
DETECTION AND SEGMENTATION OF

MOVING OBJECTS IN VIDEO USING

OPTICAL VECTOR FLOW ESTIMATION

A Thesis Submitted

to the College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

by

Rishabh Malhotra

Saskatoon, Saskatchewan, Canada

c© Copyright Rishabh Malhotra, July 2008. All Rights Reserved.

PERMISSION TO USE

The author has agreed that the Libraries of this University may make this thesis freely available

for inspection. Moreover, the author has agreed that permission for copying of this thesis, in

any manner, in whole or in part, for scholarly purposes may be granted by the professors who

supervised this thesis work or, in their absence, by the Head of the Department of Electrical

and Computer Engineering or the Dean of the College of Graduate Studies and Research at the

University of Saskatchewan. It is understood that due recognition will be given to the author and

the University of Saskatchewan in any use of the material in this thesis. Copying, publication,

or use of this thesis or parts thereof for financial gain shall not be allowed without the author’s

written permission.

Request for permission to copy or to make any other use of material in this thesis in whole

or in part should be addressed to:

Head of the Department of Electrical Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5A9

i

ACKNOWLEDGMENTS

I express my sincere gratitude to Prof. Kunio Takaya for his constant guidance and assistance

throughout this research project. I deeply appreciate and thank him for his unrelenting support,

patience and encouragement throughout the course of my M.Sc. program. I am grateful that I

was given an opportunity to work on this research.

Secondly, I would like to thank my advisory committee members, Prof. Sherif Faried, Prof.

Carl McCrosky, Prof. Daniel Teng and Prof. Wahid Khan for their constructive comments and

suggestions on my research work and thesis. I would also like to thank Prof. Reza Fotouhi for

acting as my external examiner.

I would also like to thank the management and staff of Telecommunications Research Lab-

oratories (TRLabs) for providing me with financial assistance and the use of their facilities

throughout my research. Thanks to the faculty, fellow students and staff at the Department of

Electrical and Computer Engineering who have helped me.

I wish to thank my family and the very special people in my life. A big thank you to my wife

Ritu for her endless support, love, encouragement and especially her patience without which I

could not have accomplished this work.

Finally, thanks to the College of Engineering and College of Graduate Studies and Research,

University of Saskatchewan, for providing me with this wonderful opportunity!

ii

ABSTRACT

The objective of this thesis is to detect and identify moving objects in a video sequence. The

currently available techniques for motion estimation can be broadly categorized into two main

classes: block matching methods and optical flow methods.

This thesis investigates the different motion estimation algorithms used for video processing

applications. Among the available motion estimation methods, the Lucas Kanade Optical Flow

Algorithm has been used in this thesis for detection of moving objects in a video sequence.

Derivatives of image brightness with respect to x-direction, y-direction and time t are calculated

to solve the Optical Flow Constraint Equation. The algorithm produces results in the form of

horizontal and vertical components of optical flow velocity, u and v respectively. This optical

flow velocity is measured in the form of vectors and has been used to segment the moving objects

from the video sequence. The algorithm has been applied to different sets of synthetic and real

video sequences.

This method has been modified to include parameters such as neighborhood size and Gaus-

sian pyramid filtering which improve the motion estimation process. The concept of Gaussian

pyramids has been used to simplify the complex video sequences and the optical flow algorithm

has been applied to different levels of pyramids. The estimated motion derived from the dif-

ference in the optical flow vectors for moving objects and stationary background has been used

to segment the moving objects in the video sequences. A combination of erosion and dilation

techniques is then used to improve the quality of already segmented content.

The Lucas Kanade Optical Flow Algorithm along with other considered parameters produces

encouraging motion estimation and segmentation results. The consistency of the algorithm has

been tested by the usage of different types of motion and video sequences. Other contributions

of this thesis also include a comparative analysis of the optical flow algorithm with other existing

motion estimation and segmentation techniques. The comparison shows that there is need to

achieve a balance between accuracy and computational speed for the implementation of any

motion estimation algorithm in real time for video surveillance.

iii

Table of Contents

PERMISSION TO USE i

ACKNOWLEDGMENTS ii

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF FIGURES viii

LIST OF TABLES xi

ABBREVIATIONS AND ACRONYMS xii

1 INTRODUCTION 1

1.1 Background of Research . 1

1.2 Motion Detection . 1

1.2.1 Estimation of Motion . 2

1.2.2 Segmentation of Moving Objects . 2

1.3 Objective and Methodology of the Research . 3

1.4 Organization of the Thesis . 5

1.5 Summary . 6

2 MOTION ESTIMATION 7

2.1 Introduction . 7

2.2 Characterization of Motion . 7

2.2.1 Pan Motion . 7

iv

2.2.2 Tilt Motion . 7

2.2.3 Zoom Motion . 8

2.2.4 Rotary Motion . 8

2.3 Methods for Motion Detection . 9

2.3.1 Block Matching Methods . 9

2.3.2 Optical Flow Methods . 12

2.3.3 Alternative Methods . 18

2.4 Challenges Associated with Accurate Motion Detection 19

2.5 Image Segmentation . 20

2.5.1 Histogram or Threshold based Approach . 20

2.5.2 Edge Detection . 21

2.5.3 Region or Pixel Based Classification . 21

2.6 The Aperture Problem . 21

2.7 Summary . 23

3 OPTICAL VECTOR FLOW ESTIMATION ALGORITHM 24

3.1 Introduction . 24

3.2 Lucas Kanade Method of Optical Flow . 24

3.3 Factors Influencing the Optical Flow . 26

3.3.1 Neighborhood window size . 26

3.3.2 Gaussian Pyramid Levels . 27

3.4 Threshold Segmentation . 30

v

3.5 Summary . 31

4 IMPLEMENTATION OF OPTICAL FLOW METHOD FOR MOTION DE-

TECTION 32

4.1 Introduction . 32

4.2 Application of Optical Flow to Video Sequences 32

4.3 Results of Video Sequences using Optical Flow Algorithm 33

4.3.1 Results using Synthetic Video Sequences 36

4.3.2 Results using Real Video Sequences . 43

4.4 Discussion . 66

4.5 Summary . 67

5 SEGMENTATION OF MOVING OBJECTS IN A SEQUENCE OF VIDEO

IMAGES 68

5.1 Introduction . 68

5.2 Segmentation Results from the Optical Flow Method 68

5.3 Enhancement of the segmented image content . 75

5.4 Discussion and Comparison with other Image Segmentation Methods 77

5.4.1 Results using a Block Matching Technique 78

5.4.2 Results using a Neural Network Technique 81

5.5 Summary . 84

6 SUMMARY AND FUTURE WORK 86

6.1 Summary and Conclusions . 86

6.2 Future Work . 88

vi

REFERENCES 89

A APPENDIX A

MAIN FUNCTIONS USED IN MATLAB 93

A.1 Main MATLAB Commands . 93

A.2 Image Processing Toolbox Commands . 94

B APPENDIX B

MATLAB CODE FOR IMPLEMENTATION

OF THE LUCAS KANADE ALGORITHM 95

B.1 Main Program of Lucas Kanade Algorithm (mainprogram.m) 95

B.2 Lucas Kanade Program for Solution of the Optical Flow Equation (LucasKanade.m) 99

B.3 Gaussian Pyramids (pyramid.m) . 100

B.4 Image Segmentation (segmentation.m) . 102

B.5 Dilation (dilate.m) . 102

B.6 Erosion (erode.m) . 103

B.7 Filter Values . 103

B.7.1 Filter Coefficients to Calculate Derivatives with respect to the x-direction . 103

B.7.2 Filter Coefficients to Calculate Derivatives with respect to the y-direction . 104

B.7.3 Filter Coefficients to Calculate Derivatives with respect to time, t 104

B.7.4 Gaussian Mask used for filtering . 104

B.7.5 Filter Coefficients used for Gaussian pyramids 104

vii

List of Figures

2.1 Block Matching Technique . 10

2.2 Brightness Constancy in the Optical Flow Algorithm 13

2.3 Aperture Problem in Motion Estimation . 22

3.1 Implementation of the Lucas Kanade Method for the Base Level Case 25

3.2 Depiction of Gaussian Levels in the form of a Pyramid 28

3.3 Algorithm for the generation of Gaussian Pyramid Levels 30

4.1 Optical Flow Results for Synthetic Image of a Sphere: Frames 1 and 2 38

4.2 Magnified Optical Flow Results for Synthetic Image of a Sphere: Frames 1 and 2 . 39

4.3 Optical Flow Results for Synthetic Image of a Sphere and Cube rotating indepen-

dently: Frames 10 and 11 . 41

4.4 Optical Flow Results for Synthetic Image of a Sphere and Cube rotating indepen-

dently: Frames 14 and 15 . 42

4.5 Optical Flow Results for Real Image of a Hand moving over a highly textured

background: Frames 142 and 143 . 44

4.6 Optical Flow Results for Real Image of a Hand moving over a highly textured

background: Frames 158 and 159 . 45

4.7 Optical Flow Results for Real Image of a Hand moving over a highly textured

background: Frames 184 and 185 . 46

4.8 Optical Flow Results for Real Image of a Hand carrying a textured book and

moving over a highly textured background: Frames 145 and 146 48

viii

4.9 Optical Flow Results for Real Image of a Hand carrying a textured book and

moving over a highly textured background: Frames 156 and 157 49

4.10 Optical Flow Results for Real Image of a Hand carrying a textured book and

moving over a highly textured background: Frames 172 and 173 50

4.11 Optical Flow Results for Real Image of a Mug and Hand and moving over a highly

textured background: Frames 98 and 99 . 52

4.12 Optical Flow Results for Real Image of a Mug and Hand and moving over a highly

textured background: Frames 192 and 193 . 53

4.13 Optical Flow Results for Real Image of a Mug and Hand and moving over a highly

textured background: Frames 271 and 272 . 54

4.14 Optical Flow Results for Real Image of a Baby raising his hand (in the upward

direction) to put food in the mouth: Frames 4 and 5 56

4.15 Optical Flow Results for Real Image of a flower basket rotating around a vertical

axis: Frames 8 and 12 . 58

4.16 Optical Flow Results for Real Image capturing moving traffic as taken from within

a vehicle: Frames 79 and 80 . 60

4.17 Optical Flow Results for Real Image capturing moving traffic as taken from within

a vehicle: Frames 140 and 141 . 61

4.18 Magnified Optical Flow Results for Real Image capturing moving traffic as taken

from within a vehicle: Frames 79 and 80 . 62

4.19 Optical Flow Results for Real Image with camera having pan and tilt motion over

a table of flowers: Frames 34 and 35 . 64

4.20 Optical Flow Results for Real Image with camera having pan and tilt motion over

a table of flowers: Frames 41 and 42 . 65

5.1 Segmentation of the sphere . 69

ix

5.2 Segmentation of the hand-book combination . 69

5.3 Segmentation for the movement of the baby’s hand 70

5.4 Segmentation of the moving hand . 71

5.5 Segmentation of the moving sphere using threshold value of 0.005 72

5.6 Segmentation of the moving sphere using threshold value of 0.02 72

5.7 Segmentation of the moving sphere using threshold value of 0.05 73

5.8 Segmentation of the moving arm using threshold value of 1.5 73

5.9 Segmentation of the moving arm using threshold value of 2.0 74

5.10 Segmentation of the moving arm using threshold value of 2.5 74

5.11 Enhancement of the segmented image of the rotating sphere 77

5.12 Enhancement of the segmented image of the moving hand and book combination . 78

5.13 Enhancement of the segmented image of the baby’s arm 79

5.14 Enhancement of the segmented image of the moving hand 80

5.15 Motion Vectors between Frames 11 and 12 of a Rotating Flower Basket using

Block Matching Method . 81

5.16 Motion Vectors between frames 23 and 24 of a Rotating Pinwheel using Block

Matching Method . 82

5.17 Segmentation results using Block Matching Method for Frame 12 of a Rotating

Flower Basket . 83

5.18 Segmentation results using Block Matching Method for Frame 24 of a Rotating

Pinwheel . 84

5.19 Segmentation results using a neural network technique 85

x

List of Tables

A.1 Description of MATLAB Commands Used . 93

A.2 Description of Image Processing Commands Used 94

xi

ABBREVIATIONS AND ACRONYMS

2−D Two Dimensional

R, G and B Red, Green and Blue pixel Intensity

ANN Artificial Neural Network

MFNN Multi Layer Feed Forward Network

MPEG Moving Picture Experts Group

MSE Mean Square Error

SfM Structure from Motion

SE Structuring Element

xii

1. INTRODUCTION

1.1 Background of Research

There has been a significant development in the area of digital image and video technology

in the last twenty years. Because of the ever improving computer technology and high resolution

cameras, the interest in video surveillance and similar computer vision technologies has soared.

Tracking and detecting motion of objects in a video sequence is one of the most important tasks

of the emerging computer vision technologies.

Video surveillance has become a very popular mode of monitoring, especially in secure or

restricted access areas. Sensors which detect the moving objects are used in almost all video

surveillance applications. By using the estimated motion, objects can be segmented. Segmen-

tation of moving objects can be beneficial to segregate regions of interest from the background.

For example, if a security/surveillance system is being used to segment a particular object (or

person) in a crowd, segmentation techniques can be very useful in such cases.

Several camera and web camera manufacturers are using the concept of video surveillance

by motion detectors. These motion detectors help users to keep a watchful eye on any area of

interest in their absence. The motion detector triggers a recording whenever it senses any motion.

The recording automatically stops when the motion goes below a certain level (depending on the

sensitivity of the camera). The recorded motion can be viewed in the form of image snapshots

or video files (each with a time and date stamp indicating the start of motion detection).

1.2 Motion Detection

This research project includes two main steps used to detect the moving objects in a video

sequence. The first step is to estimate the motion in a video sequence or a frame. This step

is important to determine the object(s) that should be segregated from the frame under con-

1

sideration. The second step is to segment the moving objects (determined from the first step)

from the stationary object(s) or background in the considered frame/image. The next two sec-

tions present the basic concepts of estimation of motion and the subsequent segmentation of the

moving objects from a frame/video image.

1.2.1 Estimation of Motion

In simple terms, motion can be defined as displacement of moving objects between the frames

under consideration. The motion estimation models that have been proposed till now are based

on measuring this displacement between objects. Currently existing motion detection and mea-

surement techniques usually employ at least two frames of video images from a video sequence.

The motion is usually computed by comparing any two consecutive frames (from a video se-

quence) at a given time. Some of the most widely used methods are:

• Optical Flow Method

• Motion Vector Estimation

• Image Subtraction

Some of these methods have been discussed in detail in the next chapter.

1.2.2 Segmentation of Moving Objects

Segmentation of moving objects is done in order to separate the moving objects from their

stationary background. Image segmentation has found wide applications in the field of medical

and biomedical imaging. Various methods have been proposed and tested for segmentation of

moving objects. Some of these methods [24] [25] can be broadly classified on the basis of the

principle as:

• Clustering

• Edge Detection

2

• Histogram-Based

• Level Set

• Model Based

• Thresholding

• Neural Networks and other Artificial Intelligence Based Techniques

Some of these methods have been discussed in further detail in Chapter 2.

