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Abstract

Ground-based radar systems are the best way to continuously monitor medium-to-large-

scale features of the near-Earth space environment on a global scale. The Super Dual Auroral

Radar Network (SuperDARN) radars are used to image the high-latitude ionospheric plasma

circulation, which is produced by magnetosphere-ionosphere coupling processes generated by

the interaction of both the solar and terrestrial magnetic fields. While investigating ways to

expand the usable data products of SuperDARN to include electron density inferred using

a multiple-frequency technique, it was determined that SuperDARN error estimates were

lacking sufficient rigour.

The method to calculate SuperDARN parameters was developed approximately 25 years

ago when available computing resources were significantly less powerful, which required a

number of simplifications to ensure both valid data and reasonable processing time. This

resulted in very conservative criteria being applied to ensure valid data, but at the expense

of both rigorous error analysis and the elimination of some otherwise valid data. With

access to modern computing resources, the SuperDARN data processing methodology can

be modernized to provide proper error estimates for the SuperDARN parameters (power,

drift velocity, width).

This research has resulted in 3 publications, which are presented here as Chapters 5, 6,

and 7. The error analysis started with a first principles analysis of the self-clutter generated

by the multiple-pulse technique that is used to probe the ionosphere (Chapter 5). Next,

the statistical properties of voltage fluctuations as measured by SuperDARN were studied

and the variance of these measurements were derived (Chapter 6). Finally, the statistical

error analysis was propagated to the standard SuperDARN data products using a new First-

Principles Fitting Methodology (Chapter 7). These results can be applied to all previously

recorded SuperDARN data and have shown a practical increase in data of >50%. This has

significant impact on the SuperDARN and space science communities with respect to, for

example, global convection maps and their use in global modelling efforts. These results also

enable quantitative experiment design facilitating research into using SuperDARN to provide

electron density measurements, with a preliminary investigation using the new SuperDARN
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fitting methodology presented in Chapter 8.
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Chapter 1

Introduction

RAdio Detection And Ranging, more commonly known as radar, is a powerful remote

sensing technique used for both scientific and technological purposes. While radar systems are

strictly constrained to using radio waves (and typically only 3 MHz to 300 GHz (e.g. Richards

et al., 2010)), the principles of radar are also used by lidar systems, which use visible light,

and sonar systems, which use acoustic waves (Skolnik , 1980). A few examples of technologies

that depend on radar include radar speed guns utilized by law enforcement officers to catch

speeding drivers, Tesla electric cars with radar sensors for “autopilot” autonomous driving,

and the reusable first stage of the SpaceX Falcon 9 rocket which uses a radar altimeter in

combination with several other sensors to land after returning from space (Fisher , 1992; The

Tesla Team, 2016; Musk , 2013). The earliest radars were moving target indicator radars,

where radio waves were used to determine whether a metallic object was present or not and

to discern its Doppler shift (Levanon and Mozeson, 1988). With the development of more

sophisticated signal processing techniques, improved radar waveform design, and inexpensive

computational resources, modern radars can be designed to accurately detect and resolve

both the location and Doppler shift of a target of interest.

In the last several decades, radars have become invaluable and powerful tools for diag-

nosing the characteristics of the plasma in the upper atmosphere of the Earth. Two types of

radar systems that are used for plasma measurements are incoherent scatter radars (ISRs)

and coherent scatter radars (CSRs). My thesis discusses the development of an improved

signal processing methodology for the CSRs that are used in the Super Dual Auroral Radar

Network (SuperDARN) (Greenwald et al., 1995), based on some of the techniques employed

in ISR signal processing. The motivation for this topic arose from the unsuccessful analysis of

a SuperDARN experiment that was designed to infer plasma density with minute-scale time
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resolution using the frequency shifting technique of Gillies et al. (2011). It was determined

that the experiment was unsuccessful because it had not been designed to produce velocity

measurements with sufficiently small velocity uncertainty with minute-scale time resolution.

This was needed for this experiment because the formula for electron density provided by

Gillies et al. (2011) is very sensitive to the velocity uncertainty. Additional research and

analysis revealed that the signal processing methodology for SuperDARN radars have sev-

eral approximations and ad hoc conditions that in general prevents efficient and accurate

estimation of both the velocity and the uncertainty in the velocity measured by SuperDARN

radars, at least partially due to limited computing power in the past. Using the existing

signal processing regime, it was not possible to quantitatively design an appropriate experi-

ment for minute-scale resolution. Therefore this PhD dissertation is devoted to quantifying

the uncertainty in the SuperDARN signal processing chain with the end goal of producing

an improved methodology capable of producing accurate and reliable error estimates for Su-

perDARN velocity measurements. This research is applicable beyond SuperDARN velocity

measurements, applying to other SuperDARN parameters such as power and spectral width

and any parameters derived from them.

Quantifying the uncertainty in observations and predictions is a task of great importance

to any type of measurement, whether for applied research or theoretical prediction. Funda-

mentally, uncertainty characterizes the extent of a lack of exact knowledge. Without error

bars, the precision of a theoretical prediction cannot be readily known and therefore the

prediction cannot necessarily be considered valid or useful. In engineering and physics, un-

quantified uncertainty may pose a significant danger to public safety or determine whether

a project is successful or not. In science, experimental observations that do not include a

quantification of the error in the measurement cannot reliably be interpreted nor utilized with

theoretical models. In general, without knowing the accuracy of experiment measurements,

the precision of theoretical predictions based on the measurements cannot be determined.

There are several sources of uncertainty: measurement error, systematic error, natural

variation, inherent randomness, model uncertainty, and subjective judgement (Regan et al.,

2002). Measurement errors result from fundamental limitations or problems with measure-
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ment equipment. This can include error caused by improper operation of the instrument1.

For example, measurement error in radar systems can be caused by ambiguity limitations

of the transmitted waveform. Systematic errors are caused by biases in the measurement

equipment or sampling procedures. For example, a fast method2 of estimating power from

K complex voltage samples involves calculating the square of the sum of the magnitudes of

the real and imaginary components of the voltage samples, but this method introduces a

(π/4 − 1/2)/K systematic bias in the estimated power (Farley and Hagfors , 2006). Uncer-

tainty caused by natural variations are due to the evolution of a physical system in space and

time. It is often assumed that the mean and variance of a radar target do not change in the

time it takes to sample the target, but this is not always a valid assumption. If a physical

system is inherently random, measurements cannot be predicted and are characterized by a

probability distribution, resulting in statistical sampling uncertainty. Model uncertainty is

caused by usage of physical models that only include variables of largest significance, which

might not always accurately model experimental observations. Finally, uncertainty may be

unintentionally introduced due to subjective judgement while interpreting observational re-

sults. Naively discarding data so that observations agree with preconceived conclusions or

existing models is a simple way to cause uncertainty due to subjective judgement3.

1.1 Thesis Outline

This thesis has been written in the manuscript style, where Chapters 5, 6, and 7 consist

of manuscripts published in the American Geophysical Union journal, Radio Science. Each

chapter includes a preamble that describes the significance of the work in the context of the

remainder of the thesis.

The objective of this thesis is to develop a new data processing methodology for Super-

DARN radars that improves upon current data processing techniques and provides a robust

and reliable estimate of the measurement errors. An improved accounting of SuperDARN

1The author is reminded of the epithet “Kjellmar User Error” used to refer to the measurement errors
caused by improper operation of the EISCAT Svalbard Incoherent Scatter Radar by a certain individual.

2This method was originally used in the early days of ISR (in the 1970s) because it was computationally
inexpensive.

3This is also referred to as being statistically dishonest (e.g. Madden, 1982).
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measurement errors will enable custom experiment design and the development of new Super-

DARN data products, such as electron density inferred using the frequency shifting technique.

The first few chapters of this thesis provide a general overview of geospace plasma physics

and ionospheric radar concepts relevant to SuperDARN. Chapter 2 provides an overview of

the geophysical context within which SuperDARN radars operate. Several important phys-

ical phenomena in the geospace system are discussed to provide context and understanding

of the significant contributions to space physics research made by SuperDARN. Chapter 3

discusses SuperDARN with a short overview on the current status of the network. General

radar principles relevant to SuperDARN are discussed with a focus on phased antenna array

theory and radiophysics, as well as radio wave propagation in the context of magnetoionic

theory. A description of the common SuperDARN data products is also included. Chap-

ter 4 presents a survey of the signal processing and probability theory principles that were

essential to accomplish the significantly improved SuperDARN data analysis performed in

this dissertation. The chapter also includes a discussion of the statistical techniques and

numerical methods utilized to process and fit SuperDARN data.

Chapters 5, 6 and 7 contain the core of the research of this thesis. They also include

detailed discussions about results and the significance of the results to SuperDARN signal

processing. Chapter 5 presents three novel self-clutter estimators that can be used to es-

timate the interference in SuperDARN signals due to self-clutter. It includes a discussion

of how self-clutter contributes to estimation uncertainty. Chapter 6 presents the statisti-

cal properties of SuperDARN measurements, including how to use self-clutter estimates to

accurately obtain error estimates required to accurately fit SuperDARN data. Specifically,

the statistical characteristics of the autocorrelation functions estimated from SuperDARN

voltage signal measurements are derived using knowledge about the statistical properties of

SuperDARN voltage samples and estimator theory. Without knowledge of the statistical

characteristics of the autocorrelation function, exact knowledge of the uncertainty in Super-

DARN fitted data is not possible. Chapter 7 presents an improved fitting methodology for

processing SuperDARN data. The fitting methodology builds upon the results and tech-

niques developed in Chapters 5 and 6. The new methodology provides accurate error bars

for SuperDARN parameters, such as power, spectral width, and velocity. A detailed analysis
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using both synthetic and real data compares the current SuperDARN signal processing with

the new fitting methodology.

Chapter 8 presents a summary of the results of this thesis, including a discussion of the

progress towards achieving the thesis objectives. The chapter concludes with a discussion of

future work, including presentation of progress already made towards further improvements to

SuperDARN. These improvements include an experiment design methodology, preliminary

results obtained from comparing electron density measurements inferred by SuperDARN

with electron density measurements by the Resolute Bay Incoherent Scatter Radar, and an

improved multiple-pulse sequence transmission technique.
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Chapter 2

Geospace Physics

The field of geospace physics involves the study of the solar-terrestrial environment, which

extends from the upper atmosphere of the Earth to the photosphere of the Sun, and details

a plethora of physical processes spanning a multitude of spatial and temporal scales (Harg-

reaves , 1995b). More generally, space physics (of which geospace physics is a subset) encap-

sulates all plasma that exists throughout the universe. Geospace is dominated by plasma and

magnetic fields of both terrestrial and solar origins. Plasma in the solar system is involved in

numerous processes, including nuclear fusion in the core of the Sun, coronal mass ejections

and solar flares on the surface of the Sun, the supersonic solar wind that fills interplanetary

space, and the terrestrial aurora. Fundamentally, each of these processes involve energy and

momentum transfer, which gives rise to the dynamics we observe. At the center of the solar

system, the Sun emits tremendous amounts of energy as electromagnetic radiation, particles,

and magnetic fields. The electromagnetic radiation alone amounts to 3.86×1026Js−1 (Kivel-

son and Russell , 1995), of which only half of a billionth (5 × 10−10) is intercepted by the

Earth. The highest-energy photons (ultraviolet light, x-rays, and gamma rays) are absorbed

by and ionize the upper atmosphere of the Earth, producing the ionosphere. Energy is also

transferred from the solar atmosphere into the ionosphere via the solar wind: a supersonic

stream of magnetically dominated diffuse plasma that flows from the Sun. The solar wind

couples the magnetosphere of the Sun to the magnetosphere of the Earth. A myriad of phe-

nomena are observed in both the magnetosphere and the ionosphere of the Earth, but here

we will only introduce processes that provide a general context for the physical processes

studied by SuperDARN. Fundamentally these processes arise due to energy originating from

the Sun, so it is appropriate to start our discussion there. Next we will discuss the solar

wind and how it interacts with objects in the solar system. We will focus specifically on
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the interaction between the solar wind and the geomagnetic field of the Earth. Finally, we

will discuss the ionosphere of the Earth and the general magnetosphere-ionospheric coupling

processes that are responsible for the ionospheric plasma convection pattern measured by

SuperDARN radars. Only processes essential for obtaining a general understanding of the

significance of SuperDARN to geospace physics research will be presented.

2.1 The Sun

“The Sun is the nearest star; a glowing sphere of gas shining because of its heat, like a red

hot poker.”

-Carl Sagan, “Carl Sagan’s Cosmos”

The Sun provides the energy needed to sustain all life on Earth, without which we would

not survive for long. Yet in the context of the galaxy and observable universe, the Sun is

merely an ordinary G2V spectral class star. Composed mostly of hydrogen (∼ 90%) and

helium (∼ 10%), the structure of the interior of the Sun consists of several different layers

that vary in both density and temperature (Kivelson and Russell , 1995). As illustrated in

Figure 2.1, these layers are the core, the radiative zone, the convective zone, the photosphere,

the chromosphere, and the corona (Gombosi , 1998). Compared with a solid body, such as

the Earth, the photosphere is analogous to the “surface” of the Sun and the “atmosphere”

of the Sun consists of the chromosphere and the corona. The energy output of the Sun

originates from the core, where the density is approximately 150 times greater than that of

water and the temperature is approximately 15× 106 K (Brekke, 2012). In the early 1900s,

it was believed that energy of the Sun was produced by the adiabatic compression of the

gas as the massive gravity of the Sun compressed it. This was known as the contraction

hypothesis1. In the early twentieth century, contraction theory was discarded when it was

discovered that nuclear fusion was the cause (Eddington, 1920). Subsequent work by others

led to an understanding of important fusion reactions, like the proton-proton chain and the

1Eddington on the contraction hypothesis: “Only the inertia of tradition keeps the contraction hypothesis
alive - or, rather, not alive, but an unburied corpse.” (Eddington, 1920)
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Figure 2.1: A diagram of the layers of Sun. The photosphere is between the chromo-
sphere and convective zone. The outer layers of the solar atmosphere (chromosphere
and corona) are also indicated. RS = 6.96× 108m is the radius of the Sun. See text for
more details. Reproduced from Figure 11.2 of Gombosi (1998).

carbon-nitrogen-oxygen cycle, that fuse hydrogen into helium and also synthesize heavier

elements (Burbidge et al., 1957).

The photon energies emitted by the Sun extend well beyond the visible spectrum, ranging

from radio waves to gamma rays. In the core, gamma ray photons are produced by fusion

reactions and slowly travel outward until they reach the radiative zone. The gamma rays are

thought to be absorbed and re-emitted multiple times as they propagate away from the core

such that by the time the gamma rays have reached the convection zone and the photosphere,

they have been converted primarily into heat. Due to this continuous process of absorption

and re-emission, it can take as long as 2 × 105 years for a photon produced in the core to

reach the convective zone (Brekke, 2012), however the total time scale of energy transport

from the core to the surface is 3× 107 years (Stix , 2003). In the convection zone the density

has decreased enough that outward energy transfer is dominated by convection (diffusion and

advection) processes instead of radiation.
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Figure 2.2: A picture of a sunspot obtained with Hinode’s Solar Optical Telescope
on December 13, 2006. The dark appearance of the sunspot is due to the decreased
luminosity of the sunspot since it is cooler than the surrounding plasma on the surface of
the Sun. Courtesy NASA/JAXA (http://www.nasa.gov/mission_pages/solar-b/
solar_022.html).

Observations show that the period of rotation of the Sun is on average 27 days, but

the rotation period is a function of latitude. This phenomenon is known as differential

rotation and is a consequence of plasma motion in the convection zone redistributing angular

momentum (Brekke, 2013). Sunspots are a stellar phenomenon produced in the convection

zone due to differential rotation. It is thought that differential rotation induces “stresses”

on magnetic flux tubes inside the Sun that produces a concentrated magnetic field. Regions

of strengthened magnetic field locally slow convective heat transport resulting in a number

of sunspots appearing on the surface of the Sun. As shown in Figure 2.2, sunspots are

cooler than the surrounding surface and thus appear darker due to their reduced luminosity.

Sunspots are not a permanent feature observed on the Sun, as they release tremendous energy

as they grow and fade (Kivelson and Russell , 1995).

The occurrence of sunspots follows an approximately 11 year cycle, with the number of

sunspots increasing to a maximum and then decreasing to a minimum. This cycle is known as

the solar cycle. The period of time when sunspot numbers are highest is called solar maximum
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and the period of time when sunspot numbers are lowest is called solar minimum. In each

solar cycle the magnetic polarity of the Sun reverses so that a complete cycle of this reversal

occurs with a period of approximately 22 years (Brekke, 2013). The 11 year solar cycle

periodicity is associated with periodic changes in geomagnetic activity observed on Earth,

which produces beautiful displays of the Aurora Borealis and Aurora Australis. Increasing

sunspot activity also results in coronal mass ejections, solar flares, and intensification of the

solar wind (Kivelson and Russell , 1995).

2.2 The Solar Wind

The solar wind is a collisionless magnetohydrodynamic (MHD) fluid that propagates through

interplanetary space at supersonic speed. As it propagates, it carries with it the interplan-

etary magnetic field (IMF). Within 4 to 40 solar radii of the Sun, the solar wind is radially

structured by the strong magnetic field near the Sun. The magnetic field dominates the

dynamics of the plasma and makes it very stable. Further away, the solar wind becomes

turbulent as the strength of the IMF weakens. Recent observations by DeForest et al. (2016)

show evidence of flocculae, or locally dense blobs of plasma, developing as the solar wind

plasma becomes unstable and plasma instabilities develop due to the weakening IMF. As it

propagates outwards from the rotating Sun, the solar wind forms a Parker spiral, a type of

Archimedean spiral, similar to the spiral shape of a spinning ballerina skirt (Mursula and

Hiltula, 2003) or the spiral path water follows from a rotating lawn sprinkler (e.g. Brekke,

2013). A current sheet, known as the heliospheric current sheet, flows in the region where

the solar wind magnetic field reverses polarity and also follows the same spiral shape.

Essentially, the solar wind is caused by the outward expansion of the atmosphere of the

Sun. The expanding atmosphere of the Sun produces a “bubble” of particles and magnetic

field, called the heliosphere, that reaches deep into interplanetary space. Beyond Neptune, the

solar wind becomes subsonic as it interacts with interstellar medium forming a termination

shock; the first step in reaching interstellar space (Brekke, 2013). Recently, the Voyager 1

spacecraft crossed the boundary between the heliosphere and interstellar space at a distance

of approximately 120 AU (Fuselier and Cairns , 2015).
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The heliosphere provides the solar system with shielding from cosmic rays. The amount

of shielding is a function of solar activity, with maximum (minimum) shielding occuring at

solar maximum (minimum). The fluctuations in this shielding may be observed indirectly as

fluctuations of Carbon-14 concentrations in tree rings (Mori , 1981). There is also evidence

that shows a correlation in lightning occurrence rates (Scott et al., 2014) and cloud formation

rates that suggests a cause related to modulation of cosmic rays due to varying solar activity

(Enghoff et al., 2011).

The solar wind contains a fully ionized plasma composed mainly of protons and electrons

and is approximately 3% fully-ionized Helium (Baumjohann and Treumann, 1997). Table 2.1

shows the range of values of parameters of the solar wind. On average, the solar wind has a

speed of 500 km/s, a plasma density of 5 cm−3, and temperature of 12,000 K at 1 AU from

the Sun. The properties of the solar wind vary strongly with the 11-year solar cycle; for

example, the solar wind speed is larger on average during periods of solar minimum than it

is during periods of solar maximum (Tokumaru et al., 2010).

Parameter Mean Low High

Density (cm−3) 5 1 20

Speed (km/s) 500 300 1400

Ion Temperature (K) 1.2× 105 104 2× 105

Magnetic Field (nT) 5 1 15

Table 2.1: Solar wind parameters typically observed at a distance of 1 AU from the
Sun. Parameters values obtained from Baumjohann and Treumann (1997) and Brekke
(2013).

The MHD description of the solar wind is valid so long as the time-scale of any change

to the plasma is much smaller than the ion-cyclotron frequency and the length-scale of the

dynamics being described is much larger than the gyro-radius (Baumjohann and Treumann,

1997). These conditions are satisfied in the solar wind. Exploring the MHD description, we

can prove that the IMF is “frozen-in” to and carried by the plasma in the solar wind. We

start with the generalized Ohm’s law and Maxwell’s equations. From the generalized Ohm’s

law
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J

σ
= E + v ×B, (2.1)

where J , E, and B are the current density, electric field, and magnetic field, respectively,

in the frame of the plasma moving with velocity v and σ is the conductivity of the plasma.

Combining Equation 2.1 with Faraday’s Law of induction

∇×E = −δB

δt
(2.2)

yields

−δB

δt
= ∇× (J/σ − v ×B) . (2.3)

Finally, Ampère’s Law for a static electric field, ∇×B = µ0J , is used to obtain

δB

δt
= ∇× (v ×B) +

1

µ0σ
∇2B, (2.4)

where µ0 is the vacuum magnetic permeability (Baumjohann and Treumann, 1997). The

first term in Equation 2.4 describes how the motion of the plasma changes the magnetic field

and the second term describes how the magnetic field is changed by diffusion. When the

conductivity is infinite, diffusion is not possible (1/σ → 0), so the magnetic field must move

with the plasma. This is made explicitly clear by considering the magnetic flux, Φ, through

a surface S, represented mathematically as

Φ =

∫

S

B · n̂dS. (2.5)

Here we take our surface to be that of a cylindrical tube, called a magnetic flux tube. If

this surface is moving with velocity v, calculating the partial derivative of Equation 2.5 with

respect to time results in

δΦ

δt
=

∫

S

δB

δt
· n̂dS +

∮

L

B · (v × dℓ) . (2.6)

Using Stokes Theorem on the second term of the right-hand side of the equation yields

δΦ

δt
=

∫

S

(

δB

δt
−∇× (v ×B)

)

· n̂dS. (2.7)
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Recalling that the conductivity of the solar wind is extremely large (σ → ∞) and that the

diffusion term in Equation 2.4 is then 0, it is clear that the right-hand side of Equation 2.7

becomes 0. This means that the magnetic flux must be constant in a flux tube that moves

with a plasma that has very large conductivity. This is known as Alfvén’s Theorem, or

more commonly, the frozen-in theorem (Alfvén, 1942). As will be discussed later, Alfvén’s

Theorem also applies to high altitude terrestrial plasmas in the ionosphere of the Earth.

The solar wind interacts with objects in the solar system as it propagates through in-

terplanetary space. Another interesting insight from the MHD description of the infinitely

conducting solar wind follows from Equation 2.1. Taking the limit as the conductivity ap-

proaches infinity gives

E + v ×B = 0, (2.8)

which shows that in the frame of the moving plasma (i.e. v = 0), there are no electric fields

in an infinitely conducting plasma. However, outside the frame of the moving plasma, as the

solar wind propagates past bodies in the solar system, such as the Earth (i.e. v 6= 0), an

electric field of E = −v ×B is induced.

We will focus primarily on the interaction of the solar wind with the magnetic field of

the Earth, but the solar wind interacts with all objects in the solar system. Some of these

objects have an atmosphere and a very weak magnetic field, such as comets. The solar

wind interacts directly with the ionosphere of such objects, compressing the ionosphere and

producing more ionization through particle impacts (Edberg et al., 2016). The planet Venus

is also a good example of such a solar system object (Bauer et al., 1977). Some objects do

not have an atmosphere and instead the solar wind directly interacts with the surface of the

object resulting in the production of an ionosphere. The moon of the Earth is an example

of such an object (Choudhary et al., 2016). Next the interaction between the magnetosphere

of the Earth and the solar wind will be discussed.

