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ABSTRACT 

Advancements in the design of sonic logging tools have made it possible to characterize rock 

formations more extensively. This achievement has had a great impact on the design of effective 

drilling, completion and production practices. However, interpretation of advanced sonic logging 

tools is complex, and the relative contributions of intrinsic and stress-induced elastic property 

anisotropy on tool response are not well understood. This thesis presents a methodology for 

predicting sonic logging tool response accounting for the effects of bedding and drilling-induced 

stresses, based on anisotropic and stress-dependent dynamic and static elastic properties.  

In this project, boreholes from two areas were studied: Northeast British Columbia (Montney 

Formation) and Southeast Saskatchewan (Deadwood Formation). Samples provided from these 

boreholes were tested by laboratory technical staff under hydrostatic and uniaxial loads, and these 

results were used to predict the stress dependence of all five dynamic and static elastic moduli 

comprising the transversely isotropic stiffness tensor.  

The static elastic properties as a function of stress (acquired from lab testing results) were utilized 

to define the static elastic stiffness tensor, and static stress analysis was conducted to predict the 

stress alteration around the borehole. The results of this static stress analysis were then used in 

conjunction with dynamic elastic properties (defined as a function of stress) to determine dynamic 

elastic stiffness properties of the rock around the borehole. These dynamic properties were used 

as inputs for dynamic (wave propagation) modeling. 

The modeled acoustic waveforms were recorded for each simulation. The results were used as 

input for a codes written in Matlab to generate dispersion curves. Simulation outputs were 

compared to field-based logging results, in terms of dispersion curve appearance and shear wave 

velocity anisotropy.  

The results of comparison between simulated and field results showed a similarity in the general 

form of the results, but differences in the absolute values of velocities. Because the modeling tools 

(for simplified scenarios) were tested against analytical solutions, and favourable comparisons 

were observed between predicted velocities based on simulation results and values taken directly 

from experimental results, the difference between field and simulated results are believed to result 

from differences between lab testing conditions and in-situ conditions such as temperature, 

frequency, size (dimensions), pore fluid properties, pore pressure, and rock property heterogeneity.  
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1. Introduction 

1.1 Background 

A new generation of specialized sonic logging tools has provided the capability of obtaining a 

multitude of formation properties more accurately, including acoustic anisotropy, in-situ stress 

magnitude and directions, permeability, and pore fluid type. These properties assist in the design 

of effective drilling, completion and production operations 

The factors affecting a tool’s response can be quite complex. Among these factors, the most 

relevant to this research are the following: 

• Sedimentary rocks are intrinsically anisotropic in terms of their elastic properties and sonic 

velocities because of preferential orientations of sediment grains, pores and layering. 

• Elastic properties and sonic velocities tend to be stress-dependent (e.g., due to 

opening/closure of pores and micro-fractures). 

• The principal in-situ stresses in the earth’s crust tend to be unequal in magnitude, hence 

induced stress magnitudes are generally variable around the perimeter of a borehole. This 

gives rise to a component of stress-induced anisotropy of elastic properties and sonic 

velocities in the rock around a borehole, which is superimposed upon the afore-noted 

intrinsic anisotropy. 

• Near-well stresses are controlled by static elastic properties while velocities are affected 

by dynamic elastic properties, and static properties generally differ from dynamic 

properties. 

This project was aimed at developing a methodology for predicting sonic logging tool response 

accounting for intrinsic and stress-induced anisotropy of both static and dynamic elastic properties.  

1.2 Research Objective 

The primary objective of this research was to develop a workflow that enables quantitative 

prediction of sonic logging tool response as a function of intrinsic and stress-induced anisotropy 

of elastic properties. The secondary objective was to assess how bedding-related anisotropy and 

stress-induced anisotropy affect borehole sonic logging. 
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These objectives were achieved by undertaking the following tasks: 

• Laboratory testing on rocks at representative field conditions (conducted by technical staff 

in the Rock Mechanics Laboratory) in order to establish relationships between elastic 

properties, orientation (intrinsic anisotropy), and stress (induced anisotropy); 

• Development of a numerical modeling workflow, used with the laboratory data to simulate 

the stress state around a borehole and predict sonic logging results; 

• Assessment of the numerical modeling workflow by comparing the results of simulations 

to the field data. 

1.3 Significance of the Study 

The results of this study provide a better understanding of the geomechanical and acoustic 

properties of the Montney Formation and the Deadwood Formation in the Western Canada 

Sedimentary Basin. The modeling workflow developed in this research provide an enhanced 

capability to interpret advanced sonic logging tool response. 

1.4 Thesis Structure 

This dissertation is organized with the following structure: 

Chapter 2 begins with a general description of different borehole sonic logging tools. It also 

describes intrinsic anisotropy and stress-dependent behavior of rock because these affect the sonic 

tool’s response. Also, different methods of stress analysis as well as borehole wave propagation 

modeling are explained. Finally, the study areas are characterized in terms of geology and 

geomechanical properties. Chapter 3 describes the methodology that was applied to achieve the 

objectives of this research. Results are presented in Chapter 4, and in Chapter 5 they are compared 

to field data. In Chapter 6, the conclusions of this research are summarized, limitations of this 

research are listed, and recommendations for future studies are presented. 
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2. Literature Review and Study Area Background 

2.1 Borehole Sonic Logging 

Various types of logging tools, such as sonic, are typically run down a hole after drilling is 

completed in order to provide a better understanding of the formations penetrated by the borehole. 

Most sonic logging tools are similar in terms of their basic operating principle. A sound pulse is 

transmitted into the formation using the tool’s transmitter, and this sound is detected at other 

locations along the length of the tool by its receivers. By recording the arrival time of the acoustic 

energy at successive receivers at known, fixed locations, the sound wave velocity (or inverse 

velocity; i.e., “slowness” or interval transit time) of the rock can be calculated.  

The arrival time and character of acoustic waves recorded by sonic logging tools depends on the 

energy source (transmitter), the path the wave follows, and the properties of the formation and the 

borehole. The main factor distinguishing between sonic logging tools is the nature of the energy 

source. Two primary types of transmitters used in wireline sonic logging are monopole and dipole. 

Monopole transmitters generate energy uniformly around the tool, while dipole transmitters emit 

energy in a preferred direction (Figure 2-1) (Xiang & Gaoyang, 2012; Petrowiki, 2015). Monopole, 

dipole and crossed dipole logging tools are described in this section. 

 

 

Figure 2-1: Two types of sonic sources (Alford et al., 2012). 
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2.1.1 Monopole Transmitter 

The monopole transmitter is the most basic transmitter type and it is common across nearly all 

forms of sonic tools. The typical frequency range for monopole transmitters is from 0.5 to 40 kHz. 

When a monopole transmitter is activated, it generates a spherical wavefront which propagates 

through the mud-filled borehole, and eventually encounters the borehole wall. According to Snell’s 

law, depending on the angle at which the wavefront meets the wall, part of the energy is reflected 

back into the borehole and part is refracted and propagates into the formation (Figure 2-2). The 

reflected part of energy creates a wavefront traveling toward the borehole center with a velocity 

(𝑉𝑚) dictated by the properties of the drilling mud; this energy is generally not useful. The refracted 

part generates compressional or “primary” (P) and shear (S) wavefronts which travel through the 

formation with velocities 𝑉𝑃  and 𝑉𝑠, respectively.  

The critically refracted P-wave propagates parallel to the borehole-formation interface at a velocity 

faster than the reflected borehole-fluid wave. Moreover, every point on the interface, excited by 

the critically refracted P-wave, acts as a secondary source of P-waves in the drilling mud. These 

secondary sources create a new wavefront in the borehole known as a head wave, which is non-

dispersive (i.e., the slowness of non-dispersive waveforms is independent of frequency) (Figure 2-

3). The first sonic energy recorded at each receiver is the head wave generated by the P-wave 

propagating along the borehole wall. This is called the P arrival. The refracted P-waves that do not 

travel parallel to the borehole wall propagate through the formation as a body wave. Although 

these body waves could provide additional information about the formation, standard sonic logging 

tools are not able to record them. 
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Figure 2-2: Wavefront refraction and reflection at borehole-formation interface, and Snell’s law (after 

Haldorsen et al., 2006). a) General scenario, showing refracted waves. b) Critically refracted P-wave which 

propagates through the rock parallel to the borehole wall and makes a head wave which propagates back into 

the borehole. 

 

 

 

The refracted S-wave follows a similar scenario to the refracted P-wave. The critically-refracted 

S-wave propagates parallel to the borehole wall at velocity 𝑉𝑠, and generates its own head wave 

(Figure 2-3). This headwave (termed the S-wave arrival) arrives at each receiver later than the P-

wave arrival because 𝑉𝑠 is less than 𝑉𝑃. It is worth noting that monopole receivers are only able to 

record the S-wave arrival in fast formations; i.e., formations in which 𝑉𝑠 is greater than the borehole 

drilling mud fluid velocity. In slow formations, the shear wave does not produce an identifiable 

head wave, since critical angle of refraction does not occur due to slower shear formation velocity 

compared to the drilling mud velocity. 

The Stoneley wave is the last arrival when using a monopole source. It is a surface wave that 

propagates along the borehole-formation interface with a velocity less than the mud wave and 
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shear wave velocities. Compressional and Stoneley waves are always recorded by the receivers 

when using a monopole transmitter, even in slow formations. The Stoneley wave is slightly 

dispersive, so it shows frequency-dependent behavior and its amplitude decays with distance from 

the borehole wall (Figure 2-3). In other words, Stoneley-wave amplitude attenuates significantly 

at high frequencies and modern tools utilize low frequency transmitters (1-12 kHz) to ensure the 

acquisition of a Stoneley arrival in slow formations. Since the Stoneley-wave is sensitive to 

formation permeability, its dispersion data over a wide bandwidth of frequencies can be inverted 

to estimate formation permeability (Xiang & Gaoyang, 2012; Petrowiki, 2015; Haldorsen et al., 

2006; Alford et al., 2012). 
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Figure 2-3: Different wave modes generated by a monopole source and recorded by an array of 

receivers in (a) fast and (b) slow formations (after Alford et al., 2012). 

 

2.1.2 Dipole Transmitter 

To enable shear wave velocity measurement in slow formations, the dipole sonic tool was 

invented. In such a tool, a low frequency (300 Hz to 8 kHz) dipole transmitter is used. The dipole 

transmitter generates a wave front that propagates in a linear fashion (Figure 2-4) towards the 

borehole wall, which in turn creates a flexural wave when it encounters the borehole wall 

(Petrowiki, 2015; Haldorsen et al., 2006; Alford et al., 2012). 
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The flexural wave generated by a dipole transmitter propagating along the borehole wall in the 

plane of the source. Particle motion in such a wave is perpendicular to the direction of wave 

propagation, in a similar fashion to an S-wave. Moreover, the shear wave slowness of the rock 

formation is estimated using the low-frequency components of the flexural wave slowness. This 

relationship provides a capability to interpret S-wave slowness from flexural-wave data (Alford et 

al., 2012). 

 

 

Figure 2-4: Acoustic wavetrain in a slow formation logged using a dipole transmitter (after Avila-

Carrera et al., 2011). 

 

2.1.3 Crossed-Dipole Transmitters 

Crossed- dipole sonic logging tools typically integrate multipole transmitters (monopole and 

dipole) and one or more arrays of monopole and dipole receivers (Figure 2-5). Two adjacent dipole 

sources, of the same frequency and strength, are oriented orthogonally along the tool’s X- and Y-

axes. The dipole transmitters are fired separately; i.e., the X-dipole is first fired, and after recording 
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its waveform at the receiver array, the Y-dipole is fired. Similarly, the monopole transmitter is 

fired separately, either before or after the dipole transmitters. 

This combination of transmitters results in measuring compressional wave velocities (and shear 

wave velocities in fast formations) using the monopole sources, and measuring oriented shear 

wave velocities using the dipole sources. When a shear wave goes through an anisotropic medium, 

it is split into fast and slow components. One of the most significant achievements of crossed-

dipole tools is their ability to provide data that can be used to interpret orientation ( and in some 

cases magnitudes) of in-situ stresses by measuring stress-induced S-wave velocity anisotropy 

around and near a borehole. This is possible because the difference between two shear-wave 

velocities is proportional to the stress difference in the two directions of particle motion, and the 

direction of the fast shear wave is coincidentally aligned with the maximum stress orientation of 

the geologic formation (Sinha et al., 2000; Franco et al., 2006). 

 

 

Figure 2-5: Sonic Scanner tool with three monopole transmitters and two orthogonal dipole transmitters 

(after Franco et al., 2006). Each receiver station typically has a monopole receiver and dipole receiver in 

the X and Y directions, respectively. 

 

2.2 Elastic Property Anisotropy 

The theory of elasticity is generally applied to explain the relationships between applied stress and 

strain for small deformations in linear elastic materials. Elastic behavior is relevant to this research 

because it controls the stress distributions around boreholes (static elastic properties) and wave 

propagation velocities (dynamic elastic properties).  

The following relationship exists between applied stress and strain in elastic materials: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (2.1) 
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Where, 

𝜎 = Stress  

𝜀 = Strain 

 𝐶 = Stiffness tensor 

𝐶 has 81 components but these reduce to 21 terms for the general case of an anisotropic medium 

with intrinsic symmetry and with other considerations, such as conservation of energy: 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 (2.2) 

Depending upon the nature of a medium’s anisotropy, even fewer elastic constants may be required 

to fully define 𝐶. An isotropic material is fully defined by two constants (𝐶33 and 𝐶44), while a 

material with cubic symmetry is described by 3 constants. A transversely anisotropic material is 

characterized by 5 constants (Zoback, 2010). 

2.3 Anisotropic and Stress-dependent Rock Properties 

Rocks are generally anisotropic in nature. This intrinsic characteristic of rocks results from 

layering of mineral grains, fractures, and/or differential stresses. A reasonable approximation for 

many rocks is transverse anisotropy in which the medium has an axis of rotational symmetry. As 

shown in Figure 2-6, the alignment of clay minerals and horizontal fine-scale layering in 

sedimentary rocks can result in vertical transverse isotropy (VTI) with a vertical axis of rotational 

symmetry, while horizontal transverse isotropy (HTI) with a horizontal axis of rotational symmetry 

can result in some rock masses containing vertical fractures, micro cracks or horizontal stress 

anisotropy (Sayers, 2010). 
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Figure 2-6: Illustration of transverse isotropy illustration for two simple cases: a) VTI anisotropy b) HTI 

anisotropy (after Haldorsen et al., 2006). 

 

𝐶11,𝐶33, 𝐶44, 𝐶66 and 𝐶13 are the 5 elastic constants required to fully describe a body with vertical 

transverse isotropy, as follows: 

𝐶𝑖𝑗 =

(

 
 
 

𝐶11 𝐶12(= 𝐶11 − 2𝐶66) 𝐶13 0 0 0
𝐶12 𝐶11 𝐶13 0 0 0
𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶66)

 
 
 

 

 (2.3) 

 

Commonly used elastic properties such as Young’s modulus (𝐸), Poisson’s ratio (𝜗) and shear 

modulus (𝐺) can be defined in terms of elastic constants as follows: 

𝐸1(= 𝐸2) =
(𝐶11 − 𝐶12)[𝐶33(𝐶11 + 𝐶12) − 2𝐶13

2 ]

𝐶11𝐶33 − 𝐶13
2  

(2.4) 

𝐸3 =
𝐶33(𝐶11 + 𝐶12) − 2𝐶13

2

𝐶11 + 𝐶12
 

(2.5) 
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𝜗12 =
𝐶33𝐶12 − 𝐶13

2

𝐶11𝐶33 − 𝐶13
2  

(2.6) 

𝜗31 =
𝐶13

𝐶11 + 𝐶12
 

(2.7) 

𝐺23 = 𝐶44  (2.8) 

 

Where the subscripts 1, 2 and 3 refer to the coordinate axis directions indicated in Figure 2-6 and: 

𝜗12= Ratio of 𝜀22 to 𝜀11 due to 𝜎11 

𝜗13= Ratio of 𝜀33 to 𝜀11 due to 𝜎11 

𝜗31= Ratio of 𝜀11 to 𝜀33 due to 𝜎33 

𝐺23= Contribution of 𝜀23 to 𝜏23  

The work of previous investigators has resulted in the following equations which relate phase 

velocities to dynamic elastic constants in a medium with vertical transverse isotropic symmetry 

(VTI) (Melendez, 2014): 

 𝐶11 = 𝜌𝑉𝑃
90°

2  (2.9) 

 𝐶33 = 𝜌𝑉𝑃
0°

2  (2.10) 

 𝐶44 = 𝜌𝑉𝑆
0°

2  (2.11) 

 𝐶66 = 𝜌𝑉𝑆𝐻
90°

2  (2.12) 

 𝐶13 = −𝐶44 + [
(4𝜌𝑉𝑃

45°
2 −𝐶11−𝐶33−2𝐶44)

2

−(𝐶11−𝐶33)
2

4
]

1/2

 

(2.13) 

Where 

𝑉𝑃
90°
 = Compressional velocity in the direction parallel to the bedding 

𝑉𝑃
45°
 = Compressional velocity in the direction 45° to the bedding 

𝑉𝑃
0°
 = Compressional velocity in the direction perpendicular to the bedding 
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𝑉𝑆𝐻
90°
 = Shear velocity in the direction parallel to the bedding 

𝑉𝑆
0°
 = Shear velocity in the direction perpendicular to the bedding 

In recent decades, a significant amount of laboratory research has been conducted to investigate 

the effects of confining pressure on both dynamic and static elastic constants. By definition, the 

dynamic moduli of rock are those calculated from the elastic wave velocity and density, while the 

static moduli are those directly measured in a deformational experiment. Figure 2-7 illustrates how 

that acoustic velocities in rocks are generally sensitive to stress; i.e., acoustic velocities tend to 

increase with stress. This is generally attributed to the closing of compliant, crack-like pore space, 

including microcracks and compliant grain boundaries. As confining pressure is raised, the most 

compliant pores are closed, followed by the next most compliant, and so on. Closing pores results 

in an increase of the mechanical stiffness of rocks, and corresponding increase in acoustic 

velocities of rock (Melendez, 2014; Sone & Zoback, 2013; Hawkes et al., 2015; Mavko & Godfrey, 

1995; Wang, 2002). The same processes also account for the increase is static stiffness that is 

generally observed with increasing stress in rocks. 

 

 

 

Figure 2-7: Effect of confining pressure on (a) dynamic and (b) static elastic constants (Melendez, 2014). 

 

2.4 Borehole Stress Analysis 

Variations in the origin, magnitude, and direction of the stresses acting on formations could stem 

from characteristics of the formation such as lithology, pore pressure and temperature and from 

processes such as burial, uplift, erosion and tectonic events. Over geological time, in-situ reservoir 

a) b) 
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stresses generally reach an equilibrium. In an unstressed state, reservoir rocks may show varying 

degrees of intrinsic anisotropy (e.g., limited anisotropy in a massive sandstone reservoir; 

significant anisotropy in a shale gas reservoir). Regardless, by excavating a borehole, the local 

stress distribution is significantly altered since rock stresses in the vicinity of the borehole are 

redistributed. The support that was originally offered by the drilled-out rock is replaced by the 

hydraulic pressure of the mud. This process gives rise to altering grain contact stresses and may 

open or close cracks in the surrounding rocks, thus causing an additional component of stress-

induced anisotropy. Both components of anisotropy must be considered in the estimation of rock 

properties and in-situ stresses. This section introduces analytical and numerical approaches for 

estimating stress magnitudes. 

2.4.1 Analytical Method 

Equations for calculating induced stresses around a circular hole were initially derived by Kirsch 

and have been adapted for boreholes in porous media (e.g., Zoback, 2010). These equations are 

based on linear elasticity and assume isotropic rock properties.This scenario may be acceptable for 

shallow rock engineering and for sedimentary rocks with massive bedding structures; however, 

with increase in drilling depth and prevalence of fine bedding, the anisotropic properties of the 

rock mass become more pronounced. 

Aadnoy (1987) developed a mathematical model to the calculate elastic stresses around an inclined 

borehole in a medium that behaves as a transverse isotropic body. Aadnoy’s model is based on 

linear elasticity and it neglects plastic or time-dependent effects. Also, his model is limited to the 

boreholes greater than 2000 ft (610 m) deep (in order to have infinity assumption). This model is 

based on a generalized plain strain assumption. As shown in Figure 2.8, the stress state around the 

perimeter of a borehole can be notably different for a rock with transversely-isotropic elastic 

properties compared to isotropic properties. 

Although solutions of this type are commonly used in industry, the stress-dependent elastic 

properties of formations are not taken into account. This results in less representative estimation 

of stresses around a borehole. 
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Figure 2-8: This figure represents the stress distribution around borehole (theta) based on scenario of 

transverse isotropic rock properties as per Aadnoy (1987). The magnitudes and angular positions of stress 

peaks and troughs are different for the isotropic case compared to the case with transverse isotropy. 

 

 

2.4.2 Numerical Method 

Numerical modelling is a powerful method of borehole stress analysis which can be used to 

analyze stress-induced anisotropy with any degree of isotropic, vertical, horizontal transverse or, 

orthorhombic anisotropy at any depth. In particular, the finite element method (FEM) has been 

used many times as an approach to calculate the stress field around a borehole (Figure 2-9) (e.g., 

Fang et al., 2013; Liu & Sinha, 2003). 

In drilling operations, borehole breakouts (i.e., borehole enlargements that develop in a preferential 

direction due to failure and spalling of rock fragments in zones of peak stress around the perimeter 

of a borehole) may develop in rocks that are relatively weak and/or subjected to relatively high in-

situ stresses. These features are useful for geomechanical site characterization because they grow 

in a direction parallel to the minimum horizontal stress (𝜎ℎ𝑚𝑖𝑛), however they cannot be analyzed 

using analytical methods, since the stress state becomes complex as the borehole geometry 

becomes non-circular. Numerical modeling can be used to analyze borehole breakouts, by defining 

an appropriate failure criterion. For example, an elasto-plastic material model may be assumed, 

with anisotropic yield characteristics where applicable, in order to simulate the development of a 

failed zone (Zoback et al., 1985; Zou et al, 1996; Frydman & Sergio, 1997), which effectively 

serves as an estimate of the size and shape of the borehole breakouts.  
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Figure 2-9: Distribution of normal stresses around a borehole (in zz and yy directions) as modeled by a 

FEM software (Fang et al., 2013). 

 

2.5 Borehole Wave Propagation Modeling 

There has been significant attention towards the study of variations in velocities based on 

formation stresses and pressures, since characterization of these variations is required to estimate 

in-situ stress magnitudes. Over recent decades, significant effort has been allocated to developing 

approaches to analyze synthetic waveforms of monopole or dipole sources in a borehole containing 

pressurized fluid (Fang et al., 2013; Liu & Sinha, 2003; Cheng, 1994; Winkler et al., 1998; Sinha 

et al., 1996; Liu & Sinha, 2000). Three methods have been developed for this purpose: (1) 

analytical, (2) semi-analytical, and (3) numerical. Methods 1 and 2 will not be used in this research, 

other than to validate numerical modeling outputs. Regardless, all these methods are described in 

sections 2.5.1 to 2.5.3. 

2.5.1 Analytical Solution 

In this method, a borehole of radius 𝑎 is considered, filled with nonviscous fluid with density 𝜌1 . 

A cylindrical coordinate system (𝑟, 𝜃, 𝑧) is used that extends to infinity in the z direction. The 

borehole is embedded in an infinite homogeneous and perfectly elastic medium and a point source 

is located (𝑟0, 𝜃0, 𝑧0) in the borehole fluid.  

This model can be implemented for different types of acoustic sources including monopole, dipole, 

quadrupole. Helmholtz’s theorem is applied as a general solution to solve the problem in an elastic 

formation. According to this theorem, the displacement vector with radial, azimuthal, and vertical 
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components (𝑢, 𝑣, 𝑤) satisfies a vector wave equation. From the displacements, the elements of 

the strain tensor in the cylindrical coordinate system are calculated which results in obtaining stress 

elements based on Hooke’s law (Figure 2-10) (Tang & Cheng, 2004). 

By calculating the stress field and applying a boundary condition, wave motion in such a borehole 

is related to the wave motion of the formation. Mathematically, the reflected wave field in the 

borehole is obtained which, together with the direct wave field radiated from the source, results in 

obtaining the acoustic wave field in the borehole (Figure 2-11). To simulate logging with an 

acoustic tool, the wave field on the axis of the borehole is studied (Tang & Cheng, 2004). 

 

 

Figure 2-10: Workflow of analytical solution to calculate the dynamic stress field during wave 

propagation. 

Wave equations:
Output

Displacement vector:

Output

Output

Strain elements:

Stress elements:
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Figure 2-11: Simulated sonic logging wave-forms generated using an analytical solution (Tang & Cheng, 

2004). 

 

The analytical solution is only applicable for the condition that the formation around the borehole 

is a homogenous isotropic medium. In analyzing complex problems, the analytical solution is not 

considered as an appropriate choice to quantify the cause of variation in velocities in different 

formations and directions, since it cannot simply filter out the existing overlap between S-wave 

arrival times. Moreover, the effect of stress concentration around the borehole is not included in 

analytical approaches. 

