS FOR A

RECONFIGURABLE MPLS ROUTER

A Thesis Submitted to the College of

Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Science in the

Department of Electrical Engineering

University of Saskatchewan

By

Li Sha

© Copyright Li Sha, August 2003. All rights reserved.

 i

PERMISSION TO USE

 In presenting this thesis in partial fulfillment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University

may make it freely available for inspection. I further agree that permission for copying

of this thesis in any manner, in whole or in part, for scholarly purposes may be granted

by the professor or professors who supervised my thesis work or, in their absence, by

the Head of the Department or the Dean of the College in which my thesis work was

done. It is understood that any copying or publication or use of this thesis or parts

thereof for financial gain shall not be allowed without my written permission. It is also

understood that due recognition shall be given to me and to the University of

Saskatchewan in any scholarly use which may be made of any material in my thesis.

 Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Dept of Electrical Engineering

57 Campus Road

Saskatoon, Sask. S7N 5A9 Canada

Phone: (306) 966-5380

Fax: (306) 966-5407

ABSTRACT

 With extremely wide bandwidth and good channel properties, optical fibers have

brought fast and reliable data transmission to today’s data communications. However,

to handle heavy traffic flowing through optical physical links, much faster processing

speed is required or else congestion can take place at network nodes. Also, to provide

people with voice, data and all categories of multimedia services, distinguishing

between different data flows is a requirement. To address these router performance,

Quality of Service /Class of Service and traffic engineering issues, Multi-Protocol Label

Switching (MPLS) was proposed for IP-based Internetworks. In addition, routers

flexible in hardware architecture in order to support ever-evolving protocols and

services without causing big infrastructure modification or replacement are also

desirable. Therefore, reconfigurable hardware implementation of MPLS was proposed

in this project to obtain the overall fast processing speed at network nodes.

 The long-term goal of this project is to develop a reconfigurable MPLS router,

which uniquely integrates the best features of operations being conducted in software

and in run-time-reconfigurable hardware. The scope of this thesis includes system

architecture and service algorithm considerations, Verilog coding and testing for an

actual device. The hardware and software co-design technique was used to partition and

schedule the protocol code for execution on both a general-purpose processor and

stream-based hardware. A novel RPS scheme that is practically easy to build and can

realize pipelined packet-by-packet data transfer at each output was proposed to take the

place of the traditional crossbar switching. In RPS, packets with variable lengths can be

switched intelligently without performing packet segmentation and reassembly. Primary

theoretical analysis of queuing issues was discussed and an improved multiple queue

service scheduling policy UD-WRR was proposed, which can reduce packet-waiting

time without sacrificing the performance. In order to have the tests carried out

appropriately, dedicated circuitry for the MPLS functional block to interface a specific

 ii

MAC chip was implemented as well. The hardware designs for all functions were

realized with a single Field Programmable Gate Array (FPGA) device in this project.

 The main result presented in this thesis was the MPLS function implementation

realizing a major part of layer three routing at the reconfigurable hardware level, which

advanced a great step towards the goal of building a router that is both fast and flexible.

 iii

 iv

ACKNOWLEDGEMENTS

 The author wishes to thank Dr. Eric Norum and Dr. J. Eric Salt for their guidance

and financial support throughout the course of this project. Especially, she would like to

show her great appreciation for Dr. Norum’s timely thesis reviewing after he left

University of Saskatchewan. A wonderful work environment was setup at Trlabs. Jack

Hanson, Garth Wells, and the rest of the staff at Trlabs, Saskatoon, are all thanked for

their time and help. Also, the author would like to say thank you to Dr. Ronald J. Bolton

and her first supervisor at University of Saskatchewan, Dr. Gul Khan.

 The Department of Electrical Engineering, University of Saskatchewan and Dr. J.

Eric Salt provided financial assistance. Their support is gratefully acknowledged.

 Finally, the author would like to thank her parents, Li Xianlin and Zhang Xiurong

for their much needed support and her husband, Hu Song for providing a great deal of

patience and support during some difficult times.

 v

TABLE OF CONTENTS

PERMISSION TO USE i

ABSTRACT ii

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES x

LIST OF ABBREVIATIONS xi

Chapter 1 Introduction...1

1.1 Motivation .. 1

1.2 What is MPLS?... 3

1.3 Introduction to Reconfigurable Routers ... 6

1.3.1 Typical Router Architecture .. 6

1.3.2 Why Reconfigurability? .. 7

1.4 Industrial MPLS Router Products Overview.. 9

1.4.1 Cisco 12000 ... 9

1.4.2 JUNOS M40 .. 10

1.4.3 Alcatel 7670 Routing Switch Platform.. 12

1.4.4 Marconi ASX4000... 12

1.4.5 Conclusion: New Products Desired... 13

Chapter 2 Multi-Protocol Switching ...15

2.1 Main MPLS Components ... 15

2.2 MPLS Operation... 23

2.3 Tunneling in MPLS .. 26

2.4 Traffic Engineering and QoS.. 27

2.5 Protocol Architecture.. 29

Chapter 3 Reconfigurable MPLS Router Design Issues31

3.1 Switch/Router evolution... 31

3.1.1 The First Generation.. 31

3.1.2 The Second Generation ... 32

3.1.3 The Third Generation .. 32

3.1.4 The Fourth Generation To Be Developed ... 33

3.2 System Design Strategy.. 35

3.2.1 Protocol software and hardware partition.. 35

3.2.2 Hardware Architecture of the Reconfigurable MPLS Router 37

3.2.3 Single-chip RHFE design for Line Cards.. 38

3.3 Dealing with Queuing Issues.. 40

3.3.1. Background... 40

3.3.1.1 Priority Queue Scheduling ... 40

3.3.1.2 Multiple Per-Flow Priority-Queue Management.................................... 43

3.3.2 An Improved UD-WRR Policy ... 45

3.4 RPS and UD-WRR Implementations in a MPLS System.................................... 53

Chapter 4 Reconfigurable MPLS Hardware Implementation56

4.1 Implementation Strategy Considerations ... 56

4.2 Design and Implementation.. 57

4.2.1 Top Module Design... 57

4.2.2 Second Layer Modules .. 58

4.2.3 Implementation Details of the Third-Layer Modules.................................... 61

4.2.3.1 State Machines.. 61

4.2.3.2 Receive Buffers .. 64

4.2.3.3 Label Removing ... 69

4.2.3.4 Lookup Table.. 71

4.2.3.5 Label Binding and Switching ... 75

4.2.3.6 Transmit Buffers... 76

Chapter 5 Test Development and Procedure...79

5.1 Introduction .. 79

5.2 Test Methodology Development .. 80

 vi

5.3 The Test Equipment ... 83

5.3.1 The Motherboard ... 83

5.3.2 The Daughter Card .. 84

5.3.3 Introduction to the CS8900A... 86

5.3.3.1 CS8900A Work Mode.. 86

5.3.3.2 CS8900A Configuration... 88

5.4 Interface design .. 88

5.4.1 Functions to Be Performed.. 88

5.4.2 Flow Chart of Interface Functions... 90

5.4.3 Input/Output Signal Description.. 93

5.5 The Tests .. 97

5.5.1 Test Configuration... 97

5.5.2 Real Testing Procedure.. 102

Chapter 6 Test Results and Analysis .. 103

6.1 Overview .. 103

6.2 Test Result Demonstration and Simple Analysis ... 104

6.2.1 CS8900A Configuration.. 104

6.2.2 Packet Receiving and Label Swapping ... 106

6.2.3 Label Binding and Packet Buffering ... 115

6.2.4 Packet Transmission.. 119

6.3 Special Considerations ... 127

Chapter 7 Conclusions and Future Work ... 130

7.1 Conclusions .. 130

7.2 Future Work.. 132

References... 134

MPLS.. 134

Switch/Router ... 134

Queuing Theory.. 135

Queuing Implementation .. 136

Data Sheets ... 136

Other ... 137

 vii

LIST OF FIGURES

Figure 1-1 Architecture of a Typical Router .. 6

Figure 1-2 Logical View of M40 Architecture... 11

Figure 2-1 MPLS Generic Label Format.. 17

Figure 2-2 ATM as the Data Link Layer.. 18

Figure 2-3 Frame Relay as the Data Link Layer .. 18

Figure 2-4 Point-to-Point (PPP)/Ethernet as the Data Link Layer 18

Figure 2-5 LSP Creation and Packet Forwarding through an MPLS Domain 24

Figure 2-6 Tunneling in MPLS .. 27

Figure 2-7 MPLS Protocol Stack ... 30

Figure 3-1 First Generation Switch/Routers... 31

Figure 3-2 Second Generation Switch/Routers .. 32

Figure 3-3 Left: Third Generation Switch/Router; Top-Right: A Crossbar;

 Bottom-Right: An 8x8 Banyan Fabric made of small 2x2 switch blocks. ... 33

Figure 3-4 Logical Architecture of the LSR... 37

Figure 3-5 Hardware Architecture of a Reconfigurable MPLS Router 38

Figure 3-6 Single-Chip RHFE Design for Line Cards ... 39

Figure 3-7 Binary Tree of Comparators Priority Queue .. 41

Figure 3-8 Shift Register Priority Queue and Shift Register Block 42

Figure 3-9 Systolic Array Priority Queue and Systolic Array Block............................. 42

Figure 3-10 UD-WRR Scheduling Policy.. 48

Figure 3-11 NN × RPS Architecture Adopting UD-WRR.. 55

Figure 4-1 Top Module Block Diagram... 58

Figure 4-2 MPLS Functional Block Diagram .. 59

Figure 4-3 State Machine Block Symbols, prototype names:

 a) polling_machine b) polling_machine0…………………………………..62

Figure 4-4 Relationship Between the Data FIFO and Packet Length FIFO................... 65

Figure 4-5 Receive Buffers Block Diagram... 66

 viii

Figure 4-6 Single Receive Buffer Block Symbol, Prototype name: rx_frame_reg........ 67

Figure 4-7 Label Remover Block Symbol, Prototype name: label_remover 70

Figure 4-8 CAM and RAM Combination for MPLS ... 72

Figure 4-9 Lookup Table Block Symbol, Prototype name: lookup_table...................... 75

Figure 4-10 Label Binder Block Symbol, Prototype name: label_binder 76

Figure 4-11 Transmit Buffers Block Diagram ... 77

Figure 4-12 Single Transmit Buffer Block Symbol, Prototype name: tx_frame_reg 78

Figure 5-1 MPLS Edge Node Hardware Architecture ... 82

Figure 5-2 Test Bed Architecture ... 83

Figure 5-3 The Mother Board... 84

Figure 5-4 The Daughter Card ... 85

Figure 5-5 Block Diagram of the Interface Between MPLS and MAC......................... 89

Figure 5-6 Flow Chart of Interface Functions.. 91

Figure 5-7 16-bit I/O Write to the CS8900A.. 93

Figure 5-8 16-bit I/O Read from the CS8900A.. 94

Figure 5-9 Interface Module Block Symbol, Prototype Name: mpls_mac_interface 95

Figure 6-1 Receive_&_Ttransmit………………………………………………….….106

Figure 6-2 Receive_Full………………………………………………………………110

Figure 6-3 Receive_0………………………………………………………………....111

Figure 6-4 Receive_1…………………………………………………………………112

Figure 6-5 Receive_2…………………………………………………………………113

Figure 6-6 Receive_3…………………………………………………………………114

Figure 6-7 Receive_4…………………………………………………………………115

Figure 6-8 Save_to_MPLS_Full………………………………………………………117

Figure 6-9 Save_to_MPLS_0…………………………………………………………118

Figure 6-10 Save_to_MPLS_1………………………………………………………..119

Figure 6-11 Transmit_Full……………………………………………………………123

Figure 6-12 Transmit_0……………………………………………………………….124

Figure 6-13 Transmit_1……………………………………………………………….125

Figure 6-14 Transmit_2……………………………………………………………….126

 ix

LIST OF TABLES

Table 5-1 CS8900A I/O Port Descriptions... 87

Table 5-2 a) CS8900A Configuration for Node A ... 97

Table 5-2 b) CS8900A Configuration for Node B ... 98

Table 5-3 Network Setting ... 99

Table 5-4 a) Node A Test Path Selection ... 99

Table 5-4 b) Node B Test Path Selection ... 99

Table 5-5 a) Node A Lookup Table Configuration .. 100

Table 5-5 b) Node B Lookup Table Configuration .. 101

Table 6-1 Bit Definition for SelfStatus Register .. 106

Table 6-2 Bit Definition of RxEvent register ... 107

Table 6-3 Bit definition of TxEvent Register... 119

Table 6-4 Bit definition of TxCommand Register ... 119

Table 6-5 Bit definition of Bus Status Register.. 120

 x

LIST OF ABBREVIATIONS

ATM Asynchronous Transfer Mode

BGP Boarder Gateway Protocol

CoS Class of Service

CRC Cyclic Redundancy Check

CR-LDP Constraint-based Routing LDP

DA Destination Address

DiffServ Differentiated Services

DLCI Data Link Connection Identifier

DMA Direct Memory Access

ESB Embedded System Block

FEC Forward Equivalent Class

FPGA Field Programmable Gate Array

GPS General Processor Sharing

HDL Hardware Description Language

HDLC High Level Data Link Control

HOLB Head of Line Block

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

IP Internet Protocol

ISA Industry Standard Architecture

ISP Internet Service Provider

LDP Label Distribution Protocol

LER Label Edge Router

LFIB Label Forwarding Information Base

LIB Label Information Base

LSB Left Significant Bit

LSP Label Switched Path

 xi

MPLS Multi-Protocol Label Switching

OSI Open System Interconnection

OSPF Open Shortest Path First

PCI Peripheral Component Interconnection

PIM Protocol-Independent Multicast

PING A utility to determine whether a specific IP address is accessible. Often believed

to be short for Packet Internet Groper

PNNI Private Network-to-Network Interface

POS Packet Over SONET/SDH

PPP Point to Point Protocol

QoS Quality of Service

RHFE Reconfigurable Hardware Functional Element

RISC Reduced Instruction Set Computer

RPS Real Packet Switching

RSVP Resource Reservation Setup Protocol

SA Source Address

SDH Synchronized Digital Hierarchy

SONET Synchronous Optical Network

SOPC System-On-a-Programmable-Chip

TCP Transmission Control Protocol

ToS Type of Service

UDP User Datagram Protocol

UD-WRR Unit Data Weighted Round Robin

VCI Virtual Circuit Identifier

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VPI Virtual Path Identifier

VPN Virtual Private Network

WFQ Weighted Fair Queue

 xii

 1

Chapter 1 Introduction

1.1 Motivation

 Over the last ten years, the Internet has evolved into a ubiquitous network. New

extranet services, network-enabled intranet applications, and much more powerful PCs

are turning the Internet rapidly into an electronic agent for information retrieval,

commerce, entertainment, and communication. As well, there is exponential growth in

the number of users who have diverse demands for more reliable and differentiated

services. Therefore, Class of Service (CoS) and Quality of Service (QoS) issues must be

addressed in order to support the diverse requirements of the wide range of new

applications and network users. Both large and small Internet Service Providers (ISPs)

constantly face the challenges of adapting their networks to accommodate new services

and meeting more diverse customer requirements. In many situations, software updates

are not enough to achieve this goal. Meanwhile, due to extremely high costs, physically

replacing or upgrading network infrastructure constantly is not feasible, either. As a

result, Multi-Protocol Label Switching (MPLS) that can address all these issues was

proposed.

 MPLS [2, 3] is a direct and elegant industrial solution to improve the

controllability, efficiency, and reliability of the current worldwide IP networks. It gives

the network better extensibility and also provides more flexibility to routing services,

which means that it allows the addition of new routing services without changing the

original packet-forwarding mode. MPLS is not confined to any particular link layer

technology; it can use any medium to transmit packets between any two entities of the

network layer. However, though MPLS is now taken as a crucial standard technology

that offers new capabilities for large-scale IP networks, the concept of label switching

was originally proposed as a way of improving the forwarding speed of routers only.

 Routers can easily become places where network bottlenecks are formed, and fast

node processing speed is extremely important to avoid these bottlenecks to achieve

 2

good network performance. Meanwhile, from the industrial point of view, the flexibility

that can reduce the cost when new services need to be added to the router later is of the

same importance [7, 9]. Naturally, routers that are both fast and flexible are desired, but

these two characteristics are generally considered a contradiction in terms. The reason is

that maintaining high throughput requires fast but fixed-configuration application

specific integrated circuits (ASICs) while flexibility requires slower though flexible

configuration of general-purpose processors. Is there an ideal compromise? The answer

is positive. The solution is a reconfigurable router that is fast and flexible at the same

time, by integrating the best features of both hardware and software processing through

the efficient use of Field-Programmable Gate Array (FPGA) technology, hardware

description language, and hardware/software partitioning and scheduling technique.

Detailed reasons for why FPGA instead of ASIC or software technologies are chosen in

this project is fully described in section 1.3.2

 In the project described by this thesis, a partial fulfillment FPGA for the next

generation fully reconfigurable IP routers adopting MPLS is implemented. The thesis is

organized as follows. Chapter 1 presents a general introduction to MPLS and typical

router architecture, then clearly explains why a reconfigurable router is desirable and

realizable, and ends with a brief overview of some current commercial router products.

Chapter 2 gives a more detailed literature review on MPLS standards. Chapter 3 begins

with a brief description of the switch/router evolution over the years, then talks about

the software/hardware partitioning for MPLS implementation, finally presents the

architecture design proposal for a fundamental reconfigurable MPLS router and an

improved multiple queue scheduling policy, Unit Data Weighted Round Robin. Chapter

4 depicts the full details of the MPLS logic circuit design completed within a FPGA

device in this project. Chapter 5 introduces the test equipment first, then presents the

test methodology development and the interface design, finally presents the test

parameter selection. Chapter 6 deals with practical test procedures and result

demonstration and analysis. At the end of the thesis, conclusions for work having been

done and suggestions for future work are given.

 3

1.2 What is MPLS?

 MPLS [4, 5] provides a new technical foundation for today’s multi-user, multi-

service IP-based networks and can effectively address the bandwidth and quality of

service requirements. According to the TCP/IP model, there are 4 layers: the

transportation layer (layer 4), the network layer (layer 3), the logic link layer (layer 2)

and the physical layer (layer 1). MPLS can be deployed directly over current ATM-

based wide area networks without any hardware modification on ATM switches.

Meanwhile, by inserting an MPLS shim layer between layer 2 and layer 3, MPLS can

be used over different layer 2 protocols other than ATM to transport different Layer 3

protocols such as IPv6, IPX, or AppleTalk in addition to Ipv4 traffic.

 With software or hardware implementation, MPLS supports service differentiation

by using traffic-engineered path setup, helps achieve fine-grained service-level

guarantees and incorporates provisions for constraint-based and explicit path setup.

MPLS can improve and simplify packet-forwarding performance by enabling routing in

Layer 2 switching that operates at wire-line speeds with hardware implementation.

MPLS also helps in building interoperable networks due to its layer 2 independency and

in building scalable Virtual Private Networks (VPNs) due to its traffic-engineering

capability.

 MPLS is significantly different from the hop-by-hop processing methods used by

traditional networks. The essence of MPLS is the generation of a ‘label’ that acts as a

shorthand representation of an IP packet’s header. The MPLS ingress edge router

selects the appropriate label that is to be inserted between layer 2 and layer 3 headers

after it analyzes the contents of the packet’s IP header. Part of the great power of MPLS

comes from the fact that, compared to conventional IP routing, this analysis can be

based on more than just the destination address carried in the IP header. The label is a

short, fixed length, locally significant identifier, which distinguishes the route the

packet should take to reach the required egress node of the MPLS-enabled network.

Each label corresponds to a Forward Equivalence Class (FEC), which is a group of

packets that are forwarded in the same manner (i.e., over the same path, with the same

forwarding treatment). FECs can be defined at different levels of granularity. Each

 4

Label Switching Router (LSR) must keep track of how packets should be forwarded by

containing this FEC information in a Label Information Base (LIB) that includes FEC-

to-label bindings. Conventional routing protocols, such as OSPF, BGP and PIM,

provide the LSRs with the mapping between the FEC and the next hop addresses.

 The basic operation of an MPLS network involves switching that is based on these

labels, instead of the IP headers. Full IP header analysis occurs at every node in

conventional IP routing, while in an MPLS cloud this analysis occurs only once at the

network edge when the label is assigned. When a labeled packet is received at an LSR,

the input port and label information are read and the output port is determined. Then an

outgoing label in context for the next hop’s label switching operation replaces the

incoming label.

 The MPLS standard allows for MPLS-enabled networks to be nested within each

other. To accommodate this nesting, packets may have multiple labels, which form a

label stack. The number of labels that need to be stored in a LSR depends on the type of

label mapping policy that is used in the MPLS network.

 A standard label distribution method is required when a LSR assigns a label to a

particular FEC and conveys this information to its peers in the MPLS network. The

MPLS standard does not dictate which signaling protocol should be used for such label

distribution. The most popular protocol is called Label Distribution Protocol (LDP),

which uses TCP and UDP over layer 4 to send messages; however, other signaling

protocols do exist, such as the Resource Reservation Protocol (RSVP). In addition,

extensions to LDP and RSVP have been created and are currently being considered to

support traffic engineering. They are Constraint-based Routing LDP (CR-LDP) and

RSVP Traffic Engineering (RSVP-TE) respectively.

 In MPLS, a Label Switched Path (LSP) can be created by using different signaling

protocols mentioned above, conforming to explicit network administrator’s

requirements. A LSP is functionally equivalent to a virtual circuit and is defined by a set

of labels that are used from the ingress of the MPLS domain to the egress.

 5

 One of the most important advantages of MPLS is to allow traffic flows to be

moved away from the shortest path calculated by say, the Interior Gateway Protocol

(IGP), and onto potentially less congested physical paths across the network when

necessary, which results in better utilization of the network.

 Another advantage is that, MPLS is beneficial when realizing differentiated

services (DiffServ). Users are motivated to use the Internet as a public transport for a

number of different applications ranging from traditional file transfer to delay-sensitive

services such as real time voice and video. To meet such diverse requirements, not only

traffic engineering techniques but also traffic classification technologies have to be

adopted. There are two approaches to support MPLS-based class of service forwarding.

The first approach is that traffic flowing through a particular LSP can be queued for

transmission on each LSR’s outbound interface on the setting of the precedence bits

carried in the MPLS header. The second approach is that an Internet Service Provider

can provide multiple LSPs between each pair of edge LSRs. Each LSP can be traffic

engineered to provide different performance and bandwidth guarantees. The head end

LSR could place high-priority traffic in one LSP, medium-priority traffic in another

LSP, best-effort traffic in a third LSP, and less-than-best-effort traffic in a fourth LSP.

MPLS offers tremendous flexibility in the different types of services. The precedence

bits are used to classify packets into one of several classes of service.

 MPLS is also valuable in providing a more complete separation between inter- and

intra-domain routing. This improves the scalability of routing processes and, in fact,

reduces the route knowledge required within a domain because on some networks there

may be a large amount of transit traffic. Meanwhile, with a clean separation between its

control and forwarding functions, MPLS can evolve each part without impacting

another part, which in turn enables the network evolution easier, less costly, and less

prone to errors.

 The last but not the least advantage of MPLS to mention here is providing a simple

solution to VPN-related issues. VPN allows the public Internet to be used as a method

for connecting various networks to form a private WAN. The VPN service provider

must provide data privacy and support private IP addressing use where the IP address

 6

space overlaps other network domains. Since forwarding decisions are based on MPLS

labels and not destination IP addresses, traffic between (and even within) VPNs can be

easily isolated.

 On the whole, MPLS provides significant improvements in the packet forwarding

process by simplifying the processing, avoiding the need to duplicate header processing

at every step in the path, and creating an environment that can support controlled QoS

and traffic engineering.

1.3 Introduction to Reconfigurable Routers

 In this section an introduction to the typical router architecture and an overview of

today’s router products are given.

1.3.1 Typical Router Architecture

Figure 1-1 Architecture of a Typical Router

 A typical router does three fundamental jobs [11, 14]. The first is to compute the

best path that a packet should take through the network to its destination. This

computation accounts for various policies and network constraints. The second job is to

actually forward packets received on an input interface to the appropriate output

interface for transmission across the network. Forwarding relies on the best-path

information pre-computed in the route processor. The third job is to temporarily store

 7

packets in large buffer memories to absorb the bursts and temporary congestion that

frequently occur and to queue the packets using a priority-weighted scheme for

transmission. Figure 1.1 shows the basic logical architecture of a router. The basic

functional components carrying out these three jobs are named the Routing Engine, the

Forwarding Engine, and the Buffer Management system respectively. A set of input and

output ports is interconnected via some interconnection architecture.

 The Routing Engine is dedicated to communicating with adjacent routers in order

to build a comprehensive route database for the forwarding engine to send packets

across optimum paths through the network. The routing engine runs software algorithms

executing routing protocols, which enable the sharing of network status information

among routers.

 The Forwarding Engine examines the content of the packet’s header, then searches

for corresponding route information provided by the routing engine to find a match and

finally direct the packet from the input port to the output port across the system’s

switching fabric.