1.3 Objective and Methodology of the Research

The motivation of this research project comes from the application of this research in video

surveillance where only one or more moving objects are of interest and thus should be segmented

out from the stationary background. It is imperative that good motion detection results are

obtained before the moving objects can be segregated from the stationary background. Different

methods have been proposed for tracking moving objects in video sequences. The objective of

this research project is to analyze the response of these different methods for various types of

motions with the ultimate objective of segmenting the moving objects of a video sequence by

using one of the available methods. The main application of this technology is in computer vision,

specifically in video surveillance, video processing and 2.5 dimensional structure estimation from

motion (SfM).

The objective of this research project is to identify and segment moving objects in a video

clip. The methodology that has been followed to achieve this research objective can be broadly

described in the following five main steps:

1.) Estimation of Motion

Different methods of motion estimation and segmentation of images have been studied and

analyzed. The results obtained from these methods have been presented. Ultimately, the Lucas

Kanade Optical Vector Flow Algorithm has been chosen to obtain the relative motion between

any two video frames. The estimated motion is in the form of optical flow vectors. The obtained

3

optical flow vectors are then superimposed on the original frame(s) indicating motion or moving

objects in the frame(s). The magnitude and direction of the optical flow vectors indicate the

relative motion between the two frames under consideration.

Depending on the complexity of the chosen video sequence, Gaussian smoothing has been

performed and the Lucas Kanade Optical Flow Algorithm has been applied to the different

smoothed levels of Gaussian pyramid images. A comparative analysis has been performed on

the obtained Gaussian levels to evaluate the results obtained by using different Gaussian pyra-

mid levels. Further, depending on the amount of motion in the two image frames chosen, the

neighborhood window sizes have been varied. The results obtained from this process have been

compared and presented.

2.) Analysis of the response of Lucas Kanade Method for different Video Sequences

Practically, the objects in a video sequence can move in different directions. Therefore, video

sequences for different types of motion have been considered and the results obtained from the

selected algorithm have been evaluated. The included sequences have translational motion of

moving objects, independent translational and rotary motion of moving objects, etc. The study

of video sequences under different camera parameter variances including pan, tilt, zoom-in and

zoom-out of camera motions has also been undertaken.

3.) Segmentation of identified Moving Objects

The method of thresholding has been chosen and the magnitude difference between the optical

flow vectors of moving and stationary objects has been used to segment the moving objects.

This has been done by applying an optical vector threshold to differentiate the moving objects

from their relatively stationary counterparts in the video frame(s). Object segmentation is then

performed on the chosen frames to clearly depict the moving objects.

4.) Enhancement of Segmented Content

Two techniques, known as erosion and dilation have been used to enhance the already segmented

content obtained in step 3. Either of these techniques can be used to improve segmented image

quality (depending on the considered image sequence). In this thesis, a combination of these

techniques (in a four stage process) has been tested to analyze the effect of these techniques on

4

the segmented images. The results obtained by this process have been observed.

5.) Comparative Analysis with other Techniques

The chosen Lucas Kanade Optical Flow Algorithm has been compared with other existing tech-

niques - block matching method and artificial neural network based technique. The motion

estimation results obtained from block matching method have been compared with the optical

flow results. Segmentation results using Neural Networks have been compared with results ob-

tained by the considered thresholding algorithm. A comparative analysis of these results has

been presented.

1.4 Organization of the Thesis

This thesis has been divided into six chapters and two appendices.

The first chapter presents the background of the research project and its objectives. A brief

introduction to the estimation of motion in video sequences has been discussed. This chapter

also introduces the concept of segmentation of moving objects after the detection of motion.

Further, the outline of each chapter and its contents has been presented.

Chapter two describes the different types of motions that are usually seen in different video

sequences. The various methods used to detect moving objects in an image/video sequence have

been described. The methods include Block Matching methods, Optical Flow methods and other

alternative algorithms based on neural networks and artificial intelligence. The challenges faced

during accurate detection of motion have been discussed as well.

The Optical Flow technique (Lucas Kanade Method) that has been used in this research

project has been discussed in detail in chapter three. This chapter also presents the mathematical

calculations and modifications involved in this algorithm. It further discusses the important

parameters of the algorithm which affect accurate detection of motion. Challenges faced during

the implementation of an Optical Flow technique such as the aperture problem have also been

discussed.

Chapter four presents the implementation of the Lucas Kanade Method for detection of

5

motion in image sequences. The results obtained by the application of the proposed technique

to synthetic and real images have been presented. The proposed algorithm has been applied to

different types of motion and the results have been shown. The concept of Gaussian Pyramids

has been applied to these image sequences and the chapter also presents a comparative analysis

of the obtained results.

The motion detection results obtained from different image sequences have been used for

segmentation of moving objects in Chapter five. The chapter further presents the results of

enhancement techniques for smoothing of the segmented background in the obtained results. A

comparative analysis of the presented technique with other techniques such as block-matching

method and neural network technique has been presented in this chapter.

Chapter six concludes the thesis and presents the summary of this research. Further, it

provides suggestions for future work related to this research project.

Appendix A outlines the MATLAB commands that have been used in this project. It also

includes the commands taken from the Image Processing Toolbox of MATLAB.

The MATLAB code and other parameters used for the implementation of the Lucas Kanade

algorithm have been presented in Appendix B.

1.5 Summary

This chapter introduced the basic concept of motion detection in image/video sequences

and the subsequent segmentation of moving objects from their background. It further outlines

the objective of this research project. The organization of this thesis into six chapter and two

appendices has been discussed.

6

2. MOTION ESTIMATION

2.1 Introduction

The previous chapter introduced the concept of motion estimation in video sequences. The

different types of motion and the methods used to detect it have been discussed in detail in this

chapter. Further, the challenges faced in the determination of accurate movement and motion

detection between two frames of a video sequence have also been discussed.

2.2 Characterization of Motion

Objects in a video can move in different ways. Therefore, it is important to understand some

of the types of motions that may exist in a video sequence. Some of the types of motion have

been described in the subsequent sub-sections.

2.2.1 Pan Motion

This type of motion occurs when the object in a video sequence moves linearly from the left

direction to right or vice versa. The motion in the video can also be as a result of the movement

of the camera instead of the object (in similar directions). When such a motion occurs in a video,

the estimated motion should be largely in a horizontal direction with relatively low or no motion

detection in the vertical direction.

2.2.2 Tilt Motion

Tilt motion implies the movement of an object in the vertical direction. This means that

the object in the video sequence moves either upwards or downwards. As in the previous case

on Pan motion, this motion can be a result of the camera movement as well. Consequently,

when a motion estimation algorithm is applied to such a video sequence, the results should be

concentrated in the vertical direction as compared to the horizontal direction.

7

2.2.3 Zoom Motion

Zoom motion can be of two types: Zoom-in and Zoom-out. As the name suggests, zooming in

occurs when an object in a video sequence in concentrated upon. In the subsequent frames of a

video sequence, the object of interest increases or enlarges in size. In most of the cases, the other

objects in the frame tend to move out in the next frame. Motion detection for zoom in cases

results in estimation of motion over the whole frame. This is because the camera moves all over

the frame while trying to zoom in onto one object. Further, the results should be concentrated

towards the centre of the frame indicating the zooming in motion.

On the other hand, zoom out motion results in lesser concentration on objects of interest.

Zoom out leads to a decrease in size of objects in the succeeding frames. This may lead to

insertion of more objects as the camera zooms out. Evidently, the results obtained for such a

motion should be spread over the whole frame, with the vectors moving away from the centre of

the frame indicating zooming out motion of the camera.

Zoom-in and zoom-out motions can also be emulated if the object of interest moves closer or

away respectively, from the camera while the camera focus remains the same.

2.2.4 Rotary Motion

Rotary motion indicates the motion of an object around a horizontal or vertical axis in a video

sequence. Since an object moving in a rotary motion has a constant axis, the results obtained

from such a data set are usually concentrated on the edges of the moving object. This is true

especially in cases when the moving object has a smooth surface or a constant color. In cases of

irregular colored objects, the motion results could be concentrated over the whole object.

Further, it should be noted that the objects in a video sequence can move in a combination

of these motions. In such cases, the estimated motion is a resultant of the individual motion

results.

8

2.3 Methods for Motion Detection

Different image processing techniques can be used to detect and track moving objects in a

video sequence. These techniques can be categorized into two broad classes: feature based and

motion based [1] [34].

Feature based techniques differentiate moving objects from the stationary ones on the basis of

one or more object features such as shape, color, profile etc. The motion based techniques (Opti-

cal Flow technique) usually compare relative or absolute motion between moving and stationary

objects.

Even though these two methods remain most popular, another type of technique which has

gained a lot of interest in recent times is based on artificial intelligence. The subsequent sections

discuss some of the methods of these three techniques in detail.

2.3.1 Block Matching Methods

Block matching methods are one of the most popular feature based methods used to estimate

motion. The method is based on the measurement of absolute motion between objects in two

video frames. All block matching methods start with the division of any video frame into macro-

blocks of desired dimensions. The method usually uses two adjacent MPEG video frames, referred

to as reference frame and target frame as shown in Figure 2.1. The two frames are then divided

into macro-blocks. These corresponding macro-blocks between the two frames are compared to

estimate motion in the form of vectors. The MPEG video image coding conducts the search by

using macro blocks to search a best match of a block (belonging to the reference frame) in the

target frame. Generally, a 16 pixel by 16 pixel macro block is used for gray scale images and an

8 pixel by 8 pixel macro block is used for colored images [27] [28].

The motion vector search algorithm uses an error function (e.g., sum of absolute differences,

mean square error etc.) to search the best match macro-block in the target image frame with

respect to the reference image frame. The displacement found by matching the reference and

target macro blocks defines the motion vector of that pixel. The pixel could be any pixel belonging

to the reference macro block (top left pixel of macro block, bottom left pixel of macro block etc.).

9

Figure 2.1 Block Matching Technique

There are a large number of different block matching search algorithms for motion estimation [2]

that have been reviewed and tested.

Most of the search algorithms are based on defining a square search area (of 32, 64 or 128

pixels etc.) in the target frame. Since the movements of the objects vary from one video

sequence to another, the motion vector search algorithm is primarily dependent on the type of

video sequence under consideration. The search area should thus be chosen depending on the

movement in the two adjacent frames. For example, if the motion of moving objects in the

frames under consideration is large, a larger search area needs to be considered. Further, if a

video sequence has been split at a lower rate (in terms of frames/second), it is likely that the

movement between frames is higher. A larger search area should be chosen in such cases as well.

Because of the importance of a search area in motion estimation, the search algorithms

are generally classified on the basis of the method chosen to define the search area. Some

of these methods include: three step search [11], four step search [20], spiral search [36], 2-

D logarithmic search [10], orthogonal search [21], cross search [7], one-at-time search [23], full

search [4] etc. Some of these algorithms have been described in detail in the following three

sub-sections. In addition to the search range, the computational complexity of these motion

10

estimation techniques is also dependant on other factors such as the search algorithm used, cost

function used for evaluation, size of macro blocks etc. Therefore, these parameters need to be

modified accordingly for different video sequences under consideration.

Exhaustive Search

Exhaustive search (also known as full search) is the method of comparing a macro-block in the

reference frame with all the macro-blocks in the target frame. The parameter or a combination

of parameters of the reference macro-block (e.g. pixel intensity, hue etc.) is compared with each

macro-block of the target frame and the error between them is calculated using an appropriate

error function (e.g. mean square error, absolute error etc.). All the errors are analyzed and

the macro-block in the target frame with the minimum error is thus chosen. The displacement

between the reference macro-block and the chosen target macro-block is termed as the estimated

motion. The same process is repeated for each of the macro-blocks in the reference frame and

the motion vectors are estimated accordingly for the full frame.

Step Search

Step search is the method of conducting the motion search in a number of chosen steps.

A search area is chosen around each macro-block by specifying the number of pixels and is

dependent on the relative movement between video frames. The search is then conducted in

the macro-blocks belonging only to that particular search area around each macro-block in the

target frame. The number of steps chosen determines the number of search iterations around

each macro-block before the algorithm is stopped. The usual number of steps used for the search

is three or four.

2−D Logarithmic Search

2 − D Logarithmic search is another form of step search. The main difference between the

regular step search and this type of logarithmic search is the progressively reducing search area

around the macro-block in the target frame. The defined search area in this type of search is

usually a multiple (or sub-multiple) of the size of the macro-block. For example, for a macro-

11

block of 16× 16 pixels, a search area of 32 pixels, 16 pixels or 8 pixels can be chosen. The search

area is reduced by half in each subsequent iteration and a full search is conducted in the specified

search area. The procedure of calculating errors to choose the block with the least error with

respect to the reference macro-block is conducted and the best block match is eventually chosen

in the target frame.

Most of the algorithms use a combination of these search methods to optimize the advantages

of each of these methods. Further, one method can be used as a sub-method of the other. For

example, an exhaustive search can be followed by a 2 − D logarithmic search. The exhaustive

search finds the best matching macro-block in the whole target frame and the 2−D logarithmic

search is able to micro-search to find the best macro-block within the search area around the

chosen macro-block.

2.3.2 Optical Flow Methods

Optical Flow is defined as the 2 − D distribution of apparent velocities of movement of

intensity patterns in an image plane [9] [26]. The Optical Flow Algorithm is based on relative

motion rather than absolute motion, as in the case of motion vector search method. Using

this method, the direction and speed of moving objects from one image to another is obtained

in terms of velocity vectors (horizontal and vertical velocity vector components). The concept

of optical vector flow is used to estimate the motion of pixels (and thus objects) in an image

sequence within a visual representation. The motion represented by these optical flow vectors

originate or terminate at pixels in the sequence of image frames derived from an MPEG movie.

This depicts a dense vector field across all moving pixels in each frame [9]. This method is based

on the assumption that the displacement between the two frames is relatively small.

Optical flow methodologies have been classified into three main groups: differential, matching

and spectral (or phase correlation) methods [6]. The differential optical vector flow evaluation

technique is used in this research project. This method works very well for highly textured images

due to the ease of calculation of local derivatives (gradients) [5]. There are several methods that

exist for determining differential optical flow. Some of the more commonly used methods are: the

Horn Schunck method [9] and the Lucas Kanade method of estimating optical flow [12] [13] [14].

12

The mathematical implementation of the optical flow method can be derived from its def-

inition. Specific modifications are made based on the particular method under consideration.

Optical flow is defined as an apparent motion of image brightness patterns in an image se-

quence [9] [19].

As shown in Figure 2.2, consider a pixel of a moving object at point A (pixel coordinates

(x, y) at time t) with image brightness equal to I(x, y, t).

Figure 2.2 Brightness Constancy in the Optical Flow Algo-

rithm

Because of object movement between frames, this pixel moves to point B (new pixel coordi-

nates being (x+ dx, y + dy) at time t+ dt); implying that the pixel coordinates (x, y) change in

time dt to (x+ dx, y + dy). It is assumed that the image intensity or brightness I(x, y, t) of the

pixel with coordinates (x, y) is constant (brightness constancy assumption) in both these frames.

