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ABSTRACT 

 

In vitro production of embryos allows efficient management of herd genetics, reduction 

of disease impact, and if used in combination with other reproductive technologies it could aid in 

preserving the threatened genetic diversity of swine. In vitro maturation (IVM) is identified as a 

deficient step in porcine in vitro production (IVP) of embryo systems, which decreases the 

overall success of IVP. There are problems encountered in each step of IVP; chromosomal 

abnormalities and decreased cell numbers in blastocysts during in vitro culturing (IVC), and low 

monospermic fertilization rates during in vitro fertilization (IVF) may be a result of insufficient 

IVM. As an addition to maturation media, porcine follicular fluid (pFF) can affect IVM. 

Estrogen can be found in high concentrations in pFF; possibly contributing to the effects seen 

when pFF is added to IVM. The objective of this thesis was to investigate the effects of estrogen 

supplementation during IVM on IVP of porcine embryos. 

The first objective was to evaluate the in vitro maturation rates of porcine oocytes in two 

maturation media: protein-free and 10% pFF supplemented.  Nuclear maturation of oocytes was 

evaluated using Lamin/Dapi staining of oocytes matured in protein-free and 10% pFF maturation 

media to ensure the efficiency of the protein-free media. Protein-free and 10% pFF media mature 

oocytes at similar rates (91% and 89% respectively). 

The transcripts within the oocyte can be altered based on the in vitro maturation 

environment, so the second objective was to observe the expression of four chosen maternal 

effect genes: Basonuclin 1 (BNC1), Nucleoplasmin 2 (NPM2), Zygote arrest 1 (ZAR1), and 

Tripartite-motif protein 24 (TRIM24), using oocytes matured in 50 ng/ml, 100 ng/ml, or 1000 

ng/ml of estradiol 17-β (E2), 10% pFF, or protein-free maturation media.  Expression of maternal 

effect genes, was shown by the ∆Ct (cycle threshold) values, obtained from the difference 

between the Ct values of the normalizing gene (GAPDH) and the genes of interest evaluated 

through QRT-PCR. Values of ∆Ct were analyzed in place of fold change to avoid data 

manipulation. The ∆Ct expression of TRIM24 in 0 ng/ml E2 maturation medium and the 10% 

pFF maturation medium were significantly different (p<0.05) from the non-matured control, the 

other maternal determinant genes did not differ in their expression under any treatment. 
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We hypothesized that estradiol’s effects on IVM would be evident when analyzing 

cleavage and blastocyst formation rates. Cleavage and blastocyst formation rates were examined 

following in vitro fertilization of oocytes matured in 100 ng/ml E2, 10% pFF, or a protein-free 

maturation medium to investigate the effect of estradiol on IVP embryos. Cleavage rates for the 

E2 (n= 252; 60.2%) or 10% pFF (n= 256; 55.7%) additions to the maturation media did not differ 

(p>0.05) when compared to the protein-free maturation media (n=264; 54.9%). Both 10% pFF 

and E2 groups had significantly higher blastocyst formation rates (p≤0.05) than the protein-free 

maturation media (n=264; 3.5%), although no statistical difference was observed between the 

blastocyst formation rates of the 10% pFF (n=256; 12.4%) and E2 (n=252; 14.6%) groups. 

As a final study, the global gene expression of oocytes matured in a control protein-free 

media and the protein-free media supplemented with 100 ng/ml E2 or 10% pFF was investigated 

using microarray analysis. Genes were not differentially expressed among the matured groups 

with the outlined threshold values of -2 ≥ log2(fold change) ≥ 2, and adjusted p-value ≤0.05. A 

total of 16 differentially expressed genes between the non-matured and all matured groups 

exceeded this threshold. Of these genes, 6 are novel transcribed regions with evidence of being 

an embryonic EST, and 1 is a novel protein-coding gene. The other genes are FBJ murine 

osteosarcoma viral oncogene homolog (FOS), Vimentin (VIM), Capthesin C (CTSC), Selenium 

binding protein 1 (SELENBP1), Poly(A) binding protein cytoplasmic 1 (PABPC1), Tissue factor 

pathway inhibitor 2 (TFPI2), Cysteine-rich, angiogenic inducer 61 (CYR61), Acyl-CoA 

synthetase long-chain family member 6 (ACSL6), and Phospholipase A2 group VII (PLA2G7). 

In conclusion, successful nuclear maturation of oocytes derived of prepubertal gilt 

abattoir derived ovaries can be achieved without pFF or hormone supplementation. The 

expression of maternal determinant genes is not affected in a dose dependant manner, and 

removal of E2 or supplementation of pFF during maturation may alter the expression of TRIM24 

from the non-matured control; where no other maternal effect gene changes through maturation. 

Estradiol has a similar effect as pFF during in vitro maturation of porcine oocytes as seen by 

cleavage and blastocyst formation rates. And media does not affect the global gene expression of 

porcine oocytes, though there is a temporal control of gene expression through maturation.  
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CHAPTER 1: GENERAL INTRODUCTION 

 

Swine constitutes 40% of the worlds meat, making it the most important meat source 

globally [1]. However there is a pending threat to the genetic diversity of this important food 

source, with 151 breeds of pigs already classed as extinct and 132 more breeds at risk [2]. In 

2007 the Global Plan of Action for Animal Genetic Resources was adopted by all countries 

attending the International Conference on Animal Genetic Resources for Food and Agriculture; 

Canada was one on these countries [3]. As a result producers and researchers now face the 

challenge of reducing the loss as well as preserving genetic diversity for all livestock, including 

swine. Advances in reproductive technologies provide researchers and producers with the means 

of accomplishing the set task. In vitro production of embryos is one available technique which 

allows efficient management of herd genetics, reduction of disease impact, and when used in 

conjunction with other reproductive technologies will aid in preserving swine genetic diversity.  

In vitro production of embryos (IVP) is the creation of embryos outside of the female 

tract. It involves three separate and interdependent steps: In vitro maturation (IVM), in vitro 

fertilization (IVF), and in vitro culturing (IVC) of the embryos. Unfortunately IVP in swine is 

not as successful as in other livestock species [4]. There are problems encountered in each step 

of IVP: chromosomal abnormalities and decreased cell numbers in blastocysts during IVC [5], 

low monospermic fertilization rates in IVF [6], and incomplete maturation from IVM [7,8].  

Many of the problems in porcine IVP are associated with insufficient IVM; as IVM is the first 

step in IVP it is capable of influencing the success of all subsequent steps. 

Oocyte competence is described as the quality of the oocyte and its resulting potential to 

develop into an embryo and the subsequent live offspring. The competence of an oocyte is 

influenced by many different factors during IVM; including the source of the oocyte [9], the 

environment in which it is matured [10,11], and the medium it is matured in [6,12-15]. Different 

supplements within the IVM medium have proved effective at improving IVM rates and the 

subsequent IVP steps [16-20]. Porcine FF is one of the most common supplements to maturation 

media [12-14], factors with pFF improve nuclear maturation, cytoplasmic maturation, 

fertilization rates and embryo development [21]. There are an abundance of metabolites, 
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cytokines, growth factors and steroid hormones within pFF [22]. There is a wide range of steroid 

hormone concentrations in porcine follicles [23], and estradiol can be present in low and high 

concentrations depending on the age of the donor animal, the size of follicle and the stage of the 

estrus cycle [23,24]. Supplementation of maturation medium with estrogen has proven 

controversial, there are  reports of improved  maturation with E2 introduced in the first half of 

IVM in NCSU-23 maturation medium which contains pFF [25], and some of decreased 

maturation with large amounts of E2 introduced into modified Whitten’s Medium which also 

contains pFF [26]. The success of IVM can determine the success of the IVP system, and the 

effects of E2 during IVM should be defined. 

When comparing bovine in vitro and in vivo matured oocytes, differentially expressed 

genes were observed [27,28]. As the in vitro environment is known to affect the gene expression 

of oocytes, the maturation environment may also influence the expression of gene transcripts 

within the oocyte which have been correlated with oocyte competence [29,30]. Prior to the 

resumption of meiosis during IVM, oocytes undergo a growth phase. During this time they 

accumulate important  maternal RNA transcripts; when the oocyte resumes meiosis during IVM, 

transcription is not observed and the stored RNA and transcripts are used for maturation, 

fertilization and early embryogenesis [31]. This maternally derived RNA is the only known 

regulator of early embryogenesis before the embryonic genome is activated [32]. Maternal effect 

genes are responsible for storing some of transcripts and defects in these genes can lead to failure 

of embryogenesis [33]. The alteration of gene transcripts during IVM may then affect the quality 

of oocytes and the resulting success of IVP, as the stored transcripts are the only source of 

proteins during this phase.  

In vitro production of embryos is an appealing biotechnology for the conservation of 

swine genetic diversity. In vitro maturation is seen to influence the success of IVP, and the 

supplements within IVM medium contribute to this effect. Porcine follicular fluid (pFF) is 

commonly used as a supplement during IVM, and as a result high amounts of estrogen can be 

introduced into maturation medium. Estrogen has controversial effects on IVM success in pigs, 

and may be a contributor to the difficulties in porcine IVP. Unsuccessful IVP can sometimes be 

attributed to alterations in certain genes within the oocyte. As maturation media is seen to affect 



 

3 

 

some gene transcripts during IVM, estrogen may have further effects on gene transcripts within 

the oocyte which determines the oocytes potential to develop into an embryo.  

The objectives of this study were to examine the effects of estradiol on porcine IVM 

through maturation rates, cleavage and blastocyst formation rates, the changes in maternal effect 

gene expression, and the global gene expression using microarray. In vitro production of 

embryos may be improved with further understanding of estrogen’s influence during IVM; thus 

making IVP a feasible biotechnology to aid in the conservation of swine genetic diversity. 
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CHAPTER 2 

 

I. LITERATURE REVIEW 

 

2.1. Purpose of In Vitro Production of Embryos 

 

The advances in reproductive technologies have given many options to producers and 

researchers. The use of in vitro technologies shows much promise as it can be used to manage 

herd genetics more selectively, reduce the impact of disease on both herd and breed genetics, and 

conserve genetic diversity when combined with other reproductive technologies. The 

commercialization of in vitro production (IVP) of embryos has risen in other livestock species 

such as cattle; research is improving IVP in swine to advance in that same direction. 

Reproductive technologies, like IVP of pig embryos, can help producers to efficiently 

manage their herds and allow more control of the animals’ genetics.  Certain traits such as the 

feed efficiency, growth rate, and certain carcass characteristics allow a producer to reduce the 

cost of production [34]. Using IVP embryos could improve the accuracy and intensity of 

selection for these traits by using multiple embryos from a select donor in various recipients. As 

the female role in reproduction is a limiting factor due to the length of pregnancy, the production 

and use of more females through IVP and associated technologies such as embryo sexing, would 

increase overall swine production. 

With the constant threat of disease, IVP embryos reduce the risk of contamination from 

another herd through the processes involved in breeding. If there is an outbreak of disease, the 

genetic material of the herd can be preserved through the creation of IVP embryos. Other 

technologies, such as cryopreservation of IVP embryos, permit the genetic material to be stored 

for long-term use; this would protect genetic diversity. Piglets have been produced using sex-

sorted semen and IVP, with a similar rate of success (based on litter size and cleavage rate of 

embryos) as with using unsorted semen [35]. The use of IVP in combination with other 
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technologies such as cryopreservation of embryos and sex-sorted sperm for sex specific embryos 

increases the possible uses of this technology.  IVP using frozen sex-sorted boar semen would 

allow more efficient production of sex specific embryos [36] which are favourable as it will 

routinely produce more females. 

Cryopreservation of IVP embryos has been achieved, however the efficiency of the 

present protocols must be improved before it can become a tool for producers [37-39]. Embryos 

produced in vitro and then frozen would be more cost effective when transporting genetic 

material, both nationally and internationally [40]. The costs introduced through transportation 

and maintenance of a whole animal, the increased risk of disease, and the problems associated 

with acclimatization of the animal would be reduced through the use of IVP embryos. By 

refining the processes involved in IVP these techniques may become effective reproductive tools 

for the pork production industry. 

The use of IVP embryos has risen dramatically in the cattle industry; however this 

technology remains to be a small percentage of the hundreds of millions of cows which can be 

used [41]. It has been reported that 265,000 IVP embryos were transferred worldwide in 2005 

[42]. In 2007, 245,257 IVP bovine embryos were reported [43]. There were few reports on the 

number of porcine IVP embryos, and 64,147 IVP embryos of the reported 68,156 transferable 

embryos collected (both in vivo and in vitro) were produced in Korea [42]. There is speculation 

that these numbers are higher but are not reported, and the limited use of the IVP technologies is 

not due to the efficiency of the technologies itself [41]. In the swine industry, embryo transfer is 

actively being introduced with 30,000 embryos transferred in 2005 [42]. Many of these were 

experimental, but with improvements in IVP this technique could benefit the swine industry as it 

has the cattle industry. Currently porcine IVP of embryos remains inferior to other livestock 

species [4]; improvement is needed to increase the efficiency of this technology. 

 

2.2.Conservation of Swine Genetics 

 

 Pork constitutes the world’s most important source of meat, as it makes up 40% of the  
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worlds meat. Beef, although popular in North America, only constitutes 29% of the global meat 

used [1]. It would seem that swine would not be considered an at risk livestock species due to its 

popularity. It is not just the pure numbers of pigs which assign the risk status, but also the 

number within the breeds. There are an estimated 649 pig breeds being raised globally [2]. Also 

taken into account, 47 breeds are categorized as critical, another 85 have a risk status of 

endangered, and a total of 151 have already been classed as extinct [2]. Many of these pig breeds 

are found in Asia, and the importation of more standard breeds such as Duroc, Landrace, and 

Large White are replacing the indigenous breeds. The loss of the indigenous breeds is associated 

with the loss of genetic diversity of the species, and this makes swine a species in need of 

conservation. 

 The once diverse genetics of swine are being lost mainly due to standardized, 

economical, and efficient pig production systems. Globally farmers are choosing to raise breeds 

which will meet the demands of these production system [1]. Pigs do not produce any secondary 

products such as wool, or milk, and they do not provide power or transport. The only use for 

swine is for meat, thus selection of pigs is focused on that aspect; breeds which do not provide 

the most efficient production characteristics are disregarded.  The feed efficiency, growth rate, 

and carcass characteristics are current traits which producers select for as they provide an 

economic advantage, and other important characteristics can be neglected [34].  As well, some 

breeds posses more heritability of selected traits. Landrace and Large White pigs both posses 

heritability of back fat and muscle depth carcass characteristics [44].  While those traits are 

selected for, other traits such as disease resistance may be overlooked even though these traits 

are also heritable [45]. 

 As traits are selected the genetic diversity decreases within and between breeds with 

cross breeding. The level of inbreeding is rising with this artificial selection, and thus the 

potential for changing or losing allele frequencies is a concern for conservation. The population 

and incidence of inbreeding per generation is of concern for both Berkshire and Landrace breeds. 

While Duroc, Hampshire and Yorkshire are currently at an acceptable level, the rate of 

inbreeding is rising [46]. A report in Canada showed that the rate of inbreeding was not yet as 

high as in the United States [47]. Even with an underestimated rate of inbreeding, the trend 

should still be of concern to producers [47]. 
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 Producers face a challenge in reducing the loss of genetic diversity while maintaining 

performance. In 2007 the International Technical Conference on Animal Genetic Resources for 

Food and Agriculture was held in Interlaken, Switzerland. The countries which were present at 

the conference, including Canada, adopted the Global Plan of Action for Animal Genetic 

Resources. This plan  promotes the responsible  management and conservation of vital genetic 

resources [3]. As a result researchers face the challenge of preserving the genetic diversity which 

currently remains. There is a role for reproductive technologies for both producers and 

researchers to solve the current problems as well as prevent the loss of any more breeds. 

 

2.3. In Vitro Production of Embryos 

 

Production of in vitro embryos involves three subsequent steps: in vitro maturation 

(IVM), in vitro fertilization (IVF) and in vitro culturing (IVC). These in vitro processes are 

meant to mimic the processes in vivo, which result in an embryo. These steps will be discussed in 

more detail in subsequent sections of this thesis. 

 

2.3.1. IVM 

 

2.3.1.1.Nuclear Maturation 

 

Mammalian oocytes arise from the female primordial germ cells during foetal 

development. In porcine foetal ovaries, all the gametes are contained within nests before 

developing into the earliest form of the follicle, the primordial follicle [48]. It has been observed 

that 60 days post coitus only egg nests are seen within the fetal ovary, but by day 70 the number 

of primordial follicles equals the number of egg nests [48]. The number of egg nests declines as 

fetal age increases until none exist, and only follicles can be observed. The primordial follicle 
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contains a quiescent primary oocyte, which is surrounded by a single layer of flattened somatic 

cells. These somatic cells are presumed to be the progenitors of the granulosa cells in later 

follicles [49]. It should be noted that gestation length is only 115 days in swine; therefore the 

total amount oocytes for its lifespan have developed into primordial follicles before it is born. 

The primary germ cells proliferate via mitosis and enter into the first meiotic division, 

prophase I. Germ cells such as oocytes undergo meiosis to reduce their homologous chromosome 

pairs into haploid cells. For an oocyte to join with haploid sperm to create a diploid embryo the 

oocyte must also be haploid. The chromosomes condense and recombine to the diplotene stage 

of meiosis I where they then disperse and the oocyte, now called primary oocyte is arrested at 

this stage, surrounded by the somatic precursors to granulosa cells [50]. At the time that oocytes 

arrest in diplotene stage, folliculogenesis begins as the somatic cells surround the oocyte to form 

a basal lamina and thus form a follicle [51]. By day 70 post coitum primary follicles can be 

found within the ovary [48]. At birth more secondary follicles develop and increase to 30% of 

the present follicles at 90 days post partum, and tertiary follicles appear after day 90 [48]. Very 

few of the original primordial follicles ever develop into tertiary follicles which can ovulate and 

provide a competent oocyte [49]. 

The primary oocytes remain in prophase I arrest until puberty, at which point the oocytes 

enter a growth phase. As the growth phase nears completion, a variety of events occur within the 

oocyte; the transcriptome becomes quiescent, the nucleolus restructures, and there is a 

reorganization of cytoplasmic organelles [52]. The now fully grown oocytes are found within 

pre-ovulatory tertiary follicles, and in response to luteinizing hormone (LH) the dominant antral 

follicle continues to grow and the oocytes resume meiosis [53,54]. Oocyte arrested at prophase I 

can be identified by the intact nuclear envelope, the germinal vesicle (GV). The germinal vesicle 

breakdown (GVBD) is a clear sign of the resumption of meiosis. After GVBD, a metaphase I 

(MI) spindle forms and once all chromosome pairs have established stable microtubule-

kinetochore interactions, anaphase I of meiosis I begins. Continuing through meiosis, telophase I 

results in two diploid daughter cells, but one of the daughter cells does not move on through 

meiosis and instead forms the first polar body [55]. Meiosis resumes once again when the sperm 

enters the ooplasm, after another cell cycle arrest during metaphase II (MII). The oocyte’s 

haploid chromosomes form female pronuclei as the sperm head decondenses to form male 
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pronuclei. The resulting daughter cell is released to form the second polar body and meiosis is 

complete.  

Oocyte maturation is completed in phases; first acquiring the capacity to fuse with 

spermatozoon, then cytoplasmic maturation, which is followed by completing nuclear maturation 

[56]. Nuclear maturation requires the ovum to reach MII of meiosis. Nuclear maturation can take 

place in culture without the ovum ever achieving full competence [57]. It is a separate process 

from cytoplasmic maturation; thus as an oocyte which may be deemed competent based on 

nuclear maturation may not have the ability to be fertilized or have male pronuclear formation 

[58]. 

 

2.3.1.2.Cytoplasmic Maturation 

 

Cytoplasmic maturation entails reorganization of the oocyte’s internal structure, and 

accumulation of mRNA and proteins [59,60]. Measures of cytoplasmic maturation are 

intracellular glutathione (GSH) content, cumulus expansion, ability to be fertilized and the 

subsequent cleavage and blastocysts formation rates [4,61,62]. Oocytes which have attained 

cytoplasmic maturation, and have gained the ability to resume meiosis [63], can then be 

successfully fertilized.  

