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Abstract

We show that by representing Single Nucleotide Polymorphism (SNP) data to a neural network in a

way that incorporates quality scores and avoids filtering out low quality SNPs we are able to increase the

effectiveness of a deep neural network for phenotype prediction from genotype in some cases. We also show

that we are able to significantly increase the predictive power of a neural network by making use of transfer

learning. We demonstrate these results on a Whole Genome Sequencing (WGS) Neisseria gonorrhoeae

dataset where we predict Antimicrobial Resistance (AMR) as well as on an exome sequencing Lens culinaris

dataset where we predict 3 growing rate phenotypes.
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Chapter 1

Introduction

The goal of this thesis is to improve the current state of deep learning for phenotype prediction from

genotype data.

Deep learning is a powerful tool that has made great improvements in the past decade and has led to

many advancements in different artificial intelligence fields. One area that has potential for advancement by

deep learning is bioinformatics. There are many areas where deep learning can be, and is being applied in the

field of bioinformatics, but, specifically, deep learning using genomic information for phenotype prediction

hasn’t been explored to a significant degree. Accurate phenotype prediction has many useful applications.

Predicting antimicrobial resistance in bacteria allows healthcare practitioners to take samples from infected

individuals and prescribe the most effective antibiotics for the infection. Predicting expected yield values for

agricultural crops will allow crop breeders to grow and breed the most promising lines, allowing for effective

breeding programs.

Currently, deep learning methods are not able to predict phenotypes from genotype data as well as Ridge

Regression-Best Linear Unbiased Prediction (RR-BLUP) or other state-of-the-art methods. This thesis looks

at a few ways of improving the use of deep learning techniques for phenotype prediction from genomic data to

narrow the gap between deep learning and the current state-of-the-art. While deep learning is not currently

as good as RR-BLUP, deep learning has shown massive potential in other areas, and we believe that with

enough work deep learning will become the state-of-the-art for phenotype prediction.

In this document we present two techniques that can be applied to deep learning to improve the perfor-

mance of phenotype prediction deep neural networks. The first technique explored was the incorporation of

quality score data into the input of the neural network. Our hypothesis was that having a way to incorporate

quality scores and reduce the amount of information discarded by Single Nucleotide Polymorphism (SNP)

filtering can increase the power of a neural network in some cases. The second technique explored was transfer

learning, which is explained in Section 5.2. Our hypothesis was that leveraging transfer learning can allow

us to increase the amount of information available to a neural network and increased its predictive power.

This document consists of multiple experiments on multiple datasets. In order to isolate the different

experiments and prevent confusion between experiments, each experiment is presented as a whole in a single

section. This means that each experiment is fully described with methodology, results, and discussion in

a single place, freeing the reader from flipping between sections and possibly confusing the results of one
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experiment with the methodology of another.

The purpose of this chapter is to introduce the scope and layout of this document. Next, in Chapter 2,

we go through the background necessary to understand this document. Any terms not introduced in the

background section can be found in the glossary, Appendix A. The background is divided into 3 sections:

computer science, biology, and bioinformatics, which is the intersection of the previous two areas. Then, we

discuss the motivation for this thesis in Chapter 3. Next, in Chapter 4, we explain the datasets used in the

experiments in this thesis. Chapter 4 also includes the methodology used to prepare the datasets for use in

the experimental section. Chapter 5 describes, in full, two separate experiments performed on both datasets.

For each experiment we start with a hypothesis, the methodology is explained, the results are presented and

discussed, then future work is presented. The first experiment explores the incorporation of quality score

information into the input of a Convolutional Neural Network (CNN). The second experiment investigates

transfer learning. Finally, we conclude the thesis in Chapter 6. The appendices include a glossary of technical

terminology and extended explanations of the mathematics used in this document. Supplementary materials

are provided that provide raw results and extra files that are too large to contain within this document.
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Chapter 2

Background

Bioinformatics is a multidisciplinary field. As such, there are multiple background topics that must be

introduced before one can understand the following document. Bioinformatics exists at the intersection of

computer science and biology; both of these will be discussed first. Next, the bioinformatic topics discussed

in this document will be introduced: genome-sequencing and variant-calling.

2.1 Computer Science

Computer science is a very popular and important field in the digital era. Massive amounts of data are present

in all aspects of the world and being able to work with and compute on data is a prerequisite for most cutting

edge research. The field of biology has not escaped this; bioinformatics and computational biology are the

results of marrying computer science to biology in order to work with the ever-increasing amount of biological

data available to researchers. This document looks in particular at artificial intelligence, and how it can be

used to model genotype-phenotype relationships in order to predict phenotypes from genetic variation.

2.1.1 Artificial Intelligence

Within computer science there is a field called artificial intelligence. Inside of artificial intelligence the subfield

we will focus on is machine learning. In it’s simplest form, artificial intelligence is just a programmed set of

rules that are executed in different cases in order to perform a task that, on the surface, appears to require

intelligence, by some definition of the word intelligence. Machine learning is a subset of artificial intelligence.

Machine learning is named as such because machine learning systems learn and improve over time. During

training a machine learning system creates an internal mathematical model, which maps inputs to some

output. The machine learning system then iteratively updates its internal model based on feedback from the

training data. Over many training iterations, this internal model will, if successful, become good enough at

mapping inputs to outputs that it can be considered useful. Additionally, this model will, hopefully, find

connections between parts of the input that are important for determining the output, and will be able to

use these connections to generalize the mapping from input to output so that it will be successful for inputs

that were not contained in the training data. A key machine learning algorithm we will look at is RR-BLUP.

Further within the subfield of machine learning there are artificial neural networks. Deep neural networks,
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and the field of deep learning that refers to them, are a specialized form of artificial neural network. Artificial

neural networks encompass neural networks with any number of hidden layers; a network with more than one

hidden layer is considered a deep neural network. Artificial neural networks focus on iteratively approximating

complicated nonlinear functions [1]. Artificial neural networks, and by extension deep neural networks, have

the ability to approximate any continuous function given enough representative capacity and are often only

limited by the quality and size of the training dataset. Most of this document will focus on deep learning.

2.1.2 Machine Learning

The first machine learning algorithm that we will explore is RR-BLUP. This algorithm was created specifically

for phenotype prediction and breeding prediction for genomic selection studies, which will be discussed in

section 2.3.

The original algorithm, Best Linear Unbiased Prediction (BLUP), was developed by Henderson in 1984 [2].

BLUP is used to estimate random effects in linear mixed models. Henderson makes a distinction between

prediction of of a random variable and the estimation of the realized value of a random variable, and in his

application of BLUP to genetics he models breeding potential as the random variable to be predicted. In his

example, if an animal is already born then the evaluation of its breeding value is an estimation problem, but if

the goal is to evaluate the potential breeding value of two potential parents then that is a prediction problem.

BLUP is used for the latter. BLUP would be considered a kernel method, which is a class of machine learning

algorithm. A kernel method is a machine learning algorithm that uses what is called the “kernel trick” in

order to operate in high-dimensional feature space without actually computing the coordinates of the data

in that feature space. This is accomplished by using a user-defined kernel function to compute the similarity

of all data-pairs in the feature space, which is less computationally expensive than explicitly converting each

data point into high-dimensional space. The kernel method must then find a hyperplane that separates the

data using a method like convex optimization or gradient descent.

Endelman pointed out that BLUP with mixed models is equivalent to ridge regression. He created RR-

BLUP and published the R package implementation, rrBLUP [3]. Computing the high-dimensional feature

space necessary to linearly separate genotypes with many markers would take a huge amount of computational

resources. In order to avoid this computation, RR-BLUP uses a relationship model as a kernel method to find

the similarities between each genotype pair. There are multiple kernel functions provided in the R package,

and RR-BLUP uses either maximum likelihood or restricted maximum likelihood to optimize prediction.

BLUP was developed before Next Generation Sequencing (NGS) sequencing techniques; that is, it was

developed to be used for small genetic marker arrays. The combinatorial complexity that occurs from NGS

sequencing with tens of thousands of SNPs makes searching genotype space in order to use BLUP impossible.

Therefore, the kernel method of RR-BLUP is more appropriate for use with current sequencing technologies.

Ma et al. [4] compared RR-BLUP to a deep learning package they developed. They pointed out the

limitations of RR-BLUP: in addition to predicting phenotypes based on linear functions of genetic markers,
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RR-BLUP assumes that genetic marker effects are normally distributed with small but non-zero variance [5].

Nguyen et al. also found success using machine learning to predict antimicrobial resistance in Salmonella [6].

They used an eXtreme Gradient Boosting regressor (XGBoost), which is a decision-tree based machine learn-

ing algorithm, to predict the Minimum Inhibitory Concentration (MIC) of different strains of Salmonella.

Antimicrobial resistance was measured for 15 different antibiotics on 5,278 different Salmonella strains. In

their paper the accuracy was measured as the ability to predict MIC within +/- one two-fold dilution step

of the laboratory-derived MIC. The two-fold dilution method is explained in Section 2.2

2.1.3 Deep Learning

Deep learning is quickly becoming the tool-of-choice for many artificial intelligence applications. Deep learning

is a class of machine learning algorithms that includes Recurrent Neural Networks (RNN), Deep Belief

Networks (DBN), and Convolutional Neural Networks (CNN). These networks learn simple connections at

low layers, and at higher layers learn connections using combinations of the lower layers. The layers in a deep

neural network are made up of neurons in a way similar to a brain. Lee [7] showed that sparse deep belief

networks learn shapes and contours in a similar fashion to neurons in the visual area V2 of the human brain.

A hierarchical learning algorithm such as a deep neural network is especially appealing for genomics work as

complex traits are expected to result from combinations of genes as well as regulatory elements in the genome.

Hierarchical learning allows lower layers to learn simple traits such as single SNPs or methylation sites, and

higher layers can learn gene interactions, chromosome folding patterns, or other complex biological traits

that involve many interacting pieces. In this thesis we will focus on CNNs. CNNs have been successfully

applied to image classification problems, where models are trained on datasets like ImageNet [8].

A deep neural network is made up of layers. At every layer a neural network is dealing with matrices.

A matrix shape is denoted by this notation: (x, y, z) where x, y, and z denote the size of each dimension.

Each layer sees different types of operations performed on an x× y× z matrix, such as convolution, dropout,

or max pooling. Each of these layers is combined to transform the input into the neural network into the

output, where the output can be a classification or a quantitative prediction. When a neural network is being

trained, the inputs to the neural network are transformed into the outputs, then the output is evaluated

against the expected output (from some ground truth), then the error is used to update the trainable layers

in a step called backpropagation. The neural network is constantly evaluated against validation data, which

is data that is never used for training, but is instead set aside to ensure the neural network generalizes to

unseen samples. These concepts will all be discussed in this chapter.

Each trainable layer in a neural network is made up of neurons, weights, and biases. The type of layer

determines the configuration and connections between neurons, as well as the function used to transform the

input values, but regardless of the configuration each neuron simply stores a single value. Each trainable

layer contains one or more weights and biases, which are used to transform the inputs from the connected

neurons in the previous layer, and are updated as the network learns. For example, in a convolutional layer,
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Figure 2.1: Common activation functions are the ReLU function and the Sigmoid
function.

during inference each neuron computes the dot product of the weights and the inputs, adds a bias term, and

feeds the result through a non-linear activation function before the output is passed to the next layer. Non-

linear activation functions are used to introduce non-linearity and allow the neural network to approximate

non-linear functions. Examples of activation functions are Rectified Linear Unit (ReLU) and sigmoid, which

are shown in Figure 2.1.

In order for a neural network to be effective it must first be trained. Training requires ground truth data;

the neural network will attempt to predict the correct output from the input, then the error or deviation from

the ground truth is used to updated the trainable layers in order to perform better on the next iteration.

There are multiple hyperparameters that influence how training behaves. Batch size, number of epochs,

learning rate, and early stopping functions are all examples of hyperparameters that influence training. If

hyperparameters are set incorrectly this can lead to slow training or overfitting. Overfitting occurs when a

neural network does not learn a generalizable mapping from significant input features to outputs, and instead

just memorizes which inputs lead to which outputs. Overfitting can occur when there is not enough training

data and the symptom is that the neural network performs well on the training data but not on the validation

data.

When the network is being trained, the weights and biases are updated during the backpropagation step

using gradient descent to reduce error as measured by the loss function. Common loss functions are root-

mean-squared error (Equation 2.1) for regression tasks and binary cross-entropy for binary classification tasks

(Equation 2.2).
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√∑T
t=1(ŷt − yt)2

T
(2.1)

Root Mean Squared Error

− 1

T

T∑
t=1

[yt log ŷt + (1− yt) log(1− ŷt)] (2.2)

Binary Cross-Entropy

In both of these formulas, T is the total number of samples, yt is the labelled phenotype value for sample t,

and ŷt is the predicted phenotype value for sample t.

A deep neural network is made up of many layers, including multiple hidden layers, stacked on top of

each other, which is where the term “deep” learning comes from. There are many different types of layers

that can be used in neural networks. Each layer, as well as the entire network, has multiple hyperparameters

which influence how well the network is trained and how well it will perform. The first layer is just the

input. In our case the input layer will be a matrix representation of SNPs. The input to a CNN is often a

3-dimensional matrix. For colour image inputs this matrix would have the shape width× height× 3, where

the depth is 3 because a colour image is represent by red, green, and blue intensity values. In this document

we use SNP inputs, so the input shape is p× 1×m where p is the number of SNPs and m is the number of

possible values a SNP can have, which varies between datasets. For simplification we illustrate a p× 1×m

matrix as the equivalent p×m matrix in this section. After the input layer there are many hidden layers that

perform transformations before the output layer at the end of the neural network. There are many different

types of layers that can be used for deep learning, but the 5 explored here proved effective for a CNN that

fits our use-case. The different types of neural network layers can be subdivided into 2 classes: trainable and

non-trainable layers.

The first class of layers are the trainable layers. Each trainable layer other than the input looks at features

from the previous layer and learns the weights or connections between the current layer and the previous

layer. At every learning step the weights are updated to improve the prediction accuracy by minimizing the

loss function, which is why these layers are classified as trainable.

The first type of trainable layer is the convolutional layer. Convolutional layers utilize a sliding window

approach using multiple filters. There are multiple parameters for a convolutional layer: convolution size,

step size, depth, and activation function are just a few. The number of filters can be adjusted using the depth

parameter; this parameter, along with convolution and step size, affect the number of neurons in the layer.

Each filter is a different convolution with different weights that, through backpropagation, learns to detect

a certain pattern or set of features. These filters are sliding windows that convolve across the input matrix

and compute the dot-product of their inputs and their weights. Then, the bias term is added resulting in a

single activation value for each location each filter convolves over. Then the activation value is fed through
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Figure 2.2: A single convolutional layer with depth 2, size 5, and stride 1. A depth of
2 means that there are 2 filters. The input shape is (10,1,3), which means the matrix is
of size 10× 1× 3; the output matrix is shape (6,1,2). Each filter looks at each position
in the input and performs the dot product of the layer weights and the input, resulting
in a single value for each filter that is fed through a non-linearity function before being
passed to the next layer.

a non-linearity function such as the sigmoid function or, more commonly, the ReLU function, both of which

are shown in Figure 2.1. This process can be seen in Figure 2.2.

