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ABSTRACT 

Accurate estimation of snowmelt runoff is of primary importance in streamflow prediction for 

water management and flood forecasting in cold regions. Lateral flow, preferential flow pathways, 

and distinctive wetting and drying water retention curves in porous media have proven critical to 

improving soil water flow models; the most sophisticated physically based snowmelt models only 

account for 1D matrix flow and employ a single drying water retention curve for both drying and 

wetting snowpacks. Thus, there is an immediate need to develop snowmelt models that represent 

lateral and preferential flows, as well as full capillary hysteresis to examine the potential to 

improve snowmelt hydrological modelling. In this dissertation, the primary objective is to improve 

understanding and prediction of water flow through snow by investigating the formation of 

preferential flow paths and the coupling of heat and mass fluxes within snow. Of particular interest 

is the prediction of capillary pressure at macroscale, as it is of importance for simulating 

preferential flow in porous media. A novel 2D numerical model is developed that enables an 

improved understanding of energy and water flows within deep heterogeneous snowpacks on flat 

and sloping terrains. The numerical model simulates vertical and lateral water flow through snow 

matrix and preferential flow paths, and accounts for hysteresis in capillary pressure, internal energy 

fluxes, melt at the surface, and internal refreezing. Implementing a water entry pressure for initially 

dry snow was necessary for the formation of preferential flow paths. By coupling the simulation 

of preferential flow with heat transfer, ice layer formation was realistically simulated when water 

infiltrated an initially cold snowpack. Heat convection was added to the model and coupled to the 

energy balance at the snow surface; the transfer of heat by topography-driven airflow affected the 

estimated snow surface temperature by transporting thermal energy from the warm snow-soil 

interface to the upper snowpack. Comparisons of the model meltwater flow predictions against 

snowmelt field data revealed limitations in the current theories of water flow through snow, such 

as the use of a capillary entry pressure in the snow water retention curve that is limited to high-

density snow. This suggested further concepts that would improve the representation of capillary 

pressure in snow models. This improved model, which considers a dynamic capillary pressure, 

gave better results than models based on previous theories when simulating capillary pressure 

overshoot. The research demonstrates how heterogeneous flow through snow can be modelled and 

how this research model furthers understanding of snowmelt flow processes and potential 

improvements in snowmelt-derived streamflow prediction.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and Relevance 

Much of the global freshwater used for irrigation, power generation, and human consumption is 

derived from mountain catchments (Viviroli et al., 2007, Mankin et al., 2015). In these catchments, 

snow accumulates over the winter and produces runoff in spring and early summer, which is then 

available to downstream watersheds. (Horton, 1915) noted the need to gather information on the 

timing, magnitude, and quality of snowmelt for hydrological assessments. This information is 

crucial for water supply for irrigation use, hydroelectricity generation, and municipal consumption. 

These data also benefit snow ecological studies of the snowpack as the habitat of many living 

animals and plants (Pomeroy and Brun, 2001), and help researchers forecast floods, as fast 

snowmelt and rain-on-snow events can cause rapid and dramatic floods (e.g. Sui and Koehler, 

2001), such as those in Alberta in June 2013 (Pomeroy et al., 2016).  

To predict the timing and magnitude of snowmelt runoff from deep snowpacks with accuracy, 

water flow percolation within snow must be understood and quantified (Male and Gray, 1975; 

Wankiewicz, 1979). Liquid water flow within a snowpack is influenced by internal properties of 

snow, and deeper, colder snowpacks have slower flow rates; this makes the process significant to 

mountain hydrology. Among these internal properties, ice layers and preferential flow paths (PFP) 

greatly impact the spatial and temporal distributions of snowmelt runoff (Marsh and Woo, 1984a; 

Marsh, 1991) A number of studies have focused on understanding ice layers and preferential flow 

formations and their impacts on meltwater routing. In addition, the hydraulic properties of 

snowpacks, such as the water retention curve, ice layer permeability, and grain growth rate with 

water saturation are still lacking verification against measurements in natural snowpacks; likewise, 

the development of PFP is still not well understood (Marsh, 1991). Many theories have described 

gravitational vertical flow percolation within a homogeneous, isothermal snowpack (Colbeck, 

1972), water percolation through a subfreezing, layered snowpack with phase change (Tseng et 

al., 1994), or the influence of capillary forces on water flow (Jordan, 1995); however, liquid water 
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flows not only vertically but also laterally within a snowpack (Eiriksson et al., 2013), resulting in 

greater complications in estimating snowmelt runoff. 

A new research numerical model that can simulate the formation of PFP has recently emerged 

(Hirashima et al., 2014, 2017). This model is limited to water flow through snow and neglects heat 

flow through snow and important flow characteristics such as the hysteresis in the water retention 

curve. To date, no operational snow model is able to predict lateral flows, the formation of PFP 

and ice layers, and their effects on water flow through snow, resulting in inaccuracy in the 

prediction of catchment discharge. Models created using the Cold Region Hydrological Modelling 

platform (CRHM) (Pomeroy et al., 2007) demonstrate this (Pomeroy et al., 2016). The CHRM 

model of Marmot Creek Research Basin (surface area = 9.8 km2), gives good overall results in 

estimating the peak discharge at moderate scales (Fang et al., 2013) but improvements are needed 

to accurately predict the timing of peak flow at smaller scales, such as the CRHM streamflow 

model for the alpine snowmelt dominated Upper Marmot Creek (surface area = 1.18 km2), which 

estimated peak flow 17 days ahead of the measured peak streamflow in 2009 (Pomeroy et al., 

2016). Though the causes of the early estimation of peak basin outflow are not known, the 

simplifications made in estimating internal snowmelt processes, such as ice layers and lateral flow, 

could be responsible for the inaccuracy. Accurately predicting the timing of peak streamflow is 

important for understanding ecohydrology and snow chemistry (e.g. Quinton and Pomeroy, 2006), 

and for forecasting floods from mountain creeks that can be destructive and have resulted in 

massive damage to communities, such as Canmore in 2013 (Pomeroy et al., 2016). As the basin 

scale decreases, snow physics (e.g. water flow through snow) have greater impacts on streamflow 

prediction, and hydrological model applied at relatively small scales could greatly benefit from 

more physically-based and realistic representations of hydrological physical processes. In this 

regard, this research aims to improve the numerical prediction of water and heat flow through 

snow. 
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Figure 1.1 Daily discharge from Upper Marmot Creek. The circle shows an example where 
the estimated timing of the peak discharge, which is governed by snowmelt, does not 
correspond to the observation (Pomeroy et al., 2016). 

1.2 Background 

This literature review describes the current knowledge on snowmelt processes and water flow 

through snow. Theories characterizing meltwater flow will be presented. However, few studies 

have been conducted on liquid water flow through a sloping snowpack, and current knowledge in 

this instance will be summarized. Finally, the most common physically based snow models will 

be presented and their limitations outlined. 

1.2.1 Snow Properties 

Snow is a porous medium composed of three phases: liquid water, ice and air, symbolized by the 

subscripts 𝑤, 𝑖 and 𝑎, respectively. A snowpack is characterized by its mass (𝑀Y), its volume (𝑉Y), 

porosity (𝜙), density (𝜌Y), height (ℎ), its snow water equivalent (𝑆𝑊𝐸), and the liquid water 

content snow is retaining (𝜃z). These snow properties can be estimated using the following 

equations (Dingman, 2005): 

𝑉Y 	= 	𝑉{ 	+ 	𝑉z 	+	𝑉}	 (1.1) 

𝑀Y = 𝑀{ + 𝑀z + 𝑀}	 (1.2) 
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𝜙 =
𝑉} 	+	𝑉z

𝑉Y
	 (1.3) 

𝑉{ 	= 	 (1 − 𝜙)𝑉Y	 (1.4) 

𝜌Y 	=
𝜌{ 	𝑉{ + 𝜌z	𝑉z

𝑉Y
= (1 − 𝜙)𝜌{ + 𝜃z𝜌z (1.5) 

𝜃z =
𝑉z
𝑉Y

 (1.6) 

𝑆𝑊𝐸	 =
𝜌Y
𝜌z

	ℎ (1.7) 

The temperature of a snowpack is always less or equal to 0oC. For snow to melt, its temperature 

must be equal to 0oC, which is the equilibrium temperature at which liquid water and ice can 

coexist at atmospheric pressure. 

Snow is deposited on the ground in layers of different snow types and different properties (density, 

grain size and shape, thickness, and liquid water content). The initial properties of these layers 

depend on the meteorological conditions during snow storms; a summary of type and shape of the 

precipitation particles is given in the International Classification for Seasonal Snow on the Ground 

(Fierz et al., 2009). Layer properties are inhomogeneous within each layer and this impacts the 

flow of liquid water through snow has been demonstrated (Hirashima et al., 2013). Grain size and 

shape evolve during the winter and spring seasons due to both dry and wet snow metamorphism 

(cf. review by Colbeck, 1982). Dry snow metamorphism occurs in dry and subfreezing snow and 

is caused by either strong temperature gradients within the snowpack (kinetic growth) that result 

in vapour gradients or by equilibrium growth due to differences in grain curvature. Wet snow 

metamorphism happens when snow grains are in contact with liquid water. Two wet snow 

metamorphism regimes have been differentiated: 1) the pendular regime (low water contents < ~7 

%; Denoth, 1980) is characterized by liquid water at the contact point of the snow grains and the 

liquid phase is disconnected. In this regime, cohesive clusters of snow grains form. 2) In the 

funicular regime, the liquid phase is continuous within the pore space and snow metamorphism 

occurs rapidly. The snow clusters become less cohesive, resulting in weaker snow layers that can 

cause avalanching. In tis regime, snow grains are becoming rounder and bigger. Brun (1989) 

observed that grain growth in the funicular regime slows down when the liquid water content 

reaches ~10 %. Snowmelt and meltwater flow occurring before a snowpack becomes ripe will 
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directly be affected by the initial snow layering and crystal morphology that result from snow 

metamorphism and differences in initial precipitation particles. 

1.2.2 Rain-On-Snow  

Over the last century, rain-on-snow (ROS) events have been observed to occur more and more 

frequently in Canada, particularly during the spring and fall seasons (Vincent and Mekis, 2006; 

Shook and Pomeroy, 2012). ROS significantly impacts snowpack by accelerating its melt (Marks 

et al., 1998), or decreasing its stability (Conway and Raymond, 1993). The acceleration of melt is 

caused by advected energy from rain to snow and an increase of latent heat towards the snowpack 

(Marks et al., 1998), which results from high atmospheric humidity and warm air, which cause 

significant condensation on the snow surface. This increase in advected and latent energy input 

flux during ROS was also observed during the 2013 flood in Alberta (Pomeroy et al., 2016). Figure 

1.2 shows the shift in energy balance fluxes during the flood at Upper Marmot Creek, modelled 

using CRHM with the snowmelt model SNOBAL (Marks and Dozier, 1992). 

 

Figure 1.2 Pre-flood, flood, and post-flood estimated energy fluxes to the Fisera south-face 
snowpack, Marmot Creek Research Basin (Pomeroy et al., 2016). 

In addition to being a significant source of energy for snow and accelerating melt, ROS adds a 

large amount of liquid water to the snowpack that, if infiltrating a cold and dry snowpack, can be 

stored either by freezing or by capillary suction (Wever et al., 2015). The amount of liquid water 

that is stored depends on snowpack depth, porosity, permeability internal structural features such 



6 

as ice layers or preferential flow paths, and thermodynamic state (Singh et al., 1997). The release 

of latent heat upon freezing of rainwater is a massive source of energy for the snowpack, whose 

temperature significantly increases. Once the snowpack becomes isothermal at 0oC and wet, any 

additional rainfall input will result in melt and runoff. This runoff then exceeds the rainfall rate 

due to the additional snowmelt. Runoff from shallow snowpacks reacts more quickly to rain, 

whereas deep snowpacks store more rainwater and delay runoff (Wever et al., 2014a).  

As water from rainfall can be a significant source of water for discharge (Mazurkiewicz et al., 

2008), snow models must simulate flux of liquid water, water retention within the snowpack, and 

heat exchanges between liquid water and ice in order to accurately estimate snowpack runoff. 

1.2.3 Water Infiltration, Ice Layer and Preferential Flow Path Formations in Snow 

Liquid water flow through snow has been actively investigated for more than four decades. This 

process drives the timing and spatial distribution of snowmelt runoff from deep snowpacks due to 

the water holding capacity and lag effects of snow (Male and Gray, 1975). In this section, theories 

of water movement within a snowpack, effects of snowpack properties on flow, and limitations of 

current theories and models are developed. 

Colbeck (1972) developed the first macroscopic hydraulic theory of water percolation in 

isothermal, homogeneous snow. This model was initially implemented in snow models such as 

CROCUS (Brun et al., 1989, 1992). This theory considers only vertical gravity drainage. The 

liquid water flow velocity is estimated from Darcy's Law. Refreezing and ponding of liquid water 

are not considered. To apply this simplified model of water flow through snow, permeability of 

the water phase must be known. This parameter is a function of snow internal properties – porosity, 

grain size, and density – and the water content present within the pores. Based on experimental 

data on water percolation through snow, Colbeck and Davidson (1973) estimated a better 

relationship for permeability of water in snow as a function of effective water saturation. 

Irreducible water content is an important parameter for the simulation of liquid water flow; little 

is known about the dependency of this parameter on snow properties. From laboratory experiments 

on a homogeneous snowpack, Colbeck (1974) suggested a value higher than 3 % for this 

parameter, while Katsushima et al. (2013) and Yamaguchi et al. (2010) found values ranging from 

18 % to 4 %. In the snow model CROCUS, this parameter is set up to 5 % of the total pore volume 
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(Vionnet et al., 2012). As snow internal properties are constantly evolving, the irreducible water 

content changes, and assuming a constant value for the whole snowpack is physically and 

conceptually inaccurate. A relationship between this parameter and snow properties has yet to be 

found.  

To estimate permeability of the water phase, snow intrinsic permeability (i.e. saturated hydraulic 

conductivity) must be known. Albert and Shultz (2002) showed that intrinsic permeability of snow 

is poorly related to snow density, suggesting that other parameters, such as snow grain size, should 

be considered. Shimizu (1970) suggested an empirical equation relating the saturated hydraulic 

conductivity to grain size and density, based on laboratory experiments with both air and kerosene 

permeameters for fine-grained compacted snow. More recently, Calonne et al. (2012) developed 

a new equation based on three-dimensional processed images of different snow samples, which is 

now more generally used in snow models instead of Shimizu’s equation (Shimizu, 1970). The latter 

formulation of intrinsic permeability resulted in better routing simulations in the SNOWPACK 

model (Wever et al., 2015). 

Applying conservation of mass for two-phase flow (air and water) in a snowpack, assuming that 

gravitational flow dominates and using the method of characteristics, Colbeck and Davidson 

(1973) developed a simplified equation for the wetting front propagation for a constant water flux 

value. An analytical solution of the same problem was developed by Albert and Krajeski (1998) 

from the mass conservation equation developed by Colbeck (1972). This new solution was 

implemented in a numerical model, SNAP, which showed good prediction of the magnitude and 

timing of snowmelt for a small computational cost; however, this theory has not been applied in 

other snow models. 

The first theories by Colbeck (1972) and Colbeck and Davidson (1973) to simulate flow 

propagation through isothermal, homogeneous snow have been improved to account for layers 

within the snow, considering the snowpack as an anisotropic media (Colbeck, 1975); impermeable 

layers (Colbeck, 1974a); and capillary effects at the leading edge of melt wave (Colbeck, 1974b). 

To model capillary forces at the melt wave front, (Colbeck, 1974b), an empirical relationship 

between capillary pressure and effective water saturation from artificial snow in a laboratory was 
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developed. However, this relationship proved to be unsuitable for natural snowpacks (Colbeck, 

1976). 

By assuming gravitational water flow in Colbeck's model (Colbeck, 1972), water pressure 

gradients were neglected. Wankiewicz (1979) measured water pressure at different locations inside 

a snowpack using tensiometers and showed that water pressure gradients should not be ignored in 

certain zones within the snowpack, especially at texture interfaces in ripe snowpacks. He also 

hypothesized that water pressure gradients might be significant in other places within the 

snowpack and stated that further research is required. From these results, Wankiewicz (1979) 

developed a conceptual model, FINA (Flow Impeding, Neutral or Accelerating), to account for 

flow acceleration and ponding of water over impermeable layers or at the interface of two layers 

of different grain sizes, depending on the gravity-flow pressures of each layer.The influence of 

capillary forces on water flow has been represented by implementing the Richards equation in 

snow models (Jordan, 1995; Hirashima et al., 2010; Wever et al., 2014b, 2015). This provided 

better results when estimating snowmelt runoff (Wever et al., 2014b). 

Colbeck's theory (Colbeck, 1972) assumed that the flow of water is laminar and therefore can be 

estimated from Darcy's Law. However, Wankiewicz (1979) stated that the possible occurrence of 

non-Darcian flow within a snowpack should not be ignored. Assuming that non-Darcian flow 

occurs for Reynolds numbers above a value of 1, for both saturated and unsaturated conditions, 

and that gravity flow applies, Wankiewicz (1979) found a critical value for the ground slope angle 

above which turbulent flow within snow might occur. He also observed that non-Darcian flows 

are likely to occur in steep coarse-grain saturated snow, such as saturated flow layers over 

impermeable layers in sloping snowpacks. 

Although theories based on physical principles have been developed to estimate water flux within 

a snowpack, these theories were established only under specific assumptions. By ignoring 

snowpack internal features, such as flow fingers or ice layers, the temporal and spatial variabilities 

of snowpack meltwater flow are underestimated (e.g. Jordan, 1983; Marsh and Woo, 1985). These 

features have been observed to significantly affect propagation of the wetting front (Marsh and 

Woo, 1984a). Marsh and Woo (1984a) showed that it is improper to consider a uniform vertical 

wetting front advance within the snowpack because liquid water can pond over a low permeability 
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layer. This ponded liquid water may also refreeze and become an ice layer, releasing latent heat 

energy that warms up the surrounding cold snow. In addition to the ice layers, macropores or flow 

fingers greatly impact the wetting front movement (Marsh and Woo, 1984a; Kattelmann, 1985). 

Colbeck (1979) hypothesized that flow fingers develop when liquid water percolates into a dry, 

cold snowpack and they will remain zones of higher flow as the snowpack wets up, due to fast wet 

snow metamorphism. However, Schneebeli (1995) observed that the location of PFP in snow 

changed after each melt-freeze cycle. These flow fingers can form macropore networks or be 

isolated macropores above and below snow layers of different grain sizes in a snowpack 

(Kattelmann, 1985). 

Ice layers tend to delay vertical percolation of water inside a snowpack, but they may accelerate 

snowmelt runoff due to overlying saturated flow (Furbish, 1988). These features have significant 

repercussions on the spatial variation of snowmelt discharge from the base of a snowpack (Marsh 

and Woo, 1985). Colbeck (1974b) modelled the high saturation layer that can form above an ice 

layer. He derived an equation to estimate the change of the saturated layer thickness and the lateral 

flow velocity using Darcy's Law. Ice layers are likely to degenerate due to latent heat flux released 

when liquid water freezes (for instance, during heavy rain), but this process is not well understood 

(Colbeck, 1991). In order to model water percolation or ponding over ice layers, their intrinsic 

permeability should be determined (Hardy and Albert, 1993). The water flow around an ice layer 

is a two-dimensional process requiring the use of a fully two- or three-dimensional model for 

accurate simulation (Pfeffer et al., 1990). The model developed by Pfeffer et al. (1990) divides the 

snow into three different zones: a wet zone above the wetting front, a dynamic zone at the wetting 

front, and a dry zone below the wetting front. This model is analogous to the famous Green-Ampt 

model for infiltration into soil (Green and Ampt, 1911). The dynamic zone is characterized by the 

occurrence of both water flow and heat transfer. Liquid water is allowed to freeze within this zone, 

as the snow is in thermodynamic disequilibrium between the liquid and solid phases. Pfeffer et al. 

(1990) suggested incorporating the concept of a dynamic zone in an operational snow model to 

improve the prediction of wetting front advance. 

As with ice layers, flow fingers are rarely included in a snow model. Marsh and Woo (1984b) 

developed an empirical snow model accounting for the effects of flow fingers on the wetting front 

advance. In this model, the spatial distribution and width of the flow fingers, as well as water flow 
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in them, were determined from field observations (Marsh and Woo, 1984a). However, at that time, 

the cause for the formation of preferential flow paths was still unknown (Marsh, 1991). Prior to 

their formation, saturated horizontal layers over impermeable ice layers or at the boundary of two 

stratigraphic snow layers of different grain sizes have been observed (Marsh and Woo, 1984a). In 

laboratory experiments during which dyed water was spread upon artificial snow samples, 

Katsushima et al. (2013) observed the formation of preferential flow paths. They also measured 

capillary overshoot at the boundary between wet to dry snow. Hirashima et al. (2014) developed 

a 3D numerical model to represent the observations of Katsushima et al. (2013). This model uses 

the Richards equation to estimate the flow of water through snow; it was found that combining a 

water entry pressure for dry snow with heterogeneities in grain size and density allowed the model 

to represent preferential flow. The flow velocity within these macropores is potentially turbulent; 

in this case, applying Darcy's Law to estimate flow velocity would be inadequate (Marsh, 1991; 

Waldner et al., 2004).  

Liquid water can be retained at the interfaces of fine to coarse snow layers due to high capillary 

pressure (Jordan, 1995; Pfeffer and Humphrey, 1996; Waldner et al., 2004). Indeed, the suction is 

higher in fine-grained than in coarse-grained layers. The occurrence of lateral flows at the interface 

of fine over coarse snow layers in sloping snowpacks has been well documented (Wankiewicz, 

1979; Kattelmann and Dozier, 1999; Eiriksson et al., 2013). This process greatly impacts the 

redistribution of liquid water within snowpacks on hillslopes and the hydrological response to 

snowmelt and ROS events at catchment scales. The water retention curve, i.e. the relationship 

between capillary pressure and liquid water saturation must be known to reproduce capillary 

pressure barriers (Katsushima et al., 2009). Laboratory studies have been conducted to develop a 

water retention curve for snow, depending on the snow grain size (e.g. Yamaguchi et al., 2010, 

2012). However, no known water retention curve is applicable to ice layers or preferential flow 

paths. The water retention curve developed by Yamaguchi et al. (2010), which depends only on 

snow grain size was implemented in SNOWPACK, with the Richards equation to improve the 

simulation of water flow (Wever et al., 2014b). Although this study could simulate capillary barrier 

effects on flow, it did not consider preferential flow paths, snow density distribution and lateral 

flows, as the model is only one-dimensional. The model SNOWPACK has recently been updated 

to incorporate preferential flow (Wever et al., 2016; Würzer et al., 2017). A dual-porosity approach 

was applied, which assumed that the porous medium is divided into two domains: matrix flow and 
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preferential flow. The mass flow equation was computed in each domain, and a transfer function 

was applied to transfer mass from one domain to the other. The area of preferential flow domain 

was determined from an empirical function, which was developed from the laboratory data of 

Katsushima et al. (2013). This approach gave better results when estimating snowpack runoff over 

entire winter seasons. However, two calibration coefficients were necessary to use this approach, 

and further study is required to better determine these parameters. 

1.2.4 Preferential Flow in Soil 

Preferential flow in soil has been studied for decades. Preferential flow paths and macropores 

impact the rate of water infiltration into soils and storm-runoff generation (e.g. Beven and 

Germann, 1982; McDonnell, 1990). Early on, Hill (1952) reported the observation of gravity-

driven unstable flow in soil. The study of gravity-driven unstable flow has since become a subject 

of great interest for many researchers. Hill and Parlange (1972) observed that flow fingers initiated 

when a wetting front becomes unstable after ponding of water at soil-textured interfaces. A 

necessary condition for unstable wetting front to occur is that the input flux must be less than the 

saturated hydraulic conductivity (Hill and Parlange, 1972; Raats, 1973). This is known as the 

Saffman-Taylor condition.  

A preferential flow path can be separated into two sections: the “tip” at the leading edge and the 

“tail” upstream of the leading edge. In laboratory experiments, saturation overshoot in a 

preferential flow path was observed (e.g. Glass et al., 1989; Glass and Nicholl, 1996; DiCarlo, 

2004), i.e. the saturation at the tip of the preferential flow paths is higher than saturation within the 

tail. Along with saturation overshoot, capillary overshoot within preferential flow paths was also 

measured with tensiometers (Selker et al., 1992). Standard soil infiltration models solving for 

Richards equation cannot capture saturation overshoot at the tip of flow fingers (Egorov et al., 

2003). Thus, extensions to the Richards equation have been theorized to represent this 

phenomenon (e.g. Elliassi and Glass, 2001; Hassanizadeh and Gray, 1993); Hassanizadeh and 

Gray (1993) suggested adding a dynamic term in the capillary pressure. Through a thermodynamic 

study at pore scale, Hassanizadeh and Gray (1993) demonstrated that this dynamic pressure term 

depended on the rate of water saturation and that the common equation relating capillary pressure 

to water saturation is only valid under equilibrium conditions. An overview of laboratory 
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experiments of dynamic effects in the capillary pressure-saturation curves can be found in 

Hassanizadeh et al. (2002). 

Various numerical models were developed to test the theory of dynamic capillary pressure 

proposed by Hassanizadeh and Gray (1993). In 1D, these models were able to simulate capillary 

pressure or saturation overshoots at the tip of the wetting fronts (e.g. DiCarlo, 2005; Sanders et 

al., 2008). In 2D or 3D, these non-equilibrium models could simulate the formation and 

propagation of preferential flow paths (e.g. Nieber et al., 2003; Sanders et al., 2008; Chapwanya 

and Stockie, 2010; Zhang and Zegeling, 2017). The dynamic pressure effects on flow varied with 

grain size, water influx, and initial water content within the soil (Camps-Roach et al., 2010; 

DiCarlo, 2006). The cause of these dynamic effects on pressure is still under investigation, but 

some explanations have been suggested, such as a dynamic contact angle at the solid-liquid-gas 

interface, temporal changes in wettability and heterogeneities at microscale (Diamantopoulos and 

Durner, 2012). 

Despite the vast knowledge on modelling preferential flow in soil, most snow models ignore this 

process, resulting in inaccuracy in estimating snowmelt runoff. The research model by Hirashima 

et al. (2014, 2017) can simulate formation of preferential flow paths in snow, but it applies a single-

valued water entry pressure to estimate water pressure within air-dry snow pores. The use of a 

single-valued capillary entry pressure in soil models was shown to not accurately represent the 

transient nature of capillary pressure during wetting (DiCarlo, 2010). Therefore, additional work 

is required to improve representation of preferential flow paths in snow using current knowledge 

from soil physics. 

1.2.5 Sloping Snowpacks 

Liquid water flow within sloping snowpacks and its contribution to snowmelt hydrographs has 

been too long ignored (Kattelmann, 1987), despite the common occurrence of lateral flow in a 

sloping snowpack during ROS events (Eiriksson et al., 2013). As basal ice layers can form at the 

interface between soil and snow (e.g. Marsh and Woo, 1984a), liquid water can be transported 

laterally before infiltrating the soil. The stratigraphic structure of snow can also divert vertical 

flows due to capillary barriers or inclined snow layers of low permeability. Lateral water flow is 
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not considered or is poorly handled in operational snow models. These snow models lack accuracy 

when estimating snowmelt runoff from sloping snowpacks in mountainous terrain. 

1.2.6 Snow Energy Balance 

Physically based snow models are widely applied without questioning the physics of how energy 

is exchanged between a snowpack and its surrounding environment. For instance, Lehning et al. 

(2002) simulate turbulent fluxes over an alpine snowpack using the flux gradient method, 

assuming neutral atmospheric conditions. This first-order closure approach is unsuitable in 

mountainous environments due to the non-homogeneous nature of the terrain and the existence of 

large eddies that bring additional sensible heat energy to the snowpack (Helgason and Pomeroy, 

2012a). 

Helgason and Pomeroy (2012b) studied closure of the energy balance over a homogeneous 

snowpack during midwinter in the Canadian Prairies. Although this study was conducted in ideal 

conditions, i.e. all fluxes at the upper and lower boundaries of a snowpack were measured, as well 

as the snow internal and surface temperatures, the energy balance could not be closed. This was 

caused by large longwave radiation loss at the surface of the snowpack, which was not balanced 

by other observed fluxes. This research suggested that sensible heat flux over the snowpack was 

under-measured by the eddy covariance system during stable and low wind speed conditions. This 

imbalance in the energy budget over snow is also found in snowmelt models, particularly under 

stable atmospheric conditions, during which the theories underestimate turbulent fluxes. Thus, a 

corrective numerical strategy adding a ‘windless coefficient’ is commonly used in numerical 

models to increase turbulent fluxes (Brun et al., 1989; Jordan et al., 1999; Brown et al., 2006). 

This coefficient is usually calibrated to match simulated snow surface temperature to observations. 

Further work is required to better understand the origin of this energy imbalance and how models 

can be improved to better predict changes in snowpack internal energy. 

1.2.7 Snow Models and Their Limitations 

Despite years of research on snowmelt energetics and meltwater flow, current models do not 

include the full suite of known flow complexity, have fundamental problems with atmospheric 

exchanges, and have not been evaluated for application on hillslopes, where most mountain runoff 

occurs.  
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Numerical snow models have been developed with different complexities for distinct purposes. 

The earliest models were based on empirical considerations and neglected many physical 

processes. The well-known degree-day method was applied to estimate snow ablation and melt in 

early studies before a full understanding of the snowmelt process was achieved (e.g. US Army 

Corps of Engineers, 1987; Martinec et al., 2008). In the 1970s, the energy balance approach was 

incorporated into models and the finite-different method utilized (Brun et al., 2010). Models have 

been developed for hydrological purposes, snow avalanche prediction, to assess climate change 

impacts, and at different spatial scales of application, from point to catchment scale. Recently, one-

dimensional snow models were incorporated into large-scale models, such as general circulation 

models or land surface models, for applications at larger scales and to improve estimations of 

surface temperature and surface albedo used as lower boundary conditions for the GCMs (e.g. 

Vionnet et al., 2012). 