2.5.2 Semi-Analytical Approach 

In more complex cases such as fast and slow formations, or an anisotropic formation, a semi-

analytical method would be preferred to analytical solutions to evaluate the response of static 

media to excitation by transient point sources. Consider a fluid-filled cylindrical borehole of 

radius 𝑎0 embedded in a radially stratified transversely isotropic medium (Figure 2-12). Each layer 

of stratification is characterized by five elastic constants 𝐶11
(𝑗)
 , 𝐶12

(𝑗)
, 𝐶13
(𝑗)
, 𝐶33
(𝑗)
 and 𝐶44

(𝑗)
 and the 

density𝜌𝑗  of the formation.  

A multilayered elastic media assumption about the surrounding media has given rise to applying 

Thomson-Haskell transfer matrices to derive stiffness matrices for such media to propagate 

displacement-stress vectors through the formation. In this approach, a scalar potential 𝜑  is defined 

which satisfies the wave equation. The gradient of the scalar potential 𝜑 gives rise to the 

a) b) 
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displacement of the particles in the fluid 𝑢 = ∇𝜑(𝑟, 𝑡) at a point defined by position vector 𝑟 and 

at time 𝑡. Semi-analytical solutions vary in terms of numerical integration methods. Two typical 

solutions are real axis integration and branch-cut integration (Schmitt, 1988; Roever et al., 1974; 

Bouchon, 2003; Kurkjian, 1985; Schmitt, 1989; Chan & Tsang, 1983). 

 

 

Figure 2-12: Schematic of semi-analytical solution for simulating wave propagation around a borehole 

(Chan & Tsang, 1983). 

 

The real axis integration (RAI) method consists of integration along the Laplace contour in the 

complex frequency wave-number plane. This method yields the complete transient waveform 

including all arrivals, but it requires extensive computation time (Che et al., 2005; Chan & Tsang, 

1983; Muga et al., 2015). A full waveform is shown in Figure 2-13. 
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Figure 2-13: Full waveforms calculated based on real axis integration, where 𝛼𝑗𝑙 stands for radial wave 

number(RAI) (Che et al., 2005). 

 

In Branch-cut Integration the compressional and shear wave arrivals are studied individually by 

using branch cuts which are chosen to coincide with the paths of steepest descent. This method 

results in a substantial reduction of computation time. It also allows for study of the frequency 

spectrum of the impulse response of compressional and shear head waves by branch-cut 

integration. Since branch-cut integration studies use individual arrivals, the problem of S-wave 

overlap in the full waveform analysis is solved. As well, this technique enables examination of the 

sensitivities of each arrival to various factors (Figure 2-14) (Schmitt, 1988; Roever et al. 1974; 

Bouchon, 2003; Kurkjian, 1985; Schmitt, 1989). 
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Figure 2-14: Simulated dipole waveforms by branch-cut integration approach (Zhang et al., 2009). 

 

Analytical and semi-analytical solutions are restricted to a condition in which the borehole axis is 

parallel to the symmetry axis of the TI formation. Hence, these solutions of the wave field cannot 

be used when the borehole axis is deviated. Moreover, in both the semi-analytical and analytical 

methods, the influence of stress concentration around a borehole is not taken into account. In 

addition, in more complex studies, the semi-analytical solution provides approximate solutions, 

giving rise to less accuracy in the results. 

2.5.3 Numerical Approach 

Numerical solutions of wave propagation problems in and around boreholes can overcome the 

limiting assumptions common to analytical and semi-analytical solutions. In a prestressed 

formation, a finite difference formulation of the equations of motion for elastic waves is generally 

utilized to calculate synthetic waveforms at an array of receivers in a liquid-filled borehole (Fang 

et al., 2013; Liu & Sinha, 2003). These formulations have been developed to investigate the effect 

of borehole hydrostatic (mud) pressure as well as formation stresses on acoustic waves emitted by 

either a monopole or dipole transmitter located on the borehole axis. They are suitable to model 

waves in deviated boreholes penetrating transversely isotropic formations (Lin & Liu, 2015; Liu 

& Liu, 2014). 
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A specific version of the finite difference method widely used in simulating fluid-filled boreholes 

is the finite-difference time-domain (FDTD) method. This method has proven to be a highly 

efficient technique for numerous applications in wave propagation around a borehole because it 

consideres both intrinsic and stress-induced anisotropy in the interpretation of the data (Figure 2-

15). Comprehensive references on this topic can be found in a number of papers (Liu & Sinha, 

2003; Cheng, 1994; Lin & Liu, 2015; Liu & Lin, 2014). 

 

 

Figure 2-15: A unit cell of the finite-difference staggered grid for prestressed media (Liu & Sinha, 2003). 

 

There are two general types of FDTD which vary in terms of dimension. They are exclusively 

applied to simulate wave propagation around the borehole in a cylindrical system to determine the 

stress coefficients of velocities as a function of frequency, as follows:  

1. 2.5-dimensional finite difference time domain (2.5D FDTD). 

2. 3-dimensional finite difference time domain (3D FDTD).  

Liu et al. (2014) developed a 2.5-dimensional method to investigate the mode waves in a deviated 

borehole embedded in a transversely isotropic formation. The phase velocity dispersion curves of 

the fast and slow flexural mode waves excited by a dipole source are computed accurately at 

different deviation angles for both hard and soft formations. The sensitivity of flexural mode waves 

to all five elastic constants are calculated (Figure 2-17) (Lin & Liu, 2014; Liu & Lin, 2015). 



23 

 

It is worth nothing that the 3D version of FDTD has several advantages over the 2.5D version, 

which makes it more effective for analyzing elastic waves in fluid-filled boreholes in triaxially 

stressed formations. These advantages are listed as follows (Figure 2-16) (Liu & Sinha, 2003; Liu 

& Sinha, 2000) and a comparison of results is shown in Figure 2-16: 

1. 3D FDTD can consider 3D heterogeneities, while 2.5D FDTD only considers 

heterogeneities in the plane transverse to the borehole axis. 

2. Static wellbore pressure and the vertical overburden are accounted in 3D FDTD, whereas 

the 2.5D method only accounts for transvers stresses.  

3. The PML boundary condition (discussed below) can be used in 3D FDTD, which is more 

accurate and stable than the Liu et al (2014). boundary condition in 2.5D FDTD.  

In 2011, a new version of finite difference code was introduced known as FD3D. In this new 

version, the absorbing boundary condition (Convolution Perfectly-Matched-Layer) and the grid of 

finite difference grid (the standard-staggered-grid) was improved to solve the velocity-stress 

hyperbolic system of wave propagation with higher accuracy in time and space (Figure 2-18). 

Moreover, this version is capable of simulating wave propagation in both elastic and viscoelastic 

media. Another advantage of this version is its capability of simulating in one, two and three 

dimensions (Zhang, 2011). 
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Figure 2-16: Comparison of simulated dipole waveforms (2.5 D vs. 3D) for a formation under biaxial 

prestress for a center frequency of 10 kHz (Liu & Sinha, 2003). 
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Figure 2-17: Sensitivity of elastic constants to frequency for 𝛼 = 90° for a) a fast flexural wave b)  and a 

slow flexural wave (Lin & Liu, 2015). 

 

 

Figure 2-18: Wave propagation traces generated by the author using FD3D a) monopole waveforms 

simulated using the FD3D code, and b) snapshot of pressure generated inside formation surrounding a 

borehole by a point source located close to the bottom of the borehole. 
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2.6 Dispersion Analysis 

As noted in section 2.1.1, the flexural waves induced by dipole transmitters are dispersive; i.e., the 

slowness of flexural waves  is dependent on frequency (or dispersive waves). Analysis of flexural-

wave dispersion curves generated from dipole sonic logging helps to classify formations according 

to anisotropy type (i.e., intrinsic anisotropy or stress-induced anisotropy) by comparing observed 

dispersion curves to those modeled assuming a homogenous isotropic formation. In a 

homogeneous isotropic formation, shear waves do not split into fast and slow components, so the 

two observed flexural-wave dispersion curves have identical slowness-versus- frequency 

signatures, and will overlie one another (Figure 2-19.a) (Franco et al., 2006). 

In a vertical borehole scenario through a VTI layered formation (or horizontal borehole scenario 

through an HTI layered formation), there is no azimuth variation of shear slowness around the 

borehole (by assuming no stress differential) (Figure 2-19.a). In this condition, the shape of 

dispersion curves is the same as homogenous isotropic condition. It does not mean that there is no 

intrinsic anisotropy, there would be anisotropy but because of the study direction it would not be 

seen.  

In cases of intrinsic anisotropy, when a dipole transmitter is fired inside the anisotropic formation, 

a fast shear wave is polarized in the fast direction (i.e., particle motion within bedding) and slow 

shear is polarized in slow direction (i.e., particle motion normal to bedding). As such the two 

dispersion curves remain offset at all frequencies and tend to true slowness at low frequency (e.g., 

horizontal borehole through VTI layered formation / vertical borehole through an HTI formation) 

(Figure 2-19.b).  

In a formation with stress-induced anisotropy, the fast and slow shear-wave dispersion curves 

cross. This characteristics feature is caused by near-wellbore stress concentration (Figure 2-19.c). 

By drilling a borehole, the stress regime around the borehole is reorganized with compressive hoop 

stress, which is maximum in the direction of minimum far-field stress and minimum in the 

direction of maximum far-field stress (Figure 2-20). This reorganization results in having fast shear 

waves in the direction of minimum stress and slow shear wave in the direction of maximum stress 

at high frequency (near the borehole), while fast shear waves are recorded in the direction of 

maximum stress and slow shear waves in the direction of minimum stress at low frequency (further  

from the borehole) (Figure 2-20). 
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These simplified relationships between dispersion curves are valid when only one physical 

mechanism controls wave behavior. When multiple mechanisms are involved (e.g., both stress-

induced and intrinsic anisotropy), the curves can be different. 

 

Figure 2-19: Flexural wave dispersion curves for classifying formation anisotropy based on recorded 

flexural waves on orthogonal dipole receivers (red and blue curves); black circles represent flexural-wave 

dispersion curves based on a homogenous isotropic model. : a) Borehole drilled through an  isotropic 

formation or vertical borehole drilled through a VTI anisotropic formation / horizontal borehole drilled 

through an HTI anisotropic formation; b) Horizontal borehole drilled through a VTI anisotropic formation 

/ vertical borehole drilled through an HTI anisotropic formation; c) Stress-induced anisotropy plot 

(Franco et al., 2006). 

 

Figure 2-20: Reorganization of stress regime around a borehole, and impacts of stress on shear wave 

velocities. Note that zones of low stress occur near the borehole in the direction parallel to 𝐻𝑚𝑎𝑥. In 

some cases, induced tensile fractures (as shown in the figure) may develop in these zones; however, 

fracturing (and fracture-related stress changes) are not considered in this work. Similarly, borehole 

breakouts may develop in the zones of high stress, but these features are not considered in this work. 
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2.7 Study Areas  

2.7.1 Farrell Creek (Montney Formation) 

The Montney Formation is an aerially extensive unconventional resource in northeastern British 

Columbia and northwestern Alberta with significant natural gas and natural gas liquids in place. 

Development of the Montney began in the 1950’s, targeting conventional sandstone and dolostone 

reservoirs predominantly in the east. The unconventional part of this reservoir remained 

undeveloped until 2005. After 2005, advances in horizontal drilling and multi-stage hydraulic 

fracturing made it possible to economically develop this resource. More recently, the exploration 

interest has focused on fine-grained (tight gas/shale) intervals in both the Lower and Upper 

members of the Montney.  

2.7.1.1 Geological Characterization 

The Lower Triassic aged Montney Formation of the Western Canadian Sedimentary Basin has 

been the focus of a large number of studies since the 1950s, including those by Markhasin (1998), 

Kendall (1999), Moslow (1997), Zonneveld et al. (2010).  

The 143,000 km2 area covered by Montney Formation stretches from northeastern British 

Columbia to northwestern Alberta (Figure 2-21). The thickness of this formation varies from less 

than 1 m in the east to over 350 m in the west. Stratigraphically, the Montney Formation is 

unconformably underlain by Permian Belloy Formation and is overlain by the Middle Triassic 

Doig Formation (Rogers et al., 2014; Davey, 2012; Walesh et al., 2006; Note, 2013; Egbobawaye., 

2013; Yang, 2018). Figure 2-21 shows the stratigraphic chart. 

The deposition of the Montney Formation occurred in a ramp setting, and a ramp edge or slope 

break defines the updip depositional limit of the turbidite facies. The other facies are conventional 

sandstone in the east through shelf siltstone and sandstones to shale facies in the west. The 

boundary between the Lower and Upper Montney Formation is a retrogradational shoreface 

succession and consists of laterally discontinuous dolomite coquina beds. The Lower Montney 

contains reservoir-quality, upward-coarsening shoreface and coarse siltstones. The Upper 

Montney consists of multicyclic coarsening-upward shoreface siltstones and interbedded very fine 

sandstones with hummocky cross-stratification and local developments of thin dolomitized 

coquina facies (Duenas, 2014; Davey, 2012). In terms of the reservoir property characteristics, the 
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Montney Formation has: low matrix permeability (0.01-0.02 mD) and low porosity (6-10%), 

which is formally defined as tight gas. Compared to other shale reservoirs, the Montney Formation 

shows a higher percentage of quartz and dolomite minerals in general. 

In this study, the area of interest is the Farrell Creek Field (also reffered to as Altares) (Figure 2-

23). The Farrell Creek Field produces from distal facies of the Montney Formation, which formed 

in a basinal setting. Farrell Creek is actively being developed for its unconventional shale assets 

and produces entirely dry gas hydrocarbons (Davey, 2012). 

 

 

Figure 2-21: Generalized map showing the location and rock types of the Montney Formation (NEB, 

2013). 
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Figure 2-22: Stratigraphic chart for the Montney Formation , which has commonly been subdivided into 

two major unconformity-bounded members by earlier studies (after Rogers et al., 2014). 

 

 

Figure 2-23: Location of the Farrell Creek Field (Rogers et al., 2014) 
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2.7.1.2 In-Situ Stresses in the Montney Formation 

Extensive work has been completed to determine mechanical parameters and the stress regime in 

the Montney Formation because these play a key role in hydraulic fracture simulation of 

unconventional reservoirs. Stress magnitudes can be measured or estimated using a variety of 

methods, such as mini-frac tests, leak-off tests, overcoring methods, or by calculating from density 

logs. The conventional method (mini-frac) and Diagnostic Fractures Injection Test (DFIT) are the 

main methods that have been used in the Montney Formation to determine minimum horizontal 

stress magnitude.  

Based on the integrated density log and DFIT’s in the Farrell Creek Field, the minimum horizontal 

(𝜎𝐻𝑚𝑖𝑛) and vertical stress gradients (𝜎𝑣) are interpreted to be 21.1 kPa/m and 25.3 kPa/m, 

respectively (McLellan et al., 2014; Song & Hareland, 2012; Hawkes et al., 2013). Minimal data 

is published about maximum horizontal stress, as reliable estimation of 𝜎𝐻𝑚𝑎𝑥 is difficult and 

numerous assumptions result in high uncertainties in estimation. However, McLellan et al. (2014) 

suggested 27.4 (kPa/m) for maximum horizontal stress in the Farrell Creek Field. As such, the 

stress regime at Farrell Creek is strike slip with high horizontal stress anisotropy. 

Pore pressure is another contributing factor in stress calculation. As the Montney Formation has 

low permeability, it would be difficult to measure pore pressure directly. Sonic velocity is a good 

indication for pore pressure prediction. The pore pressure gradient has been estimated as 16.6 

kPa/m (Song & Hareland, 2012; McLellan et al., 2014). The in-situ stress magnitudes and pore 

pressure for different units of the Montney Formation at Farrell Creek are shown in Figure 2-24. 

Regional data for Alberta suggests a maximum horizontal in-situ stress in the Montney formation 

that is oriented roughly perpendicular to the Rocky Mountain orogenic belt (Reiter et al., 2014). 

Horizontal in-situ stress orientations of Farrell Creek Field have been determined through 

examination of drilling-induced tensile fractures (which propagate in the direction of maximum 

horizontal stress (𝜎𝐻𝑚𝑎𝑥), as shown in Figure 2-20) and borehole break-outs in image logs. Results 

have shown that maximum horizontal stress (𝜎𝐻𝑚𝑎𝑥) is oriented approximately NE-SW(N42°E) 

(Figure 2-25). This orientation is in consistent with results obtained from seismic anisotropy 

studies (Tak et al., 2017; Reiter et al., 2014; McLellan et al., 2014). 
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Figure 2-24: Example profile of pore pressures and in-situ stresses in the Montney Formation. These data 

are derived from DFIT’s and borehole breakout inversion and bulk density logs (McLellan et al., 2014). 
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Figure 2-25: In-situ stress orientation map of Alberta and northeast British Columbia. Lines represent 

orientations of the maximum horizontal compressional stress (𝜎𝐻𝑚𝑎𝑥) northeast British Columbia. The 

red ellipse shows the location of the Farrell Creek Field (Reiter et al., 2014). 
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2.7.2 Aquistore Project (Deadwood Formation) 

The northern portion of the Williston Basin has been identified as an excellent geological area to 

permanently store CO2, specifically in the Deadwood and Winnipeg Formations because they are 

the deepest sedimentary units (about 3,200 m deep) and are composed of thick clastic sequences 

of Cambro-Ordovician sandstones. In 2012, an extensive drilling and logging program was 

conducted at the Aquistore site which is located near Estevan, Saskatchewan (Figure 2-26). The 

results have been used to evaluate the geological suitability of the Deadwood and Winnipeg 

Formations for long-term storage of carbon dioxide (CO2). Since April 2015, this site has served 

as a storage site for the world’s first commercial post-combustion carbon capture, storage project 

from a coal-fired power generation facility. It is claimed that this site has the capability of receiving 

250–300 ktonnes of CO2 at variable rates of up to 800 tonnes per day. This study is focussed on 

the Deadwood Formation, and laboratory testing was done on samples from this formation (White 

et al., 2016; Fyson, 1961).   

2.7.2.1 Geological Characterization 

The Deadwood and Winnipeg Formations are present in the Williston Basin and Western Canada 

Sedimentary Basin. The Williston Basin is present in parts of North Dakota and South Dakota, and 

Montana in the United States, and in parts of Alberta, Saskatchewan, and Manitoba in Canada 

(Figure 2-26). The Deadwood Formation is considered to be of Upper Cambrian to Lower 

Ordovician age, while the Winnipeg Formation is of Middle to Upper Ordovician (Kurz et al., 2014). 

In the Williston Basin, the Deadwood Formation is overlain by the Winnipeg Formation in the 

basin center and by the Red River Formation near the basin margins. In the central and southern 

Black Hills, it is overlain by the Mississippian Englewood Formation. In Alberta and 

Saskatchewan, it is overlain by the Devonian Elk Point Group. The Winnipeg Formation is 

conformably overlain by Ordovician age carbonates (Fyson, 1961; McLean, 1960; Stork et al., 

2018; Rostron et al., 2014; White et al., 2016; Jiang et al., 2017). 

In most areas, the deposition of the Deadwood and Winnipeg Formations occurred in near shore, 

shallow water environments as an ancient sea advanced across the exposed and weathered 

landscape of Precambrian rocks. Most of the conglomerates appear to be matrix-supported debris 

flow deposits. The thickness of the Deadwood Formation varies from 0 m in northeastern Dakota 
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and most of eastern Saskatchewan to 270 m in the northern Black Hills (Fyson, 1961; McLean, 

1960; Stork et al., 2018). 

The Deadwood Formation is a regionally extensive sandstone of variable grain-size that contains 

intervals of silty-to-shaly interbeds. The overlying Winnipeg Formation comprises a lower 

sandstone called the Black Island member and upper shale, the Icebox Member, which would form 

the primary seal to the storage complex, owing to its low permeability. It is reported that Aquistore 

site porosity varies between 10% to 15%, which is consistent with experimental results which 

show porosities ranging from 2.7% to as high as 15.9%. Experimental results have shown that 

permeability range from 0.002 mD to 137 mD (Stork et al., 2018; Rostron et al., 2014). 

 

 

Figure 2-26: Location map of the Aquistore 𝐶𝑂2 injection well (PTRC_INJ_5-6-2-8 W2M) that was 

drilled in 2012 (Kurz et al., 2014). 
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Figure 2-27: Area of extent of the Deadwood and Winnipeg Formations (White et al., 2016). 

 

 

Figure 2-28: Different sedimentary units in the Williston Basin (Stork et al., 2018). 
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2.7.2.2 In-Situ Stresses in the Deadwood Formation 

The regional stress regime of the Aquistore site is transitional between normal and strike-slip, 

meaning that the overburden stress is similar in magnitude to the maximum horizontal (White et 

al., 2016). The presence of drilling-induced tensile fractures and borehole breakouts in ultrasonic 

borehole image logs indicate anisotropic horizontal stresses.  

Based on integration of bulk density logs, the vertical stress gradient has been estimated as 24.7 

kPa/m. Based on well tests, the pore pressure gradient has been estimated 10.7 kPa/m. Based on a 

microfrac test and calculations using log-derived rock mechanical properties, horizontal stress 

magnitudes have been calculated as shown in Figure 2-29a. The orientation of maximum 

horizontal stress (𝜎𝐻𝑚𝑎𝑥) at Aquistore site was determined based on the analysis of borehole 

breakouts and drilling induced tensile fractures. Observations suggests maximum horizontal stress 

(𝜎𝐻𝑚𝑎𝑥) trends ENE-WSW at 65° ± 5° (Figure 2-29.b) (Stork et al., 2018). 
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Figure 2-29: a) Sample profile of in-situ stresses and fracture closure pressure (denoted by FCP) at the 

Aquistore site. b) Static Ultrasonic Borehole Imager (UBI) images from the Aquistore site observation 

well, illustrating drilling-induced tensile fractures (denoted by DIF and shown by thin black line around 

3110 m) and borehole breakouts (denoted by BB and shown by thick brown area around 3380 m ) the 

Deadwood Formation extends from approximately 3200 to 3330 m depth (after Stork et al., 2018). 

Density (denoted by RHOB) is shown by red dashed line, as well. 

 

a) b) 
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3. Methodology 

3.1 Experimental Approach 

3.1.1 Montney Formation 

3.1.1.1 Sample Description and Preparation  

The Montney Formation was selected for study because it is an important resource (shale gas 

production), it is intrinsically anisotropic and located a setting with significant horizontal stress 

anisotropy. The specific well chosen for study was selected because core samples were available, 

and because the cored well (and another well nearby) had been logged with cross-dipole sonic 

logging tools. The samples obtained were dark grey shaly siltstone, taken from Talisman Altares 

12-36-83-25W6 ST1. Eight samples were obtained, but only three (samples #1, #6, #8) were tested, 

due in part to damage incurred during transportation and handling, and also due to due date. Table 

3-1 lists the samples used for the testing program and Table 3-2 lists their dimensions. 

Note: This testing program was conducted by technical staff in the University of Saskatchewan 

Rock Mechanics Laboratory, and the results were provided to the author for use in this research. 

 

Table 3-1: Mid-point depths of Montney Formation samples. 

Sample Driller’s Depth (m) Corrected Depth (m) 

1 2357.85 2359.25 

6 2363.44 2364.84 

8 2363.98 2365.38 
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Table 3-2: Montney Formation sample dimensions (averaged, based on multiple reading). See Figure 3-1 

for definitions of a, b, c and d. 

Sample No a(mm) b(mm) c(mm) d(mm) 𝝆(
𝒌𝒈

𝒎𝟑
⁄ ) 

1 38.0 19.5 33.0 49.0 2600 

6 40.0 29.0 33.5 45.0 2600 

8 37.0 19.0 38.5 49.0 2600 

 

The specialized testing technique of Melendez et al. (2014) was undertaken in this test with a minor 

modification; i.e., utilizing a triaxial load cell instead of a hydrostatic load cell. The advantage of 

this method is that it overcomes heterogeneity problems, which are inherent to conventional 

methods that use independent measurements on multiple core samples from adjacent locations (but 

drilled at different locations) (Melendez, 2014; Melendez et al., 2013). 

According to the coordinate axes shown in Figure 3-1, the vertical direction X3 is perpendicular to 

bedding, and the horizontal directions X2 and X1 are parallel to bedding. The X1 and X2 directions 

are interchangeable given the assumption of vertical transverse isotropy. 

Samples were cut using a rock saw into a prismatic shape. Representative photographs of samples 

1 and 8, taken prior to instrumentation and testing, are shown in Figure 3-2. These images reveal 

that some of the samples contained bedding-parallel fractures that were likely enhanced while 

preparing the samples. The existence of these fractures would impact velocity measurements in 

the vertical and diagonal directions, especially at low stress levels. 

The technique of Melendez et al.(2014) enables simultaneous measurement of compressional and 

shear wave velocities in three directions; i.e., normal to bedding, parallel to bedding, and at 45º to 

bedding (Figure 3-1). 
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Figure 3-1: Sample geometry (after Melendez, 2014). 

 

  

Figure 3-2: View of front surface prior to instrumentation and testing of samples 1 and 8 on the front 

surfaces shown. The fractures shown are orientated parallel to the bedding. 

