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Abstract

Grain dust industry workers are exposed to a number of work-related hazards, including high

levels of endotoxin, microorganisms and dust. Multiple studies have reported immunological, tox-

icological and clinical effects of occupational exposure to grain dust contaminants. The study aims

to determine the effects of various prognostic and demographic factors on health-related outcomes

among the grain industry workers in Saskatchewan. Statistical Analyses of the grain dust data can

be carried out in a competing risk framework. In this context, competing risk is defined when an

individual has a chance of getting one or more events to emulate with event of interest (e.g. death,

time to relapse, time o disease type etc.). The competing risk analysis involves fitting the Cox PH

model separately for each event type, treating the other (competing) event types as censored in

addition to those who are censored from loss to follow-up or withdrawal. One of the assumptions

of competing risk analysis is that censoring is independent of events regardless of the different

ways that censoring can occur, including failure from competing risks other than the event-type of

interest.

We define three competing events for the grain dust industry workers in Saskatchewan: chronic

cough or phlegm, shortness of breath and allergy. Each worker can experience any of these events

over the follow-up period from 1978 to 2005. We then consider seven covariates to assess their

effects on the hazards of each of these three events: age, history of health problem (yes/no), history

of asthma (yes/no), body mass index (BMI), forced expiratory volume in one second (FEV1),

FEV1/FVC ratio which is the proportion of the amount of air exhaled in the first second (FEV1) to

all of the air exhaled during a maximal exhalation (FVC) and smoking.

Our competing risk analyses reveal that FEV1/FVC ratio and smoking are highly significant to

the risk of developing chronic cough or phlegm (p-value = 0.0238 and 0.0009 respectively). For

shortness of breath, history of asthma and smoking are found significant, with p-values 0.0481 and

0.024, respectively. Results also indicate a high impact of age and FEV1 on allergy.
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Our analyses are based on a relatively small sample (n = 226), and therefore caution should be

applied to generalize our findings. Nevertheless, our findings could be useful for policy makers to

make the environment of grain industries safe and secure for the workers with respect to standards

and guidelines. Results could also be useful for human awareness.
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Chapter 1

Introduction

Grain workers are exposed to not only grain dust inhalation but also to other materials, resulting

in an increased risk of health problems. In particular, exposure to grain dust may result in a range

of acute and chronic respiratory symptoms and reduced lung function (Pahwa et al. 2003). Many

studies have reported multiple long-term effects of grain dust, including chronic cough or phlegm,

shortness of breath and allergy. When a worker is exposed to grain dust, various prognostic and

demographic factors may act differently because of interaction between these factors and grain

dust inhalation. Therefore, it is of particular interest to investigate the effects of these factors on

the risk of long-term health effects for the grain workers. In this study, we investigate the effects

of various factors (covariates) on long-term health hazards for the grain workers in Saskatchewan.

Time-to-event data for a cohort of 280 Saskatchewan grain workers followed over a period of

27 years (1978 to 2005) are considered, and survival analysis methodology is used for statistical

analysis.

Survival analysis is a set of statistical tools or methods used upon survival data, where the point

of interest is time until an event occurs (Kleinbaum and Klein 2010). The event is commonly

referred to as survival event, and it can be, e.g., the development of a disease, response to a treat-

ment, relapse or death. The time to the occurrence of the event is referred to as survival time or

lifetime or failure time. For example, survival time can be tumor-free time, the time from the start

of treatment to response, remission time or time to death. Note that the survival time is considered
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to be the response variable in lifetime data analysis, which is a non-negative random variable rep-

resenting the lifetimes of individuals in some population (Lawless 2011). Typically, data sets on

failure times also contain information on explanatory variables or covariates. As a result, it is of

particular interest to develop models to characterize the relationship between the response and one

or more covariates which are thought to affect some feature of the distribution of the response.

Time-to-event or survival data have a distinctive nature of containing observations with lack of

information. For example, the event time is not observed if an individual drops out of the study

before the occurrence of the event or does not experience the event by the end of the study. In

such a scenario, only partial information is available in that we do not know the exact event time of

the individual but we know that the individual is event-free until a certain time point. Incomplete

observations of this nature are commonly known as censored observations in survival analysis.

It is important to find some acceptable ways of analysis without ignoring censored observations.

Skewness in the response variable is another distinguishing feature of time-to-event data (Kartson-

aki 2016). For these reasons, standard statistical techniques cannot generally handle an analysis

of survival data. Non-parametric methods are usually considered to get basic information on the

response variable, which include the Kaplan-Meier (Kaplan and Meier 1958) and Nelson-Aalen

(Nelson 1969, Aalen 1978) test to compare survival experiences between two groups (Lawless

2011). Regression methodology is used t understand the relationship between the response and

one or more covariates. Both parametric and semi-parametric methods are widely used for regres-

sion analyses. For example, parametric regression models can be formulated using the weibull,

log-logistic and log-normal distributions (Lawless 2011), and semi-parametric methods can be

developed using the Cox-proportional hazards model (Cox 1972).

Another common problem in survival analysis is competing risk, where each subject can expe-

rience only one of several different types of events over follow-up, Conventional approaches like

the Kaplan-Meier method and the Cox proportional hazards model are not directly compatible for
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an analysis of competing risk data (Noordzij et al. 2013). However, the Cox proportional hazards

model can be extended for competing risk problems (Prentice et al. 1978)

History of prognostic studies shows us the development and elaboration of statistical analysis for

survival data in more than thirty years. Generalization of statistical tools for survival data brings

historical changes in medical studies. Nowadays survival analysis is used in a significant number of

medical research to obtain more precise knowledge about biomedical history of subjects, including

competing risk problems.

1.1 Background of Study

1.1.1 Motivating Examples: Grain Dust and Health

In grain industries, workers are always at risk of hazard from different things. The grain dust

is one of the major reasons for exposure in the long run. Canada is one of the largest produc-

tion home for grains like wheat, barley, oats and rye. Wheat is the largest crop among all these

grains. According to Dakers and Fréchette (1998), Canada yields approximately 7% of wheat and

barley from world’s total production. In 2017, total productions of wheat, barley and oats were

approximately 27, 7 and 4 million tones, respectively (Agriculture and Canada 2017). According

to the report from Statistics Canada (2017), Saskatchewan is the greatest grain producing province

in Canada. Statistics Canada also reported that, in Saskatchewan about 91% of the total cropland

was seeded with field grains in 2016. A number of grain industry is running with a huge number

of grain workers to process and handle grains. It is now well known to all that, grain workers are

facing different health problems due to grain dust. Among these, lung functions and respiratory

problems are the most common ones.
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In 1976, Labor Canada took a step to get a complete picture of the grain industry. A national

program for inspection of health and monitoring of environment was announced nationally. The

program was then started in 1978 as “Grain Dust Medical Surveillance Program(GDMSP)” (Pahwa

et al. 2003). After that, they have distributed some guidelines for the program. GDMSP data con-

sist of health information of employees who had been working in the grain industries for more than

90 days in a period of one year or six months irregularly in three years. The test was conducted ev-

ery three years in eight territories and five different geographical regions. Workers have undergone

one or more medical examinations under the guidance of a licensed physician during the program

(Pahwa et al. 2003). The purpose of the program was to keep tracking workers respiratory condi-

tions in association with grain dust levels in the industries. We will only use Saskatchewan’s data

for our research.

A couple of longitudinal analysis has been done using the data set. For example, an article by

Pahwa et al. (2003) has consider longitudinal model to see the decline in lung function measure-

ments due to grain dust among grain workers in Saskatchewan. Their result indicates the estimated

annual decline for lung function measurements increased with respect to the length of time in the

grain industry, considering workers smoking status as an important factor. Note that, we have con-

sidered not only observed individual information but also the information of individuals that are

censored in the data set. This is the reason our statistical analysis is different from that of their

analysis.