2.3 The Magnetosphere

The region of space surrounding the Earth that is dominated by the geomagnetic field of

the Earth is called the magnetosphere. The magnetosphere of the Earth shields the terres-
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trial atmosphere from the solar wind. It is postulated that a magnetosphere helps reduce

atmospheric erosion due to the interation of the solar wind with the atmosphere of a planet

(Barabash et al., 2007). Within approximately 5 Earth radii (RE) of the Earth, the geomag-

netic field can be modelled as a dipole field (Brekke, 2013). The geomagnetic field of the

Earth can be modelled using the dipole field equation

B =
(

2Mr−3 cos θ
)

r̂ +
(

Mr−3 sin θ
)

θ̂, (2.9)

where M = 8× 1015 Tm3 is the dipole magnetic moment of the Earth, r is the distance from

the centre of the Earth and θ is the magnetic colatitude (Kivelson and Russell , 1995). The

magnetic poles of the geomagnetic field are tilted by approximately 10° relative to the rotation

axis of the Earth. Currently, the north magnetic pole is located in the Southern hemisphere

and the south magnetic pole is located in the Northern hemisphere. It is interesting to

note that measurements of old magnetic volcanic rock shows that the geomagnetic field can

undergo polarity reversals, similar to polarity reversals on the Sun, but on time scales of the

order of 106 years (Brekke, 2013).

In reality, the geomagnetic field is not a perfect dipole and is more accurately modelled

using a spherical harmonic expansion that includes multi-pole contributions that distort the

dipole shape (Brekke, 2013). This is illustrated in Figure 2.3, which shows a 2D plot of

the magnetosphere of the Earth. The geomagnetic poles are geographically asymmetric: the

magnetic poles do not lie along a line that passes through the centre of the Earth. For

example, the north geomagnetic pole in the Southern hemisphere is more than 8.5° farther

from the rotation axis of the Earth than the south geomagnetic pole is. This produces

a diurnal variation in the location of magnetically conjugate points on the surface of the

Earth, presenting a challenge for measuring magnetically conjugate events (Laundal et al.,

2016). Also, the 10° tilt of the geomagnetic axis creates time-dependent asymmetries in

the electric fields in the magnetosphere, resulting in enhanced plasma flows in some regions

(Sojka et al., 1979).

14



−30−25−20−15−10−5051015
X, RE

−20

−15

−10

−5

0

5

10

15

20
Z,
 R

E

Ts ganenko Model Run: 17 September, 2014 5:00 UT

Figure 2.3: The magnetosphere of the Earth modelled using the Tsyganenko 1995
model (Tsyganenko, 1995). At distances less than 5 RE , the magnetic field is approx-
imately dipoler and can be accurately modelled using Equation 2.9. Figure generated
using DaViT-py (https://github.com/vtsuperdarn/davitpy).

2.3.1 Magnetic Reconnection

Interaction with the solar wind distorts the dipole shape of the geomagnetic field. In Fig-

ure 2.3, the solar wind is propagating from the left to right, so the sunward direction (dayside)

is given by positive X , geographic north is in the positive Z direction, and the Earth is cen-

tred at (0,0). Notice that the magnetosphere is compressed by the solar wind on the sunward

side and elongated into a “tail” (called the magnetotail) on the anti-sunward side. The IMF

couples to the geomagnetic field on the dayside of the magnetosphere and the solar wind

continues to flow past the Earth producing an electric field that drives plasma on the newly

merged geomagnetic field lines. The plasma flow stretches the geomagnetic field in the anti-
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sunward direction producing the magnetotail, which is stretched out to hundreds of Earth

radii. The magnetosphere can be visualized as a magnetic wind sock fluttering in a magnetic

wind.

In general, the solar wind compresses the magnetic field on the dayside of the Earth

such that the magnetic pressure increases until it is able to balance the dynamic pressure

of the solar wind (Brekke, 2013). This is illustrated in Figure 2.4. The region of pressure

balance between the solar wind and the magnetosphere is called the magnetopause. In the

magnetopause the IMF and geomagnetic field of the Earth can couple through a process called

magnetic reconnection (or merging). Through magnetic reconnection, the IMF magnetically

couples the atmospheres of both the Sun and the Earth. Magnetic reconnection can occur

where a large enough shear exists between the IMF and geomagnetic field (Dungey , 1961;

Gombosi , 1998). In the region where magnetic reconnection occurs, the plasma dynamics

are kinetically dominated and the topology of the magnetic field is reconfigured. The plasma

in this region is no longer frozen-in and instead the diffusion term in Equation 2.4 becomes

much more important (Kivelson and Russell , 1995).

By Ampère’s Law, shears between the IMF and geomagnetic field requires currents to ex-

ist. On the dayside of the magnetosphere, the induced current is called the Chapman-Ferraro

current (the dayside current out of the page in Figure 2.4). In the magnetotail, the region of

anti-sunward magnetosphere, a cross-tail current is induced (the nightside current out of the

page in Figure 2.4). Several models of reconnection exist (Parker and Krook , 1956; Sweet ,

1958; Petschek , 1964), but a full theoretical description of the physics of reconnection remains

an open problem, especially in regards to the kinetic physics at electron-scales. Recently, a

four satellite NASA mission called the Magnetosphere Multiscale Mission made measure-

ments of a reconnection event in the magnetopause and directly observed the electron-scale

physics (Burch et al., 2016). By the process of reconnection, the magnetic flux on the magne-

tosphere of the Earth that is “closed” to the solar wind (closed flux) becomes open through

reconnection becoming “open” to the solar wind on the dayside. Reconnection also occurs

in the magnetotail, decoupling the IMF from the geomagnetic field. On the dayside, re-

connection converts particle energy into magnetic energy and on the nightside, reconnection

converts magnetic energy into particle energy.
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Figure 2.4: The outer magnetosphere of the Earth and magnetospheric regions seen
from the noon-midnight meridian. The incident solar wind forms a bow shock as it
interacts with the magnetosphere of a planet with a magnetic field. A balance between
solar wind and magnetic field pressures occurs at the magnetopause. The Chapman-
Ferraro current flows in this region of pressure balance (current coming out of the page
on the sunward side of the magnetosphere). The magnetosheath is a region of shocked
plasma between the bow shock and magnetopause. The magnetotail is caused by the
solar wind stretching out the magnetosphere downstream. Magnetospheric currents are
indicated by circles filled with dots or Xs and are discussed in more detail in the text.
Figure 9.1 from Kivelson and Russell (1995).

2.3.2 Magnetospheric Regions

Since the solar wind is supersonic, upstream of the magnetopause a bow shock is produced

when the solar wind transitions from supersonic flow to subsonic flow (Kivelson and Russell ,

1995). The location of the bow shock is illustrated in Figure 2.4. Between the magnetopause

and the bow shock is a region of shocked plasma called the magnetosheath. The locations of

the magnetospheric currents induced in the magnetopause and magnetotail are also illustrated

in Figure 2.4.

The magnetosphere is composed of several regions. Figure 2.5 shows several of these
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Figure 2.5: The locations of magnetospheric plasma layers and magnetospheric cur-
rents of the Earth are shown as viewed from the noon-midnight meridian plane. The
Chapman-Ferraro current is shown in Figure 2.4 and lies sunward of the LLBL in this
figure. Layer characteristics are discussed in the text. Figure 10.4 from Kivelson and
Russell (1995).

regions, where the magnetosheath and solar wind are “upwind” to the left in the figure.

Different layers are characterized by both different particle energies and different particle

sources. Table 2.2 summarizes typical values of density, temperature, and magnetic field

strength observed in different regions of the magnetosphere. The magnetospheric region

closest to the Earth is called the plasmasphere, which extends from 3–5 RE (Carpenter ,

1963). To first order, the plasmasphere co-rotates with the Earth, according to Ferraro’s

Theorem, and is populated by particles from the ionosphere of the Earth (Brekke, 2013).

Measurements by the IMAGE satellite showed that plasma originating from high latitudes in

the plasmasphere lags the corotation by approximately 10–15% due to having lower angular

momentum than plasma originating from lower latitudes (Burch et al., 2004). The Plasma

Sheet (PS) extends from 5 RE to 8 RE and contains charged particles with energies of

several keV that mostly originate from the ionosphere of the Earth. On the dayside of the

magnetosphere, the Low-Latitude Boundary Layer (LLBL) is a region between the PS and
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Magneto- Mantle/ Plasma

Parameter sheath Tail Lobe LLBL Sheet Plasmasphere

Density (cm−3) 8 0.01 0.1 0.3 103

Ion Temperature (eV) 150 300 1,000 4,200 1

Electron Temperature (eV) 25 50 150 600 1

Magnetic Field (nT) 2.5 3× 10−3 10−1 6 ∼ 100 – 1000

Table 2.2: A summary of typical plasma and magnetic field parameter values for
regions of the magnetosphere shown in Figure 2.5 (Kivelson and Russell , 1995). The
magnetic field strength in the plasmasphere can be approximated using the magnitude
of Equation 2.9, and is therefore altitude dependent.

the mantle (Kivelson and Russell , 1995; Brekke, 2013). The LLBL is populated by plasma

from both the magnetosheath and the magnetosphere and is located poleward of the PS.

Poleward of the LLBL is the cusp, a region associated with particle precipitation of low

energy (.1 keV) originating in the solar wind (Kivelson and Russell , 1995). The mantle

is poleward of the cusp and it contains plasma with density, temperature, and flow speed

decreasing as a function of the distance from the cusp. Across the polar region and into

the magnetotail, the mantle forms the tail lobe. When enough lobe lines “pile up” in the

tail, the magnetic pressure increases until reconnection closes them to form the Plasma Sheet

Boundary Layer in the tail.

2.4 The Ionosphere

The ionosphere of the Earth is a region of the upper atmosphere extending from approxi-

mately 60 – 1000 km (Kivelson and Russell , 1995). Ionospheres result from a combination of

two ingredients, a neutral atmosphere and a source of ionization. The atmospheric density

profile varies with altitude according to the exponential relationship given by

n(z) = n0 exp

(

−z − z0
H

)

, (2.10)

where z is the altitude, n0 is the a reference density at reference altitude z0, and H is the

scale-height or the increase in altitude where the density decreases by a factor of e (scale-
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height is also called the e-folding height) (Brekke, 2013). The scale height is H = kBT/mg,

where kB is the Boltzmann constant, T is the neutral atmosphere temperature, m is the mass

of a gas particle, and g is the acceleration due to gravity. Figure 2.6 shows the density profiles

for the neutral gases Ar, He, O2, N2, and O as a function of altitude in the ionosphere. The

ionosphere of the Earth is produced by ionizing these neutral atmosphere gases.

Figure 2.6: The altitude profile for a variety of atoms and molecules in both the
neutral atmosphere and ionosphere of the Earth at ionospheric altitudes. Note that in
the E region, NO+ and O2

+ molecular ions dominate and in the F region, O+ atomic
ions are the major ionic species (Kivelson and Russell , 1995).

Both photoionization and particle impact ionization (Kivelson and Russell , 1995) produce

the ionosphere. Photoionization is produced from gamma rays, x-rays, and ultraviolet rays

and impact ionization is produced from energetic particle precipitation where charged parti-

cles (ions and electrons) precipitate down magnetic field lines in to the atmosphere. During

the day photoionization is the dominant plasma production process. Different atmospheric

constituents have different photoionization cross-sections and the amount of ionization pro-

duced is a function of cross-section, initial intensity, zenith angle, and density profile. The

ionization profile can be calculated using the Chapman production function
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q = qm exp

[

1− z − zm
H

− secχ exp

(

z − zm
H

)]

, (2.11)

where z is altitude, qm is the peak production which occurs at an altitude of zm, χ is the

solar zenith angle, and H is the scale-height of the neutral atmosphere (Brekke, 2013). The

Chapman production function can also be used to model the impact ionization caused by

energetic particle precipitation. Higher energy particles penetrate deeper into the atmosphere

than lower energy particles. Figure 2.6 shows the density profile for several ions in the

ionosphere: O+
2 , NO

+, N+
2 , N

+, O+, H+, and He+. Notice that different altitude regions are

dominated by different ions and neutral particles. To first-order, the O+ profile has the same

“nose” shape as the Chapman production function for O+, since the dominant mechanism for

O+ production is photoionization. The profiles for NO+ and O+
2 do not have the same nose-

like shape due to plasma transport, recombination, and chemical reaction based production

processes dominating the ion production (Brekke, 2013).

At night, the ionospheric density decreases significantly and the dominant mode of plasma

production is impact ionization from energetic particle precipitation. Fang et al. (2010) de-

scribes parametrization methods of calculating the expected ionization profiles based on

particle precipitation (for mono-energetic particles, the profile resembles the Chapman pro-

duction function for a single atmospheric species). Precipitating electrons may produce x-rays

through bremsstrahlung due to Coulomb collisions. These x-rays may produce ionization at

altitudes as low as 25 km and the expected ionization profile may be calculated as discussed

in Fang et al. (2010) and references therein.

Differing neutral atmosphere composition at different altitudes produces regions in the

ionosphere with differing chemistry. An illustration of these regions can be seen in the ion and

electron density profile of Figure 2.6. The D region (not shown), extends from around 60 km

to 90 km and contains the most complex chemistry, with plasma consisting of electrons,

positive ions, and negative ions. The neutral density in the D region produces a large

electron-neutral collision frequency. The E region extends from 90 km to 130 km (Kivelson

and Russell , 1995), 140 km (Gombosi , 1998), or 150 km (Kelley , 2009) and contains only

positive ions and electrons since the neutral atmosphere density and electron-neutral collision

frequency have decreased too much to produce negative ions above 90 km. The F region is
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the uppermost layer of the ionosphere and extends upwards from 150 km. Throughout each

of the layers, there exists a background neutral density that interacts with the plasma mainly

through ion-neutral collisions. Figure 2.6 shows that the E region plasma is dominated by

the molecular ions NO+ and O+
2 , whereas the F region is dominated by the atomic ion O+.

2.4.1 Plasma Waves

Understanding the waves that exist in ionospheric plasma allows for its diagnosis and study.

This principle, coupled with models, allows radars, satellites, heaters, and other instruments

to probe and/or measure the parameters of space plasmas. Ionospheric plasma is host to

many natural wave modes due to the collective behaviour of charged particles. The collective

behaviour of electrons and ions in the plasma is mediated via the Coulomb force and the

Lorentz force. This means that electrons and ions are not completely free in the sense that

their motions are correlated and influence one another. Here we will briefly present and

discuss the linear waves that exist in magnetized and unmagnetized plasmas. The dispersion

equations for these waves are derived from the fluid momentum equations for a cold plasma

and assuming quasi-neutrality (the density of the ions and electrons is approximately equal) of

the plasma. These derivations can be found in many introductory plasma physics textbooks

(e.g. Chen, 1984; Kivelson and Russell , 1995; Baumjohann and Treumann, 1997).

In an unmagnetized plasma or along the magnetic field lines in a magnetized plasma

(like the ionosphere of the Earth), electrons undergo an electrostatic oscillate at the plasma

frequency given by

ω2
p =

nee
2

ǫ0me
, (2.12)

where ne is the electron density, e is the elementary charge, ǫ0 is the vacuum permittivity,

and me is the electron mass. This mode is restorative in that it is produced when electrons

are displaced which produces electric fields that attempt to correct the displacement. Due to

the large difference between electron and ion mass, the plasma frequency is much faster than

the time scales that the ions can respond on. The random thermal motion of the electrons

cause these oscillations to propagate as electron plasma waves

ω2
ep = ω2

p +
3

2
k2v2th, (2.13)
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where k = 2π/λ is the wavenumber of the plasma waves, λ is the wavelength of the waves,

and v2th is the thermal velocity of the electrons. Electron plasma waves are dispersive; their

velocity, given by ω/k, is a function of k. This means that the propagation velocity of the

plasma waves depends on the wavelength of the waves, where waves with smaller wavelengths

(larger k) propagate faster than waves with larger wavelengths (smaller k).

Another natural mode of an unmagnetized plasma is the ion-acoustic wave. These waves

are akin to sound waves in a neutral gas, except in a plasma the Coulomb repulsion between

ions adds to the pressure force. The frequency of ion-acoustic waves is given by

ω2
ia =

(

kBTe + 3kBTi

mi

)

k2, (2.14)

where kB is the Boltzmann constant, Te and Ti are the electron and ion temperatures, and mi

is the ion mass. Since electrons respond much faster to perturbations in the plasma, the effect

of electron inertia on ion-acoustic waves is neglected in deriving Equation 2.14 (Baumjohann

and Treumann, 1997). In a more general form of Equation 2.14, the numerator is replaced

by γekBTe+ γikBTi, where γe,i is the specific heat capacity ratio of the electrons and ions. In

the most commonly used form of the equation, Equation 2.14, the electrons are isothermal

(γe = 1) and the ions are adiabatic with one-dimensional motion (γi = 3). In contrast to

electron plasma waves, the velocity of ion-acoustic waves is non-dispersive; it is not a function

of k.

In a magnetized plasma, both ions and electrons gyrate about the magnetic field with a

frequency given by

Ωq =
qB

mq
, (2.15)

where B is the magnetic field strength, q is the charge of the particle, and mq is the mass

of the particle. For waves that propagate at oblique angles to the magnetic field, two modes

for each wave exist simultaneously and the expressions get much more complicated.

2.4.2 Currents

Unlike the solar wind and the magnetosphere, the conductivity of the plasma in the iono-

sphere is finite, allowing for currents to flow. The currents in the ionosphere can be classified
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into three types: magnetic field-aligned current, Hall current, and Pederson current. Satis-

fying Ohm’s law, each current is a function of its associated conductance. For a single ion

species plasma, the current density taken in the reference frame of the neutral atmosphere

motion may be written as (Brekke, 2013)

j = σPE⊥ − σH
E ×B

B
+ σ‖E‖, (2.16)

where the terms on the right hand side of the equation give the Pederson current, the Hall

current, and the field-aligned current. E⊥ and E‖ denote the components of the electric field

that are perpendicular and parallel to the magnetic field B, respectively. The conductivities

are given by

σP =
nee

B

(

ke
1 + k2

e

+
ki

1 + k2
i

)

, (2.17)

σH =
nee

B

(

ke
1 + k2

e

− ki
1 + k2

i

)

, (2.18)

σ‖ =
nee

B
(ke + ki) , (2.19)

respectively, where ke = Ωe/νen, ki = Ωi/νin, νen is the electron–neutral collision frequency,

and νin is the ion–neutral collision frequency. As given by Equation 2.16, Pedersen currents

flow in the direction of the electric field perpendicular to the magnetic field, Hall currents

flow in the E ×B direction and parallel currents flow along magnetic field lines.

In the E region and the F region the electron-neutral collision frequency is low and the

electron motion is dominated by E ×B drift. Below approximately 125 km, the ion-neutral

collision frequency is large enough that the ions predominantly drift in theE direction. Above

125 km the ion-neutral collision frequency is small enough that the ions E×B drift with the

electrons. This results in the Hall current being larger in the E region than the F region and

the Pedersen current being the dominant current in the F region. Hall currents are carried

mostly by electrons in the E region due to the large collision frequency for ions, compared to a

small collision frequency for the electrons. Field-aligned currents can be carried by electrons

or ions, either by particle precipitation or up-flow events. Field aligned currents are sourced

from the magnetosphere and participate in magnetosphere-ionosphere coupling processes.
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2.5 Magnetosphere-Ionosphere Coupling

The magnetosphere and ionosphere are coupled by currents that flow along magnetic field

lines into and out of the ionosphere. Currents that are sourced by magnetospheric generators

and flow into the ionosphere are closed by Pedersen currents in the ionosphere before flowing

up magnetic field lines and returning to the magnetosphere. Two important currents linking

the ionosphere and magnetosphere are the region 1 (R1) and region 2 (R2) currents, known as

the Birkeland2 currents that flow from the magnetosphere into the polar ionosphere (Kelley ,

2009).

The region above the Earth near the magnetic poles containing the open geomagnetic

flux in the mantle region of the magnetosphere is called the polar cap. In general, the size of

the polar cap can increase and decrease depending on the reconnection rates on the dayside

and nightside of the magnetosphere. An expansion of the polar cap (increase in amount of

open magnetic flux in the mantle) occurs when the dayside reconnection rate is greater than

the nightside reconnection rate and contraction of the polar cap (decrease in amount of open

magnetic flux in the mantle) occurs when the nightside reconnection rate is larger than the

dayside reconnection rate (Milan et al., 2012). Figure 2.7 shows a diagram of the polar region

ionosphere in the Northern hemisphere as viewed from above. In the figure, the polar cap is

the region bounded by the inner circle. The R1 current sheet flows into the ionosphere on

the dawn side of the polar cap and out of the ionosphere on the dusk side of the polar cap.

The opposite is true of the R2 current sheets (not shown) which lies equatorward of the R1

currents.

Figure 2.7 also shows a dawn–dusk electric field, EDD, that exists in the polar cap. As

the solar wind propagates past the Earth, an electric field of

EDD = −v ×B (2.20)

is induced in the frame of reference of the magnetosphere, where v is the solar wind velocity

relative to the magnetosphere and B is the IMF. Since the conductivity along magnetic field

2In 1909, with the terrella experiment, Kristian Birkeland first experimentally demonstrated how the
magnetic field of the Earth may direct charged particles in the solar wind to produce patterns similar to the
aurora.
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Figure 2.7: Figure illustrating magnetic convection as seen from above the northern
hemisphere. The oval dashed curves illustrate the flow pattern of magnetic field lines
from the dayside (12) to nightside (24) and back around to the dayside that results
when the IMF is dominated by Bz < 0 (more information found in Section 2.3). EDD

is the Dawn-Dusk electric field generated by magnetic convection from 12 (noon) to 24
(midnight) over the polar cap (small circle inside largest circle). The region 1 current
(R1), the polarization electric field (EH), the eastward-electrojet (JH) and plasma flow
velocity (vp) in the F region of the ionosphere are also indicated. The bold arrowed
arc following the convection flow pattern in the dusk sector (18) indicates the eastward
electrojet.

lines is nearly infinite, the dawn–dusk electric field induced by the solar wind maps along

magnetic field lines down into the polar cap. This electric field then drives plasma flows in

the polar cap ionosphere. In general, this electric field drives an E ×B drift,

vExB =
E ×B

|B|2 , (2.21)

in the F region of the polar cap ionosphere as illustrated in Figure 2.7 (recall the frozen-in

discussion in Section 2.2, equations 2.1 to 2.8). Plasma is driven from dayside to nightside

by the E × B drift producing a two cell plasma convection pattern. In the auroral region

of the magnetosphere, a polarization electric field, EH , is generated between the R1 and R2

currents. This electric field points in the opposite direction to the dawn-dusk electric field
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on the dusk side of the polar cap (towards the R1 current sheet as shown in Figure 2.7).

On the dawn side of the polar cap, the polarization electric field points away from the R1

current sheet. The polarization electric field drives an additional E ×B drift that produces

the return flow from nightside to dayside by travelling around both the duskside or dawnside

of the polar ionosphere.