In image processing applications, different filters would learn to find different shapes, line orientations,

and curves. When applied to SNP data, different filters would learn to find different different granularities

of SNP combinations. For example, the lower level filters would learn to recognize small numbers of SNPs

that are located near one another, and every layer of filters above would build on those beneath it, building

up complex networks of SNPs that span across the entire genome.

There is also a step-size parameter that determines the number of matrix positions the convolution

advances at each step. A convolution with a step-size of 1 would convolve over every position in the previous

layer, while a convolution with a step-size of 2 would skip every other position. Each convolutional layer may

reduce the size of the input based on the step size and sliding window but may add more depth. The depth in

a neural network is the size of the 3rd dimension. For RGB images the input depth is 3: one for each colour

channel. For our examples the input depth is also 3 (for the diploid dataset), because when the genotype

is one-hot-encoded it results in a vector of size 3 indicating whether a SNP corresponds to the homozygous

reference, heterozygous, or homozygous alternate genotype.

The second type of trainable layer is the fully connected layer. The fully connected layer is like a

convolutional layer except that the entire input is considered at once. In this layer each neuron is connected

to every neuron in the previous layer. This results in many trainable parameters as the weight for each

connection is a single trainable parameter. The features this layer detects are not limited spatially, so these
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Figure 2.3: A fully connected layer is connected to every neuron in the previous layer,
resulting in a large number of trainable weights. This fully connected layer has a depth
of 3, meaning there are 3 filters which results in an output shape of (1, 1, 3). In this
case each filter shown consists of 10 weights and a bias. The dot product of the weights
and the input is taken, a bias term is added, and the result is passed to the grey output
neuron.

layers are often required for high level reasoning. This type of layer is illustrated in Figure 2.3. Fully

connected layers are often used as the final layer in a CNN in order to bring everything together and compute

the final output.

The next class of layers are the non-trainable layers. One may notice that the inputs to the convolutional

layers are pictured in two dimensions, while the fully connected layer accepts a one-dimensional input. This

is a slight simplification: convolutional layers can accept inputs in multiple dimensions (such as a colour

image, which has 3 dimensions), but for the sake of simplification only two-dimensional inputs are shown.

However, fully connected layers can only accept one-dimensional inputs; therefore, we must introduce the

flatten layer. A flatten layer doesn’t perform any numerical transformation, it simply reshapes the input

matrix into a one-dimensional matrix. For example, if the input to a flatten layer was an m× n× p matrix,

the flatten layer would output an mnp × 1 × 1 = mnp matrix. This reshaping is necessary for preparing

inputs for fully connected layers. A flatten layer can be seen in Figure 2.4. Since we intend to use a flatten

layer to prepare inputs for a fully connected layer it does not matter how the matrix is reshaped. In a fully

connected layer weights are learned for every possible pairing between input and output neurons, removing

all locality, so the method for flattening the input matrix does not matter.

The next two types of non-trainable layers we will look at are the max pooling layers and the dropout

layers. Both of these types of layers only exist to make training a network more efficient and to prevent

overfitting. The max pooling layer performs a non-linear down-sampling by taking only the maximum

activation of a small area. For example, a 2 × 1 max pooling layer with a stride of 2 discards 50% of the
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Output
(12,1,1)

Input
(4,1,3)

Figure 2.4: A flatten layer reshapes the inputs into a one-dimensional matrix. This
is necessary to prepare inputs for use in fully connected layers.

3 4 0 -2 1 0 3 0 1 0Input 
(10, 1, 1)

4 0 1 3 1

Max Pool Layer
Size: 2
Stride 2

Output 
(5, 1, 1)

Figure 2.5: A max pooling layer with size (2, 1) and stride 2. This layer passes only
the largest activation values for each window to the output. Each window is shown in
a different colour. The window size is 2, so the first window includes the first 2 input
neurons. The next window advances 2 neurons because the stride length is 2. This
means that the 2nd position of the convolution looks at the 3rd and 4th input neurons.
In this case there is no overlap between windows, but if the window size was larger or
the step size was smaller there would be overlap. The result is that the max of each
consecutive pair of neurons is passed to the next layer, resulting in an output layer that
is 50% smaller than the input layer.

10



4 3 0 -2 1 6 3 9 1 0Input
(10, 1, 1)

Dropout Layer
Rate: 0.25
Only performed during training
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Figure 2.6: Dropout layer with 25% dropout rate. The neurons shown in grey have
been selected at random to be dropped, and are replaced with a 0 in the output. This
layer is included in a neural network in order to prevent overfitting and is not executed
during inference.

activations by downsampling by a factor of 2 along the second dimension, which causes the next layer to be

50% smaller. This is demonstrated in Figure 2.5 where only the maximum activation value is passed on to

the next layer. The depth dimension remains unchanged.

The final type of non-trainable layer is the dropout layer, which can be seen in Figure 2.6. This layer

does not affect the size of the next layer, but is instead used to prevent overfitting. The dropout layer is

only executed during training; during inference this layer performs the identity operation. In the dropout

layer neurons are randomly “dropped out”, or set to 0. The probability of keeping or dropping a neuron

is indicated by the dropout rate parameter of the layer. This layer reduces overfitting by preventing the

network from learning to recognize noise or irrelevant features. Additive noise occurs according to some

random distribution, and if there aren’t enough input samples a neural network can learn to associate noise

with a certain label if they are observed together enough. By randomly removing a percentage of neuron

connections during training it reduces the likelihood of the neural network observing the same noise pattern

and label together and learning to associate the two. On the other hand, significant features that are always

observed in conjunction with a certain label are less likely to be dropped by the dropout layer, so a neural

network is able to train properly.

One issue with deep learning is that deep neural networks are mostly black boxes. Once a network

is trained it is difficult to look into the network and analyze the layers to get an understanding of why

the model predicts what it does, or what input elements are significant to the output. There are ways to

gather insights; however, sensitivity analysis, deconvolution, and Deep Neural Pursuit network with Average

Activation Potential (DNP-AAP) [9] are all ways to get a small understanding into the inner workings of a

neural network [9]. SHapley Additive exPlanations (SHAP) [10] is another method of explaining a neural
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network or any machine learning model. It unifies multiple different model explainers and could be leveraged

to gain insight into the inner workings of a neural network.

Another deep learning technique that will be explored is transfer learning. Transfer learning is a technique

that leverages existing features that have been learned by a neural network for one task and applies them

to another task. A common example of this is image classification. To illustrate, we start with a neural

network that was trained for a generic classification task like the ImageNet [8] contest. Neural networks

trained for the ImageNet contest are readily available online. In the case of the ImageNet contest, the neural

network is a very large network with many trainable layers that was trained on a very large dataset and

took a tremendous amount of time and computing power to train. Training a network like this from scratch

is beyond the scope of the average user, so instead they are able to download this network, fix the bottom

layers (prevent them from updating during backpropagation), and retrain the top layer. The bottom layers

have already learned to recognize simple features like straight lines, angles, and corners, which are usable

in many image recognition tasks. The higher layers have learned connections of features that can represent

more complicated objects; for example, tires, ears, and even faces. Retraining the top layers on a specialized

dataset allows the network to learn to use the existing features for more specific tasks such as classifying

images of dogs into the correct breed, or recognizing species of trees. This allows users to leverage deep

learning for specialized tasks which may have small, niche datasets that may not be large enough for use

with deep learning on their own.

Transfer learning has found many uses in image classification tasks. State-of-the-art models are available

that have been trained on ImageNet, and these models can be downloaded and used as a starting point for

other image classification tasks. Niazi et al. [11] used transfer learning for tumour identification. The model

they began with was an ImageNet trained model which they then retrained to classify images of pancreatic

tumours. In another example, Kim et al. [12] used transfer learning as well. They began with another model

trained on the ImageNet dataset and retrained the model on lens-free digital in-line holography images in

order to detect cells labelled with microbeads.

2.2 Biology

The focus of this thesis is on predicting phenotype information from genotype data. In an organism, gene

expression is the process by which genetic information is used to create a functional product in a cell.

These products can be proteins or functional RNA products. Genetic information also encodes for different

regulatory elements that determine if genes are expressed. Whether a genetic variant is located in a gene

or a non-coding DNA region, the genetic information is part of a pathway that may lead to a particular

phenotype being expressed in the organism. Genetic variation in genes may result in different proteins being

created, which leads to a different phenotype being observed. Genetic variation in regulatory locations may

result in a particular protein being expressed or inhibited, which can also lead to a different phenotype being
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observed. Each phenotype or trait is the result of any number of genetic variants interacting in complex ways

and, given enough analytical power, is predictable to some degree from an organism’s genetic information.

However, a trait won’t always be predictable from genotype information alone. There are many other factors

that influence how a phenotype is expressed, the simplest example of which is environmental factors such as

sunlight or nutrition availability. Additionally, there are other biological factors that influence gene expression

but are not visible via genome sequencing such as DNA methylation or chromosomal condensation.

The genotype data this thesis will focus on is acquired by DNA sequencing. In particular, this project

will be looking at SNP data. A SNP is a single nucleotide (or nucleotide pair in heterozygous organisms) that

differs from the reference genome to which the sampled genome is compared. This is different from indels,

which are where nucleotides are inserted into, or deleted from the reference. It is also different from Multiple

Nucleotide Polymorphisms (MNP), where multiple nucleotides are changed from the reference. MNPs can

be decomposed into multiple SNPs, and this is done for our Neisseria gonorrhoeae dataset.

2.2.1 Genome Sequencing

One of the SNP datasets used was obtained by Whole Genome Sequencing (WGS) via NGS technologies.

NGS is a class of sequencing technology where high throughput and scalability allows the entire genome to

be sequenced at once. NGS often uses a high sequencing depth, which means that many biological replicates

of the DNA are sequenced. The sequencing depth used is the main factor in determining the accuracy of the

sequenced data; a higher depth leads to higher accuracy. There are many different NGS technologies, but

all of these technologies yield “short” read sequences that must be further analyzed. Prior to NGS, Sanger

sequencing [13] was used which resulted in longer reads but at higher costs. Nanopore sequencing [14] is a

new technology that promises very long read lengths, but few datasets are available that have been sequenced

by this technology at the time of writing.

Sequencing errors come from errors in the sequencing process. These errors are dependent on the DNA

sequence being read, and different sequencing platforms [15] yield different error models. Much work has

been done to come up with error models for different sequencing platforms but these are all approximations.

These sequencing errors need to be handled in the bioinformatics pipelines that make use of this sequence

data and are often incorporated into quality estimates after analysis is completed.

The other dataset used in this document was sequenced using exome sequencing technology. Exome

sequencing uses similar read lengths to WGS; however, it differs from WGS because only the exome is

sequenced rather than the whole genome. The exome is the part of the genome that is made up of exons. An

exon is the remaining part of mRNA after transcription and the removal of introns. The exome only consists

of genetic material that is part of a gene. Since exome sequencing only looks at coding genes it may be

preferable for some genetic studies; however, it will not include any genetic information that is only present

in noncoding regions.
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2.3 Bioinformatics

2.3.1 Genomic Selection

Genomic Selection (GS) [16] is a class of computational methods concerned with predicting the phenotype of

a sample when given the genotype. GS is focused towards predictive breeding, where the genetic information

of a breeding line is examined and the phenotype of that line is predicted, which allows breeders to make

decisions about which breeding lines to propagate for a growing season. GS techniques are necessary for

predicting polygenic traits. For simple traits simple techniques such as Punnet squares can be used, but

for traits that involve the interactions of many different genes computational methods like GS are required.

Punnet squares are a very simple method for predicting the phenotypes of cross breeding experiments where

all possible combinations of genes are enumerated with pen and paper.

Meuwissen et al. [17] first coined the term genomic selection when looking at estimating the effects of

genetic markers sequenced with the then-current state-of-the-art dense marker maps. The benefits of dense

marker maps meant some genetic markers were close to, and possibly in linkage disequilibrium with, the

quantitative trait loci. They compared multiple techniques for analyzing the quantity of data produced

from dense marker maps. They found that least-squares methods did not work because of the curse of

dimensionality. They also found that Bayesian methods are able to outperform BLUP techniques because of

their ability to account for haplotypes.

Zenger et al. [18] looked at the potential commercial benefit of GS for aquaculture. They found that,

while there were many obstacles to designing breeding programs based on GS, the declining cost of genomic

sequencing allowed GS to become a viable option for increasing breeding program efficiency. Some of the

obstacles included GS for polygenic traits, issues predicting disease resistance because of the difference be-

tween data collection environments and commercial farms, and the difficulty and importance of incorporating

familial relationships into the GS analysis. Simply predicting phenotypes is not always sufficient; it is often

important to know what SNPs cause a particular phenotype, which brings us to Genome Wide Association

Study (GWAS).

Neural networks trained for phenotype prediction can also be analyzed to extract significant SNPs as

well. Shi et al. [9] showed that a technique called DNP-AAP could be used to find a ranked list of the

most significant SNPs involved in antimicrobial resistance for N. gonorrhoeae. In the aforementioned paper,

DNP-AAP is discussed in the context of GWAS, but the technique crosses the boundary between GWAS and

GS. The difference between GS and GWAS studies is that while GS studies focus on predicting phenotypes

from genetic information of some sort, GWAS studies focus on finding the genomic feature(s) associated with

a phenotype, such as the SNPs or alleles that are associated with a trait. In the Shi et al. paper [9], a

neural network was trained to predict a phenotype and found the most significant SNPs for predicting that

phenotype. Because of the predictive neural network, it can be argued that the paper has roots in GS as well
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as GWAS.

2.3.2 Sequence Alignment

If the read fragments from NGS technologies are to be used for variant-calling (which will be discussed in

subsection 2.3.3), they must be aligned to a reference genome. Some deviation from the reference is expected

in the reads, either from genetic variation or from sequencing errors, so the alignment algorithm must account

for this variation. Because of this variation, the genome built from the aligned reads is subject to error, and

the alignment program must give some indication of the mapping quality. Further complicating this, genetic

duplication and similar genetic regions in the reference genome means that reads may align to multiple places

on the reference genome, and therefore more estimations and uncertainties are introduced into the alignment.

Heterozygosity also makes alignment difficult as the reads from each chromosome pair (for diploid organisms)

will differ and therefore be harder to align.

Haplotype estimation, or phasing, can also be done on the raw reads. This is done by using statistical

methods to estimate which alleles are inherited together from the parents. Haplotype estimation is important

because it allows researchers to leverage linkage disequilibrium to improve the statistical power of variant-

calling software.

All of these factors are considered and reported as quality scores. Quality scores can be presented at

many stages in the analysis pipeline; for example, raw reads have an associated quality score, alignments

have a quality score, and SNPs are also reported with quality scores.

2.3.3 SNP Callers

The following 2 subsections will briefly introduce the 2 SNP calling software packages used and how quality

scores are calculated for each package. FreeBayes excels by incorporating the entire population dynamics to

look at the a priori allele frequencies and to estimate haplotypes which allows for more statistical power.

Samtools excels by using a Hidden Markov Model in order to improve accuracy when it comes to indels. A

more comprehensive look at the mathematics involved is presented in Appendix B.

FreeBayes

The N. gonorrhoeae dataset, which is described in Section 4.2, was SNP-called using FreeBayes [19]. Free-

Bayes provides users with quality scores for each SNP that is derived using the posterior probability of the

genotype, which will be explained in this subsection. FreeBayes also provides a genotype likelihood score

for the non-called genotypes at each loci, which is necessary for our data representation for our models, as

explained in Subsection 5.1.2.

