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ABSTRACT

The knowledge of the phase behaviour of heavy oils and bitumen is important

in order to understand the phenomenon of coke formation. Computation of their phase

behaviour, using an equation of state, faces problems due to their complex composition.

Hence n-alkane binaries of polyaromatic hydrocarbons are used to approximate the

phase behaviour of heavy oils and bitumen. Appropriate values of binary interaction

parameters are required for an equation of state to predict the correct phase behaviour of

these model binary fluids.

This thesis deals with fitting of the binary interaction parameter for the Peng-

Robinson equation of state using landmarks in the binary phase space such as K- and L-

points. A K- or an L-point is a point in the phase space where two phases become

critical in the presence of another phase in equilibrium. An algorithm to calculate K-

and L-points using an equation of state was developed. The variation of calculated K-

and L-points with respect to the binary interaction parameter was studied and the results

were compared with the experimental data in the literature. The interaction parameter

was then fitted using the best match of experimental results with the computed ones.

The binary interaction parameter fitted using a K- or an L-point was then used to predict

the P-T projection of the binary system in phase space. Also, the qualitative effect of the

binary interaction parameter on the P-T projection was studied.

A numerical and thermodynamic study of the algorithm was done. Numerical

issues like the initial guesses, convergence criterion and numerical techniques were

studied and the thermodynamic constraints in the generalization of the algorithm are

discussed. It was observed that the binary interaction parameter not only affects the
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location of K- and L-points in the phase space but also affects the calculation procedure

of K- and L-points.

Along with the propane binaries of polyaromatic hydrocarbons, K- and L-

points were also calculated for systems like methane binaries of higher n-alkanes and

the ethane + ethanol binary. In the case of the ethane + ethanol system, K- and L-points,

matching the experimental results were calculated with different values of the binary

interaction parameter. But the Peng-Robinson equation of state was unable to predict

the correct type of phase behaviour using any value of the binary interaction parameter.

The Peng-Robinson equation of state was able to predict the correct type of

phase behaviour with the binary interaction parameter, fitted using K- and/or L-points

for methane + n-alkane systems. The systems studied were the methane binaries of n-

pentane, n-hexane and n-heptane.

For the propane binaries of polyaromatic hydrocarbons, no value of the binary

interaction parameter was able to predict the K-point with a good accuracy. The binary

interaction parameter which gave the best possible results for a K-point failed to predict

the correct type of phase behaviour. The binary interaction parameter fitted using the P-

T projection enabled the Peng-Robinson equation of state to give a qualitative match for

the high pressure complex phase behaviour of these systems. Solid phase equilibria

were not taken into consideration.
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1. INTRODUCTION

In a petroleum refinery, fractionation is the first step in the process of refining

crude oil. Lighter fractions like gasoline, kerosene and diesel fuel are further processed

to improve upon their quality and the heavier fractions are processed to get lubricants

and waxes. Heavy oils and bitumen are the bottom products. Since the flexibility and

the adaptability of catalytic cracking enables a refiner to maximize the yield of desired

products like gasoline from diverse, low-value feedstocks, the heavy oils and bitumen

undergo catalytic cracking. This cracking process helps the refinery, operate with higher

profits and hence it is the heart of a modern petroleum refinery. But the catalytic

cracking catalyst can deactivate very quickly due to coke formation. Although coke

formation depends on the feedstock nature and catalyst properties, it has been found that

at normal operating conditions (700-800 K and 1-3 MPa), primarily polyaromatic coke

is produced (Guisnet et al., 2001).

1.1. Purpose

Regeneration or replacement of a catalyst in the catalytic process contributes

to the capital and operating cost of the unit and also affects the efficiency of the process,

and thus the quality of final product. In order to get a better insight into the

phenomenon of coke formation, particularly the polyaromatic coke, understanding the

physical and chemical changes at appropriate operating conditions is essential. From the
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physical change point of view, knowledge of the phase behaviour of heavy oils and

bitumen, under operation conditions will prove beneficial.

Experimental study of the phase behaviour of heavy oils and bitumen at

elevated temperature and pressure conditions may face some hurdles on the

technological and financial fronts. Mathematical modeling, if done successfully, will be

very useful in this context. An equation of state can be used to model the phase

behaviour of these heavy fractions, but their complex composition, which is mostly

unknown, poses difficulty in modeling. A binary system of a polyaromatic hydrocarbon

with an n-alkane, polyaromatic hydrocarbons being the precursor to coke, can be

thought of as a model fluid to approximate the phase behaviour of heavy oils and

bitumen. Hence successful modeling of the phase behaviour of these model fluids is a

preliminary step towards successful modeling of heavy oils.

Use of a cubic equation of state requires appropriate values of empirical

parameters, called Binary Interaction Parameters, in the equation of state. Different

methods have been suggested in the literature to calculate binary interaction parameters,

but the interaction parameters calculated using those methods may fail to predict the

complex phase behaviour at high pressures (Shaw et al., 2002). The motivation behind

this project was to estimate an interaction parameter using a fixed point in the phase

space and evaluate its effect on the ability of the cubic equation of state to give correct

predictions in the region of interest.

1.2. Two-Constant Cubic Equations of State

An equation of state which is cubic in volume and gives pressure in terms of

volume and temperature of a substance is called a cubic equation of state. They are
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more successful than any other type of equation of state with a simpler form (Walas,

1985). Several equations of this type have been proposed like the van der Waals

equation, the Redlich-Kwong equation, the Soave-Redlich-Kwong equation and the

Peng-Robinson equation, to name a few. The van der Waals equation of state is the

foremost of all and provided basis for the rest of the equations of state. All these cubic

equations of state have two constants, an attraction parameter a and a repulsion

parameter b, hence they are called two-constant equations of state. The later parameter

is also referred as the co-volume parameter and is sometimes called the effective

molecular volume. The Peng-Robinson equation of state (Peng and Robinson, 1976) is

used in this work and is given as,

)()(
)(

)( bvbbvv
Ta

bv
RTP

−++
−

−
=     (1.1)

The vapour and liquid phases become identical at the critical point. Applying the

mathematical criterion of a critical point to equation (1.1) gives

c

c
c P

TR
Ta

22

45724.0)( =      (1.2)

c

c
c P

TR
Tb 07780.0)( =      (1.3)

307.0=cZ .        (1.4)

Zc is the compressibility at the critical point. At temperatures other than the critical

temperature

),()()( ωα rc TTaTa ⋅=      (1.5)

)()( cTbTb =        (1.6)
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where ),( ωα rT is a dimensionless function of the reduced temperature and acentric

factor and equals unity at the critical conditions. The relationship between α and rT is

given by the following equation:

)1(1 2/12/1
rT−+= κα       (1.7)

where κ is the characteristic constant of a substance, given by the equation:

226992.054226.137464.0 ωωκ −+=    (1.8)

1.3. Binary Interaction Parameters

Application of the equation of state to mixtures requires the evaluation of

parameters a and b (in equation 1.1) using mixing rules. The mixing rules that are most

commonly used are,

ijj
i j

i axxa ∑∑=       (1.9)

i
i

ibxb ∑=        (1.10)

where

2/12/1)1( jiijij aaa δ−= .      (1.11)

The parameter ijδ is the binary interaction parameter characterizing the binary formed

by components i and j. Binary interaction parameters takes into account the difference

in the interaction of unlike molecules. These binary interaction parameters are empirical

and their significance lies in their ability to make a particular model predict the correct

phase behaviour (Prausnitz et al., 1986).

1.4. K and L Points

When a liquid phase and a vapour phase become critical in the presence of a

heavier liquid phase in equilibrium, it is referred to as a K-point and when two liquid
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phases become critical in the presence of a vapour phase in equilibrium, it is referred to

as an L-point.

 The purpose of facilitating the equation of state in predicting the high pressure

complex phase behaviour stimulated the thought of adjusting the binary interaction

parameter values using some landmark in this phase space. K- and L-points were

considered because they lie in the high pressure region and have a zero degree of

freedom for a binary mixture. Also they lie in the vicinity of multiphase complex phase

behaviour in the P-T projection of phase space of a binary system. The heavy liquid

phase present in the K- and L-point carry the precursors to polyaromatic coke.

1.5. Objectives and Scope

The objectives of the project are as follows:

a) Development of an algorithm to calculate K- and L-points since fitting the binary

interaction parameter requires a procedure to compute K- and L-points using an

equation of state

b) Numerical study of the algorithm to check if the algorithm is capable of calculating

K- and L-points for any mixture, given the critical properties and acentric factor

data

c) Study the effect of changing binary interaction parameters on K- and L-points

d) Fitting the binary interaction parameter

e) Study the effect of the binary interaction parameter on the P-T phase diagram

f) Evaluate the success of fitting the binary interaction parameter using K- and L-

points
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The project focuses on the determination of K- and L-points for systems of

alkane + alkanol, methane + n-alkane, and propane + polyaromatic hydrocarbon type.

The mixing rules given by equations (1.9) and (1.10) were used in this work and the

interaction parameter for b was not taken into consideration. When the P-T projection of

phase space was developed for the validation of fitted binary interaction parameter, the

multiphase equilibrium phenomenon involving a solid phase was not taken into

consideration.  Only one cubic equation of state, i.e. the Peng-Robinson equation of

state, was used throughout the work.

1.6. Thesis Outline

The literature review to explain the background of the project and to gain the

required knowledge for the computations is in chapter two.  The project can be divided

into two parts. The first part being the algorithm development and numerical and

thermodynamic analysis, which is covered in chapter three, and the second part, being

the fitting of binary interaction parameter and their validation from the P-T projection

of phase space point of view, is discussed in chapter four. The conclusions are

summarized in chapter five.

Appendix A contains the equations and the calculation procedure for finding a

three-phase line, which was computed as a part of the phase diagram. Appendix B lists

the critical properties and acentric factors of the systems studied in this project.
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2. LITERATURE SURVEY

2.1. Introduction

An extensive literature survey was done to find the experimental data of

hydrocarbons, available in the literature and to acquire the adequate background

knowledge for accomplishing the objectives. Fixing the binary interaction parameter for

a cubic equation of state being the motivation behind the project, a survey was done to

find out the existing methods available in the literature to calculate binary interaction

parameters. A study of the classification of binary phase diagrams was done since the

influence of binary interaction parameter on phase diagrams had to be analysed as a part

of the project.

Mathematical computation of the K- and L-points entails a good

understanding of the tangent plane criterion, phase equilibrium calculations and the

critical point calculations.  A brief review of these calculation methods is also included

in this chapter.

2.2. Estimating Binary Interaction Parameters: A Literature Review

The purpose of the binary interaction parameter is to enhance the capability of

an equation of state to predict the desired phase behaviour; hence most of the methods

to fit the binary interaction parameter match laboratory-data with that calculated by the

equation of state. Many attempts have been made to generalize the interaction
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parameter value for binary systems with one common compound and the other

belonging to the same family or type. Particularly, the binaries involving hydrocarbon

compounds have received more focus from the researchers since modeling of their

phase behaviour has significant contribution in designing petroleum processes. Every

method of determining binary interaction parameters has its applicability to predict

phase behaviour in a specified region of phase space. Existence of a “universal” method

to determine binary interaction parameters is doubtful.

Peng and Robinson (1976) determined the binary interaction parameter using

experimental binary vapour-liquid equilibrium data. The value of the binary interaction

parameter for a particular binary system was the one that gave minimum deviation in

the predicted bubble point pressure. Various binary and ternary paraffinic systems were

studied and binary interaction parameters were determined for those systems by

matching the bubble point pressures.

Nishiumi et al. (1988) correlated the binary interaction parameters of the

Peng-Robinson equation of state in terms of the ratio of critical molar volumes and the

absolute difference in the acentric factor of each component.

( ) ( ) ( )2
3211 cjcicjciij vvCvvCC ++=− δ    (2.1)

where

jiccC ωω −+= 2
1

1
11       (2.2)

jiccC ωω −+= 2
2

1
22       (2.3)

1
2

2
1

1
1 ,, ccc  and 2

2c  are the constants. This correlation covered systems including carbon

dioxide, nitrogen, hydrogen sulphide and hydrocarbons like alkanes, alkenes and
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aromatics. Vapour liquid equilibrium data was used to check the validity of the

correlation.

Petersen (1989) suggested a technique to determine the interaction parameters

for complex hydrocarbon mixtures. A power function was proposed, which related the

binary interaction parameters with the molecular weights of the components. The binary

interaction parameter for components i and j was given as

{ }n
i

n
jiij MM )()( −= ρδ      (2.4)

where

{ }n
i

n
FmiFmi MM )()( −= ++δρ .    (2.5)

Mi represents the molecular weight of component i and Fm+ represents the heaviest

fraction.

