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ABSTRACT 

        With extremely wide bandwidth and good channel properties, optical fibers have 

brought fast and reliable data transmission to today’s data communications. However, 

to handle heavy traffic flowing through optical physical links, much faster processing 

speed is required or else congestion can take place at network nodes. Also, to provide 

people with voice, data and all categories of multimedia services, distinguishing 

between different data flows is a requirement. To address these router performance, 

Quality of Service /Class of Service and traffic engineering issues, Multi-Protocol Label 

Switching (MPLS) was proposed for IP-based Internetworks. In addition, routers 

flexible in hardware architecture in order to support ever-evolving protocols and 

services without causing big infrastructure modification or replacement are also 

desirable. Therefore, reconfigurable hardware implementation of MPLS was proposed 

in this project to obtain the overall fast processing speed at network nodes.  

        The long-term goal of this project is to develop a reconfigurable MPLS router, 

which uniquely integrates the best features of operations being conducted in software 

and in run-time-reconfigurable hardware. The scope of this thesis includes system 

architecture and service algorithm considerations, Verilog coding and testing for an 

actual device. The hardware and software co-design technique was used to partition and 

schedule the protocol code for execution on both a general-purpose processor and 

stream-based hardware. A novel RPS scheme that is practically easy to build and can 

realize pipelined packet-by-packet data transfer at each output was proposed to take the 

place of the traditional crossbar switching. In RPS, packets with variable lengths can be 

switched intelligently without performing packet segmentation and reassembly. Primary 

theoretical analysis of queuing issues was discussed and an improved multiple queue 

service scheduling policy UD-WRR was proposed, which can reduce packet-waiting 

time without sacrificing the performance. In order to have the tests carried out 

appropriately, dedicated circuitry for the MPLS functional block to interface a specific 
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MAC chip was implemented as well. The hardware designs for all functions were 

realized with a single Field Programmable Gate Array (FPGA) device in this project. 

        The main result presented in this thesis was the MPLS function implementation 

realizing a major part of layer three routing at the reconfigurable hardware level, which 

advanced a great step towards the goal of building a router that is both fast and flexible.  
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Chapter 1 Introduction 

1.1 Motivation 

        Over the last ten years, the Internet has evolved into a ubiquitous network. New 

extranet services, network-enabled intranet applications, and much more powerful PCs 

are turning the Internet rapidly into an electronic agent for information retrieval, 

commerce, entertainment, and communication. As well, there is exponential growth in 

the number of users who have diverse demands for more reliable and differentiated 

services. Therefore, Class of Service (CoS) and Quality of Service (QoS) issues must be 

addressed in order to support the diverse requirements of the wide range of new 

applications and network users. Both large and small Internet Service Providers (ISPs) 

constantly face the challenges of adapting their networks to accommodate new services 

and meeting more diverse customer requirements. In many situations, software updates 

are not enough to achieve this goal. Meanwhile, due to extremely high costs, physically 

replacing or upgrading network infrastructure constantly is not feasible, either. As a 

result, Multi-Protocol Label Switching (MPLS) that can address all these issues was 

proposed. 

        MPLS [2, 3] is a direct and elegant industrial solution to improve the 

controllability, efficiency, and reliability of the current worldwide IP networks. It gives 

the network better extensibility and also provides more flexibility to routing services, 

which means that it allows the addition of new routing services without changing the 

original packet-forwarding mode. MPLS is not confined to any particular link layer 

technology; it can use any medium to transmit packets between any two entities of the 

network layer. However, though MPLS is now taken as a crucial standard technology 

that offers new capabilities for large-scale IP networks, the concept of label switching 

was originally proposed as a way of improving the forwarding speed of routers only.  

        Routers can easily become places where network bottlenecks are formed, and fast 

node processing speed is extremely important to avoid these bottlenecks to achieve 
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good network performance. Meanwhile, from the industrial point of view, the flexibility 

that can reduce the cost when new services need to be added to the router later is of the 

same importance [7, 9]. Naturally, routers that are both fast and flexible are desired, but 

these two characteristics are generally considered a contradiction in terms. The reason is 

that maintaining high throughput requires fast but fixed-configuration application 

specific integrated circuits (ASICs) while flexibility requires slower though flexible 

configuration of general-purpose processors. Is there an ideal compromise? The answer 

is positive. The solution is a reconfigurable router that is fast and flexible at the same 

time, by integrating the best features of both hardware and software processing through 

the efficient use of Field-Programmable Gate Array (FPGA) technology, hardware 

description language, and hardware/software partitioning and scheduling technique. 

Detailed reasons for why FPGA instead of ASIC or software technologies are chosen in 

this project is fully described in section 1.3.2 

        In the project described by this thesis, a partial fulfillment FPGA for the next 

generation fully reconfigurable IP routers adopting MPLS is implemented. The thesis is 

organized as follows. Chapter 1 presents a general introduction to MPLS and typical 

router architecture, then clearly explains why a reconfigurable router is desirable and 

realizable, and ends with a brief overview of some current commercial router products. 

Chapter 2 gives a more detailed literature review on MPLS standards. Chapter 3 begins 

with a brief description of the switch/router evolution over the years, then talks about 

the software/hardware partitioning for MPLS implementation, finally presents the 

architecture design proposal for a fundamental reconfigurable MPLS router and an 

improved multiple queue scheduling policy, Unit Data Weighted Round Robin. Chapter 

4 depicts the full details of the MPLS logic circuit design completed within a FPGA 

device in this project. Chapter 5 introduces the test equipment first, then presents the 

test methodology development and the interface design, finally presents the test 

parameter selection. Chapter 6 deals with practical test procedures and result 

demonstration and analysis. At the end of the thesis, conclusions for work having been 

done and suggestions for future work are given. 
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1.2 What is MPLS? 

        MPLS [4, 5] provides a new technical foundation for today’s multi-user, multi-

service IP-based networks and can effectively address the bandwidth and quality of 

service requirements. According to the TCP/IP model, there are 4 layers: the 

transportation layer (layer 4), the network layer (layer 3), the logic link layer (layer 2) 

and the physical layer (layer 1). MPLS can be deployed directly over current ATM-

based wide area networks without any hardware modification on ATM switches. 

Meanwhile, by inserting an MPLS shim layer between layer 2 and layer 3, MPLS can 

be used over different layer 2 protocols other than ATM to transport different Layer 3 

protocols such as IPv6, IPX, or AppleTalk in addition to Ipv4 traffic. 

        With software or hardware implementation, MPLS supports service differentiation 

by using traffic-engineered path setup, helps achieve fine-grained service-level 

guarantees and incorporates provisions for constraint-based and explicit path setup. 

MPLS can improve and simplify packet-forwarding performance by enabling routing in 

Layer 2 switching that operates at wire-line speeds with hardware implementation. 

MPLS also helps in building interoperable networks due to its layer 2 independency and 

in building scalable Virtual Private Networks (VPNs) due to its traffic-engineering 

capability.  

        MPLS is significantly different from the hop-by-hop processing methods used by 

traditional networks. The essence of MPLS is the generation of a ‘label’ that acts as a 

shorthand representation of an IP packet’s header. The MPLS ingress edge router 

selects the appropriate label that is to be inserted between layer 2 and layer 3 headers 

after it analyzes the contents of the packet’s IP header. Part of the great power of MPLS 

comes from the fact that, compared to conventional IP routing, this analysis can be 

based on more than just the destination address carried in the IP header. The label is a 

short, fixed length, locally significant identifier, which distinguishes the route the 

packet should take to reach the required egress node of the MPLS-enabled network. 

Each label corresponds to a Forward Equivalence Class (FEC), which is a group of 

packets that are forwarded in the same manner (i.e., over the same path, with the same 

forwarding treatment). FECs can be defined at different levels of granularity. Each 
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Label Switching Router (LSR) must keep track of how packets should be forwarded by 

containing this FEC information in a Label Information Base (LIB) that includes FEC-

to-label bindings. Conventional routing protocols, such as OSPF, BGP and PIM, 

provide the LSRs with the mapping between the FEC and the next hop addresses. 

        The basic operation of an MPLS network involves switching that is based on these 

labels, instead of the IP headers. Full IP header analysis occurs at every node in 

conventional IP routing, while in an MPLS cloud this analysis occurs only once at the 

network edge when the label is assigned. When a labeled packet is received at an LSR, 

the input port and label information are read and the output port is determined. Then an 

outgoing label in context for the next hop’s label switching operation replaces the 

incoming label.  

        The MPLS standard allows for MPLS-enabled networks to be nested within each 

other. To accommodate this nesting, packets may have multiple labels, which form a 

label stack. The number of labels that need to be stored in a LSR depends on the type of 

label mapping policy that is used in the MPLS network.  

        A standard label distribution method is required when a LSR assigns a label to a 

particular FEC and conveys this information to its peers in the MPLS network. The 

MPLS standard does not dictate which signaling protocol should be used for such label 

distribution. The most popular protocol is called Label Distribution Protocol (LDP), 

which uses TCP and UDP over layer 4 to send messages; however, other signaling 

protocols do exist, such as the Resource Reservation Protocol (RSVP). In addition, 

extensions to LDP and RSVP have been created and are currently being considered to 

support traffic engineering. They are Constraint-based Routing LDP (CR-LDP) and 

RSVP Traffic Engineering (RSVP-TE) respectively.  

        In MPLS, a Label Switched Path (LSP) can be created by using different signaling 

protocols mentioned above, conforming to explicit network administrator’s 

requirements. A LSP is functionally equivalent to a virtual circuit and is defined by a set 

of labels that are used from the ingress of the MPLS domain to the egress.   
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        One of the most important advantages of MPLS is to allow traffic flows to be 

moved away from the shortest path calculated by say, the Interior Gateway Protocol 

(IGP), and onto potentially less congested physical paths across the network when 

necessary, which results in better utilization of the network.   

        Another advantage is that, MPLS is beneficial when realizing differentiated 

services (DiffServ). Users are motivated to use the Internet as a public transport for a 

number of different applications ranging from traditional file transfer to delay-sensitive 

services such as real time voice and video.  To meet such diverse requirements, not only 

traffic engineering techniques but also traffic classification technologies have to be 

adopted. There are two approaches to support MPLS-based class of service forwarding. 

The first approach is that traffic flowing through a particular LSP can be queued for 

transmission on each LSR’s outbound interface on the setting of the precedence bits 

carried in the MPLS header. The second approach is that an Internet Service Provider 

can provide multiple LSPs between each pair of edge LSRs. Each LSP can be traffic 

engineered to provide different performance and bandwidth guarantees. The head end 

LSR could place high-priority traffic in one LSP, medium-priority traffic in another 

LSP, best-effort traffic in a third LSP, and less-than-best-effort traffic in a fourth LSP. 

MPLS offers tremendous flexibility in the different types of services. The precedence 

bits are used to classify packets into one of several classes of service.   

        MPLS is also valuable in providing a more complete separation between inter- and 

intra-domain routing. This improves the scalability of routing processes and, in fact, 

reduces the route knowledge required within a domain because on some networks there 

may be a large amount of transit traffic. Meanwhile, with a clean separation between its 

control and forwarding functions, MPLS can evolve each part without impacting 

another part, which in turn enables the network evolution easier, less costly, and less 

prone to errors.   

        The last but not the least advantage of MPLS to mention here is providing a simple 

solution to VPN-related issues. VPN allows the public Internet to be used as a method 

for connecting various networks to form a private WAN. The VPN service provider 

must provide data privacy and support private IP addressing use where the IP address 
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space overlaps other network domains. Since forwarding decisions are based on MPLS 

labels and not destination IP addresses, traffic between (and even within) VPNs can be 

easily isolated.   

        On the whole, MPLS provides significant improvements in the packet forwarding 

process by simplifying the processing, avoiding the need to duplicate header processing 

at every step in the path, and creating an environment that can support controlled QoS 

and traffic engineering. 

1.3 Introduction to Reconfigurable Routers   

         In this section an introduction to the typical router architecture and an overview of 

today’s router products are given. 

1.3.1 Typical Router Architecture 

 
Figure 1-1 Architecture of a Typical Router 

 

        A typical router does three fundamental jobs [11, 14].  The first is to compute the 

best path that a packet should take through the network to its destination. This 

computation accounts for various policies and network constraints. The second job is to 

actually forward packets received on an input interface to the appropriate output 

interface for transmission across the network. Forwarding relies on the best-path 

information pre-computed in the route processor. The third job is to temporarily store 
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packets in large buffer memories to absorb the bursts and temporary congestion that 

frequently occur and to queue the packets using a priority-weighted scheme for 

transmission. Figure 1.1 shows the basic logical architecture of a router. The basic 

functional components carrying out these three jobs are named the Routing Engine, the 

Forwarding Engine, and the Buffer Management system respectively. A set of input and 

output ports is interconnected via some interconnection architecture. 

        The Routing Engine is dedicated to communicating with adjacent routers in order 

to build a comprehensive route database for the forwarding engine to send packets 

across optimum paths through the network. The routing engine runs software algorithms 

executing routing protocols, which enable the sharing of network status information 

among routers. 

        The Forwarding Engine examines the content of the packet’s header, then searches 

for corresponding route information provided by the routing engine to find a match and 

finally direct the packet from the input port to the output port across the system’s 

switching fabric.  

        If multiple packets arriving at different input ports simultaneously need to be 

forwarded to the same output port, a buffer must be available as a temporary waiting 

area in which packets queue up for transmission. The order in which they are 

transmitted is determined by the queuing scheduling policy pre-selected. 

1.3.2 Why Reconfigurability? 

        As a commercial infrastructure providing differentiated services, the Internet has to 

be constructed with routers that can meet the massive demand increases in both 

bandwidth and processing speed. It is very important that these core elements of any 

networks be extensible and reconfigurable to support the ever new, ever evolving 

protocols and be able to provide third-party software vendors or value-added service 

providers with opportunities to develop applications. While many powerful routers with 

high processing speeds and throughputs have been manufactured already, they are not 

flexible and thus make it impossible for potential new protocols and services to be 

added without incurring large costs.  
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        It has been thought that the time spent to process a packet on an IP switch should 

not exceed 0.27 ms [39], which clearly shows that maintaining high-throughput is a 

problem. Some researchers (Keshav and Sharma in [8]) also note that the reduction of 

port cost is currently a tradeoff between application specific integrated circuits (ASICs) 

and general-purpose processors. In this dichotomy, the only solution that provides 

flexibility is the use of a general-purpose processor. However, new software 

technologies deployed within the router operating system with the potential of offering 

increased flexibility in the router may not increase its performance. Software 

instructions themselves ask for processing time. Thus it is not clear if these software 

technologies will be practical, especially considering the current problems with 

maintaining high port performance. As line speeds continue to rise and the upper bound 

on processing time continues to fall, as on-demand scheduling of hardware resources is 

required to assist in the development of flexible network, some solution to provide 

reconfigurability at the hardware layer has to be found.  

        One way of providing this low-level reconfigurability is through configurable 

computing technology. With suitable hardware-level configurable computational units, 

stream processing has the potential to allow packets to be processed at line speeds. It 

becomes more practical since reconfigurable hardware technology has made several 

compelling performance advances recently, identifying it as a possible solution to the 

reconfigurable network node problem. New reconfigurable hardware devices contain 

approximately 110K logic elements (millions of application logic gates), an internal 

clock about 420 MHz, and over 10MB of on-chip RAM.   

        Contemporary Field Programmable Gate Arrays, which serve as the flexible fabric 

in configurable computing platforms, are already being used to provide field-upgrades 

of firmware in some industrial and research switches ([35], [38]). FPGAs provide an 

intermediate operating point between the relative slowness, flexible configuration, and 

low cost of a general-purpose processor and the high-performance, fixed configuration, 

and high cost of an ASIC. A modular and configurable set of functional units can be 

strung together and implemented within FPGA devices quite easily. Also, it is relatively 

easy to add, remove, modify and interconnect modules since they can be developed 
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independently, which greatly simplifies the implementation of a design. It is true that 

the cost of modularity brings an increase in the number of gates required to implement a 

particular function while some computational resources available in the module may not 

be used at all. However, because of the significant increase in FPGA resources, this is 

not expected to be a problem. Before long, one could expect a reconfigurable router 

composed of FPGAs, custom ASICs, and custom general-purpose processors to obtain 

the optimal combination of performance, flexibility, and cost. 

1.4 Industrial MPLS Router Products Overview 

        The routers that power the Internet are evolving architecturally to keep pace with 

the escalating use of the Web and the requirement for a whole new generation of 

innovative, revenue-generating application services. Certain high-end router 

architectures that support ultra fast fiber-optic interfaces of up to 10 Gbps speeds and 

achieve system throughput in excess of 350 million packets per second (pps) already 

exist. Also, large router manufacturers claimed that they had implemented routers 

supporting MPLS, such as Alcatel IND, Cisco Systems, Juniper Networks, Marconi 

FORE Systems, etc. All these manufacturers stated that they had implemented or 

planned to implement both CR-LDP and RSPV-TE signaling protocols. In the following 

sections, these MPLS router products will be investigated according to product data 

sheets provided in [30] – [34]. 

1.4.1 Cisco 12000  

        The major components of the 12000 Gigabit Switch Router (GSR) are the switch 

fabric, the gigabit route processor (GRP), and the line cards (LCs). The packet-

forwarding functions are performed by each of the LCs. Each LC performs an 

independent lookup of a destination address for each datagram received on a local copy 

of the forwarding table, and the datagram is switched across a crossbar switch fabric to 

the destination LC. 

        At the heart of the Cisco 12000 GSR is a multi-gigabit crossbar switch fabric. The 

switch fabric includes two card types: switch-fabric cards (SFCs) and clock and 

scheduler cards (CSC). The CSC handles requests from LCs, issues grants to access the 
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fabric, and provides a reference clock to all the cards in the system to synchronize data 

transfer across the crossbar. The SFCs receive the scheduling information and clocking 

reference from the CSCs and perform the switching functions. 

        The GRP is dedicated to determining the network topology and calculating the best 

path across the network. It creates and maintains the routing table (up to one million 

route entries), also distributes and updates express forwarding (EF) tables on the LCs 

and maintains copies of the tables of each LC for card initialization. 

        Line cards connect the GSR to other devices via electrical or optical media. The 

LCs are designed for the transmission of IP packets over Dynamic Packet Transport 

(DPT), PPP, Frame Relay, Packet over Sonet/SDH (POS) or ATM interfaces. The 

features and functions of the LCs are interface-specific. 

        The system of this series delivers scalable traffic engineering features by adopting 

Multi-protocol Label Switching (MPLS). Meanwhile, the design of this series supports 

virtual output queues (VOQs) that eliminate head-of-line blocking (HOLB) and increase 

overall system efficiency. Micro programmable application-specific integrated circuits 

(ASICs)-based queuing provides line speed forwarding for unicast and multicast traffic 

that fills SONET/SDH transmission facility.  

1.4.2 JUNOS M40  

        As shown in Figure 1-2, there are two key components of the M40 architecture: the 

packet forwarding engine (PFE) and the routing engine. The PFE is responsible for 

packet forwarding performance. It consists of the flexible PIC concentrators (FPCs), 

physical interface cards (PICs), system control board (SCB), and state-of-the-art ASICs. 

The routing engine maintains the routing tables and controls the routing protocols. It 

consists of an Intel-based PCI platform running JUNOS software. 

       The M40 ASICs deliver a comprehensive hardware-based system for packet 

processing, including route lookups, filtering, sampling, rate limiting, load balancing, 

buffer management, switching, encapsulation, and de-encapsulation functions. To 
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ensure a non-blocking forwarding path, all channels between the ASICs are oversized, 

dedicated paths.  

        The Internet Processor II ASIC delivers high-speed forwarding performance with 

advanced IP services, such as filtering and sampling, enabled. The distributed buffer 

managers ASICs allocate incoming data packets throughout shared memory on the 

FPCs. 

        Each FPC is equipped with an I/O Manager ASIC that supports packet parsing, 

packet prioritizing, and queuing. The media-specific ASICs perform physical layer 

functions, such as framing. Each PIC is equipped with an ASIC or FPGA that performs 

control functions tailored to the PIC's media type. 

 

Figure 1-2 Logical View of M40 Architecture 

 



 12

        The packet-forwarding engine (PFE) provides Layer 2 and Layer 3 packet 

switching, route lookups, and packet forwarding. The PFE supports ASIC-based 

features, for example, class-of-service features include rate limiting, classification and 

priority queuing, etc.  

        The enhanced flexible PIC concentrators (FPCs) house PICs and connect them to 

the rest of the PFE. Each FPC supports up to four PICs in any combination. Each FPC 

contains shared memory for storing data packets received. The physical interface cards 

(PICs) provide a complete range of fiber optic and electrical transmission interfaces to 

the network. The system control board (SCB) performs sampling, filtering, and packet 

forwarding decisions. It processes exception and control packets, monitors system 

components, and controls FPC resets. 

        The routing engine maintains the routing tables and controls the routing protocols, 

as well as the JUNOS software processes that control the router's interfaces, the chassis 

components, system management, and user access to the router. These routing and 

software processes run on top of a kernel that interacts with the PFE. 

1.4.3 Alcatel 7670 Routing Switch Platform 

        The Alcatel 7670 Routing Switch Platform (RSP) is an MPLS-enabled ATM core 

switch designed for networks, integrating ATM multi-service capability and MPLS/IP 

switching into a unified scalable platform.   

        Per-VC queuing and shaping at ingress and egress, and buffer management with 

frame discard are adopted. All ATM service categories and most IP routing features are 

supported. To provide MPLS/IP, the switch platform can act as both edge LSR and core 

LSR and support Permanent LSP (P-LSP) and signaled LSP (S-LSP). The switch 

supports point-to-point and point-to-multipoint PVCs and SVCs, point-to-point SPVCs. 

Since Alcatel 7670 is an ATM switch, line cards are designed mainly for optical 

interfacing. 

1.4.4 Marconi ASX4000 
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        The ASX-4000 is a backbone switch that features the architecture to support low 

speed multi-service connections including ATM, Frame Relay DSL, Circuit Emulation 

and Ethernet. With the IP routing (IPR) module, the ASX-4000 can also operate as an 

MPLS gateway device. 

1.4.5 Conclusion: New Products Desired 

        All the products mentioned above were designed to have redundancy in all key 

system components---processors, switch fabric, line cards, and power---to minimize 

network disruption in the event of a failure. This provides some kind of flexibility since 

components can be added or removed without service disruption. 