 

b) a) 
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3.1.1.2 Laboratory Testing Procedure  

3.1.1.2.1 Sample instrumentation  

Figure 3-3 illustrates the typical instrumentation used for the Montney Formation samples. For 

measuring the compressional and shear velocities in the horizontal and diagonal directions, 

transducers were attached directly on the sample surfaces. Vertical load was applied to the samples, 

using platens with transducers embedded within them, thus enabling measurement of 

compressional and shear velocities in the vertical direction. 

The transducers were purchased from Boston Piezo-Optics and had a frequency of 1 MHz. A 

copper foil of thickness of 0.064 mm (0.0025 inch) was attached to the front and oblique surfaces 

of the sample using Micro-Measurement epoxy type AE-10, while Kurt J. Lesker KL-325K Silver 

Epoxy was used to attach the transducer to the outter side of the copper foil. Moreover, Kurt J. 

Lesker KL-325K Silver Epoxy was applied on the outer surface of each transducer to attach wires. 

To enable measurement of static and dynamic parameters simultaneously, two strain gauges (type 

EA-06-250BG-120) were attached to one side face of each sample at 90-degree orientations, in 

order to measure horizontal and vertical strains (Figure 3-3). 

In one case (sample #1), after completing two test sequences (sequences #1 and #2) according to 

the standard instrumentation configuration as shown in Figure 3-3, the transducers were cut off of 

the front and back faces of the sample and new transducers were glued onto the top and bottom 

faces. The sample was then loaded uniaxially parallel to the bedding (sequence #3). In this 

configuration (shown in Figure 3-4), the transducers embedded within the loading platens were 

utilized to measure horizontal (or bedding-parallel) velocities.  
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Figure 3-3: Sample #8, illustrating standard instrumentation configuration. a) Compressional and shear 

transducers mounted on the front face and oblique face of the sample. In this figure, the matching 

transducers on the back and opposing oblique face are not visible. A Canadian $1 coin is used as a scale 

on top of the sample. b) Horizontal and vertical (partially hidden behind black wire) strain gauges that 

were mounted on one side face of the sample. 

 

 

Figure 3-4: Sample #1, illustrating the alternate instrumentation configuration that was used for sample 

#1 test sequence #3. 
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3.1.1.2.2 Test Procedures  

Each sample was inserted into an elastomer jacket in order to protect the sample from hydraulic 

oil penetration during loading. The following procedure was followed: 

• Wires were attached to the transducers and strain gauges 

• The sample was sandwiched between platens, held in place using c-clamp 

• The sample and platens were placed in a cylindrical mould 

• Liquid Skinflex was poured into the mould, then allowed to set for 24 hours. 

Figure 3-5 shows an example of a Skinflex mould after testing was completed. It was removed 

by cutting it with a knife. 

 

Figure 3-5: Top half of elastomer (Skinflex) sample jacket, shown after test completion and removal of 

sample. 

 

The jacketed sample was placed into a Soiltest CT 710 triaxial cell, wires were connected to 

electrical feed-throughs, and the cell was closed and filled with confining fluid (hydraulic oil). It 

is significant to note that the cell lacked sufficient electrical feed-throughs to simultaneously 
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accommodate all of the instrumentation, hence it was necessary to run each experiment with either 

strain gauge measurements or horizontal velocity measurements disabled. By controlling 

confining pressure and axial load, a series of load paths was applied to each sample. 

For each pair of sample faces, one face had transducers that acted as a transmitter and on the 

opposite face was a receiver. The arrival times for P-waves and S-waves were picked manually by 

viewing the received waveforms using an oscilloscope. To obtain the true travel time between the 

opposing faces of each sample, transducer zero times were obtained. To obtain these zero times, 

the transducers were placed in direct contact (via copper foil), depending on the instrumentation 

configuration used for the sample faces of interest. P-wave and S-wave velocities were calculated 

based on the distance between the opposing sample faces and the corrected travel time. 

A Wheatstone bridge circuit was used to connect the strain gauges to the data acquisition system. 

Strains were calculated based on the change in recorded voltage. 

In order to measure velocities of sample #1 under sequence #1 with hydrostatic loading, the sample 

was initially tested in the triaxial cell with electrical feed-throughs configured such that all velocity 

transducers were active, but the strain gauges were inactive. First the hydrostatic load was 

incrementally increased from 0 to 40 MPa, then incrementally decreased from 40 to 0 MPa. 

To conduct test sequence #2, after completing test sequence #1, the triaxial cell was drained and 

opened, and the electrical feed-throughs were reconfigured to deactivate the horizontal 

transducers. This enabled the activation of the strain gauges. During this sequence, hydrostatic 

load was incrementally increased from 0 to 20 MPa and then incrementally decreased from 20 to 

0 MPa. Pore pressure was 0 MPa during all testing sequences in this program. 

Based on the assumption that horizontal velocities will be effectively constant for sample #8, to a 

similar extent as observed for sample #1, sample #8 was tested with the horizontal transducers 

deactivated. Similar to sample #1, test sequence #2, this enabled the measurement of strains, which 

in turn can be used to calculated static elastic properties. (Note: Horizontal velocities were 

measured on sample #8 prior to filling the triaxial cell.)  

In order to assess the static response of sample #1, test sequence #3, uniaxial compression load 

was applied parallel to the bedding. Strains were measured parallel and perpendicular to bedding. 
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Hydrostatic compression was applied on sample #1, test sequence #2, while strains were measured 

parallel and perpendicular to bedding. 

3.1.2 Deadwood Formation 

3.1.2.1 Sample Description and Preparation  

The Deadwood Formation is of interest because of its use for CO2 sequestration (Aquistore 

Project), brine disposal (various potash mines) and its potential for geothermal resource 

development (Marcia, 2019). It was selected for study because of availability of core samples and 

a comprehensive logging suite, including a cross-dipole tool, in the Aquistore injection well. 

Furthermore, the selection of Deadwood samples enabled study across a broader range of lithology 

(Montney-shale, Deadwood-sandstone) in a setting with less horizontal stress anisotropy than 

Farrell Creek. The Deadwood Formation samples studied in this work are sandstones dominated 

by well-compacted quartz sand with glauconite clay and varying stages of dissolution. Sub-

horizontal bedding lamination were weakly visible in these samples. They were taken from the 

Aquistore injection well (PTRC_INJ_5-6-2-8 W2M) located near Estevan, Saskatchewan. Six 

samples were selected for this testing program, but due to due date, only five were tested. Four out 

of five samples (𝑇𝑥1, 𝑇𝑥2, 𝑇𝑥3 and 𝑇𝑥4) were cut in the vertical direction to characterize shear 

and compressional velocities as well as static elastic properties in the direction parallel to the axis 

of anisotropy symmetry. The other sample (H1) was prepared in the direction parallel to the 

bedding to characterize static properties in the plane of symmetry. Table 3-3 lists samples used for 

the testing program. The average sample dimensions are presented in Table 3-4. 

Note: This testing program was conducted by technical staff in the University of Saskatchewan 

Rock Mechanics Laboratory, and the results were provided to the author for use in this research. 
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Table 3-3: Mid-point depths of Deadwood Formation samples. 

Sample Driller’s Depth (m) Corrected Depth (m) 

𝑻 𝟏 3302.08 3308.88 

𝑻 𝟐 3302.42 3309.22 

𝑻 𝟑 3303.85 3310.65 

𝑻 𝟒 3303.85 3310.65 

𝑯𝟏 3300.13 3306.93 

 

Table 3-4: Deadwood Formation Sample dimensions (averaged, based on multiple reading). 

Sample No D (mm) L (mm) 𝝆 (
𝒌𝒈

𝒎𝟑
⁄ ) 

𝑻 𝟏 38.2 88.2 2334 

𝑻 𝟐 38.0 89.6 2328 

𝑻 𝟑 38.0 88.2 2406 

𝑻 𝟒 38.0 86.2 2423 

𝑯𝟏 38.0 77.3 2553 

 

In order to fully determine the elastic moduli of an ideal transverse isotropic media, velocities must 

be measured in three different directions (see Figures 3-6). The directions generally used are 

perpendicular, parallel and oblique to the material’s layering, based on the assumption that the 

perpendicular direction aligns with the axis of symmetry. For this work, core plugs were drilled 

by technical staff of University of Saskatchewan Rock Mechanics Laboratory (RML) from the 

sample in only two directions: perpendicular to the bedding (along 𝑋3, 𝜃 = 0
°) , and parallel to 

the bedding (along 𝑋1 or 𝑋2, 𝜃 = 90
°). Two of the samples are shown in Figure 3-7. Properties in 

the oblique direction were estimated based on symmetry relationships (Prioul et al., 2004): 

  𝐶12 = 𝐶11 − 2𝐶66                       𝑎𝑛𝑑                        𝐶13 = 𝐶33 − 2𝐶44 (3.1) 
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Figure 3-6: Schematic of the three core plugs needed to estimate the elastic constants that define a VTI 

symmetry (after Melendez et al., 2013). 

 

  

Figure 3-7: a) Sample #T𝑥2, drilled vertical to the bedding (vertical sample) ; and b) Sample  H1, drilled 

parallel to the bedding (horizontal sample), prior to instrumentation and testing. 
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3.1.2.2 Laboratory Testing Procedure  

3.1.2.2.1 Sample Instrumentation  

To fully characterize dynamic properties both parallel and normal to the bedding, separate tests 

were conducted on samples drilled in the horizontal direction (sample 𝐻1) and in the vertical 

direction (samples 𝑇𝑥1 − 𝑇𝑥4). For measuring the compressional and shear velocities in the 

parallel to the sample axis direction, load was applied on the sample through platens having 

transducers embedded within them. Four strain gauges were attached to each sample using epoxy; 

two oriented vertically and two oriented horizontally. This enabled the measurement of axial and 

lateral strains, which were then used to calculate static elastic moduli. 

3.1.2.2.2 Test Procedure  

Each sample was jacketed according to procedures described in section 3.1.2.2, then inserted into 

a triaxial cell and tested according to standard procedures. Axial stress and confining pressure were 

controlled independently. For the velocity tests, hydrostatic conditions were imposed. For the 

strain (static elastic property) tests, confining pressure was maintained constant at 5 MPa, while 

axial stress was increased steadily. Some samples were loaded until failure occurred. Others were 

tested before failure to avoid damage to the ultrasonic transducers. Given that this study was 

concerned with elastic properties, failure stresses are not reported here.  

Testing was performed following standard triaxial testing procedures, using loading platens 

containing embedded compressional and shear wave transducers which enabled measurement of 

𝑉𝑃 and 𝑉𝑠 parallel to the sample axis.  

3.1.3 Relationship Between Static Elastic Constants and Applied Stress  

This section explains how five static elastic moduli were extracted for the Montney Formation in 

order to fully characterize this vertical transverse isotropic (VTI) medium using the available lab 

data. 

In the current experiments, we made measurements using both strain gauges for static values and 

ceramic transducers for dynamic values. Existing relationships between elastic stiffness constants 

and elastic properties make it possible to characterize the anisotropic body. As a first step, in a 

body with hexagonal symmetry or transverse isotropic symmetry (TI), the following compliance 

tensor in terms of Young’s modulus (𝐸), shear modulus (𝐺) and the Poisson ratios (𝜗) is utilized 

to define the anisotropic body: 
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𝑆𝑖𝑗 =

(
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(3.2) 

The corresponding stiffness matrix, which is the inverse of the compliance matrix, in a TI medium 

is given by: 

𝐶𝑖𝑗 =

(

 
 
 

𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66)

 
 
 

 

(3.3) 

Where 𝐶11, 𝐶22, 𝐶33, 𝐶44, 𝐶55, 𝐶66, 𝐶12 and 𝐶13are elastic stiffness constants. To find elastic 

stiffness constants as function of elastic properties, it is required to calculate the inverse of the 

compliance matrix. For the sake of simplicity, the following substitutions are made: 

𝑎 =
1

𝐸1
, 𝑏 = −

𝜗12
𝐸1
, 𝑐 = −

𝜗31
𝐸3
, 𝑑 = −

𝜗13
𝐸1
, 𝑒 =

1

𝐸3
,

𝑓 =
1

𝐺23
, 𝑔 =

2(1 + 𝜗12)

𝐸1
 

(3.4) 

Thus: 
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𝐶𝑖𝑗 =

(
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(3.5) 
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As such, we have: 

 

By substituting the actual values of (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔), we find: 

𝐶11 = 𝐶22 =
𝐸1[1 − 𝜗13𝜗31]

(1 + 𝜗12)[1 − (2𝜗31𝜗13 + 𝜗12)]
 

(3.13) 

𝐶12 = 𝐶21 =
𝐸1[𝜗12 + 𝜗13𝜗31]

(1 + 𝜗12)[1 − (2𝜗31𝜗13 + 𝜗12)]
 

(3.14) 

𝐶13 = 𝐶23 =
𝐸1𝜗31

[1 − (2𝜗31𝜗13 + 𝜗12)]
 

(3.15) 

𝐶31 = 𝐶32 =
𝐸3𝜗13

[1 − (2𝜗31𝜗13 + 𝜗12)]
 

(3.16) 

𝐶33 =
𝐸3(1 − 𝜗12)

[1 − (2𝜗31𝜗13 + 𝜗12)]
 

(3.17) 

𝐶11 = 𝐶22 =
(𝑎 ∗ 𝑒 −  𝑐 ∗ 𝑑)

((𝑎 −  𝑏) ∗ (𝑎 ∗ 𝑒 −  2 ∗ 𝑐 ∗ 𝑑 +  𝑏 ∗ 𝑒)
 

(3.6) 

𝐶12 = 𝐶21 =
 (𝑐 ∗ 𝑑 −  𝑏 ∗ 𝑒)

((𝑎 −  𝑏) ∗ (𝑎 ∗ 𝑒 −  2 ∗ 𝑐 ∗ 𝑑 +  𝑏 ∗ 𝑒))
 

(3.7) 

𝐶13 = 𝐶23 =
 −𝑐

(𝑎 ∗ 𝑒 −  2 ∗ 𝑐 ∗ 𝑑 +  𝑏 ∗ 𝑒)
 (3.8) 

𝐶31 = 𝐶32 =
−𝑑

(𝑎 ∗ 𝑒 −  2 ∗ 𝑐 ∗ 𝑑 +  𝑏 ∗ 𝑒)
 

(3.9) 

𝐶33 =
(𝑎 +  𝑏)

(𝑎 ∗ 𝑒 −  2 ∗ 𝑐 ∗ 𝑑 +  𝑏 ∗ 𝑒)
 

(3.10) 

C55 = C44 =
1

f
 

(3.11) 

𝐶66 =
1

𝑔
 

(3.12) 
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𝐶55 = 𝐶44 = 𝐺23 (3.18) 

𝐶66 =
𝐸1

2(1 + 𝜗12)
 

(3.19) 

 Based on the relationships presented in equations 3.13-3.19, it can be concluded that: 

𝐶12 = 𝐶11 − 2𝐶66 (3.20) 

In a body with a hexagonal symmetry (or transverse isotropic symmetry (TI)) the elastic stiffness 

can be reduced to 5 elastic constants which are necessary to fully characterize the TI medium:   

𝐶13 = 𝐶31    →    
𝐸1𝜗31

[1−(2𝜗31𝜗13+𝜗12)]
=

𝐸3𝜗13

[1−(2𝜗31𝜗13+𝜗12)]
    →    𝐸1𝜗31 = 𝐸3𝜗13 (3.21) 

It can be concluded, by symmetry constraints that 𝐸1𝜗31 = 𝐸3𝜗13. 

Figure 3-8 shows the three measurements that would ideally be conducted to determine the elastic 

properties. The bulk modulus (𝐾) requires hydrostatic compression, which is shown in Figure 3-

8.c, and can be described simply as the change in pressure divided by the change in volume. 
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Figure 3-8: The three experiments that would ideally be conducted to recover all the Young’s moduli and 

Poisson’s ratios (after Havens, 2012). Strain measurement devices are not shown; in practice sensors 

would be attached to the samples to enable measurement of 𝜀1, 𝜀2 and 𝜀3 in these experiments. a) 

Uniaxial compression normal to bedding, b) uniaxial compression parallel to bedding, and 3) hydrostatic 

compression. 

 

In this work on the Montney Formation, only measurements of the type presented in Figure 3-3.b 

and 3-8.c are conducted. Under uniaxial conditions only 𝐸1 and 𝜗13 were measured, and under 

hydrostatic loading bulk modulus (K) was measured. By assuming vertical transverse isotropy 
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(VTI) behaviour for our samples, with a vertical axis of rotational symmetry, we could fully 

characterize the bedding properties using existing relationships between elastic properties (Hudson 

et al., 2000). 

 𝜗12 =
3𝐾 − 𝐸1
6𝐾

 
(3.22) 

  𝐺12 =
3𝐾𝐸1
9𝐾 − 𝐸1

 
(3.23) 

 

It is still necessary to find a way to characterize properties in the direction of the axis of symmetry. 

It is claimed by Melendez (2014) that the following relationship exists between bulk modulus and 

elastic stiffness constants: 

𝐾 =
𝐶33(𝐶11 + 𝐶12) − 2𝐶13

2

𝐶11 + 2𝐶33 + 𝐶12 − 4𝐶13
 

(3.24) 

  

By substituting the derived equations for 𝐶𝑖𝑗 as a function of elastic properties (3.13-3.19) and the 

symmetry equation given in equation (3.21), the following equation can be obtained for bulk 

modulus in a TI medium: 

  𝐾 =
𝐸1𝜗31

2𝜗31(1 − (𝜗12 + 2𝜗13)) + 𝜗13
=

𝐸3𝐸1
𝐸1 + 2𝐸3(1 − (𝜗12 + 2𝜗13))

 
(3.25) 

 

The following equation is derived for Poisson’s ratio (𝜗31) in the plane of 𝑋3 − 𝑋1; i.e., the plane 

parallel containing the axis of symmetry: 

  𝜗31 =
𝜗13𝐾

𝐸1 − 2𝐾[1 − (𝜗12 + 2𝜗13)]
 

(3.26) 

 

By substituting for 𝜗12 using equation (3.22), equation (3.26) becomes: 

  𝜗31 =
3𝜗13𝐾

2𝐸1 − 3𝐾[1 − (4𝜗13)]
 

(3.27) 
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Also, the following equation can be deduced for Young’s modulus in the planes parallel to the axis 

of symmetry: 

  𝐸3 =
𝐾𝐸1

𝐸1 − 2𝐾(1 − (𝜗12 + 2𝜗13))
 

(3.28) 

 

Nonlinear elasticity theory provides relationships between the effective elastic stiffness tensor 

𝐶𝑖𝑗𝑘𝑙 and the principal stresses 𝜎𝑖𝑘 and strains 𝜀𝑚𝑛, which can be written as following (Prioul et 

al., 2004): 

 

𝐶𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗𝑘𝑙 + 𝐴𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑚𝑛 (3.29) 

 

Where: 

𝐴𝑖𝑗𝑘𝑙= The unstressed fourth-order stiffness tensor (second-order elastic constants 𝐶𝑖𝑗
0 ) 

𝐴𝑖𝑗𝑘𝑙𝑚𝑛= The six-order elastic constants (or third-order elastic constants 𝐶𝑖𝑗𝑘in Voigt 

notation)  

𝜀𝑚𝑛= Principal strains. 

According to Prioul et al. (2004), equation 3.29 can be expressed as follows: 

𝐶11 = 𝐶33
0 + 𝐶111𝜀11 + 𝐶112𝜀22 + 𝐶112𝜀33  

𝐶22 = 𝐶33
0 + 𝐶112𝜀11 + 𝐶111𝜀22 + 𝐶112𝜀33  

𝐶33 = 𝐶33
0 + 𝐶112𝜀11 + 𝐶112𝜀22 + 𝐶111𝜀33  

𝐶23 = 𝐶12
0 + 𝐶123𝜀11 + 𝐶112𝜀22 + 𝐶112𝜀33  

𝐶13 = 𝐶12
0 + 𝐶112𝜀11 + 𝐶123𝜀22 + 𝐶112𝜀33 (3.30) 

𝐶12 = 𝐶12
0 + 𝐶112𝜀11 + 𝐶112𝜀22 + 𝐶123𝜀33  

𝐶44 = 𝐶55
0 + 𝐶144𝜀11 + 𝐶155𝜀22 + 𝐶155𝜀33  

𝐶55 = 𝐶55
0 + 𝐶155𝜀11 + 𝐶144𝜀22 + 𝐶155𝜀33  

𝐶66 = 𝐶55
0 + 𝐶155𝜀11 + 𝐶155𝜀22 + 𝐶144𝜀33  

Where 𝐶111, 𝐶112 and 𝐶123 are the three independent parameters with 𝐶114 =
(𝐶112 − 𝐶123)

2⁄  

and 𝐶115 =
(𝐶111 − 𝐶112)

4⁄ . 
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From nonlinear elastic equations 3.30 and 3.20, it is concluded that: 

  𝐶11 + 𝐶33 = 2(𝐶13 + 2𝐶55) (3.31) 

 

By substituting equations (3.13, 3.15, 3.17 and 3.18) into equation 3.31, the following equation for 

shear modulus (𝐺23) is obtained: 

  𝐺23 = 𝐶55(= 𝐶44) =
𝐸1(𝜗13 − 𝜗31((𝜗12 + 𝜗13)

2 − (1 − 2𝜗13)))

4𝜗13((1 + 𝜗12)(1 − (𝜗12 + 2𝜗13𝜗31)))
 

(3.32) 

 

As such, using equations 3.21, 3.22, 3.25, 3.27 and 3.30, we can fully characterize a VTI medium 

based on conducting experiment presented in Figure 3.8.b and 3-8.c. Elastic stiffness constants 

could be calculated based on equations 3.13 to 3.19.  

 

3.2 Numerical Approach 

3.2.1 COMSOL Software 

COMSOL Multiphysics is a powerful software which has the capability of simulating multiple 

physical processes in any dimension (1D, 2D, 3D). COMSOL Multiphysics is based on the Finite 

Element (FEM) method, in which the spatial domain is divided into small parts (mesh elements) 

to achieve accurate representation of complex geometries. 

To conduct dynamic and static analysis, three different modules of COMSOL Multiphysics were 

used; i.e., the acoustic, solid mechanics and geomechanics modules. 

The acoustic module was used in conjunction with the solid mechanics module to combine 

pressure waves in the fluid with elastic waves in the solid to simulate wave propagation around a 

fluid-filled borehole.  

The solid mechanics and geomechanics modules were used in conjunction for simulation of static 

stress analysis around a fluid-filled borehole. 

There were several reasons for choosing COMSOL Multiphysics as a tool to conduct the dynamic 

and static studies in this work. First of all, the most important factor was to facilitate a direct import 

of the results from static analysis into the dynamic simulation, hence enabling the use of stress-
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dependent dynamic elastic properties. Secondly, the acoustic module supports time-harmonic 

(frequency domain) and transient studies for fluid pressure analyses. Time-harmonic study was 

selected over transient study because it is less time consuming and requires less computer memory. 

The time-harmonic equation is a Fourier transform of the original time-dependent equations and 

its solution as a function of frequency (ω) is the Fourier transform of a full transient solution. It is 

therefore possible to synthesize a time-dependent solution from a frequency-domain simulation by 

applying an inverse Fourier transform of the results. Finally, it provides an opportunity to define 

different types of point source (Monopole, Dipole and Quadrupole) with the desired point source 

function (e.g., Ricker, Sinc, Square, Ormsby). 

3.2.2 Modeling Process 

The workflow for doing simulation with COMSOL Multiphysics is given in Figure 3-9. 

A static analysis was performed in step 1, in order to calculate the static stresses around the 

borehole. Initially, the in-situ stress state of the formation was computed before the excavation of 

the borehole. Next, the stress concentration around the borehole was computed after excavation of 

the borehole.  

The dynamic analysis was conducted in step 2. The static analysis results were imported directly 

into the dynamic model to help to define dynamic elastic stiffness parameters as a function of 

stresses. 
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Figure 3-9: Workflow for simulating static stresses, wave propagation and flexural wave dispersion 

around a borehole using COMSOL Multiphysics. 
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3.2.3 Static Stress Analysis 

In order to calculate the stress-induced anisotropy in homogenous rocks, the redistribution in 

stresses around the borehole resulting from drilling must be estimated. In static stress analysis, we 

consider an infinite formation of arbitrary anisotropy which is homogenous and continuous in all 

directions. Internally this body is bounded by a cylindrical borehole of radius 𝑎 located in the 

center of the formation. In the far field an in-situ stress field is applied where the principal stress 

tensor takes the form: 

   𝜎 = (
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

) 

(3.33) 

 

For the sake of the simplicity, but without loss of generality, in simulating the stress concentration 

and displacement around the borehole some assumptions were made, as follows: 

• one of the principal stresses is aligned parallel to the axis of anisotropy (Figure 3-10).  

• The borehole is semi infinite and homogenous in the axial direction; this is referred to 

as a generalized plane strain formulation. The generalized plane strain assumption used 

at the top of the model domain requires the displacement components to be functions 

of 𝑥 and 𝑦, and the only strain which is zero is 𝜀𝑧𝑧. The assumption of being infinite 

was made, in order to make sure that the solution inside the region of interest is not 

affected by the presence of artificial boundaries. This objective was accomplished by 

applying a coordinate scaling factor to a layer of virtual domain at the bottom of the 

borehole and formation. This virtual domain was stretched out toward infinity, giving 

rise to infinite elements. In COMSOL Multiphysics, this virtual domain is predefined 

as an infinite domain, which is applied on the bottom of the borehole and formation, as 

shown in Figure 3-11. It is strongly recommended by COMSOL to use swept meshing 

in the infinite element domain to prevent poor mesh element quality, giving rise to poor 

or slow convergence for iterative solvers and making the problem ill-conditioned in 

general. 