Mitochondria are important for oocyte metabolism as they are the cell powerhouses, and 

the number of mitochondria within the cell relate to the oocytes functional competence. Reduced 

numbers of mitochondria lead to abnormal distribution of the organelles during early 

embryogenesis [64]. Mitochondria are moved from their peripheral location in GV oocytes to the 

inner ooplasm in an even spacial distribution throughout maturation (in vivo and in vitro) 

[65,66].  During the maturation period of mammalian oocytes, mitochondria synthesize the 

necessary adenosine triphosphate (ATP) to synthesize proteins which will support the maturation 

processes and further embryo development [67].  The reorganization of mitochondria occurs 

most efficiently in oocytes with high developmental competence [68].  In most mammals, the 

ATP levels differ between morphologically good and poor oocytes as does the mitochondrial 
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relocation. Lack of evenly distributed mitochondria and low ATP content within oocyte can 

implicates poor developmental capability of the oocyte [67]. However, no significant differences 

in ATP content were found between oocytes matured in vivo or in vitro in the pig [69]. As the in 

vivo matured oocyte has higher competence than the in vitro matured counterpart in the pig, the 

reorganization of the mitochondria may be adequate in the in vitro derived oocyte.  

The ribosome is another cytoplasmic organelle that is reorganized throughout maturation. 

The oocyte of a primordial follicle is transcriptionally inactive and the nucleolus is composed 

exclusively of the granular portion, thus signalling an absence of ribosome activity [70]. As the 

oocyte resumes meiosis the activity of protein synthesis gradually increases, about three fold 

from the GVBD stage to the MI stage. But as the oocytes reaches the MII arrest the mRNA 

translation is once again at basal levels. The lack of rRNA transcription or ribosome production 

is caused by the absence of a functioning nucleolus [71]. 

The endoplasmic reticulum’s (ER) functions include lipid metabolism, protein folding 

and degradation, compartmentalization of the nucleus, regulation of the Ca
2+

 ion gradient, and 

membrane synthesis [72].  Oocyte activation during fertilization requires that Ca
2+

 be released 

via inositol trisphosphate (IP3) and its receptor, IP3R [73]. It is critical during maturation for the 

ER to undergo biochemical and structural changes for proper functioning of intracellular calcium 

regulation. The ER is observed to be uniformly distributed within the ooplasm of GV stage 

oocytes during an in vivo analysis of of mouse oocytes. The ER is found in cortical regions and 

accumulates in 1–2 μm wide clusters throughout the cytoplasm (except in the vicinity of the 

meiotic apparatus) the oocyte matures to the MII stage [74].  

Cortical granules, known for their role in fertilization, are derived from the Golgi body 

[75]. As oocytes reach the MII stage of maturation, the granules are found throughout the 

ooplasm, close to the plasma membrane. They are  strategically located to respond to 

spermatozoon entry and egg activation [57]. 

During the GV stage of maturation the organelles are spatially rearranged and organized 

by the cytoskeleton. The cytoskeleton forms a network within the ooplasm and nucleus, it allows 

organelles to move and reorganize within the membranes [76]. Microtubules are not detected in 

porcine GV oocytes. As maturation progresses to the stage of GVBD, where the nuclear 
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envelope begins to disintegrate, small asters of microtubules are observed in association with the 

nuclear material. The microtubules seen in conjunction with DNA have a continued presence 

throughout meiosis until maturation is complete at the MII stage. A cytoplasmic mesh of 

microtubules appears alongside the DNA associated network during IVM. Beginning in the 

cortex and branching into the inner cytoplasm, this network was observed at 24-28 h of IVM, but 

then fades. The final MII stage oocyte has no observable microtubules within the cytoplasm [59].  

Oocyte graded into high and low competence groups both displayed the DNA associated 

microtubule networks which account for the acquisition of nuclear competence, but not 

necessarily cytoplasmic maturation [59].  

As previously mentioned, cytoplasmic maturation entails reorganization of the oocyte 

internal structure, as well as accumulation of mRNA and proteins [59,60].  Expression of mRNA 

by the oocyte’s chromosomes is dedicated to transcription, storage and processing for further 

translation into proteins. The proteins expressed from this mRNA do play a significant role in 

maturation as well as the subsequent events of fertilization and embryogenesis. Therefore it 

extremely important for these proteins to be stored until they are utilized [77].  In general, 

mRNA is protected from  nucleolytic degradation through polyadenylation and remains stored 

until the signal for translation is generated by maturation and embryogenesis [78,79]. 

 

2.3.1.3. Protocols for in vitro maturation 

 

There are many steps and variations in an IVM protocol. Oocytes are selected based on 

different criteria and are introduced into chosen IVM media that has been supplemented with a 

variety of compounds including gonadotropins. Then the oocytes are incubated in a suitable 

environment for 40-44 h before being evaluated for IVF. Each variation is meant to simulate in 

vivo events to improve IVM success, but as a result there are many different protocols currently 

being used. 

Oocytes for IVM are generally obtained from slaughterhouse derived ovaries, the size of 

follicles from which the oocytes are aspirated from can influence the success of maturation. 
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Oocytes from larger follicles (5 mm in diameter or more) are more likely to develop into 

embryos following fertilization than oocytes aspirated from small follicles (less than 3 mm).  The 

exact diameter of follicle is hard to control for when aspirating follicles from many ovaries in a 

short amount of time, thus for consistency most protocols recommend using oocytes from 3 to 6 

mm in diameter [9]. 

 There are limited tests that can be performed on oocytes while maintaining their ability 

to develop into embryos; the morphological characteristics are most commonly evaluated as a 

measure of the oocytes potential competence. The appearance of the cytoplasm is one 

morphological criterion. It has been observed that cytoplasm which is heterogenous (granular) in 

appearance is more likely to develop into blastocysts following IVF. These results were obtained 

through subjecting both in vivo and in vitro matured oocytes with heterogenous and homogenous 

cytoplasm to subzonal sperm injections [7].   

The cumulus cell layers surrounding the oocyte are another suggested quantification for 

meiotic competence of the oocyte. Many protocols suggest that there be at least 3 layers of 

cumulus cells, however the presence of corona radiate cells are sufficient for the oocyte to 

complete maturation [80]. The co-culture of denuded oocytes (oocytes with no surrounding 

cumulus cells) with cumulus cells has proved effective as well. There are secretory factors 

originating from the cumulus cells that will act upon the oocyte, enabling successful maturation 

[80]. The expansion of the cumulus cells as well as the cumulus cell mass is an observable trait 

thought to signify cytoplasmic maturation.  A bigger cumulus cell mass enhances the maturation 

success, as does a larger cumulus expansion [80].  

An alternative to morphological criteria (which can be observer biased) is exposure of 

oocytes to brilliant cresyl blue (BCB). This staining method is a more quantitative measure of the 

oocytes competence. The BCB test assesses the intracellular activity of the glucose-6-phospahte 

dehydrogenase (G6PD), which is present in growing oocytes. As the oocyte finishes the growth 

phase and maturation there is decreased G6PD activity. BCB is a compound which gives a blue 

color to the oocytes which have matured, thus have less G6PD activity [81]. 

It is evident that porcine oocytes depend on follicular cells to generate signals which 

coordinate the growth and maturation of the oocyte [82]. And the common IVM protocols 
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attempt to mimic the signals that the oocyte receives in vivo. Intracellular GSH levels reflect the 

competence of oocytes, for example a high amount of GSH indicates successful maturation. 

GSH synthesis can be increased through cysteine supplementation of the IVM medium. The 

introduction of low molecular weight thiol compounds, such as β-mercaptoethanol, into the 

maturation medium has the same effect, increasing the blastocyst formation rate of fertilized 

oocytes as well as increasing the cell number within the blastocysts [16]. The supplementation of 

cysteamine has similar positive effects, increasing pronuclear formation and developmental 

competence of produced embryos [17]. Epidermal growth factor (EGF) is another addition to 

maturation media, whose effects are partially due to EGFs stimulation of GSH synthesis within 

the oocyte. EGF improves the developmental competence of blastocysts, which has been 

confirmed through subsequent embryo transfer and birth of piglets [18].  

The introduction of retinoic acid into IVM medium increases the blastocyst formation 

rate, another measure of the oocytes completion of cytoplasmic maturation. The inclusion of 5 

nm of retinoic acid is sufficient to improve the yield of porcine blastocyst production [19]. There 

are many amino acids introduced into maturation media with serums and FF. Glutamine, which 

is abundant in pFF, increased the rate of monospermic fertilization when included in IVM 

medium. The male pronuclear formation rate was also significantly increased, showing the effect 

of this amino acid on cytoplasmic maturation [20].  Furthermore, treatment of oocytes with 

estradiol has been shown to improve the rate of monospermic fertilization, blastocyst formations 

and blastomeres viability in in vitro produced embryos [25].  

Most of the aforementioned supplements are included in the common maturation medias 

(Table 2.1). However the common media also generally add pFF as well. Many studies have 

proven that pFF contains substances which improve the rate of cumulus expansion, nuclear 

maturation, and successful fertilization and embryo development [21]. Even with the positive 

effects of pFF, chemically defined media should be used to standardize the IVM protocols 

between laboratories [6].  There has been successful piglet production from in vitro matured 

oocytes using a chemically defined system, void of any animal derived proteins [15]. A 

gonadotropin-free chemically defined medium has been successfully used to matured porcine 

oocytes [83]. Meiotic resumption and progression to MII stage were accomplished when porcine 
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cumulus oocyte complexes were exposed to dibutyryl  cAMP and EGF-family peptides within 

the first half of IVM [83]. 

Gonadotropins are still regularly used in IVM protocols, either in the first half of IVM 

(the first 20 h) or throughout. Follicle stimulating hormone (FSH) and LH have beneficial effects 

for timing the resumption of meiosis. When treating sow cumulus oocyte complexes with FSH, 

either for the first 20 h or throughout IVM, there was enhanced cleavage of embryos following 

IVF [84]. Yet more positive effects were seen if FSH was introduced for the first 20 h of IVM, as 

there was a higher yield of blastocysts [84].  The effects of FSH on nuclear maturation were 

positive with supplementation for the entire IVM, with an enhanced nuclear maturation as well 

as cumulus cell expansion [84]. Meiotic resumption via gonadotropins occurs through their 

actions on the surrounding theca and granulosa cell layers in vivo, as oocytes lack gonadotropin 

receptors [85]. The first result of FSH supplementation is to slow the progression of the oocyte to 

GVBD, however after 20 h the retardation has decreased, and FSH supplementation accelerates 

meiosis so all oocytes reach MII at the same time [84]. LH is often supplemented along with 

FSH to resume oocyte meiosis [86].  

The environment in which oocytes are matured also influence the success of IVM.  The 

maturation and fertilization of porcine oocytes under low oxygen tension (5%) does not differ 

from those oocytes matured under high oxygen tension (20%) [10].  However, oocytes which 

have matured under high oxygen tension have better blastocyst formation rates [10]. In 

opposition, another report observed no effect on blastocyst formation, yet blastocyst cell number 

was increased in a low oxygen tension (5%) [11].  While the evidence is controversial, the 

environment in which the oocytes are matured does play a role in the success of IVM. 

IVM protocols consist of oocyte selection, maturation in media with or without 

supplements and gonadotropins, and incubation. While these steps are common to all protocols, 

there are many variations which results in many protocols. A defined protocol and media would 

decrease the variability between labs; this is appealing as it would make IVM more efficient for 

commercialization and conservation strategies. 
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Table 2.1: Components in Common Maturation Media 

Component (mM) TCM-199 

[12] 
NCSU-23 

[13] 
mWM 

[14] 
NCSU-37 

[13,87] 
POM 

[15] 

NaCl 116.36 108.73 68.49 108.73 108.88 

KCl 5.36 4.78 4.78 4.78 10.00 

CaCl2 1.80 1.70    

KH2PO4  1.19 1.19 1.19 0.35 

MgSO4∙7H2O 0.81 1.19 1.19 1.19 0.40 

NaHCO3 26.19 25.07 25.07 25.07 25.00 

Glucose 5.55 5.55 5.56 5.55 4.00 

Sodium lactate   25.20   

Sodium pyruvate   0.33  0.20 

Calcium lactate   1.71  2.00 

L-Glutamine 0.68 1.0    

Taurine  7.0    

Hypotaurine  5.0   5.00 

Penicilin 100 (i.u./mL) 100 (i.u./mL) 100 (i.u./mL) 100 (i.u./mL)  

Steptomycin 50 (i.u./mL) 30 (i.u./mL) 50 (i.u./mL) 50 (i.u./mL)  

pFF  10% 10% 10% 10%  

L-Cysteine 0.57 0.57 0.57 0.55 .60 

Calcium 

(lactate)∙5H2O 

    2.00 

BME amino acids      2% 

MEM non-essential 

amino acids  

    1% 

Gentamicin     0.01 

CaCl2∙2H2O    1.7  

D-sorbitol    12.00  

β-mercaptoethanol     50(µM)  

Insulin     5(mg/mL)  

Dibutyryl cAMP    1  
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2.3.1.4.Successful IVM 

 

Out of all the oocytes collected, few will generally attain competence. In porcine IVM, 

the nuclear maturation is quite successful, maturation rates of 70-95% have been seen based 

solely on nuclear maturation [88]. The ability of an oocyte to be fertilized shows minimum 

cytoplasmic maturation to allow embryonic development. Insufficient cytoplasmic maturation 

may decrease the competence of an in vitro matured oocyte., this can occur in 40% to 70% of 

oocytes matured [7,8]. The poor results in porcine IVM are then attributed to cytoplasmic 

maturation rather than nuclear maturation. A maturation rate of 70% has been observed in vitro; 

based on cumulus expansion (indicative of cytoplasmic maturation) and GVBD (evidence of 

nuclear maturation) [89]. In comparison to IVM rates in cattle [42] and sheep [90] where MII 

rates are 70-95% porcine IVM remains relatively inefficient.   

 

2.3.1.5.Problems with IVM 

 

Incomplete maturation of oocytes can be associated with lower cell number in 

blastocysts, decreased blastocysts formation, and an overall decrease in developmental potential 

[62]. There are certain factors within IVM that may contribute to these problems; the source of 

oocytes, asynchronous nuclear and cytoplasmic maturation as well as incomplete cytoplasmic 

maturation. 

Oocytes for IVM are recovered from the ovaries of slaughtered animals, and follicles of 

varying sizes are aspirated to obtain oocytes. The resulting pool of oocytes is possibly from 

animals at varying stages of the estrous cycle. The process of collecting oocytes from unovulated 

follicles and attempting to mature them under in vitro conditions may disrupt the balance of 

cytoplasmic and nuclear maturation rates within the cell [91]. The different conditions within a 

pre-pubertal and post-pubertal ovary had a great impact on the meiotic competence of in vitro 

derived oocytes [92].  During IVM there currently is a disturbance of flow in both nuclear and 

cytoplasmic maturation of the oocyte [93]. The nuclear maturation and cytoplasmic maturation 
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must be synchronized for an oocyte to be fully competent.  However, the in vitro matured oocyte 

is less synchronous than the in vivo counterpart, resulting in lower quality blastocysts [7]. The 

rate of nuclear maturation in vivo is equal to oocytes matured in vitro [94]. Therefore the 

asynchrony within the maturation processes, resulting in lower quality blastocysts, may be due to 

in adequate cytoplasmic maturation.  

 If the oocyte does reach MII, the possibility of being fertilized and developing into an 

embryo is low, incompletion of cytoplasmic maturation maybe the cause.  Inadequate conditions 

of IVM can lead to incomplete translocation of the mitochondria to the inner cytoplasm. A 

difference in mitochondria movement is seen between in vitro and in vivo derived oocytes [66]. 

The supplements within culture media are generally of animal origin, such as serum and FF. 

These supplements have the possibility of introducing unknown factors into the culture media, 

which can decrease the repeatability of protocol. 

 

2.3.2. IVF 

 

2.3.2.1.Fertilization 

 

A volume of 160-600 mL [95] of spermatozoa in seminal plasma is ejaculated into the 

cervix of the female to begin in vivo fertilization. Seminal plasma is a fluid composed of 

secretions from the tails of the epidydymal ducts and the accessory sex glands. The ejaculation is 

released in fractions, pre-sperm, sperm-rich, and post-sperm-rich. The pre-sperm primarily 

contains the secretions of the urethral, bubourethral, and prostate glands. The sperm dominates 

the sperm-rich fraction. The epidydimal secretions, which accompany the sperm, are diluted with 

more fluid from the seminal vesicle and prostate glands. The post-sperm-rich fraction does 

contain a few spermatozoa, but the majority of this fraction is composed of secretions from the 

seminal vesicles, bubourethral, and prostate glands. The bulbourethral glands secrete a floccula 

which coagulates the seminal plasma, and is commonly known as the “gel”. This fraction serves 

in vivo to retain all ejaculate within the uterus and prevent retrograde flow through the cervix 
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[96]. The order in which these fractions are released varies between boars, and the fractions 

make occur more than once. 

 After the spermatozoa have been deposited within the cervix, they are transported into the 

uterine lumen where the majority of the population are removed [97]. Hunter et al. reported that 

viable boar spermatozoa are transported to the oviducts of gilts during the pre-ovulatory period 

following displays of estrus. The spermatozoa which are capable of fertilization are accumulated 

in the caudal oviductal isthmus for 40-42 h prior to ovulation [98]. Spermatozoa have an 

interaction with the epithelium in the uterine tubal junction and isthmus, where they are stored as 

a reservoir prior to ovulation. The sperm which have contact with the epithelium maintain their 

membrane integrity, and following ovulation the plasma membrane in the head domain is eroded 

or broken as well as the acrosomal membrane [99].   

During the period prior to ovulation in which the spermatozoa are stored, the 

decapacitating factors present within the seminal plasma are removed from the acrosomal 

membrane of the spermatozoa. The exposed surface of the acrosome is capable of binding 

luminal fluids which extract lipids from the sperm plasma membrane, creating an enhanced 

membrane fluidity and reorganization of the sperm plasma membrane [100].  Bicarbonate, a 

stimulator of adenylyl cyclise, is one effector molecule capable of stimulating lipid scrambling in 

the lipid bilayer of the porcine sperm plasma membrane [101]. The augmentation of the lipid 

bilayer is considered to be an early sign of capacitation, which is required for fertilization.  

There is an alteration in the number of sperm which ascend into the tubes approximately 

2 h prior to pending fertilization [98]. There are three proposed theories governing how the 

sperm are released from the contact with the epithelium within the reservoirs in the caudal 

oviductal isthmus and uterine tubal junction. There is a counter current exchange between the 

ovarian vein and the tubal branch of the ovarian artery; progesterone is released in proportion to 

the number of ovulating follicles. This progesterone could release sperm which are binding to the 

endothelium in the reservoirs. With more ovulating follicles there is an increase in progesterone 

which progressively releases sperm from the endothelium until ovulation. The amount of 

progesterone releases a number of spermatozoa in proportion to the amount of oocytes, 

maintaining a low sperm:oocyte ratio [102]. A secondary means of regulating the release of 
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spermatozoa is the communication of molecular messages from the cumulus oocyte complex 

prior to ovulation [102]. Alternatively, the cumulus cell mass could reorient the trajectories of 

the spermatozoa via molecular gradient, thereby guiding the spermatozoa to the unfertilized 

oocytes [102]. 

While sperm are incubating in the sperm reservoirs,  MII oocytes ovulate from the 

tertiary follicles and are picked up though adhesion of the cilia of the infundilbulum to be 

transported to the ostium [103]. Adhesion between the cilia and the cumulus cells is essential for 

the cumulus oocyte complex to proceed to the ostium [104]. The large, expanded cumulus oocyte 

complex does not fit through the opening of the ostium, therefore it has to be “churned” to 

compact the cumulus matrix. Once the cumulus oocyte complex is small enough to pass through 

the opening of the ostium, it passes through to the lumen of the infundibulum and into the 

ampulary isthmus junction [103].  

As sperm are released from the reservoirs they travel to the ampullary isthmus junction of 

the oviduct where fertilization will take place. Sperm which have been hyperactivated through 

capacitation in the female tract, use the asymmetrical beating of their flagellum to escape the 

oviductal epithelium [105]. Sperm infiltrate through the expanded cumulus matrix of the oocyte, 

to the zona pellucida, with the help of a membrane bound Hyluronidase, PH-20 [106]. The zona 

pellucida, which is the extracellular coating of the oocyte, is believed to contain the species-

specific gamete recognition. The process of fertilization begins by binding the spermatozoa to 

the glycoproteins which surround the oocyte [107]. The zona pellucida is composed of three 

glycoproteins, referred to as zona protein 1, zona protein 2, and zona protein 3 (ZP3). ZP3 

possesses the capability to bind sperm with its serine/threonine linked ooligosaccharide chains 

otherwise known as O-linked oligosaccharides [108]. It has been observed that the acrosome 

reaction  releases specific components of the acrosomal matrix sequentially, exposing a potential 

substrate which may in turn stabilize the adhesion of the sperm to the zona pellicida [109]. A 

component of the mouse acrosomal matrix, sp56, has been indicated as such a substrate [110]. 

After the sperm bind to the zona pellucida of the oocyte, they penetrate the zona pellucida 

with help from the hypermotile movements of the flagellum and enter the perivitelline space. 

The sperm plasma membrane is exposed and has undergone some receptor changes following the 
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acrosome reaction which enable it to fuse with receptors on the oolemma (reviewed by [111]). 