FreeBayes uses Bayesian statistics to compute the posterior probability of each genotype given the ob-

served reads. This posterior probability is related to both the a priori expectation of the allele distribution

15



within a population as well as the observed sequence quality. Gi is the true genotype of sample i at a given

locus, Ri is the set of observed reads for sample i at the same locus, and the posterior probability is

P (G1, ..., Gn|R1, ..., Rn) =
P (G1, ..., Gn)P (R1, ..., Rn|G1, ..., Gn)

P (R1, ..., Rn)
. (2.3)

P (R1, ..., Rn|G1, ..., Gn) represents the likelihood that our observations match a specific combination of geno-

types and P (G1, ..., Gn) is the prior likelihood of observing a specific genotype combination. If we assume

that sequencing reads are independent, then P (R1, ..., Rn|G1, ..., Gn) =
∏n

i=1 P (Ri|Gi). This assumption is

not always true (depending on the sequencing technology used), but this term is ultimately estimated in

FreeBayes as calculating it directly is intractable. In order to find the likelihood of the reads, P (R1, ..., Rn),

we can take the likelihood of the reads given a genotype,
∏n

i=1 P (Ri|Gi), and sum that across all possible

genotypes. This allows us to decompose Equation 2.3 into

P (G1, ..., Gn|R1, ..., Rn) =
P (G1, ..., Gn)

∏n
i=1 P (Ri|Gi)∑

∀G1,...,Gn
(P (G1, ..., Gn)

∏n
i=1 P (Ri|Gi))

. (2.4)

In order to estimate P (Ri|Gi), mapping quality and sequencing quality are considered. In other words, the

probability of obtaining a set of reads given an underlying genotype is proportional to the probability of

sampling a set of observations from the underlying genotype, scaled by the probability that the reads are

correct.

Further explanations of the calculations used by FreeBayes can be found in Section B.1 as well as the

original FreeBayes paper by Garrison and Marth [19].

Samtools

The Samtools mpileup function is another SNP calling package used in this thesis. While FreeBayes is

largely considered superior to mpileup, FreeBayes is considerably slower than mpileup. This tool is used to

compute the SNPs and their quality scores for the Lens culinaris dataset. The mpileup function makes use

of the work of Li et al. [20]; a Hidden Markov Model (HMM) is used to predict whether a genetic variant

was the result of a SNP or an insertion or deletion. This reduces false SNP calls because of misalignments

around insertions and deletions.

The mpileup program computes a set of BAQs, or per-Base Alignment Qualities, for each called SNP.

BAQ is defined to be −10 log10[1− Pr(xi|A)] where xi is the probability that the i-th read base is correctly

aligned to position i within the entire alignment, A. This takes into consideration the mapping quality of

read i, which is provided by the mapping software, and also takes into account the HMM model of the entire

alignment.

The BAQ is provided not just for the called genotype, but also for the alternative genotypes. More

information on how these values are calculated can be found in Section B.2, and in the paper by Li that

introduces BAQ [20].
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Chapter 3

Motivation

Deep learning is a tool that shows tremendous potential for genomic studies, but there are no accepted

best-practices for deep learning-based genomic studies. For example, the best way to represent genomic data

to a deep learning system is unknown. Deep learning for genomics is also difficult because the datasets that

are available are not suited for deep learning. SNP data is error-prone, full of noise, difficult to work with,

and expensive to obtain for large-scale studies with many samples. Because of this, most WGS datasets

suffer from the curse of dimensionality; that is, if n is the number of individuals in a dataset, and p is the

number of attributes considered for an individual (the number of genetic features sequenced), then p >> n.

This makes it extremely difficult to train machine learning algorithms.

Deep learning has been successfully applied to many areas of bioinformatics. There are many examples

where CNNs have been applied to image data, such as Chilamkurthy’s work extracting features from head CT

scans [22] and Dubost’s work with brain MRI images [23]. DeepChrome is a CNN framework that classifies

gene expression from histone modification data [24]. RNNs are often used when working with sequential

data, such as when looking at DNA and RNA binding sites, as shown by Jolma [25] and by Alipanahi [26].

Hua used a combination of a CNN and a DBN to diagnose lung cancer in images [27]. These are just some

recent examples of deep learning applied to bioinformatics problems.

Deep learning models, specifically CNNs, are often used with images as inputs. Representing an image

to a neural network is straightforward: the image is represented as a matrix of pixel values and the input

layer for the network feeds the input matrix into the next layer of the network. The input matrix differs

slightly depending on whether the image is greyscale, black and white, or colour, but in any case the matrix

is a direct representation of the pixels in the image; that is, each pixel’s intensity value is spatially located in

the input matrix next to adjacent pixels’ values, and a pixel’s intensity value can be directly represented in

the input matrix. For black and white images, the input matrix is a matrix with the same dimensions as the

image and each position in the matrix is a 0 or a 1, indicating that the corresponding pixel is either black

or white, respectively. Greyscale images are similar, except the values at each position are an indication of

the intensity value of the pixel. Most commonly this is a decimal number inclusively between 0 and 1, or

an integer in the range of 0 to 255, where 255 is a white pixel and 0 is a black pixel. These values are often

normalized to a decimal scale from 0 to 1 when used in machine learning. Colour images are similar, but

each pixel is represented as a vector of size 3: one value for each colour channel (RGB); this can be seen in
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Figure 3.1: A typical input matrix for a colour image for use in a neural network.
There is one layer for each colour channel: red, green, and blue. In this case the image
is a 4× 4× 3 pixel image. Source: XRDS [21].

Figure 3.1. Note that in this figure, the input appears to be a single plane for each colour channel instead

of a vector for each pixel. It is equivalent to say the entire input is a 3-dimensional matrix; each pixel is a

1× 1× 3 vector and there are width× height of these vectors, resulting in a width× height× 3 matrix.

Genomic data is not as straightforward as images; there is no such intuitive way to represent a set of

genomic markers as a standard matrix. Neural networks must have a consistent input matrix size across all

samples, so a standard representation must be used that is flexible enough to handle the variation that often

occurs in genomic datasets. Not all samples always have the same SNP set, so the chosen data representation

strategy must also be able to handle inconsistent SNP sets.

Biological data is messy, and genomic data is no exception: when it comes to SNP data each called SNP

has an associated quality score and there is a lot of potential variation in quality across a dataset. Oftentimes

low quality SNPs are filtered out of a dataset; some SNPs may be removed for all samples, and some may

only be filtered out for a fraction of samples. Different experiments can also yield different numbers of SNPs

depending on the sequencing platform and experimental methods used. This causes inconsistent inputs

because each sample might have a different set of SNPs that pass quality filtering, so data representation

strategies must be able to handle this. Additionally, information is thrown out that could be potentially useful

when filtering out SNPs. This is very similar to the common statistical problem of missing or censored data.

On top of that, quality scores are disregarded once the filtering is complete. Having a way to incorporate

quality scores and reduce the amount of information discarded would potentially increase the power of a

neural network.

When we use deep learning to predict a phenotype from genotype data, rare SNPs might actually be

associated with the phenotype that we are trying to predict. These rare SNPs can be uncommon minor

alleles with a low minor allele frequency, or they can even be alternate alleles that are not considered the

minor allele. If a SNP s has a low prevalence compared to other SNPs, it will inherently have a lower quality
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score because it has a smaller allele frequency, which decreases P (Gs), and from equation 2.4 the posterior

probability of the rare genotype is decreased. If this SNP is filtered out then the deep learning model will

have troubles linking phenotypes to that genetic marker if it is a causal SNP.

In addition to having a standardized way of representing SNP data to a deep learning model, being able

to deal with the curse of dimensionality would tremendously improve the performance of deep learning for

phenotype prediction. We present transfer learning as a way to deal with this problem. One use case that

can be imagined is to have a centralized repository of trained deep learning models that can be used as a

starting point for future genomic studies. A researcher hoping to use a specialized dataset only consisting

of a small number of individuals could download a model that was already trained for use on the same or

a closely related species and could then retrain his/her model on the specialized dataset. This would allow

for faster training times and more effective models than the researcher could have created just by using the

specialized dataset on its own, as long as the phenotypes are related enough to make use of transfer learning.

Successfully applying deep learning to phenotype prediction will benefit plant breeding programs by

allowing for more effective phenotype predictions from genomic data. This means that breeders can better

predict which lines from their breeding stock have the best phenotype potential for the trait they are interested

in, and can grow and breed a more targeted selection of lines to release or to breed again next season. Similarly,

analyzing predictive neural networks may result in the discovery of novel SNPs that are significant for the

prediction of phenotypes. These novel SNPs can then be investigated biologically to determine the role they

play in the development or regulation of the trait in question.
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Chapter 4

Data

The biggest hurdle that must be overcome in order to use deep learning techniques for phenotype predic-

tion is finding a dataset with enough samples and corresponding phenotype labels in order to train a neural

network to be effective and generalizable. There are many datasets available with large numbers of sequenced

individuals, but most of these datasets do not have consistent phenotype information for the corresponding

individuals. For this work it was important that the genomic data be in the form of SNPs with quality scores

and genotype likelihood information, or that the raw reads were accessible so the data could be variant-called

with FreeBayes. Datasets with around 1000 different samples and corresponding phenotypes were sought,

but datasets that large were not found at the time of writing. As a result of using datasets with fewer than

1000 different samples, there were problems with overfitting and small validation sets, making it difficult to

create generalizable prediction models.

The number of SNPs required depends on the size of the genome and the distribution of the called SNPs.

If the SNPs are uniformly distributed across the genome, a small number of SNPs from various parts of the

genome can capture more genetic variation than many SNPs all located in a small portion of the genome. An

organism with a smaller genome also requires fewer SNPs to create a comprehensive sample of the genetic

variation within the organism than an organism with a larger genome. Alternatively, a dataset with fewer

SNPs takes less memory and less time for neural network training, so datasets with 10s of millions of SNPs

are not desirable because of the computing resources they require.

Most importantly, phenotype information must be available and associated with each sample. A machine

learning model, such as a neural network, learns to predict labels based off inputs. For each individual in a

dataset, the phenotype is the label and the genotype is the input. Labelled samples are used for training and

validation, so that once a neural network is trained it can predict the phenotype information for unlabelled

samples. Without labels each genotype cannot be used for either training or validation, and therefore is

useless unless labels can be generated some other way. Phenotypes can be numerical, such as height, or

categorical, such as eye colour. Phenotypes can also include a time element, so long as there is a time that

can be sampled consistently (e.g. height at 10 weeks old). The neural networks in this thesis do not handle

phenotypes with time series data, such as a consistent sampling of height over the lifetime of an individual.

CNNs do not handle time series data well; RNNs [28] are often used for working with time series data, which

goes beyond the scope of this document.
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SNP1 SNP2 SNP3 SNPp














ref. 0 1 0 0

sample1 het. 0 0 1 . . . 0

alt. 0 0 0 1














ref. 1 1 0 0

sample2 het. 0 0 0 . . . 1

alt. 0 0 1 0
...














ref. 0 1 0 0

samplen het. 0 0 0 . . . 1

alt. 1 0 0 0

Figure 4.1: Input matrix for CIR. Each SNP is represented by the one-hot encoding
of its genotype classification. The abbreviations ref., het., and alt. correspond to the
homozygous reference, heterozygous, and homozygous alternate respectively. Notice
that SNP1 for sample1 and SNP3 for samplen did not meet the quality threshold and
were filtered out.

4.1 SNP Representation

Before continuing, one-hot encoding must be explained. One-hot encoding is when a categorical variable

is encoded as a binary vector. Genotypes can be considered categorical data with 4 classes, [homozygous

reference, heterozygous, homozygous alternate, unknown], but instead of representing homozygous reference

as 0, heterozygous as 1, homozygous alternate as 2, and unknown as 3 we encode them as a vector (homozygous

reference = [1, 0, 0], heterozygous = [0, 1, 0], homozygous alternate = [0, 0, 1], and unknown = [0, 0, 0]).

Each vector can have at most a single 1, with the remaining elements being 0. This prevents inadvertently

introducing magnitude into the input representation. Since in CNNs many operations are multiplicative it is

misleading to encode homozygous alternate as 2, because that implies that homozygous alternate is twice the

value of heterozygous, which we represent as 1. One-hot encoding avoids this. This input representation can

be seen in Figure 4.1, and is similar to the way images are represented to a neural network. Where an image

is represented as three 2-dimensional matrices stacked on top of each other (one for each of red, green, and

blue values), this SNP input representation can be thought of as three 1-dimensional matrices stacked on top

of each other (one for each genotype category). This is the basic way of encoding SNPs and will be referred

to as Categorical Input Representation (CIR) from this point on. An alternative SNP input representation

is looked at in Section 5.1.2.

We are interested in determining how the quality of a dataset affects a CNN’s ability to predict phenotypes.

Other factors that will affect a CNN’s performance include: phenotype measurement quality, the genes
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associated with the phenotype, distance between measured SNPs and causal genes, the neural network

architecture, and the neural network hyperparameters. All of these factors must be kept as constant as

possible when analyzing each experimental variable’s effectiveness so they do not confound the results.

4.2 Neisseria gonorrhoeae

The first dataset explored is the combination of multiple Neisseria gonorrhoeae datasets. Each sample in

this dataset consists of a pair of both genome and phenotype data. The phenotype data is the antimicrobial

resistance levels for multiple antibiotics. Demczuk et al. published a dataset of N. gonorrhoeae strains

sampled in Canada from 1997 to 2014 [29]. Grad et al. published a similar dataset sampled from the USA [30].

De Silva et al. collected samples in the UK from 2011 to 2015 [31]. These three datasets were combined

to form a dataset containing 41,502 SNPs across 676 different N. gonorrhoeae strains. N. gonorrhoeae is

a good starting dataset because N. gonorrhoeae has a small genome with only a single chromosome. The

small size allows for short neural network training times, meaning that development can happen rapidly and

iteratively, therefore allowing preliminary results to be obtained quickly. Gonorrhoaea is a haploid, meaning

complexities such as heterozygosity didn’t need to be considered at this step.

The dataset was first prepared by downloading the raw reads from the NCBI short read archive (SRA).

A list of accessions numbers can be found in Table C.1. Next, the reads were aligned to reference genome

NCCP11945 [32] using the Burrows-Wheeler Aligner [33]. The resulting sam files were sorted and SNPs were

called with FreeBayes. The script preprocess.sh in Listing E contains the parameters each script was called

with. The drawback of using FreeBayes is that it takes a long time to run on a large dataset. It took 2

months for a machine with 64 CPU cores and 1.5TB of memory to produce SNPs for the N. gonorrhoeae

dataset using FreeBayes; unfortunately, CPU time was not calculated during execution. Once the SNPs were

called, indels were removed. Next, the resulting variants were filtered for sequencing depth greater than 4

and quality greater than 20 using the vcffilter tool (https://github.com/vcflib/vcflib#vcffilter).

The CIR presented in Section 4.1 considered only diploid datasets. N. gonorrhoeae is different because it

is haploid. In order to encode SNPs the same way, 0 is assigned to the reference genotype, 1 is assigned to the

first (most common) alternative genotype, 2 is assigned to the second most frequent alternative genotype,

and so forth. This is decided and provided by the SNP-calling software and allows us to use a similar

representation scheme. The maximum number of alternate genotypes in this dataset is 6, so our vector after

one-hot encoding must be of length 7 (6 alternates plus the reference genotype). The reason there are more

than 3 possible alternates is because in some cases neighbouring SNPs are aligned to the same reference.