The shape of the two cell convection pattern changes depending on the orientation of the

IMF (Cowley and Lockwood , 1992). The IMF may take on a variety of orientations and is

commonly described by a Bx, By, and Bz component in the geocentric solar magnetospheric

coordinate system with origin at the center of the Earth, the Sun-Earth line as the x-axis

(positive toward the Sun) and the y-axis as the cross product between the x-axis and the

magnetic dipole z-axis. For Bz < 0 magnetic reconnection occurs on the dayside and a

two-cell convection pattern is developed as illustrated in Figure 2.7. In what is known as

the Svalgaard-Mansurov (Kivelson and Russell , 1995) effect, IMF By 6= 0 alters the dayside

shape of the convection pattern. The convection pattern can even develop into a three- or

more-cell pattern depending on IMF conditions. For example, when IMF Bz > 0 the two-cell

convection pattern transforms into a four-cell pattern with two cells in the noon sector and

two cells in the midnight sector. As will be presented in Chapter 3, SuperDARN is used to

measure the plasma convection pattern in both the northern and southern hemispheres.

2.6 Ionospheric Irregularities

In order for SuperDARN to measure the plasma convection pattern, SuperDARN radars need

a target from which radio waves can be scattered, that is inhomogeneities or irregularities

embedded in the bulk plasma in F region ionosphere. SuperDARN radars receive scattered

signals from decameter-scale irregularities. In general, the source of ionospheric irregularities

are plasma waves and instabilities. Instabilities are created when conditions cause waves to

grow and become unstable, like ocean waves growing until they become unstable and crash

on a beach. The primary plasma process believed to produce ionospheric irregularities from

which SuperDARN receives scattered signals is the gradient drift instability (GDI).

The GDI is caused by a combination of the local density gradient, ∇n0, electric field,
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E0, and magnetic field, B0, in the plasma. For a density gradient with an E ×B drift, the

trailing edge of the density gradient is unstable to the GDI. Figure 2.8 shows the geometry

that leads to the GDI, with a sinusoidal perturbation in the trailing edge of the density

gradient. The background electric field produces a separation of charge in the perturbed

region, which produces a polarization electric field, E′. The polarization electric field adds

to the background field in some regions and reduces it in other regions, which causes the

perturbation to grow.

Figure 2.8: An illustration of the required conditions for GDI growth (γ > 0).
Adapted from Figure 2 in Keskinen and Ossakow (1983).

The linear growth rate, γ, of the GDI in the F region of the ionosphere is given by

γ =

[

−νei
Ωe

1

L

(

νin
Ωi

cE0

B
− θVd

)]/(

θ2 +
νin
Ωi

νei
Ωe

)

−D⊥k
2
x −D‖k

2
y , (2.22)

where νei and νin are the electron-ion and ion-neutral collision frequencies, respectively, Vd is

the realtive electron and ion speeds along the magnetic field line, θ = kz/kx is the alignment

(or aspect) angle of the GDI with respect to the magnetic field, L−1 = (1/n0)(δn0/δy) where

L is the scale length of the density gradient, and D⊥ and D‖ are the perpendicular and

parallel plasma diffusion coefficients, respectively (Keskinen and Ossakow , 1983). The GDI

growth rate reaches a maximum value for an alignment angle θm such that δγ/δθ = 0,
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BVd

±
√

(

νin
Ωi

)2(
cE0x

BVd

)2

+
νeiνin
ΩeΩi

. (2.23)

Using typical F region plasma parameters, Keskinen and Ossakow (1983) showed that θm ≈ 0

in the F region, meaning that the GDI growth rate is largest perpendicular to magnetic

field lines. In the F region, the growth times for the GDI are γ−1 ≈ 102 s (Keskinen and

Ossakow , 1983). SuperDARN receives signals scattered from these irregularities in the F

region produced by the GDI. Additionally, Equation 2.22 shows that the GDI is a convective

instability. If E0 = 0, then there is no E ×B drift and consequently no GDI. The faster the

E ×B drift, the larger the GDI growth rate.

2.7 Summary

The atmospheres of the Sun and the Earth are magnetically coupled by the IMF. The dy-

namics of solar activity drive dynamic activity in the magnetosphere of the Earth producing

a variety of phenomena, including the Aurora Borealis and Aurora Australis. The ionizing

radiation from the Sun produces the ionosphere of the Earth at an altitude above 85 km. As

the solar wind propagates past the Earth it induces an electric field on the magnetosphere,

driving plasma convection in both the magnetosphere and the ionosphere of the Earth. This

electric field also drives field aligned currents which couple the magnetosphere and the iono-

sphere. Ionospheric irregularities, generated by instabilities like the GDI, are embedded in the

F region plasma and propagate along with the bulk plasma flow. SuperDARN radars scatter

radio waves off of the ionospheric irregularities to measure the bulk plasma flow. This allows

SuperDARN to study the dynamic plasma convection in the magnetosphere by measuring the

ionospheric plasma convection. In order for SuperDARN to measure the plasma convection

it needs ionospheric targets from which to receive scattered signals. Ionospheric magnetic

field-aligned irregularities produced by the GDI are the target from which SuperDARN re-

ceives scattered signals. In the next Chapter, the purpose and scientific role of SuperDARN

in the context of geospace physics research will be discussed along with the radiophysics of

radio wave propagation and scattering in the ionosphere. Some general radar principles and

hardware used to operate SuperDARN radars will also be discussed. Concluding the chapter

29



will be a discussion of the standard data products produced by SuperDARN.
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Chapter 3

The Super Dual Auroral Radar Network

3.1 Introduction

The Super Dual Aurora Radar Network (SuperDARN) is an international network of iono-

spheric pulse-Doppler radars used to measure plasma flow in the F region ionosphere (Green-

wald et al., 1995; Chisham et al., 2007). Specifically, the radars are used to measure the bulk

E×B drift velocity of field-aligned plasma density irregularities in the F region. As discussed

in section 2.5, F region plasma in the polar ionosphere is driven by the dawn-dusk electric field

in the magnetosphere, therefore SuperDARN radars can measure the ionospheric footprint

of magnetospheric plasma circulation. Figure 3.1 shows plots of the fields-of-view (FOV) of

all the SuperDARN radars currently operating in the Northern and Southern hemispheres.

As can be seen in the figure, SuperDARN radars have large FOVs that extend to at least

3,500 km range and approximately 52 degrees in azimuth, covering an area spanning several

million square kilometers.

SuperDARN consists of 35 radars operating in both the Northern and Southern hemi-

spheres, which is accomplished by an international collaboration consisting of 17 institutions

in 10 countries. Tables 3.1 and 3.2 list every past and present SuperDARN radar located

in the Northern and Southern hemispheres respectively. The institutes responsible for each

radar are also listed in the tables. Two radars that are no longer operational, the radar

at Schefferville in the Northern hemisphere and the radar at the Falkland Islands1 in the

Southern hemisphere, are included in the tables. In data analysis software, it is common to

refer to each radar by a unique three letter code, which is also listed in the tables. Future

1Which may become operational again.
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Figure 3.1: The FOVs of all active and inactive SuperDARN radars in the Northern
(left) and Southern (right) hemispheres. The FOVs here were modelled starting at 180
km from the radar and using 75 45 km range gates.

radars are not listed, but at the time of this writing, there is a new SuperDARN radar being

constructed in Southern France/Western Europe2.

From the beginning, SuperDARN was designed to be an instrument that could be used to

study the magnetosphere [George Sofko, private communication, 2012]. Previous ionospheric

measurements by other radar experiments, such as the Scandanavian Twin Auroral Radar

Experiment (STARE) (Greenwald et al., 1978), observed high-latitude F region ionospheric

plasma flow consistent with that expected due to magnetospheric electrodynamics (e.g. Eck-

lund et al., 1975; Greenwald et al., 1978, 1983). Compared with other instruments, such as

satellites, SuperDARN is able to continuously sample large areas of the ionosphere, sampling

the electrodynamics of huge volumes of the magnetosphere. In contrast, satellite measure-

ments are small-scale and susceptible to spatial-temporal ambiguities. SuperDARN radars

are also inexpensive to build and operate (less than one million CAD each). This means

that SuperDARN is well-suited to provide a complementary global-scale data set to compare

2The precise location of this radar is still being determined.
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with satellite measurements. Indeed, SuperDARN collaborates with several ongoing satel-

lite missions, such as Time History of Events and Macroscale Interactions during Substorms

(THEMIS) mission (Angelopoulos , 2008), the Radiation Belt Storm Probes (RBSP) mission

(Stratton and Fox , 2012), and the Exploration of energization and Radiation in Geospace

(ERG) mission (Miyoshi et al., 2013). SuperDARN radars are also used to study ionospheric

processes and magnetosphere-ionosphere coupling phenomena, with similar FOV and cost

advantages compared to other ionospheric instruments.

A wide variety of ionospheric and magnetospheric physics has been and continues to be

studied using SuperDARN. A short list of topics follows: Magnetospheric reconnection rates

and evolution of the Dungey-Cycle (Hubert et al., 2006; Milan et al., 2007, 2012), determina-

tion of the open-closed field-line boundary (Wild et al., 2004), the location of the auroral oval

(Imber et al., 2013), flux transfer events (Fear et al., 2009), sub-auroral polarization streams

(Koustov et al., 2008; Clausen et al., 2012), ultra-low frequency magnetohydrodynamic waves

in the ionosphere (Ponomarenko et al., 2003, 2005; Yeoman et al., 2012; Teramoto et al.,

2016), meteor echoes and mesospheric winds (Hall et al., 1997; André et al., 1998; Jenkins

and Jarvis , 1999; Hussey et al., 2000; Chisham and Freeman, 2013), polar mesospheric sum-

mer echoes (Hosokawa et al., 2005; Ogawa et al., 2013), mapping field-aligned currents (Sofko

et al., 1995; Cousins et al., 2015), ion-frictional heating (Bjoland et al., 2015), and studies of

polar cap patches (Oksavik et al., 2006; Dahlgren et al., 2012). SuperDARN has proven to

be an invaluable ionospheric and magnetospheric research instrument.

3.2 SuperDARN Radar Principles

SuperDARN radars are pulse-Doppler radar systems that determine the range and Doppler

characteristics of a target by transmitting a pulse-sequence and recording the signal that

returns. SuperDARN radars receive echoes from an illuminated volume of the ionosphere,

referred to as a range cell, which generally extends 45 km in range with a 3 dB beam width

of 3.24 degrees at 15 MHz. SuperDARN radars are monostatic phased-array radars with a

main array and interferometer array. Figure 3.2 is a picture of the Saskatoon SuperDARN
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Radar Name Institution Latitude Longitude Code

Adak Island East University of Alaska, Fairbanks 51.88 -176.62 ade

Adak Island West University of Alaska, Fairbanks 51.88 -176.62 adw

Blackstone Virginia Tech 37.10 -77.95 bks

Christmas Valley

East

Dartmouth College 43.27 -120.36 cve

Christmas Valley

West

Dartmouth College 43.27 -120.36 cvw

Clyde River University of Saskatchewan 70.49 -68.50 cly

Fort Hays East Virginia Tech 38.86 -99.39 fhe

Fort Hays West Virginia Tech 38.86 -99.39 fhw

Goose Bay Virginia Tech 53.32 -60.46 gbr

Hankasalmi University of Leicester 62.32 26.61 han

Hokkaido East Nagoya University 43.53 143.61 hok

Hokkaido West Nagoya University 43.54 143.60

Inuvik University of Saskatchewan 68.414 -133.772 inv

Kapuskasing Virginia Tech 49.39 -82.32 kap

King Salmon National Institute of Information

and Communications Technology

58.68 -156.65 ksr

Kodiak University of Alaska, Fairbanks 57.62 -152.19 kod

Longyearbyen University Centre in Svalbard 78.153 16.074 lyr

Pykkvibaer University of Leicester 63.77 -20.54 pyk

Prince George University of Saskatchewan 53.98 -122.59 pgr

Rankin Inlet University of Saskatchewan 62.82 -93.11 rkn

Saskatoon University of Saskatchewan 52.16 -106.53 sas

Schefferville CNRS/LPCE 54.80 -66.80 sch

Stokkseyri Lancaster University 63.86 -22.02 sto

Wallops Island JHU Applied Physics Laboratory 37.93 -75.47 wal

Table 3.1: Northern Hemisphere SuperDARN radars as of September 2017. Schef-
ferville is no longer operational.
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Radar Name Institution Latitude Longitude Code

Buckland Park La Trobe University -34.620 138.460 bpk

Dome C Institute for Space Astrophysics

and Planetology

-75.090 123.350 dce

Falkland Islands British Antarctic Survey -51.83 -58.98 fir

Halley British Antarctic Survey -75.52 -26.63 hal

Kerguelen CNRS/LPCE -49.22 70.14 ker

McMurdo University of Alaska, Fairbanks -77.88 166.73 mcm

SANAE South African National Space

Agency

-71.68 -2.85 san

South Pole Station University of Alaska, Fairbanks -89.995 118.291 sps

Syowa East National Institute of Polar Re-

search

-69.00 39.58 sye

Syowa South National Institute of Polar Re-

search

-69.00 39.58 sys

Tiger La Trobe University -43.40 147.20 tig

Unwin La Trobe University -46.51 168.38 unw

Zhongshan Polar Research Institute of China -69.38 76.38 zho

Table 3.2: Southern Hemisphere SuperDARN radars as of September 2017. Falkland
Islands is no longer operational.
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radar during the 20 December 2016 geomagnetic storm3. In the picture, both the main

(background) and interferometer (foreground) arrays of the radar are visible, along with the

control hardware shed (between the arrays). In the photograph, only 10 of the 16 main array

antennas are visible.

Figure 3.2: The Saskatoon SuperDARN radar during the 20 December 2016 geomag-
netic storm. All 4 antennas of the interferometer array can be seen in the foreground
and 10 of the main array antennas can be seen in the background, along with the shed
housing the transmitters, receiver, and control systems.

Each of the 16 antennas in the main array are fed by a transmitter consisting of a direct

digital synthesis (DDS)–based signal generator system and a transmitter box. The DDS

system generates the signal to be transmitted, including the frequency, phase offsets needed

for beam forming, and pulse shape. The transmitter box contains RF power amplifiers

and both the high and low power transmit/receive switches necessary to isolate the receive

chain from the higher power output while transmitting. Each transmitter box amplifies the

3Not pictured, the author, who took this photo, digging out of a snow bank that he got stuck in when he
parked his car before taking this picture.
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milliwatt DDS signal up to 600 watts. The receiver chain uses DDS to generate the phasing

necessary for beam-forming and before the signals from each antenna are combined, filtered,

and digitized. The resulting digital signal is a stream of complex voltage samples that are

ready for further signal processing. All of the RF electronics and computers necessary for

operating the radar are located inside the control hardware shed.

3.2.1 Radar Principles

This section will discuss some general radar principles used by SuperDARN radars. The

most well-known equation in radar is the radar equation. In general, the power received (Pr)

from a radar target can be described by the radar equation, given by

Pr =
PtG

4πR2
t

σAe

4πR2
r

, (3.1)

where Pt is the transmitted power emitted by the antenna, G is the gain of the transmitting

antenna, σ is the radar cross section of (a measure of the power scattered by) the target, and

Ae is the effective area of the receiving antenna (e.g. Skolnik , 1980; Ulaby et al., 1982; Lev-

anon and Mozeson, 1988). The factors of 4πR2
r,t are known as the spreading losses caused by

the spreading of the transmitted and scattered (received) powers as they propagate isotrop-

ically in a spherical pattern. In the general case, the distance from the transmitter to the

target Rt and the distance from the target to the receiver Rr are not the same. When the

positions of the transmitter and receiver are not co-located the radar system is described as

bistatic. When the positions of the transmitter and receiver are co-located the radar system

is described as monostatic. In the general case of multiple transmitters and receivers, the

radar system is multistatic. Even though SuperDARN radars are monostatic, they often

share overlapping FOVs with other SuperDARN radars, so it may be possible to perform

bistatic or even multistatic measurements with SuperDARN.

The simplest example of a monostatic pulse-Doppler radar system involves transmitting a

pulse and listening for an echo, where an echo is a received signal resulting from the scattering

or reflection of the transmitted pulse by a target. Using the time delay between transmission

and reception the range of the target can be determined. If the pulse propagates at the speed

of light c then the range R of the target can be determined from the time delay between
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transmission and reception of the signal T using the relationship

R =
cT

2
. (3.2)

The simplest way to obtain velocity information about the target is to transmit a series of

uniformly time-spaced pulses and then record the echoes from each pulse. The Doppler shift

of the target is determined by comparing the frequency of the received signal from each pulse

with the frequency of the signal that was transmitted (e.g. Levanon and Mozeson, 1988;

Ulaby et al., 1982). For monostatic radars, the Doppler shift, fD, due to a target moving

relative to the radar with a speed vlos toward or away from the radar is given by

fD =
2vlos
λT

, (3.3)

where λT is the wavelength of the transmitted pulses. Essentially, the Doppler frequency is

the rate of change of the phase of the received signal produced by the change of distance in

time (speed) between the radar and the target. Note that in general, any change of phase

with respect to time in the received signal will produce an effective Doppler shift (this will

be discussed in more detail in section 3.3). Finally, an additional Doppler shift is produced

if the target is accelerating toward or away from the radar. For SuperDARN radars, it is

assumed that targets are moving with uniform velocity, so the Doppler shift due to target

acceleration is not considered.

3.2.2 Pulse Sequence

SuperDARN radars can receive backscatter from ranges 180 km4 up to 4500 km and measure

ionospheric plasma flowing at speeds on the order of 1 km/s. Simultaneously measuring the

range and Doppler of such signals using traditional radar methods results in range–Doppler

ambiguities (Levanon and Mozeson, 2004; Ulaby et al., 1982). For example, a standard

technique is to transmit a series of pulses with uniform spacing, however, for fast moving

targets at long ranges this technique produces ambiguities for reasons that will be discussed

in more detail in Chapter 4. Essentially, each pulse produces a noise-like interference called

4Actually, the radars can measure at distances as close as a pulse width away, but 180 km is standard.
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self-clutter that makes it impossible to determine which ranges the received signals from

other pulses originated. To overcome the range-Doppler ambiguities, SuperDARN radars

transmit a non-uniform pulse-sequence where pulses are non-redundantly spaced according

to the multiple-pulse technique described in Farley (1972). The multiple-pulse technique

reduces the range–Doppler ambiguities, but even so self-clutter is present, albeit reduced.

The top plot of Figure 3.3 is a range–time diagram of an example 3 pulse multiple-pulse

sequence. Pulse spacings are integer multiples of a fundamental pulse repetition time (PRT),

more commonly referred to as the lag time (τ) in the SuperDARN community. Receiver

voltage samples that are spaced the same as the pulses in the pulse sequence are used to

estimate the spectral properties of the scattered signal. Signal processing techniques are

discussed in more detail in Chapter 4.

A multiple-pulse sequence is characterized by four parameters: the pulse length (tp), the

lag time (τ), the number of pulses (Np), and the pulse table (ptab). The pulse table is

an array of integers describing the pulse spacing in multiples of τ . The example multiple-

pulse sequence in the top plot of Figure 3.3 has parameters τ = 2.4 ms, tp = 300 µs,

Np = 3, and ptab = [0,1,3]. The grey filled rectangles indicate transmitted pulses and

the rectangles with blue borders indicate receiver samples that can be used to estimate the

spectrum of the backscattered signal. The red diamonds indicate signal backscattered from

the range of interest, and the black diamonds indicate signals originating from unwanted

ranges. The bottom plot of Figure 3.3 shows the 8 pulse “katscan” multiple-pulse sequence

that is typically used by SuperDARN radars. The katscan pulse sequence has parameters

τ = 1.8 ms, tp = 300 µs, Np = 8, and ptab = [0,14,22,24,27,31,42,43].

While a monostatic radar is transmitting, it cannot receive signals (data). This means

that for some ranges there are “bad” voltage samples that correspond to times when the

receiver was blanked while the transmitter was on. In practice, usually 2 or 3 voltage samples

are blanked due to the finite turn on/off time for the transmitters and the high/low power

transmit/receive switches.
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Figure 3.3: An example 3 pulse multiple-pulse sequence (top panel) and the 8 pulse
katscan multiple-pulse sequence used by SuperDARN radars (bottom panel). In the
bottom panel, the horizontal dashed line indicates the location of range gate 75 at a
distance of 3500 km.
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3.2.3 Doppler Shift From Quadrature

SuperDARN radars use a quadrature receiver to obtain complex voltage samples. This

receiver performs a quadrature demodulation on the received signals, which involves mixing

the received signal with sine and cosine waves and then low pass filtering the resulting signals.

The signal resulting from the cosine mixing is called the “in-phase” component and the signal

resulting from the sine mixing is called the “quadrature” component. Mathematically, a

quadrature receiver operates on a signal received by the radar, s(t), which can be represented

by

s(t) = A(t) cos([ω + ωD]t), (3.4)

where A(t) is a time dependent amplitude of the signal, ω is the carrier frequency, and ωD

is the Doppler shift. To obtain the in-phase component, sI(t), s(t) is mixed with a cosine

signal, cos(ωt), which is equivalent to a multiplication

sI(t) = s(t) cos(ωt) = A(t) cos([ω + ωD]t) cos(ωt), (3.5)

which is equivalent to5

sI(t) =
1

2
A(t)[cos([2ω + ωD]t) + cos(ωDt)]. (3.6)

After low pass filtering to remove the cosine with a frequency of 2ω, the in-phase component

is recovered:

sI(t) =
1

2
A(t) cos(ωDt). (3.7)

Similarly, mixing a sine wave6, sin(ωt), with s(t) and then low pass filtering yields the quadra-

ture component, sQ(t),

sQ(t) =
1

2
A(t) sin(ωDt). (3.8)

Finally, the received complex signal

sR(t) = sI(t) + jsQ(t) =
1

2
A(t)[cos(ωDt) + j sin(ωDt)] (3.9)

5Use the product trigonometric identity: cosα cosβ = 1

2
[cos(α+ β) + cos(α− β)].

6Use the product trigonometric identity: cosα sinβ = 1

2
[sin(α+ β) + sin(β − α)].
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can be represented using Euler’s Identity to obtain

sR(t) =
1

2
A(t)ejωDt, (3.10)

which reveals that all of the Doppler shift information is contained in the phase of the received

signals.

3.2.4 Phased Antenna Arrays

Antennas are transducers used to convert electrical signals into radio waves and vice versa.

Antenna theory and design is a vast and complicated topic, beyond the scope of this thesis,

but some basic concepts will be discussed here, as they are relevant to understanding how

SuperDARN radars operate. Only the far-field descriptions of the radiation patterns of

antennas will be presented, where the distance from the antenna R is much larger than the

radar wavelength (R ≫ λ).

There are several types of antennas, all with a variety of advantages and applications, but

one of the primary objectives of these designs is to direct the radiated (and received) energy

in some particular desirable direction or directions while suppressing it in other directions

(Skolnik , 1980). The directive gain of an antenna is a measure of this enhancement and

suppression and is defined as the ratio of the radiation intensity I(θ, φ) in a particular azimuth

φ, and elevation θ, to its mean radiation intensity Ī expressed by

D(θ, φ) =
I(θ, φ)

Ī
. (3.11)

The directive gain is typically referred to as the “radiation pattern” of an antenna. An

antenna is typically characterized by the maximum of its radiation pattern, where the di-

rectivity given by Equation 3.11 is largest. For radar, it is ideal that the radiation pattern

would have maximum directivity in a beam pointed towards a target of interest and zero di-

rectivity in every other direction. In reality, however, antennas always have some directivity

in unwanted directions.