        All of these companies claimed that MPLS was supported. However, most of them 

stated this with only one or two sentences in their product data sheets, just as when they 

stated they could of course support software implemented BGP and OSPF, etc. No 

description of streamlined hardware dedicated for label switching was provided. This 

vagueness might due to the companies’ confidential policy, but might also due to the 

more likely fact that most of them implemented MPLS in software. Only Marconi 

described very briefly that MPLS was supported by an IP routing module and this 

simple function description certainly led to the conclusion that it was implemented in 

software. With a powerful microprocessor, it may be realistic and meaningful to 

implement MPLS in software, providing both flexibility and better QoS guarantees. 

However, software implementation cannot take full advantages of what MPLS brings 

for layer 3 routing, which is critical to gain the overall faster processing speed at 

network nodes.  

        Some ATM switch products seemed to have fulfilled MPLS in hardware. But 

MPLS hardware implementation over ATM is quite straightforward and totally different 

from the implementation done over other layer 2 protocols. There is no need to do label 

binding or removing physically over an ATM based network when realizing MPLS, 

since the labels can reside in VPI and VCI fields that already exist in the ATM frame 

structure. However, a shim layer to hold MPLS labels is necessary if MPLS is to be 

deployed over PPP, Ethernet and Frame Relay networks in hardware, because their 
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frame structures contain no or not enough existing fields for MPLS labels to reside in 

correspondingly.  

      Finally, these companies all based their router design on powerful ASICs, which 

could not adopt new system parameters when needed, such as buffer space, routing 

table scale, etc; let alone the extensibility for potential protocols or other value added 

features that people want the routers to support in the future without any hardware 

modification or replacement. Generally speaking, routers existing in today’s market are 

not reconfigurable at all. 

        Since almost all router manufacturers tend to stress the MPLS features of their 

products to make their routers look more competitive in the market, it can be inferred 

that MPLS routers are really the trend. By implementing the MPLS functions in 

hardware and making the router architecture reconfigurable, this project is meaningful.   
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Chapter 2 Multi-Protocol Switching 

2.1 Main MPLS Components 

        An MPLS node can obtain all the information it needs to forward a packet as well 

as determine resource reservations needed by a class of traffic using a single memory 

access through its specially designed software and hardware components. In this section 

the main MPLS components are introduced. 

• LSRs and LERs 

        There are two categories of node equipments that participate in the MPLS working 

mechanisms. One is called the Label Switching Router (LSR), which is a high-speed 

MPLS-enabled router in the core of an MPLS domain; the other is the Label Edge 

Router (LER), which operates at the boundary between access networks and the MPLS 

domain. LERs can perform all the functions executed by LSRs besides handling issues 

of packets’ entering and leaving the MPLS domain. 

        With the aid of an appropriate label signaling protocol, LSRs cooperate to establish 

Label Switched Paths (LSPs) and perform high-speed switching of the data traffic 

according to MPLS labels attached to packets. A fundamental step in label switching is 

that LSRs have to agree on the MPLS labels they use to forward traffic. They come to 

this common understanding by using the dedicated Label Distribution Protocol (LDP), 

Constraint Routing-Label Distribution Protocol (CR-LDP) or extensions to other 

protocols, such as PIM, BGP, RSVP. Since the current Internet consists of all kinds of 

networks which may not support MPLS traffic but only traditional IP traffic, to make 

the backbone MPLS router backwards compatible with other ordinary routers, LSRs are 

also able to forward native Layer 3 packets and routing packets without MPLS labels.  

        LERs support multiple ports connected to dissimilar networks (such as frame relay, 

ATM, and Ethernet). A LER can act as an ingress node or an egress node or both, for 

the MPLS domain. When acting as an ingress node, the LER forwards the traffic on to 
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the MPLS network after establishing LSPs using the label signaling protocol; when 

acting as an egress node, the LER distributes the traffic back to the access networks. 

The two very important MPLS functions, the label assignment and removal as traffic 

enters or exits an MPLS domain, take place at ingress LERs and egress LERs 

respectively. Like all LSRs, LERs can also perform a conventional IP forwarding 

function. 

• Forwarding Equivalent Class (FEC) 

        A forwarding equivalent class is defined for a set of packets that receive the same 

treatment during transmission. In the context of MPLS, a packet is assigned to a FEC 

when it enters the MPLS network. The ingress router may use, in determining the FEC 

assignment, any information it has about the packet, even if that information cannot be 

gleaned from the network layer header, which is why labels that represent 

corresponding FECs contain considerably more information than just destination/source 

addresses for longest prefix match in IP routing. For example, a packet that enters the 

network at a particular router can be labeled differently than the packet from/to the 

same source/destination entering the network at a different router.  

        Insofar as the forwarding decision is concerned, different packets that get mapped 

into the same FEC are indistinguishable.  All packets that belong to a particular FEC 

and travel from a particular node will follow the same path (or if certain kinds of multi-

path routing are in use, they will all follow one of a set of paths associated with the 

FEC). 

• Labels and Label Bindings 

        Since each FEC has associated labels according to some policy, once a packet is 

classified as a new or existing FEC, the associated fixed length labels are assigned to 

the packet. The events that result in such label assignments can be either data-driven 

bindings or control-driven bindings. The latter one is preferable because of its advanced 

scaling properties that can be used in MPLS.   
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        Policies according to which label assignment decisions are made may be based on 

forwarding criteria such as destination unicast routing, traffic engineering, multicast, 

virtual private network (VPN), and QoS. Under some circumstances identifiers for 

underlying data link layers (such as frame relay or ATM) can be used directly as MPLS 

labels, such as Data Link Connection Identifiers (DLCIs) in the case of frame-relay 

networks or Virtual Path Identifiers (VPIs)/Virtual Channel Identifiers (VCIs) in case of 

ATM networks. 

        The generic label format is illustrated in Figure 2-1. Figures for different label 

formats are shown in next page. If layer 2 is ATM, the label is placed into the VPI/VCI 

field of the ATM cell header, as shown in Figure 2-2. Similarly, if layer 2 is frame relay, 

the label can be placed into the data link connection identifier (DLCI) field in the frame 

header, as shown in Figure 2-3. If Ethernet or point-to-point protocol (PPP) is running 

in layer 2, a shim header is inserted between the layer 3 header and the layer 2 header. 

The shim header contains the MPLS label, as shown in Figure 2-4.  Support for the 

shim header requires that the sending router have a way to indicate to the receiving 

router that the frame contains a shim header. This is facilitated differently in various 

technologies.   

 
 

 

 

 

 

 

 

 

 

 

Figure 2-1 MPLS Generic Label Format [1] 

        A set of labels, in its simplest form, identifies the path a packet should traverse. 

Once a packet has been labeled, the rest of the journey of the packet through the 

backbone is based on label switching. At the edge router, the MPLS label will be 
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attached to the front of layer-3 header before the packet is transferred to Layer-2 for 

data link layer header encapsulation. Then each of the flowing receiving LSRs 

examines the packet for its label content to determine the next hop and then assigns a 

new label to replace the old one. The label values are of local significance only, which 

means they pertain only to hops between neighboring LSRs.  

 

 

 

 

 

 

Figure 2-2 ATM as the Data Link Layer [1] 

 

 

 

 

 

 

 

Figure 2-3 Frame Relay as the Data Link Layer [1] 

 

 
 

Figure 2-4 Point-to-Point (PPP)/Ethernet as the Data Link Layer [1] 

        MPLS defined two categorized label scopes for the uniqueness of different FEC–

label bindings at each LSR. When a LSR can tell which peer-LSR adopts the particular 



 19

label value, it can use the “per-interface label space”, which indicates from the name 

“per-interface” that the label ranges are associated with interfaces. Multiple label pools 

are defined for interfaces, and the labels provided on those interfaces are allocated from 

the separate pools. The label values provided on different interfaces could be the same. 

Otherwise, the labels must be unique over the LSR that has assigned them, and the LSR 

is said to use a “per-platform label space”. The labels are allocated from a common pool 

and no two labels distributed on different interfaces have the same value.  

• Label Creation and Control 

        MPLS defines several methods to create labels: topology-based method uses 

normal processing of routing protocols (such as OSPF and BGP); request-based method 

uses processing of request-based control traffic (such as RSVP); traffic-based method 

uses the reception of a packet to trigger the assignment and distribution of a label. The 

topology- and request-based methods are examples of control-driven label bindings, 

while the traffic-based method is an example of data-driven bindings.  

        Also, there are two ways to control the label creation. In the independent mode, an 

LSR recognizes a particular FEC and makes the decision to bind a label to the FEC 

independently to distribute the binding to its peers. The new FECs are recognized 

whenever new routes become visible to the router. In the ordered mode, an LSR binds a 

label to a particular FEC if and only if it is the egress router or it has received a label 

binding for the FEC from its next hop LSR. This mode is recommended for ATM–

LSRs. 

• Label Stack  

        More than one label header can be attached to a single packet and are managed by 

the label stack mechanism that allows for hierarchical operation in the MPLS domain. 

There is a stack bit in a standard MPLS label helping to implement label stacking. The 

label is indicated to be at the bottom of the stack if the stack bit contained within it is 1. 

All stack bits in other labels are set to 0. In packet-based MPLS, the top of the stack 

appears right after the link layer header, and the bottom of the label stack appears right 

before the network layer header. Packet forwarding is accomplished using the label 
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values of the label on the top of the stack. The stack bit becomes one when the 

corresponding label moves to the top of the stack. 

        Basically, tunneling operation can be facilitated by adopting the label stack 

mechanism, which allows MPLS to be used simultaneously for routing between 

individual routers both within an Internet service provider (ISP) and at a higher domain-

by-domain level. Each level is indicated by a label in the stack that pertains to some 

hierarchical level. 

• Label Merging 

        Resource usage can be increased if different traffic flows can be merged together 

and switched at a LSR when possible. This is known as stream merging or aggregation 

of flows. It can be done when the incoming streams of traffic are from different 

interfaces but toward the same final destination; or when traffic streams have to travel a 

same period of journey before they can reach their different final destinations separately. 

Label merging can be achieved by using a common outgoing label for several different 

incoming labels.  

        If the underlying transport network is an ATM network, LSRs could employ 

virtual path (VP) or virtual channel (VC) merging. In this scenario, cell-interleaving 

problems, which arise when multiple streams of traffic are merged in the ATM network, 

need to be avoided.  

• Label Retention 

        There are two modes defined in MPLS for the treatment of label bindings received 

from LSRs that are not the next hop for a given FEC. They are liberal mode and 

conservative mode. 

        In the former mode, the bindings between a label and an FEC received from LSRs 

that are not the next hop for a given FEC are discarded. This mode requires an LSR to 

maintain fewer labels and thus is recommended by IETF.  
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        In the latter mode, the bindings between a label and an FEC received from LSRs 

that are not the next hop for a given FEC are retained. This mode allows for quicker 

adaptation to topology changes and switching of traffic to other LSPs in case of such 

changes, but it requires larger memory at each MPLS node.  

• Label Forwarding Algorithm 

        Label swapping is the base on which packet switching is performed in a MPLS 

domain. MPLS uses only a label swapping based forwarding algorithm to do packet 

switching for all traffic types such as unicast, multicast, and unicast packets with ToS 

bits set, which conventionally require multiple forwarding algorithms.  

        Each MPLS node maintains a Label Information Base (LIB). Most frequently used 

labels are formed into a smaller Label Forwarding Information Base (LFIB) for actual 

packet switching. Label values are extracted from the label field found in incoming 

packets and used as an index in the LFIB. After a match is found, the MPLS node 

replaces the label in the packet with the outgoing label from the subentry and sends the 

packet over the specified outgoing interface to the next hop specified by the subentry. If 

the subentry specifies an outgoing queue, the MPLS node places the packet in the 

specified queue. If the MPLS node maintains multiple LFIBs for each of its interfaces, 

it uses the physical interface on which the packet arrived to select a particular LFIB, and 

then performs label swapping according to this LFIB. 

• Label-Switched Paths (LSPs) 

        Through an MPLS network, a traffic path along which packets belonging to a 

certain FEC travel is specifically defined over a set of LSRs prior to data transmission 

and is named the Label-Switched Path. MPLS allows a hierarchy of labels known as the 

label stack. It is therefore possible to have different LSPs at different levels of labels for 

a packet to reach its destination. The LSP setup for an FEC is unidirectional in nature, 

which means the return traffic must take another LSP. MPLS provides the following 

two options to set up an LSP  
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Hop-by-hop routing/Independent control--- This methodology is similar to that 

currently used in IP networks. Each LSR uses any available routing protocols, such as 

OSPF or ATM PNNI (Private Network-to-Network Interface), to independently select 

the next hop for a given FEC.  

Explicit routing (ER)/Ordered control--- This methodology eases traffic engineering 

throughout the network, and differentiated services can be provided using flows based 

on specific service level policies or network management methods. The ingress LER 

specifies the list of nodes through which the ER–LSP traverses and then propagates 

such information to other nodes contained in the list. This kind of LSP could be non-

optimal, say, not the shortest, because its primary goal is to ensure QoS to the data 

traffic through appropriate resources allocation and reservation along the path. 

        The hop-by-hop routing method provides faster convergence and establishment of 

LSPs due to the fact that label bindings can be established and advertised at any time by 

the LSR, while explicit routing method introduces the delay of waiting for messages to 

propagate in order across the network before the LSP can be established. However, the 

latter provides a better traffic engineering control and better loop prevention capabilities. 

And the good thing is, these two types of LSP establishments may coexist on the same 

network without any special considerations for architecture or interoperability issues. 

• Label Distribution Protocol 

        For label distribution, MPLS architecture allows several signaling methods, which 

are either stemmed from existing routing protocols or newly proposed ones. For 

example, Border Gateway Protocol (BGP) has been enhanced to piggyback the label 

information within the contents of the protocol for external (like between VPNs) label 

exchange. Another currently used protocol RSVP has also been extended to support 

piggybacked exchange of labels and becomes RSVP-TE. Meanwhile, IETF has defined 

a new protocol known as the label distribution protocol (LDP) dedicated for MPLS 

label signaling and label space management. As well, extensions captured in the 

constraint-based routing LDP definition have also been defined to support explicit 

routing based on QoS and CoS requirements. Here the LDP is introduced briefly.  
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        LDP has a set of signaling messages destined for the distribution of label binding 

information to LSRs in an MPLS network. LDP peers in the MPLS network, adjacent or 

not, establish LDP sessions between them and exchange certain LDP messages to map 

FECs to labels, which, in turn, create LSPs. There are basically 11 types of LDP 

messages, among which the most important ones are shown as below. 

DISCOVERY--- used for finding LSRs and maintaining their existence.  

ADJACENCY--- initialize, maintain, and shut down LDP sessions between LSRs. 

LABEL ADVERTISEMENT---distribute label-binding, binding reverse and label 

release information by using Label Mapping, Label Withdrawal and Label Release 

messages respectively. 

NOTIFICATION--- used for advisory and error signaling. 

        Due to the critical nature of the information being transferred, LDP runs on 

transmission control protocol (TCP) in order to ensure reliable data transport between 

LSRs, except for DISCOVERY messages that are run on UDP. 

        There are two types of label distribution strategies allowed in the MPLS 

architecture: Downstream-on-Demand Mode and Unsolicited Downstream Mode. The 

first mode allows an LSR to explicitly request a label binding for a particular FEC from 

its next hop.  Label Request messages are used to request label mappings from 

downstream LSRs. Label Request Abort messages are used to abort the Label Request 

message during or prior to the completion of the request. The second mode allows an 

LSR to distribute bindings to LSRs that have not explicitly requested them. 

2.2 MPLS Operation 

        When routing a packet, choosing the next hop can be thought of as a composition 

of two functions.  The first function classifies the entire set of possible packets into a set 

of "Forwarding Equivalence Classes (FECs)”. The second function maps each FEC to 

its corresponding next hop. In MPLS, the assignment of a particular packet to a 

particular FEC is done just once as the packet enters the network.  The FEC to which 
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the packet is assigned is encoded as a short fixed length value known as a “label”.  Each 

data packet is “labeled” before they are forwarded. At all subsequent hops, further 

analysis of the accompanied label instead of the network layer header, is used to decide 

the next hop until the packet reaches its destination. Indicated by a sequence of labels, 

LSPs are established either prior to data transmission (control-driven) or upon detection 

of a certain flow of data (data-driven). High-speed switching of data occurs on such 

LSPs is possible because the fixed-length labels are inserted at the very beginning of the 

packet or cell and can be used by hardware to switch packets quickly between links. 

        MPLS brings the advantage that, not all of the traffic between a certain pair of 

source and destination is necessarily transported through the same path within an MPLS 

domain. Depending on the network congestion status and specific traffic characteristics, 

different LSPs could be created for packets with the same source and destination 

addresses but with different QoS or CoS requirement.  

        Next, the step-by-step MPLS operations that occur on the data packets as the 

packet is transported across the MPLS domain to its destination are illustrated with 

reference to Figure 2-5. The LSP is set up between LER1 (the ingress LSR) and LER 4 

(the egress LSR) through two inner nodes LSR1 and LSR3. The broken red lines 

indicate the actual data path followed by the packet. 

 

Figure 2-5 LSP Creation and Packet Forwarding through an MPLS Domain [3] 

 

Step 1 Label creation and label distribution 
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The ingress router LER1 does not always have a label for a packet, as it may be the first 

occurrence of the FEC to which this packet belongs. Thus the ingress router requests 

labels for this FEC from its downstream peer to build a label information table. This has 

to be done before any traffic begins. In LDP, downstream routers initiate the 

distribution of labels and the label/FEC binding. In Figure 2-5, LSR1 is the next hop for 

LER1, thus LER1 initiates a label request toward LSR1. This request will propagate 

through the network as indicated by the broken green lines. The reliable and ordered 

transport protocol, TCP, should be used for the signaling protocol LDP. In addition, 

traffic-related characteristics and MPLS capabilities are negotiated and CR–LDP may 

be used in determining the actual path setup to ensure the QoS/CoS requirements are 

complied with.  

Step 2 Table creation 

Each intermediary router will then receive a label from its downstream router starting 

from LER2 and going upstream till LER1. On receipt of label bindings each LSR 

creates entries in the label information base (LIB) specifying all the mapping between a 

label and an FEC, that is, mappings between the input port and input label table to the 

output port and output label table. The entries are updated whenever renegotiation of the 

label bindings occurs. Another table named LFIB, which is a subset of the labels 

extracted from the LIB, will also be created for actual packet forwarding.   

Step 3 Label switched path creation 

As shown by the dashed blue lines in Figure 2-5, the LSPs are created using LDP or any 

other signaling protocol in the reverse direction to the creation of LIB entries. More 

detailed establishing procedure has been introduced in the first section.  

Step 4 Label insertion/table-lookup 

The ingress router LER1 inserts the label corresponding to a specific FEC to the packet 

and then forwards the packet to its next hop LSR.  Subsequent LSRs use their LFIB 

tables to find the next hop for the packet. As shown in Figure 2-5, LSR2 and LSR3 

examine the label in the received packet, replace it with the outgoing label and forward 
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it on. The label is removed once the packet reaches the egress LSR (LER4) because it is 

departing from the MPLS domain. Then the packet is supplied to the destination.  

2.3 Tunneling in MPLS 

        By adopting the label stack to create tunnels through the intermediary routers that 

can span multiple segments, a great unique feature of MPLS used in provisioning 

MPLS–based VPNs can be achieved. The entire path of a packet can be controllable 

without explicitly specified intermediate routers.  

        Consider the scenario in Figure 2-6. BGP is used between all the LERs (LER1, 

LER2, LER3, and LER4), and a first level LSP, LSP1, is created between them. These 

LERs will use the LDP to receive and store labels from the egress LER (LER4 in this 

scenario) all the way back to the ingress LER (LER1).    

        For LER1 to send its data to LER2 (one segment of the LSP1), it must go through 

several LSRs, in this case there are three. Therefore, a separate second level LSP, LSP 2, 

is created between these two LERs, LER1 and LER2, that spans LSR1, LSR2, and 

LSR3. This, in effect, represents a tunnel between LER1 and LER2 in the view of level 

1 LSP. The labels for this LSP2 are different from the labels that the LERs created for 

LSP1. The same holds true for the LSP1 segment between LER3 and LER4 as well. 

Thus a second level LSP, LSP 3, can be created for this segment. Note that in this 

scenario, LER2 and LER3 are communicating directly, which means there is no tunnel 

between LER2 and LSR3. In more complicated scenarios, there can be even more levels 

of LSP between the source and destination LERs. 

        When the packet is transported through more than one network segments, the 

concept of the label stack is the foundation on which tunneling is realized. Take the 

scenario in Figure 2-6 as the example. Since a packet must travel through LSP 1, which 

contains two tunnels, LSP 2 and LSP 3, it has to carry two complete labels at a time. 

The pair used for each segment is (1) pair for the first segment, labels for LSP 1 and 

LSP 2 and (2) pair for the second segment, labels for LSP 1 and LSP 3. When the 

packet exits the first network segment and is received by LER3, it will remove the label 

for LSP 2 and replace it with LSP 3 label, while swapping LSP 1 label within the packet 
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with the next hop label. LER4 will eventually remove both labels before sending the 

packet to the destination. 

 

Figure 2-6 Tunneling in MPLS [3] 

2.4 Traffic Engineering and QoS  

        In normal IP routing, the data path is calculated from some measurement of 

efficiency. The common metrics for IP routing and forwarding decisions, including next 

hop, hop count, and cost, are useful in predicting the "shortest path" through the 

network. However, those metrics cannot be assumed to be reliable at all times, or to be 

the best for a given flow that requires some fixed or guaranteed amount of bandwidth. 
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        Traffic engineering is a process that enhances overall network utilization by 

attempting to create a uniform or differentiated distribution of traffic throughout the 

network. TE enables the network to quickly and automatically re-route traffic when 

failure or congestion conditions are detected by ensuring that all available network 

resources are optimally used. A network that maximizes its resources and capacity 

during normal operation is thus achieved through avoiding network hot spots and areas 

of hyper-aggregation, which means that traffic engineering does not necessarily select 

the shortest path between two devices. It is possible that packets may traverse 

completely different paths even though their originating node and the final destination 

node are the same. In this way, the less-exposed or less-used network segments can be 

used and differentiated services can be provided. Links between any two points in a 

network are relatively fixed and quantifiable, and the cost to increase that capacity, in 

many cases, is high, so effective traffic engineering and higher utilization of available 

links can provide both long- and short-term cost savings.  