This binding will stimulate a cellular pathway which increases transient intracellular  calcium, a 

positive messenger for cortical granule release (reviewed by [112]).  The cortical granules 

contain different substances which lead to a zona block to prevent polyspermy [113]. There are 

proteinases released from the cortical granules which modify the zona pellucida so it will not be 

receptive to sperm [114]. The newly formed fertilization envelope is also hardened through 

incorporation of Ovoperoxidase, an oocyte-specific protein released from the cortical granule 

[115,116]. N-acetylglucosaminidase has also been localized in the cortical granules, when 

released it deactivates the sperm binding sites on the zona pellucida [117].   

As soon as the sperm enters into the ooplasm there is a rapid cascade of events leading to 

the resumption of meiosis in the oocyte. The male and female nuclei decondense and form 

pronuclei. A microtubular aster forms in the area of the sperm neck, in combination with the 

maternal centrosomal material. The male and female pronuclei move together to the center of the 

oocyte to undergo syngamy, and create a zygote [118]. 

 

2.3.2.2. Current Protocols for IVF 

 

In vitro fertilization is the penetration of the matured oocyte by a spermatozoon outside 

of the female tract; the processes which occur within the tract are recreated in vitro. Spermatozoa 

are collected and introduced to in vitro matured oocytes.  However, the simple co-incubation of 

male and female gametes does not result in successful IVF; there are many steps involved in 

preparing the oocytes and spermatozoa for the interaction. The efficiency of an IVF system is 

determined by the preparation of spermatozoa through co-culture, specialized fertilization media, 

methods of introducing oocytes and sperm, as well as how long the oocytes and sperm should 

interact. Ideally the most repeatable and defined system would be adopted for more standardized 

protocol. 

Before the spermatozoon is introduced to the oocyte it needs to be prepared. Spermatozoa 

have been co-cultured with fluid components of the female tract in order to replicate the 
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incubation that spermatozoa undergo in sperm reservoirs. The pre-fertilization incubation of 

spermatozoa with pFF increases the success of IVF, through decreasing the number of sperm 

which bind to the oocyte and the number which penetrate, thus decreasing polyspermy [119]. In 

this study it was observed that sperm co-cultured with oviductal cells for a period of 2.5 h lead to 

fertilization rates of 94% and 85% in two separate trials. The co-culture reduced the incidence of 

polyspermy by 40% and 50% respectively. When the sperm was co-cultured for a period of 3.5 h 

with the oviductal cells it increased the reduction of polyspermy even more, to only 14% of the 

total number of fertilized oocytes, but the fertilization rate also drop to only 19% [120]. Taken 

together, these results indicate that incubation of spermatozoa with fluid components of the 

female tract have a positive effect on spermatozoa, possibly capacitating them prior to 

fertilization. However, as seen with the oviductal cell co-culture, the prolonged co-incubation 

decreases the effect, possibly over capacitating the spermatozoa until there few live or motile 

sperm.  

Much like maturation medium, the fertilization medium (in which oocytes are introduced 

to spermatozoa) needs to support both cell types as well as the physiological processes. There are 

four common media in which spermatozoa is introduced to porcine oocytes; modified Tris-

buffered medium (mTBM), IVF medium-199 (IVFm-199), Tyrode’s medium (TALP) and 

modified Whitten’s medium (mWM) (Table 2.2)[6]. The effects of mTBM, mTALP, and TCM-

199 on the acrosome reaction of the sperm, the cortical reaction, and zona pellucida hardening 

show the importance of choosing the appropriate media. Modified TBM increased the rate at 

which sperm underwent the acrosome reaction, while the percentage of fertilization and cleavage 

were higher in the other two media, mTALP and TCM-199. The percentage of monospermic 

fertilization was highest in TCM-199 and mTBM, and neither of the three media affected the 

zona hardening [121]. The hardening of the zona pellucida prior to fertilization is important as it 

may prevent some of the polyspermy, as it does in vivo, but is not necessarily mimicked in IVM 

[122]. IVF media is a critical element in successful fertilization; but as the above results show, 

there are currently no adequate media to mimic the in vivo fertilization. 

Caffeine is a common chemical in the aforementioned IVF media; it is introduced to 

simulate capacitation of spermatozoa. While caffeine does successfully induce capacitation, it 

also stimulates the acrosome reaction prior to the sperm binding to the oocyte [123]. As a 
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substitution to caffeine, hyaluronic acid can be introduced into IVF media without the negative 

stimulatory effects of the acrosome reaction, and it is reported to decrease polyspermy without 

decreasing the penetration rate [124]. 

To avoid variances in success, often seen with animal source fertilization media, a 

chemically defined porcine gamete medium (PGMtac4) was developed by Yoshioka et al. (Table 

2). The combination of theophylline, adenosine, and cysteine were used to  fertilize  oocytes 

using frozen-thawed ejaculated spermatozoa [15]. The appeal in using a chemically defined 

media for IVM extends into IVF; and the use of a chemically consistent media with frozen 

thawed semen in conjunction with this system would increase the repeatability of IVF protocols. 

The use of frozen-thaw semen decreases the inter ejaculation variability of semen, and also the 

effect of the individual boar [125] as one ejaculation can be frozen and used for many 

experiments. The use of the reagents in the chemically defined IVF media from Yoshioka et al 

has been shown to minimize the differences between batches of semen to each chemical [15]. 

In vivo, the number of spermatozoa interacting with oocytes is regulated so polyspermy is 

not a problem[102], however to reduce the incidence of polyspermy during IVF the number of 

spermatozoa interacting with oocytes needs to be controlled. The modified swim-up method 

reduces the occurrence of polyspermy and therefore yields higher quality embryos with 

decreased chromosomal abnormalities. This technique uses a test tube of any length, and a cell 

strainer which is inserted into the top of the tube. The sperm are centrifuged to the bottom of the 

tube in a pellet. The motile sperms will swim to the upper area of the tube, eventually reaching 

the restricted area on top of the cell strainer where mature oocytes await. The cell strainer may 

also contribute to the decrease in polyspermy as it decrease the available sperm binding sites on 

the oocyte [126].  
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Table 2.2: Components in Common In Vitro Fertilization Media 

Component (mM) 
TALP 

[127] 
mTBM 
[128] 

mWM 

[14] 
PGMtac4 

[15] 
IVF-M199 

 [129] 

NaCl 97 113.1 100 108.00 103 

KCl 3 3 4.7 10 5.37 

KH2PO4    0.35  

NaH2PO4 <1    0.88 

NaHCO3 25  25 25  

MgCl2∙6H2O <1  1.2   

Sodium pyruvate <1 5  0.20  

Glucose 5 11 5.5 1.00 5.6 

HEPES 10  22  25 

CaCl2∙2H2O 2 7.5   1.36 

BSA 6 (mg/mL)  7 (mg/ml)   

Penicillin 20 (20 u.i./mL)     

Lactic Acid (60% syrup) 3.68 (mL/L)     

Tris  20    

Lactic acid hemicalcium 

salt 
  4.8   

Pyruvic acid   1.0   

MgSO4∙7H2O    0.40 0.4 

Ca(lactate)2∙5H2O    4.00  

Theophylline    2.5  

Adenosine    1.00  

L-Cysteine    0.25  

Gentamicine    0.01(mg/mL)  

Polyvinyl Alcohol    3.00 (mg/mL)  

Glutathione     0.002 

L-ascorbic acid     0.003 

L-glutamine     0.68 

Sodium acetate 

anhydrous 
    0.61 

Myo-inositol     0.0003 

Antibiotic (100X)     1X 



 

24 

 

Much like the modified swim up method, the climbing over the wall technique (COW), 

places a barrier between the oocytes and sperm, effectively selecting for fit sperm. Spermatozoa 

are introduced to the outer ditch of a specialized chamber; oocytes are placed on an inner plate of 

the chamber. Like the modified swim-up method, only sperm with high progressive motility 

would be able to transverse the wall to interact with the oocytes. The decrease in available sperm 

to fertilize the oocytes, and selecting only high motility sperm in this method is seen to decrease 

polyspermy without decreasing the rate of fertilization [130]. 

To mimic the oviductal environment, one method of IVF uses cryopreservation straws as 

a site of fertilization. Only motile spermatozoa were allowed to swim to the site of fertilization 

and penetrate the oocyte. Compared to the traditional microdrop system, where oocytes and 

sperm are inserted into microdrops of IVF medium suspended within mineral oil at a pre-

determined ratio, the straw IVF system improved fertilization through increasing monospermic 

fertilization (68% straw vs 47% microdrop) while maintain efficient penetration rates (68%) 

[131]. Furthermore, the zygotes produced with the straw method displayed improved 

developmental competence [132]. 

The separation of motile and nonmotile sperm is a common obstacle for most IVF 

systems. One system uses a microscale “chip” to isolate the motile sperm. MISS, or microscale 

integrated sperm sorter, is a disposable polymeric microchannel device, which utilizes a gravity 

driven pump system to maintain a steady flow of medium regardless of the fluid volume. MISS 

has the ability to isolate motile sperm from both regular semen samples as well as samples which 

would generally be too small for traditional separation methods [133].  

 A final component to the IVF system is the co-incubation time of spermatozoa and 

oocytes. Older IVF systems had used overnight co-incubation. To reduce the number of 

polyspermic embryos the amount of time given for sperm to penetrate the oocyte should be 

reduced. Traditional 6 h incubation still results in polyspermy, and reducing this time to as little 

as 10 minutes will result to similar fertilization rates. Overall, the reduction in co-incubation time 

from 6 h to 10 minutes did not improve the efficiency of embryo production [134]. The high 

concentrations of sperm within minimal IVF medium is known to produce hydrolytic radicals 

which can damage oocytes, thus shortening the co-incubation time may further protect oocytes 
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[135]. However, if the incubation time is too short there may not be sufficient time for 

penetration. Extended co-incubation time may also age the oocyte resulting in abnormal 

fertilization. Encouraging earlier capacitation of sperm so fertilization may occur sooner and co-

incubation may be shortened [136].  There is a natural heterogeneity in the required time for 

spermatozoa to complete capacitation, and this will result in the need for different co-incubation 

times regardless of the chosen protocol [137]. 

IVF systems are meant to simulate the processes, which occur in-vivo.  The media and 

methods above summarize a few of the improvements in IVF. Many methods have been 

employed to reduce polyspermy and increase the fertilization rate of IVF systems, yet there is 

still no standard IVF system in place.  

 

2.3.2.3.IVF progress 

 

The conditions of IVF systems are constantly being studied and altered to create the in 

vivo environment in an in vitro system. While IVF is used regularly in research application, the 

use of IVF in pig production is lower than that of other species [4]. The efficiency of IVF in most 

laboratories, evaluated through a ratio of monospermic fertilized oocytes to total oocytes 

inseminated remains low (30-50%) [6].  There are two contributing factors to the low success of 

IVF; the oocyte and the sperm. 

Inadequate cytoplasmic maturation may be in part to blame for the frequent occurrence of 

polyspermy in porcine IVF [6]. If the oocyte is not competent,  fertilization  will undoubtedly 

fail. The source of sperm for IVF is especially important. In cattle there is a source effect of the 

inherent ability of the sperm to fertilize and create competent blastocysts. The differences may 

be due to the sperms’ reaction to capacitation factors in the IVF media, but the other explanation 

is that specific genes within are transmitted by the bull which determine success of embryonic 

development [138]. 

The developments of tools for embryology are not meeting the demands of those 

interested in using them [41]. Reproductive technologies such as IVF have the possibility to be 
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utilized by both producers and researchers, yet the technology is not readily available to 

producers. Several commercial IVF labs have been developed for cattle producers around the 

world, but the low success of IVF in pigs has delayed this opportunity for pork producers [139]. 

Research is focusing on solving the IVF problems in pigs to make the technology efficient for 

use by both the biotechnology and agriculture industries. 

 

2.3.2.4.Problems with IVF 

 

 The problems encountered in IVF technology are numerous, and interrelated. Polyspermy 

is a dominant problem in porcine IVF, and although it does occur in other species, it is especially 

prevalent in porcine IVF. Polyspermy results from more than one spermatozoon penetrating the 

oocyte’s cytoplasm, and the condition is considered pathological [140]. Polyspermic penetration 

generally results in the developmental failure of embryogenesis in mammals [102]. If the zygotes 

of polyspermic origin do develop into blastocysts, they can be recognized by fewer cells within 

the inner cell mass, as well as aneuploidy [141,142]. The status of the oocyte’s competence after 

IVM can determine the success of IVF, and it also contributes to the quality of embryos 

produced. The sperm introduced into an IVF system are under quality control, yet the variability 

in semen source is still capable of preventing the success of IVF.  

 There is a considerable variation in the rate of meiotic maturation during IVM, the 

varying degrees of maturation may be a factor in inducing polyspermy [143]. The source of 

oocytes may be a component in polyspermy, as polyspermic penetration is seen more often in 

oocytes derived from pre-pubertal gilts than sows [144]. The zona block occurs to prevent 

polyspermy [113], and it had been previously thought that IVM oocytes were inferior to their in 

vivo counterparts in that respect. Some researchers believe that this may be due to a slower zona 

blockage; the exocytosis of the cortical granules is thought to be slower in immature oocytes 

[145,146]. The zona pellucida is known to change throughout maturation and if the maturation is 

incomplete the zona pellucida may not be able to induce the acrosome reaction [147]. However, 

in vitro matured oocytes have been described as possessing the same abilities as in vivo oocytes 

to release corticle granules upon sperm penetration [148]. 
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 The number of sperm introduced to an oocyte is often regulated in an attempt to prevent 

polyspermy, and sperm is commonly introduced to oocytes at a specific concentration.  

However, the incidence of polyspermy does not show correlation with the sperm concentration, 

but rather the ratio of sperm:oocyte [149]. Intracytoplasmic sperm injection is the insertion of a 

single sperm into the oocyte. This technique has been used to decrease the polyspermic 

fertilization rate.  Unfortunately the results for embryo production with intracytoplasmic sperm 

injection are lower than for the existing IVF methods, so it cannot be used routinely ([150] and 

reviewed in [151]). The use of frozen thawed sperm has proven effective at lowering the 

incidence of polyspermy. This success is not due to the decreased motility of the frozen sperm, 

as the amount of sperm introduced is adjusted for the lower motility for IVF [152]. 

 Despite displaying similar characteristics, boar semen can penetrate oocytes at different 

rates depending on the source of the semen [153,154]. This effect could be because sperm 

sources react to sperm preparation procedures differently. IVF media supplements, such as 

caffeine, have varying effects on the sperm thus influencing the penetration rates. In some boars 

caffeine increased both the penetration rate and monospermic fertilization rate, while in others it 

increased penetration rate while also increasing polyspermic fertilization (90%) [155]. To avoid 

a boar effect such as this, frozen-thawed semen from a single source could be used to increase 

repeatability in experimental settings as the survival rate of frozen sperm is now above 50% for 

most boars (reviewed by [156]). 

 The use of fresh and frozen-thawed semen from Large White, Landrace, and Duroc 

boars demonstrated that there were significantly different penetration and polyspermic rates 

between breeds which led to more variability than the boar difference [152]. The success of 

freezing boar sperm also differs between boars, and while a boar may produce semen which 

freezes well, it does not necessarily mean it will have a positive effect on polyspermy [157]. 

Frozen-thawed ejaculates may also posses all the general criteria of a “good” sample, in that it 

has good motility and morphology, but does not have the potential to fertilize successfully [158]. 

When considering a single source of sperm, there is also variability within the ejaculations from 

a single boar introducing further inconsistencies [159]. 
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In vitro maturation can determine the success of IVF, as incompletely matured oocytes 

contribute to polyspermy. The sperm also contributes to this prevalent problem, and can be 

influenced by sperm preparation, as well as sperm origin. The source of sperm can vary the 

success of penetration rates and monospermic fertilization rates. All attempts to regulate these 

problems are further complicated by the quality variability in sperm characteristics as well as 

freezing.  

 

2.3.3. IVC 

 

2.3.3.1. Embryogenesis 

 

There are two descriptions of embryogenesis; the morphological changes which occur in 

the developing embryo, and the molecular changes. Structural changes during embryo 

development can be observed with microscopy. Other changes, such as the maternal to zygote 

transition are just as important, and in any way govern the morphological changes. 

 

2.3.3.1.1. Early embryogenesis 

 

When a sperm enters an oocytes through the zona pellucida and the membranes fuse, a 

small protrusion called the fertilization cone appears at the site of penetration [160]. This cone 

will play a role in future divisions of the embryo.  The fertilization of the oocyte signals the 

resumption of meiosis and a one cell embryo is formed containing haploid pronuclei from both 

male and female gametes. These pronuclei join and replicate their DNA to produce a 2 cell 

embryo through mitosis [31]. The embryo undergoes a series of cell divisions; each division 

produces a smaller cell known as a blastomere. The size of the embryo remains the same through 

theses division, with each resulting blastomere being smaller than those in previous divisions.  
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The first two divisions take place within approximately 50 h post-insemination. The third 

division resulting in a 5-8 cell embryo occurs 40 h later [161].  The 8-cell embryo undergoes 

further divisions beforecompaction, a process in which the all the viable blastomeres flatten and 

adhere together. This formation of tightly associated, communicating, and polarized cells is 

referred to as a morulla [31].  

The first cell division of the zygote is influenced by the fertilization cone, and it gives 

rise to the polarity in the cell. This polarity allows the development of the blastocoels on one side 

of the embryo and thus positions the inner cell mass on the other [162].  Blastomeres from the 

32-cell stage embryos onward will differentiate, each being programmed to develop into a 

certain cell type. The blastomeres on the outer surface of the embryo will become the 

trophectoderm of the blastocyst; and those on the inside  will develop into the inner cell mass of 

the blastocyst; further differentiating into the primitive endoderm and epiblast [162].  The fluid 

filled opening within the blastocyst known as the blastocoel is formed through sodium and water 

being pumped into the morulla and potassium being pumped out [60]. In the pig, the blastocyst 

forms at approximately 5 days in vivo, however IVP embryos can be seen to cleave at a slower 

rate than their in vivo counterparts [148,163]. Likely because of insufficient culture media [164], 

the IVP blastocyst forms at around 9 days after insemination [161].   

 

2.3.3.1.2. Maternal to Zygote Transition 

 

The maternal genes are the only known contributor to early embryogenesis in mammals 

before the maternal to zygote transition [32,165]. Abundant  mRNA and other proteins stored 

during maturation are released during the rapid divisions in early embryogenesis [166]. During 

the first divisions for the zygote there is a silencing of the embryonic genome, and then the 

embryonic genome takes over the development of the embryo as maternal mRNA is depleted. 

Regulation of the translation of maternal mRNAs stored within the growing oocyte is through 

polyadenylation in mammals [167]. Polyadenylation also is responsible for stabilizing the 

mRNA [168] and transporting it for translation at maturation or fertilization [169].  This process 

is conserved among mammals [33].  
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From the time of GVBD in the oocyte and through the first few cleavage divisions, RNA 

synthesis is not observed [170]. In mammals, protein synthesis during this phase is dependent on 

a deposit of maternally derived mRNA [171].  At the resumption of meiosis the maternal mRNA 

begins to degrade [31],  and transcription from the new zygotic genome occurs in two phases. 

The first phase of zygote activation occurs before cleavage [172], and is considered the minor 

activation. The minor activation is thought to occur primarily in the male pronucleus, and its 

transient transcription consists of a small set of peptides [172,173].   

The major activation occurs after the first few cell divisions [172]. Timing of this 

activation is species specific, occurring at the end of the third division in pigs (for review see 

[174]). The major activation involves reprogramming of the gene expression, and the generation 

of novel transcripts not expressed in oocytes (reviewed in [175]). To identify these novel genes, 

which are expressed specifically in the embryo, expressed sequence tags (ESTs) have been 

investigated and accumulated in a public sequence database [176].  This large database will 

provide the means to identify genes which function specifically in embryos and oocytes and to 

identify stage specific genes as well [176]. 

 

2.3.3.1.3. Maternal Effect Genes 

 

Many embryonic developmental failures have been attributed to a defect in the maternal 

to embryonic transition. Certain maternal effect genes, such as Mater or Stella will enable 

mitosis, thus allowing the embryo to cleave; if these genes are down-regulated the embryo would 

not develop into a competent embryo [33]. Four maternal effect genes of interest in 

embryogenesis are Basonuclin 1 (BNC1), Nucleoplasmin2 (Npm2), Zygote arrest 1 (ZAR1), and 

Tripartite motif containing 24 (TRIM24). 