 This method helped to evaluate the binary interaction parameters for an

extensive number of components in a systematic and consistent way. The equation of

state was tuned with the aim of matching the laboratory measured data of constant

composition expansion curves for six different complex fluid compositions. The fitting

of interaction parameter was not only restricted to match the saturation pressure but an

agreement with a range of laboratory measured data was taken into consideration. The

sensitivity of the binary interaction parameter to the mixture composition and to the

temperature was also studied in their work. This method of determination of binary

interaction parameter was well suited for the complex paraffinic mixtures where the

equation of state was used to predict the PVT data with a desired accuracy.
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Carroll and Mather (1995) provided a generalised correlation for binary

interaction parameters of the Peng-Robinson equation of state for the H2S + paraffin

system:

CNij ×−= 0069.0098.0δ ,     (2.6)

where CN represents the number of carbon atoms in the paraffin.

Vapour-liquid equilibrium data for the system was used to find the correlation

and a trend of decrease in the binary interaction parameter value with increase in the

carbon number of the paraffin was observed. Apart from carbon number, additional

parameters like normal boiling point, acentric factor, critical temperature and critical

pressure were taken into account to improve the correlation.  Even after using so many

factors, a perfect match was not obtained and this correlation was limited to the binary

systems containing H2S and branched and straight chain paraffins.

Kordas et al. (1994) proposed a correlation for the binary interaction

parameters characterizing CO2 + n-alkane systems with the CO2 reduced temperature

and the alkane acentric factor as independent variables:

( ) ( ) ( ) 3
321 rijrijjij TqTqq ωωωδ ++=     (2.7)

where i stands for CO2 and j stands for n-alkane. The parameters 21, qq and 3q are given

as

( ) 23
1

2
1

1
11 jjj qqqq ωωω ++=      (2.8)

( ) 23
2

2
2

1
22 jjj qqqq ωωω ++=      (2.9)

( ) jjj qqqq ωωω /3
3

2
3

1
33 ++=      (2.10)

where 3
3

1
1 qq K  are constants.
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The correlation was also extended to other non-alkane hydrocarbons like

alkenes and aromatics. Though the equation of state used in the work was the translated

modified Peng-Robinson equation of state, the author claimed that the correlation was

also valid for the Peng-Robinson equation of state because both equations of state

required practically the same values of interaction parameter. Experimental vapour-

liquid equilibrium data was used to check the validity of the method. The correlation

works well for different hydrocarbons but in the case of aromatics, its applicability is

limited to the single carbon ring compounds.

Trassy et al. (1997) recommended a method to determine the interaction

parameters of the Peng-Robinson equation of state for heavy hydrocarbons.  The model

was validated by predicting the Henry’s constant data of light hydrocarbons in high

molecular weight hydrocarbons. The binary interaction parameters were determined

using a group contribution method. The applicability of the model was limited to the

extent of binary interaction parameters between light components (up to C8) and heavy

n-paraffins. The model was not extended to systems including aromatic hydrocarbons.

The method suggested by Petersen (1989) is applicable to the calculation of

binary interaction parameters for paraffinic systems and did not mention about its

applicability to other type of hydrocarbons. The correlation provided by Carroll and

Mather (1995) is restricted to the systems containing H2S, and the correlation given by

Kordas et al. (1994), to the systems containing CO2. Trassy et al. (1997) gave the

correlation for interaction parameters of heavy n- paraffinic hydrocarbons but could not

extend it to other type of hydrocarbons. Nishiumi et al. (1988) also provided a

correlation for interaction parameters which is applicable to variety of hydrocarbons
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including the aromatics. None of the above mentioned correlations authenticated the

capacity of the binary interaction parameters of the Peng-Robinson equation of state to

predict the high pressure complex phase behaviour. Also, there was no mention about

the applicability of these correlations to the systems containing polyaromatic

hydrocarbons, which is one of the components of a model binary system for heavy oils.

Shaw et al. (2002) showed that the binary interaction parameter fitted using a general

correlation sometimes fails to predict correct phase behaviour in the high pressure

region. Figure 2.1 shows that that the interaction parameter that predicts high pressure

phase behaviour correctly is greater than the one calculated by general correlation by an

order of magnitude.

Figure 2.1: Interaction parameter values obtained from general correlation fail to
predict correct phase behaviour at high pressures. ijδ  = Binary Interaction
Parameter.  (Shaw et al., 2002)
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Though both the interaction parameters give good results in the low pressure region, a

noticeable difference can be seen in prediction of high pressure phase equilibrium data.

2.3. Alternate Mixing Rules

Young (2000) suggested a new mixing rule to calculate the vapour-liquid

equilibria of petroleum mixtures with the Peng-Robinson equation of state which is

based on the concept of a component deviation factor. This new mixing rule eliminates

the use of a binary interaction parameter. The mixing rule to calculate the parameter b

was the same as in equation (1.10). Conventionally, the binary interaction parameters

for a multi-component mixture are represented in a matrix form whereas the component

deviation coefficients are represented in a vector form. Equation (1.9) was replaced by

equation (2.11), given below:

2
2/1








= ∑

i
iii axa ψ       (2.11)

where iψ is the component deviation coefficient.  The component deviation coefficients

were determined by matching the experimental vapour-liquid equilibrium data from

specified reservoir fluids. This new mixing rule resulted in an improved accuracy and

convergence behaviour in the calculation of the saturation temperature and pressure of

certain petroleum mixtures. The mixing rule was suggested with the aim of modeling

the reservoir fluid behaviour and no attempt was made to discover the improvement in

prediction of complex high pressure phase behaviour of the fluids.

There also exists a different mixing rule for the parameter b of the Peng-

Robinson equation of state, which incorporates a binary interaction parameter ( ijϕ ).

∑∑=
i j

ijji bxxb       (2.12)
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where

( )ij
ji

ij

bb
b ϕ−

+
= 1

2
      (2.13)

Use of an interaction parameter to calculate the parameter b is beyond the scope of this

project. Equation (2.12) reduces to equation (1.10) if 0=ijϕ .

2.4. K- and L-Points

The K- and L-points, as defined in section 1.4, are also called upper critical

end points (UCEP) and lower critical end points (LCEP). When the three-phase line

(L1L2G) terminates in a critical endpoint upon increase in temperature, it is called an

upper critical endpoint. The critical endpoint is called a lower critical endpoint when the

three-phase line terminates in a critical endpoint upon lowering the temperature. A K-

point is always a UCEP but an L-point can be a UCEP or an LCEP depending upon the

type of phase behaviour. The degrees of freedom for the K- and L-points can be

calculated using the phase rule given by Knobler and Scott (1984):

nNPNCDF −+−= 3      (2.14)

where

DF = Degrees of freedom

NC = Number of components

NP = Number of phases

n = Order of critical point

A binary system has zero degrees of freedom for a K- or an L-point. The

location of K- and L-points in the global binary phase diagram is discussed in the

following section:
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Figure 2.2: Type-I phase diagram, according to the classification done by Scott and
Van Konynenburg (1980).

Figure 2.3: Type-II phase diagram, according to the classification done by Scott
and Van Konynenburg (1980).
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Figure 2.4: Type-III phase diagram, according to the classification done by Scott
and Van Konynenburg (1980).

Figure 2.5: Type-IV phase diagram, according to the classification done by Scott
and Van Konynenburg (1980).
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Figure 2.6: Type-V phase diagram, according to the classification done by Scott
and Van Konynenburg (1980).

Figure 2.7: Type-VI phase diagram, according to the classification done by Scott
and Van Konynenburg (1980).
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2.4.1. Phase Diagrams and Location of K- and L-Points

Phase diagrams of the binary mixtures were classified by Van Konynenburg

and Scott (1980) based on the nature of their P-T projections. The classification is based

on the shape of critical lines, presence or absence of a three-phase line and critical

endpoints and the way critical lines terminate. Figures 2.2-2.7 show different types of

phase diagrams that a binary system of components A and B can exhibit, according to

Van Konynenburg and Scott (1980). LG(A)  and LG(B) represent the vapour pressure

curve for pure components, A and B. L1L2G represents the three-phase line where two

liquid phases, L1 and  L2 are in equilibrium with the vapour phase. L=G indicates the

critical line, where a liquid phase and a vapour phase become identical.

Figure 2.2 shows a Type-I phase diagram in the binary classification scheme.

A continuous critical line joining the critical points of pure components is observed in a

Type-I phase diagram. Any other phenomenon like a critical endpoint or a three-phase

line is not present in this type of phase behaviour. A Type-II phase diagram (see Figure

2.3) shows the presence of a three-phase line and a critical endpoint. Two critical lines

are present in this type of phase diagram. One continuous critical line connects the

critical points of pure components and the other one emerges from the upper critical

endpoint. The UCEP lies at a temperature and pressure lower than the pure component

critical point. A Type-III phase diagram (see Figure 2.4) shows two critical lines, each

starting from the pure component critical point. The critical line starting from the

critical point of the less volatile component goes to very high pressures and the other

critical line starting from the critical point of more volatile component terminates in a

UCEP, which is located at a higher temperature and pressure than the more volatile pure



19

component critical point. The three-phase line is also present in this type of phase

diagram. A Type-IV phase diagram (see Figure 2.5) shows three critical lines. Those

starting from the pure component critical points of the less volatile component and from

the more volatile component terminate in an LCEP and in a UCEP respectively. The

other critical line starts at a UCEP and goes to higher pressures. Also, this type of phase

diagram shows two three-phase lines. A Type-V phase diagram (see Figure 2.6) has two

critical lines, each terminating in a critical endpoint. The three-phase line is bounded

between the critical endpoints. A Type-VI phase diagram (see Figure 2.7) shows both

the critical lines bounded. It shows a critical line similar to a Type-I or a Type-II system

that is restricted between the pure component critical points and the other restricted

between the critical endpoints. The three-phase line is similar to the one in a Type-V

phase diagram.

The critical endpoints that are the LCEPs and UCEPs are the K- and L-points.

However there is a minor difference in the terminology. When a liquid and a vapour

phase become critical, it is called a K-point and when the two liquid phases become

critical, it is referred to as an L-point. The criterion for distinguishing LCEP and UCEP

is not the type of critical point (LL or LG) but the location in P-T space. A UCEP is

always located at a higher temperature and pressure than LCEP and when there is only

one critical endpoint present, it is referred to as UCEP. Hence a K-point will be always

a UCEP but an L-point can be a UCEP or an LCEP depending upon the type of phase

diagram.
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2.4.2. Experimental Data

A detailed survey was done to compile the experimental data available for K-

and L-points in the literature. Validation of the algorithm to calculate K- and L-points

and fitting the binary interaction parameter by matching the experimental data with

computed K- and L-points required the knowledge of experimental data. The

experimental K- and L-points data and binary phase diagram data for some of the

systems studied in this project are tabulated in Table 2.1.

2.5. Phase Equilibrium and Critical Point Calculations

K- and L-points consist of a critical phase in equilibrium with a non-critical

phase. Computation of K- and L-points using an equation of state was required in order

to fit the binary interaction parameter. Computation of critical lines and three-phase line

also formed a part of the project, since they are the elements of binary phase diagram.

Development of procedures to calculate these multiphase complex phase behaviour

demands a thorough understanding of the previous work done in this field so that based

on this knowledge database a technique for the calculation of the desired type of

phenomenon can be developed.

2.5.1. Basic Phase Equilibrium Calculations

Prediction of fluid phase equilibria using an equation of state forms an

important part of simulations in the petroleum field. However, an equation of state can

predict an incorrect number of phases or incorrect phase compositions even after

satisfying the usual restriction of equality of chemical potentials and the material

balances (Baker et al., 1982). The tangent plane criterion and its implementation were
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studied in detail as a part of the literature review so that it could be implemented

successfully to calculate a thermodynamically stable phase equilibrium phenomenon.
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2.5.1.1. Gibbs Tangent Plane Criterion

A phase equilibrium solution must satisfy three conditions; namely,

preservation of the material balances, a zero chemical driving force, and the system

must be at the lowest possible Gibbs free energy at a specified temperature and

pressure. The condition of zero chemical driving force is satisfied by the equality of

chemical potentials. Even if the system is satisfying the first two conditions, it is not

stable unless it satisfies the minimum energy criterion. Baker et al. (1982) presented a

method to determine the stability of the predicted equilibria using the Gibbs tangent

plane criterion (1876). The Gibbs energy surface at the temperature and pressure of an

equilibrium state and a tangent plane to the surface at the equilibrium solution are

calculated using an equation of state. If the tangent plane lies below the Gibbs energy

surface throughout the accessible composition range, the system is said to be stable. The

slope of the tangent with respect to mole numbers corresponds to the chemical potential

and thus satisfies the second condition for the equilibrium at points of tangency as well.