SuperDARN radars use directive antennas in order to more efficiently radiate power in

a preferred direction in the ionosphere. For nearly two decades, SuperDARN radars were

constructed with log-periodic antennas, but as of 2010 newly constructed radars began using
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the twin-terminated folded-dipole (TTFD) antenna design described in Sterne et al. (2011).

The change was made because of the reduced cost and simplified construction process when

building a SuperDARN radar using TTFD antennas compared to one using log-periodic

antennas.
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Figure 3.4: The half power beam width of a linear antenna array consisting of N
equally spaced antennas.

One method for improving the directivity of an antenna is to combine several antennas

together in an antenna array. This is the configuration that SuperDARN radars use, where

16 antennas are used to form a linear antenna array. To understand how this works, consider

a linear array of N antennas with isotropic directivity and a uniform spacing of d between

antennas. The radiation pattern of the array Darray as a function of azimuth angle φ is given

by

Darray =
sin(Nγ/2)

sin(γ/2)
, γ =

2πd

λ
(sin(φ)− sin(α)) (3.12)

where α is the desired angle towards which the main beam of the pattern is to be steered

(Skolnik , 1980). As the number of antennas increases, the beam width decreases and the
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directivity of the radiation pattern of the array improves. This is demonstrated in Figure 3.4,

where the half power beam width (HPBW) for an array of N antennas with d/λ = 0.6 is

plotted. Skolnik (1980) provides an approximate analytic formula for the beam width, given

by

θHPBW =
0.886λ

Nd
. (3.13)
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Figure 3.5: The azimuthal gain pattern for a phased antenna array consisting of 16
antennas spaced 15 meters apart for two different SuperDARN beam directions. See
text for details.

For radar or communication systems using large parabolic or spherical dish antennas,

the entire antenna must be moved to steer the beam of an antenna in a desired direction.

A SuperDARN radar array uses 16 antennas spaced by approximately 15 meters, resulting

in an array on the order of 215 meters across. Rotating such a large array to steer the

beam would be at the very least, impractical. A significant advantage of the antenna array

design is that the beam can be electronically steered, without any physical movement. This

is accomplished by applying a linearly increasing phase offset of 2πd sin(α)/λ to the signal

sent to each antenna across the array. Note that the required phase offset is a function of the

wavelength and the antenna spacing. This means that the phase offsets required to steer the

radar beam for one frequency are not the same as for another frequency. Another advantage
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of this design is that the beam steering is inertia-less and effectively instantaneous, practically

limited by the speed of the electronics used.

Figure 3.5 shows plots of the steered beam radiation pattern similar to that which the

Saskatoon SuperDARN radar produces. The figure was made using Equation 3.12 with an

antenna spacing of 15 meters and a radar wavelength of 24.98 meters (a radar frequency of

12 MHz). In the left plot of Figure 3.5 a phase offset with a slope of −0.741 radians was

used to steer the beam counter clockwise by 11.34 degrees and in the right plot of Figure 3.5

a phase offset with a slope of 0.107 radians was used to steer the beam clockwise by 1.62

degrees. Note that this pattern is the array radiation pattern assuming isotropic antennas

and that the array pattern has both a forward and backward facing beam. In practice, the

antennas used in a SuperDARN array are directional, producing a predominately forward

facing radiation pattern such that the back facing beam in the array pattern is significantly

attenuated. For a more accurate representation of the full radiation pattern of a SuperDARN

radar, one needs to simulate it (for both the log-periodic and TTFD designs), as performed

by Sterne (2010) and Sterne et al. (2011).

3.2.5 Interferometry

SuperDARN radars consist of two linear arrays of antennas, a main array of 16 antennas and

an interferometer array of 4 antennas7. The characteristics and advantages of the main array

have already been discussed in section 3.2.4. The interferometer array is used, along with

the main array, to measure the angle of arrival of signals received by a SuperDARN radar

using interferometry. Essentially, this is accomplished using the difference between the time

of arrival of a signal at the main array and time of arrival of a signal at the interferometer

array (e.g. McDonald et al., 2013; Burrell et al., 2016). Elevation angle measurements are

an important tool for SuperDARN users since such measurements can be used to geolocate

received signals and to characterize from which part of the ionosphere the received signals

originated (e.g. Yeoman et al., 2008; Burrell et al., 2015, 2016).

For a radar with a main array and an interferometer array, where the arrays are at the

7The Goose Bay radar is unique in that it has 16 interferometer antennas.
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same altitude, centered, and separated by some distanceD, the elevation angle ∆ of a received

signal is given by

∆ = arcsin

√

cos2 α−
(

Φλ

2πD

)2

, (3.14)

where α is the angle between the radar beam and normal to the main array, λ is the wave-

length of the received signal, and Φ is a phase offset produced by the received signal arriving

to the main and interferometer arrays at different times (Burrell et al., 2016). The phase

offset Φ is measured by the SuperDARN radar and then the elevation angle ∆ is calculated

using Equation 3.14.

It is important to note that not all elevation angles can be unambiguously measured using

the two array design that SuperDARN radars use. This is due to elevation angle aliasing

that occurs due to the spacing between the main and interferometer arrays relative to the

wavelength of the received signal. These ambiguities can be resolved by the addition of

another array, which has been discussed in detail in McDonald et al. (2013).

3.3 Radiophysics

SuperDARN radars operate in the high-frequency (HF) band and are designed to transmit

and receive on frequencies from 8 to 20 MHz, which corresponds to vacuum wavelengths of

34.47 to 14.99 meters (e.g. Greenwald et al., 1995). Due to interactions with the ionosphere,

properties of the HF radio waves are modified as they propagate through the ionosphere.

Some of these interactions result in scattering, refraction, dispersion, and absorption of the

propagating waves.

3.3.1 Coherent Scatter

SuperDARN radars receive signals that have been scattered back to the radar by plasma den-

sity irregularity structures in the ionosphere. These structures may be generated by plasma

instabilities (recall section 2.6), which produce magnetic field-aligned quasi-periodic electron

density structures such as the GDI. These structures persist throughout an extended volume

of ionosphere, filling the volume illuminated by the radar beam (Schlegel , 1996). Scatter

46



from these field-aligned irregularities is aspect sensitive, such that a probing radio wave is

scattered most strongly only where the k-vector (wave vector) of the wave is orthogonal to

the magnetic field (e.g. Krall and Trivelpiece, 1973; Schlegel , 1996; Ulaby et al., 1982). An

important criteria for SuperDARN scatter is the Bragg condition

λrad = 2λirr sin

(

θ

2

)

, (3.15)

where λrad is the radar transmitted wavelength in the medium, λirr is the wavelength of the

irregularities, and θ is the scattering angle relative to the incident radio wave in the plane

perpendicular to the magnetic field. When this condition is satisfied, a significant gain of

scattered signal is observed that is reminiscent of resonance phenomena, which is why the

Bragg condition is sometimes referred to as Bragg Resonance (Ulaby et al., 1982). As the

radio waves scattered by each field-aligned density structure add coherently when the Bragg

condition is satisfied, this type of scatter is referred to as coherent scatter. For monostatic

radars like SuperDARN, direct backscatter results (e.g. θ = 180°), so the Bragg condition

simplifies to

λirr =
λrad

2
, (3.16)

which states that for backscatter, coherent scatter radars observe electron density irregularity

structures with a wavelength that is half the radar wavelength (approximately 7.5 to 15 meters

for SuperDARN radars).

SuperDARN radars are unable to make ionospheric measurements without ionospheric

irregularities. It is important to remember that density gradients and strong electric fields

are required for irregularities to be generated (see Section 2.6). Even when large electric fields

exist, if the conductance in the E region is large relative to the F region conductance, the E

region may dissipate the electric fields resulting in a reduction of F region irregularities (Milan

et al., 1999). The effect can be significant enough that no F region signals are observed by the

radar. It is also possible for the plasma density to be reduced by enhanced recombination

rates, such as when large electric fields frictionally heat the ions in the plasma (e.g. St.-

Maurice and Hanson, 1982; Davies et al., 1995). This means that in addition to satisfying
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the aspect conditions of equation 3.15, SuperDARN radars require ionospheric conditions

that favour irregularity generation for the coherent scattering process to occur.

3.3.2 Refraction

As radio waves propagate through the ionosphere they interact with the magnetized plasma

and are modified according to magneto-ionic theory (Budden, 1961; Hargreaves , 1995a). This

interaction can be succinctly described using the Appleton-Hartree equation, which describes

the complex index of refraction of a magnetized plasma n given by

n2 = 1− X

1− jZ −
(

Y 2
T

2(1−X−jZ)

)

±
(

Y 4
T

4(1−X−jZ)2
+ Y 2

L

)
1
2

, (3.17)

where

X = ω2
p/ω

2, Y = ωB/ω, Z = ν/ω, (3.18)

YL = ωB cos θ/ω, YT = ωB sin θ/ω, (3.19)

where ω is the angular frequency of the radio wave, ωp is the electron plasma frequency, ωB

is the electron gyrofrequency, ν is the electron-neutral collision frequency and θ is the angle

between the radio propagation direction and the magnetic field. The Appleton-Hartree equa-

tion is a general dispersion relation that describes the frequency dependence of propagation

and absorption of radio waves.

At HF in both the E and F regions, Z ≈ 0 since the electron–neutral collision fre-

quency is small compared to the radio wave frequency. In ionospheric plasma, HF radio

waves propagate in two regimes described by two special cases of Equation 3.17: quasi-

longitudinal propagation (propagation approximately along the magnetic field, YL > YT )

and quasi-transverse propagation (propagation nearly perpendicular to the magnetic field,

YT > YL). For SuperDARN frequencies, quasi-longitudinal propagation dominates for θ .

75°and θ & 105°(assuming the electron density is 5.0× 1011m−3). The index of refraction for

quasi-longitudinal propagation is

n2 = 1− X

1± YL
, (3.20)
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and for quasi-transverse propagation

n2 = 1− X (1−X)

1−X − (Y 2
T ± Y 2

T ) /2
. (3.21)

For SuperDARN radars, the most important insight provided by the Appleton-Hartree

equation is that the propagation of radio waves in the ionosphere is a dispersive phenomenon,

depending on both the plasma density and the frequency of the radio wave. At HF, the index

of refraction is less than one, meaning HF radio waves are refracted by the ionosphere as

they propagate through it. As the HF waves refract, the propagation angle relative to the

magnetic field changes such that radio waves launched from the ground refract to become

perpendicular to the magnetic field at F region altitudes, satisfying the magnetic aspect angle

requirement for coherent backscatter (equation 3.15).

Using a known electron density profile and the Appleton-Hartree equation, it is possible

to model the propagation of SuperDARN radio waves. Figure 3.6 shows a plot of the results

of ray tracing a 9 MHz radio wave from the Saskatoon SuperDARN radar through a model

of the ionosphere produced by the 2011 International Reference Ionosphere model (Bilitza

et al., 2011). The ray tracing was performed using the “RayDARN” ray tracing software

(de Larquier et al., 2013) that is available on the Virginia Tech SuperDARN website (http:

//vt.superdarn.org). The ground range is plotted along the curved x-axis of the figure and

the altitude above the ground is plotted along the y-axis. The background colour denotes

the plasma density and the magenta nearly-vertical lines show the magnetic field. The grey

lines are the ray paths of radio waves originating from the bottom left of the plot. White

lines intersecting with the ray paths indicate constant range. The short black horizontal lines

in the center of the figure indicate regions where the radio waves are within one degree of

perpendicular to the magnetic field (regions where coherent backscatter is possible).

Figure 3.6 did not include an E region layer, but the effect of E region plasma density

on the propagation path of HF radio waves has been previously studied (e.g. Hussey et al.,

1999; Bahcivan et al., 2013). For example, when the plasma density in the E region is large

enough, it may refract all incident HF waves that would otherwise reach the F region for

coherent backscatter (Milan et al., 1999). Also not shown in the figure is the possibility of HF
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Figure 3.6: A simulation of the expected ray paths for the Saskatoon SuperDARN
radar on beam 11 with a transmit frequency of 9 MHz. The grey lies indicate ray
paths with white lines crossing the rays indicating the along ray distance in 200 km
increments. The magneta lines indicate magnetic field lines. The thick black lines
indicate regions where the rays are within one degree of aspect conditions required for
coherent backscatter. The background colour indicates the electron density. The ray
trace was performed using the Virgina Tech SuperDARN online Ray-Tracing Tool.

radio waves to be refracted towards the ground where they are reflected back upwards and

continue towards the ionosphere where they may coherently backscatter. Using ionospheric

refraction, it is possible for HF waves to achieve multiple “hops” and produce backscatter at

large ranges from the radar.

Additionally, using Equation 3.17 one can see that changes to the electron density (which

changes the plasma frequency) in the ionosphere results in changes to the index of refraction.

If the density changes occur fast enough in time, as it does during auroral particle precip-

itation events, the changes to the index of refraction may produce induced Doppler shifts

measured by SuperDARN (e.g Scoular et al., 2013). This is because the Doppler shift is mea-

sured by observing the change in phase with time of a received signal and changes to the index

of refraction along the propagation path of a signal produce time varying changes to the path

length phase. This results in an additional apparent Doppler shift that is indistinguishable

from the Doppler shift due to motion of the target.
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Absorption

When the plasma density in the D region becomes enhanced due to proton storms, solar

flares, or high energy electron precipitation events, the increased electron density results in

enhanced absorption of HF radio waves propagating through the D region. When this occurs,

Z at HF frequencies is no longer negligible and the index of refraction becomes complex.

Figure 3.7 illustrates the effects of D region absorption during an X1.3 solar flare on 25

April, 2014. In the bottom panel of each plot, the X-ray power flux observed is plotted.

The top panels show plots of the backscatter seen by the five SuperDARN Canada radars,

where the colour scale denotes the signal to noise ratio of the backscatter measured in dB

(blue is small, red is large). The black region at the right in each panel shows the day-night

terminator. The left (right) panel of the figure shows the radar scatter seen before (during)

the solar flare event. Note that before the solar flare, the radars were observing significantly

more scatter and significantly stronger (higher signal to noise) scatter than was observed

during the solar flare. The latter is due to the increase in X-ray flux producing enhanced D

region electron density (where the electron–neutral collision frequency is large compared to

the radio wave frequency, Z > 0), resulting in absorption of the HF radio waves transmitted

by SuperDARN.

3.4 Standard Data Products

The main data product of SuperDARN is the global maps of F region ionospheric plasma

convection in both the Northern and Southern hemispheres. Figure 3.8 shows a convec-

tion map made by combining data from 13 individual SuperDARN radars using a spherical

harmonic regression procedure (Ruohoniemi and Baker , 1998a). Alternative data assimila-

tion techniques to the SuperDARN FIT technique have also been proposed for generating

convection maps (e.g. Fiori et al., 2010a; Cousins et al., 2013). Furthermore, SuperDARN

data may also be ingested into assimilative models, as in Cousins et al. (2015) where data

from SuperDARN and data from the Active Magnetosphere and Planetary Electrodynamics

Response Experiment (AMPERE) were combined to produce maps of both the electrostatic

and magnetic vector potentials.
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Figure 3.8: A SuperDARN convection map for the Northern hemisphere on 10 Decem-
ber 2011 from 8:38–8:40 UT. The contours indicate lines of equal electric potential. The
vectors indicate the F region plasma velocity. This map was generated using Virgina
Tech SuperDARN online Interactive Map Potential Plotting.

The primary data product of individual SuperDARN radars is the so-called line-of-sight

(LOS) velocity. The LOS velocity is the component of the velocity vector of the plasma

irregularities projected along the look direction of the radar beam. SuperDARN radars also

measure the signal-to-noise ratio (SNR) and the spectral width of the received signals.

Due to the multiple hop propagation that is possible at HF, SuperDARN radars receive

backscattered signals from the ground. Ground echoes typically have both low velocity and

low spectral width, so a first-order ground-scatter identification procedure used by Super-

DARN is to flag echoes with speeds v less than 30 m/s and spectral widths w less than 35

m/s. A more sophisticated probabilistic method developed by Blanchard et al. (2009) found
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that the ground scatter identification criteria

v < 33.1m/s+ 0.139w − (0.00133s/m)w2 (3.22)

more effectively identifies ground scatter. Additionally, in the mid-latitude regions, iono-

spheric echoes frequently have both low velocity and low spectral width meaning that they

are falsely identified as ground scatter. During geomagnetically quiet periods, mid-latitude

SuperDARN scatter should be characterized as ground or ionospheric in origin using the al-

gorithm developed by Ribeiro et al. (2011), which improves the number of correctly identified

ionospheric scatter echoes by 50% compared to the first-order method.

3.4.1 A New Density Data Product

When an instrument–transmitted frequency is the same as the plasma frequency, the signal

is reflected. This principle is used by ionosondes, which are scientific instruments used to

measure the vertical plasma density profile of the ionosphere by sweeping through a range of

transmission frequencies and recording that time delay between transmission and reception

(e.g. Chen et al., 2012). A SuperDARN radar can be thought of as a sort of oblique ionosonde

(except coherent scattering occurs instead of reflection) such that using the principles of the

Appleton-Hartree equation and multiple transmit frequencies, the electron density can be

inferred (Gillies et al., 2012). For example, in the scattering region, the index of refraction

ns for a SuperDARN transmitted signal is given by

n2
s = 1− f 2

p

f 2
, (3.23)

where fp is the plasma frequency in the scattering region and f is the radar transmitted

frequency. The Doppler velocity measured by the radar vm is influenced by the index of

refraction such that

vm = nsvs, (3.24)

where vs is the true Doppler velocity in the scattering region. Since the index of refraction

in the ionosphere is generally less than one at SuperDARN frequencies, this means that

in general, SuperDARN radars measure an underestimated velocity in the ionosphere. By

54



combining Equations 3.23 and 3.24 for two different transmitted frequencies, Gillies et al.

(2012) determined that the plasma frequency in the scattering region could be determined

using

f 2
p =

f 2
1 (1− v21/v

2
2)

(1− (v21f
2
1 )/(v

2
2f

2
2 ))

, (3.25)

where v1 and v2 are the velocities measured by the radar using frequencies f1 and f2 re-

spectively. Using a superposed epoch analysis of transmit frequency shifting events, Gillies

et al. (2012) was able to correct SuperDARN velocity measurements. This frequency shifting

analysis utilized 14× 106 events and was a statistical analysis.

From May 2012 to April 2013, a frequency shifting experiment utilizing the Kodiak Su-

perDARN radar in Alaska was designed and performed. I analyzed the data in an attempt to

retrieve plasma density measurements using the SuperDARN radars. This was to be one of

the original goals of this thesis, but it was not successful. Following a significant amount of

work, it was unclear whether retrieving plasma density measurements from individual Super-

DARN measurements would be possible. It was determined that the failure of the experiment

was due to the experiment design, which assumed that the uncertainty in the measured Su-

perDARN velocities was more accurate than it was and, more significantly, no reliable error

estimates were available. Additionally, investigating the SuperDARN signal processing code,

several fundamental potential improvements to the SuperDARN signal processing methodol-

ogy were identified. It became clear that in order to apply the frequency shifting technique

to shorter temporal scales, a major reworking of how SuperDARN parameters are obtained

and, more importantly, how they are constrained using accurate error estimates or error bars,

was required.

The result of this initial research work was a refocusing of my PhD research to improve

SuperDARN parameter determination and quantify and develop robust parameter error esti-

mates. Due to the importance of SuperDARN observations to the space physics community

(not just the frequency shifting technique) this research is critical. Global convection maps

and global modelling efforts (e.g. Gao, 2012) are vital to the community who benefit signifi-

cantly from improvements to SuperDARN data.

The next chapter provides a general introduction and overview of the signal processing

techniques and statistical methods that were used to develop a methodology for processing

55



SuperDARN data. In subsequent chapters, more detailed discussions of the signal processing

techniques that are used are provided. In Chapter 5 a new self-clutter estimation tech-

nique is presented, which is required to accurately account for the self-clutter contributed

to SuperDARN measurements due to using the multiple-pulse technique. In Chapter 6 the

statistical properties of SuperDARN measurements are presented, including how to use self-

clutter estimates to accurately obtain error estimates required to accurately fit SuperDARN

data. Chapter 7 presents a new fitting methodology that requires the use of the techniques

developed in Chapters 5 and 6.
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Chapter 4

Radar Signal Processing: General Concepts

and Techniques

To better quantify errors for measured SuperDARN data parameters, improvements to

SuperDARN signal processing techniques were required. Therefore, the majority of the

work performed for this dissertation was focused on signal processing. SuperDARN signal

processing begins with the complex voltage samples produced by the quadrature receivers and

ends with fitted data parameters, such as SNR, spectral width, and velocity, that researchers

typically utilize while studying the geospace environment. To extract the fitted parameters,

the voltage samples are processed using statistical methods, signal processing techniques,

and models of the scattering process.

Probability theory is central to processing SuperDARN signals, which are received from

volume scatter where a large number of randomly distributed scatterers contribute to the

total received signal. Probability theory provides knowledge of the probability distribution

or probability density function (PDF) of the received voltage samples. Using the PDF of the

voltage samples, statistical estimates of the autocorrelation function (ACF) and its variance

can be obtained. Finally, using signal processing techniques and a model of the ACF, fitted

parameters and their associated errors can be obtained. This chapter will discuss general

topics in probability theory and radar signal processing that are fundamental to the Super-

DARN signal processing techniques and methods that will be discussed in greater detail in

Chapters 5, 6, 7.
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4.1 Probability and Random Variables

Probability theory provides a set of mathematical techniques for characterizing the uncer-

tainty in radar measurements. In general, probability theory provides understanding for all

types of scientific measurements and the uncertainty in those measurements. Statistical mea-

surements and uncertainties are characterized as quantities called random variables, which

have statistical properties such as a mean, variance, and PDF. Using Estimator theory, the

statistical properties of quantities estimated using random variables can be determined. The

mathematical techniques used to estimate these properties are called estimators. The con-

cepts of probability seem to permeate much of radar signal processing with concepts such

as ambiguity and information playing central roles in developing optimal measurement tech-

niques and determining the range and Doppler resolution of the radar. In this section, some

general topics related to random variables and estimators used in SuperDARN radar signal

processing will be presented and discussed.

4.1.1 Probability Density and Statistics

For events with discrete outcomes, such as a coin toss, the probability of an event occurring

can be thought of as a fraction of equally likely possibilities1, half the time resulting in heads

and half the time resulting in tails (e.g. Woodward , 1960). Such outcomes are said to be

uniformly distributed. In the coin tossing example each individual outcome is a measure of

a random variable. In general, probability is not uniform and some events are more likely

to occur than others, in other words, the random variable will tend towards some outcomes

more often than others. In this case, it is useful to describe the probability using a probability

density function (PDF). Using continuous notation, a random variable x has a PDF p(x) (e.g.

Westfall and Henning , 2013). The probability of event A occurring can be written as

P (A) =

∫

A

p(x)dx, (4.1)

1Only ideally, of course. In reality, coins can land on their edge (Murray and Teare, 1993) and probability
of heads or tails depends on how the coin is tossed (Diaconis et al., 2007).
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where A is the range of values of x that correspond to event A. The total area of a PDF is

given by
∫ ∞

−∞

p(x)dx = 1, (4.2)

which means that the probability of all events must be equal to 1. A PDF can be characterized

by a number of important statistics, such as the mean and variance of the random variable.