BNC1  is zinc finger protein which is known to regulate rRNA [177]. Its absence from 

the oocyte leads to embryonic failure at the 2-cell stage in mice [178]. The presence of BNC1  

has been observed in mouse GV oocytes through to 2-cell embryos [178]. NPM2 is involved in 

nuclear and nucleolar reorganization within the oocyte and early embryo. A 1-cell NPM2 
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deficient embryo lacks normal nucleoli; and a 2-cell NPM2 deficient embryo has decreased gene 

transcription and translation [179,180]. Embryos with a NPM2 knockout can develop into live 

offspring; this may be due to compensatory mechanisms for the gene, meaning there is more than 

one gene within the embryo which has this function [179]. NPM2 has been found in GV oocytes 

and progressively through to 8-cell embryos in mice [179]. ZAR1 has been described in mice as a 

maternal effect gene capable of transcriptional regulation and an embryo lacking ZAR1 will stop 

developing at the 1-cell stage [181]. ZAR1 has been found in bovine GV oocyte to 4-cell stage 

embryos [182]. TRIM24 transcripts mediate the nuclear receptor, ligand-dependent activation 

function (AF-2) [183]. Certain genes within the first wave of genome activation are also 

regulated through TRIM24, showing this gene plays a role in modulating transcription in the 

early embryonic genome [184]. TRIM24 is  continually expressed in the GV stage oocyte of mice 

through to the blastocyst stage [184]. Each of these genes is active prior to the maternal to 

embryo transition and can affect both in vivo and in vitro production of embryos if altered. 

 

2.3.3.2.IVC Protocols 

 

 Often all of the presumptive zygotes are introduced into IVC, regardless of whether they 

were fertilized by one or more spermatozoa. As there is no consistent method of avoiding 

polyspermy during IVF, the selection of monospermic zygotes for IVC would increase 

successful blastocyst production. Visualization of pronuclei is difficult as porcine oocytes have a 

dark cytoplasm due to high lipid content.  One method for visualization of the pronuclei was 

developed by Han et al [185], centrifugation of the embryos  isolated the lipids of the cytoplasm 

which enabled visualization of the pronuclei. It has been shown that zygotes with two pronuclei 

developed better that those with either poly pronuclei or undetermined pronuclei [6]. This is one 

technique which removes the bias of polyspermy during IVC, allowing the efficiency of IVC to 

be evaluated. 

 Embryo culture media, or IVC media, has a large influence on developmental 

competency of embryos. Currently there are two commonly used IVC media, NSCU-23 and 

NCSU-37 (Table 2.3), both are considered successful for the culture of IVF embryos [13]. Both 
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media contain the basic components known to affect embryo culture, salts and energy substrates. 

The amount of NaCl was found to have more effect on blastocyst formation rate that the overall 

osmolarity of the IVC medium, which demonstrates the importance of salts in IVC media [186]. 

Culturing embryos for the first 2-3 days in a medium supplemented with pyruvate and lactate 

yielded higher blastocyst formations rates than culturing in either pyruvate and lactate, or 

glucose for the entire IVC period [11].  Amino acids also play a role in supporting embryo 

development. The addition of glutamine, either alone or in conjunction with glucose will support 

embryo development to the blastocyst stage [187]. The addition of taurine or hypotaurine is now 

considered an essential addition to IVC media. Supplementing media with either taurine or 

hypotaurine, or supplementing with both led to significantly higher blastocyst formation rates 

when compared to a control [188].   

As with either IVF or IVM media, IVC media is developed to simulate the in vivo 

environment, which for IVC is the oviduct. Media supplemented conditioned with porcine 

oviductal epithelial cells not only increased the blastocyst formation rate, but also the number of 

cells within the blastocyst [11]. Yoshioka et al [15] had developed media resembling pig 

oviductal fluid, porcine zygote medium 5 (PZM5, Table 3), which has proved effective for IVC. 

This PZM5 is used with the other chemically defined media, thereby reducing the inconsistency 

caused by proteins and substrates which vary from batch to batch, and increasing repeatability of 

results. 

The ratio of embryos to media also effects the development of embryos. By increasing 

the numbers of embryos cultured in the same drop of the traditional micro-drop system to a 1:2 

ratio with media, the blastocyst formation rate increased [189].  The Well-of-the-Well (WOW) 

system allows for a good ratio of embryos to media. The system employs the use of micro wells 

formed in the bottom of a well of a 4-well plate, with no mineral oil overlay [190]. When 

comparing the cleavage and blastocyst rates among the microdrop method, the open well 

method, and the WOW method, only the WOW method showed an increase blastocyst formation 

rate [191].  
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Table 2.3: Components of Commonly Used In Vitro Culturing Media 

Component (mM) NCSU-23 

[13] 
NCSU-37  
[11,13] 

PZM-5  

[15] 

NaCl 108.73 108.73 108.00 

KCl 4.78 4.78 10.00 

KH2PO4 1.19 1.19 0.35 

MgSO4∙7H2O 1.19 1.19 0.40 

NaHCO3 25.07 25.07 5.00 

Glucose 5.55 5.55  

Glutamine 1.0   

Taurine 7.0   

Hypotaurine 5.0   

Penicillin 100 (i.u./mL) 100 (i.u./mL)  

Steptomycin 30 (i.u./mL) 30 (i.u./mL)  

Insulin 0.57   

Β-mercaptoethanol 50(µM) 50 (µM)  

BME amino acids 2%   

MEM non-essential amino acids 1%   

HEPES   25 

BSA  4 (mg/mL)  

Polyvinyl alcohol   3.00 

Gentamicine    

Ca(lactate)2∙5H2O   2.00 

Sodium pyruvate   0.20 

CaCl2∙2H2O 1.7   

D-sorbitol  12  
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2.3.3.3.Successful IVC 

 

 The first confirmed occurrence of the competency of blastocyst produced by IVM, IVF, 

and IVC was reported by Mattioli et al. [192]. These embryos developed to the 2-4 cell stage 

before being successfully transferred and producing live piglets. The average blastocyst 

formation rate for inseminated oocytes is 27.9% (reviewed by [193]). It has been suggested that 

quality of IVP blastocysts is lower that the in vivo blastocysts.  Porcine embryos produced 

through IVM and IVF were cultured in vivo, in the oviduct of synchronized recipients, and in 

vitro for 2 days before transferring to a synchronized recipient were compared to in vivo 

produced embryos. The IVM-IVF embryos cultured in vivo had the same blastocyst formation 

rate as the in vivo embryos and the duration of time that the embryos were cultured in vitro 

decreased the blastocyst formation rate [194].  

 The production of piglets through embryo transfer following IVP is the only validation 

for the quality of blastocysts produced in vitro.  In 2001, a percentage of piglet production of 

2.5% was obtained by transferring 80 IVP embryos into 4 recipients, which resulted in one 

pregnancy and the birth of 2 live piglets [144]. In 2002, 150 blastocysts were transferred into 3 

recipients, which resulted in 3 pregnancies, and the birth of 19 piglets total [11], this was a 

12.6% piglet production. In 2011, the transfer of 18-25 blastocysts per recipient into 11 

recipients had 11 pregnancies, and a 26.6% piglet production [195]. Taken together, these studies 

show an acceptable piglet production rate for in vitro technology, but are far from those rates 

obtained in vivo. 

 

2.3.3.4.Problems with IVC 

 

 Abnormalities are seen in both in vitro produced embryos and in vivo produced embryos. 

It is reported that 7.3% of in vivo derived embryos have abnormal morphology of chromosomal 

numbers [196], however this rate is much lower than that for in vitro derived embryos. 

Cytogenetic analysis of porcine IVP blastocysts showed that 40% of them displayed haploidy, 
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polyploidy and mixoploidy chromosomal abnormalities [5]. In vitro derived blastocysts are also 

prone to low cell numbers. Blastocysts with low cell numbers are also associated with 

chromosomal abnormalities, specifically polyploidy [5]. 

 The slow development rate of in vitro produced embryos contributes to low blastocyst 

quality. In one report, embryos were graded on day two of IVC into either a slow (2-cell), 

moderate (3-4 cell and 5-8 cell), and fast (>8 cell) embryos. The blastocyst rate was significantly 

greater in the moderate embryo group, and these blastocysts had many more cells per blastocyst.  

Embryos from the slow and fast group had a higher incidence of polyploidy [193]. 

 Chromosomal abnormalities in blastocysts have been attributed to polyspermy during 

fertilization [197]. Low blastocyst formation rates as well as a high incidence of polyspermy 

could be caused by poor quality oocytes or incomplete maturation [4]. To improve IVC the 

problems in IVF must be solved. The majority of problems related to IVF and IVC can be traced 

back to the first step of in vitro production of embryos, IVM. 

 

2.4.Follicular Fluid in In Vitro Production of Embryos 

 

Follicular fluid exchanges factors from the granulosa cells of the follicles as well as the 

circulatory system, to the cumulus oocyte complex. The components of FF are derived from the 

blood outside of the follicle through filtration of plasma [198]. Follicular fluid has an abundance 

of steroid hormones, growth factors, cytokines and metabolites [22]. There have been numerous 

studies demonstrating the effects of FF and its components on in vitro production of embryos, 

most focusing on the maturation promoting effects they have on oocytes. 

Table 2.1 summarizes the composition of popular maturation media; the majority contain 

FF. The addition of FF is a common supplement as it promotes nuclear maturation as well as 

cytoplasmic maturation during IVM.  When introduced into the first half of IVM, nuclear 

maturation rates increased. Cytoplasmic maturation was supported through IVM with FF as seen 

by the increase in cumulus expansion, a decrease in cumulus cell apoptosis, and an increased 

blastocyst formation rate following IVF and IVC [199]. The beneficial effects of FF during IVM 
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are further emphasized as male pronuclear (MPN) formation is significantly elevated following 

maturation with FF [200].  

The source of FF can determine its effect on maturation. Size of the follicle from which 

FF was obtained influences IVM. Oocytes matured in FF derived from large follicles (5-8 mm) 

displayed increased cumulus expansion, nuclear maturation, cleavage and blastocyst formations 

rates when compared to those matured in small (2-4 mm) follicle FF [201]. The age of the donor 

animal can also influence oocyte developmental competence, as evident by the resulting 

cleavage and blastocyst formation rates. Oocytes derived from pre-pubertal and adult animals 

were matured with FF from prepubertal and adult sources. Adult oocytes were affected by the 

source of FF, but pre-pubertal oocytes were not. When examined, the steroid content of the adult 

FF had significantly higher concentrations of progesterone and androstenedione [202]. The pre-

pubertal oocytes’ lack of reaction to the different FF source may have been due to its inability to 

respond to these steroids [202].  

The components of FF have been reviewed extensively [22], and some components may 

explain its effects on oocyte developmental competence as well as cumulus cell survival. 

Follicular fluid during IVM increases the penetration rate during IVF, including polyspermic 

penetration. Follicular fluid meiosis-activating sterol (FF-MAS) has been isolated as one factor 

in FF which increased in vitro oocyte maturation. FF-MAS usedduring IVM decreases the 

polyspermic rate, as well as the rate of oocyte degeneration [203]. Protection from oxidative 

stress is another function of FF, further preventing oocyte degeneration. Radical scavenging 

enzymes are found in abundance in FF, and the introduction of these during IVM increase MPN 

formation and post-fertilization developmental competence [204]. Plasminogen activators and 

plasmin are found within FF, exerting positive effects on cytoplasmic maturation during porcine 

IVM as well as fertilization and early embryo development in bovine IVP [205]. In maturation 

media without FF additions, there is supplementation with amino acids (Table 2.1). Amino acids 

are abundant in FF; Glycine, Glutamic acid, Alanine, Glutamine, and Proline are prominent in 

FF from follicles of all sizes [20]. Insulin-like growth factor 1 plays three roles in follicular 

regulation. Alone it regulates cumulus cell proliferation through paracrine actions, acting 

additively with FSH it controls granulosa cell proliferation. Synergistically acting with FSH, 

Insulin-like growth factor 1 induces steroidogenic activity of the cumulus cells [206]. 
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Maturation media is meant to support the maturation of oocytes; and as such the in vivo 

maturation medium, FF, is mimicked. The addition of FF is common in most IVM media, and 

certain factors found within FF have been introduced to IVM media to increase the competence 

of maturing oocytes. Among these factors which can influence maturation, steroid hormones 

such as estrogen, are abundant in FF [24]. 

 

2.5.Estrogens’ Effects 

 

Theca cells, in response to LH, secrete androgens, and these androgens reach the granulosa 

cells to be converted to estrogens via aromatization. The aromatase enzyme is present in the 

granulosa cells and is encoded by the CYP19A1 gene [207]. Granulosa cells and the cumulus 

oophorous are the primary site for androgen conversion to estrogen during folliculogenesis, and 

they are also present during IVM. In the granulosa cells, FSH will induce the aromatase activity, 

converting the theca cell androgens into estrogen [207].  

Follicle stimulating hormone is included in the basic maturation media. While its effects 

have been shown to increase competency it is through communication with the follicle and 

surrounding granulosa cells in the cumulus oocyte complex [208]. The communication between 

the oocyte and its surrounding cells allows the oocyte to attain competence, and also enables the 

oocyte to affect its surrounding cells. As an oocyte matures the steroidogenic activity of the 

cumulus oocyte complex changes. Immature oocytes may suppress progesterone production, but 

through maturation they lose this ability and instead gain the ability to suppress estrogen 

production instead [209]. The actual response to gonadotropins and resulting steroidogenesis 

may be attributed to the both the oocyte and cumulus cells. Without proper maturation, the 

control of the steroidogenesis may be lost and further embryonic development is suspended. 

Oocytes matured in vivo are exposed to a variety of substrates in the FF; among these is a 

high level of estrogen [24,210]. In some procedures, oocytes are matured in vitro in a 

combination of calf serum and pFF, both of which contain androgens and the corresponding 

precursors [211]. During IVM, the oocyte is surrounded by its cumulus cells and remaining 
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granulosa cells; the granulosa cells maintain the oocyte’s aromatizing capability. Aside from 

androgens found in calf serum and pFF, LH and FSH are introduced during IVM; allowing 

granulosa cells to acquire aromatization activity. The gonadotropins induce cumulus expansion, 

lessening communication between the oocyte and its cumulus complex by disrupting gap 

junctions, and allowing the oocyte to attain competence [212]. The gradual increase in estrogen 

during in vivo maturation is substituted with an abrupt introduction of a high concentration 

during IVM. The negative effect of estrogen on nuclear maturation has been observed in many 

species including swine [26,213]. In bovine IVM, the addition of estrogen to a serum free media 

decreased nuclear maturation and increased nuclear aberrations [214]. Although in white-tailed 

deer, the addition of estrogen during IVM was seen to increase the amount of oocytes which 

reached MII, but this effect was only seen in high graded oocytes [215]. 

Many studies have investigated the effect of estrogen on reproductive functions either 

through inhibition of estrogen or use of estrogen receptor knockouts. It has been suggested that 

both paracrine and autocrine functions exist between the surrounding follicular cells and the 

oocyte, thus influencing oocyte competency.  Mice lacking estrogen  receptor α maintain the 

ability to ovulate following an apparently normal folliculogenesis [216]. Also, mice lacking 

estrogen receptor β  still exhibit folliculogenesis [217]. Exogenous introduction of Arimidex 

(Anastrozole), an aromatase inhibitor, did not affect follicle development, ovulation and 

subsequent fertilization in mice [210]. In hamsters, rabbits and monkeys, folliculogenesis and 

ovulation were unaffected with treatment of Fadrozole, a non steroidal aromatase inhibitor [218]. 

With the inhibition of estrogen production due to aromatase inhibitors it showed that rising 

estrogen levels were not an important factor for maturation of the follicle [219]. It has been 

reported that estradiol was not necessary for follicular development in vivo, IVF, or IVC 

development of the embryo [210]. It has also been shown that estrogen and other steroids play no 

part in the nuclear maturation of oocytes in mammals [220].  

While estrogen has many known endocrine actions, it also can affect gene expression. 

Transcripts required for cell differentiation like Glycoprotein transmembrane nmb (GPMNB), 

which is downregulated and Cell division cycle associated 7 like (CDCA71) which is 

upregulated, are altered with exposure to estrogen [221]. In the granulosa cells, the expression of 

inhibin α and inhibin ßB [222] as well as cyclin D2 [223], is influenced by estrogen. Estrogen 
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has also been observed to enhance the expression of components within the insulin-like growth 

factor 1 pathway and its own receptor estrogen receptor β [224]. Transcripts which are found in 

mammary tissue of an estrogen receptor α knock out mouse are of some of the hundreds of 

transcripts influenced by estrogen [221]; these may have a similar influence in ovarian tissue and 

deserve further investigation within the oocyte.   

 

2.6.Gene Expression Analysis in Oocytes 

 

The analysis of gene expression in oocytes and embryos in mammals faces certain 

challenges due to the limited quantity of genetic material available, the difficulty in normalizing 

results, and the number of oocyte specific transcripts. While genome databases for mouse, 

human, and bovine models are increasing; the mapping of the porcine genome is still limited, 

which further complicates the analysis of gene expression in porcine oocytes. 

The primary issue in analyzing gene expression in oocytes is the minute quantity of 

material available. Obtaining oocytes for analysis may be difficult for in vivo studies using 

porcine models. It is estimated that an oocyte may contain only 2 ng of RNA and most 

transcriptome analysis protocols require 1000 times more RNA [225]. This requires 

amplification of cDNA produced using PCR. Through amplifying the cDNA to such an extent 

allows for more disturbances in the resulting product [226]. Another option is to amplify RNA 

using in vitro transcription using T7 RNA polymerase [227]. RNA amplification can be affected 

by both the polyadenalation status as well as the abundance of the mRNA [227]. The linearity of 

both amplification methods is of concern [225,226]. One way to reduce the amount of 

amplification needed is to increase the amount of RNA obtained by increasing the number of 

oocytes used. 

Oocytes have variable RNA content [225], the amount of RNA present is stage specific 

[228]. When using just one oocyte, or a group of oocytes, it is difficult to normalize expression 

values. The number of oocyte may be used as a control, or the use of a normalizing gene such as 

GAPDH can be effective as it has less variability and more reproducibility [229]. The use of high 
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throughput arrays has allowed tens of thousands of gene expressions to be compared among each 

other; however it also encounters the problems of normalization due to the differing expression 

of oocytes at different levels of development. In array analysis, data is often normalized to the 

median signal which assumes that RNA content is similar [227]. Another method is to provide an 

endogenous control, exogenous RNA can be added to the sample at the time of RNA extraction 

[227].  

  Oocytes differ from many somatic cells in that they possess oocyte specific transcripts 

that are dynamically regulated. Certain genes are specific to germ cells such as Growth 

differentiation factor 9 (GDF9), which regulates normal follicle development. GAPDH is located 

in the oocyte, yet it is responsible for regulating somatic cells surrounding the oocyte [230]. In 

the absence of GDF9, the follicle does not develop fully, and as a result the oocyte degenerates 

within the partially formed follicle [230]. A mouse oocyte lacking the oocyte specific gene 

mZP3, which encodes for one of the glycoproteins which form the zona pellucida, will lose 

connections with surrounding cumulus cells and the resulting zona pellucida free oocyte is 

infertile [231]. Maternal effect genes are a primary example of oocyte specific genes, as they are 

present in the oocyte and may affect fertility. The absences of these genes which are 

preferentially present in the oocytes have the ability to affect reproduction through 

embryogenesis [232]. 

 The Swine Genome Sequencing Consortium launched the whole genome sequencing 

project in 2006 [233]. The sequencing strategy uses shotgun sequencing of BAC (Bacterial 

artificial chromosome) clones and whole genome sequencing [234]. In 2009 a data release 

workshop was held by the funding agencies and Genome Canada in Toronto. The Toronto 

statement, which was released at this meeting, requires the producers of large genome 

sequencing data sets to release a statement describing their data set as well as their intent of 

analysis and publication of the data [235]. As so, current data sets have been released into public 

sequence repositories [234]. Sscrofa9 is the current assembly of the porcine genome and this data 

set was derived solely on BAC sequencing data [234]. Sscrofa10, which is a more complete and 

revised assembly, is currently being constructed using both the BAC sequencing data and the 

whole genome shotgun sequences [234]. A complete map of the porcine genome will allow more 

efficient analysis of the gene expression in oocytes. 
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2.7.Microarray in Porcine Reproductive Transcriptomics 

 

There has been a tremendous rise in the porcine transcription data available, and several 

methods have been used to build the existing genebanks. Specialized techniques such as serial 

analysis of gene expression (SAGE), suppressive subtractive hybridization (SSH), quantitative 

real-time PCR (Q-PCR), and microarray based techniques have been used identify expressed 

sequence tags (ESTs) and create cDNA libraries [236]. Currently there are a variety of 

microarrays being used to evaluate different aspects of porcine reproduction. 