This leads to the possibility of many different alternates, but in this dataset the most we see is 6 alternates

aligned to a single reference location. For example, the reference sequence CGC may have both CTC and CGT

as alternates. These are still both SNPs because only one nucleotide is different from the reference. If 2

nucleotides were changed this would be decomposed into separate SNPs.
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Figure 4.2: Histogram of distribution of quality scores for the N. gonorrhoeae dataset.
Note that both axes use a logarithmic scale.
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Figure 4.3: Histogram of distribution of MIC values for the N. gonorrhoeae dataset.

The MIC for each antibiotic were measured with the two-fold dilution method, resulting

in values that fall on the log2 scale.
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Figure 4.3: Histogram of distribution of MIC values for the N. gonorrhoeae dataset

(cont.).

25



0

50

100

150

200

1 8 64
Tetracycline MIC value (log2 scale)

F
re

qu
en

cy

(e) Tetracycline MICs

Figure 4.3: Histogram of distribution of MIC values for the N. gonorrhoeae dataset

(cont.).

There is a large range of quality scores of SNPs in this dataset, with many SNPs having very high scores.

Figure 4.2 shows the quality score distribution of the SNPs after filtering.

The phenotypes for the N. gonorrhoeae dataset are the minimum inhibitory concentrations (MICs) of

each of 5 antibiotics: azithromycin, cefixime, ciprofloxacin, penicillin, and tetracycline. This is a quantitative

measurement of antimicrobial resistance of each N. gonorrhoeae strain and is measured using the two-fold

dilution method. The two-fold dilution method [34] is a method of measuring antimicrobial susceptibility that

involves doubling the concentration of antibiotic solution in each test until the lowest concentration that in-

hibits growth is found. This will produce MIC values that follow a log2 scale, i.e. {. . . , 0.25, 0.5, 1, 2, 4, 8, . . .}.

The distribution of MIC values for each phenotype can be seen in Figure 4.3. For some phenotypes there were

missing MIC values: there were 6 missing MIC values for cefixime and 4 missing MIC values for penicillin.

4.3 Lens culinaris

While N. gonorrhoeae is a good organism to use as a starting point for phenotype prediction studies, organisms

used in agricultural crops are more complex and will lead to more practical applications. After studying N.

gonorrhoeae, a Lens culinaris dataset was used. L. culinaris is considered to show that any findings are
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not only useful for simple bacteria, but can also be extended to diploid organisms and may be useful in

agricultural applications. Phenotype prediction with agricultural organisms is useful for both crop breeders

and producers, allowing them both to make the most of the growing season by planting genetic lines that

have the most potential for whatever trait the breeder or producer desires.

The AGILE lentil dataset made available by Kirstin Bett [35] contained 324 samples with 31,883,135

SNPs sequenced via exome sequencing (This particular dataset was called with reference genome version

1.2 [36]). Exome sequencing is different from WGS because it is designed to only look at DNA that will be

translated into mRNA. WGS, by virtue of its name, looks at genetic variants across the whole genome. Exome

sequencing disregards genetic variants in noncoding regions and in introns and only looks at variants in coding

regions. Exome reads were aligned to a reference genome using the Samtools mpileup [37] function. The

mpileup function produces quality scores with genotype likelihoods for each possible genotype as described

in Subsection 2.3.3. FreeBayes was not used for this task because of the massive amount of time it would have

taken to process the SNPs for such a large dataset. While the mpileup quality score calculation differs from

the one used in freebayes, it was still useful for our purposes as we required genotype likelihoods for each

possible genotype, and both freebayes and mpileup quality scores can be converted to genotype likelihoods

using Equation 5.1.

Working with such a large dataset takes considerable computing resources, specifically program memory,

and requires some special consideration when building neural networks. For example, the network we used

had 1,946,345,473 trainable parameters, taking approximately 7.8 GB of memory to simply represent in

memory. Much more memory than this was required to work with and train the network. These neural

networks must be run on the CPU rather than a GPU as transferring data to the GPU incurs too much

overhead. After filtering out SNPs with quality scores less than 30, 23,402,924 SNPs remained. In order to

cut the dataset size down even further, any SNPs that were missing from any of the 324 samples were filtered

out completely, leaving 950,298 SNPs. The quality score distribution of the remaining SNPs can be seen in

Figure 4.4.

L. culinaris is a diploid organism so SNPs are represented as a vector of length 3 as described in Chap-

ter 4.1.

There are 3 phenotypes associated with each L. culinaris line of interest to us. The first phenotype is the

number of Days to Flower (DTF). This is defined as the number of days until 10% of plants have at least one

open flower. The next phenotype is the number of Days to Swollen (DTS). This is defined as the number

of days until 10% of plants have fully swollen pods. The final phenotype is the number of Days to Maturity

(DTM), which is defined as the number of days until 10% of plants have half of their pods mature. Each

L. culinaris line has been planted in multiple locations across multiple years, so each replicate has different

environmental conditions resulting in different phenotype values depending on the year and location of the

crop. For simplicity we focus on only the phenotypes from the Sutherland 2016 crops. The distribution of

these phenotypes can be seen in Figure 4.5
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Figure 4.4: Histogram of distribution of quality scores for the L. culinaris dataset.
Note that the highest reported quality score in this dataset is 999; all higher values
have been capped at this value.
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Figure 4.5: Histogram of distribution phenotypes for the L. culinaris dataset.
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Figure 4.5: Histogram of distribution phenotypes for the L. culinaris dataset (cont.).
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Chapter 5

Experiments

Multiple experiments were performed, each with the common theme of improving the ability to use deep

learning for phenotype prediction. When taken together, the results form a toolbox of techniques that can be

used to improve the use of available data for deep learning studies. All neural networks in these experiments

were implemented using the Keras software package [38].

5.1 Genotype Representation for Input to Neural Network

The first experiment explored the best way to represent SNPs as input to a convolutional neural network.

Determining an effective way to represent SNPs for use in deep learning studies provides a solid foundation

from which future deep learning studies can build. Our hypothesis is that having a way to incorporate quality

scores and reduce the amount of information discarded by Single Nucleotide Polymorphism (SNP) filtering

can increase the power of a neural network in some cases. We look at two different input representations,

Categorical Input Representation (CIR) and Probabilistic Input Representation (PIR), and compare the

results of CNNs using each method on two different datasets, the N. gonorrhoeae dataset and the L. culinaris

dataset.

Two posters were created exhibiting preliminary results for this investigation. A poster presented at

Research Fest 2018 [39] showed the comparison of 2 neural networks on their ability to predict antimicrobial

resistance of different N. gonorrhoeae strains. A follow-up poster was presented at the 2018 P2IRC sympo-

sium [40] that expanded upon these results and also incorporated L. culinaris data. Both of these posters,

kopas-poster-1.pdf and kopas-poster-2.pdf can be found in Supplementary Materials.

5.1.1 Architecture

The CNN architecture was chosen based on experience in order to balance representative capacity with

memory usage. Larger networks (networks with many layers and many convolutional filters) have more

representative capacity, but require a lot of memory and time to train. Large networks can also lead to

overfitting; if a network has too much representative capacity it will learn all the noise present in the dataset

and memorize the inputs rather than learning useful connections that will generalize to other samples not seen

in the training data. Small networks train faster and take less memory, but may not have the representative
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capacity to learn the connections necessary to predict phenotypes.

The network architecture used was selected to minimize the risk of overfitting while still having enough

representative capacity to learn to predict phenotypes. The more parameters a neural network has, the

more closely it is able to estimate a non-linear function from the provided training data. This can lead

to overfitting if the network learns to map entire inputs onto the provided outputs. When this happens,

the network memorizes the input but does not know how to interpret samples that were not present in the

training data. Alternatively, if the network does not have the capacity to completely memorize an input, it

is then forced to determine which features are significant and can learn to disregard the features that may

be noise. This allows the network to generalize to other samples because it is able to parse out the same

significant features and perform a reasonable prediction despite not having been trained on the sample in

question. The architecture selected was chosen to be large enough to be able to predict phenotypes for both

datasets, but not so large as to be at risk of overfitting.

Early investigations showed that if the number of convolutional layers increased while the number of

fully connected layers remained small, then network performance increased while the number of trainable

parameters was reduced. It appeared that adding more convolutional layers increased a CNN’s effectiveness

more than adding fully connected layers.

All experiments used similar network architectures, but layer shapes had to be tailored to fit the different

sized inputs of the 2 datasets (the N. gonorrhoeae and L. culinaris datasets have different number of SNPs).

The number of neurons in the input layer of a CNN is always equal to the number of SNPs in an input

sample. Convolutional layers following the input layer then reduce the number of neurons at each subsequent

layer. While the architecture remains the same for each experiment (the choice and arrangement of layers

does not change), the size of those layers must fit the input size.

The network architecture started with the input layer; next, there was a number of convolutional layers

with varying numbers of filters. Every second convolutional layer was followed by a max-pooling layer and a

dropout layer. The max pooling layer was added to reduce the size of the input to the next layer. All max

pooling layers in this document had a size of 2× 1, and therefore reduced the size of the input into the next

layer by half. In order to reduce overfitting, dropout layers were added with a dropout rate of 25%. This

architecture can be seen in Figures 5.1 and 5.2.

After the convolutional layers a flatten layer was added to prepare the data for the fully connected layers.

Next, as stated, the data was passed to a number of fully connected layers. Fully connected layers do not

retain spatial information; they connect each node in the input to each node in the output. This means that

they had a very large number of trainable parameters. Each fully connected layer was followed by a dropout

layer with a 50% dropout rate to reduce overfitting further.

Finally, data was fed to an output layer, which is just a fully connected layer with 1 output node. Each

layer that required an activation function used the ReLU activation function [41] except the final output layer,

which used a linear activation function for the regression tasks and a sigmoid activation function for the
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classification task.

The complete architecture can be seen in Figure 5.1 for the N. gonorrhoeae dataset and in Figure 5.2 for

the L. culinaris dataset. The only difference in the 2 architectures were the shapes of the layers; the types

of layers and ordering of layers were the same in each network.

5.1.2 Methods

In order to assess how quality scores affect phenotype prediction we trained multiple CNNs. In the first type

of experiment, quality scores were only used to filter out low-quality SNPs during data preprocessing. More

details about the preprocessing of each dataset can be found in Subsections 4.2 and 4.3. The dataset was first

filtered by a quality score threshold, then the remaining SNPs were categorized as homozygous alternate,

heterozygous, or homozygous reference for the L. culinaris dataset and as reference, alternate 1, alternate 2,

etc. for the N. gonorrhoeae dataset. Next, this categorization was one-hot encoded. The resulting vector was

the input vector for each SNP. Any SNPs that were removed in the filtering step were represented by a vector

of all zeros. This input representation will be called Categorical Input Representation (CIR) throughout this

document and is described in Section 4.1 and Figure 4.1 in more detail. Next, a CNN was trained and

evaluated using the phenotype values for each sample as the label the CNN learns to predict.

In the second type of experiment, SNP quality scores were provided to the model as additional information.

In this experiment, SNPs were represented as a vector indicating the posterior probability of each possible

genotype. For both datasets this posterior probability vector was a function of the SNP quality scores provided

by the SNP calling software. For the N. gonorrhoeae dataset this quality score is defined in Subsection 2.3.3.

FreeBayes reported quality scores as a PHRED quality score, and they were then converted into posterior

probabilities. To obtain a posterior probability from a PHRED quality score, we had to solve Equation B.6

for P , which resulted in the following formula:

P = 10
−Q
10 . (5.1)

This allowed us to create a vector of posterior probabilities for each possible genotype. For the L. culinaris

dataset this quality score was calculated by the Samtools mpileup program and was provided directly by the

software, as described in Subsection 2.3.3. This input representation can be seen in Figure 5.3, and will be

referred to as Probabilistic Input Representation (PIR).

Ten percent of each dataset was withheld for a validation set, then each type of neural network was trained

for 200 epochs with an early stopping function. The early stopping function is set to stop training when the

validation loss improves by less than 1 for 5 epochs. Both datasets contained continuous phenotype data, so

the models were regression models rather than classification models. However, literature exists for thresholds

to classify Antimicrobial Resistance (AMR) for N. gonorrhoeae as either susceptible or resistant [42], so a

separate classification task was also performed for the N. gonorrhoeae dataset. For each experiment 3 trials

were performed with randomized training/validation splits and the average across those trials was reported.
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Figure 5.1: Neural network used for experiments using the N. gonorrhoeae dataset.
The input and output dimensions for each layer are shown. The dimensions are provided
in the same format as described in Chapter 2.1.3. The flatten layer accepts input in two
dimensions and reshapes the layer into one dimension, as explained in Subsection 2.1.3.
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Figure 5.2: Neural network used for experiments using the L. culinaris dataset. The
input and output dimensions for each layer are shown. The dimensions are provided in
the same format as described in Chapter 2.1.3. The flatten layer accepts input in three
dimensions and reshapes the layer into one dimension, as explained in Subsection 2.1.3.
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SNP 1 SNP 2 SNP 3 SNP p














ref. 0.6 0.92 0.05 0.01

sample1 het. 0.3 0.06 0.87 . . . 0.01

alt. 0.1 0.02 0.08 0.98














ref. 0.99 0.91 0.01 0.12

sample2 het. 0.01 0.05 0.1 . . . 0.79

alt. 0 0.04 0.89 0.09
...














ref. 0.02 0.98 0.18 0.04

samplen het. 0.05 0.02 0.6 . . . 0.9

alt. 0.93 0 0.22 0.06

Figure 5.3: Input matrix for probablistic representation. Each SNP is represented
by a vector of the posterior probabilities of each possible genotype. The abbreviations
ref., het., and alt. correspond to the homozygous reference, heterozygous, and homozy-
gous alternate genotypes correspondingly. Notice that no SNPs have been filtered out.

Many machine learning experiments split datasets into 3 parts: the training, testing, and validation sets.

This is done because hyperparameters are often tuned to perform well on the test set, so a validation set is

needed to ensure that the model works on a 3rd, unseen dataset as well. The datasets available to us have

very few samples, and removing samples from the training data for a 3rd set would make training the network

much more difficult. The choice to only use a training and validation set is justified for two reasons. First, the

hyperparameters for each experiment are not tuned to a particular validation set in these experiments. The

network architecture and hyperparameters were set after some initial exploration and were unchanged for

each experiment and each trial. The only hyperparameter that changed from experiment to experiment was

the early stopping function, and this was only used for the N. gonorrhoeae experiments. Secondly, repeated

trials were performed with random dataset splits. This attempts to mitigate any bias towards a particular

validation set, as the validation set changed between different trials.

The loss function that we used to measure performance of the regression models was the Root Mean

Squared Error (RMSE) of the predicted values. The RMSE is a measure of ability of a model to predict

continuous values close to the true phenotype value; however, RMSE is relative to the magnitude of the

phenotype values, and as such RMSE values cannot be compared for the prediction of different phenotypes.