The mean, µ, is given by

µ =

∫ ∞

−∞

xp(x)dx (4.3)

and the variance, σ2, is given by

σ2 =

∫ ∞

−∞

(x− µ)2p(x)dx. (4.4)

In general, the expectation value E[f(x)] of a function f(x) operating on a random variable

x is given by

E[f(x)] =

∫ ∞

−∞

f(x)p(x)dx. (4.5)

This equation is sometimes referred to as the law of the unconscious statistician, since one

may obtain the expectation value of f(x) without knowledge of the PDF of f(x) (Westfall

and Henning , 2013). If f(x) = x, then Equation 4.5 reduces to Equation 4.3. Unless

specified otherwise, the expectation value will refer to the mean of a random variable. In the

context of radar experiments, the expectation value is the value of the random variable for

which convergence is expected after taking a sufficiently large number of measurements. For

example, for an ideal coin toss, a small number of coin tosses may result in more heads than

tails, but the expectation value of obtaining “heads” after a large number of coin tosses is

50%.

To describe the probability of some events occurring may require two or more random

variables. For example, the probability of drawing a red face card from a deck of cards

depends on the probability of the colour of the card being red and the probability of the card

being a Jack, Queen, or King. For these events, a multivariate PDF of random variables is

used. For example, for random variables x and y, the PDF is written as p(x, y). The marginal

distribution can be useful to examine the PDF of one random variable of a multivariate PDF.

For the multivariate distribution p(x, y), the marginal distribution of x can be obtained by
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integrating over the domain of y, such that

p(x) =

∫ ∞

−∞

p(x, y)dy. (4.6)

Conditional Probability

Conditional probability describes the probability of one event A given information that an-

other event B has occurred. If the information about B does not modify the probability,

or the probability of A does not depend on the probability of B, then the events are called

independent. However, if the addition of information about one event changes the probability

of another, then the probability of A given B, is given by

P (A|B) =
P (A ∩ B)

P (B)
, (4.7)

where P (A ∩ B) is the probability of A occurring without B and P (B) is the probability

of B occurring (Woodward , 1960). It is important to note that in general P (A|B) is not

equal to P (B|A). For example, an airport radar having a 90% chance of detecting a plane

is the probability that a plane is detected given that there is a plane to detect. Here, event

B is “there is a plane” and event A is “detecting a plane”, such that P (A|B) = 90%. It

may be that the radar falsely detects a plane even when there is in fact no plane there, so

the probability of there being a plane when a plane is detected P (B|A) is larger than 10%.

Conditional probabilities can be properly reversed using Bayes’ theorem, given by

P (B|A) = P (B)P (A|B)

P (A)
. (4.8)

4.1.2 Gaussian Random Variables

The type of random variable most fundamental to SuperDARN radar measurements is the

Gaussian random variable. Gaussian random variables are characterized by the Gaussian (or

normal) distribution. If x is a Gaussian random variable, with mean x̄, and variance σ2, it

has a PDF given by

p(x) =
1√
2πσ2

exp

(

−(x− x̄)2

2σ2

)

, (4.9)
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where p(x) is usually denoted as N (x̄, σ2). As shown in Chapter 6, SuperDARN voltage

samples are Gaussian random variables due to the fact that targets for SuperDARN are

volume filling such that a large number of independent randomly distributed irregularities

scatter the signal back to the radar. This is due to the Central Limit Theorem, which states

that the PDF of a random variable that is the sum of a “large” number of independent and

identically distributed random variables is given by a Gaussian distribution (e.g. Ulaby et al.,

1982; Levanon and Mozeson, 1988; Westfall and Henning , 2013). What is “large” enough

depends on the PDF of the random variables being summed, but the resulting random

variable becomes increasingly more Gaussian as the number of variables contributing to the

sum increases. For SuperDARN voltage samples to be Gaussian distributed, the illuminated

volume is required to be a “large” number of wavelengths in extent. Additionally, the summed

phase contributions of the individual scatterers is uniformly distributed in [0, 2π] because they

are randomly spatially distributed (Ulaby et al., 1982).

4.1.3 Statistical Estimation

Discriminating between relevant and irrelevant information in the signals received by Super-

DARN radars is important. The voltage samples produced by the radar are a random sample

of the plasma population. The characteristics of the plasma population has an unknown

probability distribution that is a function of some plasma parameters. These parameters

characterize the population and therefore the parameters also characterize the sample data.

Using statistical estimation techniques and more specifically using estimator theory, an at-

tempt to estimate the parameters of the plasma population from the sample of data can be

made (e.g. Fisher , 1958; Sampath, 2005).

An estimator2 is a mathematical function that is used to estimate a parameter from a

sample of measurements (Sampath, 2005). The estimated parameter, or estimand, is an

estimate of the population parameter using the sample (Westfall and Henning , 2013).

An estimator itself is a random variable with a PDF, mean, and variance. If an estimator

2Interestingly, Fisher (1958) appears to dislike the term “estimator”, as they claim “It is difficult in any
particular case to know whether by “estimator” is meant a method of estimation, or the algebraic specification
of the estimate reached by that method, or the particular value in a single instance.” This may be why terms
such as “Estimand” are used by later authors such as Westfall and Henning (2013).
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is unbiased and the PDF of the estimator narrows (the variance decreases) about the value

of the population parameter as the numbers of samples increases, then the estimator is called

a consistent estimator. The expectation value of an estimator is the expected value of the

parameter being estimated, which is the value of the parameter for the population that

was sampled. Bias is the difference between the expectation value of an estimator and the

parameter being estimated. If the expected value of the estimator is equal to its population

parameter, then the estimator is unbiased. The mean squared error (MSE) of an estimator

provides a quantitative measure of the quality of the estimator. The MSE of an estimator Ê

with expectation value E is given by

MSE = 〈
(

Ê −E
)2

〉 = Var(Ê)− Bias(Ê), (4.10)

where Var(Ê) and Bias(Ê) is the variance and bias of the estimator, respectively. The

notation 〈...〉 will be used to denote the expected value throughout this dissertation. If the

bias is 0, then the MSE of an estimator is equal to the variance of the estimator.

Efficiency of Estimators

The problem of estimation involves designing the best estimator for the task at hand. The

best estimator is one that is said to be most efficient, that is, the best estimator is one which

has the least MSE for a given number of samples (e.g. Fisher , 1958). Inefficient estimators

produce larger variances than efficient estimators and require a larger number of samples to

obtain the same MSE as a more efficient estimator. Inefficient estimators can be useful in that

they might be computationally faster, while still accurate enough to produce a meaningful

estimate.

For example, SuperDARN radars are used to determine the power of signals received as a

function of range, or the echo power range-profile, of the ionospheric targets. The estimated

echo power is produced using the measured voltage samples and a mathematical function.

The estimated power is an estimate of the average power that would be scattered back from

the plasma if an infinite number of measurements could be made. If there is a problem

with the radar hardware such that a voltage offset was present in every measurement, or the

estimator was poorly constructed, the estimated echo power will be biased; that is, it will
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have an offset compared to what is expected. For this example, a more efficient estimator

would be one that includes terms to remove the hardware offset.

The power and autocorrelation function estimators used to process SuperDARN radar

data are presented and discussed in detail in Chapters 5 and 6. The notation used in these

chapters and throughout this dissertation is that a tilde is used to denote a variable as a

measurement (e.g. Ẽ) and a hat is used to denote a variable as an estimator (e.g. Ê).

Finally, it must be mentioned that SuperDARN ACF estimates presented in this dis-

sertation assume that the voltage samples used are independent and identically distributed

Gaussian random variables. This concept is more thoroughly explored in Chapter 6, but

briefly, the lags of the ACF are estimated by “sharing” voltage samples that were used to

estimate other lags. As such, the ACF lag estimates have an additional error term that

has not been addressed in this dissertation. As a result, the ACF estimator used by Su-

perDARN (see Equation 4.46) is not the most efficient due to additional variance from the

error correlations (e.g. Farley , 1969). This has an important implication for Chapter 7 since

the least-squares regression estimator has a variance that is biased “downwards” making the

least squares estimates of the SuperDARN fitted parameters (power, velocity, and spectral

width) seem to have less fitting error than they actually do (e.g. Haines , 1978). Although

this is a second order effect and is not expected to produce a significant underestimation of

the fitted errors, it should be addressed in future work.

4.2 Radar Waveforms and Measurements

Most modern radar applications focus on obtaining both range and Doppler information

about a target. In communication systems, such as WiFi, information is encoded and trans-

mitted and then received and decoded. In contrast, in radar, the transmitted signal provides

a carrier onto which the target encodes information. A receiver must then decode the in-

formation contained in a returned signal by accounting for both the transmitted signal and

any modifications to the transmitted signal that may occur as the signal propagates. The

optimal signal that should be transmitted by the radar depends on several things, including:

1. the range-Doppler characteristics of the target,

63



2. the desired accuracy of the measurement,

3. the physics of the radio wave propagation and interaction, and

4. the capabilities of the hardware and software of the radar.

Points 3 and 4 have already been discussed in Chapter 3 for SuperDARN radars. This section

will address points 1 and 2 and introduce radar concepts that influence the accuracy of a

measurement, including general concepts about radar waveform design.

Throughout this section and this dissertation, it is assumed that the targets being mea-

sured by SuperDARN radars exhibit weak-sense stationarity with respect to the measure-

ment time-scales. This means that it is assumed that the mean and autocorrelation of the

ionospheric irregularities does not appreciably change in the time it takes to measure the

irregularities. This is a common ionospheric radar constraint3, which places fundamental up-

per limits on appropriate measurement time-scales that can be used (e.g. Hysell et al., 2008;

Nikoukar et al., 2012). Strictly speaking, for a weak-sense stationary process, the mean of

the voltage samples m(t) does not change in measurement time tm, namely

m(t) = m(t + tm), (4.11)

and the autocorrelation R does not depend on the times when the measurements were taken,

t1 or t2, but on the time difference between measurements

R(t1, t2) = R(t1 − t2). (4.12)

Weak-sense stationarity is a fundamental requirement for the multiple-pulse technique to be

valid, especially the condition described by Equation 4.12. The multiple-pulse technique does

not measure all lags of SuperDARN ACF simultaneously, nor does it generally measure them

in order (Farley , 1972). Proper treatment of non-stationary plasma irregularities and the

resulting consequences for SuperDARN are beyond the scope of this dissertation. So long

as a process is weak-sense stationary, by the Wiener-Khinchin theorem, all of the spectral

information about the process is specified by the ACF. This means that as long as ionospheric

irregularities are weak-sense stationary, all of the desired information received by the radar

is contained in the SuperDARN ACF.

3There does not seem to be any literature that explores the concept of stationarity for SuperDARN radars.
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4.2.1 Signal, Noise, and Clutter

Some of the most fundamental concepts in radar are signal, noise, and clutter. Signals carry

the desired information about a radar target. Noise is unwanted interference that limits

sensitivity of radar measurements and may contaminate the information carried by the signal,

depending on the signal-to-noise ratio (SNR). Clutter is unwanted signal-like interference,

such as echoes from targets that are not desired targets (satellites and ground clutter are

typical clutter sources for ionospheric radar) (e.g Skolnik , 1980; Wehner , 1987; Turunen

et al., 2000; Blanchard et al., 2009). The main objective in radar is to gain information from

what is measured, which is always a sum of signal, noise, and clutter, and to be efficient in

extracting all the information that exists in the measurement (e.g Woodward , 1960). The

challenge is to eliminate the unwanted information (noise and clutter), while retaining what

is wanted (signal).

Noise is produced by many sources, including the hardware and electronics that are used

to transmit and receive signals. Thermal noise constitutes the lower limit of the noise that

can be expected. The thermal noise power in a received signal NT is given by

NT = kBTBn, (4.13)

where kB is the Boltzmann constant and T is the temperature of the receiver hardware.

The receiver bandwidth Bn is the integral over the range of frequencies that the receiver is

sensitive to. The bandwidth is given by

Bn =

∫∞

−∞
|H(f)|2df

|H(f0)|2
, (4.14)

where H(f) is the frequency response of the receiver filter, and f0 is the frequency with

the largest response. Typically, Bn is approximately equal to the half-power bandwidth of

the filter as long as the filter is well-designed (Skolnik , 1980). For SuperDARN radars, the

dominate contribution to noise is from atmospheric and man-made sources (Landee et al.,

1957). Noise can be mitigated from measurements by measuring the noise and subtracting

it from measurements that contain both signal and noise.

Chapter 5 discusses noise and noise processing for SuperDARN radars in greater detail.

The chapter also discusses the dominant source of clutter to SuperDARN measurements and
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derives novel estimation and mitigation techniques. Without the proper identification of

signal and without properly accounting for and/or mitigating the noise and clutter contribu-

tions to radar measurements, it is impossible to accurately quantify the uncertainty in the

measurements and fitted parameters (see Chapters 6 and 7). The relative contributions of

signal, noise, and clutter also affect the fundamental range and Doppler resolution of the

radar measurements.

4.2.2 Matched Filtering

The receiver stage in a radar includes filtering to limit the contribution of noise and inter-

ference from frequencies that are not of interest. Matched filtering is a type of filtering that

maximized the SNR of the received signal. The impulse response of a filter that maximizes

the SNR can be derived in the following manner (e.g Levanon and Mozeson, 2004; Richards

et al., 2010). In the frequency domain, the SNR of a received signal that has been filtered is

given by
(

S

N

)

=
|
∫∞

−∞
H(ω)S(ω) exp(jωt)dω|2
πN0

∫∞

−∞
|H(ω)|2dω (4.15)

where H(ω) and S(ω) are the frequency responses of the filter and the signal, respectively,

and N0 is the noise power. Using the Schwarz Inequality

|
∫ ∞

−∞

H(ω)S(ω)dω|2 ≤
∫ ∞

−∞

|S(ω)|2dω
∫ ∞

−∞

|H(ω)|2dω, (4.16)

equation 4.15 can be simplified to

(

S

N

)

≤ 1

πN0

∫ ∞

−∞

|S(ω)|2dω, (4.17)

which implies that

H(ω) = KS∗(ω) exp(−jωt), (4.18)

where K is an arbitrary constant. This result shows that a matched filter is the filter that is

a time-reversed and complex-conjugate copy of the signal.

Originally, matched filtering was approximated by designing analogue filtering stages

that approximated the shape of the waveform being transmitted. For coded waveforms,

complex analogue circuits were required to provide matched filtering (Skolnik , 1980). Modern
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digital radar systems directly digitize both the transmitted and received signals and can use

computers to matched filter the signals using samples of the transmitted waveform.

4.2.3 Waveform Design

The accuracy of a radar measurement is dependent on how the measurement was made, or

more specifically, the waveform that was transmitted. Fundamentally, waveform design is a

global optimization problem where competing constraints need to be balanced. As will be

discussed, the range and Doppler resolutions, maximum unambiguous range and Doppler,

propagation conditions, and hardware and software complexities need to be considered. The

optimal transmitted waveform therefore depends on what an experiment is trying to accom-

plish.

Assuming that radar hardware and software are not the limiting factors, the transmitted

waveform determines the range resolution. The range resolution στ for a small hard target

is determined by the bandwidth of the transmitted waveform fB using

στ =
c

2fB
, (4.19)

where c is the speed of light (e.g. Woodward , 1960; Levanon and Mozeson, 1988; Richards

et al., 2010). Equation 4.19 is sometimes referred to as the Rayleigh resolution, since the

equation is derived using the Rayleigh criterion (Richards et al., 2010).

The simplest waveform for pulse-Doppler radars is a single pulse. The bandwidth of a

single pulse is the inverse of the pulse length. Using Equation 4.19, the range resolution of

a single pulse increases as the pulse length decreases. It is important to note that the SNR

of the received signal is also a function of the pulse length, so shortening the pulse length tp

without increasing the transmitted power will result in a decrease in SNR. This decrease may

result in the target no longer being distinguishable from the noise. Increasing the bandwidth

of a pulse by using some kind of modulation scheme, such as phase coding, also improves the

range resolution.

Similar to range resolution, the Doppler resolution of a radar is dependent on the trans-

mitted waveform. In general, the Doppler resolution is given by the half-width of the Doppler-

ambiguity function, which will be discussed below, but first a few analytic expressions will
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be presented. The Doppler resolution ∆fD of a single pulse is given by

∆fD =
1

tp
, (4.20)

where tp is length of the pulse (e.g Wehner , 1987; Richards et al., 2010). Essentially, the

Doppler resolution increases as the time observing the target increases. For example, using

Equation 4.20, to obtain a Doppler resolution of 10 m/s at 10 MHz, a pulse width of 3 seconds

is required. This is only practical for bistatic radars systems and poses significant challenges

for range resolution without any pulse coding.

A more practical technique that can be used by monostatic radar and allows both a

useful range resolution and useful Doppler resolution involves transmitting a coherent train

of pulses. Here, coherent means that both the amplitude and phase of the received signals

are recorded. For a coherent pulse train, the Doppler resolution is given by

∆fD ≃ 1

nTR
, (4.21)

where n is the number of pulses and TR is pulse spacing, also known as the interpulse-period

(e.g Ulaby et al., 1982). Using Equation 4.21, the Doppler resolution can be increased by

increasing the number of pulses in the train. Note that the product nTR = 3 s is needed to

achieve the same 10 m/s Doppler resolution at 10 MHz as for Equation 4.20.

If a radar target is at a range greater than cTR/2, transmitting several pulses in a coherent

train results in a range ambiguity. This ambiguity is fundamentally caused by not being able

to discern which echoes being received by the radar are resulting from which pulses. Addi-

tionally, there is an upper limit on the largest Doppler shift that can be measured using a

sequence of pulses. Therefore, proper operation of pulsed-Doppler radars requires an under-

standing of two additional concepts: maximum unambiguous range (MUR) and maximum

unambiguous Doppler (MUD). The MUR is the largest distance that can be measured be-

tween transmission pulses without range aliasing. Similarly, the MUD is the largest Doppler

shift that can be measured according to the Nyquist frequency (Ulaby et al., 1982; Skolnik ,

1980; Levanon and Mozeson, 2004; Richards et al., 2010, e.g.). For a train of transmitted

pulses with equal time-spacing TR,

MUR =
cTR

2
, (4.22)
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MUD = ± λ

4TR
, (4.23)

where c is the speed of light and λ is the transmitted wavelength. Increasing TR causes an

increase in the MUR, but it also causes a decrease in the MUD. It is clear that if a radar

target requires both a very large MUR and a very large MUD, the experiment designer needs

to resolve a paradox, which is most commonly known as the Doppler Dilemma. For example,

SuperDARN radars must be able to measure plasma velocities >1 km/s at ranges >3000 km

at a transmission frequency of, say, 10 MHz (λ=30 m). Using these values, Equation 4.23

yields TR ≈ 7.5 ms and Equation 4.22 the MUR ≈ 1123 km, meaning that it is not possible to

unambiguously resolve targets moving faster than 1 km/s at ranges greater than 1123 km by

transmitting a coherent pulse train. The multiple-pulse technique, introduced in Chapter 3

resolves this paradox at the expense of SNR.

Routinely, SuperDARN radars transmit 300 µs pulses, resulting in a range resolution, as

determined by Equation 4.19, of στ = 45 km. Generally, SuperDARN radars improve range

resolution via shortening the pulse length only, with the shortest pulse lengths being 100 µs

corresponding to 15 km range resolution. Experiments have been performed by the Alaskan

SuperDARN group using Barker-coded pulses and these have attained a range resolution of

better than 20 km, however these experiments have not been widely repeated due to radio

licensing concerns regarding the increased transmitter bandwidth required (Bill Bristow,

private communication, 2012).

So far, range resolution for SuperDARN radars has been presented in the context of

“hard” point-like targets. However, as was discussed in Chapter 3, ionospheric irregularities

are “soft” beam-filling targets. For ionospheric radars, Equation 4.19 provides a fundamental

lower limit on the maximum attainable range resolution. The ionosphere is significantly

larger than the transmitted pulse, so for ionospheric volume filling targets, this received

pulse is effectively lengthened. For example, for a rectangular pulse shape, this means that

the received power comes from a trapezoidal area that is larger than the pulse that was

transmitted (Ulaby et al., 1982). SuperDARN radars typically record voltage samples with

gate sizes equal to the transmitted pulse-length. Typically SuperDARN range gates are 45 km

and 15 km for the 300 µs and 100 µs pulse lengths respectively, but the range resolution for the

same pulse lengths is 90 km and 30 km respectively. Therefore, it is important to remember
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that the range gate size (given by cts/2 where ts is the sampling time) is not the same

thing as the range resolution. This is especially important to remember when interpreting

SuperDARN data, since the data for a particular range gate is a weighted sum of the signals

from the range gate itself and the adjacent range gates. A good approximation of the range

resolution for ionospheric radars, such as SuperDARN radars, is to multiply Equation 4.19

by 2. This means that for routine operations, SuperDARN radars have a range resolution

of ≈90 km, but can attain a range resolution of ≈30 km by shortening the pulse length to

100 µs. This approximation works best when pulses are approximately rectangular in shape.

To obtain the true range and Doppler resolutions for any pulse or pulse sequence, one must

calculate the half-power width of the range-Doppler ambiguity function.

Ambiguity Functions

An ambiguity function is a mathematical function used in pulsed radar signal processing

that provides a quantitative measure of the quality of a transmitted waveform (Woodward ,

1960). Generally, a range-Doppler ambiguity function, sometimes referred to as a delay-

Doppler ambiguity function, describes what combinations of target ranges and Doppler shifts

produce indistinguishable signals when received by the radar (e.g. Woodward , 1960; Levanon

and Mozeson, 2004; Richards et al., 2010). The delay-Doppler ambiguity function χ(τ, ν) is

calculated from the magnitude of the convolution of the transmitted waveform u(t) with its

Doppler-shifted matched-filter response u∗(t+ τ) exp(j2πνt), using

|χ(τ, ν)| = |
∫ ∞

−∞

u(t)u∗(t+ τ) exp(j2πνt)dt|, (4.24)

where u(t) is the complex-valued function describing the transmitted waveform, τ is the time-

delay to a target at range R (e.g. τ = 2R/c), and ν is Doppler frequency. The range-Doppler

ambiguity function has a maximum at τ = 0 and ν = 0 and is symmetric about the origin.

It also has unity volume under the surface, such that

∫ ∞

−∞

∫ ∞

−∞

|χ(τ, ν)|2dτdν = 1. (4.25)

Proofs of these properties and derivations are widely available in the literature (e.g. Wood-

ward , 1960; Levanon and Mozeson, 2004;Richards et al., 2010). The most important property
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of the ambiguity function is constant unity volume, meaning that waveform design is fun-

damentally about making compromises. If an undesirable peak in the ambiguity function is

removed by changing the transmitted waveform u(t), then that the volume that was under

that peak needs to be accounted for elsewhere.

A single rectangular pulse, defined by the rect function

u(t) =
1√
tp
rect

t

tp
, (4.26)

where tp is the length of the pulse, has a range-Doppler ambiguity function (Levanon and

Mozeson, 2004) given by

|χ(τ, ν)| =
∣

∣

∣

∣

(

1− |τ |
tp

)

sin[πtp(1− |τ |/tp)ν]
πtp(1− |τ |/tp)ν

∣

∣

∣

∣

, |τ | ≤ tp. (4.27)

Setting ν = 0 yields the delay ambiguity function of a rectangular pulse

|χ(τ, 0)| = 1− |τ |
tp

, |τ | ≤ tp, (4.28)

which is simply a triangular shaped function. The half-power width of Equation 4.28 yields

the range resolution of the pulse. The half-power width is tp, meaning that the range reso-

lution of a rectangular pulse for ionospheric radar is equal to the pulse length, as previously

discussed. Setting τ = 0 yields the Doppler ambiguity function of a rectangular pulse

|χ(0, ν)| =
∣

∣

∣

∣

sin πtpν

πtpν

∣

∣

∣

∣

, (4.29)

which is the well known sinc function. The Doppler resolution is given by the half-power

width of Equation 4.29, ≈ 1.2/tp, which is similar to the Doppler resolution given by Equa-

tion 4.20.

