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Abstract 

 Agrochemicals are paramount to supporting current agricultural practices, despite the 

costs to ecosystems. However, sublethal effects of agrochemicals on non-target organisms are 

poorly understood. Additionally, novel insecticides are being developed continuously, and often 

can be found in complex pesticide mixtures applied as seed treatments. One of the most 

controversial of these are the class of insecticides categorized as neonicotinoids, which are 

nicotinic acetylcholine receptor agonists. These insecticides, lauded for their specificity for the 

insect receptor, are known to affect many aspects of insect behaviour and physiology. Wild and 

domestic bees are especially sensitive to these insecticides, which are thought to affect their 

flight and navigation ability and contribute to colony collapse disorder. Here, I explore whether a 

common neonicotinoid, imidacloprid, affects visual motion detection and collision avoidance 

behaviours in the locust, Locusta migratoria. These behaviours and neural circuits are well 

conserved among species, but are especially well described in the locust, making this a highly 

tractable system for exploring these effects in vivo. Through a series of three projects I 

uncovered how imidacloprid affects the responses of important descending visual interneurons to 

an ecologically-important visual stimulus: the image of an object on a direct collision course 

(looming). This stimulus elicits robust escape behaviours in the locust, either while in flight or 

while standing. I show that low, sublethal exposure to imidacloprid resulted in reduced visual 

motion processing in multiple descending neurons, and that these effects were present between 1 

and 24 hours after treatment. I correlated these effects with reduced escape behaviours - animals 

treated with a single dose do not steer or jump to avoid an impending collision. I show that these 

effects also resulted from treatment with metabolites of imidacloprid. This is significant as these 

metabolites exist both in the environment and within insects for a longer time and sometimes at a 

higher concentration than the parent compound, suggesting an additional source of exposure. 

Finally, using a comparative analysis I show that another agonist of the nicotinic acetylcholine 

receptor, the novel insecticide sulfoxaflor, did not produce the same effects as an equal dose to 

that used with imidacloprid. I argue for the utility of using neuroethological assays to answer 

questions in toxicology, as these assays link neural and behavioural effects thus offering a more 

complete picture than single endpoint assays often employed by toxicologists. My results show 

effects of imidacloprid on visual motion detection and escape behaviours, suggesting that similar 

effects may occur in non-target insects, including bees, when exposed to these insecticides. 
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Chapter 1: Literature Review & Objectives 

 

1.1.  Introduction 

 

1.1.1. Toxicology through the lens of Neuroethology 

 The sublethal effects of environmental toxicants tend to be subtle and are influenced by the 

presence of other toxicants and underlying physiological conditions. Linking sublethal effects 

across levels of biological organization poses a significant obstacle when employing single-

outcome testing methods, or when extrapolating sublethal effects from high dose assays. An 

ideological shift is occurring in toxicology towards valuing the complexity of sublethal effects 

and their downstream consequences (Krewski et al. 2010). A conceptual framework was 

developed to aid in linking toxicological responses across levels of biological organization, with 

the goal of prioritizing risk-based assessment (Bradbury et al. 2004). This framework, termed the 

Adverse Outcome Pathway (AOP), portrays the cascade of toxicological effects from the 

molecular initiating event to some final adverse effect of interest to policy makers, such as the 

population decline of a species (Ankley et al. 2010). The AOP requires that effects measured at 

various levels of biological organization, including cellular, physiological, and behavioural, be 

linked by key event relationships that may be causal, mechanistic, inferential, or correlation 

based (Ankley et al. 2010). Defining these relationships poses the greatest challenge, as the links 

between physiology, behaviour, and population dynamics are often unclear or incomplete. 

Neuroethology is the study of brain and behaviour. It employs interdisciplinary approaches to 

understand how the nervous system encodes and processes relevant environmental stimuli to 

produce natural behaviours (Zupanc 2010). Traditionally, neuroethologists have focussed on 

invertebrates that possess tractable nervous systems and react to salient environmental stimuli 

with predictable and robust reflex-like behaviours, such as the crayfish tail flip escape response 

(Wine and Krasne 1972). Exploration of these “simple circuits” has led to many discoveries 

regarding the function and capabilities of the nervous system, and ultimately has revealed the 
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immense diversity of strategies employed by animals to contend with a stimulus-rich 

environment. A major goal of this thesis is to explore the use of neuroethological methods to 

answer questions in ecotoxicology. I argue that this interdisciplinary approach has dual benefit: 

experiments can be designed to link toxic effects spanning from cells to behaviour, and the 

pharmacological manipulation of these circuits fosters the understanding of normal function.  

 

1.1.2. Agrochemicals 

  While agriculture has shaped global ecosystems for thousands of years, the advent of 

chemical pesticides supported a shift in agriculture characterized by large-scale monoculture 

croplands. The ecological impacts of agrochemicals were not widely considered until the 

publication of Rachel Carson’s Silent Spring (Carson 1962). This book, which focused on the 

environmental persistence of the insecticide dichlorodiphenyltrichloroethane (DDT), led to an 

awakening in science that resulted in restrictions of DDT use and inspired the formation of the 

field of ecotoxicology (Banks and Stark 1998). The message of Silent Spring remains pertinent: 

insecticide use continues to increase to support agricultural practices that favour landscape 

simplification (Meehan et al. 2011). Insecticide developers are evolving insecticides in an arms 

race against insecticide resistance and environmental degradation. This has favoured insecticides 

that pose reduced risks to mammals due to increased insect-specific targets, including the class 

of neonicotinoid insecticides.  

 Neonicotinoid insecticides (neonics) are among the top five pesticides used globally, and 

since their introduction in 1990 their use has grown to dominate a quarter of the global pesticide 

market (Jeschke et al. 2011). Neonics are neurotoxicants: they are nicotine mimics, binding 

selectively to insect nicotinic acetylcholine receptors (nAChRs) (Tomizawa and Casida 2005). 

They are moderately water soluble, which allows for assimilation in plant tissues (Bonmatin et 

al. 2015). Seeds and soil can be pre-treated and the pesticide becomes incorporated in all parts of 

the plant, eliminating need for spraying or re-treating crops (Jeschke et al. 2011). Unfortunately, 

toxicity is greater than previously expected for non-target insects, birds, and other organisms 

(Fischer et al. 2014; Main et al. 2014; Rundlöf et al. 2015), and the prophylactic use of these 

insecticides results in massive quantities of neonicotinoids introduced into the ecosystem. 

Neonics can be found in soil (Schaafsma et al. 2016), wetlands (Main et al. 2016), groundwater 

(Id et al. 2018), and untreated wildflower fields (Botías et al. 2015). Modern seed treatments 
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contain mixtures of insecticides and fungicides, and the effects of these pesticide mixtures, and 

their metabolites on non-target organisms are not fully understood (Botías et al. 2017; Maloney 

et al. 2018). 

 

1.1.3. Locusta migratoria: in neuroethology and agriculture  

The locust, Locusta migratoria, is one of the most devastating agricultural pests due to its 

ability to form high-density, mobile swarms (Burrows 1996). Research on the locust nervous 

system was originally inspired by organizations such as the Anti-Locust Research Centre in 

London, UK, to develop novel pesticides (Burrows 1996). Locust flight became a major focus of 

neurophysiological studies, including investigations of proprioceptive feedback of the wing 

stretch receptor and tegula, as well as bursting properties of interneurons associated with flight 

motor neurons (Robertson et al. 1982; Wolf and Pearson 1988; Ramirez and Pearson 1993). 

Stemming from these early investigations, Locusta migratoria has become an important model in 

neuroethology. Locusts are ideally suited for neuroethological assays because they are easily 

bred, and they exhibit robust neural and behavioural responses to specific stimuli. Many features 

of locust neuroethology, including vision, flight, and escape behaviours, have been quantified 

(Rind 1984; Gabbiani et al. 2001; Gray 2005; Gray et al. 2010). Neural circuits that produce 

rhythmic behaviour and process visual information are evolutionarily conserved, thus 

information about the locust nervous system can inform our understanding of neurological 

phenomena across diverse taxa.  

Many pesticides have been used to control locust plagues, including organochlorines 

(dieldrin), pyrethroids, phenyl pyrazoles (fipronil) and organophosphates, but these display high 

toxicity to mammals and other non-target organisms. Although neonics display reduced 

mammalian toxicity, they have been shown to elicit a wide range of behavioural and 

physiological effects in non-target insects, especially in wild and domestic bees (Rundlöf et al. 

2015; Woodcock et al. 2016). Of these, foraging and navigational ability, and predator avoidance 

are known to be compromised with sublethal exposures of various neonics (Henry et al. 2012; 

Tan et al. 2014; Fischer et al. 2014). Despite these behavioural effects, the effects of neonics on 

visual processing has not previously been examined. Collision avoidance pathways similar to 

that of the locust display convergence across taxa (Medan et al. 2007; Yamawaki and Toh 

2009a), and can be studied to gain insight into other systems. Using this tractable pathway, my 
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goal is to understand the effects of neurotoxic insecticides on visual motion detection and 

connect these effects with downstream behavioural output. 

 

1.2. Adaptive behaviours 

 

1.2.1. Avoidance behaviour 

The threat of predation provides a strong selective pressure for animals to develop 

adaptive behavioural strategies to promote survival. Avoidance behaviour requires that the threat 

be detected, either visually or through another temporally-relevant modality, and the prey avoid 

being detected in the process. This may be achieved behaviourally by avoiding habitat, reducing 

activity during times predators are active, or by using some form of camouflage to hide from 

predators. If the animal fails to avoid detection, then another strategy must be employed, that is 

to intimidate, fight, or escape.  

 

1.2.2. Escape behaviours  

Escape behaviours are of broad interest to neuroethologists. These behaviours are 

generally easy to elicit, predictable in nature, and are often described as “reflex-like” as they are 

governed by simple circuits of, often large, neurons and tend to be elicited quickly. These 

behaviours, however, are not true reflexes, in that they involve central processing and may be 

modified through learning or environmental stimuli. There are many examples of escape 

behaviours that have been studied extensively, and entire neural pathways have been described in 

various species. Invertebrates tend to display robust escape behaviours, and their nervous 

systems are accessible and tractable. The caridoid escape reaction, commonly named the tail-flip, 

is an example of an escape behaviour for which the neural mechanisms are completely 

understood. This behaviour is elicited in freshwater crustaceans, including crayfish, via tactile 

stimulation of the body or direct stimulation of the lateral giant interneuron or medial giant 

interneuron (Wiersma 1947; Wine and Krasne 1972).  

A source of difficulty for neuroethologists striving to understand how the nervous system 

controls animal behaviour is the challenge bridging laboratory studies with the animal’s 

behaviour in its natural environment, in which context has a strong influence on neural 

processing and behaviour (Palmer and Kristan 2011). Although escape behaviours may be 
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“reflex-like” they are still highly adaptive behaviours. Escape behaviour has been studied in 

crabs both in the laboratory and in the field in an attempt to merge these methods and understand 

how context modifies these behaviours (Hemmi and Tomsic 2012). Other important escape 

behaviours have been studied extensively in the cockroach (Domenici et al. 2008), fruit fly (Card 

and Dickinson 2008), and locust (Santer et al. 2005b). 

 

1.3. Visual motion detection 

 

Visual motion detection is required for many aspects of visual processing, including 

depth perception and the perception of self- and object motion. While visual motion detection 

requires retinal input, its processing involves integrating visual information with time 

information, and is accomplished by comparing the movement between two images sampled 

after a delay (Borst and Egelhaaf 1989). The detectors can adapt to image velocity by shortening 

or lengthening this delay, in accordance with the visual requirements of a given animal, such as 

for observing predators or perceiving self-motion during low velocity activities like hovering 

(O’Carroll et al. 1996). The ability to detect motion is essential for insect orientation and 

navigation, this ability being heavily dependent on the optomotor response. The optomotor 

response describes the tendency of insects to follow the direction of movement of the visual 

scene in order to stabilize the image on the retina, and serves to maintain heading and orientation 

when the insect may be inadvertently diverted from the intended course (Borst and Egelhaaf 

1989; Taylor and Krapp 2007). The response requires detecting wide field visual motion, or optic 

flow, and calculating the velocity of the optic flow to perceive self-motion (Srinivasan and 

Zhang 2004). In addition to functioning in course stabilization, the optomotor response has been 

shown to be critically important for other aspects of flight and navigation, including landing 

(Baird et al. 2013), and to estimate height (Portelli et al. 2010), speed (Portelli et al. 2011), and 

distance (Si 2003; Dacke and Srinivasan 2007). The optomotor response involves detecting wide 

field visual motion to stabilize and direct flight, while the ability to detect object motion is 

important for perceiving threats and avoiding collisions. For animals that are in flight, the task of 

detecting object motion is complex, as the image motion from objects that are moving must be 

balanced against self motion. The strategies posed by the insect nervous system to encode object 

motion have been studied extensively in the migratory locust. 
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1.4. Locusta migratoria  

 

1.4.1. Biology and ecology  

Locusta migratoria are native to Africa, Japan, the Philippines, and Australia (Chapman 

1998). They belong to the family Acrididae in the order Orthoptera. Locusts express phase 

polymorphism, with gregarious and solitary phases characterized by distinct morphologies and 

behaviour (Simpson et al. 1999). In the solitary phase, they may live in small groups or alone, 

and fly infrequently and for short distances only (Matheson et al. 2004). Locusts pose little threat 

to agriculture while solitarious, but when they change to gregarious forms the results can be 

disastrous (Simpson et al. 1999). Phase change occurs when population densities increase 

sufficiently so that locusts are in direct contact with one another, and stimulation of the back legs 

elicits the change most effectively (Simpson et al. 2001). Gregarious locusts are more active and 

are attracted to conspecifics, contrasting with solitarious locusts that tend to avoid other locusts 

except during mating (Simpson et al. 1999). Behavioural changes may occur within hours of the 

appropriate stimulation, while changes in morphology occur over 1-2 generations (Simpson et al. 

1999). There are thousands of identified phase-related genes and metabolites, but the shift 

between the gregarious and solitarious phases is governed primarily though several key pathways 

(Wang and Kang 2014). One of these pathways that modulates the behavioural shift from 

repulsion to attraction between conspecifics involves chemosensory genes (Guo et al. 2011). 

Additionally, there is a profound change in the relative amounts of various neurotransmitters and 

neuromodulators with phase change (Rogers et al. 2004).  

 

1.4.2. Visually-evoked escape behaviours 

Flying within a dense swarm requires an accurate and precise collision detection system 

to avoid collisions with conspecifics (Baker et al. 1981). In addition, the locust must remain 

sensitive to avian predators. The locust displays escape behaviours that can be elicited reliably 

from a looming stimulus. These behaviours include jumping while standing, or steering 

manoeuvres that are elicited in flight. The structure, context, timing, and motor control of these 

behaviours have been studied extensively.  

While standing, locusts can escape only by jumping. Locusts can control the direction, 

timing, elevation, and distance of the jump (Santer et al. 2005b; Sutton and Burrows 2008), but 
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the trajectory is unpredictable to the predator, allowing this behaviour to be an effective escape 

strategy. Jumping behaviour requires some preparation: the metathoracic (hind) legs function 

like a catapult, with energy stored pre-jump by contracting the hind leg flexor muscles and 

stretching the extensor muscles. There are three stages for a jump: the contraction of the flexor 

muscle, which positions the tibia against the femur (100-300 ms); isometric co-contraction of the 

extensor and flexor muscles to build up elastic energy (300-600 ms); and finally a relaxation of 

the flexor muscles which extends the tibia powerfully (Heitler and Burrows 1977). The duration 

of the extension of the hind legs during a jump at the tibio-femoral joint is 20 msec, with the 

maximum force is reached by 3-8 msec (Brown 1967), however the motor programme requires a 

minimum of 400 ms of preparation (Heitler and Burrows 1977). 

During flight, locusts display several steering behaviours to escape an impending 

collision that can be grouped into three categories: turning, either towards or away from the 

stimulus; gliding, which would decrease the locust’s altitude gradually; or a full stop, which 

allows the locust to achieve a rapid drop in elevation (Santer et al. 2005a; Simmons et al. 2010; 

Chan and Gabbiani 2013; McMillan et al. 2013). Gliding and stopping behaviours are commonly 

thought to be ‘last ditch’ behaviours to avoid collisions without sufficient time for more directed 

course change, such as a turn (Santer et al. 2005a). However, all steering behaviour types can be 

elicited from looming stimuli of the same size and speed (Chan and Gabbiani 2013; McMillan et 

al. 2013), and this variability is advantageous for survival of the locust to predator attack. The 

adaptability of these collision avoidance behaviours is additionally important to allow locusts to 

avoid predators while flying in close range with conspecifics (Benaragama and Gray 2014). 

 

1.4.3. Neural anatomy and biophysical properties  

The basic unit of the nervous system is the neuron. In locusts, most neurons are 

monopolar with a single projection from the soma that branches to form the dendrites and axon 

(Chapman 1998). Neurons are bundled into paired nerve cords, which run ventrally down the 

length of the animal connecting the brain and ganglia (Figure 1.1). Nerves are surrounded by the 

perineurium, or nerve sheath, which is formed from specialized glial cells to maintain 

homeostasis in the environment immediately surrounding neurons (Chapman 1998). The 

perineurium is comparable to the blood-brain barrier in vertebrates. No vessels penetrate the 
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sheath, and substances in hemolymph must cross the barrier and diffuse toward neurons before 

they can have any effect (Burrows 1996).  

In the insect nervous system, acetylcholine (ACh) is the most common excitatory 

neurotransmitter (Burrows 1996). ACh binds to nicotinic acetylcholine receptors (nAChRs) on 

the dendrites of many neurons in the central nervous system (CNS) and motorneurons. When 

bound, ACh causes a conformational change in the nAChR that opens the ion channel and allows 

positively charged ions to enter the cell. If enough nAChRs have been activated, the threshold 

voltage may be reached, and the result will be an action potential. Action potential waveform 

shape differs between neurons, a direct result of various biophysical properties of the axon, 

including its diameter and the density of voltage-gated channels (Hodgekin and Huxley 1952; 

Hodgkin and Huxley 1952a).            

                    

Figure 1.1: The locust central nervous system is arranged into ganglia linked by paired ventral 

connectives. 

 

1.4.4. Vision and visual processing  

Locusts have a pair of compound eyes and three simple eyes (ocelli). Ocelli were 

traditionally viewed as functioning only to maintain directionality during flight and measure 

changes in photoperiod, but have been found to have some level of spatial resolution as well 

(Berry et al. 2007). Interneurons project from each ocellus, and these large, second order neurons 

Paired connectives 
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(L-neurons) are well adapted for monitoring the horizon due to having wide but low resolution 

receptive fields (Wilson 1978). L-neurons interact with wind-sensing neurons in the locust brain, 

this further elucidating the role of the ocelli in course correction and flight stabilization 

(Simmons 1982). Contrasting this, each compound eye is formed from approximately 3000 

ommatidia, with the ~1º acceptance for each ommatidium set at a slightly different angle to 

allow for a wide visual field (Burrows, 1996) (Figure 1.2). When the photoreceptor of an 

ommatidium is activated by a change in light intensity and wavelength, an action potential is 

conducted along the receptor axon and passed through several layers of interneurons in the optic 

lobe, where the signal is processed (Burrows 1996).  

 

 

Figure 1.2: Drawings of a sectioned compound eye and optic lobe. Visual information regarding 

light intensity and wavelength are passed from the photoreceptor of the ommatidium down 

through several layers of interneurons in the optic lobe, where complex features and quality of 

visual stimuli are encoded. Labels are: gcb, ganglionic cell bodies; lg, lamina ganglionaris; me, 

medulla externa; mi, medulla interna, or lobula; o, ommatidium; B, photoreceptor cell; C-F, lens’ 

and crystalline cones of several ommatidia; and G, photo receptor axons (from Burrows, 1996). 

 

Photoreceptors detect changes in light intensity and wavelength, but processing of these 

signals occurs in the optic lobes and protocerebrum. The optic lobes consist of three layers (the 

lamina, medulla, and lobula) and each layer is connected by an area of crossing axons (Figure 

1.2; Burtt and Catton, 1956). Neurons have been identified in the optic lobes that respond 

preferentially to various stimuli, including dimming, brightening (Osorio 1987), or forwards or 

backwards directional movement (Kien 1974a). Signal processing is enhanced through the optic 

lobes, and descending neurons contain highly processed signals for specific visual stimuli. For 
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example, neurons that encode information about the directionality of a flow field have been 

identified (Baader et al. 1992), and other neurons can detect stimuli moving either clockwise or 

counter clockwise around the visual field, termed “binocular directional” neurons (Kien 1974b). 

  

1.4.5. Visual motion-sensitive interneurons  

Locust visual motion detection has been studied intensively, and arguably more is known 

about motion detection in locusts than in any other invertebrate. Individual neurons have been 

identified that encode specific aspects of a moving stimulus. Two pairs of identified interneurons 

have been found to respond preferentially to stimuli approaching at a constant velocity on a 

direct collision course (looming): the Lobula Giant Movement Detector (LGMD) and the 

Descending Contralateral Movement Detector (DCMD) (Judge and Rind 1997; Gabbiani et al. 

1999; Gray et al. 2001). The dendritic trees of each LGMD expand into the optic lobes of the 

locust brain and the axons synapse chemically and electrically with the DCMD (Rind 1984). 

Each LGMD receives converging visual information from sensory receptors of the ommatidia, 

and synapses directly with a DCMD in a 1:1 spiking ratio (Rind 1984). The axon of each DCMD 

crosses the midline and descends contralaterally via the ventral connectives (Rind 1984). The 

DCMD synapses onto motor centres involved in flying and jumping, suggesting that the 

LGMD/DCMD are responsible for eliciting collision-avoidance behaviours (Gabbiani et al. 

1999). The response of the DCMD to looming stimuli has been studied extensively, due largely 

to its accessibility and tractability. An extracellular recording of either of the ventral nerve cords 

will result in the detection of many interneurons, but action potentials of the DCMD are 

discernible as these spikes have the largest amplitude and show a stereotypical response to a 

looming object. 

Many firing properties of the DCMD have been characterized and show that the 

interneuron is both finely tuned to looming stimuli, and capable of encoding complex visual 

stimuli (Gabbiani et al. 1999; Dick and Gray 2014). The DCMD responds preferentially to 

objects on a direct collision course with the eye, and responds least to objects receding from the 

eye (Rind and Simmons 1992). The DCMD encodes information about the size and velocity of 

the stimulus, as well as trajectory changes (Judge and Rind 1997; McMillan and Gray 2012; 

Dick and Gray 2014). The response of the DCMD to a looming stimulus is dependent on the 

speed and size of the stimulus, as well as the angle from which it is approaching. Various 
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parameters of the full DCMD response profile are typically measured, including the maximum 

firing rate, time at maximum firing rate (relative to collision), total number of spikes, rising 

phase, and decay phase (Figure 1.3). These measurements are based on the LGMD/DCMD 

conveying information in a rate code: the firing rate increases as the looming object approaches 

(Rind and Simmons 1992). 