1.1.2 Statistical Framework

Statistical Analyses of the grain dust data can be carried out in a competing risk framework. A

general overview of the competing risk problems is presented below (for theoretical details, see

Chapter 2).
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A particular case of time-to-event data analysis is acknowledged as competing risk (Pintilie

2011), where an individual has a chance of getting one or more events to emulate with event of

interest is defined as competing risk (Noordzij et al. 2013). According to Feakins et al. (2018),

“competing risks are defined as events during follow-up that either preclude the observation of

the primary outcome or alter the probability of its occurrence”. For example, a patient may get

a donor for kidney transplant during the dialysis period, with the event of interest being death

while on dialysis. Here, the competing event is “a successful transplant”, which is likely to prevent

the event of the interest from occurring while on dialysis (Noordzij et al. 2013). The conceptual

framework of this problem is presented in figure 1.1a. Similarly, in a study involving cancer

patients, the outcome of interest could be death due to a specific type of cancer, whereas death

due to other types of cancer and death due to non-cancer causes could be considered competing

outcomes (see figure 1.1b). In summary, competing risk problems arise when there are two or

more possible ways that a patient can experience the event but practically, the event occurs only

for one reason (Kleinbaum and Klein 2010).

(a) Competing risk of a kidney dialysis pa-
tient

(b) Competing risk of a lung cancer patient

Figure 1.1: Competing risk models in studying the effect on population mortality due to
different causes

The main idea behind competing risk model was to review the impact of death due to other rea-

son on death due to a specific disease. The competing risk problem was introduced by d’Alembert
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and Bernoulli first in 1760s. They noticed evidence of competing event effects in a cohort study

involving smallpox patients. While studying the impact of immunization for smallpox, discovered

a relationship between long and short term mortality. For a preliminary analysis, Bernoulli defined

two disease states: susceptible and immune. In this model, death was considered as an absorbing

state, with transition defined in terms of infection rate. Moreover, no interim state was assumed due

to relatively short duration of smallpox (figure 1.2a). d’Alembert considered this problem from a

different point of view to give it a more simpler look. He defined two independent absorbing states

for death along with a single state of alive (see figure 1.2b). The two absorbing states were defined

as death due to the disease of interest and death due to all other causes (Feakins et al. 2018). Note

that Bernoulli’s model involves a multi-state modelling framework, whereas d’Alembert’s model

considers a competing risk problem. These are the very initial steps towards analysis of time-to-

event data for competing events. Competing risk models have been extensively used in medical,

health and epidemiological research ever since the first discussion by Bernoulli of the effects on

population mortality of removing smallpox through vaccination.

(a) Bernoulli’s Model (b) d’Alembert’s Model

Figure 1.2: Conceptual models in studying the effect on population mortality of remov-
ing smallpox through vaccination; Bernoulli assumed a multi-state modelling framework,
whereas d’Alembert considered a competing risk analysis

Competing risk analysis is commonly used for elderly population who are struggling to get fit

for a longer period of time. It is very crucial for a patient to know about risk for a certain condition
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and get proper treatment or available options. It also helps physicians to get optimal information

about a patient to provide the best possible treatment for the conditions. For the time being, this

age group represents a higher portion of competing events. In a review, 70% studies out of 50

clinical studies have been reported competing risks as an important issue for elderly population in

high-impact journals (Tan et al. 2018).

The objective of the study has always been an important part of deciding methods of analy-

sis. Simple Kaplan-Meier and Competing risk processes are analogous, where censoring events

assumed to have no information in absence of competing events (Tan et al. 2018). However, in-

formative censoring can come up with biased estimates in the presence of competing events (Tan

et al. 2018). In accordance with Tan et al. (2018), “A recent review of 100 studies from prominent

medical journals found that 46% of studies that used Kaplan-Meier estimates ignored potential

competing risks and Kaplan-Meier estimates were biased by at least 10%”. The information pro-

vide an idea about dominance of competing risk analysis over other accredited statistical analysis

in recent years. It has been acknowledged in many studies that competing risks analysis is more

efficient to give admissible results than ever before.

1.1.3 Motivation

Health related outcomes of grain industry workers can be conveniently represented by a com-

peting risk framework. Grain industry workers may suffer from different types of complications,

including chronic cough, chronic phlegm, chronic bronchitis and so on. An intuitive modeling

framework would be to consider transitions from the healthy state to one of such complications

with competing risks from other health outcomes. Although many authors reported strong statis-

tical association between exposures to grain dust and adverse health outcomes (Pahwa et al. 2003,

Swan et al. 2007), competing risk analyses have never been considered in these studies. Strong

evidence of biased estimates of conventional approaches motivate us to think beyond conventional
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ways of analysis when competing events are the main focus.

1.2 Objectives

The primary objective of this study is to investigate the effects of various prognostic and demo-

graphic factors on health-related outcomes among the grain industry workers in Saskatchewan. To

achieve our goal, we consider a competing risk framework for statistical analyses with three com-

peting events: chronic cough, chronic shortness of breath and allergy. Overall, our findings could

be useful not only to policy makers with respect to standards and guidelines for grain industry

workers, but also for human awareness.

In chapter 2, we describe the background and theoretical development of the competing risk

models. Analysis of the grain dust data in a framework is presented in Chapter 3. Our findings are

summarized in chapter 4, which include limitations of our study and directions for future work.
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Chapter 2

Competing Risk Modelling

In chapter 1, we have mentioned competing risk model to analyze the exposures to grain dust

among grain workers in Saskatchewan. This chapter provides a complete overview of survival

analysis and competing risk model including definitions, relations between functions and methods

of estimation.

2.1 Basic Concepts of Survival Analysis

Some important functions in the analysis of survival data are cumulative density function, sur-

vival function and hazard function. All these functions will be introduced here with mathematical

definitions as well as their relations with other functions. We are using the same terminology and

notation from Kleinbaum and Klein (2010) book.

2.1.1 Definitions and Relations

Let T be a non-negative (T > 0) continuous random variable commonly known as survival

time. Time until an event occurs is the survival time of an individual. Time can be expressed as

days, month, years or weeks (Kleinbaum and Klein 2010). Specific value of random variable T is

denoted as t. Now, survival function of an individual can be defined as-

S (t) = P(T > t), (2.1)
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which means probability of survival of an individual longer than a specified time t where t lies

between 0 to infinity range. Survival function is a monotone decreasing function where the prob-

ability of survival is 1 at the beginning of a study when time t = 0 and the probability tends to 0

when survival time t approaches infinity.

Figure 2.1: An example of survival function – indicating a monotone decreasing trend with
probability of survival is 1 when time t is 0 and probability of survival is 0 when time t
approaches infinity.

Mathematically, we can write- S (t) = 1 when t = 0 and S (t) = 0 when t = ∞. Hazard function

is denoted by h(t) and defined as-

h(t) = lim
∆t→0

P(t 6 T < t + ∆t|T > t)
∆t

, (2.2)

this mathematical hazard function (2.2) can be expressed in words. Hazard function h(t) describes

instantaneous rate of experiencing an event by a subject in a study who has survived till time t.

Hazard function is also known as conditional failure rate as it has a conditional format of expression

(Kleinbaum and Klein 2010). Cumulative hazard function can be expressed in terms of hazard
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function and it has a relationship with survival function-

H(t) =

∫ ∞

0
h(u)du, (2.3)

S (t) = e−H(t), (2.4)

which means survival function can also be expressed as- a exponential of negative cumulative

hazard function. Similarly, we can express hazard function with respect to survival function-

S (t) = exp
(
−

∫ ∞

0
h(u)du)

)
, (2.5)

h(t) = −
1

S (t)
dS (t)

dt
, (2.6)

we know that the distinguished feature of survival data is to contain censoring information. Miss-

ing observations are generally known as censored in survival analysis. In most research, prior to

the analysis those rows have been removed which contain missing observations. However, cen-

sored observations are considered in survival analysis which has given the analysis a distinctive

feature. Therefore, an indicator variable is required to identify censored observations in a data set.

We assume δ as the censoring indicator where, 1 for the occurrence of an event and 0 for censoring.

If T and C be the time to an event and censoring respectively then-

δ =


1 if T ≤ C

0 if T > C

let δi is the censoring status of ith individual in a study. Likelihood function for a survival model
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can be written as-

L =

n∏
i=1

f (ti)δiS (ti)1−δi , (2.7)

we can maximize the likelihood function to get estimates. Non-parametric and parametric methods

are used in the analysis of survival data.