Similarly, the algorithm assumes that the brightness of every point of a moving or static object

does not change in time with changing frames.

The brightness constancy assumption thus results in the following equation:

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (2.1)

Using Taylor series expansion (only considering first order terms) the right hand side of the

13

above equation results in:

I(x+ dx, y + dy, t+ dt) = I(x, y, t) +
∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂t
dt+ · · · (2.2)

In the above equation, "· · ·" refers to higher order terms which can be neglected.

Thus, substituing equation 2.2 into equation 2.1 and cancelling common terms, we get:

∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂t
dt = 0 (2.3)

Dividing equation 2.3 above by dt results in:

∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0 (2.4)

This implies,
∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
= −∂I

∂t
(2.5)

The components of optical flow in the horizontal and vertical directions respectively can be

denoted as
dx

dt
= u (2.6)

and
dy

dt
= v (2.7)

This results in the following equation, which is also known as the Optical Flow Constraint

Equation.
∂I

∂x
u+

∂I

∂y
v = −∂I

∂t
(2.8)

Horn Schunck Method

The Horn Schunck method [9] can be derived from equation 2.4. Using the following notations:

∂I

∂x
= Ex (2.9)

∂I

∂y
= Ey (2.10)

14

∂I

∂t
= Et (2.11)

Equation 2.8 can now be re-written as:

Exu+ Eyv = −Et (2.12)

In the above equation, the terms Ex, Ey and Et are the partial derivates of the image bright-

ness with respect to the x-direction, y-direction and time t respectively. Equation 2.12 can be

further written as:

(Ex, Ey).(u, v) = −Et (2.13)

Equation 2.13 implies that the component of the movement, p in the direction of the brightness

gradient (Ex, Ey) is

p = − Et
√

(Ex)
2 + (Ey)2

(2.14)

It has been suggested that it is not possible to determine the component of the movement

in the direction of the iso-brightness contours, at right angles to the brightness gradient. As a

consequence, the flow velocity (u, v) cannot be computed locally without introducing additional

constraints.

This method then introduces additional smoothness constraints SC1 and SC2 to minimize

the square of the magnitude of the gradient of the optical flow velocity, i.e.

SC1 =

(

∂u

∂x

)2

+

(

∂u

∂y

)2

(2.15)

and

SC2 =

(

∂v

∂x

)2

+

(

∂v

∂y

)2

(2.16)

These equations have been used to implement the algorithm by estimating the derivatives

Ex, Ey and Et from the discrete set of image brightness measurements. The values of optical

flow vectors u and v is then estimated using equation 2.13.

15

Lucas Kanade Method

The Lucas Kanade equation [12] [13] [14] is derived from the optical flow equation given in

equation 2.8. We use the following notations:

∂I

∂x
= Ix (2.17)

∂I

∂y
= Iy (2.18)

∂I

∂t
= I t (2.19)

As in the case of the Horn Schunck method, the terms Ix, Iy and It are the partial derivates

of the image brightness with respect to x-direction, y-direction and time t. Replacing these

variables from 2.17, 2.18 and 2.19 in the Optical Flow Constraint Equation (Equation 2.8), thus

results in:

Ixu+ Iyv = −It (2.20)

It can be seen that the Optical Flow Constraint Equation has two unknown variables (u and

v) in one equation. Equation 2.20 can be expressed in matrix form as:

[Ix Iy]

[

u

v

]

= −It (2.21)

The Lucas Kanade method assumes the motion between two video frames to be relatively

small. Therefore, the neighborhood assumed for relative motion between frames is also assumed

small. Modifying the equation by assuming constant (u, v) in a small neighborhood:

Ix1 Iy1

Ix2 Iy2
...

...

[

u

v

]

= −

It1

It2
...

(2.22)

where sub-scripts of Ix, Iy and It represent the pixels of the considered image, thus resulting in

higher number of equations than the number of unknowns, eventually helping to solve for the

unknowns.

16

Again, if the following notations are assumed,

A =

Ix1 Iy1

Ix2 Iy2
...

...

(2.23)

−→u =

[

u

v

]

(2.24)

b = −

It1

It2
...

(2.25)

Equation 2.21 now transforms to,

A−→u = b (2.26)

The goal of the Lucas Kanade method for Optical Vector Flow calculation is to minimize

‖A−→u − b‖2. Using the method of least squares, and by multiplying with the transpose of matrix

A, the term A−→u = b can be written as:

ATA
︸︷︷︸

(2×2)

−→u
︸︷︷︸

(2×1)
= AT b
︸︷︷︸

(2×1)
(2.27)

Or,

−→u = (ATA)−1AT b (2.28)

The matrix ATA =

[∑

I2x
∑

IxIy
∑

IxIy
∑

I2y

]

should be invertible (that is, no zero Eigen values).

The term (ATA)−1AT is known as the pseudo-inverse of the matrix A and can be calculated

using the pixel intensity values Ix and Iy of all the pixels of any video frame.

Due to its robustness, the Lucas Kanade method is being used in this research project. This

method has been implemented in MATLAB using the Image Processing Toolbox [30].

17

2.3.3 Alternative Methods

In addition to the methods described in the previous sections, there are other alternative

methods such as neural networks [8] and fuzzy logic [22] that have been used for various image

processing applications. Artificial Neural Networks (ANNs) or Neural Networks are modeled on

the human brain and have the ability to learn from a representative set of patterns and apply

the learning to different system conditions. On the other hand, fuzzy logic forms a theoretical

foundation for reasoning about imprecise propositions; such reasoning has been referred to as

approximate reasoning [22].

Such unconventional approaches have the ability to overcome various challenges (such as

lighting change, camera movement etc.) that usual methods (based on motion detection) face.

The separation of moving objects in a MPEG video frame from the background is essentially

a pattern classification problem. Some of these methods have been used and implemented suc-

cessfully for solving numerous pattern classification problems. The capability of an ANN to

learn and generalize has been utilized in numerous applications of image processing [28]. The

method undertaken in this project has been compared with a neural network approach for image

segmentation and some results have been presented in Chapter 5.

ANNs can be classified on the basis of the type of neuron connections and data that flows

through the different layers of the neural network. Feed forward networks are the most commonly

used neural networks for pattern classification problems. Some of these networks [8] have been

described in the next few sections.

Multi-Layer Feed Forward Networks

Multi-Layer Feed Forward Networks comprise of one input layer, one output layer and one or

more hidden layers. The input layer receives the input data set, which is multiplied by the input

weights and mapped through a transfer function [8]. The output of the first layer becomes the

input for the second layer (usually a hidden layer) and the process moves on through different

layers of neurons. The different layers can be either partially or fully connected to its adjacent

layer. The most commonly used learning algorithm with these kinds of neural networks is

18

the back-propagation algorithm, where the computed errors between the target output and the

obtained output are fed back into the neural network to update its weights.

Radial Basis Networks

Radial basis networks usually use three layers, one input, one hidden and one output layer.

The transfer function used in the hidden layer is usually a non-linear function whereas the output

layer usually uses a linear function. Radial basis networks employ more neurons than standard

multi-layer perceptrons and work very well in applications where a large number of training data

sets are available [8].

Kohonen Self Organizing Maps

Kohonen Self Organizing Maps [8] do not use the principle of updating the weights according

to a pre-set pattern. In these networks, the neurons of the network compete for the opportunity

to learn and update the weights according to the "winning" neuron. The output of the neuron

with the largest output in iteration is considered and only the connection weights of this neuron

(as well as all the other neurons connected to it) are updated.

2.4 Challenges Associated with Accurate Motion Detection

There are many challenges that need to be overcome for accurate estimation of motion. Some

of these challenges are:

(a) Change in pixel intensity

Motion Estimation algorithms can produce erroneous results because of pixel intensity vari-

ance of stationary objects between two scenes. This variance may exist in a video sequence due

to either background lighting change or slight camera movement. In such cases, even though the

background may be stationary, the motion detection algorithm may detect it as varying. There-

fore, the motion detection approach needs to be robust against changes in scene illumination,

but sensitive enough to detect the moving objects.

(b) Speed of movement

19

Another challenge faced when tracking motion between any two consecutive frames of a video

is to detect motion between objects which are moving fast relative to the video frame rate. For

example, the optical flow algorithm assumes the relative movement between frames to be small.

Therefore, for rapidly moving objects, it is important to ensure that a high video frame rate is

used.

(c) Varying background

Constantly changing backgrounds pose another major challenge in motion estimation. The

variation in background can be a result of constantly moving background objects such as swaying

leaves on trees, or rain. Further, radical background changes such as video surveillance in build-

ings for human activity recognition (where humans appear and depart intermittently in scenes)

may exist in video sequences. Therefore, the motion detection algorithm used should be able to

adapt and perform in such circumstances.

2.5 Image Segmentation

Image Segmentation is defined as the process of dividing an image into homogenous regions

with respect to a chosen property [18]. The image segmentation methods can be categorized into

three main approaches [16] [18] [32] and the details of these methods have been given in the next

three sub-sections.

2.5.1 Histogram or Threshold based Approach

A histogram or threshold based approach assumes a certain range of the pixel intensities. This

enables the separation of the image under consideration into two separate classes (i.e., the region

or object of interest and the background) using a specified threshold. Most of the threshold or

histogram approaches deal with gray level images [18]. This can be attributed to the fact that the

gray level images have a pixel intensity range of 1− 256 (or 0− 255, depending on the program

being used). Thus, by setting a threshold in this range according to the image or video frame

under consideration, the moving objects can be separated from the stationary background (or

vice versa). In colored images, the presence of three-dimensional pixel intensities because of R,

20

G and B values (each with a possible 256 values) makes the process complicated to implement.

2.5.2 Edge Detection

Edge or boundary detection is a method to detect the boundaries of the objects in an image

or frame. An edge is characterized by a significant local change in image intensities [18]. By

doing this, the objects in the frame are indirectly defined and can be separated. This method

is based on the assumption that the change in pixel intensities between adjacent pixels in the

region/object of interest is insignificant as compared to the background which is to be separated.

2.5.3 Region or Pixel Based Classification

This type of approach is based on the homogeneity of pixels belonging to the same area of

an image or video frame. It is based on the assumption that the pixels belonging to the same

homogenous region tend to be more alike than pixels belonging to other homogenous regions [18].

The pixels belonging to a homogeneous region are split or merged depending on the case under

consideration. The method is similar to clustering techniques which place the pixels with some

similarities together in groups.

2.6 The Aperture Problem

In motion estimation, the aperture problem occurs when motion is viewed through a small

aperture such as a camera. It has been observed that when a moving object is observed through

an aperture, only the motion orthogonal to the object can be measured. This implies that it is

difficult and in some cases, impossible to measure the lateral movement of an object when the

image is observed through a small aperture. Four different cases have been considered to explain

this problem. Consider a uniform textured image with stripes as shown in Figure 2.3.

Figure 2.3(a) shows the case when the image is observed with the aperture in the centre of the

image. The pattern observed by the aperture (inside the aperture) should be noted. The aperture

has been moved in the upwards direction (tilt motion) in Figure 2.3(b). The dimensions and

location of the textured image have been kept constant. In Figure 2.3(c), the aperture has been

moved in the right hand direction, which signifies the left-right movement (pan motion) of an

21

Figure 2.3 Aperture Problem in Motion Estimation

object. The pan and tilt motions have been combined in Figure 2.3(d). For better understanding

of the problem, in all the cases, the aperture has been moved in such a way that the pattern seen

inside the aperture is exactly the same as seen in Figure 2.3(a).

Now, if only the pattern as seen inside the aperture is observed, it appears that there has

been no movement in these four different cases. Therefore, when a motion estimation algorithm

is applied to recognize motion between any two such cases, the results are ambiguous. For

algorithms based only on pixel intensities, the estimated motion in most of the cases will be

zero. However, this is not true since the aperture has clearly moved over the image in each of

the four cases. This inability of a motion estimation algorithm to record movement because of a

22

small aperture is known as the aperture problem. The obvious solution to this problem is using

a bigger aperture. However, as most of the videos and images are captured by a camera, this

solution of using a bigger aperture is not possible.

This problem can be handled to some extent if the motion between two images under con-

sideration is relatively small. This will cause a small difference in the patterns as seen by the

aperture, thus, enabling the motion detection algorithm to detect motion. Evidently, this is rel-

atively difficult to implement with block matching techniques. Most block matching techniques

use a block size of eight (8) or sixteen (16) pixels, which is too large to record small movements.

Using a smaller block size increases the motion estimation time significantly, and therefore is not

a plausible solution.

Optical Flow algorithms are able to counteract the effects of this aperture problem. This

is attributed to the fact that these algorithms are based on the relative motion between pixels.

Further, an optical flow algorithm is based on the assumption that the motion between any two

images is relatively small. In this project, the optical flow algorithm has been used to detect

motion between two images. All the cases considered in this project have small movements in

any set of images. This has been achieved by using a very high frame rate (per second) for all

videos.

2.7 Summary

This chapter presented the literature review done to study the various existing methods

used for image processing. The different types of motion existing in video sequences have been

discussed. The chapter also presented the block matching and optical flow methods used for esti-

mation of motion. The challenges associated with accurate estimation of motion, such as change

in pixel intensity, speed of camera movement and varying background have been addressed. Fur-

ther, the different approaches used for image segmentation, such as thresholding, edge detection

and pixel based classification have been presented.

23

3. OPTICAL VECTOR FLOW

ESTIMATION ALGORITHM

3.1 Introduction

Some of the existing methods for motion detection and image segmentation have been pre-

sented in the previous chapter. The Lucas Kanade method of optical flow that has been used

in this project has been described in detail in this chapter. The various factors influencing the

optical flow estimation have been covered here as well.

3.2 Lucas Kanade Method of Optical Flow

This section presents the implementation of the Lucas Kanade algorithm as explained previ-

ously in section 2.3.2. Lucas Kanade method for optical flow has been designed for any MPEG

video sequence. For the application of this algorithm, the considered video sequence is split into

frames (or images) using an appropriate frame rate. As mentioned before, the algorithm has

been designed in MATLAB using the Image Processing Toolbox. It is also important to note

here that the Image Processing Toolbox uses images (rather than frames) for most of the in-built

functions. Therefore, wherever applicable, the video frames have been converted into images (in

.jpg or .bmp format). Figure 3.1 shows the flowchart for the step by step implementation of the

Lucas Kanade method.

The process has been categorized into three main steps.

(a) Selection of the MPEG video frames and other parameters:

The first step of implementation is the selection of the MPEG video frames for which the

optical flow has to be estimated. The optical flow algorithm is applicable only on gray level

images or frames. The frames are selected and the colored images/frames are converted into

24

Figure 3.1 Implementation of the Lucas Kanade Method for

the Base Level Case

25

gray level frames. The pixel intensities of the frame are saved for further calculations. The

initial selection process also includes the selection of parameters such as the neighborhood size

and pyramid levels, if any. These parameters have been discussed in detail in section 3.3.