 

Figure 1.3: Raw continuous data and peristimulus time histograms (PSTHs) constructed from an 

extracellularly recorded DCMD response to a looming stimulus. The time the object would have 

collided with the locust (TOC) is marked with a vertical red line. Bursts, which comprise a 

minimum of two spikes occurring within 8 ms of each other, are highlighted with a vertical green 

line to signal the start, and horizontal lines to show the duration. PSTHs show the firing rates of 

the full DCMD response, spikes within bursts only, isolated spikes only, and bursts, smoothed 

with a 50 ms Gaussian filter. PSTHs response profile parameters included: peak firing rate (fp), 

time of the peak relative to TOC, denoted by an asterisk; peak width at half maximum (PW½M), 

rise phase, from the last time the histogram crosses the 95% confidence interval with a positive 

slope (t99) to the peak, and decay phase from the peak until it had decreased to 15% (t15). From 

Parkinson et al (2017). 

 

Recent data show that DCMD bursting properties may contain behaviourally relevant 

information (McMillan and Gray 2015). DCMD bursting is defined as trains of two or more 

action potentials with inter-spike intervals (ISI) of 8 ms or less, and isolated spikes are defined as 

those with ISIs >8 ms (McMillan and Gray 2015). An algorithm developed by McMillan and 

Gray (2015) extracts spike times of isolated spikes, burst spikes, and bursts (the first spike in a 

burst train) and these can be compared with the overall DCMD rate (Figure 1.3). The DCMD 

synapses onto motor neurons that innervate wing and leg muscles, and various studies suggest 

the DCMD is involved with generating collision avoidance behaviours (Simmons and Rind 
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1992; Judge and Rind 1997; Gabbiani et al. 1999; Gray et al. 2001; Santer et al. 2006). It is 

likely that a threshold frequency of DCMD spikes is required to elicit an action potential in a 

motor neuron (Santer et al. 2006; Rogers et al. 2007), but that high frequency DCMD firing must 

occur in phase with the activity of the motor neuron, as some degree of membrane excitation 

must already be present in order for the DCMD to elicit a motor neuron action potential (Santer 

et al. 2006). This process is known as flight gating (Santer et al. 2006). Further evidence 

supporting the importance of DCMD bursting in flight gating is that the frequency of DCMD 

bursts correlates with the locust’s forewing beat frequency at ~25 Hz (McMillan et al. 2013). 

Responses of the LGMD/DCMD are tuned to encode specific features of moving objects 

in the visual field, including its edge acceleration, size, and speed. When an object is 

approaching on a collision course, the firing rate of the DCMD increases to a maximum, which 

occurs before collision (Judge and Rind 1997). Timing of the maximum firing rate is dependent 

on the speed at which the stimulus approaches, with slower stimuli eliciting earlier maximum 

firing rates (Judge and Rind 1997). LGMD/DCMD firing is modulated by a combination of 

excitatory and inhibitory inputs from upstream interneurons of the optic lobes. A model of this 

modulation involves two distinct types of inhibition: lateral and feedforward. 

   

1.4.6. Lateral and feedforward inhibition  

Retinotopic units of the ommatidia connect via excitatory and inhibitory synapses in the 

optic lobes (Rind and Simmons 1998). The retinotopic unit of the locust ommatidium includes 

the photoreceptor cell and downstream neurons, which ultimately synapse onto the LGMD 

(Figure 1.4). Excitatory synapses link the neurons in each retinotopic unit, and additionally there 

are inhibitory synapses projecting from each photoreceptor, constituting two inhibitory paths: 

lateral and feedforward (Rind and Bramwell 1996). 

Lateral inhibition occurs between retinotopic units (Figure 1.4). Inhibitory synapses 

connect retinotopic units one and two units apart (Rind and Bramwell 1996). When a retinotopic 

unit is activated, an excitatory postsynaptic potential (EPSP) is transmitted along the unit toward 

the LGMD, while simultaneously inhibitory postsynaptic potentials (IPSPs) are sent to nearby 

units (Rind and Simmons 1998). IPSPs are slower, longer lasting signals compared to EPSPs, 

which are transmitted quickly and have a short duration (Rind and Bramwell 1996). The result is 

a “critical race” when the image of a looming stimulus is projected on the eye (Rind and 
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Simmons 1998). As additional retinotopic units are excited by the expanding stimulus, adjacent 

units that have already been excited are inhibited. This results in the LGMD/DCMD being 

preferentially stimulated by looming stimuli (Rind and Simmons 1992). 

 

 

Figure 1.4: Schematic representation of layers of neurons from photoreceptor to LGMD that are 

activated as a looming stimulus expands over the ommatidia of the eye. These pathways include 

excitation and lateral and feedforward inhibition. Adapted from Rind and Bramwell (1996). 

 

The second form of inhibition, feedforward inhibition, is activated when many 

photoreceptors are excited (Rind 1996). These inhibitory connections originate from the 

photoreceptor cells, and bypass other neurons of the retinotopic unit to synapse directly with the 

LGMD (Figure 1.4). Feedforward inhibition results in hyperpolarizing currents in the LGMD 

that directly modulate the response of the LGMD when many photoreceptors are activated (Rind 

1996). The basic role of feedforward inhibition is to terminate the LGMD/DCMD response to a 

looming stimulus (Rind and Bramwell 1996). When feedforward inhibitory signals are 

pharmacologically blocked at the dendrites of the LGMD, the response profile of the LGMD to a 

looming stimulus is altered, resulting in an elevated number of action potentials with a longer 

decay phase (longer period of spiking after time of collision) compared to the control (Gabbiani 

et al. 2005). Gabbiani et al. (2005) also found that the feedforward loop is only activated when 
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an image subtends an angle greater than 20º on the locust eye. Feedforward inhibition has more 

recently been shown to encode the angular size of expansion of a looming stimulus, which 

interacts with excitatory pathways that encodes the angular velocity of expansion to form a 

precise and detailed code that represents both the size and speed of the looming object in 

descending neurons (Wang et al. 2018a). 

 

1.4.7. Other visual motion-sensitive descending interneurons  

In addition to the LGMD/DCMD neurons, other descending interneurons have been 

identified in the locust. Two of these neurons are the descending ipsilateral movement detector 

(DIMD) and the late-DCMD (LDCMD). Similarly to the DCMD, the DIMD synapses with 

metathoracic motorneurons, with a spike resulting in an EPSP in these motorneurons, but its 

axon runs along the ipsilateral axis of the body (Burrows and Rowell 1973). While the DIMD is 

thought to be implicated in jumping behaviours, its contributions to flight behaviour has not been 

examined. The response profile of the LDCMD to looming stimuli is similar to that of the 

DCMD, but its response is seen later during the approach of a looming stimulus, with a lower 

peak firing rate, and its action potential is a lower amplitude, characterized by an 

afterhyperpolarization period (Gray et al. 2010). Recently, many additional interneurons have 

been shown to respond to visual motion, with a variety of response types that differ with 

stimulus trajectory (Dick et al. 2017). This demonstrates that the locust visual motion detection 

system is more complicated than previously described.  

 

1.4.8. Neurotransmitters  

The primary neurotransmitter employed by neurons in the optic lobes is acetylcholine. 

Rind and Simmons (1998) found that both inhibitory and excitatory neurons in the optic lobe are 

cholinergic based on the presence of acetylcholinesterase in the synaptic clefts and absence of 

GABA in the terminals. While G-protein-linked muscarinic acetylcholine receptors (mAChRs) 

are the likely mode of transmission for inhibitory signals, excitatory synapses along the 

retinotopic unit and the dendrites of the LGMD must contain nAChRs that result in fast, 

excitatory signals (Trimmer 1995; Rind and Simmons 1998). Inhibitory muscarinic receptors act 

slower, with longer lasting results than the nAChRs, explaining why lateral inhibition does not 

initially overcome excitation during the processing of images of approaching objects (Rind and 
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Simmons 1998). Using picrotoxin, a GABA-receptor antagonist, Gabbiani et al. (2005) 

determined that the only GABA-mediated synapses are feedforward inhibitory synapses on the 

dendritic fields of the LGMD. Photoreceptor cells use the neurotransmitter histamine, as 

demonstrated by Elias and Evans (1983) who found high levels of histamine in the locust retina 

and lamina neuropil of the optic lobe, where it was also found to be synthesized and metabolized. 

While they also found low levels of histamine in the metathoracic ganglion and optic lobe, 

acetylcholine is accepted as the major neurotransmitter of the optic lobe. Although the inhibitory 

synapses in the optic lobe are mediated with GABA and acetylcholine via the mAChR, it is 

likely that inhibitory neurons are activated via nAChRs due to a lack of alternate excitatory 

synapses in the optic lobes. The nAChR is thus highly important in the optic lobes for controlling 

both excitatory and inhibitory pathways. 

 

1.4.9. Comparative biology of locust nicotinic acetylcholine receptors 

The nicotinic acetylcholine receptor (nAChR) mediates fast synaptic transmission in the 

insect CNS (Weeks and Jacobs 1987; Sattelle and Breert 1990). The nAChR is a ligand-gated 

cation channel, assembled from five subunits (Tomizawa and Casida 2003) (Figure 1.5). When a 

ligand binds to the receptor, a conformational change occurs, which opens the associated ion 

channel (Tomizawa and Casida 2001). The nAChR is so named because it binds nicotine, while 

the endogenous ligand for the nAChR is acetylcholine (ACh). ACh binds at the interface 

between two adjacent nAChR subunits, which causes the cation-permeable channel to open 

(Dupuis et al. 2012). Subunit type is defined primarily by the N-terminal extracellular domain: α 

nAChR subunits have two adjacent cysteine residues that form disulphide bonds (Figure 1.5b) 

while non-α subunits do not have this feature (Dupuis et al. 2012). nAChRs can exist in three 

configurations: open, closed, or desensitized. A desensitized nAChR resembles an open 

configuration but with the pore blocked by one loop of an alpha subunit (Kouvatsos et al. 2016). 

Receptor function may be modified intracellularly, as the receptor contains several 

phosphorylation sites on a large cytoplasmic loop between the first and fourth transmembrane 

domain of each subunit (Dupuis et al. 2012).  
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Figure 1.5: Schematics of the insect nAChR. (A) Homomeric receptor formed by five identical 

subunits with a central cation-permeable channel. (B) Representation of a single subunit, with 

four transmembrane domains, a large intracellular loop with phosphorylation sites, and large 

extracellular N-terminal domain with a disulphide bond between two cysteine residues. (C) Top 

view of the pentameric receptor. The M2 segments of each subunit define the channel. ACh 

binding sites are at the interface between subunits. Adapted from Dupuis et al (2012). 
 

Mammalian and insect nAChR subunits differ in amino acid composition, and this 

influences the pharmacological properties of the receptors (Tomizawa and Casida 2003). 

Vertebrate nAChRs are assembled with five of sixteen possible subunits, including 9 ligand-

binding α units, four structural β units, δ, γ, and ε units; and a single organism may express 

various nAChR types in different tissues, although only α and β units are found on neuronal 

receptors (Tomizawa and Casida 2001). Insect nAChRs are composed of α and β units only and 

the gene families tend to be more compact, with just 10 identified genes in drosophila (Sattelle et 

al. 2005), and 11 in the honeybee (Dupuis et al. 2012). However, the size of the gene family may 

not be directly indicative of the diversity of insect nAChRs, as several genes show diversification 

through post-transcriptional modifications (Sattelle et al. 2005; Jones and Sattelle 2010; Dupuis 

et al. 2012). The locust genome dwarfs other insect genomes in size by an order of magnitude, 

with 6,500 Mb in the locust versus 180 Mb in drosophila or 467 Mb in the aphid (Wang et al. 

2014), and as many as 39 nAChR subunit-encoding sequences have been identified (Wang et al. 

2015a). Alternative splicing of locust nAChR subunit genes has been demonstrated to alter 
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agonist potency of acetylcholine on the receptors (Zhang et al. 2017), proving that post-

transcriptional modifications further amplify nAChR diversity in the locust. 

 

1.5. Cholinergic insecticides 

 

1.5.1. The neonicotinoids 

Many insecticides target cholinergic signaling, as the nAChR is the primary excitatory 

receptor in the insect CNS, and the differences between insect and mammalian nAChRs allows 

for reduced mammalian toxicity when insecticides are specific for the insect nAChR (Millar and 

Denholm 2007). To disrupt cholinergic signalling, insecticides have been created that target the 

breakdown enzyme for ACh, acetylcholinesterase (AChE). This group of organophosphate 

insecticides is highly effective, but also poses danger for humans and other non-target animals 

that may be exposed (Kazemi et al. 2012). To mitigate these risks, increasingly more insecticides 

have been developed that are specific for the insect nAChR, including the large class of 

neonicotinoid insecticides (neonics) with structural similarities with nicotine. Neonics are 

classed into three major groups based on structure, including the nitroimines (imidacloprid, 

clothianidin, thiamethoxam, dinotefuran), nitromethylenes (nithiazine, nitromethylene-IMI, 

cycloxaprid, nitenpram), and cyanoimines (thiacloprid, acetamiprid) (Casida 2018). 

Neonics were developed in the late 1980s from nitromethylene heterocycles, which were 

known nAChR agonists (Jeschke and Nauen 2008), and since have become extremely popular 

due to having a high affinity for insect nAChRs, being moderately water soluble, non-ionizable, 

and functioning as systemic pesticides (Tomizawa and Casida 2001). Neonics can cross the 

nerve sheath (perineurium) by and enter the insect CNS. They bind to nAChRs, and are not 

metabolized by AChE (Tomizawa and Casida 2003). The most defining feature of neonics, 

however, is their use as seed treatments: effective pest control can be applied prophylactically 

during planting, which has led to a greater dependence and overall use of insecticides in 

agriculture (Jeschke et al. 2011). 

 

1.5.2. Environmental presence and persistence 

Neonics are known to have serious adverse effects on non-target organisms, including 

important pollinators like the honeybee (Apis mellifera), and wetland species including 
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waterfowl, insectivorous birds, and amphibians (Main et al. 2014). Neonics are currently the 

most widely used pesticides on the Canadian Prairies: 44% of prairie cropland is treated 

annually, with canola, wheat, barley, field pea and oat seeds coated with the pesticide. Huge 

quantities of these pesticides are entering aquatic systems annually: high concentrations are 

accumulating in wetlands (Main et al. 2014), and can be detected in groundwater, which can 

have implications for drinking water (Id et al. 2018). Although industry-funded studies claim that 

neonics do not accumulate in soils (Hilton et al. 2016), neonics have been detected in production 

fields prior to planting at concentrations above 10 ng/g (Stewart et al. 2014). Neonics pose a 

threat to aquatic ecosystems, and high concentrations of neonics have been detected in wetlands 

across the Canadian Prairie, with peaks in detection levels after the winter snowmelt (Main et al. 

2016). 

 

1.5.3. Toxicokinetics 

To describe the toxicokinetics of an exogenous compound, toxicologists consider the 

absorption, distribution, metabolism, and excretion (ADME) of the compound. These analyses 

are often achieved with the use of isotopic labeling, such as carbon-14, which can be tracked as it 

is processed in an organism. Insects and other organisms are most often exposed to neonics via 

contact or oral routes. As neonics are commonly applied as seed treatments, contact exposure is 

most likely to occur via contact with contaminated soil, or with the dust from agricultural 

planters (Krupke et al. 2012), and thus the risk of contact exposure is highest during planting. 

Oral exposure can occur through consumption of any part of the treated plant, including its 

foliage, nectar and pollen (Byrne et al. 2013; Bonmatin et al. 2015).  For the purposes of this 

review, focus will be directed to the pharmacokinetics of neonics in insects only.  

Contact exposure requires that the neonic absorbs through the cuticle, which is comprised 

of a lipophilic epicuticle and a hydrophilic chitin-protein procuticle (Giraud-Guille 1984). A 

comparison of the absorption of three neonics (imidacloprid, thiacloprid, acetamiprid) through 

the cuticle of honeybees shows that not all neonics are absorbed at the same rate: thiacloprid 

absorbs the least, while imidacloprid absorbs the fastest and accumulates quickly in the bee 

(Zaworra et al. 2019). These differences in absorption are related to the polarity of the 

molecules: imidacloprid is more polar (log Pow=0.57) than thiacloprid (log Pow=1.26). After oral 

exposure to neonics, the compounds first must pass through the gut before being distributed 
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throughout the insect’s body in the hemolymph. The distribution of 14C-imidacloprid in the 

honeybee after oral exposure is fast: radiation peaks in the thorax and abdomen just 20 minutes 

after oral exposure, while that in the hemolymph, head, midgut and rectum peak only 2, 6, 10 

and 24 hours after exposure, respectively (Suchail et al. 2004). Similarly, the distribution of 14C-

acetamiprid in the honeybee has a peak in radioactivity in the abdomen 30 minutes after 

exposure, while in the midgut, thorax, hemolymph and head levels were low until 2 hours after 

exposure and then remained stable until 72 hours (Brunet et al. 2005).  

Contrasting the natural nAChR ligand, acetylcholine, neonics are not broken down by 

AChE and  must either be displaced by high concentrations of acetylcholine, or metabolized by 

detoxification enzymes (Tomizawa and Casida 2005). The largest group of detoxification 

enzymes are the cytochrome P450 monooxygenases (CYP450) isozymes. These enzymes are 

involved in oxidative metabolism of a wide variety of pesticides in locusts (Guo et al. 2012; 

Wang et al. 2015b), with CYP6G1 being primary in phase I metabolism of IMD (Saha 2016). 

Imidacloprid is metabolized via hydroxylation, oxidative cleavage of the methylene bridge, or 

reduction of the nitro group (Suchail et al. 2004; Casida 2011) (Figure 1.6). 

In honeybees, IMD has a 5 hour elimination half-life and is completely metabolized 

within 24 hours, while its metabolites persist for over 30h (Suchail et al. 2004). IMD-olefin and 

the hydroxy-imidacloprid metabolites may be more neurotoxic than the parent compound 

(Suchail et al. 2000), so, despite clearance of the parent compound, toxic effects may be 

sustained or secondary effects may occur. The IMD-olefin metabolite is more lipophilic than 

IMD (low Pow = 1.22 versus 0.57), suggesting its toxicokinetics would differ from the parent 

compound. In addition, the epoxide formed spontaneously from the olefin metabolite could cause 

oxidative damage. Neonic metabolites can be detected in beehives and honey at much higher 

concentrations than the original forms (Codling et al. 2016). As the metabolites display 

insecticidal properties, increased focus should be on all neonicotinoid derivatives when 

determining environmental concentrations and describing toxicological endpoints. 
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Figure 1.6: Proposed metabolic pathway of imidacloprid in the honeybee. The 6-chloronicotinic 

acid metabolite is formed by oxidative cleavage of the methylene bridge (1). The urea derivative 

is formed by reduction of the nitro group (2). CYP6G1 catalyzes the hydroxylation of IMD to 

4/5-hydroxyimidacloprid and 4,5-dihydroxyimidacloprid (3), while the olefin metabolite may be 

produced non-enzymatically or via 4/5 hydroxyimidacloprid. Hydroxy-imidacloprid metabolites 

can also be formed via the epoxide derivative from the olefin metabolite. From Suchail et al 

(2004). 
 

1.5.4. The molecular initiating event: neonic binding the nAChR 

The nAChR has proven to be an effective insecticide target, due to the differences in 

subunit composition between mammals and insects, and the localization of these receptors 

throughout the insect CNS. In addition to enhancement of detoxification pathways, neonic 
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resistance may arise from alterations to the target site (Saha 2016). Neonics affect the expression 

of nAChR subunits by regulating the transcription of these genes, which results in an alteration 

in sensitivity to the neonic (Markussen and Kristensen 2010; Wang et al. 2015b). Both ACh and 

neonics bind the orthosteric site of the insect nAChR (Taly et al. 2009; Ihara et al. 2015). Despite 

ACh being the endogenous ligand of all nAChRs, specificity of neonics to invertebrate nAChRs 

is dependent on differences in charge within the binding site. Although neonics are nicotine 

mimics, nicotine binds to the anionic subunit of mammalian nAChRs, while neonics bind a 

cationic subunit of insect nAChRs (Tomizawa and Casida 2003). The result is that despite 

structural similarities to nicotine, neonics are specific to insect nAChR subunits. Neonics are 

generally considered agonists, and binding to the nAChR opens cation channels (Casida and 

Durkin 2013), resulting in the influx of sodium (Na+) and calcium ions (Ca2+), and the efflux of 

potassium ions (Jones and Sattelle 2010). There is also interaction with voltage-gated calcium 

channels (Jepson et al. 2006), which further disrupts Ca2+ signalling within affected neurons. 

Although neonics show specificity to insect versus mammalian nAChRs, there exists a vast 

diversity of nAChR subunits within and between insect species, and this results in differential 

binding and activity at these receptors. In locusts, there are three identified β subunits, and two of 

these, Locβ1 and Locβ3 form two distinct low (Kd = 10.31 nM) and high (Kd = 0.16 nM) affinity 

imidacloprid binding sites, respectively (Bao et al. 2017).  

In the cockroach, two identified nAChR subtypes, one that is sensitive to imidacloprid 

(nAChR1) and one insensitive (nAChR2), are shown to be affected by chronic treatment with 

imidacloprid (Benzidane et al. 2017). The nAChR1 displays reduced sensitivity with chronic 

treatment, shown through reduced current density flowing through the receptor, and the 

conductance of both subtypes was altered, related to altered steady-state intracellular calcium 

[Ca2+]i (Benzidane et al. 2017). The desensitization of nAChR1 in the cockroach with chronic 

exposure to imidacloprid may be an adaptive mechanism to optimize the functional properties of 

the insensitive nAChR2. Receptor desensitization by imidacloprid has also been shown to be 

subtype-specific in neurons of other insects, including the stick insect (Oliveira et al. 2011). 

Desensitization can be caused by prolonged stimulation by any exogenous or endogenous 

nAChR ligand resulting in the pore being blocked and inactivated (Quick and Lester 2002). The 

desensitized receptor has a high affinity for the agonist, which results in an inactivated state that 

remains until the agonist is removed (Ochoa et al. 1989). Receptor desensitization has been 
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shown to be elicited by various nAChR agonists in thoracic ganglion neurons of the locust, 

effectively blocking ACh-induced inward currents with prolonged exposure (Zwart et al. 1994). 

The rate of recovery from receptor desensitization is dependent on receptor phosphorylation, and 

phosphorylation sites exist on the nAChR for calcium-calmodulin-dependent protein kinase 

(Thany et al. 2007). Adverse Outcome Pathways (Figure 1.7) have been proposed for honeybees 

exposed to neonics, that attempt to link the activation of nAChRs with ultimate effects on whole 

colony survival (LaLone et al. 2017). These pathways propose differing mechanisms of neural 

dysregulation that are discussed in detail in the following section. 

        

Figure 1.7: The molecular initiating event (MIE) and two Key Events (KEs) proposed in 

Adverse Outcome Pathways (AOPs) by Lalone et al (2017). These pathways differ in the first 

KE following nAChR activation, but both lead to the eventual disruption of calcium-calmodulin 

activated signal transduction. 

 

1.5.5. Cellular effects 

Disrupted neural function is the primary proximal effect of neonicotinoid exposure, 

resulting in major downstream effects on many aspects of animal physiology and behaviour. 

However, the agonistic effect of neonicotinoids has additional cellular effects compared to ACh, 

which result in a cascade of downstream consequences that can jeopardize the function and 

survival of cells. 