Figure 2.8 illustrates the tangent plane criterion. The Gibbs surface is

generated using an equation of state for a hypothetical homogeneous phase and it does

not represent an actual Gibbs energy. The feed composition is as shown in the figure.

Since the Gibbs energy surface is not concave upwards at the feed composition, a phase

split is required to give a stable solution. The possible phase splits are indicated by the

tangents drawn to the Gibbs surface from points 2 and 3. Both the phase splits satisfy

the equality of chemical potential criterion, but it can be seen from Figure 2.8 that the

tangent passing through point 2 does not lie above the surface for the entire composition

range and hence it does not represent a stable solution. The tangent passing through
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point 3 lies below the surface and hence represents stable solution. Any feed having a

composition between XL3 and XV3 will split into two phases to attain a state of lower

Gibbs energy, which is more stable than the original feed mixture.

Figure 2.8: Gibbs energy diagram explaining the tangent plane criterion (Baker et
al., 1982).

2.5.1.2. Numerical Implementation of Tangent Plane Criterion

Baker et al. (1982) presented a mathematical proof of the tangent plane

criterion but did not suggest any method to implement it to find the stability of

predicted phases. Michelsen (1982a) however suggested the following method to

implement the tangent plane criterion in a phase stability check.
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Consider a system of N components at temperature 0T  and pressure 0P with

component mole fractions ( )Nmmm ,....,, 21  and R moles in total. The Gibbs energy of

the mixture is given as,

∑=
i

ii rG 0
0 µ        (2.15)

where 0
iµ  is the chemical potential of component i in the mixture and ir  is the number

of moles of component i. If the mixture is divided into two phases (Phase-I and Phase-

II) with mole numbers ε−R  and ε  respectively and amount ε  of the second phase

being infinitesimally small with mole fractions ( )Nkkk ,.....,, 21  , the change in the Gibbs

energy is given as

0GGGG III −+=∆

( ) ( ) 0GGRG −+−= εε      (2.16)

A Taylor series expansion of ( )ε−RG , neglecting second order terms gives

( ) ( ) ∑∑ −=







∂
∂

−=−
i

ii
Ri i

i kG
r
GkRGRG 0

0 µεεε .  (2.17)

From equations (2.16) and (2.17),

( ) ( ) ∑∑∑ −=−=∆
i

ii
i

ii
i

ii kkkGG 00 µεµεµεε k

( )( )∑ −=
i

iiik 0µµε k      (2.18)

Stability of the original system with mole number R requires that the Gibbs energy

should be at its global minimum and no phase split should cause a decrease in the Gibbs

energy. This implies that the summation of the Gibbs energy of Phase-I and Phase-II
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should be greater than 0G , thus G∆ should be positive. Hence the necessary criterion for

stability is that

( ) ( )( ) 00 ≥−= ∑
i

iiikD µµ kk      (2.19)

for all trial compositions k. Referring to the Gibbs energy plot, ( )kD  is the vertical

distance from the tangent to the Gibbs energy surface at composition m to the Gibbs

energy surface at composition k. Stationary points are those points where the

derivatives of ( )kD  with respect to all the independent variables equal zero. Michelsen

(1982a) showed that if ( )kD  is non-negative at all stationary points then it will be non-

negative at any other composition. Differentiation of equation (2.19) with respect to the

1−N  independent mole fractions yields the stationary condition

( ) Lii =− 0µµ k        (2.20)

where L is a constant independent of component index i. The graphical representation of

the tangent plane criterion can be seen in Figure 2.9. It can be observed from the figure

that k = m is a stationary point with a stationary value equal to zero. At stationary point

ks, the tangent plane to the Gibbs surface is parallel to the tangent plane at composition

m.

To implement the criterion using an equation of state, a more suitable

stationary criterion is suggested by Michelsen (1982a). The distance D is calculated in

terms of fugacity coefficients as

( ) ( ) ( )( ) 0lnlnlnln0 ≥−−+= ∑
i

iiiii mkkRTD mkk φφ  (2.21)

Differentiating the above equation, the stationary criterion is obtained as

( ) ( )( )mk iiii mk φφθ lnlnlnln −−+=    (2.22)
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Introducing a new variable,

( ) ii kK θ−= exp ,      (2.23)

( ) ( )( ) 0lnlnlnln =−−+ mk iiii mK φφ .   (2.24)

The new independent variables iK are interpreted as unnormalized mole fractions or

mole numbers, the corresponding mole fractions being ∑=
i

iii KKk . Solving equation

(2.24) will give the stationary point, and the stability of original system is confirmed if

0≥θ , or equivalently, if 1≤∑
i

iK . If 0=θ , the trial phase is in equilibrium with the

original system.

Figure 2.9: Gibbs energy diagram showing the tangent at mole fraction m and the
tangent plane distance D at mole fraction k. The tangent at stationary point ks and
distance L can be seen. (Michelsen, 1982a)
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2.5.2. Critical Point Calculations

One of the two equilibrium phases in a K- or L-point is the critical phase.

Different methods available in the literature to calculate the critical point are

summarized below.

2.5.2.1. Definition of Critical Point

The critical point of a pure component can be defined as the highest

temperature and pressure at which liquid and vapour phases coexist (Walas, 1985).

Mathematically the critical point of a pure substance is expressed as

02

2

=







∂
∂

=







∂
∂

TT V
P

V
P      (2.25)

The critical state of mixtures can also be defined in a similar fashion, where

the properties of two or more coexisting phases become identical. The mathematical

definition of the critical point of an n-component mixture was given by Gibbs and it

was in the form of the two equations given below (Peng and Robinson, 1977):
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where ( )121 ,,,,, −= nxxxPTGG K  and the partial derivatives with respect to ix  are

obtained at constant T, P and nikkx ,, ≠ .

2.5.2.2. Methods to Calculate Critical Point

Many researchers have attempted to develop methods for calculating the

critical properties of mixtures. The application of the definition of a critical point given

by Gibbs in combination with an equation of state to calculate the critical point was first

made by Spear et al. (1971). The critical temperature and pressure of a ternary mixture

was specified and the composition was searched. However, the procedure was limited to

ternary systems.

Peng and Robinson (1977) presented a method to calculate the critical point of

a multicomponent mixture using the Peng-Robinson equation of state and the critical

state criterion, as given by Gibbs (1876). The authors claimed that the method was more

reliable and more generally applicable than any of the previous methods. Large

determinants had to be evaluated in order to calculate the functions associated with the

calculation procedure.

Heidemann and Khalil (1980), in their attempt to calculate the critical point,

took a different approach for the computation. The efforts of calculating the

determinants were saved in this method, thereby significantly reducing the

computational time when applied to large systems. The critical criteria were calculated

by examining the stability of homogeneous phases. The formulation introduced for the

critical criteria used an equation of state to calculate the quadratic and cubic forms of

the Taylor series expansion of the Helmholtz free energy as a function of mole

numbers. The method calculates a critical point for a multicomponent mixture with a
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specified composition using a strategy of initial guess for critical temperature and

critical volume, which is common to all the systems.  A technique to look into the

possibility of existence of more than one critical point was also suggested. The details

of the equations associated with this method are given in section 3.2.1 of the thesis as

they are a part of development of the algorithm to calculate K- and L-points.

Michelsen (1984) suggested a method to calculate the critical point of a

multicomponent mixture at a specified composition. The criticality conditions were

based on the Gibbs tangent plane stability criterion. For the calculation of critical

points, a good initial estimate of the critical temperature and pressure are needed in this

method. The procedure is very efficient from a computational point of view and

uncomplicated in terms of calculating thermodynamic properties and their derivatives.

The benefit of the method is that the quantities calculated during the critical point

computation can be related to relative changes in temperature, pressure and the

composition and distribution of equilibrium phases in the critical region.

Michelsen and Heidemann (1988) were the first to calculate the critical points

of higher than first order. That is the second order critical point where three phases

become identical, also called a tricritical point.  An ordinary critical point criterion is

explained using two equations in the thermodynamic variables and a tricritical point is

described by four such equations. The procedure for calculating the tricritical point was

an extension of the critical point calculation procedure and criterion given by Michelsen

(1984). The computational procedure had the potential to calculate the critical points of

even higher orders.
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Kohse and Heidemann (1993) suggested a different approach to evaluate the

intermediate functions involved in the tricritical point computation method given by

Michelsen and Heidemann (1988). A different solution procedure was also suggested. A

combination of the approach taken by Heidemann and Khalil (1980) and Michelsen and

Heidemann (1988) was used in this work. From the available methods to calculate

critical point, the Kohse and Heidemann approach, restricted to an ordinary critical

point calculation, was used in the current project. The reasons for using this approach

were the simplicity in computation, the good strategy for an initial guess and the

documented better convergence.
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3. ALGORITHM TO CALCULATE K- AND L-POINTS

3.1. Introduction

A critical phase and a non-critical phase in equilibrium constitute a K- or an L-

point. Methodologies for the calculation of critical point and for the search of

equilibrium phase were combined to locate the K- and L-points in phase space. Detailed

explanation of these two procedures is given in the following sections along with the

flowchart of the algorithm. The difference between the calculation method used in this

work and the calculation method used by other researchers (Gauter et al., 1999) is

identified. The numerical and thermodynamic issues in the generalization of the

algorithm are discussed.

3.2. Critical Point Calculations

K- and L-points were calculated using the approach followed by Kohse and

Heidemann (1993) for calculating tricritical points of ternary mixtures. This technique

is a combination of two procedures (Heidemann and Khalil, 1980 and Michelsen and

Heidemann, 1988) with some modifications in the evaluation method of the

intermediate functions and the solution procedure. The equations associated with this

approach are explained in the following sections with a detailed solution procedure and

numerical methods.
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3.2.1. Methods to Calculate Critical Point

Heidemann and Khalil (1980) implemented the following procedure to

calculate critical points:

Consider a test phase of N components where the ith component contributes ni

moles. At a constant volume and temperature, stability of the homogeneous test phase

requires that the Helmholtz free energy, A, generated by a small change in the

composition of the test phase, in∆ , is bound by the constraint:

0
00 ,1

00 >







∆−− ∑

= VT

N

i
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iµ is the chemical potential of component i and the subscript ‘0’ refers to the test phase.

Expanding the Helmholtz free energy function in Taylor series about the test phase

results in the following stability requirement:
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Reid and Beegle (1977) defined a critical point as a stable point which lies on

the limit of stability. Using this definition, at a critical point, the quadratic form of

equation (3.2) will be positive semi-definite. That is, the matrix Q, defined with

elements


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ij nn
Aq

2

       (3.3)
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will have a zero determinant,

0)det( == QQ        (3.4)

and the cubic term of equation (3.2) will also be zero:
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Furthermore, the stability of the critical point requires that the quadratic term in the

expansion be positive. ni in equation (3.5) and in the quadratic term are determined

from one of the non-zero solutions of

n = 0       (3.6)

where n = ( )T
Nnnn ∆∆∆ ,...,, 21 .

The derivatives within equations (3.3) and (3.5) may be replaced with
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where nT is the total number of moles in the system and fi is the fugacity of ith

component. Equations (3.7) and (3.8) can be evaluated using any equation of state.

Equations (3.4), (3.5) and (3.6) give the method to calculate the critical point. The two

conditions for a critical point are equations (3.4) and (3.5) and ni in equation (3.5) is

calculated using equation (3.6).

Michelsen and Heidemann (1988), in their approach for calculating a tricritical

point, used the criterion for critical points derived from the Gibbs tangent plane

criterion for stability (Michelsen, 1982a). These criterion were developed as follows:



34

Let z be the composition of the mixture for which the critical point is to be

calculated. The condition for the stability of the mixture with respect to a trial phase at a

specified temperature and pressure ( 00 , PT ) is

( ) ( ) ( )( ) 01lnlnlnln1 ≥−−−++= ∑
i

iiiii znnF znn φφ  (3.9)

which is similar to equation (2.8). n  represents the mole numbers of any trial phase.

The first and second partial derivatives of F with respect to in  are,

( ) ( )zn iiiii znnF φφ lnlnlnln −−+=∂∂    (3.10)

( ) ( )
n

2 ln1 jiijiji nnnnF ∂∂+=∂∂∂ φσ    (3.11)
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If the modified tangent plane distance is considered as the function of translated mole

numbers defined as,

( ) 2/1
iiii zznX −=       (3.13)

the partial derivatives of F with respect to these translated mole numbers become

( ) iiiiii
i

gznz
X
F )(lnln)(lnln2/1 =−−+=

∂
∂ zn φφ (3.14)

( ) ( ) ijjijiijji BnzzXXF =∂∂+=∂∂∂ ln2/12 φσ   (3.15)

ig  is an element of g  and Bij is an element of B.