2.1.2 Non-Parametric Methods

Different non-parametric methods are used to estimate survival and hazard functions. Some

non-parametric methods also provide graph to demonstrate survival and hazard functions. Kaplan-

Meier and Nelson-Aalen are two commonly used non-parametric methods in survival analysis.

Descriptions are provided for these methods in this section.

Kaplan-Meier Estimator

Kaplan-Meier estimator is often known as product limit estimator. Kaplan-Meier estimator is

an effective process of computing and portraying survival functions from time-to-event data. In

the absence of censored observations in a sample with size n, the empirical survivor function is

defined as-

Ŝ (t) =
Number of observations > t

n
, (2.8)

this function (2.8) is a step function, where t ≥ 0. It decreases by 1/n immediately after each

observed survival time where all observations are unique. In other words, empirical survivor func-

tion can drop by d/n if number of survival time d is equal to t (Lawless 2011). An extension

of the equation 2.8 has been introduced by Kaplan and Meier in 1958 that is capable of dealing

survival data with censored observations. Kaplan and Meier (1958) described the estimate and its

properties first time in the article.

12



Suppose we have a data set contains n individuals with k different times t1 ≤ t2 . . . ≤ tk at which

an event of interest occur. If our event of interest is death then it is possible to get more than one

death at time t j and where j = 1, 2, . . . , k. Let d j and n j respectively represent the number of death

and the number of individual at risk at time t j. Now, censoring times can be denoted as λ j that are

from the interval [t( j−1),t j), whereas observed censoring times is L j
i (i = 1, . . . , λ j). We can keep

censoring times that occur before first or after last observed individuals’ lifetime by considering

t0 = 0, t(k+1) = ∞ and j = 1, . . . , k + 1. If underlying survivor function is S (t) and the probability of

dying of an individual is S (t j) − S (t j + 0) where S (t) is a non-increasing left continuous function

(Lawless 2011) then the observed likelihood function can be written as-

L =

k∏
j=1


 λ j∏

i=1

S (L j
i )

 [S (t j) − S (t j + 0)]d j

 λk+1∏
i=1

S (Lk+1
i ) (2.9)

to maximize equation 2.9 with respect to S (t), define P0 = 1 and S (t j + 0) = P j( j = 1, . . . , k) and

consider only-

L1 =

k∏
j=1

(P j−1 − P j)d j Pλ j+1

j , (2.10)

now maximize L1 with respect to P1, . . . , Pk to get the estimated survivor functions where p j =

probability of an individual survives beyond the interval [t j−1,t j)= P j/P j−1 and q j = 1 − p j ( j =

1, . . . , k) (Lawless 2011). Here, We have-

L1 =

k∏
j=1

(p1 . . . p j−1q j)d j(p1 . . . p j)λ j+1 =

k∏
j=1

qd j

j pn j−d j

j , (2.11)

after that equation 2.11 can be maximized considering p j = (n j − d j)/n j and S (t j + 0) = S (t j−1 +

0)n j−d j

n j
. Finally, the equation becomes-

Ŝ (t) =
∏
j:t j≤t

n j − d j

n j
, (2.12)
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We can draw survival curve based on estimated survival functions. This curve is also called as

Kaplan-Meier curve.

Nelson-Aaelan Estimator

Another familiar non-parametric estimator is Nelson-Aalen estimator. The estimator was first

introduced by Nelson (1969), Aalen (1978) which can compute cumulative hazard functions from

survival model. Nelson also provided the graphical presentation of cumulative hazard function

to visualize the pattern. Aalen then extended the method for small and large sets of data beyond

the survival and competing risks problems. Relationship between cumulative hazard function and

survival function can be expressed in a different way, such as- H(t) = −logS (t) and its natural

estimate is-

Ĥ(t) = − log Ŝ (t), (2.13)

where Ŝ (t) is the estimated Kaplan-Meier survivor function. Derivation of Kaplan-Meier estimate

has been discussed in the previous section. More generally we can rewrite the expression (2.13)

with respect to number of death and number of individuals at a specific time t j,

Ĥ(t) = −
∑
j:t j≤t

log
(
1 −

d j

n j

)
(2.14)

Estimated hazard functions Ĥ(t) are known as Nelson-Aalen estimates. Estimates are used in

making cumulative hazard curve.

2.2 Cox Proportional Hazard Model

Most popular estimation process in survival analysis is called Cox proportional hazard model. It

was first introduced by Cox (1972) in the year of 1972. Cox proportional hazard model is a robust
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model, although the baseline hazard function of the model is unspecified during the estimation.

Cox proportional hazard regression model can provide estimates of regression coefficients, haz-

ard ratios and adjusted survival curve from wide range of problems (Kleinbaum and Klein 2010).

Another characteristics of the model is - estimates of regression coefficients can be obtained de-

spite the fact of unknown baseline hazard function. The Cox proportional hazard model is always

preferred in survival analysis over logistic regression model in the presence of censored observa-

tions because the Cox model uses maximum information about survival times and censoring times

(Kleinbaum and Klein 2010). Whereas, censoring times are ignored in logistic model. For these

reasons Cox proportional hazard model is very common in clinical studies.

2.2.1 Statistical Inference

The Cox regression model is formed with baseline hazard function, regression coefficients and

covariates. It is written as-

h(t, x) = h0(t) exp
p∑

i=1

βixi, (2.15)

where h0(t) is the baseline hazard function, βi (i = 1, 2, . . . , p) is a vector of parameters and xi

is a vector of explanatory variables. Explanatory variables are time-independent for the model

(Kleinbaum and Klein 2010).

Regression coefficients (β′s) can be estimated using maximum likelihood method from the Cox

proportional hazard model. Likelihood of the Cox proportional hazard model is formulated based

on the distribution of the outcomes. One of the important features of the Cox model is that there

is no distribution for time to event or outcome variable. Therefore, a full likelihood cannot be

constructed based on the outcome distribution. It can be formulated based on the observed or-

der of events for which Cox likelihood is called partial likelihood (Kleinbaum and Klein 2010).
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Likelihood of individual i at time ti is written as-

Li(β) =
h(ti|xi)∑

j:t j≥ti h(ti|x j)
, (2.16)

summation is over the set of subjects j where the event did not occur before time ti including ith

subject. The effect of the covariates can be estimated without changing the hazard over time. The

joint probability of all events is-

L(β) =
∏

i

Li(β), (2.17)

Wald test statistic is used to get significant factors in a model. It is also known as Z statistics.

The statistic can be defined using estimates of coefficients and their standard errors. Divide each

estimate by their corresponding standard error will give values that are approximately equal to the

standard normal quantity. The statistic from the above calculation is known as wald statistics.

z =
Estimate of regression coefficient

standard error of estimate
=

β̂

se(β̂)
, (2.18)

estimated value of z is compared with tabulated value to see the presence of significant factors.

2.2.2 Checking PH Assumption

One of the way of checking proportional hazard assumption is to plot Schoenfeld residuals.

Schoenfeld residuals is defined for every individuals considering each covariates in the model.

Let, ith subjects and kth covariates have the estimated Schoenfeld residual rik which is defined by

(notation from article of Hosmer Jr and Lemeshow (1999))

r̂ik = xik − ˆ̄xwik; (2.19)
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here xik is the value of the kth covariate for individual i, and weighted mean of covariate values are

denoted as ˆ̄xwik in which the individuals in the risk set at the given event time are considered. Sum

of Schoenfeld residuals is equal to zero but Schoenfeld residuals will lie between –1 and 1 for a

dichotomous variable with 0 and 1 coding. A positive rik value means the higher expectation at a

specific event time (Gillespie 2006).