In the 1990’s, research at NOAA focused on representing the spatial distribution of snowpacks at 

basin scale by coupling remote sensing of snow and snowmelt modelling. Cline et al. (1998) 

developed a simple one-layer distributed snowmelt model that includes snow surface energy 

balance and coupled this model to remotely sensed snowcover duration to back-calculate the 

distribution of SWE at peak accumulation and the spatial distribution of snowmelt through the 

melt season. This model gave reasonable estimates of SWE distribution at basin scale when 

compared to field surveys. Coupling snow remote sensing and snow modelling is still currently 

used to estimate SWE distribution in mountain basins (e.g. Painter et al., 2016). In studies where 

snow remote sensing is coupled with snowmelt modelling, relatively simple snowmelt models are 

used to reduce computational overhead. These models do not represent snow internal processes, 

such as water flow through snow, or the influence of snow layers on water retention and flow. The 

employment of simple snow models was justified by Cline and Caroll (1999) who demonstrated 

that using a simple, spatially distributed snowmelt model that includes snow surface energy 

balance can still provide useful hydrological forecasting information in an operational environment 

if data assimilation from remote sensing is used to overcome model deficiencies. These results 

emphasized on the importance of accurately simulating SWE distribution and depletion on timing 

and magnitude of snowmelt. The conclusion of Cline and Caroll (1999) that a simple snow model 

that neglects snow internal processes is sufficient to provide good hydrological forecasting with 

data assimilation from observations could be a result of the isothermal nature of the Californian 
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snowpack and the high density of surface observation stations in the region where this study and 

the study of Painter et al. (2016) were conducted. DeBeer and Pomeroy (2017) also showed the 

importance of accounting for snowcover depletion when estimating snowmelt runoff in a mountain 

basin in the Canadian Rockies. However, DeBeer and Pomeroy (2017) concluded that snow 

ablation processes need to be better represented in hydrological models as they affect snow cover 

accumulation and depletion, particularly during freeze-thaw processes occurring during the 

accumulation period. This study was conducted where deep and complex layered snowpacks are 

found, with snowpack temperature below freezing when the first snowmelt event occurs. 

Therefore, improving the representation of snow internal processes in snow models is of primary 

importance in regions of cold, deep, and layered snowpacks, such as the Canadian Rockies. It is 

also important where data assimilation opportunities are limited by sparse mountain observation 

networks, such as most of the Western Cordillera in Canada. 

To predict the formation of ice layers or PFP, multi-dimensional snow models that simulate lateral 

water flow, heat transfer, and snow metamorphism should be applied (Pfeffer et al., 1990; Marsh, 

1991). However, all physically based models that can predict snow internal features, such as 

SNOWPACK (Bartelt and Lehning, 2002; Bartelt et al., 2002; Lehning et al., 2002; Wever et al., 

2015, Würzer et al., 2017), CROCUS (Brun et al., 1989, 1992; Vionnet et al., 2012, D’amboise et 

al., 2017), or SNTHERM (Jordan, 1991) are only one-dimensional. Although these models 

estimate snow internal changes, few validations have been made against field data (Gustafsson et 

al., 2004). Simpler snowmelt models, such as Snobal (Marks and Dozier, 1992) and EBSM (Gray 

and Landin, 1988), which neglect some snowpack physics processes in favour of model stability 

and fewer parameters, have been developed for hydrological purposes. 

Table 1.1 summarizes the characteristics of different operational snow models and the main 

physical processes they simulate. All of them apply the energy balance approach to estimate the 

thermodynamic state of the snowpack and snow ablation, but most of them miss fundamental 

processes in the simulation of liquid water flow. In the most sophisticated snow models, the 

Richards equation was implemented only recently to improve simulations of liquid water flow 

(Wever et al., 2014b, 2015; D’Amboise et al., 2017). In SNOWPACK, preferential flow was 

included using a dual-domain approach. This approach improved snowpack outflow estimations 

over entire winter seasons (Würzer et al., 2017); this approach, however, lacks physical 
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representation of flow processes during the formation of preferential flow paths, and it therefore 

requires calibration coefficients. This causes the model to over-estimate water ponding at capillary 

barriers and to delay the arrival of water at the bottom of the snow samples (Hirashima et al., 

2017). Implementing a conceptual representation of preferential flow in snow allowed simulation 

of some ice layers observed in the snowpack (Wever et al., 2016). Of the models presented in Table 

1.1, Snobal is the only one used for hydrological prediction. To improve simulation of water flow 

in Snobal, the model should include more snow layers while keeping its numerical efficiency. In 

addition, Snobal poorly estimates ground heat flux and the melt/refreeze processes inside the 

snowpack (Adam Winstral, USDA, personal communication). 

Other snow models have been developed for research purposes and focused on only a few snow 

processes (e.g. Illangasekare et al., 1990; Tseng et al., 1994). Daanen and Nieber (2009) 

developed a two-dimensional model coupling liquid water flow and heat transfer within a 

snowpack. They found better results in estimating the front water penetration than other models 

using Stefan formulation, which uses a moving boundary condition for the heat transfer equation 

(Tseng et al., 1994). Unfortunately, this model has not been validated against in-situ data. 

1.3 Research Design 

1.3.1 Purpose of the Research 

Water flow through a snowpack has been investigated for many decades. Understanding this 

process will improve prediction of the magnitude and timing of snowmelt runoff from deep 

snowpacks. Although many theories are now available to estimate the position of the wetting front 

within a snowpack and to couple heat and mass energy fluxes, most of them are only suitable for 

homogeneous, flat snowpacks and neglect ice layers and PFP formations. These restrictive 

assumptions have considerable effects on the estimation of snowmelt runoff in natural 

environments.  
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Table 1.1 List of some snow models and their characteristics 

Characteristics/ 
Physical 
processes 

Snobal SNTHERM CROCUS SNOWPACK 

Application Prediction of the 
melting and 
runoff from 
snowpacks. 

“Understanding 
snow processes and 
forecasting runoff” 
(Yang, 2008) 

“Understanding 
snow processes, 
operational 
avalanche 
forecasting in 
France” (Yang, 
2008) 

“Understanding snow 
processes, forecasting 
runoff and avalanche 
warning” (Yang, 2008) 

Maximum 
number of 
layers 

2 Depends on the 
number of snowfalls 

Depends on the 
number of snowfalls 

Depends on the 
number of snowfalls 

Snow 
settlement 

Yes Yes Yes Yes 

Melting and 
refreezing 

Yes Yes Yes Yes 

Snow 
metamorphism 

No From temperature 
gradient and water 
content 

From temperature 
gradient, water 
content, and wind 
drift 

From temperature 
gradient and water 
content 

Snow surface 
temperature 

At a fixed 
surface layer 

At a surface layer At a surface layer At a surface layer 

Wind pumping Not included Not included Not included Included in the 
turbulent fluxes 

Turbulent 
fluxes 

Bulk transfer 
method. 
Stability as a 
function of the 
Monin-Obukhov 
length. 

Bulk transfer 
method. 
Stability as a 
function of 
Richardson number. 
 

Bulk transfer 
method. 
Stability as a 
function of 
Richardson number. 

Bulk transfer method. 
Neutral conditions 
only. 

Shortwave 
penetration 

No Extinguishes 
exponentially 

Extinguishes 
exponentially 

Extinguishes 
exponentially 

Water flow Bucket scheme 
model 

Gravitational flow Gravitational flow Richards equation 

Water retention Yes Yes Yes Yes 

Capillary 
barrier 

No No No Yes 

Preferential 
flow paths 

No No No Yes (dual-domain 
approach) 
 

Lateral flow No No No No 
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Acknowledging the limitations of current theories, this research will focus on improving 

understanding and prediction of liquid water flow through layered snowpacks, on both flat and 

sloping grounds. 

1.3.2 Research Objectives and Questions 

This research will be divided into three objectives, which will answer several research questions: 

1) What factors control the formation and development of preferential flow paths and ice layers in 

snow? 

• How can water flow in various pathways within a snowpack be best described by 

thermodynamics and physical flow laws? 

• Can a snow model be developed to incorporate the physical processes of 

preferential flow paths and ice layer formations? 

2) To what degree do pressure relationships control water retention and flow in snow? 

• How can the current water retention curves in snow be improved to include flow 

wetting process? 

• What is the impact of capillary hysteresis on flow through snow and preferential 

flow paths? 

3) Can convective heat flux within a snowpack enhance the snow energetics estimate? 

• Where does convective heat flux originate in snow? 

• Can simulation of heat convection improve model performance to predict snow 

surface temperature? 

1.3.4 Research Significance 

The main objective of this research is to improve understanding and prediction of snowmelt in 

deep mountainous snowpacks in cold regions. By improving understanding of internal snow mass 

and energy flux processes to underpin development of a model that can predict snowmelt runoff 

from a sloping snowpack, the ability to calculate the timing and magnitude of snowmelt 

contributing to streams in mountain catchments can be greatly improved. The small-scale snow 
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model will be a base from which a future hydrological model suitable at catchment scales may be 

developed. 

1.4 Thesis Outline 

Chapter 2 details the development of a novel 2D model that simulates the formation of PFP. 

Coupling of mass and energy flows and surface melt are accounted for. This model simulates the 

formation of preferential flow paths by combining water entry pressure with heterogeneities in 

snow density and grain size. Different applications of this model are presented for different 

snowpacks and slope angles. 

In Chapter 3, the model presented in Chapter 2 is improved to better simulate mass flow through 

snow. Hysteresis in capillary pressure is incorporated and the model is validated against published 

data. By combining mass and heat fluxes, the formation of ice layers is demonstrated. 

Chapter 4 presents melt and outflow data collected during a field campaign conducted in the winter 

of 2014-2015. The model presented in Chapter 4 is evaluated against the field data and the 

limitations of this model are highlighted. In this chapter, additional data obtained during dye 

experiments are presented and analysed to inform selection of the shape and fractal properties of 

preferential flow paths. 

Chapter 5 introduces a new capillary pressure estimation for initially dry snow and an extended 

Richards equation model to simulate capillary overshoot, which has been shown to be the cause 

of PFP in soil. This model gave better results than the first model (Chapters 2 and 3) in simulating 

capillary pressure overshoot.  

Chapter 6 investigates the impact of heat convection within a snowpack on the simulation of snow 

surface temperature. The convection was driven by airflow originating from pressure fluctuations 

at the snow surface. 

Conclusions to the research are presented in Chapter 7, as well as the next steps that should be 

considered to apply and improve this research. 
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It is acknowledged that I am first author on all manuscripts in this thesis with my supervisor Dr. J. 
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CHAPTER 2 

A DUAL PATHWAY HETEROGENEOUS FLOW THROUGH SNOW MODEL1 

Abstract 

Accurate estimation of snowmelt flux is of primary importance for runoff prediction, which is used 

for water management and flood forecasting. Lateral flows and preferential flow pathways in 

porous media flow have proven critical for improving soil and groundwater flow models, but 

though many physically-based layered snowmelt models have been developed, only 1D matrix 

flow is accounted for in snow models. Therefore, there is a need for snowmelt models that include 

these processes to examine the potential to improve snowmelt discharge timing and contributing 

area in hydrological modelling. An initial a two-dimensional snow model is presented that 

simulates vertical and lateral water flows through the snow matrix and preferential flow paths, 

internal energy fluxes, melt, and refreezing. The dual pathway model utilizes an explicit finite 

volume method to solve for the energy and water flux equations over an orthogonal grid. Energy 

available at the snow surface, and soil slope angle are set as model inputs. The initial conditions 

include the number of snow layer, their properties (density and grain size), temperatures, and liquid 

water contents. This 2D multi-layered flow through snow model is an important tool to help 

understand snowmelt flow processes in complex and level terrains and how snowmelt-derived 

runoff forecasting might be improved. 

  

                                                

1 Leroux, N., and J.W. Pomeroy (2015), A dual pathway heterogeneous flow through snow model, 
in Proceedings of the 72nd Eastern Snow Conference, 3-14. Nicolas Leroux is the lead author and 
investigator of this manuscript. John Pomeroy provided assistance with conceptualization, 
editorial assistance and discussion of the results. 
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2.1 Introduction 

To accurately predict the timing and magnitude of snowmelt runoff from deep snowpacks, water 

flow percolation within snow must be understood (Male and Gray, 1975; Wankiewicz, 1979). 

Liquid water flow within the snowpack is influenced by the internal properties of the snowpack. 

Deeper, colder snowpacks have slower outflow rates due to refreezing of percolating meltwater 

and a longer distance for meltwater to reach the bottom of the snowpack; this lag and attenuation 

in timing of meltwater delivery to the soil surface make the process important for runoff and 

streamflow generation in mountains. Amongst the snowpack’s internal properties, ice layers and 

preferential flow paths (PFP) greatly impact the spatial and temporal distributions of snowmelt 

runoff (Marsh and Woo, 1984a; Marsh, 1991). Many simplifications and theories have arisen to 

describe gravitational vertical flow percolation within a homogeneous, isothermal snowpack 

(Colbeck, 1972), water percolation through a subfreezing, layered snowpack with phase change 

(Illangasekare et al., 1990), or the influence of capillary forces on the water flow (Jordan, 1995). 

Several numerical snowmelt models of differing levels of complexity have been developed in the 

past decades. Tseng et al. (1994) developed a complex two-dimensional snow model based on the 

theory of Illangasekare et al. (1990), but this model has not been validated against in-situ data and 

does not incorporate PFP. Marsh and Woo (1985) created a one-dimensional model that assumed 

mass flow through different flow pathways; however, this 1D model does not include lateral flows, 

the delay of water flow due to ice layers, and assumed that each flow path extends over the 

complete depth of the snowpack. No operational snow model in hydrological models or land 

surface schemes can predict lateral flows, the formations of PFP and ice layers, and their effects 

on water flow through snow and ground thermal regime; this results in inaccuracy in the prediction 

of catchment discharge and meltwater delivery to soil (Pomeroy et al., 1998). In this paper, a novel 

two-dimensional snowmelt model solving for the mass and energy flows is presented. The model 

includes an implementation of the theory of Hirashima et al. (2014) to simulate the formation of 

PFP. The importance of the parameterization of the water entry pressure for dry snow and lateral 

heterogeneities in snow grain size and density are demonstrated.  
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2.2 Mathematical Model 

2.2.1 Water Flow through Snow 

The mass flow within a snowpack is estimated by solving for the two-dimensional Richards 

equation (Eq. 2.1). 

𝜕𝜃A
𝜕𝑡 + ∇𝒒 = 𝑆B 

(2.1) 

where 𝒒	is the macroscopic flow velocity [m s-1] (Eq. 2.2) and 𝑆B is a mass sink term due to 

refreezing of liquid melt water in each layer [s-1]. 

The macroscopic flow velocity in an unsaturated medium is commonly estimated from Darcy-

Buckhingam's law under the condition that the flow is laminar (Reynolds Number < 1). 

𝒒 = −𝐾(𝜃A)	∇(𝑃[(𝜃A) + 𝑧) (2.2) 

where 𝐾(𝜃A) is the unsaturated hydraulic conductivity [m s-1] and 𝑃[(𝜃A) is the capillary pressure 

[m]. For unsaturated porous media, both are functions of the water content. 

In snow science, studies have been conducted to establish relationships between snow hydraulic 

properties and water content. Calonne et al. (2012) developed a relationship between saturated 

hydraulic conductivity (𝐾B), dry snow density, and optical grain size, which is the equivalent radius 

of sphere of equivalent volume-to-surface area-ratio of a true snow grain population (Grenfell and 

Warren, 1999), through three-dimensional numerical computations (Eq. 2.3). Knowing the 

saturated hydraulic conductivity, the unsaturated hydraulic conductivity can be estimated (e.g. 

Colbeck and Davidson, 1973). 

𝐾B = 3
𝜌A𝑔
𝜇A

𝑟_`a�exp	(−0.013𝜌EB) (2.3) 

with 𝑔 the acceleration by gravity [m s-2], 𝜇A is the dynamic viscosity of water [Pa s], 𝑟_`a is the 

optical grain radius [m] and 𝜌EB is the dry snow density [kg m-3]. 
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2.2.1.1 Snow water retention curves 

The Water Retention Curve (WRC) is the relationship between capillary pressure and liquid water 

content. Analogous to flow through unsaturated soil, the snow WRC (Fig. 2.1) has hysteretic 

behaviour (Adachi et al., 2012). Yamaguchi et al. (2012) developed a WRC for snow based on the 

van Genuchten model (Eq. 2.4). Through laboratory experiments, they found empirical equations 

to link the parameters 𝛼9 and 𝑛9 (cf. Eq. 2.4) with dry snow density and optical grain size Eq. 2.5. 

However, this WRC was developed only for drying snow, i.e. the snow was initially saturated with 

water and liquid water was drained from it. 

𝑆A = �1 − |𝛼9𝑃[|�
��

���

 
(2.4) 

where 𝑆A is the effective saturation (𝑆A = (𝜃A − 𝜃AC)/(𝜙 − 𝜃AC), with 𝜙 the snow porosity and 

𝜃AC the irreducible water content), and 𝛼9, 𝑛9, and 𝑚9 are parameters (Eq. 2.5 and 2.6), with 𝑚9 

chosen as  𝑚9 = 1 − 1/𝑛9. 

𝛼9 = 4.4e� �2
𝜌EB
𝑟[
�
�$.��

 

𝑛9 = 1 + 2.7e�� �2
𝜌EB
𝑟[
�
$.��

 

(2.5) 
 
 
 

(2.6) 

 

Figure 2.1 Conceptual representation of the hysteretic behaviour between matric suction and 
liquid water content in the snow water retention curve. 
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However, in the case of wetting snow, i.e. snow that is initially dry and into which liquid water 

infiltrates, the model of Yamaguchi et al. (2012) is not applicable. Therefore, in the 2D model 

presented here, a new value of water entry pressure is taken from the study by Katsushima et al. 

(2013) when the initial water content is below the irreducible water content level (dry snow), which 

is the liquid water content retained within the pore space by capillary forces.  The snow WRC 

developed by Yamaguchi et al. (2012) is used to estimate the capillary pressure when the water 

content is above the irreducible water content (wet snow). 

2.2.2.2 Implementation of water entry pressure for wetting snow in a snow model 

The impact of implementing a new water entry pressure for dry snow is presented through an 

example analyzing flow through two different snow layers. The upper layer (layer 1, a wet dense 

snow layer) has a dry density of 350 kg m-3 and an optical grain diameter of 0.3 mm. The lower 

layer (layer 2, a dry ice layer) has a density of 450 kg m-3 and an optical grain diameter of 0.7 mm 

(Fig. 2.2).  

 

Figure 2.2 Representation of the two snow layers 

The flux 𝑞 between layer 1 and layer 2 was analyzed for two different cases: 

• Variable water entry pressure: the model by Yamaguchi et al. (2012) is used for the upper 

wet snow layer and the water entry pressure equation from Katsushima et al. (2013) is used 

for the lower dry snow layer. 

• Wet water entry pressure: the model by Yamaguchi et al. (2012) is used for both dry and 

wet snow layers. 

The flux 𝑞 from layer 1 to layer 2 can be estimated using the Darcy-Buckingham's law (Eq. 2.4) 

and liquid water flows from layer 1 to layer 2 only when 𝑞 is positive. 
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Figure 2.3 shows the change of 𝑞/𝐾B with liquid water content in layer 1 for the two different cases 

considered. It can be observed that introducing a new water entry pressure for dry snow allows 

much more liquid water to accumulate in layer 1 before initiating downward flow (𝑞>0) and that 

this has the potential to simulate the ponding of liquid water at snow layer interfaces that is 

observed in nature. 

 

Figure 2.3 Change of liquid water in layer 1 with 𝑞/𝐾B.	 

2.2.1.3 Implementation of snow heterogeneities 

In their theoretical study on the triggering of PFP formation, Hirashima et al. (2014) suggested 

PFP are due to spatial heterogeneities in snow grain size. The impact of fluctuating the snow grain 

size around the mean layer value on the water flow is therefore discussed here. Using the previous 

modelling example (Fig. 2.2), three cases are considered: i) the grain size in layer 2 is unchanged, 

ii) it is decreased by 1% and iii) it is increased by 1%. Figure 2.4 shows the water content in layer 

1 as function of the flux 𝑞/𝐾B for the three different grain sizes in layer 2. It can be observed that 

water flow from layer 1 to layer 2 occurs first when there is a smaller grain size in layer 2: for this 

case the downward flux (𝑞) becomes positive at lower water contents in layer 1.  

s 
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Figure 2.4 Change in the ratio 𝑞/𝐾B for different three grain sizes in layer 2 

2.2.2 Snowpack Ablation and Melt 

A melting snow surface is a moving boundary at which heat transfer and phase change occur 

simultaneously. To estimate heat transfer and phase change at this moving boundary, the Stefan 

condition is solved (Eq. 2.7) (e.g. Tseng et al., 1994). 

𝑄Q = 	−𝜅B
��
��
(𝑧 = ℎ)       if   𝑇B < 0_C       (2.7a) 

𝑄Q = 𝐿S𝜌B𝑉Q                      if   𝑇B = 0_C       (2.7b) 

and 𝑄Q is the heat flux at the surface [W m-2], 𝜅B is the thermal conductivity [W (K m)-1], 𝜕𝑇/𝜕𝑧 

the vertical temperature gradient at the surface [K m-1], 𝐿S the latent heat of fusion of ice [J kg-1], 

𝜌B the snow density [kg m-3], 𝑉Q the velocity of the melting snow surface [m s-1], and 𝑇B is the 

snow surface temperature [K]. 

The infiltration rate (𝑄RQS in [m s-1], Eq. 2.8) is estimated from the vertical velocity of the melting 

snow surface (𝑉Q): 

𝑄RQS = 𝑉Q(
𝜌B
𝜌A

+ 𝜃A) (2.8) 

s 

s 
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where 𝜌A the density of water [kg m-3] and 𝜃A is the volumetric liquid water content within the 

melting volume.  The infiltration rate, estimated from the energy available at the surface of the 

snowpack, is then used as a boundary condition for the water flow equations. 

2.2.3 Refreezing of Liquid Water 

In a wet subfreezing snowpack, heat and momentum transfers occur between the flowing liquid 

water and the solid phase. Illangasekare et al. (1990) developed a theory describing refreezing of 

meltwater in a subfreezing snowpack. They expressed the maximum mass of liquid water per unit 

volume of snow (𝑚fgh) that must freeze to raise the snow temperature to zero, i.e. to raise the 

snow cold content to zero as, 

𝐿S𝑚fgh = −𝜌B𝐶`,R𝑇 (2.9) 

where 𝑇 is the snow temperature [K] and 𝐶`,R is the specific heat capacity of ice [J (kg K)-1]. 

However, the real mass of liquid water per unit volume of snow that refreezes during a numerical 

time step (𝑚S) is always less than or equal to 𝑚fgh, as 𝑚S is limited by the liquid water content 

available in the snow layer. The new snow layer temperature at the end of a numerical time step 

Δ𝑡 can then be estimated from: 

𝑇� ¡� =
𝜌B�𝐶`,R𝑇� + 𝑚S𝐿S

𝜌B� ¡�𝐶`,R
 

(2.10) 

At the end of the same time step, snow porosity (𝜙), effective water saturation (𝑆A), and snow 

density (𝜌B) are also updated: 

ϕ� ¡� = ϕ� +
𝑚S

𝜌R
 

𝑆A� ¡� =
𝜃A� −

𝑚S
𝜌A

ϕ� ¡�  

𝜌B� ¡a = 𝜌B + 𝑚S 

(2.11) 
 
 
 

(2.12) 
 

 
(2.13) 
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2.2.4 Heat Transfers in Snow 

To simulate heat transfers in the snowpack, the two-dimensional heat conduction equation is 

solved following Albert and McGilvary (1992): 

£𝜌𝐶`¤Y
��
��
= �

�¥¦
(𝜅B

��
�¥¦
)		with 𝑘=1,2 representing the two spatial directions (2.14) 

such that 	£𝜌𝐶`¤Y = £𝜌g𝜃g𝐶`,g¤ + £𝜌A𝜃A𝐶`,A¤ + £𝜌R𝜃R𝐶`,R¤ . 

Calonne et al. (2011) conducted three-dimensional numerical computations of snow conductivity 

through the air and ice phases. They developed an empirical relationship between the thermal 

conductivity and the dry snow density: 

𝜅B = 2.5x10��	𝜌EB� − 1.23x10�¨𝜌EB + 0.024 (2.15) 

2.3 Numerical Model Design 

A two-dimensional numerical snow model was developed to solve for the heat and mass fluxes 

within a two-dimensional, layered, subfreezing snowpack. To solve for the partial differential 

equations, an explicit finite volume scheme was used over an orthogonal structured mesh (Fig. 

2.5). This method considers each numerical cell as a control volume, in which the conservation 

equations are solved. This approach is commonly applied in computational fluid dynamics models, 

as it is inherently conservative. 

2.3.1 Boundary and Initial Conditions 

Neumann boundary conditions were applied at the upper and left-hand boundaries for the mass 

and heat equations. At the upper boundary, a constant heat flux (𝑄Qin Eq. 2.1) was applied as 

boundary condition for the heat equation. This flux was then used to estimate the infiltration rate 

utilized as upper boundary condition for the mass flow equation. The left-hand boundary condition 

was a no-flow boundary, whereas the lower and right-hand boundary conditions were set as free 

boundary conditions, i.e. water was allowed to drain through these two boundaries by gravity flow. 

The snowpack and its properties were initialized before running the model. These data include the 

snowpack slope angle (𝛽 in Fig. 2.5), the snowpack layering system, and the mean layer properties 
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– mean porosities, water contents, mean optical grain sizes, and temperatures. The density and 

optical grain size in each numerical cell was varied randomly around the mean snow layer density 

and optical grain size. The density and optical grain size of each cell fluctuated by less than 1% of 

the mean density and optical grain size values of each layer. For initially dry snow, a new water 

entry pressure was used to estimate the snow capillary pressure. 

 

Figure 2.5 Mesh used to represent a layered sloping snowpack 

2.3.2 Model Assumptions 

Water flow within a layered, subfreezing snowpack is a complex physical process, and this 

complexity increases when it is coupled with heat transfer. Therefore, due to the lack of complete 

understanding of the physics of these processes, it is necessary to make assumptions while 

developing a numerical snow model. The assumptions made in this model also indicate current 

knowledge and how this limits snow melt modelling of water flow through snow. These 

assumptions are: 

1 The change of grain size due to temperature gradient and presence of liquid water was not 

simulated. This assumption might impact the velocity of the flowing liquid water. 

2 The irreducible water content is assumed constant for the whole snowpack. 

3 Thermal convection, condensation, and sublimation within the snowpack are not simulated. 

4 Heat conduction dominates the heat transfers. 

5 Freezing point depression effects on snow grains is neglected. 

6 The lateral heterogeneities in snow grain size and density are randomly distributed over space. 

7 The water entry pressure for dry snow is function only of snow grain size. 

𝛽 
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8 Temperature, density, and water content are computed at the centre point of each cell and are 

assumed homogeneous within the cell. 

2.4 Model Applications 

A first model simulation of water and heat flow through a subfreezing, layered snowpack is 

demonstrated. The snowpack was divided into four horizontal snow layers (Table 2.2, Fig. 2.6). 

The third layer (from the bottom of the snowpack) is an ice layer with a higher density than the 

other layers. Under natural conditions, flowing liquid water accumulates over this layer and 

preferential flow paths were observed to form below a saturated horizontal layer (Marsh and Woo, 

1984a). 

Table 2.1 summarizes the parameters and inputs used in the model as initial and boundary 

conditions. The values used for the mean optical grain sizes in Table 2.2 were computed from the 

average specific surface areas measured by Montpetit et al. (2012) for different types of snow. 

Layer grain size and density randomly fluctuated in each numerical cell around the snow layer 

mean properties (Table 2.1) by less than 1 %. The fluctuating density within each snow layer can 

be seen in Fig. 2.6. 

The simulation was run until the snowpack completely melted. Figures 2.7 and 2.8 show the water 

content distribution within the snow layers after 2h45min and 4h10min of melt, respectively. It 

can be observed that liquid water accumulated above the ice layer (Fig. 2.7). Then, preferential 

flows occurred where the grain size in the ice layer was smaller due to the grain size fluctuation 

implemented (Fig. 2.8) (cf. Section 2.2.2.3). 

 

Figure 2.6 Initial dry density of each snow layer 
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Table 2.1 Inputs used for the simulation 

Horizontal length of snowpack 2 m 

Snow depth 1 m 

Number of horizontal cells 30 

Number of vertical cells 10 

Ground slope angle 0o 

Temperature at the interface snow-soil 0oC 

Energy at the surface 500 W m-2 

Irreducible water content 0.02 

 

Table 2.2 Snow matrix properties 

 Type of snow Thickness 
[m] 

Temperature 
[oC] 

Mean density 
[kg m-3] 

Mean optical grain 
diameter [mm] 

 

Layer 1 
(bottom) 

 

Compact snow 

 

0.3 

 

-2 

 

350 

 

0.5 

Layer 2 Dense rounded 
snow 

0.3 -2 300 0.3 

Layer 3 Ice layer 0.1 -2 450 0.7 

Layer 4 Dense rounded 
snow 

0.3 -2 300 0.3 

 

 

 

 

 

 

 



39 

 

 

Figure 2.7 Water content, density and temperature distributions in the snowpack after 
2h45min of melt. 

 

Figure 2.8 Water content, density and temperature distributions in the snowpack after 
4h10min of melt. 

A second model application of water flow through a sloping snowpack is demonstrated (Fig. 2.9 

and 2.10). The same initial conditions are applied as before, but the snowpack is now tilted by 5o. 

Figures 2.9 and 2.10 show the water content distribution within the sloping snowpack after 

1h45min and 1h50min of melt, respectively. It is observed that PFP formed at the downhill section 

of the snowpack (Fig. 2.9) due to a higher water content in this area from lateral flows above the 

ice layer. After the formation of PFP, liquid water flowed laterally (Fig. 2.10). 
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Figure 2.9 Water content distribution within a sloping snowpack after 1h45min of melt. 

 

Figure 2.10 Water content distribution within a sloping snowpack after 1h50min of melt. 

2.5 Conclusions 

A first attempt to model mass and energy flows through a initially dry, layered, sloping snowpack 

with PFP formation has been demonstrated. Two parameters have been introduced and explored 

for their role in triggering the formation of preferential flows – a water entry pressure for dry snow 

and a fluctuation in snow grain size and density to simulate lateral heterogeneities in their 

properties. In the model applications presented here, the spatial distributions of the fluctuations 

were random. Therefore, further work should be carried on to establish relationships between these 

parameters and snow matrix properties from field observations.  