 If multiple packets arriving at different input ports simultaneously need to be

forwarded to the same output port, a buffer must be available as a temporary waiting

area in which packets queue up for transmission. The order in which they are

transmitted is determined by the queuing scheduling policy pre-selected.

1.3.2 Why Reconfigurability?

 As a commercial infrastructure providing differentiated services, the Internet has to

be constructed with routers that can meet the massive demand increases in both

bandwidth and processing speed. It is very important that these core elements of any

networks be extensible and reconfigurable to support the ever new, ever evolving

protocols and be able to provide third-party software vendors or value-added service

providers with opportunities to develop applications. While many powerful routers with

high processing speeds and throughputs have been manufactured already, they are not

flexible and thus make it impossible for potential new protocols and services to be

added without incurring large costs.

 8

 It has been thought that the time spent to process a packet on an IP switch should

not exceed 0.27 ms [39], which clearly shows that maintaining high-throughput is a

problem. Some researchers (Keshav and Sharma in [8]) also note that the reduction of

port cost is currently a tradeoff between application specific integrated circuits (ASICs)

and general-purpose processors. In this dichotomy, the only solution that provides

flexibility is the use of a general-purpose processor. However, new software

technologies deployed within the router operating system with the potential of offering

increased flexibility in the router may not increase its performance. Software

instructions themselves ask for processing time. Thus it is not clear if these software

technologies will be practical, especially considering the current problems with

maintaining high port performance. As line speeds continue to rise and the upper bound

on processing time continues to fall, as on-demand scheduling of hardware resources is

required to assist in the development of flexible network, some solution to provide

reconfigurability at the hardware layer has to be found.

 One way of providing this low-level reconfigurability is through configurable

computing technology. With suitable hardware-level configurable computational units,

stream processing has the potential to allow packets to be processed at line speeds. It

becomes more practical since reconfigurable hardware technology has made several

compelling performance advances recently, identifying it as a possible solution to the

reconfigurable network node problem. New reconfigurable hardware devices contain

approximately 110K logic elements (millions of application logic gates), an internal

clock about 420 MHz, and over 10MB of on-chip RAM.

 Contemporary Field Programmable Gate Arrays, which serve as the flexible fabric

in configurable computing platforms, are already being used to provide field-upgrades

of firmware in some industrial and research switches ([35], [38]). FPGAs provide an

intermediate operating point between the relative slowness, flexible configuration, and

low cost of a general-purpose processor and the high-performance, fixed configuration,

and high cost of an ASIC. A modular and configurable set of functional units can be

strung together and implemented within FPGA devices quite easily. Also, it is relatively

easy to add, remove, modify and interconnect modules since they can be developed

 9

independently, which greatly simplifies the implementation of a design. It is true that

the cost of modularity brings an increase in the number of gates required to implement a

particular function while some computational resources available in the module may not

be used at all. However, because of the significant increase in FPGA resources, this is

not expected to be a problem. Before long, one could expect a reconfigurable router

composed of FPGAs, custom ASICs, and custom general-purpose processors to obtain

the optimal combination of performance, flexibility, and cost.

1.4 Industrial MPLS Router Products Overview

 The routers that power the Internet are evolving architecturally to keep pace with

the escalating use of the Web and the requirement for a whole new generation of

innovative, revenue-generating application services. Certain high-end router

architectures that support ultra fast fiber-optic interfaces of up to 10 Gbps speeds and

achieve system throughput in excess of 350 million packets per second (pps) already

exist. Also, large router manufacturers claimed that they had implemented routers

supporting MPLS, such as Alcatel IND, Cisco Systems, Juniper Networks, Marconi

FORE Systems, etc. All these manufacturers stated that they had implemented or

planned to implement both CR-LDP and RSPV-TE signaling protocols. In the following

sections, these MPLS router products will be investigated according to product data

sheets provided in [30] – [34].

1.4.1 Cisco 12000

 The major components of the 12000 Gigabit Switch Router (GSR) are the switch

fabric, the gigabit route processor (GRP), and the line cards (LCs). The packet-

forwarding functions are performed by each of the LCs. Each LC performs an

independent lookup of a destination address for each datagram received on a local copy

of the forwarding table, and the datagram is switched across a crossbar switch fabric to

the destination LC.

 At the heart of the Cisco 12000 GSR is a multi-gigabit crossbar switch fabric. The

switch fabric includes two card types: switch-fabric cards (SFCs) and clock and

scheduler cards (CSC). The CSC handles requests from LCs, issues grants to access the

 10

fabric, and provides a reference clock to all the cards in the system to synchronize data

transfer across the crossbar. The SFCs receive the scheduling information and clocking

reference from the CSCs and perform the switching functions.

 The GRP is dedicated to determining the network topology and calculating the best

path across the network. It creates and maintains the routing table (up to one million

route entries), also distributes and updates express forwarding (EF) tables on the LCs

and maintains copies of the tables of each LC for card initialization.

 Line cards connect the GSR to other devices via electrical or optical media. The

LCs are designed for the transmission of IP packets over Dynamic Packet Transport

(DPT), PPP, Frame Relay, Packet over Sonet/SDH (POS) or ATM interfaces. The

features and functions of the LCs are interface-specific.

 The system of this series delivers scalable traffic engineering features by adopting

Multi-protocol Label Switching (MPLS). Meanwhile, the design of this series supports

virtual output queues (VOQs) that eliminate head-of-line blocking (HOLB) and increase

overall system efficiency. Micro programmable application-specific integrated circuits

(ASICs)-based queuing provides line speed forwarding for unicast and multicast traffic

that fills SONET/SDH transmission facility.

1.4.2 JUNOS M40

 As shown in Figure 1-2, there are two key components of the M40 architecture: the

packet forwarding engine (PFE) and the routing engine. The PFE is responsible for

packet forwarding performance. It consists of the flexible PIC concentrators (FPCs),

physical interface cards (PICs), system control board (SCB), and state-of-the-art ASICs.

The routing engine maintains the routing tables and controls the routing protocols. It

consists of an Intel-based PCI platform running JUNOS software.

 The M40 ASICs deliver a comprehensive hardware-based system for packet

processing, including route lookups, filtering, sampling, rate limiting, load balancing,

buffer management, switching, encapsulation, and de-encapsulation functions. To

 11

ensure a non-blocking forwarding path, all channels between the ASICs are oversized,

dedicated paths.

 The Internet Processor II ASIC delivers high-speed forwarding performance with

advanced IP services, such as filtering and sampling, enabled. The distributed buffer

managers ASICs allocate incoming data packets throughout shared memory on the

FPCs.

 Each FPC is equipped with an I/O Manager ASIC that supports packet parsing,

packet prioritizing, and queuing. The media-specific ASICs perform physical layer

functions, such as framing. Each PIC is equipped with an ASIC or FPGA that performs

control functions tailored to the PIC's media type.

Figure 1-2 Logical View of M40 Architecture

 12

 The packet-forwarding engine (PFE) provides Layer 2 and Layer 3 packet

switching, route lookups, and packet forwarding. The PFE supports ASIC-based

features, for example, class-of-service features include rate limiting, classification and

priority queuing, etc.

 The enhanced flexible PIC concentrators (FPCs) house PICs and connect them to

the rest of the PFE. Each FPC supports up to four PICs in any combination. Each FPC

contains shared memory for storing data packets received. The physical interface cards

(PICs) provide a complete range of fiber optic and electrical transmission interfaces to

the network. The system control board (SCB) performs sampling, filtering, and packet

forwarding decisions. It processes exception and control packets, monitors system

components, and controls FPC resets.

 The routing engine maintains the routing tables and controls the routing protocols,

as well as the JUNOS software processes that control the router's interfaces, the chassis

components, system management, and user access to the router. These routing and

software processes run on top of a kernel that interacts with the PFE.

1.4.3 Alcatel 7670 Routing Switch Platform

 The Alcatel 7670 Routing Switch Platform (RSP) is an MPLS-enabled ATM core

switch designed for networks, integrating ATM multi-service capability and MPLS/IP

switching into a unified scalable platform.

 Per-VC queuing and shaping at ingress and egress, and buffer management with

frame discard are adopted. All ATM service categories and most IP routing features are

supported. To provide MPLS/IP, the switch platform can act as both edge LSR and core

LSR and support Permanent LSP (P-LSP) and signaled LSP (S-LSP). The switch

supports point-to-point and point-to-multipoint PVCs and SVCs, point-to-point SPVCs.

Since Alcatel 7670 is an ATM switch, line cards are designed mainly for optical

interfacing.

1.4.4 Marconi ASX4000

 13

 The ASX-4000 is a backbone switch that features the architecture to support low

speed multi-service connections including ATM, Frame Relay DSL, Circuit Emulation

and Ethernet. With the IP routing (IPR) module, the ASX-4000 can also operate as an

MPLS gateway device.

1.4.5 Conclusion: New Products Desired

 All the products mentioned above were designed to have redundancy in all key

system components---processors, switch fabric, line cards, and power---to minimize

network disruption in the event of a failure. This provides some kind of flexibility since

components can be added or removed without service disruption.

 All of these companies claimed that MPLS was supported. However, most of them

stated this with only one or two sentences in their product data sheets, just as when they

stated they could of course support software implemented BGP and OSPF, etc. No

description of streamlined hardware dedicated for label switching was provided. This

vagueness might due to the companies’ confidential policy, but might also due to the

more likely fact that most of them implemented MPLS in software. Only Marconi

described very briefly that MPLS was supported by an IP routing module and this

simple function description certainly led to the conclusion that it was implemented in

software. With a powerful microprocessor, it may be realistic and meaningful to

implement MPLS in software, providing both flexibility and better QoS guarantees.

However, software implementation cannot take full advantages of what MPLS brings

for layer 3 routing, which is critical to gain the overall faster processing speed at

network nodes.

 Some ATM switch products seemed to have fulfilled MPLS in hardware. But

MPLS hardware implementation over ATM is quite straightforward and totally different

from the implementation done over other layer 2 protocols. There is no need to do label

binding or removing physically over an ATM based network when realizing MPLS,

since the labels can reside in VPI and VCI fields that already exist in the ATM frame

structure. However, a shim layer to hold MPLS labels is necessary if MPLS is to be

deployed over PPP, Ethernet and Frame Relay networks in hardware, because their

 14

frame structures contain no or not enough existing fields for MPLS labels to reside in

correspondingly.

 Finally, these companies all based their router design on powerful ASICs, which

could not adopt new system parameters when needed, such as buffer space, routing

table scale, etc; let alone the extensibility for potential protocols or other value added

features that people want the routers to support in the future without any hardware

modification or replacement. Generally speaking, routers existing in today’s market are

not reconfigurable at all.

 Since almost all router manufacturers tend to stress the MPLS features of their

products to make their routers look more competitive in the market, it can be inferred

that MPLS routers are really the trend. By implementing the MPLS functions in

hardware and making the router architecture reconfigurable, this project is meaningful.

 15

Chapter 2 Multi-Protocol Switching

2.1 Main MPLS Components

 An MPLS node can obtain all the information it needs to forward a packet as well

as determine resource reservations needed by a class of traffic using a single memory

access through its specially designed software and hardware components. In this section

the main MPLS components are introduced.

• LSRs and LERs

 There are two categories of node equipments that participate in the MPLS working

mechanisms. One is called the Label Switching Router (LSR), which is a high-speed

MPLS-enabled router in the core of an MPLS domain; the other is the Label Edge

Router (LER), which operates at the boundary between access networks and the MPLS

domain. LERs can perform all the functions executed by LSRs besides handling issues

of packets’ entering and leaving the MPLS domain.

 With the aid of an appropriate label signaling protocol, LSRs cooperate to establish

Label Switched Paths (LSPs) and perform high-speed switching of the data traffic

according to MPLS labels attached to packets. A fundamental step in label switching is

that LSRs have to agree on the MPLS labels they use to forward traffic. They come to

this common understanding by using the dedicated Label Distribution Protocol (LDP),

Constraint Routing-Label Distribution Protocol (CR-LDP) or extensions to other

protocols, such as PIM, BGP, RSVP. Since the current Internet consists of all kinds of

networks which may not support MPLS traffic but only traditional IP traffic, to make

the backbone MPLS router backwards compatible with other ordinary routers, LSRs are

also able to forward native Layer 3 packets and routing packets without MPLS labels.

 LERs support multiple ports connected to dissimilar networks (such as frame relay,

ATM, and Ethernet). A LER can act as an ingress node or an egress node or both, for

the MPLS domain. When acting as an ingress node, the LER forwards the traffic on to

 16

the MPLS network after establishing LSPs using the label signaling protocol; when

acting as an egress node, the LER distributes the traffic back to the access networks.

The two very important MPLS functions, the label assignment and removal as traffic

enters or exits an MPLS domain, take place at ingress LERs and egress LERs

respectively. Like all LSRs, LERs can also perform a conventional IP forwarding

function.

• Forwarding Equivalent Class (FEC)

 A forwarding equivalent class is defined for a set of packets that receive the same

treatment during transmission. In the context of MPLS, a packet is assigned to a FEC

when it enters the MPLS network. The ingress router may use, in determining the FEC

assignment, any information it has about the packet, even if that information cannot be

gleaned from the network layer header, which is why labels that represent

corresponding FECs contain considerably more information than just destination/source

addresses for longest prefix match in IP routing. For example, a packet that enters the

network at a particular router can be labeled differently than the packet from/to the

same source/destination entering the network at a different router.

 Insofar as the forwarding decision is concerned, different packets that get mapped

into the same FEC are indistinguishable. All packets that belong to a particular FEC

and travel from a particular node will follow the same path (or if certain kinds of multi-

path routing are in use, they will all follow one of a set of paths associated with the

FEC).

• Labels and Label Bindings

 Since each FEC has associated labels according to some policy, once a packet is

classified as a new or existing FEC, the associated fixed length labels are assigned to

the packet. The events that result in such label assignments can be either data-driven

bindings or control-driven bindings. The latter one is preferable because of its advanced

scaling properties that can be used in MPLS.

 17

 Policies according to which label assignment decisions are made may be based on

forwarding criteria such as destination unicast routing, traffic engineering, multicast,

virtual private network (VPN), and QoS. Under some circumstances identifiers for

underlying data link layers (such as frame relay or ATM) can be used directly as MPLS

labels, such as Data Link Connection Identifiers (DLCIs) in the case of frame-relay

networks or Virtual Path Identifiers (VPIs)/Virtual Channel Identifiers (VCIs) in case of

ATM networks.

 The generic label format is illustrated in Figure 2-1. Figures for different label

formats are shown in next page. If layer 2 is ATM, the label is placed into the VPI/VCI

field of the ATM cell header, as shown in Figure 2-2. Similarly, if layer 2 is frame relay,

the label can be placed into the data link connection identifier (DLCI) field in the frame

header, as shown in Figure 2-3. If Ethernet or point-to-point protocol (PPP) is running

in layer 2, a shim header is inserted between the layer 3 header and the layer 2 header.

The shim header contains the MPLS label, as shown in Figure 2-4. Support for the

shim header requires that the sending router have a way to indicate to the receiving

router that the frame contains a shim header. This is facilitated differently in various

technologies.

Figure 2-1 MPLS Generic Label Format [1]

 A set of labels, in its simplest form, identifies the path a packet should traverse.

Once a packet has been labeled, the rest of the journey of the packet through the

backbone is based on label switching. At the edge router, the MPLS label will be

 18

attached to the front of layer-3 header before the packet is transferred to Layer-2 for

data link layer header encapsulation. Then each of the flowing receiving LSRs

examines the packet for its label content to determine the next hop and then assigns a

new label to replace the old one. The label values are of local significance only, which

means they pertain only to hops between neighboring LSRs.

Figure 2-2 ATM as the Data Link Layer [1]

Figure 2-3 Frame Relay as the Data Link Layer [1]

Figure 2-4 Point-to-Point (PPP)/Ethernet as the Data Link Layer [1]

 MPLS defined two categorized label scopes for the uniqueness of different FEC–

label bindings at each LSR. When a LSR can tell which peer-LSR adopts the particular

 19

label value, it can use the “per-interface label space”, which indicates from the name

“per-interface” that the label ranges are associated with interfaces. Multiple label pools

are defined for interfaces, and the labels provided on those interfaces are allocated from

the separate pools. The label values provided on different interfaces could be the same.

Otherwise, the labels must be unique over the LSR that has assigned them, and the LSR

is said to use a “per-platform label space”. The labels are allocated from a common pool

and no two labels distributed on different interfaces have the same value.

• Label Creation and Control

 MPLS defines several methods to create labels: topology-based method uses

normal processing of routing protocols (such as OSPF and BGP); request-based method

uses processing of request-based control traffic (such as RSVP); traffic-based method

uses the reception of a packet to trigger the assignment and distribution of a label. The

topology- and request-based methods are examples of control-driven label bindings,

while the traffic-based method is an example of data-driven bindings.

 Also, there are two ways to control the label creation. In the independent mode, an

LSR recognizes a particular FEC and makes the decision to bind a label to the FEC

independently to distribute the binding to its peers. The new FECs are recognized

whenever new routes become visible to the router. In the ordered mode, an LSR binds a

label to a particular FEC if and only if it is the egress router or it has received a label

binding for the FEC from its next hop LSR. This mode is recommended for ATM–

LSRs.

• Label Stack

 More than one label header can be attached to a single packet and are managed by

the label stack mechanism that allows for hierarchical operation in the MPLS domain.

There is a stack bit in a standard MPLS label helping to implement label stacking. The

label is indicated to be at the bottom of the stack if the stack bit contained within it is 1.

All stack bits in other labels are set to 0. In packet-based MPLS, the top of the stack

appears right after the link layer header, and the bottom of the label stack appears right

before the network layer header. Packet forwarding is accomplished using the label

 20

values of the label on the top of the stack. The stack bit becomes one when the

corresponding label moves to the top of the stack.

 Basically, tunneling operation can be facilitated by adopting the label stack

mechanism, which allows MPLS to be used simultaneously for routing between

individual routers both within an Internet service provider (ISP) and at a higher domain-

by-domain level. Each level is indicated by a label in the stack that pertains to some

hierarchical level.

• Label Merging

 Resource usage can be increased if different traffic flows can be merged together

and switched at a LSR when possible. This is known as stream merging or aggregation

of flows. It can be done when the incoming streams of traffic are from different

interfaces but toward the same final destination; or when traffic streams have to travel a

same period of journey before they can reach their different final destinations separately.

Label merging can be achieved by using a common outgoing label for several different

incoming labels.

 If the underlying transport network is an ATM network, LSRs could employ

virtual path (VP) or virtual channel (VC) merging. In this scenario, cell-interleaving

problems, which arise when multiple streams of traffic are merged in the ATM network,

need to be avoided.

• Label Retention

 There are two modes defined in MPLS for the treatment of label bindings received

from LSRs that are not the next hop for a given FEC. They are liberal mode and

conservative mode.

 In the former mode, the bindings between a label and an FEC received from LSRs

that are not the next hop for a given FEC are discarded. This mode requires an LSR to

maintain fewer labels and thus is recommended by IETF.

 21

 In the latter mode, the bindings between a label and an FEC received from LSRs

that are not the next hop for a given FEC are retained. This mode allows for quicker

adaptation to topology changes and switching of traffic to other LSPs in case of such

changes, but it requires larger memory at each MPLS node.

• Label Forwarding Algorithm

 Label swapping is the base on which packet switching is performed in a MPLS

domain. MPLS uses only a label swapping based forwarding algorithm to do packet

switching for all traffic types such as unicast, multicast, and unicast packets with ToS

bits set, which conventionally require multiple forwarding algorithms.

 Each MPLS node maintains a Label Information Base (LIB). Most frequently used

labels are formed into a smaller Label Forwarding Information Base (LFIB) for actual

packet switching. Label values are extracted from the label field found in incoming

packets and used as an index in the LFIB. After a match is found, the MPLS node

replaces the label in the packet with the outgoing label from the subentry and sends the

packet over the specified outgoing interface to the next hop specified by the subentry. If

the subentry specifies an outgoing queue, the MPLS node places the packet in the

specified queue. If the MPLS node maintains multiple LFIBs for each of its interfaces,

it uses the physical interface on which the packet arrived to select a particular LFIB, and

then performs label swapping according to this LFIB.

• Label-Switched Paths (LSPs)

 Through an MPLS network, a traffic path along which packets belonging to a

certain FEC travel is specifically defined over a set of LSRs prior to data transmission

and is named the Label-Switched Path. MPLS allows a hierarchy of labels known as the

label stack. It is therefore possible to have different LSPs at different levels of labels for

a packet to reach its destination. The LSP setup for an FEC is unidirectional in nature,

which means the return traffic must take another LSP. MPLS provides the following

two options to set up an LSP

 22

Hop-by-hop routing/Independent control--- This methodology is similar to that

currently used in IP networks. Each LSR uses any available routing protocols, such as

OSPF or ATM PNNI (Private Network-to-Network Interface), to independently select

the next hop for a given FEC.

Explicit routing (ER)/Ordered control--- This methodology eases traffic engineering

throughout the network, and differentiated services can be provided using flows based

on specific service level policies or network management methods. The ingress LER

specifies the list of nodes through which the ER–LSP traverses and then propagates

such information to other nodes contained in the list. This kind of LSP could be non-

optimal, say, not the shortest, because its primary goal is to ensure QoS to the data

traffic through appropriate resources allocation and reservation along the path.

 The hop-by-hop routing method provides faster convergence and establishment of

LSPs due to the fact that label bindings can be established and advertised at any time by

the LSR, while explicit routing method introduces the delay of waiting for messages to

propagate in order across the network before the LSP can be established. However, the

latter provides a better traffic engineering control and better loop prevention capabilities.

And the good thing is, these two types of LSP establishments may coexist on the same

network without any special considerations for architecture or interoperability issues.

• Label Distribution Protocol

 For label distribution, MPLS architecture allows several signaling methods, which

are either stemmed from existing routing protocols or newly proposed ones. For

example, Border Gateway Protocol (BGP) has been enhanced to piggyback the label

information within the contents of the protocol for external (like between VPNs) label

exchange. Another currently used protocol RSVP has also been extended to support

piggybacked exchange of labels and becomes RSVP-TE. Meanwhile, IETF has defined

a new protocol known as the label distribution protocol (LDP) dedicated for MPLS

label signaling and label space management. As well, extensions captured in the

constraint-based routing LDP definition have also been defined to support explicit

routing based on QoS and CoS requirements. Here the LDP is introduced briefly.

 23

 LDP has a set of signaling messages destined for the distribution of label binding

information to LSRs in an MPLS network. LDP peers in the MPLS network, adjacent or

not, establish LDP sessions between them and exchange certain LDP messages to map

FECs to labels, which, in turn, create LSPs. There are basically 11 types of LDP

messages, among which the most important ones are shown as below.

DISCOVERY--- used for finding LSRs and maintaining their existence.

ADJACENCY--- initialize, maintain, and shut down LDP sessions between LSRs.

LABEL ADVERTISEMENT---distribute label-binding, binding reverse and label

release information by using Label Mapping, Label Withdrawal and Label Release

messages respectively.

NOTIFICATION--- used for advisory and error signaling.

 Due to the critical nature of the information being transferred, LDP runs on

transmission control protocol (TCP) in order to ensure reliable data transport between

LSRs, except for DISCOVERY messages that are run on UDP.

 There are two types of label distribution strategies allowed in the MPLS

architecture: Downstream-on-Demand Mode and Unsolicited Downstream Mode. The

first mode allows an LSR to explicitly request a label binding for a particular FEC from

its next hop. Label Request messages are used to request label mappings from

downstream LSRs. Label Request Abort messages are used to abort the Label Request

message during or prior to the completion of the request. The second mode allows an

LSR to distribute bindings to LSRs that have not explicitly requested them.

2.2 MPLS Operation

 When routing a packet, choosing the next hop can be thought of as a composition

of two functions. The first function classifies the entire set of possible packets into a set

of "Forwarding Equivalence Classes (FECs)”. The second function maps each FEC to

its corresponding next hop. In MPLS, the assignment of a particular packet to a

particular FEC is done just once as the packet enters the network. The FEC to which

 24

the packet is assigned is encoded as a short fixed length value known as a “label”. Each

data packet is “labeled” before they are forwarded. At all subsequent hops, further

analysis of the accompanied label instead of the network layer header, is used to decide

the next hop until the packet reaches its destination. Indicated by a sequence of labels,

LSPs are established either prior to data transmission (control-driven) or upon detection

of a certain flow of data (data-driven). High-speed switching of data occurs on such

LSPs is possible because the fixed-length labels are inserted at the very beginning of the

packet or cell and can be used by hardware to switch packets quickly between links.

 MPLS brings the advantage that, not all of the traffic between a certain pair of

source and destination is necessarily transported through the same path within an MPLS

domain. Depending on the network congestion status and specific traffic characteristics,

different LSPs could be created for packets with the same source and destination

addresses but with different QoS or CoS requirement.

 Next, the step-by-step MPLS operations that occur on the data packets as the

packet is transported across the MPLS domain to its destination are illustrated with

reference to Figure 2-5. The LSP is set up between LER1 (the ingress LSR) and LER 4

(the egress LSR) through two inner nodes LSR1 and LSR3. The broken red lines

indicate the actual data path followed by the packet.