A distance parameter s is introduced such that

uTX = s        (3.16)
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where u is a vector with property 1T =uu . Considering the dependence of F on s, the

Taylor series expansion of F about the phase, with composition z, can be written as

( )( )
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= =

∞

=
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65432
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   (3.17)

At 0=s , 0=F ( )ii zn =  and also ( ) 00 ===′ ∑
i

ii sgna . To obtain the

coefficients, K,,, dcb ′′′ , in equation (3.17), mole number X is expanded as

K+++= qwuX 32 sss      (3.18)

For the mole numbers to satisfy the constraint in equation (3.16), w and q must be

orthogonal to u. 0=′=′ cb  satisfies the condition for an ordinary critical point (similar

to conditions defined in equations (3.4) and (3.5)) (Michelsen, 1984) and

0=′=′=′=′ edcb  is the condition for a tricritical point. Stability of an ordinary

critical point is assured if 0≥′d  and 0≥′f is the condition for the stability of a

tricritical point. The task of calculating an ordinary critical point involves the evaluation

of coefficients cb ′′,  and d ′  and solving the equations such that the coefficients b′  and

c′  are equal to zero.

 Michelsen (1984) and Michelsen and Heidemann (1988) calculated an

ordinary critical point by finding the temperature and pressure (taking temperature and

pressure as independent variables) using a two-dimensional Newton-Raphson search to

make the coefficients equal to zero. But Kohse and Heidemann (1993) modified this

technique and employed the solution procedure of Heidemann and Khalil (1980),

thereby taking temperature and volume as independent variables. The coefficient b′  is

made zero by adjusting the temperature in the inner loop and coefficient c′  is made
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zero in the outer loop by adjusting the volume. A Newton-Raphson technique was used

in both the loops. This improvement in the solution procedure helps in finding multiple

critical points, if present.

3.2.2. Evaluation of cb ′′, and d ′

Michelsen and Heidemann (1988) chose u to be an eigenvector corresponding

to the minimum eigenvalue of the Hessian B with the coefficient b′  being half the

minimum eigenvalue. With the coefficient b′  being zero at the critical point, the

minimum eigenvalue of B has to be zero, since B must be singular. In the inner loop of

the critical point calculation, the temperature is adjusted to make the determinant of B

equal to zero. The vector u is then calculated from

0=Bu         (3.19)

Once the coefficient b′ is made zero in the inner loop, the algorithm proceeds

to calculate c′  in the outer loop. The development of an equation to calculate the

coefficient c′  (Michelsen and Heidemann, 1988) is described below.

As the calculation of a critical point is based on the tangent plane criterion,

stability of the critical phase is determined by the sign of F. X is found by minimizing F

subject to the constraint of equation (3.16) using the method of Lagrangian multipliers.

The minimization criterion is equation (3.20) whereγ , the Lagrangian multiplier, is

given by equation (3.21).

( )( ) uXg γ=s        (3.20)

K+′+′+′+′== 432 5432 sesdscsbdsdFγ   (3.21)

The elements of g  are given by equation (3.14). Differentiating equation (3.20) twice

gives,
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uBwr c′=+ !32       (3.22)

where

( ) 0
22

=∂∂= ssgr  with uX s= .    (3.23)

r is calculated by numerical differentiation of g  around 0=s . in , required for the

evaluation of ig , is calculated using equation (3.13) with X = su. Pre-multiplying

equation (3.22) by Tu gives,

( ) !3Tru=′c        (3.24)

Equation (3.24) is used to calculate coefficient c′  once the values of u and r are known.

Coefficient d ′  can be calculated from the numerical differentiation of Fs

about 0=s :

( )
!4

0
33

=∂∂
=′ ss sF

d .      (3.25)

Fs is the gradient of function F along the distance parameter s, which can be analytically

calculated as

( )∑ ∂∂=∂∂=
i

iis sXgsFF .     (3.26)

The value of coefficient c′  depends only on u but to calculate the coefficient d ′ , the

translated mole number vector is expressed as a function of u and w:

wuX 2ss +=        (3.27)

Equation (3.27) is used to calculate the term ( )sX i ∂∂  in equation (3.26) as

swusX iii 2+=∂∂       (3.28)

w is found by solving equations (3.22) and (3.29) simultaneously.

uTw = 0       (3.29)
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3.2.3. Numerical Methods Used

At a fixed composition, the critical point temperature and volume were found

using a nested one dimensional search. The inner loop updates the temperature at a

fixed volume and the outer loop updates the volume. The temperature was altered using

a Newton-Raphson method, to make the determinant of B equal to zero. The

determinant of B was calculated by performing the Gaussian elimination to get an upper

triangular matrix and then taking the product of the diagonal elements. The derivative of

the determinant of B with respect to temperature was calculated numerically, using the

central difference formula. The convergence criterion employed for the inner loop

was 510−<∆ TT . Equation (3.19) was then solved using the upper triangular form of

B, and u was determined using back substitution by setting 1=Nu . u was then

normalized. After calculating the temperature on a stability limit, c′  is calculated in the

outer loop and the volume is altered to equate c′  to zero, using a Newton-Raphson

method. The derivative of c′  with respect to the volume is calculated numerically using

a central difference formula. The two nested loops repeat until the critical temperature

and volume are found at the specified composition. The convergence criterion used for

the outer loop was 1010−<∆ vv . The flowchart of the critical point calculation method

is shown in Figure 3.1 (b).

3.3. Search for Equilibrium Phase

Equilibrium phase calculations were done by implementing the tangent plane

criterion (Michelsen, 1982a). The temperature and pressure were fixed as the critical

temperature and pressure when the search of equilibrium phase began.
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3.3.1. Equations

The critical phase is the reference phase for equilibrium phase computations

and the reference composition is represented by ( )T
21 ,,, Nzzz K=z . Let

( )T
21 ,,, Nyyy K=y  represent the composition of the trial phase and

( )T
21 ,,, NYYY K=Y  represent the unnormalized mole fractions of the trial phase (y is

analogous to k and Y is analogous to K, in section 2.5.1.2). The equations associated

with the tangent plane criterion, already discussed in section 2.5.1.2, are

( ) ( ) 0lnln =−− θzY crit
ii ff      (3.30)

and









−= ∑

=

N

i
iY

1
lnθ       (3.31)

which are analogous to equations (2.9) and (2.10). Combining these two equations we

get our N working equations to solve for N unknowns, Yi:

( )( )PfYg i
crit

iii lnlnlnexp −−−= Yφ .   (3.32)

3.3.2. Numerical Methods Used

The search for an equilibrium phase begins with an initial guess for the

equilibrium phase composition. Equations (3.32) are solved iteratively using an

accelerated successive substitution method (Mehra and Heidemann, 1983) or Newton-

Raphson method. Upon convergence, θ  is calculated using equation (3.31). If θ  is not

zero, the critical composition can be changed using a secant step and a new critical

point can be found.

An accelerated successive substitution method was given by Mehra et al.

(1983) with the introduction of an acceleration factor, λ . In the case of an ordinary
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successive substitution method, to solve equation (3.32) the mole number Y would be

updated as,

gY −=∆        (3.33)

But in the case of an accelerated successive substitution method, the mole numbers

were updated as

gY λ−=∆        (3.34)

The acceleration factor, λ , is chosen so as to minimize/maximize the distance

from the tangent to the Gibbs surface at the reference phase composition to the Gibbs

surface at the trial composition i.e. to find the stationary point.  Expanding the distance

D in a Taylor series, taking mole numbers as the independent variables, we get

[ ]YJYYg ∆∆+∆=
∆ T

RT
D      (3.35)

where g is the vector with elements ig , J is defined by equation (3.36) and the terms

D∆  and Y∆ hold the significance similar to that in equations (2.8) and (3.31)

respectively.

RT
D2∇

=J        (3.36)

The acceleration factor can be chosen so as to minimize/maximize D after the iteration

of successive substitution by taking

( ) 0=∂∆∂ λRTD       (3.37)

Putting the value of Y∆ from equation (3.34) and applying the condition in equation

(3.37),

gJg
gg

1T

T

−=λ        (3.38)
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To avoid the complication in accelerated successive substitution method an

approximation of

1−−≅∆ nn ggYJ       (3.39)

can be used, where the subscript indicate the iteration count. From equations (3.32),

(3.38) and (3.39)
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     (3.40)

The algorithm was initiated using 1=λ .

3.4. Flowchart of algorithm calculating K- and L-points

Figure 3.1 (a) shows the flowchart of the algorithm to calculate K- and L-

points. The algorithm starts with the input of critical properties and acentric factor data

for the components and an initial guess for the critical phase composition is made. With

the specified critical composition, control enters the critical point calculation loop

where the critical point for the specified composition is calculated. After calculating the

critical temperature and volume, the critical pressure is calculated using the Peng-

Robinson equation of state. The control then enters the loop to calculate the equilibrium

phase. If θ  meets the convergence criterion ( 510−<θ ), a K- or L-point has been found.

If it does not meet the convergence criterion then the critical phase composition is

updated using a secant method.

Figure 3.1 (b) shows the flowchart of the calculation procedure for the critical

point. A nested one dimensional search is used to calculate the critical point. The

temperature is altered in the inner loop to make the determinant of B equal to zero and

the volume is updated in the outer loop to get 0=′c .
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Figure 3.1: (a) Flow chart of the algorithm calculating K- and L-points. (b)
Flowchart of the algorithm calculating a critical point.
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3.5. Mathematical and Thermodynamic Concerns

The algorithm to calculate K- and L-points had to be generalized in order to be

used with other simulations. By generalization, it is meant that with the input of critical

properties of the components and the binary interaction parameter values, the algorithm

should be able to calculate the K- and L-point without any modifications from the user.

However there were some thermodynamic and numerical concerns in the generalization

or automation of the algorithm which are addressed in the following sub-sections of the

thesis. Also a comparison was done amongst different numerical methods and a study of

their speed of convergence, robustness and accuracy is reported.

3.5.1. Effect of Binary Interaction Parameter

The binary interaction parameter not only affects the end results of the

algorithm calculating K- and L-points, but also has an impact on the calculation

procedure of K- and L-points. In the systems with identified K- and L-points, before

searching for the mathematical K- or L-point with a specified binary interaction

parameter, an analysis was done to confirm the existence of the point

The Gibbs free energy of mixing was plotted for different values of the binary

interaction parameter at the temperature and pressure of the experimentally determined

K- or L-point using the Peng-Robinson equation of state. An example of such a plot is

shown in Figure 3.2 for an ethane + ethanol binary system. In Figure 3.2, for 04.0=ijδ ,

the Gibbs free energy surface is concave upwards throughout the composition range and

there is no sign of any phase split. With 135.0=ijδ , the Gibbs energy plot is convex

upwards between mole fractions 0.2 and 0.95 and a system with any composition

between these points will split into two phases to attain a state that is
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thermodynamically more stable. Therefore, it is imperative for the Gibbs energy plot at

a K- or L-point to become convex upwards at least once in the composition range for

two equilibrium phases to co-exist. If this property does not exist for a given interaction

parameter, the equilibrium phase search converges to a trivial solution, i.e. the reference

phase composition. The reason for converging to the trivial solution is that due to

absence of another equilibrium phase, the only composition that satisfies equation

(3.32) is the composition of the reference phase itself.

Figures 3.3 and 3.4 show the Gibbs free energy of mixing surface, drawn

using the Peng-Robinson equation of state, for a ternary system of CO2 + 1-Pentanol +

Tri-decane at one of the experimental K-points of the system.  Figure 3.3 shows the plot

with the values of binary interaction parameters as zero. The Gibbs energy surface is

concave upwards through out the composition plane and the tangent plane drawn at any

point does not have two points of tangency, to indicate the presence of two equilibrium

phases. Conversely the Gibbs surface in Figure 3.4, drawn with non-zero values of the

binary interaction parameters ( )10.0,15.0,17.0 231312 === δδδ , clearly shows a

possible phase split if the feed composition lies near 6.0
2

=COx . This sort of

preliminary analysis allowed initial binary interaction parameters to be chosen such that

a K- or L-point did exist.
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Figure 3.2: Gibbs energy plot for ethane + ethanol system at 315 K and 5.34 MPa.
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Figure 3.3: Gibbs energy plot for a ternary system of CO2 (1) + 1-pentanol (2) + Tri-
decane(3) at 317.43 K and 9.22 MPa, an experimental K-point for the system.
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Figure 3.4: Gibbs energy plot for ternary system of CO2 (1) + 1-pentanol (2) + Tri-
decane (3) at 317.43 K and 9.22 MPa, an experimental K-point for the system.