This two-dimensional snow model needs to be validated against in-situ or laboratory data. A field 

study is being designed to validate each physical process simulated by the model. The development 
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of this numerical model raises questions on water flow through snow and numerical snow 

modelling: 

• Does the irreducible water content depend on snow properties? 

• How should the hydraulic conductivity and thermal conductivity be numerically computed at 

the interface of two numerical nodes? 

• How should grain size fluctuations be represented? 

• How should the water entry pressure for dry snow be related to snow density? 

• Does all the available liquid water that can refreeze ( ) do so during a numerical time step 

(Illangasekare et al., 1990)? 

• Is the flow through preferential flow paths laminar? Does Darcy's law always apply? 

• Can the equation used for the thermal conductivity in a dry snowpack (Eq. 2.12) be used when 

liquid water content is present within the snowpack? 

• Does liquid water refreeze at 0oC or is there a freezing point depression that depends on snow 

properties and surface tension between ice and liquid water? 

Key Points for the Next Chapter 

• How does this model perform when compared to laboratory data? 

• How can the water retention curve, currently limited to a drainage curve, be improved? 

• By coupling heat transfer and preferential flow, can ice layers be simulated for the first 

time in a snowmodel? 
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CHAPTER 3 

MODELLING CAPILLARY HYSTERESIS EFFECTS ON PREFERENTIAL FLOW 

THROUGH MELTING AND COLD LAYERED SNOWPACKS2 

Abstract  

Accurate estimation of the amount and timing of water flux through melting snowpacks is 

important for runoff prediction in cold regions. Most existing snowmelt models only account for 

one-dimensional matrix flow and neglect to simulate the formation of preferential flow paths. 

Consideration of lateral and preferential flows has proven critical to improve the performance of 

soil and groundwater porous media flow models. A two-dimensional physically-based snowpack 

model that simulates snowmelt, refreezing of meltwater, heat and water flows, and preferential 

flow paths is presented. The model assumes thermal equilibrium between solid and liquid phases 

and uses recent snow physics advances to estimate snowpack hydraulic and thermal properties. 

For the first time, capillary hysteresis is accounted in a snowmelt model. A finite volume method 

is applied to solve for the 2D coupled heat and mass transfer equations.  The model with capillary 

hysteresis provided better simulations of water suction at the wet to dry snow interface in a wetting 

snow sample than did a model that only accounted for the boundary drying curve. Capillary 

hysteresis also improved simulations of preferential flow path dynamics and the snowpack 

discharge hydrograph. Simulating preferential flow in a subfreezing snowpack allowed the model 

to generate ice layers, and increased the vertical exchange of energy, thus modelling a faster 

warming of the snowpack than would be possible without preferential flow. The model is thus 

capable of simulating many attributes of layered natural melting snowpacks. These features not 

only qualitatively improve water flow simulations, but give insights on the physics impacting 

                                                

2 Leroux, N. R. and J. W. Pomeroy (2017), Modelling capillary hysteresis effects on preferential 
flow through melting and cold layered snowpacks, Adv. in Water Res., 107, 250-264, 
https://doi.org/11016/j.advwatres.2017.06.024. Nicolas Leroux is the lead author and investigator 
of this manuscript. John Pomeroy provided assistance with conceptualization, editorial assistance 
and discussion of the results. 
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snowmelt flow processes for both level and sloping terrain, such as the effect of a more realistic 

water retention curve on the shape and spatial distribution of preferential flow paths and the 

coupling between preferential flow and heat transfer in subfreezing snowpacks responsible for ice 

layer formation. This research also illuminates how uncertainty in snowmelt-derived runoff 

calculations might be reduced through the inclusion of more realistic preferential flow through 

snowpacks. 

 

3.1 Introduction 

To accurately predict the timing and magnitude of snowmelt water release from deep cold 

snowpacks, water percolation within snow must be understood (Male and Gray, 1975; 

Wankiewicz, 1979). Percolation is greatly influenced by snowpack internal properties, such as 

grain sizes that evolve rapidly during melt due to the presence of liquid water (e.g. Brun, 1989). 

Due to internal refreezing, deeper, colder snowpacks have delayed flow rates (e.g. DeBeer and 

Pomeroy, 2010). Refreezing may result in the formation of ice layers within cold snowpacks, 

which impede the vertical flow of water (e.g. Pfeffer and Humphrey, 1996). Flow of water through 

snowpacks is a complex physical process that can be considered as two parts – matrix flow and 

preferential flow (Marsh and Woo, 1984a; Marsh, 1991; Waldner et al., 2004). Preferential 

flowpaths (PFP) advance the flow of liquid water through the snowpack, ahead of the matrix 

wetting front, advancing the celerity of flow (e.g. Marsh and Woo, 1984a). These flow and internal 

phase change processes cause a lag and attenuation in timing of meltwater delivery to the soil 

surface, which is important for modelling runoff and streamflow generation. 

Matrix flow through snowpacks has been described as vertical flow percolation by gravity within 

a homogeneous, isothermal snowpack (Colbeck, 1972; Colbeck and Davidson, 1973). Refreezing 

of matrix flow percolating into a two-dimensional subfreezing, layered snowpack has been 

investigated by Illangasekare et al. (1990), Pfeffer et al. (1990), and Daanen and Nieber (2009). 

The influence of capillary forces on water flow has been represented by implementing Richards 

equation in snow models (Jordan, 1995; Hirashima et al., 2010; Wever et al., 2014b, 2015). 

Numerical snowmelt models with varying complexity have been created in the past decades. The 

conceptual model Flow Impeding Neutral or Accelerating (FINA) (Wankiewicz, 1979) theorized 
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on the acceleration or impedence of matrix water flow at the interface of two snow layers 

depending on the gravity flow pressure of each layer; but no field data were available to test and 

validate the conceptual model. Marsh and Woo (1984b, 1985) created for the first time a one-

dimensional model that accounted for the mass flow through PFP, assumed to extend over the 

complete depth of the snowpack; this theory did not include lateral flows or the delay of water 

flow due to ice layers within the snow. Tseng et al. (1994a) developed a complex two-dimensional 

snow model implementing snowpack ablation following the theory of Illangasekare et al. (1990) 

to predict matrix flow through subfreezing snow; however, the model was unable to simulate the 

formation of PFP. No existing hydrological snow models (e.g. SNTHERM, Jordan, 1991; or 

Snobal, Marks et al., 1999) or land surface schemes (e.g. CLASS, Verseghy, 1991) include 

simulation of lateral flows, the formation of PFP and ice layers, or their effects on water movement 

through snowpacks. This results in inaccuracy in snowpack water and energetics as well as errors 

in the prediction of catchment discharge and meltwater delivery to soil (Pomeroy et al., 1998). 

Preferential flow and ice layer formation were recently included in the 1D snow model 

SNOWPACK (Wever et al., 2016; Würzer et al., 2017) using a dual domain approach to divide 

the flow between matrix flow and preferential flow, similar to the approach used in soil models 

(e.g. Beven and Germann, 1981). Two coefficients, which had to be estimated, were added to 

SNOWPACK: the water content threshold to move water from preferential flow to matrix flow 

and the number of preferential flow paths per square meter. Simulating preferential flow improved 

the timing of meltwater delivery to the underlying soil early in the melt season and during rain-on-

snow events and was essential to the formation of ice layers; however, their model could only 

represent 20% of the ice layers observed in natural snowpacks.  

The formation of PFP in soil has been studied for decades. Hill and Parlange (1972) demonstrated 

that PFP form at unstable wetting fronts after ponding of liquid water at the interface of fine to 

coarse structured layers. Hillel and Baker (1988) later emphasized the importance of water-entry 

suction on the ponding of percolating liquid water at the wet to dry soil interface; they defined 

water-entry suction as “the maximum suction that will allow water to enter an initially dry porous 

matrix” characterized by the smallest pores in a layer. Ponded liquid water will penetrate the dry 

sublayer at randomly distributed locations caused by spatial heterogeneities in suction at the 

wetting front, creating an unstable wetting front evolving into PFP. In snow, Wankiewicz (1978) 

and Waldner et al. (2004) confirmed water ponding by capillary barriers. Katsushima et al. (2013) 
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found that a water-entry suction in snow exists and can be estimated with an equation comparable 

to the one for soil. Colbeck (1979) noticed spatial persistence of PFP in snow after forming due to 

wet snow metamorphism, i.e. the change of grain size with water content. Under high water 

contents (funicular regime), the snow grains become more rounded and less cohesive, while they 

are more bonded in clusters under low water contents (pendular regime). On the other hand, 

Schneebeli (1995) observed that the location of PFP in snow changed after each melt-freeze cycle. 

Soil models were developed to represent PFP formation in initially air-dry and hydrophobic sandy 

soils by applying initially unstable wetting fronts (Nieber, 1996; Ritsema et al., 1998). In snow, 

Hirashima et al. (2014a, b, c) developed a multi-dimensional infiltration model to reproduce 

preferential flows in a snowpack by combining the works of Hillel and Baker (1988) and 

Katsushima et al. (2013). Hirashima et al. (2014a, b, c) introduced a water-entry capillary pressure 

for dry snow and heterogeneities in snow grain size and snow density to allow the formation of 

PFP. That snow model included the latest improvements made to compute snow hydraulic 

properties, such as the formulation of snow permeability from Calonne et al. (2012) and the 

empirical model of Yamaguchi et al. (2012), which approximates the water retention curve (WRC) 

- the relationship between liquid water content and capillary pressure - in draining snow. The 

applicability of the model by Hirashima et al. (2014a) was limited to isothermal snow samples, 

neglecting melting at the surface and refreezing of liquid water. Davis et al. (2009) demonstrated 

that capillary hysteresis was most pronounced in hydrophilic soils than in hydrophobic soils. The 

existence of a thin liquid layer around ice grains (Dash et al., 1995, 2006) makes snow a 

hydrophilic porous medium as it reduces the contact angle between the liquid water and the ice 

crystal; therefore, capillary hysteresis can be expected to have a significant impact on water flow 

through snow. Hence, the WRC of Yamaguchi et al. (2012) is valid only for draining snow. Adachi 

et al. (2012) measured WRC for both draining and wetting snow samples. Laboratory or field 

experiments determining an equation for WRC for wetting snow have yet to be conducted. 

In this paper, a new snowmelt model, Snowmelt Model with Preferential flow Paths (SMPP) that 

captures the effect of capillary hysteresis is presented. The ability of SMPP to simulate and 

quantify PFP during the melt of a dry, subfreezing, layered snowpack is demonstrated. A 

sensitivity analysis on the model inputs and parameters is also presented to identify the most 

important model variables that influence simulated flow through snow.  
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3.2 SMPP Mathematical Framework  

SMPP is a 2D numerical model that simulates mass and heat fluxes within both sloping and level 

snowpacks. Melt at the surface and infiltration of liquid water are both computed, as well as 

refreezing of liquid water when the internal snow temperature is below freezing. This section 

details the mathematics behind the snow processes included in SMPP. 

3.2.1 Snow Ablation and Melt 

A melting snow surface can be approximated as a moving boundary at which heat transfer and 

phase change occur simultaneously. To estimate the heat transfer and phase change at this 

boundary, the Stefan condition is solved (Eq. 3.1) (e.g. Tseng et al., 1994a). When the snow surface 

temperature (𝑇B in [oC]) is below freezing, the heat flux at the surface (𝑄Q in [W m-2]) is used to 

warm the snow directly below the surface, otherwise, the heat flux is applied to melt the snow. 

𝑄Q = 	−𝜅B
��
��
(𝑧 = ℎ)           if   𝑇Y < 0_C   (3.1a) 

𝑄Q = 𝑄RQS	𝐿S	𝜌A                    if    𝑇Y = 0_C (3.1b) 

where 𝜅B is the thermal conductivity [W (K m)-1], 𝜕𝑇/𝜕𝑧 is the vertical temperature gradient at the 

surface [K m-1], 𝐿S is the latent heat of fusion of ice [J kg-1],	𝑄RQS is the melt rate (infiltration rate) 

at the snow surface [m s-1] and 𝜌A the density of water [kg m-3]. 

3.2.2 Water Flow 

The mass flow between each snow layer is estimated by solving the non-steady state two-

dimensional mass conservation equation: 

𝜕𝜃A
𝜕𝑡 + 𝛻. 𝒒(𝜃A) = −𝑆X 

(3.2) 

where 𝜃A is the volumetric liquid water content [m3 m-3], 𝒒	is the liquid water flux [m s-1] in the 

two spatial dimensions (Eq. 3.3) and 𝑆X is a mass sink term coupling the mass conservation 

equation with the heat equation (Eq. 3.13) through refreezing of liquid melt water [s-1] (Eq. 3.16). 

The liquid water flux is approximated from Darcy-Buckingham's law (Bear, 1972) assuming a 

laminar flow: 
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𝒒(𝜃A) = −𝐾(𝜃A)	𝛻(𝑃[(𝜃A) + 𝑧	𝑐𝑜𝑠(𝛽)) (3.3) 

where 𝐾(𝜃A) is the unsaturated hydraulic conductivity [m s-1], 𝑃[(𝜃A) is the pressure head [m], 𝑧 

is the slope normal coordinate [m] (positive upward), and 𝛽 is the slope angle. For unsaturated 

porous media (e.g. melting snow), both 𝐾 and 𝑃[ are functions of water content and need to be 

solved for. 

Snow hydraulic properties can be estimated from water content. Most recently, Calonne et al. 

(2012) developed a relationship between snow permeability, dry snow density, and optical grain 

size (right hand side of Eq. 3.4 below) by solving the Stokes flow equation for three-dimensional 

tomographic images of snow samples. Knowing the snow permeability, the saturated hydraulic 

conductivities can be estimated by 

𝐾B =
𝜌A𝑔
𝜇A

	[3	𝑟_`a� exp	(−0.013	𝜌EB)] (3.4) 

where 𝐾B is the saturated snow hydraulic conductivity [m s-1], 𝑔 is the gravitational acceleration 

[m s-2], 𝜇A is the dynamic viscosity of water [Pa s], 𝑟_`a is the optical grain radius [m] (equivalent 

sphere radius), which can be related to mean grain size, sphericity and dendricity (Vionnet et al., 

2012), and 𝜌EB is the dry snow density [kg m-3].  

The unsaturated hydraulic conductivity (𝐾(𝜃A) in [m s-1]) is then estimated from the saturated 

hydraulic conductivity using the van Genuchten-Mualem model (Mualem, 1976; van Genuchten, 

1980): 

𝐾(𝜃A) = 𝐾B	𝑆A$.¯ °1 − °1 − 𝑆A
�
�±

�

±
�

 
(3.5) 

where 𝑆A is the effective saturation and 𝑚	is a parameter. 

The pressure head (𝑃[(𝜃A)) is linked to the liquid water content through the WRC. The van 

Genuchten equation (van Genuchten, 1980) is applied to estimate this relationship: 

𝑆A = (1 + |𝛼	𝑃[|�)�� (3.6) 
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with  𝑆A = (𝜃A − 𝜃AC)/(𝜙 − 𝜃AC) and  𝜙 = 𝜃g +	𝜃A       

where	𝜃AC is the irreducible water content [m3 m-3],	𝜙 is the snow porosity [m3 m-3], 𝜃g is the 

volumetric air content [m3 m-3], and 𝛼 [m-1], 𝑛 [-], and 𝑚 [-] are parameters, with 𝑚 chosen as  

𝑚 = 1 − 1/𝑛. 𝛼 is related to the inverse of the air entry pressure head and 𝑛	is a measure of the 

pore-size distribution. 

3.2.3 Hysteresis Process 

Analogous to flow through unsaturated soil, the snow WRC has hysteresis, i.e. the water pressure 

for a given saturation differs between the wetting and drying processes (Wankiewicz, 1979; Adachi 

et al., 2012) that each follow unique boundary wetting and drying curves, referred hereafter by the 

superscripts w and d, respectively. Yamaguchi et al. (2012) formulated a boundary drying curve 

for snow based on the van Genuchten equation (Eq. 3.6). Through laboratory experiments, they 

established empirical equations to link the parameters 𝛼E and 𝑛E	to dry snow density and grain 

size:  

𝛼9 = 4.4e� �
𝜌EB
2	𝑟[

�
�$.��

 

𝑛9 = 1 + 2.7e�� �
𝜌EB
2	𝑟[

�
$.��

 

(3.7) 
 
 

(3.8) 

where 𝑟[ is the mean grain radius [m]. 

This parameterization was found to provide better results than the previous formulations of 

Yamaguchi et al. (2010) and Daanen and Nieber (2009), both depending solely on snow grain size 

(Wever et al., 2014, 2015).  

An equation for a wetting boundary curve in snow has yet to be developed. A wetting boundary 

curve was implemented in SMPP by scaling the known boundary drying curve using the following 

constraints, which are commonly applied in soil physics (Kool and Parker, 1987): 

𝑛z 	= 	𝑛9 , 

𝜃ABz 	= 𝜃AB9 	, 

(3.9) 
 

(3.10) 
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𝛼z 	= 	𝛾	𝛼9, 

𝜃ACz = 𝜃AC9  . 

(3.11) 
 

(3.12) 

where 𝜃ABz  and 𝜃AB9  are the liquid water contents at saturation for the boundary wetting and drying 

curves, respectively, and 𝛾 is a coefficient commonly taken as 2. 

Likos et al. (2013) found values of 𝛾	ranging from 1 to 5.66 depending on soil cohesiveness, with 

a mean value of 2.2. As this ratio increases, the boundary wetting curve separates further (𝛹 

becomes lower) from the boundary drying curve. As a value for γ in snow is unknown, a sensitivity 

analysis on this parameter is shown in Section 3.6. 

Nieber (1996) described a main wetting curve starting from dry conditions for hydrophilic soils. 

This curve was nearly level with 𝑃[ equal to water entry pressure. Such a curve has yet to be shown 

to exist in snow, which can also be considered a hydrophilic porous medium. Katsushima et al. 

(2013) did, however, measure a water entry pressure in snow. To represent the water retention 

functions of Nieber (1996), in SMPP, a value of water entry pressure (𝑃AZ in [m], Eq. 3.13 below) 

was used when a grid cell was initially dry (𝜃A ≤ 𝜃AC) following the expression from Katsushima 

et al. (2013), which depends solely on grain size.  

𝑃AZ = 0.0437	 �
1

𝑟[	2e�
� + 0.01074 (3.13) 

Instead of jumping to a boundary curve when 𝜃A > 𝜃AC (as in Hirashima et al., 2014a), which 

creates an unrealistic increase of pressure and potentially causes model instabilities, a snow grid 

cell initially at the water entry pressure stays at this pressure until 𝑆Z is greater or equal to the 

saturation estimated on the wetting boundary curve at 𝑃[ = 𝑃AZ. It then moves to the wetting 

boundary curve.  

Solving for the above equations can create a numerical error in that a water flux from dry (𝜃A ≤

𝜃AC) to wet snow can be computed when the water entry pressure of the dry cell (Eq. 3.13) is lower 

than the pressure in the wet cell (Eq. 3.6). To prevent this, a condition is put on the Darcy-

Buckingham’s flux, allowing for the flow of water to occur from a wet to a dry layer only when 
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Eq. 3.3 is positive, i.e. liquid water content accumulates until the pressure in the wetting cell 

satisfies the condition: 

𝑃[ < 𝑃AZ + 𝛥𝑧 𝑐𝑜𝑠(𝛽) 𝛿 (3.14) 

where 𝛿 is equal to 0 or 1 in the lateral and vertical directions, respectively. 

In contrast to Hirashima et al. (2014a) where only a drying boundary curve was applied to 

calculate the pressure head of both wetting and drying snow, implementing a wetting boundary 

curve results in lower liquid water content at the wet to dry snow interface, lower hydraulic 

conductivities, and lower mass flux until the pressure condition (Eq. 3.14) is satisfied. Moreover, 

when increasing 𝛾, this condition is satisfied for even lower water contents as the suction of the 

boundary wetting curve decreases. 

Scanning curves are implemented using the model proposed by Huang et al. (2005). This model 

was chosen as it forces the closure of the scanning loops, thus preventing artificial pumping errors 

(Werner and Lockington, 2006). To close the loops, the scanning curves are forced to pass through 

reversal points. Wetting and drying scanning curves (𝜃z(𝛹, 𝑝)	and	𝜃9(𝛹, 𝑝), respectively) are 

computed from: 

𝜃»(𝛹, 𝑝) −	𝜃AC
» (𝑝)

𝜃AB
» (𝑝) −	𝜃AC

» (𝑝)
= 	 £1 − ¼𝛼»	𝑃[¼

�¤
��

 
(3.15) 

where the superscript 𝑗 denotes either a wetting or drying scanning curve (w or d, respectively) 

and 𝑝 is the order of the scanning curve. Beyond second- or third-order scanning curves, hysteretic 

effects become small (Parker and Lenhard, 1987). To balance between model accuracy and 

efficiency, computed values of p greater than 90 were kept equal to 90 in SMPP, i.e. no additional 

scanning curve was computed after the scanning curve of order 90. 𝜃AC
» (𝑝) and 𝜃A,B

» (𝑝) can be 

determined by substituting (𝜃»(𝑃[, 𝑝), 𝑃[) in Eq. 3.15 by the two reversal points (𝜃EA¡ , 𝑃EA¡ ) and 

(𝜃AE¡ , 𝑃AE¡ ) through which the scanning curve passes (Eq. 3.16 and 3.17). The former is the reversal 

point when the process switches from drying to wetting and the latter is the reversal point when 

the process changes from wetting to drying. 
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𝜃EA¡ −	𝜃AC
» (𝑝)

𝜃AB
» (𝑝) −	𝜃AC

» (𝑝)
= 	 £1 − ¼𝛼»	𝑃EA¡ ¼�¤

��
 

𝜃AE¡ −	𝜃AC
» (𝑝)

𝜃AB
» (𝑝) −	𝜃AC

» (𝑝)
= 	 £1 − ¼𝛼»	𝑃AE¡ ¼�¤

��
 

(3.16) 
 
 
 

(3.17) 

Figure 3.1 presents an example of the hysteresis model for a snow density of 400 kg m-3, a grain 

diameter of 1 mm, and γ equal to 2. The wetting and drying processes shown in Fig 3.1, as well as 

the reversal points (black dots in Fig. 3.1) were actively chosen to illustrate an example of the 

hysteresis process implemented in the model. The water entry pressure curve (constant line at 𝑃[ 	=

𝑃AZ, represented by the dots) met the boundary wetting curve (blue line). Suction then decreased 

on the boundary wetting curve until drying occurred and scanning curves were computed (dashed 

lines). The reversal points of the scanning drying curve 1 are (𝜃�, 𝑃[,�) and (𝜃AC	, 𝑃[,C), the scanning 

wetting curve passes through (𝜃�	, 𝑃[,�) and (𝜃�, 𝑃[,�) and the scanning drying curve 2 initiates 

from (𝜃�, 𝑃[,�) and ends at (𝜃�, 𝑃[,�). 

 

Figure 3.1 Example of the hysteresis model used in SMPP for a snow density of 400 kg m-3, 
a grain diameter of 1 mm, and αz = 2	𝛼9.  
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3.2.4 Heat Transfer 

 In SMPP, to simulate heat transfer in a snowpack, the non-steady state two-dimensional heat 

conduction equation is solved following Albert and McGilvary (1992) with the addition of a source 

term: 

£𝜌𝐶`¤B
𝜕𝑇
𝜕𝑡 = 𝛻. (𝜅B𝛻𝑇) + 𝐿S𝜌A𝑆X 

(3.18) 

such that 	£𝜌𝐶`¤B = £𝜌g𝜃g𝐶`,g¤ + £𝜌A𝜃A𝐶`,A¤ + £𝜌R𝜃R𝐶`,R¤ 

and 𝜅B 	= 𝜅ZSS(1 − 𝜃A) 	+ 𝜅A𝜃A 

where 𝑇 is the temperature of a snow layer [K], 𝜌	is the density [kg m-3], 𝐶`	is the specific heat 

capacity [J (kg K)-1], and 𝜃@  is the fractional volumetric content of the phase.𝑘 The subscripts	a, 

w, and	i	represent each component of the snowpack: air, water, and ice, respectively. 

The term 𝐿S𝜌A𝑆X is a source term representing latent heat release during refreezing of liquid water. 

The effective thermal conductivity (𝜅ZSS) was calculated following Calonne et al. (2011), who 

conducted three-dimensional numerical computations of snow thermal conductivity through the 

air and ice phases. They developed an empirical relationship between thermal conductivity and 

dry snow density (Eq. 3.19). The term 𝜃A	𝜅A accounts for the effect of liquid water within the 

pores on the heat transfer.  

𝜅ZSS = 2.5e��	𝜌EB� − 1.23e�¨𝜌EB + 0.024.  (3.19) 

2.2.5 Refreezing of Liquid Water 

During infiltration of liquid water in an initially subfreezing snowpack, heat transfer occurs 

between the liquid and solid phases during phase change. Illangasekare et al. (1990) developed a 

theory to describe the refreezing of meltwater in a cold snowpack. They expressed the maximum 

mass of liquid water per unit volume of snow (𝑚fgh) that must freeze to raise the snow temperature 

to zero as, 
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𝐿S𝑚fgh = −(𝜌𝐶`)B	𝑇 (3.20) 

The actual mass of liquid water per unit volume of snow that refreezes during a numerical time 

step (𝑚S) is always less than or equal to 𝑚fgh . It is limited by the available liquid water content 

in the snow layer. The variable 𝑆X in Eq. 3.2 and Eq. 3.18 is related to 𝑚S by: 

𝑆X 	=
𝑚S

𝜌AΔ𝑡	
 (3.21) 

where Δ𝑡 is a numerical time step [s]. 

The change of liquid water content and snow layer temperature at the end of a numerical time step 

(𝑡 + Δ𝑡)	caused by refreezing are solved through the Eq. 3.2 and Eq. 3.18, respectively, using the 

value of 𝑆X from Eq. 3.21. At the end of the same time step, snow porosity (𝜙), air content (𝜃g), 

and bulk density of snow (𝜌B) are updated as: 

𝜙� ¿� = 𝜙� −
𝑚S

𝜌R
 

𝜃g� ¿� = 𝜙� ¿� −	𝜃A� ¿� 

𝜌B� ¿� = (1 − 𝜙� ¿�)𝜌R +	𝜃A� ¿�	𝜌A + 𝜃g� ¿�	𝜌g 

(3.22) 
 

(3.23) 
 
 

(3.24) 

3.3 Numerical Model Implementation 

To solve the partial differential equations (Eq. 3.2 and 3.18) in SMPP, an explicit finite volume 

scheme was applied using a quadrilateral structured mesh. The mesh was first scaled to that of the 

key snowpack structures, e.g. the vertical grid size was at most 1 cm when ice layers were 

simulated as this corresponds to their typical thickness (Watts et al., 2016) and the horizontal grid 

size was at most 1 cm wide when PFP were simulated, as they have been reported with diameters 

of between 0.5 and 2 cm (Waldner et al., 2004). The mesh was then refined from iterative initial 

simulations to determine the optimum grid size that allowed numerical convergence of the partial 

differential equations. The optimum grid size was chosen so that the tolerance of the computational 

error between the total outflow (outflow when the snowpack has completely melted) and the initial 

snow water equivalent of the snowpack was less than 1 %. This numerical method considered each 

numerical cell as a control volume, in which the conservation equations were solved. Such an 
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approach is commonly applied in computational fluid dynamics (CFD) models as it is inherently 

conservative. To assure model stability, an adaptive time step with a maximum value of 1 s was 

computed so that the Courant-Friedrichs-Lewy conditions for the two-dimensional heat 

conduction equation and Richards equation were both met (Haverkamp et al., 1977; El-Kadi and 

Ling, 1993). The time step decreased with increasing snow density, water content and temperature 

gradient. To prevent very small time steps, resulting in simulations taking weeks to finish, a lower 

bound of 10-4 s was chosen for the variable time step. In a few cases, however, using a lower bound 

for the time step resulted in estimated water contents greater than saturation at the interface of wet 

to dry snow; when this occurred, liquid water content exceeding saturation was restricted to 

saturation and the excess was added to the lower numerical cell. Each individual simulation run 

for this study took less than 72 h on an Intel Core I7-3610QM CPU.  

To confirm mass conservation when mass flow was coupled with both freezing and thawing phase 

changes, the ratio of the sum of the mass fluxes at the boundaries of the domain and the sum of 

the water and ice content changes was calculated as 

𝑀𝐶�À =

∑ °𝜃A
�À +

𝑚S
�À

𝜌A
±
{,»
	𝑉𝑜𝑙{,»

�À
{,»

∑ 	(∑ Mass	Flux	(𝑥, 𝑡)¥∈ÉÊ ∗ 𝛥𝑡)	�À
�Ë$

 

(3.25) 

where 𝑀𝐶�À  is a coefficient that is equal to 1 if mass conservation is respected at time 𝑡$, 𝛴{,» is 

the sum over all the numerical cells that compose the snowpack, 𝑉𝑜𝑙{,»  is the volume of the 

numerical cell (i,j) [m3], 𝛥𝑡 is the numerical time step [s], and the denominator represents the sum 

over time of the net mass fluxes [m3 s-1] at the boundary of the domain (𝛿𝛺). 

3.3.1 Boundary and Initial Conditions 

Neumann boundary conditions were applied at the upper, right and left-hand boundaries for the 

mass and heat equations. A constant heat flux (𝑄Q in Eq. 3.1a and 3.1b) was applied as an upper 

boundary condition for the heat equation. This flux was then used to estimate the snowmelt rate 

utilized as the upper boundary condition for the mass flow equation (𝑄RQS in Eq. 3.1b). A rain influx 

can also be chosen as an upper boundary condition for the mass flow equation, permitting rain-on-

snow simulations. Different boundary conditions can be set at the lateral boundaries: both as no-

flow boundaries or periodic conditions. A constant heat flux or constant temperature is chosen at 



56 

the lower boundary. At the bottom, a free drainage boundary condition is specified for the water 

flow equation. The initial conditions used in the model included the snowpack slope angle, 

layering system and mean layer properties - porosity, water content, grain size, and temperature.  

3.3.2 Model Assumptions 

Water and energy flows within a layered, subfreezing snowpack are complex physical processes. 

The current lack of understanding of the physics of these processes necessitated assumptions while 

developing SMPP.  

1. There is thermal equilibrium between the solid and liquid phases. 

2. Freezing point depression effects on the snow grains from pore pressures are small and can 

be neglected. 