(b) Calculations of Derivatives:

The next part of the optical flow method includes all the calculations of the partial derivates

of the image brightness with respect to x-direction, y-direction and time t, i.e. Ix, Iy and It

respectively. The filters’ coefficients have been calculated using MALTAB and a two-dimensional

convolution has been applied to the selected frames to calculate the partial derivatives. The

code used for the calculation of derivatives and the values of the filter coefficients generated in

MATLAB have been given in Appendix B. Once the derivatives are calculated, the two matrices

A and b are calculated, which can then be used to solve the Optical Flow Equation.

(c) Solution of the Optical Flow Equation:

The Optical Flow Equation A−→u = b is solved by using the method of least squares. The

pseudo-inverse of the matrix A is calculated to obtain the value of optical flow vector matrix

−→u . This matrix gives the value of the optical flow vectors u and v in the horizontal and vertical

direction respectively. The magnitude of these vectors varies for different data sets. The threshold

to segment the moving objects can be set either according to the individual optical flow vectors

(in x and y direction) or the magnitude of the vector (=
√
u2 + v2).

3.3 Factors Influencing the Optical Flow

There are various factors that affect the calculation of optical flow between two images or

frames. Two of the important factors have been considered in this project. These two factors

are the neighborhood size (also known as window size) and the pyramid levels. These factors

have been discussed in detail in sections 3.3.1 and 3.3.2 respectively.

3.3.1 Neighborhood window size

The optical flow method is based on the relative motion between pixels. Therefore, the

movement of an object relative to its surroundings (neighborhood) plays a vital role in determin-

26

ing the optical flow vectors. Increasing the window size can sometimes help in acquiring more

local neighborhood information, thus helping in determining the optical flow more accurately.

Different window sizes have been considered in this research project.

A comparative analysis of optical flow estimation performed for the type of video sequences

mentioned shows that a neighborhood window size of seven (7) pixels is enough to accurately

obtain the optical flow vectors for the considered synthetic images. For real image and more

complex data sets, a neighborhood window size of nine (9) pixels or eleven (11) pixels seemed

to perform well for optical flow determination. The results shown in the next chapter consider

these values for the neighbourhood sizes.

The variation in the window sizes helps to understand the relationship between window sizes

and complexity of different types of motions for accurate optical flow estimation. The synthetic

video frames considered have lesser movement of objects, therefore, a window size of seven pixels

seems to perform well. However, the complexity in real images (like the movement of a book

or hand across a textured surface), is much more and a low neighborhood size is not able to

detect all the optical flow vectors across the moving object. As will be seen further, increasing

the window size shows a significant improvement in the optical flow results.

In addition to increasing the optical flow vectors across the moving object, a bigger neighbor-

hood size also helps to reduce the optical flow over the stationary background. This is because

of the principle of relative motion on which the optical flow method is based. The analysis of

different window sizes for the considered MPEG video frames shows that the neighborhood size

should be large enough to capture the relative motion of the pixels in a video frame. On the other

hand, using a very large window size for small relative motion may make the algorithm slower

without any significant improvement in the results. Therefore, the window size must be chosen

by evaluating the complexity of objects and textures in the video frame(s) under consideration.

3.3.2 Gaussian Pyramid Levels

Gaussian Pyramids are a hierarchy of low-pass filtered versions of the original image. The

successive levels of the image correspond to lower frequencies of the original image [31]. A

27

Gaussian filter or a Gaussian algorithm is typically used in image processing to smooth a selected

image and thus reduce image noise [35]. Thus, the application of Gaussian filtering to video

frame/image results is to generate a new corresponding frame/image which has reduced image

detail levels. Further, since the Fourier transform of a Gaussian filter is another Gaussian,

applying a Gaussian blur has the effect of low pass filtering on the selected image. The obtained

levels of Gaussian Pyramids thus do not have any sharp edges, and also does not introduce any

ringing into the filtered image [3].

Figure 3.2 depicts the principle of Gaussian Pyramid filtering. With each subsequent level,

the image size (area) reduces by one-fourth. In simple terms, one pixel of an (n + 1)th level

represents 4 pixels of the (n)th level. These Gaussian filtered images, if stacked one on top of the

other as shown in Figure 3.2 form a tapering pyramid like structure, hence deriving the name

Gaussian Pyramids.

Figure 3.2 Depiction of Gaussian Levels in the form of a

Pyramid

In this research, the Gaussian smoothing technique is used in the pre-processing stage to

28

enhance image structures at different scales for three or four pyramid levels. The image sizes

at each pyramid level have been reduced to a quarter size of the previous level (each linear

pixel dimension is halved in subsequent cases). The base or main level can be considered as

the 0th level. Most of the chosen real image sequences have pixel dimensions of 640× 480. The

corresponding Gaussian pyramid levels at Level 1 (L1) has the pixel dimensions of 320 × 240,

the Level 2 (L2) has dimensions of 160× 120 pixels, the Level 3 (L3) has the pixel dimensions

of 80 × 60 pixels and the Level 4 (L4) at pixel dimensions of 40 × 30. The synthetic images

have pixel dimensions of 200 × 200. The dimensions of the Gaussian levels have been modified

accordingly.

Figure 3.3 shows the method employed to apply the Gaussian pyramid algorithm to the

images. The first step is the calculation of the Gaussian filter (or mask) that has to be applied

to the images. In this project, a 5-tap Gaussian mask has been applied to each dimension of the

image. The matrix for this Gaussian mask can be given as: [0.25− a
2

0.25 a 0.25 0.25− a
2
]

The above matrix represents an odd symmetric normalized Gaussian pyramid with sum of

weights equal to one. The value of a has been taken to be 0.4 in this research project. This results

in the Gaussian pyramid mask of [0.05 0.25 0.4 0.25 0.05]. This mask is then applied to

the image, the image is subsequently padded with two rows and columns of zeros and the image

size is resized to half its current size to obtain the first Gaussian pyramid level. This process is

continued till the number of desired pyramid levels (as specified in the beginning) is reached.

Depending on the complexity of the video sequence, as well as camera parameter variances

(different types of motion as discussed in Section 2.2), a comparative analysis of optical flow esti-

mation has been performed at different levels of Gaussian filtering. In cases where the application

of the optical flow algorithm produces reasonably accurate results, only one level of Gaussian

pyramids have been applied to show the comparison. The Optical Vector Flow Estimation Al-

gorithm described in the previous section has been applied to each level of obtained Gaussian

pyramid. The obtained optical flow vectors have then been superimposed on the original frame,

as well as subsequent image levels after Gaussian filtering, clearly indicating motion or moving

objects in the frame(s). All these results have been shown in Chapter four.

29

Figure 3.3 Algorithm for the generation of Gaussian Pyra-

mid Levels

3.4 Threshold Segmentation

The threshold technique of segmentation has been discussed in section 2.5.1. As mentioned

previously, this technique has proved to perform well for gray level images. Since the optical

flow algorithm also uses gray level images, this technique of segmentation has been used in this

project. In most motion estimation methods, a threshold for pixel intensity range of 1− 256 is

30

used. However, in the optical flow method, the motion is estimated in the form of the horizontal

and vertical vectors u and v respectively. Therefore, the threshold level for each pixel (magnitude

only) is mathematically calculated as:

ThresholdCheck =
√
u2 + v2 (3.1)

The threshold should be set according to the type of video sequence and motion under

consideration. In the segmentation results presented in chapter five, the threshold for each

sequence has been computed by observing the minimum and maximum values of the horizontal

vector u and vertical vector v. Similarly, when a segmentation technique has to be implemented

in real life or on online videos, a threshold should be set by first observing a sample data set

which broadly resembles the actual video which will be seen by the camera.

3.5 Summary

The optical flow algorithm used for the detection of motion has been described in this chapter.

The steps involved in the implementation of the algorithm have been presented. It also addressed

the concept of Gaussian pyramid filtering that has been inculcated in this project and the method

for the same has been described. The method of using a threshold for segmentation of images

has also been discussed.

31

4. IMPLEMENTATION OF OPTICAL

FLOW METHOD FOR MOTION

DETECTION

4.1 Introduction

The optical flow algorithm used in this project and the application of Gaussian filtering was

discussed in the previous chapter. This chapter presents the results obtained by the application

of the algorithm for different types of motions. Various synthetic and real image sequences have

been considered and the optical flow vector results have been shown for each set.

4.2 Application of Optical Flow to Video Sequences

The optical flow algorithm has been tested for different types of data sets, representing

different types of motions. The results obtained by application of the Gaussian pyramid filtering

have also been presented in this chapter. The number of Gaussian pyramid levels considered

depend on the complexity of the selected image sequences. Complexity is defined as the number

of simulatenously moving objects and the textured/patterned surfaces present therein. This

implies that the number of Gaussian pyramid levels chosen is higher for a more complex image.

This is described in further detail in the subsequent sections.

Each of these MPEG video sequences considered in this project have been converted into

video frames first, which are further converted into images for the application of the Optical

Flow Algorithm using Image Processing Toolbox of MATLAB. Once Optical Flow vectors for

each set are obtained, these images can be converted back to a video sequence using a reverse

method and can be played back as a video sequence. The video sequence can be obtained in

the form of either optical flow vectors alone or optical flow vectors superimposed on the original

video sequence.

32

4.3 Results of Video Sequences using Optical Flow Algorithm

Different sets of synthetic and real images have been considered in this section. The Optical

Flow Algorithm presented in Chapter 3 has been applied to each of these sets and the results

are presented in this section. The results for each of these sets show a standalone optical flow

vector graph and optical flow vectors superimposed on the original image for different Gaussian

pyramid levels.

A total of nine (9) sets of images have been considered. This includes two (2) synthetic image

sequences and seven (7) real image sequences. Synthethic images are image sequences that are

visually simulated to achieve or represent a certain type of motion or complexity. Real images

are image sequences captured to depict motion in real life including effects of lighting changes.

The two sets of synthetic images have different levels of complexities. A brief description of

these image sequences has been given below.

1. Sphere

This image sequence consists of a textured sphere rotating around its own axis. The

complexity level for this image sequence is relatively low because of only one rotating

object (with no occlusion) against a non-changing background. Therefore, only one set of

result has been shown for this image sequence. Further, the shape and direction of optical

flow vectors of the rotating sphere have been shown in a magnified format.

2. Sphere and Cube Combination

The complexity level of this image sequence is higher as compared to the first image set.

This image set includes a combination of a textured sphere (rotating around its own axis)

and a plain blue colored cube (rotating independently, also around its own axis) against

a non-changing background. In this sequence the sphere and the cube are independently

rotating and moving towards each other, thus resulting in an occlusion in the later frames

of the video sequence. It is expected that the results of the optical flow algorithm should

not be affected by this occlusion. The two sets of results show optical flow vectors for

movement with and without occlusion.

33

The description of the seven sets of real image sequences has been given below. The optical

flow algorithm has been tested for different types of motions in these image sequences.

3. Human Hand Movement in front of a Textured Background

This real image sequence captured by a video camera shows the downward motion of a

human hand against a textured background. The complexity of this image sequence arises

from the shape of the hand and the fingers. The optical flow algorithm is expected to

identify the shape of the moving human hand. Three sets of results have been considered

in this case. These three sets show different positions of the hand as the hand moves

downwards.

4. Human Hand and Book Movement in front of a Textured Background

The complexity of this image sequence becomes higher by the addition of a book being

held by a human hand. In this case, the optical flow algorithm should be able to detect

the shape and diagonal downward motion of the hand as well as the textured book. Three

sets of images showing different positions of the hand and book have been considered.

5. Mug Rotation in front of a Textured Background

This image sequence is a combination of hand (as described in 3) as well as a white labeled

mug movement. Instead of a diagonal downward movement, the mug is being rotated

in the hand. Since the mug is relatively non-textured, the response of the optical flow

algorithm is observed and tested in this case. Three different rotating mug positions have

been considered in this case.

6. A Baby Raising his Hand

This image sequence captures a baby moving his arm in the upward direction. This video

sequence has some camera movement (resulting in a slight blurring effect), thus representing

a combination of pronounced arm motion and slight background motion (due to camera

movement). The optical flow algorithm should depict smaller magnitude vectors for the

background as compared to the moving arm vectors. One set of arm movement has been

shown in this case.

34

7. Rotation of a Flower Basket Arrangement

This image sequence shows a non-textured flower basket containing flowers rotating around

a perpendicular axis (passing through the point of suspension of the basket). This set has

been tested for movement of simultaneously rotating objects. Rotary motion of the non-

textured flower basket has been combined with pan-like motion of the flower arrangement.

The background in the image sequences remains stationary. One set of images has been

considered. The optical flow algorithm should be able to detect the motion of the flowers,

non-textured basket and the strings holding the basket.

8. Moving Traffic representing Zoom-in Motion

This image sequence has been captured from within a moving vehicle. As the traffic

is coming towards the vehicle from the opposite direction, the objects move closer and

appear bigger in size. This represents zoom-in motion equivalent to a camera zooming in

on a stationary object. Two different sets of images have been considered. A close-up of

the obtained optical flow vectors has been included to study the direction of these vectors

for a typical zoom-in motion.

9. Camera Movement in a Scene

This last set shows an image sequence when a camera moves instead of an object in an

image. In this type of motion, the whole scene changes with each frame. Therefore, the

optical flow vectors should be spread in the entire image frame. In this particular frame, the

camera captures flower basket arrangements on a table. The camera moves in a diagonal

motion and the optical flow vectors should be able to detect this direction. Two different

sets of images have been considered in this case.

35

4.3.1 Results using Synthetic Video Sequences

This section presents the results for two (2) video sequences of synthetic images. It should

be noted that in all the presented results, the two chosen frames in the first row are the images

taken from the video sequence. The results in rows second (or below) are the results generated

by the Lucas Kanade algorithm used in this thesis.

Sphere

This set of images [33] [15] shows a textured sphere rotating on an imaginary axis passing

through the centre. The texture on the sphere thus changes with each subsequent image. The

first set used to test this data set of images comprises of frames one (1) and two (2) and the

results are shown in Figure 4.1. All the other sets of images considered in this image sequence

produced similar results.

It can be seen that the Optical Flow vectors obtained are concentrated only inside the cir-

cumference and over the surface of the whole sphere. The Optical Flow vectors shown in all the

figures have been superimposed on the original image. Even though the circumference of the

sphere remains constant, the optical vector flow results obtained are as expected. This is due to

the fact that the textured surface inside the sphere changes with each image and the optical flow

algorithm is able to detect that change.

The Optical Flow algorithm, on the other hand, is based on relative motion between pixels

of an image; therefore, even a small movement between pixels is enough to detect motion. This

data set is a relatively simple video sequence, therefore, only the base level of Gaussian pyramid

has been considered. Furthermore, the results obtained at the base level are quite accurate,

therefore, further Gaussian pyramids have not been examined.

Figure 4.2 shows a magnified view of the optical flow vectors obtained for this image sequence.

It can be observed that the direction of these vectors indicate the movement of the pixels of the

sphere. The vectors close to the circumference or the edge of the sphere have a horizontal as well

as vertical component, whereas the vectors in the centre of the sphere are relatively horizontal.