        "Constraint-based" and "congestion-aware" routing are terms used to describe 

networks that are fully aware of their current utilization, existing capacity and 

provisioned services at all times. While traditional IP routing protocols, including OSPF, 

IS-IS and BGP, are not inherently congestion-aware, and have to be modified to enable 

such awareness, CR takes into account parameters, such as link characteristics 

(bandwidth, allocation multiplier, current bandwidth reservation, resource class, packet 

loss ratio, and link propagation delay, etc.), hop count, and QoS, etc. And the resulting 

data path can also ensure that none of the constraints that have been set are violated 

along the path.  Once connections have been configured (either by dynamic signaling or 

by static provisioning), the Layer 2 and Layer 3 network becomes fully aware of the 

amount of bandwidth being consumed, as well as the parts of the network being used to 

route the connections. This information can then be propagated to the accompanying IP 

routing protocols that are exchanged by all IP routers, creating a truly congestion-aware 

view of the network and its current topology. Then, all future network requests can be 

directed to their destination by not only the "shortest path first" (as defined by OSPF), 

but by a path that will guarantee the bandwidth requirements of the IP application or 

service. This means when using CR, it is entirely possible that a longer (in terms of cost) 
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but less loaded path is selected. And there is another side effect that while CR increases 

network utilization, it adds more complexity to routing calculations, as the path selected 

must satisfy the QoS requirements of the LSP.  

        CR–LSPs set up with explicit hops or QoS requirements can be realized easily in 

MPLS architecture. Explicit hops dictate which path is to be taken. QoS requirements 

dictate which links and queuing or scheduling mechanisms are to be employed for the 

flow. A CR–LDP component to facilitate constraint-based routes has been defined by 

the IETF and its more detailed description has been introduced earlier in this chapter.  

        In MPLS, traffic engineering is inherently provided using explicitly routed paths. 

The LSPs are created independently, specifying different paths that are based on user-

defined policies. However, this may require extensive operator intervention. RSVP and 

CR–LDP are two possible approaches to supply dynamic traffic engineering and QoS in 

MPLS.  

        RSVP-TE and CR-LDP are now two competing protocols used for MPLS that 

perform CR. RSVP is an existing protocol, standardized by the IETF, which has been 

extended to RSVP-TE. Similarly, CR-LDP is an extension of LDP, which has been 

designed for MPLS especially. There are advantages and disadvantages to both 

protocols. One side, CR-LDP sits on top of TCP to ensure reliability. For RSVP, 

refreshing that must occur in the steady state is required to ensure reliability while 

refreshing consumes bandwidth and processing resources. Also, TCP requires some 

handshaking before an LDP session can begin and results in a moderate amount of 

overhead while RSVP does not require connection establishment before label 

distribution occurs. Because of such advantages and disadvantages of RSVP-TE and 

CR-LDP, designers need to keep their systems flexible enough to accommodate future 

changes to the protocols. 

2.5 Protocol Architecture 

        Figure 2-7 depicts the protocols that can be used for operations on a MPLS node. 

The LDP module utilizes transmission control protocol (TCP) for reliable transmission 

of control data from one LSR to another during a session. But the LDP uses the user 
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datagram protocol (UDP) during its discovery phase of operation. In this phase, the 

LSR tries to identify neighboring elements and also signals its own presence to the 

network. This is done through an exchange of hello packets.  

        There are two tables relevant to MPLS forwarding at an MPLS node: the LIB and 

the LFIB maintained by LDP. The LIB (not indicated in Figure 2-7) contains all the 

labels assigned by the local MPLS node and the mappings of these labels to labels 

received from its MPLS neighbors. The LFIB uses a subset of the labels contained in 

the LIB for actual packet forwarding. 

        The MPLS forwarding module matches a label to an outgoing port for a given 

packet. The IP Routing module performs the classic function that looks up the next hop 

by matching the longest address in its tables. The IP Routing module can run any 

popular industry protocol available depending on the operating environment, such as 

OSPF, BGP, or ATM’s PNNI, etc.  Though this IP routing function can be done at 

LERs only, any MPLS node should also take into account that ordinary unlabeled IP 

traffic may traverse over it. Aside from the process shown as green arrows that packets 

with MPLS labels go along, the more complex process for packets without MPLS labels 

should also be supported, which is indicated by pink arrows. 

 
 

Figure 2-7 MPLS Protocol Stack 
 



 

Chapter 3 Reconfigurable MPLS Router Design Issues 

        This chapter begins with a brief description of the switch/router evolution; then 

section 3.2 talks about the MPLS reconfigurable router design at the architecture level; 

section 3.3 introduces CAM technique used for lookup table implementation for an 

MPLS router; the last section proposes a modified multiple queue scheduling policy 

UD_WRR that is implemented in hardware for this reconfigurable MPLS router 

prototype.  

3.1 Switch/Router evolution 

        Networking devices have been developed at a rapid pace for many years. 

According to the hardware used and the level of integration, the evolution of the 

switch/router can be roughly separated into different phases [28, 37]. In this section, a 

brief description of different generations of the switch/router is illustrated and the trend 

of the router design in the near future is introduced as the 4th generation. 

3.1.1 The First Generation 

 

Figure 3-1 First Generation Switch/Routers [28] 

        The switches of the first generation included a CPU that hosted all the routing 

software, a main memory, and an optional DMA module. Figure 3-1 depicts the 
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architecture of first generation devices. CPU power, memory throughput and I/O bus 

bandwidth are three bottlenecks in this architecture. 

3.1.2 The Second Generation  

        As seen in Figure 3-2, each line card shown contains a separate memory module 

and a small CPU. Input queuing or output queuing or both can be implemented. The 

sole purpose of the central CPU is to arbitrate the usage of the bus, the exchange of 

routing information between the local cards and the programming and maintenance of 

the whole system. Now the only bottleneck is the I/O bus bandwidth that fails to scale 

along with the number of high-speed line cards and the port count. 

 

Figure 3-2 Second Generation Switch/Routers [28] 

3.1.3 The Third Generation  

        This generation introduced switching fabrics to replace the I/O bus as the medium 

to relay packets between cards. Buffering and routing of data packets are performed 

inside the line cards while specialized hardware is provided to give the line cards access 

to the switching fabric. Switching fabrics can accept multiple simultaneous transfers of 

packets with a maximum of N transactions when N Line cards are connected to the 

fabric. Most of the current network devices employ ASIC large-scale integration to 
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implement SoC (System on Chip) architectures. Except for the analog components, all 

the line hardware (buffers, routing) for all ports is stored inside the same chip along 

with a crossbar (the most effective but less scalable switching fabric), a scheduling unit 

and a CPU. Existing chips can accommodate up to 32 input/output ports and are 

sufficient for a low-end switch/router. They can also be used as a building block of a 

much larger high-end switch/router. In the latter case, they are organized in switching 

fabric topologies such as Banyan, Benes, and Batcher-Banyan networks [36, chapter 8], 

as depicted in Figure 3-3. 

 

Figure 3-3 Left: Third Generation Switch/Router; Top-Right: A Crossbar;  

Bottom-Right: An 8x8 Banyan Fabric made of small 2x2 switch blocks. [28] 

       Switches/routers of the third generation that adopt cross bar to realize the point-to-

point connection actually perform cell switching. For traditional single-stage, high-

bandwidth packet switches, crossbar fabrics have been recognized as potentially 

providing the best architecture for a long time. In these switches, though from the angle 

of the layer 3, it is packets that enter and leave the switch, what the switch fabric core 

sees are cells. All kinds of data types are transported in optimally sized fixed-length 

fabric cells to address the QoS problem. And this implies a need for segmentation and 

reassembly that brings extra time delay and hardware source consumption. 
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3.1.4 The Fourth Generation To Be Developed 

        In [10,12,13], it was investigated that the diversity of networking applications and 

data flows calls for a new generation of switch/routers that have dynamically 

reprogrammable processing environment to cover the potential design space. 

Meanwhile, the development of flexible network software technologies also asks for 

some other solution than the third generation switch/router to assist in on-demand 

scheduling of hardware resources. While some applications performing limited 

processing at low data rates readily lend themselves to software implementation, a vast 

array of applications map well to hardware implementations due to their requirements 

for high data rates, parallel operations, and data regularities. Routers that are capable of 

aggregating forwarding rates of terabits per second and link speeds of 2.4 Gb/s and 10 

Gb/s set the current standard for high-performance. To be considered commercially 

practical, programmable routers need to achieve comparable performance with scalable 

mechanism for data flow processing at router ports [6]. 

        Traditionally used for low-volume prototyping and testing purposes, the 

reconfigurable hardware employed in FPGAs now provides a flexible hardware 

platform. Also, continuing advances in integrated circuit technology are making it 

possible to implement several complete subsystems on a single chip, which can result in 

scalable processing mechanisms at a reasonable per-port cost. The architectural 

optimizations and silicon fabrication improvements bring much impressive progress 

rate: usable logic gate count has increased by 10 times in two years; system clock 

frequency doubled in one year; I/O bandwidth quadrupled in two years; block and 

distributed on-chip memory capacity quadrupled in one year. Reconfigurable hardware 

devices are obviously positioning themselves as viable options for flexible, high-

performance systems. 

        The third generation switches/routers adopting crossbars fall short in delivering 

higher levels of intelligence in the edge switching architecture to improve QOS and 

some new switching scheme is desired. On the whole, this generation is expected to 

have a scalable architecture capable of robust flow-specific processing at line speeds to 
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meet the demand of growing sophistication of networked applications and more 

complex network services without prohibitively high per-port costs. In the following 

sections, the concept of a MPLS reconfigurable router, a powerful candidate for the 4th 

generation realizes intelligent data transfer throughout the system architecture is 

expanded.  

3.2 System Design Strategy 

        The final goal of this project is to develop a fundamental prototype of a fourth 

generation router through the adoption of MPLS standards, reconfigurable hardware, 

novel switching idea and improved multiple queue service scheduling. 

        To keep up with fast link speeds, most modern commercial high-performance 

backbone IP routers, such as what we have introduced in the first chapter, typically use 

ASICs on each port and have high-bandwidth access to the local table of routes. They 

are capable of forwarding standard datagrams (without special features like IP options) 

entirely in hardware. However, with more amount of processing spent on a single 

packet and since the processing is application-specific for a potentially significant 

variety of applications, it is impossible to implement all of them in ASICs. This means 

that both flexible protocols and hardware are needed and it is the very place that the 

concept of an MPLS reconfigurable router applies perfectly. 

        Generally speaking, MPLS nodes have two architectural planes: the routing plane 

and the forwarding plane. As describe in earlier chapters, in order to be backwards 

compatible, MPLS nodes can also perform ordinary Layer 3 IP routing for packets 

without MPLS labels. MPLS can take advantage of all the routing information obtained 

by protocols that run in software above layer 3 and then decide the optimal network 

path to maximize network efficiencies, deliver the fastest possible response times to 

users, minimize bandwidth usage costs, and meet some other criteria.  

        The first step to start the hardware design of an MPLS node prototype is to do 

software and hardware partitioning to decide which parts of the MPLS standards are 

possible and desirable to be implemented in hardware. 
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3.2.1 Protocol software and hardware partition  

        Much explanation has been given to show that it is possible to enhance both the 

router processing speed and QoS guarantees at the same time by implementing MPLS 

partly in hardware. The software/hardware partition is the first part of the practical work 

completed in this project. The block diagram of a logical label switching router (LSR) 

architecture is given in Figure 3-4. Since MPLS was originally proposed for today’s 

largest network, Internet, which is based on TCP/IP model, MPLS routers supporting IP 

make the most sense and the word “IP” is used in the figure to represent the protocol at 

layer 3. However, MPLS can of course support any other layer 3 protocols. 

        It is already known that implementing MPLS routing and switching functions both 

in software contributes nothing to the throughput and node processing speed. Then is it 

possible for both functions to be implemented in hardware? Though with the rapid 

development of silicon fabrication, some protocols used to be carried out over higher 

layers are now possible to be realized in hardware to bring super-fast network node 

processing speed, in this project, only operations taking place below layer 3 are 

considered. The reasons are as follows. Not like other higher layer applications, the 

routing function contained within the routing plane has to deal with a very-large-scale 

routing table and may have to perform extremely complex routing algorithms to pick up 

suitable routes for LSP setup for all kinds of traffic, which consumes too many 

hardware resources. Hence it is now neither realistic nor cost effective to implement the 

routing plane in reconfigurable hardware. But for the forwarding plane that performs 

actual packet switching along LSPs that are already set up, it is quite suitable for 

hardware implementation. At the same time, since MPLS inherently removes a 

significant part of the burden from layer 3 routing to layer 2 switching, the throughput 

and node processing speed increases can be achieved by just implementing this 

forwarding plane in hardware. As a result, MPLS label distribution protocols that run 

over layer 4 (using UDP or TCP) are still supposed to be implemented in software. This 

software implementation will not affect the router performance adversely because LDP 

is only used at the time of LSP setup. During the much longer data transfer procedure 
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that takes place after the LSP is set up, the LDP messages are only used occasionally to 

keep the LSP active. 

        In conclusion, the current work to be done in the hardware implementation is 

contained only within the forwarding plane, as shown below. They are: on-chip LFIB, a 

subset of LIB; MPLS IP switching; off chip memory holding the LIB; and an embedded 

microprocessor maintaining the LIB and doing further packet processing. All these 

functional blocks to be implemented in hardware will be fit into a single FPGA device. 

 
Figure 3-4 Logical Architecture of the LSR  

3.2.2 Hardware Architecture of the Reconfigurable MPLS Router 

       As shown in Figure 3-5, the programmable router consists of several reconfigurable 

line cards interfacing different layer 2 materials, a scalable switching fabric that 

connects to an external super-power CPU through a high-bandwidth PCI bus. The 

switching fabric can be implemented to perform Real Packet Switching (RPS) instead 

of cell switching. The RPS implementation is illustrated in section 3.4. 

       For traditional cell switching, the difficulty of the arbitration and scheduling task 

increases exponentially as more line cards are added. One solution would be to use 

distributed arbitration on each line card. The arbiters must communicate with one 
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another and coordinate their switching decisions because cells from different queues are 

transferred in an interleaved way. This process will inevitably take more time than the 

required arbitration rate while introducing inefficiencies throughout the switch fabric. A 

global arbiter can eliminate a lot of communication overhead, but it asks for more 

complex functionality and consumes more hardware resources. As for the RPS, 

distributed arbitration on each group of queues (one group corresponds to one output) is 

adopted and all arbiters can work in parallel and independently with one another. In the 

view of each connection, data traverse the switch fabric packet by packet. The same 

architecture can be deployed in building the first level switching fabric that 

interconnects physical inputs and outputs within each line card.  

        Due to the reconfigurability of each line card, the router architecture presented in 

Figure 3-5 aids greatly in providing a scalable processing environment for high-level 

software administration over hardware resources. Implementation of specific new 

service functions or protocols can be downloaded into the reconfigurable hardware 

device any time on demand. The line card architecture is introduced in the next section. 

 
Figure 3-5 Hardware Architecture of a Reconfigurable MPLS Router 

3.2.3 Single-chip RHFE design for Line Cards 

        A basic reconfigurable line card architecture supporting MPLS switching is 

illustrated below in Figure 3-6. The MAC interface block can be designed to enable the 

MPLS router to interface all kinds of physical layers as indicated in Figure 3-5. 
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        In this project, components that make up a programmable, multi-port switch/router 

are named as the Reconfigurable Hardware Functional Element (RHFE). They employ 

reconfigurable hardware to provide a flexible hardware-processing environment. RHFE 

allows multiple hardware configurations for variable protocols and applications to be 

dynamically loaded into a single device and run in parallel, providing a substantial 

amount of per-flow processing. With dedicated on-chip logic and memory resources 

provided for each functional element, as well as arbitrated access to off-chip memory 

resources, RHFE supports a broad spectrum of protocols and applications. 
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Figure 3-6 Single-Chip RHFE Design for Line Cards 

        As shown in Figure 3-6, we can see that the basic reconfigurable unit RHFE for the 

purpose of MPLS switching contains an embedded network processor, one/several 

(there is just one MPLS switching functional block here) protocol(s) or application 

specified functional block(s), and an integrated MAC block. This is actually a system-

on-chip design and the integration of MAC can save much memory space for packet 

storage compared to the case that separate MAC chip is used. An integrated design 

brings faster data transfer speed and smaller product size. The embedded network 

microprocessor only deals with packets that cannot be switched within the local line 

card. The RHFE can be used as a general-purpose building block to form larger 
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switches/routers of arbitrary topology. According to the accommodation of the FPGA 

used, one or more RHFEs could reside within one chip. When these chips are to be next 

to each other, the connection can be made directly between their pins and a bit-parallel, 

clock-synchronous link could be used. 

        Several modules are there to form a complete MPLS IP switching functional block 

that sits between layer 2 and 3 as a shim layer. They are: the UD-WRR scheduler that 

controls the service order granted to traffic flows with different priorities; on-chip 

buffers; a lookup table; a label binder; a label remover; and the RPS switch fabric.         

3.3 Dealing with Queuing Issues  

        At any network node, there is the problem of how to queue the incoming packets 

when traffic arrives faster than what the node can immediately handle. Also, the 

queuing scheduling policy is critical in providing guaranteed service for network 

applications with strict and diverse QoS requirements. In the following subsections, 

hardware implementation for several queuing algorithms are introduced and compared. 

Then the UD-WRR queuing scheduling policy is proposed for this project.  

3.3.1. Background 

        This section provides some background information summarized from [18], [19], 

[20], [21], [24] about the queuing issues.  

3.3.1.1 Priority Queue Scheduling 

        Current switches/routers realize the priority queue by assigning priority numbers to 

packets after analyzing their layer 3 or/and layer 4 headers. The priority number can 

represent a deadline, a virtual finishing time, or a sequence number, depending on 

which the link-scheduling algorithm takes into consideration. In these schemes, all 

packets contained in a certain queue are sorted according to their priority values pre-

assigned and are transmitted in a highest-priority-first order. In the following 

paragraphs of this section, implementations of the four priority queue scheduling 
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algorithms --- FIFO priority, binary tree, shift-register and systolic array--- are briefly 

introduced.   

a) FIFO Priority 

        First-in-first-out operation makes for the simplest priority queue. Clearly, no 

priority number and no queue resorting are needed in this case, which results in 

extremely easy hardware implementation. But FIFO is only meaningful to packets of 

the same priority. When diverse service levels are demanded, the FIFO policy is far 

from sufficient. 

b) Binary Tree of Comparators 

 

Figure 3-7 Binary Tree of Comparators Priority Queue [25] 

        An N-entry storage block and a comparator tree of log2 N depth make up the 

binary tree comparator architecture as shown in Figure 3-7. The comparator tree logic 

can be shared among several storage blocks to reduce hardware costs. When N 

increases, the depth of the comparator tree is increased by log2 N and bus loading can 

become a problem since a new entry has to be distributed to each storage element.  

c) Shift Register 
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0 
Figure 3-8 Shift Register Priority Queue and Shift Register Block [25] 

        In this priority queue architecture made up of shift registers, there is an array of 

blocks, each of which stores a single entry and communicates with its immediately 

adjacent block on both right and left in order to sort the queue. As shown in Figure 3-8, 

the zeroth block contains the current highest-priority entry. When a new entry comes, it 

is broadcast to all the blocks via the new_entry_bus, but only one block will latch it.  

The effect is that the new entry forces all entries with lower priority to shift one block to 

the left and places itself to the left of the entries with higher and equal priority. The 

lowest priority entry is discarded if the queue is full. With the increase of entry port, 

bus-loading problem can decrease the performance. 

d) Systolic Array 

 

Figure 3-9 Systolic Array Priority Queue and Systolic Array Block [25] 

        The systolic array priority queue shown in Figure 3-9 is similar to the shift register 

architecture in that each block holds only one entry. The difference lies in the fact that 
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the systolic array architecture doesn’t use the new_entry_bus to broadcast the new entry 

to each block, instead, only the zeroth block has access to the new entry at its arrival to 

compare the priority of its own and that of the new entry. The lower priority entry is 

then passed to the left block and the higher priority entry stays within the zeroth block. 

The same process is repeated until the queue is fully sorted. This methodology promises 

that the zeroth block always holds the highest-priority entry in the queue while 

introducing no bus-loading problem at the cost of twice as much storage as the shift 

register architecture. 

3.3.1.2 Multiple Per-Flow Priority-Queue Management 

       Since the offered traffic less than the network’s capacity can have all the packets 

eventually get through without QoS requirements, it used to be that only when 

congestion existed, the network had to make bandwidth allocation decisions, i.e., it had 

to arbitrate among all the links that tried to use more throughputs than existed. 

However, even if there is no congestion, with the dramatic increase of requirements for 

diverse QoS guarantees in today’s IP networks, isolation among different data flows 

and bandwidth allocation both become necessary. When incoming packets belonging to 

different data flows (each of which corresponds to one of the resulted multiple per-flow 

queues) contend for a certain given output link, a more sophisticated scheduler is 

needed to serve these queues in an order that fairly allocates the available throughput to 

each active flow. Much research work on hardware implementations for multiple per-

flow priority-queue management has been done in [25-27, 29]. 

        Commercial switches/routers can support multiple queues per output at present, 

but the number is limited (a few tens), so their schedulers are relatively simple. When 

higher throughput and finer granularity of service level are desired, more queues have to 

be maintained, and specialized hardware architecture to manage these queues has to be 

adapted accordingly. Per-flow queuing typically requires the implementation of a large 

number of logical queues inside one or a few physical memories. Most advanced 

scheduling algorithms for per-flow queuing over QoS networks rely on the common 

concept of priority queues. The link-scheduling algorithm sorts the priority queue and 
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then interleaves the packet transmission from various sessions such that each 

connection's QoS requirements are satisfied. In another word, all the sessions (one 

priority queue per session) are multiplexed onto a single link that transmits data for 

different flows in each time slot. For stability, the link rate should exceed the sum of the 

sessions’ sustainable traffic arriving rates.  