 

Mitochondrial dysfunction 

Mitochondrial dysfunction related to neonic toxicity can be explained by the localization 

of nAChRs on the outer membrane of the mitochondria (Gergalova et al. 2012), in addition to 

high levels of [Ca2+]i that result from prolonged excitation (Peng and Jou 2010). Although 
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nAChRs have not been directly identified on insect mitochondria, their presence has been 

demonstrated by mitochondrial depolarization of isolated bumblebee mitochondria following 

exposure to nAChR agonists, including the neonics clothianidin and imidacloprid (Moffat et al. 

2015). Imidacloprid, additionally, has been shown to inhibit ATP production in isolated 

honeybee mitochondria (Nicodemo et al. 2014). Mitochondria have important roles in mediating 

apoptosis, in addition to their importance for ATP production. This is achieved via the 

sequestration of Ca2+ and release of cytochrome c, processes which are mediated by the voltage 

dependent anion-selective channel that is likely coupled with the mitochondrial nAChR 

(Gergalova et al. 2012). A second mechanism by which neonics affect mitochondria is via the 

increase in [Ca2+]i that follows prolonged stimulation of the nAChRs on the cell membrane 

(Tomizawa 2002; Jepson et al. 2006). When [Ca2+]i reaches a critical level of concentration, Ca2+ 

channels are opened on the mitochondrial membrane, where high concentrations of Ca2+ will 

disrupt normal metabolic function and may lead to cell death (Ermak and Davies 2002). Thus, 

the involvement of mitochondria may be important both in the initial phase prior to receptor 

desensitization as well as offering an additional target for the insecticides. 

 

Calcium and calcium signalling 

Calcium acts as a messenger within the neuron, where it binds to calmodulin (CaM) and 

initiates a signalling cascade that leads to the production of proteins that direct synaptic 

plasticity, and an imbalance of [Ca2+]i can lead to cell death (Uteshev 2012). Under normal 

conditions, such as those elicited by presynaptic release of the endogenous ligand ACh, Ca2+ is 

then sequestered primarily by the endoplasmic reticulum, and the intracellular environment is 

returned rapidly to resting conditions. Imidacloprid, however, induces transient and repeatable 

increases in [Ca2+]i in cultured cholinergic drosophila central neurons, that is blocked by 60-70% 

with the addition of Cd2+, a voltage-gated calcium channel (VGCC) antagonist (Jepson et al. 

2006). The neonic-induced increase in [Ca2+]i is thus mediated primarily by the VGCC, which 

may be due to close localization of these channels on the membrane. This influx of Ca2+
 resulting 

from nAChR and VGCC activation is further amplified by the recruitment of intracellular Ca2+ 

stores (Tsuneki et al. 2000). Thus, the interaction of neonicotinoids and [Ca2+]i are intimately 

linked, both in a transient manner, as seen during the agonistic activity of the ligand, and as a 
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downstream effect of either mitochondrial dysfunction, or reduced Ca2+ permeability, resulting 

from nAChR desensitization. 

Calcium-calmodulin (Ca2+-CaM) activated signal transduction may be disrupted with 

neonicotinoid toxicity due to effects on mitochondrial function, as a critical step in the pathway 

is the input of ATP produced by the mitochondria (Nicholls and Budd 2000). The mechanism by 

which receptor desensitization could result in altered Ca2+-CaM signalling involves a sustained 

decrease in [Ca2+]i resulting from blocked nAChR pores (LaLone et al. 2017). This effect would 

be self-perpetuating, due to the phosphorylation sites on the nAChR that regulate the rate of 

receptor recovery after desensitization by altering the activity of Ca2+-CaM -dependent protein 

kinase (Thany et al. 2007). This mechanism of Ca2+ dysregulation contrasts the mitochondrial 

dysfunction mechanism, but ultimately would result in similar downstream effects on the 

pathway. An investigation of protein kinase A transcripts in honeybee brain following neonic 

exposure (imidacloprid) found a significant decrease in expression, confirming neonic-induced 

effects on Ca2+-CaM signalling (Christen et al. 2016). 

 

Oxidative stress 

The generation of reactive oxygen species (ROS) can result as a downstream effect of 

Ca2+ excitotoxicity (Hermann et al. 2015). This process occurs as a result of mitochondrial Ca2+ 

overload, with potential mechanisms of ROS production including a Ca2+-induced increase in 

metabolic rate, nitric oxide production, cytochrome c dissociation, and Ca2+-CaM dependent 

protein kinase activation (Peng and Jou 2010). Oxidative stress is associated with many 

downstream effects on vertebrate and invertebrate cells including increased lipid peroxidation, 

DNA damage, and protein damage, and this has been identified as a key mechanism of 

neonicotinoid toxicity (Wang et al. 2018c). In cotton bollworm larvae, dose and time-dependent 

increases in oxidative stress result from exposure to imidacloprid (Nareshkumar et al. 2018). 

This increase is measured as an increase in lipid peroxidation, lactate dehydrogenase activity, 

and accumulation of H2O2, with a reduction in catalase and superoxide dismutase (Nareshkumar 

et al. 2018). Importantly, ROS can cause calcium to be released from [Ca2+]i stores, including the 

endoplasmic reticulum (Roveri et al. 1992), resulting in a feedforward loop. 
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Apoptosis 

Ca2+ plays a major role in cell death, both in necrosis, which results from severe Ca2+ 

dysregulation, and in apoptosis. Ca2+ release from the endoplasmic reticulum and Ca2+ influx 

through Ca2+ channels are implicated in the initiation of apoptotic pathways, which generally 

follow a more controlled increase in [Ca2+]i (Pinton and Rizzuto 2006). The primary effector of 

the apoptotic pathway is cytochrome c, which is released from the mitochondria when Ca2+ 

concentrations are too high. This molecule drives the assembly of the ‘apoptosome’ consisting of 

a caspases activating complex together with apoptosis-protease activating factor 1 and caspase 9 

(Hill et al. 2003; Pinton et al. 2008). 

There are several examples of neonicotinoid-induced apoptosis in the literature, both in 

vertebrate and invertebrate systems. Imidacloprid induces apoptosis in hippocampal neurons in 

the Formosan leaf-nosed bat, resulting in impaired spatial memory (Hsiao et al. 2016). In the 

honeybee, imidacloprid induces apoptosis in the central nervous system resulting in increased 

apoptotic markers, including neuronal activated caspase-3 and mRNA levels of caspase-1 (Wu et 

al. 2015). Condensed cells, that result from apoptotic cell death, are concentrated specifically in 

the optic lobes following treatment with imidacloprid in the Africanized bee (De Almeida Rossi 

et al. 2013), suggesting that this brain area may be affected to the greatest degree in this species. 

 

1.5.6. Effects on brain and behaviour 

There are many documented effects of neonicotinoids on myriad behavioural traits and 

outcomes. Between studies these effects may contrast completely, these differences depending 

primarily on dose and time. Toxic effects often initially involve increased motor activity and 

increased nervous system excitability, while over time these effects shift towards decreased 

function and activity, which may be associated with the agonistic versus desensitizing effects of 

the compounds. In general, purely behavioural experiments show results that may be explained 

in different ways, and often the meaning of the results is disputed between scientific groups. To 

properly explain whether a behavioural deficit is due to issues on learning and memory, motor 

control, or sensory processing, it is necessary to look to the nervous system. The studies below 

that employed neuroethological methods, or those that strived to explain effects of 

neonicotinoids on behaviour by also determining what aspect of neural processing was affected, 

are far stronger and have more conclusive results. 
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Learning and memory 

Many experiments have been performed testing the effects of IMD on the proboscis 

extension reflex (PER) in honeybees. When honeybees are chronically exposed to field realistic 

concentrations of imidacloprid, olfactory learning and memory formation is impaired resulting in 

an impaired conditioning of the PER towards an odor associated with reward (Williamson et al. 

2013). Contrasting this, however, is that a slight improvement in olfactory learning is produced 

with an acute, sublethal dose of imidacloprid (Williamson et al. 2013). This is likely due to the 

low dose causing a slight increase in cholinergic signalling within the mushroom bodies and 

antennal lobes (Thany and Gauthier 2005). Neonics act as partial agonists of nAChRs on 

dissociated Kenyon cells (Déglise et al. 2002), which are the primary neural cell types of the 

mushroom bodies. A mechanism by which neonicotinoids are affecting learning and memory 

involves Kenyon cell inactivation in the mushroom bodies following prolonged activation of 

Kenyon cells by neonics (Palmer et al. 2013). Neonics affect odour coding in antennal lobes 

upstream of the mushroom bodies (Andrione et al. 2016), which signifies that the perception of 

odour is altered. Traditional odour-association tests are used as measures of learning and 

memory ability, and do not control for ineffective odour perception. Whether there are similar 

effects of neonics on primary gustatory processing areas has yet to be shown, but this may offer 

an alternate explanation to the effects observed on learning and memory. 

While the disruption of olfactory learning by neonics and pesticide mixtures has been 

well established, effects on visual learning are contested. A recent study on bumblebee foraging 

behaviour found that while motivation and return to rewarding food sources was decreased after 

imidacloprid exposure, the ability to associate a floral colour with reward was not affected (Muth 

and Leonard 2019). The authors suggest that imidacloprid does not affect learning and memory, 

but rather affects food motivation and motor control. A previous study, however, found that 

exposure to low levels of imidacloprid (2.6 and 10 ppb) affected the ability of bumblebees to 

associate flower colour with reward value, and while this may be associated with reduced flower 

sampling, it could also result from impaired visual learning (Phelps et al. 2018).  

Other forms of memory retention, including association of an aversive stimulus such as a biting 

predator with a floral odour, are affected by chronic imidacloprid exposure (Zhang and Nieh 

2015). 
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Foraging & Navigation 

Significant evidence exists showing the detriment of neonic pesticides to many important 

pollinators, especially bees. It is argued, however, that pollinators may not be at a high risk due 

to its low field concentrations and the presence of untreated food sources, such as wildflower 

fields. Unfortunately, very low chronic doses can have significant effects on both individuals and 

the hive. Even when protective measures are in place to reduce bee toxicity, such as planting 

floral plants in the margins between fields in the hopes that pollinators will choose these flowers 

instead of the treated plants, toxicity remains high among pollinators. Neonics in dust produced 

during sowing can drift to these nearby plants (Botías et al. 2015), and perhaps even more 

importantly, honeybees and bumblebees have been found to prefer foods that contain neonics 

despite not being able to detect these compounds in nectar (Kessler et al. 2015). Another study 

found that bumblebees will preferentially visit feeders that are laced with neonics, even when 

these feeders are moved (Arce et al. 2018). Although this may present evidence that the bees can 

detect the compounds, it could also indicate that the preference for treated food is acquired 

rapidly at novel locations. Other honeybee species, including Apis cerana which are native to 

Asia, also show a strong preference for neonic-laced foods, and show decreased predator 

avoidance at these feeders (Tan et al. 2014).  

A common effect of neonicotinoids that occurs shortly after intoxication with a sublethal 

concentration is agitation and excitation, which can be expressed by increased flight duration and 

distance in honeybees (Tosi et al. 2017). This effect, however, tends to be reversed with chronic 

exposure, where a decrease in flight duration, distance and even velocity is observed (Tosi et al. 

2017). Low doses of neonics have been shown to affect bee navigation. Reduced navigational 

ability for both vector and homing flight has been observed with doses as low as 2.5 ng/bee, 

while treatment at this dose did not affect flight ability nor demonstrated desire to return to the 

hive (Fischer et al. 2014). This shows the pesticide preferentially affects long-term memory, as 

the homing phase of flight, which requires activating remote memories from the bee’s 

exploratory flights earlier in life, are most significantly inhibited. Solitary bees are also important 

pollinators, and their retrieval of navigational memory is significantly impaired with low, 

ecologically relevant doses of neonics (Jin et al. 2015). Chronic exposure of bumblebees with 

neonic (2.4 ppb thiamethoxam) results in longer foraging trips and improved homing ability, 

despite returning with less pollen, indicating reduced foraging performance (Stanley et al. 2016). 
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Contrasting this, honeybees exposed to low doses of thiamethoxam display reduced homing 

flight ability, with many exposed bees displaying mortality due to postexposure homing failure, 

and a significantly reduced proportion of treated bees returning to the hive (Henry et al. 2012). 

Although many studies looking at the effects of neonics on foraging and navigation associate 

affected behaviours with deficits in learning and memory, it is equally possible that these effects 

derive from deficits with visual motion detection. Bees use visual motion detection to calculate 

speed and distance (Dacke and Srinivasan 2007), thus disruption of this processing could result 

in bees that ineffectively estimate the distance of food sources from the hive resulting in 

decreased return trips to favorable food sources and to the hive. Despite this plausible 

explanation, no studies have looked into whether neonics affect visual motion detection in bees. 

 

1.5.7. Novel cholinergic insecticides 

Novel cholinergic insecticides are being developed to provide alternatives to widely used 

insecticides that become less effective following target organism resistance, or to replace 

insecticides that are known to cause severe damage to the ecosystem. A major class of these 

insecticides are the sulfoximines, with its primary compound sulfoxaflor already being used in 

pesticide mixtures like Visivio (Syngenta Seed Care, Switzerland). Sulfoxaflor targets the 

nAChR and is highly effective as a broad-spectrum insecticide against many sap-feeding pests 

(Zhu et al. 2011). These insecticides are detoxified through a different pathway than the 

neonicotinoids (Zhu et al. 2011), which results in low cross-resistance with neonics in species 

that display reduced sensitivity to neonics (Longhurst et al. 2013). Sulfoximines possess different 

structure activity relationships compared to other insecticides, which are thought to provide 

increased insecticidal activity and set this class of insecticides apart from the neonics (Sparks et 

al. 2013). There is concern from the scientific community over the mitigation measures 

implemented in light of the development of new insecticides, with major concerns arising over 

the potential of novel insecticides to harm the ecosystem (Centner et al. 2018). Indeed, one study 

has already reported a reduction in bumblebee reproductive success following chronic exposure 

to sulfoxaflor (Siviter et al. 2018). The implementation of toxicity testing that can define 

sublethal effects of these novel compounds on non-target organisms is vital to ensure a reduction 

of the detriment caused by agrochemicals in the environment.  
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1.6. Research questions 

 

Neonics are known to affect various aspects of flight and navigation, although the cause of 

these effects is not always clear using purely behavioural experiments. It is generally thought 

that navigational deficits result from impairments to memory, although another option exists: 

insects, like bees, use neural calculations of optic flow, or the movement of the visual scene 

during flight, to calculate distance and velocity. If there are deficits with the processing of visual 

information, we would expect these insects to have trouble calculating distance during flight, 

which would result in insects that could not perform accurate homing flights or return to a 

rewarding food source. We can use the well-described collision avoidance pathway in the locust 

to answer questions related to whether cholinergic insecticides affect visual motion detection.  

My main objective was to assess how these nAChR agonists may be disrupting this important 

and highly conserved pathway. The following questions guided the experiments: 

 

How does the neonic imidacloprid affect visual motion detection by a looming-sensitive 

interneuron, and what effects does it have on collision avoidance behaviour? In Chapter 2, I 

perform electrophysiological assays to record DCMD responses to looming stimuli, 2 and 24 

hours after treatment with a sublethal dose of imidacloprid. I additionally test two escape 

behaviours, jumping and flight steering, at these doses and time points. Chapter 2 strives to 

reveal whether imidacloprid, a neonic, affects the activity of the DCMD neuron in response to 

looming stimuli, and if there are downstream effects on collision avoidance behaviour. I 

hypothesized that imidacloprid would alter the firing properties of this neuron, resulting in 

impaired flight and avoidance behaviour. The results from Chapter 2 led to the design of 

experiments for Chapters 3 and 4, which answer the following questions. 

 

Do metabolites of imidacloprid display neurotoxicity and effects on behaviour, and how 

does this compare to the parent compound? The main purpose of Chapter 3 was to characterize 

whether two metabolites of imidacloprid, imidacloprid-olefin (OLE) and 5-hydroxy-imidacloprid 

(5OH) affect DCMD firing and collision avoidance behaviour. Additionally, using a different 

electrophysiological method, I examined putative effects on conduction velocity along the 

DCMD axon. I hypothesized that neonicotinoid metabolites would cause an effect similar to the 
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parent compound measured at 2 hours after treatment, due to the parent compound requiring time 

to metabolize into these compounds. Additionally, I hypothesized that I would see an effect on 

conduction velocity, due to the effect of these compounds on [Ca2+]i that would affect VGCCs. 

 

How does the toxicity of imidacloprid compare to the novel cholinergic insecticide 

sulfoxaflor on population responses of descending visual interneurons? In Chapter 4, I 

propose the utility of these neuroethological assays in comparative toxicology. For these 

experiments I compared the effects of imidacloprid with sulfoxaflor on visual motion detection 

and collision avoidance behaviour. Additionally, I used a more sophisticated electrophysiological 

technique to record the population responses of multiple descending neurons responding to 

object motion.  

 

1.7. Projected significance 

 

These studies are among the first to examine whether neonicotinoid and sulfoxaflor 

insecticides affect visual motion processing in an insect. If visual motion processing is disrupted 

by exposure to low doses of these insecticides, this could result in effects on a variety of 

downstream behaviours, including navigation and escape behaviours. Neonics are already known 

to affect navigation, but whether there are effects on escape behaviour has not previously been 

tested. The results from Chapter 3 show whether neonic metabolites display toxicological 

properties similar to the parent compound. As these metabolites are found both in the 

environment and are metabolized within affected organisms, results from these experiments 

highlight the risks posed to insects. The results from Chapter 4 are important in that they show 

effects of imidacloprid and the novel insecticide sulfoxaflor on multiple descending neurons and 

facilitate the construction of a more complete picture of what is occurring with neonic toxicity 

the optic lobes to result in these observed effects. The results from this chapter additionally 

inform basic science: few studies have looked at the population responses of descending visual 

interneurons in insects, and no previous studies have examined how the population of neurons 

habituates in the locust.  
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Chapter 2: A sublethal dose of a neonicotinoid insecticide disrupts 

visual processing and collision avoidance behaviour in Locusta 

migratoria1 

 

2.1. Abstract    

 

Neonicotinoids are known to affect insect navigation and vision, however the mechanisms of 

these effects are not fully understood. A visual motion sensitive neuron in the locust, the 

Descending Contralateral Movement Detector (DCMD), integrates visual information and is 

involved in eliciting escape behaviours. The DCMD receives encoded input from the compound 

eyes and monosynaptically excites motorneurons involved in flight and jumping. I show that 

imidacloprid (IMD) impairs neural responses to visual stimuli at sublethal concentrations, and 

these effects are sustained two and twenty-four hours after treatment. Most significantly, IMD 

disrupted bursting, a coding property important for motion detection. Specifically, IMD reduced 

the DCMD peak firing rate within bursts at ecologically relevant doses of 10 ng/g (ng IMD per g 

locust body weight). Effects on DCMD firing translate to deficits in collision avoidance 

behaviours: exposure to 10 ng/g IMD attenuates escape manoeuvers while 100 ng/g IMD 

prevents the ability to fly and walk. I show that, at ecologically-relevant doses, IMD causes 

significant and lasting impairment of an important pathway involved with visual sensory coding 

 
1 The content of this chapter comes from the following published manuscript. Formatting and layout changes have 

been made to provide consistency between chapters.   

 

Parkinson RH, Little JM, Gray JR (2017). A sublethal dose of a neonicotinoid insecticide disrupts visual 

processing and collision avoidance behaviour in Locusta migratoria. Scientific Reports 7:1-13. 
 

Author contributions & justification for use in this thesis: R.H.P. designed and carried out experimentation, analyzed 

the data, interpreted the results, prepared the figures, and wrote and revised the manuscript. J.M.L. carried out 

experimentation and analyzed video data. J.R.G. conceived and designed experiments, interpreted the results, 

revised the manuscript, and approved the final version of the manuscript. 
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and escape behaviours. These results show, for the first time, that a neonicotinoid pesticide 

directly impairs an important, taxonomically conserved, motion-sensitive visual network. 

 

2.2. Introduction 

 

Neonicotinoid insecticides dominate a quarter of the global pesticide market (Jeschke et al. 

2011). Widespread neonic crop treatment has increased overall pesticide use across North 

America (Douglas and Tooker 2015), despite growing evidence of toxic effects on wild and 

domestic bee populations (Rundlöf et al. 2015; Woodcock et al. 2016), aquatic invertebrates (van 

der Sluijs et al. 2015; Vehovszky et al. 2015; Cavallaro et al. 2016), and insectivorous birds 

(Hallmann et al. 2014). Neonics contaminate wetlands, via runoff and snowmelt from treated 

fields (Main et al. 2016), and wildflower and soil samples near treated fields at concentrations 

exceeding 10 ng/g (Stewart et al. 2014).  

Neonics are nicotine mimics, binding to invertebrate nicotinic acetylcholine receptor 

(nAChR) subunits (Tomizawa and Casida 2005). Although commonly considered nAChR 

agonists, neonics also display antagonistic activity in some invertebrate species (Nguyen et al. 

2012; Vehovszky et al. 2015) and at certain doses (Benson 1992), suggesting that there are 

multiple nAChR binding sites (Matsuda et al. 2009). Different neonic compounds target different 

neurons and nAChR subtypes (Moffat et al. 2016) and neonic metabolites may cause toxicity 

(Suchail et al. 2001; Nauen et al. 2001), accumulating at higher concentrations than the parent 

compounds (Codling et al. 2016). For example, imidacloprid (IMD) has a 5 hour elimination 

half-life in honey bees and is completely metabolized within 24h, while its metabolites persist 

for over 30h (Suchail et al. 2004). In addition, IMD metabolites, including IMD-olefin, are more 

toxic than IMD (Suchail et al. 2004). 

Neonics display sublethal, neurotoxic effects in honeybees that range from altering food 

preferences (Kessler et al. 2015) to impairing navigation and foraging success (Henry et al. 2012; 

Tan et al. 2014; Fischer et al. 2014). Bee mushroom bodies have been a major focus of 

neonicotinoid research, given observed behavioural effects and speculation of a connection 

between neonic use and colony collapse disorder. Chronic neonic toxicity results in apoptosis 

and neuronal inactivation in the central nervous systems of bees and bats (Palmer et al. 2013; Wu 

et al. 2015; Hsiao et al. 2016) and markers of apoptosis have been shown to concentrate in the 
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optic lobes of the honey bee within 24 hours of an acute dose (De Almeida Rossi et al. 2013). 

Although generalized neuronal effects on the central nervous system have been demonstrated 

(Palmer et al. 2013; Wu et al. 2015), the effects on an important visual networks has not been 

examined. The locust offers a highly tractable, ubiquitous system to directly address putative 

effects of neonic toxicity on a well characterized motion sensitive network.   

The locust nervous system has been studied extensively, initially in search of novel 

insecticide targets, and then increasingly as a system to investigate fundamental neural processes 

that control behaviour. Locusts display varied collision avoidance behaviours and possess 

tractable motion-sensitive visual neurons. Two of these neurons are the lobula giant movement 

detector (LGMD), which receives encoded visual information from retinotopic units 

(photoreceptors and corresponding optic lobe interneurons), and its postsynaptic partner, the 

descending contralateral movement detector (DCMD) (Rind 1984). The LGMD/DCMD pathway 

responds robustly to objects approaching on a direct collision course (looming) (Judge and Rind 

1997), with peak firing rates occurring when the object surpasses an angular threshold on the 

retina (Gabbiani et al. 2001). These neurons also encode trajectory changes (Dick and Gray 

2014) and maintain robust responses with the addition of complex backgrounds (Silva et al. 