2.3 Competing Risk Model

Competing risk analysis is an important part of survival analysis. In the presence of competing

events, different statistical methods are used in the analysis of survival data. As we mentioned

in our chapter 1 the competing risk was established to see the effect of different reasons of death

on event (death due to a certain cause) of interest. Later on, the method has been modified for

other types of competing models in which the event of interest is different (e.g affected by any

kind of chronic diseases) than death. In other words, model was modified to work with adverse

health outcomes along with death. Competing events develop when subjects have a chance of

experiencing the events by more than one possible ways. For example, a patient could die from

lung cancer or cardiovascular disease or any other chronic diseases. Types of failure could be more

than one but event can only occur for one reason (Kleinbaum and Klein 2010). Therefore, every

other event is censored by another event in the model (Fermanian 2003). We can have a clear

picture from the Figure 2.2.

2.3.1 Cumulative Incidence Curve

One of the common estimation procedure for competing risk model is to estimate and plot

cumulative incidence functions for every event in a study of time-to-event data. Cumulative inci-

dence function provides a proportion of individual who had experienced the event till time t from

any cause k considering the fact that subjects can experience event due to other causes (Hinchliffe
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Figure 2.2: An example of conceptual competing risk model indicating three independent
events: death due to lung cancer, cardiovascular disease and any other chronic diseases

and Lambert 2013), where k be the number of failure types in the model. Cumulative incidence

curve is plotted separately for each of the events in the model. Cumulative incidence function can

be defined as-

Ck(t) =

∫ t

0
hk(u|x)S (u)du, (2.20)

here hk(u|x) is the cause specific hazard with k = 1, 2, . . . ,m and x is the vector of covariates. S (u)

is overall survival function.

2.3.2 Cause-Specific Hazard Model

Cause specific hazard model is based on the functions where risk of getting an event from a

certain cause will be specified. Let hk(t) be the cause specific hazard where momentary risk of

failure from a specific reason or cause given the information that the individual is still alive at t

(Prentice et al. 1978). Survival and hazard functions are different in notations for the model. By
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definition, these functions can be written in following form-

S k(t) = exp
(
−

∫ t

0
hk(u)du)

)
(2.21)

hk(t) = lim
δt→0

P(t 6 T < t + δt|T > t)
δt

; (2.22)

where S k(t) and hk(t) are the cause specific survival and hazard functions of the model. Cause-

specific cox proportional hazard model looks like-

hk(t) = h0(t) exp(xTβ), (2.23)

here h0(t), x and β are presenting baseline hazard function, a vector of covariates and corresponding

covariate coefficient vector.

2.4 Computational Functions

Various statistical software can be used in the analysis of competing risk model. The analy-

sis of the study has been operated using R programing language created by R Core Team (2013).

In the study of competing risk model using R program is very effective due to some important

packages. survival, survminer, survMisc, cmprsk and lubridate (Terry M. Therneau and Patricia

M. Grambsch 2000, Kassambara et al. 2019, Dardis 2018, Gray 2014, Grolemund and Wickham

2011) packages have been used in the study. These packages include important R-functions such

as- surv f it, S urv, coxph, cox.zph, cuminc, ggcoxzph, ggcompetingrisks, gg f orest that are used

in finding the estimates and plotting curves of hazard function or survival functions of study pop-

ulation.
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2.5 Summary

In this chapter, we have described basic components of survival analysis and competing risk

model. Commonly used parametric and non-parametric methods are described for time-to-event

data. Important computational functions and their packages from statistical software are also men-

tioned in this chapter.

Our results are shown in chapter 3 which includes summary table and graphs as well as their

interpretations.
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Chapter 3

Analysis

In this chapter we present a description of the data set, the conceptual framework for statistical

analysis, and the fitting of the proposed models. We then present our hypothesis, and summarize

our findings.

3.1 The Grain Dust Medical Surveillance Program

As mentioned in Chapter 1, the Grain Dust Medical Surveillance Program (GDMSP) started in

1978 and had run for fifteen years (Pahwa et al. 2003). The participated provinces and territo-

ries were divided into five regions: Atlantic (east of Quebec), St Lawrence (Quebec only), Great

Lakes (Ontario - east of Thunder Bay), Central (Ontario - Thunder Bay and westward, Manitoba

and Saskatchewan), and Mountain (Alberta, British Columbia, Yukon and Northwest Territories).

Data were collected from each region in every three years in five cycles, including information

on company, province, region, type of elevator, age, height, weight, smoking information, lung

function measurements, respiratory symptoms, grade change and physician. The first two cycles’

data were coded by Labor Canada, and the subsequent cycles’ data were coded and entered in

a computer system by the staff at the Environmental Epidemiology Unit, Centre for Agriculture

Medicine, University of Saskatchewan (Pahwa et al. 2003). Note that most of the variables were

coded as categorical or binary, and there were only a few continuous variables, measuring certain

functions of the lung and the respiratory system.
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Saskatchewan was one of the places where the GDMSP was implemented. Although the pro-

gram ended its activities in all the regions in 1993, Labor Canada continued the survey in Saskatchewan

for another twelve years. Thus, the survey in Saskatchewan includes 27 years of data (1978

to 2005), collected in nine cycles three years apart (see Table 3.1). Data are available for 280

Saskatchewan workers (244 males and 36 females).

Table 3.1: Nine cycles of the grain dust program in Saskatchewan.

Cycle Interval

Cycle 1 (October 1978 to September 1981)

Cycle 2 (October 1981 to September 1984)

Cycle 3 (October 1984 to September 1987)

Cycle 4 (October 1987 to September 1990)

Cycle 5 (October 1990 to September 1993)

Cycle 6 (October 1993 to September 1996)

Cycle 7 (October 1996 to September 1999)

Cycle 8 (October 1999 to September 2002)

Cycle 9 (October 2002 to September 2005)

3.2 Data and Variables

There are 280 individuals and 144 variables in the data set, which include information on work-

ers’ date of birth, date of examination, demographic and prognostic factors, and some health-

related outcomes. Note that cases with missing observations are discarded, leading to a sample of

size n = 226. Ten considered for analyses: three health outcomes and seven covariates. The seven

covariates are age, history of health problem (yes/no), history of asthma (yes/no), body mass index

(BMI), forced expiratory volume in one second (FEV1), FEV1/FVC ratio which is the proportion

of the amount of air exhaled in the first second (FEV1) to all of the air exhaled during a maximal
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exhalation (FVC), expressed as FEV1%, and smoking status. The health outcomes are considered

to be the competing risk events, and are defined as follows.

• Event 1: Chronic cough or phlegm if any of the following four conditions hold.

– coughing on most days for as much as three months of the year, or

– suffering from cough for at least a year, or

– bringing up phlegm from the chest on most days for as much as three months of the

year, or

– suffering from phlegm from the chest for at least a year.

• Event 2: Shortness of breath if any of the following two conditions hold.

– wheeze occasionally apart from cold, or

– suffering from shortness of breath.

• Event 3: Occupational allergy.

A summary of the competing events are displayed in Table 3.2. Thirty three events are observed

for chronic cough or phlegm (14.6%), 34 events are observed for shortness of breath (15.0%) and

43 events are observed for allergy (19.0%). Thus, there are 193 censored observations for chronic

cough or phlegm (85.4%), 192 for shortness of breath (85.0%), and 183 for allergy (81.0%).

Table 3.2: A summary of the competing events under study.

Event Count (%)

Chronic cough or phlegm 33 (14.6%)

Shortness of breath 34 (15.0%)

Allergy 43 (19.0%)

Total 110 (48.6%)
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Table 3.3: A summary of the baseline measurements of the continuous covariates.

Variable Definition Mean Standard deviation

Age Age of workers 29.1 6.9

BMI Body mass index in kg/m2, 26.9 4.2
weight in kg/(height in m)2

FEV1 Forced expiratory volume in 1 second 4.4 0.8
(volume of air that can be forced out in
one second after taking a deep breath)

FVC Forced vital capacity 5.6 0.9
(volume of air in the lungs that can be
exhaled following a deep inhalation)

Ratio FEV1/FVC in percentage 79.9 5.6
(percent of the lung size (FVC) that
can be exhaled in one second)

Table 3.4: A summary of the baseline measurements of the binary covariates.