        Such link sharing as described in the paragraph above can be modeled by the ideal 

Generalized Processor Sharing (GPS), which provides a useful paradigm for governing 

the interaction between competing sessions. Assume a system that can be characterized 

by positive real numbers Nφφφ ,..., 21 , which represent the traffic, queued in the system 

for each session. A GPS scheduler is set to work conserving and operates at a fixed data 

processing rate r . This means that the scheduler keeps busy whenever there are packets 

waiting in the system. With the above assumptions, GPS models the link sharing 

abstraction by continuously dividing link bandwidth among the backlogged sessions, in 

proportion to the iφ ’s. Each session i is guaranteed a rate of =ir r
j j

i

∑ φ
φ

 under GPS.        

        Though ideal, GPS is not feasible in practice, because it requires preemption of the 

link resource on an arbitrarily small time scale. A good feasible algorithm, Weighted 

Fair Queuing (WFQ) was presented by some researchers to approximate this idealized 

GPS model by ranking packets with the time they would complete service under GPS, 

in the absence of future arrivals [15]. In each time slot, a WFQ scheduler transmits the 

packet with the smallest Service Finish value, among the packets already queued for 

service. This approach closely tracks the underlying GPS reference model in terms of 

both throughput and delay. WFQ never lags more than one packet behind GPS in 

servicing a connection; similarly, a packet never completes service more than one 

packet time slot later than it would under GPS [16]. However, it needs non-trivial 

computation to sort the queue according to the priority of sessions [17], which makes it 

not very suitable for hardware implementation. Another good algorithm that is much 

easier to implement in hardware is Weighted Round Robin (WRR).  Under this policy, 

each priority queue at each session is served in a round-robin fashion and a “fair” 
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allocation is achieved. The idea of round robin scheduling, in general, is that a 

scheduler circularly and repeatedly serves a number of clients and performs one job for 

each of them that has such a need during its service interval. However, to be really fair, 

the mechanism should not treat all sessions as exactly equal, but rather as equal within 

the range of a given set of weight factors. This means that the available throughput 

should be distributed to them in proportion to their different weight factors. Thus classic 

Round Robin evolves into Weighted Round Robin (WRR). WRR assigns weight factors 

to all sessions, and then circularly scans all of them and transmits a number of packets 

in the queue from each of those found to be “ready” according to the session’s weight. 

“Ready” means that the queue has enough data and asks for service. The major 

advantages of WRR include guaranteed allocated bandwidth, intrinsic fairness and 

simple hardware implementation ([22], [23]). Therefore, the WRR technique attracts the 

most attention from researchers and is the basis of the service policy here. 

3.3.2 An Improved UD-WRR Policy  

        Assume that there are N input sessions to a MPLS network node and the maximum 

packet length is . Since up to bits from a packet may have to be queued over 

any session before the packet has “arrived” and can be processed, at least bits of 

buffer space should be allocated to each session. The convention adopted in this thesis 

is that a packet has arrived only after its last bit has arrived. 

maxL maxL

maxL

         The bit-by-bit round robin is not desirable since each session can only have one 

bit processed after waiting for N-1 bits of other sessions being served. Also, from the 

viewpoint of hardware, it is not feasible as well due to the fact that most systems are 

working in parallel instead of in serial now. Then it seems that the packet-by-packet 

WRR is the only choice if people want to use WRR. However, there is a waiting time 

problem inherent in a WRR system on a packet-by-packet basis. Though the scheduler 

can move on to serve the next session in the order instantaneously if an empty queue is 

encountered, when an arriving session i just misses its service interval unluckily, it 

cannot be served until the next service interval for session i comes. In the worst case, if 

the system is heavily loaded in every service interval, a packet of session i will have to 
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wait +  of packet processing time before it can be processed, where  

stands for different packet processing times of an arbitrary session at time t. Since the 

maximal length of an Ethernet packet can be 1526 bytes or even longer, the waiting 

time will be unacceptable for most applications in the future. Thus the required buffer 

space to prevent buffer overflow from happening becomes unacceptable as well.  
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        In this project, the service scheduler was supposed to be implemented in hardware; 

hence it is possible that the system is designed to not work on a packet-by-packet basis 

but on an adjustable data unit basis to alleviate the defects existing in both bit-by-bit 

and packet-by-packet round robin policies. The data unit is much smaller than the 

maximal length of an Ethernet packet and the value can be optimized according to 

system parameters of the network nodes, such as the number of bytes that can be 

transferred at a time at each rising edge of the system clock. The performance of the 

system adopting such WRR policy can be easily adjusted by defining the weight value 

of each session to be different integers that are times of some basic data unit value. So 

far, this modified WRR policy is named as Unit Data -WRR (UD-WRR) in this thesis. 

It is quite obvious that UD-WRR cannot be implemented using Java, C/C++, etc. 

       In the past, data flow classification is simple and strict. Therefore scheduling 

policies of the WRR family were ever supposed to function only among sessions that 

belong to the same strictly defined priority class. For example, the priority of real time 

traffic is absolutely higher than data traffic, which means, so long as there is real time 

traffic, no bandwidth will be allocated for data traffic. This can lead to service 

starvation for traffic with lower priorities. However, due to the demand for much finer 

data flow classification, it is already very common that over one physical link, there can 

be several logic links, or sessions. In a practical MPLS reconfigurable router, multiple 

physical ports and multiple logic links at each port are supposed to be supported at the 

same time. The mappings between input and output physical ports, as well as the 

definition of logic links over some physical link are both reconfigurable according to 

corresponding LSP setup and changes. Therefore, the UD-WRR policy is to be applied 

under MPLS to serve sessions with arbitrary levels of priorities. 
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        Each session may have many conversations with time passing by, and each 

conversation may contain different number of packets. Though analysis done below is 

mainly based on what a packet perceives, the UD-WRR policy itself does not consider 

detailed packets or conversations within each session.  

A. Leaky Bucket 

        Before the analysis can be presented, characteristics of the traffic supposed to 

arrive at the node should be introduced first. The traffic shaper adopted in this thesis is 

Leaky Bucket, which imposes some special constraints on the traffic before they can 

enter the network. The Leaky Bucket scheme works through the usage of tokens or 

permits, which are generated at a fixed rate, ρ . Packets can be released into the network 

only after the tokens of a required number are removed from the token bucket. There is 

no bound on the number of packets that can be buffered, but there is an upper bound on 

the number of bits worth of tokens, which is defined asσ . In addition to securing the 

required number of tokens, the traffic is further constrained to leave the bucket at a 

maximum rate of C, which is greater than ρ .  

       It is said that session i conforms to ),,( iii Cρσ  if 

),( tAi τ )}(,)min{( τρστ −∗+∗−≤ tCt iii , 0≥≥∀ τt ,                      (3.1) 

for every session i, where ),( tAi τ is the amount of session i traffic that leaves the leaky 

bucket and enters the network in time interval ],( tτ . This model for incoming traffic is 

attractive for its arrival constraints that restrict the traffic in terms of average sustainable 

rate ( ρ ), peak rate (C), and burstiness (σ and C). 

B. Analysis for the Hardware Implemented UD-WRR Policy 

        In this section, a simple performance analysis of a single-node UD-WRR system 

for sessions that operate under Leaky Bucket constraints is provided. Assumes that 

there are N sessions, and the incoming traffic of each session has already been shaped 

by a Leaky Bucket traffic shaper, conforming to (3.1) for i = 1,2,…N. The system is 

empty before time zero. The UD-WRR service scheduler is supposed to work 

iA
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conserving (e.g. it is never idle if there are data in the system), operates at a fixed 

system clock speed and serves all N sessions circularly. The total time duration for the 

UD-WRR scheduler to serve each of the N sessions once is defined as a service cycle. 

The length of each cycle is not a constant because each session may have different 

amount of data in queue to be served during each service cycle. 
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Figure 3-10 UD-WRR Scheduling Policy 

        Figure 3-10 depicts a basic idea of how the UD-WRR works. An integer weight 

is associated with each session i and tells the UD-WRR scheduler that the session i 

can have maximally  data units processed during its service interval within one 

service cycle. It does not hurt if it is assumed that one data unit is processed within one 

time unit. Thus the number of data units being processed within an arbitrary time 

interval 

iw

iw

],( tτ by the UD-WRR scheduler also represents the length of time needed for 

this amount of traffic to be processed, which is t-τ . Both τ and t are positive integers 

        Within each service cycle, the scheduler polls the N sessions according to some 

pre-computed sequence, say, in order 1,2,…N, in an attempt to serve the session i at a 

guaranteed average service ratio of 
∑ j j

i

w
w

, j = 1,2,...N. This lower bound of service 

ratio achieved by arbitrary session i under the UD-WRR scheduler will be proved to be 

true in the following paragraphs. It is thus apparent that different QoS guarantees can be 

provided for each session by adjusting the value of properly. iw

        During a certain service cycle , within which the N sessions are served exactly 

once, the number of data units waiting to be served at session i are represented by 

kc
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positive integers )( ki cφ , k=1,2,...∝ . Let and be the number of data units of 

session i and all N sessions served within the service cycle c  respectively. Let 

)( ki cS )( kcS

k

),( tSi τ and ), t(S τ be the number of data units of session i and all N sessions served 

within an arbitrary time interval ( ], tτ . The time interval ( ], tτ  may include several 

service cycles. 

) ),( ki cmax{φ

( kcS jk w }),j c(φmax{

kc

)( kcS

kc

iw

jw

w

kc (cS ) ∑ j jw

)t,(li τ

), t(Si τ (li )( 1+Kc+ iφiw ( Ki cφ

),( tli τ ], tτ

),( tτ

il

        Under normal cases, there are 

( ki cS = }iw                                                   (3.2) 

) =∑ j
, j = 1,2,…N.                                    (3.3) 

When the scheduler is working conserving and all the sessions are active during 

cycle (“active” means the session asks for as much service as possible, with the 

maximum of ), (3.2) and (3.3) can be always reduced respectively to S =  and 

= , if the packet will not be finished processing within the current cycle 

. This reflects the fact that: over any session i, before a packet under service is 

completely served (no matter receive or transmit or other processing procedures), the 

actual number of data units waiting to be processed during a service cycle ,

)( ki c

kc

iw

(i c

∑ j

)kφ , 

equals . At this time, the length of the cycle reaches its maximum and there is 

= = . 

i

k

        Thus for a session i packet , which has an arbitrary length of l , starts 

getting service at time 

i

τ , and finishes its processing at time t, it is always true that   

= ), tτ = =K + )
1=

∑
K

k
iw 1+ , k=1,2…K .              (3.4) 

 K stands for the number of complete service cycles experienced by the packet 

between the time interval ( . 

         Let Ti  be the processing time needed by the session i packet with the length 

 during time interval ( ], tτ . Since UD-WRR scheduler only serves each session 

maximally data units, which are much smaller than the packet length within each iw
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cycle, the processing time of an arbitrary packet usually results in lasting for several 

service cycles. According to all the definitions introduced above, the expression for 

),( tTi τ  can be obtained as follows: 

),( tTi τ

iw

=                                        (3.5)                         )()()()( 1
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Since  is always greater than or equal to )( ki cφ as explained earlier, it follows that: 
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       The average service ratio perceived by a packet with arbitrary length over session i 

under discussion during the processing time t ),( ti τ  is: 

),( tRi τ = 
),(
),(

tT
tl

i

i

τ
τ

                                                (3.7) 

        Substituting (3.4) and (3.6) into (3.7) gives 
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                         (3.8) 

Hence, from the view of any packet, the service ratio the UD-WRR scheduler can 

provide for a certain session is guaranteed to be no less than
∑ j j

i

w
w

. This is a worst-

case service ratio a packet of session i perceives. If the processing speed of UD-WRR 

scheduler over the time period of this worst-case is set to be the same rate as GPS 

scheduler’s fixed rate r , it is clear that when the data unit size is small, the UD-WRR 

approximates GPS pretty well, in comparison to the service rate seen by session i under 

the GPS system, r =i r
j j

i

φ∑
φ

. 

        Another parameter needs to be considered is, at least how long each service 

interval should last to make the hardware-implemented UD-WRR scheduler work as 
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efficiently as possible. Let’s take a look at the best-case service ratio a packet of session 

i can perceive first. Assume such an extreme situation: except session i, no other session 

has any packet to be served, which means, the scheduler will only serve session i each 

service cycle. Under an ideal GPS scheduling system, it is clear that all the bandwidth 

can be used up by any session i in the absence of traffic from other sessions, which 

means that the work efficiency for any particular session can reach 100% theoretically. 

However, for a practical UD-WRR system, this is a goal impossible to achieve due to 

reasons given below.  

       To implement the UD-WRR scheduling policy in hardware, the only way to jump 

over all the empty sessions without checking whether each session is empty or not per 

time unit is to build a very large scale “case” circuit to handle the service order 

explicitly for each possible combination of empty sessions. Before each service cycle 

begins, the combination of empty sessions is determined and service intervals are only 

granted to those not empty. Such design brings a circuitry complex of ∑
=

= −

Nk

k kNk
N

1 )!(!
! , 

which refers to the number of lines of Verilog code needed to implement a system with 

N sessions to be served. It is assumed that each line of Verilog code completes a basic 

logic function. Clearly, a design using so many hardware resources is not practical. 

Actually, even this exhaustive-search design cannot bring ideal 100% work efficiency 

due to the extra one time unit used for service order determination before each service 

cycle starts.  

       A pragmatic and very simple way to realize the UD-WRR scheduling policy is to 

always permit one time unit stay, named here as the “checking” time unit, for each 

service interval (not just each service cycle). This is to enable the scheduler to check 

whether the current session is empty or not. If empty, the scheduler enters the next state 

to serve the next object immediately; if not empty, the scheduler can start serving the 

current non-empty session from the very first time unit. Thus for non-empty sessions, 

the “checking” time unit is utilized at the same time for data processing. Therefore, 

according to what has been defined above, the best-case service ratio a session i packet 

can experience under the assumption that no session except session i has data to process 
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is: 
i

i

wN
w

+− )1(
. It is clearly from this expression that there is no possibility for session 

i to obtain 100% service efficiency because the value of N under discussion is always 

greater than 1.   

        Let 
i

i

wN
w

+− )1(
= ie  (3.9), where i  stands for the best-case service ratio 

requirement for session i and 

e

1=∑i ie . It is clear that e =i )1(
)1(1

−+
−+

i

i

wN
w

≥
N
1

≥

 (3.10), 

since  is always greater than or equal to 1.  Then with any specificiw ie
N
1 , the 

minimal value of  obtained should be:    iw

          Min { } =iw }
1

min{)1(
i

i

e
e

N
−

−        i=1,…N                           (3.11) 

       With the maximal and minimal values of that can be derived from (3.8) and 

(3.11), the concrete weight value for each session can be decided according to relevant 

service time ratio between each session, which has been predefined according to 

different QoS demands. In other words, processing delays experienced by a session i 

packet can be reduced by increasing the value of  for that session when higher QoS 

requirements are set for the corresponding LSP i, along which session i packets travel 

through. The following is a brief summary for why UD-WRR is an attractive 

multiplexing scheme: 

iw

iw

• Extremely easy hardware implementation. 

• Taking the full system throughput as “1”, a session i packet is guaranteed 

to have a throughput always greater than or equal to
∑ j j

i

w
w

, independent 

of any other session. 
• With the above guaranteed worst case throughput, the delay experienced 

by a session i packet due to necessary processing time can be bounded as a 

function of the session i queue length and all the sessions’ weight values 

’s, K + iw ∑ j jw )( 1+ki cφ , independent of the queues and arrivals of the 

other sessions.  
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• Each session might have different traffic characteristic, some may 

experience longer packets and others may experience shorter ones. Thus 

different service efficiency calculating methods should be used in different 

cases. By varying the ’s, the flexibility of treating the sessions in a 

variety of different ways can be achieved in a straightforward manner. For 

example, when all ’s are equal, the system reduces to uniform service 

sharing. UD-WRR is flexible enough to provide service on the basis of 

data byte number or on the basis of packet number, simply by assigning 

appropriate values to ’s. 

iw

i

iw

w

• Data processing can be done continuously even if the packet data have not 

arrived completely, when the packet length is provided at the same time as 

the first data unit of the packet arrives. 

        In fact, when the unit of is set to “bit” and each session has the same value 1, 

the UD-WRR policy reduces to the bit-wise round robin; when the unit of is set to 

“packet” and each session also has the same value 1 (no matter how long the packet 

is), the UD-WRR policy reduces to the packet-based round robin policy that is usually 

implemented in software.     

iw iw

iw

iw

3.4 RPS and UD-WRR Implementation in a MPLS System  

        The implementation of the switching fabric is challenging. In a typical crossbar 

fabric, cells are firstly queued on the input side of the switch fabric. The state of all the 

input queues is visible to the crossbar arbiter. On the basis of these states, knowledge of 

the QoS required for each flow and feedback from the output queues, the arbiter decides 

which connection to make in the memory-less crossbar and thus determines the order in 

which cells get forwarded to their respective egress ports. However, the input queuing 

has the Head of Line Blocking (HoLB) problem. When the cells at the head of several 

inlet queues happen to be destined to the same output port, the fabric can accept only 

one of them. In this scenario, all the other queues remain idle, although cells behind the 

head of those idling queues are actually destined to other outputs that are not busy at all.  
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Hence usually, the cells in the input queues are presorted on the basis of destination 

address and class, which forms many VOQs. This prearrangement brings great freedom 

and flexibility to the arbitration algorithms to manage the QoS and to maximize the 

efficiency of the fabric aside from avoiding the HOLB problem. Therefore, VOQs are 

also adopted in the RPS scheme. 

        Assume that there are N inputs and N outputs. Mapping to each input, there are N 

VOQs, each of which represents an output. As mentioned earlier, a mapping between 

inputs and outputs can be determined in advance and be created through LSP setup in 

the MPLS environment. In addition, it is very straightforward to relate the MPLS label 

assignment to the virtual link weight assignment since the group of MPLS labels 

assigned to a LSP stands for the service priority of the packets traveling along this LSP. 

This is to say, the virtual link weight that is used for providing service scheduling by the 

UD-WRR policy can be obtained once the corresponding LSP has been setup.  

        All priority queue scheduling algorithms mentioned in the section 3.3.1.1 are 

methods that serve within the same priority queue; however, they can be utilized 

together with UD-WRR to realize multiple per-flow priority queue scheduling. Among 

all of these queuing techniques, FIFO is still the simplest and most straightforward 

method for hardware implementation, and inextricably intertwines three allocation 

issues of bandwidth, promptness and buffer space occupation. At the same time, when 

packets at the same priority level arrive in the order that they were sent, maintaining 

FIFO ordering among entries with the same priority is necessary. Therefore, the FIFO 

scheme is adopted to buffer packets within each flow, and the UD-WRR that 

approximates the GPS system pretty well on the basis of a small data unit is adopted to 

serve these flows with different priorities circularly. The QOS-aware UD-WRR ensures 

that the outputs are never starved of packets that are already waiting in the input queues. 

        So far, a feasible  Real Packet Switching architecture adopting UD-WRR 

can be constructed as shown in Figure 3-11, which is practically easy to build and can 

realize pipelined data transfer at each output packet by packet. 

NN ×
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Figure 3-11 RPS Architecture Adopting UD-WRR for MPLS NN ×

        In-i represents the input i (i=1,2…N); Q (i, j) represents a VOQ temporarily storing 

packets from the input i to the output j; and Out-j represents the output j (j=1,2…N). 

According to their weights respectively, the UD-WRR scheduler serves all N input 

queues for label processing in a circular manner. After label analysis, incoming packets 

are transferred to VOQs corresponding to their destination outputs, where they wait for 

their turn to be output. The Arbiter k (k=j) controls the order in which the head packets 

from Q (1, j) to Q (N, j) are transferred. All arbiters work independently and in parallel. 

In the view of a certain output, data are transferred packet by packet, instead of cell by 

cell, which is different from the traditional crossbar switching, and is why this 

switching scheme is given the name "Real Packet Switching". Packets with variable 

lengths can be switched intelligently without performing packet segmentation and 

reassembly.  
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Chapter 4 Reconfigurable MPLS Hardware Implementation 

        Based on the investigation and analysis performed in the previous chapters, the 

essential part of hardware implementations for a primary reconfigurable MPLS router is 

finished. In this chapter, the first section gives a brief overview of hardware 

implementation strategy drawn from practical considerations; the following sections 

first present a block diagram of the top-level hardware architecture, and then the details 

of the MPLS functional block implementation, which includes 6 sub-modules.       

        Verilog HDL was used for the whole logic circuit design that was later all 

downloaded into a single Altera FPGA device for the tests. Due to space limitation, the 

lengthy Verilog codes are not provided in this thesis. Simulation, tests and results will 

be illustrated in Chapter 5 and Chapter 6. 

4.1 Implementation Strategy Considerations 

        A commercially practical IP reconfigurable MPLS router would likely be required 

to support Ethernet, ATM and Frame Relay, and other protocols, at layer 2. However in 

this project, only Ethernet has been taken into consideration. The reasons are as follows. 

Firstly, this project was focused on MPLS hardware realization and so supporting 

different layer 2 protocols was not the critical point. Secondly, it was already clear 

enough to demonstrate the advantages of MPLS for packet forwarding in the 

environment of Ethernet. Finally, Ethernet is the most popular layer 2 protocol at 

present, which makes it comparatively cheaper and easier to find suitable equipment 

from the market to set up a practical test bed.  

        As described in Chapter 3, it is with a flexible architecture and the reconfigurable 

hardware units that more efficient or newer value-added functions can be added to the 

system later without causing too much hardware modification or replacement. Also, 

with the scale of networks becoming larger and larger, traffic on each link and the 

number of links at each network node both increase dramatically, thus multi-port, multi-
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service and multi-user switches/routers become desirable. It is expected that more and 

more ports should be integrated on a single chip, since on-chip delay is much less than 

off-chip delay. This integration also brings products with better performance, less 

fabrication cost and smaller product size.  

        According to the RHFE architecture introduced in Chapter 3, an integrated MAC is 

supposed to be included within the RHFE. However, due to the time limitation and the 

availability of existing separate MAC chips, integrated MAC circuit design was not 

included within the scope of the current project. As a result, dedicated circuitry to 

interface the separate MAC chip CS8900A was designed and temporary data buffering 

was provided within the MPLS block.  