2015; Yakubowski et al. 2016). The response profile of the LGMD/DCMD results from an 

interplay of excitatory and inhibitory inputs. Optic lobe interneurons effect excitatory post 

synaptic potentials in the dendritic field of the LGMD (Burrows 1996). These synapses are 

nicotinic cholinergic, based on the presence of the enzymes for acetylcholine synthesis in the 

LGMD and retinotopic units (Rind and Leitinger 2000), and cholinesterase in the synapses (Rind 

and Simmons 1998). Inhibitory synapses between neighboring retinotopic units (lateral 

inhibition) and between retinotopic units and the LGMD (feed forward inhibition) act to 

modulate and shape responses to object motion (Rind and Simmons 1998).  

The axon of each DCMD synapses monosynaptically with motorneurons in the thorax, 

including the fast extensor tibiae (FETi) and flight motorneurons in the meso- and metathoracic 

ganglia (Simmons 1980; Burrows 1996). DCMD action potentials evoke subthreshold EPSPs in 

these motorneurons (Simmons 1980; Santer et al. 2006; Rogers et al. 2007), and high-frequency 

DCMD spikes may summate temporally, resulting in spiking in motorneurons during flight as 

the membrane potential fluctuates due to activity (Santer et al. 2006; Rogers et al. 2007). 

Bursting (brief intervals of high frequency spiking) of DCMD spikes occur in response to object 
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approach and may play an important role in collision detection and generating escape behaviours 

(McMillan and Gray 2015).  

This tractable locust collision detection system provides a unique opportunity to examine the 

effects of a commonly used pesticide on visual sensory coding and visually-guided behaviours. 

Here, I show that an ecologically-relevant sublethal dose of IMD disrupts normal firing 

properties of the DCMD when the locust is presented with a looming stimulus, and that these 

disruptions are reflected by deficits in their ability to avoid collisions by flight steering or 

jumping. I show that behavioural effects are sustained 2 and 24 hours after an acute dose of 

IMD, and these correspond to significant decreases in peak DCMD firing rates within bursts. 

These findings support the hypothesis that collision avoidance behaviours depend critically on 

high DCMD firing rates within bursts. As DCMD-like neurons have been found in other 

invertebrate species, including the praying mantis (Yamawaki and Toh 2009b), crab (Medan et 

al. 2007), and fruit fly (Fotowat et al. 2009), these results have broader implications for 

invertebrates that rely on vision for navigation. For the first time, I show IMD directly impairs a 

visual motion detection pathway and collision avoidance behaviours at sublethal doses. 

 

2.3. Methods 

 

2.3.1. Animals  

Adult locusts (Locusta migratoria) were selected at least 2 weeks past the last imaginal 

moult and reared on a diet of wheat grass and bran in a crowded colony in the Department of 

Biology, University of Saskatchewan, Canada, at 25-30°C, with a 12h light:12h dark cycle. 

Males were used for behavioural assays (n = 35) and electrophysiology (n = 65), while both 

males and females were used for the LD50 tests (n = 226). All locusts were weighed prior to 

experimentation to adjust injected dose by weight. Median locust weight was 1.4 g (range = 1.1 

to 1.9 g) for males, and 2.5 g (range = 1.6 to 3.6 g) for females. 

 

2.3.2. Solutions  

Imidacloprid (IMD; Pestanal, Sigma-Aldrich, Oakville, Ontario, Canada) was dissolved 

in acetone (100% v/v) and diluted with locust saline (147 mmol NaCl, 10 mmol KCl, 4 mmol 

CaCl2, 3 mmol NaOH, 10 mmol Hepes, pH 7.2) to produce final concentrations ranging from 
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0.1 µg/ml to 10 mg/ml. Final solutions were adjusted to each contain 0.2% (v/v) acetone. A 

solution containing locust saline and 0.2% acetone was used as the vehicle control in all 

experiments. 

 

2.3.3. LD50 

Prior to tests, animals were given ad libitum access to food. A total of 160 male and 66 

female animals were used in LD50 assays over 22 replicates. 16 IMD doses between 10 and 

10,000 ng/g were used. A vehicle control group was included on each trial day. Animals were 

treated by injecting 1 l solution per gram of body mass through the lateral cervical cuticle. After 

48 hours, the proportion of deceased animals was calculated, and this was normalized to the 

proportion of deceased animals in the vehicle group. Percent mortality was plotted against the 

logarithm of the dose to allow estimation of the 48h LD50 with a fitted curve. 

 

2.3.4. Wind tunnel 

A 0.9x0.9x3 m Plexiglass wind tunnel was utilized for behavioural assays. A rear 

projection screen, mounted on the right side of the wind tunnel, displayed the visual stimulus: the 

image of a 14 cm black disk, approaching the animal at 300 cm/s on a direct collision course. 

The stimulus was created with Vision Egg visual stimulus generation software (Straw 2008) on a 

Python programming platform. For jumping assays, locusts were oriented 15 cm from and 

parallel to the rear-projection screen so that the center of the stimulus was in line with the center 

of the eye and wind was not used. For flying assays, locusts were loosely tethered with fishing 

line 35cm from the centre of the stimulus and wind speed was set to 3 m/s, which is comparable 

to a locust’s natural flight speed (3–6 m/s) (Baker et al. 1981). To capture 3D movement of the 

locusts, two GoPro HERO4 Black (GoPro, Inc., San Mateo, California, United States) cameras 

were mounted 33° apart, 114 cm behind the animals, set to 1080p, 120 frames per second. 

 

2.3.5. Behaviour assays 

35 locusts were tested 2 and 24 hours after injection with 10 (n = 10), or 100 (n = 10) 

ng/g IMD, or the vehicle (n = 15). A 3D-printed tether (0.2 g) was attached to the dorsal 

pronotum with VetbondTM Tissue Adhesive 1469SB (3M Animal Care Products, St. Paul, MN, 

USA) to capture body orientation. Animals were loosely tethered to the roof of the wind tunnel 
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with fishing line. Stationary animals were presented with three stimulus replicates at 5 minute 

intervals and scored as responders if they jumped or twitched hind legs in response to at least one 

stimulus presentation. Suspended animals were scored as responding (R) if they reacted to at 

least one stimulus presentation by gliding or turning, not responding (NR) if they were flying but 

not reacting to the stimulus, or not flying (NF) if they were unable to fly. 

 

2.3.6. Flight simulator 

Electrophysiological experiments were conducted with animals mounted in a flight 

simulator with a rear-projection dome, as described in Guest and Gray (Guest and Gray 2006). 

The stimulus was the image of a 7 cm black disk traveling at 300 cm/s, created with Vision Egg 

visual stimulus generation software (Straw 2008) on a Python programming platform and 

represented as a 1,024 x 1,024 pixel portable network graphics (png) file. Vision Egg code 

contained correction factors to account for the curvature of the dome screen, and the refresh rate 

was held at 85 frames/s. A 1.2-ms transistor-transistor logic pulse included in each video frame 

and the vertical refresh synchronization pulse (vsync) from the video card (NVIDIA GeForce4 

Ti4200 128 MB) were recorded along with continuous neuronal activity. Neural activity was 

amplified with a differential AC amplifier (A-M Systems, model no. 1700, gain x 10,000) and 

sampled at 25 kHz. Data was recorded using an RP2.1 enhanced real-time processor (Tucker-

Davis Technologies, Alachua, FL) with Butterworth filter settings of 5 kHz (low pass) and 100 

Hz (high pass). 

 

2.3.7. Electrophysiology 

Legs were removed and a rigid tether was affixed to the ventral surface of the thorax with 

beeswax. A square of ventral cervical cuticle was dissected to expose the paired ventral nerve 

connectives anterior to the prothoracic ganglia. The locust was transferred to the flight simulator 

where a silver wire electrode was hooked around the left connective. Petroleum jelly was used to 

insulate and protect the preparation from desiccation. A silver wire was inserted into the 

abdomen and connected to ground. The locust was then oriented dorsal-side up facing the apex 

of the dome. In this orientation, the head of the locust was 12 cm from the dome, with 0° being 

directly in front of the locust, and 90° directly perpendicular to the centre of the eye. Stimuli 

were presented at intervals of at least 2.5 minutes to prevent neural habituation. 
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2.3.8. DCMD (2h) 

Experiments were conducted using both simple (S) and flow field (FF) backgrounds. 

Four sublethal doses of IMD (0.1, n = 5; 1, n = 5; 10, n = 5; and 100, n = 20 ng/g) plus the 

vehicle control (0.2% acetone in saline, n = 5) were injected after pre-treatment recordings. 

Recordings continued over 120 minutes, first at 2.5 minute intervals, then at 10 minute intervals 

over a simple background (Table 2.1). At 100 minutes the background was switched to flow field 

and animals were presented with five stimuli at 2.5 minute intervals. 

 

2.3.9. DCMD (24h) 

Animals that participated in behavioural assays were promptly prepared for DCMD 

recordings approximately 24h after treatment with 10 or 100 ng/g IMD or the vehicle. Animals 

were presented with the stimulus over S and FF backgrounds. 

 

Table 2.1 Experimental procedure for 2 hour electrophysiology experiments performed in a 

flight simulator with looming stimuli presented over simple (S) and flow field (FF) backgrounds. 

# Stimuli 

Interval 

(minutes) 

Background 

type 

2 2.5 S 

2 2.5 FF 

IMD injection 

12 2.5 S 

7 10 S 

5 2.5 FF 

 

2.3.10. Data analysis 

Post-hoc analysis of continuous neuronal activity was completed in Offline Sorter 

(Plexon, Dallas, TX), where DCMD spike times were identified by threshold analysis. DCMD 

spike times, along with corresponding vsync pulse times and transistor-transistor logic pulses for 

each stimulus presentation were exported to NeuroExplorer analysis software (NEX 

Technologies, Littleton, MA). Burst analysis was performed on DCMD spike time data, with 

bursts defined as spike trains of at least two spikes with inter spike intervals (ISIs) of 2 to 8 ms, 

using an algorithm designed by McMillan and Gray (McMillan and Gray 2015). 

The last transistor-transistor logic pulse and corresponding vsync pulse were used to 

determine the time the last frame was drawn on the screen, and this was extrapolated to 
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determine the time of collision (TOC) of the black disk had it continued traveling to the locust’s 

eye. The TOC for each stimulus presentation was used to align spike times in peristimulus time 

histograms (PSTHs) with a 1 ms bin width and smoothed with a 50 ms Gaussian filter. PSTHs 

were created using the full DCMD rate, spikes within bursts only, isolated spikes only, and initial 

spike from each burst only. DCMD firing properties were characterized by the maximum firing 

rate (spikes/s); time of the maximum firing rate relative to TOC (peak time); peak width at half 

the maximum rate (PW½M); total number of spikes during the stimulus presentation; rise phase, 

calculated as the time the PSTH last crosses its 95% confidence interval until the time of the 

peak; and decay phase, calculated as the time from the peak until the firing rate had decayed to 

15% of the maximum. Matlab (MATLAB, R2016a, The MathWorks Inc., Natick, MA) was used 

for calculation of rise and decay phases. Video recordings were analyzed in GoPro Studio 

(GoPro, Inc., San Mateo, California, United States). 

 

2.3.11. Statistical analysis 

Statistical analyses were performed using R (The R Foundation for Statistical Computing) 

and SigmaStat 3.5, and figures designed with SigmaStat 12.5 (Systat Software Inc., Richmond, 

CA, USA). DCMD response variables across doses were compared with One Way ANOVAs and 

Holm-Sidak pairwise multiple comparison procedures for parametric data, and Kruskal-Wallis 

One Way ANOVAs on Ranks with Dunn’s Method pairwise multiple comparison procedures for 

non-parametric variables. Effects of background type across doses was completed with Mann-

Whitney Sum of Ranks tests (non-parametric) or student’s t-tests. 

 

2.4. Results 

 

2.4.1. LD50 

The 48 hour injected LD50 of IMD was determined with doses between 10 and 10,000 

ng/g (ng IMD per gram of locust). At all doses ≥100 ng/g, locusts displayed increasing degrees 

of twitching, sporadic leg movements, and rapid abdominal movements, followed by periods of 

paralysis. After 48 hours, animals were scored as alive if they exhibited respiratory movements 

and moving mouthparts or legs. All male locusts treated with doses >1000 ng/g, and female 

locusts treated with doses >2000 ng/g were unable to walk in a coordinated manner at 48 hours 
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and were unresponsive. Percent mortality for males and females at 48 hours after treatment was 

normalized to the percent mortality in each sex of the vehicle controls. While females were not 

tested over the entire range of doses, they were more resistant than males to doses tested. Percent 

mortality was plotted against dose (Figure 2.1), further illustrating the differences in sensitivity 

of males and females to IMD. I estimated the male 48 h LD50 at 2,500 ng/g, whereas for females 

it could be as high as 10,000 ng/g, although females were not tested over an adequate range of 

doses to confirm this. To prevent confounding results due to the large disparity in LD50 between 

males and females, I used male locusts for subsequent experiments. 

 

Figure 2.1: Percent mortality at 48 hours for male and female locusts after injection with 

imidacloprid (IMD) solutions ranging in concentrations from 10 to 10,000 ng/g (plotted on log 

scale), fitted with iterative non-linear regressions (solid lines). Points represent proportions from 

groups of 6 to 12 locusts, normalized to the mortality of vehicle control groups used on each 

testing day. Regression lines revealed an LD50 of approximately 2,500 ng/g for males. The 

LD50 for females was beyond the highest concentration used. 

 

2.4.2. Behavioural responses 

I conducted behavioural assays on three groups of locusts treated with 10 or 100 ng/g 

IMD (n=10 each), or the vehicle (n=15). Behavioural assays took place in a wind tunnel with 

animals either standing (no wind) or flying (wind at 300 cm/s). I used a 14cm black disk, 

approaching at 300 cm/s perpendicular to the orientation of the locust, which reliably evokes 

escape behaviours (McMillan et al. 2013). The effects of 10 and 100 ng/g IMD on escape 

behaviours persisted 2 and 24 hours after treatment (Figure 2.2A). During jumping assays, none 

of the locusts treated with 100 ng/g reacted to the looming stimulus. For this assay, either a full 

jump or a twitch of the hind legs was scored as a reaction to the stimulus. Only one animal 

treated with 10 ng/g IMD responded to the looming stimulus at either time (twitch), while an 
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average of 80% of vehicle controls reacted at both times (jump:twitch ratio = 0.6:0.33 at 2 hours 

and 0.5:0.2 at 24 hours). IMD also affected locust flight behaviour (Figure 2.2B). Most vehicle 

controls reacted to the looming stimulus with a collision avoidance behaviour (a glide, turn, or 

stop (McMillan et al. 2013)) at 2 hours (100%) and 24 hours (60%) after treatment. Although 

90% of the animals treated with 10 ng/g IMD flew at both 2 and 24 hours after treatment, only 

10% responded to the stimulus and 90% of animals from the 100 ng/g treatment group did not 

fly. All escape behaviours occurred between 2 and 0.2 s before TOC. 

 

Figure 2.2: Effect of IMD on escape behaviours. a: Proportion of animals responding to a 

looming stimulus by jumping or twitching hind legs at 2 and 24 hours after treatment with the 

vehicle, or 10 ng/g or 100 ng/g IMD. b: Proportion of animals responding to looming stimulus 

while flying (R), flying but not responding to stimulus (NR), or not flying (NF) at 2 (left 

columns) and 24 (right columns) hours after treatment with vehicle or IMD. 

 

2.4.3. DCMD responses (2h) 

To determine whether sublethal, ecologically realistic (Godfray et al. 2014) doses would 

affect DCMD responses to looming stimuli, I tested four IMD concentrations (0.1, 1.0, 10, and 

100 ng/g), plus a vehicle (saline + 0.2% acetone) on male locusts (n=40) over 140 minutes each.  

The DCMD exhibits properties of bursting, with a minimum of 2 spikes and a maximum inter-

spike interval (ISI) of 8ms, and inter-burst intervals of 40-50 ms (McMillan and Gray 2015). 

When presented with a looming visual stimulus, the frequency of DCMD spikes that are not 

contained within bursts (isolated spikes) is highest when the stimulus is farther away, while 

bursting frequency increases in the latter stage of the approach until collision (McMillan and 

Gray 2015). It is likely that the timing of bursts is important for eliciting collision avoidance 

behaviours in flying locusts, in a process termed flight gating (Santer et al. 2006; McMillan and 

Gray 2015). To determine whether the presence of bursting was affected by IMD treatments, I 



41 

 

constructed joint inter-spike interval distribution heatmaps for DCMD responses (Figure 2.3). In 

the presence of vehicle, ISIs clustered between 1-8 ms regardless of background or time, which 

is consistent with previously described DCMD bursting (McMillan and Gray 2015). Against a 

simple background, ISI clusters were broader (5-20 ms) 2 hours after treatment with 100 ng/g 

IMD whereas against a flow field at either dose and time or against a simple background 24 

hours after treatment with 100 ng/g, clustering was less pronounced. Given this apparent 

disruption of bursting caused by treatment with IMD, full DCMD responses were subdivided by 

burst frequency, isolated spike frequency, and frequency of spikes contained within bursts 

(Figure 2.4A). Measurements from the resulting peristimulus time histograms (PSTHs) were 

used to compare responses. 

 

Figure 2.3: Joint inter-spike interval (ISI) distribution heatmaps comparing one ISI (y-axis, ms) 

with the following ISI (x-axis, ms). Heatmaps in column 1 were compiled from 5 stimulus 

presentations per animal either before treatment (1A,B, n=25), or 24 hours after treatment with 

the vehicle (1C,D, n = 10). 2-3A,B were recorded from 80 to 110 minutes after treatment with 10 

ng/g (n=5) or 100 ng/g (n=20) IMD. 2-3C,D were recorded 24 hours after treatment with 10 ng/g 

(2C,D, n=10) and 100 ng/g (3C,D, n=10). White circles represent stimuli presented over a simple 

background, and striped circles for stimuli presented over a flow field. 
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Figure 2.4: Rasters and peristimulus time histograms (PSTHs) constructed from DCMD 

responses to looming stimuli. A: Raw continuous data from an extracellular recording of the left 

ventral nerve cord during presentation with the image of a 7 cm looming disk to the right eye 

(top). DCMD spikes were easily differentiated by their large amplitude. The projected time of 

collision (TOC) is marked with a vertical red line. Bursts, which comprise a minimum of two 

spikes occurring within 8 ms of each other, are highlighted with a vertical green line to signal the 

start, and horizontal lines to show the duration. PSTHs show the firing rates of the full DCMD 

response, spikes within bursts only, isolated spikes only, and bursts, smoothed with a 50 ms 

Gaussian filter. PSTHs response profile parameters included: peak firing rate (fp) and the time of 

the peak relative to TOC (pt), denoted by an asterisk; peak width at half maximum (PW½M), 

rise phase, from the last time the histogram crosses the 95% confidence interval with a positive 

slope (t99) to the peak, and decay phase from the peak until it had decreased to 15% (t15). b-e 

show rasters (top) and PSTHs (bottom) at four time points after injection with 100 ng/g IMD, 5, 

17.5, 25, and 110 minutes. These panels are separated by rate type: full DCMD (B), burst spikes 

only (C), isolated spikes only (D), and bursts (E). 

 

The effect of IMD was variable over the first hour and stabilized through the second hour 

(Figure 2.5). I grouped the effect into four general phases (Figure 2.4B-E): 1) pre-effect - within 

A 

B C 

D E 
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the first few minutes after injection (which resembled pre-treatment activity); 2) inhibition - a 

period of sporadic, low frequency firing, or complete neural silence; 3) high frequency, sporadic 

firing; and 4) post-effect - maintained as a stable response approximately 1 hour after treatment. 

During phases 1 and 4, most spikes were contained within bursts whereas for phases 2 and 3, 

most spikes were isolated. All animals tested with 10 or 100 ng/g IMD displayed phases 1 and 4 

whereas phases 2 and 3 were less consistent. 

 

Figure 2.5: Median temporal properties of DCMD response parameters over 100 minutes after 

treatment with 0.1 (n=5), 1 (n=5), 10 (n=5) and 100 (n=20) ng/g IMD during stimulus 

presentations against a simple background. Fifty minutes post injection is marked with a vertical 

dashed line, as the variability of responses at each dose is greatly reduced after this time. 

 

Due to variability of IMD effects within the first hour of treatment, single time points 

were selected to compare between simple (S) and flow field (FF) backgrounds at 110 and 120 

minutes after treatment, respectively. S represents a disc projected against a white background 

and FF represents a disc against a flow field consisting of vertically oriented, 2 cm wide bars 

moving outward from the azimuthal plan from the dome apex at 0.138 m/s. The latter elicits 

DCMD responses with lower peak firing rates, later peak time, shorter rise phase and a longer 

decay phase (Silva et al. 2015). Doses of 0.1 and 1.0 ng/g did not significantly affect DCMD 

firing, while doses of 10 and 100 ng/g resulted in significant alterations of several features of 

DCMD firing (Figure 2.6). Significant effects, for both backgrounds, included: a decreased peak 

frequency (fp) for DCMD and burst spikes (1,2a); an increased fp for isolated spikes (3a); a 
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decreased number of spikes within bursts (4b); and an increased DCMD decay phase (1e). The 

total number of spikes within bursts also decreased. Parameters affected for S or FF stimuli may 

be attributable to the effects of these background types. Summary of statistical results in Table 

2.2. Rise phases for the full DCMD response and for spikes within bursts were significantly 

shorter for S. However, the rising phase did not decrease with FF, though this time period is 

typically very short for FF due to the effects of lateral inhibition caused by the movement of the 

background across the visual field (Rind 1996). 

 

Figure 2.6: Response parameters (mean ± SEM) of the four DCMD rates (full DCMD, burst 

spikes, isolated spikes, and bursts) at 110 (S background) and 120 minutes (FF background) after 

treatment with an IMD dose (ng/g) or the vehicle (V). Data plotted as a percent of pre-treatment 

values within each animal. Grey backgrounds indicate a significant effect of one or more IMD 

dose for stimuli presented over both S and FF backgrounds, yellow indicates a significant effect 

within FF background only, and green for S background only. 
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Table 2.2: Results of statistical analyses for figures 6, 8, 9, and 10. 
 DCMD Rate Burst Spikes Rate Isolated Spikes Rate Burst Rate 

Resp. var. 
 Background  Background  Background  Background 

Dose S FF Dose S FF Dose S FF Dose S FF 

Fig. 5 

%Ymax U=210 19.34
D 18.94

D U=204 21.64
D 25.04

D U=376 16.54
D 4.94

HS U=348 0.14 6.04
H 

%Spikes U=353 12.54
D 1.84 U=305 14.84

D 19.44
D U=307 3.44

HS H=9.44 U=432 H=8.14 17.34
D 

%PWHH U=227 H=6.54
D 16.54

D U=403 H=1.84
D 13.74

D U=287 0.74 13.84
D U=410 H=8.34 9.74

D 

%Rp U=157 3.64
HS 2.04 U=166 8.54

HS 2.44 U=432 H=9.14 F=2.44 U=351 H=7.44 10.84
D 

%Dp U=171 28.74
D 16.54

D U=226 H=6.24 H=8.54 U=327 H=7.5 15.84
D U=424 H=6.3 H=4.64 

Fig. 6             

Ymax U=101 16.82
HS 18.82

HS U=107 16.32
HS 25.42

HS t=10.747 H=5.92 4.92
HS U=89 F=2.02 F=1.92 

Spikes t=9.147 6.82
HS 1.62 U=84 16.02

D 6.02
HS t=9.347 1.72 1.92 U=132 10.72

D 9.02
HS 

PWHH U=13 1.72 8.02
HS U=51 7.42

D H=2.92 U=65 H=2.52 H=1.62 U=69 13.22
HS F=0.22 

Rp U=0 H=3.02 H=0.42 U=29 3.92
HS H=1.52 U=44 3.42 H=5.2 U=109 0.82 H=1.62 

Dp U=227 8.12
D H=2.3 U=136 3.42 H=5.7 U=151 2.52 H=3.92 U=96 11.12

D 3.82
HS 

Fig.7             

Pt 2h U=137 25.52
D 27.82

D U=203 28.52
D 27.42

D U=490 27.42
D H=12.72 U=547 40.82

D 13.72
D 

Pt 24h U=51 25.52
D 32.82

D U=30 28.52
D 31.82

D U=134 27.42
D 12.72

D U=12 30.82
D 13.52

D 

Fig. 8             

Ymax 2h    t=5.747 69.92
HS 42.42

D       

Ymax 24h    t=5.128 14.02
HS 23.72

HS       

Behav.     16.32
HS        

%Inhib.    t=7.181 77.02
HS 60.02

D       

Columns are divided by rate type and subdivided by dose or background. Rows under “Dose” compare between 

background types, and below each background (S and FF) compares between doses within each background. 