• The size of the model in the radial direction is sufficiently large to avoid significant 

influence of model size on stress concentrations. 
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Figure 3-10: Alignment of the principal stresses in the direction of axis of anisotropy. 
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Figure 3-11: Model geometry for static stress analysis. An infinite domain, shown in blue, is used to 

eliminate boundary effects at the base of the model. The upper surface is a free surface. 
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The modelling of the stress field through the model domain consists of solving Navier’s equations 

of motion for displacements and strain, and stress components through Hooke’s law. In order to 

calculate stresses, two steps are required (see Figures 3-12). In the first step, the stress state of the 

formation before the excavation of the borehole is computed. In the second step, the response of 

formation to redistribution of stresses by excavating a borehole is computed. Because only a static 

solution of the Navier’s equations is considered, the deformation of the borehole is assumed to 

happen “instantaneously” after the application of appropriate forces on the borehole wall.  

In order to obtain a stable solution, boundary conditions must be imposed. The outer edges were 

considered fixed in the direction perpendicular to the outer boundary of the model. The bottom of 

the hole is fixed to prevent any rotation that would be caused by external loads. The only boundary 

condition applied on borehole /formation interface is a boundary load, which simulates the uniform 

pressure applied by the drilling mud pressure inside the borehole. 
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Figure 3-12: a) Domains defined for simulating static stress analysis; b) selected domains in modelling 

step 1 (before excavation); and, c) selected domains in modeling step 2 (after excavation). 

3.2.3.1 Model Assessment 

Assessment of the static numerical modeling was conducted by comparison against Aadnoy’s 

analytical solution (presented in Appendix A) for stress concentration around an arbitrarily 

oriented borehole in a general anisotropic elastic model. The input data used were taken from 

Gaede et al. (2012). 

Three different scenarios were modeled: vertical, horizontal and deviated boreholes (Figure 3-13). 

A cylindrical model with a radius of 5 m was used. The borehole was placed in the center of the 

model with radius of 0.1 m. As stated before, it was assumed that the coordinate system of the 

model is aligned with the in-situ stresses. For convenience, the compliance tensor was rotated into 

the top of borehole (TOH) coordinate frame. The formulation for transformation of the compliance 
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tensor is presented in Appendix B. The value of the elastic parameters and in-situ stresses are 

presented in Tables 3-5 and 3-6. Results of the model assessment are shown in section 4.3.1.1. 

 

Figure 3-13: a) Schematic of the stress and elastic tensor transformations required to set up the boundary 

conditions at a borehole. Three different scenarios 𝜃 = 0 (vertical borehole), 𝜃 = 90°(horizontal 

borehole) and 𝜃 = 45° (deviated borehole); b) Rotated ‘top of borehole” coordinate system used in 

COMSOL (after Karpfinger et al., 2011). 

 

Table 3-5: Anisotropic elastic properties for vertical transverse isotropy (VTI), where the rock density is 

2535 kg/m3. 

Elastic Properties Elastic Constants 

𝑬𝒉 31.17 (GPa) 𝐶11 45.20 (GPa) 

𝑬  15.42 (GPa) 𝐶33 28.00 (GPa) 

𝝑𝒉 0.08 𝐶44 7.05 (GPa) 

𝝑  0.32 𝐶66 14.40 (GPa) 

𝑮  7.05 (GPa) 𝐶13 19.76 (GPa) 

 

Table 3-6: In-situ stress field and mud pressure. 

    𝑯𝒎    𝒉𝒎𝒊𝒏 𝑷𝒎 

30 (MPa) 20 (MPa) 10 (MPa) 5 (MPa) 
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3.2.3.2 Montney Formation 

The numerical model was used to simulate the stress concentration around the borehole in the 

Montney Formation at Farrell Creek for two scenarios: i.e., a vertical borehole and a horizontal 

borehole (parallel to the minimum horizontal stress). The following input parameters were required 

(values are presented in Table 3-7): 

• The diameter of the undeformed borehole coincides with the bit size in well.  

• The in-situ stresses and pore pressure were defined based on the literature review 

conducted in Chapter 2. 

• The mud density was calculated as a function of temperature and pressure based on the 

equation presented by Carcione & Poletto (2000). Based on the completion report, 

Invert and Polymer based muds were used in the horizontal and vertical wells in the 

Montney Formation, respectively. Mud pressures inside the boreholes were defined 

based on calculated mud densities and the average depth of samples. 

• Stress-dependent static elastic stiffness properties were defined based on the lab testing 

results presented in section 4.1.1.4. 
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Table 3-7: Input parameters for static analysis (Montney Formation). 

 Vertical Borehole Horizontal Borehole 

Geometry Borehole Diameter 0.171(𝑚) 0.171(𝑚) 

Formation Diameter 7.60(𝑚) 7.60(𝑚) 

Height 12.83(𝑚) 12.83(𝑚) 

In-Situ Stresses Maximum 

Horizontal Stress 

64.82(𝑀𝑃𝑎) 64.82(𝑀𝑃𝑎) 

Minimum 

Horizontal Stress 

49.86(𝑀𝑃𝑎) 49.86(𝑀𝑃𝑎) 

Vertical Stress 59.83(𝑀𝑃𝑎) 59.83(𝑀𝑃𝑎) 

Drilling Mud Pressure 42.42(𝑀𝑃𝑎) 36.32(𝑀𝑃𝑎) 

Pore Pressure  39.23(𝑀𝑃𝑎) 39.23(𝑀𝑃𝑎) 

3.2.3.3 Deadwood Formation 

The model was used to simulate the stress concentration around a vertical borehole in the 

Deadwood Formation at the Aquistore Site. The model input parameters are listed in Table 3-8. 

• The diameter of the undeformed borehole coincides with the bit size in the well.  

• The in-situ stresses and pore pressure were defined based on the literature review 

conducted in Chapter 2. 

• The mud density was calculated based on the equation used for calculating Montney 

boreholes. According to the completion report, the type of mud filling the vertical 

borehole in Deadwood Formation was Invert. Based on the presented volume fraction 

of components, the mud density was calculated. Mud pressure inside the borehole was 

defined based on the calculated mud density and the average depth of the samples. 

• Stress-dependent static elastic stiffness properties were defined based on the lab testing 

results presented in section 4.2.1.4. 
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Table 3-8: Input parameters for static analysis (Deadwood Formation). 

 Vertical Borehole 

Geometry Borehole Diameter 0.251(𝑚) 

Formation Diameter 7.60(𝑚) 

Height 12.83(𝑚) 

In-Situ Stresses Maximum 

Horizontal Stress 

59.90(𝑀𝑃𝑎) 

Minimum 

Horizontal Stress 

51.96(𝑀𝑃𝑎) 

Vertical Stress 81.74(𝑀𝑃𝑎) 

Drilling Mud Pressure 41.03(𝑀𝑃𝑎) 

Pore Pressure  35.41(𝑀𝑃𝑎) 

3.2.4 Dynamic Analysis 

The acoustic module of COMSOL Multiphysics was utilized to simulate acoustic wave 

propagation around a fluid-filled borehole. The numerical model comprises two main domains: 1) 

the borehole, and 2) the formation surrounding the borehole, as shown in Figure 3-14. Acoustic 

energy is emitted by a point source located close to the bottom of borehole. Depending on the type 

of point source, different types of energy can be emitted into the borehole. Simulations using a 

monopole source were conducted during this work; however, these simulations were not the main 

focus of this work (interested readers are referred to Appendix C for monopole simulation results). 

The results of simulations using a dipole source are presented in Chapter 4, as the main focus of 

this research was to investigate fast/slow shear waves and flexural wave dispersion.  

A number of virtual points, at which acoustic energy was recorded, were designated to represent 

an array of receivers. The number of virtual point receivers and their positions relative to the 

transmitter were based on the specific tool used to log the boreholes of interest for this work. 
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Modeling of wave propagation requires high resolution meshing of the borehole and the formation 

immediately surrounding the borehole in the vicinity of the logging tool. However, it is also 

necessary to model the borehole (in the axial direction) and formation (in the axial and radial 

directions) in the regions extending further away from the logging tool. Unfortunately, the 

boundaries between the inner and outer parts of the model domain will result in the occurrence of 

apparent reflected waves which are not representative of in-situ behaviour. In order to minimize 

these artifacts, a specially designed layer, widely known as a Perfectly Matched Layer (PML) is 

used for the outer parts of the model domain. In COMSOL Multiphysics, PML domains are a 

predefined option. PML domains were used surrounding the formation and borehole. It was found 

to be important to define separate PML domains for the formation and the borehole (as shown in 

Figure 3-14), since the predefined PML coordinate stretching functions are controlled by the 

typical wavelength (representing the longest wavelength of propagating waves in an infinite 

medium) provided by the physics interface, and two distinct physics were used for the formation 

(Solid Mechanics physics) and the borehole (Acoustic physics) and each of these domains have 

different compressional wave velocities ( hence wavelengths). Also in the infinite element domain, 

it is strongly recommended by COMSOL to use swept meshing in the PML domains to prevent 

poor mesh element quality, giving rise to poor or slow convergence for iterative solvers and 

making the problem ill-conditioned in general. 

It is believed that acoustic waves do not penetrate the surrounding media for distances exceeding 

a few dominant wave lengths, which is estimated to be between 0.5 and 0.7 m. Thus, it is natural 

to truncate the simulation area to 6 to 7 times the borehole radius (Pissarenko et al., 2009). 

However, initial dynamic simulation results (Appendix D) revealed that this radius would be better 

determined based on the static stress analysis results because dynamic elastic properties are defined 

as a function of stress, and the zone of induced stress change can extend beyond 7 borehole radii. 

In this research, formation radius during dynamic analysis was defined based on static stress 

analysis results. 
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Figure 3-14: Graph showing the position of an acoustic point source and also illustrating the two PML 

domains used to simulate wave propagation during sonic logging using the acoustics module in 

COMSOL. 

 

3.2.4.1 Model Assessment 

To assess that the numerical model was functioning properly, simulation results were compared 

against the analytical solution proposed in section 3.4. To achieve this, a 3D finite element model 

was developed, which only contains an acoustic domain (known as the borehole) surrounded by a 

PML domain. In this model the transmitter was 3.5 m apart from the receiver array (according to 

sonic scanner tool specification) as shown in Figure 3-15. Two types of source wavelet were 

modeled; i.e., the Ricker wavelet and the Ormsby wavelet. Appendix E presents the methods used 

to derive frequency domain functions from time domain equations for these wavelets. Table 3-9 

presents the properties assigned to the model for simulations using the Ricker wavelet, which is 

used in Weatherford’s CXD logging tool. Since this model is in the low frequency range, the PML 

thickness was assigned one-quarter of a wavelength (1 4⁄ 𝜆).  
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The Ormsby wavelet was chosen with the goal of generating a frequency sweep that simulates the 

Sonic Scanner tool used by Schlumberger. Table 3-10 presents the properties used for the Ormsby 

wavelet. Frequencies were chosen to be close to the frequency range generated by the Sonic 

Scanner tool, which is claimed to be flat from 300 HZ to 8 kHz (Franco et al., 2006). The results 

of the model assessment are presented in section 4.3.21. 

 

 

Figure 3-15: Graph showing the position of the point source and the two main domains used in the model 

assessment simulation; i.e., the borehole and the PML. 

 

Table 3-9: Characteristics assigned to the model in order to assess the dynamic simulation using the 

Ricker wavelet source function. 

 Acoustic 

velocity 

(km/s) 

Density of 

fluid 

(kg/m3) 

Maximum 

Frequency 

(Hz) 

Central 

frequency (Hz) 

PML 

velocity 

(km/s) 

PML 

Thickness 

(m) 

Acoustic Domain 

Characteristics 

(Borehole) 

1500 1000 1000 500 1500 0.375 
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Table 3-10: Characteristics assigned to the model in order to assess the dynamic simulation using the 

Ormsby wavelet source function. 

 Acoustic 

velocity 

(km/s) 

Density of 

fluid (kg/m3) 

𝑓1(𝐻𝑧) 𝑓2(𝐻𝑧) 𝑓3(𝐻𝑧) 𝑓4(𝐻𝑧) PML 

Thickness 

(m) 

Acoustic Domain 

Characteristics (Borehole) 

1500 1000 0 300 8000 11000 1.25 

 

3.2.4.2 Montney Formation 

The model was used to simulate wave propagation during sonic logging of  boreholes in the 

Montney Formation in Farrell Creek. For a horizontal borehole available data provided by 

Weatherford Inc were used for comparison against the simulation results. As such, the 

configuration of the Compact Cross-Dipole Sonic (CXD) tool was used as the basis for the model. 

The CXD tool uses a Ricker wavelet with frequency range between 2-10 kHz as its source. The 

following tool specifications were also used: 

• Array of receivers is composed of 8 receivers. 

• Spacing between adjacent receivers (RR) is 0.20 m 

• The distance from the transmitter to first receiver (TR) is 2.6 m 

For a vertical borehole, available data provided by Schlumberger Inc were used for comparison. 

As such, the configuration of the Sonic Scanner tool was used as the basis for the model. Based 

on the frequency response of the Sonic Scanner tool, it was concluded that this tool uses an Ormsby 

wavelet with frequency range between 2-10 kHz as its source. The following tool specifications 

were also used: 

• Array of receivers is composed of 13 receivers. 

• Spacing between two receivers (RR) is 0.1524 m 

• The distance from the transmitter to first receiver (TR) is 3.5 m 

Additional modeling parameters were as follows: 
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• Dynamic elastic properties were defined as a function of stress as mentioned in section 

4.1.1.2, and stresses were imported from the static stress analysis described in section 

4.2.1.2. 

• The thickness of the PML domain was modified according to the minimum frequency in 

the practical frequency range of the tool (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑃𝑀𝑙 =
1
4⁄ 𝜆 =

𝑓𝑙𝑢𝑖𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
4𝑓𝑚𝑖𝑛
⁄ ). 

• Mud velocities were calculated based on the equation presented in Carcione & Poletto 

(2000), to be close to the real field conditions. Based on the calculation, mud velocities for 

the horizontal well (Invert mud) and vertical well (Polymer based mud) were estimated to 

be 1540 m/s and 2350 m/s, respectively.  



74 

 

Table 3-11: Input parameters for dynamic analysis (Montney Formation). 

 Vertical Borehole Horizontal Borehole 

Geometry Borehole Diameter 0.171(𝑚) 0.171(𝑚) 

Formation Diameter 2.052(𝑚) 2.052(𝑚) 

Height 8.33(𝑚) 8.33(𝑚) 

PML Thickness 2(𝑚) 2(𝑚) 

Point Source Type of Point 

Source 

Dipole Dipole 

Type of Wavelet Ormsby Ricker 

Frequency Range 300 − 8000(𝐻𝑧) 2000 − 10000(𝐻𝑧) 

Drilling Mud Density 1830(
𝑘𝑔
𝑚3
⁄ ) 1570(

𝑘𝑔
𝑚3
⁄ ) 

Velocity 2350(𝑚 𝑠⁄ ) 1540(𝑚 𝑠⁄ ) 

 

3.2.4.3 Deadwood Formation 

The model was used to simulate wave propagation during sonic logging in the Deadwood 

Formation at the Aquistore site. For the vertical borehole logged at this site, available data provided 

by Schlumberger Inc were used for comparison. As such, the configuration of the Sonic Scanner 

tool was used as the basis for the model. Based on the frequency response of Sonic Scanner tool, 

it was concluded that this tool uses an Ormsby wavelet with a frequency range between 2-10 kHz 

as its source. The following tool specifications were also used: 

• Array of receivers is composed of 13 receivers. 

• Spacing between two receivers (RR) is 0.1524 m 

• The distance from the transmitter to first receiver (TR) is 3.5 m 

Additional modeling parameters were as follows: 
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• Dynamic elastic properties were defined as a function of stress as mentioned in section 

4.2.1.2 and stresses were imported based on the conducted static stress analysis in section 

4.2.1.3. 

• The thickness of the PML domain was modified according to the minimum frequency in 

the practical frequency range of the tool (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑃𝑀𝑙 =
1
4⁄ 𝜆 =

𝑓𝑙𝑢𝑖𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
4𝑓𝑚𝑖𝑛
⁄ ). 

• For the inverted mud used mud velocity was calculated as 842 m/s based on the equation 

presented in Carcione & Poletto (2000). 

Table 3-12: Input parameters for dynamic analysis (Deadwood Formation). 

 Vertical Borehole 

Geometry Borehole Diameter 0.251(𝑚) 

Formation Diameter 2.259(𝑚) 

Height 8.33(𝑚) 

PML Thickness 2(𝑚) 

Point Source Type of Point 

Source 

Dipole 

Type of Wavelet Ormsby 

Frequency Range 300 − 8000(𝐻𝑧) 

Drilling Mud Density 1260(
𝑘𝑔
𝑚3
⁄ ) 

Velocity 842(𝑚 𝑠⁄ ) 

 

3.2.5 Dispersion Analysis 

In this project, dispersion analysis was conducted as a primary quality control (QC) method to 

verify numerical simulation and to estimate the dispersive character of the waves to quantify 

anisotropy behaviour of the formation. Two different methods were used to write MATLAB codes 

to calculate dispersion curves: 1) Dispersion Imaging Seismogram Calculation (DISECA) 
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(Gaždová & Vilhelm, 2011) and 2) the Phase Moveout method (Assous et al., 2014). Consistency 

between the results of these codes was used as means to validate the dispersion codes. (Raw 

waveforms could not be extracted from the field data provided by Schlumberger and Weatherford; 

hence it was not possible to validate these algorithms by comparison against dispersion curves 

provided by these service companies.) 

The DISECA method is based on picking peak amplitude. In this method, time windows with 

different slope (phase velocity) are applied on an array of normalized sinusoids curves. If the 

curves are summed together within a finite time length along each slope, they will give new 

sinusoid curves of finite length whose amplitudes are between 0 to 1. The slope that gives the 

maximum amplitude will be the correct value of phase velocity being sought.  

The Phase Moveout method is based on measuring the change in phase between the signal at each 

receiver, then converting the phase change to time delay and hence to a slowness by knowing 

spacing between receivers. 

3.3 Additional Input Data 

In addition to the input data properties presented previously (e.g., borehole diameter, in-situ 

stresses, pore pressure, mud properties and acoustic source properties), the following input 

parameters were required to run the COMSOL Multiphysics simulations conducted in this 

research: 

• Rock dynamic and static elastic properties. 

• Relationships between dynamic and static elastic stiffness parameters as a function of 

stress. 

3.3.1 Rock Physical Properties  

The results of lab testing were used to calculate the rock physical properties. Rock dynamic elastic 

properties were calculated according to equations 2.9 to 2.13. Static elastic properties were 

calculated based on the established relations presented in section 4.1.2.4. 

3.3.2 Relationship between dynamic elastic stiffness parameters with stresses 

The relationships between dynamic elastic stiffness parameters and stresses were established based 

on the hydrostatic experimental results for both the Montney Formation and the Deadwood 

Formation.  



77 

 

3.4 Analytical Solution Used for Assessment of Numerical Model 

To assess a numerical model’s accuracy, it is common to simulate a basic scenario for which an 

analytical solution is available. Sections 3.4.1 to 3.4.4 describe an analytical solution used in this 

research to assess the numerical model used for wave propagation simulation. 

Note: This derivation was developed based on Yoshida (2018), with the assistance of Professor 

Samuel Butler. 

3.4.1 Acoustic Wave Propagation in Fluid 

The Navier-Stokes equation is a potential differential equation that describes the motion of viscous 

fluids. With this equation, the velocity can be calculated at many points within a region of space 

and an interval of time. Once the velocity field is calculated, other quantities of interest such as 

pressure or temperature may be found using additional equations and relations.   

The general form of the Navier-Stokes equation is as follows: 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢. ∇𝑢) = −∇𝜌 + 𝜆∇2𝑢 

(3.34) 

Where,  

𝜌 = Density  

𝑢 = Velocity 

𝑡 =Time 

𝜆 = Volume viscosity  

In equation 3.34, we assume that the fluid is incompressible. For the sake of simplicity, the role of 

viscosity is neglected in this work (𝜆∇2𝑢 = 0). To solve for the velocity of waves using the Navier-

Stokes equation, the conservation of mass and a linear relation between pressure and density is 

applied. The general form of the mass conservation equation for an arbitrary domain can be defined 

as follows: 

  
𝜕𝜌

𝜕𝑡
+ ∇. (ρ 𝑢) = 0 

(3.35) 

3.4.1.1 Relation between Density and Pressure 

To achieve the relation between pressure and density, the compressibility equation is utilized: 
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 𝐾 = −
1

𝑉
 
𝜕𝑉

𝜕𝑃
 

(3.36) 

Where,  

K = Compressibility 

V = Bulk volume 

P = Pressure 

The basic equation for density (equation 3.5) is combined with equation 3. 36, as follows: 

𝜌 =
𝑀

𝑉
 

(3.37) 

Where, 

 M = mass 

 V = volume 

 
𝑑𝑉

𝑑𝜌
=
𝑀

𝜌

𝜕𝑉

𝜕𝜌
= −

𝑀

𝜌2
𝜕𝜌

𝜕𝑃
  (3.38) 

 𝐾 = −
𝜌

𝑀
(
−𝑀

𝜌2
)
𝜕𝜌

𝜕𝑃
 

(3.39) 

 𝐾 =
1

𝜌

𝜕𝜌

𝜕𝑃
 

(3.40) 

Thus, the change in density is defined as follows: 

𝜕𝜌 = 𝜌𝐾𝜕𝑃 (3.41) 

The substitution of equation 3.41 into equation 3.35 gives Navier-Stokes equation in terms of 

pressure: 

 𝜌𝐾
𝜕𝑃

𝜕𝑡
+ ∇2(ρ u) = 0 

(3.42) 

The density change caused by acoustic pressure at each point is expressed by the background 

density (𝜌𝑏) and its change in time (𝜌′): 
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 𝜌 = 𝜌𝑏 + 𝜌
′ (3.43) 

 𝜌𝑢 = 𝜌𝑏𝑢 + 𝜌
′𝑢 (3.44) 

In equation 3.44, the change in density in time is assumed to be small enough to be ignored. By 

having this assumption, equation 3.42 can be changed to the following equation: 

 𝜌𝐾
𝜕𝑃

𝜕𝑡
+ ∇. (ρ𝑏 𝑢) = 0 

(3.45) 

3.4.1.2 Simplified Navier-Stokes Equation to 1D 

For a one-dimensional problem, equation 3.45 can be expressed as follows: 

𝜌𝑏𝐾
𝜕𝑃

𝜕𝑡
+
∂

𝜕𝑥
(ρ𝑏  𝑢⃗ ) = 0 

(3.46) 

Taking the partial derivative with respect to 𝑡, we find: 

𝜌𝑏𝐾
𝜕2𝑃

𝜕𝑡2
+

∂2

𝜕𝑥 𝜕𝑡
(ρ𝑏 𝑢⃗ ) = 0 

(3.47) 

Based on the conservation of momentum, the following relationship exists between pressure and 

velocity: 

𝜌𝑏
𝜕𝑢⃗ 

𝜕𝑡
= −

𝜕𝑃

𝜕𝑥
 

(3.48) 

By deriving from x: 

𝜌
𝜕2𝑢⃗ 

𝜕𝑥 𝜕𝑡
= −

𝜕2𝑃

𝜕𝑥2
 

(3.49) 

By replacing equation (3.49) into equation (3.47), the following equation is obtained: 

𝜌𝑏𝐾
𝜕2𝑃

𝜕𝑡2
−
𝜕2𝑃

𝜕𝑥2
= 0 

(3.50) 

By simplifying equation 3.50, the following equation is obtained: 

 𝐾
𝜕2𝑃

𝜕𝑡2
−
1

𝜌𝑏

𝜕2𝑃

𝜕𝑥2
= 0 

(3.51) 

We can then generalize the 1D equation 3.50 to a 3D wave equation, as follows: 
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 𝐾
𝜕2𝑃

𝜕𝑡2
−
1

𝜌𝑏
∇2𝑃 = 0 

(3.52) 

3.4.2 Potential Function 

As mentioned in Chapter 2, logging tools are generally made up of two or more transmitters and 

an array of receivers. A transmitter is a point source that radiates a wavefront. Depending on the 

type of source, this wavefront can be symmetrical as with the monopole sensor, or the wave front 

can be asymmetrical with respect to the source as per the dipole sensor (as illustrated in Figure 2-

1). In this work, the transmitter is considered as the origin of the coordinate system.  

To simulate the wave propagation analytically as function of time and location, a potential function 

is required to determine the pattern or the phase variation of the wave. In the following section, 

the derivation of the potential function for different types of transmitters is shown. 