The ideal ambiguity function is a “thumbtack”, or delta function, where the ambiguity

function is 0 when |τ |, |ν| > 0, but this would require an infinitely long white-noise waveform

(Levanon and Mozeson, 2004). For finite transmitted waveforms, at best an increased “noise”

floor of the ambiguity is achieved with a narrow range-Doppler peak centered at τ = ν =

0. The most promising transmitter waveforms for SuperDARN radars that can achieve a

thumbtack-like ambiguity function are those produced using long pseudo-random phase codes

(Richards et al., 2010), since the code approximates white noise. However, long waveforms
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are challenging to implement in monostatic radar configurations due to the large dynamic

range required to measure both the transmitted and received signals simultaneously. If the

transmitting and receiving elements can be sufficiently isolated, such as by using a co-located

pair of antennas, long pseudo-random waveforms may become more practical. In Chapter 5,

the ambiguity function is used to analyse the self-clutter produced by the multiple-pulse

technique used by SuperDARN radars.

4.3 Regression Techniques

In the previous section, a brief background in how radars use different waveforms to achieve

measurements with desired range and Doppler resolution was presented. This section will

describe how radars extract desired information from the measured voltage samples using

regression techniques, with a specific focus on the least-squares regression techniques used to

obtain the SuperDARN fitted parameters, power, spectral width, and Doppler velocity.

Regression techniques use probability theory to determine the likelihood of a physical

model being consistent with the measured data. In general, some kind of mathematical

function that quantifies the “closeness” of the model to the data as a function of the physical

parameters is minimized until the physical parameters are found that produce the “closest”

fit of the model to the data. Confidence intervals, which describe the likelihood of the

physical parameters having other values, are then constructed. The confidence intervals

can be interpreted as error bars for the fit. The confidence intervals and the quality of the

regression are a function of the quality and quantity of the data. More and better data reduces

the uncertainty in the parameters being fitted for. Essentially, data provides information that

constrains the set of possible values for the parameters (Westfall and Henning , 2013).

To perform a regression, first a forward model is developed that predicts what is expected

to be measured depending on the physical parameters. For ionospheric radars, the forward

model predicts what is expected to be measured by the radar given ionospheric parameters.

Regression techniques are then used to “fit” the forward model to the data (measured signals)

by changing the values of the physical parameters until the best fit of the model to the data

is achieved. In SuperDARN radar signal processing, one of the most commonly used forward
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models is a model of the ACF R(τi) given by

R(τi) = Pe−2πwdτi/λej4πvdτi/λ, (4.30)

where P , wd, and vd are the lag-zero signal power, spectral width, and Doppler velocity,

respectively, λ is the wavelength of the transmitted radar pulses, and τi is the lag time

(e.g. Ribeiro et al., 2013a). Comparing the model with an ACF measured by a SuperDARN

radar, the values of P , wd, and vd are changed until values of the parameters are found that

“best match” the model with the data. The “best match” is a quantitative measure that is

dependent on the regression technique used.

4.3.1 Least-Squares Regression

To extract parameters from received signals, SuperDARN signal processing utilizes least-

squares regression techniques. The metric used to determine the “best match” for least-

squares is the chi-squared, or χ2, sum given by

χ2 =
N
∑

i

(

di −mi

σi

)2

, (4.31)

which determines the squared difference between N measurements (data) di and N model

values mi all normalized by the standard deviation of the measurements σi (e.g. Haines ,

1978; Press et al., 1986; Westfall and Henning , 2013). If σi = 1, then the technique is called

ordinary least-squares regression; otherwise, it is known as weighted least-squares regression.

The term in the brackets is called the residual and is a random variable with a PDF, mean,

and variance. If the residual is a Gaussian random variable, then χ2 is a random variable

characterized by a chi-squared distribution, hence the notation (e.g. Simon, 2007).

As the name suggests, the goal of least-squares regression is to minimize the χ2 sum.

The model values mi are dependant on the physical parameters and the physical parameters

are modified until values are found that produce the minimum possible χ2. Confidence

intervals for the “best-fit” parameter values are then calculated. Least-squares regression is

fundamentally a global-minimum search problem, which can either be simple, if the model

is linear and the number of parameters is low, or complex, if the model is non-linear and the

number of parameters is large.
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4.3.2 Linear Least-Squares Regression

If the model used to produce values mi in Equation 4.31 is linear, analytic solutions for the

best-fit parameters can be derived, which significantly simplifies the regression process (e.g.

Press et al., 1986). To obtain the analytic solutions, first start with the χ2 sum

χ2 =

N
∑

i

(

yi − a− bxi

σi

)2

, (4.32)

where yi are the dependent variables (data) obtained at independent variable values xi, and

a and b are the parameter values of the linear model, specifically the y-intercept and slope,

respectively. To minimize χ2, the derivative of χ2 with respect to each parameter is taken

and set to zero, obtaining

δχ2

δa
= 2

N
∑

i=1

yi − a− bxi

σ2
i

= 0, (4.33)

δχ2

δb
= 2

N
∑

i=1

xi(yi − a− bxi)

σ2
i

= 0. (4.34)

These equations can be rewritten as a system of linear equations with 2 equations and 2

unknowns

aS + bSx = Sy, (4.35)

aSx + bSxx = Sxy, (4.36)

where the sums S, Sx, Sy, Sxx, and Sxy are given by

S =
N
∑

i=1

1

σ2
i

, Sx =
N
∑

i=1

xi

σ2
i

, Sy =
N
∑

i=1

yi
σ2
i

, (4.37)

Sxx =

N
∑

i=1

x2
i

σ2
i

, Sxy =

N
∑

i=1

xiyi
σ2
i

. (4.38)

Solving the system of linear equations yield analytic expressions for a and b

a =
SxxSy − SxSxy

∆
(4.39)

b =
SSxy − SxSy

∆
(4.40)

where ∆ is the determinant given by

∆ = SSxx − (Sx)
2. (4.41)
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In this way, the best-fit values of a and b are analytically determined using computationally

simple operations. A more detailed discussion about the usage of linear regression in fitting

SuperDARN measured ACFs is found in Chapter 7.

The variance and covariance of the fitted parameters are given by

σ2
a =

Sxx

∆
, σ2

b =
S

∆
, (4.42)

and

σ2
ab =

−Sx

∆
, (4.43)

respectively. The variance and covariance are used to construct confidence intervals for the

fitted parameters.

4.3.3 Non-Linear Least-Squares Regression

If the model is non-linear, such as 4.30 (which is typically used by SuperDARN), there is no

generally applicable analytic solution when solving for the best fit parameters. One possible

technique is to perform a brute force global search for the parameter values that produce a

minimum χ2, however if the number of parameters in the model is M , the search space scales

exponentially with M , so this brute force method is computationally expensive and slow.

For example, to find the minimum for a 2 parameter model using a grid of 1000 values of

each parameter requires calculating 106 χ2 values, and a model depending on 3 parameters

would require calculating 109 χ2 values.

There are other techniques for solving non-linear least squares (such as particle swarm

optimization (e.g. Liao et al., 2011)), but the most commonly used non-linear least-squares

technique is the Levenburg-Marquardt algorithm (e.g. Levenburg , 1944; Marquardt , 1963;

Press et al., 1986; Westfall and Henning , 2013). The Levenburg-Marquardt algorithm re-

quires an initial guess of the best-fit parameters and then iteratively determines the best

way to perturb the model parameters in the “direction” that decreases the χ2, using finite-

difference approximations of the derivatives of the χ2 with respect to each of the parameters.

The algorithm then updates the initial guess of the best-fit parameters in the direction of

decreasing χ2 while also modifying the size of the step in that direction such that χ2 al-

ways decreases. The iterative process continues until the change in χ2 is smaller than some
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user–defined threshold value, at which point the final value of the parameters is the best-fit

value.

A caveat of the Levenburg-Marquardt algorithm is that it finds a minimum in χ2, but

that minimum may not be the global minimum. The minimum χ2 value found is highly

sensitive to the shape of the χ2 surface, which may have many local minima that change

location depending on the data being fitted, and it is highly sensitive to the initial guess of

the best-fit parameters. Chapter 7 contains a detailed discussion about the application of the

Levenburg-Marquardt algorithm as applied to fitting SuperDARN ACFs and a new fitting

methodology.

4.3.4 Confidence intervals

Confidence intervals are essentially errors bars for fitted parameters. More strictly speaking,

for least-squares regression, a confidence interval quantifies the probability of obtaining values

of a fitted parameter that would lie within the confidence interval if the experiment were

repeated. For example, for a fitted parameter µ with a confidence interval 24.39 < µ < 29.23,

according to Westfall and Henning (2013), the most rigorous and accurate description of the

confidence interval for µ is the following: “Since µ will lie within the upper and lower limits

of similarly constructed intervals for 95% of the repeated samples, my sample is likely to be

one of those samples where µ is within the upper and lower limits, and I am therefore 95%

confident that µ is between 24.39 and 29.23”. The confidence interval also quantifies how the

value of the fitted parameter changes with a change in χ2.

When the residuals of the χ2 sum are “small”, they are Gaussian distributed random

variables and a confidence interval for a fitted parameter can be constructed using a change

in the chi-squared value, a ∆χ2 (e.g. Press et al., 1986). The ∆χ2 and standard deviation of

the fitted parameter σµ̂ can be used to construct the confidence interval from the standard

deviation of the fitted parameter using

δµ̂ = ±
√

∆χ2σµ̂. (4.44)

For a single parameter fit, a 95% confidence interval can be constructed using a ∆χ2 = 4,
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resulting in

δµ̂ = ±2σµ̂. (4.45)

When the residuals are not small, they are generally not Gaussian distributed and thus a

confidence interval for the fitted parameters cannot be constructed using the above method.

Instead, confidence intervals must be constructed by tracing along the chi-squared curve,

moving up by ∆χ2 from the minimum best-fit χ2
min. The values of the fitted parameters at

χ2
min+∆χ2 bound the confidence interval for the fitted parameters. This method is known as

the “constant chi-square boundary as confidence limits” and will be discussed in more detail

in Chapter 7.

4.4 SuperDARN Signal Processing

SuperDARN signal processing specifically requires the concepts discussed in this chapter,

beginning with the statistical properties of the voltage samples recorded by the radar receiver

and ending with the least-squares regression used to obtain the fitted parameters, power,

spectral width, and line of sight Doppler velocity. This section will provide a broad overview

of SuperDARN signal processing, including a discussion about the general workflow required

to process the voltage samples into ACFs and the ACFs into the fitted data products. The

specific details regarding signal reception, filtering, and digitization, including the hardware

used to perform these tasks, are radar dependent. A proper treatment of the receive chain for

SuperDARN radars would require a dedicated chapter and is beyond the scope of this thesis.

For the purposes of this thesis, it is sufficient to assume we have been provided complex

voltage samples from a quadrature receiver and proceed from there.

The volume of ionosphere sampled by SuperDARN radars is much larger than the wave-

length of HF radio waves. As discussed in Chapter 3, the ionospheric irregularities that

contribute to scatter must be half the radar wavelength in scale. This means that it can be

reasonably assumed that the volume contains a large number of randomly distributed scat-

terers, such that any HF signal scattered by this volume could be characterized as the sum

of a large number of individually scattered signals. As will be discussed in Chapter 6, the

consequence of this is that the voltage samples recorded by SuperDARN radars are Gaussian
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random variables. Since all later stages of the signal processing workflow operate on the volt-

age samples or quantities derived from the voltage samples, it is of fundamental importance

that the statistical properties of the voltage samples are known. This is especially important

when performing error analysis.

4.4.1 Current SuperDARN Signal Processing

The following summarizes how SuperDARN presently4 processes measured voltage samples

into the SuperDARN ionospheric parameters power, spectral width, and velocity. The first

step in SuperDARN signal processing is to obtain gated (binned) complex voltage samples

from the quadrature receiver at the radar. This is performed at the radar site and the

voltage samples are generally not saved for later usage. However there is an option to save

the voltage samples and they are stored in an iqdat file. The format of this file is given in

Appendix D.1. A set of voltage samples is collected for each multiple-pulse sequence that is

transmitted. Several of these voltage sets are then used to obtain a time-domain estimate of

the complex radar auto-correlation function (ACF). The multiple-pulse sequence samples the

ionospheric irregularities at different lag times such that using the received voltage samples

Ṽ (t), a mean value of a lag of the ACF can be estimated from K pulse sequences using

R̂(τ) =
1

K

K
∑

k=1

Ṽk(t)Ṽ
∗
k (t+ τ), (4.46)

where R̂(τ) is an estimate of the mean value of the ACF at lag time τ . This estimate is

obtained from random variables (the voltage samples) and is therefore a random variable

with a probability distribution function. The statistical properties of ACF estimates are

discussed in detail in Chapter 6. The mean ACF is recorded in a rawacf file so it can

be processed at a later time. The desired ionospheric parameters (power, spectral width,

and velocity) are then obtained by processing the rawacf files and fitting the ACFs using

least-squares regression.

Weighted linear least-squares regression is applied to the magnitude and phase of the

ACFs to obtain the ionospheric parameters. More details of how this fitting is performed

4At the time of this writing, Autumn 2017.
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are presented in Chapter 7, but briefly, the power and spectral width are obtained by fitting

the magnitude of the ACF and the velocity is obtained by fitting the phase. Finally, these

fitted parameters are saved in fitacf files and are ready for any space physics analysis. The

fitacf files from all SuperDARN radars are also combined to create global convection maps.

The original fitting software and signal processing workflow was developed in the late

1980s when computational resources were more expensive than they are today. Addition-

ally, the SNR of SuperDARN signals are large, routinely 10 dB or greater. Due to these

constraints, at the time it was desirable to use computationally inexpensive linear fitting

algorithms over non-linear algorithms. Moreover, since the SuperDARN SNR is usually rela-

tively large, errors for the fitted parameters are expected to be small, and as such, less effort

was spent on error analysis than would have been required had the SuperDARN SNR been

much lower. Using ad hoc error estimates and linear fitting techniques provided a simple–

to–understand and inexpensive data processing methodology that aided in the growth and

maintenance of SuperDARN as the network grew to the present day 35 radars.

With the modern availability of inexpensive and powerful computational resources, it

is possible to reconsider the SuperDARN signal processing methodology5. As discussed at

the end of Chapter 3, this entire thesis was motivated by the failed attempt at designing

an experiment that enabled SuperDARN derived electron density measurements to be rou-

tinely available. The review identified some challenges with the current signal processing

methodology and provided a path towards solutions, which are described in Chapters 5 and

6, 7.

5Sufficient computational resources have been available since the late 1990s or at the very latest the early
2000s.
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Chapter 5

Self-Clutter Estimation

5.1 Background

The objective of this dissertation is to develop an improved SuperDARN signal processing

methodology such that accurate fitted ionospheric parameter errors can be obtained. In

order to achieve this objective, an investigation of the current SuperDARN signal processing

methodology first needed to be performed. The investigation primarily involved reading

through the source code for the SuperDARN Radar Software Toolkit to reverse engineer the

signal processing workflow. Several publications were also consulted, including Villain et al.

(1987), Ponomarenko and Waters (2006), and Ribeiro et al. (2013a), however, there is no

single publication that describes the signal processing methodology in detail. The software

and literature investigation revealed several challenges, summarized as follows:

1. Error estimates for the magnitude and phase of the SuperDARN ACFs are inaccurate

and incorrect,

2. ACF lags containing self-clutter are discarded from linear regression (fitting) instead

of being weighted with appropriately larger errors, and

3. Reliable phase unwrapping in the presence of self-clutter is not possible, especially when

the SNR is low.

As is discussed in detail in Chapter 7, the error estimates used for the magnitude and phase of

SuperDARN ACFs are ad hoc expressions that were crafted based on reasonable arguments

about the expected behaviour of the errors in the magnitude and phase as a function of

SNR. In weighted least-squares fitting, using inaccurate error estimates leads to inaccurate
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fitted parameter errors, thus explaining the reasons why the fitted velocity errors provided

inaccurate expectations in designing the plasma density experiment. Additionally, the phase

of the ACF is a periodic or circular quantity, such that it “wraps” where 0 and 2π are

equivalent. This means that in order to perform a linear fit to the phase, the phase needs to

first be “unwrapped”. In the presence of noise and self-clutter, it is not always possible to

unambiguously unwrap the phase to perform a linear fit.

Since fitting depends on the ACF lag errors, the first task that was identified was to

determine the true expressions for the variance of ACF lag estimates. Once the variance was

determined, challenges 2 and 3, regarding fitting the ACF lags, was addressed. Research

into ionospheric radar signal processing, specifically an incoherent scatter radar publication

by Farley (1969), revealed that a first-order error estimate σ for the lags of the SuperDARN

ACF may be given by

σ =
S +N + C√

K
, (5.1)

where K is the number of pulse sequences transmitted and S, N , and C are the signal, noise,

and clutter powers, respectively. Equation 5.1 shows that the uncertainty in an estimate of

a SuperDARN ACF lag is increased by contributions due to noise and clutter. This means

that in order to obtain estimates of the ACF errors, one needs to quantify the signal, noise,

and clutter powers. For SuperDARN, it was determined that the dominant form of clutter

contributing to measurements was self-clutter caused by using the multiple-pulse technique

as the transmitted radar waveform (Farley , 1972).

Reviewing the SuperDARN software and literature determined that while SuperDARN

signal processing does include techniques for estimating noise, it does not include any tech-

niques for estimating self-clutter. Instead, SuperDARN ACFs are discarded using a self-

clutter filtering criteria developed in Ponomarenko and Waters (2006). This means that

instead of weighting lags that contain self-clutter with appropriate larger errors, the data

was being discarded. Further investigation of the SuperDARN software found that this self-

clutter criteria would sometimes discard data, which was revealed to be valid data when the

ACFs were visually inspected. All of this research resulted in the realization that an estimate

of the self-clutter was needed in order to provide an accurate estimate of error in SuperDARN

ACF lags.
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In summary, the following improvements were identified as solutions to the challenges

and inaccuracies inherent to the current SuperDARN signal processing workflow:

1. Development of a method to estimate self-clutter (Chapter 5),

2. Rigorous analysis of the statistical properties of SuperDARN ACF estimates, including

exact analytic formulas for the error (Chapter 6), and

3. Development of a new fitting methodology that utilizes both the self-clutter estimates,

ACF variance (error) estimates, and non-linear fitting techniques for fitting the real

and imaginary components of SuperDARN ACFs instead of fitting the magnitude and

phase as is done with current SuperDARN fitting techniques (Chapter 7).

Improvements 1 and 2 were needed to address challenge 1 and improvement 3 was needed to

address challenges 2 and 3.

This chapter addresses improvement 1 and contains a detailed analysis of the self-clutter

produced by the multiple-pulse technique and how it affects SuperDARN measurements.

Several estimators of self-clutter were derived and tested.

Chapter 6 considers improvement 2 by deriving and discussing the statistical properties of

SuperDARN ACF lag estimates, as well as deriving analytic expressions for the probability

distribution functions of the ACF lags. Full expressions for the variance of ACF lag estimates

are also presented, validated, and discussed.

Chapter 7 discusses current SuperDARN fitting methods and presents an improved fitting

methodology that incorporates the power-based self-clutter estimator, which developed and

presented in the current chapter, with the exact expressions of the variance of SuperDARN

ACF lag estimates developed in Chapter 6.

5.1.1 Published Manuscript

Authors: Ashton S. Reimer and Glenn C. Hussey

Reference: Reimer, A. S., and G. C. Hussey (2015), Estimating self-clutter of the

multiple-pulse technique, Radio Sci., 50, 698–711, doi:10.1002/2015RS005706.
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This chapter contains the first published work towards developing an improved Super-

DARN data processing methodology, which provides improved fitted parameter errors, by

developing three novel self-clutter estimators. Most of the research developing the self-clutter

estimators involved reviewing and understanding all of the SuperDARN signal processing

code written in C1, drawing countless Farley diagrams (explained in the publication below),

and producing stacks of paper containing attempted self-clutter estimator derivations. Un-

derstanding the current treatment of self-clutter by SuperDARN algorithms was primarily

obtained reading the SuperDARN processing C code and reading Ponomarenko and Waters

(2006). Farley (1972) was studied in detail to understand the origins of self-clutter for the

multiple-pulse sequence. Farley (1969) provided a theoretical foundation from the perspec-

tive of estimator theory applied to Gaussian random variables such that several self-clutter

estimators and their associated variance could be derived (the derivations are provided in

Appendix B). Additionally, a familiarity with incoherent scatter radar measurement tech-

niques and data processing methods provided a foundation from which the derivations could

be based upon.

Extensive verification of the derived self-clutter estimators was performed using a signifi-

cantly modified (by this author) version of the realistic SuperDARN data simulator (Ribeiro

et al., 2013b). The simulator was originally developed to produce simulated voltage samples

that could be used to calculate realistic simulated SuperDARN ACFs. However, there were a

number of significant improvements to the code that were required by this research in order

to accurately simulate SuperDARN voltage samples.

Initially, an attempt to estimate the self-clutter exactly was made, such that the estimated

self-clutter could be subtracted from the ACF lag estimates in the same way that noise is

estimated and subtracted from lag-zero of the ACF. Using the voltage sample simulator,

this author was able to explore what ionospheric backscatter conditions allowed self-clutter

subtraction to work (the conditions are discussed below). This research led to the develop-

ment of a voltage-based self-clutter estimator, however this estimator could only be used for

a narrow subset of ionospheric conditions. It became clear from this research that a more

1At the time (2013), this was thousands of lines of undocumented code in the Radar Software Toolkit
(RST). Since then, RST has been significantly simplified and documented by others.
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general estimator was needed. Therefore, a maximal voltage-based self-clutter estimator was

developed giving an upper limit estimate of the self-clutter for any ionospheric conditions.

The only problem with this estimator was that the voltage sample data (iqdat files) are not

regularly produced by SuperDARN radars, so any voltage-based estimator could not be used

to reprocess the entire SuperDARN database. As such, a maximal power-based self-clutter

estimator that can be used to process all past SuperDARN data was developed. The maxi-

mal power-based self-clutter estimator is an important and novel contribution to SuperDARN

research because it can be used to determine the variance of ACF lag estimates (discussed

in Chapter 6). Using this estimator also means that ACF lags with self-clutter do not need

to be discarded when fitting SuperDARN ACFs (discussed in Chapter 7). Without this

quantification of the self-clutter contributing to SuperDARN measurements, it would not be

possible to accurately estimate the ACF lag variance.