3. The water entry pressure for dry snow can be characterized solely as a function of snow 

grain size. 

4. The irreducible water content does not vary substantially and can be assumed constant for 

the whole snowpack. 

5. The flow of water through the matrix and PFP is laminar. 

In the present version of the model, some approximations were also made for simplification.  

6. The change of grain size due to water vapour gradients (kinematic and equilibrium growth 

metamorphisms) or the presence of liquid water during the water flow event (wet snow 

metamorphism) was not considered. 

7. Thermal convection, condensation, and sublimation within the snowpack are small during 

the melt event and need not be considered. 

8. Temperature, density, and water content can be computed at the centre point of each 

numerical cell and assumed homogeneous within the cell. 

9. The hydraulic and thermal conductivities at the interface of two numerical cells can be 

estimated using the arithmetic average of the values. 

The uncertainties associated with these approximations will be addressed in a future version of the 

model. 
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3.3.3 PDE Solver Verification 

To validate the solvers for the two partial differential equations (Eq. 3.2 and 3.18) in SMPP, their 

solutions were compared to those of two existing models that have been widely applied and 

validated in separate studies (Hydrus: Šimunek et al., 2012; OpenFoam with laplacianFoam: Logie 

et al., 2015). 

Simulations of one-dimensional water flow through unsaturated porous media using Richards 

equation with SMPP were compared to that from the soil model Hydrus-1D (Šimunek et al., 2008). 

The flow through a 1 m deep unsaturated sand column was simulated with both SMPP and Hydrus-

1D. To maintain simplicity, a single WRC was considered for both wetting and draining processes 

and the soil hydraulic parameters were chosen from the soil catalogue offered with the model 

Hydrus. Water content was initialized at 0.05 m-3 m-3 in the whole system, a constant mass flux of 

100 mm d-1 was imposed at the upper boundary, free drainage boundary condition was chosen for 

the lower boundary condition, and the lateral boundaries were set as no-flow. The simulations were 

run until steady-state conditions were achieved. Figure 3.2a compares the outputs from SMPP 

against the outputs from Hydrus 1D at three different times. The water flow simulation of SMPP 

agreed with the 1D simulation from Hydrus, suggesting that SMPP will be adequate for water flow 

simulations through snow using Richards equation. The difference is on the order expected from 

the different numerical methods used to discretize the equations in Hydrus 1D and SMPP. 

The 1D heat conduction simulation was validated against the CFD model OpenFOAM, using the 

solver laplacianFoam with an explicit finite volume scheme. Heat conduction was calculated for 

a homogeneous snowpack of density 350 kg m-3 with a grain size of 1 mm. Constant temperatures 

set to -15oC and 0oC were specified at the upper and lower boundaries, respectively, and the 

snowpack temperature was uniform at -10oC. Figure 3.2b shows the temperature distribution 

simulated by SMPP against the results from OpenFOAM at three different times. The heat 

transport simulated by SMPP is nearly identical to the CFD model, suggesting SMPP will be 

adequate for heat flow simulations. 
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Figure 3.2 a) Comparison of water content distributions at three different times simulated by 
SMPP (represented with the dots) and by the soil model Hydrus 1D (represented with the 
lines). b) Comparison of temperature distributions at three different times estimated by SMPP 
(represented with the dots) and by the CFD model “OpenFOAM” (represented by the lines). 

3.4 Water Flow Simulation in a Layered Snowpack  

3.4.1 Flat and Sloping Melting Snowpacks 

The melt of a fine over coarse layered isothermal snowpack (FC snow) was simulated. Table 3.1 

summarizes the model parameters and snow properties used in all the numerical simulations. These 

snow properties were taken from experiment 1 of Waldner et al. (2004).  For each snow layer, 

average grain size and density were perturbed cell by cell by Gaussian random fluctuations of 10 

% and 1.5 %, respectively. The fluctuations were generated using the Box-Muller method (Box 

and Muller, 1958). This fluctuation in grain size was initially chosen to allow for relatively short 

simulation times, as increasing the grain size resulted in an increase of simulation time; the effect 

of this parameter on model flow outputs is presented in Section 3.6.  The density fluctuation is 

about the same as the measured density variation (between 1.48 and 1.66 %) by Waldner et al. 

(2004). A heat flux of 150 W m-2 was applied at the snow surface as in the experiment of Waldner 

et al. (2004), a free drainage boundary condition was chosen at the bottom, and no-flow conditions 

at the lateral boundaries. A constant temperature of 0oC was considered at the bottom boundary. 
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Table 3.1 Initial conditions, inputs and parameters used for the simulations in Sections 3.4, 
3.6, and 3.7. 

Parameters Initial setting 

Heat flux [W m-2]* 150 

Lateral length [m]* 0.35 

Depth [m]* 0.25 

Upper layer dry density [kg m-3]* (fine) 540 

Upper layer grain size [mm]* (fine) 1.5 

Upper layer thickness [m]* (coarse) 0.10 

Lower layer dry density [kg m-3]* (coarse) 480 

Lower layer grain size [mm]* 2.5 

Lower layer thickness [m]* 0.15 

Initial snow internal temperature [oC] 0 

Initial snow surface temperature [oC] 0 

Irreducible water content [m3 m-3] 0.024 

Slope angle [o] 0 

Fluctuation in grain size 20 % 

Fluctuation in density 1.5 % 

Number of horizontal cells  70 

Number of vertical cells  25 

𝛾  2 

Temperature at soil-snow interface [oC] 0 

* Taken from Waldner et al. (2004) 

Figure 3.3a shows the simulated liquid water content distribution within a level snowpack after 3 

h of melt. Liquid water, generated from the ~10 mm of melt at the snow surface, accumulated at 

the layer interface due to higher capillary pressure in the upper layer and then percolated the lower 
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layer when and where vertical pressure head gradients became positive. Distinct PFP formed 

below the high saturation layer, whereas the flow was similar to matrix flow in the upper part of 

the snow sample. Figure 3.3b shows the melt of the same snowpack on a 10o slope. Periodic lateral 

boundary conditions were assumed in this case. More liquid water accumulated at the layer 

interface as the vertical gravitational term in the Darcy-Buckingham equation (Eq. 3.3) is lower 

than that of a level snowpack; lateral flows occurred downhill within the snowpack, impacting the 

shape of the PFP. 

Figures 3.3c and 3.3d show the melt of a coarse over fine layered snowpack (CF snow) for both 

flat and sloping (10o) terrains, respectively. Each layer had the same snow structure properties as 

their respective layers in the previous simulation (presented in Fig. 3.3a). In contrast to the 

simulation shown in Fig. 3.3a, no accumulation of meltwater was observed at the interface of the 

two layers (Fig. 3.3c). Instead, liquid water directly percolated into the lower layer. Thick PFP 

formed in the upper layer and thinned as they propagated down the snow sample. The sloped CF 

snow (Fig. 3.3d) presented tilted PFP caused by lateral flow. These results are qualitatively similar 

to the conceptual model of Wankiewicz (1978). 
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Figure 3.3 Modelled water content distributions after 3 h of melt using data from Waldner et 
al. (2004) on a), b) fine over coarse and c), d) coarse over fine snowpacks on a), c) level and 
b), d) sloping (10o) sites. The horizontal black line represents the interface between the two 
textural layers. 

3.4.2 Quantification of 𝜽𝒘 at Capillary Barriers and PFP Patterns 

Simulated water flows through isothermal two-layer snow samples were compared to laboratory 

observations. Three snow samples were considered: fine over coarse snow (FC), fine over medium 

snow (FM) and medium over coarse snow (MC). The snow samples were initially dry at 0oC prior 

to running the experiment. The input data for these simulations – snow density, grain size, and 

input flux - were presented in Avanzi et al. (2016). In their study, dyed liquid water at 0oC was 

sprinkled over the surface of each snow sample. Vertical liquid water content distribution was 

measured at 2 cm resolution, as well as the fraction of wet area over total area (𝑓) at the same 

resolution.  Each snow sample was 20 cm high (composed of two snow layers of 10 cm each) and 

5 cm wide, numerically discretized with a grid of 10x25 cells. A mass input flux of ~11 mm h-1 

(c.f. FC1, FM1, and MC1 in Avanzi et al., 2016) was applied at the upper boundary, free-drainage 

was specified at the lower boundary, and no-flow occurred at the lateral boundaries. As in the 

simulations presented in Section 3.4.1, 𝛾	was set to 2 as commonly assumed in soil studies and 

𝜃AC was set to 0.024 m3 m-3 (taken from Yamaguchi et al., 2010). Input mass flux was not applied 
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over the whole upper surface; instead, it was applied to a small fraction of the surface to match the 

f values observed at the surface of the snow samples by Avanzi et al. (2016). The optical grain size 

and density in each numerical cell were varied around the mean layer properties measured during 

the experiment. This was a necessary condition to simulate the formation of preferential flow. 

However, the coefficients of variation of the grain size in each snow sample were not measured 

during the laboratory experiment. Therefore, three different simulations were run with different 

grain size coefficients of variation of 5 %, 10 %, and 20 %. The simulation results for each grain 

size fluctuation were compared to the observations to determine which coefficient of variations 

provided the best fit. During the experiment, the coefficients of variation of the snow density of 

each snow layer were observed to be 3 % and 6 % in the lower and upper snow layers, respectively 

(Avanzi et al., 2016). These measured coefficients of variation of snow density were applied in the 

model to fluctuate the snow density within each numerical cell around the mean layer values. 

A coefficient of variation of 10 % for the grain size gave best results of simulated liquid water and 

f distributions at the simulated arrival time of water at the snow base (time at which the 

observations were collected); thus, observed and simulated water distributions within the three 

snow samples for a grain size fluctuation of 10 % are presented in Fig. 3.4 (upper graphs). For FC 

and FM snow samples, the simulated arrival times of water at the snow base were underestimated 

by 24 % and 30 %, respectively, while it was over-estimated by 25 % for the MC snow sample. In 

all snow samples, observed liquid water distribution was well approximated by the model. Ponding 

of liquid water was both observed and simulated at the interface of the stratigraphic layers. More 

liquid water content accumulated at the interface of FC snow than in the other snow samples, due 

to a higher suction gradient at this layer interface. In MC, the model under-predicted θA at the 

interface, while 𝜃A was over-predicted in FC. 

Simulated 𝑓 values in the snow samples were compared to observations for a grain size fluctuation 

of 10% (Fig. 3.4, lower graphs). Simulated values follow the trend of the observation; f increased 

(PFP thickened) above the interface and decreased below it (PFP thinned). Fully wet layers were 

observed and simulated at the layer interfaces (f = 1) in FC and FM. In MC, f was over-estimated 

in the whole snow sample. 
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Figure 3.4 Simulated and observed liquid water content and fraction of wet surface area (upper 
and lower graphs, respectively). The three snow samples representing fine over coarse (FC), 
fine over medium (FM) and medium over coarse (MC) layers from Avanzi et al. (2016) were 
used with an input flux of ~ 11 mm/h. The black lines (obs.) represent the observed 
experimental values and dots (sim.) are the simulation results. 

3.5 Comparison between Observed and Simulated Capillary Pressures 

The impact of 𝛾	(Eq. 3.8) on the capillary pressure within a wetting snowpack was studied by 

simulating the capillary pressure measurements of Katsushima et al. (2013). Water flow through 

Katsushima’s three snow samples with different physical properties (SLL, SL and SM, c.f. 

Katsushima et al. 2013 for details) were modelled, applying a constant water flux of ~20 mm h-1 

at the surface. The snow samples (5x27 cm) were initially dry except for the upper 2 cm in which 

the water content was initialized at 𝜃AC, chosen equal to 0.024 m3 m-3 as in Hirashima et al. 

(2014a). The snow samples were discretized with a grid of 15x27 cells and the lateral and bottom 

boundaries were set to impermeable walls and free-flow, respectively. A fluctuation with a 

standard deviation of 20 % was applied to the average grain size of each snow sample (Katsushima 

et al., 2013). Hirashima et al. (2014a) found best results for this value and showed that fluctuations 
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in snow density had negligible effect on their model results. Thus, in all simulations presented in 

this section, density was not varied cell by cell. 

Figure 3.5 shows three different model outputs at the wet to dry snow interface (2 cm below the 

surface) for the three snow samples SLL, SL, and SM (columns in Fig. 3.5, from left to right, 

respectively). The three model outputs studied are the minimum suction, the time of minimum 

suction, and the capillary pressure at steady state (rows in Fig. 3.5, from top to bottom, 

respectively). In each graph, the outputs (dots in Fig. 3.5, corresponding to mean simulated values) 

are compared to measured values from Katsushima et al. (2013) (black lines) for varying values 

of 𝛾 ∈ [1.5, 2.5]. The minimum pressure observed by Katsushima et al. (2013) corresponds to the 

threshold of capillary pressure at which water started percolating dry snow. As 𝛾 increased, 

simulated suctions in wetting cells decreased, resulting in lower simulated values of minimum 

pressure and time of minimum pressure (upper and middle rows in Fig. 3.5). An optimum value 

of 𝛾 for which simulated pressure at the interface matched observed pressure for the three snow 

samples cannot be found; however, a value of 2.5 for the snow sample SLL and SL and a value of 

1.9 for SM provided a best match for the pressure at steady state. Pressure at steady state is always 

under-estimated for the SL sample and over-predicted for SLL and SM snow samples. On average, 

values of 𝛾 greater than 2.0 better approximated the minimum pressure at the interface for all snow 

samples. Figure 3.6 illustrates the difference between simulated and observed average capillary 

pressures at the wet to dry snow interface through time for 𝛾	equal to 2.5 for the samples SLL and 

SL and equal to 1.9 for the sample SM.  
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Figure 3.5 Sensitivity analysis of the 𝛾 on minimum pressure, time at which minimum 
pressure is reached and the pressure at steady state. The three snow samples representing 
coarse (SLL), medium (SL) and fine (SM) grains from Katsushima et al. (2013) were used 
with an input flux of ~20 mm/h. The black lines (obs.) represent the observed experimental 
values (2 black lines are plotted for the time of minimum pressure to represent the lower and 
upper bounds). The dots (sim.) represent the mean simulated values at the wet to dry snow 
interface. 
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Figure 3.6 Capillary pressure at the wet to dry snow interface in the snow samples SLL (a), 
SL (b) and SM (c), with a water flux of 20 mm h-1 at the surface and a single 𝛾 value of 2.5 
(SLL and SL) and 1.9 (SM). The black line (obs.) represents the pressure measured by 
Katsushima et al. (2013) and the blue lines (sim.) are the simulated pressures at the interface. 

3.6 Uncertainty Analysis on Model Variables and Inputs. 

The FC snowpack of Waldner et al. (2004) was used as a reference case for the sensitivity analysis 

with perturbed density and grain size as in Section 3.4.1. The parameters and model inputs used in 

the reference case are summarized in Table 3.1. Irreducible water content, fluctuations in grain 

size and density, 𝛾, and the three different models to estimate the van Genuchten’s parameters for 

the boundary drying curve (𝛼9 and 𝑛9) are available in the snow literature (Daanen and Nieber, 

2009; Yamaguchi et al., 2010, 2012) were individually varied. Differing values of 𝜃AC have been 

found in snow, ranging from 0.018 to 0.04 m3 m-3 (Katsushima et al., 2013; Yamaguchi et al., 

2010). In the sensitivity analysis, this parameter was varied between 0.01 and 0.04 m3 m-3 with a 

constant step of 0.005. The fluctuations applied to grain size and density were varied between 0 

and 20 % as in Hirashima et al. (2014a), with a constant step of 2 %. Finally, 𝛾 was varied between 

1.5 and 2.5 with a constant step of 0.2. Their impacts on total outflow and wet surface area per 

total area (f) in the lower layer (below the layer interface) after 3 h of melt, the maximum liquid 
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water content in the snowpack during melt and the time at which liquid water first reached the base 

of the snowpack were observed.  

Figure 3.7 shows the results of the sensitivity analysis. Higher values of 𝜃AC increased the time at 

which meltwater reached the base of the snowpack as more liquid water was held by capillary 

forces within the pores. Therefore, lower outflows were observed for greater values. As 𝜃AC 

increased, the wet surface area in the lower layer greatly decreased (Fig. 3.7) and PFP became 

wetter (not shown).  

Changes in the fluctuation applied to snow density had a lesser effect than varying the fluctuation 

in grain size. Higher fluctuations in grain size induced larger capillary pressure heterogeneities 

between two adjacent numerical cells, resulting in more liquid water content accumulating in the 

snowpack. f values in the lower layer increased with the fluctuation from 0 to 6% and then 

decreased from 6 to 20 %. Figure 3.8 shows the distribution of liquid water after three hours of 

melt within the FC snow for increasing grain size fluctuations, the total wet surface area in the 

lower layer was   the sum of the surface area of each PFP and thus depended on their dimensions. 

At a zero grain size fluctuation, only matrix flow was simulated. As this fluctuation increased, PFP 

became slightly wetter but fewer PFP formed. This is caused by shorter sections (in lateral length) 

of the high saturation layers present at the layer interface due to a shift in the flow regime in the 

upper layer from matrix flow to thinner and wetter PFP. This change in the lateral length of the 

wet sections at the layer interface drove the number of PFP forming in the lower layer. More water 

content accumulated at the interface with increasing grain size fluctuations, causing a delay in 

water percolating the lower layer and shorter PFP. This combined effect of shorter and fewer PFP 

gave the results shown in Fig. 3.7. 

This is the first study of snowpack water flow that has applied a boundary wetting curve, which 

was scaled from the boundary drying curve through 𝛾. As shown in Fig. 3.7, this parameter 

impacted all model outputs. A larger value resulted in lower suction computed during the wetting 

process. Therefore, the condition for which liquid water flows from wet to dry cells (downward 

vertical water pressure becomes positive) was satisfied at lower water contents in the wetting cell; 

the maximum liquid water content in the snowpack thus decreased with increasing values of 𝛾 

during the melt period. As this parameter increased, f values in the lower layer also increased. 
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As seen in Fig. 3.7, the three different models used to estimate the van Genuchten’s parameters 

for the boundary drying curve gave substantially different results. The model of Daanen and 

Nieber (2009) did not allow for PFP formation. The suction estimated with Daanen and Nieber’s 

model is lower than the two models of Yamaguchi et al. (2010, 2012). Therefore, little liquid water 

ponded at the interface of wet to dry cells before percolating into the dry layer, resulting in a quasi-

uniform wetting front and thus, matrix flow. Even though the model outputs from Yamaguchi et 

al. (2010) were different from those of Yamaguchi et al. (2012) (reference case), the former still 

allowed for PFP formation. The older model resulted in more liquid water content accumulating 

in the snowpack, resulting in higher computed hydraulic conductivities and therefore, a higher 

outflow after 3 h of melt. 

 

Figure 3.7 a) Sensitivity analysis of different model variables on total outflow after 3 h of melt 
(4), the time at which meltwater reaches the base of the snowpack (3), the maximum liquid 
water content simulated within the melt period (2) and the percentage of wet surface area in 
the lower layer at 3 h of melt (1). b) Comparisons of 1, 2, 3, and 4 with the models of Daanen 
and Nieber (2009) (Daa09), Yamaguchi et al. (2010) (Yam10) and Yamaguchi et al. (2012) 
(Yam12) to estimate the parameters of the boundary drying curve (𝛼9, 𝑛9). 
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Figure 3.8 Water distribution after 3 h of melt within the FC snow sample for increasing 
fluctuations in grain size. 

3.7 Ice Layer Formation in Subfreezing Snow 

The FC snowpack of Waldner et al. (2004) was also used to demonstrate the ability of the model 

to simulate ice layer formation in subfreezing snow. As in Section 3.4.1, a constant heat flux of 

150 W m-2 was applied at the snow surface to generate melt for ~2.5 hrs, then the flux was set to 

zero and the model was allowed to run for another ~6 hrs. In contrast to Section 3.4.1, the snow 

temperature was initially below freezing: the upper layer temperature was set to -3oC and the lower 

temperature to -5oC. A zero heat flux was specified at the lower and lateral boundaries. 

Figure 3.9 shows the water content, dry density and temperature distributions within the FC 

snowpack (upper to lower rows, respectively) at four different times (left to right columns). At the 

end of the melting period (~2.5 hrs), the snowpack melted by ~10 mm and the meltwater generated 

at the surface accumulated at the layer interface. The snow temperature in the upper wet layer rose 

to 0oC, while areas of dry, cold snow remained at the layer interface. The lower layer stayed below 

freezing. After the melting period, liquid water in the upper layer kept percolating downward for 

a short period due to gravity. The snowpack slowly became isothermal and the snow surrounding 

the layer interface gained latent heat due to refreezing of liquid water at the interface, resulting in 
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an increase of temperature in the lower layer. The more liquid water that refroze, the higher the 

increase in dry density. After refreezing of the high water content layer above the interface, a large 

increase in dry density, from 650 to 850 kg m-3, occurred as ice formed in the snowpack. The 

evolution of the liquid water content, dry density and temperature through time within the 

snowpack are shown in the video present in the Supplementary material. 

 

Figure 3.9 Water content, dry density and temperature distributions within the FC snowpack 
at 4 different times. At the beginning of the simulation (Initial), after the melt phase, and at 
two different times after melt was stopped (4 h 20 min and 8 h 20 min). The black dashline in 
the lower plots represents the isoline at 0oC. 

3.8 Discussion  

The SMPP model is qualitatively able to reproduce flow patterns that are observed in the field and 

laboratories (Fig. 3.3). The distribution of liquid water content and the distribution of the fraction 

of wet area over total area observed in snow samples during laboratory experiments were 

quantitatively reproduced (Fig. 3.4, lower graphs). Waldner et al. (2004) and Avanzi et al. (2016), 

amongst others, observed that the interface from fine to coarse snow layers acts as a capillary 

barrier, due to higher suction in the fine layer. This behavior was reproduced by SMPP (Fig. 3.3 

and 3.4). Applying Richards equation to represent the ponding of liquid water at the interface of 

snow layers was essential, as previously noted (Jordan, 1995; Hirashima et al., 2010). The size of 
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the simulated wet layers in the FC snow is comparable to the dimensions observed by Waldner et 

al. (2004) with widths varying between 1 and 5 cm. Simulated liquid water content at the high 

saturation layer were comparable to observations in three different snow samples (Fig. 3.4).  

PFP were simulated by implementing a water entry pressure and heterogeneities in snow 

properties, as in Hirashima et al. (2014a). In accordance with Hirashima et al. (2014a), the 

implementation of a water entry pressure for dry snow was necessary for the formation of PFP. 

Distinct PFP originated at the layer interface in the two cases considered in Section 3.4.1, i.e. in 

FC and CF snow samples; thus, the snow properties above and below the interface were not a 

factor in the formation of PFP. Marsh and Woo (1984a) also observed PFP forming at either flow 

accelerating interface (e.g. CF snow) or flow impeding interface (e.g. FC snow). Similarly, the 

thicknesses of simulated PFP in Fig. 3.3, ranging from 0.5 to 3 cm are identical to those observed 

in the laboratory (Waldner et al., 2004) and in the field (Marsh and Woo, 1984a). Greater values 

of γ	 resulted in wetter, thicker and more connected PFP (Fig. 3.10), due to more lateral movement 

as the condition at which liquid water flowed from wet to dry snow occurred at lower water 

contents. The shape and number of PFP forming below an impeding interface was driven by the 

properties of the ponding layer, i.e. its liquid water content and lateral length.  For further 

validation, the connectivity and shape of the simulated PFP can be compared to pictures of dye 

experiments in natural snowpacks, such as those collected by Williams et al. (2010). The fraction 

of wet surface area to total area (f) was compared to observed values in three snow samples (FC, 

FM, and MC, c.f. Fig. 3.4). Discrepancies were observed. First, it is important to state that this 

two-dimensional model is compared to three-dimensional data. These discrepancies may also 

originate from slight differences in the inputs used in the model and the laboratory experiments. 

During the laboratory experiments, a thin cotton ring was positioned at the upper boundary to 

spread the tracer over the surface (Avanzi et al., 2016); however, dyed water percolated into the 

snow sample surfaces at preferential areas and was not uniform over the whole surface (Avanzi et 

al., 2016, Figure 1, upper row). This could have been caused by the formation of a thin capillary 

barrier between the cotton ring and the snow surface. In the model, the input flux was only applied 

at a few cells to try to match the observed f values at the snow surface by Avanzi et al. (2016). 

From the sensitivity analysis, wet surface area (i.e. PFP width and length) is greatly influenced by 

𝜃AC, the fluctuation in grain size, and γ. Different results of f could therefore have been obtained 

for different combinations of parameters used in Sec. 3.4.2. 
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The sensitivity analysis showed that the model was more sensitive to fluctuations in grain size than 

fluctuations in dry density. This behavior is similar to model results from Hirashima et al. (2014a) 

who also noted that the wet surface area increased with the fluctuation in grain size, due to more 

lateral flow and therefore, wider PFP. The high sensitivity to grain size fluctuation is most likely 

because the water entry pressure of dry snow depends solely on this parameter. Further work 

should be carried to establish probability density functions or relationships for the spatial 

distribution of these parameters from field observations. After the formation of PFP lateral flows 

occurred at the high water content layer towards the PFP due to lateral pressure gradients, as 

previously modelled in soil by Jury et al. (2003).  

Despite the disparity of values for 𝜃AC in the literature, few studies have quantified the impact of 

this parameter on water flow through snow (e.g. Marsh and Woo, 1984b; Tseng et al., 1994b). 

This parameter had a significant impact on model results; increasing values of 𝜃AC resulted in 

slower flows as shown by increasing times at which liquid water reached the base of the snowpack 

(Fig. 3.7). This agrees with model results from Marsh and Woo (1984b). Increasing values of 𝜃AC 

also caused the formation of thinner and wetter PFP (not shown). No physical relationship exists 

to relate 𝜃AC to snow properties and further field or laboratory experiments should be conducted 

to establish this. 

Hirashima et al. (2014a) applied the boundary drying curve of Yamaguchi et al. (2012) to represent 

the suction in wetting snow samples and modelled a jump of pressure between the water entry 

pressure value to the boundary drying curve when 𝜃A became greater than 𝜃AC. The simulation 

results by Hirashima et al. (2014a) for the SM and SL snow samples with an input flux of 20 mm 

h-1 poorly reproduced the observed values of minimum pressure. In Hirashima et al. (2014a), for 

the SLL snow sample, both simulated values of minimum pressure and pressure at steady state 

greatly differed from the observations. On the other hand, in SMPP, values of minimum pressure 

and pressure at steady were better represented in the three snow samples. This highlights the 

importance of including full capillary hysteresis on the suction within a wetting snowpack.  

The formation of ice layers was successfully modelled. Three distinct zones were observed as in 

Marsh and Woo (1984a): wet, mixed wet-dry and dry zones. The wet zone above the matrix 

wetting front was at the freezing point temperature. The dry zone was located below the finger 
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wetting front and stayed below freezing. PFP were essential for liquid water to reach cold layers 

in the snowpack (Humphrey et al., 2012) and to the creation of distinct wet and dry zones, 

composed of zones at 0oC and below 0oC. As hypothesized by Marsh and Woo (1984a) and Marsh 

(1991), ice layers formed at the wet-dry interface where the surrounding snow cold content was 

sufficient to refreeze the ponding water (Pfeffer and Humphrey, 1996; Humphrey et al. 2012). The 

refreezing resulted in an increase in temperature of the surrounding snow. The average density of 

the ice layers was ~725 kg m-3 (ranging from 650 to 850 kg m-3). Comparing to observations by 

Marsh and Woo (1984a) and Watts et al. (2016), the former observed ice layers with densities 

ranging from 630 to 950 kg m-3 with a mean of 800 kg m-3 and thicknesses ranging from 1 to 40 

mm; the latter measured ice layer densities, varying between 814 and 980 kg m-3, with a mean 

value of 909 kg m-3. The ice layer densities simulated by SMPP are therefore within the range of 

values observed in the field. The vertical resolution of the simulated ice layers depends on the 

vertical resolution chosen for the mesh. For different resolutions than the one used in Section 3.7, 

ice layers would still be expected to form, but their densities would differ as the amount of ponding 

liquid water would be different. For instance, for a lower vertical resolution than the one applied 

in Sec. 3.7, more liquid water content would accumulate at the two-layer interface to satisfy Eq. 

3.10; after refreezing, the dry densities of the ice layers in the finer simulation would be higher 

than the modelled ice layer densities in Section 3.7. 

The model required some approximations that still need to be tested, amongst which the impact of 

snow metamorphism is potentially important. Including wet and dry snow metamorphism would 

result in an increase of grain size within and around the PFP, which could make the simulation of 

the PFP more dynamic than shown here. For wet snow, it was also assumed that the freezing point 

of liquid water was 0oC. Studies in soil showed that pore pressure and salt content can lower the 

freezing temperature of liquid water in the pores (e.g. Spaans and Baker, 1996) and this is an 

important parameter in studies of frozen soils. Daanen and Nieber (2009) demonstrated that the 

freezing temperature of the liquid phase in snow can be lower than 0oC. Accounting for the 

freezing point depression in snow models would lower the rate of refreezing of liquid water. 



74 

 

Figure 3.10 Modelled water content distribution within the FC snowpack after 3 h of melt 
for four different values of 𝛾: 1 (no hysteresis), 1.5, 2 and 2.5. 

3.9 Conclusions 

A 2D snowmelt model that can simulate the formation of PFP from unstable wetting fronts 

generated by heterogeneities in snow properties was presented. For the first time, capillary 

hysteresis was included in a snowpack water flow model. To develop an equation for the water 

entry suction, Katsushima et al. (2013) used four artificial snow samples with densities greater 

than 387 kg m-3 and input water rates greater than 22 mm hr-1, and so there is great uncertainty in 

the application of this equation for lower densities and lower input fluxes. PFP formed at different 

layer interfaces (FC and CF snow), showing that PFP formation does not depend on the snow 

properties on either side of the interface. In the case where liquid water ponded at a FC layer 

interface, PFP patterns depended on the characteristics (lateral length and water content) of the 

layer of ponded water. During meltwater percolation into a subfreezing snowpack, liquid water 

ponding at the interface of two snow layers or at the base of the snowpack prior to the arrival of 

the matrix wetting front refroze, forming ice layers.  