3.4.2.1 General Type of Potential Function 

To achieve a general form of the potential function, a mass balance and force balance are applied, 

as follows: 

 
𝜕𝜌

𝜕𝑡
+ 𝛻. (𝜌𝑢) = 0 

(3.53) 

 

 𝜌 = 𝜌𝑏 + 𝜌
′ (3.54) 

 

 𝑢̂ = 𝑢0̂ + 𝑢1̂  (3.55) 

Where: 

 𝜌𝑏 = Background density  

𝜌′ ≔ Density change with time 

𝑢0̂= Background velocity 

𝑢1̂= Velocity change with time 

The background state of velocity is zero, as follows: 
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 𝑢̂ = 𝑢1̂  (3.56) 

 
𝜕(𝜌𝑏 + 𝜌

′)

𝜕𝑡
+ ∇. ((𝜌𝑏 + 𝜌

′)𝑢1̂) = 0 
(3.57) 

Zero orders are constant with time: 

 
𝜕(𝜌𝑏)

𝜕𝑡
+ 𝑂(0) = 0             

𝑂𝑡ℎ 𝑜𝑟𝑑𝑒𝑟 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑖𝑡ℎ 𝑡𝑖𝑚𝑒
⇒                                        

𝜕(𝜌𝑏)

𝜕𝑡
= 0 (3.58) 

Then the first order equation is as follows: 

 
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑏𝑢) + 𝑂(2) = 0          

1𝑡ℎ 𝑜𝑟𝑑𝑒𝑟 
⇒          

𝜕𝜌′

𝜕𝑡
+ 𝜌𝑏∇. (𝑢) = 0  (3.59) 

By substituting equation 3.40 into equation 3.59, the following equation is derived: 

 𝜌𝑏𝐾
𝜕𝑃

𝜕𝑡
+ 𝜌𝑏∇. (𝑢) = 0 

(3.60) 

Based on a force balance: 

 𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌𝑢. ∇2𝑢 = −∇𝑝 

(3.61) 

 (𝜌𝑏 + 𝜌
′  )
𝜕𝑢1
𝜕𝑡
+ (𝜌𝑏 + 𝜌

′  )𝑢1. ∇
2𝑢1 = −∇𝑝 

(3.62) 

The first order derivative accounts for the change of background state; here we neglect the second 

order, and the zero order is constant in space. 

 𝜌𝑏
𝜕𝑢1̂
𝜕𝑡
+ 𝑂(0) = −∇𝑝 

(3.63) 

Next equation 3.58 and equation 3.62 are used, and equation 3.63 is derived with respect to time 

and gradient from equation 3.62. Moreover, we assume that = ∇𝜑 , where 𝜑 is a potential function. 

Then equation 3.58 becomes: 

 −𝐾𝜌𝑏
𝜕2𝜑

𝜕𝑡2
+ ∇2𝜑 = 0 

(3.64) 

By the spherical Laplacian, it is concluded that it is required to define a new variable to simplify 

the above equation  ∅ = 𝜑𝑟 : 
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𝜕2∇∅

𝜕𝑡2
− 𝐶0

2
𝜕

𝜕𝑟
∅ = 0 

(3.65) 

In equation 3.66, 𝐶0(=
1
√𝐾 𝜌𝑏
⁄ ) is the compressional wave velocity of the fluid.  

To determine the pattern or the phase variation of the wave, it is required to define ∅ as the 

combination of the two arbitrary functions showing the wave going outwardly from the source at 

the speed 𝐶0 (𝑓) and inwardly to the source at the speed 𝐶0(𝑔): 

 ∅ = 𝑓 (𝑡 −
𝑟

𝐶0
) + 𝑔(𝑡 +

𝑟

𝐶0
) (3.66) 

Acoustic waves are radiated in an outward direction, so the 𝑔 function can be ignored in simulating 

the acoustic waves: 

 ∅ = 𝑓 (𝑡 −
𝑟

𝐶0
) = 𝑟𝜑 

(3.67) 

  𝜑 =
𝑓 (𝑡 −

𝑟
𝐶0
)

𝑟
 

(3.68) 

On the other hand, the same relation holds between the general velocity vector 𝑢̂ and 𝜑 : 

 𝑢̂ = ∇𝜑 . 

By substituting this relation into equation 3.63 (, the following equation is derived: 

 𝜌𝑏
𝜕2

𝜕𝑡2
∇𝜑 = −

𝜕

𝜕𝑡
∇𝑃1 

(3.69) 

By integrating equation 3.69, the following equation is achieved: 

 𝜌𝑏
𝜕𝜑

𝜕𝑡
= −𝑃1 

(3.70) 

Next, considering a sphere centered at the origin and having a small pulsating motion, the equation 

of its surface is: 

 𝑟 = 𝑎0 + 𝑎(𝑡) (3.71) 

Where: 
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𝑎0= Initial radius of sphere 

𝑎(𝑡)= Change in sphere radius in time 

If it is considered that the velocity in the radial direction is 𝑉𝑟 , the following relation exists for 

fluid velocity at the sphere surface (Yoshida,2018): 

 𝑉𝑟 =
𝜕𝜑

𝜕𝑟
=
𝑑𝑟

𝑑𝑡
= 𝑎′(𝑡) 

(3.72) 

So, from equations 3.68 and equation 3.72, the following relation is obtained for arbitrary function 

(𝑓): 

 𝑓(𝑡) = −𝑎0𝑐0∫ 𝑎′(𝑡 +
𝑎0
𝑐0
)𝑒
−
𝑐0
𝑎0
(𝑡−𝑡′)

𝑑𝑡
∞

−∞

 
(3.73) 

The wavelength (𝜆) is assumed to be much greater than the sphere radius (𝑎0), then the following 

holds trues: 

 𝑖𝑓 𝑎0 ≪ 𝜆                        𝜆 = 𝐶0𝑇           →           𝑓(𝑡) = −𝑎0
2 𝑎′ (3.74) 

It is thus concluded for 𝜑: 

 𝜑 =
𝑓(𝑡 − 𝑟 𝐶0⁄

)

𝑟
= −

𝑎0
2𝑎′(𝑡 − 𝑟 𝐶0⁄

)

𝑟
 

(3.75) 

Moreover, according to the mass flow rate, the mass moving across the sphere of 𝑎0is given by: 

 𝑚(𝑡) = 4𝜋𝑎0
2𝜌𝑏𝑎

′ (3.76) 

3.4.3 Harmonic Motion in Frequency Domain (Monopole) 

For a harmonic motion: 

𝑎̇ = 𝑉̅𝑒−𝑖𝜔𝑡 (3.77) 

In equation 3.77, 𝑎̇ represents the fluid velocity at the sphere surface, and 𝑉̅ represents the 

amplitude of the pulsation velocity. 

By substituting equation 3.77 into equation 3.73, the following relation can be derived for an 

arbitrary function (𝑓): 
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𝑓(𝑡) =
−𝑎0𝐶0𝑉̅𝑒

−𝑖𝜔(𝑡+
𝑎0
𝐶0
⁄ )

𝐶0
𝑎0⁄ − 𝑖𝜔

 

(3.78) 

From equation 3.77, the following equation is derived for 𝜑: 

 𝜑 =
𝑓(𝑡 − 𝑟 𝐶0⁄

)

𝑟
=
−𝑎0𝐶0𝑉̅(

𝐶0
𝑎0
+ 𝑖𝜔)𝑒

−𝑖𝜔(𝑡−𝑟 𝐶0⁄
+
𝑎0
𝐶0
⁄ )

[(
𝐶0
𝑎0⁄ )

2

+ 𝜔2] 𝑟

 

(3.79) 

By substituting equation 3.77 into equation 3.75 for a frequency domain condition, the following 

equation is obtained for 𝑚̅: 

 𝑚̅̅̅ = 4𝜋𝑎0
2𝑉̅𝜌𝑏 (3.80) 

The following equation can be concluded for 𝑉̅: 

 𝑉̅ =
𝑚̅

4𝜋𝑎0
2𝜌𝑏

 
(3.81) 

The following relation exists for wave number K: 

 𝐾 =
𝜔

𝐶0
 (3.82) 

Now, a new variable ( 𝜔̃) is defined for frequency: 

 𝜔̃ =
𝜔𝑎0
𝐶0

  (3.83) 

By substituting the variable in equation 3.83 into equation 3.79, the following relation is derived 

for 𝜑: 

 𝜑 =
−𝑚̅√1 + 𝜔̃2𝑒−𝑖(𝜔𝑡−∅−𝐾(𝑟−𝑎0))

4𝜋𝜌[1 + 𝜔̃2]1/2
 

(3.84) 

This provides the following relations for pressure (𝑃) and radial velocity: 

 𝑉𝑟 =
𝜕𝜑

𝜕𝑟
=
−𝑚̅

4𝜋𝜌0
(
−𝑒𝑖(𝐾𝑟−𝜔𝑡)

𝑟2
+
𝑖𝐾𝑒𝑖(𝐾𝑟−𝜔𝑡)

𝑟
) 

(3.85) 
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  𝑃 = −𝜌𝑏
𝜕𝜑

𝜕𝑡
= −𝜌𝑏

𝑖𝜔𝑚̅𝑒𝑖(𝐾−𝜔𝑡)

4𝜋𝜌0𝑟
 

(3.86) 

By simplification of equations 3.85 and 3.86, the following relations exist for pressure and radial 

velocity in a harmonic condition like the monopole configuration: 

 𝑉𝑟 =
𝜕𝜑

𝜕𝑟
=
−𝑚̅

4𝜋𝜌𝑏
(
cos𝐾𝑟

𝑟2
+
𝐾 sin𝐾𝑟

𝑟
) + 𝑖 (

sin𝐾𝑟

𝑟2
−
𝐾 cos𝐾𝑟

𝑟
) 

(3.87) 

 𝑃 = −𝜌𝑏
𝜕𝜑

𝜕𝑡
=
𝜔𝑚̅(sin𝐾𝑟 + 𝑖 cos𝐾𝑟)

4𝜋𝑟
 

(3.88) 

3.4.4 Dipole 

A dipole is composed of two parts; i.e., a positive transmitter on one side and a negative 

transmitter on the other side. These two sources are separated by a very short distance. Finding 

the potential function of a dipole is more difficult than a monopole configuration, so this section 

provides an approximation for this type of transmitter. 

The potential function of the dipole can be defined as follows: 

 𝜑𝑑 =
−𝑚𝑒𝑖𝑘𝑟

4𝜋𝜌𝑏
(
𝑖𝐾𝑟 − 1

𝑟2
)𝑑𝑐𝑜𝑠𝜃 

(3.89) 

Where 𝑑 stands for distance between two sources. 

To find the potential function of a dipole, the total work must be done by this source. The total 

work can be calculated as follows: 

 𝑃𝑜𝑤𝑒𝑟𝑡 = ∫ ∫ 𝑉𝜌𝑏𝑟
2 sin 𝜃 𝑑𝜃 𝑑𝜑

𝜋

0

2𝜋

0

 
(3.90) 

Using equation 3.90, a surface integral is performed. By substituting equation 3.89 into equation 

3.90, the following result can be obtained for dipole power: 

𝑃𝑜𝑤𝑒𝑟𝑡 =
𝑚2𝜔𝑑2𝑖𝐾3𝑒𝑖2𝐾𝑟

8𝜋𝜌𝑏
∫ sin 𝜃
𝜋

0

cos2 𝜃  𝑑𝜃 
(3.91) 

By doing the integral, the total power of dipole source is calculated as: 
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 𝑃𝑜𝑤𝑒𝑟𝑡 =
𝑚2𝜔𝑑2𝑖𝐾3𝑒𝑖2𝐾𝑟

24𝜋𝜌𝑏
 

(3.92) 

It can be concluded that: 

 𝑚 = √
12𝜋𝑃𝑜𝑤𝑒𝑟𝑡𝜌𝑏
𝜔𝑑2𝐾3

 

(3.93) 

In these equations, it can be assumed that: 

 𝑑2 ≅ 0                 &                      𝑒𝑖2𝑘𝑟 ≅ 1 (3.94) 

The following equations are obtained for pressure 𝑃 and radial velocity (𝑉𝑟) generated by a 

dipole source: 

 𝑉𝑟 =
𝜕𝜑

𝜕𝑟
=
−𝑚̅

4𝜋𝜌𝑏
 cos 𝜃  𝑒𝑖𝑘𝑟(𝑖𝑘 (

𝑖𝑘𝑟 − 1

𝑟2
) +

𝑖𝑘

𝑟2
−
2(𝑖𝑘𝑟 − 1)

𝑟3
) 

(3.95) 

𝑃 =
−𝑖𝜔𝑚̅

4𝜋
𝑒𝑖𝑘𝑟

(𝑖𝑘𝑟 − 1)

𝑟2
 

(3.96) 
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4. Results 

This chapter presents the results of study on the effect of intrinsic and stress-induced anisotropy 

on borehole sonic logging of both the Montney Formation (at Farrell Creek) and the Deadwood 

Formation (at Aquistore project site). Laboratory experiments in conjunction with numerical 

modelling were utilized to fulfill this objective. Sections 4.1 and 4.2 present the physical properties 

of the samples that were obtained in order to advance the understanding of the relationship between 

stresses and physical properties of rocks. Section 4.3.1 describes static analysis to determine the 

stress field around boreholes. Results of the modeling in section 4.3.1 were used to define dynamic 

elastic properties that were used for dynamic wave propagation modeling described in section 

4.3.2. 

4.1 Laboratory Results (Montney Formation) 

Dynamic and static properties of sample #1, #6 and #8 were measured under hydrostatic, uniaxial 

and deviatoric loading conditions. The most measurements selected for dynamic analysis were 

those calculated under hydrostatic loading conditions, because the lab data were of better data 

quality acquisition for the hydrostatically loaded samples. For static analysis, to define elastic 

properties as a function of stresses, uniaxial and hydrostatic loading data were used. Although 

sample #6 was tested under hydrostatic load, results from the experiment are not presented in this 

section since this sample was instrumented exclusively with compressional-wave transducers, in 

order to simplify (and expedite) testing while evaluating testing procedures and equipment. The 

results for this sample, being partial in nature, were not useful in elastic properties calculations 

presented in this chapter.  

4.1.1 Experimental Results for Dynamic Analysis  

4.1.1.1 Sample #1, Test sequence #1, Hydrostatic Loading 

Velocities measured during hydrostatic loading/unloading are presented in Figure 4-1.  Following 

are some general observations: 

• Horizontal velocities are consistently greater than vertical velocities. 

• Diagonal velocities are intermediate between vertical and horizontal; roughly midway 

between the two for compressional waves, but only slightly greater than the vertical 

velocities through the mid and upper range of hydrostatic stresses for shear waves. 
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• Horizontal velocities are relatively insensitive to hydrostatic stress change. This is 

consistence with expectations, given that waves propagating within bedding laminations 

do not have to cross stress-sensitive, bedding parallel fractures. 

• Vertical and diagonal velocities show a trend of increasing velocity with increasing 

hydrostatic stress, with stress sensitivity being greatest at low stress (below approximately 

7 MPa). This stress sensitivity is likely due to closure of bedding-parallel fractures for both 

vertical and diagonal velocity measurements, and additionally due to closure of platen-

sample interfaces for vertical velocities. 

• Velocities measured during loading and unloading were generally similar for stresses 

greater than 7 MPa, but notably different in some cases at lower stress levels. 

Elastic constants for sample #1 calculated using the data collected data during sequence #1 are 

shown in Figure 4-2. The elastic constants show varying degrees of hysteresis effects as a 

consequence of the hysteresis observed in the velocities during unloading versus loading. 𝐶13 

shows the highest degree of hysteresis due to the more complex form of equation 2.13 (i.e., it 

is influenced by a large number of velocity components than the other elastic constants). From 

Figure 4-2, an increase in the stiffness of the samples as a function of hydrostatic load can be 

observed as a consequence of closure of microcracks and pores, though the stress dependence 

of 𝐶11 and 𝐶66 (which are functions of the velocities of waves propagating parallel to 

bedding)appear to be negligible. 
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Figure 4-1: Graphical compilation of velocities measured on sample #1 during hydrostatic loading, test 

sequence #1. “Vertical” denotes the bedding-normal direction; “Horizontal” denotes the bedding parallel 

direction; “Diagonal” denotes the direction rotated 45°from the bedding normal; “Loading” denotes 

velocities measured while confining pressure was being increased incrementally to its maximum value; 

and “Unloading” denotes velocities measured while confining pressure was being decreased 

incrementally from its maximum values. 
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Figure 4-2: Graphical compilation of elastic constants on sample #1 during hydrostatic loading, test 

sequence #1. “Vertical” denotes the bedding-normal direction; “Horizontal” denotes the bedding parallel 

direction; “Diagonal” denotes the direction rotated 45°from the bedding normal; “Loading” denotes 

velocities measured while confining pressure was being increased incrementally to its maximum value; 

and “Unloading” denotes velocities measured while confining pressure was being decreased 

incrementally from its maximum values. 

 

4.1.1.2 Sample #1, Test Sequence #2, Hydrostatic Loading 

Measured loading/unloading velocities are presented in Figure 4-3. Comparing these results to test 

sequence #1, bearing mind the difference in peak hydrostatic stress for these sequences (40 MPa 

vs. 20 MPa) and disregarding some of the more variable results obtained at low stresses, the results 

for both test sequences compare favourably. 

Estimated elastic constants for sample #1 while conducting sequence 2 are shown in Figure 4-4. 

𝐶11, 𝐶33, 𝐶44 and 𝐶66 show the same behaviour as velocities, since there are direct relationships 
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load can be observed as a consequence of closure of microcracks and pores, expcept for 𝐶11and 

𝐶66 which were assumed to be constant in testing sequence #2. 

 

Figure 4-3: Graphical compilation of velocities measured on sample #1 during hydrostatic loading, test 

sequence #2. Horizontal velocities were assumed constant (𝑉𝑝 = 4.80 
𝑘𝑚

𝑠⁄ ; 𝑉𝑠 = 2.98 
𝑘𝑚

𝑠⁄ ) based on 

an average of results obtained during test sequence #1. 
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Figure 4-4: Graphical compilation of elastic constants estimated on sample #1 during hydrostatic loading, 

test sequence #2. Horizontal velocities were assumed constant (𝑉𝑝 = 4.80 
𝑘𝑚

𝑠⁄ ; 𝑉𝑠 = 2.98 
𝑘𝑚

𝑠⁄ ) 

based on an average of results obtained during test sequence #1. 

 

4.1.1.3 Sample #8, Hydrostatic Loading 

Figure 4-5 shows the velocities measured during hydrostatic loading and unloading of sample #8 

to a maximum hydrostatic stress of 40 MPa. The general trends observed for velocities and elastic 

constants for sample #1 also hold true for sample #8, though the values are slightly lower. 

Elastic constants for sample #8 calculated using these velocities, are shown in Figure 4-6. 
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Figure 4-5: Graphical compilation of velocities measured on sample #8 during hydrostatic loading. 

Horizontal velocities assumed constant (𝑉𝑃 = 4.526 
𝑘𝑚

𝑠⁄ ; 𝑉𝑆 = 2.859 
𝑘𝑚

𝑠⁄ ) based on results obtained 

before filling the triaxial cell. 
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Figure 4-6: Graphical compilation of elastic constants estimated on sample #8 during hydrostatic loading. 

Horizontal velocities assumed constant (𝑉𝑃 = 4.526 
𝑘𝑚

𝑠⁄ ; 𝑉𝑆 = 2.859 
𝑘𝑚

𝑠⁄ ) based on results obtained 

before filling the triaxial cell. The negative value calculated for 𝐶13 at 4𝑀𝑃𝑎 during loading is deemed 

unrealistic and has been ignored in this work. 
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in this work were acquired under hydrostatic loading conditions, the numerical modeling was 

conducted assuming a linear relationship between effective dynamic elastic stiffnesses (∆𝐶𝑖𝑗) and 

mean effective stress. This is represented mathematically as follows; 

  𝐶𝑖𝑗 = 𝑎1𝑖𝑗(𝜎1 + 𝜎2 + 𝜎3) + 𝑎2𝑖𝑗 (4.1) 

Where  

𝐶𝑖𝑗= effective elastic stiffness parameters (GPa). 

𝜎1, 𝜎2, 𝜎3= applied effective stresses (converted to GPa for this calculation). 

𝑎1𝑖𝑗 = slope of the line fitted on the experimental data. 

𝑎2𝑖𝑗= intercept of the line fitted on the experimental data (GPa) 

Note: In the experiments conducted for this research, total stresses were equal to effective stresses, 

since pore pressures were zero. 

Figure 4-7 shows each elastic constant plotted against mean stress for sample #1, as well as linear 

trendlines fit through the data points. These trendlines are based on the data for hydrostatic stresses 

greater than 7 MPa; i.e., they ignore the data at low stresses, where stress-dependence is more 

acute and – in some cases – erratic. The unloading data are deemed more representative of in-situ 

conditions, on the assumption that microcracks induced by coring and handling will have most 

impact during the loading cycle. Table 4-1 lists the linear trendline parameters for each elastic 

constant, measured during the unloading cycle of test sequence #1. 
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Figure 4-7: Dynamic elastic constants and linear trendlines plotted versus hydrostatic stress for Montney 

Formation sample #1, sequence #1. The root mean square error (RMSE) shown in each graph was 

calculated for the trendline fit to the unloading data. 
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Table 4-1: Trendline parameters (see equation 4.1) for stress-dependent dynamic elastic stiffness 

constants of the Montney Formation (sample #1) during unloading. 

  𝟏𝑫𝒚𝒏(-)  𝟐𝑫𝒚𝒏(GPa) 

 𝟏𝟏𝑫𝒚𝒏 64.30 58.75 

 𝟑𝟑𝑫𝒚𝒏 245.43 32.48 

 𝟒𝟒𝑫𝒚𝒏(=  𝟓𝟓𝑫𝒚𝒏) 228.55 19.84 

 𝟔𝟔𝑫𝒚𝒏 16.41 22.76 

 𝟏𝟐𝑫𝒚𝒏(=  𝟐𝟏𝑫𝒚𝒏) 28.22 13.33 

 𝟏𝟑𝑫𝒚𝒏(=  𝟐𝟑𝑫𝒚𝒏) 108.86 9.70 

 

4.1.2 Experimental Data for Static Analysis  

4.1.2.1 Static Elastic Properties of Sample #1, Sequence #3, Uniaxial Loading 

In order to assess the static response of sample #1 to deviatoric loading, the sample instrumentation 

was modified as described in section 3.1.2, and the sample was subjected to uniaxial loading 

parallel to bedding (on the front and back faces of the sample).  

Figure 4-8 represents the calculated static elastic properties based on the vertical and horizontal 

strains measured during uniaxial loading of sample #1. As shown in this figure, Young’s modulus 

increases with uniaxial stress with values in the 8-9 GPa range occurring at the low end of the 

stress range, increasing to 12-13 GPa at the high end of the stress range. Poisson’s ratio shows a 

weak positive trend during loading, increasing from roughly 0.26 to 0.29 across the axial stress 

range investigated in this test. During unloading, Poisson’s ratio shows variable results, first 

decreasing to 0.14, then gradually increases to 0.23 at lowest axial stress. 
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Figure 4-8: Graphs of Static Young’s modulus and Poisson’s ratio parallel to bedding, calculated for 

sample #1 during uniaxial loading (test sequence #3). 

 

4.1.2.2 Static Elastic Properties of Sample #1, Sequence #2, Hydrostatic 

Figure 4-9 shows the static bulk modulus calculated for sample #1 during hydrostatic loading, test 

sequence #2. Values are close to 10 GPa at hydrostatic confinement of 7 MPa, increasing to 15-20 

GPa at maximum confinement. 

 

 

Figure 4-9: Graph of static bulk modulus calculated for sample #1 during hydrostatic loading, test 

sequence #2. 
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4.1.3 Static-Dynamic Property Constants 

In the study of dynamic properties, linear relations between applied stresses and elastic stiffness 

constants were assumed (equation 4.1). To define static elastic stiffness constants as a function of 

stress, the approach chosen was to develop a correlation between static and dynamic elastic 

stiffness constants. Previous studies on different types of rocks have suggested that linear 

relationships between static and dynamic elastic properties are generally observed (King, 1980; 

Eissa & Kazi, 1988; Mokovciakova, 2003). For this reason, and for model simplicity, linear 

relationships were assumed in this work; investigation of possible non-linear relationships 

suggested by some of the data (e.g., for C44) was flagged as a topic of future research. As such, in 

this study we assumed a linear relationship between effective static and dynamic elastic properties, 

as follows. 

  𝐶𝑖𝑗𝑆𝑡𝑎𝑡𝑖𝑐 = 𝑎𝑖𝑗 (𝐶𝑖𝑗𝐷𝑦𝑛𝑎𝑚𝑖𝑐) + 𝑏𝑖𝑗 
(4.2) 

Correlation between static elastic stiffness constants and dynamic elastic stiffness constants, are 

shown in Figure 4.10. The average values for 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are presented in Table 4-2. Based on the 

correlations, the constants presented in Table 4-3, are obtained to define static elastic stiffness 

constants as function of stresses. 
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Figure 4-10: Correlation between static and dynamic elastic stiffness constants for sample #1, sequence #1, 

under hydrostatic stress. 
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Table 4-2: Averaged values of linear trendline coefficients relating effective static and dynamic elastic 

stiffness constants (Montney Formation). 
(  𝐶𝑖𝑗 = 𝑎1𝑖𝑗(𝜎1 + 𝜎2 + 𝜎3) + 𝑎2𝑖𝑗) 

𝑎𝑖𝑗(-) 𝑏𝑖𝑗(GPa) 

𝑎11 9.50 𝑏11 -540.79 

𝑎33 2.11 𝑏33 -66.16 

𝑎44 1.19 𝑏44 -14.47 

𝑎66 9.28 𝑏66 -206.06 

𝑎12 3.31 𝑏12 -30.68 

𝑎13 1.66 𝑏13 -6.95 

 

Table 4-3: Derived trendline parameters for stress-dependent between effective static elastic stiffness 

constants of the Montney Formation. 