Macroarrays are the predecessors to the microarray. They were used to evaluate tens or 

hundreds of genes, before the higher output microarray gained popularity. A 8009 cDNA probe 

macroarray evaluated the gene expression in porcine ovaries during luteinisation [237]. Human 

based microarrays are one option for researchers. A Human cDNA microarray was adapted for 

use with porcine testes tissue. This 3840 probe microarray successfully compared gene 

expression in pig testis with high and low levels of estrone sulphate [238].  UniGEM human 

chips with 7100-9100  cDNA probes were utilized in determining differential gene expression in 

ovaries of selected pigs [239]. Affymetrix developed a 23,937 probe porcine array, representing 

20,201 genes from the porcine genome. This Affymetrix GeneChip was used to evaluate the 

differential expression in oocytes derived from pre-pubertal and cyclic sows [240].  

Custom cDNA microarrays have been created for more specific analysis. The University 

of Missouri-Columbia EST projects created a pig reproductive-tissue specific 19,968 probe array 

derived from 27 tissue specific cDNA libraries from follicles, corpus luteum, embryos, oocytes, 

oviducts, endometrium, concepti, and foetal stages [241]. Gene expression of peri-implantaion 

concepti  during elongation was assessed using a 1016 probe custom cDNA array [242]. Genes 

differentially expressed in the endometrium during the oestrus cycle were identified using a  

>14,000 probe custom cDNA array [243]. Transcriptional profiling of porcine embryogenesis 

from the GV oocyte until blastocyst stage was done using a >14,000 probe custom cDNA array 

[241]. 

EmbryoGENE, a network that was created to investigate embryo development in 

livestock, has developed a porcine transcriptomic platform along with the bioinformatics tools 
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necessary for analysis. The porcine transcriptomics array platform recently became available for 

use with EmbryoGENE projects. Data generated from processing in excess of 1 million embryo 

and oocyte relate gene transcription sequences was used bu Gydle Inc. when developing this 

array. More than 43,000 embryo/oocyte specific porcine genes and gene variants are featured on 

this array, referred to as a 44K array [244]. This is a large amount of probes, each specific for 

evaluating differential expression in porcine embryos and oocytes, will aid in assessing the 

effects of in vitro culture and improving porcine IVP. 
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II. GENERAL OBJECTIVES AND HYPOTHESIS 

 

 The overall goals of the research conducted for this thesis were to improve in-vitro 

maturation and thus improve in-vitro production of embryos. The general hypothesis was that 

estradiol introduced during in vitro maturation would have a positive effect on oocyte 

competency, cleavage and blastocyst production rates, and gene expression within the oocyte. 

 

Specific Objectives and Hypothesis 

 

Objective 1 (Chapter 3): To determine if steroids influence nuclear maturation rates of oocytes 

being matured in vitro. 

 

Hypothesis 1 (Chapter 3): That maturation media void of steroids will have equal nuclear 

maturation rates as oocytes matured within medium supplemented with 10% pFF. 

 

Objective 2 (Chapter 3): To determine the effects of estradiol supplementation to in vitro 

maturation medium on cleavage and blastocyst formation rates, and if the effects of pFF 

supplementation within the media are due to estradiol. 

 

Hypothesis 2(Chapter 3): Estradiol-17β supplementation during IVM will increase the blastocyst 

formation rate equal to that of 10% pFF supplementation. 

 

Objective 3 (Chapter 3): To observe the effects estradiol-17β supplementation during in vitro 

maturation has on the expression of selected maternal determinant genes within the oocyte. 
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Hypothesis 3 (Chapter 3): There will be a difference in gene expression between non-matured 

groups and matured groups, and there will be a dose dependant effect of estradiol 17-β 

supplementation similar to that of 10% pFF supplementation. 

 

Objective 4 (Chapter 4): To evaluate the differential expression of porcine oocyte genes when 

exposed to estradiol 17-β during maturation.   

 

Hypothesis 4 (Chapter 4): Non-matured oocytes will have differential gene expression from 

matured oocytes. Groups treated with estradiol-17β and 10% pFF will have similar expression. 
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3.1.Abstract 

 

In vitro maturation (IVM) is often incomplete in porcine in vitro production (IVP) of 

embryo systems, which decreases blastocyst formation rates. As an additive to maturation media, 

pFF can affect IVM. Estrogen is found in high concentrations in pFF, and may be contributing to 

the effects seen when pFF is added to IVM. For this study, the effects of estrogen introduced 

during IVM were evaluated. Nuclear maturation of oocytes was evaluated using Lamin/Dapi 

staining of oocytes matured in protein-free and 10% pFF maturation media to ensure the 

efficiency of the protein-free media. The expression of maternal effect genes Basonuclin-1 

(BNC1), Nucleoplasmin 2 (NPM2), Zygote arrest 1 (ZAR1), and Tripartite-motif protein-24 

(TRIM24) were then evaluated using oocytes matured in 50 ng/ml, 100 ng/ml, or 1000 ng/ml of 

estradiol 17-β (E2), 10% pFF, or protein-free maturation media.  Cleavage and blastocyst 

formation rates were examined following in vitro fertilization of oocytes matured in 100 ng/ml 

E2, 10% pFF, or a protein-free maturation medium to investigate the effect of estradiol on IVP 

embryos. Protein-free and 10% pFF media mature oocytes at similar rates (91% and 89% 

respectively). The ∆Ct expression of TRIM24 in 0 ng/ml E2 maturation medium and the 10% pFF 

maturation medium were significantly different (p<0.05) from the non-matured control, the other 

maternal determinant genes did not differ in their expression under any treatment. When 

observing cleavage and blastocyst formation rates both the E2 and pFF additions increased the 

blastocyst formation rate (14.6% and 12.4% versus 3.5%) without altering the cleavage rates 

(60.2% and 55.7% versus 54.9%) from the control. The combined results from these experiments 

suggested that E2 has a similar effect as pFF during in vitro maturation of porcine oocytes. 
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3.2.Introduction 

 

The in vitro production (IVP) of porcine embryos is not as successful as in other 

livestock species and many challenges remain to be solved [4,6]. Poor embryo culture conditions 

contribute to the low number of viable embryos [245] and polyspermy can occur in 27% to 59% 

of fertilized porcine oocytes [134]. IVP embryos when compared to in vivo produced embryos 

often display chromosomal abnormalities, abnormal blastocysts development and decreased cell 

number within the blastocyst, and a change in the expression of genes related to mitochondrial 

function [93,146,246]. To increase the efficiency of in vitro maturation (IVM) of oocytes, 

cytoplasmic maturation and nuclear maturation must occur within the ovum for IVP to be 

successful [77]. Nuclear maturation requires the oocyte to reach MII of meiosis which can be 

attained through current IVM systems at rates of 75% to 85% [245,247]. On the other hand, MII 

can be completed through culture without the oocyte ever achieving full competence [57]. 

Nuclear and cytoplasmic maturation are separate events, although the processes do depend on 

one another [248]. Cytoplasmic maturation entails the accumulation of mRNA and proteins, 

reorganization of the oocyte internal structure, and changes in the oocytes metabolism [59,249]. 

The oocyte accumulates stable mRNA until the end of the follicular growth phase [71,77] and 

oocyte mRNA levels have been linked to the oocytes competence [29]. These oocyte transcripts 

can be influenced, during IVM, through supplementation of maturation media [29,250]. Without 

proper accumulation of maternal mRNA during cytoplasmic maturation, including maternally 

derived genes responsible for early embryogenesis, a fertilized zygote will not develop any 

further [77].  

In the pig IVM system, the use of porcine pFF in the maturation medium is proven to be 

effective, even with the inherent variability of pFF composition [6,201]. However, oocytes can 

successfully mature in a chemically defined medium in the absence of pFF [15]. The 

concentration of estrogen can be very high in pFF, with published values varying from 

approximately 8 ng/ml to 266 ng/ml [24]. This steroid does not appear to play a part in the 

nuclear maturation of oocytes in mammals [220]. However, the addition of estrogen to a serum 

free medium decreased nuclear maturation and increased nuclear aberrations in bovine oocytes 

[214]. Interestingly, some studies showed a positive effect of estrogen on IVM in cattle [251] 
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and sheep [252]. In porcine embryos, estrogen may have an inhibitory effect on the nuclear 

maturation of the oocyte [213]. Along with the known endocrine actions of estrogen, some gene 

transcripts required for cell differentiation like Glycoprotein transmembrane nmb (GPMNB), and 

Cell division cycle associated 7 like (CDCA71) are altered with exposure to estrogen [221]. For 

this study, we hypothesize that the addition of estradiol 17-β (E2), which is prevalent within pFF, 

can affect the maturation of porcine oocytes; and in turn influence the overall success of porcine 

IVP. 

 

3.3.Materials and Methods 

 

3.3.1. General Experimental Design 

 

All chemicals were obtained from Sigma-Aldrich Canada Chemical Company unless 

otherwise noted.  

 

3.3.1.1.Evaluation of nuclear maturation with protein-free IVM media 

 

Nuclear maturation of porcine oocytes was evaluated with the use of a protein-free 

maturation media. Cumulus oocyte complexes (COCs) were screened for grades 1 and 2 [253], 

those with evenly granulated cytoplasm and three or more layers of cumulus cells. COCs were 

conveniently assigned to a non-matured group, and groups matured in a 10% pFF, or a protein-

free maturation medium. The protein-free maturation medium was composed of Medium-199 

(12340-030, Invitrogen, Canada) with 0.1% polyvinyl alcohol (P8136), 3.05 mM D-glucose 

(G7021), 0.91 mM sodium pyruvate (P4562), antibiotics 1X  (15240-062, Invitrogen, Canada), 

10 ng/ml EGF (E4127), 0.57 mM L-cysteine (W326305, SAFC/Sigma, Canada), and 0.01 U/ml 

Lutropin-V® (Bioniche, Canada), 0.01 U/ml Folltropin® (Bioniche, Canada). The pFF was 

obtained from aspiration of antral follicles of pre-pubertal and mature gilts/sows and centrifuging 
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at 3000 X g for 15 min then collecting and filtering the supernatant with a 0.22 µm filter. 

Oocytes from the matured and non-matured control groups were denuded in 0.3% hyaluronidase 

(H3884) in Medium-199. The oocytes then underwent LAMIN and DAPI staining to evaluate the 

nuclear maturation rates (Fig 3.1). This was done in sequential biological replicates. 

 

3.3.1.2.Effects of estradiol and pFF addition on expression of maternal effect genes 

 

  Expression of maternal effect genes Basonuclin-1(BNC1), Nucleoplasmin 2 (NPM2), 

Zygote arrest 1 (ZAR1), and Tripartite-motif protein 24 (TRIM24) (Table 3.1) were evaluated 

before and after in vitro maturation of oocytes exposed to different concentration of estradiol 17-

β (E2758) or pFF (Fig 3.2). The grade 1 and 2 [253] COCs were conveniently allocated into 

groups of 40 for culture with the following added into protein-free maturation medium: 0 ng/ml 

E2, 50 ng/ml E2, 100 ng/ml E2, 1000 ng/ml E2, or 10% pFF. After maturation these oocytes and a 

non-matured control were denuded and stored at -80°C for RNA extraction. This was done for 

three biological replicates, with IVM being completed for each group on a weekly basis. Gene 

expression was evaluated using Q-PCR, comparing the matured groups to the control group. 

There were 3 replicates for each group and each was run in technical triplicate. 

 

3.3.1.3.Effects of estradiol addition on in vitro production of embryos 

 

Grade 1 and 2 COCs [253] were divided and conveniently assigned to a maturation 

group. COCs were matured in the protein-free maturation media containing either 0 ng/ml E2, 

100 ng/ml E2, or in 10% pFF (Fig 3.3). After IVM, the oocytes were denuded and underwent in 

vitro fertilization (IVF) and in vitro culturing (IVC). Cleavage rate was counted on Day 2, and 

blastocysts formation rate was counted on Day 9 (Day 0=IVF). This was repeated for a total of 

three biological replicates done sequentially. 
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Figure 3.1: Experimental design for the DAPI and LAMIN staining to determine meiosis status 

of oocytes. COCs were collected and after screening for grades 1 and 2, then were evenly 

divided into each treatment group for IVM with a minimum of 50 COCs per group; this was 

repeated for 3 biological replicates. 
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Figure 3.2: Experimental design for the analysis of maternal determinant gene expression in 

oocytes incubated in different conditions. COCs were collected and after screening for grades 1 

and 2, then the total amount were evenly divided into each treatment group for IVM. This was 

repeated for three biological replicates and the QRT-PCR was done in technical triplicate. 
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Figure 3.3: Experimental design for the evaluation of cleavage and blastocyst formation rates. 

COCs were collected and after screening for grades 1 and 2, then were evenly divided into each 

treatment group for IVM with a minimum of 50 oocytes per group for a total of three biological 

replicates.  
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Table 3.1: Primers and GenBank accession numbers for Maternal Determinant Genes. 

 

 

BNC1 : Basonuclin-1, NPM2: Nucleoplasmin 2, ZAR1: Zygote arrest 1, and TRIM24: Tripartite-

motif protein-24. bp: base pairs 
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3.3.2. Collection of oocytes and IVM 

 

Ovaries from pre-pubertal gilts were obtained from an abattoir and were transported to 

the laboratory in an insulated container. After washing the ovaries with physiological saline, 

follicles of 2-5 mm in diameter were aspirated using 18G needle and 5 ml syringe, and COCs 

were screened and graded. COCs were selected and transferred into a final maturation medium in 

one well of a NUNC 4-well plate (Thermo Scientific, USA); without mineral oil overlay to avoid 

absorption of steroids. The COCs were incubated in a 5% CO2, 5% O2, and 90% N2 humidified 

environment for 40 h.  

 

3.3.3. In Vitro Fertilization (IVF) and In Vitro Culturing (IVC) 

 

After IVM, IVF was completed using modified Tris-Buffered Medium (mTBM) [128] 

supplemented with 1 mM caffeine (C0750) and 0.4% BSA (Minitube, Canada). Fresh semen 

collected using the gloved-hand method was washed by centrifuging (500 X g for 4 min) three 

times with mTBM then re-suspended to the original volume in mTBM. Ova were introduced into 

the mTBM in a 4-well plate without mineral oil overlay followed by sperm at a concentration of 

1000 sperm cells per oocyte (Day 0). The cells were incubated for 6 h in a 5% CO2, 5% O2, and 

90% N2 humidified environment at 38.5°C. After IVF, the zygotes were then washed three times 

in a NCSU-23 [13] supplemented with 0.4% BSA culture medium (Zenith Biotech, USA). These 

zygotes were incubated in a 4-well plate without mineral oil in a 5% CO2, 5% O2, and 90% N2 

humidified environment at 38.5°C until evaluated.  

 

3.3.4. Lamin and DAPI Staining 

 

Oocytes were stained with DAPI following a modified procedure by Arnault et al., 2010 

[254]. Oocytes were washed in 1X Dulbecco’s phosphate buffered saline (DPBS; 
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14040,Invitrogen, Canada) + 5% fetal calf serum (CS; 10438034, Invitrogen, Canada) then 

partially denuded by washing in Ca++/Mg++ free DPBS (14190,Invitrogen, Canada).  Oocytes 

were pipetted up-and-down 80 times in 0.3% hyaluronidase for final denuding, following by 

three washes in DPBS + 5% CS then washed twice in DPBS + 0.1% PVA (polyvinyl alcohol). 

Denuded oocytes were fixed using 4% paraformaldehyde and kept at 4°C for a maximum of 1 

week. Fixed oocytes were washed with DPBS+ 0.1% PVA before the membranes were 

permeabilized using 0.5% Triton-X 100 in DPBS for 30 min at room temperature. Membranes of 

the oocyte were re-permeabilized with 0.05% Tween-20 in DPBS for 30 min at room 

temperature, then the oocytes underwent three washes in DPBS + 0.1% PVA. Permeabilized 

oocytes were incubated in DPBS with 2% BSA (heat shock fraction V) for 1 h at room 

temperature while shaking. The first antibody, mouse anti-lamin A/C (sc-7292,Santa Cruz, USA; 

1:300 dilution ratio) in DPBS + 2% BSA was introduced to the oocytes for 1 h at room 

temperature while gently shaking and then washed in DPBS + 0.1% PVA.  After three washes, 

the secondary antibody Alexa 488 labelled anti-mouse IgG (A11029, Invitrogen, Canada; 1:200 

dilution ratio) in DPBS+ 2% BSA was introduced to the oocytes at room temperature while 

shaking in the dark for 1 h. A final wash in DPBS+ 0.1% PVA of the oocytes was done before 

mounting the labeled oocytes using Vectashield Mounting Medium with DAPI (Vector 

Laboratories, Canada) and evaluated with an epifluorescence microscope. Following this 

labeling procedure the oocytes were individually classified as germinal vesicle (GV), germinal 

vesicle breakdown (GVBD), metaphase I (MI), or metaphase II (MII) (Fig 3.4). The rate of 

nuclear maturation was obtained by taking the ratio of MI and MII over the total number of cells. 

 

3.3.5. RNA Extraction, Reverse Transcription and Q-PCR 

 

The RNA extraction was done using Qiagen RNeasy Plus Mini Kit (74134,Qiagen, 

Canada). Immediately after extraction of the 40 oocytes, 10 ng of RNA was reverse transcribed 

using RevertAid™ H Minus First Strand cDNA Synthesis Kit (K1631, Fermentas Canada) using 

random hexamer primers. Q-PCR was performed using Brilliant SYBR® Green QPCR Master 

Mix (600548, Applied biosystems, USA), and the 20 pmol of primer per reaction listed in Table 
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3.1 (Alpha DNA, Canada), then run on the Stratagene MxPro 3005 Q-PCR machine. The 

temperature profile was 3 minute initial denaturation at 95 °C, then 40 cycles of 95°C for 20 

seconds, 59°C for 30 seconds, and 72°C for 1 min, with a final elongation of 72°C for 7 min. The 

house-keeping gene GAPDH was used as a reference and the level of other mRNA was 

measured in relation to GAPDH. PCR amplicons were sequenced and confirmed the gene of 

interest was amplified. 

 

3.3.6. Statistical Analysis 

 

For the nuclear maturation experiment, a 2-sample test for equality of proportions with 

continuity corrections was used. For the expression of maternal effect genes the ∆Ct (cycle 

threshold) values obtained from the difference between the Ct values of the normalizing gene 

(GAPDH) and the genes of interest, were compared among treatment groups using a Kruskal-

Wallis Rank Sum Test, this included the ∆Ct values for the non-matured control. A Post hoc 

pairwise comparison was done using the Wilcoxon Rank Sum test on any genes showing 

significance (p≤0.05). Values of ∆Ct were analyzed in place of fold change to avoid data 

manipulation. In the IVP experiment, the cleavage and blastocysts formation rates were analyzed 

using a glm model to ensure that the biological replicates or the treatment did not have 

significant interactions. The proportions cleaved cells as well as the proportion of blastocysts 

formed were compared among the treatment groups using a 2-sample test for equality of 

proportions with continuity corrections. All statistics were analyzed within the R environment, a 

statistical software program [255]. 
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Figure 3.4: DAPI and LAMIN staining examples of oocyte stages: Germinal Vesicle (GV), 

Germinal Vesicle Breakdown (GVBD), Metaphase I (MI), and Metaphase II (MII). a: DAPI 

staining of GV, b: LAMIN staining of GV, c: DAPI staining of GVBD, d: LAMIN staining of 

GVBD, e: DAPI staining of MI, f: LAMIN staining of MI, g: DAPI staining of MII, h:LAMIN 

staining of MII. 
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3.4.Results 

 

3.4.1. Evaluation of nuclear maturation of pig oocytes in different IVM media 

 

The purpose of this investigation was to determine if the protein-free maturation medium 

allowed the oocytes to undergo nuclear maturation as well as the commonly used 10% pFF 

media. The percentage maturation (MI+MII/n) of 10% pFF and protein-free maturation media 

did not differ statistically (Table 3.2; p>0.05). Both these media promoted maturation and 

increased the number of oocytes in the MI (10% pFF: 37%, protein-free: 42%) and MII (10% 

pFF: 54%, protein-free: 47%) stages, with few oocytes remaining in the GV (10% pFF: 6%, 

protein-free: 9%) and GVBD (10% pFF: 3%, protein-free: 2%) stages. The non-matured group 

had a significantly lower (p≤0.05) percentage of maturation at 6% (16/251), than the 91% 

(282/309) of the common 10% pFF maturation media or the 89% (188/211) of the protein-free 

maturation media. Most of the oocytes within the non-matured group were of GV or GVBD 

stages; with a few in the MI stage (Table 3.2).   