As a baseline, results from the current state-of-the-art, RR-BLUP, are provided in Appendix D.1. RMSE

was compared for both networks predicting each phenotype, the one using CIR and the other using PIR. An

Anderson-Darling test and a Kolmogorov-Smirnov test were additionally performed for the N. gonorrhoeae

dataset to determine if the distribution of predicted MICs matched the distribution of the true MICs. The

Anderson-Darling k-sample test was used, which tests the null hypothesis that k-samples are drawn from the
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same distribution without having to specify the characteristics of that population. The null hypothesis in

this case was that the predicted MIC values came from the same distribution as the true MIC values. The

Kolmogorov-Smirnov 2-sample test has the same null hypothesis as the Anderson-Darling test used: the null

hypothesis is that 2 independent samples were drawn from the same continuous distribution. Rejecting the

null hypothesis in either case indicates that the predicted values do not share the same distribution function

as the true values the neural network was trained on, and is evidence that the network is not providing

accurate predictions. Accepting the null hypothesis does not mean that the network is providing accurate

predictions, but it is evidence that the network is predicting reasonable values for both the training and

validation datasets.

For the classification task the accuracy of the model was evaluated. Each model attempted to classify

each N. gonorrhoeae strain as either susceptible or resistant for a single antibiotic. The accuracy of each

model was defined as the total number of correct classifications divided by the total number of classifications

performed. This was done for 5 different phenotypes for the N. gonorrhoeae dataset.

5.1.3 Results and Discussion

The results and discussion are presented together for each dataset. The results of each model for the N.

gonorrhoeae are presented first, starting with the regression task and then for the classification task. After,

the results are presented for the L. culinaris dataset. Finally, future work is discussed at the end of this

section.

Neisseria gonorrhoeae

The N. gonorrhoeae data for this study is described in Section 4.2. In these datasets there were a total of 676

different strains and 41,502 SNPs. Each strain had 5 associated phenotypes with the exception of a few cases

where data were missing. The phenotypes were the MICs for each of the 5 drugs: cefixime, azythromycin,

ciprofloxacin, penicillin, and tetracycline. N. gonorrhoeae NGS data was used as a pilot study because of its

small size and simplicity. N. gonorrhoeae is a haploid organism, which means heterozygosity does not need

to be accounted for. The phenotypes, MIC values, were a good starting point because they could be used

for both regression and classification studies. The quantitative MIC values were used to create a regression

model where the model attempted to predict the actual MIC value, and the categorical resistance values were

used to create a classification model where the model attempted to predict whether each strain was resistant

or susceptible to the antibiotic.

The results for the regression task can be seen in Table 5.1, and in Figure 5.4. These results show that

the PIR model outperformed the CIR model for prediction of cefixime, ciprofloxacin, and tetracycline MIC

prediction. For penicillin MIC prediction the CIR model performed best and for azithromycin the PIR model

performed better for the training set but much worse on the validation set. For azithromycin this is likely

due to overfitting; there was a very large variance between the different trials.
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Table 5.2 shows the average number of epochs required for training each neural network for the regression

task. Number of epochs is reported because it is a hardware-independent method of measuring how long

training takes. In all cases except the tetracycline prediction model, the PIR model took less time to train.

For azithromycin prediction the PIR model took significantly less time to train than the CIR model: 45

epochs for the former and 147 epochs for the latter. This likely means that the PIR model was not fully

trained, which may explain why the validation loss was much worse for the PIR model than for the CIR

model for azithromycin MIC prediction. Tuning the early stopping function may prevent training from ending

before the network is fully trained; however, with small datasets it is difficult to achieve smooth training and

any early stopping function is likely to get stuck in a local minima.

A Kolmogorov-Smirnov test and an Anderson-Darling test were performed as additional analyses, which

can be seen in Tables 5.3 and 5.4. These were performed to test whether the predicted MIC values were from

the same distribution as the true MIC values. Under these tests the null hypothesis was that the predicted

values and the true values came from the same distribution. In this case, accepting the null hypothesis would

be evidence that the predictions were accurate. In all cases except one the null hypothesis can be rejected

at a p = 0.01 significance level, meaning that the distribution of predicted phenotypes does not match the

distribution of true phenotypes in most cases. The only case where the null hypothesis could not be rejected

was the case of tetracycline MIC prediction using the CIR model. This was evidence that the CIR model

performed the best at its prediction task in this particular case. This also meant that in most cases the

predicted phenotypes did not follow a distribution similar to that of the true phenotype distribution. This

was not surprising due to the small size of the dataset used. Being able to train on a larger dataset would

likely yield a better distribution of predicted phenotypes.

Phenotype
CIR

Training Loss

CIR

Validation Loss

PIR

Training Loss

PIR

Validation Loss

Azithromycin 1918.56 204.90 1777.99 2085.84

Cefixime 3.79 3.77 3.77 3.66

Ciprofloxacin 143.87 164.86 93.05 92.76

Penicillin 306.93 219.10 132.47 154.96

Tetracycline 160.35 408.71 371.65 542.50

Table 5.1: Results for the CIR and the PIR models on the prediction of MIC values
for each of the 5 AMR phenotypes. This task was a regression task and the reported
values are the RMSE of the predicted MIC values averaged across all trials. Smaller
RMSE indicates better performance.
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Phenotype
Number of Epochs

for CIR Model

Number of Epochs

for PIR Model

Azithromycin 147 45

Cefixime 73 70

Ciprofloxacin 113 95

Penicillin 123 98

Tetracycline 74 81

Table 5.2: Average number of epochs required for training to plateau for the regression
task. Training continued until loss value improvement plateaued or until 200 epochs
occured.

Figure 5.4: Improvement of RMSE for MIC prediction for N. gonorrhoeae. Values
are the difference in RMSE between the CIR model and the PIR model as a percentage
of the loss of the PIR model. The blue bars are the RMSE differences observed on the
training data and the red bars are the RMSE differences observed on the test data.
Positive values mean that the PIR model outperformed the CIR model. Note that
azithromycin loss was over 900% larger for the PIR model and was truncated for this
figure.
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Phenotype
KS Test Statistic

for CIR Model

P-value for KS

for CIR Model

KS Test Statistic

for PIR Model

P-value for KS for

PIR Model

Azithromycin 0.47 2.79E-07 0.32 1.15E-03

Cefixime 0.76 4.19E-18 0.70 1.93E-15

Ciprofloxacin 0.50 3.65E-08 0.50 3.65E-08

Penicillin 0.52 9.43E-09 0.78 8.35E-19

Tetracycline 0.43 4.69E-06 0.25 0.023

Table 5.3: KS Test statistic for both PIR model and CIR model. The only case where
we can say with significance that the predicted MIC values were sampled from the same
distribution as the measured MIC values was when predicting Tetracycline resistance
with the PIR model.

Phenotype
AD Test Statistic

for CIR Model

P-value for AD

for CIR Model

AD Test Statistic

for PIR Model

P-value for AD for

PIR Model

Azithromycin 9.51 1.72E-04 5.14 3.21E-03

Cefixime 34.1 8.62E-04 25.5 1.47E-05

Ciprofloxacin 18.3 8.91E-06 15.1 1.68E-05

Penicillin 15.2 1.62E-05 36.8 6.33E-03

Tetracycline 7.90 4.55E-04 3.52 0.012

Table 5.4: AD Test statistic for both PIR model and CIR model. The only case where
we can say with significance that the predicted MIC values were sampled from the same
distribution as the measured MIC values was when predicting Tetracycline resistance
with the PIR.

Phenotype
Number of Epochs

for CIR Model

Number of Epochs

for PIR Model

Azithromycin 45 44

Cefixime 45 44

Ciprofloxacin 44 45

Penicillin 44 44

Tetracycline 45 44

Table 5.6: Average number of epochs required for training to plateau for the classi-

fication task. Training continued until loss value improvement plateaued or until 200

epochs occured.

For the classification task the percent improvement in accuracy of the PIR model is shown in Figure 5.5.

The average results across each trial are shown in Table 5.5, and the training time results are shown in
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Figure 5.5: Improvement of accuracy for AMR classification for N. gonorrhoeae.
Values are the difference in accuracy between the CIR model and the PIR model as a
percentage of the accuracy of the PIR model. The blue bars are the RMSE differences
observed on the training data and the red bars are the RMSE differences observed on
the test data. Positive values mean that the PIR model outperformed the CIR model.

Table 5.6. Accuracy on the validation set is a better measure of how a classification performs, so analysis

will focus on the validation accuracy values. The results show that for tetracycline the PIR model and the

CIR model both performed equally. Azithromycin is the only case where the PIR model performed better on

the validation set. Note that this is opposite to the results observed for the regression task. For ciprofloxacin

and penicillin the CIR model performed better on the validation set. Figures 5.6 to 5.10 show the Receiver

Operating Characteristics (ROC) and precision-recall curves for the classification task.

Overall, it appears that the CIR model performs better than the PIR model for the classification task. For

the regression task it doesn’t appear that one model outperformed the other; each representation performed

better for the MIC prediction of two antibiotics, and for cefixime prediction the performance difference was

negligible. One possible explanation why the PIR model performed better on the regression task than the

classification task is because the PIR model retains more information than the CIR model. This extra

information could have been useful for regression tasks, where the magnitude of the prediction is important,

whereas for a classification task this extra information may be extraneous and causes training to be more

difficult. Another possible explanation is that low quality SNPs are actually misleading the PIR model, and

there’s not enough data for the CNN to learn to discount low quality SNPS. If this is the case, the CIR model

would not be affected in the same way as the low quality SNPs are removed. The PIR model retains extra

information because of the way it handles quality scores. In the CIR model not only are SNPs discarded if

their quality score does not meed a certain threshold, but the quality score information is also discarded. By

encoding the quality score information alongside SNPs via the posterior probability vector, the PIR model

contains much more information that a CNN can use to improve its internal model. However, the PIR model
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(a) ROC Curve (b) Precision-Recall Curve

Figure 5.6: ROC and precision-recall curves for azithromycin classification for both
the PIR and CIR models and a naive model for comparison. The naive model represents
a model that cannot discriminate between susceptible and resistant and guesses either
classification with a 50% chance. The precision recall curve shows a larger area under
the curve (AUC) for the CIR model, indicating a better performing model.

(a) ROC Curve (b) Precision-Recall Curve

Figure 5.7: ROC and precision-recall curves for cefixime classification for both the
PIR and CIR models and a naive model for comparison. The naive model represents
a model that cannot discriminate between susceptible and resistant and guesses either
classification with a 50% chance. The ROC curve shows that the CIR model slightly
outperforms the PIR model. This can be be seen by a slightly larger area under the curve
(AUC). However, the precision recall curve shows that the CIR model underperforms
when the recall is low, indicating the model may perform poorly in some circumstances.
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(a) ROC Curve (b) Precision-Recall Curve

Figure 5.8: ROC and precision-recall curves for ciprofloxacin classification for both
the PIR and CIR models and a naive model for comparison. The naive model repre-
sents a model that cannot discriminate between susceptible and resistant and guesses
either classification with a 50% chance. The PIR model has a higher area under the
curve (AUC) for both the ROC curve and the precision-recall curve. Additionally, the
precision-recall curve for the CIR model shows that it performs worse than the naive
model in some circumstances.

(a) ROC Curve (b) Precision-Recall Curve

Figure 5.9: ROC and precision-recall curves for tetracycline classification for both the
PIR and CIR models and a naive model for comparison. The naive model represents
a model that cannot discriminate between susceptible and resistant and guesses either
classification with a 50% chance. Both models have nearly identical curves.
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Phenotype
CIR

Training Accuracy

CIR

Validation Accuracy

PIR

Training Accuracy

PIR

Validation Accuracy

Azithromycin 0.80 0.82 0.79 0.87

Cefixime 0.84 0.86 0.84 0.85

Ciprofloxacin 0.94 0.95 0.93 0.83

Penicillin 0.92 0.95 0.92 0.90

Tetracycline 0.96 0.96 0.96 0.96

Table 5.5: Results for the CIR and the PIR models on the prediction of AMR for each
of the 5 AMR phenotypes. This task was a classification task and the reported values
are the accuracy of the model’s prediction as either resistant or susceptible averaged
across all trials. Smaller RMSE indicates better performance.

only performed better in some cases; therefore, we cannot say that encoding quality information is beneficial

to all CNNs. Training CNNs on the datasets available with so few samples is unstable and results can vary

across different trials. Performing these experiments with more replicates and a larger datasets would yield

more conclusive results.

In conclusion, both input representations performed similarly. Each representation model performed

better in some cases and worse in other cases. For classification tasks, the CIR model appears to be superior

in most cases.

Lens culinaris

Phenotype
CIR

Training Accuracy

CIR

Validation Accuracy

PIR

Training Accuracy

PIR

Validation Accuracy

DTF 386.30 670.26 472.16 1153.86

DTS 539.03 1334.38 516.67 475.03

DTM 876.34 1451.58 925.96 1423.19

Table 5.7: Results for the CIR and the PIR models on the prediction of Phenotypes
for L. culinaris The reported values are the RMSE of the predicted phenotype values
after training for 200 epochs and averaged across 3 trials. Smaller RMSE indicates
better performance.

L. culinaris data was also used to train and evaluate a CNN in its ability to predict phenotype values

from genotype data. For this dataset only a regression task was performed. Any attempt to turn quantitative

phenotype data such as DTF or DTS into a categorical variable such as [“late”, “regular”, “early”] would

be subjective; therefore, a classification task was not performed. The dataset only contained 324 genomes,

so it was difficult to train the models. Early stopping was disabled and each model was trained for 200

epochs. During training the loss values were not a smooth, monotonically decreasing function, and if an
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(a) ROC Curve (b) Precision-Recall Curve

Figure 5.10: ROC and precision-recall curves for penicillin classification for both the
PIR and CIR models and a naive model for comparison. The naive model represents
a model that cannot discriminate between susceptible and resistant and guesses either
classification with a 50% chance. The PIR model has a higher area under the ROC
curve, indicating better performance.

Figure 5.11: Improvement of RMSE for phenotype prediction for L. culinaris. Values
are the difference in RMSE between the CIR model and the PIR model as a percentage
of the loss of the PIR model. The blue bars are the RMSE differences observed on the
training data and the red bars are the RMSE differences observed on the test data.
Positive values mean that the PIR model outperformed the CIR model.
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early stopping function was used it would have prematurely stopped training, resulting in a partially trained

model. Results can be seen in Table 5.7.

Figure 5.11 shows that there was not much difference between the different input representation models.

In the case of DTF the CIR model performed significantly better. In the case of DTS the PIR model

performed significantly better. Finally, in the case of DTM both models performed equally well. This is

similar to the results seen with the N. gonorrhoeae dataset, as both input representations performed better

in some cases, and no definitive conclusion could be drawn.

5.1.4 Future Work

There are multiple different avenues that can be explored to continue this work. Firstly, the neural network

hyperparameters and architecture could be further tuned; this may result in more accurate phenotype predic-

tion for one or both input representation models. Secondly, performing these experiments on larger datasets

with more samples would remove the instability in the results and allow one to draw stronger conclusions

about which input representation model is superior. A dataset with ten thousand samples would allow us

to train more effective models and would possibly allow us to draw statistically significant conclusions. Of-

tentimes, gathering more samples leads to more environmental variability, so a third avenue of exploration

would be to determine if incorporating environmental data into the input of a machine learning model could

mitigate this problem. Fourthly, it would be interesting to see if the PIR would yield more dramatic im-

provements if it was applied to a dataset with lower quality scores. Finally, putting both models through

SHAP [10] or another model explainer would allow us to dig deeper into each network and investigate which

SNPs each model found significant. If the PIR model found significance in SNPs that were filtered out from

the CIR model then this would give some insight into why the former model performs better in some cases,

and could possibly identify causative SNPs that may warrant biological investigation.