 𝐚𝟏𝑺𝒕 𝒕(-) 𝐚𝟐𝑺𝒕 𝒕(GPa) 

 𝟏𝟏𝑺𝒕 𝒕 610.98 17.49 

 𝟑𝟑𝑺𝒕 𝒕 319.14 6.02 

 𝟒𝟒𝑺𝒕 𝒕(=  𝟓𝟓𝑺𝒕 𝒕) 296.02 9.20 

 𝟔𝟔𝑺𝒕 𝒕 222.25 3.48 

 𝟏𝟐𝑺𝒕 𝒕(=  𝟐𝟏𝑺𝒕 𝒕) 93.43 13.44 

 𝟏𝟑𝑺𝒕 𝒕(=  𝟐𝟑𝑺𝒕 𝒕) 230.10 0.80 

 

4.2 Laboratory Results (Deadwood Formation) 

4.2.1 Experimental Results for Dynamic Analysis  

4.2.1.1 Vertical Samples  

Measured compressional wave velocities during hydrostatic loading of the vertical cores are 

presented in Figure 4-12. Following are some observations based on these results: 
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• Vertical velocities show a trend of increasing velocity with increasing hydrostatic stress, 

with stress sensitivity being greatest at low stress (below approximately 5 MPa). This stress 

sensitivity is likely due to closure of bedding-parallel fractures and additionally due to 

closure of platen-sample interfaces. 

• Estimated elastic constants for vertical samples are shown in Figure 4.13. Elastic constants 

show the same trend as velocities. Elastic constants calculated based on the sample Tx4 

have the highest values, while calculated elastic constants based on the sample Tx2  show 

the lowest values. This is consistent with the fact that velocities were highest and lowest 

for these samples, respectively. 

 

Figure 4-11:  Graphical compilation of vertical velocities measured on samples 𝑇𝑥1, 𝑇𝑥2, 𝑇𝑥3 and 𝑇𝑥4 

during hydrostatic loading. 
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Figure 4-12: Graphical compilation of elastic constants estimated on samples Tx1, Tx2, Tx3 and Tx4 

during hydrostatic loading. 
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Figure 4-13: Graphical compilation of horizontal velocities measured on #H1, during hydrostatic loading. 

 

 

Figure 4-14: Graphical compilation of elastic constants estimated on sample #H1, during hydrostatic 

loading. 
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Figure 4-15: Graphical compilation of estimated off-diagonal elastic constants, during hydrostatic 

loading. 
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i.e., they ignore the data at low stresses, where stress-dependent is more acute and – in some cases- 

erratic. The average constants based on three hydrostatic experiments are presented in Table 4-4. 

 

Table 4-4: Trendline parameters (see equation 4.1) for the Deadwood Formation during hydrostatic 

loading. 

 𝐚𝟏𝑫𝒚𝒏(-) 𝐚𝟐𝑫𝒚𝒏(GPa) 

𝐂𝟏𝟏𝑫𝒚𝒏 422.73 55.37 

𝐂𝟑𝟑𝑫𝒚𝒏 651.58 37.06 

𝐂𝟒𝟒𝑫𝒚𝒏(= 𝐂𝟓𝟓𝑫𝒚𝒏) 306.65 12.24 

𝐂𝟔𝟔𝑫𝒚𝒏 383.00 14.45 

𝐂𝟏𝟐𝑫𝒚𝒏(= 𝐂𝟐𝟏𝑫𝒚𝒏) 0 22.93 

𝐂𝟏𝟑𝑫𝒚𝒏(= 𝐂𝟐𝟑𝑫𝒚𝒏) 0 20.95 
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Figure 4-16: Dynamic elastic constants and linear trendlines plotted versus hydrostatic stress for 

Deadwood Formation samples. RMSE denotes root mean square error, in GPa. 
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4.2.2 Experimental Data for Static Analysis (Deadwood Samples) 

Strain measurements were conducted to enable the interpretation of selected elastic properties. By 

applying load parallel to the bedding (on sample H1), Young’s modulus parallel to the bedding 

(𝐸1) and Poisson’s ratio relating contraction parallel to the bedding and parallel to the axis of 

symmetry expansion parallel to the bedding (𝜗13) were interpreted. By applying load in the 

direction perpendicular to the bedding on vertical samples (𝑇𝑥1, 𝑇𝑥2), Young’s modulus in the 

direction perpendicular to the bedding (𝐸3) and Poisson’s ratio relating contraction parallel to the 

axis of symmetry and expansion parallel to the bedding (𝜗31) were interpreted. Bulk modulus was 

measured during hydrostatic loading. The static elastic properties interpreted from the three 

aforementioned loading configurations are presented in Figures 4-17, 4-18 and 4-19. As expected, 

with increasing hydrostatic stress the static elastic properties increase, and Young’s modulus 

parallel to bedding is greater than Young’s modulus perpendicular to bedding. 

 

 

Figure 4-17: Graph of static Young’s moduli calculated for one horizontal and two vertical samples from 

the Deadwood Formation . 
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Figure 4-18: Graph of static Poisson’s ratios calculated for one horizontal and two vertical samples of 

Deadwood Formation (Aquistore site). 

 

 

Figure 4-19: Graph of static bulk moduli calculated for one horizontal and two vertical samples from the 

Deadwood Formation. 
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To fully characterize the static elastic properties, the equations presented in section 3.1.3 

(equations 3.22, 3.23, 3.30) were used to calculate the 𝜗12,𝐺12 and 𝐺23. 

4.2.3 Static-Dynamic Property Constants 

The same procedures as section 4.1.3 were used to define effective static elastic stiffness constants 

as a function of stress. A linear relationship between effective static and dynamic elastic properties 

was assumed, as follows: 

𝐶𝑖𝑗𝑆𝑡𝑎𝑡𝑖𝑐 = 𝑎𝑖𝑗 (𝐶𝑖𝑗𝐷𝑦𝑛𝑎𝑚𝑖𝑐) + 𝑏𝑖𝑗 
(4.3) 

By correlating static elastic stiffness constants with dynamic elastic stiffness constants, as shown 

in Figure 4-20, the average values for 𝑎𝑖𝑗 and 𝑏𝑖𝑗 were determined (see Table 4-5). Based on these 

correlations, constants were obtained to define static elastic stiffness constants as functions of 

stress (see Table 4-6). 
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Figure 4-20: Correlation between static and dynamic elastic stiffness constants for Deadwood Formation 

samples. For simplicity, linear correlations were assumed for all parameters; investigation of non-linear 

correlations, as suggested by the data for C44 and C66, is a recommended topic of future research. 

C11_Static= 0.434(C11_Dynamic)+ 10.495
R2=0.99

34

36

38

40

54 56 58 60 62 64 66 68

C
1

1
_S

ta
ti

c(
G

P
a

)

C11_Dynamic(GPa)

C11_Correlation(Stat vs Dyn)

Trendline_Correlation(C11_Stat vs C11_Dyn)

C33_Static= 0.0768(C33_Dynamic) + 13.776
R2=0.99

15

15.5

16

16.5

17

17.5

28 30 32 34 36 38 40 42

C
3

3
_S

ta
ti

c(
G

P
a

)

C33_Dynamic(GPa)

C33_Correlation(Stat vs Dyn)

Trendline_Correlation(C33_Stat vs C33_Dyn)

C44_Static= 0.3954(C44_Dynamic)+ 17.609
R2=0.81

20

22

24

26

28

4 9 14 19

C
4

4
_S

ta
ti

c(
G

P
a

)

C44_Dynamic(GPa)

C44_Correlation(Stat vs Dyn)

Trendline_Correlatin(C44_Stat vs C44_Dyn)

C66_Static = 0.0854(C66_Dynamic) + 15.772
R2=0.82

16.4

16.8

17.2

17.6

18

18.4

10 15 20 25

C
6

6
_S

ta
ti

c(
G

P
a

)

C66_Dynamic(GPa)

C66_Correlation(Stat vs Dyn)

Trendline_Correlation(C66_Stat vs C66_Dyn)

C12_Static = -0.1817(C12_Dynamic) + 14.192
R2=0.84

6

7

8

9

10

11

12

18 23 28 33 38

C
1

2
_S

ta
ti

c(
G

P
a

)

C12_Dynamic(GPa)
C12_Correlation(Stat vs Dyn)

Trendline_Correlattion(C12_Stat vs C12_Dyn)

C13_Static= -0.0786(C13_Dynamic) + 5.1856
R2=0.87

2

2.5

3

3.5

4

18 23 28 33

C
1

3
_S

ta
ti

c(
G

P
a

)

C13_Dynamic(GPa)
C13_Correlation(Stat vs Dyn)

Trendline_Correlattion(C13_Stat vs C13_Dyn)



112 

 

Table 4-5: Averaged values of linear trendline coefficients, relating effective static and dynamic elastic 

stiffness constants (Deadwood Formation). 
  (𝐶𝑖𝑗 = 𝑎1𝑖𝑗(𝜎1 + 𝜎2 + 𝜎3) + 𝑎2𝑖𝑗) 

𝑎𝑖𝑗(−) 𝑏𝑖𝑗(𝐺𝑃𝑎) 

𝑎11 0.44 𝑏11 10.50 

𝑎33 0.08 𝑏33 13.80 

𝑎44 0.40 𝑏44 17.61 

𝑎66 0.09 𝑏66 15.77 

𝑎12 -0.19 𝑏12 14.20 

𝑎13 -0.08 𝑏13 5.20 

  

Table 4-6: Derived trendline parameter for stress-dependent static elastic stiffness constants of the 

Deadwood Formation. 

 𝐚𝟏𝑺𝒕 𝒕(-) 𝐚𝟐𝑺𝒕 𝒕(GPa) 

 𝟏𝟏𝑺𝒕 𝒕 148.11 34.53 

 𝟑𝟑𝑺𝒕 𝒕 50.04 16.62 

 𝟒𝟒𝑺𝒕 𝒕(=  𝟓𝟓𝑺𝒕 𝒕) 121.25 22.45 

 𝟔𝟔𝑺𝒕 𝒕 32.71 17.01 

 𝟏𝟐𝑺𝒕 𝒕(=  𝟐𝟏𝑺𝒕 𝒕) 0 10.02 

 𝟏𝟑𝑺𝒕 𝒕(=  𝟐𝟑𝑺𝒕 𝒕) 0 6.54 

 

4.3 Numerical Modelling 

As previously mentioned, when a borehole is drilled in a rock subjected to an applied stress, the 

local stress field around the borehole is changed. Formation elastic properties near a borehole may 

be altered from their original state due to the stress concentration around the borehole, which is 

known as the stress-induced anisotropy.  
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Quantification of this stress induced anisotropy and its effect on sonic logging tools requires 

laboratory data that characterize stress-dependent elastic properties (static and dynamic), and 

numerical modelling tools to characterize static stress state in the rock formation around a borehole 

and dynamic wave propagation through this formation. Theses modelling tools are explained in 

sections 4.3.1 and 4.3.2. 

4.3.1 Static Stress Analysis 

4.3.1.1 Assessment of Numerical Simulation by Comparison with Analytical Solution  

Figure 4-21 summarizes the results of the borehole stresses around the borehole wall for the three 

chosen scenarios described in section 3.2.3.1. The agreement between the two solutions is 

observed to be excellent (RMSE < 1 MPa in all cases), which suggests that the numerical model is 

reliable. 

4.3.1.2 Static Stress Analysis (Montney Formation) 

Figures 4-22 to 4-29 show the modeled local stress fields around the vertical and horizontal 

borehole scenarios considered for the Montney Formation at Farrell Creek. The following is 

presented in each Figure: 

• Figure 4-22 shows the variation of radial stresses around the vertical borehole. The 

maximum radial stress is in direction of maximum horizontal stress. 

• Figure 4-23 shows the variation of tangential stresses around the vertical borehole. The 

maximum tangential stress is in direction of minimum horizontal stress. 

• Figures 4-24 to 4-25 present the axial (z-direction) and mean stresses around the vertical 

borehole, respectively. 

• Figure 4-26 shows the variation of radial stresses around the horizontal borehole. The 

maximum radial stress is in direction of vertical stress. 

• Figure 4-27 shows the variation of tangential stress around the horizontal borehole drilled. 

The maximum tangential stress is in direction of minimum horizontal stress. 
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• Figures 4-28 to 4-29 present the axial and mean stresses around the horizontal borehole, 

respectively. 

 

  

 

Figure 4-21: Comparison of numerical solution against analytical solution for static borehole stresses for 

three different scenarios. a) Vertical borehole (drilled parallel to the axis symmetry); b) deviated borehole 

(drilled 45° apart from axis of symmetry); c) horizontal borehole (drilled 90°  from the axis of symmetry). 

RMSE denotes root mean square error, in MPa. 
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Figure 4-22: Radial stress distributions modeled using COMSOL for a vertical borehole in the Montney 

Formation: a) Radial stress versus normalized radial distance; b) radial stress around the perimeter of the 

borehole (angle=0° corresponds to the direction parallel to the maximum horizontal stress(oriented 

parallel to the x-axis); c) contour plot of radial stress in the plane normal to the borehole axis.  
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Figure 4-23: Tangential stress distributions modeled using COMSOL for a vertical borehole in the 

Montney Formation: a) Tangential stress versus normalized radial distance; b) tangential stress around the 

perimeter of the borehole (azimuthal angle=0° corresponds to the direction parallel to the maximum 

horizontal stress(oriented parallel to the x-axis); c) contour plot of tangential stress in the plane normal to 

the borehole axis.  
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Figure 4-24: Modeled distribution of stress in the z-direction around a vertical borehole in the Montney 

Formation. 

 

 

Figure 4-25: Modeled distribution of mean stress around a vertical borehole in the Montney Formation. 
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Figure 4-26: Radial stress distributions modeled using COMSOL for a horizontal borehole in the 

Montney Formation: a) Radial stress versus normalized radial distance; b) radial stress around the 

perimeter of the borehole (azimuthal angle=0° corresponds to the direction parallel to the vertical 

stress(oriented parallel to the x-axis); c) contour plot of radial stress in the plane normal to the borehole 

axis.  
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Figure 4-27: Tangential stress distributions modeled using COMSOL for a horizontal borehole in the 

Montney Formation: a) Tangential stress versus normalized radial distance; b) tangential stress around the 

perimeter of the borehole (azimuthal angle=0° corresponds to the direction parallel to the vertical 

stress(oriented parallel to the x-axis); c) contour plot of tangential stress in the plane normal to the 

borehole axis.  
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Figure 4-28: Modeled distribution of stress in the z-direction around a horizontal borehole in the Montney 

Formation.  

 

 

Figure 4-29: Modeled distribution of mean stress in the around a horizontal borehole in the Montney 

Formation.  
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4.3.1.3 Static Stress Analysis (Deadwood Formation) 

Figures 4-30, 4-31, 4-32 and 4-33 show the modeled local stress fields around the vertical borehole 

in the Deadwood Formation at the Aquistore site.  The following is presented in each Figure: 

• Figure 4-30 shows the variation of radial stresses around the vertical borehole. The 

maximum radial stress is in direction of maximum horizontal stress. 

• Figure 4-31 shows the variation of tangential stresses around the vertical borehole. The 

maximum tangential stress is in direction of minimum horizontal stress. 

• Figures 4-32 to 4-33 present the axial and mean stresses around the vertical borehole drilled 

in Deadwood Formation, respectively.
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Figure 4-30: Radial stress distributions modeled using COMSOL for a vertical borehole in the Deadwood 

Formation: a) Radial stress versus normalized radial distance; b) radial stress around the perimeter of the 

borehole (Azimuthal angle=0° corresponds to the direction parallel to the maximum horizontal stress); c) 

contour plot of radial stress in the plane normal to the borehole axis.  

c) 
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Figure 4-31: Tangential stress distributions modeled using COMSOL for a vertical borehole in the 

Deadwood Formation: a) Tangential stress versus normalized radial distance; b) tangential stress around 

the perimeter of the borehole (Azimuthal angle=0° corresponds to the direction parallel to the maximum 

horizontal stress); c) contour plot of tangential stress in the plane normal to the borehole axis.  
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Figure 4-32: Modeled distribution of stress in the z-direction around a vertical borehole in the Deadwood 

Formation.  

 

Figure 4-33: Modeled distribution of mean stress in the around a vertical borehole in the Deadwood 

Formation.   
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4.3.2 Dynamic Analysis 

4.3.2.1 Assessment of Numerical Dynamic Simulation by Comparison with Analytical 

Solution  

Model assessment results for the Ricker wavelet are presented in Figure 4-34. In order to compare 

the simulation results (frequency domain) with the analytical model (time domain), the simulation 

results were passed through an inverse Fast Fourier Transform (FFT) algorithm. It is observed that 

the agreement between the two solutions is excellent. 

The Ormsby wavelet, in time the domain, is shown in Figure 4-35. As shown in Figure 4-36, in 

which a published tool frequency sweep is compared to the modeled source wavelet in the 

frequency domain, a favourable comparison is achieved. 

Figures 4-37 and 4-38 compare the results of wave propagation modelling generated by a 

monopole point source inside the fluid domain, based on the analytical solution presented in 

section 3.5 and the numerical simulation completed using COMSOL. The agreement between the 

two solutions is observed to be excellent. 

 

Figure 4-34: Comparison of numerical dynamic solution of the waveform recorded at the transmitter 

against the waveform predicted by the analytical solution (Ricker Wavelet generated by a monopole point 

source). 
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Figure 4-35: Comparison of numerical dynamic solution of the waveform recorded at the transmitter 

against the waveform predicted by the analytical solution (Ormsby Wavelet generated by a monopole 

point source). 

 

 

Figure 4-36: Comparison of the frequency sweep used in COMSOL simulations (b) against the frequency 

sweep presented by Schlumberger (Franco et al., 2006) (a). 
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Figure 4-37: Comparison of numerical dynamic solution of pressure recorded inside the borehole against 

pressure predicted by the analytical solution at a frequency of 1000 Hz (generated by monopole point 

source). 
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Figure 4-38: Validation of numerical dynamic solution of particle velocity recorded inside the borehole 

against acoustic velocity predicted by the analytical solution at frequency of 1000 Hz (generated by 

monopole point source).  
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4.3.2.2 Dynamic Analysis (Montney Formation) 

Figures 4-39, 4-40, 4-41 and 4-42 show the numerical modeling results obtained for the vertical 

and horizontal borehole scenarios considered for the Montney Formation at Farrell Creek.  The 

following is presented in each figure: 

• Figure 4-39 shows the modeled X-X waveforms (i.e., waveforms recorded by dipole 

receivers oriented parallel to the x-axis after the dipole transmitter oriented parallel to the 

X-axis had been fired) for the vertical borehole scenario. (Note: The X-axis is parallel to 

maximum horizontal stress direction.) 

• Figure 4-40 shows the Y-Y waveforms for the vertical borehole. (Note: The Y-axis is 

parallel to minimum horizontal stress direction.) 

• Figure 4-41 shows the X-X waveforms for the horizontal borehole. (Note: The X-axis is 

parallel to vertical stress direction.) 

• Figure 4-42 shows the Y-Y waveforms for the horizontal borehole. (Note: The Y-axis is 

parallel to minimum horizontal stress direction.) 

 

Figure 4-39: Recorded X-X dipole waveforms, vertical borehole in the Montney Formation. 
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Figure 4-40: Recorded Y-Y dipole waveforms, vertical borehole in the Montney Formation. 

 

 

Figure 4-41: Recorded X-X waveforms, horizontal borehole in the Montney Formation. 
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Figure 4-42: Recorded Y-Y dipole waveforms, horizontal borehole in the Montney Formation. 

 

4.3.2.3 Dynamic Analysis (Deadwood) 

Figures 4-43 and 4-44 show the numerical modeling results obtained for the vertical borehole in 

the Deadwood Formation at the Aquistore site. Figure 4-43 shows the X-X waveforms (i.e., in the 

maximum horizontal in-situ stress direction) and Figure 4-44 shows the Y-Y waveforms (i.e., in 

the minimum horizontal stress direction). Although the same source type was used in simulation 

of the vertical borehole in the Montney Formation, there is a difference in appearance of the 

waveforms. The difference in appearance of the waveforms is because of difference in defined 

drilling mud velocities as well as differences in compressional and shear velocities of the 

formation. 
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Figure 4-43: Recorded X-X dipole waveforms, vertical borehole in the Deadwood Formation. 

 

 

Figure 4-44: Recorded Y-Y waveforms, vertical borehole in the Deadwood Formation. 



133 

 

4.3.3 Dispersion Analysis 

4.3.3.1 Dispersion Analysis (Montney Formation) 

Figures 4-45 to 4-50 show the dispersion plots generated using two different methods for the 

vertical and horizontal borehole scenarios considered in the Montney Formation at Farrell Creek.  

(As noted previously: For the vertical borehole, the X-axis was parallel to the maximum in-situ 

horizontal stress, and the Y-axis was parallel to the minimum horizontal stress; for the horizontal 

borehole, the X-axis was parallel to vertical in-situ stress, and the Y-axis was parallel to the 

minimum horizontal stress.) 

• Figure 4-45 shows a dispersion plot for the X-X and Y-Y dipole waveforms in the vertical 

borehole, based on the Phase Moveout method. The blue dashed line represents slowness 

obtained directly from velocity measurements conducted in the laboratory testing program, 

which serves as a comparison against slowness interpreted from the outputs of the 

modeling workflow, which used elastic properties obtained from the laboratory program 

as model inputs. (In theory, if the simulation is accurate, the low frequency component of 

the simulated flexural wave is expected to match the shear wave velocity measured in the 

laboratory.) 

• Figure 4-46 shows a dispersion plot for X-X dipole waveforms in the vertical borehole, 

based on the DISECA method. In this figure, the areas with maximum coherence of energy 

(magnitude = 1), which are shown in dark red, represent the predicted flexural wave 

dispersion curve. 

• Figure 4-47 shows a dispersion plot for Y-Y dipole waveforms in the vertical borehole, 

based on the DISECA method. Similar to Figure 4-46, the predicted dispersion curve tracks 

the areas of maximum coherence (dark red). 

• Figure 4-48 shows a dispersion plot for the X-X and Y-Y dipole waveforms in the 

horizontal borehole, based on the Phase Moveout method. The blue and red dashed lines 

were obtained directly from velocity measurements conducted in the laboratory testing 

program; the low frequency components of the flexural waves are expected to match these 

shear wave velocities. 
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• Figure 4-49 shows a dispersion plot for X-X dipole waveforms in the horizontal borehole, 

based on the DISECA method. The predicted dispersion curve tracks the areas of maximum 

coherence (dark red). 

• Figure 4-50 shows a dispersion plot for Y-Y dipole waveforms in the horizontal borehole, 

based on the DISECA method. The predicted dispersion curve tracks the areas of maximum 

coherence (dark red). 

A discussion of the form of these curves is given in the following chapter. [Note: In the dispersion 

curve plots generated in this work, slowness is presented in 
𝜇𝑠
𝑓𝑡⁄  to be comparable with plots 

generated using Techlog, and with most of the literature on this subject.]  

The algorithm of the Phase Moveout method is presented by Weatherford for the CXD logging 

tool, which is different from the Sonic Scanner tool in terms geometry (i.e., transmitter to receiver 

spacing and spacing between two receivers). In order for this algorithm to be applicable for the 

Sonic Scanner tool, some corrections were made by the author of this thesis. 

 

 

Figure 4-45: Graph showing generated dispersion plots of the modeled X-X and Y-Y waveforms, based 

on the Phase Moveout method (vertical borehole in the Montney Formation).  

𝑒𝑟𝑟𝑜𝑟 ≅ 1% 
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Figure 4-46: Dispersion plot of modeled X-X dipole waveforms, based on the DISECA method (vertical 

borehole in the Montney Formation). 

 

 

Figure 4-47: Dispersion plot of modeled Y-Y dipole waveforms, based on the DISECA method (vertical 

borehole in the Montney Formation).  
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Figure 4-48: Graph showing generated dispersion plots of the modeled X-X and Y-Y waveforms, based 

on the Phase Moveout method(horizontal borehole in the Montney Formation). 

 

 

Figure 4-49: Dispersion plot of modeled X-X dipole waveforms, based on the DISECA method 

(horizontal borehole in the Montney Formation). 

𝑒𝑟𝑟𝑜𝑟 ≅ 0.6% 
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Figure 4-50: Dispersion plot of modeled Y-Y dipole waveforms, based on the DISECA method 

(horizontal borehole in the Montney Formation). 