Figure 2-5 LSP Creation and Packet Forwarding through an MPLS Domain [3]

Step 1 Label creation and label distribution

 25

The ingress router LER1 does not always have a label for a packet, as it may be the first

occurrence of the FEC to which this packet belongs. Thus the ingress router requests

labels for this FEC from its downstream peer to build a label information table. This has

to be done before any traffic begins. In LDP, downstream routers initiate the

distribution of labels and the label/FEC binding. In Figure 2-5, LSR1 is the next hop for

LER1, thus LER1 initiates a label request toward LSR1. This request will propagate

through the network as indicated by the broken green lines. The reliable and ordered

transport protocol, TCP, should be used for the signaling protocol LDP. In addition,

traffic-related characteristics and MPLS capabilities are negotiated and CR–LDP may

be used in determining the actual path setup to ensure the QoS/CoS requirements are

complied with.

Step 2 Table creation

Each intermediary router will then receive a label from its downstream router starting

from LER2 and going upstream till LER1. On receipt of label bindings each LSR

creates entries in the label information base (LIB) specifying all the mapping between a

label and an FEC, that is, mappings between the input port and input label table to the

output port and output label table. The entries are updated whenever renegotiation of the

label bindings occurs. Another table named LFIB, which is a subset of the labels

extracted from the LIB, will also be created for actual packet forwarding.

Step 3 Label switched path creation

As shown by the dashed blue lines in Figure 2-5, the LSPs are created using LDP or any

other signaling protocol in the reverse direction to the creation of LIB entries. More

detailed establishing procedure has been introduced in the first section.

Step 4 Label insertion/table-lookup

The ingress router LER1 inserts the label corresponding to a specific FEC to the packet

and then forwards the packet to its next hop LSR. Subsequent LSRs use their LFIB

tables to find the next hop for the packet. As shown in Figure 2-5, LSR2 and LSR3

examine the label in the received packet, replace it with the outgoing label and forward

 26

it on. The label is removed once the packet reaches the egress LSR (LER4) because it is

departing from the MPLS domain. Then the packet is supplied to the destination.

2.3 Tunneling in MPLS

 By adopting the label stack to create tunnels through the intermediary routers that

can span multiple segments, a great unique feature of MPLS used in provisioning

MPLS–based VPNs can be achieved. The entire path of a packet can be controllable

without explicitly specified intermediate routers.

 Consider the scenario in Figure 2-6. BGP is used between all the LERs (LER1,

LER2, LER3, and LER4), and a first level LSP, LSP1, is created between them. These

LERs will use the LDP to receive and store labels from the egress LER (LER4 in this

scenario) all the way back to the ingress LER (LER1).

 For LER1 to send its data to LER2 (one segment of the LSP1), it must go through

several LSRs, in this case there are three. Therefore, a separate second level LSP, LSP 2,

is created between these two LERs, LER1 and LER2, that spans LSR1, LSR2, and

LSR3. This, in effect, represents a tunnel between LER1 and LER2 in the view of level

1 LSP. The labels for this LSP2 are different from the labels that the LERs created for

LSP1. The same holds true for the LSP1 segment between LER3 and LER4 as well.

Thus a second level LSP, LSP 3, can be created for this segment. Note that in this

scenario, LER2 and LER3 are communicating directly, which means there is no tunnel

between LER2 and LSR3. In more complicated scenarios, there can be even more levels

of LSP between the source and destination LERs.

 When the packet is transported through more than one network segments, the

concept of the label stack is the foundation on which tunneling is realized. Take the

scenario in Figure 2-6 as the example. Since a packet must travel through LSP 1, which

contains two tunnels, LSP 2 and LSP 3, it has to carry two complete labels at a time.

The pair used for each segment is (1) pair for the first segment, labels for LSP 1 and

LSP 2 and (2) pair for the second segment, labels for LSP 1 and LSP 3. When the

packet exits the first network segment and is received by LER3, it will remove the label

for LSP 2 and replace it with LSP 3 label, while swapping LSP 1 label within the packet

 27

with the next hop label. LER4 will eventually remove both labels before sending the

packet to the destination.

Figure 2-6 Tunneling in MPLS [3]

2.4 Traffic Engineering and QoS

 In normal IP routing, the data path is calculated from some measurement of

efficiency. The common metrics for IP routing and forwarding decisions, including next

hop, hop count, and cost, are useful in predicting the "shortest path" through the

network. However, those metrics cannot be assumed to be reliable at all times, or to be

the best for a given flow that requires some fixed or guaranteed amount of bandwidth.

 28

 Traffic engineering is a process that enhances overall network utilization by

attempting to create a uniform or differentiated distribution of traffic throughout the

network. TE enables the network to quickly and automatically re-route traffic when

failure or congestion conditions are detected by ensuring that all available network

resources are optimally used. A network that maximizes its resources and capacity

during normal operation is thus achieved through avoiding network hot spots and areas

of hyper-aggregation, which means that traffic engineering does not necessarily select

the shortest path between two devices. It is possible that packets may traverse

completely different paths even though their originating node and the final destination

node are the same. In this way, the less-exposed or less-used network segments can be

used and differentiated services can be provided. Links between any two points in a

network are relatively fixed and quantifiable, and the cost to increase that capacity, in

many cases, is high, so effective traffic engineering and higher utilization of available

links can provide both long- and short-term cost savings.

 "Constraint-based" and "congestion-aware" routing are terms used to describe

networks that are fully aware of their current utilization, existing capacity and

provisioned services at all times. While traditional IP routing protocols, including OSPF,

IS-IS and BGP, are not inherently congestion-aware, and have to be modified to enable

such awareness, CR takes into account parameters, such as link characteristics

(bandwidth, allocation multiplier, current bandwidth reservation, resource class, packet

loss ratio, and link propagation delay, etc.), hop count, and QoS, etc. And the resulting

data path can also ensure that none of the constraints that have been set are violated

along the path. Once connections have been configured (either by dynamic signaling or

by static provisioning), the Layer 2 and Layer 3 network becomes fully aware of the

amount of bandwidth being consumed, as well as the parts of the network being used to

route the connections. This information can then be propagated to the accompanying IP

routing protocols that are exchanged by all IP routers, creating a truly congestion-aware

view of the network and its current topology. Then, all future network requests can be

directed to their destination by not only the "shortest path first" (as defined by OSPF),

but by a path that will guarantee the bandwidth requirements of the IP application or

service. This means when using CR, it is entirely possible that a longer (in terms of cost)

 29

but less loaded path is selected. And there is another side effect that while CR increases

network utilization, it adds more complexity to routing calculations, as the path selected

must satisfy the QoS requirements of the LSP.

 CR–LSPs set up with explicit hops or QoS requirements can be realized easily in

MPLS architecture. Explicit hops dictate which path is to be taken. QoS requirements

dictate which links and queuing or scheduling mechanisms are to be employed for the

flow. A CR–LDP component to facilitate constraint-based routes has been defined by

the IETF and its more detailed description has been introduced earlier in this chapter.

 In MPLS, traffic engineering is inherently provided using explicitly routed paths.

The LSPs are created independently, specifying different paths that are based on user-

defined policies. However, this may require extensive operator intervention. RSVP and

CR–LDP are two possible approaches to supply dynamic traffic engineering and QoS in

MPLS.

 RSVP-TE and CR-LDP are now two competing protocols used for MPLS that

perform CR. RSVP is an existing protocol, standardized by the IETF, which has been

extended to RSVP-TE. Similarly, CR-LDP is an extension of LDP, which has been

designed for MPLS especially. There are advantages and disadvantages to both

protocols. One side, CR-LDP sits on top of TCP to ensure reliability. For RSVP,

refreshing that must occur in the steady state is required to ensure reliability while

refreshing consumes bandwidth and processing resources. Also, TCP requires some

handshaking before an LDP session can begin and results in a moderate amount of

overhead while RSVP does not require connection establishment before label

distribution occurs. Because of such advantages and disadvantages of RSVP-TE and

CR-LDP, designers need to keep their systems flexible enough to accommodate future

changes to the protocols.

2.5 Protocol Architecture

 Figure 2-7 depicts the protocols that can be used for operations on a MPLS node.

The LDP module utilizes transmission control protocol (TCP) for reliable transmission

of control data from one LSR to another during a session. But the LDP uses the user

 30

datagram protocol (UDP) during its discovery phase of operation. In this phase, the

LSR tries to identify neighboring elements and also signals its own presence to the

network. This is done through an exchange of hello packets.

 There are two tables relevant to MPLS forwarding at an MPLS node: the LIB and

the LFIB maintained by LDP. The LIB (not indicated in Figure 2-7) contains all the

labels assigned by the local MPLS node and the mappings of these labels to labels

received from its MPLS neighbors. The LFIB uses a subset of the labels contained in

the LIB for actual packet forwarding.

 The MPLS forwarding module matches a label to an outgoing port for a given

packet. The IP Routing module performs the classic function that looks up the next hop

by matching the longest address in its tables. The IP Routing module can run any

popular industry protocol available depending on the operating environment, such as

OSPF, BGP, or ATM’s PNNI, etc. Though this IP routing function can be done at

LERs only, any MPLS node should also take into account that ordinary unlabeled IP

traffic may traverse over it. Aside from the process shown as green arrows that packets

with MPLS labels go along, the more complex process for packets without MPLS labels

should also be supported, which is indicated by pink arrows.

Figure 2-7 MPLS Protocol Stack

Chapter 3 Reconfigurable MPLS Router Design Issues

 This chapter begins with a brief description of the switch/router evolution; then

section 3.2 talks about the MPLS reconfigurable router design at the architecture level;

section 3.3 introduces CAM technique used for lookup table implementation for an

MPLS router; the last section proposes a modified multiple queue scheduling policy

UD_WRR that is implemented in hardware for this reconfigurable MPLS router

prototype.

3.1 Switch/Router evolution

 Networking devices have been developed at a rapid pace for many years.

According to the hardware used and the level of integration, the evolution of the

switch/router can be roughly separated into different phases [28, 37]. In this section, a

brief description of different generations of the switch/router is illustrated and the trend

of the router design in the near future is introduced as the 4th generation.

3.1.1 The First Generation

Figure 3-1 First Generation Switch/Routers [28]

 The switches of the first generation included a CPU that hosted all the routing

software, a main memory, and an optional DMA module. Figure 3-1 depicts the

 31

architecture of first generation devices. CPU power, memory throughput and I/O bus

bandwidth are three bottlenecks in this architecture.

3.1.2 The Second Generation

 As seen in Figure 3-2, each line card shown contains a separate memory module

and a small CPU. Input queuing or output queuing or both can be implemented. The

sole purpose of the central CPU is to arbitrate the usage of the bus, the exchange of

routing information between the local cards and the programming and maintenance of

the whole system. Now the only bottleneck is the I/O bus bandwidth that fails to scale

along with the number of high-speed line cards and the port count.

Figure 3-2 Second Generation Switch/Routers [28]

3.1.3 The Third Generation

 This generation introduced switching fabrics to replace the I/O bus as the medium

to relay packets between cards. Buffering and routing of data packets are performed

inside the line cards while specialized hardware is provided to give the line cards access

to the switching fabric. Switching fabrics can accept multiple simultaneous transfers of

packets with a maximum of N transactions when N Line cards are connected to the

fabric. Most of the current network devices employ ASIC large-scale integration to

 32

implement SoC (System on Chip) architectures. Except for the analog components, all

the line hardware (buffers, routing) for all ports is stored inside the same chip along

with a crossbar (the most effective but less scalable switching fabric), a scheduling unit

and a CPU. Existing chips can accommodate up to 32 input/output ports and are

sufficient for a low-end switch/router. They can also be used as a building block of a

much larger high-end switch/router. In the latter case, they are organized in switching

fabric topologies such as Banyan, Benes, and Batcher-Banyan networks [36, chapter 8],

as depicted in Figure 3-3.

Figure 3-3 Left: Third Generation Switch/Router; Top-Right: A Crossbar;

Bottom-Right: An 8x8 Banyan Fabric made of small 2x2 switch blocks. [28]

 Switches/routers of the third generation that adopt cross bar to realize the point-to-

point connection actually perform cell switching. For traditional single-stage, high-

bandwidth packet switches, crossbar fabrics have been recognized as potentially

providing the best architecture for a long time. In these switches, though from the angle

of the layer 3, it is packets that enter and leave the switch, what the switch fabric core

sees are cells. All kinds of data types are transported in optimally sized fixed-length

fabric cells to address the QoS problem. And this implies a need for segmentation and

reassembly that brings extra time delay and hardware source consumption.

 33

3.1.4 The Fourth Generation To Be Developed

 In [10,12,13], it was investigated that the diversity of networking applications and

data flows calls for a new generation of switch/routers that have dynamically

reprogrammable processing environment to cover the potential design space.

Meanwhile, the development of flexible network software technologies also asks for

some other solution than the third generation switch/router to assist in on-demand

scheduling of hardware resources. While some applications performing limited

processing at low data rates readily lend themselves to software implementation, a vast

array of applications map well to hardware implementations due to their requirements

for high data rates, parallel operations, and data regularities. Routers that are capable of

aggregating forwarding rates of terabits per second and link speeds of 2.4 Gb/s and 10

Gb/s set the current standard for high-performance. To be considered commercially

practical, programmable routers need to achieve comparable performance with scalable

mechanism for data flow processing at router ports [6].

 Traditionally used for low-volume prototyping and testing purposes, the

reconfigurable hardware employed in FPGAs now provides a flexible hardware

platform. Also, continuing advances in integrated circuit technology are making it

possible to implement several complete subsystems on a single chip, which can result in

scalable processing mechanisms at a reasonable per-port cost. The architectural

optimizations and silicon fabrication improvements bring much impressive progress

rate: usable logic gate count has increased by 10 times in two years; system clock

frequency doubled in one year; I/O bandwidth quadrupled in two years; block and

distributed on-chip memory capacity quadrupled in one year. Reconfigurable hardware

devices are obviously positioning themselves as viable options for flexible, high-

performance systems.

 The third generation switches/routers adopting crossbars fall short in delivering

higher levels of intelligence in the edge switching architecture to improve QOS and

some new switching scheme is desired. On the whole, this generation is expected to

have a scalable architecture capable of robust flow-specific processing at line speeds to

 34

meet the demand of growing sophistication of networked applications and more

complex network services without prohibitively high per-port costs. In the following

sections, the concept of a MPLS reconfigurable router, a powerful candidate for the 4th

generation realizes intelligent data transfer throughout the system architecture is

expanded.

3.2 System Design Strategy

 The final goal of this project is to develop a fundamental prototype of a fourth

generation router through the adoption of MPLS standards, reconfigurable hardware,

novel switching idea and improved multiple queue service scheduling.

 To keep up with fast link speeds, most modern commercial high-performance

backbone IP routers, such as what we have introduced in the first chapter, typically use

ASICs on each port and have high-bandwidth access to the local table of routes. They

are capable of forwarding standard datagrams (without special features like IP options)

entirely in hardware. However, with more amount of processing spent on a single

packet and since the processing is application-specific for a potentially significant

variety of applications, it is impossible to implement all of them in ASICs. This means

that both flexible protocols and hardware are needed and it is the very place that the

concept of an MPLS reconfigurable router applies perfectly.

 Generally speaking, MPLS nodes have two architectural planes: the routing plane

and the forwarding plane. As describe in earlier chapters, in order to be backwards

compatible, MPLS nodes can also perform ordinary Layer 3 IP routing for packets

without MPLS labels. MPLS can take advantage of all the routing information obtained

by protocols that run in software above layer 3 and then decide the optimal network

path to maximize network efficiencies, deliver the fastest possible response times to

users, minimize bandwidth usage costs, and meet some other criteria.

 The first step to start the hardware design of an MPLS node prototype is to do

software and hardware partitioning to decide which parts of the MPLS standards are

possible and desirable to be implemented in hardware.

 35

3.2.1 Protocol software and hardware partition

 Much explanation has been given to show that it is possible to enhance both the

router processing speed and QoS guarantees at the same time by implementing MPLS

partly in hardware. The software/hardware partition is the first part of the practical work

completed in this project. The block diagram of a logical label switching router (LSR)

architecture is given in Figure 3-4. Since MPLS was originally proposed for today’s

largest network, Internet, which is based on TCP/IP model, MPLS routers supporting IP

make the most sense and the word “IP” is used in the figure to represent the protocol at

layer 3. However, MPLS can of course support any other layer 3 protocols.

 It is already known that implementing MPLS routing and switching functions both

in software contributes nothing to the throughput and node processing speed. Then is it

possible for both functions to be implemented in hardware? Though with the rapid

development of silicon fabrication, some protocols used to be carried out over higher

layers are now possible to be realized in hardware to bring super-fast network node

processing speed, in this project, only operations taking place below layer 3 are

considered. The reasons are as follows. Not like other higher layer applications, the

routing function contained within the routing plane has to deal with a very-large-scale

routing table and may have to perform extremely complex routing algorithms to pick up

suitable routes for LSP setup for all kinds of traffic, which consumes too many

hardware resources. Hence it is now neither realistic nor cost effective to implement the

routing plane in reconfigurable hardware. But for the forwarding plane that performs

actual packet switching along LSPs that are already set up, it is quite suitable for

hardware implementation. At the same time, since MPLS inherently removes a

significant part of the burden from layer 3 routing to layer 2 switching, the throughput

and node processing speed increases can be achieved by just implementing this

forwarding plane in hardware. As a result, MPLS label distribution protocols that run

over layer 4 (using UDP or TCP) are still supposed to be implemented in software. This

software implementation will not affect the router performance adversely because LDP

is only used at the time of LSP setup. During the much longer data transfer procedure

 36

that takes place after the LSP is set up, the LDP messages are only used occasionally to

keep the LSP active.

 In conclusion, the current work to be done in the hardware implementation is

contained only within the forwarding plane, as shown below. They are: on-chip LFIB, a

subset of LIB; MPLS IP switching; off chip memory holding the LIB; and an embedded

microprocessor maintaining the LIB and doing further packet processing. All these

functional blocks to be implemented in hardware will be fit into a single FPGA device.

Figure 3-4 Logical Architecture of the LSR

3.2.2 Hardware Architecture of the Reconfigurable MPLS Router

 As shown in Figure 3-5, the programmable router consists of several reconfigurable

line cards interfacing different layer 2 materials, a scalable switching fabric that

connects to an external super-power CPU through a high-bandwidth PCI bus. The

switching fabric can be implemented to perform Real Packet Switching (RPS) instead

of cell switching. The RPS implementation is illustrated in section 3.4.

 For traditional cell switching, the difficulty of the arbitration and scheduling task

increases exponentially as more line cards are added. One solution would be to use

distributed arbitration on each line card. The arbiters must communicate with one

 37

another and coordinate their switching decisions because cells from different queues are

transferred in an interleaved way. This process will inevitably take more time than the

required arbitration rate while introducing inefficiencies throughout the switch fabric. A

global arbiter can eliminate a lot of communication overhead, but it asks for more

complex functionality and consumes more hardware resources. As for the RPS,

distributed arbitration on each group of queues (one group corresponds to one output) is

adopted and all arbiters can work in parallel and independently with one another. In the

view of each connection, data traverse the switch fabric packet by packet. The same

architecture can be deployed in building the first level switching fabric that

interconnects physical inputs and outputs within each line card.

 Due to the reconfigurability of each line card, the router architecture presented in

Figure 3-5 aids greatly in providing a scalable processing environment for high-level

software administration over hardware resources. Implementation of specific new

service functions or protocols can be downloaded into the reconfigurable hardware

device any time on demand. The line card architecture is introduced in the next section.

Figure 3-5 Hardware Architecture of a Reconfigurable MPLS Router

3.2.3 Single-chip RHFE design for Line Cards

 A basic reconfigurable line card architecture supporting MPLS switching is

illustrated below in Figure 3-6. The MAC interface block can be designed to enable the

MPLS router to interface all kinds of physical layers as indicated in Figure 3-5.

 38

 In this project, components that make up a programmable, multi-port switch/router

are named as the Reconfigurable Hardware Functional Element (RHFE). They employ

reconfigurable hardware to provide a flexible hardware-processing environment. RHFE

allows multiple hardware configurations for variable protocols and applications to be

dynamically loaded into a single device and run in parallel, providing a substantial

amount of per-flow processing. With dedicated on-chip logic and memory resources

provided for each functional element, as well as arbitrated access to off-chip memory

resources, RHFE supports a broad spectrum of protocols and applications.

16-bit data path to
multiple physical ports

Data path for higher level switching

 MPLS
Switching

MAC

Back plane
Interface
Device

SRAM

FLASH

SDRAM
Network
Processor

Figure 3-6 Single-Chip RHFE Design for Line Cards

 As shown in Figure 3-6, we can see that the basic reconfigurable unit RHFE for the

purpose of MPLS switching contains an embedded network processor, one/several

(there is just one MPLS switching functional block here) protocol(s) or application

specified functional block(s), and an integrated MAC block. This is actually a system-

on-chip design and the integration of MAC can save much memory space for packet

storage compared to the case that separate MAC chip is used. An integrated design

brings faster data transfer speed and smaller product size. The embedded network

microprocessor only deals with packets that cannot be switched within the local line

card. The RHFE can be used as a general-purpose building block to form larger

 39

switches/routers of arbitrary topology. According to the accommodation of the FPGA

used, one or more RHFEs could reside within one chip. When these chips are to be next

to each other, the connection can be made directly between their pins and a bit-parallel,

clock-synchronous link could be used.

 Several modules are there to form a complete MPLS IP switching functional block

that sits between layer 2 and 3 as a shim layer. They are: the UD-WRR scheduler that

controls the service order granted to traffic flows with different priorities; on-chip

buffers; a lookup table; a label binder; a label remover; and the RPS switch fabric.

3.3 Dealing with Queuing Issues

 At any network node, there is the problem of how to queue the incoming packets

when traffic arrives faster than what the node can immediately handle. Also, the

queuing scheduling policy is critical in providing guaranteed service for network

applications with strict and diverse QoS requirements. In the following subsections,

hardware implementation for several queuing algorithms are introduced and compared.

Then the UD-WRR queuing scheduling policy is proposed for this project.

3.3.1. Background

 This section provides some background information summarized from [18], [19],

[20], [21], [24] about the queuing issues.

3.3.1.1 Priority Queue Scheduling

 Current switches/routers realize the priority queue by assigning priority numbers to

packets after analyzing their layer 3 or/and layer 4 headers. The priority number can

represent a deadline, a virtual finishing time, or a sequence number, depending on

which the link-scheduling algorithm takes into consideration. In these schemes, all

packets contained in a certain queue are sorted according to their priority values pre-

assigned and are transmitted in a highest-priority-first order. In the following

paragraphs of this section, implementations of the four priority queue scheduling

 40

algorithms --- FIFO priority, binary tree, shift-register and systolic array--- are briefly

introduced.

a) FIFO Priority

 First-in-first-out operation makes for the simplest priority queue. Clearly, no

priority number and no queue resorting are needed in this case, which results in

extremely easy hardware implementation. But FIFO is only meaningful to packets of

the same priority. When diverse service levels are demanded, the FIFO policy is far

from sufficient.

b) Binary Tree of Comparators

Figure 3-7 Binary Tree of Comparators Priority Queue [25]

 An N-entry storage block and a comparator tree of log2 N depth make up the

binary tree comparator architecture as shown in Figure 3-7. The comparator tree logic

can be shared among several storage blocks to reduce hardware costs. When N

increases, the depth of the comparator tree is increased by log2 N and bus loading can

become a problem since a new entry has to be distributed to each storage element.

c) Shift Register

 41

0
Figure 3-8 Shift Register Priority Queue and Shift Register Block [25]

 In this priority queue architecture made up of shift registers, there is an array of

blocks, each of which stores a single entry and communicates with its immediately

adjacent block on both right and left in order to sort the queue. As shown in Figure 3-8,

the zeroth block contains the current highest-priority entry. When a new entry comes, it

is broadcast to all the blocks via the new_entry_bus, but only one block will latch it.

The effect is that the new entry forces all entries with lower priority to shift one block to

the left and places itself to the left of the entries with higher and equal priority. The

lowest priority entry is discarded if the queue is full. With the increase of entry port,

bus-loading problem can decrease the performance.

d) Systolic Array

Figure 3-9 Systolic Array Priority Queue and Systolic Array Block [25]

 The systolic array priority queue shown in Figure 3-9 is similar to the shift register

architecture in that each block holds only one entry. The difference lies in the fact that

 42

the systolic array architecture doesn’t use the new_entry_bus to broadcast the new entry

to each block, instead, only the zeroth block has access to the new entry at its arrival to

compare the priority of its own and that of the new entry. The lower priority entry is

then passed to the left block and the higher priority entry stays within the zeroth block.

The same process is repeated until the queue is fully sorted. This methodology promises

that the zeroth block always holds the highest-priority entry in the queue while

introducing no bus-loading problem at the cost of twice as much storage as the shift

register architecture.

3.3.1.2 Multiple Per-Flow Priority-Queue Management

 Since the offered traffic less than the network’s capacity can have all the packets

eventually get through without QoS requirements, it used to be that only when

congestion existed, the network had to make bandwidth allocation decisions, i.e., it had

to arbitrate among all the links that tried to use more throughputs than existed.