What follows is the published self-clutter manuscript with the same content as was

published in Radio Science. I am licensed (see Appendix E for details) to reproduce this

manuscript within this thesis. The figure numbers, section headings and general format-

ting have been altered to ensure consistency with the rest of this thesis; however, no other

alterations have been made to the manuscript.
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5.2 Abstract

Autocorrelation function (ACF) estimates from voltage data measured by high frequency

(HF) ionospheric radar systems that utilize the multiple-pulse technique of Farley (1972) are

susceptible to interference from self-clutter. Self-clutter is caused by simultaneous returns

from multiple transmitted pulses echoing from unwanted, or ambiguous ranges. Without

accurate estimates of self-clutter it is impossible to account for all the uncertainty in esti-

mates of the radar ACF. Voltage- and power-based self-clutter estimators are presented and

evaluated using a modified version of the radar data simulator of Ribeiro et al. (2013b) and

data from the Super Dual Auroral Radar Network (SuperDARN) (Greenwald et al., 1995).

It is shown that self-clutter caused by ambiguous ranges filled with ground scatter can be

accurately estimated using a voltage-based self-clutter estimator, but that for ionospheric

origin self-clutter a maximal estimator must be used. Two maximal self-clutter estimators

are discussed and verified using the radar data simulator. A discussion of the application

of the self-clutter estimator as it is applied to ACFs obtained with Saskatoon SuperDARN

radar is also presented.

5.3 Introduction

Decameter scale ionospheric irregularities can be probed using radars in the high frequency

(HF) Super Dual Auroral Radar Network (SuperDARN) (Greenwald et al., 1995; Chisham

et al., 2007). A quadrature receiver is used to recover the gated (binned) complex voltage

signal, called voltage samples, received from these irregularities (e.g. Villain et al., 1987).

Lags (time steps) of the complex radar auto-correlation function (ACF) for each range are

derived from the average of pairs of correlated lagged voltage samples (e.g. Farley , 1969).

Desired parameters (Doppler shift, echo power, etc.) are then extracted from the radar

ACF using fitting techniques (e.g. Ribeiro et al., 2013a). The radar ACF is composed of

contributions of signal (which contains the useful information), noise, and clutter. In general,

the noise and clutter increase uncertainty associated with extracting useful information from

the radar ACF (Farley , 1969; Ulaby et al., 1982). For example, Farley (1972) showed that

85



to first order, the variance in estimating a lag of the radar ACF (R̂) is given by,

〈(δR̂)2〉 = 1

K
(S +N + C)2 , (5.2)

where S, N , and C are the signal, noise, and clutter powers, respectively, with K pairs of

voltage samples used to produce the lag estimate.

Noise interference in the HF band is primarily due to both atmospheric and man-made

sources (Landee et al., 1957). Noise may be readily removed by subtracting estimates of the

average noise power (Farley , 1969; Ulaby et al., 1982). In contrast, it is generally more dif-

ficult to account for clutter. Clutter is defined as unwanted signal-like interference (Skolnik ,

1980) and for ionospheric radars typical sources include ground scatter (e.g. Turunen et al.,

2000; Blanchard et al., 2009), echoes from satellites or planes (e.g. Porteous et al., 2003),

and ambiguous range echoes (e.g. Zrnic et al., 1999; Grydeland and Gustavsson, 2011). Re-

moval or suppression of clutter usually requires complex signal processing algorithms and/or

modifications to transmitted radar waveforms (e.g. Turunen et al., 2000). Ambiguous range

echoes are a function of the transmitted radar waveform and are sometimes referred to as

cross-range interference (e.g. Ponomarenko and Waters , 2006), but are more commonly re-

ferred to as self-clutter (e.g. Rihaczek , 1965; Zrnic et al., 1999; Kolawole, 2002; Grydeland

and Gustavsson, 2011; Cook , 2012). As stated in Equation 5.2, without accurate quantifica-

tion of signal, noise, and clutter, it is impossible to determine the error in estimating lags of

the radar ACF.

Some ionospheric radars such as the high-frequency (HF) Super Dual Auroral Radar

Network (SuperDARN) radars (Greenwald et al., 1995; Chisham et al., 2007) utilize the

multiple-pulse technique of Farley (1972) to obtain estimates of the radar ACF. The multiple-

pulse technique utilizes the transmission of non-redundantly spaced pulses to suppress range

ambiguities. Such spacings enable improved range and Doppler performance compared to a

uniformly spaced coherent pulse train (Farley , 1972); however, with reduced radar duty cycle

and consequently reduced average signal-to-noise ratio (SNR). Reduced SNR is not typically

a problem for SuperDARN radars, which routinely detect ionospheric targets with SNR of 20

dB or larger. The multiple-pulse technique suppresses ambiguous range echoes and extends

the maximum unambiguous range of the radar, but as will be shown, some ambiguity is still
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present. The delays between transmitted pulses are integer multiples of a fundamental pulse-

repetition time (PRT), τ , a parameter that determines the maximum unambiguous Doppler

shift that can be resolved by the radar waveform. The maximum unambiguous range is given

by the sequence repetition time (SRT), the time delay between pulse sequences. Three other

important quantities of a multiple-pulse sequence are the pulse length, tp, the number of

pulses transmitted, Np, and the pulse table, PTAB, which specifies at what time pulses are

to be transmitted. Often, measurements from K pulse sequences are averaged together to

estimate target parameters. The multiple-pulse technique is especially useful for studying

overspread radar targets, such as those probed by HF over-the-horizon ionospheric radar

systems (targets at long range: > 1000 km and with high velocity: ∼ 1 km/s).

Despite the superior range ambiguity suppression of the multiple-pulse technique, in gen-

eral range ambiguities are still present and under certain conditions significantly “clutter”

the received signal. While techniques for estimating clutter power due to ground and air-

craft echoes are known, for the multiple-pulse technique it has remained an open problem to

estimate the self-clutter present in estimates of the radar ACF. As Equation 5.2 indicates,

without quantification of all types of clutter power it is impossible to obtain accurate error

estimates.

The present study discusses a generalized signal-processing algorithm for quantitative

estimation of self-clutter contained in ACF estimates by utilizing voltage samples obtained

from echo power (lag-zero) measurements. A maximal estimate of the self-clutter power is

also discussed. The self-clutter estimators derived in this study enable the estimation of

signal-derived errors for the radar ACFs obtained using the multiple-pulse technique, which

will allow the use of error-weighted fitting algorithms to extract ionospheric parameters from

the radar ACFs.

5.3.1 Power and ACF Estimators

Ionospheric radars are often able to determine the echo power as a function of range, or

the power range-profile, of ionospheric targets. Echo power is estimated from measured

voltage samples using a power estimator. The voltage samples are the result of gating the

continuous received voltage signal into bins of time. Range gates are determined by time of
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flight or transit time (i.e. voltage samples of 300 µs correspond to range gates of 45 km). In

general, an estimator or statistic, is a function used to estimate a parameter from a sample

of measurements (Sampath, 2005). To estimate the parameter power, P , in range gate r,

from K independent voltage samples from the same range, Ṽrk, one may use the estimator

P̂r =
1

K

K
∑

k=1

ṼrkṼ
∗
rk, (5.3)

where P̂r is the estimator for parameter P at range r, the asterisk denotes the complex

conjugate, and the tilde indicates a measurement. The indicies r and k indicate the kth

sample at range r. The expected value of the estimator is 〈P̂r〉 = Pr, which is to say that

when a large number of measurements are used (K → ∞) the estimator P̂r approaches the

true value Pr. The notation using tilde (measurement), hat (estimator), asterisk (complex

conjugate), and 〈...〉 (expected value) will be used throughout this paper.

The uncertainty in an estimator is given by the mean-squared error (MSE), defined as

the expected value of the average of the square of the difference between the statistic and

the parameter being estimated. For example, the MSE (〈(P̂r −Pr)
2〉) of the power estimator

defined in Equation 5.3 is

MSE(P̂r) =
P 2
r

K
. (5.4)

In the above discussion, and for the remainder of this study, the real and imaginary

components of the complex voltage samples, Ṽrk, are assumed to be zero-mean Gaussian

random variables (Farley , 1969; Ulaby et al., 1982). Also, Equations 5.3 and 5.4 were derived

without considering the effects of noise and clutter. Noise contributions to estimates of

echo power can be accounted for and removed (Ulaby et al., 1982). For radar systems like

SuperDARN, contributions of self-clutter to estimates of power are negligible for properly

designed transmitted waveforms (as will be discussed in detail later). In general, the presence

of noise and clutter will increase the MSE of the power estimator in a manner given by the

RHS of Equation 5.2 (e.g. Farley , 1969). To simplify the discussion that will follow as much

as possible effects due to noise will not be included in derivations. It is a simple exercise to

add contributions of noise to the final results that will be presented.
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Radar ACFs combined with fitting techniques (e.g Ribeiro et al., 2013a) are used to

extract ionospheric parameters from radar measurements. The individual data points of the

estimated radar ACF are referred to as “lag-products” or simply “lags”. To estimate a lag of

the ACF at time t (R(t)), the average of the correlation between K pairs of complex voltage

samples, with each voltage sample in each pair separated in time by t, is calculated using

R̂(t) =
1

K

K
∑

k=1

Ṽ1kṼ
∗
2k, (5.5)

where R̂(t) is the estimator for R(t) and the subscripts 1 and 2 each refer to one of the two

complex voltage samples separated by a time of t. The MSE of the ACF estimator is given

by

MSE(R̂(t)) =
P 2
r

K
. (5.6)

Figure 5.1 shows a typical ACF estimated from SuperDARN voltage measurements using

the 8 pulse multiple-pulse sequence described in Figure 5.4. It is important to note that the

estimate of the radar ACF at lag t = 0τ , called lag-zero, is equivalent to an estimate of the

echo power. Both are often referred to as the “lag-zero power” and so will be referred to as

lag-zero power in this study. As a final comment, lag-zero power measurements may be made

with a multiple-pulse sequence by adding a large time delay between the first and second

pulse of the pulse sequence. Ideally, the time delay should be large enough for the signal to

propagate out to and return from the largest range to be measured. For the sequence plotted

in Figure 5.4, τ = 1.8 ms is sufficient for lag-zero power measurements out to a range of 3780

km. Detailed discussion of Figures 5.1 and 5.4 follow in the next section.

5.4 Self-Clutter Estimation

The origins of self-clutter can be more readily understood through examination of an example

multiple-pulse sequence shown in the Farley diagram plotted in Figure 5.2, which was adapted

from Figure 1 of Farley (1972). Figure 5.2 was made using τ = 2.4 ms, tp = 300 µs, Np = 3,

and PTAB = [0τ ,1τ ,3τ ]. Elapsed time since the start of the first transmitted pulse is plotted
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Figure 5.1: An estimated ACF derived from voltage samples measured by the Clyde
River SuperDARN radar using the 8 pulse multiple-pulse sequence illustrated in the
Farley Diagram in Figure 5.4. The blue curve and the green curve indicate the real and
imaginary parts of the estimated ACF, respectively. The missing points are caused by
missing lags in the multiple-pulse sequence.

along the x-axis and range from the radar is plotted along the y-axis (see caption for more

details). Notice in Figure 5.2 that each received voltage sample (outlined in blue) contains

contributions from both the range of interest (red diamonds) and unwanted interfering ranges

(self-clutter, marked by black diamonds). In Figure 5.2, if a power range-profile yielded a

narrow band of scatter centered around the ranges near the black diamond 1b, increasing

(decreasing) τ would move 1b further (closer) in range and out of the region where it would

contribute to self-clutter. From this example, it is evident that self-clutter varies with the lag-

zero power range-profile of the ionosphere and the value of τ for the multiple-pulse sequence

being used.

The zero-Doppler (or delay) ambiguity function (Woodward , 1960) for the same 3 pulse

pulse-sequence is plotted in Figure 5.3. The delay ambiguity function is the modulus of the

auto-correlation function of the transmitted waveform in Figure 5.2, equivalent to collapsing

the Farley diagram in Figure 5.2 along the time axis. In contrast the the Farley diagram,
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Figure 5.2: A Farley diagram (c.f. Figure 1 in Farley (1972)) showing an example of
a multiple-pulse sequence using 3 pulses with τ = 2.4 ms, tp = 300 µs, Np = 3, and
PTAB = [0τ ,1τ ,3τ ]. The grey filled rectangles indicate transmission pulses and the
rectangles with blue outlines indicate received voltage samples (from scattered signals
returning to the radar). The red diamonds indicate signal backscattered from a repeated
range of interest, in contrast to the black diamonds indicating signal backscattered from
non-repeated unwanted ranges.

which explicitly details the ambiguity in each voltage sample, the delay ambiguity function

summarizes the ambiguity in the 3 pulse pulse-sequence. The small peaks in Figure 5.3

(1c, 2c, 1b, 2a, 3b, 3a) indicate delays (ranges) that may contribute range ambiguity to a

measurement made with the 3 pulse pulse-sequence. Varying τ changes the separation in

delay (range) between range ambiguities in the same way as discussed above. Figure 5.3

reiterates the fact that if echoes exist at an ambiguous range, as can be determined by

measuring the power range-profile, it may be possible to vary τ in such a manner as to move

the ambiguous range into a region with weaker or non-existent echoes, thereby limiting or
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removing the self-clutter contribution to the radar ACF. The exact variation of τ would need

to be balanced with maximum unambiguous Doppler shift requirements, since decreasing

(increasing) τ will increase (decrease) the maximum unambiguous Doppler shift of the pulse-

sequence; an effect that can be understood by studying the Doppler (zero-delay) ambiguity

function (not shown).
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Figure 5.3: The delay ambiguity function for the pulse-sequence in Figure 5.2.

While techniques for suppressing or removing self-clutter are discussed in the literature

for other radar measurement techniques (e.g. Zrnic et al., 1999; Rihaczek , 1965), the authors

are not aware of any techniques for removing self-clutter for the multiple-pulse technique.

Grydeland and Gustavsson (2011) discusses a method for suppressing self-clutter by selec-

tively transmitting pulses at orthogonal polarizations. This technique is only possible on

radar systems capable of polarized transmission and reception, but is able to decrease mea-

surement errors by a factor of 4. Ponomarenko and Waters (2006) discussed a method for
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identifying the lags of a radar ACF that are influenced by self-clutter in an effort to remove

lags that contained “too much” self-clutter. The detection criteria was based on individual

comparisons of received lag-zero power between interfering ranges and the range of interest.

At each range, for each lag, if the lag-zero power of any interfering range in the lag was found

to be greater than the lag-zero power of the range of interest, then that lag was discarded.

After implementing this detection criteria, Ponomarenko and Waters (2006) noted that a

more realistic value of the spectral width was obtained with the current SuperDARN fitting

technique. However, rather than discarding lags of the estimated ACF, it is more desirable

to estimate the self-clutter contained in a lag such that the signal-derived error in the lag

estimate can be obtained (recall Equation 5.2). Then it is possible to use an error-weighted

fitting technique to extract ionospheric parameters from ACF estimates in a self-consistent

manner (without requiring externally imposed criteria). In addition, as is done for noise, ac-

curate estimates of self-clutter may be subtracted from the radar ACF to extract the desired

signal ACF.

5.4.1 Self-Clutter Power in a Voltage Sample

For a pulse sequence with Np pulses, Farley (1972) stated that when operating at incoherent

scatter radar frequencies (VHF and UHF) and with short measurement time scales (the entire

pulse sequence is transmitted in < 1 ms), an estimate of the self-clutter power (C) contained

in any single voltage sample is

C ≈ (Np − 1)S, (5.7)

assuming that the scattering volume over which the pulse sequence extends returns an aver-

age signal power S for a single transmitted pulse and that all Np pulses have been transmitted

before the voltage samples are measured. It is also assumed that interfering ranges return

statistically independent voltages such that on average, products of voltages from different

range gates are zero. Examining the voltage sample at lag 6 in the Farley diagram in Fig-

ure 5.2, with Np = 3 pulses transmitted, it is observed that the voltage sample contains

(Np − 1) = 2 interfering ranges. Given a uniform lag-zero power range-profile, where each
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range returns a power of S, the self-clutter in the voltage sample is therefore (Np − 1)S, as

given by Equation 5.7.

Some assumptions made in Farley (1972) do not hold for HF radars. Due to the multiple-

hop over-the-horizon propagation at HF frequencies, the lag-zero power range-profile for HF

radars is never uniform. Only interfering ranges that return non-zero lag-zero power will

contribute to the self-clutter. With these considerations, Equation 5.7 can be generalized to

C =
N
∑

n=1

Sn, (5.8)

where N is the number of interfering ranges and Sn is the lag-zero power at interfering range

n. For a voltage sample received after all pulses have been transmitted N = Np − 1 and

with a uniform power range-profile Sn = S, we recover Equation 5.7 from Equation 5.8. It

is apparent that for the generalized result the signal-to-clutter ratio (SCR) will vary with

both the multiple-pulse sequence used and the lag-zero power range-profile in contrast to

Equation 5.7, which states that SCR is solely a function of the pulse sequence.

5.4.2 Constructing the Self-Clutter Estimator

The generalization of Equation 5.7, combined with the process of how the radar ACF is

estimated from complex voltage samples, can be used to obtain an estimate of the self-clutter

contribution to the lags of the radar ACF. With multiple transmitted pulses, each voltage

sample measured by a radar contains a voltage contribution from the range of interest but

also from interfering ranges. Referring to Figure 5.2, recall that in general the radar ACF at

time t is the correlation between two voltage samples separated in time by t. For instance,

the radar ACF at t = 2τ is the product of the voltage sample at t = 4τ (Ṽ1) and the complex

conjugate of the voltage sample at t = 6τ (Ṽ2). As verified by Figure 5.2, the voltage samples

Ṽ1 and Ṽ2 are the sums of individual voltage contributions from different ranges: 1 from the

range of interest (2b for Ṽ1 and 3c for Ṽ2), and 2 from interfering ranges (1b and 3b for Ṽ1

and 1c and 2c for Ṽ2). In general, for an arbitrary number of pulses transmitted, Ṽ1 and Ṽ2

can be written as
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Ṽ1 = ṼR1 +

N
∑

n=1

Ṽn, Ṽ2 = ṼR2 +

M
∑

m=1

Ṽm (5.9)

where Ṽn and Ṽm correspond to voltage contributions from N and M interfering ranges

contained in voltage samples Ṽ1 and Ṽ2, respectively and ṼR1 and ṼR2 represent the voltage

contribution from the range of interest in voltage samples Ṽ1 and Ṽ2, respectively. Correlating

Ṽ1 and Ṽ2 to obtain the radar ACF at lag 2 will result in 9 different correlations: 1 from the

range of interest (referring to Figure 5.2 and representing the correlation with the notation

[2b,3c]), 4 between the interfering ranges and the range of interest ([2b,2c], [2b,1c], [1b,3c],

[3b,3c]), and 4 between the interfering ranges ([3b,2c], [3b,1c], [1b,2c], [1b,1c]) which can be

written algebraically as,

Ṽ1Ṽ
∗
2 = ṼR1Ṽ

∗
R2 +

N
∑

n=1

ṼnṼ
∗
R2 +

M
∑

m=1

ṼR1Ṽ
∗
m +

N
∑

n=1

M
∑

m=1

ṼnṼ
∗
m. (5.10)

Examining Equation 5.10, it is clear that the first term of the RHS corresponds to the

signal ACF and the remaining terms on the RHS must necessarily be the self-clutter. For a

multiple-pulse sequence with Np transmitted pulses, the self-clutter contribution may yield

up to as many as N2
p − 1 correlations.

Figure 5.4 shows a Farley diagram of the 8-pulse multiple-pulse sequence, known as

katscan, routinely used by SuperDARN radars. Notice that different voltage samples contain

a different number of interfering range contributions (cf. the first and last voltage samples).

Even though katscan is a more complicated pulse-sequence with a different interfering range

structure, Equation 5.10 remains valid. For a given range, selecting two voltage samples for

Ṽ1 and Ṽ2 and identifying the N and M interfering range contributions for each, respectively,

allows for an estimate of the self-clutter.

For Equation 5.10, it has been assumed that all of the pulses are transmitted with equal

amplitude (such that no variations in the received voltages are due to variations in the

transmitted pulse power) which is a reasonable assumption for the SuperDARN radars. It

is also assumed that the plasma processes responsible for backscatter are stationary with

respect to measurement timescales. For identifying the correlations due to self-clutter, it

is not necessary to make assumptions about the uniformity of the scattering volume; the
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Figure 5.4: The 8-pulse multiple-pulse sequence katscan with τ = 1.8 ms, tp = 300
µs, Np = 8. The dashed line indicates the location of the range of interest. Near the
x-axis, the black vertical lines at the base of positive sloped lines indicate transmission
pulses and the blue vertical lines at the base of negative sloped lines indicate received
samples. Intersections of the slanted black lines that do not lie on the dashed line
indicate where signal is received from interfering ranges.

lag-zero power range-profile need not be, on average, constant in range. Finally, it is not

necessary to assume that all Np pulses have been transmitted before receiving any returns as

was required for Equation 5.7. For pulse sequence transmission times longer than the time

required for a pulse to return from the range of interest (c.f. Figure 5.4), the number of

pulses “in the air” will be a function of the measurement time of the voltage sample and the

pulse spacings in the pulse sequence.
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5.4.3 Generalized Self-Clutter Estimator

Given the preceding subsection, we now explicitly write a generalized estimator for the self-

clutter contained in a lag-product of the radar ACF. From K transmitted pulse-sequences,

the self-clutter terms in Equation 5.10 are averaged to form a self-clutter estimator given by

Ĉ =
1

K

K
∑

k=1

(

N
∑

n=1

ṼnkṼ
∗
R2k +

M
∑

m=1

ṼR1kṼ
∗
mk +

N
∑

n=1

M
∑

m=1

ṼnkṼ
∗
mk

)

. (5.11)

However only the Ṽ1 and Ṽ2 voltage samples are known (measured). Notice that evaluation

of Equation 5.11 requires knowledge of the ṼR1 and ṼR2 voltage contributions, quantities

that are impossible to measure directly (hence the motivation of this study). The Ṽn and Ṽm

contributions are also unknown. ṼR1 and ṼR2 can be removed by rearranging the expressions

in Equation 5.9 and substituting the results into Equation 5.11 to obtain the voltage-based

self-clutter estimate (VSE)

ĈVSE =
1

K

K
∑

k=1

(

N
∑

n=1

ṼnkṼ
∗
2k +

M
∑

m=1

Ṽ1kṼ
∗
mk −

N
∑

n=1

M
∑

m=1

ṼnkṼ
∗
mk

)

, (5.12)

where Ṽn and Ṽm are approximated using voltage samples from lag-zero power measurements.

Generally, this approximation will introduce extra uncertainty into the VSE, unless the cor-

relations involving Ṽn and Ṽm have a long lifetime (large constant coherence) and a large

period (constant phase), as is the case for ground scatter or slow moving long-lived iono-

spheric irregularities. If either or both the lifetime and period of the correlations are short,

the approximation will result in increased errors in the VSE. Equivalently, the condition can

be written as t3 ≫ |t1 − t2| for the approximation to be accurate, where t1 is the lag time of

the actual correlation being approximated, t2 is the lag time between the voltage samples used

to create the approximation of the correlation, and t3 is the time scale of the rate of change

of the correlation between the two ranges causing the self-clutter. A further consequence

of this approximation is that the VSE is unable to account for self-clutter originating from

ranges that return echoes when said ranges are not included in lag-zero power measurements.

Recall that the first pulse in a multiple-pulse sequence is usually used to provide lag-zero

power estimates, but only until the second pulse is transmitted. For HF radar systems like
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SuperDARN, it is unlikely that beyond 5000 km echoes will be received due to propagation

and signal attenuation effects. The true range will depend on radar specifications and is

something that may be experimentally determined for each individual radar system.