5.2 Transfer Learning

A consistent problem that makes it difficult to train neural networks is that the datasets available do not

have enough samples to train an effective predictive model. In order for deep learning to be successful, there

must be a way to make do with the datasets that available. One technique that can artificially increase the

size of a dataset is transfer learning. Transfer learning allows one to make use of every sample in a dataset

multiple times, by training a prediction model to predict one phenotype, and then retraining the model to

predict another phenotype. In this section we present an experiment that shows that transfer learning can

be used to increase the effectiveness of CNNs for phenotype prediction.

The mechanism that causes transfer learning to be successful is the transfer of knowledge (or learned

connections within a neural network) from one task to another. In this case the tasks are the prediction of

different phenotypes. The features and connections learned when predicting the first phenotype are retained
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Figure 5.12: This figure shows the generalized methodology for transfer learning. For
the control (left), a CNN is trained to predict phenotype A. For the transfer learning
case (right), model 1 is trained to predict phenotype B. Next, the learned weights from
model 1 are transferred to model 2, which is re-trained to predict Phenotype A. The
transfer and control models are then compared on their ability to predict phenotype A.

and leveraged for prediction of the second phenotype. Leveraging features and connections across phenotypes

is useful if the phenotypes are biologically related or involve similar genetic mechanisms. For example, if

the mechanisms underlying the phenotypes both use a similar protein then all phenotype prediction models

that predict phenotypes that make use of that protein can reuse the part of the neural network that has

learned to detect that protein. Another example would be a convolutional layer that learns to detect a gene

variant and upstream promoter region. If a neural network, specifically a CNN, is able to learn to detect

these gene-promoter region configurations, then transferring these learned configurations to a second neural

network may allow the second neural network to make use of these configurations. The second network may

not even use the same gene and promoter region, but can leverage the learned network connections to find

other gene and promoter regions that have a similar chromosomal layout to the first.

5.2.1 Architecture

The architecture of the neural networks used for both N. gonorrhoeae and for L. culinaris are the same as

in the previous experiment, for both the classification and regression tasks. This explanation can be found

in Subsection 5.1.1.

5.2.2 Methods

This experiment was performed using both N. gonorrhoeae and L. culinaris datasets. The methods for each

are slightly different; however, Figure 5.12 depicts a general version of the methods.
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Neisseria gonorrhoeae

Transfer learning for N. gonorrhoeae assumes that different antimicrobial resistance mechanisms share some

common genetic mechanisms. If that assumption is correct, then neural networks can exploit these common

mechanisms via transfer learning.

The dataset used, which is described in Section 4.2, contains AMR information for 5 different antibiotics:

azithromycin, cefixime, ciprofloxacin, penicillin, and tetracycline. For each of the antibiotics listed above a

neural network, called model 1, is trained to predict the MIC values of that antibiotic. Model 1 is trained

until the loss value plateaus (this is determined by the early stopping function) or 200 epochs have ocurred,

whichever comes first. The weights from model 1 are then used to initiate the training of a second neural

network, called the model 2, for AMR prediction of a different antibiotic. Model 2 is created with the neural

network’s initial layer weights set equal to the final network layer weights of model 1. Next, the model 2

network is configured so that the convolutional layers are never updated during the backpropagation step.

This means that only the fully connected layers are updated during backpropagation, forcing model 2 to

make use of the features that were learned in the convolutional layers from model 1. Model 2 is trained

until it plateaus (via early stopping) and evaluated on the validation dataset. All pairwise combinations of

antibiotics was explored resulting in 20 different control-transfer pairs.

Lens culinaris

The phenotypes available for L. culinaris are all related in the fact that they are all indications of the plant’s

growth rate in different stages of development. We assume that these phenotypes also share some common

genetic mechanism, and since all measurements are from the same location and growing season we can rule

out environmental conditions as a factor.

The transfer learning study for L. culinaris is very similar to the transfer learning study for N. gonorrhoeae.

We start with model 1, which is trained until plateau to predict one of the phenotypes: DTF, DTS, DTM.

Each of these phenotypes is described in Section 4.3. That model is then used to initialize a predictive model

(model 2) for either of the other two remaining phenotypes. Every permutation was explored resulting in 6

different control-transfer pairs.

5.2.3 Results and Discussion

N. gonorrhoeae

The results for transfer learning on the N. gonorrhoeae dataset are provided in Table 5.8. In all cases except

for the case of azithromycin MIC prediction, phenotype prediction results on the validation set were improved

when transfer learning was utilized over the control, as shown in Figure 5.13. Figure 5.15 show the loss values

on the validation data for each model pair. For the penicillin MIC prediction task, the loss on the validation

set improved significantly; however, the model 1 network showed signs of overfitting, which is indicated by
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Azithromycin Cefixime Ciprofloxacin Penicillin Tetracycline

Train.

Loss

Val.

Loss

Train.

Loss

Val.

Loss

Train.

Loss

Val.

Loss

Train.

Loss

Val.

Loss

Train.

Loss

Val.

Loss

Azithromycin 1918.6 204.9 1.7 1.6 98.2 118.7 275.8 60.6 131.4 177.8

Cefixime 631.7 1011.4 3.8 3.8 77.0 63.2 338.3 14.4 168.1 220.2

Ciprofloxacin 543.3 1065.6 3.4 3.3 143.9 164.9 268.9 36.7 69.6 115.4

Penicillin 1618.3 3278.0 17.8 17.8 138.3 128.4 160.3 219.1 180.1 256.2

Tetracycline 996.4 1370.5 7.1 7.1 98.6 103.1 142.3 71.9 306.9 408.7

Table 5.8: Transfer learning results on the N. gonorrhoeae data. The dark cells are the
control results. Reported values are the root mean squared error (RMSE) for the Loss
and Val (validation) Loss subcolumns. Each column shows the results for prediction of
the resistance of a single antibiotic. Each row shows the results when the prediction
model for the prediction of AMR of the corresponding antibiotic is used as the initial
network weights (model 1).

Epochs required

for training
DTF DTS DTM

DTF 147 44 43

DTS 195 73 41

DTM 61 56 113

Table 5.9: Time required to train CNNs for prediction tasks on the L. culinaris data.
The dark cells are the control results. Reported values are the number of epochs required
for training to completion. Each column shows the number of training epochs for
prediction of the resistance of a single antibiotic. Each row shows the number of training
epochs when the prediction model for the prediction of AMR of the corresponding
antibiotic is used as the initial network weights (model 1).

high loss values on the validation set. In most cases training time was also reduced, which can be seen in

Table 5.9, and the overall average training time was reduced compared to the control, as shown in Figure 5.14.

These results indicate that, at the very least, there are some common genetic features for antibiotic resistance

that networks can use for each prediction task.

It is important to emphasize that the evaluation of this experiment compares the results of the transfer

learning models to the control models. This relative comparison is fragile as either the control, the transfer

model, or both may be prone to overfitting, incomplete training, or other issues. When looking at these

results it is important to look at both the training and validation results for both the transfer models and the

control models as a whole. Any cases where the training and validation results are not close to each other

is a red flag, and these cases may not be indicative of the actual results. In order to mitigate the effects of

this, repeated trials should be performed; however, the computing resources required for this grows rapidly.

Some pairs of prediction models performed well when transfer learning was used between the two, for
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example cefixime and azithromycin appeared to be complementary to each other. When cefixime is used as

model 1 for azithromycin prediction and when azithromycin is used as model 1 for cefixime prediction, the

results were better than when other models were used for model 1. This is strong evidence that cefixime

resistance and azithromycin resistance share a similar biological mechanism. A possible candidate for this

biological mechanism is shared below. Ciprofloxacin and penicillin both showed the best improvement when

cefixime was used for model 1 as well. Penicillin showed slight improvements when tetracycline was used as

model 1, but tetracycline performed worse when penicillin was used as model 1.

Antimicrobial Drug Class

Azithromycin Macrolide

Cefixime Cephalosporin

Ciprofloxacin Fluoroquinolones

Penicillin Penicillin

Tetracycline Tetracycline

Table 5.10: Information was taken from MedlinePlus [43].

All of these antibiotics are different classes of drugs, as shown in Table 5.10. Despite being different

classes of drugs, some of the antibiotic resistance mechanisms may share genetic features with other antibiotic

resistance mechanisms. For example, transfer learning between azithromycin and cefixime showed significant

improvement. A possible explanation for this is the mtrCDE multidrug efflux pump. The mtrCDE multidrug

efflux pump is known to confer azithromycin resistance in N. gonorrhoeae, and the mtrR gene regulates the

expression of mtrCDE [44]. Shi et al. [9] found a significant association between mutations in both the mtrR

gene and mtrR promoter regions in both cefixime and azithromycin resistance. While this is not conclusive

evidence, it offers an explanation as to the relationship between phenotypes that transfer learning is able to

exploit.

An alternative explanation for the success of transfer learning is that the effective dataset size is increased

when using transfer learning. These datasets have few samples, which makes training difficult and overfitting

easy, and transfer learning allows us to use each sample twice for training. This is one possible contributor

to the success of transfer learning as a tool for phenotype prediction; however, the L. culinaris results in

Section 5.2.3 provides evidence that this is not the only mechanism at work.

Finally, training times improve when using transfer learning. The number of epochs is reported as a

measure of training time as this is a hardware independent measurement. A network that takes 20 epochs

to train will take 20 epochs to train no matter how many CPU cores or how much memory the machine it

is trained on has. However, machines with more RAM and CPU cores will take less time per epoch than a

less powerful machine would. The number of epochs is reduced when training a neural network with transfer

learning due to the early stopping mechanism. This is likely because when training the control, the layers are

initialized with a random function, and when transfer learning is used the neural network layers start off with
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already trained values. If the layers are initialized with meaningful values, part of the training work is already

done for the neural network. The fact that neural network training takes less time with transfer learning is

not entirely practical, since model 1 needs to first be trained in order to even begin with transfer learning,

leading to a longer total time for using transfer learning. If a model 1 candidate is already available, however,

the initial training time does not need to be considered, and in this use case transfer learning requires less

time than training an uninitialized model.

L. culinaris

DTF DTS DTM

Train.

Loss

Val.

Loss

Train.

Loss

Val.

Loss

Train.

Loss

Val.

Loss

DTF 386.3 670.3 359.9 469.6 663.1 1343.7

DTS 221.2 947.2 539.0 1334.4 688.1 3504.1

DTM 216.0 249.1 333.2 336.8 876.3 1451.6

Table 5.11: Transfer learning results on the L. culinaris data. The dark cells are
the control results. Reported values are the root mean squared error (RMSE) for the
Loss and Val (validation) Loss subcolumns. Each column shows the results for the
prediction of a single phenotype: days to flower (DTF), days to swollen (DTS), and
days to maturity (DTM). Each row shows the results when the prediction model for
the prediction of the corresponding phenotype is used as the initial network weights
(model 1).

Transfer learning was very successful for the L. culinaris data. In the best case we were able to reduce the

loss on the validation set by 74.8%, as shown in Figure 5.16. Results can be seen in Table 5.11. Figure 5.17

show the loss values on the validation data for each model pair.

The L. culinaris dataset only contains 324 samples, which is a very small dataset on which to perform

deep learning. As such, it is difficult to prevent overfitting, which is often indicated by much higher loss

values on the validation set than the training set. As a result we see evidence of overfitting on the control,

where most validation loss values are much higher than the training loss values. When transfer learning is

used, however, predictive models show fewer signs of overfitting. One interesting case is the case of predicting

DTS. In this case the control appears to overfit the training set, with a validation loss almost 3 times as

high as the training loss. With transfer learning, however, the validation loss is almost as low as the training

loss. This is strong evidence to suggest that transfer learning can cause small datasets to be useful for deep

learning and somewhat mitigate the curse of dimensionality and reduce overfitting.

As mentioned in the previous experiment, it is important to emphasize that the evaluation of this exper-

iment compares the results of the transfer learning models to the control models. Relative comparisons can

be fragile as either the control, the transfer model, or both may be prone to overfitting, incomplete training,

or other issues. These results must be considered holistically, and the possibility of inaccurate baselines must
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be factored in when drawing conclusions.

Transfer learning was most effective when a relatively more complex phenotype, DTM, is used as model 1

and model 2 is used to predict a related but more simple phenotype: DTF or DTS. All three phenotypes are

different chronological steps in the organism’s life cycle, with the earliest milestone being DTF and the latest

being DTM. Simple reasoning would argue that DTF would also be the most simple phenotype, because DTS

would be affected in large part by the DTF phenotype, along with additional genetic factors that determine

the number of days from flowering to swollen. Similarly, DTM would be affected by the genetic factors

determining DTF and DTS, along with additional genetic factors that determine the number of days from

swollen to maturity. If this is true then it makes sense why DTM would be the best candidate for model

1 to be used for transfer learning, as a DTM model would learn to recognize the most genetic factors that

could then be used to predict other phenotypes. More evidence for this argument comes when we look at

transfer learning for predicting the DTM phenotype. DTM prediction achieves the least gain from transfer

learning. This could be because models that predict DTF or DTS have not learned to find the genetic features

necessary for prediction of DTM. In the use case where a user downloads a model to use as model 1, a model

that predicts a complex phenotype will detect more genetic features and be more useful than a model that

only predicts a Mendelian trait and therefore the model only learns to detect one genetic feature.

The study using N. gonorrhoeae data showed that transfer learning works when datasets have a relatively

large number of samples, but in this study a small number of samples were present when training both

models 1 and 2. This means that smaller datasets can be useful, and allows researchers to make use of

datasets that involve less genetic sequencing and more phenotype measurement if that is all that is available.

However, datasets with more samples will always perform better than datasets using transfer learning with

fewer samples (assuming the quality of the dataset is equal). Suppose that Y is the minimum acceptable

number of samples to adequately train a phenotype prediction model and 2X = Y . Let us suppose that

we conduct two experiments with characteristics as follows. Experiment A uses a dataset with Y samples

and only the phenotype labels for one phenotype, and experiment B uses a dataset with X samples and

phenotype labels for two phenotypes. In experiment A we cannot use transfer learning, but in experiment B

we can use transfer learning to give us 2X = Y training cases. Experiment A will still perform better than

experiment B because experiment B is trained on less genetic variation than experiment A is trained on, as

well as less phenotype-specific information. Experiment B, however, will perform much better having made

use of transfer learning than it would have without transfer learning, in which case it could have only made

use of X training samples.

A poster was presented with preliminary results for this experiment at ISMB2019 [45] as well as at

the 2019 P2IRC symposium [46]. A flash talk was also presented to go along with the poster at the 2019

P2IRC symposium. This poster is hosted online at F1000research [47] and can also be found in the file

kopas-poster-3.pdf in Supplementary Materials.
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5.2.4 Future Work

There are multiple different experiments and analyses that could extend from this experiment as future work.

Firstly, additional work could be done to further tune the hyperparameters and network architecture. This

may yield better predictive power for the control and transfer learning models. Additionally, the number

of layers that are frozen when transferring from model 1 to model 2 could be explored in more depth. In

the same vein, transfer learning across three or more models could be explored. This would require different

numbers of layers being frozen at each transfer step, but could potentially allow for the combination of many

different genetic features into a model that generalizes for many different phenotype prediction tasks.