Wetting fronts became unstable from lateral fluctuations in snow properties; however, such 

fluctuations cannot be directly implemented in one-dimensional snow models. Even though Wever 

et al. (2016) divided flow through snow between matrix flow and preferential flow in the 1D model 

SNOWPACK using a dual domain approach, their approach needed two calibration coefficients 

to simplify the representation of physical processes. A more physical approach, such as the one 

presented here, can enhance the understanding of the physical processes that drive the formation 

of PFP, and then could be used to parameterize 1D snow models. For instance, this model could 
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help better estimate the exchange of meltwater between the matrix and preferential flow domains 

in the dual domain model of Wever et al. (2016). 

Accounting for the full capillary hysteresis improved the simulation of capillary suction at the wet 

to dry snow interface for wetting snow when compared to results from Hirashima et al. (2014a), 

in which only a drying boundary curve was used. A sensitivity analysis showed that capillary 

hysteresis also influenced preferential flow formation, snowpack runoff, and water retention. The 

scanning curves were estimated from the boundary wetting and drying curves, which were scaled 

from each other based on the ratio of the van Genuchten parameter 𝛼 of each curve (Kool and 

Parker, 1987). An optimum value for this ratio could not be determined here, but values greater 

than 2.0 gave best results. It is expected that this parameter depends on snowpack physical 

properties and further studies, such as the one conducted by Adachi et al. (2012), are needed. 

Experimental determination of hysteresis effects in snow is challenging, as the ice matrix (in 

contrast to soil matrix) undergoes metamorphism in the presence of liquid water. This makes the 

separation of the difference in water retention in wetting and drying mode from temporal effects 

by snow metamorphism complicated. Other models to compute scanning curves and the wetting 

boundary curve exist (e.g. Mualem, 1974, 1984) and could be implemented to further examine the 

results shown in this study.  

In hydrological models or land surface schemes that divide the snowpack into 1 or 2 snow layers, 

it is assumed that a snowpack must be isothermal and wetted before discharge from the snowpack 

occurs. This assumption is erroneous as meltwater flows through PFP, bypassing dry zones of the 

snowpack. A snowpack does not have to be isothermal for melt to start, only the near-surface layer 

must reach 0oC. Then, meltwater will penetrate deeper snowpack layers and gradually warm the 

snowpack to the freezing point as suggested by Pomeroy et al. (1998). 

Although the model components presented here are based on verified theories, they have never 

been coupled in a numerical framework before. Further fieldwork is required to validate this model 

against detailed in-situ data; however, the model supports a qualitative field description of how 

PFP are formed (e.g. Marsh and Woo, 1984a). The development of this numerical model suggests 

the following questions on water flow through snow and numerical snow modelling to be 

considered in future: 
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• How do snowpack physical properties control the irreducible water content? 

• How can grain size and density spatial fluctuations be better represented? 

• Can the water entry pressure for dry snow be related to snow density? 

• Is the thermodynamics equilibrium assumption suitable or can liquid water flow through 

subfreezing snow layers without completely refreezing (Illangasekare et al., 1990)? 

• Is the flow through preferential flow paths always laminar? Does Darcy's law always 

apply? 

• Does liquid water refreeze at 0oC in snowpacks or is there a freezing point depression that 

depends on snow properties, chemistry, and surface tension between ice and liquid water? 

• Is convection between the wetting phase and the ice important for heat transfer within the 

melting snowpack? 

Key Points for the Next Chapter 

• How can a field study be prepared to validate this model against melt data from natural 

snowpacks? 

• How does this model perform against natural snowmelt data? 

• What are the limitations of this model? 

• Only heat conduction is assumed here. What are the effects of considering heat convection 

on the snow internal temperature distribution? 
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CHAPTER 4 

FIELD EXAMINATION OF PREFERENTIAL FLOW THROUGH SNOWPACKS AND 

COMPARISON TO MODELS 

Abstract 

Field studies of snowmelt processes have highlighted the occurrence of preferential flow in melting 

snow. This phenomenon has a significant impact on the transport of meltwater through snow. Due 

to the emergence of innovative and complex snow models that can simulate meltwater flow 

through both snow matrix and preferential flow on both flat and sloping terrains, there is an 

increasing need for quality field data to validate these new models. In the past, lack of field data 

has prevented further development of innovative snow models. In this study, two field studies are 

presented, as well as analysis of the data collected. In the first study, a dye tracer experiment was 

conducted in initially cold snow. This experiment showed the formation of preferential flow in 

snow, and photographs were taken of the flow patterns at different locations within the snowpack. 

Through analysis of the images, the geometry of preferential flow paths was revealed to have 

fractal characteristics. The second study consisted of a controlled melt experiment. Melt at the 

surface of a sloping snowpack was artificially generated, and the outflow at a known depth from 

the surface was measured with a lysimeter. Initial and final snow properties (layer density, grain 

size, temperature and water content) were also observed. These data were used to run and evaluate 

the outputs of a 2D snowmelt model that can simulate formation of preferential flow paths in 

snowpacks and couples mass and energy fluxes through snow. When compared with field 

observations, the model performed poorly. Some potential reasons for this failure are discussed, 

principally the use of a water entry pressure is believed to delay the flow of water through the 

snowpack and prevent formation of preferential flow for snow densities below 350 kg m-3.  
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4.1 Introduction 

In cold regions, snowmelt is the primary hydrological event of the year. Fresh water generated 

from melting snowpacks feeds mountain streams and downstream rivers. The slope of the terrain 

partially controls the timing of delivery of meltwater to the streams. In mountainous terrain, 

accurately predicting the timing of snowmelt runoff is challenging, as sloping snowpacks dominate 

the landscape. Routing meltwater through sloping snowpacks is a complex process that combines 

different flow patterns. First, in sloping snowpacks, lateral flow occurs at layer interfaces and 

capillary barriers (Williams et al., 2010; Eiriksson et al., 2013). In addition to lateral flows, field 

studies have highlighted the occurrence of preferential flow paths in both flat and sloping 

snowpacks (Marsh and Woo, 1984; Schneebeli, 1995; Waldner et al., 2004; Williams et al., 2010). 

These two flow processes are either unaccounted for or crudely accounted for in the most 

sophisticated operational snow models (e.g. Würzer et al., 2017), resulting in inaccurate prediction 

of the timing of meltwater reaching the base of the snowpacks (Hirashima et al., 2017). 

Field or laboratory data are necessary to evaluate the meltwater routing schemes in snowmelt 

models. Measurement of the bulk water content in snow (Morin et al., 2012; Thompson et al., 

2016; Smith et al., 2017) or observation of liquid water content at different depths within 

snowpacks during natural snowmelt (Avanzi et al., 2014; Clayton, 2017) are crucial data to validate 

the melt prediction of snowmelt models. This information is now commonly measured in natural 

snowpacks. Snowmelt outflows at the base of snowpacks have also been recorded in the field using 

lysimeters (Tekeli et al., 2005; Eiriksson et al., 2013; Juras et al., 2017). Such field data have 

commonly been used to validate snowmelt models or different schemes for water flow through 

snow (e.g. Hirashima et al., 2010; Wever et al., 2014, 2015; D’Amboise et al., 2017). The 

formation of preferential flow within a snowpack (e.g. Marsh and Woo, 1984; Schneebeli, 1995; 

Waldner et al., 2004), however, increases the difficulty of accurately measuring water content 

within snow. Therefore, studies using water sprayed on top of snow have begun looking at the 

flow of water or capillary pressure through small (< 30 cm) artificial snow samples (Waldner et 

al., 2004; Katsushima et al., 2013; Avanzi et al., 2016). These data are useful to validate snow 

models capable of simulating preferential flow paths (Hirashima et al., 2014, 2017; Leroux and 

Pomeroy, 2017). These models should be evaluated at macroscale (~1 m) under controlled 

conditions. Additionally, the melt component of these models must be verified without having to 
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compute the energy balance over snow. This energy balance cannot be closed using current 

theories (Helgason and Pomeroy, 2012), therefore resulting in uncertainties when estimating mass 

flux at the snow surface.  

Tracer dye experiments have been applied in many studies of water flow through snow, in 

laboratory experiments and in natural snowpacks (Marsh and Woo, 1984; Schneebeli, 1995; 

Waldner et al., 2004; Campbell et al., 2006; Williams et al., 2010; Avanzi et al., 2016). The first 

experiments were mainly qualitative; they highlighted the occurrence of preferential flow paths in 

snow (Schneebeli, 1995), the effect of ice layers in decelerating the downward flow of water 

(Campbell et al., 2006), and the ponding and lateral spread of water at stratigraphic interfaces 

(Waldner et al., 2004; Campbell et al., 2006). In a few studies, the spatial distribution and the 

dimensions of preferential flow paths were quantified during tracer dye experiments (Marsh and 

Woo, 1984; Williams et al., 2010). Additional data on the spatial distribution of preferential flow 

paths in snow and relating them to snow layer properties (such as grain size and density) would 

help validate the emerging models that are able to simulate preferential flow through snow 

(Hirashima et al., 2014; Leroux and Pomeroy, 2017). 

This study presents a field experiment conducted in the Canadian Rockies, during which melt at 

the surface of natural snowpacks was artificially generated. The data collected are presented, and 

used to evaluate the SMPP, a 2D snow model that can simulate preferential flow and snowmelt 

(Leroux and Pomeroy, 2017). Data collected during dye experiments are also shown and analysed. 

4.2 Dye Experiment 

4.2.1 Field Measurements 

A snowmelt and tracer dye experiment was conducted at the Fortress Mountain Laboratory in the 

Canadian Rockies on April 1, 2015. The experiment was conducted on flat terrain. The snowpack 

was about 1 m deep and the snow surface was wind-scoured. Prior to the experiment, the snowpack 

temperature was below freezing (the upper 20 cm were between -2oC and -3oC). The upper 

snowpack (10 cm) was composed of fresh snow with a density of 198 kg m-3, which was separated 

by an ice layer from a 30 cm faceted snow layer of 320 kg m-3 density. The rest of the snowpack 

was a mix of faceted layers and compacted snow. Powder Brilliant Blue food dye, as used in 

Williams et al. 2010, was sprinkled over the flat snowpack. A hot plate was designed to generate 
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rapid melt on top of the dyed snow surface. The hot plate consisted of a 90x90 cm sheet metal on 

which a 6 m heat tape (Omega SRT101-180) was fixed. The heat tape was plugged into a portable 

gasoline generator to generate melt at the surface (UnitedPower GG1300).  

After about 4 hours of melt, the hot plate was turned off and removed from the snow surface. The 

melted snow surface lowered by about 16 cm and meltwater was observed to have percolated down 

to between 40 cm and 60 cm from the snow surface. This artificial melt generated by the hot plate 

is faster than melt rates under many natural conditions. However, a snowpack depletion of 16 cm 

can be observed in the alpine over a whole day under warm conditions. The accelerated melt rate 

most likely resulted in somewhat different meltwater routing than that under natural conditions. In 

particular, no refreezing of meltwater occurred in the upper snowpack during the field experiment 

because of the high input heat flux from the hot plate that raised the upper snowpack temperature 

to 0oC before meltwater could reach the initially dry and subfreezing upper snowpacks. The high 

flux and fast melt rate most likely accelerated snow metamorphism in the upper snowpack; for 

instance, the rapid increased of liquid water content within the snowpack due to the high input heat 

flux, the transition between the pendular and funicular regimes was short and grain growth only 

occurred in the funicular regime. The accelerated melt at the surface might have resulted in more 

matrix flow occurring in the upper snowpack than what would be observed under natural 

conditions, and in increased meltwater velocity within the preferential and matrix domains. 

Despite the added uncertainties by accelerating melt rate at the snow surface, the results of the dye 

experiment (Fig. 4.1) qualitatively agree with other experiments conducted under natural 

conditions (e.g. Marsh and Woo, 1984).  This lends confidence that results from the artificial melt 

experiment are applicable to many natural snowmelt conditions involving rapid melt onset over 

cold snowpacks.  Such conditions are not uncommon in the Canadian Rockies 

After the hot plate was turned off, four snowpits were then dug under the blue dyed surface and 

photographs were taken of the snowpit faces, showing blue areas where liquid water percolated 

the snow and remaining white areas where the snow stayed dry and cold (Fig. 4.1). The flow 

patterns showed the presence of both matrix flow at the upper snowpack and preferential flow 

paths below the matrix flow. Liquid water also ponded at layer interfaces, which was characterised 

by darker blue colours. The presence of liquid water was observed down to 60 cm from the snow 
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surface. During the experiment, seven photographs were taken, all showing similar flow 

behaviours.  

 

Figure 4.1 Photo of a snowpit face after 4 hours of melt of the dyed surface. The blue 
represents the dyed meltwater that percolated from the surface. 

4.2.2 Data Processing 

In each picture taken after the melt, preferential flow paths were observed. The photographs were 

cropped to isolate sections that only include connected preferential flow paths between two 

consecutive snow layers. These cropped images were binary in black and white, where white 

represents observed preferential flow paths (blue colour in the RGB photos) and the black exhibits 

the dry and cold snow areas. The binarization was done by filtering the blue and green spectral 

bands out of the images, leaving only the red spectral band. In these images in the red band, the 

initial blue colours from the dyed water appeared black. An example of a binary image is shown 

in Figure 4.2. 
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Figure 4.2 Binary image from RGB photograph of snowpit face after the melt and dye 
experiment. The black represents dry and cold snow and the white shows the preferential flow 
paths characterized by the blue dye color in the original photograph (e.g. Fig. 4.1). 

Using Matlab (MATHWORK) functions, the connected components present in the binary images 

were separated. A threshold corresponding to a number of pixels was manually chosen to disregard 

the small connected components, to consider only well-developed preferential flow paths. For 

instance, a threshold of 2500 pixels was selected for the binary image in Fig. 4.2. Figure 4.3 shows 

the connected components found in the binary image of Fig. 4.2. Each colour corresponds to a 

different connected preferential flow path. 

 

Figure 4.3 Processed image from the binary image in Fig. 4.2 that shows the isolated 
connected preferential flow paths in different colours. 

4.2.3 Fractal Objects 

A total of 16 images (similar to Fig. 4.3), each containing 2 or more connected preferential flow 

paths were produced. This resulted in a total of 40 isolated connected preferential flow paths. A 

Matlab function (regionprops) was applied to obtain the area (𝐴) and perimeter (𝑃) of each 

connected preferential flow path, which were determined by the number of pixels within and at 

the boundary of each isolated preferential flow path, respectively.  

In this section, the geometry of preferential flow paths is analysed. The geometry of preferential 

flow paths is studied using fractal geometry, i.e. their perimeter-area and area-frequency 

characteristics can be described by power equations (Mandelbrot, 1983). This approach is inspired 

by other snow studies that analyzed the fractal geometry of patchy snowcovers (Shook et al., 1993) 
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and of intercepted snow by forest canopies (Pomeroy and Schmidt, 1993; Pomeroy et al., 1998). 

The equations used in this section were also used in these snow studies.  

The power law describing the perimeter-area relationship is: 

𝑃 = 𝑘	𝐴ÏÐ/�, (4.1) 

where 𝑘 is a constant and 𝐷b the fractal dimension (> 1.0). 

Figure 4.4 shows a scatter plot of the estimated 𝑃 values against the estimated 𝐴 values for the 51 

connected preferential flow paths. R2 for the scatter data against the fitted line was equal to 0.93. 

The coefficients 𝑘 and 𝐷b, determined from the equation of the fitted line were 4.43 pixels and 

1.24, respectively. Ironically, the fractal dimension of the preferential flow paths is close to the 

fractal dimension of the Koch snowflake (=1.26). 

 

Figure 4.4 Scatter plot of logarithmic values of the estimated perimeters (𝑃) and logarithmic 
values of the areas (𝐴) for all the 51 isolated preferential flow paths. The red line is a linear fit 
to the scatter plot. 

 

 



89 

Korcak’s law is: 

𝐹(𝐴) = 𝑐𝐴�ÏÒ/�, 𝐴 > 𝐴fRQ (4.2) 

with 𝐹(𝐴) the number of objects with a size equal to or greater than area 𝐴, 𝑐 is a constant, and 

𝐷Ó a fractal dimension (different from 𝐷b). 

Figure 4.5 plots logarithmic values of 𝐹(𝐴) against logarithmic values of 𝐴 (blue dots), as well as 

the fitted linear curve (red line); R2 was equal to 0.89. The fractal dimension 𝐷Ó was found equal 

to 1.36, which is the same value as for 𝐷b and 𝑐 was equal to 15733 pixels. 

 

Figure 4.5 Scatter plot of the logarithmic values of the estimated numbers of objects with areas 
equal or greater to 𝐴 (𝐹(𝐴)) and the logarithmic values of areas (𝐴) from the processed images. 
The red line is a linear fit to the scatter plot. 

4.2.4 Discussion and Conclusion 

From 2D images of 40 isolated preferential flow paths, analysis showed that the geometry of 

preferential flow paths is similar to those of fractals. The fractal dimensions of preferential flow 

paths were similar to the fractal dimension of intercepted snow that varied between 1.22 and 1.44 

(Pomeroy and Schmidt, 1993) and to the fractal dimension of patchy snowcovers that varied 
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between 1.2 and 1.4 (Shook et al., 1993). To expand the results presented in this study, a similar 

analysis could be done on 3D observations of preferential flow paths, such as with the data 

collected by Williams et al. (2010). These results could then be used to evaluate new emerging 

models that have the potential to simulate preferential flow in snow (Hirashima et al., 2014, 2017; 

Leroux and Pomeroy, 2017). To compare such models with the results presented in this study, 

simulations of preferential flow paths must be done at very fine resolution to accurately compute 

the fractal relationships from the simulation results.  

Future studies should relate the shape and spatial distribution of preferential flow paths with 

snowpack internal properties. Thus, future similar analyses, while also measuring the snow internal 

properties (layer densities, grain sizes and temperatures) prior to melting the dyed snow surface, 

could potentially relate the fractal geometry of preferential flow paths to snow properties. 

4.3 Melt Flow Measurement and Model Comparison 

4.3.1 Field Measurements 

A “hot plate experiment” was designed to generate melt at the surface of a natural snowpack. The 

outflow resulting from surface melt was then measured at a known depth inside the snowpack. 

This experiment was conducted at Bonsai Clearing, Fortress Snow Laboratory, Kananaskis 

Country, Alberta. This site is approximately 30 m in diameter and the ground is slightly sloped by 

an angle of 6/7o. 

In this field study, the “hot plate” from the dye experiment (Section 4.2) is again used. In the field, 

the hot plate was placed onto the snow surface and the heat tape was plugged into a generator to 

artificially generate melt of the snow surface. The top of the hot plate that was facing the sky was 

insulated with a comforter and a silver blanket. Two heat flux plates (Huskeflux HFP01) were 

placed between the hot plate and the snow surface to measure the heat flux delivered to the 

snowpack every 10 min. After placing the hot plate on the snowpack, a snowpit was dug at the 

downward edge of the plate to insert a 1 x 1 m lysimeter into the snow at a certain depth below the 

surface (Fig. 4.6). A tipping bucket rain gauge (Campbell Scientific TE525) was positioned below 

the hose of the lysimeter (situated downward of the lysimeter) to measure the meltwater flow 

released from the lysimeter (Fig. 4.6). The snowpit face was covered with a silver blanket to 

insulate the snow from the atmosphere and prevent lateral melt. 
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Another snowpit was dug about a meter away from the hot plate before running the experiment. 

The initial snow stratigraphy, i.e. the depth and properties (snow density, layer grain size, 

temperature, and water content) of the different snow layers was observed. Snow density was 

measured every 10 cm using a 1000 cc wedge cutter, snow surface and internal temperatures 

were obtained with a dial stem thermometer (accuracy of ± 1oC), the grain size of each layer was 

estimated using a crystal card and a magnifying loop, and snow water content in the middle of 

each 10 cm layer was measured using a Denoth meter (Denoth, 1994). After running the 

experiments, snow properties of the melted snowpack were once again measured at two different 

locations. 

 

Figure 4.6 “Hot plate” experiment field setup. 

Experimental data were collected on April 1, April 4, April 5, and April 8, 2016. Table 4.1 

summarizes the average snowpack properties before and after each experiment. The snowpacks 

on 04/01 and 04/04 presented cold snow layers, and the snowpacks on 04/05 and 04/08 were 

isothermal at the melting point. The three first studies (04/01, 04/04, and 04/05) were conducted 

in 50 cm snowpacks, and the snowpack on 04/08 was 70 cm high. The experiments began each 

day around 11 am and lasted for about 3 hours. For each experiment, the snowpack had a slope 

angle of 6.5o. 

Figure 4.7 shows the time at which the first outflow through the hose of the lysimeter was 

observed. As the snowpack warmed up, from the first experiment to the third experiment, the time 

of first outflow occurred sooner. For both isothermal snowpacks (04/05 and 04/08), outflow 

occurred later for the deeper snowpack. 

Heat plate 

Lysimeter 

Tipping-bucket 

rain gauge 

Reflective  

blanket 

Data Logger for HFP 

Snowpit 
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Table 4.1 Measured snow properties prior and after the experiments. 

Date 
(Month/day) 

Depth 
[m] 

Average 
dry 
density 
[kg m-3] 

Average 
water 
content 
[%] 

Number 
of ice 
layers 

Average 
snowpack 
temperature 
[oC] 

Average input 
flux [W m-2] 

04/01 Before 0.5 276 5 4 -8 861 

After 0.42 217 9.6 NA 0 

04/04 Before 0.5 325 4 5 -4 914 

After 0.44 271.4 9.4 NA 0 

04/05 Before 0.5 300 8 3 0 923 

After 0.42 220 13.0 NA 0 

04/08 Before 0.7 329 1.2 4 0 646 

After 0.65 216 14.7 NA 0 

 

 

Figure 4.7 Times at which first outflow was observed for the experiments conducted on 04/01, 
04/04, 04/05, and 04/08. 
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4.3.2 Model Comparison 

The model developed by Leroux and Pomeroy (2017) was used to represent meltwater outflow 

observed during the four experiments. Because this model is 2D, only a two-dimensional cross 

section (parallel to the slope) of the natural snowpacks was modelled, and homogeneity was 

assumed in the third dimension (perpendicular to the slope). Fluctuations following a Gaussian 

distribution of standard deviation of 10% and 5% were applied in each numerical cell to the 

observed average grain size and density of each snow layer. The height of the snowpack in the 

model corresponded to the depth at which the lysimeter was inserted. The lateral length of the 

snowpack was set to be the same as the length of the hot plate (90 cm). The numerical grid 

resolution was 1x1 cm. The snow properties that were measured prior to running each experiment 

(density, grain size, temperature, and water content every 10 cm) were used to initialize the model. 

Given that the experiments were conducted in the spring and melting and refreezing of the 

snowpack had previously occurred, round snow grains were observed in the upper part of the 

snowpack, except for the ice layers. Therefore, the mean grain diameter that was measured in the 

field was assumed to be equivalent to the optical grain diameter, and it was estimated at 1 mm. 

The average heat flux from the two heat flux plates was applied in the model as an upper boundary 

condition to generate melt (top graphs in Fig. 4.8). It can be observed that the two heat fluxes 

measured at different locations on the snow surface are relatively similar. Thus, it is assumed that 

the heat flux from the hot plate to the snow surface is spatially homogeneous. In the simulation, 

the heat flux at the bottom of the snowpack was assumed to be 0 W m-2. The hole in the lysimeter 

that allowed meltwater to flow to the tipping bucket rain gauge was 2 cm in diameter. Thus, in the 

model, liquid water was allowed to leave the snowpack at the endmost 2 cm downhill of the 

snowpack. The rest of the bottom boundary condition was set to no-flow. 

The simulated and observed meltwater outflows for each experiment are compared in the lower 

graphs in Fig. 4.8. The simulated outflow was plotted every 10 min, which is the interval over 

which the input flux was averaged. In all cases, the time at which simulated outflow first occurred 

was later than the observed times. Simulated total outflows were all under-estimated. At the end 

of each simulation, the model simulated an ablation of 7.3 cm, 7.2 cm, 9.7 cm, and 4.6 cm for the 

simulations corresponding to the 04/01, 04/04, 04/05, and 04/08, respectively. This is in close 

agreement with the data presented in Table 4.1. 
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Figure 4.9 shows the distribution of simulated liquid water content at different times using the data 

collected on 04/01. The model simulated no preferential flow paths; neither was water estimated 

to be ponding at the layer interfaces.  However, lateral flows throughout all cells occurred despite 

the small slope angle (6o). A high saturation layer was modelled at the bottom of the snowpack. 

This was also observed during the field experiments. 

 

Figure 4.8 Top graphs show the two measured heat fluxes and the average of the two between 
the hot plate and the snowpack for 4 different experiments. The bottom graphs show the 
observed (blue line) and simulated (red dots) outflows during 4 different experiments. 
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Figure 4.9 Simulated water content distribution at different times using the data collected on 
04/01. 

4.3.3 Discussion 

The field campaign was designed to evaluate the model developed by Leroux and Pomeroy (2017). 

The melt of a natural snowpack was generated using a hot plate to avoid uncertainties when 

applying the energy balance above snow to estimate melt at the surface. The layered structure 

(layer depth and properties) of the snowpacks was observed for every 10 cm of vertical resolution 

prior to running each experiment. Many ice layers were distinguished within the snowpacks; 

however, they could not be included in the numerical model, as the optical grain size and density 

of ice layers are not known and because of the vertical resolution of 10 cm of the field data that 

prevented describing ice layers in the model initial conditions. Including the ice layers in the initial 

snowpack stratigraphy in the model could have resulted in a slightly improved prediction of the 

timing and magnitude of meltwater outflow. However, due to the high heat input flux at the surface 

and the high meltwater content within the snowpack (observed at the end of the field experiment), 

ice layers degenerated rapidly in the field experiments and this process cannot be accurately 

simulated in the model due to lack of information on how ice layer properties change during melt 

(Marsh, 1991). Similarly, even though grain size was measured using a snow crystal card and a 

magnifying loop, these values could not be used as inputs in the model, as optical grain size is 

required to estimate snow hydraulic parameters. Because the experiments were conducted early in 

the melt season, natural melt-freeze cycles already occurred prior to doing the experiments. This 

resulted in the presence of rounded grains with diameters ranging between 1 and 1.5 mm in the 

upper snowpack (except for the ice layers) caused by wet snow metamorphism during the previous 

melt cycles. This justifies the use of a constant value of optical grain size. In this case 1 mm was 
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used in the model for all snow layers. As model behaviour varies with the input value of optical 

grain size (Leroux and Pomeroy, 2017), this assumption created additional uncertainties in the 

simulated outflow. 

The model poorly represented the observations; the simulated outflow occurred later than in the 

observations. This lag can be caused by the 3D nature of the field data, as well as uncertainties in 

the model inputs. In addition, no preferential flow paths were simulated. The model inputs and 

initial conditions were varied to determine under which conditions preferential flow paths occurred 

using the data. From 04/01: the grid resolution was decreased (from 1 cm to 5 cm), as well as the 

optical grain size for each layer (from 1 mm to 5 mm) and the heat input flux (down to a constant 

flux of 100 W m-2), the heterogeneities in grain size and density were increased (by a factor of 2), 

and the snow density of each layer was also increased (to 450 kg m-3 for each layer). Preferential 

flow paths formed in the model only when the snow density of each layer was increased (Fig. 

4.10); for the other conditions stated above, matrix flow was simulated. As the snow density 

increased, the estimated capillary pressure within the snow also increased and the water content 

accumulating at the interface of wet to dry snow layers increased; an increase of snow density in 

the model created the necessary conditions for preferential flow to form. It was thus concluded 

that the conditions for preferential flow to form in the model were not met when using the natural 

snowpack properties, i.e. water accumulation and fast percolation (Leroux and Pomeroy, 2017). 

This raises the question of whether the capillary entry pressure estimated by Katsushima et al. 

(2013) is valid for a wide range of snow densities, as it was developed for snow samples with 

densities greater than 380 kg m-3. The use of water entry pressure in snow may not be appropriate 

to simulate preferential flow paths, and future study should consider other methods to estimate 

preferential flow in snow. 
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Figure 4.10 Simulated water content distribution using the heat flux measured during the 
experiment on 04/01 with a snow density of 450 kg m-3. 

4.4 Conclusion 

In the first section of this chapter, a dye field experiment was presented and the fractal geometry 

of 2D preferential flow paths was analyzed. The fractal dimensions of the 2D preferential flow 

paths were similar to those of other snow processes, such as snow interception by canopy and 

patchy snowcover. Further work is required to measure the fractal geometry of more preferential 

flow paths in different snowpacks with different properties. This could then be used to evaluate 

the simulation of preferential flow paths by new emerging numerical snow models (Hirashima et 

al., 2014, 2017; Leroux and Pomeroy, 2017). 

The second study presented a field campaign designed to artificially generate the melt of natural 

snowpacks and to measure meltwater outflow. These data were used to evaluate a 2D numerical 

snow model capable of representing preferential flow in snow. The 2D model was not able to 

simulate formation of preferential flow paths, resulting in a delay in estimated meltwater outflow. 

The use of water entry pressure to generate preferential flow paths was deemed not appropriate for 

natural snow with densities lower than 380 kg m-3 (the density used in the laboratory experiments 



98 

to estimate the water entry pressure equation). Therefore, the current approach applied to trigger 

the formation of preferential flow in a snow model could be improved. 

Additional field studies such as the one presented here are needed to improve the accuracy of 

emerging models that can simulate both matrix and preferential flows. When evaluating the model 

against field data, problems were encountered with the data applied as model inputs and with the 

model representation of water transport. In future studies, the optical snow grain size of each layer 

should be measured in the field; for example, using near-infrared images (Montpetit et al., 2012). 

This would help better predict the snow hydraulic properties in the model.  

Key Points for the Next Chapter 

• Understanding the current limitations of using water entry pressure to simulate preferential 

flow, how can preferential flow paths be simulated without using water entry pressure? 

• How can the water retention curve be modified to estimate capillary pressure when the 

water content is below the residual value? 
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CHAPTER 5 

SIMULATION OF CAPILLARY OVERSHOOT IN SNOW 3 

Abstract 

The timing and magnitude of snowmelt discharge and subsequent runoff are controlled by both 

matrix and preferential flows of water through snowpacks. Matrix flow can be estimated using the 

Richards equation and, recently, preferential flow in snowpacks has been represented in 2D and 

3D models. A challenge for representing preferential flow through porous media is capillary 

overshoot, and soil studies have developed sophisticated and largely realistic approaches to 

represent this, but it has not been addressed in snowpack water flow models. Here, a 1D non-

equilibrium Richards equation model is implemented with dynamic capillary pressure and is then 

combined with a new concept of entrapment of liquid water within the pore space. This new model 

was capable of quantitatively simulating capillary overshoot, as estimated by published capillary 

pressure measurements in snow samples of various grain sizes under different rates of liquid water 

infiltration. Three model parameters were calibrated and their impacts on model outputs were 

evaluated. This improvement is a substantial step towards better understanding and simulating 

physical processes occurring while liquid water percolates an initially dry snowpack. 