Values represent the H statistic from one-way ANOVA on Ranks test. Numerical subscripts indicate degrees of 

freedom. Post hoc tests denoted as Holm Sidak (HS) or Dunn’s (D). Results from Mann-Whitney tests are indicated 

by the U statistic, and t-tests by the t statistic. Shaded cells indicate a significant effect (P < 0.05). Specific 

differences from post hoc tests indicated on Figures 5-8. Response variables (resp var): Ymax, peak firing rate; 

Spikes, number of spikes; PWHH, peak width at half height; Rp, rise phase; Dp, decay phase; Pt, peak time. % 

signifies percent of mean of control. 

 

2.4.4. DCMD responses (24h) 

I was interested in whether IMD-induced alterations in DCMD firing persisted 24 hours 

after treatment, in accordance with behavioural deficits. Animals that participated in behavioural 

experiments were prepared for electrophysiology 24h after initial treatment. I obtained successful 

recordings from 25 animals from behavioural assays. Peristimulus time histogram (PSTH) 

overlays of the 100 ng/g dose at 2 and 24 hours after treatment showed similarities in peak firing 

rates (Figure 2.7). I measured the same DCMD response parameters at 2 and 24 hours after 

treatment. Response variables significantly altered by IMD at 24 hours after treatment for both 
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background types included the maximum firing rate (DCMD and burst spikes), the number of 

spikes (burst spikes), and the decay phase of bursts (Figure 2.8). For stimuli presented over the S 

background, the number of spikes (DCMD), peak width at half height (bursts), rising phase 

(burst spikes), and decay phase (DCMD) were significantly altered by IMD treatment. The time 

of peak firing was significantly later relative to TOC at the 100 ng/g dose at both time points for 

S, as well as at 2 hours after treatment for FF (Figure 2.9).  

 

 

Figure 2.7: Mean PSTH overlays of DCMD responses to a looming stimulus against simple (top 

row) or flow field (bottom row) backgrounds, at 2 (n = 20) and 24 (n = 10) hours after injection 

with 100 ng/g IMD. Responses of vehicle controls (n = 10) and untreated animals (n = 20) are 

displayed in black. Full DCMD response (left column) is subdivided in subsequent columns into 

burst spikes, isolated spikes, and bursts to show differences in these parameters at the two time 

points. Vertical red lines indicate TOC. 

 

To determine the overall inhibitory effects of IMD on DCMD firing, I chose to focus on 

the maximum firing rate of burst spikes (Figure 2.10). This is the only response variable that was 

significantly altered with 10 and 100 ng/g IMD, at both 2 and 24 hours after treatment, for 

stimuli presented over both S and FF backgrounds. There was no significant difference in the 

maximum firing rate of burst spikes 2 and 24 hours after treatment within dose and background 

type, while the burst spike firing rate significantly decreased with increasing IMD dose. Effects 

on peak burst spike firing rate are correlated with observed flight behaviours (Figure 2.10). Burst 

spike firing rate was inhibited to a greater degree with FF: 50% inhibition was achieved with a 

10 ng/g dose with FF, while similar inhibition with 100 ng/g dose for S (Figure 2.10). 
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Figure 2.8: Response parameters (mean ± SEM) of the four DCMD rates (full DCMD, burst 

spikes, isolated spikes, and bursts) 24 hours after treatment with an IMD dose (ng/g) or the 

vehicle. Gray backgrounds indicate a significant effect of one or more IMD dose for stimuli 

presented against both S and FF backgrounds, and green indicates a significant effect with S 

background only. Significant results of post hoc analyses are indicated with letters colour coded 

to the respective background type. 

 

 

Figure 2.9: Time of maximum firing rate relative to collision (peak time; mean ± SEM) across 

doses and background types at 2 and 24 hours after treatment. Significant results of post hoc 

analyses are indicated with letters colour coded to the respective background type. 
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Figure 2.10: Effect of IMD on burst spike peak firing rate (fp) and correlation with observed 

behavioural deficits. a) Burst spike peak fp at 2 and 24 hours after treatment, for stimuli presented 

against simple (S) and flow field (FF) backgrounds. b) Burst spike fp correlated with flight 

behaviour at 24 hours after treatment with IMD or vehicle: NF, not flying; NR, flying but not 

responding; R, responding with a turn or glide, with a Pearson correlation coefficient of 0.872. 

Each data point represents measurements from a single animal, and letters denote significant 

differences between means. c) Percent inhibition with effects at 2 and 24 hours combined for 

each background type, plotted as percent reduction from the mean of the vehicle treatment group. 

Colour coded letters denote significant differences between treatments within each background, 

and asterisks denote significant differences between S and FF within treatment. 

 

 

2.5. Discussion  

 

I found that the 48 hour injected LD50 of IMD was 2,500 ng/g for male locusts. In the 

honeybee (Apis mellifera) the oral LD50 was estimated at 4.5 ng/bee (approximately 45 ng/g), 

and contact LD50 at 81 ng/bee (approximately 810 ng/g) (Godfray et al. 2014), although these 

values can differ greatly between colonies and studies (Suchail et al. 2001). While our reported 

LD50 is high it may be due to the delivery method, toxicological endpoint, and metabolism. 

Grasshoppers (Melanoplus sanguinipes) sustain a long period of “debilitation” before death, with 

high oral and contact LD50s of 53.38 and 96 ppm (µg/g), respectively, for IMD at 72 hours after 

treatment (Tharp et al. 2000). In honeybees, mortality is delayed from high doses of IMD, 

compared to moderate doses (Suchail et al. 2000), prompting use of a 96h endpoint. 

Furthermore, suggestions to score insects as dead when moribund result from delayed insecticide 

toxicity (Stanley et al. 2015). Nevertheless, locusts are known to express a wide range of 

enzymes involved with xenobiotic detoxification (Wang et al. 2014), and display resistance to 

many insecticides (Guo et al. 2012). By injecting IMD into the hemolymph, it would bypass 

detoxification enzymes concentrated in the gut (Guo et al. 2012; Bao et al. 2015), and may not 
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distribute naturally throughout the body. IMD metabolites are known to be toxic in other species, 

including honeybees (Suchail et al. 2001; Nauen et al. 2001), and can accumulate in high 

concentrations (Codling et al. 2016). Metabolism of IMD could be slowed by injection into the 

hemolymph and limited by diffusion into other tissues. Additionally, locust hemolymph contains 

the lowest concentration of glutathion s-transferase enzymes, which are involved in pesticide 

metabolism (Qin et al. 2013). The results of the present toxicity tests are not for direct 

comparison with values from oral or topical application but provide a basis for scaling the doses 

I used in behavioural and electrophysiological assays. Interestingly, females displayed a four-

fold higher resistance than males to IMD. These results were unexpected as individual females 

had masses two to three times greater than males, thus receiving a larger volume of IMD 

solution. Female locusts are more resistant than males to topically applied organophosphate and 

organochloride pesticides (MacCuaig 1957; Onyeocha and Fuzeau-Braesch 1991), although not 

at the high factor I report for injected IMD. Further studies are required to determine the cause of 

this difference between the sexes. 

Initial effects of IMD on DCMD responses included periods of spontaneous activity, both 

high and low frequency firing, and/or periods of neuronal silence (hyperexcited and inhibited 

phases). These effects were pronounced at the 100 ng/g dose only and commence within 10 

minutes of treatment. Approximately 1 hour after treatment, the DCMD again responded to the 

looming stimulus in a stable manner (post-effect phase) that was maintained until the end of the 

recording period, two hours and 20 minutes after treatment. Acute behavioural effects of IMD 

toxicity include periods of trembling and sporadic movements of the abdomen and legs, followed 

by paralysis in the honeybee (Apis mellifera) (Suchail et al. 2001), flea (Ctenocephalides felis) 

(Mehlhorn et al. 1999), beetle (Tenebrio molitor) (Zafeiridou and Theophilidis 2004), and 

grasshopper (Melanoplus sanguinipes) (Tharp et al. 2000). Our results are consistent with other 

studies that found initial neuronal effects to be hyperexcitation followed by neural silence 

(Nishimura et al. 1994; Zafeiridou and Theophilidis 2004), which may be attributed to receptor 

desensitization (Buckingham et al. 1997; Nguyen et al. 2012).  

The effects observed after the first hour of IMD toxicity could result from lingering upstream 

receptor desensitization. Debilitation of interneurons that converge onto the LGMD would limit 

the peak firing rate and number of spikes of the LGMD/DCMD by reducing the cumulative 

effect of EPSPs evoked by their inputs. The rising phase was shortened under the simple 
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background only, likely because this period is already extremely short for flow field under 

normal conditions. The rising phase is associated with the threshold of the LGMD and DCMD 

(Gabbiani et al. 2002), and could be shortened by effects on excitatory inputs, and down 

regulation or impairment of nAChRs on the LGMD/DCMD. Decreased DCMD firing rates may 

also be attributed to reduced excitatory firing of the retinotopic units that synapse with the 

LGMD (Gabbiani et al. 2002), while increased isolated spikes fp and lengthened decay phase 

may result from weakened feed forward and lateral inhibition (Gabbiani 2005). 

Differences in the responses of the DCMD after the first hour of toxicity may be attributable to 

toxicity of IMD metabolites (Suchail et al. 2001; Nauen et al. 2001). Of these, 5-Hydroxy-IMD 

and IMD-olefin are known to accumulate at higher concentrations than IMD in honeybees 

(Codling et al. 2016), suggesting their excretion half-life is much longer than for IMD. The 

olefin metabolite is more toxic than pure IMD (Suchail et al. 2001) and accumulates in nAChR-

rich tissues. This metabolite may also bind to nAChRs (Suchail et al. 2004).  

At 24 hours after treatment, any effects of IMD on the rising and decay phases of the 

DCMD response to a looming stimulus have been eliminated. For presentations using the simple 

background, the number of spikes were reduced, and the time of the maximum burst rate was 

later relative to TOC. Peak time of the DCMD relates to both the visual acuity of the locust and 

feed-forward inhibition from the photoreceptors in the optic lobe (Rind and Simmons 1998). 

Here, I show that peak time was significantly later at the 100 ng/g dose at both 2h with S and FF, 

and 24h with S. Several parameters, including number of DCMD spikes and spikes within bursts, 

and peak time of bursts is significantly altered for S only at 24 hours, likely because of IMD 

effects being masked by flow field stimulation.  

A single DCMD response variable, maximum firing rate within bursts, coincided with the 

effects of IMD on collision avoidance behaviours at 10 ng/g. The elimination half-life of IMD is 

5h in the honeybee (Suchail et al. 2004), so the reduced burst spike firing rate at 24h suggests 

there was impairment of the DCMD and upstream network that was sustained after IMD has 

been metabolized. This may result from down regulation or damage to nAChRs caused by IMD 

metabolites, or whole neuron damage or apoptosis in cholinergic interneurons of the optic lobes. 

Low dose IMD toxicity has been shown to cause apoptosis in the central nervous systems of bats 

and honeybees (De Almeida Rossi et al. 2013; Wu et al. 2015). In bees, markers of apoptosis are 

visible within 1 day with doses 1/10th of the LD50, and these are more concentrated in the optic 
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lobes than other areas of the CNS (De Almeida Rossi et al. 2013). Our results suggest that low 

doses of IMD cause lasting damage to the visual network of locusts, which may inhibit detection 

of looming stimuli by affecting visual processing in the optic lobes. 

The effect of IMD on the burst spike firing rate was more profound for FF than S. This 

further suggests that visual processing was reduced as the looming stimulus was somewhat 

obstructed by the vertical bars of the FF. With reduced visual processing, the expanding edges of 

the stimulus were more difficult to distinguish. Any damage to the optic lobes or photoreceptors 

would enhance the masking effect. For these reasons, free flying animals may experience an 

even greater visual deficit with lower IMD doses than those tested in tethered conditions. When 

comparing burst spike firing rates in the different treatment groups, I found that a reduction in 

rate corresponded with deficits in collision avoidance behaviour. It has previously been 

suggested that a threshold of burst spike firing rate is required to elicit a collision avoidance 

behaviour (Santer et al. 2006; Rogers et al. 2007; McMillan and Gray 2015), and I provide 

additional evidence to this effect. However, I did not perform behavioural assays and 

electrophysiology simultaneously. Nevertheless, burst spike firing rate was the only parameter 

significantly altered across doses and times. 

The bursting algorithm used on the data is based on the results of McMillan and Gray 

(McMillan and Gray 2015) who found frequent DCMD ISIs occur at 1-8 ms. Our data show that 

low, sublethal doses of IMD disrupts bursting, with ISIs either clustering at larger intervals or 

not clustering. ISIs define intra-burst firing rates (burst spike firing rate), and longer ISIs 

naturally result in lower peak rates. This effect was clear at the 100 ng/g dose with both 

backgrounds, while at the 10 ng/g dose it was more apparent with a flow field background, 

which mimics whole-field optic flow produced by self-motion. Given these results, bursting 

would likely be disrupted in free-flying animals at very low IMD doses.   

The larger stimulus was used for behavioural experiments (14cm versus 7cm for 

electrophysiology) to elicit collision avoidance behaviours more reliably(Chan and Gabbiani 

2013). Regardless, stationary animals treated with 100 ng/g IMD do not respond at all to 

looming stimuli, and only 10% of animals tested with 10 ng/g responded. A jump is initiated in 

the locust when flexor muscles discharge after a period co-contraction of flexor and extensor 

tibiae muscles (Santer et al. 2005b). Fast extensor tibiae (FETi) motorneurons receive 

monosynaptic input from the DCMD (Burrows and Rowell 1973). The DCMD does not directly 
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initiate a jump, as EPSPs from the DCMD in FETi motorneurons summate, but do not result in 

an action potential (Rogers et al. 2007). Rather, the DCMD has a role in timing the movement in 

an animal that is already prepared to jump (Rogers et al. 2007). Lack of summation of EPSPs in 

the FETi motorneurons resulting from a low DCMD firing rate (Figure 2.6) may explain the 

absence of jumping responses in locusts treated with IMD. These animals may also be 

unprepared to jump due to debilitation of the motor control of the flexor and extensor muscles, 

and input from the DCMD would be ineffective.  

At 10 ng/g IMD, flight motor circuitry was minimally affected, as 90% of test subjects 

could fly. Nevertheless, only one animal from this group responded to the looming stimulus. The 

DCMD makes excitatory synapses with flight motorneurons in the meso- and metathoracic 

ganglia (Simmons 1980). Bursts of spikes in the DCMD result in summating EPSPs in flight 

motorneurons that alone do not result in an action potential (Simmons 1980; Santer et al. 2006). 

DCMD frequencies >150Hz produce EPSPs in flight motorneurons that result in an action 

potential during flight, as the electrical potential of the motor neuron membrane oscillates, 

resulting in flight-gating (Santer et al. 2006). By this mechanism, the DCMD directly initiates 

collision avoidance behaviours in flight. Thus, the reduction in firing rate caused by 10 ng/g 

IMD may result in an inability of EPSPs from the DCMD to summate and produce a glide, turn 

or collision avoidance behaviour. With 100 ng/g, 90% animals were unable to fly suggesting that 

IMD affects the collision avoidance pathway at lower doses than those required to disrupt flight. 

Similarly, neonicotinoids are known to disrupt motor function in bees (Williamson et al. 2014), 

and result in dose-dependent induction of trembling and paralysis in many invertebrates 

(Mehlhorn et al. 1999; Suchail et al. 2000; Charpentier and Louat 2014). The central pattern 

generator for locust flight is under muscarinic cholinergic control (Buhl et al. 2008), and the 

innervation of muscles is glutamatergic (Watson and Schürmann 2002), so disruptions of these 

pathways by IMD is unlikely. Further studies are required to understand the location of these 

effects in the central nervous system, or to determine if IMD or one of its metabolites may affect 

neurons that are not under nicotinic cholinergic control. 

I have shown that locusts are highly resistant to IMD, and that this resistance differs 

between males and females. Further investigation is required to determine why females can 

sustain such elevated doses, and if this difference is maintained with oral or contact toxicity. 

Despite the ability to survive high doses of injected IMD, I show that low doses (0.4% and 4% of 
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the LD50) significantly disrupt the response of a looming-sensitive neuron, and that this 

disruption has downstream effects on collision avoidance while flying and stationary. Our results 

strengthen the hypothesis that high frequency DCMD burst spike firing is required to elicit a 

collision avoidance behaviour (Santer et al. 2006; Rogers et al. 2007), as this is the only firing 

parameter that is significantly affected under all testing conditions in animals that cannot 

perform collision avoidance behaviours. Deficits in burst spike firing can be related to damage to 

the upstream network, and thus, our findings suggest that low, acute doses of IMD results in 

damage to the optic lobe and motion detection neurons in the locust. More broadly, this research 

offers insight on sublethal effects of IMD on behaviours observed in non-target insects, as it 

suggests that IMD can cause significant and lasting impairment of visual circuits in the optic 

lobes. Mechanisms and extent of this damage will be an important focus of future studies.  
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Chapter 3: Neural conduction, visual motion detection, and insect 

flight behaviour are disrupted by low doses of imidacloprid and its 

metabolites2 

 

3.1. Abstract 

 

While neonicotinoid insecticides impair visually guided behaviours, the effects of their 

metabolites are unknown and measurements of environmental concentrations of neonicotinoids, 

typically lower than those required to elicit toxic effects, tend to exclude metabolites. Here I 

examined the contributions of imidacloprid and two of its metabolites, imidacloprid-olefin and 5-

hydroxy-imidacloprid, on neural conduction velocity, visual motion detection and flight in the 

locust (Locusta migratoria) using a combination of electrophysiological and behavioural assays. 

I show reduced visual motion detection and impaired flight behaviour following treatment of 

metabolite concentrations equal to sublethal doses of the parent compound. Additionally, I show 

for the first time that imidacloprid and its metabolites result in a decrease in conduction velocity 

along an unmyelinated axon. I suggest that secondary effects of the insecticide on the 

biophysical properties of the axon may result in decreased neural conduction. As these 

metabolites display neurotoxicity similar to the parent compound they should be considered 

when quantifying environmental concentrations. 

 
2 The content of this chapter comes from the following published manuscript. Formatting and layout changes have 

been made to provide consistency between chapters. 

 

Parkinson RH and Gray JR (2019). Neural conduction, visual motion detection, and insect flight behaviour are 

disrupted by low doses of imidacloprid and its metabolites. NeuroToxicology 72:107-113 

 

Author contributions & justification for use in this thesis: R.H.P. designed and carried out experimentation, analyzed 

the data, interpreted the results, prepared the figures, and wrote and revised the manuscript. J.R.G. conceived and 

designed experiments, interpreted the results, revised the manuscript, and approved the final version of the 

manuscript. 
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3.2. Introduction 

 

Flight behaviours, including orientation, navigation and collision avoidance are essential 

to the survival of many animals and are guided primarily by the processing of visual information 

(Rind and Bramwell 1996; Taylor and Krapp 2007; Ibbotson et al. 2017). Neurotoxic 

insecticides, including neonicotinoids (neonics) that target cholinergic neurotransmission in the 

insect central nervous system (Tomizawa and Casida 2003), affect specific behaviours following 

sublethal exposure (Fischer et al. 2014; Parkinson et al. 2017). Significant concern over the 

effects of neonics on honey bees and other important pollinators has led to bans that are highly 

contested (Blacquière and van der Steen 2017). Arguments against these bans point to 

discrepancies between laboratory and field-realistic doses (Walters 2013). However, 

measurements in the field often exclude neonic metabolites that may accumulate in pollen and 

honey and pose the greatest risk to overwintering and nurse-aged worker bees that rely on these 

stores (Codling et al. 2016; Baines et al. 2017). Some neonic metabolites display similar or 

increased toxicity to the parent compounds (Nauen et al. 1998; Suchail et al. 2001) suggesting a 

need for a greater understanding of these toxic effects.  

The effects of the neonic imidacloprid (IMD) on visual processing and visually guided 

avoidance behaviours have previously been examined in the locust (Locusta migratoria) 

(Parkinson et al. 2017). This system is useful in examining neonic toxicity due to the presence of 

a tractable looming-sensitive visual interneuron, the Descending Contralateral Movement 

Detector (DCMD). The DCMD receives excitatory input from its presynaptic partner, the Lobula 

Giant Movement Detector (LGMD) at a 1:1 ratio and the LGMD receives both excitatory and 

inhibitory signals from the retinotopic units of the compound eye (Rind 1984). The excitatory 

synapses in the optic lobes and specifically on the LGMD/DCMD are nicotinic cholinergic (Rind 

and Leitinger 2000), which is a direct target for IMD. Although IMD is an nAChR agonist 

(Tomizawa 2004), initial agonistic effects may be followed by neural silence, dependent on 

concentration (Zafeiridou and Theophilidis 2004), an effect that may be due to receptor 

desensitization (Nauen et al. 2003; Oliveira et al. 2011). Previously I found that a single 

sublethal dose of IMD resulted in decreased burst firing of the DCMD and attenuated escape 

behaviours 2 and 24 hours after treatment (Parkinson et al. 2017). 
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Here I examine the effects of IMD and two metabolites, imidacloprid-olefin (OLE) and 5-

hydroxy-imidacloprid (5OH) on action potential propagation, DCMD responses to a looming 

stimulus, and flight behaviour within 1 hour after treatment to determine the relative effects of 

the metabolites and parent compound. I hypothesized that the metabolites would display 

increased toxicity sooner after treatment than the parent compound, as these metabolites could 

directly cause reduced DCMD firing via receptor desensitization. I show in this paper that IMD, 

OLE and 5OH affect flight behaviour and visual motion processing within 1 hour of treatment, 

and additionally that these compounds affect conduction velocity along the axon, suggesting 

secondary effects of the insecticide on information transfer within a known pathway. 