15.0,17.0 1312 == δδ  and 10.023 =δ .

3.5.2. Initial Guess for Critical Phase Composition

An initial guess for the critical phase composition is one of the parameters to

be provided to initiate the algorithm to calculate a K- or L-point. The critical point

calculation part of the algorithm calculates the critical temperature and volume for this

specified composition. For any binary system, there exists a critical line comprising of

critical points at different compositions. For a particular initial guess of the critical

phase composition, the algorithm may fail to calculate the critical point (for example, in

the case of a Type-III phase diagram where there is no continuous critical line joining

the two pure component critical points) which leads to the failure of the algorithm in

this initial stage. To avoid this situation, the range of initial guesses for the critical

phase can be narrowed down significantly by taking into consideration the fact that a K-

or an L-point exists much closer to the critical point of the lighter component than to the

GM

X1 X2



48

critical point of the heavier component, in P-T space. This implies that the critical phase

in a K- or an L-point is rich in the lighter component. A mole fraction of lighter

component between 0.95 and 1.0 can be thought of as a good initial guess, but this

initial guess also has an impact on the equilibrium phase calculation.

If a critical point calculated using an initial guess does not have an equilibrium

phase, the search converges to a trivial solution, the critical composition. This is

illustrated in Figure 3.5. With an initial critical composition guess of 0.99 for the critical

phase, the critical point of anthracene + n-pentane system is calculated at 478.433 K and

3.6188 MPa. Figure 3.5 shows the Gibbs energy surface at this temperature and

pressure and the tangent drawn to the surface at this critical composition. Equation

(3.31) is solved to search for the equilibrium phase, which can be interpreted physically

as the search for a solution in the composition space, such that the tangent drawn to the

surface at that point is parallel to the tangent drawn to the surface at the critical or the

reference phase composition. However Figure 3.5 shows that none of the lines parallel

to the tangent at the critical composition are tangents to the surface. Conversely, a

tangent to any point in the composition range is not parallel to the tangent at the critical

composition except the tangent at the critical composition itself. Hence the algorithm

converged to a trivial solution in this case.
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Figure 3.5: Gibbs energy surface and tangent to the surface at critical phase
composition. Xpentane = 0.99, T = 478.433 K and P = 3.6188 MPa (Anthracene + n-
Pentane).

With an initial composition guess of 0.975 for the critical phase, the critical

point of the same system is calculated at 489.216 K and 3.9735 MPa. Figure 3.6 shows

the Gibbs energy surface at this temperature and pressure and a tangent drawn to the

surface at the critical composition. In this figure it can be seen that there exists a tangent

which is parallel to the tangent drawn at the critical composition and hence the

algorithm gives a non-trivial solution.

— Gibbs Surface
Line parallel
to the tangent at
critical
composition
Tangent at the
critical
composition
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Figure 3.6: Gibbs energy surface and tangent to the surface at critical phase
composition. Xpentane = 0.975, T = 489.216 K and P = 3.9735 MPa (Anthracene + n-
Pentane).

3.5.3. Initial Guess for Critical Volume and Temperature

A strategy for the initial guess of critical temperature and volume was given

by Heidemann and Khalil (1980). The same strategy was followed in this work with

some modifications to calculate the higher density critical points. Calculating a point on

the stability limit for a mixture of specified composition requires finding a temperature-

volume pair, which makes the coefficient b′  equal to zero, or equivalently, the

determinant of B equal to zero. To make the algorithm converge to a meaningful

— Gibbs Surface
Line parallel
to the tangent at
critical
composition
Tangent at
critical
composition
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temperature, it was suggested that the elements of B be multiplied by the factor ( )100T

and an initial guess for the temperature to be taken as ∑
i

ci i
Tz5.1 .

For the critical point calculation to converge to a liquid-vapour critical point,

the coefficient c′  was multiplied by the factor ( ){ }22 mm bbv −  and the initial guess for

the volume was taken as mb85.3 .

3.5.4. Multiple Critical Points

The strategies mentioned in section 3.5.3 give excellent results for calculating

the vapour-liquid critical point which is needed in case of a K-point calculation. But in

case of an L-point calculation, a liquid-liquid critical point is to be evaluated. There

may be a situation where both liquid-liquid and vapour-liquid critical points exist and

the one of interest is the liquid-liquid critical point. Once the temperature-volume pair

which lies on the stability limit is found, a plot of the coefficient c′  vs. volume can be

plotted to see the presence of a higher density critical point (See Figure 3.7). It was

observed that some changes in the initial guess of volume and the multiplication factor

for the coefficient c′  can also lead to the convergence of a liquid-liquid critical point. If

there exists a liquid-liquid critical point then an initial guess for critical volume of mb2

and the coefficient c′ , without the multiplication factor, would result in the algorithm

converging to the desired critical point.
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3.5.5. Initial Guess for Equilibrium Phase

A good initial guess for the equilibrium phase composition is required for the

subroutine to converge to a non-trivial solution, provided one exists. The numerical

analysis of the equilibrium phase calculations was done using the anthracene + n-

pentane system. Taking into consideration the location of K- and L-points in the

composition space, as stated earlier, the critical phase is predominantly rich in the

lighter component, n-pentane. Hence an initial guess for the equilibrium phase

composition that is rich in the heavier component works for most of the cases.

However, if the calculations are heading towards a trivial solution, they are terminated

and new guess for the equilibrium phase is chosen. The matrix M ′ , defined as
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      (3.41)

becomes singular at the trivial solution. This phenomenon can be used to track the

convergence and to avoid the algorithm from reaching a trivial solution. The spectral

radius of M ′  reaches unity at the solution of the equilibrium phase calculations.

Figure 3.8 shows the convergence of the Newton-Raphson method for an

equilibrium phase calculation, heading to the trivial solution. The system studied is

anthracene + n-pentane and the temperature and pressure are that of the critical point

calculated for the system at a mole fraction of n-pentane equal to 0.95. The initial guess

for the equilibrium calculation is an n-pentane mole fraction of 0.6. Figure 3.9 shows

the convergence of the equilibrium phase calculations to a non-trivial solution. The

temperature and pressure are the same as those for Figure 3.8 but the initial guess is an

n-pentane mole fraction of 0.2.
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Figure 3.8: Equilibrium phase calculations converging to a trivial solution with an
initial guess of 0.6 and Newton-Raphson method.
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Figure 3.9: Equilibrium phase calculations converging to non-trivial solution with
an initial guess of 0.2 with Newton-Raphson method.

3.5.6. Accelerated Successive Substitution vs. Newton-Raphson

A comparison of the accelerated successive substitution method and the

Newton-Raphson method was done for the anthracene + n-pentane system at the

temperature and pressure of the critical point calculated at an n-pentane mole fraction of

0.975. Figure 3.10 shows the convergence for both the methods. It can be observed

from the figure that the accelerated successive substitution method approaches the

solution faster than the Newton-Raphson method in the initial stage of the search but the

Newton-Raphson method works better for fine-tuning the root near the solution. The

actual solution lies at an n-pentane mole fraction of 0.3615. The chances of an

— Mole fraction
of n-pentane

)det(M ′
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accelerated successive substitution method to diverging are less than that of the

Newton-Raphson method with a poor initial guess (Peng, 1991).
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Figure 3.10: Comparison of the accelerated successive substitution method and the
Newton-Raphson method. Anthracene + n-pentane system was used and an
equilibrium phase was searched for the critical point of a mixture of 0.975 mole
fraction of n-pentane.

Taking into consideration the ability of the accelerated successive substitution

method to approach the solution faster from a general initial guess, and the ability of the

Newton-Raphson method to work as a better fine-tuning technique, an attempt was

made to combine both the methods. A switch from the accelerated successive

substitution method to the Newton-Raphson method was made at

— Accelerated successive
substitution method

 Newton-Raphson
method

Actual solution lies at 0.3615
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







≤







 −∑ 410CNg
i

i . Table 3.1 shows the improvement in the speed of convergence

upon combining the two methods. The initial guess for the equilibrium phase was kept

constant at an n-pentane mole fraction of 0.01. This comparison was done for the search

of an equilibrium phase for critical points calculated at different compositions. The

equilibrium phase search resulted in a finite value of θ  everytime.

Table 3.1: Improvement in the convergence speed on combining the Newton-
Raphson method and the accelerated successive substitution method. (Numbers in

parenthesis are estimated CPU time)

Critical phase
composition

( epenz tan )

Iterations for
N-R method

Iterations for
Acc. S. S. method

Iterations for
Acc. S. S. + N-R

0.96 34 (0.258) 34 (0.150) 17 + 7 = 24
(0.128)

0.965 38 (0.289) 45 (0.198) 15 + 15 = 30
(0.180)

0.97 35 (0.266) 103 (0.453) 17 + 13 = 30
(0.174)

0.975 36 (0.274) 84 (0.370) 13 + 5 = 18
(0.095)

The CPU time was also calculated for these two numerical methods and it was

observed that a single iteration of the Newton-Raphson method takes 0.0076 units of

CPU time whereas a single iteration of accelerated successive substitution method takes

0.0044 units of CPU time (measured for anthracene + n-pentane system at 496.84 K and

4.28 Mpa). In all cases tried, the hybrid method required less computing time than the

Newton-Raphson or accelerated successive substitution method alone.
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3.5.7. Convergence Criterion for Equilibrium Phase

The convergence criterion used for the equilibrium phase calculations in this

work was 







<







 −∑ 810CNg
i

i  and it was kept the same for all the systems studied.

A study was done to see the effect of the convergence criterion on the results of the

equilibrium phase calculations. Table 3.2 shows the effect of changes in the

convergence criterion on the calculated value of θ  for the phase. The equilibrium phase

calculations shown in Table 3.2 were done with the critical point calculated with the

mole fraction of n-pentane equal to 0.975. With more stringent convergence criterion

for the equilibrium phase, the θ  value improves but, as can be seen from the table,

when the convergence criterion was made as 10-10, the algorithm converged to a trivial

solution. Theoretically θ  equals to zero at the equilibrium phase and critical phase but

numerically it is much easier to get a zero value of θ  at the critical phase. Hence

tightening the convergence criterion results in the algorithm converging to a trivial

solution (the critical phase composition).

Table 3.2: Sensitivity of results of the equilibrium phase calculations to the
convergence criterion.

∑
i

i NCg 610×θ

410− 11.545

610− 1.9124

810− 0.196

1010− Trivial Solution
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3.5.8. Upgrade of Critical Composition

The critical phase composition is updated based on the value of θ  calculated

from equilibrium phase calculations using a secant method. In this process of upgrading

the critical phase composition the composition may change to a value where there is no

phase in equilibrium (see Figure 3.5). This situation may arise if θ  calculated at a base

and perturbed composition, which differ significantly. Hence, it is recommended that

the composition of the critical phase be changed by a small margin to calculate θ  at the

perturbed composition. A perturbation of 610−×criticalx  worked for most of the cases

studied, where criticalx  is the mole fraction of the lighter component in the critical phase.
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4. RESULTS AND DISCUSSION

4.1. Introduction

The algorithm described in chapter 3 was used to calculate K- and L-points for

different systems. The K- and L-points were calculated using a range of binary

interaction parameters for the Peng-Robinson equation of state. The effect of the binary

interaction parameter on computed K- and L-points was studied and results were

compared with the experimental data in literature to fit the binary interaction parameter.

The qualitative effect of the binary interaction parameter on the P-T projection of the

binary system in phase space was also studied. The P-T projection of a binary system,

predicted with the binary interaction parameter fitted using a K- and/or an L-point, was

then compared with the experimental phase behaviour data of the system.

The success of this method in fitting the binary interaction parameter and the

capability of the Peng-Robinson equation of state to determine the high pressure

complex phase behaviour are discussed.

4.2. Systems Studied

The propane + polyaromatic hydrocarbon binary system is a model heavy oil

system and hence was chosen for this study. The experimental data of the phase

behaviour of propane binaries with fluorene, with phenanthrene and with
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triphenylmethane given by Peters et al. (1989) was used to compare with the computed

results.

The phase behaviour of binary hydrocarbons has considerable theoretical

importance because the multiphase equilibrium properties are required for the design of

separating units in the production and refining of petroleum. The systems studied of this

type were methane binaries with n-pentane, n-hexane and n-heptane.

Experimental phase behaviour of binary mixtures composed of a polar and a

non-polar species was studied by Lam et al. (1990). The ethane + ethanol system, as a

representative of this type, was studied in order to complement the experimental studies

with the results computed using an equation of state. The pure component critical

properties and acentric factors, used to calculate the equation of state parameters are

listed in Appendix B, Table B.1.