The rotation of the sphere translates into a pan-like motion, especially in the centre of the

36

sphere. Consequently, the optical flow vectors indicate this pan-like motion. This image dataset

also proves that the optical flow algorithm works very well for textured surfaces.

37

F
ig
u
re

4
.1

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
S
y
n
th
et
ic

Im
ag
e
of

a

S
p
h
er
e:

F
ra
m
es

1
an

d
2

38

F
ig
u
re

4
.2

M
ag
n
ifi
ed

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
S
y
n
th
et
ic

Im
ag
e
of

a
S
p
h
er
e:

F
ra
m
es

1
an

d
2

39

Sphere and Cube Combination

This image sequence [33] is slightly more complicated compared to the previous image se-

quence. An independently rotating cube has also been added to the rotating sphere shown in

the previous image sequence. The results obtained by applying the Optical Flow Algorithm have

been shown in Figures 4.3 and 4.4. It may be seen that the sphere and cube are rotating inde-

pendently along an axis perpendicular to the surface of this page. The movement of the sphere

and cube towards each other results in a small occlusion in the second set of images, as seen in

Figure 4.4. The obtained results show that the optical flow algorithm is able to accurately detect

the motion along the circumference of both the objects, clearly indicating motion.

The base Gaussian pyramid level does not show significant motion inside the cube. Further,

the occlusion of the sphere and cube adds to the complexity of the images and prevents the

optical flow algorithm to accurately detect the motion. Therefore, two Gaussian pyramid levels

have been applied and the results obtained are shown in the figures.

There are two main aspects that come forward by observing these results. Firstly, as can be

observed, the rotating cube in this case is a non-textured surface. In the base level, the optical

flow algorithm does not detect any motion inside the cube. This implies that the optical flow

algorithm may not be able to recognize relative motion when applied to smooth surfaces. In this

scenario, the Gaussian pyramid filtering improves the results with each progressing level. This

is because of decrease in resolution of the smooth surface inside the cube with the generation of

each gaussian pyramid level.

The second observation is that the optical flow algorithm does not get affected by the occlusion

between the sphere and the cube. When the occlusion occurs as shown in Figure 4.4, the optical

flow algorithm is able to detect the object which is in front (sphere). Another factor that may

be contributing to the accuracy of optical flow algorithm in this case might be the occlusion of

a non-textured cube by a textured sphere.

40

F
ig
u
re

4
.3

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
S
y
n
th
et
ic

Im
ag
e

of

a
S
p
h
er
e

an
d

C
u
b
e

ro
ta
ti
n
g

in
d
ep

en
d
en
tl
y
:

F
ra
m
es

10
an

d
11

41

F
ig
u
re

4
.4

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
S
y
n
th
et
ic

Im
ag
e

of

a
S
p
h
er
e

an
d

C
u
b
e

ro
ta
ti
n
g

in
d
ep

en
d
en
tl
y
:

F
ra
m
es

14
an

d
15

42

4.3.2 Results using Real Video Sequences

The optical flow algorithm produced good results for the two synthetic image sequences. The

optical flow algorithm has now been tested for real-life movement. The algorithm should be

able to respond equally well to real image sequences. The purpose of testing the optical flow

algorithm for different type of images and motions is to ensure that the algorithm is reliable.

Further, if the algorithm is able to correctly detect motion in these cases, it can be deemed as

robust and accurate.

This section presents the results for seven (7) different types of video sequences of real images.

The description of each video sequence has been given in the following individual sections. Similar

to the previous section, results in rows two (or below) are the results generated by the Lucas

Kanade algorithm.

Human Hand Movement in front of a Textured Background

In this video sequence [29], a human hand moves across a textured background of books.

The hand moves into the scene from the top right hand corner moving downwards across the

frames. This results in a combination of pan and tilt motion. Three (3) different sets of results

clearly showing the movement of the hand have been presented for this set. These are presented

in Figures 4.5 to 4.7. The results clearly show the concentration of the optical flow vectors over

the moving hand. The results also show two levels of Gaussian Pyramids that have been used

for this data set. It can be observed that with each pyramid level, the profile of the moving hand

becomes clearer and concentrated in comparison to the stationary background.

As was mentioned previously, the optical flow algorithm has been tested for this image se-

quence to detect the motion of the hand and the fingers. The shape of the hand and the fingers

can be clearly seen in all three cases at different positions in the frame. It can be observed that

as the Gaussian pyramid filtering decreases the resolution of the image, the shape of the hand

(and fingers) gets slightly deformed. However, the optical flow vectors increase in magnitude and

become denser in comparison to the rest of the stationary background.

43

F
ig
u
re

4
.5

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
of

a
H
an

d

m
ov
in
g

ov
er

a
h
ig
h
ly

te
x
tu
re
d

b
ac
k
gr
ou

n
d
:

F
ra
m
es

14
2
an

d
14
3

44

F
ig
u
re

4
.6

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
of

a
H
an

d

m
ov
in
g

ov
er

a
h
ig
h
ly

te
x
tu
re
d

b
ac
k
gr
ou

n
d
:

F
ra
m
es

15
8
an

d
15
9

45

F
ig
u
re

4
.7

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
of

a
H
an

d

m
ov
in
g

ov
er

a
h
ig
h
ly

te
x
tu
re
d

b
ac
k
gr
ou

n
d
:

F
ra
m
es

18
4
an

d
18
5

46

Human Hand and Book Movement in front of a Textured Background

In this image sequence [29], a highly textured book can be seen in addition to a moving hand,

making it more complex than the previous image sequence. The book is being held in the human

hand and is moving in front of the textured book shelf. Three levels of Gaussian pyramids have

been considered for this particular image sequence. Figures 4.8 to 4.10 show three (3) sets of

results with three Gaussian pyramid levels each.

The hand in this video sequence moves the book from the top right hand corner to the bottom

left hand corner, resulting in a diagonal motion. The optical flow results show significant move-

ment of the hand and the book. The moving hand and the book have been clearly distinguished

in the results. The shape of the hand holding the book can be clearly seen and the optical flow

vectors become more concentrated with each progressive Gaussian pyramid level. The results

show a significant improvement by the application of Gaussian filtering as the contours of the

moving objects become more distinguishable with increase in the pyramid level.

Inspite of this image being complex due to the presence of the highly textured background,

textured book and relatively lesser textured hand, the movement of the hand and book has

been correctly estimated. The results obtained from this image sequence clearly suggest that the

optical flow algorithm works well for textured surfaces even in the presence of multiple moving

objects.

Another scenario worth considering is using a non-textured book or object instead of a tex-

tured book. For example, using a uniformly colored book, instead of a textured one as used in

this case will present a more challenging case. A similar case has been undertaken in the next

image sequence. The response of the optical flow algorithm when subjected to the movement of

two similarly textured objects (i.e., non-textured book and non-textured hand) will determine

its adaptability.

47

F
ig
u
re

4
.8

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
of

a
H
an

d

ca
rr
y
in
g

a
te
x
tu
re
d

b
o
ok

an
d

m
ov
in
g

ov
er

a

h
ig
h
ly

te
x
tu
re
d

b
ac
k
gr
ou

n
d
:

F
ra
m
es

14
5

an
d

14
6

48

F
ig
u
re

4
.9

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
of

a
H
an

d

ca
rr
y
in
g

a
te
x
tu
re
d

b
o
ok

an
d

m
ov
in
g

ov
er

a

h
ig
h
ly

te
x
tu
re
d

b
ac
k
gr
ou

n
d
:

F
ra
m
es

15
6

an
d

15
7

49

F
ig
u
re

4
.1
0

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
of

a
H
an

d

ca
rr
y
in
g

a
te
x
tu
re
d

b
o
ok

an
d

m
ov
in
g

ov
er

a

h
ig
h
ly

te
x
tu
re
d

b
ac
k
gr
ou

n
d
:

F
ra
m
es

17
2

an
d

17
3

50

Mug Rotation in front of a Textured Background

The application of the optical flow algorithm to a combination of two non-textured surfaces

has been considered in this image sequence. This set of images [29] comprises of a non-textured

mug which is being rotated by a human hand. The hand in these images remains almost constant

with the mug being rotated back and forth. The mug has a uniform white color which acts as

a non-textured surface, barring the slight change in pixel color intesity levels due to gradual

lighting and shading changes. It has been observed that with each Gaussian pyramid level, the

detection of motion for this non-textured surface becomes challenging. As Gaussian pyramid

filtering is applied, the image size becomes smaller, thus decreasing the resolution of the image.

The texture of the mug becomes further smoothened with each level of Gaussian filtering. This

makes the estimation of optical flow vectors difficult due to a decrease in relative motion between

pixels.

This image sequence represents rotary motion and the results are shown in Figures 4.11

to 4.13. The base and the first Gaussian pyramid level are able to detect motion correctly. The

results are able to clearly show the structure of the hand and the mug in the images. The results

seem to deteriorate after the first level. These results show that Gaussian filtering is a good

way to smoothen out highly textured surfaces before the application of optical flow algorithm.

However, for non-textured or smooth surfaces Gaussian pyramid filtering can be eliminated as

the optical flow algorithm performs better at the base level.

51

F
ig
u
re

4
.1
1

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
of

a
M
u
g

an
d

H
an

d
an

d
m
ov
in
g
ov
er

a
h
ig
h
ly

te
x
tu
re
d

b
ac
k
gr
ou

n
d
:
F
ra
m
es

98
an

d
99

52

F
ig
u
re

4
.1
2

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
of

a
M
u
g

an
d

H
an

d
an

d
m
ov
in
g
ov
er

a
h
ig
h
ly

te
x
tu
re
d

b
ac
k
gr
ou

n
d
:
F
ra
m
es

19
2
an

d
19
3

53

F
ig
u
re

4
.1
3

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
of

a
M
u
g

an
d

H
an

d
an

d
m
ov
in
g
ov
er

a
h
ig
h
ly

te
x
tu
re
d

b
ac
k
gr
ou

n
d
:
F
ra
m
es

27
1
an

d
27
2

54

A Baby Raising his Hand

This video sequence [17] shows a baby moving his hand in the upwards direction (similar

to a pivoting motion about the elbow) to put food in the mouth. Frames 4 and 5 of the video

sequence are shown in Figure 4.14. As was briefly mentioned before, this video sequence has

some amount of camera motion, which causes a slight blurring effect. This blurring appears

as background motion. Therefore, the motive for testing this video sequence is to be able to

detect the baby’s arm movement in the presence of external parameters such as slight camera/

background motion.

The application of the optical flow algorithm shows the concentration of the resultant motion

vectors over the baby’s arm. However, a few large motion vectors can be seen in the stationary

background as well. This is as a result of lighting change in the background (arising due to

slight camera movement). As the Gaussian pyramid filtering is applied, it can be seen that the

results improve significantly. The results obtained for the second Gaussian pyramid level clearly

separate the moving arm from the stationary background. This implies that Gaussian pyramid

filtering is able to smoothen out the texture present in the image which helps to differentiate

the moving objects even in the presence of camera movement. As the image resolution becomes

lower and the image becomes smaller in size, the slight camera movement (and hence lighting

changes) does not significantly affect the detection of moving objects (as in the case of base level

Gaussian pyramid).

This result suggests that Gaussian pyramid filtering can be effective in video surveillance

applications where lighting changes or other similar external parameters may be an issue to get

accurate motion estimation results.

55

F
ig
u
re

4
.1
4

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
of

a
B
ab

y

ra
is
in
g
h
is
h
an

d
(i
n
th
e
u
p
w
ar
d
d
ir
ec
ti
on

)
to

p
u
t

fo
o
d
in

th
e
m
ou

th
:
F
ra
m
es

4
an

d
5

56

Rotation of a Flower Basket Arrangement

This image sequence is an example of movement of a non-textured object. The optical flow

algorithm has been tested for its sensitivity towards a non-textured object with enough relative

movement between frames.

The flower basket in this set of images is rotating around a vertical axis [17]. Figure 4.15

shows the results obtained for this type of movement between frames 8 and 12. In this case, the

base level results for optical flow are not very accurate and do not clearly distinguish the moving

objects from the background. The concentration of the vectors improves with each Gaussian

pyramid level. The optical flow results for first, second and third pyramid levels clearly show

the concentration of vectors over the flowers, the basket in which they are placed as well as the

string holding the basket.

An important observation that can be made from these results is that even though the flower

basket is a smooth non-textured surface, the optical flow algorithm detects the motion correctly.

This implies that the optical flow algorithm has the ability to estimate the motion of smooth

monotonous surfaces if there are shading or lighting changes. Therefore it is important that

all such factors be considered before choosing a motion estimation algorithm for any particular

application.

57

F
ig
u
re

4
.1
5

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
of

a
fl
ow

er

b
as
ke
t
ro
ta
ti
n
g
ar
ou

n
d
a
ve
rt
ic
al

ax
is
:
F
ra
m
es

8

an
d
12

58

Moving Traffic representing Zoom-in Motion

This video sequence [29] captures moving traffic and has been taken from within a vehicle.

The moving traffic is coming closer to the principle vehicle from the opposite side of the road

and eventually passes by from the opposite direction. This motion appears like a zoom-in motion

because objects become bigger with each passing image. The optical flow algorithm has been

tested to detect this type of motion. The expected results are optical flow vectors moving

outwards from the centre of the image towards all the four edges and four corners of the image.

The results accurately show the optical flow vectors all over the image, with concentration

along the edges of the image. Figures 4.16 and 4.17 show two different image sets from this

video sequence. The results from first, second and third levels of Gaussian filtering are shown.

Another interesting feature to notice in these results is the estimation of a "V" like structure

which is present on the road. This "V" can be seen in the obtained optical flow results.

Figure 4.18 shows a magnified view of the obtained optical flow vectors. It can be seen that

the vectors start from the centre of the image and move towards the edges and corners, correctly

representing the movement. The results prove that the optical flow algorithm also works well

for zoom-type camera movement. The Gaussian pyramid levels show denser optical flow vectors,

implying that Guassian pyramid filtering improves the estimation of motion in a complex video

sequence such as a zoom-in or zoom-out.

59

F
ig
u
re

4
.1
6

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
ca
p
tu
ri
n
g

m
ov
in
g
tr
affi

c
as

ta
ke
n

fr
om

w
it
h
in

a
ve
h
ic
le
:

F
ra
m
es

79
an

d
80

60

F
ig
u
re

4
.1
7

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
ca
p
tu
ri
n
g

m
ov
in
g
tr
affi

c
as

ta
ke
n

fr
om

w
it
h
in

a
ve
h
ic
le
:

F
ra
m
es

14
0
an

d
14
1

61

F
ig
u
re

4
.1
8

M
ag
n
ifi
ed

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e

ca
p
tu
ri
n
g
m
ov
in
g
tr
affi

c
as

ta
ke
n
fr
om

w
it
h
in

a

ve
h
ic
le
:
F
ra
m
es

79
an

d
80

62

Camera Movement in a Scene

This set of images has been taken from a video sequence [29] where the camera moves instead

of the table of flowers. Because of the pan and tilt movement of the camera, the whole scene

changes with each progressing frame (or image). The results shown in Figures 4.19 and 4.20 show

two different cases of camera movement in this video sequence. The description of the movement

is included in each of these figures. Since the camera is moving in this case, each pixel of the

image appears to be moving to the optical flow algorithm. Therefore, the optical flow algorithm

should be able to detect this relative motion of pixels between objects.