 

 

 

 

                                                

3 Leroux, N.R., and J.W. Pomeroy (2018), Simulation of capillary overshoot in snow combining 
trapping of the wetting phase with a non-equilibrium Richards equation model, under review in 
Water Resources Research. Nicolas Leroux is the lead author and investigator of this manuscript. 
John Pomeroy provided assistance with conceptualization, editorial assistance and discussion of 
the results. 
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5.1 Introduction 

During snowmelt and rain-on-snow events, the timing and magnitude of runoff at the base of a 

snowpack are primary controlled by infiltration of water through snow (Horton, 1915; Colbeck, 

1972; Wankiewicz, 1979). Understanding water flow through snow is not only crucial to better 

predicting cold regions hydrology, it is also an important factor in triggering wet snow avalanches 

(e.g. Kattelman, 1984; Wever et al., 2016). Under a warming climate, slower and earlier snowmelt 

is forecast (Rauscher et al., 2008; Lopez Moreno et al., 2017; Pomeroy et al., 2015; Musselman et 

al., 2017) and the number of rain-on-snow events, sometimes causing extreme flooding (Pomeroy 

et al., 2016), is expected to increase (Cohen et al., 2015). Accurately predicting the timing and 

amount of snowmelt runoff is critical to better forecasting of extreme melt events. 

Preferential flow paths in snow have been widely documented in experimental studies (Marsh and 

Woo, 1984; Schneebeli, 1995; Waldner et al., 2004; Katsushima et al., 2013; Avanzi et al., 2016). 

Preferential flow in snow accelerates the infiltration of water, which bypass zones in the snowpack 

that remain dry and cold (Marsh and Woo, 1984; Marsh, 1991). Only recently, multi-dimensional 

numerical models were developed to simulate the formation and propagation of preferential flow 

in snow (Hirashima et al., 2014, 2017; Leroux and Pomeroy, 2017). In these models, water entry 

pressure, that is “the water pressure that is required for water to enter a new region of the pore 

space” (DiCarlo, 2010), was used to estimate the water pressure in air-dry snow, i.e. when the 

water content was initially below its residual value. These models simulated capillary overshoots 

in snow, but the predicted values failed to mimic laboratory experiments with artificial snow 

samples (Katsushima et al., 2013). In particular, the model of Hirashima et al. (2014) greatly 

overestimated capillary pressure, most likely because capillary hysteresis was neglected (Leroux 

and Pomeroy, 2017). The pore processes that cause hysteresis also impact the width and length of 

preferential flow paths (Leroux and Pomeroy, 2017). Despite these improvements in modeling 

water flow through snow, the use of capillary entry pressure for dry snow contradicts the 

hydrophilic nature of ice. Indeed, water entry pressure represents the repellency between dry snow 

and liquid water. Dry snow is, however, expected to be hydrophilic due to the existence of a thin 

layer of liquid water around the ice grains (Dash et al., 1995, 2006) and a small contact angle of 

water on ice (~12o) (Knight, 1967). Thus, introducing water entry pressure for dry snow in 
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Richards equation results in capillary overshoot and preferential flow paths, and its implementation 

in a numerical model is based on a physically inaccurate concept. 

Capillary pressure overshoot and saturation overshoot have been observed in soil (Glass and 

Nicholl, 1996; Bauters et al., 1998, 2000; DiCarlo, 2004). Saturation and pressure overshoots were 

found to be the reason for unstable flow (Eliassi and Glass, 2001; DiCarlo, 2013), but unstable 

flow cannot be represented by solutions of the standard Richards equation, which are 

unconditionally stable (Egorov et al., 2003). Different extensions to the Richards equation have 

been proposed to simulate the hold-back behaviour in saturation observed at the tips of the 

preferential flow paths (summarized in DiCarlo (2005, 2010, 2013)). Hassanizadeh and Gray 

(1993) suggested adding a dynamic term in the capillary pressure equation to account for the 

relaxation mechanism between water saturation and water pressure. The use of a dynamic capillary 

pressure in the Richards equation allowed for the simulation of saturation and pressure overshoots 

in 1D models, as well as unstable flows in 2D and 3D models (Nieber et al., 2003; DiCarlo, 2005; 

Sander et al., 2008; Chapwanya and Stockie, 2010; Zhang and Zegeling, 2017). DiCarlo (2010) 

noted that the capillary pressure and saturation at the tip of a flow finger followed a dynamic 

(transient) capillary wetting curve that matched the static capillary pressure wetting curve, i.e. the 

curve relating the capillary pressure and the saturation of the wetting phase at equilibrium during 

a wetting process. Therefore, applying a dynamic capillary pressure to simulate capillary pressure 

overshoot and preferential flow in snow should be more appropriate than using a single-value 

water entry pressure when the media is initially dry. This is demonstrated here.  

Where water flow is estimated using the Richards equation in snowpack models, constant values 

of residual water content have often been applied, neglecting the potential impact of snow 

properties on this parameter (Jordan, 1983; Illangasekare et al., 1990; Daanen and Nieber, 2009; 

Wever et al., 2014; Leroux and Pomeroy, 2017; D’Amboise et al., 2017). The values of the 

volumetric residual water content used in snowpack models were determined during drainage 

experiments using small snow samples (Yamaguchi et al., 2010; Katsushima et al., 2013). Prior to 

the first snowmelt, the temperature of a snowpack is below freezing with no liquid water present 

within the pore space (outside of the thin fluid of liquid water existing around the snow grains). 

Thus, the residual value for the first wetting process should be zero. 
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Pragmatic strategies were used in snow models to determine residual water content in wetting 

snow layers that were initially air-dry (Wever et al., 2014; D’Amboise et al., 2017). These methods 

can be seen as simple trapping models that determine the amount of isolated liquid water within 

the pore space as a function of available liquid water. This is analogous to trapping of the non-

wetting phase in soil petroleum engineering (Land, 1968; Lenhard and Parker, 1987), where the 

trapped non-wetting phase (usually oil or gas) is extracted from the porous medium by a moving 

wetting phase (usually water). Land (1968) developed a model to estimate residual saturation of a 

non-wetting phase as a function of the initial saturation of the non-wetting phase. Land (1968) 

separated the non-wetting fluid into a mobile fluid and a trapped fluid. A trapping model to 

estimate residual saturation of the wetting phase that can be combined with a hysteretic water 

retention curve in snow is introduced here. 

In this study, a 1D numerical model to simulate water flow through snow that addresses the two 

gaps in the literature is presented. A dynamic capillary pressure is included in the Richards 

equation to simulate capillary overshoot in snow. This new non-equilibrium Richards equation 

model also incorporates a new water retention model, including a method for estimating residual 

water content in wetting snow layers that are initially air-dry. In addition, this model is compared 

to published data and sensitivity of model outputs on model parameters is examined.  

5.2 Theory 

To simulate the vertical flow of liquid water in snow, the 1D Richards equation is solved: 

𝜕𝜃A
𝜕𝑡 =

𝜕
𝜕𝑧 �𝑘CA

(𝜃A)𝐾B
𝜕𝑃[(𝜃A)
𝜕𝑧 � −

𝜕
𝜕𝑧
(𝑘CA(𝜃A)𝐾B),	 

(5.1) 

where 𝜃A is the volumetric water content [m3 m-3], 𝑘CA(𝜃A) is the relative permeability [-] (c.f.  

Section 5.2.2), 𝐾B is the saturated hydraulic conductivity [m s-1] and 𝑃[(𝜃A) is the static capillary 

pressure [unit head] (c.f. Section 5.2.1). In this study, saturation is defined as 𝑆A = 𝜃A/𝜃AB, where 

𝜃AB is the volumetric water content at saturation. 

Prior to the first snowmelt or rain-on-snow event, the pores within a snowpack are air-dry, i.e. no 

liquid water is present. In the present study, the contribution of liquid water from the thin film 

surrounding the ice grains to bulk water content at macroscale is neglected. For initially dry snow, 

Hirashima et al. (2014) used constant water entry pressure in their model until the water saturation 
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reached a residual saturation value, 𝑆AC, after which the capillary pressure was estimated from the 

drainage water retention curve. The various values of volumetric residual water content, 𝜃AC, 

measured for snow, ranging between 0.018 m3 m-3 and 0.04 m3 m-3 (e.g. Yamaguchi et al., 2010; 

Katsushima et al., 2013) were determined by draining snow samples initially fully saturated until 

only the water held by capillary forces remained in the pores (e.g Yamaguchi et al., 2010; 

Katsushima et al., 2013). These published values of 𝑆AC correspond to maximum residual 

saturations on the drainage curve, hereby called 𝑆ACfgh	. 

A new water retention curve in snow that can be applied from initially dry to fully saturated snow 

for both wetting and draining processes is introduced here. The main wetting and the main drainage 

curves start at 𝑆A = 𝑆AC = 0 and 𝑆A = 𝑆ACfgh , respectively. The trapping model of Land (1968) is 

adapted to account for entrapment of the wetting phase by using saturation of the reversal point 

between wetting and drainage, in contrast to entrapment of the non-wetting phase for which it was 

developed. This modified model is used to determine residual saturation of the wetting phase 

(𝑆AC ∈ [0, 𝑆ACfgh]) based on saturation of the reversal point (𝑆RE¡ ) when the process switches from 

wetting to drainage: 

𝑆AC = 	
ÔÕÖ
×

� ØÔÕÖ
× , (5.2) 

with 𝐶 = �
ÔÙÚÛÜÝ − 1	. 

5.2.1 Water Retention Curve 

The relationship between static capillary pressure (𝑃[B in Eq. 5.1) and saturation of the wetting 

phase, i.e. the water retention curve includes a main wetting curve initiating at 𝑆A = 0, a main 

draining curve starting at 𝑆A = 𝑆ACfgh , as well as drying and wetting scanning curves. From this 

point, the superscripts 𝑖 and 𝑑 represent the wetting and draining modes of parameters. The main 

wetting and drying curves are estimated using the van Genuchten model (van Genuchten, 1980): 

𝑃[ 	=
�
Þß
	à� áÙ

ß �áÙÚ
ß

áÙâ�áÙÚ
ß 	�

� ã
äß
− 1å

�/�ß

,		with 𝑚» = 1 − 1/𝑛» 
(5.3) 

where 𝜃AB is the water content at saturation [m-3 m-3], 𝛼 [m-1], 𝑛» and 𝑚» are parameters, and 𝑗 ∈

	{𝑤, 𝑑}. The van Genuchten parameters 𝛼z and 𝑛z for the main wetting curve are scaled from the 
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parameters of the main draining curve (𝛼9 and 𝑛9) according to the method of Kool and Parker 

(1987), i.e. 𝑛A = 𝑛E and 𝛼A = 𝛾𝛼E, with 𝛾 usually taken equal to 2. In snow, parametric equations 

for 𝛼E and 𝑛E exist, relating these parameters to snow grain size and dry density. 

The scanning curves are simulated according to the model of Huang et al. (2005). The scanning 

curves are forced to pass through the reversal points on the main wetting and drainage curves to 

obtain closure of the loops, thus preventing artificial pumping errors (Werner and Lockington, 

2006). The water content on each scanning is estimated by fitting the van Genuchten model to pass 

through the two reversal points on each main curve, which are known. 

Figure 5.1a presents an example of the water retention curve for 𝛼9 = 10 m-1, 𝑛9 = 10, 𝜃AB = 0.6, 

𝛾 =	2 and 𝜃ACfgh = 0.02 (values similar to the observations of Katsushima et al., 2010). The main 

wetting and drainage curves started at two different residual saturations (𝑆AC= 0 and 𝑆AC= 𝑆ACfgh , 

respectively), while the drying scanning curve that initiated from the main wetting curve (black 

dot in Fig. 5.1a) had a residual saturation calculated from Eq. 5.2. 
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Figure 5.1 a) Example of a water retention curve for 𝛼9 = 10 m-1, 𝑛9 = 10 and 𝜃ACfgh = 02 
(values similar to those measured by Katsushima et al. (2013)). The black dot represents the 
reversal point from the main wetting curve to the drying scanning curve at 𝑆A = 1. b) Example 
of hysteresis in the relative permeability for the same parameters as in a). The black dot 
represents the same reversal point as in a). 

5.2.2 Water Relative Permeability 

In a trapping model, a fluid is divided into flowing (mobile) saturation (𝑆AS ) and a trapped 

(disconnected) saturation (𝑆Aa ), such that 𝑆A 	= 	 𝑆Aa 	+ 	𝑆AS . The model of Land (1968) is used to 

estimate saturation of the flowing fluid as it qualitatively represented the trend observed during 

wetting in soil (Joekar-Niasar et al., 2013): 

𝑆AS =
�
�
à(𝑆A − 𝑆AC) + è(𝑆A − 𝑆AC)� +

¨
Ø
(𝑆A − 𝑆AC)	å . 

(5.4) 

The Mualem-van Genuchten model (Mualem, 1974; van Genuchten, 1980) is applied to estimate 

relative permeability of the wetting phase. During the main wetting, relative permeability of the 
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wetting phase (𝑘CAA ) is a function of the total saturation 𝑆A, while the drainage relative permeability 

of the wetting phase (𝑘CA9 ) was estimated from Land’s model (Land, 1968): 

𝑘CAE £𝑆AS ¤ = 𝑘CAA (𝑆A)	. (5.5) 

Figure 5.1b illustrates an example of hysteresis in relative permeability, resulting from entrapment 

of the wetting phase. For each flow process, relative permeability follows a unique curve. At a fix 

water content, relative permeability of the wetting phase is smaller during a drainage process than 

during wetting because of a reduced flowing saturation during drainage. 

5.2.3 Non-Equilibrium Richards Equation Model 

Saturation or pressure overshoots cannot be represented when solving the standard Richards 

equation (DiCarlo, 2005; Eliassi and Glass, 2001, 2002, 2003). Several extensions have been 

added to Richards equation to simulate saturation or capillary overshoots in snow or soil. Water 

entry pressure was previously used to simulate water ponding at the interface between wet and dry 

snow layers (Hirashima et al., 2014; Leroux and Pomeroy, 2017). Hassanizadeh and Gray (1993) 

proposed a non-equilibrium model for capillary pressure. They suggested the use of a dynamic 

capillary pressure (the actual capillary pressure within the pores, 𝑃[,E in unit head) in the Darcy-

Buckingham equation: 

𝑃[,E(𝜃A) = 𝑃[(𝜃A) − 𝜏
�áÙ
��

, (5.6) 

  
where 𝜏 is a relaxation coefficient [m s]. In soil, capillary pressure and saturation at the front of a 

preferential flow path form a dynamic wetting curve that matches the main static wetting curve 

(DiCarlo, 2010). Hence, using a dynamic capillary pressure to simulate saturation and capillary 

overshoots in snow might be more appropriate than using a single-value water entry pressure.  

Different models exist to relate the relaxation coefficient 𝜏 to the dynamic capillary pressure and 

saturation (e.g. Cuesta et al., 2000; Dautov et al., 2002; Nieber et al., 2005). Here, the relaxation 

coefficient 𝜏 is assumed to be a function of the flowing saturation, following the power law relation 

of Cuesta et al. (2000): 

𝜏 = 	 𝜏$£𝑆AS ¤
é
	, (5.7) 
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where 𝜏$ [m s] and 𝜆 are two constant coefficients to determine. The flowing saturation 𝑆AS  is used 

in Eq. 5.7 as it remained continuous when the flow process switched from wetting to drainage and 

a new residual saturation was estimated (Eq. 5.2), as opposed to the effective saturation used in 

Cuesta et al. (2000). 

5.3 Numerical Simulations 

A one-dimensional model was developed to simulate vertical water flow through snow. The non-

equilibrium Richards equation, which includes the trapping and the hysteresis models presented in 

Section 5.2, was solved using an explicit finite difference method, as presented in Sander et al. 

(2008). An arithmetic average was used to estimate the parameters at the interface of two numerical 

cells and the time step was smaller or equal to 5x10-4 s.  

5.3.1 Comparison with Katsushima et al. (2013) Experiments 

The model results were compared to the experimental data of Katsushima et al. (2013). In their 

study, Katsushima et al. (2013) applied a known water influx (~22 mm h-1, ~70 mm h-1, and ~ 200 

mm h-1) at the surface of snow samples of similar density but different grain sizes (from finest to 

coarsest snow sample, the snow samples are named: SM, SL and SLL). The snow samples were 

each 27 cm high and 5 cm wide and their density and grain size were recorded prior to the 

infiltration experiments. The physical properties (density and grain size) of the snow samples are 

summarized in Table 5.1. In the model, the 27 cm tall snow columns were uniformly discretized 

into 108 vertical numerical cells (each 0.25 cm thick). Drainage water retention curves were also 

measured for each snow sample, and the van Genuchten model was fitted to the data to obtain the 

parameters 𝜃ACfgh, the water content at saturation 𝜃AB, and 𝛼E and 𝑛E. In addition, the hydraulic 

conductivity (𝐾B) of each snow sample was determined. These parameters (summarized in Table 

5.1) were directly applied in the model, as well as the known influx at the snow surface. The main 

wetting curve and the scanning curves were estimated as detailed in Section 5.2.1. Free-drainage 

was chosen as lower boundary condition. During the experiments, the upper two centimetres of 

the snow samples were initially wet at 𝜃A = 𝜃ACfgh , while the rest of the snow sample was initially 

air-dry (𝜃A = 0). To avoid numerical divergence in the model, the water content profile in each 

snow sample was initialized as follow: 
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𝜃A = ê𝜃AC
fgh + 𝜖			if	𝑧 ≥ 25	cm
0 + 𝜖									if	𝑧 < 25	cm

   with 𝜖 = 10��. 

As the wet snow was obtained from drainage experiments after equilibrium was reached in the 

model, for 𝑧 ≥ 25 cm, the pressure was initialized on the main drainage curve, while it was on the 

main wetting curve for the rest of the snow sample (𝑧 < 25 cm). 

Table 5.1  Summary of the snow properties and model parameters. 

 

During the infiltration experiments, Katsushima et al. (2013) measured capillary pressure with a 

tensiometer at the interface between wet and dry snow (at 25 cm < 𝑧 < 25.6 cm). Due to the short 

time scale and the transient nature of the experiments, the pressure measured at the interface is the 

dynamic capillary pressure within the snow. At this interface, capillary overshoots were observed 

for all three snow samples (SM, SL, and SLL) at all three different input fluxes. In the snow sample 

SS used in the study by Katsuhima et al. (2013), capillary overshoot was not observed. Therefore, 

this snow sample is disregarded in this analysis. In most experiments, the capillary pressure 

overshoot was greater for finer snow. An analysis of the capillary pressure measurements showed 

that the time at which minimum pressure was reached was longer for decreasing grain size and 

was shorter with increasing input flux.  

The simulated capillary pressures at the wet to dry interface with the non-equilibrium Richards 

equation model was compared to the capillary pressure observations of Katsushima et al. (2013). 

Initial simulations were run to observe the ability of the model to represent capillary pressure 

overshoot. The three model parameters 𝜏$, 𝛾, and 𝜆 were manually varied to match the 

observations. A more detailed sensitivity analysis, showing the impact of each parameter on the 

model response, is presented in Section 5.3.3.  

Snow 
sample 

Mean grain 
size [mm] 

Mean density  
[kg m-3] 

𝐾B	[m hr-1] 𝜃AB 𝜃ACfgh 𝛼9 [m-1] 	𝑛9 

SLL 1.439 498 19.34 368 039 16.3 9.48 
SL 1.049 511 5.9 353 038 11 13.95 

SM 421 483 3.18 420 040 6.1 14.54 
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Water infiltration through the three snow samples was simulated under the three different water 

influxes. The effect of the relaxation coefficient 𝜏 for different snow grain sizes is first evaluated 

by holding 𝜆 constant at 0 and varying 𝜏$ and 𝛾. As expected, the results from the standard 

Richards equation (no capillary overshoot) were reproduced for 𝜏 = 0. Figure 5.2 presents the 

simulated capillary pressures at the wet to dry snow interface compared to observations for the 

three snow samples SLL, SLL and SM (left to right figures, respectively) with the three different 

water influxes (increasing influx from top to bottom figures). The values of the two parameters 

{𝜏$,𝛾} for all 9 simulations are summarized in Table 5.2 (𝜆 = 0). 𝛾 was observed to primarily 

impact the simulated value of minimum pressure and 𝜏$ controlled the value of pressure at steady 

state. For the snow sample SM, 𝛾 dramatically increased with input flux, while it only slightly 

increased for the other two snow samples. In all snow samples, 𝜏$ decreased for increasing input 

fluxes. For decreasing grain size, 𝜏$ and 𝛾 respectively increased and decreased to successfully 

represent the increase of capillary overshoot observed in the data. The magnitudes of capillary 

pressure overshoot were well represented in the model. The biases between individual simulated 

and observed values of minimum pressure and pressure at steady state were less than 1 % (Fig. 

5.2). For most of the simulations, the timing of the modeled capillary pressure failed to reproduce 

observations. The modeled minimum capillary pressure and modeled steady state were reached 

slightly prior to and later than the observed times, respectively. For all simulations, the minimum 

pressure was reached when the water content was maximum (not shown). 
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Figure 5.2 Simulated (black lines) and observed (coloured diamonds) capillary pressures for 
three different snow samples (from left to right columns, coarse to finer snow: SLL, SL, and 
SM) at three different input fluxes (lower to higher fluxes from top to bottom of graphs). For 
all simulations, 𝜆 was equal to 0 and the values of the coefficients 𝜏$ and 𝛾 are as summarized 
in Table 5.2. 

Table 5.2 Parameters {τ$,γ} for the Snow Samples SLL, SL, and SM and Three Different Input 
Fluxes (λ=0). 

 SLL SL SM 

Flux [mm hr-1] 22.7 77.8 199.7 22.3 73.8 208.6 21.1 65.7 195.3 

𝜏$ [m s] 1.3 0.25 0.12 15 4.2 1.1 20 6 0.75 

𝛾 2.16 2.23 2.23 1.9 1.82 1.92 1.57 1.62 1.72 
 

The impact of 𝜆 on simulated capillary pressure was also investigated. Figure 5.3 shows the 

simulated capillary pressure in the snow sample SLL under the lower influx for values of 𝜆 and 𝜏$ 

(shown in Fig. 5.3), with 𝛾 fixed at 2.16. Because 𝜏$ and 𝜆 were adjusted to match the observations 

(with a bias £ 1 %), similar results were obtained in the different cases. It was observed that, for 

increasing 𝜆, the minimum value of capillary pressure. The time and value of capillary pressure at 
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steady state randomly varied with 𝜆. In addition, as 𝜏$ was increased with 𝜆 to reproduce the 

observations, these two parameters combined controlled capillary pressure overshoot.  

 

Figure 5.3 a) Simulated capillary pressure through time for different values of 𝜆 and 𝜏$ in the 
snow sample SLL under an input flux of 22.7 mm hr-1. 𝛾 was fixed at 2.16. The blue diamonds 
represent the measured capillary pressure by Katsushima et al. (2013) for the same snow 
sample and same input flux. b) Simulated capillary pressures for the same conditions as in a) 
from 50 s and 150 s (zoomed in from the black box in a)) 

5.3.2 Saturation Overshoot in Snow 

Water content distribution simulated within the three snow samples for the three different input 

fluxes was examined. Water content distribution within the three snow samples for the lower input 

flux (~20 mm hr-1) at 1000 s, 1800 s, and 3000 s for the snow samples SLL, SL, and SM, 

respectively, are presented in Fig. 5.4. The parameters 𝛾 and 𝜏$ used for these simulations are the 

same as those from Section 5.3.1 and are presented in Table 5.2, with 𝜆 again set at 0. In all snow 

samples, a peak of saturation was observed at the interface between wet and dry snow, and 

saturation overshoots were simulated at the wetting fronts. This was expected from using a 
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dynamic capillary pressure in the Richards equation. For decreasing grain size, the overall 

simulated water saturation in the snow and the water saturation at the wet to dry snow interface 

increased and the velocity of the wetting front was slower, due to higher capillary pressure in the 

pore space. In addition, the saturation overshoot was greater for higher input flux (not shown).  

 

Figure 5.4 Simulated water content distributions within the three snow samples SLL, SL, and 
SM each at a different time (1000 s, 1800 s, and 3000 s, respectively). The input flux used was 
~22 mm hr-1, 𝜆 was chosen equal to 0, 𝛾 was equal to 2.16, 1.9, and 1.57 and 𝜏$ equal to 1.3 
m s, 15 m s, and 20 m s for the snow samples SLL, SL, and SM, respectively. 

5.3.3 Sensitivity of Model Parameters 

The three model parameters (𝜏$, 𝜆, and 𝛾) impact the timing and magnitude of minimum capillary 

pressure, and the values of pressure at steady state. The sensitivity analysis was conducted using 

the snow sample SLL under the lowest input flux (22.7 mm hr-1). This snow sample was chosen 

because it presented the lowest values of 𝜏$ in Section 5.3.1 (Table 5.2). Thus, a narrower range 

of 𝜏$ values was necessary in the sensitivity analysis to correctly quantify the impact of this 

parameter on model outputs, using less iteration and less CPU time to conduct the sensitivity 

analysis than using the other snow samples. The results of the sensitivity analysis in the other snow 
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samples is expected to be comparable, as the model parameters behaved similarly during the 

manual calibration in Section 5.3.1. 

Values of 𝜏$ and 𝜆 for snow are unknown. From Section 5.3.1, capillary pressure overshoot in 

SLL under the lowest water influx was well represented for 𝜏$ ∈ [1.3,320], 𝜆 ∈ [0,2], and 𝛾 = 2.16. 

From these initial results, the three input parameters in the sensitivity analysis were chosen to vary 

as follow: 𝜏$ ∈ [1,350] m s1, 𝛾 ∈ [1.5, 2.5], and 𝜆 ∈ [0, 2]. The VARS toolbox (Razavi and Gupta, 

2016a, 2016b) was used to create an input file for the sensitivity analysis and analyze the model 

behaviors. Based on a “star-based” sampling strategy, VARS creates the samples for the sensitivity 

analysis from the factor space of each parameter. The 1D non-equilibrium Richards equation 

model was then run with each sample (each containing values for the set {𝜏$, 𝜆, 𝛾}) The input 

coefficients in the VARS toolbox were kept to their default values, resulting in a total number of 

model runs (number of samples) equal to 560. VARS was then applied to analyze the model 

responses, i.e. the biases between each of the three model outputs and their corresponding value 

in the observations, to each sample. The sensitivity of a model response to each factor was 

determined using the Integrated Variogram Across a Range of Scales (IVARS) over a range 

between 0 and 10 % (IVARS10), between 0 and 30 % (IVARS30), and between 0 and 50 % 

(IVARS50) as suggested by Razavi and Gupta (2016a). 

Figure 5.5 presents the normalized IVARS50 value of each parameter plotted for the three model 

responses; results from other IVARS metrics were similar. Some capillary pressure distributions 

presented one oscillation before reaching steady state at high values of 𝜏 (high 𝜏$ and small 𝜆). 

These solutions were included in the sensitivity analysis. When including the parameter 𝜆 in the 

model, 𝛾 had less effects on the value of minimum pressure and barely impacted the other two 

model outputs. The parameter 𝜆 affected the value of minimum pressure (blue color) and the 

pressure at steady state (yellow color) the most and 𝜏$ had the main influence on the time at which 

minimum pressure was reached (orange color). However, the 90 % confidence intervals for the 

time of minimum pressure and the pressure at steady state for the parameters 𝜏$ and 𝜆 were wide. 

Therefore, the two parameters 𝜏$ and 𝜆 each had great impact on both the timing of minimum 

pressure and the pressure at steady state. 
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Figure 5.5 . Normalized IVARS50 values for the model parameters 𝛾, 𝜏$, and 𝜆 for three 
different model outputs: values of minimum capillary pressure (blue), time at which minimum 
pressure was reached (red) and value of capillary pressure at steady state (yellow). The colored 
dots present the values of the 90 % confidence intervals. The IVARS50 values are normalized 
so that, for each model output (color on the graph), the sum of IVARS50 for the parameters 𝛾, 
𝜏$, and, 𝜆 equals 1. 

5.4 Discussion  

The new 1D non-equilibrium Richards equation model presented here was able to quantitatively 

represent capillary overshoots observed in different snow samples by Katsushima et al. (2013). 

This model differs from previous numerical studies (Hirashima et al., 2014; Leroux and Pomeroy, 

2017) that used capillary entry pressure for air-dry snow to simulate capillary pressure overshoot 

in snow. The use of a single-value capillary pressure to estimate capillary pressure at the tip of a 

preferential flow path is not accurate (Dicarlo, 2010). Figure 5.6 shows a qualitative comparison 

of the simulated capillary pressures from this study (black line) against the model results from 

Leroux and Pomeroy (2017) (dashed line). The results from the 1D non-equilibrium Richards 

equation model were closer to the observations than the model using capillary entry pressure 

(Leroux and Pomeroy, 2017). As expected when considering a dynamic capillary pressure, 

saturation overshoots at the wetting fronts were also represented in all snow samples when 𝜏 > 0. 

This is in accordance with other non-equilibrium Richards equation models that simulate water 

infiltration in soil (e.g. Nieber et al., 2002; DiCarlo, 2005; Sander et al., 2008; Zhang and 
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Zegeling, 2017). The estimated water content was higher for larger influx and for smaller grain 

sizes due to a higher capillary pressure within the pores. The simulated water content (up to 9 %) 

was within the range of observed values in other snow samples with similar grain sizes and 

densities (Waldner et al., 2004; Avanzi et al., 2016). 

 

Figure 5.6 Comparison of simulated capillary pressure at the interface between wet to dry 
snow for the three snow samples SLL (a), SL (b), and SM (c). The black line represents the 
results from the 1D non-equilibrium Richards equation model introduced in this study, the 
purple line presents the results from the model SMPP (Leroux and Pomeroy, 2017), and the 
colored diamonds are the observations of Katsushima et al. (2013). 