 

3.3. Methods 

 

3.3.1. Animals 

Adult male locusts (Locusta migratoria) two weeks past the last imaginal moult were 

selected for experiments. Locusts were fed a diet of wheat grass and bran flakes and maintained 

at 25-30°C with a 12h:12h light:dark cycle at the University of Saskatchewan, Canada. All 

experiments took place during the animals’ light cycle. Experiments were performed at 25°C. 

 

3.3.2. Treatments 

Imidacloprid (IMD; Sigma-Aldrich, Oakville, Canada), imidacloprid-olefin (OLE; 

Toronto Research Chemicals, North York, Canada), and 5-hydroxy-imidacloprid (5OH; Toronto 

Research Chemicals, North York, Canada) were dissolved in DMSO and diluted in locust saline 

(147 mmol NaCl, 10 mmol CaCl2, 3 mmol NaOH, 10 mmol Hepes, pH 7.2) to produce a final 

concentration of 10 ng/µl with 0.2% (v/v) DMSO for all experiments. The vehicle control 

solution contained locust saline and 0.2% (v/v) DMSO. 

 

3.3.3. Behaviour 

Locusts were loosely tethered in the centre of a 0.9 x 0.9 x 3 m Plexiglas wind tunnel 

with a constant wind speed set to 3 m/s, which is the average flight speed of a flying locust 

(Baker et al. 1981), and presented with the image of a 14 cm disc looming perpendicularly to the 

axis of the animal (90º to head-on) to elicit collision avoidance behaviours (Parkinson et al. 
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2017). Flight behaviour was recorded before (PRE) and 1 hour after treatment with 10 ng/g (of 

locust; mean locust mass = 1.5g) of IMD (n=10), OLE (n=10), or 5OH (n=10). Animals were 

treated by injecting 1 µl/g of locust of a solution containing 10 ng/µl of IMD, OLE or 5OH in 

locust saline plus 0.2% (v/v) DMSO into the hemolymph under the cuticle of the pronotum. I 

showed previously that the vehicle alone had no effect on behaviour and therefore did not use a 

vehicle control solution here (Parkinson et al. 2017). Flying animals were scored as responding 

(R) if animals responded to the stimulus with a turn, glide or stop, or not responding (NR) if they 

did not respond. Animals that were not able to fly were scored as not flying (NF). 

 

3.3.4. Electrophysiology  

Locusts were dissected dorsally to expose the ventral connectives and ganglia (Cross and 

Robertson 2016), filled with 0.2 ml locust saline, and three suction electrodes were attached to 

the right ventral nerve cord: posterior to the prothoracic ganglion, as well as anterior and 

posterior to the mesothoracic ganglion (Figure 3.1A). A ground wire was inserted into the 

abdomen and reference electrode inserted into the flight muscles. The image of a 7cm diameter 

looming disc was presented to the left eye of the locust at 60 frames/s through a rear-projection 

screen 20 cm from the eye at an angle of 45 degrees from the front of the animal (Figure 3.1B). 

The visual stimulus program was written in Python using Pyglet, a program used to write video 

graphics. An Arduino Uno was coded to output a single 5V pulse at the projected time of 

collision (TOC), or time the looming stimulus would have collided with the locust. Three 

repetitions of the looming stimulus with 3-minute inter stimulus intervals were presented for the 

pre-treatment control, after which saline was removed from the body cavity and replaced by 0.2 

ml saline plus 10 ng/g of locust of IMD (n=9), OLE (n=6) or 5OH (n=8), or the vehicle control 

(n=7). Continuous neural data were amplified with a differential AC amplifier (A-M Systems, 

model no. 1700, 100 Hz high pass and 5 kHz low pass filters, gain = 100x). Amplified neural 

data and stimulus pulse were digitized using a Data Translation DT9818 data acquisition board 

(TechnaTron Instruments, Inc., Laval, QC) and recorded at 30 kHz with DataView version 11 

(W.J. Heitler, University of St Andrews, Scotland). 
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Figure 3.1: Electrophysiology, experimental procedures and data analysis. A) Suction electrodes 

recorded the activity of the DCMD axon at three points along the ventral nerve cord: posterior to 

the prothoracic ganglion, and anterior and posterior to the mesothoracic ganglion. B) I presented 

locusts with the image of a 7 cm diameter disk looming at 300 cm/s at 45° from the front of the 

animal. C) Raw extracellular recordings from the ventral nerve cord during presentation of a 

looming stimulus. Waveforms to the right of the traces show individual DCMD spikes in a 

shorter time window, with the relative timing of letters highlighting the peak of each spike used 

to calculate conduction velocity. D) Raw recording and corresponding peristimulus time 

histogram (PSTH) constructed as the firing rate versus time using a 1 ms bin width and smoothed 

with a 50 ms Gaussian filter. Firing parameters including peak time and peak firing rate (*), peak 

width at half maximum (PWHM), rise phase (t95, the time when the histogram last increased 

above the 95% confidence interval with a positive slope, to *) and decay phase (* to t15, the time 

the histogram when the firing rate decayed to 15% of the peak) were measured from the PSTHs 

to compare responses before and after treatment. 

 

3.3.5. Data analysis 

Spike sorting of the three channels of continuous neural data was performed using 

DataView. Raw continuous data were upsampled to 90 kHz. The large amplitude DCMD spike 

times were extracted with a threshold analysis (Figure 3.1C). Spike times were aligned to the 
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stimulus pulse and exported into Neuroexplorer analysis software (NEX Technologies, Littleton, 

MA) to construct peristimulus time histograms (PSTHs) with a 1 ms bin width and smoothed 

with a 50 ms Gaussian filter (Figure 3.1D). Matlab (The MathWorks, Natick, MA) was used to 

calculate DCMD firing parameters from the PSTHs. DCMD conduction velocity was calculated 

between the three channels as the reciprocal of the delay between spikes along the connective 

and across the mesothoracic ganglion and normalized as a proportion of the conduction velocity 

of the first spike of the first control recording for each animal (Cross and Robertson 2016). 

 

3.3.6. Statistical analysis 

Statistical analyses were performed using SigmaStat 3.5, and figures were created with 

SigmaPlot 12.5 (Systat Software Inc., Richmond, CA) and Illustrator CS2 (Adobe Systems, San 

Jose, CA). Normally distributed variables were compared using two-way Repeated Measures 

ANOVA (two-way RM ANOVA) with F statistic and subscripted degrees of freedom and 

residual, followed by a Holm-Sidak post-hoc analyses comparing across treatment and time to 

the control and pre-treatment, respectively. Variables that failed tests of normality or equal 

variance were compared using one-way ANOVA within time (pre-treatment, 30 minutes and 60 

minutes), and treatments were compared post-hoc to the vehicle using Dunn’s method. 

Parametric data were plotted as bar graphs including positive standard error of the mean bars 

(s.e.m.), and non-parametric data were plotted as boxplots showing the median value, 25th and 

75th percentile as box boundaries and 10th and 90th percentiles as error bars. Significance was 

assessed at P<0.05. 

 

3.4. Results 

 

3.4.1. Behaviour 

Locust flight and escape behaviours were tested in a wind tunnel, using the image of a 

looming stimulus to elicit escape manoeuvres. While all pre-treatment locusts (n=30) flew and 

responded to the looming stimulus with an escape manoeuvre (turn or glide), treatment with 10 

ng/g IMD, OLE or 5OH reduced or abolished behavioural responses, resulting in locusts that 

either flew without responding to the looming stimulus or did not fly (Figure 3.2). The parent 

compound, IMD had the smallest effect, with 40% of animals flying and responding to the 
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stimulus, while 30% flew and did not respond and 30% could not fly 1 hour after treatment. OLE 

resulted in 50% of animals unable to fly, 40% of animals flying but not responding to the 

stimulus, and 10% flying and responding with an escape manoeuvre. 5OH had the largest effect 

on flight, with 80% of animals unable to fly 1 hour after injection, and the remaining 20% flew, 

but did not respond to the looming stimulus. These results show that, while all compounds 

affected flight behaviour at the concentration used, the effects varied across treatments. 

 

 

Figure 3.2:  Flight and escape behaviours before (PRE) and after treatment with IMD, OLE or 

5OH. Loosely tethered flight behaviour of locusts was recorded in a wind tunnel during 

presentation of a looming disk before (PRE) and after treatment with IMD, OLE and 5OH. 

Animals that responded to the stimulus with a turn or a glide were scored as responding (R), and 

those that did not respond to the stimulus were scored as not responding (NR). Animals that were 

not able to fly in a coordinated manner after treatment were scored as not flying (NF). 

 

3.4.2. DCMD responses to looming stimuli 

I examined the responses of the DCMD to a looming stimulus before treatment and over 

1 hour after treatment with 10 ng/g of IMD, OLE, or 5OH. The response profile of the DCMD 

was altered after treatment with IMD, OLE or 5OH compared to the vehicle control group 

(Figure 3.3). The effect of IMD and metabolites is visible 30 minutes after treatment, with the 

peak of the PSTHs lowered to approximately 80% of pre-treatment levels. This effect was 

enhanced 60 minutes after treatment, with the peak firing rates reduced to 75% of the pre-

treatment peak, and slight differences in the rising and falling slopes of the histograms between 

treatments. 

Mean PSTH shape was compared between treatments to the vehicle and across time to 

pre-treatment values by examining individual response parameters (Figure 3.4). The total 

number of DCMD spikes per stimulus presentation was significantly affected across treatments 

(two-way RM ANOVA, F3,47 = 3.675, p=0.025). Post-hoc multiple comparisons (Holm-Sidak) 
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showed that the number of spikes was significantly reduced at both 30 and 60 minutes after 

treatment with IMD and 5OH compared to the control (IMD: 30 min = 71.6%, 60 min = 71.3%; 

5OH 30 min = 80.4%, 60 min = 68.6%). The peak firing rate was affected by treatment (two-way 

RM ANOVA, F3,26 =5.006, p=0.007) and time after treatment (two-way RM ANOVA, F1,26 

=4.263, p=0.049). Post-hoc analysis showed the peak firing rate was reduced for OLE and 5OH 

at 30 minutes after treatment (OLE = 81.5%; 5OH = 83.6%), and for all treatments at 60 minutes 

after treatment (IMD = 79.2%; OLE = 75.6%; 5OH = 74.3%). The peak firing rate was 

significantly lower for 5OH at 60 minutes compared to 30 minutes after treatment.  

 

 

Figure 3.3: Mean peristimulus time histograms (PSTHs). Data are from all animals in each 

treatment group normalized as a percent of the pre-treatment peak firing rate before treatment 

(pre-treatment), 30 minutes, and 60 minutes after treatment with 10 ng/g of locust of IMD (n=9), 

OLE (n=6) or 5OH (n=8), or the vehicle control (n=7). Vertical red lines at 0s represent the 

projected time of collision of the looming stimulus. 

 

Despite a reduction in total number of spikes and peak firing rate, there was no effect on 

PWHM or peak time for any treatment (p>0.05). Histogram shape was compared in higher 

resolution by examining the rise and decay phases. Rise phase was affected by treatment at 60 

minutes after treatment (one-way ANOVA, F3,25 =12.081, p<0.001), while there was no effect on 

rise phase at 30 minutes after treatment. Holm-Sidak multiple comparison versus the control 

group showed a significantly shortened rise phase with the IMD and 5OH treatments. Similarly, 

there was no effect of treatment on the decay phase of the histogram, while there were significant 

effects at 60 minutes (one-way ANOVA on Ranks, H3=9.504, p=0.023). Dunn’s post hoc 

analysis showed the IMD treatment resulted in an increased decay phase 60 minutes after 

treatment.   

In summary, these results show that the treatments reduced the total number of spikes and 

peak firing rate of the DCMD in response to a looming stimulus, and that the effects were on 
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peak firing rate were present for the 5OH and OLE treatments already by 30 minutes after 

treatment. In addition, I see effects on the histogram shape, with a shortened rise phase and 

lengthened decay phase for the IMD treatment at 60 minutes, and a shortened rise phase for the 

5OH treatment at 60 minutes after treatment. 

 

                                        

Figure 3.4: Comparison of DCMD response parameters. Measurements included: A) total 

number of spikes per stimulus presentation, B) normalized peak firing rate, C) peak width at half 

the maximum firing rate, D) peak time, E) rise and F) decay phases of the histograms. Bars 

display positive s.e.m. and boxplots display the median line and 25th and 75th percentiles, with 

whiskers at the 5th and 95th percentiles. Asterisks above bars represent significance from a Two-

Way Repeated Measures ANOVA. Black asterisks compare treatments to the vehicle (VC) 

within time (pre-treatment, 30 minutes and 60 minutes after treatment), and coloured asterisks 

compare within treatment over time. Asterisks above box plots denote significance of treatment 

compared to VC within time after treatment from One Way ANOVA tests.  

 

3.4.3. Conduction velocity 

The relative conduction velocity along the DCMD axon was altered by treatment of IMD, 

OLE or 5OH, and these effects depended on firing rate and location (along the ventral connective 

versus across the mesothoracic ganglion). Figure 3.5 shows the relationship between conduction 

velocity, both along the ventral connective (CVC) and across the mesothoracic ganglion (CVM), 

A B 

C D 

E F 
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and the firing rate of the DCMD during the approach of the looming stimulus. The firing rate 

peaked close to TOC and was associated with reduced conduction velocity for all treatments, 

including the vehicle, which was reduced by approximately 20% at peak firing rates. IMD, OLE, 

and 5OH also displayed a reduced conduction velocity at peak firing rates, but these were also 

associated with firing rates that were reduced to approximately 70% of pre-treatment levels.  

                                         

Figure 3.5: Effects of treatment on conduction velocity. Relative DCMD conduction velocity 

versus time to collision for all DCMD spikes recorded along the ventral connective (CVC) and 

across the mesothoracic ganglion (CVM) for all animals in each treatment group during the 

approach of a looming stimulus at 60 minutes after treatment, and the corresponding mean 

PSTHs (black lines). Projected time of collision is marked with a red vertical line. Darker 

colours and circles represent measurements along the ventral connective, while triangles and 

lighter colours represent measurements across the mesothoracic ganglion. 

 

The relationship between conduction velocity and firing rate appears to have been 

affected by treatments differentially along the connective or across the mesothoracic ganglion 

(Figure 3.6A). Conduction velocity decreased with increasing firing rate for all treatments 

(including vehicle). I compared conduction velocity among treatments with the firing rate binned 

into three categories: <100 spikes/s, 100-200 spikes/s, and >200 spikes/s (Figure 3.6B). 

Conduction velocity was binned to isolate the effect of firing rate (Cross and Robertson 2016). 

All spike rates above 350 spikes/s were removed for this analysis since IMD, OLE, and 5OH 

reduced peak firing rates to below this level. There was a significant effect of treatment and 

frequency group on CVC (two-way RM ANOVA, treatment F3,32 =7.024, p=0.003; frequency 

F2,32 =28.620, p<0.001). Comparison of CVC within firing rate bin shows a significant effect of 

IMD and OLE at all firing rate bins. At firing rates >200 spikes/s, CVC was also significantly 
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reduced with 5OH. CVC was significantly reduced with 5OH in the 100-200 spikes/s bin 

compared to the <100 spikes/s bin, and in the >200 spikes/s bin the conduction velocity of all 

treatments was significantly lower than values in the <100 bin within each treatment.  

                                         

Figure 3.6: Relative conduction velocity as a function of instantaneous firing rate along the 

ventral connective (CVC) and across the mesothoracic ganglion (CVM). A) Conduction velocity 

of each DCMD spike recorded from all animals 60 minutes after treatment within each treatment 

group during the approach of a looming stimulus versus instantaneous firing rate along the 

connective (left) or across the mesothoracic ganglion (right). Nonlinear regressions were fit for 

data within each treatment using a polynomial quadratic equation. B) Bar graphs (with positive 

s.e.m.) illustrating the effects of treatment and firing rate on CVC (left) and CVM (right). 

Asterisks denote results of two-way Repeated Measures ANOVA with black asterisks comparing 

treatments to the vehicle (VC) within each firing rate group and coloured asterisks comparing 

within treatment to the <100 spikes/s firing rate group. 

 

Conduction velocity was also affected by treatment (two-way RM ANOVA, F3,30 =4.773, 

p=0.014) and firing rate bin (two-way RM ANOVA, F2,30 =48.947, p<0.001) as the axon crossed 

the mesothoracic ganglion (CVM, Figure 3.6B, right panel). Holm-Sidak post hoc analysis 

showed that OLE had a significant effect on CVM, resulting in a lower velocity compared to the 

vehicle within each firing rate bin. Additionally, the decrease in CVM with OLE was 

significantly greater at the 100-200 and >200 spikes/s bins compared to the <100 bin 5OH 

significantly decreased CVM compared to the vehicle in the lowest bin only, but CVM was 

significantly reduced in the >200 bin compared to the <100 bin. In the >200 bin the vehicle and 

IMD CVM was significantly reduced compared to the <100 bin within each treatment. 

A 

B 
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Overall, while conduction velocity was reduced for all treatments (including vehicle) at the 

highest firing rates (>200 spikes/s), both along the ventral connective and across the 

mesothoracic ganglion, there was a significant decrease in conduction velocity compared to the 

vehicle within each frequency group that resulted from treatment with IMD, OLE and 5OH. OLE 

had a significant effect across all firing rates and locations whereas IMD produced the most 

dramatic effect along the ventral connective only. 

 

3.5. Discussion 

 

While a large body of research exists highlighting the toxicological effects of neonics, 

relatively few studies examine the contributions of the neurotoxic metabolites even though some 

metabolites persist longer in vivo and in the environment (Suchail et al. 2004; Codling et al. 

2016). Identification of the specific contributions of neonic metabolites to toxicity enables a 

greater understanding of primary and secondary effects of these insecticides and highlight the 

significance of their presence in the environment. 

Potential limitations of the current study included the method of administering the 

treatments differing between behavioural and electrophysiological assays, and the metabolism of 

IMD that would naturally occur within the time frames tested. For electrophysiological assays 

the locust was dissected dorsally and filled with saline, into which the chemicals were added, and 

during behavioural assays the chemicals were injected with a small volume of saline containing 

the treatment directly into the hemolymph. Despite these differences the total amount of each 

chemical used was the same between experiments (10 ng/g), thus comparison of 

electrophysiological and behavioural assays is valid. Future studies should consider the time 

required for IMD to be metabolized in vivo in the locust and determine relative concentrations of 

OLE and 5OH within 1 hour of treatment.  

For behaviour and electrophysiology, I used a consistent dose of 10 ng/g of locust, which 

I showed previously to be sublethal at 0.04% of the LD50 (2500 ng/g) when injected into the 

hemolymph (Parkinson et al. 2017). In Apis mellifera imidacloprid has an acute toxicity (LD50) 

value of 570 ng/g for imidacloprid, 280 ng/g for imidacloprid-olefin, and 2580 ng/g for the 5-

hydroxy metabolite (Suchail et al. 2001), roughly ranging across an order of magnitude. Our 

previous findings used a concentration of imidacloprid that was two orders below the LD50 for 
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locusts. Therefore, assuming a similar range of metabolite toxicity in bees and locusts, I suggest 

that the metabolite doses I used here were also sublethal. 

 

Behaviour 

I found that IMD, OLE and 5OH affected collision avoidance behaviour and flight 1 hour 

after treatment. The effects were greatest for the 5OH metabolite, and IMD had the smallest 

effect overall. Sublethal doses of IMD are known to decrease collision avoidance behaviours in 

locusts 2 and 24 hours after treatment (Parkinson et al. 2017) and here I confirm that this effect is 

already present 1 hour after treatment, although there is more variability between animals.  

Effects on forward flight versus flight steering suggest toxicity is occurring at different locations 

in the nervous system. Animals that were able to fly but did not respond (NR) suggest toxicity is 

targeted to visual interneurons, like the DCMD, that convey information about the looming 

stimulus, while motor control of flight, such as the thoracic central pattern generators, were 

unaffected. Toxic effects extended to the control of central pattern generators or directly to the 

innervation of flight muscles for animals unable to fly. Contrasting vertebrates, the synapses at 

neuromuscular junctions in insects are glutamatergic (Usherwood 1977), while acetylcholine is 

the primary neurotransmitter within the insect central nervous system, mediating excitatory and 

inhibitory synapses via nicotinic and muscarinic receptors, respectively (Trimmer 1995). 

However, insect motorneurons contain nAChRs as a primary excitatory synapse (Parker and 

Newland 1995), and inactivation of motorneurons by IMD or its metabolites would result in 

animals that are unable to fly. 

It is plausible that the effects on flight behaviour are caused by the metabolites of 

imidacloprid rather than the parent compound, as there is a greater effect of the metabolites when 

administered at the same dose. Imidacloprid is rapidly metabolized to OLE, 5OH and other 

metabolites, with OLE and 5OH measurable in the head, thorax, abdomen and hemolymph 

within 20 minutes of treatment in honeybees (Suchail et al. 2004). Given the quick metabolism 

of IMD in vivo, it is likely that the behavioural effects observed here are due partially to the 

metabolites, which could explain the enhanced effects of the metabolite treatments. 
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Visual Motion Detection 

Visual motion detection was affected by IMD, OLE and 5OH 30 and 60 minutes after 

treatment, measured primarily as a decreased peak firing rate and total number of spikes, with no 

effect on the time of the peak and PWHM. Reduction in the total number of spikes and peak 

firing rate are measures of decreased DCMD excitation in response to the looming stimulus. As 

there was little or no effect on PWHM or peak time, it is likely that inhibitory neurons upstream 

of the LGMD/DCMD are also affected by IMD and its metabolites, resulting in decreased 

activity of these neurons as well. Inhibitory synapses in the locust optic lobe are primarily 

muscarinic cholinergic (Rind and Leitinger 2000; Zhu et al. 2018), and IMD has not been shown 

to affect these synapses (Buckingham et al. 1997). However, dendritic receptors activating 

inhibitory neurons may be nicotinic cholinergic, so it is possible that IMD and its metabolites are 

affecting these neurons in the same way as the DCMD, resulting in an overall reduced firing rate 

with less effect on the slope of the response.  

I propose two potential mechanisms for the inactivation of nAChRs by IMD and its 

metabolites. The first is via the direct desensitization of the receptors resulting from prolonged 

exposure to the agonists (Nauen et al. 2003; Oliveira et al. 2011). An alternative mechanism is 

that IMD-mediated increased intracellular calcium ([Ca2+]i)  results in the inhibition of nAChRs 

via phosphorylation-dependent mechanisms, such as the cAMP-mediated pathway. Insect 

nAChRs are regulated via second messengers including cAMP, which is activated by adenylyl 

cyclase and may be regulated directly by [Ca2+]i (Thany et al. 2007). Neonics have been shown 

to directly alter [Ca2+]i via interactions of nAChRs with voltage-gated calcium channels that 

amplify IMD-induced increases in [Ca2+]i (Jepson et al. 2006). Furthermore, desnitro-IMD, a 

form of IMD highly toxic to mammals, activates the extracellular signal-regulated kinase 

cascade, which may result in deficiencies in cell survival/cell death via alterations in [Ca2+]i 

resulting from activation of the nAChR (Tomizawa and Casida 2003). Taken together, it is likely 

that the reduction in DCMD firing shown here results from decreased activity of nAChR caused 

both directly and indirectly by the binding of IMD and its metabolites to the receptors. 