 

4.3.3.2 Dispersion Analysis (Deadwood Formation) 

Figures 4-51, 4-52 and 4-53 show the dispersion plots generated using based on two different 

methods for the vertical borehole scenario considered in the Deadwood Formation at the Aquistore 

site. (As noted previously: For the vertical borehole, the X-direction was parallel to maximum 

horizontal in-situ stress, and the Y-direction was parallel to the minimum horizontal stress.) 

• Figure 4-51 shows a dispersion plot for the X-X and Y-Y dipole waveforms in the vertical 

borehole, based on the Phase Moveout method. The blue dashed line represents slowness 

obtained directly from velocity measurements conducted in the laboratory testing program; 

the low frequency component of the flexural wave is expected to match this shear wave 

velocity. 

• Figure 4-52 shows a dispersion plot for X-X dipole waveforms in the vertical borehole, 

based on the DISECA method. The predicted dispersion curve tracks the areas of maximum 

coherence (dark red). 

• Figure 4-53 shows a dispersion plot for Y-Y dipole waveforms in the vertical borehole, 

based on the DISECA method. The predicted dispersion curve tracks the areas of maximum 

coherence (dark red). 
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Figure 4-51: Graph showing generated dispersion plots of the modeled X-X and Y-Y waveforms, based 

on the Phase Moveout method (vertical borehole in the Deadwood Formation). 

 

 

Figure 4-52: Dispersion plot of modeled X-X dipole waveforms, based on the DISECA method (vertical 

borehole in the Deadwood Formation). 

𝑒𝑟𝑟𝑜𝑟 ≅ 5% 



139 

 

 

Figure 4-53: Dispersion plot of modeled Y-Y dipole waveforms, based on the DISECA method (vertical 

borehole in the Deadwood Formation). 
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5. Comparison of Simulation Results to Field Data 

5.1 QC Techniques 

In this project, the waveforms and the corresponding dispersion curves were generated at depths 

corresponding to the average corrected depths of the samples used for lab testing. For quality 

control, dispersion curves for each scenario modeled were generated using two different methods: 

the Phase Moveout method and the DISECA method. The consistency between the outputs of two 

dispersion methods suggests that both methods were coded correctly, and the model results have 

a form that is consistent with expectations. Most importantly, the shear wave slowness values 

interpreted from the dispersion curves obtained from the low frequency component of the flexural 

waves match the values extracted directly from the lab testing. 

In this chapter, the simulation results are assessed in more detail, by comparison against real data 

measured by sonic logging tools in the Montney and Deadwood formations. 

5.2 Effect of the Type of Anisotropy on Wave Propagation around a Borehole 

Simulation results for the horizontal borehole in the Montney Formation showed parallel 

dispersion curves (Figure 4-48), which suggests that the dispersive character of wave propagation 

around the horizontal borehole is dominantly controlled by intrinsic anisotropy (bedding) in this 

scenario. This is consistent with expectations based on the input values, taken from lab testing. 

Based on the input values, 𝐶66 (representing the slow shear wave) was aligned in the X-X direction 

(or the axis of symmetry) and was smaller than 𝐶44 (representing the fast shear wave) which was 

aligned in the Y-Y direction (or parallel to the plane of anisotropy). 

As shown in Figure 4-45 and Figure 4-51, dispersion curves for the vertical boreholes showed 

cross-over. This cross-over results from the fact that dispersive behaviour of wave propagation 

around the vertical borehole drilled in VTI medium is dominantly controlled by stress-induced 

anisotropy. As a result of drilling a borehole, the stress concentration around the borehole has a 

tangential stress which reaches its maximum value in the direction of the minimum horizontal in-

situ stress and minimum value in the direction of the maximum horizontal stress. So, near the 

borehole, the fast shear wave is recorded in the direction of minimum horizontal stress and the 

slow shear is recorded wave in the direction of maximum horizontal stress. This order is opposite 

to the fast and slow orientations observed in the far field (as illustrated in Figure 2-20). 
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5.3 Comparison between Predicted Slowness Based on Logged Data and 

Simulation Results 

In order to compare the predicted slowness based on simulation results with predicted values 

obtained from real logging data, dispersion curves were generated using Techlog for a vertical 

borehole in the Montney Formation at Farrell Creek, at a depth corresponding to the simulations 

and lab testing. Similarly, Techlog was used to generate dispersion curves for the Deadwood 

Formation at the Aquistore site (Figure 5-1.a and 5-2.a).  

In order to compare data-driven results (which tend to be noisy) with model results, it is 

recommended to fit a continuous curve through the data. A sigmoid-shaped function is generally 

deemed appropriate for this purpose (Assous & Elkington, 2014). As such, a sigmoid-shaped curve 

was fitted to dispersion curves based on real field data to get smoother figures for comparison, 

given that curve-fitting is standard practice. The method used for curve-fitting is presented in 

Appendix F. A sigmoid- shaped curve was then fitted to these dispersion curves, as shown in 

Figure 5-1.b and Figure 5-2.b. 

By comparison between Figures 5-1.b and 5-2.b with 4-45 and 4-51, it is evident that there is 

similarity is the general form of the simulated and logged dispersion curves. More specifically, the 

Montney Formation - vertical borehole scenario shows cross-over both for the simulated results 

(Figure 4-45) and the field data (Figure 5-1.b). For the Deadwood Formation scenario (vertical 

borehole), there is a very weak suggestion of cross-over for both for the simulated results (Figure 

4-51) and the field data (Figure 5-2.b).  However, the absolute values of slowness interpreted from 

the simulated curves are significantly (20% - 40%) less than the values interpreted from the field 

data. Since there a favourable comparison was observed between the predicted slowness based on 

simulation and estimated value taken directly from the experimental results, the difference between 

simulated and field-based dispersion curves could result from the following reasons: 

• In this project, samples were tested at ambient temperature, hence the effect of temperature 

was ignored. It seems reasonable to expect that the elastic properties of rocks could be 

functions of temperature in addition to stress.  

• The transducers used in the laboratory testing operate at much higher frequencies than 

sonic logging tools (MHz vs. kHz). Literature has shown that there is a direct relationship 

between measured velocities and wave frequencies (e.g., Szewczyk et al., 2017). As such, 
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velocities measured in the laboratory would be expected to be greater than those measured 

by sonic logging tools (or, equivalently, laboratory slowness values would be less than 

field-based values). 

• The size of tested samples is small compared to compared to the volume of investigation 

by sonic logging tool, hence the samples do not capture the material property heterogeneity 

that would exist in-situ.  

Subtle differences in the form of the dispersion curves could stem from the fact that dispersion 

curve modeling of formation flexural slowness is influenced by the following parameters, in 

addition to compressional and shear wave velocities of the formation: 

• Compressional wave velocity and density of drilling mud borehole. 

• Diameter of borehole. 

No information was provided regarding the compressional velocities of the drilling muds used in 

the boreholes that were studied. Mud compressional velocities were estimated by the author based 

on their types (Invert oil-based or Polymer water-based) and volume fractions of the components 

mentioned in the drilling reports. Although these values were estimated based on the real field 

condition in terms of pressure and temperature, these estimated values could be slightly different 

from real ones. 

Borehole diameter plays a crucial role in the “airy phase” frequency at which surface waves are 

created. To be more clear, flexural wave excitation is maximum at the “airy phase” frequency, 

when the wavelength (𝜆) is approximately one-half the borehole circumference. Finally, at high 

frequency, when the wavelength (𝜆) becomes small compared with borehole size, the flexural 

wave becomes a surface wave (Vimal et al., 2018). 

Unfortunately, the data available for the horizontal borehole in Montney Formation did not include 

raw data required for generating dispersion curves. For the horizontal borehole the predicted fast 

and slow shear wave slownesses were compared with the logged values (Figure 5-3). Though the 

general character of the results are similar (i.e., both results show well-define fast and slow shear 

waves), the absolute values of the simulation and field-based results are notably different 

(simulated slownesses 20% - 30% less than field-based values). These differences are likely related 

to the same factors mentioned above. Further, for this horizontal well scenario, differences could 
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be related heterogeneity; i.e., it is possible that the rock properties in bedding layers in the upper 

part of the borehole are different from the layers in the lower part.  
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Figure 5-1: a) Dispersion curves generated using Techlog for logging data collected in the vertical 

borehole in the Montney Formation; and b) Sigmoid-shaped curves fit to these data using Techlog. Note 

that data points recorded when the monopole transmitter was fired (visible at frequencies greater than 4.5 

kHz) were ignored during fitting of the sigmoid curves. The horizontal lines (at ~120 µ/ft) show the shear 

wave slowness interpreted from this data, based on the low-frequency component of the flexural waves. 

a) 

b) 
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Figure 5-2: a) Dispersion curves generated using Techlog for logging data collected in the vertical 

borehole in the Deadwood Formation; and b) Sigmoid-shaped curves fit to these data using Techlog. Note 

that data points recorded when the monopole transmitter was fired (visible at frequencies greater than 4.5 

kHz) were ignored during fitting of the sigmoid curves. The horizontal lines (at ~100 µ/ft) show the shear 

wave slowness interpreted from this data, based on the low-frequency component of the flexural waves. 

a) 

b) 
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Figure 5-3: Comparison between predicted fast and slow shear wave slownesses based on sonic logging 

(continuous curves) and simulation results (discrete symbols), for the horizontal borehole in the Montney 

Formation.
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6. Conclusions and Recommendations 

6.1 Conclusions 

The following is a list of conclusions based on this study: 

• A numerical modelling workflow was developed in this research which enables the 

prediction of intrinsic and stress-induced anisotropy on the response of a cross-dipole sonic 

logging tool. Workflow comprises two main steps: static and dynamic analysis. In static 

analysis, static stress-dependent properties (acquired from lab testing results) were utilized 

to define the static elastic stiffness tensor to predict the stress alteration around the 

borehole. The results of this static stress analysis were then used in conjunction with 

dynamic elastic properties (defined as a function of stress) to determine dynamic elastic 

properties of the rock around the borehole to simulate wave propagation around the 

borehole. 

• Predicted shear slowness based on simulation compare favourably with estimated values 

based on experimental results. As such, it would be concluded that the workflow is 

effective and appropriate. 

• The results obtained (more specifically, dispersion curves) suggest that model domain size 

recommended in literature is not sufficiently large. Results obtained using a formation 

radius of six times the borehole radius resulted in low quality of the low-frequency portion 

of the dispersion curve.  Good results were obtained using a formation radius that was nine 

times the borehole radius. 

• The character of the dispersion curves generated using the new workflow were consistent 

with expectation. The dispersive behaviour of shear wave slowness around a horizontal 

borehole in a VTI medium was found to be more affected by intrinsic anisotropy than 

stress-induced anisotropy. The opposite was observed for a borehole is drilled vertically in 

a VTI medium. 

• Comparison between predicted values based on logged data and simulation results revealed 

similarity in general character of the output but some differences in an absolute sense. 

These difference likely stem from differences between lab testing conditions and in-situ 

conditions such as temperature, frequency, size (dimensions), pore fluid properties, pore 

pressure, and rock property heterogeneity. 
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• Comparison between dispersion curves based on logged data and simulation results showed 

slight differences in the appearance of the curves. This difference could stem from 

differences in estimated compressional velocity and density of the drilling mud, 

compressional and shear velocities of formations, and the presence of the logging tool. 

6.2 Limitations and Recommendations 

Following is a list of key limitations of this research, and recommendations to overcome these 

limitations in future research: 

• For simplicity, the effects of poroelasticity were ignored in this research. Give that pore 

fluid pressure and type could affect sonic wave propagation, a poroelastic material 

model should be used in future research. 

• Mud penetration into the rock surrounding the borehole was not accounted for in this 

research. Mud penetration could result in pore pressure change, and change in rock 

properties due mud-rock interactions (e.g., hydration of clay minerals), both of which 

could affect elastic properties hence sonic velocities. Future research should include 

the modeling of mud penetration, and the resulting effects on rock properties. 

• A circular borehole in an elastic continuum was assumed in this research; i.e., the 

effects of yielding (plastic zone development), failure (e.g., tensile fracturing; borehole 

breakout development), and natural fractures on stresses and wave propagation were 

neglected. These effects should be considered in future research.  

• The laboratory testing conducted for this research was undertaken at ambient 

temperatures, which are tens of degrees Celsius cooler than in-situ temperatures. Given 

that elevated temperatures generally reduce rock stiffness and sonic wave velocities, 

future research should measure rock properties at representative in-situ temperatures 

(or, at least, use correction factors to ensure that model input parameters are 

representative of in-situ conditions). 

• The effect of frequency difference (i.e., laboratory transducers having significantly 

higher frequencies that sonic logging tools) was ignored in this research. Given that 

elevated frequencies generally result in increased stiffness and velocities, future 

research should use correction factors to ensure that model input parameters are 

representative of in-situ conditions. 
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• The size of samples used in the laboratory component of this research was small relative 

to the volume of rock involved in wave propagation around a borehole, and the number 

of samples was relatively limited. As such, the effects of heterogeneity were not 

addressed in this work. These effects could be most important in a horizontal borehole 

scenario; i.e., for a horizontal borehole in layered sedimentary rocks, it is possible that 

the rock properties in the upper part of the borehole are different from the rock 

properties in the lower part. Future research should use a greater number of samples, 

greater in size (if feasible), and should use a modeling framework that allows for 

heterogeneous material properties (e.g., discrete layering, geostatistical representation 

of material property distributions). 

• In this study, due to limitations in the number and orientation of strain gauges used in 

the laboratory testing, some static elastic stiffness constants were estimated based on 

simplifying assumptions. Future research should include more comprehensive strain 

measurements, in order to obtain more accurate representation of static elastic property 

anisotropy. 

• This research assumed that elastic properties were controlled solely by mean 

effective stress, and that linear relations existed between stresses and elastic 

properties (and between dynamic and static elastic properties). Future laboratory 

work should be designed to assess the effects of each principal stress component 

(or some combined representation of deviatoric and mean stress) on material 

properties, and should investigate possible non-linear relationships between stresses 

and elastic properties. The models developed in this research are capable of 

supporting more complex relationships between stresses and elastic properties, but 

more sophisticated laboratory testing would be required to provide the required 

input parameters. 

• In the horizontal well (Montney Formation) investigated in this research, the samples 

tested in the laboratory were not taken from the exact depth as the horizontal leg of the 

borehole that was logged. A closer match between core sampling and logging is 

recommended for future research. 

• The body of the sonic logging tool was not included in the models developed for this 

research. Given that tool properties can influence wave propagation around the 
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borehole, the geometry and material properties of the body of the sonic logging tool 

should be included in future simulations. 

Following are additional recommendations for future research on this topic: 

• The radius of the modeled formation surrounding a borehole should be chosen 

based on static stress analysis results, to ensure that the model domain extends 

beyond the zone of induced stress change. 

• If computational facilities of sufficient capability are available, it is recommended 

that modeling should be conducted in the time domain (to avoid the complexity of 

working in the frequency domain, which was used in this research). 

• Methods to improve the efficiency of the dynamic model should be investigated; 

computation times and data processing times were substantial in this research (e.g., 

roughly one-week total for each simulation, using a desktop workstation and with 

64 GB of RAM). 

• An algorithm that will facilitate the use of this modeling workflow to solve inverse 

modeling problems should be developed (i.e., to solve for in-situ stress based on 

logging tool response, when rock elastic properties are known). 
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Appendix A - Aadnoy’s Analytical Model for Stress Distribution around a 

Borehole in an Anisotropic Medium 

In this section, Aadnoy analytical solution for anisotropic medium is presented as an approach to 

validate static stress simulation.  The strain components are related to the stress components 

through the constitutive relations of the anisotropic body as follows: 

[
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(A-1) 

Where 𝑎𝑖𝑗is element of matrix of compliance. 

Aadnoy’s proposed method is based on the generalized plane strain concept (𝜀𝑧 = 0) and linear 

elasticity. Based on these assumptions, the following equation was expressed for the axial stress 

component: 

𝜎𝑧 = −
1

𝑎33
 (𝑎31𝜎𝑥 + 𝑎32𝜎𝑦 + 𝑎34𝜏𝑦𝑧 + 𝑎35𝜏𝑥𝑧 + 𝑎36𝜏𝑥𝑦) 

(A-2) 

In order to find relations for principal and shear stresses, two stress functions (𝐹 and 𝜓), strain 

compatibility and a system of differential equations were introduced. Coupled partial-differential 

equations were used to determine the parameters of the stress functions.  

𝜎𝑥 =
𝜕2𝐹

𝜕𝑦2
 

(A-3) 

𝜎𝑦 =
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(A-5) 
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𝜕𝜓

𝜕𝑦
 

(A-6) 
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𝜏𝑦𝑧 = −
𝜕𝜓

𝜕𝑥
 

(A-7) 

Which yields 

𝐿4𝐹 + 𝐿3𝜓=0 (A-8) 

𝐿3𝐹 + 𝐿2𝜓 (A-9) 

Where [𝐿] is matrix of elastic constants for porous material in rock and is defined as follows: 

𝐿2 = 𝛽44
𝜕2

𝜕𝑥2
− 2𝛽45

𝜕2

𝜕𝑥𝜕𝑦
+ 𝛽55
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(A-11) 

𝐿3 = −𝛽24
𝜕3

𝜕𝑥3
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(A-12) 
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(A-13) 

Where: 

𝛽𝑖𝑗 = 𝛼𝑖𝑗 −
𝛼𝑖3𝛼𝑗3

𝛼33
(𝑖, 𝑗 = 1,2,4,5,6) (A-14) 

It was readily observed that the solution depends on the elements of the constitutive relation matrix 

of equation A-2. Solved in terms of 𝐹, we are left with a sixth-order differential equation: 

(𝐿4𝐿2 − 𝐿3
2)𝐹 = 0 (A-15) 

Inspection of equations A-8 and A-9 gave some insight into the properties of the solution and it 

revealed that the anisotropic stress equations are very complicated. Indeed the, the solution to 

equation A-9 gave complex or imaginary roots. The resultant stress equations are rather lengthy; 

Aadnoy provided complete expressions. In Aadnoy’s model, it was assumed that a general stress 

field at infinite radius is the outer boundary condition. The following equations are derived to 

determine stress field in anisotropic medium: 

𝜎𝑥 = 𝜎𝑥,0 + 2𝑅𝑒[𝜇1
2𝜑1

′ (𝑧1) + 𝜇2
2𝜑2

′ (𝑧2) + 𝜆3𝜇3
2𝜑3

′ (𝑧3)] (A-16) 

𝜎𝑦 = 𝜎𝑦,0 + 2𝑅𝑒[𝜑1
′ (𝑧1) + 𝜑2

′ (𝑧2) + 𝜆3𝜑3
′ (𝑧3)] (A-17) 
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𝜏𝑥𝑦 = 𝜏𝑥𝑦,0 − 2𝑅𝑒[𝜇1𝜑1
′ (𝑧1) + 𝜇2𝜑2

′ (𝑧2) + 𝜆3𝜇3𝜑3
′ (𝑧3)] (A-18) 

𝜏𝑥𝑧 = 𝜏𝑥𝑧,0 + 2𝑅𝑒[𝜆1𝜇1𝜑1
′ (𝑧1) + 𝜆2𝜇2𝜑2

′ (𝑧2) + 𝜇3𝜑3
′ (𝑧3)] (A-19) 

𝜏𝑦𝑧 = 𝜏𝑦𝑧,0 + 2𝑅𝑒[𝜆1𝜑1
′ (𝑧1) + 𝜆2𝜑2

′ (𝑧2) + 𝜑3
′ (𝑧3)] (A-20) 

Where 

𝜆𝑖= The three complex numbers(𝑖 = 1,2,3) 

𝑅𝑒= The notation for the real part of the complex expressions in the brackets 

𝑧𝑘= The complex variable (𝑘 = 1,2,3) 

𝜑𝑘= The three analytic functions (𝑘 = 1,2,3) 

𝜎𝑥,0, 𝜎𝑦,0, 𝜎𝑧,0, 𝜏𝑥𝑦,0, 𝜏𝑥𝑧,0, and 𝜏𝑦𝑧,0= Virgin in-situ stress field. 

(𝑥, 𝑦)= The coordinates of the point within the body where stress, strain and displacement 

components must be determined 

Analytical functions were gained from boundary conditions: 

𝜑1
′ (𝑧1) =

1

2∆(𝜇1 cos 𝜃 − sin 𝜃)
× [𝐷′(𝜆2𝜆3 − 1) + 𝐸

′(𝜇2 − 𝜆2𝜆3𝜇3) + 𝐹
′𝜆3(𝜇3 − 𝜇2)] 

(A-21) 

𝜑2
′ (𝑧2) =

1

2∆(𝜇2 cos𝜃 − sin𝜃)
× [𝐷′(1 − 𝜆1𝜆3) + 𝐸

′(𝜆1𝜆3𝜇3 − 𝜇1) + 𝐹
′𝜆3(𝜇1 − 𝜇3)] 

(A-22) 

𝜑3
′ (𝑧3) =

1

2∆(𝜇3 cos𝜃 − sin𝜃)
× [𝐷′(𝜆1 − 𝜆2) + 𝐸

′(𝜆2𝜇1 − 𝜇2𝜆1) + 𝐹
′𝜆3(𝜇2 − 𝜇1)] 

(A-23) 

Where: 

 

  

∆= 𝜇2 − 𝜇1  

𝐷′ = (𝑃𝑤 − 𝜎𝑥,0) cos 𝜃 − 𝜏𝑥𝑦,0 sin 𝜃 − 𝑖(𝑃𝑤 − 𝜎𝑥,0) sin 𝜃 − 𝑖𝜏𝑥𝑦,0 cos 𝜃  

𝐸′ = −(𝑃𝑤 − 𝜎𝑦,0) sin 𝜃 − 𝜏𝑥𝑦,0 cos 𝜃 − 𝑖(𝑃𝑤 − 𝜎𝑦,0) cos 𝜃 − 𝑖𝜏𝑥𝑦,0 sin 𝜃  

𝐹′ = −𝜏𝑥𝑧,0 cos 𝜃 − 𝜏𝑥𝑧,0 sin 𝜃 + 𝑖𝜏𝑥𝑧,0 sin 𝜃 − 𝑖𝜏𝑦𝑧,0 𝑐𝑜𝑠 𝜃  
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Appendix B - Formulation for Transformation of the Compliance Tensor 

For the sake of simplicity, for the computation of the borehole stress concentration, all 

measurement would be better to obtain in the borehole, so compliance and stress tensors must be 

rotated on the top of borehole (TOH) frame, which is the aim of this section.  

• Stress Tensor Rotation 

It is assumed that the vertical stress (𝜎𝑣) is always aligned with the vertical (V) component of the 

NEV (North-Eat-Vertical) coordinate system. The horizontal stress field could be rotated by an 

angle 𝛾 measured between N (north) and 𝜎𝐻 towards E (east). In order to rotate the regional stress 

field into the NEV frame the following coordinate transform is used. 

𝜎𝑁𝐸𝑉 = 𝑅𝑧(𝛾) 𝜎 𝑅𝑧
′(𝛾) (B.1) 

Where 𝑅𝑧(𝛾) is a rotation matrix defined as follows: 

𝑅𝑧(𝛾) = (
cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

) 
(B.2) 

 

Figure B-1: Schematic of the geographic and borehole reference frames and the principal stress direction. 