One additional analysis that could be performed would be to run models 1 and 2 through SHAP [10]

or another model explainer or interpreter. This would yield insight into which SNPs each model found

significant. SNPs or combinations thereof that are found to be significant in model 2 may be candidates for

further biological exploration as these SNPs may be involved in pathways that are shared between the control

and transfer phenotypes. For example, if a SNP was significant for both azithromycin and cefixime AMR

classification then it may indicate that there is a shared genetic feature between the resistance mechanisms

for both antibiotics.

Another follow up experiment is to see if transfer learning can be applied across related species. This

could only be done in very closely related species, or by only using a subset of the SNPs, because only

homologous SNPs would benefit from transfer learning. However, if transfer learning could be used across

species in this way it would lead to two benefits. First, it would allow for any deep learning model repository

that is set up to be more useful as a deep learning model created for one species could be used for transfer

learning studies for related organisms. Second, it would yield interesting biological insights into evolutionary

genetic pathways and indicate similar genetic mechanisms in related but different species.
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Figure 5.13: Improvement achieved for phenotype prediction via transfer learning.
The values reported are the percentage the RMSE improved when using transfer learn-
ing compared to the RMSE of the control for N. gonorrhoeae. The blue bars are
the RMSE differences observed on the training data and the red bars are the RMSE
differences observed on the test data. Only the transfer cases where model 2 had
the lowest validation loss are shown. For the results of all cases refer to Figure 5.15.
Note that for the cefixime case the validation loss improvement was approximately -
400%. This is likely due to overfitting in model 2. The abbreviations are as follows:
AZI (azithromycin), CEF (cefixime), CIP (ciprofloxacin), PEN (penicillin), and TET
(tetracycline).

Figure 5.14: Average training time required for phenotype prediction with and with-
out transfer learning. Less than half the number of training epochs were required for
a phenotype prediction model to plateau when transfer learning was utilized compared
to the control.
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(a) Azithromycin (b) Cefixime (c) Ciprofloxacin

(d) Penicillin (e) Tetracycline

Figure 5.15: Validation loss values when transfer learning was applied for phenotype
prediction of each antimicrobial. Each panel is for the prediction of a single phenotype
(model 2). Along the x-axis is the particular model used for model 1, and the red line
is the validation loss of the control model. Any bar lower than the red line achieved
better results than the control model. Only the case of azithromycin prediction did not
yield any models that outperformed the control.

Figure 5.16: Improvement achieved for phenotype prediction via transfer learning.
The values reported are the percentage the RMSE improved when using transfer learn-
ing compared to the RMSE of the control for L. culinaris. Only the cases where transfer
learning was most effective are shown in this figure. For the results of all cases refer to
Figure 5.17.
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(a) DTF (b) DTS (c) DTM

Figure 5.17: Validation loss values when transfer learning was applied for phenotype
prediction of each phenotype. Each panel is for the prediction of a single phenotype
(model 2). Along the x-axis is the particular model used for model 1, and the red line
is the validation loss of the control model. Any bar lower than the red line achieved
better results than the control model.
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Chapter 6

Conclusion

Deep learning is a powerful tool that shows great potential for learning genotype to phenotype associations.

However, with the datasets available at the time of writing, deep learning techniques must be improved in

order predict phenotype effectively. This thesis presents 2 techniques that help improve technology to that

end.

First, we explored two options for representing SNP data as input to a CNN. We showed that representing

SNP data as a vector of genotype likelihoods can lead to improved phenotype prediction in some cases.

However, this is not always the case and more work must be done to determine if PIR is an improvement

over CIR. Our results indicated that when using high-dimensional datasets with high quality SNPs, PIR and

CIR representation perform similarly. Our results do not indicate that a deep learning model is able to learn

any additional information via the encoding of quality score information and the removal of low quality SNPs

from the CIR model does not have significant adverse effects. Future work may show that in other scenarios

these two input representation models do not always perform the same.

Second, we showed that transfer learning can be used to improve phenotype prediction by CNNs and

also to reduce training time. This allows researchers to make better use of computing resources as well

as to make more effective use of available datasets. Showing that transfer learning is an effective way to

improve phenotype prediction allows researchers to make better use of small datasets. Hopefully, this work

will prompt a movement to share trained CNN models with others who can download these models and use

them as a starting point for transfer learning. This will allow for researchers to select a similar model that

will effectively increase the size of their dataset and reduce the training time required to train a predictive

model. We also explored the possibility that transfer learning is able to identify alleles involved in common

phenotype pathways and generate novel hypotheses that can later be confirmed in biological studies.

As a baseline, the results for MIC prediction when using RR-BLUP are provided in Appendix D.1. RR-

BLUP outperformed our deep learning models in all cases. It is evident that deep learning methods do not

measure up to the state of the art in this experiment; however, phenotype prediction may become one more

where deep learning replaces the current state of the art in the future.

Taken together, both of the techniques explored in this thesis improve the current technology for deep

learning phenotype prediction with the goal of making it as useful as RR-BLUP. By improving phenotype

prediction using transfer learning, crop breeders can use phenotype prediction to determine which breeding
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lines have the most potential. Improved phenotype prediction might also allow health practitioners to deter-

mine what antibiotics will be effective against a bacterial infection before prescribing ineffective antibiotics.

This will reduce treatment times and also slow the rate of growing antimicrobial resistance.

Improving phenotype prediction has many practical benefits, and this thesis works to take phenotype pre-

diction using deep learning a step forward making it more effective and a promising candidate for phenotype

prediction and other genetic association studies.
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Appendix A

Glossary

backpropagation When a neural network updates its weights based on a gradient descent to minimize the
loss function. 5–7, 12

bias Each trainable layer in a neural network learns both weights and biases. Biases are additive; the dot
product of the weights and the inputs are taken before the bias term is added and the result is fed
throught the activation function. Weights are then updated during backpropagation. 5

curse of dimensionality The curse of dimensionality occurs when working with data in high dimensional
feature space. When the number of features increases, the feature space grows so large that the data
becomes so sparse. When working with sparse data it becomes difficult to train a machine learning
model because there are many possible hyperplanes that can separate the data and many of them will
not generalize to real data. 17, 52

early stopping function An early stopping function is a regularization method that prevents a machine
learning model from overfitting by stopping training when a certain criteria is met. This criteria can
change based on requirements, but for gradient descent this function aims to stop training when the
loss function reaches the global minimum while not stopping training in a local minima. 6, 35, 38, 43,
46

explainer A tool used to explain how a black box machine learning model such as a deep neural net-
work computes output. This is often done by permuting different inputs and observing the affect the
permutation has on the output. 11

filter A single set of weights learned by a convolution in a neural network. Each layer can be made up of
multiple filters that are applied separately to the inputs. 7

hyperparameter Any parameter that must be set before training a machine learning model. Common
examples are the learning rate for a neural network or the convolution size for a convolutional layer. 6,
7, 22

indel An insertion or deletion of genetic material in regards to the reference genome. 63

inference A single forward pass of a neural network. A neural network is provided inputs and produces
output based on its internal model. 6

layer A set of neurons in a nueral network. There are multiple types of layers. In a CNN neurons in a layer
are only connected to those in the previous layer, there are no connections between neurons in the same
layer. 5

linkage disequilibrium Linkage disequilibrium occurs when two alleles at different loci are inherited to-
gether. This can occur because they are located close to each other on a chromosome, and it means
that the alleles are not independent. This can be leveraged to improve the power of genetic association
studies. 14, 15

neuron The smallest entity of a neural network. Each neuron stores a single value. Neurons are connected
to other neurons in the preceeding and following layers (unless the layer in question is the first or last
layer. The value stored in a neuron is the result of some function that is used to transform the values
from the neurons in the previous layer. These functions can involve learned weights and biases, or they
can be non-trainable functions; the function depends on the type of layer. 5
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overfitting When a neural network fails to create a general model and instead memorizes which inputs map
to which outputs. 6, 49, 52

quantitative trait loci Quantitative trait loci are sections of DNA that are correlated with a certain quan-
titative phenotype in a population. 14

sequencing depth The number of times a genome is replicated before it is sequenced. A dataset with
a sequencing depth of 30 would mean that there were 30 copies of the entire genome present when
sequencing was performed. 13

weight Each trainable layer in a neural network learns both weights and biases. Weights are multiplicative;
the dot product of the weights and the inputs are taken before the bias term is added and the result is
fed throught the activation function. Weights are then updated during backpropagation. 5
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Appendix B

SNP Caller Expansion

B.1 FreeBayes

This chapter is a deeper look at the equations introduced in Section 2.3.3, which are used in the FreeBayes
SNP calling package [19].

FreeBayes uses Bayesian statistics to find the genotype combination that maximizes P (G1, ..., Gn|R1, ..., Rn),
where Gi is the underlying genotype at locus i and Ri is the set of reads from the same locus. Using Bayes’
Rule and assuming that sequencing reads are independent, we get Equation 2.4, which we restate here for
convenience:

P (G1, ..., Gn|R1, ..., Rn) =
P (G1, ..., Gn)

∏n
i=1 P (Ri|Gi)∑

∀G1,...,Gn
(P (G1, ..., Gn)

∏n
i=1 P (Ri|Gi))

. (B.1)

If we had perfect observations, P (Ri|Gi) would approximate the probability of sampling observations
Ri out of Gi with replacement. Our observations are not perfect, however, so FreeBayes accounts for the
probability of errors in the reads. P (Ri|Gi) is estimated taking into account the set of all possible underlying
genotypes, including the probability of sequencing errors, summed across all Ri combinations to get the joint
probability of Ri given Gi. The FreeBayes paper provides specific details [19].

The prior probability of observing the set of genotypes G1, ..., Gn is equivalent to the intersection of
the probability of the genotype and the probability of the corresponding set of allele frequencies, f1, ..., fk.
Garrison et al. note that “this identity follows from the fact that the allele frequencies are derived from the
set of genotypes and we always will have the same f1, ..., fk for any equivalent G1, ..., Gn” [19, p.4].

P (G1, ..., Gn) = P (G1, ..., Gn ∩ f1, ..., fk) (B.2)

and via Bayes’ Rule

P (G1, ..., Gn ∩ f1, ..., fk) = P (G1, ..., Gn|f1, ..., fk)P (f1, ..., fk). (B.3)

This equation can now be estimated in terms of the genotype combination sampling probability and the
probability of observing a particular allele frequency in the given population. The former is estimated
differently depending on whether the genotype combinations are phased or unphased, and the latter is
estimated using Ewen’s sampling formula [48]. Both are beyond the scope of this document, but are described
in more detail in the FreeBayes paper [19].

FreeBayes attempts to find the set of genotypes that maximizes the posterior probability using a gradient
ascent approach. Starting with the maximum likelihood genotype given the data likelihood,

G1, ..., Gn = argmax
Gi

P (Ri|Gi), (B.4)

FreeBayes then searches local genotype space starting with G1, ..., Gn = {G} and attempts to find {G}′
such that P ({G}′|R1, ..., Rn) > P ({G}|R1, ..., Rn). This search is carried out until convergence, but with a
maximum number of iterations in order to ensure the program terminates in a timely fashion.

FreeBayes reports a quality estimate for each possible genotype at each loci by summing over the marginal
probability of that specific genotype and sample combination under the model:

P (Gj |Ri, ..., Rn) =
∑

∀({G}:Gj∈{G})

P ({G}|Ri, ..., Rn). (B.5)

This probability can be converted to a PHRED quality score. If P is the probability of a genotype as reported
by FreeBayes then the PHRED quality score can be calculated using this formula:

Q = −10 log10 P. (B.6)

FreeBayes reports the PHRED quality score for the called genotype and the log10 scaled posterior probability
for each possible genotype at each location.
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B.2 Samtools

The samtools mpileup software uses an HMM in order to discover SNPs in a set of reads. The HMM
consists of 5 states: alignment mismatches (M ), insertions to the reference (I ), deletions from the reference
(D), alignment start (S ), and alignment end (E ). The S state points to every M and I state, while every
M and I point to E. The HMM is evaluated to find the maximum likelihood alignment, which defines the
positions of indels and mutations.

If L is the length of the reference sequence and l is the length of each read, then we define the reference
nucleotide sequence to be r = r1, ..., rL, and the read sequence to be c = c0, c1, ..., cl, cl+1 where c0 marks
the start of the read and cl+1 marks the end of the read. We also must define εi, i = 1...l as a substitution
probability for ci and M as the function of substitution probabilities, {εi}. We also define the forward matrix,
f , and the backward matrix, b. These are further defined in the BAQ paper [20].

In order to calculate the BAQ, we define an alignment A as a set of coordinate pairs {(i1, k1), ..., (ip, kp)}
in increasing coordinate order, with 1 ≤ i1 < ... < ip ≤ l and 1 ≤ k1 < ... < kp ≤ L. We also define ki to be
k if (i, k) ∈ A, 0 otherwise. The BAQ is reported as the PHRED-scaled score,

Q(i|A) = −10 log10(1− Pr(i-th read base aligned to ki|A)) (B.7)

Q(i|A) = −10 log10(1−
fi,Mki

· bi,Mki

fl+1,E
) (B.8)

These BAQ scores are reported by mpileup as the PHRED quality score for each possible genotype at
each locus.
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Appendix C

Accessions

Table C.1: List of accession numbers used in the N. gonorrhoeae dataset. These
accessions can be found in the SRA.