However, even if there is no congestion, with the dramatic increase of requirements for

diverse QoS guarantees in today’s IP networks, isolation among different data flows

and bandwidth allocation both become necessary. When incoming packets belonging to

different data flows (each of which corresponds to one of the resulted multiple per-flow

queues) contend for a certain given output link, a more sophisticated scheduler is

needed to serve these queues in an order that fairly allocates the available throughput to

each active flow. Much research work on hardware implementations for multiple per-

flow priority-queue management has been done in [25-27, 29].

 Commercial switches/routers can support multiple queues per output at present,

but the number is limited (a few tens), so their schedulers are relatively simple. When

higher throughput and finer granularity of service level are desired, more queues have to

be maintained, and specialized hardware architecture to manage these queues has to be

adapted accordingly. Per-flow queuing typically requires the implementation of a large

number of logical queues inside one or a few physical memories. Most advanced

scheduling algorithms for per-flow queuing over QoS networks rely on the common

concept of priority queues. The link-scheduling algorithm sorts the priority queue and

 43

then interleaves the packet transmission from various sessions such that each

connection's QoS requirements are satisfied. In another word, all the sessions (one

priority queue per session) are multiplexed onto a single link that transmits data for

different flows in each time slot. For stability, the link rate should exceed the sum of the

sessions’ sustainable traffic arriving rates.

 Such link sharing as described in the paragraph above can be modeled by the ideal

Generalized Processor Sharing (GPS), which provides a useful paradigm for governing

the interaction between competing sessions. Assume a system that can be characterized

by positive real numbers Nφφφ ,..., 21 , which represent the traffic, queued in the system

for each session. A GPS scheduler is set to work conserving and operates at a fixed data

processing rate r . This means that the scheduler keeps busy whenever there are packets

waiting in the system. With the above assumptions, GPS models the link sharing

abstraction by continuously dividing link bandwidth among the backlogged sessions, in

proportion to the iφ ’s. Each session i is guaranteed a rate of =ir r
j j

i

∑ φ
φ

 under GPS.

 Though ideal, GPS is not feasible in practice, because it requires preemption of the

link resource on an arbitrarily small time scale. A good feasible algorithm, Weighted

Fair Queuing (WFQ) was presented by some researchers to approximate this idealized

GPS model by ranking packets with the time they would complete service under GPS,

in the absence of future arrivals [15]. In each time slot, a WFQ scheduler transmits the

packet with the smallest Service Finish value, among the packets already queued for

service. This approach closely tracks the underlying GPS reference model in terms of

both throughput and delay. WFQ never lags more than one packet behind GPS in

servicing a connection; similarly, a packet never completes service more than one

packet time slot later than it would under GPS [16]. However, it needs non-trivial

computation to sort the queue according to the priority of sessions [17], which makes it

not very suitable for hardware implementation. Another good algorithm that is much

easier to implement in hardware is Weighted Round Robin (WRR). Under this policy,

each priority queue at each session is served in a round-robin fashion and a “fair”

 44

allocation is achieved. The idea of round robin scheduling, in general, is that a

scheduler circularly and repeatedly serves a number of clients and performs one job for

each of them that has such a need during its service interval. However, to be really fair,

the mechanism should not treat all sessions as exactly equal, but rather as equal within

the range of a given set of weight factors. This means that the available throughput

should be distributed to them in proportion to their different weight factors. Thus classic

Round Robin evolves into Weighted Round Robin (WRR). WRR assigns weight factors

to all sessions, and then circularly scans all of them and transmits a number of packets

in the queue from each of those found to be “ready” according to the session’s weight.

“Ready” means that the queue has enough data and asks for service. The major

advantages of WRR include guaranteed allocated bandwidth, intrinsic fairness and

simple hardware implementation ([22], [23]). Therefore, the WRR technique attracts the

most attention from researchers and is the basis of the service policy here.

3.3.2 An Improved UD-WRR Policy

 Assume that there are N input sessions to a MPLS network node and the maximum

packet length is . Since up to bits from a packet may have to be queued over

any session before the packet has “arrived” and can be processed, at least bits of

buffer space should be allocated to each session. The convention adopted in this thesis

is that a packet has arrived only after its last bit has arrived.

maxL maxL

maxL

 The bit-by-bit round robin is not desirable since each session can only have one

bit processed after waiting for N-1 bits of other sessions being served. Also, from the

viewpoint of hardware, it is not feasible as well due to the fact that most systems are

working in parallel instead of in serial now. Then it seems that the packet-by-packet

WRR is the only choice if people want to use WRR. However, there is a waiting time

problem inherent in a WRR system on a packet-by-packet basis. Though the scheduler

can move on to serve the next session in the order instantaneously if an empty queue is

encountered, when an arriving session i just misses its service interval unluckily, it

cannot be served until the next service interval for session i comes. In the worst case, if

the system is heavily loaded in every service interval, a packet of session i will have to

 45

wait + of packet processing time before it can be processed, where

stands for different packet processing times of an arbitrary session at time t. Since the

maximal length of an Ethernet packet can be 1526 bytes or even longer, the waiting

time will be unacceptable for most applications in the future. Thus the required buffer

space to prevent buffer overflow from happening becomes unacceptable as well.

∑
−

=

1

1

i

j

t
jP ∑

+=

N

ij

t
jP

1

t
jP

 In this project, the service scheduler was supposed to be implemented in hardware;

hence it is possible that the system is designed to not work on a packet-by-packet basis

but on an adjustable data unit basis to alleviate the defects existing in both bit-by-bit

and packet-by-packet round robin policies. The data unit is much smaller than the

maximal length of an Ethernet packet and the value can be optimized according to

system parameters of the network nodes, such as the number of bytes that can be

transferred at a time at each rising edge of the system clock. The performance of the

system adopting such WRR policy can be easily adjusted by defining the weight value

of each session to be different integers that are times of some basic data unit value. So

far, this modified WRR policy is named as Unit Data -WRR (UD-WRR) in this thesis.

It is quite obvious that UD-WRR cannot be implemented using Java, C/C++, etc.

 In the past, data flow classification is simple and strict. Therefore scheduling

policies of the WRR family were ever supposed to function only among sessions that

belong to the same strictly defined priority class. For example, the priority of real time

traffic is absolutely higher than data traffic, which means, so long as there is real time

traffic, no bandwidth will be allocated for data traffic. This can lead to service

starvation for traffic with lower priorities. However, due to the demand for much finer

data flow classification, it is already very common that over one physical link, there can

be several logic links, or sessions. In a practical MPLS reconfigurable router, multiple

physical ports and multiple logic links at each port are supposed to be supported at the

same time. The mappings between input and output physical ports, as well as the

definition of logic links over some physical link are both reconfigurable according to

corresponding LSP setup and changes. Therefore, the UD-WRR policy is to be applied

under MPLS to serve sessions with arbitrary levels of priorities.

 46

 Each session may have many conversations with time passing by, and each

conversation may contain different number of packets. Though analysis done below is

mainly based on what a packet perceives, the UD-WRR policy itself does not consider

detailed packets or conversations within each session.

A. Leaky Bucket

 Before the analysis can be presented, characteristics of the traffic supposed to

arrive at the node should be introduced first. The traffic shaper adopted in this thesis is

Leaky Bucket, which imposes some special constraints on the traffic before they can

enter the network. The Leaky Bucket scheme works through the usage of tokens or

permits, which are generated at a fixed rate, ρ . Packets can be released into the network

only after the tokens of a required number are removed from the token bucket. There is

no bound on the number of packets that can be buffered, but there is an upper bound on

the number of bits worth of tokens, which is defined asσ . In addition to securing the

required number of tokens, the traffic is further constrained to leave the bucket at a

maximum rate of C, which is greater than ρ .

 It is said that session i conforms to),,(iii Cρσ if

),(tAi τ)}(,)min{(τρστ −∗+∗−≤ tCt iii , 0≥≥∀ τt , (3.1)

for every session i, where),(tAi τ is the amount of session i traffic that leaves the leaky

bucket and enters the network in time interval],(tτ . This model for incoming traffic is

attractive for its arrival constraints that restrict the traffic in terms of average sustainable

rate (ρ), peak rate (C), and burstiness (σ and C).

B. Analysis for the Hardware Implemented UD-WRR Policy

 In this section, a simple performance analysis of a single-node UD-WRR system

for sessions that operate under Leaky Bucket constraints is provided. Assumes that

there are N sessions, and the incoming traffic of each session has already been shaped

by a Leaky Bucket traffic shaper, conforming to (3.1) for i = 1,2,…N. The system is

empty before time zero. The UD-WRR service scheduler is supposed to work

iA

 47

conserving (e.g. it is never idle if there are data in the system), operates at a fixed

system clock speed and serves all N sessions circularly. The total time duration for the

UD-WRR scheduler to serve each of the N sessions once is defined as a service cycle.

The length of each cycle is not a constant because each session may have different

amount of data in queue to be served during each service cycle.

1s

1−Ns

Ns UD-WRR
Scheduler

 maxL

1−NA

1A

1w

1φ

NA

 Session 1

 Session N-1

Session N

Figure 3-10 UD-WRR Scheduling Policy

 Figure 3-10 depicts a basic idea of how the UD-WRR works. An integer weight

is associated with each session i and tells the UD-WRR scheduler that the session i

can have maximally data units processed during its service interval within one

service cycle. It does not hurt if it is assumed that one data unit is processed within one

time unit. Thus the number of data units being processed within an arbitrary time

interval

iw

iw

],(tτ by the UD-WRR scheduler also represents the length of time needed for

this amount of traffic to be processed, which is t-τ . Both τ and t are positive integers

 Within each service cycle, the scheduler polls the N sessions according to some

pre-computed sequence, say, in order 1,2,…N, in an attempt to serve the session i at a

guaranteed average service ratio of
∑ j j

i

w
w

, j = 1,2,...N. This lower bound of service

ratio achieved by arbitrary session i under the UD-WRR scheduler will be proved to be

true in the following paragraphs. It is thus apparent that different QoS guarantees can be

provided for each session by adjusting the value of properly. iw

 During a certain service cycle , within which the N sessions are served exactly

once, the number of data units waiting to be served at session i are represented by

kc

 48

positive integers)(ki cφ , k=1,2,...∝ . Let and be the number of data units of

session i and all N sessions served within the service cycle c respectively. Let

)(ki cS)(kcS

k

),(tSi τ and), t(S τ be the number of data units of session i and all N sessions served

within an arbitrary time interval (], tτ . The time interval (], tτ may include several

service cycles.

)),(ki cmax{φ

(kcS jk w }),j c(φmax{

kc

)(kcS

kc

iw

jw

w

kc (cS) ∑ j jw

)t,(li τ

), t(Si τ (li)(1+Kc+ iφiw (Ki cφ

),(tli τ], tτ

),(tτ

il

 Under normal cases, there are

(ki cS = }iw (3.2)

) =∑ j
, j = 1,2,…N. (3.3)

When the scheduler is working conserving and all the sessions are active during

cycle (“active” means the session asks for as much service as possible, with the

maximum of), (3.2) and (3.3) can be always reduced respectively to S = and

= , if the packet will not be finished processing within the current cycle

. This reflects the fact that: over any session i, before a packet under service is

completely served (no matter receive or transmit or other processing procedures), the

actual number of data units waiting to be processed during a service cycle ,

)(ki c

kc

iw

(i c

∑ j

)kφ ,

equals . At this time, the length of the cycle reaches its maximum and there is

= = .

i

k

 Thus for a session i packet , which has an arbitrary length of l , starts

getting service at time

i

τ , and finishes its processing at time t, it is always true that

=), tτ = =K +)
1=

∑
K

k
iw 1+ , k=1,2…K . (3.4)

 K stands for the number of complete service cycles experienced by the packet

between the time interval (.

 Let Ti be the processing time needed by the session i packet with the length

 during time interval (], tτ . Since UD-WRR scheduler only serves each session

maximally data units, which are much smaller than the packet length within each iw

 49

cycle, the processing time of an arbitrary packet usually results in lasting for several

service cycles. According to all the definitions introduced above, the expression for

),(tTi τ can be obtained as follows:

),(tTi τ

iw

= (3.5))()()()(1

1

1
1

2
1 +

−

=
+

==

+++ ∑∑∑∑ Ki

i

j
Kj

K

k
j kj

N

ij
j ccScScS φ

=∑)(}),(max{},)(max{},)(max{ 11

1

11
1 ++

−

===

+++ ∑∑∑ KijKj

i

j

K

k
jj kjj

N

ij
j cwcwcwc φφφφ

Since is always greater than or equal to)(ki cφ as explained earlier, it follows that:

)(),(1

1

1

1

12

1

1
+

+

+=

−

=== =

+++≤ ∑ ∑∑∑∑∑ Ki

K

Kk

i

j
j

K

k
j j

k

N

ij
ji cwwwtT φτ

 ≤ K∑ j jw +)(1+Ki cφ (3.6)

 The average service ratio perceived by a packet with arbitrary length over session i

under discussion during the processing time t),(ti τ is:

),(tRi τ =
),(
),(

tT
tl

i

i

τ
τ

 (3.7)

 Substituting (3.4) and (3.6) into (3.7) gives

),(tRi τ ≥
)(

)(

1

1

+

+

+
+

∑ Kij j

Kii

cwK
cKw

φ
φ

 ≥
∑ j j

i

w
w

 (3.8)

Hence, from the view of any packet, the service ratio the UD-WRR scheduler can

provide for a certain session is guaranteed to be no less than
∑ j j

i

w
w

. This is a worst-

case service ratio a packet of session i perceives. If the processing speed of UD-WRR

scheduler over the time period of this worst-case is set to be the same rate as GPS

scheduler’s fixed rate r , it is clear that when the data unit size is small, the UD-WRR

approximates GPS pretty well, in comparison to the service rate seen by session i under

the GPS system, r =i r
j j

i

φ∑
φ

.

 Another parameter needs to be considered is, at least how long each service

interval should last to make the hardware-implemented UD-WRR scheduler work as

 50

efficiently as possible. Let’s take a look at the best-case service ratio a packet of session

i can perceive first. Assume such an extreme situation: except session i, no other session

has any packet to be served, which means, the scheduler will only serve session i each

service cycle. Under an ideal GPS scheduling system, it is clear that all the bandwidth

can be used up by any session i in the absence of traffic from other sessions, which

means that the work efficiency for any particular session can reach 100% theoretically.

However, for a practical UD-WRR system, this is a goal impossible to achieve due to

reasons given below.

 To implement the UD-WRR scheduling policy in hardware, the only way to jump

over all the empty sessions without checking whether each session is empty or not per

time unit is to build a very large scale “case” circuit to handle the service order

explicitly for each possible combination of empty sessions. Before each service cycle

begins, the combination of empty sessions is determined and service intervals are only

granted to those not empty. Such design brings a circuitry complex of ∑
=

= −

Nk

k kNk
N

1)!(!
! ,

which refers to the number of lines of Verilog code needed to implement a system with

N sessions to be served. It is assumed that each line of Verilog code completes a basic

logic function. Clearly, a design using so many hardware resources is not practical.

Actually, even this exhaustive-search design cannot bring ideal 100% work efficiency

due to the extra one time unit used for service order determination before each service

cycle starts.

 A pragmatic and very simple way to realize the UD-WRR scheduling policy is to

always permit one time unit stay, named here as the “checking” time unit, for each

service interval (not just each service cycle). This is to enable the scheduler to check

whether the current session is empty or not. If empty, the scheduler enters the next state

to serve the next object immediately; if not empty, the scheduler can start serving the

current non-empty session from the very first time unit. Thus for non-empty sessions,

the “checking” time unit is utilized at the same time for data processing. Therefore,

according to what has been defined above, the best-case service ratio a session i packet

can experience under the assumption that no session except session i has data to process

 51

is:
i

i

wN
w

+−)1(
. It is clearly from this expression that there is no possibility for session

i to obtain 100% service efficiency because the value of N under discussion is always

greater than 1.

 Let
i

i

wN
w

+−)1(
= ie (3.9), where i stands for the best-case service ratio

requirement for session i and

e

1=∑i ie . It is clear that e =i)1(
)1(1

−+
−+

i

i

wN
w

≥
N
1

≥

 (3.10),

since is always greater than or equal to 1. Then with any specificiw ie
N
1 , the

minimal value of obtained should be: iw

 Min { } =iw }
1

min{)1(
i

i

e
e

N
−

− i=1,…N (3.11)

 With the maximal and minimal values of that can be derived from (3.8) and

(3.11), the concrete weight value for each session can be decided according to relevant

service time ratio between each session, which has been predefined according to

different QoS demands. In other words, processing delays experienced by a session i

packet can be reduced by increasing the value of for that session when higher QoS

requirements are set for the corresponding LSP i, along which session i packets travel

through. The following is a brief summary for why UD-WRR is an attractive

multiplexing scheme:

iw

iw

• Extremely easy hardware implementation.

• Taking the full system throughput as “1”, a session i packet is guaranteed

to have a throughput always greater than or equal to
∑ j j

i

w
w

, independent

of any other session.
• With the above guaranteed worst case throughput, the delay experienced

by a session i packet due to necessary processing time can be bounded as a

function of the session i queue length and all the sessions’ weight values

’s, K + iw ∑ j jw)(1+ki cφ , independent of the queues and arrivals of the

other sessions.

 52

• Each session might have different traffic characteristic, some may

experience longer packets and others may experience shorter ones. Thus

different service efficiency calculating methods should be used in different

cases. By varying the ’s, the flexibility of treating the sessions in a

variety of different ways can be achieved in a straightforward manner. For

example, when all ’s are equal, the system reduces to uniform service

sharing. UD-WRR is flexible enough to provide service on the basis of

data byte number or on the basis of packet number, simply by assigning

appropriate values to ’s.

iw

i

iw

w

• Data processing can be done continuously even if the packet data have not

arrived completely, when the packet length is provided at the same time as

the first data unit of the packet arrives.

 In fact, when the unit of is set to “bit” and each session has the same value 1,

the UD-WRR policy reduces to the bit-wise round robin; when the unit of is set to

“packet” and each session also has the same value 1 (no matter how long the packet

is), the UD-WRR policy reduces to the packet-based round robin policy that is usually

implemented in software.

iw iw

iw

iw

3.4 RPS and UD-WRR Implementation in a MPLS System

 The implementation of the switching fabric is challenging. In a typical crossbar

fabric, cells are firstly queued on the input side of the switch fabric. The state of all the

input queues is visible to the crossbar arbiter. On the basis of these states, knowledge of

the QoS required for each flow and feedback from the output queues, the arbiter decides

which connection to make in the memory-less crossbar and thus determines the order in

which cells get forwarded to their respective egress ports. However, the input queuing

has the Head of Line Blocking (HoLB) problem. When the cells at the head of several

inlet queues happen to be destined to the same output port, the fabric can accept only

one of them. In this scenario, all the other queues remain idle, although cells behind the

head of those idling queues are actually destined to other outputs that are not busy at all.

 53

Hence usually, the cells in the input queues are presorted on the basis of destination

address and class, which forms many VOQs. This prearrangement brings great freedom

and flexibility to the arbitration algorithms to manage the QoS and to maximize the

efficiency of the fabric aside from avoiding the HOLB problem. Therefore, VOQs are

also adopted in the RPS scheme.

 Assume that there are N inputs and N outputs. Mapping to each input, there are N

VOQs, each of which represents an output. As mentioned earlier, a mapping between

inputs and outputs can be determined in advance and be created through LSP setup in

the MPLS environment. In addition, it is very straightforward to relate the MPLS label

assignment to the virtual link weight assignment since the group of MPLS labels

assigned to a LSP stands for the service priority of the packets traveling along this LSP.

This is to say, the virtual link weight that is used for providing service scheduling by the

UD-WRR policy can be obtained once the corresponding LSP has been setup.

 All priority queue scheduling algorithms mentioned in the section 3.3.1.1 are

methods that serve within the same priority queue; however, they can be utilized

together with UD-WRR to realize multiple per-flow priority queue scheduling. Among

all of these queuing techniques, FIFO is still the simplest and most straightforward

method for hardware implementation, and inextricably intertwines three allocation

issues of bandwidth, promptness and buffer space occupation. At the same time, when

packets at the same priority level arrive in the order that they were sent, maintaining

FIFO ordering among entries with the same priority is necessary. Therefore, the FIFO

scheme is adopted to buffer packets within each flow, and the UD-WRR that

approximates the GPS system pretty well on the basis of a small data unit is adopted to

serve these flows with different priorities circularly. The QOS-aware UD-WRR ensures

that the outputs are never starved of packets that are already waiting in the input queues.

 So far, a feasible Real Packet Switching architecture adopting UD-WRR

can be constructed as shown in Figure 3-11, which is practically easy to build and can

realize pipelined data transfer at each output packet by packet.

NN ×

 54

RPS Fabric

Arbiter N

Arbiter 1

Out-2

Label

Processor

UD-WRR

Scheduler

Out-N

Out-1

Q (N, N)

Q (N,1)

Q (1,N)

Q (1,1)

In-N

In-2

In-1

Figure 3-11 RPS Architecture Adopting UD-WRR for MPLS NN ×

 In-i represents the input i (i=1,2…N); Q (i, j) represents a VOQ temporarily storing

packets from the input i to the output j; and Out-j represents the output j (j=1,2…N).

According to their weights respectively, the UD-WRR scheduler serves all N input

queues for label processing in a circular manner. After label analysis, incoming packets

are transferred to VOQs corresponding to their destination outputs, where they wait for

their turn to be output. The Arbiter k (k=j) controls the order in which the head packets

from Q (1, j) to Q (N, j) are transferred. All arbiters work independently and in parallel.

In the view of a certain output, data are transferred packet by packet, instead of cell by

cell, which is different from the traditional crossbar switching, and is why this

switching scheme is given the name "Real Packet Switching". Packets with variable

lengths can be switched intelligently without performing packet segmentation and

reassembly.

 55

 56

Chapter 4 Reconfigurable MPLS Hardware Implementation

 Based on the investigation and analysis performed in the previous chapters, the

essential part of hardware implementations for a primary reconfigurable MPLS router is

finished. In this chapter, the first section gives a brief overview of hardware

implementation strategy drawn from practical considerations; the following sections

first present a block diagram of the top-level hardware architecture, and then the details

of the MPLS functional block implementation, which includes 6 sub-modules.

 Verilog HDL was used for the whole logic circuit design that was later all

downloaded into a single Altera FPGA device for the tests. Due to space limitation, the

lengthy Verilog codes are not provided in this thesis. Simulation, tests and results will

be illustrated in Chapter 5 and Chapter 6.

4.1 Implementation Strategy Considerations

 A commercially practical IP reconfigurable MPLS router would likely be required

to support Ethernet, ATM and Frame Relay, and other protocols, at layer 2. However in

this project, only Ethernet has been taken into consideration. The reasons are as follows.

Firstly, this project was focused on MPLS hardware realization and so supporting

different layer 2 protocols was not the critical point. Secondly, it was already clear

enough to demonstrate the advantages of MPLS for packet forwarding in the

environment of Ethernet. Finally, Ethernet is the most popular layer 2 protocol at

present, which makes it comparatively cheaper and easier to find suitable equipment

from the market to set up a practical test bed.

 As described in Chapter 3, it is with a flexible architecture and the reconfigurable

hardware units that more efficient or newer value-added functions can be added to the

system later without causing too much hardware modification or replacement. Also,

with the scale of networks becoming larger and larger, traffic on each link and the

number of links at each network node both increase dramatically, thus multi-port, multi-

 57

service and multi-user switches/routers become desirable. It is expected that more and

more ports should be integrated on a single chip, since on-chip delay is much less than

off-chip delay. This integration also brings products with better performance, less

fabrication cost and smaller product size.

 According to the RHFE architecture introduced in Chapter 3, an integrated MAC is

supposed to be included within the RHFE. However, due to the time limitation and the

availability of existing separate MAC chips, integrated MAC circuit design was not

included within the scope of the current project. As a result, dedicated circuitry to

interface the separate MAC chip CS8900A was designed and temporary data buffering

was provided within the MPLS block.

4.2 Design and Implementation

 The design and implementations of the MPLS hardware are illustrated in this part.

4.2.1 Top Module Design

 In this single-chip system, there are 8 sets of buffer integrated, each of which

corresponds to a LSP and is assigned the particular priority number for that LSP. A

multiple queue service scheduler adopting the UD-WRR policy and maintaining this set

of prioritized buffers is implemented.

 Increasing the number of queues requires adding more buffer space, which brings

added hardware cost and increased complexity of the priority encoder at the same time.

Therefore logically linked lists instead of physical buffers should and can be utilized to

accommodate more queues conceptually. Though currently the necessity of using

multiple logical links does not exist in this first step design, modification for such a

purpose is straightforward and simple based on the original design.

 For the system concerned here, 32-bit wide buses are adopted. The reason not to

use 16 or 8 bit-wide buses is that to provide a certain data processing speed, a wider

data bus operating at a lower system clock speed helps to maintain the system more

stable. The reason not to use a 64 bit-wide bus is that the 32 bit-wide bus only uses up

half of the I/O pins while being able to provide adequate data processing speed.