4.2.1. Alkane + Alkanol

Multiphase equilibria of binary mixtures of ethane + n-alkanol were studied by

Lam et al. (1977) and the experimental studies show that a three-phase line is present in

all the cases. The phenomenon of a three-phase line extending from a lower critical end

point to an upper critical end point was observed in ethane binaries of ethanol, n-

propanol and n-butanol. The phase behaviour of this type of system was calculated in

this work using the Peng-Robinson equation of state and the qualitative effect of the

binary interaction parameter on the phase behaviour was studied.

4.2.1.1. Ethane + Ethanol

The ethane + ethanol system shows Type-V phase behaviour experimentally.

Experimental studies of the phase behaviour of the system were done by Bruner
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(1985b) and Lam et al. (1977), and both the researchers recorded similar observations

regarding the phase behaviour of the system; however there was a slight variation in the

experimental K- and L-points. Lam et al. (1977) observed the K-point of the system at

314.66 K and 5.556 MPa and the L-point at 309.04 K and 4.980 MPa. Bruner (1985b)

observed the K-point at 314.36 K and 5.537 MPa and the L-point at 308.72 K and 4.952

MPa. The experimental data used in this work for comparison, was that taken from Lam

et al. (1977).

K- and L-points for the ethane + ethanol system were calculated using

different values for the binary interaction parameter. It was observed that the location of

K- and L-points varied significantly in P-T space with change in the binary interaction

parameter. The K-point calculated using a binary interaction parameter of 0.135

matched the experimental K-point temperature and the L-point calculated using a binary

interaction parameter of 0.0362 matched the experimental L-point temperature. From

this it is apparent that a single value of the binary interaction parameter was not able to

predict both K- and L-points well. Additionally, it was noted that a single value of

binary interaction parameter without a pressure and/or temperature dependence was

unable to predict the presence of both the K- and L-points simultaneously.

A P-T phase diagram of the system was constructed with the two values of the

binary interaction parameter which gave the best fit for the K- and L-points. The binary

interaction parameter giving the best match for experimental L-point ( 0362.0=ijδ )

resulted in a Type-II phase behaviour for the system, and the binary interaction

parameter giving the best match for experimental K-point ( 135.0=ijδ ) resulted in a
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Type-III phase behaviour for the system. Figures 4.1 and 4.2 show the phase diagrams

for the system with these two different values of binary interaction parameters.

A typical Type-II phase diagram can be seen in Figure 4.1 but the liquid-liquid

critical line is seen extending past the upper critical end point. Though the critical points

calculated in this case were stable by themselves, they were unstable when a three-

phase solution was considered with the same overall composition. A similar

phenomenon can be observed for the phase diagram shown in Figures 4.2a and 4.2b,

where the critical liquid-vapour line extends past the upper critical end point. A

magnified view of the part of the phase diagram in Figure 4.2a which is in the rectangle

is shown in Figure 4.2b. The upper critical end point in this case is the K-point whereas

it is an L-point in Figure 4.1. The calculations of the critical line were stopped in both

the cases when the critical point calculated became unstable ( 0<d ).
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Figure 4.1: Phase diagram for the ethane + ethanol system using the Peng-
Robinson equation of state with δij = 0.0362. Type-II phase behaviour.
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Figure 4.3: Variation of Critical Line with binary interaction parameter for ethane
+ ethanol system. Peng-Robinson equation of state was used.

A study was done to see if the experimentally observed Type-V phase

behaviour can be reproduced in the ethane + ethanol system for any value of binary

interaction parameter.  Figure 4.3 shows a plot of the critical line for binary interaction

parameters in the range of 0.0 ≤ δij ≤ 0.17.  A continuous critical line, starting and

ending at the pure component critical points, can be observed for values of the binary

interaction parameter between 0.0 and 0.03, inclusive.  Three-phase lines calculated for

different values of the binary interaction parameter revealed that for δij ≤ 0.05, the three-

phase line terminated in an L-point while for δij ≥ 0.07; the three-phase line terminated

in a K-point.  For δij ≥ 0.05 it was observed that the critical line was discontinuous.  The

critical lines for δij > 0.13, show a definitive Type-III behaviour.  No value of δij tried

— Critical line
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Critical Pt.
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resulted in a three-phase line terminating in both a K- and an L-point, a key

characteristic of Type-V phase behaviour. For the binary interaction parameter values

less than 0.0, a continuous critical line was observed. The effect of the binary

interaction parameter value on the phase behaviour of ethane + ethanol system is

summarized in Table 4.1.

Table 4.1: Binary Interaction parameter for the Peng-Robinson equation of state
and phase behaviour of ethane + ethanol system.

Binary Interaction

Parameter
Phase Behaviour

03.0≤ijδ Type-I

05.003.0 ≤< ijδ Type-II

13.005.0 ≤< ijδ No definite type

13.0>ijδ Type-III

4.2.2. Methane + n-Alkane

Multiphase equilibria of binaries of methane and n-alkane were studied by Lin

et al. (1977), Chang et al. (1966) and Shim et al. (1962) to name a few. The presence of

a three-phase line and an upper and/or lower critical endpoint was observed in all the

binaries of methane with n-butane and higher n-alkanes. The systems studied in this

work are the binaries of methane with n-pentane, n-hexane and n-heptane. The binaries



69

of n-pentane and n-hexane show Type-V phase behaviour whereas Type-III phase

behaviour was observed experimentally for the binary of n-heptane.

Multiphase equilibria of these systems were calculated using the Peng-

Robinson equation of state with different values of the binary interaction parameter.

The effect of the binary interaction parameter on the K- and L-points and on the overall

phase behaviour of these systems is discussed in the following section.

4.2.2.1. Methane + n-Pentane

The methane + n-pentane system experimentally shows Type-V phase

behaviour (Chu et al., 1976). The precise data for the critical endpoints of the methane +

n-pentane system could not be found. However, the effect of the binary interaction

parameter on the location of the K- and L-points in P-T space was studied. The K-points

for the system were calculated for a range of interaction parameters between -0.1 to 0.1,

inclusive. Figure 4.4 shows the variation of the K-points with respect to changes in the

binary interaction parameter. The K-point moves to a higher temperature and pressure

with an increase in the value of the binary interaction parameter but the trend reverses

after the interaction parameter value of 0.0. The K-point calculated with the binary

interaction parameter value of 0.0 is at the highest temperature and pressure. The

variation of an L-point of the system with respect to the changes in the binary

interaction parameter is shown in Figure 4.5. An L-point was not found for values of the

binary interaction parameter greater than 0.03.
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Figure 4.4: Variation of the K-point in the methane + n-pentane system with
changes in the binary interaction parameter for the Peng-Robinson equation of
state.
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Figure 4.5: Variation of L-point in the methane + n-pentane system with changes
in the binary interaction parameter for the Peng-Robinson equation of state.

The variation of the critical lines of the system with changes in the binary

interaction parameter was also studied in order to understand the effect of the binary

interaction parameter on the type of the P-T phase behaviour of the system. For

interaction parameters in the range of –0.1 ij  0.0, a continuous critical line, starting

and ending at the pure component critical points was observed, a characteristic of Type-

I or Type-II phase behaviour. For the interaction parameter values between 0.01 and

0.03, it was observed that the critical lines showed Type-V phase behaviour.  When the

interaction parameter was increased further, the critical lines indicated Type-III phase

behaviour. The variation of the phase behaviour of this system with change in the value

of the binary interaction parameter is summarized in Table 4.2.
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Table 4.2: Binary Interaction parameter for the Peng-Robinson equation of state
and phase behaviour of methane + n-pentane system.

Binary Interaction

Parameter
Phase Behaviour

0.01.0 ≤≤− ijδ Type-I or Type-II

03.00.0 ≤< ijδ Type-V

ijδ<03.0 Type-III

A binary interaction parameter of 0.02 proved to be successful in predicting

the correct type of phase behaviour for the methane + n-pentane system. Figure 4.6

shows a part of that phase diagram which focuses on the location of the K- and L-

points, the critical line and the three-phase line terminating in a K- and an L-point. The

phase diagram is developed using an interaction parameter value of 0.02. Note that the

critical line extends past the L-point (or lower critical endpoint). The critical points

were stable by themselves but proved unstable when a three-phase solution at the same

overall composition was considered. The calculations of the critical line were

terminated when the calculated critical points became unstable ( 0<d ). A feature

representing the typical Type-V phase behaviour, a three-phase line bounded between

the upper and lower critical endpoint and the critical line terminating at one end in the

lower critical endpoint, can be seen in Figure 4.6. The critical line seen in Figure 4.6 is

the one that emerges from the pure component critical point of n-pentane. The critical

point of n-pentane can not be seen as it is beyond the scale of the plot.
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Figure 4.6: Phase diagram for the methane + n-pentane system using the Peng-
Robinson equation of state with δij = 0.02. Type-V phase behaviour can be
observed.

4.2.2.2. Methane + n-Hexane

An experimental K-point for the methane + n-hexane system occurs at 195.91

K and 5.2055 MPa while the experimental L-point is at 182.46 K and 3.4149 MPa (Lin

et al., 1977). The effect of the binary interaction parameter on the location of computed

K- and L-points of the system in P-T space was studied. Figure 4.7 shows the variation

of K-points of the system with respect to changes in the binary interaction parameter

and Figure 4.8 shows the variation of L-points of the system with respect to changes in

the binary interaction parameter. An L-point was not found for a value of binary

— Critical line
 L-point
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interaction parameter greater than -0.02. The trend in the variation of the K- and L-

points is similar to that observed for the methane + n-pentane system.
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Figure 4.7: Variation of the K-point in the methane + n-hexane system with
changes in the binary interaction parameter for the Peng-Robinson equation of
state.
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Figure 4.8: Variation of the L-point in the methane + n-hexane system with
changes in the binary interaction parameter for the Peng-Robinson equation of
state.

The variation of the critical lines of the system with respect to changes in the

binary interaction parameter was also studied in order to understand the effect of the

binary interaction parameter on the P-T phase behaviour of the system (see Figure 4.9).

When the interaction parameter was increased from –0.1 to -0.08, a continuous critical

line was observed, similar to Type-I or Type-II phase behaviour. For the interaction

parameter values between -0.08 and 0.03, it was observed that the critical line showed

Type-V phase behaviour.  When the binary interaction parameter was increased further,

the critical line became discontinuous and at the binary interaction parameter of 0.1, a

definitive of Type-III phase behaviour could be observed. Figure 4.9(a) shows the
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variation of critical lines with respect to changes in the binary interaction parameter and

Figure 4.9 (b) shows the change in the location of critical line with respect to changes in

the binary interaction parameter near the critical point of pure methane. With decrease

in the value of the binary interaction parameter the critical line shifts away from the

critical point of methane, indicating a gradual shift from Type-I or Type-II phase

behaviour towards Type-V phase behaviour. The effect of the changes in the binary

interaction parameter on the phase behaviour of methane + n-hexane system is

summarized in Table 4.3.

Table 4.3: Binary Interaction parameter for the Peng-Robinson equation of state
and phase behaviour of methane + n-hexane system.

Binary Interaction

Parameter
Phase Behaviour

08.01.0 −≤≤− ijδ Type-I or Type-II

03.008.0 ≤<− ijδ Type-V

09.003.0 ≤< ijδ No definite type

09.0>ijδ Type-III

Though any value of interaction parameter between –0.08 and 0.03 predicts

the correct shape of critical line for the system, δij = –0.02 is recommended, as it gives a

better result for both the K- and L-points.
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Figure 4.9 (a): Variation of the Critical Line of methane + n-hexane system with
changes in the binary interaction parameter for Peng-Robinson equation of state.
(b) Critical line moves away from the critical point of methane with increase in the
value of binary interaction parameter. The interaction parameter is incremented
using an interval of 0.02.
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4.2.2.3. Methane + n-Heptane

Experimentally, the methane + n-heptane system shows Type-III phase

behaviour and the K-point occurs at 191.65 K and 4.7850 MPa (Chang et al., 1966).

The effect of the binary interaction parameter on the K-point in the methane + n-

heptane system can be seen in Figure 4.10. The trend in the variation is similar to that

observed in the previous cases of methane + n-alkane binaries. The critical lines for this

system show typical Type-V phase behaviour in the range of interaction parameter

between –0.1 and 0.0, inclusive. Type-I or Type-II phase behaviour were not looked for

at lower values of the binary interaction parameter. Further increasing the binary

interaction parameter, results in a transition to Type-III phase behaviour.  Experimental

data for the methane + n-heptane system (Chang et al., 1966) shows the appearance of a

solid phase in a phase diagram similar to Type-III behaviour where the three-phase line

terminates in a four-phase point instead of an L-point.  No solid models were used in

this study to calculate multiphase equilibria involving a solid phase. The binary

interaction parameter value of 0.0 is suggested for the system as it predicts the shape of

critical lines similar to Type-III phase behaviour and calculates the K-point with the best

possible accuracy. Table 4.4 shows the variation of phase behaviour of the methane + n-

heptane system with changes in the binary interaction parameter value.
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Figure 4.10: Variation of the K-point in the methane + n-heptane system with
changes in the binary interaction parameter for the Peng-Robinson equation of
state.