Variable Definition Count Percentage
(yes)

History of Any health issue at the time of diagnosis, 16 7.1%
health problem 1 if yes, 0 Otherwise

History of asthma History of asthma in the family, 7 3.1%
1 if yes, 0 Otherwise

Smoking status Current smoker 71 31.4%
1 if yes, 0 Otherwise

Note that we are interested to estimate the effects of the covariates for each failure type/event,

allowing for competing risks from the other two failure types. A summary of the covariates at

baseline are displayed in Tables 3.3 and 3.4. There are four continuous covariates: age, BMI,

FEV1, and FEV1/FVC ratio (expressed in percentage). We see that (Table 3.3) average age of the
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workers at baseline is 29.1 (standard deviation = 6.9), average BMI is 26.9, (standard deviation

= 4.2), average FEV1 is 4.4 (standard deviation = 0.8 ), and average FEV1/FVC ratio is 79.9

(standard deviation = 5.6). We also have three binary covariates: history of health problem, history

of asthma, and smoking status. We see that (Table 3.4) 16 workers had a history of health problem

(7.1%), 7 workers had a history of asthma (3.1%), and 71 workers were smokers (31.4%).

Figure 3.1: Non-parametric estimation of the cumulative incidence curves for the
Saskatchewan grain dust industry workers from 1978 to 2005- solid, dashed and dotted lines
are representing chronic cough and phlegm, shortness of breath and allergy respectively.

3.3 Trends of the Competing Events

In particular, a cumulative incidence curve is useful to understand the trends of the event haz-

ards over time. The 27-year cumulative incidence rates (1978-2005) for the Saskatchewan grain

industry workers are displayed in Figure 3.1 indicates three events: chronic cough and phlegm,

shortness of breath and allergy with solid, dashed and dotted lines respectively. We see that the

hazards for the three events are similar until around 1998 (20 years from the beginning of the
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study). After about 20 years, a worker has a higher chance to suffer from occupational allergy,

whereas a relatively lower chance to suffer from chronic cough or phlegm. We also see a rapid in-

crease in hazards for shortness of breath after about 15 years, and it remains to be the highest risk

event from year 15 to year 20. As mentioned above, allergy takes over the other two competing

risks in terms of hazards after about 20 years. In summary, (a) there is no substantial difference

during the first 15 years with respect to the occurrence of the events, (b) there is relatively a higher

risk for shortness of breath between year 15 and year 20, and (c) there is relatively a higher risk

for allergy after about 20 years of working in the industries. Together these lead to the conclusion

that there is a long-term health risk for the grain dust industry workers in Saskatchewan.

Figure 3.2: Conceptual framework of competing risk analyses with three events.

3.4 Competing Risk Analyses

Recall that the three competing events under study are chronic cough or phlegm, shortness of

breath and allergy. The conceptual framework of the competing risk model is shown in Figure

3.2. The data contain 33 uncensored and 193 censored observations for chronic cough or phlegm,

34 uncensored and 192 censored observations for shortness of breath, and 43 uncensored and 183

censored observations for allergy.

The proportional hazards model for event type j ( j = 1, 2, 3 for chronic cough or phlegm,
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shortness of breath and allergy, respectively) can be written as

h j(t) = h0 j(t) exp(β1 jx1 + β2 jx2 + β3 jx3 + β4 jx4 + β5 jx5 + β6 jx6 + β7 jx7), (3.1)

where h0 j(t) is the baseline hazard function for event type j, x1 = age, x2 = I(history of health problem),

x3 = I(history of asthma), x4 = body mass index, x5 = FEV1, x6 = FEV1/FVC ratio and x7 =

I(current smoker), where I(A) is an indicator function that equals 1 if A is true and 0 otherwise.

Since, there are very few female grain workers in the data set therefore inclusion of gender leads

to a convergence issue. For this reason we drop gender from the model for the analyses.

For the competing risk model (3.1), we assume that censoring is independent, that is, a subject

in the risk set at time t is as likely to experience any competing event as to be lost to follow-

up. Under this assumption, the typical approach for analyzing competing risk data using the Cox

proportional hazards model (3.1) involves fitting separate models for each competing risk while

treating the other competing risks as censored observations. Note that, this assumption may not

be reasonable for all cases, which is one of our limitations in this study. Our R codes to fit these

models are given in the Appendix.

3.4.1 Analyis for Chronic Cough or Phlegm

We first fit the competing risk model for chronic cough or phlegm with shortness of breath and

allergy censored. Numerical results are summarized in Table 3.5. We see that FEV1/FVC ratio

and smoking are highly significant for chronic cough or phlegm (p-value = 0.0238 and 0.0009,

respectively), whereas age is marginally significant (p-value = 0.0913). The estimates of the hazard

ratios are given in Table 3.5, and the hazard ratio plots along with 95% confidence intervals are

displayed in Figure 3.3. We see that the estimates of the hazard ratios for FEV1/FVC ratio, smoking

and age are 1.0811, 3.3517 and 0.9348, respectively, suggesting

• the hazard risk for chronic cough or phlegm will increase about 8.1% for one unit increase

of the FEV1/FVC ratio controlling for the other factors (i.e., a positive association between
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FEV1/FVC ratio and chronic cough or phlegm);

• smoking will increase the hazard risk for chronic cough or phlegm about 235% controlling

for the other factors; and

• one year increase in age will reduce the hazard for chronic cough or phlegm about 7%

controlling for the other factors (i.e., a negative association between age and chronic cough

or phlegm).

Table 3.5: Competing risk analysis for chronic cough or phlegm with shortness of breath
and allergy censored – estimates of the coefficients, hazard ratios, standard errors of the
estimates, Wald statistic (z), and p values.

Estimate Hazard ratio Standard error (SE) z = estimate
SE Pr(> |z|)

of the estimate

Age (β11) -0.0675 0.9348 0.0400 -1.6890 0.0913

History of
health problem (β21) 0.7287 2.0724 0.5239 1.3910 0.1642

History of asthma (β31) 0.7786 2.1785 1.1163 0.6980 0.4855

BMI (β41) -0.0738 0.9288 0.0463 -1.5970 0.1103

FEV1 (β51) 0.0120 1.0120 0.2922 0.0410 0.9673

FEV1/FVC ratio (β61) 0.0779 1.0811 0.0345 2.2600 0.0238

Smoking (β71) 1.2095 3.3517 0.3635 3.3270 0.0009

The hazard plot (3.3) for chronic cough model consisted with hazard ratio and their 95% con-

fidence interval for all the variables in the model. This graph (3.3) also contains the information

of global long-rank test p-value, Akaike Information Criterion (AIC) and concordance index of

the model. From the plot (3.3), the variables that are significant have confidence intervals before

or after the marginal line which is belongs to 1. Confidence interval for ratio and smoking status

indicates a strong evidence of being highly significant.
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Figure 3.3: Competing risk analysis for chronic cough or phlegm – hazard ratio along with
a 95% confidence interval for each of the covariates, indicating (a) FEV1/FVC ratio and
smoking are highly significant, (b) age is marginally significant, and (c) history of health
problem, history of asthma, BMI and FEV1 are not statistically significant.

Table 3.6: Competing event chronic cough or phlegm – test for the PH assumption for each
covariate, along with a global test of the model as a whole.

rho chisq p

Age (β11) 0.01632 0.01486 0.903

History of
health problem (β21) 0.19953 1.45291 0.228

History of asthma (β31) -0.11417 0.52047 0.471

BMI (β41) -0.10371 0.40634 0.524

FEV1 (β51) -0.00997 0.00378 0.951

FEV1/FVC ratio (β61) 0.09800 0.36173 0.548

Smoking (β71) -0.14648 0.66650 0.414

GLOBAL NA 3.02113 0.883
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Figure 3.4: Schoenfeld residual plots of all the covariates for the competing event chronic
cough or phlegm; dots represent Schoenfeld residuals, the solid line is a smoothing spline fit
to the plot, with the dashed lines representing a ± 2-standard-error band around the fit. The
assumption of proportional hazards appears to be supported for all the covariates.