 58

 The main functions implemented in hardware that can increase the node processing

speed and efficiency should include: 1) table lookup function using CAM technique for

packet forwarding; 2) MPLS label removing and binding, which enables fast layer 3

routing through layer 2 MPLS switching; 3) 8 sets of transmit and receive buffers for 8

physical ports integrated on a single chip to reduce both cost and product size. 4)

Standard I/O interfaces for both material access layer and the embedded microprocessor.

Figure 4-1 Top Module Block Diagram

 Figure 4-1 illustrates the block diagram of the top-level design of a simplified

MPLS node performing label switching, which includes the MPLS functional block, the

interface to the Media Access Controller CS8900A from Cirrus Logic, and the interface

to the embedded local microprocessor. Interface design for CS8900A and glue circuitry

between the second layer modules in the MPLS functional block are illustrated in full in

Chapter 5. As for the interface to the local embedded microprocessor, it is left for future

work. In the following sections, circuit design of different modules that make up the

MPLS functional block is illustrated in details.

4.2.2 Second Layer Modules

 Figure 4-2 shows the second layer block diagram within the MPLS functional

block, which contains 6 functional modules: Transmit Buffers for 8 outgoing ports,

Receive Buffers for 8 incoming ports, Label Removing, Label Binding and Switching,

Lookup Table, and State Machines/Service Schedulers.

 The MPLS functional block has two dedicated unidirectional 32-bit wide data buses

for transmit and receive respectively, to support dual communications. It also provides

good architecture flexibility when in the future there is a need to reconfigure the MPLS

Interface to
MAC Chip
CS8900A

MPLS

Function
Block

Interface to
embedded

CPU

functional block to support 64-bit parallel data transfer. The 32-bit receive input port

and the 32-bit transmit output port can be redefined into bi-directional ports, which is

not covered at present though.

 When outputting a packet, the MPLS functional block can provide the packet

length, indicators of the start/end of the packets, and signals indicting if current data on

the data bus are valid or not. Similarly, the MPLS block has to be provided with the

same information when there is a packet coming in.

8 Transmit Buffers

C
PU

 Interface

M
II Interface

L
ookup T

able State Machines

8 Receive Buffers Label Removing

Label Binding

 & Switching

Figure 4-2 MPLS Functional Block Diagram

 Due to time limitation and as the first-step simplified implementation, it is

assumed that there are not data flows entering from different input ports heading for the

same destination at a MPLS node in this project. This is to say that there is no LSP

merging under discussion and thus there is no need for intermediate buffers at present.

In the future work when intermediate buffers are added, the number of packets held

within each buffer can be computed by setting constraints in packet delay time while

controlling the probability of buffer overflow under a required level.

 59

 60

 Eight transmit and eight receive buffers are integrated to make the design more

cost effective and suffer less data transfer delay. Each set of buffer space, for both

receive and transmit, can be taken as the extension of that of a corresponding physical

port in the media access controller CS900A. All transmit/receive buffers are realized in

FIFO whose length is currently set to be 1600 bytes, which can hold several short 802.3

packets.

 The interface for the local microprocessor, named as the ninth port, does not have

its own buffer. This microprocessor is embedded and it can itself buffer the packet

generated there. IP packets from local layer 3 are sent through this ninth port, to the

Lookup Table module directly. There, a corresponding MPLS label is assigned to the

packet according to its IP header and/or other additional service requirements specified

for a certain FEC the packet belongs to. The specifications are settled between

customers and Internet service providers in advance.

 Packets entering the node from the network side are firs buffered at one of the 8

receive buffers waiting for their turns for further processing. At the Label Removing

module, the label of the packet is stripped off and then this label is fed into the Lookup

Table module as an index to find a new appropriate outgoing label for the packet.

 After the new outgoing label is ready and the outgoing port is determined, the Label

Binding module binds this label to the packet coming from either the network side or

the local microprocessor, and sends the packet to the corresponding transmit buffer,

where the packet waits for its turn to get transmitted onto the Ethernet.

 The State Machine module is designed to control the service order and duration

time for each port according to the UD-WRR policy introduced earlier. Together with

other signals, it regulates the working procedure of the whole system and keeps the

other 5 second-layer modules cooperating together with a proper time schedule.

Detailed tasks it completes include manipulating the procedure of checking 8 receive

buffers and the microprocessor interface to see if there is any data ready for processing,

and then having each port served to finish its label switching in an pre-determined order

within its weighted service interval. Values of the weighted factors used by the UD-

 61

WRR policy are temporarily taken as equal and the port number “8” can be adjusted

according to application requirements in the future.

 The Lookup Table module takes advantages of techniques of both CAM and RAM.

This module only talks with the Label Removing module to get necessary information

and is completely separate from other modules. This organization provides a clear

distinction between functional modules.

 Due to the reprogrammable characteristic of the FPGA device, the number and

depth of FIFOs and the scale of the lookup table can be extended in the future when

more table items are to be added and more traffic flows have to be distinguished. There

are system status registers that store all the current status parameters and can be read out

for debugging or administration purposes. However, they are read only and will be

overwritten once the next packet starts receiving its service.

4.2.3 Implementation Details of the Third-Layer Modules

 The following sub-sections describe the 6 3rd layer modules in full detail.

4.2.3.1 State Machines

 Three separate state machines, State_Machine_1,2,3 are instantiated within this

module. The name of the prototype of State_Machine_1 and 2 is Polling_Machine; the

name of the prototype of State_Machine_3 is Polling_Machine0. In the following

paragraphs, functions and signal description of the state machines are given, according

to what is shown in Figure 4-3.

 State_Machine_1 generates 8 states, each of which represents the service interval

granted to a certain physical port for data reception. Each service interval allows the

corresponding weighted number of writes executed on 8 MPLS receive FIFOs. In

another word, State_Machine_1 determines the sequence of reads performed on 8

receive buffers of the media access controllers to obtain received packets by transiting

from state 0 to state 7 in turn. State0 stands for the service interval granted to MAC

receive_buffer0/MPLS receive FIFO0… state7 stands for the service interval granted to

MAC receive_buffer7/MPLS receive FIFO7.

 62

 State_Machine_2 also generates 8 states, each of which represents a certain service

interval granted to a certain physical port for data transmission. Each service interval

allows the weighted number of reads executed on 8 MPLS transmit FIFOs. This is to

say that State-Machine-2 determines the sequence of writes performed on 8 MAC

transmit FIFOs to transfer the packets to be transmitted by transiting from state 0 to

state 7 in turn. State0 stands for the service interval granted to MAC transmit

buffer0/MPLS transmit FIFO0…state7 stands for stands for the service interval granted

to MAC transmit buffer7/MPLS transmit FIFO7.

a) Prototype of b) Prototype for

 State_Machine_1 and 2 State_Machine_3

 Figure 4-3 State Machine Block Symbols, prototype names:

a) polling_machine b) polling_machine0

 The third state machine named State_Machine_3 is a little bit different from those

introduced above. Except serving the 8 receive FIFOs, it also takes the responsibility of

deciding if the local layer 3 has any data waiting for processing. Hence it generates 9

states and transits from state 0 to state8 to have reads performed on 8 receive FIFOs

plus the local host. State0 stands for the service interval granted to receive FIFO0,

state1 stands for the service interval granted to receive FIFO1 …state8 stands for the

service interval granted to the local layer 3 interface, the microprocessor interface. Each

state has the same weighted length of service time as that of State_Machine_1/2. In

each state, data from one receive FIFO or the local layer 3 is read and then processed. If

it is found a suitable outgoing label, the packet is transferred to the transmit FIFO

corresponding to its destined outgoing port.

 63

 To prevent the FIFOs from overflowing or running short of data, the three State

machines should not work at the same clock speed if multiple ports need to be served

smoothly in the UD-WRR manner. To achieve successful service multiplexing,

State_Machine_3 has to work at a clock speed 9 times faster than that at which the other

two State machines work. The reason that it is 9 times faster instead of 8 times faster is

that State_Machine_3 is not only responsible for 8 MPLS receive FIFOs, but also

responsible for the local microprocessor.

 At any time of each state, if State_Machine_1/2 detects that the corresponding

receive/transmit FIFO has no data to be received/ transmitted, or the corresponding

MAC port has no receive data to provide or has no room to hold any more transmit data,

it will leave the current state and enter the next one right away without idling for its full

length of the service interval. For State_Machine_3, the state transition can take place

right away as well, whenever it detects that there is no packet ready in the

corresponding receive FIFO (or in the microprocessor) for processing; or, the required

transmit FIFO currently lacks enough space to hold any more data. In this way, the

unnecessary waiting time experienced by each service object is reduced. In cases other

than that mentioned above, each state will last for the full length of its weighted service

time. However, it can also transit to the next state in the middle of the service interval

right away once the task undergoing (such as packet transmission/ receiving or label

removing/binding) is finished.

 At the state transition, some important signals can lose the correct timing

relationship between each other, which will lead the whole system into a malfunction

state and so asks for special consideration to prevent this from happening. The method

used is to have the state machine able to extend its current service interval to finish all

necessary processing once some state extension requirement signals become active. The

signals in and exd_rq of the prototype polling_machine and the signals in0/1 and

exd_rq0/1 of the prototype polling_machine0 are all for the state length adjustment. The

state signal of both prototypes outputs the current service state the system is in; the

counter outputs the service timer value of this state. The maximal value of the service

timer is the service weight granted to current service state.

 64

4.2.3.2 Receive Buffers

 This module holds received data temporarily and generates delimiter signals for the

packet. State_Machine_1 takes the responsibility of enabling data transfer from MAC

chip i to receive FIFO i. State_Machine_3 takes the responsibility of enabling data

transfer from some receive FIFO i to the corresponding transmit FIFO j.

 For any receive FIFO i, when the last read behavior taken in a regular service

interval brings the penultimate data unit of a packet (this means that the final data unit

of the packet will still show up on the data bus when the service state has changed into

the next one to serve the packet of receive FIFO (i+1)), the last several bytes of data

from receive FIFO i originally destined for transmit FIFO j will be mistakenly written

into some other transmit FIFO k, where actually the packets of receive FIFO (i+1)

should go. Such a malfunction can be prevented by keeping some dedicated signals low

during the time period that is originally for the last three normal data unit fetches to be

performed on the receive FIFO i, which makes it as if there were no buffer space

available in transmit FIFO j and thus the receive FIFO i knows that it should not output

any more data. However, in the case that the head packet of the receive FIFO i has been

almost finished, this method will force the head packet to wait for a whole service cycle

to complete its processing in its next service interval. This means that, the session i

packet experiences a longer than necessary processing time delay. To alleviate this

unnecessary performance degradation, a low-active service extension demand signal is

issued by the Receive Buffers module to State_Machine_3 to realize service interval

extension when required. It holds true as well for the other two state machines.

 Except for the case of end packet data transfer, a special condition occurs when

there is an immediate state transition following the first 4 bytes of packet data

transferred from the receive FIFO i to the Label Removing Module. The first 4 bytes of

packet data is defined as the MPLS label in this project, and due to the immediate state

transition, no label processing for the packet from the receive FIFO i can take place and

dedicated buffer space has to be allocated to store such incoming MPLS labels from all

the 8 receive FIFOs. To reduce hardware consumption and avoid the circuit complexity

brought by this kind of buffer space management, service interval extension is also

 65

applied to make sure each incoming MPLS label is processed right away after it is

stripped off from the packet.

 This module contains 8 36-bit wide data FIFOs, which are actually the expansions

of the on-chip buffer space of the 8 separate MAC chips. The lower 32 bits are for

packet data; the higher 4 bits form the valid-data-indicator, which indicate the validity

of the 4 bytes of data made up of the lower 32 bits. Not every packet has a length of

integer times 4 and when there is only start and end of packet indicators available,

valid-data-indicator bits becomes necessary. Besides this, it also provides a possible

method of simple data encryption. “1” means the byte is valid and “0” means not. For

example, if bit 35 is high, it means the most significant byte made up of bit 24 to bit 31

is valid; if bit 35 is low, it means that this most significant byte is invalid and should be

discarded. Bits 34 to 32 indicate the validity of the bytes made up of bit 16 to bit 23, bit

8 to bit 15 and bit 0 to bit 7 respectively.

 Since it is very likely that many Ethernet packets are with different short lengths,

each data FIFO may have more than one packet buffered in the queue from time to time.

To output the buffered packets later correctly, the length of each packet has to be

recorded along as well. Therefore a separate FIFO named pkt_length_fifo is instantiated

in this module to buffer the length of each packet staying in the data FIFO

correspondingly. Please refer to Figure 4-4 for a clearer picture.

Figure 4-4 Relationship Between the Data FIFO and Packet Length FIFO:
ln (n=1,2,…) represents the length value of the corresponding packet

 Figure 4-5 depicts the functional block diagram of the Receive Buffers module that

has been implemented. Two modes are supported by this Receive Buffers module to

36-bit wide
data FIFO

11 bit
packet length

FIFO

Data of
Packet 1

Data of
Packet 2

Data of
Packet 3

Data of
packet 5

 l5 l4 l3 l2 l1

Data of
Packet 4

 66

 Figure 4-5 Receive Buffers Block Diagram (CNT means Counter)

obtain the length of an incoming packet. If the MAC chip can provide packet length in

advance (before real packet data transfer begins), the Receive Buffers module receives

it and buffers it into the pkt_length_fifo directly; if the MAC chip only provides

start/end of packet (sop/eop) and valid-bytes indicators, then the packet length can be

calculated by a simple up counter with the aid of these indicators provided that the

whole packet is received correctly. The up counter is cleared synchronously each time

reset is high or the incoming eop signal is high. In either case, the packet length is

written to the pkt_length_fifo at the rising edge of the incoming end-of-packet indicator.

When the Receive Buffers module outputs the stored packet with its stored length to

Label Removing module, corresponding sop/eop indicators are required to be generated

for the Label Removing module to function correctly.

Data from layer 3 Data to local layer 3

data from
Interface

 packet length
 from interface

 data to
TX Buffers

packet length to
 TX Buffers

 sop/eop out

state_sel from
State_Machine_3state_sel from

State_Machine_1

Pkt_Length_FIFO0

Down
CNT 0

sop/eop
generator0

Module 0

Up
CNT0

Rx FIFO 0

Rx FIFO 7

sop/eop from
interface

 Module 7

9_to_1

Selector

9_to_1
Selector

1_to_9
 DEC

1_to_9
 DEC

 67

 When the packet data are ready to be transferred to the Label Removing module,

the down counter loads the packet length value at the output of the pkt_length_fifo at

the rising edge of the output indicator, sop, and starts counting down. When the down

counter reaches the value of 1, it generates the end-of-packet indicator to indicate that

there are no more data of the current packet to be transferred.

 The packet data can be output correctly only with a correct packet length. In the

case that the length of the packet has to be calculated by the Receive Buffers module

itself, the incoming packet cannot be transferred to the next module before the complete

packet has been buffered in the Receive Buffers module. When there is less than 1

packet in the receive FIFO, which is the case that the FIFO may be empty indeed or

contains only a part of the packet, an active high signal indicating that the FIFO is

empty will be driven high. No read is allowed to execute on such an “empty” FIFO.

Figure 4-6 Single Receive Buffer Block Symbol, Prototype name: rx_frame_reg

 This prevents the packet length calculation procedure from being interrupted and

being resulting in a wrong packet length. In addition, for the purposes of testing and

 68

system maintenance, the Receive Buffers module also provides the numbers of packets

currently buffered at each receive FIFO at any time.

 Figure 4-6 on the last page indicates the block symbol of a single receive FIFO.

There are two clocks adopted for this module; clk_rd is 9 times faster than clk_wr. This

conforms to the fact that there are two state machines controlling the reads and writes

performed on the FIFOs respectively. When the two signals, rx_read_sel and

rx_write_sel sent from State_Machine_1 and 3 respectively, stay high and if other

related active high signals are also high, the module is enabled for reads/writes to be

performed. When the rx_ready and read_sel both stay high, data can be transferred to

either the Label Removing module or to the transmit FIFO correspondingly in different

data processing phases, so long as there are data waiting in the FIFO. When the

fifo_data_ready from the MAC side stays high and the write_sel is high, data transfer

from the MAC to the receive FIFO is performed. If the rx_abort signal from the MAC

side stays high, then the current packet being transferred is supposed to be dropped by

the MPLS functional block later. The active high sop_in and the eop_in signals indicate

the start and the end positions of the packet being transferred from the MAC to the

receive FIFO. The read_sel_clk provides the receive FIFO with necessary timing

information when reads are performed. The rx_pkt_length_out is the packet length sent

from the MAC Chip. MAC_bus is for received data from the MAC chip to be buffered

at the receive FIFO while valid_byte_in indicates the validity of each byte. When the

rx_want signal stays high, the Label Removing module knows that the Receive Buffers

module has at least one packet received and data processing is required. When the

fifo_data_want signal stays high, the MAC chip learns that now the receive FIFO has

some free space to hold more data. When the no_need_to_process signal stays high, no

further processing for the packet currently being transferred through the data bus

towards the Label Removing module should be done. The sop_out and eop_out signal

the Label Removing module when to start and stop accepting the packet from the

Receive Buffers module. The rx_pkt_length_out is the packet length calculated by the

Receive Buffers or received directly from the MAC Chip. After being inserted with

some time delay, the valid_byte_in and MAC_bus become the valid_byte_out and bus

respectively. The valid_byte_in and the read_en work together to inform other modules

 69

about the exact time duration of the data read from the receive FIFO that should be

accepted. The read_en signal is very important because the receive and transmit FIFOs

are communicating with each other at a much faster clock speed than what the MAC

chip works at. The last signal to be mentioned is rx_state_extend_sig. It is low active

and is sent to the State_Machine_3 in the case that the Receive Buffers module is likely

to lose the last 2 bytes of a packet due to state transition. Thus unnecessary idling time

suffered by the receive FIFO to finish its head packet transfer can be avoided

4.2.3.3 Label Removing

 The Label Removing module accepts packets from the 8 receive FIFOs (not from

the local host), removes their MPLS labels and then sends the labels to the Lookup

Table module. After new outgoing MPLS labels are found and bound to the packets, the

Label Removing module signals the corresponding receive FIFOs to transfer the rest of

the packet data to their destined transmit FIFOs. The following parts of this section will

introduce the signals and functions of this module, as shown in Figure 4-7.

 This module takes the responsibility to signal receive FIFOs if any more packet

data for further processing can be accepted after it analyzes all the feedback information

sent by the Label Binding and Switching module, the Lookup Table module and the

Transmit Buffers module. If all necessary conditions are met, an rx_ready signal is

asserted high to inform the Receive Buffers module about this. The first 32 bits of a

packet is always taken as the MPLS label by the Label Removing module and thus

these 32 bits are stripped off once the Label Removing module receives the start-of-

packet indicator coming with the data. The rx_ready signal is driven low right after the

label is received, telling the receive FIFO to wait until the decision is made to either

forward this packet to its next hop (represented by a certain transmit FIFO) or to

transfer it immediately to the upper layer for further IP header analysis. The removed

label is fed into the Lookup Table module as an in-coming label item immediately after

being stripped off, and a new outgoing label with the corresponding outgoing port may

be found 5 clock cycles later. Then the rx_ready signal is asserted high again and the

remaining bytes of the packet can be read from the receive FIFOs, so long as the receive

FIFOs are not empty. To ensure that all the functions work correctly, there is a 1-bit

 70

register for each of the 8 receive FIFOs to record the label removing status: label having

been stripped off or not.

 If the in-coming label cannot be found a match within the mappings contained in

the lookup table and the local microprocessor says it is ready for packet analysis, the

packet will be sent to local layer 3 to see if it should be discarded or if the local host is

just the destination. This helps in implementing the penultimate hop function of MPLS

and enabling the system to handle the packets with an erroneous label at the same time.

Figure 4-7 Label Removing Block Symbol, Prototype name: label_remover

 Only when the lookup_table_busy signal from the Lookup Table module is low,

can the removed MPLS label be fed into the Lookup Table module for processing. Then,

if the label_found from the Lookup Table module becomes high after 7 clock cycles,

and the label_bound_flag from the Label Binding and Switching module also becomes

high, the output rx_ready will be driven high to enable directly data transfer between

the Receive Buffers and the Transmit Buffers. If the label_found becomes low but the

 71

cpu_accept_data is high at this time, the rx_ready is also driven high to enable data

transfer between the receive FIFOs and the local host. Otherwise, the rx_ready is set to

be low. The sop_out and eop_out signals are generated by the Label Removing module

for the packet whose MPLS label has just been removed. The rx_sel_out and the

rx_sel_clk_out are delayed rx_sel_in and the rx_sel_clk_in by one clock cycle, which

are for the Lookup Table module to record the relevant outgoing port number and the

memory overflow status for each incoming port. This inserted delay is to avoid system

malfunctions due to a timing difference between different modules. The tx_data_ready

is to tell the Transmit Buffers that there are packets waiting to be transmitted from the

time the new outgoing labels are bound to the incoming packets. The label is a 32-bit

wide bus used to send the removed MPLS label to the Lookup Table module.

Descriptions of other signals that are straightforward to understand (either from their

names directly or from previous introduction to signals of similar functions) are omitted.

4.2.3.4 Lookup Table

i) CAM Technique

 For most memory devices, data storage and retrieval are done through specific

memory location addressing. With conventional indexing schemes, the data content is

used with a hash or index to produce the address location of the data. The address has

no real or direct relationship with the information contained in the data. A typical

example is a system utilizing RAM or ROM, which searches through memory to locate

data sequentially. However, the address indexing, or any other conventional indexing,

can slow system performance since the search may require many clock cycles to

complete.

 With content-addressable memory (CAM), the data is its own key, which

differentiates CAM from a traditional index. The time required to find an item stored in

memory can be considerably reduced by identifying stored data by content, rather than

by its address. This type of distributed memory has the advantage of allowing greater

flexibility of recall and is more robust. It is able to work its way around errors by

reconstructing information that may have been damaged from the system.

 72

 In this project, Content Addressable Memory (CAM) is adopted together with

traditional RAM technology to build the MPLS LFIB in hardware. LIB is still left for

software implementation. Mappings from incoming MPLS labels to local MPLS labels

and from IP headers to local MPLS labels are both taken into consideration since the

design target is for an edge router. For an ordinary label switching router inside a MPLS

cloud, mapping between IP headers and local MPLS labels is not necessary.

 Edge Core Core Label Switching
 Ingress Label Switch

 18

 Edge Core Core Label Switching
 Egress Label Switch

 4
 4

Figure 4-8 CAM and RAM Combination for MPLS

 As shown in Figure 4-8, a combination of CAM and RAM can be used to

implement the MPLS lookup table. The incoming label is used as an index by the CAM

block to specify the next hop and the appropriate new label in the ingress label switch.

Then the packet is forwarded to its next hop with the new label attached. At the last

edge of the network or egress label switch section, a CAM block can again efficiently

implement the table to find its corresponding IP address for the label from the incoming

packet and then forward the packet using IP forwarding.

 5

 In Label Out Label

 CAM RAM

Data Address

 18 23

Address Data

 23 5

 In Label In Label

 RAM CAM

Data Address

 4 0

Address Data

 0 5

IP Address Out Label

192.168.1.6

CAM

18

IP Address In Label

192. 68.2.7

CAM

 4

 73

 Typical multi-protocol label routers store up to 1,024 items at a time, requiring a

1,024×32 CAM block. This CAM block requires only 32 embedded system blocks

(ESBs) and can be efficiently implemented within an FPGA device. The outgoing labels

are stored in the RAM, which consists of 1,024×32 bit locations consuming 16 ESBs.

ii) Practical Lookup Table implementation

 To avoid that packets from different incoming ports directed to the same outgoing

port are buffered at one transmit FIFO in an interleaved way, there are dedicated

registers recording the status of each transmit FIFO: whether the transmit FIFO is in the

middle of accepting a packet from the receive FIFO i at present. If it is, then the head

packet at some other receive FIFO j also destined for it is asked to wait until the status

register shows that the last packet has been completely written into the transmit FIFO

already. There are two ways to handle the header packets from receive FIFOs other than

FIFO i but destined to the same transmit FIFO j. The first method is: right after the

transmit FIFO is found to be busy, the outgoing label assigned to the header packet at

receive FIFO j is sent to the local microprocessor, where it is allocated some memory

space of the external RAM for temporary storage. After a proper waiting time, this

packet will be transmitted in the normal way as if it were originated from the local host.

The other way to handle this issue is to allocate dedicated on-chip buffer space to hold

the outgoing labels found for the packets from FIFOs other than the receive FIFO i

within the same FPGA chip. Since each MPLS label is just 32 bits, it does not cost

much to store a number of such labels in on chip memory. However, to make sure that

theoretically no packet loss due to buffer space overflow takes place, the two methods

described above are adapted to work together. When there is contention at some

transmit FIFO, the system will send to the host microprocessor the outgoing labels of

the head packets from the receive FIFOs other than receive FIFO i in the case their

corresponding on-chip memory is experiencing overflow. At the same time, the system

finishes buffering the head packet from the receive FIFO i to the transmit FIFO where

contention is taking place as soon as possible.