4.2 Design and Implementation 

        The design and implementations of the MPLS hardware are illustrated in this part. 

4.2.1 Top Module Design 

        In this single-chip system, there are 8 sets of buffer integrated, each of which 

corresponds to a LSP and is assigned the particular priority number for that LSP. A 

multiple queue service scheduler adopting the UD-WRR policy and maintaining this set 

of prioritized buffers is implemented.   

        Increasing the number of queues requires adding more buffer space, which brings 

added hardware cost and increased complexity of the priority encoder at the same time. 

Therefore logically linked lists instead of physical buffers should and can be utilized to 

accommodate more queues conceptually. Though currently the necessity of using 

multiple logical links does not exist in this first step design, modification for such a 

purpose is straightforward and simple based on the original design. 

        For the system concerned here, 32-bit wide buses are adopted. The reason not to 

use 16 or 8 bit-wide buses is that to provide a certain data processing speed, a wider 

data bus operating at a lower system clock speed helps to maintain the system more 

stable. The reason not to use a 64 bit-wide bus is that the 32 bit-wide bus only uses up 

half of the I/O pins while being able to provide adequate data processing speed.  
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        The main functions implemented in hardware that can increase the node processing 

speed and efficiency should include: 1) table lookup function using CAM technique for 

packet forwarding; 2) MPLS label removing and binding, which enables fast layer 3 

routing through layer 2 MPLS switching; 3) 8 sets of transmit and receive buffers for 8 

physical ports integrated on a single chip to reduce both cost and product size. 4) 

Standard I/O interfaces for both material access layer and the embedded microprocessor.  

 

 

 

 

 

 

Figure 4-1 Top Module Block Diagram 

       Figure 4-1 illustrates the block diagram of the top-level design of a simplified 

MPLS node performing label switching, which includes the MPLS functional block, the 

interface to the Media Access Controller CS8900A from Cirrus Logic, and the interface 

to the embedded local microprocessor. Interface design for CS8900A and glue circuitry 

between the second layer modules in the MPLS functional block are illustrated in full in 

Chapter 5. As for the interface to the local embedded microprocessor, it is left for future 

work. In the following sections, circuit design of different modules that make up the 

MPLS functional block is illustrated in details.      

4.2.2 Second Layer Modules 

        Figure 4-2 shows the second layer block diagram within the MPLS functional 

block, which contains 6 functional modules: Transmit Buffers for 8 outgoing ports, 

Receive Buffers for 8 incoming ports, Label Removing, Label Binding and Switching, 

Lookup Table, and State Machines/Service Schedulers.  

       The MPLS functional block has two dedicated unidirectional 32-bit wide data buses 

for transmit and receive respectively, to support dual communications. It also provides 

good architecture flexibility when in the future there is a need to reconfigure the MPLS 
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functional block to support 64-bit parallel data transfer. The 32-bit receive input port 

and the 32-bit transmit output port can be redefined into bi-directional ports, which is 

not covered at present though.  

        When outputting a packet, the MPLS functional block can provide the packet 

length, indicators of the start/end of the packets, and signals indicting if current data on 

the data bus are valid or not. Similarly, the MPLS block has to be provided with the 

same information when there is a packet coming in.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 Transmit Buffers

C
PU

 Interface

M
II Interface

L
ookup T

able  State Machines 

8 Receive Buffers Label Removing 

Label Binding

 & Switching 

 
Figure 4-2 MPLS Functional Block Diagram 

        Due to time limitation and as the first-step simplified implementation, it is 

assumed that there are not data flows entering from different input ports heading for the 

same destination at a MPLS node in this project. This is to say that there is no LSP 

merging under discussion and thus there is no need for intermediate buffers at present. 

In the future work when intermediate buffers are added, the number of packets held 

within each buffer can be computed by setting constraints in packet delay time while 

controlling the probability of buffer overflow under a required level.  
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        Eight transmit and eight receive buffers are integrated to make the design more 

cost effective and suffer less data transfer delay. Each set of buffer space, for both 

receive and transmit, can be taken as the extension of that of a corresponding physical 

port in the media access controller CS900A. All transmit/receive buffers are realized in 

FIFO whose length is currently set to be 1600 bytes, which can hold several short 802.3 

packets. 

       The interface for the local microprocessor, named as the ninth port, does not have 

its own buffer. This microprocessor is embedded and it can itself buffer the packet 

generated there. IP packets from local layer 3 are sent through this ninth port, to the 

Lookup Table module directly. There, a corresponding MPLS label is assigned to the 

packet according to its IP header and/or other additional service requirements specified 

for a certain FEC the packet belongs to. The specifications are settled between 

customers and Internet service providers in advance. 

        Packets entering the node from the network side are firs buffered at one of the 8 

receive buffers waiting for their turns for further processing. At the Label Removing 

module, the label of the packet is stripped off and then this label is fed into the Lookup 

Table module as an index to find a new appropriate outgoing label for the packet.  

       After the new outgoing label is ready and the outgoing port is determined, the Label 

Binding module binds this label to the packet coming from either the network side or 

the local microprocessor, and sends the packet to the corresponding transmit buffer, 

where the packet waits for its turn to get transmitted onto the Ethernet. 

       The State Machine module is designed to control the service order and duration 

time for each port according to the UD-WRR policy introduced earlier. Together with 

other signals, it regulates the working procedure of the whole system and keeps the 

other 5 second-layer modules cooperating together with a proper time schedule. 

Detailed tasks it completes include manipulating the procedure of checking 8 receive 

buffers and the microprocessor interface to see if there is any data ready for processing, 

and then having each port served to finish its label switching in an pre-determined order 

within its weighted service interval. Values of the weighted factors used by the UD-
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WRR policy are temporarily taken as equal and the port number “8” can be adjusted 

according to application requirements in the future. 

       The Lookup Table module takes advantages of techniques of both CAM and RAM. 

This module only talks with the Label Removing module to get necessary information 

and is completely separate from other modules. This organization provides a clear 

distinction between functional modules. 

       Due to the reprogrammable characteristic of the FPGA device, the number and 

depth of FIFOs and the scale of the lookup table can be extended in the future when 

more table items are to be added and more traffic flows have to be distinguished. There 

are system status registers that store all the current status parameters and can be read out 

for debugging or administration purposes. However, they are read only and will be 

overwritten once the next packet starts receiving its service.   

4.2.3 Implementation Details of the Third-Layer Modules 

        The following sub-sections describe the 6 3rd layer modules in full detail. 

4.2.3.1 State Machines 

        Three separate state machines, State_Machine_1,2,3 are instantiated within this 

module. The name of the prototype of State_Machine_1 and 2 is Polling_Machine; the 

name of the prototype of State_Machine_3 is Polling_Machine0. In the following 

paragraphs, functions and signal description of the state machines are given, according 

to what is shown in Figure 4-3.   

      State_Machine_1 generates 8 states, each of which represents the service interval 

granted to a certain physical port for data reception. Each service interval allows the 

corresponding weighted number of writes executed on 8 MPLS receive FIFOs. In 

another word, State_Machine_1 determines the sequence of reads performed on 8 

receive buffers of the media access controllers to obtain received packets by transiting 

from state 0 to state 7 in turn. State0 stands for the service interval granted to MAC 

receive_buffer0/MPLS receive FIFO0… state7 stands for the service interval granted to 

MAC receive_buffer7/MPLS receive FIFO7. 
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        State_Machine_2 also generates 8 states, each of which represents a certain service 

interval granted to a certain physical port for data transmission. Each service interval 

allows the weighted number of reads executed on 8 MPLS transmit FIFOs. This is to 

say that State-Machine-2 determines the sequence of writes performed on 8 MAC 

transmit FIFOs to transfer the packets to be transmitted by transiting from state 0 to 

state 7 in turn. State0 stands for the service interval granted to MAC transmit 

buffer0/MPLS transmit FIFO0…state7 stands for stands for the service interval granted 

to MAC transmit buffer7/MPLS transmit FIFO7. 

                                  
a) Prototype of                                                  b) Prototype for 

    State_Machine_1 and 2                                        State_Machine_3 

    Figure 4-3 State Machine Block Symbols, prototype names:  

a) polling_machine b) polling_machine0 

        The third state machine named State_Machine_3 is a little bit different from those 

introduced above. Except serving the 8 receive FIFOs, it also takes the responsibility of 

deciding if the local layer 3 has any data waiting for processing. Hence it generates 9 

states and transits from state 0 to state8 to have reads performed on 8 receive FIFOs 

plus the local host. State0 stands for the service interval granted to receive FIFO0, 

state1 stands for the service interval granted to receive FIFO1 …state8 stands for the 

service interval granted to the local layer 3 interface, the microprocessor interface. Each 

state has the same weighted length of service time as that of State_Machine_1/2. In 

each state, data from one receive FIFO or the local layer 3 is read and then processed. If 

it is found a suitable outgoing label, the packet is transferred to the transmit FIFO 

corresponding to its destined outgoing port. 
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        To prevent the FIFOs from overflowing or running short of data, the three State 

machines should not work at the same clock speed if multiple ports need to be served 

smoothly in the UD-WRR manner. To achieve successful service multiplexing, 

State_Machine_3 has to work at a clock speed 9 times faster than that at which the other 

two State machines work. The reason that it is 9 times faster instead of 8 times faster is 

that State_Machine_3 is not only responsible for 8 MPLS receive FIFOs, but also 

responsible for the local microprocessor.  

        At any time of each state, if State_Machine_1/2 detects that the corresponding 

receive/transmit FIFO has no data to be received/ transmitted, or the corresponding 

MAC port has no receive data to provide or has no room to hold any more transmit data, 

it will leave the current state and enter the next one right away without idling for its full 

length of the service interval. For State_Machine_3, the state transition can take place 

right away as well, whenever it detects that there is no packet ready in the 

corresponding receive FIFO (or in the microprocessor) for processing; or, the required 

transmit FIFO currently lacks enough space to hold any more data. In this way, the 

unnecessary waiting time experienced by each service object is reduced. In cases other 

than that mentioned above, each state will last for the full length of its weighted service 

time. However, it can also transit to the next state in the middle of the service interval 

right away once the task undergoing (such as packet transmission/ receiving or label 

removing/binding) is finished.   

       At the state transition, some important signals can lose the correct timing 

relationship between each other, which will lead the whole system into a malfunction 

state and so asks for special consideration to prevent this from happening. The method 

used is to have the state machine able to extend its current service interval to finish all 

necessary processing once some state extension requirement signals become active. The 

signals in and exd_rq of the prototype polling_machine and the signals in0/1 and 

exd_rq0/1 of the prototype polling_machine0 are all for the state length adjustment. The 

state signal of both prototypes outputs the current service state the system is in; the 

counter outputs the service timer value of this state. The maximal value of the service 

timer is the service weight granted to current service state. 
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4.2.3.2 Receive Buffers 

       This module holds received data temporarily and generates delimiter signals for the 

packet. State_Machine_1 takes the responsibility of enabling data transfer from MAC 

chip i to receive FIFO i. State_Machine_3 takes the responsibility of enabling data 

transfer from some receive FIFO i to the corresponding transmit FIFO j.  

        For any receive FIFO i, when the last read behavior taken in a regular service 

interval brings the penultimate data unit of a packet (this means that the final data unit 

of the packet will still show up on the data bus when the service state has changed into 

the next one to serve the packet of receive FIFO (i+1)), the last several bytes of data 

from receive FIFO i originally destined for transmit FIFO j will be mistakenly written 

into some other transmit FIFO k, where actually the packets of receive FIFO (i+1) 

should go. Such a malfunction can be prevented by keeping some dedicated signals low 

during the time period that is originally for the last three normal data unit fetches to be 

performed on the receive FIFO i, which makes it as if there were no buffer space 

available in transmit FIFO j and thus the receive FIFO i knows that it should not output 

any more data. However, in the case that the head packet of the receive FIFO i has been 

almost finished, this method will force the head packet to wait for a whole service cycle 

to complete its processing in its next service interval. This means that, the session i 

packet experiences a longer than necessary processing time delay. To alleviate this 

unnecessary performance degradation, a low-active service extension demand signal is 

issued by the Receive Buffers module to State_Machine_3 to realize service interval 

extension when required. It holds true as well for the other two state machines.          

        Except for the case of end packet data transfer, a special condition occurs when 

there is an immediate state transition following the first 4 bytes of packet data 

transferred from the receive FIFO i to the Label Removing Module. The first 4 bytes of 

packet data is defined as the MPLS label in this project, and due to the immediate state 

transition, no label processing for the packet from the receive FIFO i can take place and 

dedicated buffer space has to be allocated to store such incoming MPLS labels from all 

the 8 receive FIFOs. To reduce hardware consumption and avoid the circuit complexity 

brought by this kind of buffer space management, service interval extension is also 
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applied to make sure each incoming MPLS label is processed right away after it is 

stripped off from the packet. 

        This module contains 8 36-bit wide data FIFOs, which are actually the expansions 

of the on-chip buffer space of the 8 separate MAC chips. The lower 32 bits are for 

packet data; the higher 4 bits form the valid-data-indicator, which indicate the validity 

of the 4 bytes of data made up of the lower 32 bits. Not every packet has a length of 

integer times 4 and when there is only start and end of packet indicators available, 

valid-data-indicator bits becomes necessary. Besides this, it also provides a possible 

method of simple data encryption.  “1” means the byte is valid and “0” means not. For 

example, if bit 35 is high, it means the most significant byte made up of bit 24 to bit 31 

is valid; if bit 35 is low, it means that this most significant byte is invalid and should be 

discarded. Bits 34 to 32 indicate the validity of the bytes made up of bit 16 to bit 23, bit 

8 to bit 15 and bit 0 to bit 7 respectively. 

         Since it is very likely that many Ethernet packets are with different short lengths, 

each data FIFO may have more than one packet buffered in the queue from time to time. 

To output the buffered packets later correctly, the length of each packet has to be 

recorded along as well. Therefore a separate FIFO named pkt_length_fifo is instantiated 

in this module to buffer the length of each packet staying in the data FIFO 

correspondingly. Please refer to Figure 4-4 for a clearer picture. 

 

 

 
 
 
 
 
 

Figure 4-4 Relationship Between the Data FIFO and Packet Length FIFO: 
ln (n=1,2,…) represents the length value of the corresponding packet 

 

        Figure 4-5 depicts the functional block diagram of the Receive Buffers module that 
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        Figure 4-5 Receive Buffers Block Diagram (CNT means Counter) 

obtain the length of an incoming packet. If the MAC chip can provide packet length in 

advance (before real packet data transfer begins), the Receive Buffers module receives 

it and buffers it into the pkt_length_fifo directly; if the MAC chip only provides 

start/end of packet (sop/eop) and valid-bytes indicators, then the packet length can be 

calculated by a simple up counter with the aid of these indicators provided that the 

whole packet is received correctly. The up counter is cleared synchronously each time 

reset is high or the incoming eop signal is high.  In either case, the packet length is 

written to the pkt_length_fifo at the rising edge of the incoming end-of-packet indicator. 

When the Receive Buffers module outputs the stored packet with its stored length to 

Label Removing module, corresponding sop/eop indicators are required to be generated 

for the Label Removing module to function correctly.  
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        When the packet data are ready to be transferred to the Label Removing module, 

the down counter loads the packet length value at the output of the pkt_length_fifo at 

the rising edge of the output indicator, sop, and starts counting down. When the down 

counter reaches the value of 1, it generates the end-of-packet indicator to indicate that 

there are no more data of the current packet to be transferred. 

        The packet data can be output correctly only with a correct packet length. In the 

case that the length of the packet has to be calculated by the Receive Buffers module 

itself, the incoming packet cannot be transferred to the next module before the complete 

packet has been buffered in the Receive Buffers module. When there is less than 1 

packet in the receive FIFO, which is the case that the FIFO may be empty indeed or 

contains only a part of the packet, an active high signal indicating that the FIFO is 

empty will be driven high. No read is allowed to execute on such an “empty” FIFO.  

 
Figure 4-6 Single Receive Buffer Block Symbol, Prototype name: rx_frame_reg 

        This prevents the packet length calculation procedure from being interrupted and 

being resulting in a wrong packet length.  In addition, for the purposes of testing and 
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system maintenance, the Receive Buffers module also provides the numbers of packets 

currently buffered at each receive FIFO at any time. 

        Figure 4-6 on the last page indicates the block symbol of a single receive FIFO. 

There are two clocks adopted for this module; clk_rd is 9 times faster than clk_wr. This 

conforms to the fact that there are two state machines controlling the reads and writes 

performed on the FIFOs respectively. When the two signals, rx_read_sel and 

rx_write_sel sent from State_Machine_1 and 3 respectively, stay high and if other 

related active high signals are also high, the module is enabled for reads/writes to be 

performed.  When the rx_ready and read_sel both stay high, data can be transferred to 

either the Label Removing module or to the transmit FIFO correspondingly in different 

data processing phases, so long as there are data waiting in the FIFO. When the 

fifo_data_ready from the MAC side stays high and the write_sel is high, data transfer 

from the MAC to the receive FIFO is performed. If the rx_abort signal from the MAC 

side stays high, then the current packet being transferred is supposed to be dropped by 

the MPLS functional block later. The active high sop_in and the eop_in signals indicate 

the start and the end positions of the packet being transferred from the MAC to the 

receive FIFO. The read_sel_clk provides the receive FIFO with necessary timing 

information when reads are performed. The rx_pkt_length_out is the packet length sent 

from the MAC Chip. MAC_bus is for received data from the MAC chip to be buffered 

at the receive FIFO while valid_byte_in indicates the validity of each byte. When the 

rx_want signal stays high, the Label Removing module knows that the Receive Buffers 

module has at least one packet received and data processing is required. When the 

fifo_data_want signal stays high, the MAC chip learns that now the receive FIFO has 

some free space to hold more data. When the no_need_to_process signal stays high, no 

further processing for the packet currently being transferred through the data bus 

towards the Label Removing module should be done. The sop_out and eop_out signal 

the Label Removing module when to start and stop accepting the packet from the 

Receive Buffers module. The rx_pkt_length_out is the packet length calculated by the 

Receive Buffers or received directly from the MAC Chip. After being inserted with 

some time delay, the valid_byte_in and MAC_bus become the valid_byte_out and bus 

respectively. The valid_byte_in and the read_en work together to inform other modules 
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about the exact time duration of the data read from the receive FIFO that should be 

accepted. The read_en signal is very important because the receive and transmit FIFOs 

are communicating with each other at a much faster clock speed than what the MAC 

chip works at. The last signal to be mentioned is rx_state_extend_sig. It is low active 

and is sent to the State_Machine_3 in the case that the Receive Buffers module is likely 

to lose the last 2 bytes of a packet due to state transition. Thus unnecessary idling time 

suffered by the receive FIFO to finish its head packet transfer can be avoided 

4.2.3.3 Label Removing 

        The Label Removing module accepts packets from the 8 receive FIFOs (not from 

the local host), removes their MPLS labels and then sends the labels to the Lookup 

Table module. After new outgoing MPLS labels are found and bound to the packets, the 

Label Removing module signals the corresponding receive FIFOs to transfer the rest of 

the packet data to their destined transmit FIFOs. The following parts of this section will 

introduce the signals and functions of this module, as shown in Figure 4-7. 

        This module takes the responsibility to signal receive FIFOs if any more packet 

data for further processing can be accepted after it analyzes all the feedback information 

sent by the Label Binding and Switching module, the Lookup Table module and the 

Transmit Buffers module. If all necessary conditions are met, an rx_ready signal is 

asserted high to inform the Receive Buffers module about this. The first 32 bits of a 

packet is always taken as the MPLS label by the Label Removing module and thus 

these 32 bits are stripped off once the Label Removing module receives the start-of-

packet indicator coming with the data. The rx_ready signal is driven low right after the 

label is received, telling the receive FIFO to wait until the decision is made to either 

forward this packet to its next hop (represented by a certain transmit FIFO) or to 

transfer it immediately to the upper layer for further IP header analysis. The removed 

label is fed into the Lookup Table module as an in-coming label item immediately after 

being stripped off, and a new outgoing label with the corresponding outgoing port may 

be found 5 clock cycles later. Then the rx_ready signal is asserted high again and the 

remaining bytes of the packet can be read from the receive FIFOs, so long as the receive 

FIFOs are not empty. To ensure that all the functions work correctly, there is a 1-bit 
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register for each of the 8 receive FIFOs to record the label removing status: label having 

been stripped off or not. 

        If the in-coming label cannot be found a match within the mappings contained in 

the lookup table and the local microprocessor says it is ready for packet analysis, the 

packet will be sent to local layer 3 to see if it should be discarded or if the local host is 

just the destination. This helps in implementing the penultimate hop function of MPLS 

and enabling the system to handle the packets with an erroneous label at the same time. 

 
 

Figure 4-7 Label Removing Block Symbol, Prototype name: label_remover 

        Only when the lookup_table_busy signal from the Lookup Table module is low, 

can the removed MPLS label be fed into the Lookup Table module for processing. Then, 

if the label_found from the Lookup Table module becomes high after 7 clock cycles, 

and the label_bound_flag from the Label Binding and Switching module also becomes 

high, the output rx_ready will be driven high to enable directly data transfer between 

the Receive Buffers and the Transmit Buffers. If the label_found becomes low but the 
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cpu_accept_data is high at this time, the rx_ready is also driven high to enable data 

transfer between the receive FIFOs and the local host. Otherwise, the rx_ready is set to 

be low. The sop_out and eop_out signals are generated by the Label Removing module 

for the packet whose MPLS label has just been removed. The rx_sel_out and the 

rx_sel_clk_out are delayed rx_sel_in and the rx_sel_clk_in by one clock cycle, which 

are for the Lookup Table module to record the relevant outgoing port number and the 

memory overflow status for each incoming port. This inserted delay is to avoid system 

malfunctions due to a timing difference between different modules. The tx_data_ready 

is to tell the Transmit Buffers that there are packets waiting to be transmitted from the 

time the new outgoing labels are bound to the incoming packets. The label is a 32-bit 

wide bus used to send the removed MPLS label to the Lookup Table module. 

Descriptions of other signals that are straightforward to understand  (either from their 

names directly or from previous introduction to signals of similar functions) are omitted. 