To check the validity of the proportional hazards assumption, we consider tests and graphical

diagnostics based on the Schoenfeld residuals. A test for each covariate along with a global test for

the model as a whole is summarized in Table 3.6. Note that the proportional hazards assumption

is supported by a non-significant relationship between residuals and time. We see that (Table 3.6)

the test is not statistically significant for any of the covariates, and the global test is also not statis-

tically significant. Therefore, there is no evidence against the proportional hazards assumption for

any of the covariates. A graphical diagnostic of the proportional hazards assumption is displayed

in Figure 3.4 (the solid line is a smoothing spline fit to the plot, with the dashed lines represent-
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ing a ± 2-standard-error band around the fit). Here, systematic departures from a horizontal line

are indicative of non-proportional hazards. From the graphical inspection, we see no obvious pat-

tern with time. Thus, the assumption of proportional hazards appears to be supported for all the

covariates.

3.4.2 Analysis for Shortness of Breath

Furthermore, we fit the competing risk model for shortness of breath with chronic cough or

phlegm and allergy censored. Numerical results are summarized in Table 3.7. We see that history

of asthma and smoking are highly significant for shortness of breath (p-value = 0.0481 and 0.024,

respectively), whereas age and FEV1/FVC ratio are marginally significant (p-value = 0.0913 and

0.0721, respectively). The estimates of the hazard ratios are given in Table 3.7, and the hazard ratio

plots along with 95% confidence intervals are displayed in Figure 3.5. We see that the estimates

of the hazard ratios for history of asthma, smoking, age and FEV1/FVC ratio are 5.3932, 2.2289,

0.9363 and 0.9375, respectively, suggesting

• the hazard risk for shortness of breath will increase about 439% for one unit increase of the

history of asthma controlling for the other factors (i.e., a positive association between history

of asthma and shortness of breath);

• smoking will increase the hazard risk for shortness of breath about 123% controlling for the

other factors;

• one year increase in age will reduce the hazard for shortness of breath about 6.4% controlling

for the other factors (i.e., a negative association between age and shortness of breath); and

• the hazard risk for shortness of breath will decrease about 6.3% for one unit increase of

the FEV1/FVC ratio controlling for the other factors (i.e., a negative association between

FEV1/FVC ratio and shortness of breath).
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Table 3.7: Competing risk analysis for shortness of breath with chronic cough or phlegm
and allergy censored – estimates of the coefficients, hazard ratios, standard errors of the
estimates, Wald statistic (z), and p values.

Estimate Hazard ratio Standard error (SE) z = estimate
SE Pr(> |z|)

of the estimate

Age (β12) -0.0658 0.9363 0.0390 -1.6880 0.0913

History of
health problem (β22) -0.2891 0.7489 0.6581 -0.4390 0.6605

History of asthma (β32) 1.6851 5.3932 0.8528 1.9760 0.0481

BMI (β42) 0.0481 1.0492 0.0382 1.2600 0.2077

FEV1 (β52) 0.3123 1.3665 0.2837 1.1010 0.2710

FEV1/FVC ratio (β62) -0.0646 0.9375 0.0359 -1.7990 0.0721

Smoking (β72) 0.8015 2.2289 0.3552 2.2570 0.0240

The hazard plot (3.5) for shortness of breath model consisted with hazard ratio and their 95%

confidence interval for all the variables in the model. This graph (3.5) also contains the information

of global long-rank test p-value, Akaike Information Criterion (AIC) and concordance index of the

model. From the plot (3.5), the variables that are significant have confidence intervals before or

after the marginal line which is belongs to 1. Confidence interval for history of asthma and smoking

status indicates a strong evidence of being highly significant.

To check the validity of the proportional hazards assumption, we consider tests and graphical

diagnostics based on the Schoenfeld residuals. A test for each covariate along with a global test for

the model as a whole is summarized in Table 3.8. Note that the proportional hazards assumption is

supported by a non-significant relationship between residuals and time. We see that (Table 3.8) the

test is not statistically significant for any of the covariates, and the global test is also not statistically

significant.
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Figure 3.5: Competing risk analysis for shortness of breath – hazard ratio along with a 95%
confidence interval for each of the covariates, indicating (a) history of asthma and smoking
are highly significant, (b) FEV1/FVC ratio and age are marginally significant, and (c) history
of health problem, BMI and FEV1 are not statistically significant.

Table 3.8: Competing event shortness of breath – test for the PH assumption for each co-
variate, along with a global test of the model as a whole.

rho chisq p

Age (β12) -0.0327 0.0616 0.804

History of
health problem (β22) 0.1523 0.7492 0.387

History of asthma (β32) -0.0464 0.0597 0.807

BMI (β42) -0.1786 0.8955 0.344

FEV1 (β52) 0.1846 1.2647 0.261

FEV1/FVC ratio (β62) -0.0568 0.1387 0.71

Smoking (β72) 0.1187 0.4906 0.484

GLOBAL NA 3.5235 0.833
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Therefore, there is no evidence against the proportional hazards assumption for any of the

covariates. A graphical diagnostic of the proportional hazards assumption is displayed in Figure 3.6

(the solid line is a smoothing spline fit to the plot, with the dashed lines representing a ± 2-standard-

error band around the fit). Here, systematic departures from a horizontal line are indicative of non-

proportional hazards. From the graphical inspection, we see no obvious pattern with time. Thus,

the assumption of proportional hazards appears to be supported for all the covariates.

Figure 3.6: Schoenfeld residual plots of all the covariates for the competing event shortness
of breath; dots represent Schoenfeld residuals, the solid line is a smoothing spline fit to
the plot, with the dashed lines representing a ± 2-standard-error band around the fit. The
assumption of proportional hazards appears to be supported for all the covariates.
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3.4.3 Analysis of Allergy

Finally, we fit the competing risk model for allergy with chronic cough or phlegm and short-

ness of breath censored. Numerical results are summarized in Table 3.9. We see that age and

FEV1 are highly significant for allergy (p-value = 0.0008 and 0.001, respectively), whereas BMI

is marginally significant (p-value = 0.0842). The estimates of the hazard ratios are given in Table

3.9, and the hazard ratio plots along with 95% confidence intervals are displayed in Figure 3.7.

Table 3.9: Competing risk analysis for allergy with chronic cough or phlegm and short-
ness of breath censored – estimates of the coefficients, hazard ratios, standard errors of the
estimates, Wald statistic (z), and p values.

Estimate Hazard ratio Standard error (SE) z = estimate
SE Pr(> |z|)

of the estimate

Age (β13) -0.1204 0.8865 0.0358 -3.3660 0.0008

History of
health problem (β23) 0.4318 1.5400 0.4478 0.9640 0.3349

History of asthma (β33) 0.6644 1.9434 0.7702 0.8630 0.3883

BMI (β43) 0.0565 1.0582 0.0327 1.7270 0.0842

FEV1 (β53) -0.8589 0.4236 0.2610 -3.2910 0.0010

FEV1/FVC ratio (β63) -0.0284 0.9720 0.0302 -0.9410 0.3467

Smoking (β73) -0.4079 0.6650 0.3842 -1.0620 0.2883

We see that the estimates of the hazard ratios for age, FEV1 and BMI are 0.8865, 0.4236 and

1.0582, respectively, suggesting

• one year increase in age will reduce the hazard for allergy about 11.4% controlling for the

other factors (i.e., a negative association between age and allergy);

• the hazard risk for allergy will decrease about 58.6% for one unit increase of the FEV1

controlling for the other factors (i.e., a negative association between FEV1 and allergy); and
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• body mass index will increase the hazard risk for allergy about 5.8% controlling for the other

factors.

The hazard plot (3.7) for allergy model consisted with hazard ratio and their 95% confidence

interval for all the variables in the model. This graph (3.7) also contains the information of global

long-rank test p-value, Akaike Information Criterion (AIC) and concordance index of the model.

From the plot (3.7), the variables that are significant have confidence intervals before or after the

marginal line which is belongs to 1. Confidence interval for age and FEV1 indicates a strong

evidence of being highly significant.
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Figure 3.7: Competing risk analysis for allergy – hazard ratio along with a 95% confi-
dence interval for each of the covariates, indicating (a) age and FEV1 are highly signifi-
cant, (b) BMI is marginally significant, and (c) history of health problem, history of asthma,
FEV1/FVC ratio and smoking are not statistically significant.
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Figure 3.8: Schoenfeld residual plots of all the covariates for the competing event allergy;
dots represent Schoenfeld residuals, the solid line is a smoothing spline fit to the plot, with
the dashed lines representing a ± 2-standard-error band around the fit. The assumption of
proportional hazards appears to be supported for all the covariates.

