Optimizing Sulfentrazone Rate in Broadleaf Crops

E.N. Johnson¹ and D.J. Ulrich¹ ¹Agriculture and Agri-Food Canada, Box 10, Scott, SK, Canada email: johnsone@agr.gc.ca

Introduction

Sulfentrazone is a Protoporphyrinogen oxidase inhibitor herbicide registered for weed control in a number of broadleaf crops in the United States. The use of sulfentrazone for weed control in chickpea (*Cicer arietinum* L.) was a Pesticide Minor Use Program priority and tolerance, efficacy, and residue studies have been conducted. The proposed rate for the Canadian prairies is 280 g ai ha-1. This rate was based on US rates for weed control in soybeans (*Glycine max* L.); however, unpublished re-cropping studies conducted in Saskatchewan indicate that this rate may be too high for rotational crops, particularly if a 2X margin of safety is desired. A number of efficacy studies conducted at Scott from 2002 to 2006 were analyzed to determine:

1) an optimum rate of sulfentrazone that will provide efficacious weed control in broadleaf crops;

2) if the USA rate structure is appropriate in Western Canada

Materials and Methods

Eleven efficacy trials have been conducted at the Scott Research Farm from 2002 to 2006 in crops such as chickpea and flax (*Linum usitatissimum*). The trials were conducted on a loam soil (31% sand: 42% silt: 27% clay) with a pH of 6.0 and an organic matter content of 3.5%. The rate structure within the studies ranged from 17 to 840 g ai ha-1; however, not all rates were present in every study. Efficacy studies were performed according to the Pest Management Regulatory Agency's Directive "DIR 2003-04 Efficacy Guidelines for Plant Protection Products". Visual control ratings were taken at 7-14, 21-35, and 42-56 days after treatment (DAT). The 42-56 DAT control ratings from the 11 field trials were combined and are presented in Figure 1.

Results and Discussion

Wild mustard (*Sinapis arvensis* L.) required sulfentrazone rates of > 420 g ai ha⁻¹ for greater than 80% control. Kochia *[Kochia scoparia* (L.) Schrad.] and shepherd's-purse [*Capsella bursa-pastoris* (L.) Medik.] were controlled at rates of \geq 140 g ai ha⁻¹. Wild buckwheat (*Polygonum convolvulus* L.) and lamb's-quarters (*Chenopodium album* L.) were controlled at rates of \geq 70 g ai ha⁻¹. Amaranthus species (*Amaranthus retroflexus* L. and *Amaranthus blitoides* S. Watson) were controlled at rates of \geq 140 g ai ha⁻¹ while cow cockle [*Vaccaria hispanica* (Mill.) Rauschert] was controlled at rates of \geq 280 g ai ha⁻¹.

The suggested rate range in North Dakota for a soil texture and organic matter content similar to Scott is 130 to 195 g ai ha⁻¹ (Table 1). The higher rate is recommended for a soil pH < 7.0; however Scott data indicates that kochia, wild buckwheat, lamb's-quarters, prostrate pigweed, redroot pigweed, and shepherd's purse will be controlled at the lower end of the rate structure. A rate of 130 - 140 g ai ha-1 would greatly reduce the risk of recropping injury.

Conclusion

The proposed sulfentrazone rate of 280 g ai ha-1 for chickpea is higher than is required to control weeds such as kochia, wild buckwheat, lamb's-quarters, pigweed species, and shepherd's purse for loam textured soils with 3 to 4% organic matter. The rate structure for North Dakota may have some application in Western Canada; however, further validation studies are required on different soil types.

	Texture		
% S.O.M.	Coarse	Medium	Fine
	Rate (g ai/ha)		
<1.0	65 - 87	87 - 130	87 - 130
1.0 - 3.0	87 - 130	108 - 174	130 - 195
> 3.0	108 - 174	130 - 195*	152 - 231

Table 1: Sulfentrazone rates for kochia control in chickpea in North Dakota.

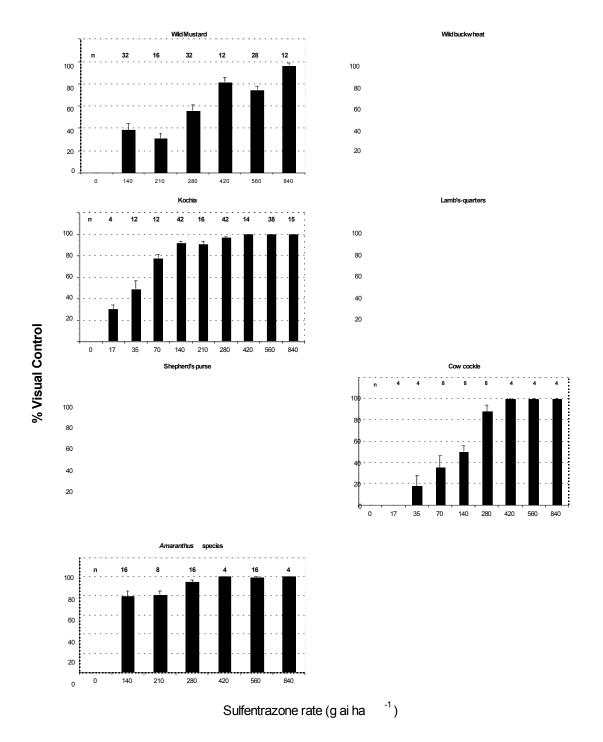


Figure 1: Effect of sulfentrazone rate on visual control (0-100%) of various broadleaf weed species. N = number of data points. Error bars represent standard error of the mean.