 

Waveform Propagation 

I report that the conduction velocity along the DCMD axon is reduced by IMD, OLE and 

5OH, and that these effects depended on firing rate and location along the axon, the latter likely 
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due to physical properties of the axon. The DCMD axon runs along the dorsomedial region of 

the connective and decreases in diameter as it crosses the mesothoracic ganglion, with collateral 

projections to the medial, lateral and ventral regions of the neuropil (Gray et al. 2010). At high 

firing rates, the ion concentrations within the ganglion may be altered due to the many active 

synapses between the DCMD and other neurons in the ganglion. High frequency firing can result 

in decreased conduction velocity in dorsal root ganglion cells and is associated with an increase 

in [Ca2+]i  (Luscher et al. 1994). The effect may be responsible for the observed decrease in 

conduction velocity at high firing rates across the ganglion, but not along the ventral connective. 

Given that IMD had no effect on conduction velocity across the ganglion, but a very large effect 

(mean reduction of 32%) at high frequencies along the connective, I suggest that the isolation 

provided by the neuropil may reduce the effects of IMD. The mechanism by which IMD, OLE 

and 5OH decrease conduction velocity in the unmyelinated DCMD axon has not been examined 

directly, but it is possible this effect is caused by alterations to [Ca2+]i. 

 

Conclusions  

In summary, I found that exposure to 10 ng/g (100 µg/kg) imidacloprid and two of its 

metabolites, imidacloprid-olefin and 5-hydroxy-imidacloprid, affected flight and collision 

avoidance behaviours, with greater effects for 5OH than OLE, and for OLE than IMD. 

Additionally, I found that IMD and its metabolites decreased visual motion detection, as 

measured from the activity of the DCMD neuron, and that effects on the peak DCMD firing rate 

occurred sooner following direct treatment with the metabolites. These results support our 

hypothesis and suggest that the main effects on behaviour and neural coding are due, primarily to 

exposure to metabolites. One hour after treatment, IMD would be metabolized partly to 5OH and 

OLE, but at lower concentrations given the breakdown of IMD to 5OH, OLE and other, non-

neurotoxic metabolites (Nauen et al. 2001). Given that the metabolites have the same or greater 

effect than the parent compound on both behaviour and neural processing highlights the 

importance of considering the environmental longevity and concentrations of these metabolites 

as well as the parent compound.  

I additionally found that conduction velocity was significantly reduced with IMD, OLE 

and 5OH, which corresponds with effects measured in humans exposed to agricultural neonics 

(Huang et al. 2016; Zhang et al. 2018). Additional research is needed to uncover the mechanism 
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affecting conduction velocity of neonics. Overall, I have described and compared the effects of 

two neonic metabolites on flight behaviour and visual processing and found that these 

metabolites display similar toxicity to the parent compound. This study should inform future 

studies examining ecological presence of neonics, as the presence of certain metabolites may be 

equally or more toxic to non-target organisms including important pollinators. 
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Chapter 4: Attenuation of excitation in optic lobes by imidacloprid, 

not sulfoxaflor, results in ineffective visual motion detection in a 

neural population3 

 

4.1. Abstract 

 

Insect nervous systems offer unique advantages for studying interactions between sensory 

systems and behaviour given that they are complex and yet highly tractable. By examining the 

neural coding of salient environmental stimuli and resulting behavioural output in the context of 

environmental stressors, we gain an understanding of the effects of these stressors on brain and 

behaviour and provide insight into normal function. Flight behaviours, including orientation, 

navigation and collision avoidance are essential to the survival of many animals and are guided 

primarily by the processing of visual information, which may be affected by insecticides like 

neonicotinoids. The locust (Locusta migratoria) possesses tractable descending visual 

interneurons, including the Descending Contralateral Movement Detector (DCMD) whose 

activity arises from the combined input of excitatory and inhibitory signals within the optic lobes 

to encode the approach of looming objects. Inhibitory neurons are involved with shaping the 

responses of visual motion sensitive neurons and facilitate habituation to repeated stimulus 

presentations. The target of neonicotinoids, the nicotinic acetylcholine receptor (nAChR) can be 

found at excitatory synapses throughout the locust CNS, including potentially on the dendrites of 

 
3 The content of this chapter come from the following manuscript in preparation. Formatting and layout changes 

have been made to provide consistency between chapters. 

 

Parkinson RH, Zhang S, and Gray JR (in prep). Attenuation of excitation in optic lobes by imidacloprid, not 

sulfoxaflor, results in ineffective visual motion detection in a neural population 

 

Author contributions & justification for use in this thesis: R.H.P. designed and carried out experimentation, analyzed 

the data, interpreted the results, prepared the figures, and wrote and revised the manuscript. S.Z. analyzed the data. 

J.R.G. conceived experiments, interpreted the results, revised the manuscript, and approved the final version. 
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inhibitory neurons. Here I measured the effects of imidacloprid (neonicotinoid) and sulfoxaflor 

on collision avoidance behaviour and population coding of descending visual interneurons. I 

showed that both excitatory and inhibitory neurons were affected by imidacloprid, with the 

greatest effects on excitation due to relatively more synapses in these circuits containing 

nAChRs, and I provided new insight into how a population of visual interneurons habituates, 

both with and without treatment. I solidified the use of these neuroethological assays for 

comparative neurotoxicology, as I showed reduced toxicity of sulfoxaflor under the same 

treatment concentrations.  

 

4.2. Introduction 

 

The use of agrochemicals has become increasingly important to sustain large-scale 

monocultures that are vulnerable to pests (Meehan et al. 2011). Many modern insecticides are 

applied as seed treatments to prophylactically address this threat, and these products are available 

as complex mixtures containing multiple insecticides and fungicides. Of the seed treatments, the 

most nefarious insecticidal group is the neonicotinoids (neonics), which are nicotinic 

acetylcholine receptor (nAChR) agonists with specificity for insect receptor subunits (Matsuda et 

al. 2001). Neonics have been implicated in contributing to declines of non-target insects, with 

wild bee populations displaying the greatest sensitivity to these compounds (Goulson 2013; 

Rundlöf et al. 2015; Woodcock et al. 2016). The sublethal effects of neonics, however, are very 

complex, and it is difficult to link effects observed across levels of biological organization and 

estimate risk of exposure in the field. For example, the presence of alternate food sources should 

reduce the threat posed by treated crops, but it has been shown that bees prefer food laced with 

neonicotinoids (Kessler et al. 2015; Arce et al. 2018).  

The development of novel insecticides is necessary to contend with insecticidal resistance 

in target organisms that can arise from receptor polymorphisms and enhanced detoxification 

pathways (Ihara and Matsuda 2018). A novel group of insecticides, the sulfoximines, display a 

similar mode of action to the neonics, but do not display cross-resistance (Longhurst et al. 2013) 

related to differential detoxification pathways of these insecticidal groups (Sparks et al. 2012). 

While a sulfoximine insecticide, sulfoxaflor, is already marketed in seed treatment mixtures, the 

range of sublethal effects on non-target organisms is not fully understood. Sulfoxaflor has 
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recently been shown to negatively affect reproductive success in bumblebees (Siviter et al. 

2018). The introduction of new agrochemicals to the ecosystem prior to a complete 

understanding of the negative effects results in a repeating pattern of ecological damage. To 

mitigate these effects, toxicological assays should be developed that simultaneously address 

effects at multiple levels of biological organization.  

The neonic imidacloprid (IMD) has previously been shown to affect visual motion 

processing and collision avoidance behaviour in the locust (Locusta migratoria) (Parkinson et al. 

2017; Parkinson and Gray 2019). The locust possesses a tractable and well-described descending 

interneuron, the descending contralateral movement detector (DCMD), which responds 

preferentially to objects approaching on a direct collision course (looming) (Simmons and Rind 

1992; Gabbiani et al. 1999). This neuron displays bursting activity (McMillan and Gray 2015) 

and is important for the generation of escape behaviours (Parker and Newland 1995; Rind et al. 

2008). In addition, this neuron habituates to repeated stimulus presentation (Gray 2005), a 

phenomenon that is related to the inhibitory pathways in the optic lobe that are activated in 

tandem with excitatory pathways (Rind and Bramwell 1996; Gabbiani et al. 1999; Wang et al. 

2018a). There are other descending interneurons that can be recorded from the ventral nerve 

cord, with differing response profiles to the DCMD in response to a looming stimulus, however 

the population response of these neurons has been examined in only one study (Dick et al. 2017), 

and another neuron, the late DCMD (LDCMD) is known to habituate less than the DCMD (Gray 

et al. 2010) 

Here, using a combination of multichannel extracellular recordings, I defined the effects 

of imidacloprid and the novel insecticide sulfoxaflor on the population responses of descending 

neurons during presentation of a looming stimulus. Effects on the population of descending 

interneurons were correlated with effects on collision avoidance behaviour. Overall, I found 

imidacloprid had a significant effect on the population response, while sulfoxaflor did not 

significantly affect the responses of these descending neurons to object motion. Correspondingly, 

there were dramatic effects on jumping behaviour, with no animals jumping to avoid the looming 

stimulus after treatment with imidacloprid, while most of the animals still responded after 

treatment with sulfoxaflor. These results are significant as they show the first evidence of the 

effects of a neonicotinoid on a population response and neural habituation, and additionally that 

sulfoxaflor has reduced toxicity in this context. 
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4.3. Methods 

 

4.3.1. Animals 

Locusta migratoria were reared in a crowded colony at the University of Saskatchewan at 

25-28ºC with a 12h light:dark cycle and fed a diet of wheat grass and bran flakes. All 

experiments were performed on adult males aged two to four weeks past the last imaginal moult. 

 

4.3.2. Treatments 

Locusts were fed a small piece of organic lettuce with a 1µl droplet of testing solution 

containing 100 ng imidacloprid or sulfoxaflor + 0.2% (v/v) acetone in reverse osmosis water, or 

the vehicle (reverse osmosis water + 0.2% acetone). Locusts then were observed for a short time 

to ensure they consumed wheat grass and were housed individually for 24 hours with ad libitum 

access to wheat grass. Locusts that did not consume any food after treatment were discarded 

from the study. A 100 ng dose of imidacloprid was previously found to be sublethal when 

injected (Parkinson et al. 2017), while the LD50 value for SFX in locusts is unknown. Only 

animals that consumed wheat grass after oral treatment were used for subsequent experiments. In 

general, animals treated with IMD showed neurotoxic effects (trembling, sporadic movements, 

paralysis) within 30 minutes of treatment, as described previously (Parkinson et al. 2017), while 

those treated with SFX displayed no behavioural effects at this time point. Subsequent 

behavioural and electrophysiological assays were conducted 24 hours after the single oral 

treatment, with no mortality observed in any treatment group at that time. 

 

4.3.3. Visual stimuli 

To elicit behavioural and neural responses to visual motion, I used a looming 7 cm 

diameter black disc approaching at 300 cm/s at 90° perpendicular to the animal. The visual 

stimulus program was custom written in Python using Pyglet (Stott et al. 2018). An Arduino was 

programmed to output a single 5 V pulse at the projected time of collision (TOC) of the looming 

stimulus. The image was displayed on a 1080p Samsung LCD screen (P2570 HD) with an 85 Hz 

refresh rate. Animals were presented with 5 consecutive stimuli, spaced 3 minutes apart to avoid 

habituation for behavioural and electrophysiological assays. In addition, I examined the effects 
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of habituation on neural population coding within the treatment groups using a series of 10 

looming stimuli presented at 8 second intervals. 

 

4.3.4. Collision avoidance behaviour assay 

All locusts were tested behaviourally prior to treatment, and again 24 hours after treatment. 

The behavioural assay involved placing untethered locusts in a 30 cm3 fine mesh wire cage 

adjacent to a computer monitor displaying the looming stimulus at 3-minute inter-stimulus 

intervals. If locusts responded to the stimulus with a jump they were scored as responding 

(Parkinson et al. 2017). Locusts were presented with the looming stimulus 5 times. Those that 

responded to the stimulus responded every time they were facing the screen. 

 

4.3.5. Electrophysiology 

Locusts were dissected dorsally with wings and legs removed and pinned open ventral side 

down to a cork platform, with gut and muscles cut to expose the ventral nerve cords (Parkinson 

and Gray 2019). A silver wire hook electrode was used to lift and stabilize the right nerve cord 

anterior to the prothoracic ganglion. I constructed twisted wire tetrodes following the methods of 

Guo et al (Guo et al. 2014). For stability, I threaded tetrodes through a sharp glass electrode with 

the tip broken off at a diameter just wide enough for the tetrode wires to pass through, and these 

wires were exposed 2-3 mm past the tip of the glass. The protective sheath surrounding the right 

nerve cord was carefully cut, and the tetrode was lowered vertically into the nerve cord just 

anterior to the position of the hook electrode. Upon verification of a clean recording by 

observing neural responses to motion (waving hand) as continuous neural data, I applied 

petroleum jelly to the nerve cords and surrounding the recording electrodes to prevent 

desiccation and insulate the recordings.  

Of the 15 animals per treatment group tested behaviourally, I obtained recordings that were 

sufficiently clear for analysis from 12 animals in each group. All five channels (4 channels of the 

multichannel tetrode, 1 channel for the hook electrode) were amplified with a differential 

amplifier (A-M Systems 1700, 300 Hz high pass, 5 kHz low pass filters, 100x gain), digitized 

(DT9818-OEM, TechnaTron Instruments Inc., Laval, QC) and recorded at 25 kHz with 

DataView version 11.3 (W.J. Heitler, University of St. Andrews, Scotland). Animals were 
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oriented parallel to the computer monitor, with the centre of the left eye directed toward the 

screen. 

 

4.3.6. Spike sorting 

The activity of individual neurons (units) was discriminated with Offline Sorter v 4.4 

(Plexon Inc., Dallas, TX). The four channels associated with the tetrode recording were imported 

into the program and arranged into a tetrode configuration [Same electrode tip = same channel 

number across recordings]. Individual data files from all stimulus presentations (5 stimuli spaced 

3 minutes apart, 10 stimuli spaced 8 seconds apart) were combined in a single file per animal. 

The threshold for spike detection was set to three standard deviations from the mean voltage on 

each continuous data channel. A semi-automatic sorting method was used, based on the K-means 

algorithm. Cluster centroids were manually selected based on visually determined clusters in 3D 

feature space. Following an initial sort, units were discriminated manually based on waveform 

shape and amplitude (Figure 4.1B). MANOVA analysis was used to determine that sorted units 

from each locust were statistically well-separated in 3D space (Figure 4.1B). In total, I 

discriminated 246 units across 36 animals (Table 4.1). Raw spike times for individual units were 

used to construct peristimulus time histograms (PSTHs), smoothed with a 50 ms Gaussian filter 

and aligned to the projected time of collision of the stimulus (TOC). 

 

4.3.7. Spike train analysis 

Using these PSTHs, I determined which units were responding to the stimulus by plotting 

the cumulative sum of spike counts over an ellipse that represented the 99% confidence level. 

The cumulative sum was calculated in Neuroexplorer with the following algorithm: for bin 1, 

cs(1) = bc(1)A; for bin 2, cs(2) = bc(1) + bc(2)-A X 2l for bin 3: cs(3) = bc(1) + bc(2) + bc(3)-A 

X 3, etc. Thus, the cumulative sum (cs) at each bin count (bc) includes the counts from previous 

bins plus the current bin, minus the average (A) of the entire histogram. A cumulative sum that 

did not pass outside or touch the edge of the 99% confidence level ellipse represented a firing 

rate that showed no significant change as a result from the stimulus, while those that touched or 

expanded past the edge of the ellipse were considered to have a significant, stimulus evoked, 

firing rate change (Dick et al. 2017). Units that were not responding were removed from 

scrivlnk://847D0476-3AD2-4F5E-BE84-CFF269DA7DFC/
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subsequent analysis. Figure 4.1C shows an example of the PSTHs and cumulative sum from a 

unit that is responding (left) and one that is not responding (right) to the visual stimulus. 

For stimuli spaced at 8 second intervals, I calculated a habituation index (H) of all 

responding units, using the proportions of the total number of spikes and mean frequency of 

every stimulus presentation normalized to the first stimulus of the sequence such that: 

𝐻 =
(
𝑠𝑝𝑖+1
𝑠𝑝𝑖

) + (
𝑚𝑓𝑖+1
𝑚𝑓𝑖

)

2
− 1 

Where sp = number of spikes between -1.5 to 0.5 seconds, i = approach number > 1, and mf = 

mean frequency. 

 

4.3.8. Statistical analysis 

Parameters measured from neural data were compared between treatment groups using 

One-way analysis of variance (ANOVA) for normally distributed data or one-way ANOVA on 

Ranks for non-parametric data, with Dunn’s Method post-hoc analyses. Results from behavioural 

assays were compared using Chi-squared. Rise phase data was compared between treatments and 

unit group using two-way ANOVA with Holm-Sidak multiple comparison post-hoc analysis. 

 

4.4. Results 

 

4.4.1. Collision avoidance behaviour 

All animals (n=45) responded to the looming stimulus with a jumping escape behaviour 

prior to treatment (data not shown). However, oral treatment with 100ng IMD (n=15) resulted in 

all animals unresponsive to the looming stimulus 24 hours after treatment (Figure 4.1A). 

Treatment with SFX (n=15) at the same dose had a greatly reduced effect on behaviour, with 

12/15 animals still responding to the looming stimulus. All vehicle control animals (n=15) 

responded to the stimulus with an escape behaviour. 

scrivlnk://914DE3AA-291D-464C-8CD2-32803BC78000/
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Figure 4.1: Collision avoidance behaviour and classification of spikes belonging to units that 

respond to a looming stimulus based on treatment with vehicle, sulfoxaflor, or imidacloprid. A) 

Proportion of locusts jumping in response to looming stimulus 24 hours after a single oral 

treatment with the vehicle (VC), sulfoxaflor (SFX) or imidacloprid (IMD). B) Raw tetrode 

recording from the ventral nerve cord during visual stimulation with a looming stimulus (top left, 

red vertical line marks the time of collision), individual spikes are marked by black boxes (top 

right) and displayed as the mean of the sorted units across the entire recording for each channel 

(bottom left). Clusters representing all spikes within each unit are distinct in 3-dimensional 

feature space (bottom right). C) Raster plots (top) and mean peristimulus time histogram (PSTH, 

middle) constructed from a single unit over five stimulus presentations, with the time of collision 

marked by a vertical red line. The cumulative sum of the histogram is displayed over an ellipse 

representing the 99% confidence level (bottom). A unit is said to be responding if the cumulative 

sum exits the ellipse (left), or not responding if it does not (right). D) Comparison of the total 

mean number of units per locust per treatment (left), the number of responding units per locust 

per treatment (middle), and the percent of responding units per locust per treatment (right). 

Columns show mean and SEM while boxes show median, 25th and 75th percentile with 10th and 

90th percentile shown with whiskers. 
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Table 4.1 Summary statistics for sorted spikes for each animal by treatment group and animal ID 

number. Treatments included: vehicle control (VC), imidacloprid (IMD), and sulfoxaflor (SFX). 

Vehicle Control Imidacloprid Sulfoxaflor 

ID Spikes Units MANOVA ID Spikes Units MANOVA ID Spikes Units MANOVA 

VC03 8192 6 
P << 0.001 

F15,22593 = 3.8 
IMD01 4869 7 

P << 0.001 

F18,15288 = 10.4 
SFX01 9369 6 

P << 0.001 

F15,25825 = 22.1 

VC04 7933 8 
P << 0.001 

F21,22751 = 9.8 
IMD02 5861 8 

P << 0.001 

F21,16781 = 3.8 
SFX02 5831 6 

P << 0.001 

F15,16075 = 15.6 

VC05 5632 5 
P << 0.001 
F12,14883 = 11.1 

IMD03 8193 9 
P << 0.001 
F24,23719 = 14.0 

SFX03 8705 6 
P << 0.001 
F15,24006 = 10.3 

VC06 8332 6 
P << 0.001 
F15,22516 = 7.4 

IMD04 9387 6 
P << 0.001 
F15,25883 = 6.5 

SFX04 11761 7 
P << 0.001 
F18,33240 = 3.2 

VC07 8432 9 
P << 0.001 

F24,24421 = 5.4 
IMD05 5043 6 

P << 0.001 

F15,13889 = 8.8 
SFX05 10088 7 

P << 0.001 

F18,28508 = 5.2 

VC08 5595 7 
P << 0.001 

F18,15800 = 12.5 
IMD07 6134 9 

P << 0.001 

F24,17759 = 10.6 
SFX06 8841 6 

P < 0.001 

F15,12981 = 3.0 

VC09 5350 7 
P << 0.001 

F18,15107 = 9.3 
IMD09 8879 9 

P << 0.001 

F24,25715 = 34.3 
SFX07 4723 6 

P < 0.001 

F15,19716 = 2.9 

VC10 6925 6 
P << 0.001 
F15,19095 = 8.3 

IMD11 9646 6 
P << 0.001 
F15,26596 = 18.1 

SFX08 8912 7 
P << 0.001 
F18,25165 = 3.6 

VC11 8992 7 
P << 0.001 

F18,25400 = 3.5 
IMD12 8681 7 

P << 0.001 

F15,26596 = 21.7 
SFX09 7959 9 

P << 0.001 

F24,23052 = 11.4 

VC12 11819 8 
P << 0.001 

F21,33907 = 12.2 
IMD13 8547 7 

P << 0.001 

F18,24135 = 8.4 
SFX10 7459 5 

P << 0.001 

F12,19716 = 5.3 

VC13 7536 5 
P << 0.001 

F12,19899 = 12.5 
IMD14 10447 9 

P << 0.001 

F15,25118 = 14.2 
SFX14 7065 6 

P << 0.001 

F15,19454 = 5.1 

VC14 6899 6 
P << 0.001 

F15,18999 = 11.1 
IMD15 9136 6 

P << 0.001 

F15,25883 = 6.5 
SFX15 7416 6 

P << 0.001 

F15,20451 = 5.1 

Total 91637 80  Total 94823 89  Total 98129 77  

Mean 7636 7  Mean 792 7  Mean 8177 6  

S.D. 1792 1.2  S.D. 1906 1.3  S.D. 1732 1.1  

Min 5350 5  Min 4869 6  Min 4723 5  

Max 11819 9  Max 10447 9  Max 11761 9  

 

 

4.4.2. Electrophysiology 

The spikes from individual neurons (units) were sorted for each animal from the tetrode 

recordings (Figure 4.1B). In total I discriminated 80 units in the vehicle control group across 12 
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animals, 89 units across 12 animals in the IMD group, and 77 units across 12 animals in the SFX 

group, or a mean of 7 units per animal for the vehicle and IMD groups, and 6 units/animal in the 

SFX group. I show that the clusters of sorted spikes within the units for each animal are 

statistically distinct in three-dimensional space (Table 4.1). Using the constructed PSTHs and 

cumulative sum plots for each unit, I removed all units that did not have a significant change in 

firing rate in relation to the stimulus (Figure 4.1C). There was no significant difference in the 

mean number of units per animal per group, the number of units responding per animal per 

group, or the percent of units responding per animal per group (Figure 4.1D). 