 Here the lookup table is made up of three CAM and one RAM, whose architecture

and behaviors were described in the last section. For ordinary LSRs that work within an

 74

MPLS domain, only the mapping between incoming labels and out-going labels is

needed. In order to implement the layer 2 switching, the table containing the mapping

between local MPLS labels and physical outgoing ports has to be included as well.

Since this project is focused on edge router design, an extra table doing mapping

between the IP header and the MPLS label is included in the architecture of the lookup

table, too.

 Usually an entire packet cannot be transferred completely within one service

interval and data will not know where to go when the next service interval arrives if no

outgoing port information is available. Therefore the outgoing port information needs to

be saved. To handle this, a dedicated set of status registers is adopted within the Lookup

Table module. This set contains nine 3-bit wide registers, which record the outgoing

ports for the head packets of the 8 receive FIFOs and the local microprocessor under

service. These registers are cleared once the corresponding packets have left their

receive FIFOs completely. Since currently LSP merging is not considered, the case of

output port contention taken place among several input ports is neglected.

 As shown in Figure 4-9, the sop, the eop, the rx_sel and the rx_sel_counter signals

are used to set and clear all status registers recording necessary packet information. The

wrdelete, the wren, the wraddr and the update_data are for lookup table content updates.

The label_in carries the incoming MPLS label from the Label Removing module. The

IP_header carries the IP header of the packet from the host microprocessor. The output

signals label_out and the fifo_sel provide the new MPLS label to be bound to the packet

and the outgoing port number indicating where should the packet be switched. The

signal extend_rx_state_rq is sent to State_Machine_3 when the label searching task

cannot be finished within one service cycle, thus the service time can be extended as

needed.

 75

 Figure 4-9 Lookup Table Block Symbol, Prototype name: lookup_table

4.2.3.5 Label Binding and Switching

 With the outgoing MPLS label and outgoing ports provided by the Lookup Table

module, label binding and switching can be performed now.

 As indicated in Figure 4-10, if the tx_data_want from the Transmit Buffers module

is high, the binding task to be done can be completed with two steps. Firstly, once the

label_removed_flag and the fifo_rdy both become high, the Label Binding and

Switching module outputs the label as the first 4 bytes of the packet data to be switched

to the pkt_out port. This behavior accomplishes the function of “label binding”.

Meanwhile, the tx_sop_out and the label_bound_flag are set high to indicate this

completion. The former one is just a pulse with the width the same as that of the

data_valid, while the latter one has to always stay high until a pulse of tx_eop_in

appears. Then as the second step, after the label is bound, the Label Binding and

Switching module directs the remaining part of the incoming packet data to the pkt_out

port. Along with the pkt_out data, the tx_reg_sel_out is sent to the Transmit Buffers

module to identify the destination transmit FIFO for the currently being transferred

packet. The cpu_data_rdy and rx_data_rdy help in generating the tx_data_ready, which

 76

is set to be high so long as there is data required to be sent to the Transmit Buffers

module, regardless of whether it is from the local host or from one of the 8 receive

FIFOs. Also, there are 9 registers to record whether the label has been bound or not for

the header packet at each receive FIFO. Description of other signals of this module is

omitted, because their functions are apparent from their names.

Figure 4-10 Label Binding and Switching Block Symbol, Prototype name: label_binder

4.2.3.6 Transmit Buffers

 As shown in Figure 4-11, this module is very similar to the Receive Buffers

module, but it is simpler since the packet length is never computed in this module.

Another difference is that for the packet length FIFO, the packet length is written when

the sop_in is high, instead of when eop_in is high as in the Receive Buffers module.

 77

Figure 4-11 Transmit Buffers Block Diagram

 Figure 4-12 is the block symbol of a single transmit FIFO. There are also two

clocks adopted for this module. The clk_rd is 8 times faster than the clk_wr. When the

two signals, the tx_read_sel and the tx_write_sel generated by the State_Machine_2 and

3 respectively, stay high, the module is enabled for reads/writes to be performed. When

the MAC_ready and the tx_read_sel both stay high, data in the buffer can be transferred

to the MAC chip through the MPLS_MAC interface module. When the tx_data_ready

from the Label Binding and Switching module stays high and the tx_write_sel is also

high, data transfer from the Receive Buffers module or the local host to the Transmit

Buffers module is performed. The MPLS_MAC interface module knows that the

Transmit Buffers module has data to transmit when the tx_want signal stays high. When

the tx_reg_ready signal stays high, the Transmit Buffers module indicates that now it

has some free space to hold more packets that have already been bound with a new label.

The sop_out and the eop_out signals tell the MPLS_MAC interface about the start and

sop/eop_out
to interface

packet length
from RX/layer 3

 data from
 RX/ layer 3

 packet length
 to interface

state_sel from
State_Machine_2

 data to
 interface

state_sel from
State_Machine_3

Tx FIFO 0

8_to_1
Selector

Tx FIFO 7

8_to_1

Selector

Module 7

Pkt_Length_FIFO0

Down Counter0 sop/eop
generator0

Module 0

1_to_8
 DEC

1_to_8
 DEC

 78

the end positions of the current packet. The tx_state_extend_sig is low active and is sent

to the State_Machine_2 to prevent from happening the case that the last 2 bytes of the

packet get lost due to state transition during the course of data transfer from the

Transmit Buffers to the MAC-MPLS interface.

Figure 4-12 Single Transmit Buffer Block Symbol, Prototype name: tx_frame_reg

 79

Chapter 5 Test Development and Procedure

5.1 Introduction

 It is ideal if the whole design presented in the previous chapter be tested in a real

MPLS network, which means several completely finished MPLS switches/routers

would have to be built for the tests to be carried out. However, such a task involves

work over all layers of the TCP/IP model and is beyond the scope of this project. Since

the project is focused on digital hardware circuit design, it is sufficient to demonstrate

that the MPLS functional block implemented within an actual FPGA device can

perform MPLS label binding and removing according to requirements set in advance

and can realize packet transmission and reception over the physical layer by directing

incoming packets to their outgoing ports correctly. Real layer 3 routing is not

considered in the tests of this project. It is assumed that all necessary LSPs have been

set up successfully already and that the only remaining task is label switching.

Therefore, high-level software programming for the FEC definition and the LDP is not

needed in this test.

 With the simplified testing methodology, an Ethernet Development Kit (EDK)

from Altera Corporation can be utilized to build the test bed. The most important

hardware component included in the EDK is a network-interface daughter card

containing the MAC chip CS8900A, which can be plugged directly into the

motherboard of the development kit. Though this EDK is made up of both hardware and

software components that provide network connectivity and operation utilities for a

Nios-based embedded systems, only the hardware components will be introduced in

section 5.3 since software utilities running on an embedded Nios microprocessor are not

used in this project.

 The MPLS functional block is designed to support 8 sets of integrated FIFOs, and

each set corresponds to a certain physical port. However, the MAC chip CS8900A

provided on the board only supports one physical port. This problem has to be

 80

considered before the EDK can be put into use since it must be made certain that the

tests being done under such a situation can still be meaningful. To surmount this

problem without imposing more requirements on the testing environment, it can be

assumed that the other 7 MAC chips do exist but currently have no data to transmit or

receive, and thus by driving relevant signals inactive in a normal working mode, the

service intervals granted to the 7 fake physical ports can be saved by the system once

these relevant signals are found to be inactive. With this assumption, the goal of the

tests can still be reached with only one MAC port available for a node. The normal

operation of the system with multi-port integration can still be demonstrated. A detailed

explanation of the test procedure is given in section 5.4.1.

 Yet another problem exists. The CS8900A is designed to communicate directly

with a microprocessor instead of other hardware circuits; while in this project, the

MPLS must be interposed between the CS8900A and the microprocessor, which means

that the MPLS functional block is required to take the place of the microprocessor in

communicating with the CS8900A. To handle this, a special interface has to be

designed to aid packet transfer between the CS8900A and the MPLS functional block

(in another words, between the MAC layer and the MPLS shim layer).

 In the following sections, general test methodology development is presented first;

then the main hardware equipment used to build the test bed is introduced; in the third

section, a detailed description of the interface design for the MPLS block to cooperate

with the CS8900A MAC chip is depicted; finally, the detailed procedure of the practical

tests is described.

5.2 Test Methodology Development

 In the real world, the MPLS network can be arbitrarily large, consisting of parts

that are separated by considerable physical distance from each other and are connected

with each other via links (usually of bit-serial nature) like coaxial cables, optical fibers,

microwave links, etc. One part of the network, which resides at one physical location,

may be as small as a few chips on a small printed-circuit board or as large as thousands

of chips on many boards in several boxes all located physically close to each other.

 81

 Naturally ideal tests are supposed to be taken over such a real MPLS network,

where the edge nodes interface different types of physical mediums. However, such a

perfect condition is not truly necessary when the purpose of the tests is only to show

how an edge LSR functions, and the test methodology can be simplified as illustrated in

the following subsections without affecting the desired results.

 Another concern is the FPGA capacity. In today’s market, there are FPGAs with

millions of gates and over 10MB RAM space, which are very suitable for on-chip

switch/router design. However, the FPGA device available for this project is limited in

EBS blocks, which makes it impossible to fit in the complete integrated 8-port design.

Also, due to the limited number of available CS8900A chips representing the number of

physical ports (one CS8900A can only talk to one 10BaseT physical port), only one set

of receive FIFO, transmit FIFO and interface module really consumes the hardware

resources within one FPGA device in the tests. However, the service scheduler still

takes the other 7 ports as existing conceptually and this one port implementation still

can demonstrate the performance of the 8-port integrated design. The detailed reasons

will be given in Chapter 6.

 After the top module consisting of the MPLS functional block and the interface

between MAC and MPLS was fully compiled, a programming file was generated by

QuartusII (A digital circuit design software tool provided by Altera corporation) and

then loaded into the APEXII FPGA device mounted on the mother board of the EDK

through a download cable named ByteBlasterMV. Or, the programming file can be

stored in the FLASH memory incorporated on the mother board and be loaded

automatically into the FPGA device at each reset or power-up. The APEXII FPGA

device and the CS8900A mounted on the daughter card make up the essential hardware

part of an MPLS edge node operating over Ethernet, as illustrated in Figure 5-1.

 Because it makes no difference if the packet simply travels through a line or across

several internal networks before it arrives at its destination, the test bed can be built

simply with two sets of the EDK (acting as a simplified MPLS LER and a LSR

respectively), an ordinary desktop computer, and a hub, as shown in Fig 5-2.

 82

Figure 5-1 MPLS Edge Node Hardware Architecture

 Although in this project, there is no real routing occurring over layer 3 and only

label switching is concerned, it is desirable that the CS8900A grasps Ethernet traffic

with individual destination MAC address successfully to demonstrate real

communication at layer 2. It is well known that within a LAN each node should have a

unique MAC address to ensure that there is no confusion for packet reception. Since

there is no universally unique MAC address assigned to each CS8900A chip when it is

shipped, the CS8900A has to be configured with an MAC address unique within the

scope of the LAN into which it is to be plugged. This simplified test bed architecture is

still capable of demonstrating the performance of the hardware-realized part of an

MPLS edge node.

 According to the design introduced in Chapter 4, the Receive Buffers module and

Transmit Buffers module communicate with each other through the Label Removing

module and Label Binding and Switching module, at a clock speed 9 times faster than

10 BaseT

Within the APEX device

MPLS

Between
Layer 2 &

Layer 3

CS8900A
MAC/PHY

Interface between
MPLS & CS8900A

 83

the clock speed at which the Receive/Transmit Buffers communicate with the MAC

chip through the MPLS_MAC Interface module. However, since the tests are only done

between two physical nodes, where there is no real service multiplexing happening,

only one system clock is applied for the whole FPGA system.

Figure 5-2 Test Bed Architecture

 After the APEXII FPGA devices on the two boards are programmed, Node A and

Node B have been built and can then operate independently. They are plugged into the

small LAN each with a unique MAC address. Currently there is no need to create any

mapping between IP address and MAC address due to the lack of higher layer

communication. Neither is the networking setting needed for now. This part of the task

is only desirable in future work. Label switching is the only thing that needs to be

checked here. So long as it can be seen at one node that an incoming packet with label

A is transmitted onto the Ethernet again with a new label B, as expected, the tests are

said to be successful.

5.3 The Test Equipment

5.3.1 The Motherboard

MPLS LER
Node A

MPLS LSR
Node B

Logic Analyzer

Hub

PC

 84

Figure 5-3 The Mother Board

 The motherboard of the development kits is a board that features an APEX™

20K200EFC484-2x device; 1 Mbytes (512 K x 16-bit) of flash memory; 256 Kbytes of

SRAM (in two 64 K x 16-bit chips);on-board logic for configuring the APEX device

from flash memory, etc. The APEX 20K200E device is in a 484-pin FineLine BGA™

package. It has 8,320 Logic Elements, 52 ESBs, and 106,496 RAM bits.

 The 1 Mbytes flash memory chip is an Advanced Micro Devices (AMD)

AM29LV800BB. It is connected to the APEX device so that it can be used for two

purposes. Firstly, the flash memory can be used as general-purpose readable memory

and non-volatile storage by the Nios processor implemented on the APEX device.

Secondly, the flash memory can hold an APEX device configuration file that is used by

the configuration controller to load the APEX device at power-up. For this project the

flash memory is only used for the latter purpose.

5.3.2 The Daughter Card

 85

Figure 5-4 The Daughter Card

 An EDK daughter card works fine with the motherboard and only one daughter

card will be used along with one development kit in the test. However, a motherboard

supports at most two EDK daughter cards that form a two-level daughter card stack. As

illustrated in the figure above, the daughter card is a circuit board with the following

components:

- A Cirrus Logic CS8900A integrated Ethernet 10 Mbit PHY/MAC chip

- A RJ-45 network connector with integrated transformer magnetic and Link/LAN

LEDs

- Three female connectors to mount the daughter card on the Nios development board

- Three male headers for stacking two daughter cards

- A 20 MHz crystal oscillator that is used by the CS8900A chip

- All necessary resistors and capacitors

 The EDK includes an SOPC Builder library component that provides all logic and

I/O signals necessary for using the daughter card as the peripheral of an embedded

RISC CPU. However, currently this is not used since in this case the MAC/PHY chip

does not talk with the host CPU, but with the MPLS functional block through some

hardware glue circuitry.

 86

5.3.3 Introduction to the CS8900A

 In the tests, only one EDK daughter card that located at the lower level of the stack

is used. The main functional component on this daughter card is a CS8900A integrated

PHY/MAC chip. The CS8900A chip presents an ISA-bus interface to the host CPU

(here the MPLS functional block). The necessary electrical-interface signals are

provided on the set of female connectors. These connectors are compatible with the

expansion prototype connector groups on the motherboard. In this project, the daughter

card is connected to the 3.3-V expansion prototyped connector group.

5.3.3.1 CS8900A Work Mode

 The CS8900A is a single-port Ethernet solution incorporating all of the analog and

digital circuitry needed for a complete Ethernet circuit. It mainly includes: a direct ISA-

bus interface, an 802.3 MAC engine, integrated buffer memory, and a complete analog

front end with 10BASE-T.

 The CS8900A can work in both memory mode and I/O mode and the latter is the

default mode. According to the way the Ethernet daughter card is connected to the

motherboard, I/O mode is adopted for the tests. In this mode, the on-chip memory space

of the CS8900A can be accessed through eight 16-bit I/O ports that are mapped into

sixteen contiguous I/O locations in the host system’s I/O space. Therefore the interface

only needs to have a 4-bit wide address bus and a16-bit wide data bus. However, since

all registers are accessed as words only, the least significant bit of the address can be

always tied to low. The CS8900A I/O mode mapping is shown as Table 5-1.

 Receive/Transmit Data Ports 0 and 1 are used when transferring 32-bit transmit

data to the CS8900A and 32-bit received data from the CS8900A Real traffic carrying

information in practice is not concerned here. For fake MPLS traffic assumed to run

between the CS8900A and the MPLS functional block, simple 16-bit MPLS labels can

be used in the test. Therefore, though the MPLS functional block is designed for 32-bit

traffic, it makes no difference if the higher 16-bit data are always assigned 0. Finally,

because the CS8900A is designed optimally to work in 16-bit mode, the CS8900A is set

to do 16-bit operations and thus only Port 0 is needed.

 87

Table 5-1 CS8900A I/O Port Descriptions

Offset Type Description

0000h Read/Write Receive/Transmit Data (Port 0)

0002h Read/Write Receive/Transmit Data (Port 1)

0004h Write-only TxCMD (Transmit Command)

00006h Write-only TxLength (Transmit Length)

00008h Read-only Interrupt Status Queue

000Ah Read/Write MAC_RAM Pointer

000Ch Read/Write MAC_RAM Data (Port 0)

000Eh Read/Write MAC_RAM Data (Port 1)

 It is through the MAC_RAM Pointer Port and MAC_RAM Data Port that the

MPLS hardware can access the internal registers of the CS8900A in I/O Mode.

Whenever such an access is needed, the MAC_RAM Pointer has to be setup first by

writing the MAC ram address of the target register to the MAC_RAM Pointer Port (I/O

base + 0001Ah). Among the 16 bits written to the pointer port, the first 12 bits (bits 0

through B) provide the internal address of the target register to be accessed during the

current operation; the next three bits (C, D and E) are read-only and will always read as

011b, thus any convenient value may be written to these bits; the last bit (Bit F)

indicates whether or not the MAC_RAM Pointer should be auto-incremented to the next

word location. The contents of the target register are then mapped into the MAC_RAM

Data Port (I/O base + 000Ch). In most cases, MAC_RAM Data Port 1 is not used in this

test, since most internal registers are just 16 bits wide.

 For faster access, the internal Tx Command Register at MAC_RAM base + 0144h

is mapped to TxCMD Port and the internal Tx Length Register at MAC_RAM base +

0146h is mapped to TxLength Port. These mappings save the write needed to setup the

MAC_RAM pointer for each normal internal register access. The interrupt Status Queue

Port is not used in the tests since polling, instead of interrupts, is adopted to control the

CS8900A.

 88

5.3.3.2 CS8900A Configuration

 Before any packet transmission and reception are possible, the CS8900A must be

configured properly. Various configuration parameters have to be determined, such as

I/O Base Address, Ethernet Physical Address, what frame types to receive, and which

media interface to use. Usually this is done at power-up or software/hardware reset. All

the parameters are fed into the internal configuration and control registers, which are an

integrated part of CS8900A on-chip memory. Specific configuration parameters

selected to carry out the real test are illustrated in section 5.5.

5.4 Interface design

 There is currently no microprocessor involved, so the CS8900A is controlled by the

MPLS hardware through a dedicated interface circuit.

5.4.1 Functions to Be Performed

 The Ethernet frame header components, Destination MAC address, Source MAC

address, Type/Length field, Payload, Pad and CRC are supposed to be provided before

the packet can be sent to the MAC chip. Also, after being captured from the network

side, the complete MAC frame is sent out by the CS8900A, without having the DA, SA

and type/length fields removed. As described in Chapter 2, the MPLS label has to be

inserted between the MAC header and the Layer 3 header. Only after the MAC header

is stripped off, can the MPLS functional block begin processing the incoming packet.

Meanwhile, only after the MAC header indicating the next hop is appended in front of

the outgoing MPLS label, can the frame be sent to the CS8900A for transmission.

Therefore, it is the task of the interface circuit to strip off the entire MAC header before

transferring the received frame to the MPLS hardware and to encapsulate the layer 3

packet before feeding it to the CS8900A. Dedicated registers are provided to hold the

removed MAC header and packet type/length information that can be accessed by the

MPLS hardware before the packet is finished processing.

 An oscillator on the daughter card provides the CS8900A with a system clock of 20

MHz, while the oscillator on the motherboard provides the APEXII FPGA device with a

 89

system clock of 33 MHz. Asynchronous communications is required between the two

devices.

 Originally, the MPLS hardware was supposed to interface an Intel MAC chip

IXF440, which only provides signals indicating the start and end of the packet instead

of the packet length when outputting received packets, and requires the same signals

from other circuitry while accepting packets to be transmitted. Due to some constraints

on equipment availability, the Intel IXF440 was abandoned after the MPLS hardware

design had been almost finished. Instead, the project used the Cirrus CS8900A chip for

the tests later. In order to make the least modification of the MPLS function design,

signals that are exactly the same as those from Intel IXF440 are need to be generated by

the interface. Such packet delimiter signals also aid in some flag setting and clearing

used by the Label Removing module, Table Lookup module and Label Binding and

Switching module within the MPLS functional block.

Figure 5-5 Block Diagram of the Interface Between MPLS and MAC

 Since no higher-level software design for MPLS is done, it is impossible to have

MPLS traffic generated by an ordinary desktop computer. A straightforward solution is

to provide an internal MPLS packet generator within the interface module. This

generator can be used in LER Node A to produce the initial MPLS traffic. Figure 5-5

indicates the basic diagram block of the interface functions introduced in above

paragraphs.

Rx_data to mpls

Bidir_bus

Tx_data from MPLS

Signals to MPLS

Signals from MPLS

Frame Encapsulation
DA/SA/Type binder

Frame Decapsulation/
DA/SA/Type remover

Internal MPLS
traffic generation

SoP/EoP generator

 90

5.4.2 Flow Chart of Interface Functions

 Please refer to Figure 5-6. Since there is only one set of 16-bit bi-directional I/O

pins for data transfer, the CS8900A chip can only transmit and receive packets

alternatively rather than in parallel. The interface has to poll between the two states,

transmit or receive, to decide what to do next. The default state after each reset is

reception. In polling mode, the RxEvent register of the CS8900A at MAC_RAM base +

0124h is checked repetitively until the bits indicating a complete packet reception are

set. Then the RxStatus register at MAC_RAM base + 0400h and the RxLength register

at MAC_RAM base + 0402h are read. Actually the RxStatus register contains the same

value as that of the RxEvent register, and the CS8900A data sheet says that the former

can be skipped if the latter has been read. However, in order to make sure that the

receive buffer of the CS8900A can be released completely, the RxStatus register is

always read. The number of reads needed to fetch the data of the whole frame can be

calculated in the interface after the RxLength register is read. Then repetitive reads are

performed by the interface to retrieve data from the receive frame location of the on

chip memory of the CS8900A.

 After the last byte of data is received, the interface can transit to the transmission

state. If no packet has been transmitted yet since the last reset, the interface issues a

transmit command directly to bid for buffer space of the CS8900A for the transmit

frame data to be held. Otherwise, before the transmit command can be issued and the

transmission state is timeout, the bits of the TxEvent register at MAC_RAM base +

0128h are continuously monitored until the last packet has been transmitted by the

CS8900A.

 As part of a complete transmit command, the length of the packet is written to the

TxLength port that is mapped to the TxLength register at MAC_RAM base + 0146h,

immediately after the transmit command word is written into the TxCMD port that is

mapped to the TxCMD register at MAC_RAM base + 0144h. After that the interface

starts polling the BusStatus register at MAC_RAM base + 0138h to see if the bid is

successful. If not, the interface issues the transmit command again; if yes, repetitive

writes are performed to transfer the transmit data from the MPLS hardware to the

 91

 No (Rx) Yes (Tx)

 Yes No No Yes

 Yes No No Yes

 No Yes No Yes

Figure 5-6 Flow Chart of Interface Functions

Initialization

Rx ready at MAC? Last tx finish or 1st tx?

Issue tx command

Write tx frame length

Tx frame data transfer

eop of tx data?

Read Rx_status

Rx frame data transfer;
Sop and eop generation

eop of rx data?

Read Packet Length

Rx fault cases handler Tx fault cases handler

Polling Tx_event reg Polling Rx_event reg

Time out? Time out?

Service_turn = 1?

 92

CS8900A. After the last byte of data is transferred to the transmit frame location of the

CS8900A, the interface can enter the receive state again.

 There are two situations requiring for special care. The first is that, after the

transmit command and transmit packet length are written to the CS8900A, the

CS8900A has to take some time to find out if it is now able to do the job. If the state

changes too quickly, the packet to be transmitted has to wait until its next turn and the

bid for transmit buffer space on the CS8900A has to be done all over again. Similarly,

sometimes the MPLS functional block may not be ready at the beginning of the service

turn for the reception state. If the state changes too quickly, the packet already waiting

in the CS8900A has to wait until its next turn, too. Therefore, the system is designed to

only leave the current state and enter the other one after some predefined time of

waiting, which is set to be 8 clock cycles in the tests.

 The second situation is that, during transmission there may be collisions on the

Ethernet or something wrong taking place physically at the 10Base-T port; during

reception, packets with bad CRC or illegal lengths occupying the buffer space on the

CS8900A may prevent new valid packets from being received. These fault cases are

irrelevant to the design and do not need to be handled right now, but they cannot be

ignored, either. So by monitoring associated event bits and then setting some indicators

accordingly within the CS8900A internal registers, the CS8900A can come out of such

fault cases and go on with its regular operations. Therefore, the system will not be stuck

in a dead cycle.