The 1D model was compared to 3D data and so care must be taken in such an evaluation. As the 

data from Katsushima et al. (2013) are qualitatively similar to 1D overshoot profiles measured in 

soil (e.g. DiCarlo, 2007), they were deemed to be suitable for comparison with the 1D model. 

After adjusting three model parameters (𝜏$, 𝛾, and 𝜆), the model accurately reproduced the 

capillary overshoots observed during the snow experiments. The short transition between the 

minimum pressure and the pressure at steady state from the experiments resulted from a fast 

percolation of the liquid water into the lower layer due to preferential flow paths. By collecting 

1D vertical flow through snow data, this model could be better parameterized.  This could be done 

by conducting experiments similar to Katsushima et al. (2013) but using tube samples of diameters 
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smaller than the lateral extent of preferential flow paths, so such flow paths cannot form (DiCarlo, 

2010). 

The relaxation coefficient 𝜏 symbolizes the rate of redistribution of the wetting phase within the 

pores (DiCarlo, 2013). For finer snow samples (smaller grain sizes), higher values of 𝜏 were 

necessary to represent the measured capillary overshoots. This was also observed in soil by Camps-

Roach et al. (2010). This might be caused by stronger capillary pressure within smaller pores 

slowing down the redistribution of liquid water within the pores. Additionally, 𝜏 decreased for 

increasing input fluxes, as less time would be required for the water to be redistributed within the 

pore space. The present study, through comparisons with data from Katsushima et al. (2013), 

provides some initial understanding of the relaxation coefficient (𝜏) for different snow grain sizes 

and input fluxes. However, incorporating this model into operational snowmelt models requires a 

better understanding of how 𝜏 varies for different densities and a parameterization of 𝜏$ as a 

function of snow properties. 

Many models have been developed to estimate capillary or saturation overshoot in soil, as well as 

2D or 3D unstable flow (Nieber et al., 2003; Sander et al., 2008; Chapwanya and Stockie, 2010; 

Zhang and Zegeling, 2017). Including capillary hysteresis in these models has proven to suppress 

oscillations in simulated capillary pressure (Sander et al., 2008). Oscillations in the present model 

were obtained only for very high values of  𝜏 (values of an order of magnitude larger than those 

on Fig. 5.3) in the sensitivity analysis (Section 5.3.3). As the main wetting curve was scaled from 

the main drainage curve through the parameter 𝛾, its impact on simulated capillary pressure 

overshoots was evaluated. This research shows that 𝛾	had, however, little impact on the model 

outputs (Section 5.3.3). From the analysis in Section 5.3.1, 𝛾 was smaller for finer grain size, as 

previously observed by Likos et al. (2013) during soil experiments. 

More experiments in natural snowpacks under controlled conditions are required to better 

understand and estimate the parameters introduced in this study (𝜏, 𝜆, and 𝛾), as well as to validate 

the applicability of Land’s model (Land, 1968) for estimating residual water saturation (Eq. 5.2). 

An experiment similar to Camps-Roach et al. (2010) should be conducted using different snow 

samples to investigate 𝜏 dynamics through measurements of both dynamic and static curves. 

Because the snowpack matrix evolves under a thermal gradient and the presence of liquid water, 
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pore-scale modeling of two-phase flow through snow can be a tool to improve the understanding 

of hysteresis in the relative permeability of the wetting phase in snow, as well as the suitability of 

different trapping model to estimate residual saturation in snow, as has been done for soil (e.g. 

Spiteri et al., 2005; Joekar-Niasar et al., 2013).  

The impact of refreezing of liquid water within the pore space (Humphrey et al., 2012) and snow 

metamorphism (Colbeck, 1982, 1998; Brun, 1989) on capillary pressure in snow has yet to be 

studied. Water flow through snow, and thus the forecasting ability of snowmelt models, would 

greatly benefit from better estimates of capillary pressure within the snow pore during melting, 

refreezing, and metamorphism processes. 

5.5 Conclusions 

A new water retention model for snow, combining a trapping model for the wetting phase, was 

presented. When compared to previously published experiment data, capillary pressure overshoot 

in snow was properly represented using dynamic capillary pressure in the Richards equation. The 

use of dynamic capillary pressure in snow, instead of a single-value water entry pressure for dry 

snow (Hirashima et al., 2014, 2017; Leroux and Pomeroy, 2017), was motivated by experimental 

findings in soil studies (DiCarlo, 2010) showing that capillary pressure at the tip of a preferential 

flow path follows a dynamic capillary pressure curve similar to the static wetting curve. A 

relaxation coefficient was introduced that symbolizes dynamic effects at pore scale.  The behavior 

of the relaxation coefficient for different grain sizes and under various water influxes is in 

accordance with soil studies and helps better understand the non-equilibrium process of water flow 

through porous media.  

In soil, capillary overshoot proved to be the cause of unstable flow in multi-dimensional models. 

Therefore, a future study should consider upscaling this 1D non-equilibrium Richards equation 

model to simulate formation and propagation of preferential flow paths through snow. This 

research provides initial values for the model parameters that could be used in a multi-dimensional 

model. These model parameters varied with grain size. Parametric relationships are therefore 

needed to relate the parameters to snow density and grain size, and these relationships would be 

implemented in snowmelt models that forecast meltwater runoff. 
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Key Points for the Next Chapter 

• In order to implement the new theories in a snow model and validate the water routing 

scheme with natural snowmelt data using meteorological data, how can the energy balance 

be improved to limit uncertainties in estimating meltwater flow through snow? 

• Can a missing flux within snowpacks improve the estimation of snow surface temperature, 

which is one of the main drivers of the energy balance? 
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CHAPTER 6 

IMPACT OF HEAT CONVECTION INDUCED BY TOPOGRAPHY-DRIVEN AIR 

VENTILATION ON SNOW SURFACE TEMPERATURE 

Abstract 

In snowpack models, thermal conduction is the only heat mechanism accounted for to simulate the 

energy exchange between the upper and lower boundaries of a snowpack, changes of snow internal 

energy, and kinetic metamorphism. Snow surface temperature is used not only as the upper 

boundary for the heat flow equation but is critical in estimating the energy balance over snow in a 

manner that fully couples the lower atmosphere to snow on the ground. This research investigates 

the impact of heat convection within snow on the simulation of snow surface temperature. A 2D 

model was created to simulate the heat conduction-convection equation in a homogeneous 

snowpack. In this model, thermal convection is induced by topography-driven airflow within the 

snowpack, and the upper boundary for the snow internal energy equation is determined by solving 

for the energy balance at the snow surface using meteorological data. This study suggests that heat 

convection through snow can produce a non-uniform spatial distribution of snow surface 

temperature, which follows the shape of the pressure distribution at the surface. Taller dunes and 

snow dunes with short wavelengths increased thermal convection through snow. A sensitivity 

analysis on snow properties (density, grain size, and depth) demonstrated that air convection was 

reduced in denser and finer snowpacks and that the layering system of a snowpack greatly 

impacted the estimated snow surface temperature. This study is a step toward better predicting 

energy flows through snow and the energy transfer between the atmosphere and snow. 
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6.1 Introduction 

Exchange of energy between the atmosphere and the snow surface drives snowmelt at the surface 

of a snowpack (Male and Granger, 1981; Gray and Landine, 1988).  In numerical models, 

assumptions are made to simplify the energy balance; for instance, turbulent fluxes are simplified 

by 1st order theories and the snow surface is considered an impermeable and flat boundary. In real 

conditions, the snow-atmosphere boundary is a permeable wall that permits penetration of wind 

flow. Air ventilation in snow and firn has been observed in both natural and artificial snowpacks 

(Albert and Hardy, 1995; Clifton et al., 2008; Drake et al., 2017) and modeled (Colbeck, 1989, 

1997; Clarke and Waddington, 1991, Albert, 1993). Airflow through pore spaces impacts the 

thermal regime of ice sheets and snowpacks by transporting heat and water vapor (Clarke et al., 

1987; Powers et al., 1985), as well as the transport of chemical species (Waddington and 

Cunningham, 1996). 

Several processes can be responsible for the ventilation of air within snow, such as turbulence in 

the lower layer of the atmosphere (Clifton et al., 2008), topographic-driven pressure gradients at 

the snow surface (Waddington and Cunningham, 1996), or internal temperature gradients (Sturm, 

1991). In wind tunnel experiments with restricted turbulence compared to outdoor conditions 

(Aksamit and Pomeroy, 2018), Clifton et al. (2008) observed that shear-driven ventilation occurred 

only at the surface of a snowpack in a wind tunnel and had, therefore, a negligible effect on heat 

transfer within snow. Colbeck (1989) demonstrated through numerical experiments that the 

topography of the snow surface creates a pressure distribution that is the main process responsible 

for airflow through snow. This was later confirmed by Bartlett and Lehning (2011).  

Albert and Hardy (1995) conducted a field experiment to induce wind flow at the surface of a 

snowpack while measuring temperature distributions within the snowpack. They observed highly 

non-uniform internal snow temperature distributions which were represented by a 2D advection-

conduction heat transfer model. 

The radiative snow surface temperature is the temperature at the upper skin of the snow surface 

that is exposed for thermal and near infrared radiative transfer (Pomeroy et al., 2016). It controls 

the boundary condition for longwave radiation emission and near-infrared reflectance from the 

snowpack. It is possible to model the snow surface temperature, the temperature of the upper 
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molecular layer of snow crystals that are most exposed to the atmosphere, as a function of radiative 

or convective exchange without reference to internal snowpack energetics because of the poor 

thermal conductivity between snow surface and underlying snowpack (Pomeroy et al., 2016; 

Harder et al., 2018).  However, as not all turbulent exchange occurs at the snow surface when 

there is wind flow under this surface, the upper snowpack layer is the upper boundary driving the 

internal heat transfer, and thermal convection within snow may sometimes impact the snow surface 

temperature. This was evident in the scatter measured by Pomeroy et al. (2016) compared to an 

energy balance relationship that did not include conduction between the snow surface and the 

snowpack.  The spatial variability of snow surface temperature is unknown.  

Some studies have used the radiative snow surface temperature as an index to assess snow model 

performance (Lapo et al., 2015; Conway et al., 2018). This index has exposed the under-estimation 

of turbulent fluxes by the current theories under stable atmospheric conditions that are often 

encountered above snow (Cullen et al., 2007). In particular, Helgason and Pomeroy (2012) 

observed that the measured sensible flux could not offset heat loss through longwave radiation 

during clear sky conditions, which resulted in unrealistic drops in simulated snow surface 

temperature using the SNTHERM model. Helgason and Pomeroy (2012) suspected that forced 

convection under the presence of sastrugi might have influenced measured snow surface 

temperature. To resolve this issue, a numerical strategy consists in adding a ‘windless coefficient’ 

to increase estimated sensible heat flux under stable conditions (Brun et al., 1989; Jordan et al., 

1999; Brown et al., 2006). This method, however, lacks physical realism. 

This study investigates the impact of thermal convection induced by topography-driven pressure 

fluctuations at the snow surface coupled with surface energy balance on simulated near snow 

surface temperature. The effects of meteorological input data, snow properties (density, grain size, 

and depth), and snow layering system on heat convection are also examined. 

6.2 Snow Energy Balance 

Energy fluxes applied at both the upper and lower boundaries of a snowpack (surface energy 

balance and ground heat flux, respectively) contribute to the change of snow internal energy (9ð
9�

 

in [W m-2]) (e.g. Male and Gray, 1975): 
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𝑑𝑈
𝑑𝑡 = 𝑄p(𝑇B) + 𝑄q(𝑇B) + 𝑄ñ + 𝑄QZa(𝑇B) + 𝑄` − 𝑄f, 

(6.1) 

where 𝑄H is the sensible heat flux [W m-2], 𝑄E is the latent heat flux [W m-2], 𝑄G is the ground heat 

flux [W m-2], 𝑄QZa  is the net radiation flux at the surface [W m-2], Qb is the energy advected by 

from rain [W m-2] and 𝑄f is the energy available for melt [W m-2] and 𝑇B is the temperature of the 

surface exchange layer between the atmosphere and the snowpack [K]. 𝑄` and 𝑄f are neglected 

in this study. 

Pomeroy et al. (2016) developed an energy balance model to solve for the radiative snow surface 

temperature, assuming that the snow surface is thermally disconnected from the underlying snow 

(i.e. there is no heat conduction between the snow surface and the underlying layer). Their model 

considers a no-mass “skin snow surface” of zero energy. In this study, the energy balance at the 

snow surface is applied to an exchange layer of a few centimeter. This exchange layer is assumed 

to have no mass and is linked to the snowpack via a heat conduction term (𝑄[_QE in [W m-2], 

positive towards the snow surface) is considered. The surface energy balance applied to the snow 

surface exchange layer is therefore:  

𝑄p + 𝑄q + 𝑄ö + 𝑄o,� + 𝑄[_QE = 0 . (6.2) 

where 𝑄K,3 is the net near-infrared shortwave radiation [W m-2] (Eq. 6.4) and 𝑄L is the net longwave 

radiation [W m-2] (Eq. 6.3). From this point, the surface exchange layer is simply called the “snow 

surface” and its temperature is denoted 𝑇B. The no-mass assumption will be discussed in Section 

6.6. 

6.2.1 Radiative Fluxes 

The net radiation flux is the sum of the net longwave radiation and the net shortwave radiation (𝑄o 

in [W m-2]). The net longwave radiation, which is assumed to occur at the snow surface (Dozier 

and Warren, 1982) is the difference between incoming and outgoing longwave radiation (Eq. 6.3). 

In this study, snow emissivity (𝜖) was assumed constant equal to 1, as in Vionnet et al. (2012) and 

Essery (2015).  

𝑄ö = 𝐿RQ − 𝐿_na, (6.3a) 
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𝐿_na = (1	 − 𝜖)𝐿RQ 	+ 𝜖	𝜎	𝑇B¨	, (6.3b) 

where 𝐿RQ and 𝐿_na are the incoming and outgoing longwave radiation [W m-2], respectively, 𝜎 is 

the Stefan-Boltzmann constant (𝜎=5.67x10-8 W m-2 K-4). 

Shortwave radiation penetrates the snowpack following an exponential decay (Male and Granger, 

1981; Lehning et al., 2002). Incoming shortwave radiation can be separated into three different 

spectral bands (Eq. 6.4), for which the snow albedo depends on snow optical grain size and snow 

age (Vionnet et al., 2012). Shortwave radiation in spectral bands 1 and 2 penetrates the snow 

surface, while that in spectral band 3 is absorbed or reflected at the surface. 

𝑄o(𝑧) = Σ{Ë�� 	(1 − 𝐴{)𝐾RQ	𝑒�ûÕ	� (6.4) 

where 𝐴{	is the snow surface albedo for spectral band 𝑖 (c.f. Vionnet et al. (2012) for the equations 

relating 𝐴{ to snow optical grain size and snow age), 𝐾RQ is the incoming shortwave radiation [W 

m-2], and 𝛽{ is the extinction coefficient for spectral band 𝑖 [m-1] (c.f. Vionnet et al., 2012). 

6.2.2 Turbulent Fluxes 

A first-order closure is applied to estimate the vertical fluxes of momentum, sensible heat, and 

latent heat, i.e. these fluxes are proportional to the vertical gradients of wind speed, temperature, 

and specific humidity, respectively. To account for atmospheric stability, the Monin-Obukohv 

similarity theory is used (Monin and Obukhov, 1954). Friction velocity (𝑢∗ in [m s-1]), sensible 

heat flux, and latent heat flux are expressed as 

𝑢∗ 	= 	𝑘	𝑢(𝑧) üln �
𝑧 − 𝑑$
𝑧$f

� − Ψf �
𝑧 − 𝑑$
𝐿 �ý

��

	,	
(6.5a) 

𝑄p 	= 	𝑢∗	𝑘	𝐶`,g	𝜌}		(𝑇g 	−	𝑇B) þln �
��9À
�Àÿ

� − Ψu �
��9À
!
�"
��
,	 (6.5b) 

𝑄q 	= 	𝑢∗	𝑘	𝐿V	𝜌}	(𝑞	 −	𝑞B) ü𝑙𝑛 �
��9À
�À#

� − Ψv �
��9À
!
�ý
��
,	

(6.5c) 

where 𝑘 is the von Karman constant (= 0.4), 𝑢 is wind speed at the reference height 𝑧. 𝑧$f, 𝑧$u 

and 𝑧$v are roughness lengths for momentum, heat and vapor transfers, respectively, 𝑑$ is 

displacement height (equal to snow depth), 𝜌} is air density, 𝑇g is air temperature at the reference 

height, 𝑞 and 𝑞B are specific humidities at the reference height and at the surface, respectively, 𝐶`,g 
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is heat capacity of the air, 𝐿V	 is latent heat of sublimation. Ψf, Ψu and Ψv are stability correction 

functions for momentum, heat transfer, and vapour transfer, respectively and 𝐿 is the Monin-

Obukhov length [m] (Eq. 6.6). Roughness length for momentum was assumed constant at 1 mm 

(Andreas et al., 2005), and 𝑧$u and 𝑧$v are scaled from 𝑧$f by a factor 0.1 (Essery, 2015). 

An indicator of stability was suggested by Monin and Obukhov (1954): 

𝜁	 = 	 ��9À
!

 , (6.6a) 

𝐿 = (%∗
&

'(
)/(𝑘	𝑔 )*

�ÜØ+
	) , (6.6b) 

where 𝐿 is the Monin-Obukhov length [m] that accounts for buoyancy effects and 𝑔 is acceleration 

by gravity (𝑔=9.81 m s-2). 

In a stable atmosphere (𝜁>0), turbulent motions are reduced and stability functions defined by 

Holtslag and De Bruin (1988) are used: 

Ψf = Ψu = Ψv = −(𝑎𝜁 + 𝑏 �𝜁 − -
9
� 𝑒�9. + /-

9
)	 , (6.7) 

with 𝑎 = 0.7, 𝑏 = 0.75, 𝑐 = 5, and 𝑑 = 0.35. 

Under unstable atmospheric conditions (𝜁<0), turbulent motions are enhanced and correction 

functions are estimated from Paulson (1970): 

Ψf 	= 	2		ln �
1 + 𝑥
2 � + 	ln °

1 + 𝑥�

2 ± − 2	arctan(𝑥) +
𝜋
2	, 

(6.8a) 

Ψu 	= Ψv 	= 	2		ln(� ¥
3

�
) , (6.8b) 

where 𝑥 = (1 − 𝛾	𝜁)$.�¯ and 𝛾 is an empirical coefficient commonly taken equal to 16. 

6.3 Thermal Convection in Porous Media 

Heat convection is driven by velocity of the air phase, which should be estimated first. 
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6.3.1 Airflow calculation 

The topography-driven airflow theory is taken from previous studies of airflow through snow (e.g. 

Bartlett and Lehning, 2011). It is assumed that the air phase saturates the pore space. The velocity 

vector of the air phase (𝒒) is estimated using Darcy's law: 

𝒒	 = −
𝑘B
𝜇 	∇𝑃 

(6.9) 

where 𝑘B is snow intrinsic permeability [m2] estimated from Calonne et al. (2012), 𝜇 is dynamic 

viscosity of air [Pa s] and 𝑃 is pressure within the snowpack driving the airflow [Pa]. 

𝑃 is divided into a stationary, homogeneous ambient pressure (𝑃$ in [Pa]) and a time-varying, 

inhomogeneous pressure fluctuation of smaller magnitude (𝑝′(𝒙, 𝑡) in [Pa] with 𝒙 the position 

vector and 𝑡 the time variable): 

𝑃	 = 	𝑃$ 	+ 	𝑝′(𝒙, 𝑡),  (6.10) 

Assuming the flow is incompressible, 𝒒 followed: 

∇	. 𝒒	 = 	0	, (6.11) 

thus, if 𝑘Y is isotropic and homogeneous, 𝑝′ is the solution of the Laplace equation: 

Δ	𝑝′	 = 	0 .  (6.12) 

Surface pressure distribution along the snow surface was described as in Colbeck (1989), 

Cunningham and Waddington (1993), and Bartlett and Lehning (2011): 

𝑝′(𝑧 = ℎ, 𝑡) 	= 	𝑃E	sin(
�6
7
𝑥), (6.13) 

where Λ is the wavelength of the dunes [m], ℎ is the height of the snow surface [m], and 𝑃E is the 

amplitude of pressure distribution at the snow surface [Pa] caused by the snow dune and the wind 

speed at the surface. Following Bartlett and Lehning (2011), 𝑃E is estimated by: 

𝑃E 	= 𝑀	𝜌 8
7
𝑢� , (6.14) 

where 𝑀 is an empirical coefficient (chosen equal to 4 as in Bartlett and Lehning, 2011), 𝐻 is half 

the height of the dune [m]. 
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For simplicity, a flat surface is approximated under the condition that (Bartlett and Lehning, 2011): 

𝐻
Λ 	<< 	0.35 (6.15) 

Figure 6.1 shows an example of simulated pressure distribution (colors) above a snow surface for 

a wind speed of 5 m s-1, a 5-cm high snow dune and 2-m snow dune wavelength. The airflow 

direction and intensity resulting from the pressure distribution (direction and magnitude of the 

arrows, respectively) are also presented. 

 

Figure 6.1 a) Pressure distribution at the snow surface for a 5-cm high and 2-m long dune and 
a wind speed of 5 m s-1. b) The colormap presents the 2D pressure distribution within the 
snowpack resulting from the pressure at the surface (a) and the arrows show the direction and 
magnitude of the airflow within the snowpack as a result of the 2D pressure distribution. 

6.3.2 Heat Transfer 

In this study, liquid water within the pore space is neglected. Thus, the snowpack is only composed 

of the ice and air phases. Assuming incompressible airflow and thermal equilibrium between the 

gas and solid phases, the convection-conduction heat equation within the snowpack is: 

£𝜌	𝐶`¤Y
𝜕𝑇
𝜕𝑡 + 𝜙	

£𝜌	𝐶`¤}	𝒖	. ∇𝑇 = ∇. (𝜅Y	∇𝑇) 
(6.16) 
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where 𝑇 is snow temperature [K], 𝜙 is snow porosity, and 𝜅Y is snow thermal conductivity [W K-

1 m-1] estimated from Calonne et al. (2011). 

6.4 Model Design 

A 2D model was developed to simulate the energy balance near the snow surface and heat transfer 

through advection and conduction within the snowpack. Vapour transport was not considered in 

this research as it has a small effect on heat transfer (Albert and McGilvary, 1992). An explicit 

upwind finite volume method was applied to solve for the 2D heat convection-conduction equation 

(Eq. 6.16). The snowpack temperature profile was initially assumed to be linear, ranging from -

10oC at the surface to 0oC at the bottom. A constant temperature was assumed at the bottom of the 

snowpack (=0oC) and periodic boundary conditions were specified at the lateral boundaries. The 

time step was calculated to meet the CFL condition for the 2D heat conduction-convection 

equation with a default value of 1 s.  

The model was first run simulating heat conduction only and was compared to the analytical 

solution of the heat conduction equation. A 1-m high and 2-m wide homogeneous snowpack was 

considered, with a density of 300 kg m-3 and a grain size of 1 mm. The meteorological inputs are 

summarized in Table 6.1. The snowpack was discretized into 50 x 50 cells. Figure 6.2 presents the 

simulated snow internal temperature at steady state (Fig. 6.2a) and the comparison between the 

model results and the analytical solutions (Fig. 6.2b). The model reproduced the results from the 

analytical solution. This discretization will thus be used in the following sections. 
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Table 6.1 Snow properties, model boundaries, and atmospheric inputs for the reference case. 

Density 300 kg m-3 

Grain size 1 mm 

Temperature at snow-soil interface 0oC 

Initial snow surface temperature -10oC 

Dune height 5 cm 

Dune wavelength 2 m 

Roughness length 1 mm 

Height of measurement 2 m 

Air temperature -20oC 

Wind speed 5 m s-1 

Relative humidity 80 % 

Incoming shortwave radiation 100 W m-2 

Incoming longwave radiation 200 W m-2 
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Figure 6.2 a) Simulated internal snow temperature at steady assuming heat conduction only 
b) Comparison of simulated vertical temperature distribution against the analytical solution of 
the steady state heat conduction equation. 

6.5 Results 

6.5.1 Impact of Dune Height 

To investigate the impact of the height of snow dunes on simulated snow surface and internal 

temperature, the wavelength of the snow dune was kept constant at 2 m. Snow properties, domain 

boundaries, and atmospheric inputs for the reference case are summarized in Table 6.1. The height 

of the snow dune was increased from 5 cm to 15 cm with a constant step of 5 cm for two different 

air temperatures (-20oC and -10oC). All other variables were kept constant and the simulations 

were run until steady state. Figure 6.3a presents the lateral (horizontal) distribution of the simulated 

snow surface temperature for three different dune heights, at an air temperature of -20oC. The snow 

surface temperature was not homogeneous. At each dune height, the location of maximal snow 

surface temperature corresponded to the location of minimum pressure at the snow surface (Fig. 

6.1). Inversely, the lowest snow surface temperature was estimated where the pressure at the 

surface was maximal (i.e. where the air moved downward within the snow, Fig. 6.1). For 

increasing dune height, the maximum value of the snow surface temperature increased, while the 

minimum value remained similar at all dune heights. The difference between the maximum and 

minimum values of the estimated snow surface temperatures over the snow surface (Δ𝑇B), which 
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symbolizes the heterogeneity in the lateral distribution of snow surface temperature, for all three 

dune heights and at the two different air temperatures, are shown in Fig. 6.3b. At all dune heights, 

Δ𝑇B decreased with increasing air temperature. For the dune height increasing from 5 cm to 15 cm, 

the maximum value of snow surface temperature increased by 1.1oC for 𝑇g = -20oC and by 0.7oC 

for 𝑇g = -10oC. 

Heterogeneity in snow surface temperature can be explained by looking at the difference between 

the 2D distribution of the simulated snow internal temperature for all three different dune heights 

and the internal temperature of flat snow (without thermal convection, Fig. 6.2a) (Fig. 6.4). For 

taller dunes (from top to bottom in Fig. 6.4), airflow within the snow was faster, resulting in greater 

thermal convection flux. This caused the cold front on the left-hand side of the snowpack (where 

the air flowed downward from the surface, Fig. 6.1) to be colder and reach deeper snowpack layers. 

Conversely, the velocity of the upward airflow (on the right-hand side of the snowpack) increased 

with dune height and more thermal energy was transported from the warm ground-snow interface 

to the snow surface, resulting in a warmer internal snow temperature just below the surface on the 

right-hand side of the snowpack. This corresponded with higher snow surface temperatures 

simulated on the right-hand side of the snowpack for increasing dune height. 

A similar analysis was conducted for two different wind speeds (5 m s-1 and 10 m s-1) while the 

other variables were kept constant (c.f. Table 6.1). The new results were similar to the previous 

observations. The minimum value of snow surface temperature varied very little with wind speed 

and dune height, and the highest value of snow surface temperature increased with dune height 

and agreed with the location of the smallest pressure at the snow surface. Δ𝑇B increased with wind 

speed and dune height (Fig. 6.3.b). 
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Figure 6.3 a) Horizontal distribution of simulated snow surface temperature for three dune 
heights (5 cm, 10 cm, and 15 cm) at an air temperature of -20oC and a dune length of 2 m. b) 
Difference between the maximum and the minimum values of the distributed snow surface 
temperatures (Δ𝑇B) for two different air temperatures (-20oC and -10oC) and increasing dune 
height (from 5 cm to 15 cm) with a constant dune length of 2 m.  
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Figure 6.4 Simulated snow internal temperature with the values from the reference case (Table 
6.1) for three different dune heights (5 cm, 10 cm, and 15 cm from top to bottom) and a constant 
dune length of 2 m. 

6.5.2 Impact of Dune Wavelength 

In this section, the impact of dune length on simulated snow temperature is studied. Simulations 

were first run for two different air temperatures (-10oC and -20oC) at a fixed dune height of 5 cm. 

All the other model inputs and initial conditions were kept constant (Table 6.1). The results are 

presented after steady state was reached. 

Figure 6.5a shows the simulated lateral distribution of snow surface temperature for three different 

dune lengths (1 m, 5 m, and 10 m) and an air temperature of -20oC. Snow surface temperature 

presented a similar distribution as in Section 6.5.1. For longer dunes, the minimum value of snow 

surface temperature increased, while the maximum value decreased: snow surface temperature 

became more homogeneous. Figure 6.5b presents the variation of Δ𝑇B with air temperature and 

dune length. Δ𝑇B was greater for a colder air temperature. The distributed surface temperature 

flattened with increasing dune length; this was caused by lower air convection from a more 

uniform pressure gradient at the snow surface (c.f. Eq. 6.13).  
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The wind speed was increased from 5 m s-1 to 10 m s-1 for a fixed air temperature of -20oC. The 

variations of Δ𝑇B for these two wind speeds and the three different dune lengths are presented in 

Fig. 6.5b. Unexpectedly, Δ𝑇B was non-monotonic with dune length: at the highest wind speed, the 

maximum value of snow surface temperature was higher for a 5-m wavelength than for a 1-m and 

10-m wavelength (Fig. 6.5b). This was caused by higher heat convection in 5-m wavelength dune, 

resulting in more transport of energy from the bottom of the snowpack (warm) to the snow surface. 

 

Figure 6.5 a) Horizontal distribution of snow surface temperature for three dune lengths (1 m, 
5 m, and 10 m) and an air temperature of -20oC, a wind speed of 5 m s-1, and a dune height of 
5 cm. b) Difference between the maximum and minimum values of the distributed snow 
surface temperature (Δ𝑇B) for two different air temperatures (-10oC and -20oC), two different 
wind speeds (5 m s-1 and 10 m s-1) and an increasing dune wavelength (from 1 m to 10 m), 
with a fix dune height of 5 cm.  

6.5.3 Change of Snow Properties: Density, Grain Size and Depth 

In this section, the impacts of snow properties (density, grain size, and depth) on thermal 

convection within snow and on simulated surface and internal temperatures are analyzed. The 

reference case for the sensitivity analysis is presented in Table 6.1. Each snow property is varied, 

while the others are kept constant.  
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Snow density of the homogeneous snowpack was varied from 150 kg m-3 to 450 kg m-3, with a 

step of 150 kg m-3. As snow density increased, the snow surface temperature distribution became 

more homogeneous due to a decreasing airflow velocity within the snowpack and. Δ𝑇B decreased 

from 2.9oC to 0.13oC (Fig. 6.6a). The average grain size of the snowpack was varied from 0.5 mm 

to 1.5 mm, with a step of 0.5 mm (Fig. 6.6b). Δ𝑇B increased with grain size due to higher air 

ventilation within the snowpack. Finally, snow depth was varied from 0.5 m to 1.5 m with a step 

of 0.5 m. Airflow velocity through the snow decreased in deeper snowpack, making the snow 

surface temperature more homogeneous and. Δ𝑇B decreased (Fig. 6.6c). 