Table 4.4: Binary Interaction parameter for the Peng-Robinson equation of state
and phase behaviour of methane + n-heptane system.

Binary Interaction

Parameter
Phase Behaviour

0.01.0 ≤≤− ijδ Type-V

0.0≥ijδ Type-III
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4.2.3. Propane + Polyaromatic Hydrocarbons

Experimental studies of the binaries of propane and polyaromatic

hydrocarbons were carried out by Peters et al. (1989). The phase diagrams of binaries of

propane with polyaromatic hydrocarbons having a carbon number higher than 13 are

marked with the presence of a four-phase point. The classification of binary phase

diagrams done by Van Konynenburg and Scott (1980) does not take into account the

occurrence of a solid phase.

Peters et al. (1989) observed the presence of a solid phase in the phase

behaviour of propane binaries with polyaromatic hydrocarbons and extended the

classification of phase diagrams to incorporate the solid phase. A Type-III phase

diagram, incorporating the solid phase, is shown in Figure 4.11. This type of phase

behaviour was observed experimentally by Peters et al. (1989) in the case of the

propane binaries discussed in this work.  The solid phase consists of the heavier

component (i.e. the polyaromatic hydrocarbon). The intersection of the three-phase line

(L1L2G) with another three phase line (SBLG) results in a four-phase point. The three-

phase line (SBLG) has two branches with different liquid phases (L1 or L2). The three-

phase line (L1L2G) is bounded between an upper critical endpoint (K-point, in this case)

and a four-phase point (Q). The metastable parts of the critical line and three-phase line

are indicated by dotted lines.
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Figure 4.11: Type-III phase diagram with solid phase of the heavier component i.e.
the polyaromatic hydrocarbon (Peters et al., 1989).

4.2.3.1. Propane + Fluorene

The experimental K-point for the fluorene + propane system lies at 385.5 K

and 5.11 MPa (Peters et al., 1989). K-points were calculated for this system using

different values of binary interaction parameters for the Peng-Robinson equation of

state. The variation of the K-point in the P-T space with respect to the binary interaction

parameter can be seen in Figure 4.12. The maximum temperature and pressure that can

be attained are 375.642 K and 4.5829 MPa respectively using a binary interaction

parameter value of -0.07. No value of the binary interaction parameter was able to

reproduce the experimental K-point temperature or pressure. Experimentally, the

system exhibits Type-III phase behaviour with the presence of a four-phase point

instead of an L-point.
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Figure 4.12: Variation of K-points of the propane + fluorene system with changes
in the binary interaction parameter for the Peng-Robinson equation of state.
Experimental K-point lies at 385.5 K and 5.11 MPa.

The effect of the binary interaction parameter on the shape of the critical line

was studied. Computationally, it was noted that from -0.1 ij  0.0, a critical line

representing Type-V phase behaviour was predicted. Lower values of binary interaction

parameters were not tried. The critical line becomes discontinuous when the interaction

parameter value is increased further and a definitive of Type-III, was observed for the

interaction parameter value of 0.05 (see Figure 4.13).
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Figure 4.13: Variation of Critical Line of propane + fluorene system with changes
in the binary interaction parameter for the Peng-Robinson equation of state.

Though the binary interaction parameter of -0.07 predicts the K-point with the

best possible accuracy it is not the correct choice of interaction parameter for the system

because it predicts the incorrect type of phase behaviour. A binary interaction parameter

of 0.05 is the suggested value of binary interaction parameter for the system because it

gives the closest K-point with the correct phase behaviour. Table 4.5 summarizes the

effect of binary interaction parameter on the type of phase behaviour for the propane +

fluorene system.

— Critical line
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  critical point
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Table 4.5: Binary Interaction parameter for the Peng-Robinson equation of state
and phase behaviour of propane + fluorene system.

Binary Interaction

Parameter
Phase Behaviour

0.01.0 ≤≤− ijδ Type-V

05.00.0 << ijδ No definite type

05.0≥ijδ Type-III

4.2.3.2. Propane + Phenanthrene

An experimental K-point for the phenanthrene + propane system was reported

at 377.3 K and 4.67 MPa (Peters et al., 1980).  The predicted K-points for this system

using different binary interaction parameters can be seen in Figure 4.14.  It can be

observed from the figure that no value of the binary interaction parameter gives the

same K-point temperature or pressure as the experimental results. A binary interaction

parameter of -0.03 gives the best possible results for the K-point.

Experimentally, the phenanthrene + propane system shows Type-III phase

behaviour with the existence of a solid phase.  The LLG three-phase line ends in a four-

phase point and two more three-phase lines (SLL and SLG) can be found.  The critical

locus becomes metastable at higher pressures (See Figure 4.11).
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Figure 4.14: Variation of K-point of the propane + phenanthrene system with the
changes in the binary interaction parameter for Peng-Robinson equation of state.
Experimental K-point lies at 377.3 K and 4.67 MPa.

The variation of the critical line with the changes in the binary interaction

parameter value was similar to that observed for the propane + fluorene system. The

only difference was that for propane + phenanthrene system, Type-III phase behaviour

was seen for ij = 0.06 and for propane + fluorene system it was observed at ij = 0.05.

Though the interaction parameter of –0.03 gives the best results in calculating the K-

point, it is not a good choice of interaction parameter for this system.  At δij = -0.03, the

shape of critical line does not match the experimental shape, and for δij < 0.03, the

three-phase line terminates in an L-point, which does not exist experimentally.

A value of δij = 0.06 reproduces the appropriate type of phase behaviour

keeping in mind that the four-phase point was not considered in the analysis. A portion
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of the phase diagram near the critical point of the pure methane is shown in Figure 4.15,

where one branch of the critical line goes towards the K-point and a three-phase line

can also be seen. This is the typical characteristic of Type-III phase behaviour for a

binary of propane and polyaromatic hydrocarbon, though the four-phase point is not

shown as it is beyond the scope of this project.
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Figure 4.15: Phase diagram of propane + phenanthrene system near the critical
point of methane with 06.0=ijδ , typical Type-III phase behaviour. Peng-Robinson
equation of state was used.

4.2.3.3. Propane + Triphenylmethane

An experimental K-point for the propane + triphenylmethane system was

reported at 378.8 K and 4.76 MPa (Peters et al., 1980). K-points were calculated for this

system using different values of binary interaction parameters in the Peng-Robinson

equation of state. The variation of the K-point in the P-T space with respect to the

— Critical line
 K-point
 Critical point of

propane
 Three-phase line
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binary interaction parameter can be seen in Figure 4.16. A binary interaction parameter

of 0.0 gives a K-point at the maximum temperature of 374.257 K and a maximum

pressure of 4.5198 MPa. No value of binary interaction parameter was able to compute

a K-point matching the experimental result. Experimentally, the system exhibits Type-

III phase behaviour with the presence of a four-phase point instead of an L-point.
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Figure 4.16: Variation of K-point of propane + triphenylmethane with changes in
the binary interaction parameter for the Peng-Robinson equation of state.

The effect of binary interaction on the shape of the critical line was studied.

Computationally, it was noted that for -0.1 ij  -0.08, a continuous critical line

representing Type-I or Type-II phase behaviour was predicted. Increasing the value of
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the binary interaction parameter beyond -0.08 causes the critical line to show Type-V

phase behaviour. When the binary interaction parameter was increased to 0.09 a critical

locus definitive of Type-III phase behaviour was observed. Table 4.6 summarizes the

effect of the binary interaction parameter of the Peng-Robinson equation of state on the

type of phase behaviour of the system.

Table 4.6: Binary Interaction parameter for the Peng-Robinson equation of state
and phase behaviour of propane + triphenylmethane system.

Binary Interaction

Parameter
Phase Behaviour

08.01.0 −≤≤− ijδ Type-I or Type-II

01.008.0 <<− ijδ Type-V

08.001.0 ≤≤ ijδ No definite type

09.0≥ijδ Type-III

Also it can be noted that the critical line for this value of interaction parameter

passes through a minimum in the temperature and pressure before going to higher

pressures. Peters et al. (1989) observed that the critical line, before going to higher

pressures, goes through a minimum in pressure. This characteristic is present in some

binaries of propane with the polyaromatic hydrocarbons. This feature was also observed

for the propane + triphenylmethane system and can be seen in Figure 4.17. The critical

line calculated using an interaction parameter value of 0.09 goes through a minimum in

pressure.
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Figure 4.17: Variation of critical line of propane + triphenylmethane system with
changes in the binary interaction parameter for Peng-Robinson equation of state.

Though the binary interaction parameter of 0.0 predicts the K-point with best

possible accuracy, it is not the correct choice of interaction parameter for this system

because it predicts the incorrect type of phase behaviour. A binary interaction parameter

of 0.09 is the suggested value of binary interaction parameter for the system because it

predicts the correct type of phase behaviour with the peculiar feature of the critical line

going through a minimum in pressure.

It was observed for the propane + polyaromatic hydrocarbon systems that the

binary interaction parameter fails to calculate the K-point with a good accuracy and the

binary interaction parameter which gives the best possible result fails to predict the

correct type of phase behaviour. Hence the binary interaction parameter values for the
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system studied in this work were suggested using the criterion of the shape of critical

line that represents the correct type of phase behaviour. If the interaction parameter

were fitted taking into consideration the shape of critical lines and the interaction

parameter was plotted against the carbon number of polyaromatic hydrocarbon, the

variation would be as in Figure 4.18. The straight line fit for the data is shown in the

figure. The equation of the straight line can be thought of as a correlation for the binary

interaction parameter for the propane + polyaromatic hydrocarbon system and the

carbon number of the heavier component.
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Figure 4.18: Variation of suggested value of the binary interaction parameter in
the Peng-Robinson equation of state with carbon number of the polyaromatic
hydrocarbon in propane + polyaromatic hydrocarbon system.
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4.2.4. Ternary System

The algorithm developed for calculating K- and L-points is not only applicable

to binary systems but can be applied to multicomponent systems as well. K- and L-

points have one or more degrees of freedom in a system with three or more components

respectively. In the case of a ternary system the K- or L-point has one degree of

freedom. Instead of a single K- and/or L-point, a locus of K- and/or L-points can be

observed in a ternary system. The effect of the binary interaction parameter on the

calculation procedure of K- and L-points of a ternary system has been discussed in

section 3.5.1. As an illustrative example, the algorithm was used to calculate the K- and

L-points of a ternary system of CO2 + 1-pentanol + tri-decane.

4.2.4.1. The CO2 + 1-Pentanol + Tri-decane System

An experimental study of the multiphase equilibria of the ternary system of

CO2 + 1-pentanol + tri-decane was done by Gauter et al. (1998). Experimental data for

the critical endpoints of this system was presented in their work. The purpose of

calculating K-points for a ternary system in this work was to illustrate the ability of the

algorithm to evaluate the critical endpoints of a ternary system. Fitting the interaction

parameters of the binary subsystems by means of matching the calculated results with

experimental critical endpoints of the ternary system was not done. However, Gauter et

al. (1999) showed that the binary interaction parameters for the binary subsystems,

fitted using the critical endpoint data of the subsystems, did not give a good match with

the experimental critical end point locus of the ternary system. The variation of the

binary interaction parameter of one subsystem caused change in the position of the

critical locus of the ternary system. This can be seen in Figure 4.19. The binary
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interaction parameters between CO2 + tri-decane and 1-pentanol + tri-decane are kept

constant as 0.079 and 0.015 respectively, whereas the binary interaction parameter

between CO2 + 1-pentanol is changed from 0.07 to 0.09. As the CO2 + 1-pentanol

binary interaction parameter was increased, the critical end point locus moved

downwards in the P-T space.
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Figure 4.19: Variation of K-point lines for CO2 + 1-pentanol + tri-decane system
with respect to the binary interaction parameter in the Peng-Robinson equation of
state.