The results show the optical flow vectors all over the image, correctly detecting the motion

in this video sequence. Closer observation shows that the optical flow vectors are more or

less parallel to each other indicating equal camera motion for the entire scene. Three levels of

Gaussian pyramid levels have been considered and the results become more concentrated with

each level.

This image sequence is complex because of the presence of different colored flowers, back-

ground, table etc. However, the optical flow algorithm does not get affected by the presence of

multiple moving objects. The Gaussian pyramid filtering improves these results, further attest-

ing to the fact that as the image becomes slightly less complex, the optical flow results improve

even further.

63

F
ig
u
re

4
.1
9

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
w
it
h
ca
m
-

er
a
h
av
in
g
p
an

an
d
ti
lt

m
ot
io
n
ov
er

a
ta
b
le

of

fl
ow

er
s:

F
ra
m
es

34
an

d
35

64

F
ig
u
re

4
.2
0

O
p
ti
ca
l
F
lo
w

R
es
u
lt
s
fo
r
R
ea
l
Im

ag
e
w
it
h
ca
m
-

er
a
h
av
in
g
p
an

an
d
ti
lt

m
ot
io
n
ov
er

a
ta
b
le

of

fl
ow

er
s:

F
ra
m
es

41
an

d
42

65

4.4 Discussion

Optical flow results for different types of image sequences were presented in the previous

section. The optical flow algorithm responded differently in different image sequences. Gaussian

pyramid filtering has been applied in all these video sequences and the number of pyramid levels

considered depends on the complexity of the image sequence. A few observations have been

made after analyzing these results.

The first image sequence involving a rotating sphere showed that the optical flow algorithm

was able to detect individual moving objects (i.e. sphere) in a video sequence. The synthetic

image sequence of the sphere and cube combination show that the considered optical flow algo-

rithm did not get affected by occlusion of the non-textured cube by a textured spehere. Another

case worth considering would be if a textured surface is occluded by a non-textured one.

The cases considered here also showed that the optical flow algorithm responded better to

textured surfaces. This can be seen in the image sequences involving the human hand movement

in front of a textured background as well as the human hand and book movement in front

of a textured background. The optical flow algorithm was able to perform well even in the

case of multiple textured objects. The results further improve with the application of Gaussian

pyramids.

The optical flow algorithm has then been tested for a combination of non-textured surfaces.

The results from this image sequence involving a relatively non-textured human hand and mug

combination showed that the optical flow algorithm is more effective at the base level when

non-textured objects are involved. The Gaussian pyramid filtering affects the resolution of non-

textured objects which can deteriorate the results with progressive Gaussian pyramid levels.

The results from another case of non-textured objects (rotation of a flower basket arrange-

ment) suggests that if there is enough movement, or considerable lighting and shading changes,

the optical flow algorithm performs better. The image sequence of a baby raising his arm had

some amount of camera motion (giving rise to a blurring effect due to background motion).

The application of Gaussian pyramids in this case improved the performance of the optical flow

algorithm. This suggests that Gaussian pyramid filtering can be really useful in complex image

66

sequences where a motion estimation algorithm may not be able to perform well due to challenges

in the image sequence.

The optical flow algorithm has been further tested for complex motions such as zooming

effects and camera motion on the entire scene. The results show that the optical flow algorithm

performed reliably in both these situations. The Gaussian pyramid filtering further improved

the obtained results.

It has been previously discussed that correct estimation of motion is important for accurate

segmentation of the moving object(s) from the image sequences. The optical flow results shown

in this chapter have been used for segmentation of the moving objects that have been identified.

The segmentation techniques discussed previously have been applied to one set of synthetic image

sequence and three sets of real image sequences and the results have been presented in the next

chapter.

4.5 Summary

This chapter presented the results obtained by the application of the Lucas Kanade Optical

Flow algorithm on nine different video sequences. These video sequences represented different

types of motions in real and synthetic videos. The obtained results prove the reliability and

accuracy of the considered algorithm for different types of video sequences. The results obtained

by the usage of Gaussian pyramids have also been presented and analyzed.

67

5. SEGMENTATION OF MOVING

OBJECTS IN A SEQUENCE OF VIDEO

IMAGES

5.1 Introduction

The previous chapter presented the motion estimation results obtained using the Lucas

Kanade Optical Flow algorithm. These optical flow vector results have been used for the segmen-

tation of some of the image sequences seen previously. These segmentation results are presented

in this Chapter. The segmentation results are enhanced by using erosion and dilation techniques

and the results have been analyzed. Finally, a comparative analysis between the obtained results

with other segmentation techniques has been conducted.

5.2 Segmentation Results from the Optical Flow Method

This section presents segmentation results for four different video sequences. Figure 5.1 shows

the segmentation result obtained for Frame 2 of the synthetic image of Sphere, previously shown

in Section 4.3.1. The value of threshold used to obtain this segmentation result is 0.02. The

threshold technique used is able to correctly separate the rotating sphere from its background.

The accuracy of the results can be attributed to the correct estimation of optical flow vectors.

It should be noted that the original pixels of the images have been filled with black color

for all the values lying below the threshold value. Figure 5.2 shows the segmentation result

obtained for the video sequence of the hand and book combination moving across the textured

book shelves. A threshold value of 1.10 gives accurate segmentation results in this case. It can

be seen that there are some errors in the background in this figure. These errors can be reduced

by using some image enhancement techniques discussed further in Section 5.3.

Figure 5.3 shows the segmentation result for the hand of the baby moving towards his mouth.

68

Figure 5.1 Segmentation of the sphere

Figure 5.2 Segmentation of the hand-book combination

The optical flow vectors have previously been discussed in Section 4.2.2. The result presented

uses a threshold value of 2.0. Other values of threshold were tested as well and the comparison

69

Figure 5.3 Segmentation for the movement of the baby’s

hand

of different results has been presented in the next section. Figure 5.4 shows the segmentation of

the video sequence with a moving hand. The result shows the clearly segmented shape of the

hand over a black background.

The threshold value plays an important role in accurate segmentation. This value is largely

dependent on the type of video under consideration. The optical flow vector results have been

tested for different threshold values and the segmentation results have been analyzed. To illus-

trate the importance of this value, two different video sets have been considered. This includes

one synthetic and one real image data set.

(a) Threshold Variation for the Synthetic Image Segmentation

The segmentation of video sequence of the sphere rotation has been considered for three

different values of thresholds. Figures 5.5, 5.6 and 5.7 show the variation in the segmentation

results for threshold values of 0.005, 0.02 and 0.05 respectively. It can be seen that the value of

0.005 is able to segment the sphere with a constant band around the sphere which belongs to the

70

Figure 5.4 Segmentation of the moving hand

background, but is not completely segmented out. This implies that the threshold value is not

enough. When the threshold value is increased to 0.02, a large portion of the band present in

the first case is segmented out. The threshold value is increased to 0.05 to determine if a further

increase is able to segment the background further. It can be seen that an increase of threshold

value to 0.05 eliminates more stationary background; however, it also segments small portions of

the moving sphere. Therefore, this result is not acceptable. By analyzing these results, it can be

concluded that a threshold value slightly higher than 0.02 is a good value for this video sequence

to segment images with an acceptable level of accuracy.

(b) Threshold Variation for the Real Image Segmentation

As in the previous case, three values of thresholds have been considered for the video sequence

of the moving arm of the baby. The results obtained by using these three values of 1.5, 2.0 and

2.5 are shown in Figures 5.8, 5.9 and 5.10 respectively.

The first result with a threshold value of 1.5 is not able to segment the background from

the image correctly. Therefore, it is not acceptable. When the threshold value is increased to

71

Figure 5.5 Segmentation of the moving sphere using thresh-

old value of 0.005

Figure 5.6 Segmentation of the moving sphere using thresh-

old value of 0.02

72

Figure 5.7 Segmentation of the moving sphere using thresh-

old value of 0.05

Figure 5.8 Segmentation of the moving arm using threshold

value of 1.5

73

Figure 5.9 Segmentation of the moving arm using threshold

value of 2.0

Figure 5.10 Segmentation of the moving arm using threshold

value of 2.5

74

2.0, the stationary background is accurately segmented out with minor spots. If the threshold

value is increased further to 2.5, a significant portion of the moving arm is eliminated in the

segmentation process. Even though there are minor errors in the second result (threshold value

of 2.0), it can be accepted as it is able to balance between the other two results with threshold

values of 1.5 and 2.5.

The segmentation process of any video sequence depends on various factors. The results prove

that it is imperative to estimate the moving objects accurately before any segmentation operation

can be carried. Depending on the video sequence, there may be other factors involved, which

could be inter-dependent or completely independent. This makes accurate segmentation through

an automated process very challenging. The analysis of results obtained by different threshold

shows that it is very important to reach equilibrium where the moving object is segmented within

some pre-determined and acceptable limits. As mentioned previously, the implementation of

segmentation techniques for online videos should be done after testing a sample video data set

to first determine an acceptable threshold level.

5.3 Enhancement of the segmented image content

The segmentation results presented in the previous section are correct within reasonable

limits. However, there are certain enhancements that have been made to improve these results

further. This section presents the results obtained by applying a combination of these methods.

Two such techniques, known as erode and dilate have been used to enhance the segmented image

by eliminating noise and retaining the original image morphology. Dilate (or dilation) adds extra

pixels to the boundary of objects in the image and causes objects to dilate or grow in size while

Erode (or erosion) removes pixels from the boundary of objects in the image and causes objects

to shrink in size.

Different stages and combination of erosion and dilation techniques has been used to enhance

the segmented image content. The analysis of the results shows that the usage of either of erosion

or dilation technique alone was able to enhance only the already segmented portions of the image.

However, this method further pronounced some of the existing errors in the segmented image.

75

The application of a combination of these two techniques improved the already segmented

content of the image as well as removed most of the existing errors of the segmented image. It was

observed that four consecutive stages of enhancement of the segmented image (using a combina-

tion of erosion and dilation techniques) produced the most accurate results. This also reduces the

dependency of the segmentation method on the value of threshold. Four different combinations

have been tested by combining the erosion and dilation techniques. These combinations are:

(a) Erode → Dilate → Erode → Dilate

(b) Erode → Dilate → Dilate → Erode

(c) Dilate → Erode → Erode → Dilate

(d) Dilate → Erode → Dilate → Erode

The observation of results obtained by the application of these four combinations showed

that the third combination of Dilate → Erode → Erode → Dilate performs well for all types of

video sequences. The operations of erode and dilate have been implemented using the MATLAB

Image Processing Toolbox. The description of these functions and the MATLAB code has been

given in Appendix A and Appendix B respectively.

Figures 5.11, 5.12, 5.13 and 5.14 show the four stages of results for the segmented images

of sphere, hand and book, baby arm and moving hand which have previously been shown in

Figures 5.1, 5.2, 5.3 and 5.4 respectively. All the four sets of results clearly show a significant

improvement in the quality of segmentation. The final results after the four-step enhancement

process show a significant reduction in background error. Further, it also reduces the errors in

the segmented moving objects.

76

Figure 5.11 Enhancement of the segmented image of the ro-

tating sphere

5.4 Discussion and Comparison with other Image Segmentation Meth-

ods

The segmentation results presented in the previous section are considerably accurate. It is

essential to re-iterate that correct estimation of motion vectors plays an important and criti-

cal role in accurate segmentation of any video sequence. The segmentation methods and the

enhancement techniques discussed here are able to perform well only under the circumstances

where the moving objects in a video have been identified correctly by the motion estimation

algorithm.

The results covered in the previous sections prove the reliability and robustness of the con-

sidered optical flow algorithm under varying conditions. The algorithm and the segmentation

77

Figure 5.12 Enhancement of the segmented image of the

moving hand and book combination

techniques perform well for different types of real and synthetic video sequences. A comparative

analysis has been conducted to test the consistency of the considered optical flow algorithm with

the other existing methods. A block matching method and a neural network approach has been

considered and the findings have been reported in sections 5.4.1 and 5.4.2 respectively.

5.4.1 Results using a Block Matching Technique

The different block matching methods have been previously discussed in section 2.3.1. Two

of these methods, a full or exhaustive search and 2−D logarithmic search have been combined to

implement a block matching technique. Macro-blocks of 16× 16 have been considered and each

macro-block of the reference frame is compared with each macro-block of the target frame. The

minimum mean square errors (MSE) calculated by comparing the pixel intensities (R, G and B

78

Figure 5.13 Enhancement of the segmented image of the

baby’s arm

values) for each macro-block of the reference and target frame are recorded. This concludes the

full search portion of the algorithm.

The 2 − D logarithmic search has been used to "micro-search" the best matching block

around the vicinity of the macro-block which produced the least error through the full search.

To understand this further, consider the first 16 × 16 macro-block in the reference frame. The

macro-block in the target frame which resulted in the minimum mean square error is considered

and a search area of 64 pixels is constructed around it. All the macro-blocks in this search

area are compared with the reference macro-block using the same MSE criteria to find the best

matching block. This process is carried for each of the macro-blocks of the reference frame.

The results obtained for motion vectors through this process are reasonably good as shown

in Figures 5.15 and 5.16.

79

Figure 5.14 Enhancement of the segmented image of the

moving hand

It has been observed that the results are more sensitive to lighting changes as compared to

the optical flow algorithms. In the obtained segmentation results shown in Figures 5.17 and 5.18,

the block matching algorithm is not able to accurately differentiate the moving object from the

stationary background. As a result, the obtained segmentation results are not very accurate. This

reinforces the importance of accurate motion estimation for segmentation of moving objects.

These results can be improved by employing a more rigorous block matching algorithm.

However, this might lead to higher computation time, which needs to be considered as well for

real-time implementation. It has been observed that application of the block matching algorithm

to the same two image frames is more time consuming as compared to the optical flow algorithm.

This aspect must be taken into consideration, especially for implementation on online videos,

where computational speed is of critical importance. Therefore, it is important to consider all

80

Figure 5.15 Motion Vectors between Frames 11 and 12 of a

Rotating Flower Basket using Block Matching

Method

parameters such as reliability, accuracy and computational time before choosing a particular

algorithm and approach.

5.4.2 Results using a Neural Network Technique

Neural Networks can be used for motion estimation to separate the moving object from

the stationary background on basis of pattern classification. A neural network approach has

been used on the previously discussed video sequence of the moving arm of the baby. Since

the background remains constant, the neural network is trained to differentiate between pixel

intensities of the background and of the moving arm. Once trained, the neural network is used

to segment the moving arm from the stationary background in all other frames of the video.

A multi-layer feed forward network (MFNN) with a network configuration of 6 − 12 − 1

81

Figure 5.16 Motion Vectors between frames 23 and 24 of

a Rotating Pinwheel using Block Matching

Method

performs well for this video sequence. The back propagation algorithm has been used to train

the MFNN in MATLAB. The MFNN uses log-sigmoid neurons in the input and hidden layer

and tangent sigmoid neurons in the output layer. The inputs given to the neural network are in

the form of R, G and B pixel intensities and the neural network is trained to give a +1 output

for all pixels belonging to the moving arm. It is trained to give a zero (0) output for all pixels

belonging to the stationary background. Some of the results obtained by the neural network

have been shown in Figure 5.19.