 As shown in Figure 5-6, the operations that are required for the interface between

the MPLS hardware and the CS8900A to perform are:

1) Power on reset and wait for the CS8900A to finish its self-initialization;

2) Configure the CS8900A with the required parameters for the tests;

3) Before timeout, check if the CS8900A has successfully received any packet: If

yes, go to 4); if no go to 7). If timeout, go to 7) directly;

4) Begin reading RxStatus and RxLength registers;

 93

5) Strip off the MAC header and calculate the number of reads to fetch the whole

frame of data;

6) Start reading the I/O data port repetitively for the number of times obtained in

step 5) to free the receive buffer space on the CS8900A;

7) If the CS8900A has not transmitted any packet since last reset, go to 9); If

CS8900A has transmitted some packets, go to 8). If timeout, go back to 3); If

none of the above happens, poll the TxEvent register to see if the last packet

has been sent out successfully by the CS8900A. If successful, go to 9); if not

successful, go back to 7);

8) Issue a transmit command;

9) Before timeout, poll the BusStatus register to see if the CS8900A has any

buffer space available to hold the transmit packet, if it has, stay in 9); if not, go

to 10);

10) Transfer the transmit packet to the CS8900A, and then go back to 3).

5.4.3 Input/Output Signal Description

Figure 5-7 16-bit I/O Write to the CS8900A [34]

 94

Figure 5-8 16-bit I/O Read from the CS8900A [34]

 As mentioned in the last section, the CS8900A should be visited asynchronously,

which can be achieved by repetitively toggling the write/read enables. As shown in

Figure 5-9, the clk input is assigned to the pin of the APEX device that is connected to

the on-board 33.33 MHz oscillator. According to Figure 5-7, the io_w signal is designed

to stay high for 120 ns at first and then go low for another 120 ns. During the time io_w

is high, an address pointer pointing to the targeted internal register to be accessed is set

and once io_w goes low, the data on the bi-directional data bus can be written into the

register at the targeted address. Similarly, the io_r is designed to meet the timing

requirement of the CS8900A, according to Figure 5-8. The time from address and sbhe

active to io_r active is required to be at least 10 ns. To take advantage of the circuitry

used for io_w generation, and satisfy this requirement, io_r is set high for the same

amount of time (120 ns) as io_w. However, the time io_r has to stay low is longer than

that of io_w, which is 250 ns in this case.

 95

Figure 5-9 Interface Module Block Symbol, Prototype Name: mpls_mac_interface

 The reset_in is connected to the hardware-reset pin on the motherboard, which

drives the APEX FPGA device’s reset pin low when pressed. Thus this active low

reset_in can reset both the MPLS functional block and the interface module residing in

the APEX device. A NOT gate is connected to the reset_in to provide an active high

reset signal for the CS8900A according to its requirement.

 After each reset, the CS8900A checks to see if an external EEPROM is present

through an EEDataIn pin. If the EEDataIn pin is high, an EEPROM is present and the

CS8900A automatically loads the configuration data stored in the EEPROM into its

internal registers. If EEDataIn is low, an EEPROM is not present and the CS8900A

comes out of reset with the default configuration. Since no EEPROM is used in this

project while the CS8900A must be configured in a certain way as wanted, there has to

be 10 ms spent waiting for the CS8900A to finish its self concatenation before any

writes to the internal control and configuration registers can be done. A hardware delay

is used, though continuously polling a self-status register to check if an INIT_rdy bit

becomes high is an alternative. The INIT_rdy bit goes high once the self-concatenation

is done.

 96

 The CS8900A works in 8-bit mode at power up but it has to work in 16-bit mode

as required by this project, thus a sbhe signal fed to the CS8900A must be toggled to

put the chip into 16-bit mode. Therefore after the hardware delay is ended and the

INIT_rdy bit is checked to be also high, the sbhe line is toggled once and then always

kept low until the next reset or power down. Before the CS8900A finishes its self-

initialization, the sbhe is kept high to disable any read or write.

 At this time, parameters for the tests can be written to the internal control/

configuration registers of the CS8900A. Once such configuration is done, the clk_en

signal can be driven high to enable both the MPLS functional block and other part of

the interface circuitry.

 The bi-directional inout_bus of the interface module interfacing the CS8900A is

16-bit wide. The CS8900A assumes a little-endian ISA-type system. However, the

network byte order is always big-endian. Therefore to minimize manipulation of frame

data in ISA systems, the CS8900A byte-swaps frame data internally (The control and

status registers are not byte swapped). In this design, the data lines are byte swapped,

which means the interface takes the 7-0 bits of data as 15-8 bits of data from the

CS88900A. By swapping the data lines, only the configuration/control/status values but

not the frame data have to be swapped. This is more efficient due to the fact that most

of the reads/writes are done for frame data.

 The tx_data_rdy, tx_data_valid and tx_data_in are provided by the MPLS

functional block. So long as there are data waiting for transmission, tx_data_rdy is set

high, while tx_data_valid is only high for half clock cycle when there are data on the

bi-directional inout_bus [15:0]. This tx_data_valid from the Transmit Buffers module

of the MPLS functional block is used by the interface to generate write enable signal

io_w for data transfer to the CS8900A. One thing has to be stated is how the

tx_data_valid signal works. Actually since the time duration of each access (either read

or write) to the FIFO (either rx or tx) is defined as one time unit and since data will stay

on the bus much longer than one time unit, to prevent the same data being processed

twice, the tx_data_valid signal is needed to indicate the availability of the data.

 97

 The rx_sop_out and rx_eop_out indicate the first and last one or two bytes of a

received packet. They can stay high only when the tx_data_valid is also high. When a

received frame is ready at the CS8900A and the MPLS functional block indicates that it

is ready for packets processing, the MPLS packet generator can generate packets with

certain MPLS labels as required. These MPLS packets then are transferred to the MPLS

functional block through the interface. In other words, the actual received frame at the

CS8900A is read but then discarded by the interface. In the case that the MPLS packet

generator is not used, the actually received frame is sent to the MPLS functional block

for label processing.

 When the MPLS functional block does not have any room to hold more data or has

no more data to transmit, the packet data generation or transfer (receive or transmit) are

stopped right away and related information about the state is recorded for reference

when this suspended state has to be resumed later. Each time when a packet is received

or transmitted completely and successfully, the interface enters the other working state.

5.5 The Tests

5.5.1 Test Configuration

 In this section, the real test procedure carried out is introduced. As mentioned

earlier, the CS8900A chip has to be configured properly before it can receive and

transmit packets. Table 5-2 shows the configuration parameters selected for the

CS8900A in the tests. Other internal control or configuration registers not mentioned

are set to keep their default values.

Table 5-2 a) CS8900A Configuration for Node A

Register
Name

Register
Address

Register
Content Register Content Description

RXControl 0104h 0180h Accept packets with broadcast address
BusControl 0116h 1000h Not to use IOCHRDYE signal
LineControl 0112h C000h Enable xmit and receive
TxCommand 010b C900h Xmit only after delivering the whole frame

 98

Table 5-2 b) CS8900A Configuration for Node B

Register
Name

Register
Address

Register
Content Register Content Description

RXControl 0104h 0500h Accept individual packet with MAC address saved in
the register at address 0158h.

BusControl 0116h 1000h Not to use IOCHRDYE signal
LineControl 0112h C000h Enable xmit and receive
TxCommand 010b C900h Xmit only after delivering the whole frame

 Nodes A and B are similar except that node A is configured to enable the MPLS

packet generator while Node B is not. Node A and Node B are also configured with

different RxControl parameters. This is to enable Node A to receive any packet

appearing on the LAN and then generate MPLS traffic accordingly but to enable Node

B to receive only the generated MPLS traffic destined for it. Node B will forward the

received MPLS packets onto the LAN again after assigning new MPLS labels to them.

Thus a complete MPLS packet transmission, MPLS labels switching and packet

receiving can be demonstrated.

 The lookup tables residing in two nodes are initialized at the same time when the

FPGA devices are programmed. It is very convenient to update the data afterwards in

software through a simple CPU interface or in hardware with the aids of proper required

interfacing signals. If the updates only happen to lookup table contents instead of the

lookup table scale, software updates are more appropriate. Otherwise, hardware updates

are preferred.

 Typical LSRs that support QoS requirements should be able to store up to 1,024

labels at a time, requiring a 1,024×32 CAM block (The label is assumed to be 32 bits

long). However in this project, no real routing is considered, and a final-stage

commercial switch/router is not feasible for a single-chip implementation, thus it is not

necessary trying to hold MPLS labels representing all kinds of EFCs. According to the

test purpose, the lookup table is configured to have only 8 rows, just enabling switching

between 8 sets of physical ports.

 99

 Table 5-3 to 5-5 describe the contents contained within lookup tables of Node A

and Node B respectively, which include the mapping between IP headers and local

Table 5-3 Network Setting

Parameters Nios1 Nios2

MAC Address 14.13.12.12.16.15 14.13.12.12.16.14
IP Address 192.168.129.216 192.168.129.215

Gate Way IP Address 192.168.129.254 192.168.129.254
DNS Server IP Address 192.168.129.254 192.168.129.254
Subnet Mask IP Address 192.168.129.0 192.168.129.0

Table 5-4 a) Node A Test Path Selection

Mappings

Input

Output

IP – MPLS 192.168.129.215 32’h0074
MPLS – MPLS 32’h00A4 32’h0074

MPLS - Outgoing Port 32’h00A4 3’b100

Table 5-4 b) Node B Test Path Selection

Mappings

Input Output

IP - MPLS 192.168.129.216 32’h00A4
MPLS - MPLS 32’h0074 32’h00A4

MPLS - Outgoing Port 32’h0074 3’b100

 100

Table 5-5 a) Node A Lookup Table Configuration

Mappings

Input Output

192.168.129.211 32’h0070

192.168.129.212 32’h0071

192.168.129.213 32’h0072

192.168.129.214 32’h0073

192.168.129.215 32’h0074

192.168.129.217 32’h0075

192.168.129.218 32’h0076

IP - MPLS

192.168.129.219 32’h0077

32’h00A0 32’h0070

32’h00A1 32’h0071

32’h00A2 32’h0072

32’h00A3 32’h0073

32’h00A4 32’h0074

32’h00A5 32’h0075

32’h00A6 32’h0076

MPLS - MPLS

32’h00A7 32’h0077

32’h0070 3’b000

32’h0071 3’b001

32’h0072 3’b010

32’h0073 3’b011

32’h0074 3’b100

32’h0075 3’b101

32’h0076 3’b110

MPLS - Outgoing Port

32’h0077 3’b111

 101

Table 5-5 b) Node B Lookup Table Configuration

Mappings

Input Output

192.168.129.211 32’h00A0

192.168.129.212 32’h00A1

192.168.129.213 32’h00A2

192.168.129.214 32’h00A3

192.168.129.216 32’h00A4

192.168.129.217 32’h00A5

192.168.129.218 32’h00A6

IP - MPLS

192.168.129.219 32’h00A7

32’h0070 32’h00A0

32’h0071 32’h00A1

32’h0072 32’h00A2

32’h0073 32’h00A3

32’h0074 32’h00A4

32’h0075 32’h00A5

32’h0076 32’h00A6

MPLS - MPLS

32’h0077 32’h00A7

32’h00A0 3’b000

32’h00A1 3’b001

32’h00A2 3’b010

32’h00A3 3’b011

32’h00A4 3’b100

32’h00A5 3’b101

32’h00A6 3’b110

MPLS - Outgoing Port

32’h00A7 3’b111

 102

MPLS labels, the mapping between in-coming MPLS labels and local MPLS labels and

the mapping between local MPLS labels and local outgoing physical ports. Though real

data flows from layer 3 do not exist in the tests, corresponding parts of the lookup table

are still presented in this thesis. In practice, more dimensions in addition to the IP

address can be considered for the selection of local MPLS labels to ensure specified

quality of service. In order to show more clearly how an MPLS edge node works, the

network setting is also listed though it is only needed in the future work.

5.5.2 Real Testing Procedure

 After the test equipment are all correctly configured, the desktop computer

continuously sends out PING packets evenly at a frequency of about 0.3 ms over this

small Ethernet LAN. MPLS node A is set to grab those broadcast packets. After

receiving a PING packet, Node A generates a packet with a predefined MPLS label

(00A4h) and can have the length of this generated packet equal to that of the received

one. Then after table lookup, the packet bound with the corresponding new outgoing

MPLS label (0074h) and the destination MAC address representing Node B is driven

onto the LAN. PING packets can be defined with various lengths, but for simplicity, all

the PING packets are set to be 60 bytes by default.

 Now there is internally generated MPLS traffic running over the Ethernet. MPLS

Node B detects the existence of traffic destined to it and then receives the packets. The

received packet is first buffered at its corresponding receive FIFO within the MPLS

functional block of Node B. Then it is passed onto the Label Removing, the Label

Binding and Switching, and the Lookup Table modules for label processing, where a

new outgoing label, 00A4h (representing Node A here but could be anything else in a

practical), is assigned to the packet. Then the packet is buffered at the corresponding

transmit FIFO waiting for its turn to get transmitted.

 A Tektronix TLA 700 series logic analyzer is connected between the CS8900A

chip and the APEXII FPGA device of Node B to record what is taking place on the data

bus, address bus, and I/O read and write strobe enables. The logic analyzer can hold

128K data samples, which is enough for the test demonstration.

 103

Chapter 6 Test Results and Analysis

6.1 Overview

 In this chapter, test results gathered by a digital analyzer are presented. All test

results were obtained from Node B, which was defined as the receive node in Chapter 5.

The results show that the MPLS functional block works properly as expected.

 One CS8900A Ethernet daughter card is mounted on the motherboard and

connected to the FPGA device through the 3 pin headers for 3.3-volt prototype

connector. Since data at the 10Base-T port cannot be probed (The pins are concealed

within the package) and only the lower level of the two-level daughter card stack is

used, it is natural to collect data through those pin header connectors preserved for the

higher level daughter card that also locate between the CS8900A and the FPGA device

but are not used for any function purpose in the design. Please refer back to Figure 5-3

and 5-4 in the previous chapter. These pin header connectors provide the SD [15:0], the

SA [3:1] (SA [0] has been set to be always low in the design), the I/O read enable IOR ,

the I/O write enable IOW and the working mode selection signal SBHE , which have

been indicated in Figure 5-7 and 5-8 previously. These are all the signals required by

the CS8900A to achieve successful communication with other circuitry and therefore

they must be probed to verify the correctness of the design.

 Also, several internal signals within the MPLS functional block are obtained

through the pin header connectors for the 5.5 volt prototype connectors on the

motherboard, for they help to present a better view of the whole design. The following

is a brief description of the signals probed for results demonstration:

 data_valid --- the signal that tells the Rx Buffers module when the data on the

rx_data [7:0] bus should be buffered.

 rxreg_read --- the read enable signal for the Rx Buffers module to transfer

packet for further label processing.

 104

 rx_data [7:0] --- the lower 8 bits of the packet data transferred from the Rx

Buffers module to the Label Removing module.

 mac_sop_out --- start of the frame to be saved into the Tx Buffers module.

 mac_eop_out --- end of the frame to be saved into the Tx Buffers module.

 mpls_rdy --- the signal that indicates if the Label Binding and Switching

module is ready to accept new packet.

 turn --- the signal that indicates the service state of the interface module: high

for transmission and low for reception.

 save --- the signal that notifies the embedded microprocessor to accept the

received data when it is high , and to ignore them when it is low.

 Figure 6-1 exhibits 3 cycles of packet processing procedures. The time distance

between two successive procedures on average is 0.3 ms, which is the time distance

between two MPLS packets generated by the interface circuit.

6.2 Test Result Demonstration and Simple Analysis

 In the following sections, detailed illustration for each phase during the packet

processing procedure is given.

6.2.1 CS8900A Configuration

 Upon each reset or power up, with the parameters descried in Chapter 5, the

CS8900A is configured to work in 16-bit I/O mode, as required by the tests. The

MAC_RAM base address and the I/O base address are configured by default to be

0000h and 0300h respectively.

 After the hardware delay inserted for the CS8900A to do self-concatenation is

finished, the SelfStatus register at MAC_RAM base + 0136 is checked to see if its

INIT_rdy bit has been set. The CS8900A should set this bit after the 10 ms hardware

delay completes. After this the CS8900A and the MPLS functional block enter their

ordinary operation modes. The results following prove that the configuration is effective

and correct.

 105

Fi
gu

re
 6

-1
 r

ec
ei

ve
_&

_t
ra

ns
m

it

 106

Table 6-1 Bit Definition for SelfStatus Register

7 6 5 4 3 2 1 0
INIT_rdy 3.3V Active 0 1 0 1 1 0

F E D C B A 9 8

EEPROM
present

010110: These bits identify this as the Chip Self Status Register.

3.3v Active: If the CS8900A is operating on a 3.3v supply, this bit is set.

INIT_rdy: If set, the CS8900A initialization, including read-in of the EEPPROM, is

complete.

EEPROMpresent: If the EEDataIn pin is low after reset, there is no EEPROM present,

and this bit is clear. If the EEDataIn pin is high after reset, the CS8900A assumes that

an EEPROM is present, and this it is set.

6.2.2 Packet Receiving and Label Swapping

 Figure 6-2 receive_full shows the whole duration that a complete packet is being

received. It can be seen that the data_valid signal only becomes active after certain data

have been received. Those data are MAC header information and are saved to dedicated

registers instead of being transferred to the Rx Buffers module of the MPLS functional

block.

 Figure 6-3 (a) receive_0 shows how the packet reception begins. Node B is

configured to only accept packets with the individual destination MAC address

14:13:12:11:16:14. From this figure, it is clear that the internal register RxEvent at

address 0124h (at point A in Figure 6-3 (a)) of the CS8900A is accessed by setting the

address pointer at the MAC_RAM pointer port at I/O base + 000Ah; then the content of

the RxEvent register, 0504h (at point B in Figure 6-3 (a)), appears at MAC_RAM data

Port0 at I/O base + 000Ch, as expected. According to the bits defined within this

register, it is learned that a packet with a destination address that matches the individual

address found at 0158h has been received by the CS8900A successfully.

 The frame data is then fetched by repetitively driving the IOR low, starting from

the address MAC_RAM base + 0400h. The first word read is still 0504 ((point C in

 107

Figure 6-3(a)), which is the content of the RxStatus register locating at MAC_RAM

base + 0400h. The RxStatus is mirrored from the RxEvent and the only difference

between them is that when the RxEvent register is read, RxStatus will not be cleared

while the RxEvent will. The second word read is 003Ch (point D in the Figure 6-3 (a)),

which is the length of the packet. The third word read is 1314h(point E in the Figure 6-

3 (a)), which is the lower 2 byte of the standard IEEE 802 MAC address. It is 1314h,

instead of 1413h, because bits 7-0 and bits 15-8 of the data bus connected to the

CS8900A has been swapped due to different byte orders used at network layer and the

physical layer.

Table 6-2 Bit Definition of RxEvent register

7 6 5 4 3 2 1 0
 0 0 1 1 0 0

F E D C B A 9 8
 Individual Adr RxOK

000100: These bits identify this as the Receiver Event Register. When reading this

register, these bits will be 000100, where the LSB corresponds to Bit0.

RxOK: If set, the received frame had a good CRC and valid length. When RxOK is set,

the length of the received frame is contained at 0402h.

Individual Adr: If the received frame had a Destination Address that matched the

Individual Address found at 0158h, then this bit is set if, and only if, RxOK is set and

Individual Adr (Register 5, RxCTL, Bit A) is set.

 From Figure 6-3 (b) receive_1, it can be seen that the destination address contained

within the frame data is 14:13:12:11:16:14, which belongs to Node B. From Figure 6-3

(c) receive_2, the source address 14:13:12:11:16:15 representing Node A can be seen.

These two figures show that the packet is transmitted by Node A towards Node B and

prove that the packet transmission has been successfully completed.

 In both Figure 6-3(c) and Figure 6-3(d), the first word within the received frame is

0074h, which is the MPLS label assigned to the packet at Node A. It is from this point

of the frame that the data start being saved to the Rx Buffers module of the MPLS

functional block. This explains the absence of data_valid ’s being high for the first part

of the received frame. All the DA, SA and type/length data are saved to dedicated

 108

registers for reference by the MPLS hardware when needed. However, these registers

will all be overwritten automatically when the next frame start being received.

 In Figure 6-3 (e) receive_4, the word 0100h (the actual data value is 0001h before

byte swap) has been received and the whole receiving procedure is finished after the

MissCounter register at 013Ch has been read. Its content turns out to be 0010h (shown

in Figure 6-5 (a) save_to_mpls0), which means no packet has been missed. This read

may not make much sense when nothing unexpected happens. However, since the

CS8900A data sheet does not fully explain what should be done in polling mode to

ensure that no event will be left unprocessed to cause some unknown problem, this

MissCounter register is always read and cleared after each received frame is transferred

to the MPLS functional block.

 Still in Figure 6-3 (e) receive_4, the incoming label 0074h appears on the

rx_data[7:0] bus for 120 ns and then the word 0016h lasts for about 1.9 us. This is

because after the incoming MPLS label 0074h is read from the Rx FIFO and sent to the

Label Removing module, the first two bytes of the frame content has to be read as well

due to the internal structure of the FIFO function. Then there will be no more operations

until a new outgoing label is found for this packet and bound to it. Label lookup

behavior only needs 5 clock cycles to finish, which is much shorter than 1.9 us.

However, due to the fact that packet length is always 60-byte long and the normal

service interval lasts to perform exactly 16 reads/writes, the state always transits right

after the incoming label is stripped off. This means that, the newly found outgoing label

has to wait until the next service interval to be bound to the packet. That is why this 1.9

us exists and during which the data on the data bus is only 0016h. After this 1.9 us, the

real first word 0016h, of the packet data will be written to the Tx Buffers module

immediately, following the newly bound outgoing MPLS label.

 109

Fi
gu

re
 6

-2
 r

ec
ei

ve
_f

ul
l

 110

Fi
gu

re
 6

-3
 (a

) r
ec

ei
ve

_0

 111

Fi
gu

re
 6

-3
 (b

)
re

ce
iv

e_
1

 112

Fi
gu

re
 6

-3
 (c

) r
ec

ei
ve

_2

 113

Fi
gu

re
 6

-3
 (d

) r
ec

ei
ve

_3

 114

Fi
gu

re
 6

-3
 (e

) r
ec

ei
ve

_4

 115

6.2.3 Label Binding and Packet Buffering

 Figure 6-4 save_to_mpls illustrates the procedure whereby a complete packet is

transferred from the Rx Buffers to the Tx Buffers and how the new MPLS label is

bound to the packet. The individual steps making up this phase are presented in the

following paragraphs.

 In Figure 6-5 (a) save_to_mpls0, on the rx_data[7:0] bus, a new outgoing MPLS

label 00A4h appears and is bound to the incoming packet that used to be with the MPLS

label 0074h. After “00A4h”, the start of the packet to be forwarded is written to the Tx

Buffers, frame data transfer from the Rx Buffers to the Tx Buffers can then be started.

The figure shows that the mac_sop_out becomes high when the rx_data[7:0] bus has

00A4h on it (point A in Figure 6-5 (a)). The whole packet cannot be transferred

completely within one service interval granted to this port, thus it has to take several

service turns before all the transfer can be done.

 In Figure 6-5 (b) save_to_mpls1, it can be seen that mac_eop_out becomes high

when the last word of the packet, 01h(point A in Figure 6-5 (b)), appears on the

rx_data[7:0] bus, which signals the end of the current packet transfer from the Rx

Buffers to the Tx Buffers.

 116

Fi
gu

re
 6

-4
 sa

ve
_t

o_
m

pl
s_

fu
ll

 117

Fi
gu

re
 6

-5
 (a

) s
av

e_
to

_m
pl

s_
0

 118

Fi
gu

re
 6

-5
 (b

) s
av

e_
to

_m
pl

s_
1

 119

6.2.4 Packet Transmission

 The last phase demonstrates the packet transmission procedure, which is shown in

Figure 6-6 transmit_full in a general view. Detailed explanation of each part of the

figure is presented in the following paragraphs and figures.

 In Figure 6-7 (a) transmit_0, the address 0128h (point A in Figure 6-7 (a)) of the

TxEvent register is written to the MAC_RAM pointer port at 000Ah first; then at the

MAC_RAM data port0 at address 000Ch, the content of the TxEvent register is read out

and appears as 0108h(point B in Figure 6-7 (a)). The value of 0108h indicates that the

last packet has been completely transmitted and the CS8900A is now ready to accept a

new transmit frame storage bid issued by the MPLS hardware. This bid has to be done

at the start of each transmit operation. The first step to issue the bid is to write the

transmit command word (at point C in Figure 6-7 (a)) to the TxCMD register at I/O

base + 0004h. The transmit command informs the CS8900A that the MPLS hardware

now has a frame to be transmitted, as well as how that frame should be transmitted.

Table 6-3 Bit definition of TxEvent Register

7 6 5 4 3 2 1 0
 0 0 1 0 0 0 0

F E D C B A 9 8
 TxOK

001000: These bits provide an internal address used by the CS8900A to identify this as

the Transmitter Event Register;

TxOK: This bit is set if the last packet was completely transmitted.