 

3.4.2. Effects of E2 on expression of maternal determinant genes 

 

Different levels of E2 were added into the maturation media and most levels of E2 showed 

no significant effect (Fig 3.5) on the expression of the maternal determinant genes when 

analyzing the ∆Ct values. TRIM24 had a significant difference comparing the treatment groups 

(p≤0.05). The post hoc comparison indicated that the mean ∆ Ct for TRIM24 differed between 

the non-matured and the 0 ng/ml E2 group, and the non-matured and 10% pFF group. The 

average ∆Ct for the 0 ng/ml E2 group (3.33 ± 1.66)  is lower than the non-matured average ∆Ct 

(4.00 ± 0.63), and the average ∆Ct for the 10% pFF group (4.75 ± 0.74) is higher than the 

average non-matured ∆Ct (Fig 3.5).  

 



 

59 

 

 

3.4.3. The effects of E2 on in vitro production of embryos 

 

 Cleavage rates for the E2 (n= 252; 60.2%) or 10% pFF (n= 256; 55.7%) additions to the 

maturation media did not differ when compared to the protein-free maturation media (n=264; 

54.9%, Table 3.3). There was no statistical difference between the blastocyst formation rates of 

the 10% pFF (n=256; 12.4%) and E2 (n=252; 14.6%) groups (Table 3.3). However both 10% 

pFF and E2 groups had significantly higher blastocyst formation rates (p≤0.05) than the protein-

free maturation media (n=264; 3.5%).  
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Table 3.2: Nuclear maturation rates in different maturation media. 

Treatment  Germinal 

Vesicle (GV)  

Germinal 

Vesicle 

Breakdown 

(GVBD)  

Metaphase I 

(MI)  

Metaphase 

II (MII)  

Total Cell 

Number (n)  

Percentage 

Maturation 

(MI+MII/n)*100  

Non-

matured  

219 (87%) 
a
  16 (6%) 

a
  16 (6%) 

a 
0 (0%) 

a
 251  6% 

a 

Protein-free  

(Control)  

19 (6%) 
b
  8 (3%) 

b 
115 (37%) 

b 
167 (54%) 

b 
309  91% 

b 

10% pFF  18 (9%) 
b
  5 (2%) 

b 
89 (42%) 

b 
99 (47%) 

b 
211  89% 

b 

 Groups with different letters denote significance (p ≤ 0.05) within each column. 
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Figure 3.5: Average ∆Ct values with SEM of selected maternal determinant genes in porcine 

oocytes matured in protein-free maturation media supplemented with 0 ng/ml E2, 50 ng/ml E2, 

100 ng/ml E2, 1000 ng/ml E2, or 10% pFF, and a non-matured group. Groups with different 

letters denote significance (p ≤ 0.05). 
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Table 3.3: Cleavage and blastocyst formation rates 

Treatment  Cleaved Cells  Blastocysts  Total Cells  Cleavage Rate  Blastocyst 

Formation Rate  

100 ng/ml 

Estradiol  

154  36  252  61% 
a 

14% 
a 

Protein-free  

(Control)  

141  9  256  55% 
a 

4% 
b 

10% pFF  145  33  264  55% 
a 

12% 
b 

Groups with different letters denote significance (p ≤ 0.05) within each column. 
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3.5.Discussion 

 

The physiological processes involved in IVM have been classified as nuclear maturation, 

and cytoplasmic maturation. Follicular fluid as an additive to maturation media has proved 

beneficial in bovine [256] ovine [257], buffalo [258], equine [259], and porcine [260] IVM 

systems.  However, FF composition varies greatly from sample to sample which decreases the 

consistency of IVP protocols [6]. Here, the protein-free maturation medium, which was used as a 

control medium, induced full nuclear maturation at the same rate as the commonly used 10% 

pFF maturation media when MI and MII stages were observed. This indicates that the protein-

free media was a sufficient control to induce nuclear maturation. These results are supported by 

the development of defined pFF free medium which have successfully produced embryos [245]. 

As there was no observed effect of pFF supplementation on nuclear maturation of the oocytes, 

the beneficial effect of pFF in an IVP system must be on molecular cytoplasmic maturation of 

pig oocytes as there was an observed effect on blastocyst formation rate. 

LAMIN/DAPI staining is a newer method of evaluating nuclear maturation in oocytes 

[254]. LAMIN A/C is located in the nuclear envelope, and as the oocyte resumes meiosis the 

nuclear envelope containing LAMIN A/C is dismantled. The process of nuclear envelope break 

down, known as GVBD, is seen through the staining with LAMIN A/C antibodies. DAPI is used 

to stain the progress of the chromatin, and as the oocyte reached MII two clearly visible spots are 

seen within the oocyte; one bright spot being the nucleus and the other being the first extruded 

polar body. Aceto orcein staining has also been used in many studies to confirm nuclear 

maturation rates in mammalian oocytes [261], but this technique is dependant on the users 

experience and ability to recognize the different stages of meiosis. Aceto orecin does stain 

chromatin, however the nuclear status cannot always be determined in the cytoplasm of oocytes 

with dark lipids [262]. By using LAMIN/DAPI staining there is no cell in which the nuclear 

envelope or chromatin are masked by the cytoplasm possibly making LAMIN/DAPI staining 

more efficient. The different nuclear maturation rates seen in other reports [15,247] may not 

correlate exactly with LAMIN/DAPI evaluation of nuclear maturation as they are two separate 

techniques for measuring nuclear maturation rates of oocytes.  
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The maternal to zygote transition is the process in which the embryos genome begins to 

control embryogenesis, and the maternal mRNA stored within the oocyte during oogenesis 

degrades [31]. Some recent work suggests that the oocyte is not transcriptionally silent 

throughout maturation. Transcription gradually declines from GV to MII stages, and there is 

accumulation of cytoplasmic polyadenylated mRNA at GVBD stage [71].  In cattle, the maternal 

effect gene transcript basic fibroblast growth factor (bFGF) along with other transcripts (Na+/K+ 

ATPase α-1 isoform, copper/zinc superoxide dismutase, and cyclins A and B) have been found 

to change with different IVM medium supplements [29] indicating that the oocytes mRNA may 

still be affected during this transcriptionally silent stage. Some of the maternal effect genes are 

known to be directing embryogenesis before the maternal to zygote transition like BNC1 [178], 

NPM2 [179], ZAR1 [181], and TRIM24 [184]. TRIM24 is a transcriptional modulator for nuclear 

receptors [183] and also regulates certain genes within the first wave of genome activation in 

mice [184]. It is expressed in the GV stage oocyte of mice to the blastocyst stage, however most 

embryos lacking TRIM24 do not develop to the blastocyst stage [184]. Its expression was 

significantly different in the 0 ng/ml E2 and 10% pFF groups than the non-matured control; 

indicating that this gene has an altered expression through IVM (Fig 3.3). Interestingly, the 

different levels of E2 within the media had no effect on the expression of maternal determinant 

genes. The lack of exogenous E2 in the media seems to have altered the expression from the non-

matured control. The non-matured group did not differ statistically from any of the E2 

supplemented groups, indicating the gene expression in the E2 supplemented groups is most 

similar to the non-matured cells.  Meiotic progression is reported  to be suspended with E2 

supplementation during the first half of IVM, and with the removal of E2 meiosis resumes [25]. 

Accordingly the oocytes which are exposed to E2 throughout IVM may not fully mature, and as 

such it could be hypothesized that the reason no significant difference was observed between the 

E2 groups and the non-matured groups is that a higher proportion of E2 matured oocytes remain 

at the GV and GVBD stage than the oocytes matured in the 10% pFF or protein-free media. The 

lower ∆Ct values for the 0 ng/ml E2 could mean that the lack of any estradiol or steroids may 

increase the degradation of TRIM24 transcripts through maturation. Addition of 10% pFF during 

maturation may not only protect the transcripts from being degraded but also releases more from 

stores, increasing availability of transcripts in the MII stage; this is seen by the increase in ∆Ct 

values. 
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It has been observed that the introduction of external steroid hormones, including E2, 

does not affect nuclear maturation, or some aspects of cytoplasmic maturation such as male pro-

nuclear formation in pigs [263]. However, IVP has been shown to be both positively [251] and 

negatively [214] influenced in cattle with the introduction of E2. The results of our work 

illustrate that the introduction of 10% pFF or 100 ng/ml of E2 during IVM has no influence on 

the cleavage rate on day 2 of IVC (55.7%, 60.2%, 54.9% respectively). The difference in 

blastocyst formation rates demonstrate that both pFF and E2 supplementations to a protein-free 

maturation medium increase blastocyst formation rates on day 9 of IVC. This supports the idea 

that pFF increases IVP success, and the positive effects of E2 are also supported by studies in the 

literature in cattle and sheep [251,252]  as well as in pigs. The composition of pFF is known to 

be widely inconsistent due to the source from which it is derived [6,201], thus if E2 can be used 

as a substitute, it can eliminate the variability in previously accepted protocols. 

In summary, E2 does affect IVM of porcine oocytes. Although nuclear maturation rates 

did not seem to be affected by the absence of pFF, the effect of pFF may be on the cytoplasmic 

aspect of maturation. TRIM24 is one maternal effect gene, which changes levels of mRNA 

through maturation in a medium devoid of E2. Although the nuclear maturation rate with E2 

supplementation was not directly studied, it is hypothesized that pFF and E2 supplemented media 

have differing effects on nuclear maturation. The similar gene expression of oocytes matured 

with E2 supplementation as the non-matured oocytes indicates they may be more meiotically 

similar than the oocytes matured in 10% pFF or protein-free media. If the E2 matured groups do 

have a higher proportion of GV and GVBD stage oocytes, they may also have the same MII rate 

as they had equivalent blastocyst production rates.  

There was an observed change in gene expression through maturation for one gene of 

interest. Understanding the changes in gene expression throughout maturation as well as the 

influence of estrogen added to the IVM media will likely increase our success in porcine IVP. E2 

and pFF both increase blastocyst formation rates while having no difference on cleavage rates. 

Based on this study, the supplementation of E2 into IVM could replace the pFF in the in vitro 

production of pig embryos. 
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4.1.Abstract 

 

In vitro maturation (IVM) is the possibly the most important step when producing 

porcine embryos in vitro. During the oocyte growth phase maternal RNA and proteins are stored, 

to be used during maturation and embryogenesis. The transcripts within the oocyte can be altered 

based on the in vitro maturation environment. In other species, thousands of differentially 

expressed genes are seen through maturation, yet this has not been studied in the pig. In porcine 

IVM a high amount of estrogen is added to maturation medium through the supplementation of 

IVM media with pFF. For this study, estrogen is hypothesized to influence gene expression of 

porcine oocytes through maturation. Oocytes were matured in a control protein-free media and 

the protein-free media supplemented with 100 ng/ml estradiol 17-β or 10% pFF. A non-matured 

sample was also obtained, and all four groups of oocytes were denuded and prepared for 

microarray analysis. The groups were compared in a reference design with a pooled reference 

representing the population of matured and non-matured oocytes. Microarray data was 

transformed and statistically analysed, and thresholds were assigned. The control, 100 ng/ml 

estradiol 17-β, and 10% pFF groups were compared to each other, and against the non-matured 

groups. Genes were not differentially expressed among the matured groups with the outlined 

threshold values of -2 ≥ log2(fold change) ≥ 2, and adjusted p-value ≤0.05. A total of 16 

differentially expressed genes between the non-matured and all matured groups exceeded this 

threshold. Of these genes, 6 are novel transcribed regions with evidence of being an embryonic 

EST, and 1 is a novel protein-coding gene. The other genes are FBJ murine osteosarcoma viral 

oncogene homolog (Fos), Vimentin (VIM), Capthesin C (CTSC), Selenium binding protein 1 

(SELENBP1), Poly(A) binding protein cytoplasmic 1 (PABPC1), Tissue factor pathway inhibitor 

2 (TFPI2), Cysteine-rich, angiogenic inducer 61 (CYR61), Acyl-CoA synthetase long-chain 

family member 6 (ACSL6), and Phospholipase A2 group VII (PLA2G7). There was an increased 

expression of FOS, VIM, SELENBP1, PABPC1, CYR61, ACSL6 and PLA2G7. There was a 

decreased expression of CTSC and TFPI2. The changes in gene expression throughout 

maturation for these genes indicate they play a role in maturation; but the supplementation of 

maturation medium with estrogen did not influence the gene expression of porcine oocytes 

through maturation.  
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4.2.Introduction 

 

In vitro maturation (IVM) is the first step in in vitro production of embryos, and it 

prepares the oocyte for all subsequent steps. Without proper accumulation of maternal mRNA 

during growth of an oocyte, a fertilized zygote will not develop any further [77]. Interestingly, 

the oocyte transcripts can be influenced, during IVM, through supplementation of maturation 

media [29,250]. Early embryonic development in mammals, prior to the embryonic genome 

activation is regulated by maternal mRNA and proteins stored during the oocyte growth phase 

[170]. There is a downregulation of RNA transcription in the immature oocyte of the mid-antral 

follicle [264],  correlating to the quiescent GV stage oocyte [170].  It is essential for the 

maturation of the oocytes and the developmental potential of the embryo that prior to the GV 

stage there is optimal storage of stable mRNA (reviewed by [59]).  

While the transcription within the oocyte is most active in the growing phase, and 

decreases after GVBD, there are differences in the global mRNA transcripts between GV and 

MII oocytes [27,28]. Over 800 genes have differential expression during meiotic maturation in 

the bovine oocyte [70]. In the human, 1200 genes are differentially expressed between the 

GV/MI and the MII stages of maturation, which suggests that major modifications in gene 

transcripts occur between these stages [28]. The changes in expression is due to selective 

degradation or utilization and poly-A-tail elongation of maternal mRNA transcripts during 

maturation not transcription itself (reviewed by [59]). The increased abundance of expressed 

gene transcripts at the GV stage suggests that these transcripts play a role prior to meiotic 

completion [30].  

Oocytes matured in vivo are shown to have superior competence when compared to in 

vitro matured oocytes, therefore the maturation process has the ability to affect the competence 

of the oocyte. Bovine oocytes recovered at the pre-ovulatory surge and matured in vitro were 

compared to the in vivo matured oocytes after in vitro fertilization and in vitro culturing. An 

increased blastocyst formation rate was observed with the in vivo matured oocytes [265]; this 

shows that the in vitro environment affects oocyte competency. In swine, in vivo and in vitro 

derived oocytes were subjected to subzonal fertilization and the major difference seen was with 
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blastocyst formation, again emphasizing the influence of the in vitro environment of oocyte 

competency [7].  If the oocytes differ developmentally, they may differ at a molecular level. 

Gene transcripts in bovine oocytes matured in vivo and in vitro were compared, and a difference 

in relative mRNA abundance of several developmentally important genes was perceived [266]. 

This illustrates that the maturation environment influences the expression of oocyte gene 

transcripts. 

Oocyte maturation media has been shown to influence levels of oocyte gene transcripts. 

The abundance of gene transcripts was also correlated with oocyte competence [29]. Porcine FF 

supplementation in the maturation medium is proven to be an important factor [201]. 

Interestingly, the concentration of estrogen can be very high in pFF [24]. Transient estrogen has 

been shown to improve maturation of porcine oocytes as well as blastocyst formation following 

IVF [25]. For this study, we hypothesize that the addition of estradiol 17-β (E2) to maturation 

medium can affect the gene expression in porcine oocytes. 

 

4.3.Materials and Methods 

 

All chemicals were obtained from Sigma-Aldrich Canada Chemical Company unless 

otherwise noted. The microarray used was the EmbryoGENE Porcine Transcriptomics 

Microarray which was developed as a part if the EmbryoGENE NSERC Strategic Research 

Network was printed and supplied by Agilent Canada. 

 

4.3.1. Experimental Design 

 

The experimental designed is outlined in Fig 4.1. The cumulus oocyte complexes (COCs) 

were conveniently allocated into groups of 40 for culture with the following added into protein-

free maturation medium: 0 ng/ml E2 and 0% pFF (control), 100 ng/ml E2, or 10% pFF. After 

maturation these oocytes and a non-matured control were denuded and 10 of the oocytes from 

each group (test sample) were stored at -80°C for extraction. The remaining 30 oocytes from 
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each group (reference sample) were stored in separate tubes at -80°C; these oocytes would be 

combined after extraction to be used as the reference. Five separate maturations were completed 

to comprise 5 biological replicates. 

Each sample underwent extraction separately, the best RNA from four test samples and four 

reference samples for each group was chosen for further steps. Then equal amounts of RNA from 

reference samples were pooled into two groups. Each test sample was labelled, and the two 

pooled reference groups were combined then separated into 8 reactions to be labelled. The 8 

labelling reactions for the pooled reference sample were combined, and equal amounts were 

added to the hybridization reactions with the test samples.  

 

4.3.2. Oocyte Collection and Maturation 

 

Ovaries from pre-pubertal gilts were obtained from an abattoir and were transported to 

the laboratory in an insulated container. After washing the ovaries with physiological saline, 

follicles of 2-5 mm in diameter were aspirated using 18G needle and 5 ml syringe, and COCs 

were screened and graded. Grades 1 and 2 COCs were selected and transferred into a final 

maturation medium in one well of a NUNC 4-well plate (Thermo Scientific, USA); without 

mineral oil overlay to avoid absorption of steroids. The protein free maturation medium was 

composed of Medium -199 (12340-030, Invitrogen, Canada) with 0.1% polyvinyl alcohol 

(P8136), 3.05 mM D-glucose (G7021), 0.91 mM Sodium Pyruvate (P4562), Antibiotics 1X  

(15240-062, Invitrogen, Canada), 10 ng/ml EGF (E4127), 0.57 mM L-Cysteine (W326305, 

SAFC/Sigma, Canada), and 0.01 U/ml Lutropin-V® (Bioniche, Canada), 0.01 U/ml Folltropin® 

(Bioniche, Canada). The pFF used to supplement of the media was obtained from aspiration of 

antral follicles and centrifuging at 3000 X g for 15 min then collecting and filtering the 

supernatant. Estradiol 17-β (E2758) was added to one medium after being dissolved into 100% 

ethanol. The COCs were incubated in a 5% CO2, 5% O2, and 90% N2 humidified environment 

for 40 h. Oocytes from the matured and non-matured groups were denuded in 0.1% 

hyaluronidase (H3884) in Medium-199. 
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4.3.3. RNA Extraction 

 

Following IVM, samples were washed in MgCl2 free phosphate buffered saline (PBS) 

and stored at -80°C in a minimal amount of MgCl2 free PBS. The Arcturus® PicoPure™ RNA 

Isolation Kit (KIT0204, Applied Biosystems, Canada) was used for the extraction. Following the 

first wash of the RNA purification column, DNase mix was prepared according to instructions 

from the RNase-Free DNase Set (79254, Qiagen, Canada), added to the purification column and 

incubated at room temperature for 15 min. The RNA was eluted from the column using nuclease 

free water and each sample was run on the Agilent 2100 Bioanalyzer (Agilent Technologies, 

USA) for quality control verification. 

 

4.3.4. RNA Amplification 

 

 The RNA which met the quality control verification underwent amplification using the 

1647 Arcturus® RiboAmp® HSPlus RNA Amplification Kit (KIT0525, Applied Biosystems, 

Canada). There was 1000 to 3000 pg of RNA from each test sample was used for amplification. 

The variation in starting material was due to availability of RNA after extraction. An amount of 

5000 pg of combined RNA was used for amplification of the pooled reference samples. During 

the 1st strand cDNA synthesis, SuperScript™ III Reverse Transcriptase (18080-093, Qiagen, 

Canada) was added to the 1st Strand Synthesis components prior to incubation. Elution buffer 

was used to elute the aRNA, and it was stored at -80°C. Quality control verification was run 

using the Nanodrop™ 2000 (Thermo Scientific, USA) to insure the amplification was successful, 

and that the aRNA was pure. 
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Figure 4.1: Experimental design to evaluate gene expression using  microarray. Oocytes were 

collected and assigned into groups; these groups were further divided after maturation for 

reference and test samples. For each step reference samples were pooled or separated based on 

the number of reactions which needed to be preformed to obtain the required amount of material 

for the hybridization. 
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4.3.5.  aRNA Labelling 

 

 Only aRNA of high quality was used for labelling. A 2 µg sample of aRNA was used for 

the ULS™ Fluorescent Labeling Kit for Agilent arrays (with cyanine 3 and cyanine 5) (EA-021, 

Kreatech, Netherlands). To remove any unlabelled aRNA, the PicoPure™ RNA Isolation Kit 

(KIT0204, Applied Biosystems, Canada) was used. The labelled aRNA was run on the 

Nanodrop™ 2000 to ensure the appropriate concentration as well as the labelling efficiency of 

aRNA. The test samples were labelled with cyanine 3 (Cy3) and the reference sample was 

labelled with cyanine 5 (Cy5). 

 

4.3.6. Hybridization 

 

Fragmentation of labelled aRNA was performed before hybridizing on the microarray 

slides. The Agilent spike and aRNA labelled with Cy3 and Cy5 were used for Gene Expression 

Hybridization Kit (5188-5242, Agilent, Canada) protocol. 