An initial population response analysis involved constructing mean PSTHs that contained 

all units from all animals for each treatment (Figure 4.2A). These histograms were strikingly 

similar for the control and sulfoxaflor treatments, while the population response of the 

imidacloprid group was generally attenuated in comparison. I measured the mean frequency of 

all units within 0.5 second blocks from -1.5 seconds (before TOC) to 0.5 seconds after (Figure 

4.1A) and confirmed that for all blocks leading to TOC the mean frequency was lower for units 

in the imidacloprid group, while after TOC there was no significant difference between 

treatments (results from one way ANOVA on Ranks: -1.5 to -1 s H2=16.455, p<0.001; -1 to -0.5 

s H2=20.855, p<0.001; -0.5 to 0 s H2=16.358, p<0.001). 

To further assess the general attenuation of neural firing across units in the IMD 

treatment, I divided the responses of different units into distinct unit response groups based on 

several histogram parameters (Figure 4.2A). For units that displayed a clear peak in firing rate 

around TOC, I divided into groups based on peak firing rate, whether it was greater than 100 

spikes/s (A), between 50 and 100 spikes/s (B), 25 and 50 spikes/s (C), or less than 25 spikes/s 

(D). The remainder of units displayed baseline tonic firing, that either decreased around TOC (E) 

or increased during the approach of the stimulus with no distinct peak (F). Despite there being no 

significant difference in the number of responding units per treatment group, I did find a 

significant difference in the distribution of the units amongst these unit response groups (Figure 

4.2B, X2
10=20.252, p<0.05). While the distribution of units in the response groups were similar 

for the control and sulfoxaflor treatments, the imidacloprid treatment had a large disparity in 

units contained in the low and moderate frequency peak groups (B-D), and very few units that 

displayed tonic spontaneous firing with increases or decreases around TOC (E-F). 
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Figure 4.2: Response properties of descending visual interneurons are affected by imidacloprid, 

not sulfoxaflor. A) Pooled mean frequency and corresponding PSTHs for all units within each 

treatment group, divided into 0.5 s sections to show how these measurements change during the 

approach of the looming stimulus (top and middle), with TOC marked by a vertical red line. 

Boxes are median, 25th and 75th percentile, with 10th and 90th percentile whiskers. Units were 

classified into six groups based on peak firing rate (groups A-D), a decreased firing rate at TOC 

(E) or a steadily increasing firing rate with no distinct peak (F, bottom). B) The total number of 

units allocated to each unit response group for each treatment. C) The rise phase of the PSTHs 

for units from groups A-C across all treatments (mean + SEM). Rise phase is measured from the 

PSTH from the last time the histogram crosses the 95% confidence interval until the peak. 

Letters above unit groups denote significant differences between groups, and asterisks denote 

significant effect of treatment within unit group. D) The decay phase of the PSTHs for units from 

groups A-C across all treatments (median, 25th and 75th percentiles, with 10th and 90th percentile 

whiskers). Decay phase was measured from the peak of the histogram until the time the 

histogram has decreased to 15%. Asterisk denotes significant effect of treatment within unit 

group. 
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I measured the rise phase of the histograms of units with a distinctive peak, i.e. from unit 

response groups A-C (Figure 4.2C). While the rise phase was significantly shorter with lower 

peak firing rates, this was enhanced with the imidacloprid treatment and these units displayed the 

shortest rising phases (two-way ANOVA by treatment: F2=9.733, p<0.001, by unit group: 

F2<71.690, p<0.001). Measurements of the decay phases of the PSTHs of units from groups A-C 

(Figure 4.2D) showed a significantly lengthened decay phase for units of the imidacloprid 

treatment in group A only (one-way ANOVA on Ranks H2=8.497, p<0.05). 

 

 

4.4.3. Dynamic factor analysis 

I performed a dynamic factor analysis (DFA), which is a method for identifying common 

trends among time series data (Zuur et al. 2003), to reduce the dimensionality of the data. DFA 

was conducted on PSTHs that used 50 ms bins with all units pooled within each treatment group 

(VC=69 units, SFX=72 units, IMD=75 units) using Brodgar 2.7.9 (Highland Statistics Inc., 

Newburgh, UK). When selecting the number of common trends to include in the model, criteria 

included AIC, distribution of the residuals, and biological interpretation (Zuur et al. 2003). I 

tested DFA models that included 4, 6, and 8 trends, and although the AIC value was lowest for 

the model with 8 trends (Table 4.2), I determined the 6 trend model to be most biologically 

relevant given our initial analysis of the PSTHs that facilitated grouping neural responses into 6 

unit response groups (Figure 4.3).  

 

Table 4.2. Results from the dynamic factor analysis including three measures of model fit used 

for model selection, Akaike information criterion (AIC), Bayesian information criterion (BIC), 

and the ‘consistent’ AIC (CAIC). 

 
Treatment # Common trends AIC BIC CAIC 

VC 4 18440.396 20856.974 21264.974 

 6 18140.641 21321.284 21858.284 

 8 18029.803 21950.82 22612.82 

SFX 4 19685.737 22227.059 22653.059 

 6 19412.349 22759.02 23320.02 

 8 19173.62 23301.777 23993.777 

IMD 4 17855.695 20522.522 20966.522 

 6 17447.359 20961.084 21546.084 

 8 17193.722 21530.32 22252.32 
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Figure 4.3: Dimensionality reduction of population response shows reduced variation in 

common trends when treated with imidacloprid. A) Common trends resulting from dynamic 

factor analysis on the neural population within each treatment. B) Individual common trends for 

each treatment with upper and lower 95% confidence limits (dark cyan), as well as the mean 

PSTHs for all units that contributed significantly to the trend and the mean of those units 

(purple). 

 

4.4.4. Habituation 

I used a series of 10 stimuli presented consecutively at 8 second intervals to observe how 

the populations of visual interneurons habituate. Visual interneurons, such as the DCMD, are 

known to habituate, primarily with a reduction in peak firing rate and total number of spikes 

(Gray 2005). I found that units with a medium or high frequency peak (from groups A and B) 

display a sharp decrease in firing, while those with more tonic firing patterns do not habituate 

(Figure 4.4A). I omitted units from group D (lower than 25 spikes/s peak) from these analyses as 

these units displayed high variability between stimulus presentations.  
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Figure 4.4: Habituation of populations of visual interneurons shows that some units habituate, 

while others do not. A) Responses of a single unit from each unit group from stimulus 

presentation 1 (Approach 1) versus stimulus presentation 10 (Approach 10) in a sequence of 10 

stimuli spaced at 8 second intervals. B) Heatmaps of the habituation index for all units from each 

treatment group for stimuli 1 through 10, with a habituation index of 0 representing no change 

from approach 1. C) Habituation index (mean plus SEM) for all units from each treatment group 

across stimulus approaches 1-10, asterisk denotes significant difference between approach 10 

and 1. D) Comparison of the habituation index for approach 10 for all units across treatment 

groups. Boxes represent the medians with 25th and 75th quartiles, whiskers are the 10th and 90th 

quartiles. E) The habituation index for individual units within each unit response group across 

treatments. Each data point shows the mean habituation index for a single unit across approaches 

6-10, and asterisk denotes significant effect of treatment within unit response group. 

 

To find a measure of habituation that would apply to all units, including those that do not 

display a pronounced peak, I calculated a habituation index that uses the total number of spikes 

and mean frequency, both normalized to the responses to the first (i.e. unhabituated) stimulus. 

Thus, a habituation index of 0 or higher represents a response that has not habituated, while 
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increasingly negative numbers are associated with units that habituate to a greater degree (Figure 

4.4B). Across treatment groups, I find that the habituation index decreases sharply from the first 

to the second stimulus, but plateaus by the 4th or 5th stimulus presentation (Figure 4.4C). There is 

a significant difference in habituation index between the 1st and 10th stimulus presentations for 

all units (Wilcoxon Signed Rank Test Z=-5.794, p<0.001). The habituation index does not differ 

between treatment groups at approach 10 (Figure 4.4D). When examining the habituation index 

divided by unit group, I find that units from groups A-C (with a defined peak) are habituating to 

a greater degree than those from groups E-F (one-way ANOVA on Ranks, H4=66.210, p<0.001). 

In addition, within unit group, I found a lesser degree of habituation of units from the 

imidacloprid group, with significantly higher habituation index values (compared to the control) 

for units from groups C (one-way ANOVA F2=4.372, p<0.05) and F (one-way ANOVA 

F2=4.622, p<0.05).  

 

4.5. Discussion 

 

Collision avoidance behaviour is affected 24 hours after oral exposure to imidacloprid 

The effects of 100 ng/g IMD on jumping behaviour at 24 hours after treatment with an 

oral dose were similar to those found with an equal injected dose (Parkinson et al 2017). While 

this dose is sublethal (Parkinson et al 2017), their behaviour was negatively affected. Contrasting 

this, SFX had little effect on jumping, suggesting reduced toxicity of this insecticide in 

comparison with IMD in the context of this important collision avoidance behaviour. 

 

Tetrode recordings of visual interneurons show population-level effects of imidacloprid. 

The tetrode recordings showed that while there were no differences in the numbers of 

responding units per animal across treatments, the distribution of response types varied after 

treatment with imidacloprid. The definition of unit response type and histogram shape showed 

several important features of the population response of visual interneurons that are affected by 

imidacloprid. The overall attenuation of firing rate and spontaneous firing suggests that 

excitatory synapses in the CNS are being affected similarly across various visual pathways, 

resulting in a bulk decrease in neural firing that can be seen across the population of visual 

interneurons recorded here. The decreased excitation in the optic lobes results in decreased 
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sensitivity for object motion: objects must be larger (i.e. closer) before these descending neurons 

begin encoding object approach. This was measured as a shortened rising phase of the neural 

responses that display a peak aligned with the time of collision of the stimulus. Inhibitory 

neurons may also be attenuated after treatment with imidacloprid, but to a lesser degree, as 

suggested with the measurements of the decay phase, in which a longer decay phase is found for 

units with high frequency peaks (group A) only. Inhibitory neurons may contain nAChRs on the 

dendrites, so their activation could be affected by IMD, whereas the inhibitory synapses 

themselves would be unaffected as these synapses are muscarinic (Rind and Simmons 1998; Zhu 

et al. 2018). Previous studies have shown that excitation is mediated by acetylcholine in the optic 

lobes (Rind and Leitinger 2000), so although this was not tested directly with the neurons 

recorded in this study, I am confident that these synapses are cholinergic given the results 

described here. 

 

Imidacloprid reduces the variation of common trends with dimensionality reduction 

Qualitative visual examination of the 6 common trends within each treatment shows 

properties that support our conclusions from the classification of individual units. With the 

imidacloprid treatment group, there is no common trend that represents a sharp decrease of 

standardized firing rate near TOC, while VC and SFX have trends that decrease around TOC, 

similar to unit group E. The common trends that represent the population response from the IMD 

treatment all share the feature of a peak firing rate either before or after TOC. Additionally, I see 

little variation in the standardized firing rate before -0.5 seconds (before collision) in the 

imidacloprid treatment, while SFX and VC show broad variation between trends.  This analysis 

further highlights the effect of IMD on spontaneous firing and attenuation of the neural 

population and serves as an illustration of the variation in trends of the population response of 

descending neurons to looming stimuli. 

 

Some visual interneurons habituate, while others do not. 

The effect of habituation on a population of visual interneurons had not previously been 

examined in the locust. Habituation of the DCMD visual interneuron is thought to be caused by 

the activity of inhibitory neurons in the optic lobes (Gray 2005). I found a decreased effect of 

habituation on units in the imidacloprid treatment, which further supports my hypothesis that the 
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activity of both inhibitory neurons that contain dendritic nAChRs and excitatory neurons are 

attenuated, but this effect is less pronounced for the inhibitory neurons as inhibitory synapses are 

not under nicotinic cholinergic control. 

  

Comparative toxicity of imidacloprid and sulfoxaflor 

Contrary to my predictions, treatment with sulfoxaflor did not result in effects on the 

population responses of descending visual interneurons and collision avoidance behaviours 

compared to the control. This is a significant finding as sulfoxaflor and imidacloprid act on the 

same target, the nAChR, although they are metabolized through different pathways (Sparks et al. 

2012). In Chapter 3, I found that metabolites of IMD, including imidacloprid-olefin and 5-

hydroxy imidacloprid display toxic effects on this collision avoidance pathway that are equal to 

or greater than the parent compound (Parkinson and Gray 2019). The detoxification pathway of 

sulfoxaflor may result in metabolites that do not bind to the nAChR or are more hydrophilic and 

can be readily excreted, so SFX would cause toxicity initiating from binding to the nAChR prior 

to metabolism only. Evidence shows, however, that SFX is not metabolized by the same 

cytochrome p450 enzymes, like the CYP6G1 monooxygenase, that mediate neonic metabolism 

and resistance in insects (Sparks et al. 2012), and it is not currently known how this insecticide is 

metabolized, or what effects its metabolites may display. Another explanation for the reduced 

toxicity of SFX compared to IMD observed here is that SFX may display low affinity for the 

nAChR subunits expressed in the locust. SFX and IMD display differential binding at the agonist 

binding site, with SFX having lower affinity than a variety of neonics (Wang et al. 2016). It is 

possible, however that the benefit of metabolic stability outweighs the cost of reduced receptor 

affinity for use against insects resistant to neonics (Sparks et al. 2013). Additional research is 

needed to determine whether the reduced toxicity of SFX compared to IMD seen here is due to 

reduced receptor affinity of SFX, or if these differences result from reduced metabolism of SFX 

or metabolites that do not display toxicity to this collision avoidance pathway. 

 

Conclusions 

Overall, these results offer evidence that a neonicotinoid insecticide causes reduced firing 

of neurons innervated through nicotinic cholinergic synapses located in the central nervous 

system. I show a widespread alteration of the neural responses transmitted by a population of 
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visual interneurons which is associated with reduced escape behaviour. This effect is present 24 

hours after an acute oral treatment at a dose that is sublethal (Parkinson et al. 2017). 

Interestingly, I find no significant effect on either behaviour or neural firing resulting from an 

equal dose of sulfoxaflor. I propose that neuroethological methods, such as those employed in 

this study, may be used in comparative toxicological analyses to provide accurate sublethal 

effects linking changes in neural coding to animal behaviour.  
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Chapter 5: General discussion 

 

5.1. Effects of imidacloprid on object motion detection 

 

Throughout Chapters 2, 3 and 4, I show that imidacloprid has significant effects on 

neurons that encode object motion, and that these effects are present 1 to 24 hours after an acute, 

sublethal exposure. Given the specific firing parameters that are affected, including reduced peak 

firing rates, disrupted bursting, reduced mean firing rates and shortened rising phases, along with 

reduced habituation and lengthened decay phases, I conclude that the insecticide affects 

excitation globally within the optic lobes, with excitatory pathways affected to a greater degree 

than inhibitory pathways due to containing larger proportion of nAChR activated synapses 

(Figure 5.1).  

 

             

Figure 5.1: Diagram showing the relative degree of attenuation by imidacloprid of the excitatory 

and inhibitory pathways in the optic lobes that are activated during the approach of a looming 

stimulus (left) and the effects on the DCMD PSTH compared to the vehicle control (right). 

PSTHs show the mean response across 20 animals before (VC) and 24 hours after treatment with 

100 ng/g imidacloprid (IMD). Adapted from Rind and Bramwell (1996) and Parkinson et al 

(2017). 
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Exposure to neonics causes receptor desensitization, which can lead to neural 

inactivation, increased oxidative stress, and cell death (Oliveira et al. 2011; Palmer et al. 2013; 

Wu et al. 2015; Wang et al. 2018b). I propose that the observed effects result from imidacloprid 

binding and inactivating these receptors, which are located throughout the optic lobes. A major 

result of this neural inactivation is time-dependent effects on neural coding: descending neurons 

are responding later to object motion, which would affect the ability of the insect to perform an 

escape behaviour before an imminent collision. This, in combination with the reduced axonal 

conduction velocity caused by imidacloprid and its metabolites, would affect gating of these 

action potentials onto motorneurons downstream (Santer et al. 2006). The ability to see motion 

hinges on accurate measurements of the displacement between two images with a known time 

delay (Borst and Egelhaaf 1989). A disruption of signalling within the optic lobes caused by the 

neonic would affect these temporal cues resulting in the inaccurate perception of motion. 

 

5.2. Effects on escape behaviours 

 

I have shown that sublethal exposure to imidacloprid reduces escape behaviours in flight, 

which would have an impact on predation as these insects represent an easier target. For insects 

that fly in swarms, including locusts, they would additionally be ill-equipped to avoid collisions 

with conspecifics. Jumping escape behaviours were also affected by low concentrations of 

neonics: this is evidence that these effects are due to sensory processing rather than effects on 

flight circuitry. It can thus be inferred that other visually-elicited escape behaviours, such as 

those employed by aquatic invertebrates, could similarly be affected. There are secondary effects 

of these deficits that pass through the food chain to insect predators, like insectivorous birds. 

Populations of insectivorous birds are declining, and these declines are associated with high 

environmental presence of neonics (Hallmann et al. 2014; Gibbons et al. 2015). Insects with 

reduced motion detection would be easier to catch, both on the wing and on land, and thus may 

be consumed more frequently than insects with lower concentrations of neonics, further 

exacerbating the trophic accumulation of neonics.  
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5.3. Implications for visually-guided flight 

 

In Chapter 2, I found that DCMD responses to looming stimuli were further attenuated 

when the stimulus was presented over a flow field. In that paradigm, locust DCMDs were 

encoding object motion in tandem with processing the visual cues associated with optic flow. It 

is not known if the processing of other forms of visual motion, like self-motion, is affected by 

imidacloprid, but I predict that there would be similar effects to those described in this thesis. 

Insects use the visual cues provided by optic flow during flight to maintain their body 

orientation, in a process termed the optomotor response (Srinivasan et al. 1999). Furthermore, by 

maintaining optic flow constant, insects can control their flight speed, altitude, and calculate 

distance (Srinivasan and Zhang 2004). Thus, the detection of movement is critical for visually-

guided flight. Aspects of flight have been shown to be affected by neonics in bees, although 

these effects are typically associated with deficits in memory or motor impairment (Fischer et al. 

2014; Samuelson et al. 2016; Tosi et al. 2017). Given the effects described in this thesis, I 

suggest that there may be additional issues with sensory processing that result in bees and other 

insects that are unable to properly assess visual cues provided by optic flow. 

 

5.4. Adverse Outcome Pathway of imidacloprid toxicity 

 

 I have constructed an AOP using results from the experiments performed throughout this 

thesis (Figure 5.2). The final adverse outcome of decreased locust survival due to predation is 

inferred from the other results, although this has not been tested directly. I propose that both 

IMD and IMD metabolites result in receptor desensitization, which begins the cascade leading to 

reduced escape behaviours. Using the neuroethological assays described in Chapters 2, 3 and 4, I 

have been able to directly or indirectly assess the key events and form the key event relationships 

for this AOP.   
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Figure 5.2: Adverse Outcome Pathway linking the molecular initiating event (green) of 

imidacloprid binding to the nAChR to the adverse outcome (red) of decreased survival. Key 

events (orange) with key event relationships in dark grey have been directly tested, while those 

in light grey are inferred.  

 

 

5.5. Comparative effects of sulfoxaflor  

 

The experiments performed in Chapter 4 are the first to examine whether sulfoxaflor 

affects any form of sensory processing, and additionally are an important look into the 

comparative effects of this new class of insecticides with the neonics. Given that both sulfoxaflor 

and imidacloprid act on the same target, the nAChR, I predicted that these insecticides would be 

similar both in potency and effect. The results show, however, that at comparable doses 

sulfoxaflor does not affect visual motion processing, and 24 hours after treatment locusts are still 

able to respond to a looming stimulus with appropriate escape behaviours. These results, which 

are discussed in Chapter 4, are potentially due to differences in receptor affinity of SFX versus 

IMD (Wang et al. 2016), differential metabolism of SFX versus IMD (Sparks et al. 2012), and 

additionally may result from the neurotoxicity of IMD metabolites which perpetuates the toxic 

effect of IMD over time (Parkinson and Gray 2019). It is not known whether the reduced toxicity 

of SFX compared to IMD described in Chapter 4 also occurs in other insects, and additional 

research is required to determine if non-target insects may benefit from a shift in agricultural use 

from neonics to sulfoximines.  
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5.6. Toxicology through the lens of Neuroethology 

 

An important theme throughout this thesis is the use of neuroethological assays to answer 

questions in toxicology to link toxic effects on the brain with behaviour. I argue that by using 

these multi-level assays, that have been developed by neuroethologists to explain how the 

nervous system senses the environment and processes these sensory cues to respond with 

appropriate behaviours, we can formulate a holistic and causative description of toxicological 

pathways. Results from these experiments provide multiple key events that can be used to 

construct AOPs for which the key event relationships are intuitive and tested, rather than inferred 

and uncertain.  

In the context of neonicotinoid toxicity, purely behavioural experiments may be 

described in different ways if the underlying effects on neural coding and physiology are not 

understood. One example is whether bees can detect (taste) neonics in food sources, as bees tend 

to develop a preference for neonic-laced food sources. A purely behavioural assay determined 

that they could, as their preference for treated food sources remained even when the feeders were 

moved (Arce et al. 2018). However, using a combination of electrophysiological and behavioural 

assays, another study showed that bumblebees are unable to detect neonics in sucrose, even at 

the level of the sensory neuron (Kessler et al. 2015). This example highlights the importance of 

combining behaviour with electrophysiology, and in fact using the results from behavioural 

assays to direct the use of electrophysiology so that a complete and accurate picture may be 

formed.  

Chapter 4 showed the utility of using neuroethological assays for comparative toxicology, 

as I was able to show that when two compounds that display the same molecular initiating event 

can result in very different effects. Although it is not possible to infer whether other levels of 

biological organization would be affected differentially, that study showed a very marked and 

clear difference between the toxicological profiles of IMD compared to SFX. These assays are 

highly adaptable and can easily be scaled for various exposure methods (oral versus injected, for 

example), time periods (acute versus chronic), and compounds, including other novel 

insecticides or insecticide mixtures for which there is a paucity of data detailing their sublethal 

effects. 
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5.7. Future directions 

 

The research avenues opened by the studies I have conducted throughout this thesis are 

numerous, and there are many unanswered questions. The most pertinent way to direct future 

studies, however, is to determine whether bees experience similar effects on visual motion 

detection that might explain some of the behavioural deficits linked to neonicotinoid exposure. 

Although bees do not display robust collision avoidance behaviours compared to the locust, optic 

flow detection is imperative for flight and navigation (Dacke and Srinivasan 2007), and similar 

neural pathways are shown to detect widefield visual motion and object expansion in bees 

(Ibbotson et al. 2017). If low, sublethal amounts of neonics disrupt visual motion detection in 

bees as they do in locusts, there would be an explanation for observed effects on foraging 

behaviour. Additional studies could examine the effects of novel insecticides and pesticide 

mixtures, such as those found in commercially available seed treatments, and on visual motion 

detection using assays detailed throughout this thesis.  

 Ultimately, the methods I employed to complete these projects have myriad potential 

applications for testing and comparing agrochemicals and other neurotoxicants. It is my hope 

that toxicity testing can shift towards a more holistic approach to reveal the underlying 

mechanisms of sublethal toxicity and link these to behavioural effects that may be difficult to 

understand. It is paramount, now perhaps more than ever, to apply the collective scientific mind, 

honed through basic research, to understanding how human actions are affecting the inhabitants 

and ecosystems of this planet. Through interdisciplinary and collaborative actions, we can 

develop and employ effective mitigation strategies to avoid repeating history and end the cycle 

of releasing chemicals into the environment prior to fully considering their impact. 
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