Table 6-4 Bit definition of TxCommand Register

7 6 5 4 3 2 1 0
TxStart 0 0 1 0 0 1

F E D C B A 9 8
 InhibitCRC

001001: These bits provide an internal address used by the CS8900A to identify this as

the Transmit Command Register;

 120

TxStart: This pair of bits determines how many bytes are transferred to the CS8900A

before the MAC starts the packet transmit process.

 Bit 7 Bit 6

 0 0 Start transmission after 5 bytes are in the CS8900A

InhibitCRC: When set, the CRC is not appended to the transmission

 Next, the transmit frame length is written to the TxLength register through the

TxLength port at I/O base + 0006h to complete the bid for buffer space on the CS8900A.

In Figure 6-7 (a) transmit_0, the length of the frame to be transmitted is shown as

003Ch(point D in Figure 6-7 (a)).

Table 6-5 Bit definition of Bus Status Register

7 6 5 4 3 2 1 0
TxBidErr 0 0 0 1 0 0 1

F E D C B A 9 8
 Rdy4TxNow

001001: These bits provide an internal address used by the CS8900A to identify this as

the Transmit Command Register;

TxBidErr: If set, the MPLS hardware has commanded the CS8900A to transmit a

frame that the CS8900A will not send. Frames that the CS8900A will not send are:

1) Any frame greater than 1514 bytes, provided that InhibitCRC (TxCMD

Register, Bit C) is clear;

2) Any frame greater than 1518 bytes;

Rdy4TxNow: Rdy4TxNOW signals the MPLS hardware that the CS8900A is ready to

accept a frame from the MPLS hardware for transmission.

 After the complete transmit command has been issued to the CS8900A, the state of

the BusStatus register at MAC_RAM base + 0138h is checked to see if the bid has been

successful or not. In Figure 6-7 (a) transmit_0, the BusStatus Register at 0138h (point E

in Figure 6-7 (a)) returns the value of 0118h(point F in Figure 6-7 (a)), which means

that the CS8900A is now ready to accept the frame with the required length as shown in

 121

the transmit command issued by the MPLS hardware. It is apparent that the

encapsulated MAC frame is transferred with 14:13:12:11:16:15 as its DA (point G in

Figure 6-7 (a)) at the beginning of the frame. In Figure 6-7 (b) transmit_1, the SA

14:13:12:11:16:14 appears followed by the field of type/length, 003Ch. Then the

following data transferred to the buffer of the CS8900A are the MPLS label 00A4h, and

finally the remaining frame data. In Figure 6-7 (c) transmit_2, after the last word of the

frame is transferred to the CS8900A, the interface module began polling the RxEvent

Register at 0124h again, which represents the start of a new cycle of packet processing.

 122

Fi
gu

re
 6

-6
 tr

an
sm

it_
fu

ll

 123

Fi
gu

re
 6

-7
 (a

) t
ra

ns
m

it_
0

 124

Fi
gu

re
 6

-7
 (b

) t
ra

ns
m

it_
1

 125

Fi
gu

re
 6

-7
 (c

) t
ra

ns
m

it_
2

 The test results demonstrated above are exactly what were expected. The system

was kept working continuously for one day and no disruption was found. Based on the

appropriate test methodology described in the earlier chapter, the results prove that the

CS8900A configuration is effective and correct, and the MPLS hardware design is

successful.

 In the tests, due to the fact that the packet length was defined to be always 60-byte

long (standard PING packet length by default) and the normal service interval granted

to each session was set to perform exactly 16 reads/writes, the service state would

transit right after the incoming label is stripped off. In general, this kind of state

transition can cause a bad effect on label swapping, such as data loss or wrong label

being found and bound. According to the tests, no such errors occurred at the state

transition (the most vulnerable situation in terms of packet lengths) and it can be

inferred safely that under normal conditions (the packet length varies with time passing

by and the state transition usually happens in the middle of the ordinary packet data

transfer), the MPLS hardware can perform label processing just as wished. However,

more tests can be carried out in the future to have MPLS packets generated with various

lengths (simply by adjusting the PING packets’ lengths) to provide more facts that can

prove the correctness of the design.

 Due to the time and energy limitation, no simulation has been done to compare the

cost/performance between software implemented and hardware implemented MPLS.

However, the size and complexity of many problems have quickly exceeded the power

of conventional computer hardware in general [40, chapter1]. Also, software

instructions are executed by a hardware implemented microprocessor, it is theoretically

safe to say that if the same functions used to be performed serial by software now are

performed parallel by hardware, faster processing speed can be achieved. For example,

the process of packet receiving, label removing, table searching, label binding, label

switching and packet transmitting can be completed within just 8 cycles by hardware.

However, the process has to be translated into more steps and each step requires

multiple clock cycles to finish in software. As a roughly estimation, pure hardware

 126

 127

implementation can bring a processing speed 5-10 times faster than pure software

implementation in this project.

 The whole design, including both the MPLS functional block and the interface

between the MPLS hardware and the CS8900A chip, takes up to 7,143 logic elements

(approximately 177,840 typical gates) and 113,500 RAM bits. With a 32-bit wide data

path, the FPGA device supposed to operate at a system clock speed of 33.3 MHz, which

was divided into 8 MHz only in the tests, can easily realize a system that provides 100

Mbits/sec data transfer with the proper MAC chip. For FPGA devices with even higher

system clock speeds, such as Altera Stratix series that are said to be able to operate at

710 MHz, much faster data processing speed can be achieved.

6.3 Special Considerations

 The CS8900A needs at most 135 ns before it can drive valid data onto the ISA bus.

It also needs the active-low write enable to stay low for minimally 110 ns for one data

fetch to be finished. After the write enable becomes inactive and before it can be active

again, it has to stay high for minimally 35 ns. Since the CS8900A has its own system

clock and works asynchronous, other circuitry cooperating with it cannot work at a

faster speed. In the tests the FPGA device was actually working at a frequency of

around 8 MHz by dividing the 33 MHz frequency of the supplied system clock by 4.

 As mentioned before, the MPLS functional block was designed originally to

cooperate with the Intel MAC chip IXF440, whose on-chip memory can be accessed at

a clock speed provided externally. For MAC controllers as this IXF440, one multi-port

integrated interface module is enough for all the 8 physical ports to be served since

there are separate system clocks for IXF440 Media Independent Interface (MII) and

FIFO interface. Thus IXF440 on-chip FIFOs can be accessed through its FIFO interface

several times faster than IXF440 accessing each 10Base-T port through its MII. This

ensures that each physical port can be served to its full bandwidth requirement easily.

 However, for MAC controllers such as CS8900A, the fastest data fetching

frequency that can be obtained is about 4 MHz only because each valid read/write

performed on the CS8900A requires 250 ns or longer to complete. If the 8 physical

 128

ports receive their services one by one in turn and each at a constant frequency of 4

MHz, taking the time each port waits in idle into consideration, the actual speed of data

transfer service for either transmit or receive that each CS8900A can obtain is only 500

KHz. This means the bit rate each port can accommodate is only about 8 Mbit/s (500

K/s * 16 bit = 8,000,000 bit/s). Even though the traffic over a 10M Ethernet cannot be

always at the peak of 10M bit/s, a node processing speed of maximally only 8 Mbit/s is

far from acceptable. Therefore, when adopting MAC chips such as the CS8900A to

build the test bed, a dedicated interface module for each physical port has to be adopted

in order to transmit and receive packets at a speed without causing node processing

performance decline. For an 8 port integrated system, 8 interface modules that are

simply replicates of each other are required. Hence the feature of preventing any data

loss caused by the service turn transition is still kept, which promises that each interface

works independently.

 Label processing service for each port was scheduled in a UD-WRR manner as

described in Chapter 4, which took place completely within the MPLS functional block.

The UD-WRR service scheduler was configured to work in its normal mode; the

scheduler assumed that all the 8 ports existed and when they needed, they could be

granted services regularly. Under the UD-WRR policy, when any one of the 8

receive/transmit buffers (each corresponds to a fixed physical port represented by a

CS8900A) is served, the other 7 buffers have to wait in idle. Thus, the absence of the

other 7 buffers appears to the service scheduler like they just don’t have anything to be

sent or have no more room to hold received data. The signals tx_want and mpls_ready

signals from these 7 buffers are always driven inactive in order to enable the scheduler

to only serve the port really that exists but to skip the service intervals granted to these

absent ones who don’t require any service. Hence, the complete service process is

exactly the same as when there are 8 actual ports, which includes: reading a packet from

one of the 8 receive buffers; removing the incoming MPLS label; finding out a

appropriate new outgoing label; binding this new label to the packet under service;

buffering the packet bound with the new MPLS label into the transmit buffer and finally

starting the service interval for the next object.

 129

 Since there were only two CS8900A chips available to carry out the tests, the test

results obtained were actually from the implementation containing only one interface

module within each node. However, due to the design symmetry of the 8 integrated

interfaces, each port is independent from the others and from the perspective of a

particular physical port, the absence of other physical ports does not affect it.

 According to what has been explained, if one port is proved to be served properly,

the others can be inferred to be served in the same manner as well. Therefore, the tests

performed on this one port implementation are theoretically convincing enough to

demonstrate the performance of the integrated 8-port design. In fact, this saved a lot of

extra money in building a test bed with 8 real physical ports, which does not necessarily

provide more satisfying results.

Chapter 7 Conclusions and Future Work

7.1 Conclusions

 In this thesis, MPLS standards and switch/router evolution were investigated first

and then a novel idea named Real Packet Switching and its implementation were

proposed. The RPS architecture can realize pipelined data transfer at the outputs. In the

RPS, unlike the traditional crossbar switching that actually performs cell switching,

packets are not segmented into cells at the inputs and then no cells have to be

reassembled at the ouputs. Hence both processing time and hardware resources required

by the traditional crossbar fabric can be saved. Over each connection, a packet can only

be transfered upon the completion of the last packet.

 The thesis then discusses the problem of the multiple queue service scheduling.

Following a background introduction, an improved UD-WRR policy bearing several

attractive attributes was proposed based on the WRR policy. The effective and easy-to-

implement multiple queue service schedulng policy UD-WRR maintains a set of

prioritized FIFO queueus to deal with the bandwidth allocation issue and diverse QoS

guarantees in tomorrows' networks fairly and efficiently. After primary algorithm

analysis was done, the two most significant parameter expressions for practical system

implementations were developed.

 Taking the full system throughput as “1”, a session i (assigned the weighted

factor) packet is always guaranteed a throughput greater than or equal toiw
∑ j j

i

w
w

.

Also, the design is very flexible, since the values of ’s can be modified to achieve

different system performance if QoS requirements are changed. Finally, data processing

may be done continuously even if the packet data have not arrived completely when the

packet length is provided at the beginning of the packet.

iw

 130

 In fact, when the unit of is set to “bit” and each session has the same value as

1, the UD-WRR policy reduces to the bit-wise round robin; when the unit of is set to

“packet” and each session also has the same value as 1 (no matter how long the

packet is), the UD-WRR policy reduces to the packet-based round robin policy that is

usually implemented in software.

iw iw

iw

iw

 By adopting the hardware and software co-design technique, MPLS protocol

partitioning and scheduling for execution on both a general-purpose processor and

stream-based hardware were carried out. Accordingly, the MPLS data forwarding plane

was implemented in hardware in this project and the data routing plane was left for

future software implementation.

 Based on all the investigations and analysis, a primary MPLS node concerning

only the lower 2 layers of the TCP/IP model and running the UD-WRR scheduling

policy was implemented in reconfigurable hardware.

 As the major part of the system, the MPLS functional block contains 6 sub-layer

modules: Receive Buffers; Transmit Buffers, Label Removing, Label Binding and

Switching, Lookup Table, and State Machines/Service Schedulers. Together with the

MAC-MPLS-Interface design, the complete design took up 7, 413 logic elements

(approximately 177,840 typical gates) and 113,500 RAM bits. The adopted FPGA

device can operate at a clock speed of 33.3 MHz. With 32-bit wide data path, the

system can easily realize 100 Mbit/sec data transfer with the proper MAC chip. For

FPGAs with even higher system clock speed, such as Altera Stratix series whose system

clock is claimed to reach the frequency of 710 MHz, much faster data processing speed

can be achieved.

 Though this project was mainly focused on digital hardware design, a fundamental

reconfigurable MPLS router architecture adopting basic RHFEs that could perform

reconfigurable MPLS functions was also presented. This architecture is flexible in

system upgrades of both new protocols and service add-ons.

 131

 To verify the correctness of the digital hardware design, appropriate tests have to

be taken. As described in Chapter 5, a simplified test methodology was developed with

limited available test equipment and was carried out successfully. The obtained test

results demonstrated in Chapter 6 showed that all the circuits functioned properly as

expected and realized line-speed switching that took over a great part of the burdens of

traditional routing.

7.2 Future Work

 Before the reconfigurable MPLS router can be put into practical use, there is still

much work to do to uniquely integrate the best features of work being conducted in

software and run-time reconfigurable hardware.

• More lower layer protocols to be supported

 In this project, a separated MAC chip CS8900A was used. Part of future work is to

design an on-chip system that supports different lower layer protocols such as Frame

Relay, SDH/SONET and ATM, in addition to Ethernet. According to the way the

network is organized, various types and numbers of integrated MPLS-MAC interfaces

could then be combined. With RHFEs that integrate MPLS and different lower layer

interfaces on a single FPGA chip, more hardware reconfigurability, faster processing

speed, lower fabrication cost and smaller product size can be obtained.

• Adoption of the embedded microprocessor

 A RISC microprocessor is needed to run some low-level software routines to

enable communication between layer 2 and higher layers. This microprocessor is

supposed to be embedded within the same FPGA device and communicate with the

MPLS functional block directly.

 The embedded microprocessor suggested for the future use is Altera Nios

embedded system. The Nios development kit allows for a Nios embedded

 132

microprocessor to interface other user logic designs within an FPGA device via a

software-controlled parallel I/O port or via a hardware-realized user-defined interface.

 The routines run in this embedded microprocessor could be compiled using C/C++

compiler, and then be downloaded into the on-chip ROM of the Nios microprocessor

residing within the FPGA device.

• Routing Software Design and More Tasks

 Currently no dynamic routing has been considered. In future work, software

programs performing label distribution to set up, maintain and tear down LSPs

according to various QoS and traffic engineering requirements are to be designed.

 More tasks to be completed include: line cards printed circuit board design, the

concrete way in which all kinds of line cards are connected, and the back-plane design,

etc.

 133

References

MPLS

[1] MPLS Charter, IETF, http://www.ietf.org/html.charters/mpls-charter.html

[2] Rob Redford, “Enabling Business IP Services with Multiprotocol Label

Switching”, white paper of Multiservice Switching Business Unit, Cisco

[3] Multiprotocol Label Switching (MPLS), International Engineering

Consortium, http://www.iec.org/online/tutorials/mpls

[4] MPLS and Next Generation Access Networks, Integral Access, Inc

[5] MPLS Guide, http://www.techguide.com Ennovate Networks, Inc

Switch/Router

[6] K. Toda, K. Nishida, E. Takahashi, N. Michell, and Y. Yamaguchi, “Design and

Implementation of a Priority Forwarding Router Chip for Real-time

Interconnection Networks”, International Journal of Mini and Microcomputers,

Vol. 17, No. 1, pp. 42-51, 1995

[7] David C. Lee, Scott F. Midkiff, Peter M. Athanas, “ Reconfigurable Routers: A

New Paradigm for Switching Device Architecture”, April 27, 1998

[8] S. Keshav and R. Sharma, “Issues and Trends in Router Design”, IEEE

Communications Magazine, Vol. 36, No. 5, pp. 144-51, May 1998

[9] N. Yamanaka, E. Oki, H. Hasegawa, and T. M. Chen, “User-Programmable

Flexible ATM Network Architecture Active-ATM-Experimental Results”, Third

IEEE Symposium on Computers & Communications, pp. 178-182, June 30-

July 02, 1998, Athens, Greece

[10] David C. Lee, Scott J. Harper, Peter M. Athanas, and Scott F. Midkiff, “A

stream-based Reconfigurable Router Prototype”, IEEE International Conference

on Communications, Vancouver, BC, pp. 581 – 585, June 1999

[11] Ranjita Bhagwan and Bill Lin, “Design of A High-speed Packet Switch With

Fine-Grained Quality-Of-Service Guarantees”, IEEE International Conference on

Communications (ICC'00) 2000, New Orleans, Vol. 3, pp. 1430-1434, June 2000.

 134

http://www.ietf.org/html.charters/mpls-charter.html
http://www.iec.org/online/tutorials/mpls
http://www.techguide.com/

[12] Jun Gao, Peter Steenkiste, Eduardo Takahashi, and Allan fisher, “A

Programmable Router Architecture Supporting Control Plane Extensibility”, IEEE

Communications Magazine, pp. 152-159, March 2000

[13] Scott Karlin and Larry Peterson, “ VERA: An Extensible Router Architecture”,

IEEE OPENARCH 2001, pp. 3-14, April 2001

[14] Tilman Wolf and Jonathan Turner, “ Design Issues for High Performance Active

Routers”, IEEE Journal on Selected Areas of Communications – Special Issue on

Active and Programmable Networks, Vol. 19, No. 3, pp. 404-409, March 2001

Queuing Theory

[15] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair

queuing algorithm”, J. Internetworking: Research and Experience, pp. 3-26,

September 1990

[16] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to

flow control in integrated services networks: The single node case”, IEEE/ACM

Trans. Networking, Vol. 1, pp. 344 -357, June 1993

[17] Hui. Zhang and Jon. C. R. Benett, “Why WFQ is not good enough for integrated

services networks”, Proceedings of NOSSDAV 96, pp. 87-96, April 1996

[18] F. M. Chiussi and V. Sivaraman, “Achieving High Utilization in Guaranteed

Services Networks Using Early-deadline-first Scheduling”, Proceedings 6th IEEE

IWQoS’98, pp. 209-217, May 1998

[19] Jorg Liebeherr and Dallas E. Wrege, “Priority Queue Schedulers with

Approximate Sorting in Out-Buffered Switches”, IEEE Journal on Selected Areas

in Communications, Vol. 17, No. 6, pp. 1127–1144, June 1999

[20] Minseok Song, Naehyuck Chang, Heonshik Shin, and Kenji Toda, “A New

Queue Discipline for Various Delay and Jitter Requirements in Real-Time Packet-

Switched Networks”, Proceedings of the Seventh International Conference on

Real-Time Computing Systems and Applications, pp. 191-198, December 2000

[21] Aggelos Ioannou and Manolis Katevenis, “Pipelined Heap (Priority Queue)

Management for Advanced Scheduling in High-Speed Networks”, 2001

http://archvlsi.ics.forth.gr/muqpro/heapMgt.html,

 135

http://archvlsi.ics.forth.gr/muqpro/heapMgt.html

[22] Manolis Katevenis, Stefanos Sidiropoulos, Costas Courcoubetis: ``Weighted

Round-Robin Cell Multiplexing in a General-Purpose ATM Switch Chip'', IEEE

Journal on Selected Areas in Communications, Vol. 9, No. 8, pp. 1265-1279,

October 1991

[23] Ying Jiang and Mounir Hamdi, “A Fully Desynchronized Round-Robin

Matching Scheduler for a VOQ Packet Switch Architecture”, 2001 IEEE

Workshop on High Performance Switching and Routing, pp. 407-411, 2001.

Queuing Implementation

[24] Jennifer L. Rexford, Albert G. Greenberg, and Flavio G. Bonomi, “Hardware-

Efficient Fair Queuing Architectures for High-Speed Networks”, INFOCOM, pp.

638-646, March 1996

[25] Sung-Whan Moon, Jennifer Rexford and Kang G. Shin, “Scalable Hardware

Priority Queue Architectures for High-Speed Packet Switches”, IEEE

Transactions on Computers, Vol.49, No.11, pp. 1215-1227, November 2000

[26] Ranjita Bhagwan and Bill Lin, “Fast and Scalable Priority Queue Architecture

for High-Speed Network Switches”, IEEE Infocom, Tel Aviv, Vol. 2, pp. 538-547,

March 2000

[27] George Kornaros, Christoforos Kozyrakis, Panagiota Vatsolaki, and Manolis

Katevenis, “Pipelined Multi-Queue Management in a VLSI ATM Switch Chip

with Credit-Based Flow-Control”, Proc. of 17th Conf. on Advanced Research in

VLSI (ARVLSI'97), Univ. of Michigan, Ann Arbor, USA, September 1997

 URL:ftp://ftp.ics.forth.gr/tech-reports/1997/1997.ARVLSI.Pipe MultiQueue.ps.gz

[28] Dimitrios S. Kapsalis, “Design and Implementation of a Per-Flow Queue

Manager for an ATM Switch using FPGA technology”, Technical Report 302,

Institute of Computer Science (ICS), Foundation of Research & Technology ñ

Hellas (FORTH)

[29] Aggelos D. Ioannou, “An ASIC Core for Pipelined Heap Management to

Support Scheduling in High Speed Networks”, Technical Report FORTH-

ICS/TR-278 October 2000”. Work performed as a M. Sc. Thesis at the Univ. of

Crete

 136

ftp://ftp.ics.forth.gr/tech�reports/1997/1997.ARVLSI.Pipe MultiQueue.ps.gz

Data Sheets

[30] Cisco 10000 Edge Services Router Hardware Architecture, Cisco Systems, 2000

[31] Alcatel 7670 Routing Switch Platform data sheet, Alcatel, 2001

[32] M40 Internet Backbone Router data sheet, Juniper, 2001

[33] Marconi ASX4000 data sheet, Marconi, 2001

[34] Cirrus Logic CS8900A product data sheet, 2001

[35] IBM Corp., “IBM 8265 ATM Switch Overview”, White Paper, September 1997

Other

[36] Fundamentals of digital switching / edited by John C. McDona

[37] James Aweya, “IP Router Architectures: An Overview”, Nortel Networks

[38] S. Keshav: An Engineering Approach to Computer Networking, Addison-

Wesley, 1997, ISBN 0-201-63442-2

[39] Steve Lin and Nick Mckeown, “A Simulation Study of IP Switching”,

Proceedings of ACM SIGCOMM, pp. 15-24, September 1997

[40] ANN Hardware Implementations, PhD thesis by Mike Craven, University of

Nottingham, December 1993

 http://www.crg.cs.nott.ac.uk/people/Mike.Craven/Mikepub.html

 137

http://sundog.usask.ca/search/YCommunications+Theory&SORT=A/YCommunications+Theory&SORT=A/1,17,17,B/frameset&FF=YCommunications+Theory&SORT=A&9,9,
http://www.crg.cs.nott.ac.uk/people/Mike.Craven/Mikepub.html

	thesis_formated_firstpages_9_26.pdf
	PERMISSION TO USE
	ABSTRACT
	ACKNOWLEDGEMENTS

	LIST OF ABBREVIATIONS.pdf
	LIST OF ABBREVIATIONS

	LIST OF ABBREVIATIONS.pdf
	LIST OF ABBREVIATIONS

	Chapter3_9_26.pdf
	Chapter 3 Reconfigurable MPLS Router Design Issues
	3.1 Switch/Router evolution
	
	3.1.1 The First Generation

	Figure 3-1 First Generation Switch/Routers [28]
	3.1.2 The Second Generation

	Figure 3-2 Second Generation Switch/Routers [28]
	3.1.3 The Third Generation

	Figure 3-3 Left: Third Generation Switch/Router; Top-Right: A Crossbar;
	Bottom-Right: An 8x8 Banyan Fabric made of small 2x2 switch blocks. [28]
	3.1.4 The Fourth Generation To Be Developed

	3.2 System Design Strategy
	
	3.2.1 Protocol software and hardware partition

	Figure 3-4 Logical Architecture of the LSR
	3.2.2 Hardware Architecture of the Reconfigurable MPLS Router

	Figure 3-5 Hardware Architecture of a Reconfigurable MPLS Router
	3.2.3 Single-chip RHFE design for Line Cards

	Figure 3-6 Single-Chip RHFE Design for Line Cards

	3.3 Dealing with Queuing Issues
	
	3.3.1. Background
	
	
	3.3.1.1 Priority Queue Scheduling

	Figure 3-7 Binary Tree of Comparators Priority Queue [25]
	Figure 3-8 Shift Register Priority Queue and Shift Register Block [25]
	Figure 3-9 Systolic Array Priority Queue and Systolic Array Block [25]
	
	
	
	3.3.1.2 Multiple Per-Flow Priority-Queue Management

	3.3.2 An Improved UD-WRR Policy

	Figure 3-10 UD-WRR Scheduling Policy

	3.4 RPS and UD-WRR Implementation in a MPLS System
	Figure 3-11 �RPS Architecture Adopting UD-WRR for MPLS

	page59.pdf
	Figure 4-2 MPLS Functional Block Diagram

	page59.pdf
	Figure 4-2 MPLS Functional Block Diagram

	page59.pdf
	Figure 4-2 MPLS Functional Block Diagram

	page59.pdf
	Figure 4-2 MPLS Functional Block Diagram

	Chapter7_9_26.pdf
	Chapter 7 Conclusions and Future Work
	7.1 Conclusions

	Chapter7_9_26.pdf
	Chapter 7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References_9_26.pdf
	References
	
	
	MPLS
	Switch/Router
	Queuing Theory
	Queuing Implementation
	Data Sheets
	Other