Equal volumes of the 2x GEx Hybridization Buffer HI-RPM and fragmentation mix are 

combined and a volume of 110 μl was added to the gasket side of the Agilent slide containing 4 

of the 44K EmbryoGENE Porcine Transcriptomics Microarrays. Using the Agilent SureHyb 

Hybridization chamber (G2534A, Agilent, Canada), the array was hybridized for 17 h at 65°C 

while rotating.  

After 17 h the chamber was removed from the hybridization oven and disassembled in 

Gene Expression Wash Buffer 1 (5188-5325, Agilent, Canada) at room temperature. Then the 

slides were washed in Gene Expression Wash Buffer 1 for three minutes at room temperature 

while being stirred with a magnetic stir bar. The slides were then transferred to Gene Expression 

Wash Buffer 2 (5188-5326, Agilent, Canada) for 3 minutes at 42°C while stirring. To protect 

against ozone degradation of Cy5 dyes, the slides were transferred to an acetonitrile wash for 10 

seconds then to the Stabilization and Drying Solution wash (5185-5979, Agilent, Canada) for 30 

seconds at room temperature while stirring. 
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4.3.7. Microarray Images 

 

The microarrays were scanned using the GenePix 4200 Autoloader (Molecular Devices, 

USA) using the GenePix Pro Acuity 4.0 Microarray Informatics Software (Molecular Devices, 

USA). Each array was scanned individually using Auto PMT, and a pixel size of 5 µm.  

 

4.3.8. Statistical Analysis 

 

The microarray intensity files were uploaded to EmbryoGENE LIMS and Microarray 

Analysis (ELMA), EmbryoGENE’s web based application (http://elma.embryogene.ca/login). 

Using this application, files were exported to Flexarray [267]. A simple background correction 

was performed on the raw data, and the Loess normalization method was applied to normalize 

dye-bias within each array. To compare the groups among each other the Limma package was 

used, as there was no ANOVA function in Flexarray. Limma is a package for analysing 

differential expression from microarray experiments. False discovery rate, Benjamini–

Hochberg–Yekutieli, was applied to the differentially expressed genes. The threshold was set at -

2 ≥ log2(fold change) ≥ 2, and adjusted p-value ≤0.05. 

 

4.3.9. Gene Functions 

 

 The biological pathways of all genes, which were differentially expressed, were analysed 

using the NCBI BioSystems database [268]. A literature review was completed to evaluate 

whether each of the genes played a role in reproduction. 
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4.4.Results 

 

 There were no genes differentially expressed between the groups matured in 100 ng/ml 

E2, 10% pFF, or the control media when the threshold values were applied. When comparing 

each of the matured groups to the non-matured groups, there were differences in gene expression 

with threshold values set at -2 ≥ log2(fold change) ≥ 2, and adjusted p-value ≤0.05. The results 

for differentially expressed genes are summarized in Tables 4.1 (Non-matured vs Control), 4.2 

(Non-matured vs 100 ng/ml E2), 4.3 (Non-matured vs 10% pFF), and Fig 4.2.  

There was a significant difference in gene expression from all matured groups when 

compared to non-matured oocytes. All maturation groups when compared to the non-matured 

group showed 16 genes expressed differently (Fig 4.3), 7 are Novel genes. There are 6 Novel 

transcribed regions with evidence of them being an embryonic expressed sequence tag (EST). 

The other genes which showed a differing expression were FBJ murine osteosarcoma viral 

oncogene homolog (FOS), Vimentin (VIM), Capthesin C (CTSC), Selenium binding protein 1 

(SELENBP1), Poly(A) binding protein cytoplasmic 1 (PABPC1), Tissue factor pathway inhibitor 

2 (TFP12), Cysteine-rich, angiogenic inducer 61 (CYR61), Acyl-CoA synthetase long-chain 

family member 6 (ACSL6), and Phospholipase A2 group VII (PLA2G7) (Table 4.4).  All of these 

genes play a role in reproduction. 

There were 16 differentially expressed from the non-matured groups when compared to 

all 3 matured groups. Tables 4.1, 4.2, and 4.3 list the genes which differ between each matured 

group and the non-matured group. The genes differing from all matured groups and the non-

matured group are denoted by bolding, italicizing and underlining. In each of these tables and 

within Fig 4.2 there are many other genes which seem to not be common among all matured 

groups; this is due to the imposed threshold limitations. Genes that did not meet -2 ≥ log2(fold 

change) ≥ 2, and adjusted p-value ≤0.05 were not considered common among all matured groups 

for this study, however the fold change value for these genes was slightly lower than threshold 

but was still differentially expressed from the non-matured group. The global differential gene 

expression may be investigated in further studies to form a complete picture of changes in gene 

expression through maturation. 
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Table 4.1: Differentially expressed genes in control matured group when compared to non-

matured group. Gene symbols which denoted with (*) are common to all matured groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Symbol Gene Description 

NULL Novel Transcribed Region; evidence: embryonic ESTs 

NULL 17-beta-hydroxysteroid dehydrogenase type 1  [Source:UniProtKB/TrEMBL;Acc:B2X0A4] 

FOS* FBJ murine osteosarcoma viral oncogene homolog [Source:HGNC Symbol;Acc:3796] 

CTSC* cathepsin C [Source:HGNC Symbol;Acc:2528] 

HTRA1 HtrA serine peptidase 1 [Source:HGNC Symbol;Acc:9476] 

NULL suprabasin [Source:HGNC Symbol;Acc:24950] 

NULL Aldehyde dehydrogenase, mitochondrial Precursor (EC 1.2.1.3)(ALDH class 2)(ALDH-E2) 

[Source:UniProtKB/Swiss-Prot;Acc:Q2XQV4] 

VIM* vimentin [Source:HGNC Symbol;Acc:12692] 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

SPINK6 serine peptidase inhibitor, Kazal type 6 [Source:HGNC Symbol;Acc:29486] 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

NULL* Novel  Gene 

FST follistatin [Source:HGNC Symbol;Acc:3971] 

CYR61* cysteine-rich, angiogenic inducer, 61 [Source:HGNC Symbol;Acc:2654] 

NULL Novel Transcribed Region; evidence: embryonic ESTs 

HNRNPA3 heterogeneous nuclear ribonucleoprotein A3 [Source:HGNC Symbol;Acc:24941] 

PLEKHH2 pleckstrin homology domain containing, family H (with MyTH4 domain) member 2 

[Source:HGNC Symbol;Acc:30506] 

NULL Novel Transcribed Region; evidence: embryonic ESTs 

PABPC3* poly(A) binding protein, cytoplasmic 1 [Source:HGNC Symbol;Acc:8554] 

NULL Novel Transcribed Region; evidence: embryonic ESTs 

NULL Novel Transcribed Region; evidence: embryonic ESTs 

NULL regulator of G-protein signaling 3 [Source:HGNC Symbol;Acc:9999] 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

PABPC3* poly(A) binding protein, cytoplasmic 1 [Source:HGNC Symbol;Acc:8554] 

GKN1 gastrokine 1 [Source:HGNC Symbol;Acc:23217] 

NULL Novel Transcribed Region; evidence: embryonic ESTs 

PLA2G7* phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma) 

[Source:HGNC Symbol;Acc:9040] 

NULL cytochrome P450 2C49  [Source:RefSeq peptide;Acc:NP_999585] 

VIM vimentin [Source:HGNC Symbol;Acc:12692] 
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NULL Novel Transcribed Region; evidence: embryonic ESTs 

TFPI2* tissue factor pathway inhibitor 2 [Source:HGNC Symbol;Acc:11761] 

ACSL6* acyl-CoA synthetase long-chain family member 6 [Source:HGNC Symbol;Acc:16496] 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

SELENBP1* selenium binding protein 1 [Source:HGNC Symbol;Acc:10719] 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

NULL 17-beta-hydroxysteroid dehydrogenase type 1  [Source:UniProtKB/TrEMBL;Acc:B2X0A4] 

ITM2A integral membrane protein 2A [Source:HGNC Symbol;Acc:6173] 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

SNX7 sorting nexin 7 [Source:HGNC Symbol;Acc:14971] 
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Table 4.2: Genes which are differentially expressed between the non-matured group and the 

group matured in 100 ng/ml E2. Gene symbols which denoted with (*) are common to all 

matured groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Symbol Gene Description 

NULL Novel pseudogene 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

PABPC3* poly(A) binding protein, cytoplasmic 1 [Source:HGNC Symbol;Acc:8554] 

NULL Novel Transcribed Region; evidence: embryonic ESTs 

ACSL6* acyl-CoA synthetase long-chain family member 6 [Source:HGNC Symbol;Acc:16496] 

VIM* vimentin [Source:HGNC Symbol;Acc:12692] 

SELENBP1* selenium binding protein 1 [Source:HGNC Symbol;Acc:10719] 

VIM* vimentin [Source:HGNC Symbol;Acc:12692] 

FOS* FBJ murine osteosarcoma viral oncogene homolog [Source:HGNC Symbol;Acc:3796] 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

CTSC* cathepsin C [Source:HGNC Symbol;Acc:2528] 

NULL Novel Transcribed Region; evidence: embryonic ESTs 

TFPI2* tissue factor pathway inhibitor 2 [Source:HGNC Symbol;Acc:11761] 

HTRA1 HtrA serine peptidase 1 [Source:HGNC Symbol;Acc:9476] 

NULL* Novel Gene 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

PLA2G7* phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma) 

[Source:HGNC Symbol;Acc:9040] 

CYR61* cysteine-rich, angiogenic inducer, 61 [Source:HGNC Symbol;Acc:2654] 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

PABPC3* poly(A) binding protein, cytoplasmic 1 [Source:HGNC Symbol;Acc:8554] 

NULL Novel Transcribed Region; evidence: embryonic ESTs 

NULL Novel Transcribed Region; evidence: embryonic ESTs 

NULL Novel Transcribed Region; evidence: embryonic ESTs 
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Table 4.3: Genes which are differentially expressed between the non-matured group and the 

group matured in 10% pFF. Gene symbols which denoted with (*) are common to all matured 

groups. 

Gene Symbol Gene Description 

NULL Aldehyde dehydrogenase, mitochondrial Precursor (EC 1.2.1.3)(ALDH class 2)(ALDH-E2) 

[Source:UniProtKB/Swiss-Prot;Acc:Q2XQV4] 

NULL Novel pseudogene 

NULL cytochrome P450 2C49  [Source:RefSeq peptide;Acc:NP_999585] 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

OPCML neurotrimin [Source:HGNC Symbol;Acc:17941] 

ACSL6* acyl-CoA synthetase long-chain family member 6 [Source:HGNC Symbol;Acc:16496] 

NULL Translation elongation factor eEF-1 alpha chain Fragment  

[Source:UniProtKB/TrEMBL;Acc:Q29237] SELENBP1* selenium binding protein 1 [Source:HGNC Symbol;Acc:10719] 

VIM* vimentin [Source:HGNC Symbol;Acc:12692] 

FOS* FBJ murine osteosarcoma viral oncogene homolog [Source:HGNC Symbol;Acc:3796] 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

CTSC* cathepsin C [Source:HGNC Symbol;Acc:2528] 

NULL Novel Transcribed Region; evidence: embryonic ESTs 

TFPI2* tissue factor pathway inhibitor 2 [Source:HGNC Symbol;Acc:11761] 

NULL Novel protein coding 

NULL* Novel Gene 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

PLA2G7* phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma) 

[Source:HGNC Symbol;Acc:9040] 

CYR61* cysteine-rich, angiogenic inducer, 61 [Source:HGNC Symbol;Acc:2654] 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

HNRNPA3 heterogeneous nuclear ribonucleoprotein A3 [Source:HGNC Symbol;Acc:24941] 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

NULL* Novel Transcribed Region; evidence: embryonic ESTs 

NULL Translation elongation factor eEF-1 alpha chain Fragment  

[Source:UniProtKB/TrEMBL;Acc:Q29237] NULL Novel Transcribed Region; evidence: embryonic ESTs 

PABPC3* poly(A) binding protein, cytoplasmic 1 [Source:HGNC Symbol;Acc:8554] 

NULL Glutathione S-transferase Fragment (EC 2.5.1.18) 

[Source:UniProtKB/TrEMBL;Acc:Q29188] U6 U6 spliceosomal RNA [Source: RFAM;Acc:RF00026] 

GKN1 gastrokine 1 [Source:HGNC Symbol;Acc:23217] 

NULL suprabasin [Source:HGNC Symbol;Acc:24950] 
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Figure 4.2: A Venn diagram showing the distribution of differentially expressed genes from 

the non-matured group for each treatment. 
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Figure 4.3: Fold change values of differentially expressed genes from the non-matured group 

when compared to the matured groups. These genes are common to the control, 100 ng/ml E2, 

and 10% pFF matured groups. 
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Table 4.4: Biological pathways of the common genes which change throughout maturation. It is 

noted whether these genes have been shown to play a role in reproduction. 

Gene Symbol Gene Name Does this 

Gene play a 

Role in 

reproductio

n 

Biological Pathways  

FOS FBJ murine osteosarcoma 

viral oncogene homolog 

Yes Colorectal cancer (from KEGG)  

Chagas disease (American trypanosomiasis)(from 

KEGG)  

B cell receptor signaling pathway (from KEGG)  

Activation of the AP-1 family of transcription factors 

(from REACTOME)  

Activated TLR4 signalling (from REACTOME)  

Innate Immunity Signaling (from REACTOME)  

Leishmaniasis (from KEGG)  

MAP kinase activation in TLR cascade (from 

REACTOME)  

MAPK signaling pathway (from KEGG)  

MAPK targets/ Nuclear events mediated by MAP 

kinases (from REACTOME)  

MyD88 cascade initiated on plasma membrane (from 

REACTOME)  

MyD88 dependent cascade initiated on endosome (from 

REACTOME)  

MyD88-independent cascade initiated on plasma 

membrane (from REACTOME)  

MyD88:Mal cascade initiated on plasma membrane 

(from REACTOME)  
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NFkB and MAP kinases activation mediated by TLR4 

signaling repertoire (from REACTOME)  

Osteoclast differentiation (from KEGG)  

Pathways in cancer (from KEGG)  

Rheumatoid arthritis (from KEGG)  

Signaling in Immune system (from REACTOME)  

T cell receptor signaling pathway (from KEGG)  

TRAF6 Mediated Induction of proinflammatory 

cytokines (from REACTOME)  

TRAF6 mediated induction of NFkB and MAP kinases 

upon TLR7/8 or 9 activation (from REACTOME)  

Toll Like Receptor 10 (TLR10) Cascade (from 

REACTOME)  

Toll Like Receptor 2 Cascade, organism-specific 

biosystem (from REACTOME)  

Toll Like Receptor 3 (TLR3) Cascade (from 

REACTOME)  

Toll Like Receptor 4 (TLR4) Cascade (from 

REACTOME)  

Toll Like Receptor 5 (TLR5) Cascade (from 

REACTOME)  

Toll Like Receptor 7/8 (TLR7/8) Cascade (from 

REACTOME)  

Toll Like Receptor 9 (TLR9) Cascade (from 

REACTOME)  

Toll Like Receptor TLR1:TLR2 Cascade (from 

REACTOME)  

Toll Like Receptor TLR6:TLR2 Cascade (from 

REACTOME)  
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Toll Receptor Cascades (from REACTOME)  

Toll-like receptor signaling pathway (from KEGG)  

VIM vimentin Yes Caspase-mediated cleavage of cytoskeletal proteins 

(from REACTOME) 

Apoptotic cleavage of cellular proteins(from 

REACTOME) 

Apoptotic execution  phase(from REACTOME) 

Apoptosis(from REACTOME) 

Striated Muscle Contraction(from REACTOME) 

Muscle contraction(from REACTOME) 

Amoebiasis (from KEGG) 

Lysosome(from KEGG) 

Systemic lupus erythematosus(from KEGG) 

Renin-angiotensin system(from KEGG) 

Neuroactive ligand-receptor interaction(from KEGG) 

CTSC cathepsin C Yes Lysosome (from KEGG) 

SELENBP1 selenium binding protein 1  Yes Metabolic pathways (from KEGG) 

Amyotrophic lateral sclerosis (ALS)(from KEGG) 

Selenocompound metabolism(from KEGG) 

Fat digestion and absorption(from KEGG) 

Huntington's disease(from KEGG) 

PPAR signaling pathway(from KEGG) 

Aminoacyl-tRNA biosynthesis(from KEGG) 

Methane metabolism(from KEGG) 

Glyoxylate and dicarboxylate metabolism(from KEGG) 
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Arachidonic acid metabolism(from KEGG) 

Glutathione metabolism(from KEGG) 

PABPC1 poly(A) binding protein, 

cytoplasmic 1 

Yes RNA degradation (from KEGG)  

RNA transport (from KEGG)  

mRNA surveillance pathway (from KEGG)  

TFPI2 tissue factor pathway 

inhibitor 2- 

Yes Complement and coagulation cascades (from KEGG) 

CYR61 cysteine-rich, angiogenic 

inducer, 61 

Yes RNA transport (from KEGG) 

ACSL6 acyl-CoA synthetase long-

chain family member 6 

Yes Adipocytokine signaling pathway (from KEGG) 

Peroxisome (from KEGG) 

PPAR signaling pathway (from KEGG) 

Fatty acid metabolism (from KEGG) 

Metabolic pathways (from KEGG) 

PLA2G7 phospholipase A2, group 

VII  

Yes Metabolic pathways (from KEGG) 

Ether lipid metabolism (from KEGG) 
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4.5.Discussion 

 

The introduction of pFF in maturation media has proven effective for both cytoplasmic 

and nuclear maturation [201]. Among the many components of pFF, the concentrations of 

steroids, namely estrogen is high [24]. While the transient supplementation of estrogen in 

maturation media has improved maturation and oocyte developmental competence [25], we did 

not observe any effects of pFF or estrogen on oocyte gene transcripts through maturation 

illustrated by no significant differences in gene expression between the matured groups. There 

was no differential gene expression between groups of oocytes matured in these three media 

once the threshold values of  -2 ≥ log2(fold change) ≥ 2, and adjusted p-value ≤0.05 were 

applied. There may have been differences before the false discovery tests were performed, but 

these differences could not be included into this study.  

 In previous research (data not shown) we had shown the 100 ng/ml of E2 and 10% pFF 

additions to maturation media did lead to an increased blastocyst formation rate when compared 

to a control. Following the same protocol for supplementing the media with E2 for the entire 

maturation period there was no effect seen during this experiment on differential expression of 

genes with the microarray we used. Kim et al, 2011 used a transient supplementation of E2 

within the maturation media and found that E2 introduced only during the first half of maturation 

increased maturation as well as embryo development [25]. Further investigation as to the effects 

of timing the E2 introduction into media should be undertaken. 

FOS has been shown to inhibit the actions of 17α-hydroxylase 17,20 lyase (CYP17) 

within the theca cells of the ovarian follicle [264]. In response to LH, theca cells produce 

androgens which are transported to granulosa cells to form steroids in response to FSH [269]. 

CYP17 is one of three enzymes involved in androgen production in the theca cells. The Protein 

kinase C (PKC) pathway is a principal androgenic pathway in the theca cell which through FOS 

can control CYP17 to regulate androgen production [264]. FOS has been localized in abundance 

within the granulosa cells, and in small amounts in the theca cells [269]. As the PKC pathway is 

capable of functioning in the granulosa cells [270], it can be supposed that the high levels of FOS 

within the granulosa cells is responsible for inhibiting CYP17 and thus inhibiting the granulosa 
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from producing androgens independent from the theca cells [264]. The increased abundance of 

FOS gene transcripts, which are involved in androgen production, indicates that mature oocytes 

are less responsive to androgens than the non-matured oocytes. This conclusion is in support of 

current research [202]. 

VIM is known to code for an intermediary filament protein, this protein is present in the 

oocyte [271] as well as lymphocytes [272],smooth muscle [273], and hepatic cells [274] . VIM 

proteins are expressed dynamically throughout embryonic development [275]. VIM protein, 

vimentin, can be used as a marker for cells which will develop into mesenchymal cells within the 

embryo [276]. Determining the timeline of differentiation in pig embryos could be of importance 

for future stem cell lines. The increased expression of VIM transcripts through maturation in this 

study, may indicate that the mature oocyte responds more appropriately to cytoskeletal 

remodelling, which takes place through cytoplasmic maturation and fertilization. 

CTSC is a gene highly conserved among mammalian and non mammalian species [277]. 