US-ERR223688 US-ERR191816 UK-SRR3361311 UK-SRR3360736 UK-SRR2736286 UK-SRR3357263
US-ERR223636 UK-SRR3360713 UK-SRR3360625 US-ERR223658 UK-SRR2736242 UK-SRR3360645

UK-SRR3360970 UK-SRR2736132 US-ERR191795 UK-SRR2736170 US-ERR191753 US-ERR191746
UK-SRR3360944 UK-SRR3360743 UK-SRR2736157 UK-SRR2736293 US-ERR191819 UK-SRR2736218
US-ERR191824 UK-SRR3360702 UK-SRR3360981 US-ERR223632 UK-SRR3349544 UK-SRR3360687
US-ERR223608 US-ERR223640 UK-SRR2736140 UK-SRR2736240 UK-SRR3360733 UK-SRR2736169

UK-SRR2736266 US-ERR223606 US-ERR223695 US-ERR191774 UK-SRR2736179 UK-SRR2736191
UK-SRR3360693 UK-SRR3357288 UK-SRR1661245 UK-SRR2736136 UK-SRR3360606 UK-SRR2736102
UK-SRR2736111 UK-SRR1661250 US-ERR191757 US-ERR223696 UK-SRR2736196 US-ERR191809
UK-SRR1661155 US-ERR191739 UK-SRR3361326 UK-SRR2736228 UK-SRR3360889 US-ERR191731
UK-SRR3360752 UK-SRR2736139 US-ERR223634 UK-SRR1661168 UK-SRR3361346 US-ERR191802
UK-SRR3360708 UK-SRR3360638 US-ERR223613 UK-SRR2736145 UK-SRR3360628 UK-SRR2736110
UK-SRR3360720 US-ERR191751 UK-SRR1661262 US-ERR191741 US-ERR223694 UK-SRR3357028
UK-SRR3360696 UK-SRR3360659 US-ERR223651 UK-SRR3360936 UK-SRR2736290 UK-SRR2736130
UK-SRR2736173 UK-SRR1661329 US-ERR223629 US-ERR191737 UK-SRR3360712 US-ERR191825
UK-SRR3360648 UK-SRR3360675 US-ERR191750 UK-SRR2736189 UK-SRR3360678 UK-SRR1661207
US-ERR223657 UK-SRR2736105 UK-SRR1661227 UK-SRR3357229 UK-SRR3360607 US-ERR191806

UK-SRR3360692 UK-SRR2736152 UK-SRR3360635 UK-SRR3361345 UK-SRR2736279 UK-SRR2736257
US-ERR223680 UK-SRR3360715 UK-SRR3361329 US-ERR191821 UK-SRR2736246 US-ERR223639

UK-SRR2736252 UK-SRR3360747 UK-SRR3357181 UK-SRR2736095 UK-SRR2736114 UK-SRR3360636
UK-SRR3361336 US-ERR191822 UK-SRR2736212 UK-SRR3360694 US-ERR223625 UK-SRR3349726
UK-SRR2736269 UK-SRR2736166 UK-SRR3360813 UK-SRR2736148 UK-SRR2736274 UK-SRR2736211
UK-SRR2736121 US-ERR191791 UK-SRR3360634 US-ERR223686 UK-SRR2736184 UK-SRR3360734
UK-SRR3360921 US-ERR191730 UK-SRR3360751 UK-SRR3360703 UK-SRR3360883 UK-SRR2736163
UK-SRR3360614 UK-SRR3360689 US-ERR223656 UK-SRR2736213 UK-SRR3349673 UK-SRR2736225
UK-SRR3360651 UK-SRR2736294 UK-SRR3360617 US-ERR223692 US-ERR191752 UK-SRR1661331
UK-SRR3360653 UK-SRR2736198 UK-SRR2736237 US-ERR223646 UK-SRR3360735 UK-SRR3360616
UK-SRR3360913 UK-SRR3360993 US-ERR191769 UK-SRR2736272 UK-SRR2736234 UK-SRR3360672
UK-SRR1661279 US-ERR191788 UK-SRR2736171 UK-SRR3361353 UK-SRR2736142 UK-SRR2736284
UK-SRR2736270 UK-SRR3360716 US-ERR223645 UK-SRR3360662 US-ERR191768 UK-SRR2736235
US-ERR191780 US-ERR191778 UK-SRR3360930 US-ERR191754 UK-SRR3360679 UK-SRR3361325
US-ERR191796 US-ERR223671 UK-SRR3360950 UK-SRR2736303 UK-SRR3360685 UK-SRR2736255

UK-SRR2736096 UK-SRR2736143 UK-SRR3360917 UK-SRR3360618 US-ERR223647 UK-SRR2736227
UK-SRR2736161 UK-SRR3349557 US-ERR223663 US-ERR191814 UK-SRR3360893 UK-SRR3361338
UK-SRR1661330 UK-SRR2736288 US-ERR223620 US-ERR191786 US-ERR191766 UK-SRR2736256
UK-SRR2736265 UK-SRR3360646 UK-SRR3360639 US-ERR223679 UK-SRR2736305 US-ERR223660
UK-SRR3361349 UK-SRR3360731 US-ERR223661 US-ERR223623 UK-SRR2736106 UK-SRR3360982
UK-SRR3349554 UK-SRR3360632 UK-SRR2736108 US-ERR223681 UK-SRR3360718 US-ERR223604
UK-SRR3361308 UK-SRR2736127 UK-SRR3360980 UK-SRR2736243 UK-SRR2736124 UK-SRR2736181
US-ERR191761 US-ERR223653 UK-SRR2736208 UK-SRR3360722 UK-SRR3361318 US-ERR223689
US-ERR191777 US-ERR223631 UK-SRR2736304 UK-SRR3361347 UK-SRR2736215 US-ERR223673
US-ERR191798 UK-SRR1661223 US-ERR191775 UK-SRR3360700 UK-SRR2736100 UK-SRR2736135

UK-SRR3357289 UK-SRR1661211 UK-SRR2736147 UK-SRR2736261 UK-SRR3361332 UK-SRR3360640
UK-SRR3360924 UK-SRR2736197 UK-SRR3361356 US-ERR191781 UK-SRR2736205 UK-SRR2736150
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US-ERR223697 UK-SRR3360613 US-ERR223637 UK-SRR3360714 UK-SRR3361324 US-ERR223668
UK-SRR3360745 UK-SRR2736245 UK-SRR3360854 UK-SRR2736276 UK-SRR3360750 UK-SRR3360832
UK-SRR2736249 UK-SRR2736192 US-ERR191804 UK-SRR2736133 US-ERR223605 UK-SRR2736223
US-ERR191733 UK-SRR2736230 US-ERR223641 US-ERR191748 UK-SRR3361344 UK-SRR3360683

UK-SRR3360680 UK-SRR3360983 UK-SRR2736275 US-ERR191763 UK-SRR2736101 UK-SRR2736203
UK-SRR3360663 UK-SRR3360867 UK-SRR3360629 US-ERR191776 UK-SRR3360691 UK-SRR2736201
UK-SRR2736306 UK-SRR3360664 UK-SRR3357011 UK-SRR3361328 UK-SRR3360641 US-ERR223691
UK-SRR3360610 UK-SRR1661167 UK-SRR3360709 US-ERR223677 UK-SRR3360707 UK-SRR2736221
UK-SRR2736226 UK-SRR2736244 UK-SRR3357186 UK-SRR2736233 UK-SRR3360727 UK-SRR2736253
UK-SRR3360608 UK-SRR2736190 US-ERR223664 UK-SRR3360661 UK-SRR3360605 UK-SRR3360652
US-ERR223612 UK-SRR3349615 UK-SRR2736165 UK-SRR3361337 UK-SRR3360637 UK-SRR3360697
US-ERR223611 UK-SRR2736300 US-ERR223648 US-ERR191772 UK-SRR3360811 US-ERR191823

UK-SRR2736224 US-ERR223626 UK-SRR2736271 US-ERR223624 UK-SRR3360740 UK-SRR3360658
US-ERR223610 UK-SRR1661315 UK-SRR1661249 US-ERR223630 UK-SRR2736156 UK-SRR2736210

UK-SRR2736155 US-ERR191812 UK-SRR3361320 US-ERR223672 US-ERR191732 US-ERR223690
UK-SRR3360654 US-ERR223638 UK-SRR2736122 UK-SRR3361340 US-ERR223667 UK-SRR2736120
US-ERR223675 UK-SRR2736104 UK-SRR2736174 UK-SRR3357157 UK-SRR2736134 UK-SRR3360753

UK-SRR3360890 US-ERR223621 UK-SRR2736277 UK-SRR2736128 UK-SRR1661199 UK-SRR1661322
US-ERR223659 US-ERR223670 US-ERR223654 UK-SRR2736162 UK-SRR1661153 US-ERR191800
US-ERR191735 UK-SRR2736125 UK-SRR1661324 UK-SRR3360619 UK-SRR2736229 UK-SRR2736183

UK-SRR2736219 US-ERR223644 UK-SRR3360650 US-ERR223619 UK-SRR2736172 UK-SRR2736112
UK-SRR2736216 UK-SRR3361315 UK-SRR1661281 UK-SRR2736207 UK-SRR2736283 UK-SRR3361313
US-ERR223649 US-ERR191767 UK-SRR3360836 UK-SRR3357314 UK-SRR3349688 UK-SRR3360846
US-ERR191782 US-ERR191810 US-ERR191794 UK-SRR1661327 UK-SRR2736273 UK-SRR3360686

UK-SRR3360926 UK-SRR2736115 UK-SRR3360984 US-ERR191771 US-ERR191793 UK-SRR3360766
UK-SRR2736295 UK-SRR3360684 UK-SRR2736204 UK-SRR3361310 UK-SRR3360729 UK-SRR3360665
UK-SRR3361354 UK-SRR2736296 US-ERR191820 UK-SRR3360939 UK-SRR2736109 UK-SRR2736263
UK-SRR3360690 UK-SRR3360630 UK-SRR3360698 UK-SRR3357160 UK-SRR3360953 UK-SRR3360949
UK-SRR2736289 US-ERR223642 UK-SRR2736297 US-ERR191762 UK-SRR1661323 UK-SRR3360754
UK-SRR3360681 UK-SRR2736220 UK-SRR3349526 UK-SRR3360612 UK-SRR3357252 US-ERR191808
US-ERR191803 US-ERR223628 UK-SRR3360827 UK-SRR2736281 US-ERR223615 UK-SRR2736175

UK-SRR3360738 UK-SRR3360721 US-ERR191799 UK-SRR2736217 US-ERR191736 UK-SRR3361314
UK-SRR2736194 UK-SRR3361322 UK-SRR3360719 UK-SRR2736231 UK-SRR3360723 UK-SRR3349518
UK-SRR3360711 UK-SRR1661325 UK-SRR2736119 UK-SRR3360669 US-ERR191756 UK-SRR2736299
UK-SRR2736200 US-ERR191755 UK-SRR2736186 UK-SRR3360726 UK-SRR3360671 US-ERR223674
UK-SRR3360771 UK-SRR3360677 UK-SRR2736251 UK-SRR2736153 UK-SRR3349568 UK-SRR2736185
US-ERR191805 UK-SRR3360947 UK-SRR3361312 UK-SRR1661243 US-ERR191783 US-ERR223643

UK-SRR2736117 US-ERR223616 UK-SRR2736151 UK-SRR3360737 UK-SRR3360717 US-ERR191807
UK-SRR2736258 UK-SRR2736248 US-ERR223665 UK-SRR2736129 UK-SRR3357194 US-ERR191738
UK-SRR3349563 UK-SRR3361333 UK-SRR2736206 UK-SRR2736159 UK-SRR2736278 UK-SRR2736193
UK-SRR2736232 US-ERR191758 UK-SRR3361352 UK-SRR3361351 UK-SRR2736154 UK-SRR3360674
US-ERR223607 UK-SRR3360730 UK-SRR3360688 US-ERR223650 UK-SRR3360704 US-ERR191784

UK-SRR1661175 US-ERR191740 UK-SRR3349577 UK-SRR2736103 UK-SRR3349516 US-ERR223678
UK-SRR3360706 UK-SRR3349658 UK-SRR2736141 UK-SRR2736285 UK-SRR3360670 US-ERR223682
UK-SRR1661328 UK-SRR2736164 UK-SRR3360642 UK-SRR2736292 UK-SRR2736168 UK-SRR2736267
UK-SRR2736202 UK-SRR3349601 UK-SRR1661292 UK-SRR2736093 US-ERR223684 UK-SRR2736146
US-ERR191734 US-ERR191765 UK-SRR3360710 UK-SRR3361307 UK-SRR2736238 UK-SRR3360851
US-ERR191770 US-ERR191818 US-ERR191813 US-ERR223666 UK-SRR2736247 UK-SRR3360964

UK-SRR2736250 US-ERR223622 UK-SRR3357264 US-ERR223687 UK-SRR3349573 UK-SRR3360772
US-ERR191801 UK-SRR3360615 UK-SRR2736239 UK-SRR2736280 US-ERR191811 UK-SRR2736287

UK-SRR2736126 UK-SRR3360749 US-ERR191787 UK-SRR2736097 UK-SRR2736259 UK-SRR3360748
UK-SRR2736291 UK-SRR3360829 UK-SRR2736098 UK-SRR3360705 UK-SRR2736236 UK-SRR2736188
UK-SRR2736094 UK-SRR3360667 UK-SRR2736113 US-ERR223683 US-ERR223693 UK-SRR1661183
US-ERR191749 US-ERR223655 US-ERR223609 UK-SRR3360943 US-ERR191779 UK-SRR2736160
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UK-SRR2736264 UK-SRR3360774 UK-SRR2736282 UK-SRR3357305 UK-SRR3357260 UK-SRR2736222
UK-SRR3349538 UK-SRR2736268 UK-SRR2736167 UK-SRR3360622 UK-SRR3360624 UK-SRR2736144
UK-SRR3357246 UK-SRR2736180 UK-SRR2736302 UK-SRR3360728 US-ERR223685 UK-SRR3360649
UK-SRR1661242 UK-SRR2736182 US-ERR191817 US-ERR191760 UK-SRR3360746 UK-SRR2736116
UK-SRR3360701 UK-SRR2736301 US-ERR223614 UK-SRR2736158 UK-SRR2736099 UK-SRR3360872
US-ERR191789 UK-SRR3361341 US-ERR191792 UK-SRR3357192 UK-SRR3360627 US-ERR223662

UK-SRR3360810 UK-SRR2736209 UK-SRR3360609 UK-SRR2736118 UK-SRR3361342 UK-SRR3360967
UK-SRR2736262 UK-SRR2736149 UK-SRR2736254 UK-SRR2736187 UK-SRR3360991 US-ERR223676
UK-SRR3357191 US-ERR223603 UK-SRR3361355 UK-SRR3361343 US-ERR191773 US-ERR223652
US-ERR191797 UK-SRR2736260 US-ERR223627 UK-SRR2736107 UK-SRR3360755 UK-SRR3361317

UK-SRR2736123 US-ERR223633 US-ERR191815 US-ERR223635 UK-SRR3357077 UK-SRR3349546
UK-SRR2736195 UK-SRR2736298 US-ERR191759 UK-SRR3360633 UK-SRR2736138 UK-SRR2736199
UK-SRR3360644 UK-SRR3361350 US-ERR223669 US-ERR191785 US-ERR223698 UK-SRR1661326
UK-SRR2736177 UK-SRR3360725 UK-SRR2736137 UK-SRR3361321 UK-SRR2736131 UK-SRR3360647
UK-SRR2736214
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Appendix D

RR-BLUP Results

antibiotic rrblup RMSE
azithromycin 33.4
cefixime 0.16
ciprofloxacin 14.1
penicillin 11.9
tetracycline 13.3

Table D.1: RMSE values when using RR-BLUP for MIC prediction on the Neisseria
gonorrhoeae dataset, the current state-of-the-art technology for phenotype prediction
for GS studies.
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Appendix E

Preprocess Script

# Download and v a l i d a t e
p r e f e t c h $(< a c c e s s i o n s . txt ) | vdb−v a l i d a t e . / | f a s tq−dump \

−−s p l i t− f i l e s $(< a c c e s s i o n s . txt )

# Align shor t reads to r e f e r e n c e
f o r s ra in ‘ cat a c c e s s i o n s . txt ‘
do

bwa mem −R ”@RG\ tID : $s ra \tSM :US/UK/CA−$sra ” NCCP11945 NG . f a s t a \
$sra ” 1 . f a s t q ” $sra ” 2 . f a s t q ” −o $sra ” . sam”

# convert sam f i l e s to bam and s o r t
samtools view −buh $sra ” . sam” | samtools s o r t −o $sra ” . so r t ed . bam”

# c r e a t e bam l i s t
echo $sra ” . so r t ed . bam” >> wgs676 .bam . txt

done

# SNP c a l l i n g with f r e e b a y e s
f r e e b a y e s −−p lo idy 1 −−min−mapping−q u a l i t y 30 −−min−base−q u a l i t y 30 \

−−min−a l t e rna t e−f r a c t i o n 0 .75 −−min−coverage 15 \
−f NCCP11945 NG . f a s t a −−bam− l i s t wgs676 . bam . txt > wgs676 . vc f

# f i l t e r out low q u a l i t y SNPs and i n d e l s
v c f f i l t e r −f ”DP > 4” −f ”QUAL > 20” wgs676 . vc f > wgs676 . f i l t e r e d . vc f
v c f f i l t e r −f ”TYPE = snp” wgs676 . f i l t e r e d . vc f > wgs676 . snp . vc f

Listing E.1: preprocess.sh
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