To check the validity of the proportional hazards assumption, we consider tests and graphical

diagnostics based on the Schoenfeld residuals. A test for each covariate along with a global test for

the model as a whole is summarized in Table 3.10. Note that the proportional hazards assumption

is supported by a non-significant relationship between residuals and time. We see that (Table 3.10)

the test is not statistically significant for any of the covariates, and the global test is also not statis-

tically significant. Therefore, there is no evidence against the proportional hazards assumption for

any of the covariates. A graphical diagnostic of the proportional hazards assumption is displayed

in Figure 3.8 (the solid line is a smoothing spline fit to the plot, with the dashed lines represent-
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ing a ± 2-standard-error band around the fit). Here, systematic departures from a horizontal line

are indicative of non-proportional hazards. From the graphical inspection, we see no obvious pat-

tern with time. Thus, the assumption of proportional hazards appears to be supported for all the

covariates.

Table 3.10: Competing event allergy – test for the PH assumption for each covariate, along
with a global test of the model as a whole.

rho chisq p

Age (β13) -0.1878 2.07724 0.15

History of
health problem (β23) 0.04457 0.08256 0.774

History of asthma (β33) -0.0052 0.0013 0.971

BMI (β43) -0.1392 1.20568 0.272

FEV1 (β53) 0.01221 0.00735 0.932

Ratio (β63) 0.15181 0.99136 0.319

Smoking (β73) -0.0297 0.03787 0.846

GLOBAL NA 5.51322 0.598

3.5 Summary

A summary of our competing risk analysis is presented in Table 3.11 Here, we summarize our

findings for the grain dust industry workers in Saskatchewan.

• Age is marginally significant for chronic cough or phlegm and shortness of breath, whereas

it is highly significant for allergy.It is interesting to see a negative association for age, sug-

gesting that the higher the age, the less hazard to get an event (i.e., younger workers are at

high risk compared to older workers). Young workers are exposed to more severe condition

compared to older workers. We suspect that young workers may be involve more in field

works or severe workplace environment leading to a higher risk of health related hazard.

• History of health problem is not significantly associated with the occurrence of these events.
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• History of asthma is found highly significant for shortness of breath. We see that a history

of asthma can significantly increase the hazard of shortness of breath.

• BMI is found marginally significant for allergy: the higher the BMI, the more hazard to get

allergy.

• FEV1 is highly significant for allergy: the lower the FEV1, the more hazard to get allergy.

• FEV1/FVC ratio is significant for chronic cough or phlegm and shortness of breath. Note

that this ratio is positively associated with chronic cough or phlegm, whereas negatively

associated with shortness of breath.

• Smoking is significantly associated with the risk of chronic cough or phlegm and shortness of

breath. We see a positive association between smoking and the hazards of these two events.

Table 3.11: A summary of the competing risk analysis with competing events chronic cough
or phlegm, shortness of breath and allergy – estimates of the coefficients and p-values.

Chronic cough or phlegm Shortness of breath Allergy
Estimate Estimate Estimate
(p-value) (p-value) (p-value)

Age −0.067 −0.066 −0.120
(0.091) (0.091) (<0.001)

History of 0.729 −0.289 0.432
health problem (0.164) (0.661) (0.335)

History of asthma 0.779 1.685 0.664
(0.485) (0.048) (0.388)

BMI −0.074 0.048 0.057
(0.110) (0.208) (0.084)

FEV1 0.012 0.312 −0.859
(0.967) (0.271) (<0.001)

FEV1/FVC ratio 0.078 −0.065 −0.028
(0.024) (0.072) (0.347)

Smoking 1.209 0.802 −0.408
(<0.001) (0.024) (0.288)
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Chapter 4

Conclusion

Grain dust industry workers are exposed to a number of work-related hazards, including high

levels of endotoxin, microorganisms and dust. Multiple studies have reported immunological,

toxicological and clinical effects of occupational exposure to grain dust contaminants (e.g., Pahwa

et al. (2003), Swan et al. (2007)). The main goal of this study is to investigate the effects of

demographic and biological factors on multiple health outcomes for workers who are exposed to

grain dust contaminants for a long period of time. The Saskatchewan data under the Grain Dust

Medical Surveillance Program are considered, which include demographic and health information

of employees from 1978 to 2005. In particular, seven covariates (age, history of health problem,

history of asthma, BMI, FEV1, FEV1/FVC ratio and smoking) are considered to investigate their

effects on three health outcomes (chronic cough or phlegm, shortness of breath and allergy). Under

this setup, a worker can suffer an adverse health outcome in three possible ways, leading to a

competing risk problem as illustrated in Figure 3.2. Thus, competing risk survival analysis is

carried out to achieve our goal.

Based on our analyses, FEV1/FVC ratio and smoking are highly responsible for chronic cough

or phlegm among grain industry workers which also indicate the positive association between

FEV1/FVC ratio and smoking with chronic cough or phlegm (Table 3.5). The estimates of the

hazard ratios indicate increasing hazard rates for a single unit increase of the FEV1/FVC ratio

and smoking. However, estimate of age suggesting a negative association with chronic cough or
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phlegm reporting marginally significant. The estimate of hazard ratio for age indicates a low risk

of chronic cough or phlegm among young workers compare to elder ones. The hazard ratio plot

along with 95% confidence intervals are displayed in Figure 3.3. Validity of the proportional hazard

assumption is checked with a test for every covariates as well as a global test and summarized in

Table 3.6. It is reported that a non-significant relationship between residuals and time supported

the proportional hazard assumption.

Results show us that history of asthma and smoking are highly significant for shortness of

breath as per our expectation before the analyses. That is, history of asthma and smoking will

rapidly increase the hazard of shortness of breath. The estimates of history of asthma and smoking

premise the positive correlation with shortness of breath among workers from grain industries in

Saskatchewan. The results also provide negative estimates for age and FEV1/FVC ratio suggesting

a higher rate of hazard of getting shortness of breath among young workers with chronic cough

or phlegm and allergy as censored. The table 3.8 represented to check the validity of proportional

hazard assumption with a test for each covariates considering global test as well. It is shown that a

insignificant association between residuals and time supported proportional hazard assumption.

Our final model for allergy suggests two highly significant covariates: age and FEV1 are strongly

associated (negative association) with the allegy (Table 3.9). Although, BMI is slightly associated

with allegy and has a positive estimated value. The estimates of hazard ratio for age and FEV1

also indicate the correlation with allergy that reduce the rate of hazard with one unit change in age

and FEV1 among workers in grain industries in Saskatchewan.

The competing risk analysis involves fitting the Cox PH model separately for each event type,

treating the other (competing) event types as censored in addition to those who are censored from

loss to follow-up or withdrawal. One of the assumptions of competing risk analysis is that censor-

ing is independent of events regardless of the different ways that censoring can occur, including
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failure from competing risks other than the event-type of interest. This assumption can never be

explicitly proved for given data. Therefore caution is warranted, given that violation of this as-

sumption may lead to biased estimates. Moreover, our findings are based on a relatively small

sample (n=226), and therefore caution should be applied to generalize or extrapolate our findings.

In this analysis, we did not compare our outcomes with any previous research due to some

inconsistency between Saskatchewan data and the data set for all five regions. Moreover, we have

only used information about grain workers in Saskatchewan but did not consider grain workers and

general population from all over Canada for the analysis. General population may also be exposed

to grain dust in which a similar competing risk setting could be used. In our future work we could

try a multi-state model for the same data set and compare both models and their findings.
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Appendix

This chapter includes R programming codes used for competing risk modeling for health of

Saskatchewan.