In the mub crab, the expression of CTSC was significantly higher in ovarian than testicular 

tissues [278]. In the kuruma prawn, CTSC expression was also high within the ovary, and is 

supposed to regulate ovarian growth [279].  Also in the kuruma prawn, CTSC was upregulated in 

the final stages of oocyte maturation, especially during the cortical rod stage [277]. In contrast to 

the kuruma prawn, in vitro matured porcine oocytes had decreased expression of CTSC 

transcripts than the non-matured oocytes. CTSC is identified within the lysosome (Table 9), and 

during maturation lysosomes are found to be redistributed during the breakdown of the nuclear 

envelope [280]. The decreased expression of CTSC transcripts in this study indicates that they 

may be utilized to produce proteins during this step of organelle reorganization. 

SELENBP1 has been found to be expressed in many human tissues [281]. Reduced 

expression this gene has been reported in some human malignancies. In colorectal cancer, 

SELENBP1 overexpression resulted in a suppression of cell proliferation, decreasing cell 

migration and an increasing apoptosis [282]. The proteins of SELENBP1 are also found in the 

surface epithelium of the ovary [283]. There is a conjugated peptide of SELENBP1, SP56, which 

when given to mice in a preclinical trial for a contraceptive vaccine, reduced fertility by 50% 

[284]. Sperm protein 56 (sp56) has been indicated as a potential substrate which stabilizes the 
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adhesion of sperm to the zona pellucida of the oocyte and in turn promotes fertilization [110]. It 

is supposed that autoantibodies of SELEBP1 may have a detrimental effect on fertility, although 

little is known of the function of SELENBP1 [285] deficient sperm oocyte binding resulting from 

the auto antibodies of sp56 may cause a decrease in fertility. There in an increase in the 

expression of SELENBP1 in matured oocytes; and as it has been related to sp56, an increase in 

sp56 receptors on the zona and increased fertilization capacity of the oocyte may result from 

upregulation of this gene. 

PABPC1 is known to influence mRNA translation and decay [286]. In some mammalian 

cells, it shuttles between the nucleus and the cytoplasm [287]. Within the nucleus, PABPC1 

protein will bind to the poly (A) tail of a newly synthesized transcripts [288]. In oocytes of 

Xenopus and mouse, PABPC1 was not expressed until the maternal to zygote transition, and 

embryonic poly(A) binding protein (EPAB) functions as PABPC1 before this time [289,290]. 

Increased expression of PABPC1 transcripts in mature oocytes signifies that mature oocytes may 

be able to respond to changes in cellular status better than non-matured oocytes; as PABPC1 is 

involved in mRNA translation, the increased abundance of PABPC1 transcripts in matured 

oocytes could mean that the immature oocytes do not have the appropriate levels of transcripts 

required for the proper cell function and embryonic development [240].  

TFPI2 is thought to be involved in the initial placental development, as the endometrium 

is invaded by cytotrophoblasts during implantation [291].  More specifically, TFPI2 regulates the 

expression of serine proteases and matrix metalloproteinases to degrade the extracellular matrix 

during implantation [291]. Ratios of TFPI2 expression in biparental and parthenote foetuses 

were examined there was a greater expression in parthenote foetuses which only contain 

maternal expression, indicating that this gene is a maternally expressed gene [292]. TFPI2’s 

expression is imprinted, according to the parental conflict theory, the maternally imprinted genes 

conserve maternal resources for long-term reproductive fitness of the mother [293]. This gene is 

expressed from the maternal allele only, and it acquires this imprinting expression during pre-

implantation development [294]. In this study, the decreased expression of this genes transcripts 

in mature oocytes may reflect the general purpose of maternally imprinted genes, acting to 

restrict fetal growth in an effort to conserve maternal resources rather than promoting 

enhancement of offspring development and fitness [293]. Reduction of gene transcripts may 
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increase developmental potential of the oocyte, and the level of this gene could then be used a 

marker for potential embryo development. 

CYR61 is important for embryonic development, a loss of function mutation of CYR61 in 

a mouse leads to embryonic death due to decreased vessel integrity and failed chorioallantoic 

fusion [295]; and this gene  maintains pluripotency of embryonic stem cells in the mouse, 

through inhibition of cell differentiation [296]. CYR61 encodes for a protein with heparin binding 

properties, associated with the cell surface and extracellular matrix [297]. In human, this gene 

has been shown to promote proliferation, migration and adhesion of endothelial and fibroblast 

cells by acting as an extracellular matrix signalling molecule [298]. In mouse foetuses, the 

spatiotemporal expression pattern observed in the endothelium also suggests a role for CYR61 in 

the development of the external genitalia [299]. In this study we found an increase of CYR61 

transcripts through maturation, which may encourage early embryo development through 

promoting proliferation and maintaining pluripotency.  

The ACSL6 gene was first characterized in human erythrocytes, and is a member of the 

acyl-CoA synthetase family [300]. It is known to have physiological functions in fatty-acid 

catabolism [301]. A defect in ACSL6 haplotype is thought to contribute to premature ovarian 

failure through its role in lipid metabolism in ovarian tissue [302]. The metabolites formed by of 

acyl-CoA from saturated free fatty acids can lead to apoptosis of granulose cells [303]. ACSL6 is 

involved in metabolic pathways (Table 4.4), and metabolic rates of oocytes has been related to 

their developmental competence [304]. The increased transcript abundance in matured oocytes 

seen in this study may mean matured oocytes are more capable of undergoing fertilization and 

embryo development.  

The final gene, whose expression is considered to be related to reproduction is PLA2G7. 

PLA2G7 proteins are a member of the phospholipase A2 family, which are generally responsible 

for releasing amino acids from membrane phospholipids (review [305]). Platelet activating factor 

(PAF)-acetyhydrolase is one proteinenzyme produced by the Pla2g7 gene. PAF-acetyhydrolase 

is known to inactivate PAF by converting it to Lyso-PAF (review [306]). PAF itself is involved 

in ovulation, fertilization, implantation and parturition through various pathways (review [306]). 
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The increased expression of PLA2G7 may mean the oocyte following maturation is more capable 

at regulating PAF in later developmental processes such as fertilization. 

An increased expression of FOS, VIM,  SELENBP1, PABPC1, CYR61, ACSL6 and 

PLA2G7 is possibly due to increased number of transcripts present or being used during the end 

stages of maturation as the majority of oocytes matured would be at MII stage. Stored RNA and 

transcripts are being used, or translated through maturation; the change in expression of these 

genes shows they play a role in later oocyte development such as fertilization of embryogenesis. 

CTSC and TFPI2 show a decreased expression, meaning these transcripts are more abundant 

before resumption of meiosis, and they are utilized or degraded during the maturation processes. 

The changes in gene expression throughout maturation for these genes signify that they play a 

role in maturation.  

 There are 16 genes that were found to differentially expressed throughout maturation, and 

aside from the NOVEL genes, 9 of these are known to play a role in reproduction. Although the 

maturation media seemed to not affect the gene expression, under different statistical restrictions 

there may be more subtle differences. In conclusion, the supplementation of estradiol 17-β in 

maturation media did not alter the expression of genes within the oocyte. 
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CHAPTER 5: GENERAL DISCUSSION AND CONCLUSIONS 

  

 In vitro production (IVP) of embryos in swine remains relatively inefficient when 

compared to other livestock species [4]. This technology could be used to manage herd genetics 

more selectively, reduce the impact and threat of disease on a herd’s genetics, as well as 

conserve the genetic diversity of swine. However there are problem in porcine IVP systems; 

chromosomal abnormalities and decreased cell numbers in blastocysts during in vitro culturing 

(IVC) [5], low monospermic fertilization rates with in vitro fertilization (IVF) [6], and 

incomplete maturation from in vitro maturation (IVM) [7,8].  As IVM is the first of the three IVP 

processes, it has the ability to affect each following processes. Insufficient IVM has been a 

contributing factor to the elevated polyspermic rates following IVF, as well as low quality 

embryo development during IVC. 

 Oocyte matured in vivo are more competent that those matured in vitro [7], showing that 

the in vitro maturation environment is deficient in some respect. Different maturation media and 

the supplementations to that media [16-20] have been shown to increase the competence of 

oocytes matured in vitro. Porcine FF is commonly added to maturation media [12-14], as it 

increases both nuclear and cytoplasmic maturation as well as improving IVF and IVC success 

[199,200]. There are  many maturation promoting factors within pFF, including FF-MAS [203], 

plasminogen activators and plasmin [205], amino acids [20], insulin-like growth factor 1 [206], 

and steroid hormones [24]. Estrogen is present in pFF, in both high and low concentration 

depending on the donor animal, follicle size and the stage of estrus the donor animal was in 

[23,24]. Estrogen is reported to negatively affect  nuclear maturation in bovine IVM [214], but in 

white tail deer supplementation of IVM media with estrogen improved nuclear maturation rates 

[307]. In porcine IVM systems, estrogen supplementation has had controversial effects as some 

report estrogen to reduce nuclear maturation rates [26,213], while others found an improvement 

in nuclear maturation as well as blastocyst formation [25].  

Nuclear maturation rates were observed for oocytes matured in a common pFF 

supplemented media as well as a control maturation media containing no sera, proteins, or 

steroid hormones (Chapter 3). Nuclear maturation is the resumption of meiosis from prophase I 
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arrest. During prophase I the nuclear envelope can be visualized, and the oocyte is referred to as 

a GV stage. As meiosis resumes the nuclear envelop dissolves and the oocyte is staged as 

GVBD. When no polar body or nuclear envelope can be observed, the oocyte is classed as MI. 

Telophase I is marked by extrusion of the first polar body; the oocyte arrests before fertilization 

in MII stage.  

The Lamin Dapi staining in this study revealed that both maturation media matured 

oocytes equally well when MI and MII rates were considered together (Chapter 3). Protein-free 

media was a sufficient control to induce nuclear maturation; this is supported by the development 

of defined  maturation medium which has successfully produced embryos [245]. The different 

maturation rates observed between this study and others [88] using aceto orcein staining, is that 

Lamin Dapi does not depend as heavily on the users experience. In aceto orcein staining the 

different stages of meiosis are evaluated independently by the user; however Lamin Dapi 

staining allows easier visualization of each stage and thus removes much of the user bias.  

The equal maturation rates between the protein-free and 10% pFF supplemented media 

indicated that the nuclear maturation was not significantly improved by the addition of pFF. It is 

hypothesized that the beneficial effects that are seen with pFF supplementation are on 

cytoplasmic maturation. Cytoplasmic maturation is the reorganization of the oocyte’s  

cytostructure, and accumulation of RNA and proteins [59,60];  this can be evaluated through 

intracellular glutathione (GSH) content, cumulus expansion, ability of the oocyte to be fertilized 

and the resulting cleavage and blastocysts formation rates [4,61,62]. There are many changes to 

internal organelles and cytoskeleton, but the utilization of stored RNA and proteins is needed for 

the cytoplasmic changes. The proteins expressed from this mRNA do play a significant role in 

maturation as well as the subsequent events of fertilization and embryogenesis [77].   

In vitro production of embryos is both positively [251] and negatively [214] influenced in 

cattle with the introduction of E2. In porcine IVP, E2 supplementation in maturation has been 

reported to have no effect on fertilization and positive effects on fertilization and embryo 

development [25,263]. The results of our work illustrate that the introduction of 10% pFF or 100 

ng/ml of E2 during IVM has no influence on the cleavage rate; however the difference in 

blastocyst formation rates between the protein-free control, and the pFF and E2 supplemented 
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media, demonstrate that E2 may  positively influence IVP. This supports the idea that pFF 

increases IVP success, and the positive effects of E2 are also supported by the literature in cattle 

and sheep [251,252] as well as in pigs. The effect of these supplementations may be on 

cytoplasmic maturation as there was no observed difference in nuclear maturation when 

comparing the pFF supplemented medium to the protein-free medium. The effect of E2 cannot be 

concluded from this study as the nuclear maturation rate using E2 supplementation was not 

directly compared to each of the maturation media. Future investigation, using Lamin/Dapi 

staining, into the effect of E2 on nuclear maturation rates may show more conclusive results.  

When using pre-pubertal oocytes, there is expected differences from oocytes derived 

from adult animals, as pre-pubertal oocytes show reduced blastocyst formation rates [308]. Also 

pre-pubertal oocytes have higher incidence of polyspermy, showing that the cells may not be 

competent following maturation [144]. Developmental competence of pre-pubertal oocytes 

increase with increasing follicle size. Oocytes from 3 mm follicles have a significantly lower 

blastocyst formation rate when obtained from pre-pubertal ovaries; this differs from oocytes in 3 

mm follicles from adult sow ovaries [309]. There is a high percentage of small follicles found 

within a pre-pubertal ovary, and therefore the majority of oocytes aspirated from pre-pubertal 

ovaries are from 3 mm follicles [309]. The pre-pubertal oocyte has less innate competency than 

adult oocytes, and when using pre-pubertal oocytes it is expected to have lower blastocyst 

formation rates [309]. 

 The in vitro environment effects the competence of oocytes, as oocytes matured in vivo 

are shown to have superior competence when compared to in vitro matured oocytes [265]. When 

comparing bovine in vitro and in vivo matured oocytes, differentially expressed genes were 

observed [265].  The maturation environment clearly influences gene expression within the 

oocyte; the maturation media is also shown to affect the abundance of gene transcripts which is 

further correlated with oocyte competence [29]. Embryonic failure has been attributed to defects 

in some maternally derived genes [33], therefore the alteration in gene transcripts through 

supplementation with estrogen during maturation may contribute to low IVP success rate.  

 The maternal to zygote transition occurs when an embryos genome initiates its control 

over embryogenesis, and the maternal  genome’s regulation decreases as the store maternal RNA 
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degrades or is utilized [31]. Recent work suggests that the oocyte is not transcriptionally silent 

throughout maturation as is traditionally thought. Transcription was observed to decline from 

GV to MII stages of maturation, and there is accumulation of cytoplasmic polyadenylated 

mRNA at GVBD stage [71].  Either with, or without transcription, the transcripts within the 

oocyte are altered through maturation and embryogenesis. The difference in gene expression of 

TRIM24 was significantly different in the 0 ng/ml E2 and 10% pFF groups than the non-matured 

control in this study; indicating that this gene has an altered expression through IVM (Chapter 3). 

The expression of all other maternal effect genes evaluated showed no differences between the 

non-matured groups or amongst the different supplementations indicating that their expression 

was not influenced through maturation. The non-matured group did not differ from any of the E2 

supplemented groups, indicating the gene expression in the E2 supplemented groups is most 

similar to the non-matured cells.  As exogenous E2 is reported  to retard meiosis during the first 

half of IVM [25], the oocytes which are exposed to E2 throughout IVM may not fully mature. An 

increased proportion of E2 matured oocytes may remain at the GV and GVBD stage than those 

oocytes matured in the 10% pFF or protein-free media.  

 Understanding the changes in gene expression through maturation likely would improve 

porcine IVP. Transcription is most active in the oocyte growth phase and after GVBD it declines 

[71], a difference in abundance of gene transcripts is observed when GV and MII oocyte are 

compared [28]. Hundreds of genes are differentially expressed through the maturation process in 

bovine [70] and human [28] suggesting that major modifications of gene transcripts occur 

through maturation. In this study (Chapter 4) a difference in gene expression from all matured 

groups was seen when compared to non-matured oocytes. Gene expression of porcine oocytes 

did change through maturation, and this is in support of previous research. Of the 16 

differentially expressed genes through maturation, 8 (excluding the novel genes) are known to 

play a role in reproduction.  

 Some of these genes give us information to develop a more successful maturation system, 

as well as providing useful indicators of a competent oocyte. The increased abundance of FOS 

transcripts in matured oocytes supports the idea that androgens would affect early maturation, as 

the matured oocytes may be less responsive to androgens than non-matured oocytes. Maturation 

systems should than introduce any androgens, known to have a positive effect on oocyte 
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competence in the first half of IVM. SELENBP1 is associated with its conjugate peptide sp56 

which is known to play a role in the adhesion of sperm to the zona pellucida [110], and 

antibodies of this peptide reduce fertility [284]. As indicated by this study, the increase in 

expression of SELENBP1 may be a marker for the oocytes fertilization capacity. ACSL6 is 

involved in metabolic pathways, specifically fatty acid catabolism [301]. The presence of free 

fatty-acids is known to induce apoptosis of granulosa cells which are important for oocyte 

maturation [303], thus increased expression of ACSL6 may be a marker for oocyte competency, 

as metabolic rates of oocyte have been related to oocyte competency [304]. The above genes 

provide much needed insight into the specific markers of competent oocytes obtained through 

IVM as well as possible changes that can be made to IVM systems. 

While the traditional idea of transcriptionally silent oocytes  is being challenged, the 

changes in transcript abundance through maturation can also be explained by selective 

degradation or utilization and poly-A-tail elongation of maternal RNA transcripts during 

maturation (reviewed by [59]). Each of these activities is controlled by specific sequences in the 

3’- end of mRNA, and mRNA translation is regulated by changes in the length of  3’poly-A-tail 

[310]. During maturation, the oocytes maternal mRNA polyadenylation is temporally regulated 

[310]. This accounts for increased abundance of transcripts during different periods of oocyte 

maturation. The increased abundance of expressed gene transcripts at the GV stage suggests that 

these transcripts play a role prior to meiotic completion [271]. The increased number of 

transcripts seen following maturation implies the transcripts are used during the end stages of 

maturation or for the following fertilization and embryo development.  

We did not observe any effects of pFF or estrogen on oocyte gene transcripts through 

maturation with threshold values of -2 ≥ log2(fold change) ≥ 2, and adjusted p-value ≤0.05. 

There may have been differences in fold change before the false discovery tests were performed, 

but these differences could not be included into this study. By lowering the threshold values or 

looking at the global gene expressions in the groups differentially expressed genes may be found 

between media and this should be explored at a later date. Further investigation as to the effects 

of timing the E2 introduction into media should be undertaken to evaluate its effects on gene 

expression in porcine oocytes; as transient supplementation of E2 within the maturation media 
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found that E2 introduced only during the first half of maturation increased nuclear maturation as 

well as embryo development [25]. 

Based on the work conducted in this thesis we confirm that nuclear maturation is 

successful in porcine oocytes without the supplementation of pFF or hormones. Estradiol and 

pFF supplementation positively influence the production of blastocysts following IVF in a 

porcine IVP system, and based on this study the common pFF supplementation may be replaced 

by E2 to create a serum free media for a more standardized IVM system. The response of 

maternal effect genes through maturation is varied, with only TRIM24 displaying differential 

expression, and E2 possibly hindering meiosis as there was no statistical difference between the 

E2 and non-matured groups. In global gene expression analysis no effect of E2 supplementation 

was seen with the applied threshold levels. Although differential gene expression was observed 

for all maturation media through maturation; indicating that gene expression changes temporally 

through maturation in porcine oocytes.  

Future directions in porcine IVM research should investigate E2 supplementation in IVM 

systems as evaluated by nuclear maturation rates through Lamin and Dapi staining to provide a 

more conclusive answer to E2’s effects in IVM. The timing of E2 supplementation in IVM 

systems deserves investigation as seen by other studies [25], it does effect oocyte maturation and 

subsequent embryo development, however by evaluating these effects using Lamin Dapi may 

give different results, as well as using a protein-free maturation media. The increased abundance 

of FOS in this study further supports investigation into the timing of E2 introduction into IVM 

systems.  

Further research into gene expression of porcine oocytes may provide markers for oocyte 

quality. Using Q-PCR the current study’s results (Chapter 4) may be confirmed, and the genes 

which show differential expression should be examined as markers for oocyte competence. 

Investigation into other pathways they may be involved in within the oocyte could be 

undertaken. By removing the thresholds when analysing the current study’s microarray data 

further examination may be preformed to obtain a global picture of gene expression of porcine 

oocytes through maturation, and more genes which influence reproduction and oocyte 

competence may be realized. The evaluation of porcine cumulus cell gene expression through 
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IVM may also provide needed markers to evaluate COC quality, as many of the current 

techniques are qualitative rather than quantitative, and removing any observer bias would supply 

a more standardized IVM system. The differences in gene expression should also be evaluated 

by comparing in vivo and in vitro oocytes, as in vivo would act as the ultimate control to see if 

the in vitro system is changing gene expression. 

If E2 can be used to supplement pFF, its effects will have to be tested through 

cryopreservation of the resulting blastocysts. The standardization of IVM media using E2 may be 

valuable for research purposes, but unless the created blastocysts may be cyopreserved they may 

not be as useful for protecting the genetic diversity of swine. A final confirmation of the 

competence of an oocyte is the production of live offspring, and the production of blastocysts 

produced using E2 supplementation in the maturation media should be confirmed through 

embryo transfer. The only method to conclude that E2is a successful replacement for pFF in 

porcine IVM systems is to produce healthy offspring using E2 supplemented IVP blastocysts. 

The studies presented in this thesis may lead to further investigation into estradiol’s influence 

on maturation as well as investigation into porcine oocyte gene expression. There is a need for 

successful porcine IVM to allow producers and researchers the opportunity of using IVP 

technology and future research is needed for this technique to be applicable in porcine as it is in 

other livestock species 
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