4.2.3.4 Lookup Table 

i) CAM Technique 

         For most memory devices, data storage and retrieval are done through specific 

memory location addressing. With conventional indexing schemes, the data content is 

used with a hash or index to produce the address location of the data. The address has 

no real or direct relationship with the information contained in the data. A typical 

example is a system utilizing RAM or ROM, which searches through memory to locate 

data sequentially. However, the address indexing, or any other conventional indexing, 

can slow system performance since the search may require many clock cycles to 

complete.  

        With content-addressable memory (CAM), the data is its own key, which 

differentiates CAM from a traditional index.  The time required to find an item stored in 

memory can be considerably reduced by identifying stored data by content, rather than 

by its address. This type of distributed memory has the advantage of allowing greater 

flexibility of recall and is more robust. It is able to work its way around errors by 

reconstructing information that may have been damaged from the system. 
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        In this project, Content Addressable Memory (CAM) is adopted together with 

traditional RAM technology to build the MPLS LFIB in hardware. LIB is still left for 

software implementation. Mappings from incoming MPLS labels to local MPLS labels 

and from IP headers to local MPLS labels are both taken into consideration since the 

design target is for an edge router. For an ordinary label switching router inside a MPLS 

cloud, mapping between IP headers and local MPLS labels is not necessary.  
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Figure 4-8 CAM and RAM Combination for MPLS 

        As shown in Figure 4-8, a combination of CAM and RAM can be used to 

implement the MPLS lookup table. The incoming label is used as an index by the CAM 

block to specify the next hop and the appropriate new label in the ingress label switch. 

Then the packet is forwarded to its next hop with the new label attached. At the last 
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packet and then forward the packet using IP forwarding. 
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         Typical multi-protocol label routers store up to 1,024 items at a time, requiring a 

1,024×32 CAM block. This CAM block requires only 32 embedded system blocks 

(ESBs) and can be efficiently implemented within an FPGA device. The outgoing labels 

are stored in the RAM, which consists of 1,024×32 bit locations consuming 16 ESBs.  

ii) Practical Lookup Table implementation 

        To avoid that packets from different incoming ports directed to the same outgoing 

port are buffered at one transmit FIFO in an interleaved way, there are dedicated 

registers recording the status of each transmit FIFO: whether the transmit FIFO is in the 

middle of accepting a packet from the receive FIFO i at present. If it is, then the head 

packet at some other receive FIFO j also destined for it is asked to wait until the status 

register shows that the last packet has been completely written into the transmit FIFO 

already. There are two ways to handle the header packets from receive FIFOs other than 

FIFO i but destined to the same transmit FIFO j. The first method is: right after the 

transmit FIFO is found to be busy, the outgoing label assigned to the header packet at 

receive FIFO j is sent to the local microprocessor, where it is allocated some memory 

space of the external RAM for temporary storage. After a proper waiting time, this 

packet will be transmitted in the normal way as if it were originated from the local host. 

The other way to handle this issue is to allocate dedicated on-chip buffer space to hold 

the outgoing labels found for the packets from FIFOs other than the receive FIFO i 

within the same FPGA chip. Since each MPLS label is just 32 bits, it does not cost 

much to store a number of such labels in on chip memory. However, to make sure that 

theoretically no packet loss due to buffer space overflow takes place, the two methods 

described above are adapted to work together. When there is contention at some 

transmit FIFO, the system will send to the host microprocessor the outgoing labels of 

the head packets from the receive FIFOs other than receive FIFO i in the case their 

corresponding on-chip memory is experiencing overflow. At the same time, the system 

finishes buffering the head packet from the receive FIFO i to the transmit FIFO where 

contention is taking place as soon as possible. 

        Here the lookup table is made up of three CAM and one RAM, whose architecture 

and behaviors were described in the last section. For ordinary LSRs that work within an 
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MPLS domain, only the mapping between incoming labels and out-going labels is 

needed. In order to implement the layer 2 switching, the table containing the mapping 

between local MPLS labels and physical outgoing ports has to be included as well. 

Since this project is focused on edge router design, an extra table doing mapping 

between the IP header and the MPLS label is included in the architecture of the lookup 

table, too. 

       Usually an entire packet cannot be transferred completely within one service 

interval and data will not know where to go when the next service interval arrives if no 

outgoing port information is available. Therefore the outgoing port information needs to 

be saved. To handle this, a dedicated set of status registers is adopted within the Lookup 

Table module. This set contains nine 3-bit wide registers, which record the outgoing 

ports for the head packets of the 8 receive FIFOs and the local microprocessor under 

service. These registers are cleared once the corresponding packets have left their 

receive FIFOs completely. Since currently LSP merging is not considered, the case of 

output port contention taken place among several input ports is neglected. 

         As shown in Figure 4-9, the sop, the eop, the rx_sel and the rx_sel_counter signals 

are used to set and clear all status registers recording necessary packet information. The 

wrdelete, the wren, the wraddr and the update_data are for lookup table content updates. 

The label_in carries the incoming MPLS label from the Label Removing module. The 

IP_header carries the IP header of the packet from the host microprocessor. The output 

signals label_out and the fifo_sel provide the new MPLS label to be bound to the packet 

and the outgoing port number indicating where should the packet be switched. The 

signal extend_rx_state_rq is sent to State_Machine_3 when the label searching task 

cannot be finished within one service cycle, thus the service time can be extended as 

needed. 
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  Figure 4-9 Lookup Table Block Symbol, Prototype name: lookup_table 

4.2.3.5 Label Binding and Switching  

        With the outgoing MPLS label and outgoing ports provided by the Lookup Table 

module, label binding and switching can be performed now. 

        As indicated in Figure 4-10, if the tx_data_want from the Transmit Buffers module 

is high, the binding task to be done can be completed with two steps. Firstly, once the 

label_removed_flag and the fifo_rdy both become high, the Label Binding and 

Switching module outputs the label as the first 4 bytes of the packet data to be switched 

to the pkt_out port. This behavior accomplishes the function of “label binding”. 

Meanwhile, the tx_sop_out and the label_bound_flag are set high to indicate this 

completion. The former one is just a pulse with the width the same as that of the 

data_valid, while the latter one has to always stay high until a pulse of tx_eop_in 

appears. Then as the second step, after the label is bound, the Label Binding and 

Switching module directs the remaining part of the incoming packet data to the pkt_out 

port. Along with the pkt_out data, the tx_reg_sel_out is sent to the Transmit Buffers 

module to identify the destination transmit FIFO for the currently being transferred 

packet. The cpu_data_rdy and rx_data_rdy help in generating the tx_data_ready, which 
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is set to be high so long as there is data required to be sent to the Transmit Buffers 

module, regardless of whether it is from the local host or from one of the 8 receive 

FIFOs. Also, there are 9 registers to record whether the label has been bound or not for 

the header packet at each receive FIFO. Description of other signals of this module is 

omitted, because their functions are apparent from their names.  

 

 
 

Figure 4-10 Label Binding and Switching Block Symbol, Prototype name: label_binder 

4.2.3.6 Transmit Buffers 

        As shown in Figure 4-11, this module is very similar to the Receive Buffers 

module, but it is simpler since the packet length is never computed in this module. 

Another difference is that for the packet length FIFO, the packet length is written when 

the sop_in is high, instead of when eop_in is high as in the Receive Buffers module.  

 



 77

 

 

                                                                                                                        

                                                                                                                            

                                         

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11 Transmit Buffers Block Diagram 

        Figure 4-12 is the block symbol of a single transmit FIFO. There are also two 

clocks adopted for this module. The clk_rd is 8 times faster than the clk_wr. When the 

two signals, the tx_read_sel and the tx_write_sel generated by the State_Machine_2 and 

3 respectively, stay high, the module is enabled for reads/writes to be performed.  When 

the MAC_ready and the tx_read_sel both stay high, data in the buffer can be transferred 

to the MAC chip through the MPLS_MAC interface module. When the tx_data_ready 

from the Label Binding and Switching module stays high and the tx_write_sel is also 

high, data transfer from the Receive Buffers module or the local host to the Transmit 

Buffers module is performed. The MPLS_MAC interface module knows that the 

Transmit Buffers module has data to transmit when the tx_want signal stays high. When 

the tx_reg_ready signal stays high, the Transmit Buffers module indicates that now it 

has some free space to hold more packets that have already been bound with a new label. 

The sop_out and the eop_out signals tell the MPLS_MAC interface about the start and 
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the end positions of the current packet. The tx_state_extend_sig is low active and is sent 

to the State_Machine_2 to prevent from happening the case that the last 2 bytes of the 

packet get lost due to state transition during the course of data transfer from the 

Transmit Buffers to the MAC-MPLS interface.  

 

 
 

Figure 4-12 Single Transmit Buffer Block Symbol, Prototype name: tx_frame_reg 
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Chapter 5 Test Development and Procedure 

5.1 Introduction 

        It is ideal if the whole design presented in the previous chapter be tested in a real 

MPLS network, which means several completely finished MPLS switches/routers 

would have to be built for the tests to be carried out. However, such a task involves 

work over all layers of the TCP/IP model and is beyond the scope of this project. Since 

the project is focused on digital hardware circuit design, it is sufficient to demonstrate 

that the MPLS functional block implemented within an actual FPGA device can 

perform MPLS label binding and removing according to requirements set in advance 

and can realize packet transmission and reception over the physical layer by directing 

incoming packets to their outgoing ports correctly. Real layer 3 routing is not 

considered in the tests of this project. It is assumed that all necessary LSPs have been 

set up successfully already and that the only remaining task is label switching. 

Therefore, high-level software programming for the FEC definition and the LDP is not 

needed in this test.  

        With the simplified testing methodology, an Ethernet Development Kit (EDK) 

from Altera Corporation can be utilized to build the test bed. The most important 

hardware component included in the EDK is a network-interface daughter card 

containing the MAC chip CS8900A, which can be plugged directly into the 

motherboard of the development kit. Though this EDK is made up of both hardware and 

software components that provide network connectivity and operation utilities for a 

Nios-based embedded systems, only the hardware components will be introduced in 

section 5.3 since software utilities running on an embedded Nios microprocessor are not 

used in this project. 

        The MPLS functional block is designed to support 8 sets of integrated FIFOs, and 

each set corresponds to a certain physical port. However, the MAC chip CS8900A 

provided on the board only supports one physical port. This problem has to be 
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considered before the EDK can be put into use since it must be made certain that the 

tests being done under such a situation can still be meaningful. To surmount this 

problem without imposing more requirements on the testing environment, it can be 

assumed that the other 7 MAC chips do exist but currently have no data to transmit or 

receive, and thus by driving relevant signals inactive in a normal working mode, the 

service intervals granted to the 7 fake physical ports can be saved by the system once 

these relevant signals are found to be inactive. With this assumption, the goal of the 

tests can still be reached with only one MAC port available for a node. The normal 

operation of the system with multi-port integration can still be demonstrated. A detailed 

explanation of the test procedure is given in section 5.4.1. 

        Yet another problem exists. The CS8900A is designed to communicate directly 

with a microprocessor instead of other hardware circuits; while in this project, the 

MPLS must be interposed between the CS8900A and the microprocessor, which means 

that the MPLS functional block is required to take the place of the microprocessor in 

communicating with the CS8900A. To handle this, a special interface has to be 

designed to aid packet transfer between the CS8900A and the MPLS functional block 

(in another words, between the MAC layer and the MPLS shim layer).  

        In the following sections, general test methodology development is presented first; 

then the main hardware equipment used to build the test bed is introduced; in the third 

section, a detailed description of the interface design for the MPLS block to cooperate 

with the CS8900A MAC chip is depicted; finally, the detailed procedure of the practical 

tests is described. 

5.2 Test Methodology Development 

        In the real world, the MPLS network can be arbitrarily large, consisting of parts 

that are separated by considerable physical distance from each other and are connected 

with each other via links (usually of bit-serial nature) like coaxial cables, optical fibers, 

microwave links, etc. One part of the network, which resides at one physical location, 

may be as small as a few chips on a small printed-circuit board or as large as thousands 

of chips on many boards in several boxes all located physically close to each other.    
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        Naturally ideal tests are supposed to be taken over such a real MPLS network, 

where the edge nodes interface different types of physical mediums. However, such a 

perfect condition is not truly necessary when the purpose of the tests is only to show 

how an edge LSR functions, and the test methodology can be simplified as illustrated in 

the following subsections without affecting the desired results.  

        Another concern is the FPGA capacity. In today’s market, there are FPGAs with 

millions of gates and over 10MB RAM space, which are very suitable for on-chip 

switch/router design. However, the FPGA device available for this project is limited in 

EBS blocks, which makes it impossible to fit in the complete integrated 8-port design. 

Also, due to the limited number of available CS8900A chips representing the number of 

physical ports (one CS8900A can only talk to one 10BaseT physical port), only one set 

of receive FIFO, transmit FIFO and interface module really consumes the hardware 

resources within one FPGA device in the tests. However, the service scheduler still 

takes the other 7 ports as existing conceptually and this one port implementation still 

can demonstrate the performance of the 8-port integrated design. The detailed reasons 

will be given in Chapter 6.  

        After the top module consisting of the MPLS functional block and the interface 

between MAC and MPLS was fully compiled, a programming file was generated by 

QuartusII (A digital circuit design software tool provided by Altera corporation) and 

then loaded into the APEXII FPGA device mounted on the mother board of the EDK 

through a download cable named ByteBlasterMV. Or, the programming file can be 

stored in the FLASH memory incorporated on the mother board and be loaded 

automatically into the FPGA device at each reset or power-up. The APEXII FPGA 

device and the CS8900A mounted on the daughter card make up the essential hardware 

part of an MPLS edge node operating over Ethernet, as illustrated in Figure 5-1.  

        Because it makes no difference if the packet simply travels through a line or across 

several internal networks before it arrives at its destination, the test bed can be built 

simply with two sets of the EDK (acting as a simplified MPLS LER and a LSR 

respectively), an ordinary desktop computer, and a hub, as shown in Fig 5-2.  
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Figure 5-1 MPLS Edge Node Hardware Architecture 
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the clock speed at which the Receive/Transmit Buffers communicate with the MAC 

chip through the MPLS_MAC Interface module. However, since the tests are only done 

between two physical nodes, where there is no real service multiplexing happening, 

only one system clock is applied for the whole FPGA system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2 Test Bed Architecture 

         After the APEXII FPGA devices on the two boards are programmed, Node A and 

Node B have been built and can then operate independently. They are plugged into the 

small LAN each with a unique MAC address. Currently there is no need to create any 

mapping between IP address and MAC address due to the lack of higher layer 

communication. Neither is the networking setting needed for now. This part of the task 

is only desirable in future work. Label switching is the only thing that needs to be 

checked here. So long as it can be seen at one node that an incoming packet with label 

A is transmitted onto the Ethernet again with a new label B, as expected, the tests are 

said to be successful. 
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Figure 5-3 The Mother Board 

        The motherboard of the development kits is a board that features an APEX™ 

20K200EFC484-2x device; 1 Mbytes (512 K x 16-bit) of flash memory; 256 Kbytes of 

SRAM (in two 64 K x 16-bit chips);on-board logic for configuring the APEX device 

from flash memory, etc. The APEX 20K200E device is in a 484-pin FineLine BGA™ 

package. It has 8,320 Logic Elements, 52 ESBs, and 106,496 RAM bits.  

        The 1 Mbytes flash memory chip is an Advanced Micro Devices (AMD) 

AM29LV800BB. It is connected to the APEX device so that it can be used for two 

purposes. Firstly, the flash memory can be used as general-purpose readable memory 

and non-volatile storage by the Nios processor implemented on the APEX device. 

Secondly, the flash memory can hold an APEX device configuration file that is used by 

the configuration controller to load the APEX device at power-up. For this project the 

flash memory is only used for the latter purpose. 

5.3.2 The Daughter Card 
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Figure 5-4 The Daughter Card 

        An EDK daughter card works fine with the motherboard and only one daughter 

card will be used along with one development kit in the test. However, a motherboard 

supports at most two EDK daughter cards that form a two-level daughter card stack. As 

illustrated in the figure above, the daughter card is a circuit board with the following 

components: 

- A Cirrus Logic CS8900A integrated Ethernet 10 Mbit PHY/MAC chip 

- A RJ-45 network connector with integrated transformer magnetic and Link/LAN 

LEDs 

- Three female connectors to mount the daughter card on the Nios development board 

- Three male headers for stacking two daughter cards 

- A 20 MHz crystal oscillator that is used by the CS8900A chip 

- All necessary resistors and capacitors 

        The EDK includes an SOPC Builder library component that provides all logic and 

I/O signals necessary for using the daughter card as the peripheral of an embedded 

RISC CPU. However, currently this is not used since in this case the MAC/PHY chip 

does not talk with the host CPU, but with the MPLS functional block through some 

hardware glue circuitry. 
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5.3.3 Introduction to the CS8900A 

        In the tests, only one EDK daughter card that located at the lower level of the stack 

is used. The main functional component on this daughter card is a CS8900A integrated 

PHY/MAC chip. The CS8900A chip presents an ISA-bus interface to the host CPU 

(here the MPLS functional block). The necessary electrical-interface signals are 

provided on the set of female connectors. These connectors are compatible with the 

expansion prototype connector groups on the motherboard. In this project, the daughter 

card is connected to the 3.3-V expansion prototyped connector group. 

5.3.3.1 CS8900A Work Mode 

        The CS8900A is a single-port Ethernet solution incorporating all of the analog and 

digital circuitry needed for a complete Ethernet circuit. It mainly includes: a direct ISA-

bus interface, an 802.3 MAC engine, integrated buffer memory, and a complete analog 

front end with 10BASE-T. 

        The CS8900A can work in both memory mode and I/O mode and the latter is the 

default mode. According to the way the Ethernet daughter card is connected to the 

motherboard, I/O mode is adopted for the tests. In this mode, the on-chip memory space 

of the CS8900A can be accessed through eight 16-bit I/O ports that are mapped into 

sixteen contiguous I/O locations in the host system’s I/O space. Therefore the interface 

only needs to have a 4-bit wide address bus and a16-bit wide data bus. However, since 

all registers are accessed as words only, the least significant bit of the address can be 

always tied to low. The CS8900A I/O mode mapping is shown as Table 5-1. 

        Receive/Transmit Data Ports 0 and 1 are used when transferring 32-bit transmit 

data to the CS8900A and 32-bit received data from the CS8900A Real traffic carrying 

information in practice is not concerned here. For fake MPLS traffic assumed to run 

between the CS8900A and the MPLS functional block, simple 16-bit MPLS labels can 

be used in the test. Therefore, though the MPLS functional block is designed for 32-bit 

traffic, it makes no difference if the higher 16-bit data are always assigned 0. Finally, 

because the CS8900A is designed optimally to work in 16-bit mode, the CS8900A is set 

to do 16-bit operations and thus only Port 0 is needed. 
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Table 5-1 CS8900A I/O Port Descriptions 

Offset Type Description 

0000h Read/Write Receive/Transmit Data (Port 0) 

0002h Read/Write Receive/Transmit Data (Port 1) 

0004h Write-only TxCMD (Transmit Command) 

00006h Write-only TxLength (Transmit Length) 

00008h Read-only Interrupt Status Queue 

000Ah Read/Write MAC_RAM Pointer 

000Ch Read/Write  MAC_RAM Data (Port 0) 

000Eh  Read/Write MAC_RAM Data (Port 1) 

 
        It is through the MAC_RAM Pointer Port and MAC_RAM Data Port that the 

MPLS hardware can access the internal registers of the CS8900A in I/O Mode. 

Whenever such an access is needed, the MAC_RAM Pointer has to be setup first by 

writing the MAC ram address of the target register to the MAC_RAM Pointer Port (I/O 

base + 0001Ah). Among the 16 bits written to the pointer port, the first 12 bits (bits 0 

through B) provide the internal address of the target register to be accessed during the 

current operation; the next three bits (C, D and E) are read-only and will always read as 

011b, thus any convenient value may be written to these bits; the last bit (Bit F) 

indicates whether or not the MAC_RAM Pointer should be auto-incremented to the next 

word location. The contents of the target register are then mapped into the MAC_RAM 

Data Port (I/O base + 000Ch). In most cases, MAC_RAM Data Port 1 is not used in this 

test, since most internal registers are just 16 bits wide.  

        For faster access, the internal Tx Command Register at MAC_RAM base + 0144h 

is mapped to TxCMD Port and the internal Tx Length Register at MAC_RAM base + 

0146h is mapped to TxLength Port. These mappings save the write needed to setup the 

MAC_RAM pointer for each normal internal register access. The interrupt Status Queue 

Port is not used in the tests since polling, instead of interrupts, is adopted to control the 

CS8900A.  
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5.3.3.2 CS8900A Configuration 

        Before any packet transmission and reception are possible, the CS8900A must be 

configured properly. Various configuration parameters have to be determined, such as 

I/O Base Address, Ethernet Physical Address, what frame types to receive, and which 

media interface to use. Usually this is done at power-up or software/hardware reset. All 

the parameters are fed into the internal configuration and control registers, which are an 

integrated part of CS8900A on-chip memory. Specific configuration parameters 

selected to carry out the real test are illustrated in section 5.5.  

5.4 Interface design 

       There is currently no microprocessor involved, so the CS8900A is controlled by the 

MPLS hardware through a dedicated interface circuit.  

5.4.1 Functions to Be Performed 

        The Ethernet frame header components, Destination MAC address, Source MAC 

address, Type/Length field, Payload, Pad and CRC are supposed to be provided before 

the packet can be sent to the MAC chip. Also, after being captured from the network 

side, the complete MAC frame is sent out by the CS8900A, without having the DA, SA 

and type/length fields removed. As described in Chapter 2, the MPLS label has to be 

inserted between the MAC header and the Layer 3 header. Only after the MAC header 

is stripped off, can the MPLS functional block begin processing the incoming packet. 

Meanwhile, only after the MAC header indicating the next hop is appended in front of 

the outgoing MPLS label, can the frame be sent to the CS8900A for transmission. 

Therefore, it is the task of the interface circuit to strip off the entire MAC header before 

transferring the received frame to the MPLS hardware and to encapsulate the layer 3 

packet before feeding it to the CS8900A. Dedicated registers are provided to hold the 

removed MAC header and packet type/length information that can be accessed by the 

MPLS hardware before the packet is finished processing. 