####################For Competing risk model#################

rm(list=ls())

library(survival)

library(survminer)

library(survMisc)

library(cmprsk)

library(lubridate)

#Load data set and remove unneccessary columns and rows#

########################################################

########################################################

data<-read.csv("d:/1 MSc thesis/Ms thesis/Thesis Data/Data_Sets/grain-dust.csv",

header=TRUE)

data<-data[,-4]

data[1:20,]

n.org<-length(unique(data$new_id))

n.org

cou<-as.numeric(data$cge3mo==1 | data$coughyrs>=1 | data$pge3mo==1 |
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data$phlegyrs>=1)

sum(cou,na.rm=TRUE)

sofb<-as.numeric(data$wwocold==1 | data$sob==1)

sum(sofb,na.rm=TRUE)

aller<-as.numeric(data$allergy==1)

sum(aller,na.rm=TRUE)

event.mat<-cbind(cou,sofb,aller)

n.event<-NULL

for(i in 1:nrow(event.mat)){

if(all(is.na(event.mat[i,]))){

n.event[i]<-NA

} else{

n.event[i]<-sum(event.mat[i,],na.rm=TRUE)

}

}

cbind(event.mat,n.event)

dat1<-data.frame(data,cou=cou,sofb=sofb,aller=aller,n.event=n.event)

dat1[100:150,]

#cbind(dat1$n.event,dat1$new_id)
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# remove unnecessary rows

dat11<-split(dat1,dat1$new_id)

dat12<-NULL

for (i in 1:length(dat11)){

if(nrow(dat11[[i]])==1){

if(!is.na(dat11[[i]]$n.event)){

dat12<-rbind(dat12,dat11[[i]])

}

}

if(nrow(dat11[[i]])>1){

n0.event<-dat11[[i]]$n.event

obs0<-which(n0.event>0)

n0<-length(obs0)

if(n0==0){

dat12<-rbind(dat12,dat11[[i]])

}

if(n0>0){

obs1<-1:obs0[1]

ddat<-dat11[[i]][obs1,]

dat12<-rbind(dat12,ddat)

}

}

}

dat12[1:20,]

sum(dat12$cou,na.rm=TRUE)
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sum(dat12$sofb,na.rm=TRUE)

sum(dat12$aller,na.rm=TRUE)

# identify id’s with overlapping events

id0<-dat12$new_id[dat12$n.event>1]

# remove these id’s from the data set

dat13<-dat12[!(dat12$new_id %in% id0),]

dat13[1:20,]

n<-length(unique(dat13$new_id))

n

dat13$cou[is.na(dat13$cou)]<-0

dat13$sofb[is.na(dat13$sofb)]<-0

dat13$aller[is.na(dat13$aller)]<-0

sum(dat13$cou)

sum(dat13$sofb)

sum(dat13$aller)

# Find survival times and create a data set

# with a single row for each subject

dat21<-split(dat13,dat13$new_id)

dat22<-NULL

for(i in 1:length(dat21)){
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if(nrow(dat21[[i]])==1){

stop<-dat21[[i]]$yrsind

start<-0

id<-i

}

if(nrow(dat21[[i]])>1){

dd<-ISOdate(dat21[[i]]$ydot,dat21[[i]]$mdot,dat21[[i]]$ddot)

st0<-time_length(diff(dd),"years")

stop<-cumsum(c(dat21[[i]]$yrsind[1],st0))

start<-c(0,stop[-length(stop)])

id<-rep(i,nrow(dat21[[i]]))

}

dat22<-rbind(dat22,cbind(dat21[[i]],start=start,stop=stop,id=id))

}

dat22[1:100,]

rownames(dat22)<-NULL

sum(dat22$cou)

sum(dat22$sofb)

sum(dat22$aller)

length(unique(dat22$id))

# Check missing values in the covariates

dat3<-dat22

row1<-which(is.na(dat3$sex))

row2<-which(is.na(dat3$age))

row3<-which(is.na(dat3$hlthprob))
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row4<-which(is.na(dat3$asthma))

row5<-which(is.na(dat3$height))

row6<-which(is.na(dat3$weight))

row7<-which(is.na(dat3$fev1))

row8<-which(is.na(dat3$fvc))

row9<-which(is.na(dat3$new_smok))

missing.row<-unique(c(row1,row2,row3,row4,row5,row6,row7,row8,row9))

# Find the corresponding ID’s

missing.id<-sort(unique(dat3$id[missing.row]))

# Remove these from the data

dat4<-dat3[which(as.numeric(dat3$id %in% missing.id)==0),]

rownames(dat4)<-NULL

# Double check

row1<-which(is.na(dat4$sex))

row2<-which(is.na(dat4$age))

row3<-which(is.na(dat4$hlthprob))

row4<-which(is.na(dat4$asthma))

row5<-which(is.na(dat4$height))

row6<-which(is.na(dat4$weight))

row7<-which(is.na(dat4$fev1))

row8<-which(is.na(dat4$fvc))

row9<-which(is.na(dat4$new_smok))

missing.row<-unique(c(row1,row2,row3,row4,row5,row6,row7,row8,row9))

#missing.row<-unique(c(row2,row3,row4,row5,row6,row7,row8,row9))
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sum(dat4$cou)

sum(dat4$sofb)

sum(dat4$aller)

length(unique(dat4$id))

####################################################

#####################################################

######################################################

final.dat<-dat4

final.dat$sex<-ifelse(final.dat$sex==1,1,0)

final.dat$hlthprob<-ifelse(final.dat$hlthprob==1,1,0)

final.dat$asthma<-ifelse(final.dat$asthma==1,1,0)

final.dat$new_smok<-ifelse(final.dat$new_smok==1,1,0)

final.dat$bmi<-dat4$weight/((dat4$height/100)ˆ2)

#######################################################

### Descrptuve statisics mean and standard deviation ###

library(dplyr)

a<-final.dat %>% group_by(id) %>% slice((1))

mean(a$age)

sd(a$age)

mean(a$bmi)

sd(a$bmi)

mean(a$ratio)

sd(a$ratio)
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mean(a$fev1)

sd(a$fev1)

mean(a$fvc)

sd(a$fvc)

table(a$hlthprob)

table(a$asthma)

table(a$new_smok)

#################################################

########### Analysis Of Chronic Cough ############

fit.cou<-coxph(Surv(start,stop,cou)˜age+hlthprob+asthma+bmi+fev1+

ratio+new_smok,data=final.dat)

fit.cou

summary(fit.cou)

cox.zph(fit.cou)

ggcoxzph(cox.zph(fit.cou))

ggforest(fit.cou, final.dat)

########### Analysis Of Chronic Shortness Of Breath ############

fit.sofb<-coxph(Surv(start,stop,sofb)˜age+hlthprob+asthma+bmi+fev1+

ratio+new_smok,data=final.dat)

fit.sofb

summary(fit.sofb)

cox.zph(fit.sofb)

ggcoxzph(cox.zph(fit.sofb))

ggforest(fit.sofb, final.dat)
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########### Analysis Of Allergy ############

fit.aller<-coxph(Surv(start,stop,aller)˜age+hlthprob+asthma+bmi+fev1+

ratio+new_smok,data=final.dat)

fit.aller

summary(fit.aller)

cox.zph(fit.aller)

ggcoxzph(cox.zph(fit.aller))

ggforest(fit.aller, final.dat)

###########################################################

############################################################

#############################################################

final.dat$status[final.dat$cou==0 & final.dat$sofb==0

& final.dat$aller==0]<-0

final.dat$status[final.dat$cou==1 & final.dat$sofb==0

& final.dat$aller==0]<-1

final.dat$status[final.dat$cou==0 & final.dat$sofb==1

& final.dat$aller==0]<-2

final.dat$status[final.dat$cou==0 & final.dat$sofb==0

& final.dat$aller==1]<-3

############Cumulative IncidenCe Curves############

fit<-cuminc(ftime = c(final.dat$start,final.dat$stop),

fstatus = final.dat$status,cencode=0)

plot(fit,main="Cumulative Incidence Curve", curvlab
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=c("Chronic Cough", "Chronic Shortness of Breath",

"Allergy"), ylim=c(0, 1), wh=2, xlab="Years",

ylab="Probability", lty=1:length(fit),

color=1, lwd=par(’lwd’))
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