The neural network has been trained by using one frame of the video sequence (i.e., Frame 2).

To test the generalization capability of the neural network, it has been tested for segmentation

of other frames of the video sequence. Figure 5.19 shows results for frames 2, 4, 6, 9, 11 and

13. The results show that the neural network is able to generalize and segment the moving

arm from the rest of the background in all the cases. Therefore, it can be concluded that if a

82

Figure 5.17 Segmentation results using Block Matching

Method for Frame 12 of a Rotating Flower Bas-

ket

neural network has been trained properly, it is able to successfully segment the moving objects.

It should also be noted that even though only R, G and B pixel intensities have been used to

train the neural network in this case, other parameters such as hue, brightness etc. may also be

included to improve the neural network recognizing capability.

In circumstances where the background of a video remains constant with time, this approach

can be particularly beneficial. Once the neural network is trained properly, it is able to generalize

and can be used to produce any number of segmentation results for the same video sequence.

Therefore, if the background does not change with passing of time, the neural network is able

to detect other moving objects that might also appear in the video. This is one of the main

advantages of using this approach. However, the time taken to train the neural network poses

a major hindrance for its successful online implementation. Further, the process of training the

neural network specific to each video sequence may defeat the purpose of using a neural network

83

Figure 5.18 Segmentation results using Block Matching

Method for Frame 24 of a Rotating Pinwheel

for segmentation i.e., generalization.

5.5 Summary

This Chapter presented the segmentation results obtained for different video sequences. The

concept of varying the threshold values and enhancement of segmented content of image has

been discussed and the results have been presented. The Chapter also discussed the conclusions

that can be drawn by observing the presented results. A comparative analysis of the algorithm

with other motion estimation methods has also been presented.

84

Figure 5.19 Segmentation results using a neural network

technique

85

6. SUMMARY AND FUTURE WORK

6.1 Summary and Conclusions

There has been a significant development in the computer vision technologies in recent times.

The digital video technology is emerging rapidly, especially in the area of video surveillance

and video processing. There has been a vast improvement in the technology of digital cameras,

digital camcorders and other video technologies, which until the 1990s were used only by specialist

users. These developments have led to lowering the costs of video equipment, thus leading to

mainstream usage of digital video technologies. Home videos are becoming more popular than

ever before and users can edit the videos by means of inexpensive (and sometimes freely available

open-source code) software using their personal computers.

Detection of moving objects in a video sequence is finding its application in the areas computer

vision, video surveillance, video processing and 2.5 dimensional structure estimation from motion

(SfM). The estimated motion is then used to segregate the moving objects from the stationary

background in the video sequence. The accurate estimation of motion plays a vital role in

segmentation of moving objects; therefore, it needs careful analysis and assessment.

Review of the different motion estimation techniques has been conducted. The three main

methods currently used are block matching techniques, optical flow techniques and artificial

intelligence methods. All the methods have been described in Chapter 2. The Lucas Kanade

Optical Flow method has been chosen for the detection of motion in this research project. The

Lucas Kanade method, like all optical flow methods, is based on relative motion between objects.

It calculates horizontal and vertical optical flow vectors. The optical flow vectors depend on the

apparent motion of image brightness patterns of image frames/video.

The challenges such as different types of motion, lighting changes etc. faced during correct

determination of motion have been considered and the algorithm has been tested for robustness

86

in such conditions. The parameters that affect the results, such as neighborhood size have been

included in the algorithm. Another parameter that has been included in the algorithm design

is Gaussian Pyramid Filtering. Gaussian pyramids are helpful in motion estimation in complex

scenes and videos. Each pyramid level reduces the size of the frame/image by one quarter, thus,

reducing the resolution and complexity of the image. This helps in accurate estimation and

concentration of optical flow vectors over the moving object.

Various real and synthetic video sequences have been considered. These video sequences

represent a wide range of motions. The results obtained by the application of the Lucas Kanade

optical flow algorithm and Gaussian pyramids for all the different data sets are very encouraging.

The results prove that the algorithm is able to perform well, irrespective of the type of video

under consideration.

There are various existing segmentation techniques that are used for different types of video

sequences. After analyzing all the techniques, the threshold technique has been selected. The

horizontal and vertical optical flow vectors obtained from the Lucas Kanade method have been

used to calculate the threshold to segment the moving objects in a video. Further, the impact of

different threshold values on the segmentation results has been analyzed. Both, the optical flow

algorithm and the thresholding have been implemented using MATLAB and its Image Processing

Toolbox.

The obtained segmentation results clearly define the moving object in the video, which can be

attributed to accurate optical flow vectors. Two techniques, erode and dilate have been used for

enhancing the segmented image content. Different combination of these two methods have been

tested and a four step method of dilate→ erode→ erode→ dilate has been chosen. The results

achieved by this process show a significant improvement from the original segmentation results.

This enhancement has been tested for four different data sets and as observed, it performs well

for all of them.

The optical flow algorithm considered in this research project has been tested for robustness

and reliability under different conditions. The algorithm has provisions to include various pa-

rameters which affect the accuracy of motion estimation algorithms. The algorithm has been

87

compared with two other motion estimation techniques: the block matching method and the

neural network technique. The results obtained from both these techniques have been discussed.

The block matching technique is not able to match the accuracy of the optical flow algorithm for

the same computational time. The neural network technique is able to produce good segmen-

tation results. However, the training process of the neural network is time consuming and may

not be a feasible solution for implementation in real time videos.

6.2 Future Work

This section presents some directions for future work that can be undertaken.

Online Implementation:

The optical flow algorithm provides good motion estimation and segmentation results for

offline videos. The implementation of this algorithm for real time videos can be undertaken as

future work.

Computational Time (speed) vs Accuracy:

The application of motion detection is mainly in video surveillance. For online videos, speed

of computation is of critical importance. On the other hand, it is imperative that the motion

estimation algorithm is accurate and reliable to correctly spot the moving objects in the video.

Therefore, it is very important to achieve a balance between speed and accuracy for any method

under consideration. The motion estimation methods can be explored further to determine the

method best suited for video surveillance applications.

88

References

[1] L. A. Alexandre and A. C. Campilho, "A 2D Image Motion Detection Method Using a

Stationary Camera," 10th Portuguese Conference on Pattern Recognition, pp. 103-107, 1998.

[2] M. Alkanhal, D. Turaga and T. Chen, "Correlation Based Search Algorithms for Motion

Estimation," Picture Coding Symposium, Portland (USA), April 21-23 1999.

[3] T. Bakir and S. J. Reeves, "A Filter Design Method for Minimizing Ringing in a Region

of Interest in MR Spectroscopic Images," IEEE Transactions on Medical Imaging, Vol. 19,

No. 6, pp. 585-600, June 2000.

[4] M. Chen, L. Chen and T. Chiueh, "One-Dimensional Full Search Motion Estimation Algo-

rithm For Video Coding," IEEE Transactions on Circuits and Systems for Video Technology,

Vol. 4, No. 5, pp. 504-509, October 1994.

[5] D. H. Cooper and J. Graham, "Estimating Motion in Noisy, Textured Images: Optical Flow

in Medical Ultrasound," Proceedings of British Machine Vision Conference, University of

Manchester, 1996, Poster Session 2, 1996.

[6] E. De Castro and C. Morandi, "Registration of Translated and Rotated Images Using Finite

Fourier Transforms," IEEE Transactions on Pattern Analysis and Machine Intelligence,

September 1987.

[7] M. Ghanbari, "The Cross-Search Algorithm for Motion Estimation," IEEE Transactions on

Communications, Vol. COM-38, No. 7, pp. 950-953, July 1990.

[8] S. Haykin, Neural Networks: A Comprehensive Foundation, Second Edition, Prentice Hall,

ISBN: 0132733501, 1999.

[9] B. K. P. Horn and B. G. Schunck, "Determining optical flow," Artificial Intelligence, Vol. 17,

pp. 185-203, 1981.

89

[10] J. Jain and A. Jain, "Displacement Measurement and its application in interframe image

coding", IEEE Transactions on Communications, Vol. COM-29, pp. 1799-1808, December

1991.

[11] R. Li, B. Zeng, and M. L. Liou, "A New Three-step Search Algorithm for Block Motion

Estimation," IEEE Transactions on Circuits and Systems for Video Technology, Speech and

Signal Processing, Vol. 4, No. 4, pp. 438-442, August, 1994.

[12] B. D. Lucas, Generalized Image Matching by the Method of Differences, Ph.D. Dissertation,

Carnegie Mellon University, 1981.

[13] B. D. Lucas and T. Kanade, "An Iterative Image Registration Technique with an Application

to Stereo Vision," International Joint Conference on Artificial Intelligence, pp. 674-679,

1981.

[14] B. D. Lucas and T. Kanade, "An Iterative Image Registration Technique with an Application

to Stereo Vision," Proceedings of Imaging Understanding Workshop, pp. 121-130, 1981.

[15] B. McCane, K. Novins, D. Crannitch, and B. Galvin, "On Benchmarking Optical Flow,"

Proceedings of Computer Vision and Image Understanding, pp. 126-143, 2001.

[16] J. Morel and S. Solimini, Variational Methods in Image Segmentation: with seven image

processing experiments, Birkhuser, ISBN: 0817637206, 1995.

[17] MPEG Video Sequences, K. Takaya, October 2003.

[18] E. Navon, O. Miller and A. Averbuch, "Color Image Segmentation based on Automatic

Derivation of Local Thresholds," Proceedings of the 7th Australian Pattern Recognition So-

ciety Conference, Vol. 2, pp. 571-580, 2003.

[19] S. Negahdaripoiur, "Revised interpretation of optical flow for dynamic scene analysis," IEEE

transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 9, pp. 961-979, 1998.

[20] L. Po and W. Ma, "A Novel Four-Step Search Algorithm for Fast Block Motion Estimation,"

IEEE transactions on Circuits and Systems for Video Technology, Vol. 6, No. 3, pp. 313-317,

June 1996.

90

[21] A. Puri, H. Hang and D. Schilling, "An Efficient Block-matching Algorithm for Motion

Compensated Coding," Proceedings of IEEE International Conference on Acoustics, Speech,

and Signal Processing, pp. 25.4.1-25.4.4, 1987.

[22] T. J. Ross, Fuzzy Logic with Engineering Applications, International Edition, Mc-Graw

Hill, Inc. , ISBN: 0470860758, 1995.

[23] R. Sinivasan, K. Rao, "Predictive coding based on efficient motion estimation," Proceedings

of International Conference on Communications, Amsterdam, Part 1, pp. 521-526, 1988.

[24] L. G. Shapiro and G. C. Stockman, Computer Vision, Prentice Hall, ISBN: 0130307963,

pp. 279-325, 2001.

[25] C. Sun, H. Talbot, S. Ourselin and T. Adriaansen, "Digital Image Computing: Techniques

and Applications," Proceedings of the VIIth Australian Pattern Recognition Society Confer-

ence, Australian Pattern Recognition Society, Vol. 2, 2003.

[26] Y. Q. Shi, H. Sun, Image and Video Compression for Multimedia Engineering: Fundamen-

tals, Algorithms and Standards, CRC Press, ISBN: 0849334918, 2000.

[27] K. Takaya, "Detection of Moving Objects in Video Scene - MPEG like Motion Vector vs.

Optical Flow," The First International Workshop on Video Processing for Security, Canada,

2006.

[28] K. Takaya and R. Malhotra, "Tracking Moving Objects in a Video Sequence by the Neu-

ral Network trained for motion vectors," Proceedings of IEEE Pacific Rim Conference on

Communications, pp. 153-156, 2005.

[29] The Computer Graphics Group at the University of Virginia

http://www.cs.virginia.edu/ gfx/Courses/2007/ ComputerVision, May 2007.

[30] The MathWorks, MATLAB Image Processing Toolbox, User’s Guide, Version 5.0.

[31] A. Tran, K. Liu, K. Tzou and E. Vogel, "An Efficient Pyramid Image Coding System," Pro-

ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,

Vol. 12, pp. 744-747, 1987.

91

[32] S. E. Umbagh, Computer Imaging: Digital Image Analysis and Processing, CRC Press,

ISBN: 0849329191, 2005.

[33] University of Otago, Computer Vision Homepage http://www.cs.otago.ac.nz/research/vision/index.html,

May 2007.

[34] J. Weng, T. S. Huang, N. Ahuja, Motion and Structure from Image Sequences, CRC Press,

ISBN: 3540556729, 1992.

[35] G. Yun, P. Pan and Y. Kang, "Research on a New Gaussian Self-Adaptive Smoothing

Algorithm in Image Processing," Proceedings of IEEE International Workshop on VLSI

Design and Video Technology, pp. 348-352, 2005.

[36] T. Zahariadis and D. Kalivas, "A Spiral Search Algorithm for Fast Estimation of Block

Motion Vectors," Proceedings of the European Signal Processing Conference 1996, Vol. 2,

pp. 1079-1082, 1996.

92

A. APPENDIX A

MAIN FUNCTIONS USED IN MATLAB

A.1 Main MATLAB Commands

The main commands used in the MATLAB code have been listed below. The description for

each of these commands has been taken from MATLAB product help family.

Table A.1 Description of MATLAB Commands Used

’ Transpose of a matrix

, Next Column

.* Array Multiply

conv2 Two dimensional convolution of two specified matrices

disp Displays the array, without printing the array name

double Convert to double precision

error Display message and abort function

flipud Flip matrix in up/down direction

figure Create new figure window

ginput Graphical input from mouse

hold on Holds the current plot

input Prompt for user input

load Load MATLAB workspace variables (.mat format)

num2str Converts number to string

pinv Pseudoinverse

quiver Plots velocity vectors as arrows with vector components at the given points

uint8 Convert to unsigned 8-bit integer

93

A.2 Image Processing Toolbox Commands

Various Image Processing Toolbox in-built functions have been used for different operations.

The table below shows the commands used and the operations performed by these in-built

functions. The description has been taken from MATLAB Product Help Family.

Table A.2 Description of Image Processing Commands

Used

RGB2GRAY This command converts RGB images or colormap to grayscale by eliminating

the hue and saturation information while retaining the luminance.

Reads the image from a graphics file. If the file contains a grayscale intensity

IMREAD image, output is a two-dimensional array. If the file contains a truecolor

(RGB) image, output is a three-dimensional (M -by-N -by-3) array.

IMWRITE Writes the image to graphics file. The graphics file can be either a

grayscale image (M -by-N) or a truecolor image (M -by-N -by-3).

Dilates the grayscale, binary, or packed binary image and returns a dilated

image. It uses a structuring element object (SE), or array of structuring

IMDILATE element objects. If the image is logical and the structuring element is flat,

IMDILATE performs binary dilation; otherwise, it performs grayscale dilation.

If SE is an array of structuring element objects, IMDILATE performs multiple

dilations, using each structuring element in SE in succession.