4.3. Summary

The effect of the binary interaction parameter on K- and L-points and on the

P-T projections in the binary space was discussed in this chapter. The effect of the

binary interaction parameter on the K- and L-point of the ethane + ethanol system

09.0=ijδ

* 08.0=ijδ

07.0=ijδ
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showed that a single value of the binary interaction parameter could not reproduce both,

K- and L-point simultaneously. It was also observed that no value of the binary

interaction parameter could predict the correct shape of the critical line. From these

observations it can be concluded that the Peng-Robinson equation of state was

unsuccessful in predicting the correct high pressure complex phase behaviour of the

ethane + ethanol system.

The results for methane + n-alkane system revealed that the binary interaction

parameter fitted using the K- and/or L-point was successful in predicting the correct

shape of the critical line and thus the correct type of phase behaviour. In the case of

methane + n-heptane system no value of the binary interaction parameter could predict

the K-point matching the experimental results but the one that computed the K-point

with the best possible accuracy also predicted the correct type of phase behaviour. The

phase equilibria involving a solid phase was not taken into consideration for this

system.

Propane binaries of the polyaromatic hydrocarbons were studied as the model

heavy oil systems. These systems are marked with the presence of a K-point and a four-

phase point as the endpoints of the three-phase line. The computation of a four-phase

point was beyond the scope of this project; however, when the effect of the binary

interaction parameter on the K-points was studied, it was observed that no value of the

binary interaction parameter in the Peng-Robinson equation of state could compute the

K-point to match the experimental results. An interaction parameter which gave the best

possible result for the K-point failed to predict the correct type of phase behaviour.

Based on the analysis done for the K-points and critical lines, it can be said that the
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Peng-Robinson equation of state with a single value of the binary interaction parameter

is able to give a qualitative match to the experimentally observed complex phase

behaviour of the system but fails to give a quantitative match for the landmarks in phase

space like a K-point.

The algorithm to calculate the K- and L-points was also tested for a ternary

system. The algorithm was able to calculate the K-points for the ternary system of CO2

+ 1-pentanol + tri-decane successfully. The effect of the binary interaction parameter on

K- and L-points of the ternary system was not studied and the K-points were just

calculated to illustrate the potential of the algorithm to calculate K- and L-points of

multicomponent systems.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1. Introduction

In an attempt to better predict the high pressure, complex phase behaviour of

model heavy oil binary systems, binary interaction parameters of the Peng-Robinson

equation of state for numerous binary systems were fit to experimental K- and/or L-

points with a priority to match P-T projected phase behaviour. In order to accomplish

this goal an algorithm to calculate K- and L-points was developed, programmed and

analysed. The conclusions of this project as discussed in the previous chapters are

summarized in the following sections.

5.2. K- and L-Points

K- and L-points for propane binaries of polyaromatic hydrocarbons were

calculated, these systems being representative of a model heavy oil system. Also,

methane binaries of higher alkanes were studied due to the relevance of their phase

behaviour in the design of petrochemical operations.  The ethane + ethanol system was

also studied; it being representative of a binary system consisting of a polar and a non-

polar component.

It was observed that the location of K- and L-points vary significantly in phase

space with changes in the binary interaction parameter. The trend observed in the

variation of K- and L-points was similar for methane + n-alkane and propane +
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polyaromatic hydrocarbon systems. The temperature and pressure of K- and L-points

initially increase with the increase in the binary interaction parameter, but after a

particular value of the binary interaction parameter the pattern reverses. The range of

the binary interaction parameter used was 1.01.0 ≤≤− ijδ . The entire range of the

binary interaction parameter could not be covered for all the systems due to the

numerical constraints in calculating K- and L-points.

5.2.1. Computational Concerns in Algorithm

There were some thermodynamic and numerical concerns in the generalization

of the algorithm to calculate K- and L-points. It was found that the binary interaction

parameter plays a significant role in the computation of K- and L-points. If the Gibbs

energy of mixing surface remains concave upwards throughout the composition range

for a particular value of the binary interaction parameter, a mathematical K- or L-point

does not exist and the equilibrium phase search converges to a trivial solution.

The initial guess for the critical phase composition also has a significant effect

on the equilibrium phase computation. The Gibbs energy of mixing plot at a critical

point may show signs of phase split but the algorithm may still converge to a trivial

solution  because any line parallel to the tangent drawn to the Gibbs energy surface at

the critical point composition is not tangent to the Gibbs energy surface at any other

composition. Hence the critical phase composition should be such that the there exists a

line parallel to the tangent at the critical phase composition, which is tangent to the

Gibbs energy surface at any point in the composition range, other than the critical phase

composition.



98

An accelerated successive substitution method and a Newton-Raphson method

were used for the equilibrium phase computation. The accelerated successive

substitution method approaches the solution faster in the initial stage of the search but

the Newton-Raphson method is a better root polishing technique than the accelerated

successive substitution method. A combination of the Newton-Raphson method and an

accelerated successive substitution method works best, where the accelerated successive

substitution method is used in the initial stage of the equilibrium phase search and the

Newton-Raphson method is used for the fine tuning process.

The algorithm was also tested to calculate K-points of a ternary system and it

could successfully calculate the K-points for a ternary system of CO2 + 1-pentanol + tri-

decane.

5.2.2. Success in Evaluating Binary Interaction Parameter

For the ethane + ethanol system, a single interaction parameter was unable to

predict both K- and L-points successfully. The system exhibits Type-V phase behaviour

experimentally. The binary interaction parameter fitted using an L-point predicts Type-

II phase behaviour whereas the binary interaction parameter fitted using a K-point

predicts Type-III phase behaviour for the system. Not only did the binary interaction

parameter fitted using a K- or an L-point fail to predict the correct type of phase

behaviour, but no other value of the binary interaction parameter could predict the

correct type of phase behaviour for the system.

The results were better for methane + n-alkane systems. The binary interaction

parameter fitted using the K- and/or L-point proved to be successful in predicting the

experimental phase behaviour of the system. The methane + n-pentane system shows
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Type-V phase behaviour experimentally and the binary interaction parameter value of

0.02 is recommended to predict the correct type of phase behaviour for the system.

The methane + n-hexane system also shows Type-V phase behaviour

experimentally. The binary interaction parameter of -0.02, which gave the best possible

results for K- and L-points, was able to provide a qualitative match with the

experimental results of the phase behaviour of the system and is recommended for

calculations near the pure component critical points.

The methane + n-heptane system shows Type-III phase behaviour

experimentally with the presence of a four-phase point. No value of the binary

interaction parameter was able to predict the experimental K-point temperature or

pressure. However the binary interaction parameter of 0.0 was able to predict the

correct type of phase behaviour for the system. The binary interaction parameter that

predicted the best possible result for the K-point was -0.02. The four-phase point was

not considered in the analysis because no solid model was incorporated in this work to

compute the four-phase point. A binary interaction parameter of 0.0 is recommended for

the system.

The propane binaries studied in this work (i.e. with fluorene, phenanthrene and

triphenylmethane), exhibit Type-III phase behaviour with the existence of a solid phase.

The three-phase line terminates in a four-phase point instead of an L-point and the solid

phase consists of a pure polyaromatic hydrocarbon. The study of the variation of the K-

points with respect to the binary interaction parameter revealed a similar trend as

observed in methane binaries with higher alkanes, but no value of the binary interaction

parameter was able to reproduce the experimental K-point for any of the model heavy
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oil systems. The binary interaction parameter, if fitted using the P-T projection of the

system showed a trend of increase in the binary interaction parameter value with

increase in the carbon number of polyaromatic hydrocarbon. Binary interaction

parameters of 0.05, 0.06 and 0.09 are recommended for fluorene, phenanthrene and

triphenylmethane binaries respectively.

5.3. Two Parameter Cubic Equation of State and Complex Phase Behaviour

The predictions of complex phase behaviour for the ethane + ethanol system

showed the inability of the Peng-Robinson equation of state to model phase behaviour

of the alkane + alkanol type of system. For the systems of type methane + n-alkane, the

Peng-Robinson equation of state was successful in predicting the complex phase

behaviour. The Peng-Robinson equation of state was able to predict the correct shape of

critical lines for propane binaries of polyaromatic hydrocarbons. However it was unable

to predict the K-point with a good accuracy and the other phenomena in the complex

phase behaviour such as the four-phase point and the three-phase lines incorporating a

solid phase were not taken into account. Hence the capability of the equation of state to

predict the complex phase behaviour of these model heavy oil systems is still doubtful.

5.4. Future Work

The future work in this research can be seen to take three different directions:

• The cubic Peng-Robinson equation of state was able to predict correct phase

behaviour and was able to predict the K- and L-points with good accuracy for the

binaries of methane with n-pentane and n-hexane. Though a qualitative match was

obtained for the phase behaviour of these systems with a particular value of the

binary interaction parameter, a quantitative comparison of each and every point on
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the critical line and the three-phase line was not done in this work. This

advancement can further fine tune the binary interaction parameters for these

systems.

• For those systems where the solid phase appears in the P-T projection, algorithms to

calculate the three-phase lines, involving a solid phase and the four-phase point can

be developed to see if the cubic Peng-Robinson equation of state is able to predict

those phenomena.

• The Peng-Robinson equation of state completely failed to predict the phase

behaviour of ethane + ethanol system. The Peng-Robinson equation of state with a

binary interaction parameter for the parameter b can be tested to see if there is some

improvement in the results. Other complex equations of state can be tried, to check

for a better outcome.
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APPENDICES

A: Three-Phase Line Calculation

An algorithm developed by Dr. Aaron V. Phoenix was used to calculate the

three-phase line for a binary system. A three-phase point has one degree of freedom for

a binary system and the equations for calculating a three-phase point in the phase space

are as follows:

0lnln 1111 =−= refffβ      (A.1)

0lnln 1212 =−= refffβ      (A.2)

0lnln 2123 =−= refffβ      (A.3)

0lnln 2224 =−= refffβ      (A.4)

0112115 =−+= xxβ       (A.5)

0122216 =−+= xxβ       (A.6)

0132317 =−+= xxβ       (A.7)

08 =−= πςβ       (A.8)

81 ,, ββ K  are the functions to be solved. abf  represents the fugacity of component a in

the phase b. The subscript ref indicates the reference phase. The reference phase

fugacity for a component is the arithmetic average of the fugacity of that component in

all the three phases. abx  represents the mole fraction of component b in phase a. ς  is

either the temperature or pressure. π  is a parameter and its significance lies in

calculating a three-phase line once the first three-phase point is calculated. The role of

this parameter in developing a three-phase line is explained in the later part of this

section. To calculate a three-phase point, there are eight equations to be solved with
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eight variables. The variables are temperature, pressure and mole fractions of both the

components in all three phases.

 The algorithm starts with an initial guess for the compositions and

temperature of the three-phase point at a pressure ς . The initial guesses for the

variables can be obtained from the compositions and temperature of the upper or lower

critical endpoint. When the algorithm calculates the first point of the three-phase line,

the parameter π  has the same value as the pressure. The fugacity of each component is

calculated using an equation of state and the functions 81 ,, ββ K are calculated.

Equations (A.1) to (A.8) are solved using a Newton-Raphson method. The derivatives

of the functions with respect to the variables are calculated numerically. The variables

are updated by solving
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Once a three-phase point is calculated by solving equation (A.9) iteratively, the

algorithm moves to calculate the next point on the three-phase line with a defined

increment, either in temperature or in pressure. That is the parameter π  is incremented



109

by a finite value, which becomes the desired pressure (or temperature) for the next

three-phase point on line. The initial guesses for the rest of the variables required to

calculate the three-phase point are obtained by solving

0=
π
β

d
d        (A.11)

Equation (A.11) can be expanded as,
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Equation (A.11) can be rearranged as,
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Equation (A.13) is solved to get the vector [ ]T
32 ππ ∂∂∂∂ xP L . Using this vector a

new initial guess for the variables is obtained as
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With the new initial guesses, the steps to calculate the three-phase point are repeated.
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B: Critical Properties and Acentric Factor

The critical properties and acentric factors of the compounds studied in this

work are listed in the following table:

Table B1: Critical properties and acentric factors (Yaws, 1999).

S.no. Name Tc (K) Pc (bar)

1 Ethane 305.4 48.8 0.0979

2 Ethanol 513.9 61.4 0.6430

3 Methane 190.4 46.0 0.0109

4 Propane 369.8 42.5 0.1518

5 n-Pentane 469.7 33.7 0.2522

6 n-Hexane 507.5 30.1 0.2990

7 n-Heptane 540.3 27.4 0.3494

8 Phenanthrene 869.3 29.0 0.4950

9 Anthracene 873.0 29.0 0.4890

10 Fluorene 870.0 47.0 0.3493

11 Triphenylmethane 865.0 22.0 0.5735

12 CO2 304.1 73.8 0.2390

13 Tri-decane 676.0 17.2 0.6203

14 1-Pentanol 588.2 39.1 0.5784