 

Figure 6.6 Difference between the maximum and minimum values of simulated snow surface 
temperature over the snow surface (Δ𝑇B) for a) increasing snow density (from 150 kg m-3 to 
450 kg m-3), b) increasing grain size (from 5 mm to 1.5 mm), and c) increasing snow depth 
(from 5 to 1.5 m). 

6.5.4 Layered snowpack 

The layered structure of a snowpack impacts air ventilation within snow (Colbeck, 1997). To solve 

for the airflow in a vertically layered snowpack, Eq. 6.12 becomes (Colbeck, 1997): 
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𝑘Y
𝜕�𝑝;

𝜕�𝑥� + 𝑘Y
𝜕�𝑝;

𝜕�𝑧� +
𝑑𝑘Y
𝑑𝑧

𝜕𝑝;

𝜕𝑧 = 0		. 
(6.17) 

Here, only two discontinued snow layers are considered in this section and the term 9@<
9�

�b=

��
 in Eq. 

6.17 would only impact airflow at the layer interface; hence, this term is neglected for simplicity. 

The impact of snow layers on thermal convection is studied. Two 1-m snowpacks are considered: 

a fine over coarse layered snowpack (FC) and a coarse over fine layered snowpack (CF) (each 

layer was 0.5 m high). The density of each layer was the same (300 kg m-3), the grain sizes of the 

fine and coarse layers were equal to 0.5 mm and 1.5 mm, respectively, and the other model inputs 

and parameters are summarized in Table 6.1. The estimated snow surface and internal temperatures 

are compared to those of a homogeneous snowpack of equivalent averaged snow properties 

(density of 300 kg m-3 and grain size of 1 mm, c.f. Table 6.1) and of similar dune height (5 cm) 

and dune wavelength (2 m). 

The simulated snow surface temperature of the two layered snowpacks differed from the snow 

surface temperature of the homogeneous snowpack (Fig. 6.7a); the minimum snow surface 

temperature was not affected by the snow layers, but the maximum value was significantly higher 

for a CF snowpack because of greater airflow in the upper coarse layer (Fig. 6.7d). This increase 

in airflow (thermal convection) in the upper layer resulted in a warmer zone where the pressure is 

minimal (Fig. 6.7e), causing the increase of maximum snow surface temperature. The snow surface 

temperature of the FC snowpack was almost uniform due to the upper fine layer limiting the 

airflow (Fig. 6.7), resulting in a quasi-uniform temperature in the upper snowpack (not shown). 

The temperature of the lower layer was, however, colder on the left side and warmer on the right 

side than the homogeneous snowpack. 



142 

 

Figure 6.7 a) Simulated distributed snow surface temperature for a fine over coarse layered 
snowpack (FC, blue line), a coarse over fine snowpack (CF, red line), and a homogeneous 
snowpack (yellow line) for a 2 m long and 5 cm high snow dune. b) and d) present the pressure 
distribution and airflow direction and magnitude (arrows) in the snowpacks FC and CF, 
respectively. c) and e) present the difference of simulated internal temperature between the FC 
and the homogeneous snowpacks and between the CF and homogeneous snowpacks, 
respectively. 

6.6 Discussion 

Thermal convection within snow, initiated by topography-driven air ventilation, impacted both the 

distribution of temperature within the snowpack and the lateral distribution of snow surface 

temperature. The pressure perturbation at the snow surface was the lowest where upward airflow 

occurs within the snowpack.  Here, the advection of heat through the snow resulted in zones of 

high thermal gradients within the snowpack, while the advection of heat decreased the temperature 

gradient in the upper snowpack where the surface pressure perturbation was maximal, as 

concluded by Albert (1993). Under natural conditions, these zones impact the transport of water 

vapour and kinematic snow metamorphism. Including thermal convection in an avalanche model 

could help predict conditions of kinetic metamorphism associated with weak layers capable of 

triggering avalanches. 



143 

Snow dunes, as well as sastrugi, can result from wind redistribution (Pomeroy and Gray, 1995, 

Birnbaum et al., 2010, Filhol and Sturm, 2015). Dunes have been observed in different landscapes, 

from the Canadian Prairies (Shook and Gray, 1992) to mountain alpine (Schirmer and Lehning, 

2011) to Arctic tundra with a length scale of 6 m (Sturm et al., 2001). Here, snow surface 

heterogeneities were characterized by their height and wavelength, each impacting airflow through 

snow and thus the convection of heat through snow. The advection of heat was more affected by 

variations in dune height than variations in dune wavelength; stronger heat convection was 

simulated in taller and shorter wavelength snow dunes due to stronger and narrower pressure 

fluctuations at the snow surface, respectively. Colbeck (1989) and Albert (1996) also showed that 

airflow decreases for longer surface pressure forcing wavelengths. Under specific circumstances 

(e.g. high wind), compaction of the snow surface may occur during wind scouring, resulting in the 

formation of wind slabs (e.g. Alley, 1988; Jones et al., 1999; Sommer et al., 2017) of low 

permeability that would prevent penetration of air from the atmosphere to the snowpacks. 

Similarly, ice layers have near zero permeability and can completely restrict convection (Van 

Bochove et al., 2001).  

At the surface of the snowpack, the energy balance was solved to estimate the exchange of energy 

between atmosphere and snowpack, which was used as upper boundary condition for the heat 

transport equation. Because the results are presented at steady state, the assumption that this 

surface exchange layer has no-mass is reasonable. The energy balance was driven by 

meteorological data: air temperature, relative humidity, wind speed, and incoming longwave and 

shortwave radiation. The sensitivity of the model to air temperature and wind speed, which were 

varied alongside snow dune height and dune wavelength, was evaluated. Δ𝑇B decreased (i.e. the 

snow surface temperature became more homogeneous) with warmer air temperatures. This 

decrease was less significant for smaller dunes. For longer snow dunes, Δ𝑇B decreased faster with 

colder air temperatures. Changes in wind speed had a greater effect on Δ𝑇B	than did the air 

temperature (Fig. 6.3b). Surprisingly, the maximum snow surface temperature had a non-

monotonic behaviour with increasing dune wavelength for a strong wind speed (10 m s-1) (Fig. 

6.5); its value peaked for a dune length of 5 m.  

Deviations in snow properties (density, grain size, and snow depth) also affected the simulation of 

thermal convection and therefore the snow surface temperature. The changes in grain size and 
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snow density primarily impacted snow permeability and thus velocity of airflow within the snow; 

increasing grain size or decreasing snow density resulted in an increase in snow permeability. 

Albert (1996) demonstrated through numerical modelling that changes in layer permeability 

impacted the airflow velocity. In this research, it was observed that changes in snow density had a 

greater impact on simulated snow surface temperature than variations in snow grain size (Fig. 6.6). 

Changes in snow depth impacted the depth reached by the airflow. Increasing snow depth was 

similar to decreasing snow dune height, i.e. the taller the snowpack, the less energy from the 

bottom of the snowpack could be transported to the upper snowpack through thermal convection; 

thus, a more homogeneous snow surface temperature was estimated for deeper snowpacks. In 

addition, this research showed that assuming a homogeneous snowpack when simulating heat 

convection has some limits, as originally demonstrated by Albert (1996). Colbeck (1997) showed 

the impact of ice layers on air ventilation through snow. Here, the focus was on comparing heat 

convection through a homogeneous snowpack against heat convection through a 2-layer snowpack 

of equivalent averaged properties. The vertical layering system of the snow greatly impacted 

airflow through snow, and the snow internal temperature and snow surface temperature 

distributions were different than in a homogeneous snowpack. As previously shown in Albert 

(1996), a low-permeability surface layer (either a dense or fine snow layer) reduces the airflow in 

the underlying layer. This limited heat advection occurring below the surface and resulted in a 

quasi-uniform estimated snow surface temperature distribution (Fig. 6.7a). However, the 

temperature distribution in both layers still differed from that of a homogeneous flat snowpack 

(Fig. 6.7c). 

Local thermal equilibrium between the ice and air phases was assumed. It can be expected, 

however, that air penetrating the snow surface where the pressure is at a minimum (Fig. 6.1) has a 

different temperature than the snow matrix. The Darcy velocity of the air phase (|𝒒| in Eq. 6.9) 

was higher than or equal to 0.0024 m s-1 within the upper 20 cm (where the exchange of energy 

between the air phase and the ice phase can be expected to occur) of a 1-m homogeneous snowpack 

of density equal to 300 kg m-3 and a grain size of 1 mm, with a wind speed of 5 m s-1 above the 

snow surface. This assumption was verified by estimating the evolution of the difference of 

temperature between the air and ice phases, assuming they initially differ by 5oC (Appendix C). 

This simple calculation using Newton’s law of cooling showed that if the two phases have different 

initial temperatures, thermal equilibrium through will be reached very quickly (<0.005 s). The 
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local thermal equilibrium assumption is thus appropriate. The results from this study were 

presented at steady state; thus, thermal equilibrium between the different phases is an appropriate 

assumption in this case. Under natural conditions, due to the turbulent nature of the wind above 

the surface (e.g. Aksamit and Pomeroy, 2017), steady state is unlikely to be reached. The pressure 

perturbation at the surface was assumed invariant in time; this assumption should little effect on 

the model results if the frequency of the surface pressure perturbation is between 0.1 and 10 Hz 

(Albert, 1996). These results present an ideal case and further explain the impact of dune 

characteristics and snow properties on thermal convection through snow. 

6.7 Conclusions 

The impact of thermal advection initiated by topography-induced airflow on snow internal and 

near surface temperatures was investigated. The input heat flux was estimated by solving for the 

energy balance at the snow surface, using meteorological data to drive the model. Increasing dune 

height resulted in an increase in heat convection and therefore in more spatial variability in 

estimated snow surface temperature. Heat convection within the snowpack decreased with 

increasing dune wavelength, resulting in a more homogeneous snow surface temperature. The near 

snow surface temperature was, however, more varied for a colder air temperature and a higher 

wind speed above the snow surface.  

Airflow velocity within the snowpack was, in part, controlled by snow permeability. As 

permeability decreased with increasing snow density and decreasing grain size, the air convection 

within the snow became weaker and the surface temperature became more homogeneous. For an 

increasing snow depth, heat convection was contained in the upper layer of the snowpack and had 

little effect on internal temperature distribution. In addition, the vertical layering system of the 

snowpack greatly affected the thermal convection within snow and the resulting snow surface 

temperature. These numerical results show that topography-driven thermal convection through 

snow can be significant in cold snowpacks during early- and mid-winter, when the snow 

accumulation is no greater than 1.5 m, and the snow density is still low. As the snowpack warms 

up and densifies in the late-winter and spring, thermal convection will not affect snow surface 

temperature. Further research is needed to confirm the presence of this phenomenon in nature and 

to validate the model proposed here. 
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CHAPTER 7 

CONCLUSIONS 

7.1 Concluding Remarks 

The motivation for this research was to improve the theories applied in snowmelt numerical 

modelling in order to better estimate the magnitude and timing of snowmelt runoff generation. 

This thesis focusses on developing new theories and new numerical methods to better represent 

the physical processes involved in the infiltration of meltwater through subfreezing snowpacks 

and on the energetics of snowpacks. The formation and propagation of preferential flow paths in 

snow were of particular interest, as they greatly impact the rate of meltwater delivery to the base 

of the snowpack. The main conclusions of this research with regards to the objectives presented in 

Chapter 1 are summarized below: 

Objective 1: What factors control the formation and development of preferential flow paths and 

ice layers in snow? 

Chapters 2 and 3 present the development of a 2D snowmelt model (SMPP) that simulates the 

coupling of water flow with heat transfer, as well as the formation of preferential flow paths. 

Preferential flow was represented in the model by including single-value water entry pressure for 

initially dry snow, combined with heterogeneities in snow density and grain size. The use of single-

value capillary pressure for dry snow was a simple macroscale representation of dynamic effects 

at pore-scale to represent a holdback and pile-up at the wetting front that is a characteristic of 

preferential flow paths (Eliassi and Glass, 2002). For the first time in a snowpack model, ice layers 

were represented at capillary barriers. The representation of preferential flow in the model was 

crucial for the formation of ice layers, and preferential flow paths permitted the percolation of 

meltwater to dry and cold snow zones. This model was compared to two sets of laboratory data; 

measured capillary overshoots within three snow samples and vertical distributions of liquid water 

content within four snow samples were qualitatively and quantitatively well represented. 

A field study was conducted to evaluate the model presented in Chapters 2 and 3 against melt data 

from a natural snowpack (Chapter 4). Initial and boundary conditions were measured in the field, 
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and used to drive the model; snowmelt outflow was measured in the field with a lysimeter and was 

compared to predicted snowmelt outflow. The model performed poorly when compared with field 

observations, in particular because SMPP was unable to simulate preferential flow when using 

natural snowpack properties, resulting in a delay in the estimated snowmelt outflow.  These 

findings were instructive, and it is suspected that the empirical equation of water entry pressure, 

determined from laboratory data (Katsushima et al., 2013), is not adequate for natural snow 

properties, particularly for snow densities below 350 kg m-3. This finding motivated the search for 

a new way to simulate preferential flow in snow; this is presented in Chapter 5. 

Objective 2: To what degree do pressure relationships control water retention and flow in snow? 

In SMPP (Chapters 2 and 3), capillary pressure hysteresis was introduced for the first time in a 

snowmelt model. Capillary hysteresis had an important effect on meltwater routing: it impacted 

the shape and length of preferential flow paths, as well as the values of water content within the 

snowpack. The use of water entry pressure to estimate capillary pressure within air-dry snow pores 

was necessary to simulate preferential flow and capillary overshoot in Chapters 2 and 3. This 

simple macroscale model was deemed not realistic to simulate capillary pressure overshoot in soil 

(DiCarlo, 2007). Its applicability in natural snow was questioned in Chapter 4 after evaluating the 

model against field data. This led to the work presented in Chapter 5. 

In Chapter 5, a new water retention curve was developed to avoid the use of water entry pressure. 

This new water retention curve included a main wetting curve that started at a water content equal 

to zero and a main drainage curve that started at a residual water content, determined from 

experimental drainage data. The drainage scanning curves, initiating from the main wetting curve, 

were determined using an entrapment model for the wetting phase. This new hysteretic water 

retention curve was included in a 1D model to simulate water flow through snow. A dynamic 

capillary pressure in the Richards equation was introduced to account for transient effects when 

liquid water is redistributed within the pore space during infiltration. This model successfully 

simulated capillary pressure overshoots observed in different snow samples under various influxes, 

as well as saturation overshoots. As capillary and saturation overshoots are the cause of unstable 

flow in 2D or 3D, implementing this new theory of capillary pressure in a multi-dimensional 

snowmelt model should result in the simulation of preferential flow in snow. 
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Objective 3: Can a convective heat flux within a snowpack enhance the snow energetics estimate? 

In SMPP presented in Chapters 2 and 3, only heat conduction was considered as a heat mechanism. 

Chapter 6 presents a new version of SMPP that includes topography-driven air flow through snow, 

which resulted in a heat convection flux that was coupled with the energy balance near the snow 

surface. The effect of heat convection on simulated near snow surface temperature was analysed. 

Including thermal convection within a snowpack resulted in a non-uniform near snow surface 

temperature. The maximum and minimum values of near snow surface temperature differed by a 

few degrees and were affected by the height and length of the snow dunes, as well as the snow 

internal properties (density, grain size, and snow depth). This research is a step forward to better 

understand the coupling of heat transfer within snowpacks with the energy balance above the snow. 

7.2 Concluding Discussion 

There has been an increasing interest in better simulating the flow of water through snowpacks in 

order to enhance the prediction of snowmelt runoff. This process is usually simplified in 

operational snowmelt models to reduce the computational cost of these models. Only recently 

preferential flow was included in the operational snow model SNOWPACK (Würzer et al., 2017) 

using a dual-domain approach. While this is a significant step forward, the approach has limitations 

that only a model with more physical realism can overcome. Hirashima et al. (2014, 2017) 

developed a 3D research snow model that simulates matrix and preferential flows in small snow 

samples. This model is limited to mass flow, applies a simplified representation of the water 

retention curve, and has not been compared to natural snowmelt data. The research presented in 

this thesis builds from the work of Hirashima et al. (2014, 2017) and addresses some of the main 

limitations. Particularly, this thesis presents an improved representation of the snow water 

retention curve by including a main wetting curve to the known main drying curve. Capillary 

hysteresis impacted the shape and length of preferential flow, as well as the distribution of liquid 

water within snowpacks (Chapters 2 and 3). The advanced capillary hysteresis model presented in 

Chapter 5 could (and maybe should) be included in 1D snow models that solve for Richards 

equation, instead of only applying a unique drying boundary curve for both wetting and drying 

flow processes. 
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From Hirashima et al. (2014, 2017), adding water entry pressure for dry snow to the Richards 

equation was necessary to simulate preferential flow in snow and capillary overshoot within snow 

samples. The use of water entry pressure was, however, questioned by DiCarlo (2007), who 

observed that the pressure at the tip of preferential flow paths is given by the main wetting curve. 

When evaluating the 2D model developed in Chapters 2 and 3, which uses a water entry pressure, 

it was hypothesized that the equation of water entry pressure for dry snow might not be suitable 

with natural snow properties (Chapter 4). Using a dynamic capillary pressure that depends on the 

rate of water infiltration provided better results than using a water entry pressure when simulating 

capillary pressure overshoot in three different snow samples (Chapter 5). This approach has been 

applied in recent soil studies to represent capillary and saturation overshoots, as well as preferential 

flow in soil (Nieber et al., 2002; Sander et al., 2008; Chapwanya and Stockie, 2010). This novel 

approach raises questions about the snow pore scale processes responsible for dynamic non-

equilibrium effects. In soils, some explanations are the entrapment of water within the pores, a 

dynamic contact angle, and microscale heterogeneities (Diamantopoulos and Durner, 2012); they 

can be expected to also create dynamic non-equilibrium effects in snow pores; wet snow 

metamorphism might also be of great importance to cause dynamic non-equilibrium pore scale 

processes. 

Wind pumping in snow has received little interest in the last decade. There is a consensus that the 

predominant trigger of wind pumping in snow is snow surface topography (Colbeck, 1989; 

Waddington and Cunningham, 1996; Clifton et al., 2008). Models that simulate wind pumping in 

homogeneous and layered snowpacks have been developed (e.g. Colbeck, 1989, 1997; Clarke and 

Waddington, 1991), as well as the resulting thermal convection within snow (e.g. Albert and 

McGilvary, 1992; Bartlett and Lehning, 2011). During a study on closure of the energy balance 

over snow, Helgason and Pomeroy (2012) hypothesized that the presence of sastrugi at the snow 

surface could have resulted in thermal convection within the snowpack, which could have 

impacted snow surface temperature. The results from Chapter 6 confirm this hypothesis. Thermal 

convection from topography-driven airflow enhanced heat transfer from the near snow surface and 

the internal snowpack, and from the bottom of the snowpack to the internal snowpack. This 

resulted in a non-uniform snow surface temperature distribution. Snow internal properties and 

meteorological data impacted the simulated snow surface temperature. These results are only 

qualitative and an experimental campaign is needed to measure air velocity within the snowpack, 
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internal heat transfer, and snow surface temperature over a snow dune. This research gives insight 

into better understanding the coupling between the lower atmosphere and snowpacks on the 

ground. It should be verified by field measurements in natural conditions. 

7.3 Outlook 

Certain next steps in snow science can be drawn from this research. Chapter 4 suggests that future 

work is needed to improve the simulation of preferential flow paths in natural snowpacks. Chapter 

5 presented a potential next step with a novel method to simulate capillary pressure and saturation 

overshoots. According to DiCarlo (2007, 2013), these overshoots are the cause of unstable flow. 

Therefore, the simulation of preferential flow paths can be expected in a multi-dimensional model 

that includes the water retention curve presented in Chapter 5 and a dynamic capillary pressure in 

the Richards equation. When this multi-dimensional snowmelt model is developed, it should be 

evaluated against the experimental data of Avanzi et al. (2016) and the in-situ data presented in 

Chapter 4. This model will most likely be more efficient numerically as it will not include water 

entry pressure, which was the cause of slow numerical simulations in Chapters 2, 3, and 4. 

In this thesis, wet snow metamorphism was not considered during meltwater infiltration through 

snow. Wet snow metamorphism is poorly understood and additional work is needed to better 

understand how snow grain size evolves for different water fluxes. This conclusion is shared with 

Hirashima et al. (2017). The evolution of grain size under the presence of liquid water could be 

quantified through pore-scale numerical simulations, using CT-scan images of snow samples 

(Heggli et al., 2011) as initial geometry. Avanzi et al. (2017) showed the coupling between 

preferential flow paths and wet snow metamorphism. Similar experiments should be conducted to 

better understand how grain growth occurs under the presence of liquid water and to quantify it. 

Accounting for wet snow metamorphism during the simulation of preferential flow would most 

likely impact the size of preferential flow paths and velocity of the water flux within them. 

As snow models become more complex and more accurately represent snow physical processes, 

there will be an increasing need for accurate natural snowmelt data at small scales for model 

evaluation. Similar field studies as the one presented in Chapter 4 should be conducted on different 

terrains, with different snowpacks of various slope angles. The snowpack initial conditions will 

have to be more accurately measured (e.g. measuring the optical grain size and snow density of 
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each snow layer instead of at a 10 cm interval) in order to avoid uncertainties in model predictions. 

In addition, field measurements of ice layers would be necessary to appropriately parameterize 

them in snow models. 

The model and theory of wind pumping presented in Chapter 6 need to be tested in real snowpacks. 

A similar field experiment as in Helgason (2009), who observed snow dunes at a site in the 

Canadian Prairies and hypothesized that wind pumping might have occurred and affected the snow 

surface energy balance, could be conducted. The snow internal temperature could be measured 

with an array of thermocouples of horizontal length similar to the wavelength of snow dunes. The 

array of thermocouples should be positioned in the field prior to the first snowfall and would be 

buried as snow accumulates over winter. This would allow the measurement of 2D snowpack 

internal temperature distribution over winter. The array of thermocouples should be placed close 

to a meteorological station to relate changes of snow internal temperature to meteorological 

conditions above the snowpack. Of particular interest would be changes of snow internal 

temperature with wind speed, in order to identify the occurrence of wind pumping within the 

snowpack. In addition, snowpit measurements should be conducted close to the meteorological 

station to obtain data of snow internal density, grain size an layer structure that could be used for 

model comparison. An infrared camera could be mounted on the meteorological station to take 

time-lapse pictures of the snow surface above the buried array of thermocouples in the snowpack. 

This could inform on the potential link between the radiative snow surface and the snowpack and 

the potential impact of wind pumping on the radiative snow surface temperature. 
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APPENDIX A: MODEL AVAILABILITY 

The codes of the models presented in this thesis are available at the following URL: 

https://github.com/nleroux3 
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APPENDIX B: FIELD DATA 

In this appendix, the data collected and used in Chapter 4 are summarized. The instruments and 

methods used to collect the data are presented in Chapter 4. 

April 1, 2015: 

Measured heat fluxes from the hot plate to the snowpack: 

Time 11:10 11:20 11:30 11:40 11:50 12:00 12:10 12:20 12:30 

Heat flux 1 
[W m-2] 

1082 1221 1020 868 921 932 904 776 843 

Heat flux 2 
[W m-2] 

387.4 985 929 863 952 892 885 841 996 

 

12:40 12:50 13:00 13:10 

738 697 762 799 

865 778 747 610 

 

Snow property measurements from two adjacent, vertical snow profiles: 

Depth from 
surface [cm] 

Temperature 
[oC] 

Density 
[kg m-3] 

Denoth meter 
value 

Density 
[kg m-3] 

Denoth meter 
value 

0-10 0 260 115 262 114 

10-20 -1 250 112 241 110 

30-40 -2 260 115 272 112 

30-40 -1 297 116 321 114 

40-50 0 325 115 327 114 

The value of the Denoth meter for the air was equal to 97.  
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April 4, 2015: 

Measured heat fluxes from the hot plate to the snowpack: 

Time 11:00 11:10 11:20 11:30 11:40 11:50 12:00 12:10 12:20 

Heat flux 1 
[W m-2] 

823 1307 1150 1090 1003 998 883 984 815 

Heat flux 2 
[W m-2] 

806 1149 977 983 822 911 869 868 911 

 

12:30 12:40 12:50 13:00 13:10 13:20 13:30 

1050 737 689 788 759 760 799 

956 1049 761 785 890 991 891 

 

Snow property measurements from two adjacent, vertical snow profiles: 

Depth from 
surface [cm] 

Temperature 
[oC] 

Density 1 
[kg m-3] 

Denoth meter 
value 1 

Density 2 
[kg m-3] 

Denoth meter 
value 2 

0-10 0 380 117 298 117 

10-20 0 276 116 300 122 

30-40 0 347 125 310 126 

30-40 -1 360 123 336 120 

40-50 -1 345 119 338 120 

The value of the Denoth meter for the air was equal to 101. 
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April 5, 2015: 

Measured heat fluxes from the hot plate to the snowpack: 

Time 11:10 11:20 11:30 11:40 11:50 12:00 12:10 12:20 12:30 

Heat flux 1 
[W m-2] 

657 1532 1267 1038 852 857 778 773 808 

Heat flux 2 
[W m-2] 

935 1187 1505 1276 1022 968 881 908 899 

 

12:40 12:50 13:00 13:10 13:20 13:30 

858 1007 708 866 964 843 

956 977 812 869 858 629 

 

Snow property measurements from two adjacent, vertical snow profiles: 

Depth from 
surface [cm] 

Temperature 
[oC] 

Density 1 
[kg m-3] 

Denoth meter 
value 1 

Density 2 
[kg m-3] 

Denoth meter 
value 2 

0-10 0 283 137 270 111 

10-20 0 307 126 304 120 

30-40 0 318 123 329 117 

30-40 0 335 127 319 120 

40-50 0 307 117 305 114 

The value of the Denoth meter for the air was equal to 101.  
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April 8 2015: 

Measured heat fluxes from the hot plate to the snowpack: 

Time 11:10 11:20 11:30 11:40 11:50 12:00 12:10 12:20 12:30 

Heat 
flux 1 

[W m-2] 

260 490 646 696 706 714 719 690 698 

Heat 
flux 2 

[W m-2] 

210 463 553 639 667 692 668 719 664 

 

12:40 12:50 13:00 13:10 13:20 

750 857 702 652 677 

984 789 589 591 608 

 

Snow property measurements from two adjacent, vertical snow profiles: 

Depth from 
surface [cm] 

Temperature 
[oC] 

Density 1 
[kg m-3] 

Denoth meter 
value 1 

Density 2 
[kg m-3] 

Denoth meter 
value 2 

0-10 0 362 129 365 123 

10-20 0 350 130 349 138 

30-40 0 348 129 362 135 

30-40 0 335 123 339 126 

40-50 0 324 118 327 120 

50-60 0 324 120 322 121 

60-70 0 340 121 333 119 

The value of the Denoth meter for the air was equal to 101. 
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APPENDIX C: NEWTON'S LAW OF COOLING AND THERMAL EQUILIBRIUM 

ASSUMPTION 

The change of temperature of the air phase within the porous media (𝑇g), assuming thermal 

convection as the only heat mechanism, is: 

𝜌g𝐶bg
>�Ü(�)
>�

= ℎ	(𝑇g(𝑡) − 𝑇R), (C.1) 

where 𝜌g is the air density, 𝐶bg is the specific heat capacity of the air, ℎ is the heat coefficient and 

𝑇R is the temperature of the ice matrix. Here, we assume that the temperature of the ice matrix is 

constant and only the temperature of the air phase changes. Eq. C.1 becomes: 

Δ𝑇 (𝑡) 	= Δ𝑇 (0)e�?/('ÜØ@Ü	�)	, (C.2) 

with Δ𝑇 (𝑡) = 𝑇g(𝑡) − 𝑇R.	 

From Dixon and Cresswell (1979), h can be expressed as: 

ℎ = 𝑎SBℎ∗, (C.3) 

with 𝑎SB the specific surface area expressed by 𝑎SB = 6(1 − 𝜙)/𝑑, with 𝜙 the snow porosity and 

𝑑 the diameter of the particles, which are assumed spherical. ℎ∗ is given by (Nield and Bejan, 

1992): 

1
ℎ∗ =

𝑑
Nn	𝑘g

+
𝑑

10	𝑘B
 (C.4) 

with 𝑘g and 𝑘B the thermal conductivities of the air and ice phases, respectively, and Nn is the 

Nusselt number that can be expressed as follows for a forced convection in porous media (Pallares 

and Grau, 2010): 

Nn = 1 + ¨(��C)
C

+ �
�
(1 − 𝜙)¯ReE�Pr�/� , (C.5) 
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where ReE is the particle Reynolds number (ReE =
'Ü|𝒒|9
F(

 with 𝜇g the dynamic viscosity of air), 

and Pr is the Prandtl number of the air phase. 

Figure C.1 presents the difference of temperature between the air phase and the ice phase (Δ𝑇 (𝑡)) 

for an initial difference of temperature (Δ𝑇 (0)) of 5oC, with 𝑇R = 0oC. The velocity |q| of the air 

phase was taken equal to 2.4x10-3 m s-1, which was the smallest the slowest velocity simulated 

within the top 20 cm (where the thermal convection between the air and ice phases could be 

expected to occur) of a 1-m homogeneous snowpack of density equal to 300 kg m-3 and a grain 

size of 1 mm, with a wind speed of 5 m s-1 two meters above the snow surface. The values for all 

the thermal properties of the ice and air phases were chosen for the phases at 0oC. It can be 

observed that the two phases reached thermal equilibrium at about 𝑡 = 5 ms. 

 
Figure C.1 a) Evolution of the difference of temperature between the air and ice phases 
(Δ𝑇 (𝑡)) for an initial difference of temperature of 5oC between the two phases, assuming a 
velocity of 2.4x10-3 m s-1 of the air phase, a snow density of 300 kg m-3, and a grain size of 1 
mm. 
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