Erodes the grayscale, binary, or packed binary image and returns an eroded

image. It uses a structuring element object (SE), or array of structuring element

IMERODE objects. If the image is logical and the structuring element is flat, IMERODE

performs binary erosion; otherwise it performs grayscale erosion. If SE is an

array of structuring element objects, IMERODE performs multiple erosions of the

input image, using each SE in succession.

94

B. APPENDIX B

MATLAB CODE FOR

IMPLEMENTATION

OF THE LUCAS KANADE

ALGORITHM

This Appendix presents the details of the MATLAB code that has been used for the imple-

mentation of the Lucas Kanade Optical Flow Algorithm.

B.1 Main Program of Lucas Kanade Algorithm (mainprogram.mmainprogram.mmainprogram.mmainprogram.m)

%===================== CODE FOR OPTICAL FLOW TO DETECT MOTION IN IMAGES =====================%

%========== THIS IS THE MAIN PROGRAM FOR LUCAS KANADE OPTICAL FLOW METHOD ===================%

clear; % clear all files in the current workspace

clc; % clear command window

% The Lucas Kanade Algorithm works only on gray images, so there is a provision to convert

% the color images into gray, if needed.

% Input from user to test if the images are colored or gray

user_ip1 = input(’Are the images colored or gray? Please enter 1 for colored and 0 for gray: ’);

if user_ip1 ==1 % Converting the images into double format

image1 = double(rgb2gray(imread(’Book\00000001.jpg’)));

% Reading Image 1 after converting into gray - Reference Image

image2 = double(rgb2gray(imread(’Book\00000002.jpg’)));

% Reading Image 2 after converting into gray - Target Image

elseif user_ip1== 0

image1= double(imread(’Book\00000001.jpg’));

% Reading Image 1 - Reference Image

95

image2= double(imread(’Book\00000001.jpg’));

% Reading Image 2 - Target Image

end

if or(size(image1,1)~= size(image2,1), size(image1,2)~=size(image2,2))

% Test to check if the images are of the same size

error(’The images chosen are not of the same size’);

% Error message if images are of not the same size

end

disp(’ The original image will be taken as the base or 0th Pyramid Level’);

% Display message for the user

pyrlevels = input(’Please enter the number of levels (>=1) of pyramids that you want to use: ’);

% User Input for Number of levels of pyramids

winsize = input(’Please enter the size of the smoothing window (neighbourhood size): ’);

% User Input for Neighbourhood size for smoothing

[height,width] = size(image1); % Reading the size of the Image

image1_P0 = image1;

% 0 or Base Level Pyramid, Image 1 - Same size as input image

image2_P0 = image2;

% 0 or Base Level Pyramid, Image 2 - Same size as input image

[u0,v0] = LucasKanade(image1_P0,image2_P0,winsize);

% u0 and v0 are the base level horizontal and vertical optical flow vectors respectively

% LucasKanade.m is the function to solve the optical flow equation

u0_quiver=flipud(u0);v0_quiver=flipud(v0);

% Flipping the calculated vectors in up/down direction to plot optical flow vectors

figure(1);

% New figure # 1 to plot quiver vectors at the base level

quiver(1:(width/80):width, 1:(height/60):height,u0_quiver(1:(height/60):height,1:(width/80):width),

v0_quiver(1:(height/60):height,1:(width/80):width),’r’,’LineWidth’,1.5);

% Plot quiver u0 and v0 vectors on the current plot in red color with a line width of 1.50

print(1, ’-dbmp’, ’quiver_P0’);

% printing the base level quiver vectors in .bmp format

print(1, ’-djpeg’, ’quiver_P0’);

% printing the base level quiver vectors in .jpeg format

96

figure(2);

% New figure # 2 to superimpose quiver vectors at the base level on the image

imshow(uint8(image1));

% Show the reference image in the new figure window, converted into uint8 format for display

hold on

% figure 2 is held to plot quiver vectors on the same figure

quiver(1:(width/80):width, 1:(height/60):height, u0(1:(height/60):height,1:(width/80):width),

v0(1:(height/60):height,1:(width/80):width),’r’,’LineWidth’,1.5);

% Plot quiver u0 and v0 vectors on the current plot in red color with a line width of 1.50

print(2, ’-dbmp’, ’quiver_superimp_P0.bmp’);

% Printing the base pyramid level quiver vectors superimposed on the reference image in .bmp format

print(2, ’-djpeg’, ’quiver_superimp_P0.jpg’);

% Printing the base pyramid level quiver vectors superimposed on the reference image in .jpeg format

fig_num=3;

% Count to start next figure starting at # 3

for x = 1:pyrlevels

% FOR loop for the specified pyramid levels

label1 = [num2str(’quiver_P’) num2str(pyrlevels)];

% Creating a label for quiver vector images for different pyramid levels

label2 = [num2str(’quiver_superimp_P’) num2str(pyrlevels)];

% Creating a label for quiver vector images for different pyramid levels

image1 = pyramid(image1);

% Current Pyramid Level for Reference Image is calculated by using function pyramid.m

image2 = pyramid(image2);

% Current Pyramid Level for Target Image is calculated by using function pyramid.m

[height,width] = size(image1);

% Reading the size of the new image reduced due to Gaussian filtering

[u,v] = LucasKanade(image1,image2,winsize);

% New horizontal and vertical flow vectors (u and v) calculated using function LucasKanade.m

u_quiver=flipud(u);v_quiver=flipud(v);

97

% Flipping the calculated vectors in up/down direction to plot optical flow vectors

figure(fig_num);

% New figure to superimpose quiver vectors at the base level on the image

quiver(1:(width/80):width,1:(height/60):height,u_quiver(1:(height/60):height,1:(width/80):width),

v_quiver(1:(height/60):height,1:(width/80):width),’r’,’LineWidth’,1.5);

% Plot quiver u and v vectors on the current plot in red color with a line width of 1.50

print(fig_num, ’-dbmp’, label1);

% Printing the current pyramid level quiver vectors image in .bmp format using the generated label

print(fig_num, ’-djpeg’, label1);

% Printing the current pyramid level quiver vectors image in .jpeg format using the generated label

figure(fig_num+1);

% Increasing figure number for next figure

imshow(uint8(image1));

% Show the Reference Image

hold on

% figure is held to plot quiver vectors on the same figure

quiver(1:(width/40):width,1:(height/30):height, (1:(height/30):height,1:(width/40):width),

(1:(height/30):height,1:(width/40):width),’r’,’LineWidth’,1.5);

% Plot quiver u and v vectors on the current plot in red color with a line width of 1.50

print(fig_num+1, ’-dbmp’, label2);

% Printing the current pyramid level quiver vectors superimposed on the reference image

% in .bmp format using the generated label

print(fig_num+1, ’-djpeg’, label2);

% Printing the current pyramid level quiver vectors superimposed on the reference image

% in .jpeg format using the generated label

fig_num = fig_num+2;

% Increasing figure number for next figure

end

98

B.2 Lucas Kanade Program for Solution of the Optical Flow Equa-

tion (LucasKanade.mLucasKanade.mLucasKanade.mLucasKanade.m)

%==== Function Lucas Kanade to calculate the Optical Flow by Solving the Optical Flow Equation ====%

function [u,v] = LucasKanade(image1,image2,winsize);

% Image1, Image2 and Neighborhood Size from the mainprogram.m

% Calculating derivatives for images in x, y and t

xderivative_filt = 0.25 *[-1 1; -1 1];

% Filter Coefficients for x-direction

yderivative_filt = 0.25 *[-1 -1; 1 1];

% Filter Coefficients for y-direction

tderivative_filt = 0.25 *[1 1; 1 1];

% Filter Coefficients for time t

% Calculation of Derivative of Images - Average of Image1 and Image2

Ix = conv2(image1,xderivative_filt) + conv2(image2,xderivative_filt);

% Applying Convolution Theorem (Filtering) to Image1 and Image2 with respect to the x-direction

Iy = conv2(image1,yderivative_filt) + conv2(image2,yderivative_filt);

% Applying Convolution Theorem (Filtering) to Image1 and Image2 with respect to the y-direction

It = conv2(image1,tderivative_filt) + conv2(image2,-tderivative_filt);

% Applying Convolution Theorem (Filtering) to Image1 and Image2 with respect to time

u = zeros(size(image1));

% Initialize Horizontal Optical Flow vector matrix

v = zeros(size(image2));

% Initialize Vertical Optical Flow vector matrix

halfsize = floor(winsize/2);

% Calculating half of neighborhood size

% Solution of the Optical Flow Equation

for i = (halfsize+1):(size(Ix,1)- halfsize)

% Starting halfwinsize later and ending halfwinsize before

for j = (halfsize+1):(size(Ix,2)-halfsize)

% Starting halfwinsize later and ending halfwinsize before

99

delIx = Ix(i-halfsize:i+halfsize, j-halfsize:j+halfsize);

% Adjusting the x-derivative to account for the neighborhood size

delIy = Iy(i-halfsize:i+halfsize, j-halfsize:j+halfsize);

% Adjusting the y-derivative to account for the neighborhood size

delIt = It(i-halfsize:i+halfsize, j-halfsize:j+halfsize);

% Adjusting the t-derivative to account for the neighborhood size

delIx = delIx’;

% Transpose of the matrix for calculation

delIy = delIy’;

% Transpose of the matrix for calculation

delIt = delIt’;

% Transpose of the matrix for calculation

delIx = delIx(:);

delIy = delIy(:);

delIt = -delIt(:);

% Adding the negative sign to t-derivative to solve the equation

A = [delIx delIy];

% Matrix A of the Optical Flow Equation

U = pinv(A’*A)*A’*delIt;

% Right Hand Side of the Optical Flow Equation

u(i,j)=U(1);

% Horizontal Component - First Row of the Matrix

v(i,j)=U(2);

% Vertical Component - Second Row of the Matrix

end

end

B.3 Gaussian Pyramids (pyramid.mpyramid.mpyramid.mpyramid.m)

%============ Function Pyramid to reduce the size of the images and apply Gaussian Filter ============%

% This function applies a gaussian mask (LP filter) to reduce high frequency noise

100

% i.e., smoothing the image

function reduceimage = pyramid(im);

% A 5-tap Gaussian Mask which will be applied to each dimesion of the images

% [0.25-a/2 0.25 a 0.25 0.25-a/2] with a = 0.4

% An odd symmetric normalized gaussian pyramid with sum of weights Wi = 1

gauss_mask = [0.0500 0.2500 0.4000 0.2500 0.0500];

% Assigning the value of Gaussian Mask

gauss_filter = gauss_mask’ * gauss_mask ;

% Calculating the Gaussian filter = square of the Gaussian Mask

size_im = size(im);

% Reading the size of the original image

new_size = ceil(size_im/2);

% New reduced size for the output size - divide by 2

reduceimage = zeros(new_size,class(im));

% Initializing the new reduced size image and filling it with zeros array

% FOR loop for adding two rows and two columns of padding to all the boundaries

m = [-2:2];

% Count for rows and columns

im = [im(1,:) ; im(1,:); im ; im(size_im(1) ,:) ; im(size_im(1) , :)];

% Adding two rows each to top and bottom of image

im = [im(:,1) im(:,1) im im(:,size_im(2)) im(:,size_im(2))];

% Adding two columns each to left and right of image

% Extracting values for the reduced size image

for i = 0:new_size(1) - 1

for j = 0:new_size(2) - 1

im1 = im(2*i+m+3, 2*j+m+3).* gauss_filter;

% Application of Gaussian filter to the image

reduceimage(i+1, j+1) = sum(im1(:));

% New reduceimage is calculated

end

end

101

B.4 Image Segmentation (segmentation.msegmentation.msegmentation.msegmentation.m)

%================ Segmentation of the image obtained from Optical Flow Results ================%

% FOR loop to test the value of threshold for each pixel of the Image

for i = 1:480

% Height of the image

for j = 1:640

% Width of the image

threshold = sqrt((u0(i,j)^2) + (v0(i,j)^2));

% Calculation of the threshold for each pixel

if threshold >= 1.1

% Test to check if the threshold of the pixel is within the specified value of Threshold

new_image(i,j) = image1_P0(i,j);

% New Image pixel = Original Base Level Pixel

else

new_image(i,j) = [0];

% New Image pixel is segmented by making it Black

end

end

end

figure;

% New figure

imshow(uint8(new_image));

% Display the new image

imwrite(uint8(new_image),’segmentation1pt1.bmp’)

% Saving the produced the image in .bmp format

B.5 Dilation (dilate.mdilate.mdilate.mdilate.m)

%================ Function Dilate to Enhance Segmented Image Content ================%

function dilated_im = dilate(im, disksize,count)

% Function takes user defined disksize (similar to neighborhood size),

% count keeps a track of the stage level

dilated_im = imdilate(im,strel(’disk’,disksize));

102

% Dilating the Image according to specified disksize

label = [num2str(’dilate’) num2str(count) num2str(’.bmp’)];

% Creating a label for the new dilated image

imwrite(dilated_im,label,’bmp’)

% Saving the new Image in .bmp format

B.6 Erosion (erode.merode.merode.merode.m)

%================ Function Erode to Enhance Segmented Image Content ================%

function eroded_im = erode(im,disksize,count)

% Function takes user defined disksize (similar to neighborhood size),

% count keeps a track of the stage level

eroded_im = imerode(im,strel(’disk’,disksize));

% Eroding the Image according to specified disksize

label = [num2str(’erode’) num2str(count) num2str(’.bmp’)];

% Creating a label for the new eroded image

imwrite(eroded_im,label,’bmp’);

% Saving the new Image in .bmp format

B.7 Filter Values

This section gives the values of different filter coefficients that have been used in this project.

The filter coefficients used by the Lucas Kanade Optical Flow Algorithm to calculate derivatives

with respect to the x-direction, y-direction and time t, are given in B.7.1, B.7.2 and B.7.3

respectively. B.7.4 and B.7.5 give the value of the Gaussian mask and Gaussian filter coefficients

respectively.

B.7.1 Filter Coefficients to Calculate Derivatives with respect to the

x-direction

Filter Coefficients for the x-direction =

[

−0.2500 0.2500

−0.2500 0.2500

]

103

B.7.2 Filter Coefficients to Calculate Derivatives with respect to the

y-direction

Filter Coefficients for y-direction =

[

−0.2500 −0.2500

0.2500 0.2500

]

B.7.3 Filter Coefficients to Calculate Derivatives with respect to

time, t

Filter Coefficients for time =

[

0.2500 0.2500

0.2500 0.2500

]

B.7.4 Gaussian Mask used for filtering

Gaussian Mask = [0.05 0.25 0.40 0.25 0.05]

B.7.5 Filter Coefficients used for Gaussian pyramids

Filter Coefficients for Gaussian Pyramid =

0.0025 0.0125 0.0200 0.0125 0.0025

0.0125 0.0625 0.1000 0.0625 0.0125

0.0200 0.1000 0.1600 0.1000 0.0200

0.0125 0.0625 0.1000 0.0625 0.0125

0.0025 0.0125 0.0200 0.0125 0.0025

104