 

The coordinate transform of the NEV stress tensor 𝜎𝑁𝐸𝑉 to the stress tensor in the borehole frame 

𝜎𝑇𝑂𝐻 is: 
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𝜎𝑇𝑂𝐻 = 𝑇𝑡(𝛼𝐷 , 𝛼𝐴) 𝜎𝑁𝐸𝑉 𝑇𝑡
′(𝛼𝐷 , 𝛼𝐴) (B.3) 

Here 𝛼𝐷 and 𝛼𝐴 are the borehole deviation and azimuth respectively. The rotation matrix 

𝑇𝑡(𝛼𝐷, 𝛼𝐴) is defined as follows: 

𝑇𝑡(𝛼𝐷, 𝛼𝐴) = (

𝑙𝑥 𝑚𝑥 𝑛𝑥
𝑙𝑦 𝑚𝑦 𝑛𝑦
𝑙𝑧 𝑚𝑧 𝑛𝑧

) 

(B.4) 

Where the directional cosines are defined as: 

𝑙𝑥 = cos(𝛼𝐷) cos(𝛼𝐴) 𝑚𝑥 = cos(𝛼𝐷) sin(𝛼𝐴) 𝑛𝑥 = −sin(𝛼𝐷) 

𝑙𝑦 = −sin(𝛼𝐴) 𝑚𝑥 = cos(𝛼𝐴) 𝑛𝑦 = 0 

𝑙𝑍 = sin(𝛼𝐷) cos(𝛼𝐴) 𝑚𝑧 = sin(𝛼𝐷) sin(𝛼𝐴) 𝑛𝑧 = cos(𝛼𝐷) 

 

• Compliance tensor rotation 

Compliance tensor rotation (𝑆𝑖𝑗𝑘𝑙)is done by applying two bond transformations to the 6 × 6 Voigt 

notation compliance matrix 𝑠𝑖𝑗 giving 𝑎𝑖𝑗 as follows: 

𝑎 = 𝑇𝜖𝑇𝜎
′  𝑠 𝑇𝜎𝑇𝜖

′ (B.5) 

Where 𝑇𝜖 and 𝑇𝜎are two bond transformation matrices. One of these transformation matrices takes 

into account the orientation of the material frame which has the form: 

𝑇𝜎 =

(

 
 
 
 

𝑙𝑠
2 𝑚𝑠

2 𝑛𝑠
2 2𝑚𝑠𝑛𝑠 2𝑛𝑠𝑙𝑠 2𝑚𝑠𝑙𝑠

𝑙𝑡
2 𝑚𝑡

2 𝑛𝑡
2 2𝑚𝑡𝑛𝑡 2𝑛𝑡𝑙𝑡 2𝑙𝑡𝑚𝑡

𝑙𝑛
2 𝑚𝑛

2 𝑛𝑛
2 2𝑚𝑛𝑛𝑛 2𝑛𝑛𝑙𝑛 2𝑙𝑛𝑚𝑛

𝑙𝑡𝑙𝑛 𝑚𝑡𝑚𝑛 𝑛𝑡𝑛𝑛 𝑚𝑡𝑛𝑛 +𝑚𝑛𝑛𝑡 𝑛𝑡𝑙𝑛 + 𝑛𝑛𝑙𝑡 𝑙𝑡𝑚𝑛 + 𝑙𝑛𝑚𝑡
𝑙𝑛𝑙𝑠 𝑚𝑛𝑚𝑠 𝑛𝑛𝑛𝑠 𝑚𝑠𝑛𝑛 +𝑚𝑛𝑛𝑠 𝑛𝑠𝑙𝑛 + 𝑛𝑛𝑙𝑠 𝑙𝑠𝑚𝑛 + 𝑙𝑛𝑚𝑠
𝑙𝑠𝑙𝑡 𝑚𝑠𝑚𝑡 𝑛𝑠𝑛𝑡 𝑚𝑠𝑛𝑡 +𝑚𝑡𝑛𝑠 𝑛𝑠𝑙𝑡 + 𝑛𝑡𝑙𝑠 𝑙𝑠𝑚𝑡 + 𝑙𝑡𝑚𝑠)

 
 
 
 

 

(B.6) 

The second one takes into account the orientation of the borehole: 

𝑇𝜖 =

(

 
 
 
 

𝑙𝑥
2 𝑚𝑥

2 𝑛𝑥
2 2𝑚𝑥𝑛𝑥 2𝑛𝑥𝑙𝑥 2𝑚𝑥𝑙𝑥

𝑙𝑦
2 𝑚𝑦

2 𝑛𝑦
2 2𝑚𝑦𝑛𝑦 2𝑛𝑦𝑙𝑦 2𝑙𝑥𝑚𝑥

𝑙𝑧
2 𝑚𝑧

2 𝑛𝑧
2 2𝑚𝑧𝑛𝑧 2𝑛𝑧𝑙𝑧 2𝑙𝑧𝑚𝑧

2𝑙𝑦𝑙𝑧 2𝑚𝑦𝑚𝑧 2𝑛𝑦𝑛𝑧 𝑚𝑦𝑛𝑧 +𝑚𝑧𝑛𝑦 𝑛𝑦𝑙𝑧 + 𝑛𝑧𝑙𝑦 𝑙𝑦𝑚𝑧 + 𝑙𝑧𝑚𝑦
2𝑙𝑧𝑙𝑥 2𝑚𝑧𝑚𝑥 2𝑛𝑧𝑛𝑥 𝑚𝑥𝑛𝑧 +𝑚𝑧𝑛𝑥 𝑛𝑥𝑙𝑧 + 𝑛𝑧𝑙𝑥 𝑙𝑥𝑚𝑧 + 𝑙𝑧𝑚𝑥
2𝑙𝑥𝑙𝑦 2𝑚𝑥𝑚𝑦 2𝑛𝑥𝑛𝑦 𝑚𝑥𝑛𝑦 +𝑚𝑦𝑛𝑥 𝑛𝑥𝑙𝑦 + 𝑛𝑦𝑙𝑥 𝑙𝑥𝑚𝑦 + 𝑙𝑦𝑚𝑥)

 
 
 
 

 

(B.7) 
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In order to rotate the 6 × 6 Voigt notation elastic matrix into the borehole frame have to define the 

directional cosine for the material frame: 

𝑙𝑠 = cos(𝛽𝐷) cos(𝛽𝐴) 𝑚𝑠 = cos(𝛽𝐷) sin(𝛽𝐴) 𝑛𝑠 = −sin(𝛽𝐷) 

𝑙𝑡 = −sin(𝛽𝐴) 𝑚𝑡 = cos(𝛽𝐴) 𝑛𝑡 = 0 

𝑙𝑛 = sin(𝛽𝐷) cos(𝛽𝐴) 𝑚𝑛 = sin(𝛽𝐷) sin(𝛽𝐴) 𝑛𝑛 = cos(𝛽𝐷) 

Where the 𝛽𝐷 is the dip of the transverse isotropy plane and 𝛽𝐴 is the dip azimuth, as shown in 

Figure B-2. 

 

Figure B-2: The material coordinate system for transverse isotropic medium with tilted symmetry axis 

(Called TTI) where 𝛽𝐷 is the dip of the transverse isotropy plane and 𝛽𝐴 is the dip azimuth (after Gaede et 

al., 2012).
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Appendix C –Simulation of Sonic Logging using a Monopole Source 

The same numerical model described in this thesis for modeling sonic logging using a dipole 

source can also be used to simulate logging using a monopole source; this simply requires the use 

of a monopole source function rather than a dipole. To demonstrate monopole modeling 

capabilities, a vertical borehole scenario (Montney Formation) was run and the results are 

presented in this appendix.  

Material properties and model geometry were defined as described in section 3.2.4.2. This 

simulation is different from the dipole simulation in terms of frequency and type of generated 

energy (uniform acoustic pressure rather than directional acoustic pressure). Figure C-1 shows the 

modeled waveforms recorded by monopole receivers after firing the monopole transmitter. Figure 

C-2 presents a magnified view of the recorded waveform by receiver #1, which is located 3.5 m 

above the monopole transmitter. This figure shows each arrival (P-wave, S-wave and mud wave) 

is clearly visible. The arrival time at each receiver, coupled with knowledge of the vertical position 

of each receiver, was used to interpret compressional wave (P-wave) and shear wave velocity 

(effectively, the reciprocal of the slope of the green and purple lines shown in Figure C-1, 

respectively). As shown in Table C-1, there is a favorable comparison between the velocities 

interpreted from simulation results, and the velocities taken directly from the experimental results.  
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Figure C-1: Recorded monopole waveforms, vertical borehole in the Montney Formation. 

 

 

Figure C-2: Recorded monopole waveform by receiver #1, vertical borehole in the Montney Formation. 
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Table C-1: Comparison between the velocities interpreted from simulation results, and the values taken 

directly from experimental results 

Monopole Predicted Velocity 

(Based on Simulation) 

Estimated Velocity (Based on 

Experimental Results) 

Error 

Compressional 

Velocity 

5440(𝑚 𝑠⁄ ) 5404(𝑚 𝑠⁄ ) ≅ 0.66 

Shear Velocity 3098(𝑚 𝑠⁄ ) 3060(𝑚 𝑠⁄ ) ≅ 1.24 
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Appendix D – Effects of Modeled Formation Radius on Dynamic Simulation 

Results 

In initial simulations, the radius of the formation used for the dynamic simulations was defined as 

six times the borehole radius, based on the literature (Pissarenko et al., 2009). Dispersion curves 

generated from these simulations showed low quality at low frequencies, as shown in Figure D-1 

through Figure D-9. The low quality of the low-frequency portion of the dispersion curves was 

interpreted to result from a formation radius that was too small. Further investigation of the results 

revealed that based on this radius, the entire model domain was affected by drilling-induced stress 

changes. Based on the static stress analysis and defined elastic stiffness constants, it was 

determined that the formation radius should be at least nine times the borehole radius (Figure D-

10). Thus, all subsequent simulations (e.g., in sections 4.3.2 and 4.3.3) were generated using this 

bigger formation radius. 

 

 

Figure D-1: Graph showing generated dispersion plots of the modeled X-X and Y-Y waveforms (vertical 

borehole in the Montney Formation). 
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Figure D-2: Dispersion plot of modeled X-X dipole waveforms, based on DISECA method (vertical 

borehole in the Montney Formation). 

 

Figure D-3: Dispersion plot of modeled Y-Y dipole waveforms, based on DISECA method (vertical 

borehole in the Montney Formation). 
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Figure D-4: Graph showing generated dispersion plots of the modeled X-X and Y-Y waveforms 

(horizontal borehole in the Montney Formation). 

 

 

Figure D-5: Dispersion plot of modeled X-X dipole waveforms, based on DISECA method (horizontal 

borehole in the Montney Formation). 
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Figure D-6: Dispersion plot of modeled Y-Y dipole waveforms, based on DISECA method (horizontal 

borehole in the Montney Formation). 

 

 

Figure D-7: Graph showing generated dispersion plots of the modeled X-X and Y-Y waveforms (vertical 

borehole in the Deadwood Formation). 
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Figure D-8: Dispersion plot of modeled X-X dipole waveforms, based on DISECA method (vertical 

borehole in the Deadwood Formation). 

 

Figure D-9: Dispersion plot of modeled Y-Y dipole waveforms, based on DISECA method (vertical 

borehole in the Deadwood Formation). 
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Figure D-10: Altered zone around the borehole, used as a basis to determine the formation radius used for 

dynamic modeling: a) 𝐶44 (stress-dependent elastic stiffness constant) versus normalized radial distance; 

and b) Mean stress versus normalized radial distance (vertical borehole in Montney Formation).
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Appendix E - Fast Fourier Transformation Equations 

A wavelet is defined as a wave-like oscillation with specific definitions and parameters, which 

wavelets are intentionally crafted to have a specific property that make them useful for signal 

processing. The amplitude of a wavelet usually begins at zero, increases, and then decreases back 

to zero. Generally, wavelets are mathematical functions that cut up data into frequency 

components. Most basis wavelet functions are presented in time domain.  

In COMSOL, depending on the study type (frequency domain or time domain), it is required to 

define function of amplitude of point source. To derive frequency domain function from time 

domain function, it is required to apply some mathematical transformation known as Fourier 

transform. This section is aimed to show how do this transformation for two main type of wavelets, 

which are frequently used in signal processing: Ricker and Ormsby wavelets. 

• Fourier Transform 

The time and frequency domains are alternative ways of representing signals. The Fourier 

transform is the mathematical relationship between these two representations. The Fourier 

transform converts a signal from its original domain (often time domain) to a representation in 

frequency domain and vice versa by decomposing signals into sinusoids. Given the time domain 

signal, the process of calculating the frequency domain is called decomposition, analysis, the 

forward Fourier transform, or simply Fourier transform. If you know the frequency domain, 

calculation of the time domain is called synthesis, or inverse Fourier transform. The general forms 

of Fourier transform are as follows: 

Forward Fourier transform: Analysis equation 

𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
+∞

−∞

 
                                                                 (E.1) 

Inverse Fourie transform: Synthesis equation 

𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
+∞

−∞

 
(E.2) 

Where t represents time, 𝜔(= 2𝜋𝑓) stands for angular frequency and f is frequency. 



173 

 

 If a signal is modified in one domain, it will also be changed in the other domain, although usually 

not in the same way. For example, by convolving time domain signals results in their frequency 

spectra multiplied. Other mathematical operations, such as addition, scaling and shifting, also 

having matching operations, such as addition, scaling and shifting, also having matching operation 

in the opposite domain. These relationships are called properties of the Fourier transform, how a 

mathematical change in one domain results in a mathematical change in the other domain. A brief 

table of Fourier transform is presented in Table E-1, which makes extremely easier calculation of 

the transformed function from one domain to the other domain: 

Table E-1: Summarize of helpful transformation pairs. 

Description Function in time 

domain 

Transform in frequency domain 

Delta function in time domain (t) 𝛿(𝑡) 1 

Delta function in frequency 

domain (f) 

1 2𝜋𝛿(𝜔) 

Exponential in time domain (t) 𝑒−𝑎|𝑡| 2𝑎

𝑎2 + 𝜔2
 

Exponential in frequency 

domain (f) 

2𝑎

𝑎2 + 𝑡2
 

2𝜋𝑒−𝑎|𝜔| 

Gaussian 𝑒
−𝑡2

2⁄  √2𝜋𝑒
−𝜔2

2⁄  

Derivative in in time domain (t) 𝑓′(𝑡) 𝑖𝜔𝐹(𝜔) 

Derivative in frequency domain 

(f) 

𝑥𝑓(𝑡) 𝑖𝐹′(𝜔) 

Translation in time (t) 𝑓(𝑡 − 𝑎) 𝑒−𝑖𝑎𝑓𝐹(𝜔) 

Translation in frequency domain 

(f) 

𝑒𝑖𝑎𝑡𝑓(𝑡) 𝐹(𝜔 − 𝑎) 

Dilation in time domain (t) 𝑓(𝑎𝑡) 𝐹(𝜔 𝑎⁄ )/𝑎 
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Convolution 𝑓(𝑡) ∗ 𝑔(𝑡) 𝐹(𝜔)𝐺(𝜔) 

Rectangular Function in time 

domain(t) 

𝑟𝑒𝑐𝑡(𝑎𝑡) 1

√2𝜋𝑎2
𝑠𝑖𝑛𝑐(𝜔 2𝜋𝑎⁄ ) 

Sinc function in time domain (t)  𝑠𝑖𝑛𝑐(𝑎𝑡)  1

√2𝜋𝑎2
𝑟𝑒𝑐𝑡(𝜔 2𝜋𝑎⁄ ) 

Triangular function in time 

domain (t) 

𝑡𝑟𝑖(𝑎𝑡) 1

√2𝜋𝑎2
𝑠𝑖𝑛𝑐2(𝜔 2⁄ ) 

Cosine function in time domain 

(t) 

cos(𝜔0𝑡) 𝜋[𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)] 

Sine function in time domain (t) sin(𝜔0𝑡) 
𝜋
𝑗⁄ [𝛿(𝜔 − 𝜔0) − 𝛿(𝜔 + 𝜔0)] 

 

• Ricker Wavelet 

The Ricker wavelet is a theoretical waveform obtained by solving Stokes differential equation. 

Mathematically Ricker wavelet is the second derivative of a Gaussian function; therefore, it is 

symmetric in the time domain. The general time domain form of Ricker wavelet (rw) used in this 

research is as follows: 

𝑟𝑤(𝑡) = 2𝐴𝑓𝑐
2𝜋2(𝑡 − 𝑡𝑠)𝑒

−(𝑓𝑐
2𝜋2(𝑡−𝑡𝑠)

2) (E.3) 

Where  

A= amplitude of wavelet 

𝑓𝑐= central frequency 

𝑡𝑠= time shift 

It could be understood that equation (E.3) is derivative of one equation: 

𝑟𝑤(𝑡) = 2𝐴𝑓𝑐
2𝜋2(𝑡 − 𝑡𝑠)𝑒

−(𝑓𝑐
2𝜋2(𝑡−𝑡𝑠)

2) = −𝐴(𝑒−(𝑓𝑐
2𝜋2(𝑡−𝑡𝑠)

2))′ (E.4) 

By paying attention on the left-hand side of equation (E.4), the following information could be 

derived: 
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▪  Gaussian function 

▪ Dilation in time 

▪ Translation in time  

▪ Derivative in time 

For deriving frequency domain from time domain equation, the following step would be taken. 

Step 1: Gaussian in time domain  

Time domain Frequency domain  

𝑒−
𝑡2
2⁄     √2𝜋𝑒−

𝜔2
2⁄   (E.5) 

Step 2: Dilation in time domain 

Time domain Frequency domain  

𝑒−
(√2𝑓𝑐𝜋𝑡)

2

2
⁄     √2𝜋

√2𝑓𝑐𝜋
⁄ 𝑒−

(𝜔
√2𝑓𝑐𝜋
⁄ )2

2
⁄   

(E.6) 

Step 3: Translation in time domain 

Time domain Frequency domain  

𝑒−
(√2𝑓𝑐𝜋(𝑡−𝑡𝑠))

2

2
⁄     𝑒(−𝑖𝑡𝑠𝜔)(√2𝜋

√2𝑓𝑐𝜋
⁄ 𝑒−

(𝜔
√2𝑓𝑐𝜋
⁄ )2

2
⁄  ) 

(E.7) 

Step 4: Derivative in time domain 

Time domain Frequency domain  

(𝑒−
(√2𝑓𝑐𝜋(𝑡−𝑡𝑠))

2

2
⁄  )′   (𝑖 𝜔

√2𝑓𝑐𝜋
⁄ )(𝑒(−𝑖𝑡𝑠𝜔)(√2𝜋

√2𝑓𝑐𝜋
⁄ 𝑒−

(𝜔
√2𝑓𝑐𝜋
⁄ )2

2
⁄  )) 

(E.8) 

By simplification of equation (E.8), the following equation is derived in frequency domain known 

as frequency domain version of Ricker wavelet. 

𝑅𝑊(𝑓) = 𝑖√
2

𝜋
 (
𝑓

𝑓𝑐2
)𝑒−𝑖(2𝜋𝑓𝑡𝑠)𝑒

−(
𝑓
𝑓𝑐
⁄ )2

 

(E.9) 

• Ormsby Wavelet 
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Another example of interesting wavelet is called Ormsby wavelet, which features a controllable 

flat frequency content with formulation (time domain) shown in equation (E.10). 

𝑂𝑟𝑚𝑠𝑏𝑦(𝑡) = 𝐴((
𝜋𝑓4

2

𝑓4 − 𝑓3
𝑠𝑖𝑛𝑐2(𝜋𝑓4(𝑡 − 𝑡𝑠)) −

𝜋𝑓3
2

𝑓4 − 𝑓3
𝑠𝑖𝑛𝑐2(𝜋𝑓3(𝑡 − 𝑡𝑠)))

− (
𝜋𝑓2

2

𝑓2 − 𝑓1
𝑠𝑖𝑛𝑐2(𝜋𝑓2(𝑡 − 𝑡𝑠)) −

𝜋𝑓1
2

𝑓2 − 𝑓1
𝑠𝑖𝑛𝑐2(𝜋𝑓1(𝑡 − 𝑡𝑠)))) 

 

(E.10) 

Where  

𝑓1= low-cut frequency 

𝑓2= low-pass frequency 

𝑓3= high-pass frequency 

𝑓4= high-cut frequency 

As it is shown in equation (E.10), Ormsby wavelet is composed of following step: 

▪ 𝑠𝑖𝑛𝑐2(𝑡) 

▪ Dilation  

▪ Translation  

For deriving frequency domain from time domain equation, the following step would be taken. 

Step 1: 𝑠𝑖𝑛𝑐2(𝑡) 

Time domain Frequency domain  

𝑠𝑖𝑛𝑐2(𝑡) 𝑡𝑟𝑖(𝑓) (E.11) 

Step 2: Dilation 

Time domain Frequency domain  

(
𝜋𝑓4

2

𝑓4 − 𝑓3
)(𝑠𝑖𝑛𝑐2(𝜋𝑓4𝑡)) (

𝜋𝑓4
2

𝑓4 − 𝑓3
)(1 𝜋𝑓4
⁄ )𝑡𝑟𝑖(

𝑓
𝜋𝑓4
⁄ ) 

(E.12) 
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(
𝜋𝑓3

2

𝑓4 − 𝑓3
)𝑠𝑖𝑛𝑐2(𝜋𝑓3𝑡) (

𝜋𝑓3
2

𝑓4 − 𝑓3
)(1 𝜋𝑓3
⁄ )𝑡𝑟𝑖(

𝑓
𝜋𝑓3
⁄ ) 

(E.13) 

(
𝜋𝑓2

2

𝑓2 − 𝑓1
)𝑠𝑖𝑛𝑐2(𝜋𝑓2𝑡) (

𝜋𝑓2
2

𝑓2 − 𝑓1
)(1 𝜋𝑓2
⁄ )𝑡𝑟𝑖(

𝑓
𝜋𝑓2
⁄ ) 

(E.14) 

(
𝜋𝑓1

2

𝑓2 − 𝑓1
)𝑠𝑖𝑛𝑐2(𝜋𝑓1𝑡) (

𝜋𝑓1
2

𝑓2 − 𝑓1
)(1 𝜋𝑓1
⁄ )𝑡𝑟𝑖(

𝑓
𝜋𝑓1
⁄ ) 

(E.15) 

Step 3: Translation 

Time domain Frequency domain  

(
𝜋𝑓4

2

𝑓4 − 𝑓3
)𝑠𝑖𝑛𝑐2(𝜋𝑓4(𝑡 − 𝑡𝑠)) (

𝜋𝑓4
2

𝑓4 − 𝑓3
)(𝑒

−𝑖𝜔𝑡𝑠

𝜋𝑓4
⁄ )𝑡𝑟𝑖(

𝑓
𝜋𝑓4
⁄ ) 

(E.16) 

(
𝜋𝑓3

2

𝑓4 − 𝑓3
)𝑠𝑖𝑛𝑐2(𝜋𝑓3(𝑡 − 𝑡𝑠)) (

𝜋𝑓3
2

𝑓4 − 𝑓3
)(𝑒

−𝑖𝜔𝑡𝑠

𝜋𝑓3
⁄ )𝑡𝑟𝑖(

𝑓
𝜋𝑓3
⁄ ) 

(E.17) 

(
𝜋𝑓2

2

𝑓2 − 𝑓1
)𝑠𝑖𝑛𝑐2(𝜋𝑓2(𝑡 − 𝑡𝑠)) (

𝜋𝑓2
2

𝑓2 − 𝑓1
)(𝑒

−𝑖𝜔𝑡𝑠

𝜋𝑓2
⁄ )𝑡𝑟𝑖(

𝑓
𝜋𝑓2
⁄ ) 

(E.18) 

(
𝜋𝑓1

2

𝑓2 − 𝑓1
)𝑠𝑖𝑛𝑐2(𝜋𝑓1(𝑡 − 𝑡𝑠)) (

𝜋𝑓1
2

𝑓2 − 𝑓1
)(𝑒

−𝑖𝜔𝑡𝑠

𝜋𝑓1
⁄ )𝑡𝑟𝑖(

𝑓
𝜋𝑓1
⁄ ) 

(E.19) 

By summation equation from (E.16) to (E.17), the following equation is obtained known as 

frequency domain type of Ormsby equation. 

𝑂𝑟𝑚𝑠𝑏𝑦(𝑓) = 𝐴(𝑒−𝑖𝜔𝑡𝑠)(((
𝑓4

𝑓4 − 𝑓3
) 𝑡𝑟𝑖 (

𝑓
𝜋𝑓4
⁄ ) − (

𝑓3
𝑓4 − 𝑓3

) 𝑡𝑟𝑖 (
𝑓
𝜋𝑓3
⁄ ))

− ((
𝑓2

𝑓2 − 𝑓1
) 𝑡𝑟𝑖 (

𝑓
𝜋𝑓2
⁄ ) − (

𝑓1
𝑓2 − 𝑓1

) 𝑡𝑟𝑖 (
𝑓
𝜋𝑓1
⁄ ))) 

(E.20) 
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Appendix F- Fitting a Sigmoid Curve through Data 
 

A sigmoid function is a mathematical function having a characteristic “S”-shaped curve or sigmoid 

curve.  Although, it has many different applications in science, the main reason of its usage in this 

research is to compare the logged data with simulation results conveniently by applying this 

continuous curve on the data. The general form of sigmoid function used in this research is 

presented in equation F.1: 

𝐹(𝑥) =
𝑎

𝑏 + 𝑐 ∗ exp ((−𝑑 ∗ (𝑥 − 𝑥0)𝑔) + ℎ)
 (F.1) 

Where  

𝑎= The curve’s maximum value 

𝑑= The logistic growth rate or steepness of the curve 

𝑥0= The x-value of the sigmoid’s midpoint 

𝑏, 𝑐, 𝑔, ℎ= Additional curve fitting constants. 

In this research, 𝑥 and 𝐹(𝑥) represent frequency and slowness, respectively. Fitting the sigmoid 

curve involves the following steps: 

Step 1: Normalize data between 0 to 1, since the range of change based on the sigmoid function is 

1. 

𝑦𝑛𝑒𝑤 =
𝑦 − 𝑦𝑚𝑖𝑛
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

 (F.2) 

Where 

𝑦𝑚𝑖𝑛= Minimum value of available data (in our research is slowness) 

𝑦𝑚𝑎𝑥= Maximum value of available data (in our research is slowness) 

𝑦= Available data (in our research is slowness) 

𝑦𝑛𝑒𝑤= New dataset varies between 0 to 1. 



179 

 

Step 2: Fit the function presented in equation E.1 to the new dataset (𝑦𝑛𝑒𝑤) to find the unknown 

coefficients (i.e., a, b, c, d, 𝑥0, g, and h). 

Step 3: Calculate the new dataset (𝑦̃𝑛𝑒𝑤) based on the coefficients found in step 2. 

Step 4: Return data to the actual range, based on following equation: 

𝐹𝑖𝑡𝑡𝑒𝑑 𝐶𝑢𝑟𝑣𝑒𝑆𝑖𝑔𝑚𝑜𝑖𝑑 = 𝑦̃𝑛𝑒𝑤(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) + 𝑦𝑚𝑖𝑛  (F.3) 

The curve represented by equation F.3 is the fitted curve on the available data.

 

 