       An oscillator on the daughter card provides the CS8900A with a system clock of 20 

MHz, while the oscillator on the motherboard provides the APEXII FPGA device with a 
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system clock of 33 MHz. Asynchronous communications is required between the two 

devices. 

       Originally, the MPLS hardware was supposed to interface an Intel MAC chip 

IXF440, which only provides signals indicating the start and end of the packet instead 

of the packet length when outputting received packets, and requires the same signals 

from other circuitry while accepting packets to be transmitted. Due to some constraints 

on equipment availability, the Intel IXF440 was abandoned after the MPLS hardware 

design had been almost finished. Instead, the project used the Cirrus CS8900A chip for 

the tests later. In order to make the least modification of the MPLS function design, 

signals that are exactly the same as those from Intel IXF440 are need to be generated by 

the interface. Such packet delimiter signals also aid in some flag setting and clearing 

used by the Label Removing module, Table Lookup module and Label Binding and 

Switching module within the MPLS functional block.  

 

 

 

 

 

 

 

Figure 5-5 Block Diagram of the Interface Between MPLS and MAC 

       Since no higher-level software design for MPLS is done, it is impossible to have 

MPLS traffic generated by an ordinary desktop computer. A straightforward solution is 

to provide an internal MPLS packet generator within the interface module. This 
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5.4.2 Flow Chart of Interface Functions 

        Please refer to Figure 5-6. Since there is only one set of 16-bit bi-directional I/O 

pins for data transfer, the CS8900A chip can only transmit and receive packets 

alternatively rather than in parallel. The interface has to poll between the two states, 

transmit or receive, to decide what to do next. The default state after each reset is 

reception. In polling mode, the RxEvent register of the CS8900A at MAC_RAM base + 

0124h is checked repetitively until the bits indicating a complete packet reception are 

set. Then the RxStatus register at MAC_RAM base + 0400h and the RxLength register 

at MAC_RAM base + 0402h are read. Actually the RxStatus register contains the same 

value as that of the RxEvent register, and the CS8900A data sheet says that the former 

can be skipped if the latter has been read. However, in order to make sure that the 

receive buffer of the CS8900A can be released completely, the RxStatus register is 

always read. The number of reads needed to fetch the data of the whole frame can be 

calculated in the interface after the RxLength register is read. Then repetitive reads are 

performed by the interface to retrieve data from the receive frame location of the on 

chip memory of the CS8900A. 

        After the last byte of data is received, the interface can transit to the transmission 

state. If no packet has been transmitted yet since the last reset, the interface issues a 

transmit command directly to bid for buffer space of the CS8900A for the transmit 

frame data to be held. Otherwise, before the transmit command can be issued and the 

transmission state is timeout, the bits of the TxEvent register at MAC_RAM base + 

0128h are continuously monitored until the last packet has been transmitted by the 

CS8900A.  

         As part of a complete transmit command, the length of the packet is written to the 

TxLength port that is mapped to the TxLength register at MAC_RAM base + 0146h, 

immediately after the transmit command word is written into the TxCMD port that is 

mapped to the TxCMD register at MAC_RAM base + 0144h. After that the interface 

starts polling the BusStatus register at MAC_RAM base + 0138h to see if the bid is 

successful. If not, the interface issues the transmit command again; if yes, repetitive 

writes are performed to transfer the transmit data from the MPLS hardware to the  
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Figure 5-6 Flow Chart of Interface Functions 
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CS8900A. After the last byte of data is transferred to the transmit frame location of the 

CS8900A, the interface can enter the receive state again. 

        There are two situations requiring for special care. The first is that, after the 

transmit command and transmit packet length are written to the CS8900A, the 

CS8900A has to take some time to find out if it is now able to do the job. If the state 

changes too quickly, the packet to be transmitted has to wait until its next turn and the 

bid for transmit buffer space on the CS8900A has to be done all over again. Similarly, 

sometimes the MPLS functional block may not be ready at the beginning of the service 

turn for the reception state. If the state changes too quickly, the packet already waiting 

in the CS8900A has to wait until its next turn, too. Therefore, the system is designed to 

only leave the current state and enter the other one after some predefined time of 

waiting, which is set to be 8 clock cycles in the tests. 

        The second situation is that, during transmission there may be collisions on the 

Ethernet or something wrong taking place physically at the 10Base-T port; during 

reception, packets with bad CRC or illegal lengths occupying the buffer space on the 

CS8900A may prevent new valid packets from being received. These fault cases are 

irrelevant to the design and do not need to be handled right now, but they cannot be 

ignored, either. So by monitoring associated event bits and then setting some indicators 

accordingly within the CS8900A internal registers, the CS8900A can come out of such 

fault cases and go on with its regular operations. Therefore, the system will not be stuck 

in a dead cycle. 

        As shown in Figure 5-6, the operations that are required for the interface between 

the MPLS hardware and the CS8900A to perform are:  

1) Power on reset and wait for the CS8900A to finish its self-initialization; 

2) Configure the CS8900A with the required parameters for the tests; 

3) Before timeout, check if the CS8900A has successfully received any packet: If 

yes, go to 4); if no go to 7). If timeout, go to 7) directly; 

4) Begin reading RxStatus and RxLength registers;  
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5) Strip off the MAC header and calculate the number of reads to fetch the whole 

frame of data; 

6) Start reading the I/O data port repetitively for the number of times obtained in 

step 5) to free the receive buffer space on the CS8900A;  

7) If the CS8900A has not transmitted any packet since last reset, go to 9); If 

CS8900A has transmitted some packets, go to 8). If timeout, go back to 3); If 

none of the above happens, poll the TxEvent register to see if the last packet 

has been sent out successfully by the CS8900A. If successful, go to 9); if not 

successful, go back to 7);  

8) Issue a transmit command;  

9) Before timeout, poll the BusStatus register to see if the CS8900A has any 

buffer space available to hold the transmit packet, if it has, stay in 9); if not, go 

to 10);   

10)  Transfer the transmit packet to the CS8900A, and then go back to 3).  

5.4.3 Input/Output Signal Description  

 

Figure 5-7 16-bit I/O Write to the CS8900A [34] 
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Figure 5-8 16-bit I/O Read from the CS8900A [34] 

        As mentioned in the last section, the CS8900A should be visited asynchronously, 

which can be achieved by repetitively toggling the write/read enables. As shown in 

Figure 5-9, the clk input is assigned to the pin of the APEX device that is connected to 

the on-board 33.33 MHz oscillator. According to Figure 5-7, the io_w signal is designed 

to stay high for 120 ns at first and then go low for another 120 ns. During the time io_w 

is high, an address pointer pointing to the targeted internal register to be accessed is set 

and once io_w goes low, the data on the bi-directional data bus can be written into the 

register at the targeted address. Similarly, the io_r is designed to meet the timing 

requirement of the CS8900A, according to Figure 5-8. The time from address and sbhe 

active to io_r active is required to be at least 10 ns. To take advantage of the circuitry 

used for io_w generation, and satisfy this requirement, io_r is set high for the same 

amount of time (120 ns) as io_w. However, the time io_r has to stay low is longer than 

that of io_w, which is 250 ns in this case. 
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Figure 5-9 Interface Module Block Symbol, Prototype Name: mpls_mac_interface 

        The reset_in is connected to the hardware-reset pin on the motherboard, which 

drives the APEX FPGA device’s reset pin low when pressed. Thus this active low 

reset_in can reset both the MPLS functional block and the interface module residing in 

the APEX device. A NOT gate is connected to the reset_in to provide an active high 

reset signal for the CS8900A according to its requirement.  

        After each reset, the CS8900A checks to see if an external EEPROM is present 

through an EEDataIn pin. If the EEDataIn pin is high, an EEPROM is present and the 

CS8900A automatically loads the configuration data stored in the EEPROM into its 

internal registers. If EEDataIn is low, an EEPROM is not present and the CS8900A 

comes out of reset with the default configuration. Since no EEPROM is used in this 

project while the CS8900A must be configured in a certain way as wanted, there has to 

be 10 ms spent waiting for the CS8900A to finish its self concatenation before any 

writes to the internal control and configuration registers can be done. A hardware delay 

is used, though continuously polling a self-status register to check if an INIT_rdy bit 

becomes high is an alternative. The INIT_rdy bit goes high once the self-concatenation 

is done. 
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        The CS8900A works in 8-bit mode at power up but it has to work in 16-bit mode 

as required by this project, thus a sbhe signal fed to the CS8900A must be toggled to 

put the chip into 16-bit mode. Therefore after the hardware delay is ended and the 

INIT_rdy bit is checked to be also high, the sbhe line is toggled once and then always 

kept low until the next reset or power down. Before the CS8900A finishes its self-

initialization, the sbhe is kept high to disable any read or write. 

        At this time, parameters for the tests can be written to the internal control/ 

configuration registers of the CS8900A. Once such configuration is done, the clk_en 

signal can be driven high to enable both the MPLS functional block and other part of 

the interface circuitry. 

        The bi-directional inout_bus of the interface module interfacing the CS8900A is 

16-bit wide. The CS8900A assumes a little-endian ISA-type system. However, the 

network byte order is always big-endian. Therefore to minimize manipulation of frame 

data in ISA systems, the CS8900A byte-swaps frame data internally (The control and 

status registers are not byte swapped). In this design, the data lines are byte swapped, 

which means the interface takes the 7-0 bits of data as 15-8 bits of data from the 

CS88900A. By swapping the data lines, only the configuration/control/status values but 

not the frame data have to be swapped. This is more efficient due to the fact that most 

of the reads/writes are done for frame data.  

        The tx_data_rdy, tx_data_valid and tx_data_in are provided by the MPLS 

functional block. So long as there are data waiting for transmission, tx_data_rdy is set 

high, while tx_data_valid is only high for half clock cycle when there are data on the 

bi-directional inout_bus [15:0]. This tx_data_valid from the Transmit Buffers module 

of the MPLS functional block is used by the interface to generate write enable signal 

io_w for data transfer to the CS8900A. One thing has to be stated is how the 

tx_data_valid signal works. Actually since the time duration of each access (either read 

or write) to the FIFO (either rx or tx) is defined as one time unit and since data will stay 

on the bus much longer than one time unit, to prevent the same data being processed 

twice, the tx_data_valid signal is needed to indicate the availability of the data. 
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       The rx_sop_out and rx_eop_out indicate the first and last one or two bytes of a 

received packet. They can stay high only when the tx_data_valid is also high. When a 

received frame is ready at the CS8900A and the MPLS functional block indicates that it 

is ready for packets processing, the MPLS packet generator can generate packets with 

certain MPLS labels as required. These MPLS packets then are transferred to the MPLS 

functional block through the interface. In other words, the actual received frame at the 

CS8900A is read but then discarded by the interface. In the case that the MPLS packet 

generator is not used, the actually received frame is sent to the MPLS functional block 

for label processing. 

        When the MPLS functional block does not have any room to hold more data or has 

no more data to transmit, the packet data generation or transfer (receive or transmit) are 

stopped right away and related information about the state is recorded for reference 

when this suspended state has to be resumed later. Each time when a packet is received 

or transmitted completely and successfully, the interface enters the other working state.          

5.5 The Tests 

5.5.1 Test Configuration  

        In this section, the real test procedure carried out is introduced. As mentioned 

earlier, the CS8900A chip has to be configured properly before it can receive and 

transmit packets. Table 5-2 shows the configuration parameters selected for the 

CS8900A in the tests. Other internal control or configuration registers not mentioned 

are set to keep their default values. 

Table 5-2 a) CS8900A Configuration for Node A 

Register 
Name 

Register 
Address 

Register 
Content Register Content Description 

RXControl 0104h 0180h Accept packets with broadcast address 
BusControl 0116h 1000h Not to use IOCHRDYE signal 
LineControl 0112h C000h Enable xmit and receive 
TxCommand 010b C900h Xmit only after delivering the whole frame 
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Table 5-2 b) CS8900A Configuration for Node B 

Register 
Name 

Register 
Address 

Register 
Content Register Content Description 

RXControl 0104h 0500h Accept individual packet with MAC address saved in 
the register at address 0158h. 

BusControl 0116h 1000h Not to use IOCHRDYE signal 
LineControl 0112h C000h Enable xmit and receive 
TxCommand 010b C900h Xmit only after delivering the whole frame 

 

 

        Nodes A and B are similar except that node A is configured to enable the MPLS 

packet generator while Node B is not. Node A and Node B are also configured with 

different RxControl parameters. This is to enable Node A to receive any packet 

appearing on the LAN and then generate MPLS traffic accordingly but to enable Node 

B to receive only the generated MPLS traffic destined for it. Node B will forward the 

received MPLS packets onto the LAN again after assigning new MPLS labels to them. 

Thus a complete MPLS packet transmission, MPLS labels switching and packet 

receiving can be demonstrated.  

        The lookup tables residing in two nodes are initialized at the same time when the 

FPGA devices are programmed. It is very convenient to update the data afterwards in 

software through a simple CPU interface or in hardware with the aids of proper required 

interfacing signals. If the updates only happen to lookup table contents instead of the 

lookup table scale, software updates are more appropriate. Otherwise, hardware updates 

are preferred. 

        Typical LSRs that support QoS requirements should be able to store up to 1,024 

labels at a time, requiring a 1,024×32 CAM block (The label is assumed to be 32 bits 

long). However in this project, no real routing is considered, and a final-stage 

commercial switch/router is not feasible for a single-chip implementation, thus it is not 

necessary trying to hold MPLS labels representing all kinds of EFCs. According to the 

test purpose, the lookup table is configured to have only 8 rows, just enabling switching 

between 8 sets of physical ports. 
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        Table 5-3 to 5-5 describe the contents contained within lookup tables of Node A 

and Node B respectively, which include the mapping between IP headers and local 

 

Table 5-3 Network Setting 

Parameters Nios1 Nios2 

MAC Address 14.13.12.12.16.15 14.13.12.12.16.14 
IP Address 192.168.129.216 192.168.129.215 

Gate Way IP Address 192.168.129.254 192.168.129.254 
DNS Server IP Address 192.168.129.254 192.168.129.254 
Subnet Mask IP Address 192.168.129.0 192.168.129.0 

 

 

Table 5-4 a) Node A Test Path Selection 

Mappings 
 

Input 
 

Output 
 

IP – MPLS 192.168.129.215 32’h0074 
MPLS – MPLS 32’h00A4 32’h0074 

MPLS - Outgoing Port 32’h00A4 3’b100 
 

 

Table 5-4 b) Node B Test Path Selection 

Mappings 
 

Input Output 

IP - MPLS 192.168.129.216 32’h00A4 
MPLS - MPLS 32’h0074 32’h00A4 

MPLS - Outgoing Port 32’h0074 3’b100 
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Table 5-5 a) Node A Lookup Table Configuration 

 

 

Mappings 

 

Input Output 

192.168.129.211 32’h0070 

192.168.129.212 32’h0071 

192.168.129.213 32’h0072 

192.168.129.214 32’h0073 

192.168.129.215 32’h0074 

192.168.129.217 32’h0075 

192.168.129.218 32’h0076 

IP - MPLS 

192.168.129.219 32’h0077 

32’h00A0 32’h0070 

32’h00A1 32’h0071 

32’h00A2 32’h0072 

32’h00A3 32’h0073 

32’h00A4 32’h0074 

32’h00A5 32’h0075 

32’h00A6 32’h0076 

MPLS - MPLS 

32’h00A7 32’h0077 

32’h0070 3’b000 

32’h0071 3’b001 

32’h0072 3’b010 

32’h0073 3’b011 

32’h0074 3’b100 

32’h0075 3’b101 

32’h0076 3’b110 

MPLS - Outgoing Port 

32’h0077 3’b111 
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Table 5-5 b) Node B Lookup Table Configuration 

 

 

Mappings 

 

 

Input Output 

192.168.129.211 32’h00A0 

192.168.129.212 32’h00A1 

192.168.129.213 32’h00A2 

192.168.129.214 32’h00A3 

192.168.129.216 32’h00A4 

192.168.129.217 32’h00A5 

192.168.129.218 32’h00A6 

IP - MPLS 

192.168.129.219 32’h00A7 

32’h0070 32’h00A0 

32’h0071 32’h00A1 

32’h0072 32’h00A2 

32’h0073 32’h00A3 

32’h0074 32’h00A4 

32’h0075 32’h00A5 

32’h0076 32’h00A6 

MPLS - MPLS 

32’h0077 32’h00A7 

32’h00A0 3’b000 

32’h00A1 3’b001 

32’h00A2 3’b010 

32’h00A3 3’b011 

32’h00A4 3’b100 

32’h00A5 3’b101 

32’h00A6 3’b110 

MPLS - Outgoing Port 

32’h00A7 3’b111 
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MPLS labels, the mapping between in-coming MPLS labels and local MPLS labels and 

the mapping between local MPLS labels and local outgoing physical ports. Though real 

data flows from layer 3 do not exist in the tests, corresponding parts of the lookup table 

are still presented in this thesis. In practice, more dimensions in addition to the IP 

address can be considered for the selection of local MPLS labels to ensure specified 

quality of service. In order to show more clearly how an MPLS edge node works, the 

network setting is also listed though it is only needed in the future work. 

5.5.2 Real Testing Procedure 

        After the test equipment are all correctly configured, the desktop computer 

continuously sends out PING packets evenly at a frequency of about 0.3 ms over this 

small Ethernet LAN. MPLS node A is set to grab those broadcast packets. After 

receiving a PING packet, Node A generates a packet with a predefined MPLS label 

(00A4h) and can have the length of this generated packet equal to that of the received 

one. Then after table lookup, the packet bound with the corresponding new outgoing 

MPLS label (0074h) and the destination MAC address representing Node B is driven 

onto the LAN. PING packets can be defined with various lengths, but for simplicity, all 

the PING packets are set to be 60 bytes by default.  

        Now there is internally generated MPLS traffic running over the Ethernet. MPLS 

Node B detects the existence of traffic destined to it and then receives the packets. The 

received packet is first buffered at its corresponding receive FIFO within the MPLS 

functional block of Node B. Then it is passed onto the Label Removing, the Label 

Binding and Switching, and the Lookup Table modules for label processing, where a 

new outgoing label, 00A4h (representing Node A here but could be anything else in a 

practical), is assigned to the packet. Then the packet is buffered at the corresponding 

transmit FIFO waiting for its turn to get transmitted.  

        A Tektronix TLA 700 series logic analyzer is connected between the CS8900A 

chip and the APEXII FPGA device of Node B to record what is taking place on the data 

bus, address bus, and I/O read and write strobe enables. The logic analyzer can hold 

128K data samples, which is enough for the test demonstration. 



 103

 

Chapter 6 Test Results and Analysis 

6.1 Overview 

        In this chapter, test results gathered by a digital analyzer are presented. All test 

results were obtained from Node B, which was defined as the receive node in Chapter 5. 

The results show that the MPLS functional block works properly as expected.  

        One CS8900A Ethernet daughter card is mounted on the motherboard and 

connected to the FPGA device through the 3 pin headers for 3.3-volt prototype 

connector. Since data at the 10Base-T port cannot be probed (The pins are concealed 

within the package) and only the lower level of the two-level daughter card stack is 

used, it is natural to collect data through those pin header connectors preserved for the 

higher level daughter card that also locate between the CS8900A and the FPGA device 

but are not used for any function purpose in the design. Please refer back to Figure 5-3 

and 5-4 in the previous chapter. These pin header connectors provide the SD [15:0], the 

SA [3:1] (SA [0] has been set to be always low in the design), the I/O read enable IOR , 

the I/O write enable IOW  and the working mode selection signal SBHE , which have 

been indicated in Figure 5-7 and 5-8 previously. These are all the signals required by 

the CS8900A to achieve successful communication with other circuitry and therefore 

they must be probed to verify the correctness of the design. 

       Also, several internal signals within the MPLS functional block are obtained 

through the pin header connectors for the 5.5 volt prototype connectors on the 

motherboard, for they help to present a better view of the whole design. The following 

is a brief description of the signals probed for results demonstration: 

               data_valid --- the signal that tells the Rx Buffers module when the data on the 

rx_data [7:0] bus should be buffered. 

               rxreg_read --- the read enable signal for the Rx Buffers module to transfer 

packet for further label processing. 
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               rx_data [7:0] --- the lower 8 bits of the packet data transferred from the Rx 

Buffers module to the Label Removing module. 

               mac_sop_out --- start of the frame to be saved into the Tx Buffers module. 

               mac_eop_out --- end of the frame to be saved into the Tx Buffers module. 

               mpls_rdy --- the signal that indicates if the Label Binding and Switching 

module is ready to accept new packet. 

               turn --- the signal that indicates the service state of the interface module: high 

for transmission and low for reception. 

               save --- the signal that notifies the embedded microprocessor to accept the 

received data when it is high , and to ignore them when it is low.  

        Figure 6-1 exhibits 3 cycles of packet processing procedures. The time distance 

between two successive procedures on average is 0.3 ms, which is the time distance 

between two MPLS packets generated by the interface circuit. 

6.2 Test Result Demonstration and Simple Analysis 

        In the following sections, detailed illustration for each phase during the packet 

processing procedure is given. 

6.2.1 CS8900A Configuration  

        Upon each reset or power up, with the parameters descried in Chapter 5, the 

CS8900A is configured to work in 16-bit I/O mode, as required by the tests. The 

MAC_RAM base address and the I/O base address are configured by default to be 

0000h and 0300h respectively.  

        After the hardware delay inserted for the CS8900A to do self-concatenation is 

finished, the SelfStatus register at MAC_RAM base + 0136 is checked to see if its 

INIT_rdy bit has been set. The CS8900A should set this bit after the 10 ms hardware 

delay completes. After this the CS8900A and the MPLS functional block enter their 

ordinary operation modes. The results following prove that the configuration is effective 

and correct. 
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Table 6-1 Bit Definition for SelfStatus Register 

7 6 5 4 3 2 1 0 
INIT_rdy 3.3V Active 0       1                0       1                1       0 

F E D C B A 9 8 
      

EEPROM 
present  

 

010110: These bits identify this as the Chip Self Status Register.  

3.3v Active: If the CS8900A is operating on a 3.3v supply, this bit is set. 

INIT_rdy: If set, the CS8900A initialization, including read-in of the EEPPROM, is 

complete. 

EEPROMpresent: If the EEDataIn pin is low after reset, there is no EEPROM present, 

and this bit is clear. If the EEDataIn pin is high after reset, the CS8900A assumes that 

an EEPROM is present, and this it is set. 

6.2.2 Packet Receiving and Label Swapping 

        Figure 6-2 receive_full shows the whole duration that a complete packet is being 

received. It can be seen that the data_valid signal only becomes active after certain data 

have been received. Those data are MAC header information and are saved to dedicated 

registers instead of being transferred to the Rx Buffers module of the MPLS functional 

block. 

        Figure 6-3 (a) receive_0 shows how the packet reception begins. Node B is 

configured to only accept packets with the individual destination MAC address 

14:13:12:11:16:14. From this figure, it is clear that the internal register RxEvent at 

address 0124h (at point A in Figure 6-3 (a)) of the CS8900A is accessed by setting the 

address pointer at the MAC_RAM pointer port at I/O base + 000Ah; then the content of 

the RxEvent register, 0504h (at point B in Figure 6-3 (a)), appears at MAC_RAM data 

Port0 at I/O base + 000Ch, as expected. According to the bits defined within this 

register, it is learned that a packet with a destination address that matches the individual 

address found at 0158h has been received by the CS8900A successfully. 

         The frame data is then fetched by repetitively driving the IOR  low, starting from 

the address MAC_RAM base + 0400h. The first word read is still 0504 ((point C in 
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Figure 6-3(a)), which is the content of the RxStatus register locating at MAC_RAM 

base + 0400h. The RxStatus is mirrored from the RxEvent and the only difference 

between them is that when the RxEvent register is read, RxStatus will not be cleared 

while the RxEvent will. The second word read is 003Ch (point D in the Figure 6-3 (a)), 

which is the length of the packet.  The third word read is 1314h(point E in the Figure 6-

3 (a)), which is the lower 2 byte of the standard IEEE 802 MAC address. It is 1314h, 

instead of 1413h, because bits 7-0 and bits 15-8 of the data bus connected to the 

CS8900A has been swapped due to different byte orders used at network layer and the 

physical layer. 

Table 6-2 Bit Definition of RxEvent register 

7 6 5 4 3 2 1 0 
        0                 0                    1                      1                      0                 0 

F E D C B A 9 8 
     Individual Adr  RxOK 

 

000100: These bits identify this as the Receiver Event Register. When reading this 

register, these bits will be 000100, where the LSB corresponds to Bit0. 

RxOK: If set, the received frame had a good CRC and valid length. When RxOK is set, 

the length of the received frame is contained at 0402h. 

Individual Adr: If the received frame had a Destination Address that matched the 

Individual Address found at 0158h, then this bit is set if, and only if, RxOK is set and 

Individual Adr (Register 5, RxCTL, Bit A) is set. 

        From Figure 6-3 (b) receive_1, it can be seen that the destination address contained 

within the frame data is 14:13:12:11:16:14, which belongs to Node B. From Figure 6-3 

(c) receive_2, the source address 14:13:12:11:16:15 representing Node A can be seen. 

These two figures show that the packet is transmitted by Node A towards Node B and 

prove that the packet transmission has been successfully completed. 

        In both Figure 6-3(c) and Figure 6-3(d), the first word within the received frame is 

0074h, which is the MPLS label assigned to the packet at Node A. It is from this point 

of the frame that the data start being saved to the Rx Buffers module of the MPLS 

functional block. This explains the absence of data_valid ’s being high for the first part 

of the received frame. All the DA, SA and type/length data are saved to dedicated 
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registers for reference by the MPLS hardware when needed. However, these registers 

will all be overwritten automatically when the next frame start being received.  

        In Figure 6-3 (e) receive_4, the word 0100h (the actual data value is 0001h before 

byte swap) has been received and the whole receiving procedure is finished after the 

MissCounter register at 013Ch has been read. Its content turns out to be 0010h (shown 

in Figure 6-5 (a) save_to_mpls0), which means no packet has been missed. This read 

may not make much sense when nothing unexpected happens. However, since the 

CS8900A data sheet does not fully explain what should be done in polling mode to 

ensure that no event will be left unprocessed to cause some unknown problem, this 

MissCounter register is always read and cleared after each received frame is transferred 

to the MPLS functional block. 

        Still in Figure 6-3 (e) receive_4, the incoming label 0074h appears on the 

rx_data[7:0] bus for 120 ns and then the word 0016h lasts for about 1.9 us. This is 

because after the incoming MPLS label 0074h is read from the Rx FIFO and sent to the 

Label Removing module, the first two bytes of the frame content has to be read as well 

due to the internal structure of the FIFO function. Then there will be no more operations 

until a new outgoing label is found for this packet and bound to it. Label lookup 

behavior only needs 5 clock cycles to finish, which is much shorter than 1.9 us. 

However, due to the fact that packet length is always 60-byte long and the normal 

service interval lasts to perform exactly 16 reads/writes, the state always transits right 

after the incoming label is stripped off. This means that, the newly found outgoing label 

has to wait until the next service interval to be bound to the packet. That is why this 1.9 

us exists and during which the data on the data bus is only 0016h. After this 1.9 us, the 

real first word 0016h, of the packet data will be written to the Tx Buffers module 

immediately, following the newly bound outgoing MPLS label. 
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6.2.3 Label Binding and Packet Buffering  

         Figure 6-4 save_to_mpls illustrates the procedure whereby a complete packet is 

transferred from the Rx Buffers to the Tx Buffers and how the new MPLS label is 

bound to the packet. The individual steps making up this phase are presented in the 

following paragraphs.  

         In Figure 6-5 (a) save_to_mpls0, on the rx_data[7:0] bus, a new outgoing MPLS 

label 00A4h appears and is bound to the incoming packet that used to be with the MPLS 

label 0074h. After “00A4h”, the start of the packet to be forwarded is written to the Tx 

Buffers, frame data transfer from the Rx Buffers to the Tx Buffers can then be started. 

The figure shows that the mac_sop_out becomes high when the rx_data[7:0] bus has 

00A4h on it (point A in Figure 6-5 (a)). The whole packet cannot be transferred 

completely within one service interval granted to this port, thus it has to take several 

service turns before all the transfer can be done. 

         In Figure 6-5 (b) save_to_mpls1, it can be seen that mac_eop_out becomes high 

when the last word of the packet, 01h(point A in Figure 6-5 (b)), appears on the 

rx_data[7:0] bus, which signals the end of the current packet transfer from the Rx 

Buffers to the Tx Buffers. 
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6.2.4 Packet Transmission         

         The last phase demonstrates the packet transmission procedure, which is shown in 

Figure 6-6 transmit_full in a general view. Detailed explanation of each part of the 

figure is presented in the following paragraphs and figures. 

        In Figure 6-7 (a) transmit_0, the address 0128h (point A in Figure 6-7 (a)) of the 

TxEvent register is written to the MAC_RAM pointer port at 000Ah first; then at the 

MAC_RAM data port0 at address 000Ch, the content of the TxEvent register is read out 

and appears as 0108h(point B in Figure 6-7 (a)). The value of 0108h indicates that the 

last packet has been completely transmitted and the CS8900A is now ready to accept a 

new transmit frame storage bid issued by the MPLS hardware. This bid has to be done 

at the start of each transmit operation. The first step to issue the bid is to write the 

transmit command word (at point C in Figure 6-7 (a)) to the TxCMD register at I/O 

base + 0004h. The transmit command informs the CS8900A that the MPLS hardware 

now has a frame to be transmitted, as well as how that frame should be transmitted.  

 

Table 6-3 Bit definition of TxEvent Register 

7 6 5 4 3 2 1 0 
 0      0                 1                   0                       0                     0                 0      

F E D C B A 9 8 
       TxOK

001000:  These bits provide an internal address used by the CS8900A to identify this as 

the Transmitter Event Register; 

TxOK:   This bit is set if the last packet was completely transmitted. 

 

Table 6-4 Bit definition of TxCommand Register 

7 6 5 4 3 2 1 0 
TxStart         0                    0                    1                    0                     0                    1 

F E D C B A 9 8 
   InhibitCRC     

001001:  These bits provide an internal address used by the CS8900A to identify this as 

the Transmit Command Register; 
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TxStart:  This pair of bits determines how many bytes are transferred  to the CS8900A 

before the MAC starts the packet transmit process. 

               Bit 7   Bit 6 

                  0         0      Start transmission after 5 bytes are in the CS8900A 

InhibitCRC:  When set, the CRC is not appended to the transmission 

        Next, the transmit frame length is written to the TxLength register through the 

TxLength port at I/O base + 0006h to complete the bid for buffer space on the CS8900A. 

In Figure 6-7 (a) transmit_0, the length of the frame to be transmitted is shown as 

003Ch(point D in Figure 6-7 (a)).  

 

Table 6-5 Bit definition of Bus Status Register 

7 6 5 4 3 2 1 0 
TxBidErr 0        0                    0                    1                   0                     0                    1 

F E D C B A 9 8 
       Rdy4TxNow 

 

001001:  These bits provide an internal address used by the CS8900A to identify this as 

the Transmit Command Register; 

TxBidErr: If set, the MPLS hardware has commanded the CS8900A to transmit a 

frame that the CS8900A will not send. Frames that the CS8900A will not send are: 

1) Any frame greater than 1514 bytes, provided that InhibitCRC (TxCMD  

Register, Bit C) is clear; 

2) Any frame greater than 1518 bytes; 

Rdy4TxNow:  Rdy4TxNOW signals the MPLS hardware that the CS8900A is ready to 

accept a frame from the MPLS hardware for transmission.  

 

       After the complete transmit command has been issued to the CS8900A, the state of 

the BusStatus register at MAC_RAM base + 0138h is checked to see if the bid has been 

successful or not. In Figure 6-7 (a) transmit_0, the BusStatus Register at 0138h (point E 

in Figure 6-7 (a)) returns the value of 0118h(point F in Figure 6-7 (a)), which means 

that the CS8900A is now ready to accept the frame with the required length as shown in 
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the transmit command issued by the MPLS hardware. It is apparent that the 

encapsulated MAC frame is transferred with 14:13:12:11:16:15 as its DA (point G in 

Figure 6-7 (a)) at the beginning of the frame. In Figure 6-7 (b) transmit_1, the SA 

14:13:12:11:16:14 appears followed by the field of type/length, 003Ch. Then the 

following data transferred to the buffer of the CS8900A are the MPLS label 00A4h, and 

finally the remaining frame data. In Figure 6-7 (c) transmit_2, after the last word of the 

frame is transferred to the CS8900A, the interface module began polling the RxEvent 

Register at 0124h again, which represents the start of a new cycle of packet processing. 
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         The test results demonstrated above are exactly what were expected. The system 

was kept working continuously for one day and no disruption was found. Based on the 

appropriate test methodology described in the earlier chapter, the results prove that the 

CS8900A configuration is effective and correct, and the MPLS hardware design is 

successful.  

         In the tests, due to the fact that the packet length was defined to be always 60-byte 

long (standard PING packet length by default) and the normal service interval granted 

to each session was set to perform exactly 16 reads/writes, the service state would 

transit right after the incoming label is stripped off. In general, this kind of state 

transition can cause a bad effect on label swapping, such as data loss or wrong label 

being found and bound. According to the tests, no such errors occurred at the state 

transition (the most vulnerable situation in terms of packet lengths) and it can be 

inferred safely that under normal conditions (the packet length varies with time passing 

by and the state transition usually happens in the middle of the ordinary packet data 

transfer), the MPLS hardware can perform label processing just as wished. However, 

more tests can be carried out in the future to have MPLS packets generated with various 

lengths (simply by adjusting the PING packets’ lengths) to provide more facts that can 

prove the correctness of the design. 

        Due to the time and energy limitation, no simulation has been done to compare the 

cost/performance between software implemented and hardware implemented MPLS. 

However, the size and complexity of many problems have quickly exceeded the power 

of conventional computer hardware in general [40, chapter1]. Also, software 

instructions are executed by a hardware implemented microprocessor, it is theoretically 

safe to say that if the same functions used to be performed serial by software now are 

performed parallel by hardware, faster processing speed can be achieved.  For example, 

the process of packet receiving, label removing, table searching, label binding, label 

switching and packet transmitting can be completed within just 8 cycles by hardware. 

However, the process has to be translated into more steps and each step requires 

multiple  clock cycles to finish  in  software.  As  a  roughly  estimation,  pure  hardware 

 126



 127

implementation can bring a processing speed 5-10 times faster than pure software 

implementation in this project. 

        The whole design, including both the MPLS functional block and the interface 

between the MPLS hardware and the CS8900A chip, takes up to 7,143 logic elements 

(approximately 177,840 typical gates) and 113,500 RAM bits. With a 32-bit wide data 

path, the FPGA device supposed to operate at a system clock speed of 33.3 MHz, which 

was divided into 8 MHz only in the tests, can easily realize a system that provides 100 

Mbits/sec data transfer with the proper MAC chip. For FPGA devices with even higher 

system clock speeds, such as Altera Stratix series that are said to be able to operate at 

710 MHz, much faster data processing speed can be achieved. 

6.3 Special Considerations 

       The CS8900A needs at most 135 ns before it can drive valid data onto the ISA bus. 

It also needs the active-low write enable to stay low for minimally 110 ns for one data 

fetch to be finished. After the write enable becomes inactive and before it can be active 

again, it has to stay high for minimally 35 ns. Since the CS8900A has its own system 

clock and works asynchronous, other circuitry cooperating with it cannot work at a 

faster speed. In the tests the FPGA device was actually working at a frequency of 

around 8 MHz by dividing the 33 MHz frequency of the supplied system clock by 4. 

        As mentioned before, the MPLS functional block was designed originally to 

cooperate with the Intel MAC chip IXF440, whose on-chip memory can be accessed at 

a clock speed provided externally. For MAC controllers as this IXF440, one multi-port 

integrated interface module is enough for all the 8 physical ports to be served since 

there are separate system clocks for IXF440 Media Independent Interface (MII) and 

FIFO interface. Thus IXF440 on-chip FIFOs can be accessed through its FIFO interface 

several times faster than IXF440 accessing each 10Base-T port through its MII. This 

ensures that each physical port can be served to its full bandwidth requirement easily.  

         However, for MAC controllers such as CS8900A, the fastest data fetching 

frequency that can be obtained is about 4 MHz only because each valid read/write 

performed on the CS8900A requires 250 ns or longer to complete. If the 8 physical 
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ports receive their services one by one in turn and each at a constant frequency of 4 

MHz, taking the time each port waits in idle into consideration, the actual speed of data 

transfer service for either transmit or receive that each CS8900A can obtain is only 500 

KHz. This means the bit rate each port can accommodate is only about 8 Mbit/s (500 

K/s * 16 bit = 8,000,000 bit/s). Even though the traffic over a 10M Ethernet cannot be 

always at the peak of 10M bit/s, a node processing speed of maximally only 8 Mbit/s is 

far from acceptable. Therefore, when adopting MAC chips such as the CS8900A to 

build the test bed, a dedicated interface module for each physical port has to be adopted 

in order to transmit and receive packets at a speed without causing node processing 

performance decline. For an 8 port integrated system, 8 interface modules that are 

simply replicates of each other are required. Hence the feature of preventing any data 

loss caused by the service turn transition is still kept, which promises that each interface 

works independently. 

        Label processing service for each port was scheduled in a UD-WRR manner as 

described in Chapter 4, which took place completely within the MPLS functional block. 

The UD-WRR service scheduler was configured to work in its normal mode; the 

scheduler assumed that all the 8 ports existed and when they needed, they could be 

granted services regularly. Under the UD-WRR policy, when any one of the 8 

receive/transmit buffers (each corresponds to a fixed physical port represented by a 

CS8900A) is served, the other 7 buffers have to wait in idle. Thus, the absence of the 

other 7 buffers appears to the service scheduler like they just don’t have anything to be 

sent or have no more room to hold received data. The signals tx_want and mpls_ready 

signals from these 7 buffers are always driven inactive in order to enable the scheduler 

to only serve the port really that exists but to skip the service intervals granted to these 

absent ones who don’t require any service. Hence, the complete service process is 

exactly the same as when there are 8 actual ports, which includes: reading a packet from 

one of the 8 receive buffers; removing the incoming MPLS label; finding out a 

appropriate new outgoing label; binding this new label to the packet under service; 

buffering the packet bound with the new MPLS label into the transmit buffer and finally 

starting the service interval for the next object. 
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        Since there were only two CS8900A chips available to carry out the tests, the test 

results obtained were actually from the implementation containing only one interface 

module within each node. However, due to the design symmetry of the 8 integrated 

interfaces, each port is independent from the others and from the perspective of a 

particular physical port, the absence of other physical ports does not affect it.  

        According to what has been explained, if one port is proved to be served properly, 

the others can be inferred to be served in the same manner as well. Therefore, the tests 

performed on this one port implementation are theoretically convincing enough to 

demonstrate the performance of the integrated 8-port design. In fact, this saved a lot of 

extra money in building a test bed with 8 real physical ports, which does not necessarily 

provide more satisfying results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 7 Conclusions and Future Work 

7.1 Conclusions  

       In this thesis, MPLS standards and switch/router evolution were investigated first 

and then a novel idea named Real Packet Switching and its implementation were 

proposed. The RPS architecture can realize pipelined data transfer at the outputs. In the 

RPS, unlike the traditional crossbar switching that actually performs cell switching, 

packets are not segmented into cells at the inputs and then no cells have to be 

reassembled at the ouputs. Hence both processing time and hardware resources required 

by the traditional crossbar fabric can be saved. Over each connection, a packet can only 

be transfered upon the completion of the last packet.  

       The thesis then discusses the problem of the multiple queue service scheduling. 

Following a background introduction, an improved UD-WRR policy bearing several 

attractive attributes was proposed based on the WRR policy.  The effective and easy-to-

implement multiple queue service schedulng policy UD-WRR maintains a set of 

prioritized FIFO queueus to deal with the bandwidth allocation issue and diverse QoS 

guarantees in tomorrows' networks fairly and efficiently. After primary algorithm 

analysis was done, the two most significant parameter expressions for practical system 

implementations were developed.  

       Taking the full system throughput as “1”, a session i (assigned the weighted 

factor ) packet is always guaranteed a throughput greater than or equal toiw
∑ j j

i

w
w

. 

Also, the design is very flexible, since the values of ’s can be modified to achieve 

different system performance if QoS requirements are changed. Finally, data processing 

may be done continuously even if the packet data have not arrived completely when the 

packet length is provided at the beginning of the packet. 

iw
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        In fact, when the unit of is set to “bit” and each session has the same value as 

1, the UD-WRR policy reduces to the bit-wise round robin; when the unit of is set to 

“packet” and each session also has the same value as 1 (no matter how long the 

packet is), the UD-WRR policy reduces to the packet-based round robin policy that is 

usually implemented in software.     

iw iw

iw

iw

        By adopting the hardware and software co-design technique, MPLS protocol 

partitioning and scheduling for execution on both a general-purpose processor and 

stream-based hardware were carried out. Accordingly, the MPLS data forwarding plane 

was implemented in hardware in this project and the data routing plane was left for 

future software implementation. 

        Based on all the investigations and analysis, a primary MPLS node concerning 

only the lower 2 layers of the TCP/IP model and running the UD-WRR scheduling 

policy was implemented in reconfigurable hardware. 

        As the major part of the system, the MPLS functional block contains 6 sub-layer 

modules: Receive Buffers; Transmit Buffers, Label Removing, Label Binding and 

Switching, Lookup Table, and State Machines/Service Schedulers. Together with the 

MAC-MPLS-Interface design, the complete design took up 7, 413 logic elements 

(approximately 177,840 typical gates) and 113,500 RAM bits. The adopted FPGA 

device can operate at a clock speed of 33.3 MHz. With 32-bit wide data path, the 

system can easily realize 100 Mbit/sec data transfer with the proper MAC chip. For 

FPGAs with even higher system clock speed, such as Altera Stratix series whose system 

clock is claimed to reach the frequency of 710 MHz, much faster data processing speed 

can be achieved. 

        Though this project was mainly focused on digital hardware design, a fundamental 

reconfigurable MPLS router architecture adopting basic RHFEs that could perform 

reconfigurable MPLS functions was also presented. This architecture is flexible in 

system upgrades of both new protocols and service add-ons.  
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        To verify the correctness of the digital hardware design, appropriate tests have to 

be taken. As described in Chapter 5, a simplified test methodology was developed with 

limited available test equipment and was carried out successfully. The obtained test 

results demonstrated in Chapter 6 showed that all the circuits functioned properly as 

expected and realized line-speed switching that took over a great part of the burdens of 

traditional routing. 

7.2 Future Work 

        Before the reconfigurable MPLS router can be put into practical use, there is still 

much work to do to uniquely integrate the best features of work being conducted in 

software and run-time reconfigurable hardware.  

• More lower layer protocols to be supported 

        In this project, a separated MAC chip CS8900A was used. Part of future work is to 

design an on-chip system that supports different lower layer protocols such as Frame 

Relay, SDH/SONET and ATM, in addition to Ethernet. According to the way the 

network is organized, various types and numbers of integrated MPLS-MAC interfaces 

could then be combined. With RHFEs that integrate MPLS and different lower layer 

interfaces on a single FPGA chip, more hardware reconfigurability, faster processing 

speed, lower fabrication cost and smaller product size can be obtained.  

• Adoption of the embedded microprocessor  

        A RISC microprocessor is needed to run some low-level software routines to 

enable communication between layer 2 and higher layers. This microprocessor is 

supposed to be embedded within the same FPGA device and communicate with the 

MPLS functional block directly.  

       The embedded microprocessor suggested for the future use is Altera Nios 

embedded system. The Nios development kit allows for a Nios embedded 
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microprocessor to interface other user logic designs within an FPGA device via a 

software-controlled parallel I/O port or via a hardware-realized user-defined interface. 

        The routines run in this embedded microprocessor could be compiled using C/C++ 

compiler, and then be downloaded into the on-chip ROM of the Nios microprocessor 

residing within the FPGA device. 

• Routing Software Design and More Tasks 

        Currently no dynamic routing has been considered. In future work, software 

programs performing label distribution to set up, maintain and tear down LSPs 

according to various QoS and traffic engineering requirements are to be designed.  

        More tasks to be completed include: line cards printed circuit board design, the 

concrete way in which all kinds of line cards are connected, and the back-plane design, 

etc.  
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