Up to Np of the approximated correlations share a lag-time that is identical to the lag-

time in the actual correlations. For example, Figure 5.2 shows that for the voltage samples at

t = 4τ and t = 6τ , Np of the correlations, specifically [3b,3c], [2b,2c], and [1b,1c] (recall the

discussion surrounding Equation 5.10), share a lag-time that is common with the voltages

samples from lag-zero power measurements that are used to approximate the correlations.

Assuming stationarity, regardless of assumptions about coherence and Doppler characteris-

tics, up to Np of the approximated correlations will be accurate within statistical sampling

uncertainty. However, the remaining approximated correlations have a lag-time that differs

from the actual lag time, meaning that unless the long coherence and constant phase as-

sumptions hold, such approximations will be inaccurate (larger uncertainty than statistical

sampling uncertainty).

The MSE of the VSE in Equation 5.12 is given by

MSE(ĈVSE) =
C2

K
, (5.13)

where C is the self-clutter power. To simplify the derivation of this estimate, Ṽn and Ṽm

were assumed to be known. This means that Equation 5.13 will generally underestimate

the error in Equation 5.12 due to correlations that do not satisfy the long coherence and

constant phase assumptions made above. In deriving Equation 5.13 it was also assumed that

all ranges that contribute to self-clutter have been included in Ṽn and Ṽm via the lag-zero

power voltage samples.

Despite the limitations on the applicability of the VSE and its MSE, as will be shown, the

estimator is able to accurately account for ground scatter origin self-clutter. This capability

allows for removal of ground scatter self-clutter from the radar ACF obtained by SuperDARN

radars that often obtain measurements of ionospheric irregularities contaminated by ground

scatter self-clutter. In these situations, first order error estimates on estimates of the radar

ACF are now possible.
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5.4.4 Maximal Self-Clutter Estimators

We shall now discuss two maximal self-clutter estimators for use when the VSE cannot be

accurately implemented. The maximal estimators estimate the upper limit or “worst-case”

self-clutter contained in an estimate of the radar ACF and enable first order error estimates

for radar ACF estimates (using Equation 5.13) to be self-consistently obtained, even if the

VSE cannot be used.

First a maximal voltage-based self-clutter estimator (MVSE) was derived by replacing

each voltage correlation in Equation 5.11 with their respective magnitudes (e.g. |ṼnṼm|) and
assuming complete correlation. Equivalently, each voltage correlation is replaced with the

product of the magnitudes of the contributing voltage samples, which can be written in terms

of a product of voltage magnitudes (|Ṽn||Ṽm|) and normalized coherence function (ρ) with

the added assumption of complete coherence (ρ = 1). This substitution enables identification

of the upper limit on the magnitude of (worst case scenario) self-clutter. Algebraically the

MVSE is written,

ĈMVSE =
1

K

4

π

K
∑

k=1

(

N
∑

n=1

|Ṽnk||ṼRk|+
M
∑

m=1

|ṼRk||Ṽmk|+
N
∑

n=1

M
∑

m=1

|Ṽnk||Ṽmk|
)

. (5.14)

The magnitude of each complex voltage sample follows a Rayleigh distribution of order 2

and has an expected value of (
√
π/2)|V | (Simon, 2007). The factor of 4/π in Equation 5.14

is required to normalize the factor of π/4 that results when calculating the expected value of

ĈMVSE (see below). In contrast to the VSE, the MVSE is real valued and is only an estimate

of the upper limit of self-clutter power ; it cannot be used for estimating the phase of the

self-clutter.

Historically, due to limitations on data storage it was not always possible to store complex

voltage measurements. This is currently the case for most SuperDARN radars where the

typical mode of operation only records estimates of radar ACFs using Equation 5.5, and

estimates of lag-zero power, using Equation 5.3. In this case, a power-based maximal self-

clutter estimator (MPSE) is therefore desired if error estimates are to be calculated. The

MPSE can be derived from the MVSE using the Cauchy Inequality (Abramowitz and Stegun,

2012) and the power estimator given by Equation 5.3 to obtain,
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ĈMPSE =
N
∑

n=1

√

P̂nP̂R +
M
∑

m=1

√

P̂RP̂m +
N
∑

n=1

M
∑

m=1

√

P̂nP̂m, (5.15)

for the MPSE, where the symbol P̂i indicates the average lag-zero power estimator (a

quadratic average of voltage samples) from a range i. In the absence of lag-zero power

estimates, lag-zero estimates may be inferred from the radar ACF using fitting techniques

(e.g. Ribeiro et al., 2013a), enabling implementation of the MPSE.

The expected value of the maximal self-clutter estimators is given by

CMAX =

N
∑

n=1

√

PnPR +

M
∑

m=1

√

PRPm +

N
∑

n=1

M
∑

m=1

√

PnPm, (5.16)

where the symbol Pi indicates the expected value of the lag-zero power from range i. The

notation R, n, and m is as before. This is an intuitive result that arises from the fact that
√
P = |V | assuming unit resistance.

The MSE of the MxSE estimator (where x is either V or P for either voltage-based or

power-based, respectively), following the same notation with additional indicies a and b, is

given by,

MSE(ĈMxSE) =
N
∑

n=1

N
∑

a=1

αnaPR

√

PnPa +
M
∑

m=1

M
∑

b=1

αmbPR

√

PmPb + 2
N
∑

n=1

M
∑

m=1

αn0PR

√

PnPm

+2

N
∑

n=1

N
∑

a=1

M
∑

m=1

βna

√

PnPaPmPR+2

N
∑

n=1

M
∑

m=1

M
∑

b=1

βmb

√

PnPmPbPR+

N
∑

n=1

N
∑

a=1

M
∑

m=1

M
∑

b=1

γnamb

√

PnPaPmPb.

(5.17)

To obtain the MSE of the voltage-based maximal self-clutter estimator, the following

coefficients must be used with Equation 5.17,

αna =







(1/K)
(

(4/π)2 − 1
)

n = a

(1/K) ((4/π)− 1) n 6= a

βna =







(1/K) ((4/π)− 1) n = a

0 n 6= a
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γnmab =



















(1/K)
(

(4/π)2 − 1
)

n = a, m = b

(1/K) ((4/π)− 1) n 6= a, m = b or n = a, m 6= b

0 n 6= a, m 6= b

, (5.18)

and to obtain the MSE of the power-based maximal self-clutter estimator, the following

coefficients must be used with Equation 5.17,

αna =







1/K n = a
√

1 + 1/K − 1 n 6= a

βna =







√

1 + 1/K − 1 n = a

0 n 6= a

γnmab =



















1/K n = a, m = b
√

1 + 1/K − 1 n 6= a, m = b or n = a, m 6= b

0 n 6= a, m 6= b

. (5.19)

Similar to the MSE for the VSE, the MSE for the MVSE and MPSE will underestimate

the error in any maximal self-clutter estimate where interfering ranges that contribute are

not included in lag-zero power voltage measurements. This is unlikely to be a problem for

typical SuperDARN operation modes that measure out to 3500 or 4000 km, beyond which

back-scattered signal strength has been degraded too much by cumulative signal propagation

and attenuation effects. The largest practical range can easily be investigated for each radar

utilizing an operating mode designed to check for the largest ranges that echos are returned

from.

5.5 Testing and Discussion

The radar data simulator of Ribeiro et al. (2013b) was modified by the authors of the current

study so it could be used to evaluate the self-clutter estimators presented in the previous

section. Using the simulator it was possible to compare the simulated actual self-clutter with

estimates of self-clutter derived from simulated complex voltage samples.

The assumptions made in deriving Equation 5.12 were tested with the results presented

in Figure 5.5. To test the assumptions, two cases were simulated: one with self-clutter of
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ground scatter origin, and the other with self-clutter of ionospheric origin. The simulator

was run using the katscan multiple-pulse sequence with τ = 1.8 ms and K = 18 (similar to

parameters in common SuperDARN operations) and the simulated scattered signal strength

from each range gate were all set to be equal.

The top set of panels in Figure 5.5 show that for self-clutter caused by interfering ranges

filled with ground scatter the VSE is able to accurately extract the signal ACF from the radar

ACF. Note that the top left panel shows the ACF with no self-clutter mitigation (current

technique), the top middle panel shows the same ACF after the new method (subtracting the

VSE), and the top right panel shows the ideal (true) ACF that should result if the technique

were perfect. The extracted signal ACF (top middle) agrees with the simulated actual signal

ACF (top right) within error. The difference between the actual ACF and the extracted

signal ACF (R̂S) is quantitatively compared with the relative error in Table 5.1. The error

is given by

√

〈(δR̂S)2〉 where

〈(δR̂S)
2〉 = 1

K

[

(S + C)2 + C2
]

(5.20)

with the relative error given by
√

〈(δR̂S)2〉/S. Comparing the differences with the expected

error shows that there is agreement between the extracted signal ACF and the simulated

actual signal ACF within the expected relative error. The bottom panels in Figure 5.5 show

that the VSE is unable to accurately extract the signal ACF when self-clutter originates from

interfering ranges filled with ionospheric scatter.

These results echo the previously discussed consequences of the assumptions made in

deriving the VSE, which require that self-clutter originate from ground echoes if the VSE is

to be used accurately. The ground scatter in the simulation had zero velocity and zero spectral

width, but it must be noted that in practice, ground scatter signals propagate through the

ionosphere which may impart small non-zero Doppler shifts due to particle precipitation

and/or vertical oscillations in the ionosphere (e.g. Scoular et al., 2013) and/or small non-zero

spectral width due to wave front decorrelation caused by random density variations in the

ionospheric plasma (e.g Vallières et al., 2004). Nevertheless, as shown below, such small non-

zero enhancements to the Doppler shift and spectral width of ground scatter do not prevent

the VSE from removing self-clutter from measurement-based radar ACFs.
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Lag Number 0 1 2 3 4 5 7 8 9 10 11 12

Diff. (Re) 0.00 0.37 0.02 0.15 0.21 0.02 0.03 0.02 0.06 0.06 0.05 0.02

Diff. (Im) 0.00 0.05 0.12 0.19 0.10 0.06 0.02 0.11 0.08 0.17 0.20 0.14

Error 0.24 0.37 0.44 0.83 0.55 0.59 0.59 0.25 0.43 0.26 0.61 0.34

Lag Number 13 14 15 16 17 18 19 20 21 22 24

Diff. (Re) 0.04 0.00 0.15 0.13 0.00 0.27 0.27 0.00 0.03 0.01 0.00

Diff. (Im) 0.01 0.00 0.08 0.05 0.11 0.01 0.00 0.13 0.14 0.04 0.19

Error 0.25 0.24 0.82 0.52 0.30 0.58 0.34 0.47 0.44 0.27 0.29

Table 5.1: Extracted Signal ACF Compared with Actual Signal ACF: A quantitative
comparison of the absolute value of the difference between the real and imaginary com-
ponents for all lags of the extracted signal ACF and the simulated actual ACF depicted
in Figure 5.5 (the top middle and top right panels, respectively). The differences are
compared with the relative error defined by Equation 5.20.

A second test of the VSE was performed using measured complex voltage samples recorded

by the Saskatoon SuperDARN radar on 14 July, 2014 at 6:01:07 UT. Figure 5.6 presents the

use of the VSE on measured voltage samples from range gate 25 on beam 2. The figure shows

the magnitude (bottom row) and phase (top row) of a typical complex radar ACF obtained

for an ionospheric target with self-clutter originating from ranges filled with ground scatter,

both with (left column) and without (right column) the VSE subtracted from the radar ACF.

The usage of the triangular markers in the plots will be discussed shortly.

Notice that subtraction of the VSE has reduced the fluctuations in the ACF phase for

the first few lags. Also notice that subtraction of the VSE significantly suppresses the large

peaks in lag power caused by self-clutter at lags 11, 12, 15, 16, 18, 20, and 21. It is clear

that the magnitude and phase of the ACF have improved due to subtraction of the VSE,

a result that is consistent with the ideal case simulated in Figure 5.5. The ACF lag power

is more greatly affected by removal of the VSE than the ACF phase since ground scatter is

characterized by nearly zero phase (small Doppler shift) and large correlation times (small

spectral width). This means that ground scatter dominated contributions of self-clutter on

the estimates of the radar ACF have little effect on the estimated ACF phase, as confirmed

in Figure 5.6. The self-clutter at large lags, although significantly improved is not completely
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Figure 5.5: Plots comparing the use of the VSE on simulated radar measurements
for estimating self-clutter originating from ground echoes (top panels) and for self-
clutter originating from ionospheric echos (bottom panels). For the top panels, all
interfering ranges were filled with ground echoes (targets with a velocity of 0 m/s and
a spectral width of 0 m/s) and for the bottom panels, all interfering ranges were filled
with ionospheric echoes (targets with a velocity of 500 m/s and a spectral width of 100
m/s).

removed, as it was for the simulation in Figure 5.5. This result is expected as it is likely

caused by enhancements of the ground scatter spectral width due to wave front decorrelation

of the propagating radio waves (Vallières et al., 2004).

Finally, the effect of the VSE on current SuperDARN fitted radar data (extracted iono-

spheric parameters) was examined. The VSE was applied to 4 days of complex voltage

samples collected by the Saskatoon SuperDARN radar (from 10 July, 2014 at 10:00 UT until

14 July, 2014 at 10:00 UT). Ionospheric parameters were then extracted using the standard

SuperDARN fitacf software (Ribeiro et al., 2013a) both with and without subtraction of the

VSE (for examples of fits of SuperDARN radar data, see Ribeiro et al. (2013a)).

Distributions of the differences in fitted data products between the fitted radar data pro-

cessed with and without VSE subtraction were plotted (see Figure 5.7) and the full-width

half-maximum (FWHM) of each distribution was determined. The FWHM of the difference

distribution for ionospheric velocities was 6.2 m/s, for ground velocities was 9.1 m/s, for
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Figure 5.6: A comparison between measured SuperDARN radar ACF data both
without (left column) and with (right column) the self-clutter estimate of Equation 5.12
removed. The ACF was recorded on 14 July, 2014 at 6:01:07 UT in gate 25 and beam
2. The top row of panels show ACF phase and the bottom row show ACF power.
The triangular data points indicate data that is currently discarded by the self-clutter
identification algorithm of Ponomarenko and Waters (2006) (the current technique used
by SuperDARN to remove data contaminated by self-clutter).

ionospheric spectral width was 7.0 m/s, and for ground spectral width was 12.3 m/s. The

distributions of differences are narrower for the velocity and spectral width of ionospheric

echoes compared with the same distributions for ground scatter echoes. This is caused, in

part, by the assumption that voltage samples at interfering ranges can be approximated with

voltage samples from lag-zero power measurements. Due to the nature of HF radio propa-

gation, ground echoes and ionospheric echoes return from different ranges in a manner such

that self-clutter affecting ground scatter usually originates from interfering ranges contain-

ing ionospheric echoes and self-clutter affecting ionospheric scatter usually originates from

interfering ranges containing ground scatter. Self-clutter caused by ground scatter signals

satisfies the assumptions made in deriving Equation 5.12 better than self-clutter caused by

ionospheric signals, leading to larger errors in the estimation of the self-clutter that affects
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Figure 5.7: Distributions of the difference in fitted velocities and fitted spectral widths
between fitted SuperDARN data and VSE subtracted fitted SuperDARN data from the
Saskatoon SuperDARN radar from 10 July, 2014 at 10:00 UT until 14 July, 2014 at
10:00 UT. The full-width half-maximum (FWHM) is included in the top right of each
panel.

ground scatter ACF measurements and consequently broadening the FWHM of the difference

distributions for ground scatter.

5.5.1 Error Estimates

The mean-square error estimates for the VSE, MVSE, and MPSE were evaluated using the

modified radar data simulator. The simulator was primed with 2 hours of SuperDARN data

from the Saskatoon radar on 14 July, 2014 starting at 6:01 UT to ensure realistic simulations

of both complex voltage samples and exact simulated values of the self-clutter. The simulated

actual self-clutter was compared to estimates of self-clutter calculated from the simulated
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voltage data.

The average relative difference between the VSE and the simulated actual self-clutter was

compared with the square root of the relative MSE of the VSE for the two hours of simulated

radar data. The average relative difference was found to be 1.02 whereas it was expected

to be 1/
√
32 = 0.18, meaning that on average for realistic SuperDARN data, Equation 5.13

produces an underestimation of the error in the VSE. As was stated earlier this result was

expected since Equation 5.13 was derived assuming that the interfering voltages, Ṽn and Ṽm,

were known, while in practice, these voltage samples were approximated using lag-zero power

measurements. However, as was quantified in Table 5.1, when the self-clutter is caused by

ground scatter, and therefore the assumptions necessary for accurate usage of the VSE are

satisfied, the error estimate is accurate.

The maximal clutter estimates given by Equations 5.14 and 5.15 were also compared with

the simulated actual self-clutter. Both the MVSE and the MPSE were found to be maximal

within the error estimates given by Equation 5.17 for all simulated data (3,312,000 data

points). These results validate both the MVSE and MPSE as robust maximal estimates of

the self-clutter power contained in radar ACF estimates.

5.6 Conclusions

The multiple-pulse technique of Farley (1972) is widely used by HF ionospheric radar sys-

tems like SuperDARN, but, before the present work, it was not possible to quantitatively

account for the effects of self-clutter in the errors in autocorrelation function (ACF) esti-

mates. As shown in Farley (1969), estimates of self-clutter (transmitted waveform induced

range ambiguities) are needed to properly account for errors in estimating the signal ACF.

A voltage-based self-clutter estimator (VSE), a maximal voltage-based self-clutter estimator

(MVSE), and a maximal power-based self-clutter estimator (MPSE) for use with the multiple-

pulse technique have been derived and tested in the present work. The mean-square-error

(MSE) for each self-clutter estimator has also been presented and tested.

The VSE given by Equation 5.12 relies on assumptions that are required for approximating

interfering voltage samples and may be successfully used to account for self-clutter on a case
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by case basis as shown in Figure 5.6. Further study of the VSE is required to develop an

estimator that may be more generally used. We suggest development of a more accurate

method for approximating interfering voltage samples that would involve using extracted

parameters from fitted radar data in an iterative process to produce higher order corrections

to the Ṽn and Ṽm approximations.

Each maximal estimator has been independently verified utilizing a version of the radar

data simulator of Ribeiro et al. (2013b) as discussed in Section 5.5. As will be demonstrated

in a subsequent study, the maximal self-clutter estimators can be used to self-consistently

estimate the measurement error in radar ACF estimates. Radar systems using the multiple-

pulse technique will benefit from these self-clutter estimators. For example, for SuperDARN

data, the maximal self-clutter estimators can be used to produce error estimates for use in

yet to be implemented error-weighted fitting algorithms for improved ionospheric parameter

extraction.

Further modifications beyond error-weighted fitting algorithms will need to be made to

parameter extraction algorithms for SuperDARN to benefit from the results of this study.

The SuperDARN fitacf process currently utilizes the Ponomarenko and Waters (2006) cross-

range interference detection algorithm meaning that in general significant differences between

voltage sample data processed with and without subtraction of the VSE are not expected.

For instance, the triangles plotted in Figure 5.6 indicate data points that were flagged by

the Ponomarenko and Waters (2006) algorithm as “bad data” to be discarded, yet it is clear

that some of the lags that have been flagged are in fact not contaminated. Also, despite

improvements to the radar ACF made by the VSE the same lags are still flagged in the

current implementation.

Modifications to the SuperDARN fitting software and implementation of a new error-

weighted data fitting algorithm that utilizes information provided by the maximal self-clutter

estimates is currently under development and will be the topic of a future study. Nonetheless,

utilizing the MPSE it will be possible to retroactively reprocess all SuperDARN data using

an error-weighted fitting algorithm, allowing for extracted parameters (Doppler shift, etc.)

with signal derived confidence bounds (error bars). Such an algorithm may potentially also

enable improved accuracy in the extraction of parameters.
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Chapter 6

SuperDARN Auto-Correlation Function Statis-

tics

6.1 Background

With estimators for the self-clutter in SuperDARN ACF lag estimates developed in Chap-

ter 5 (in particular Equations 5.12, 5.14, and 5.15), effort was focused on remaining work

addressing challenge 1 (Section 5.1, p. 80). More specifically, the current chapter details the

research required to develop improvement 2 (Section 5.1, p. 82), which involves determining

the statistical properties of SuperDARN ACF lag estimates. From Farley (1969), it is clear

that in order to accurately estimate the variance of SuperDARN ACF lag estimates, the sta-

tistical properties of the SuperDARN voltage samples must be considered and understood.

Once the statistical properties of the estimates of the magnitude, phase, real, and imaginary

components of ACF lag estimates are known, the variance of these estimates can be used

in weighted fitting techniques to extract SuperDARN ionospheric parameters. The current

chapter focuses on SuperDARN ACF statistics, while current and new fitting methodologies

are discussed in Chapter 7.

6.2 Published Manuscript

Authors: Ashton S. Reimer, Glenn C. Hussey, and Seth R. Dueck

Reference: Reimer, A. S., G. C. Hussey, and S. R. Dueck (2016), On the statistics of

SuperDARN autocorrelation function estimates, Radio Sci., 51, 690–703,

doi:10.1002/2016RS005975.
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This chapter contains the second published work towards developing an improved Super-

DARN data processing methodology that provides improved fitted parameter errors. This

chapter derives and discusses the statistical properties of SuperDARN ACF lag estimates.

Farley (1969) discussed the statistical properties of normalized ACF lag estimates used in

incoherent scatter radar signal processing, but SuperDARN signal processing utilizes un-

normalized ACF lag estimates. Nevertheless, the techniques discussed in Farley (1969) are

applicable here and were used as a foundation to derive the statistical properties of Super-

DARN ACFs.

As will be discussed in detail below, SuperDARN ACF lag estimates are estimated from

complex (real and imaginary) voltage samples, which are random variables with statistical

properties. This means that the lag estimates are also random variables with statistical

properties; however, these properties depend on the statistical properties of the voltage sam-

ples. Initially, the PDFs of the lag estimates were determined numerically using Monte Carlo

methods, but ultimately the PDFs were analytically derived. This included PDFs for magni-

tude, phase, real, and imaginary components of the lag estimates. Equipped with the PDFs,

the variance of the lag estimates could finally be determined.

The current chapter begins with an analysis and discussion of the statistical properties of

SuperDARN voltage samples, including both theoretically and empirically derived PDFs for

the real and imaginary components of the voltage samples. Next the methodology used to

derive both the PDFs of the ACF lag estimates and the lag estimate variances is presented.

Finally, the obtained analytic expressions are validated using both Monte Carlo methods and

comparisons to previous work.

It was found that there are no exact analytic expressions for the variance of the magnitude

nor the variance of the phase of the ACF lag estimates, however an algorithm for obtaining

the variances numerically was developed. In contrast, exact and computationally simple

analytic expressions for the variance of the real and variance of the imaginary components

of ACF lag estimates were derived and validated. Combining the variance expressions for

the real and imaginary components of the ACF lag estimates derived in this chapter with

the maximal power-based self-clutter estimator developed in Chapter 5 addresses challenge

1 (Section 5.1, p. 80), enabling an improved data fitting methodology to be developed in
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Chapter 7.

What follows is the published ACF statistics manuscript with the same content as was

published in Radio Science. I am licensed (see Appendix E for details) to reproduce this

manuscript within this thesis. The figure numbers, section headings and general format-

ting have been altered to ensure consistency with the rest of this thesis; however, no other

alterations have been made to the manuscript.
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6.3 Abstract

Time-domain signal processing techniques are employed by the Super Dual Auroral Radar

Network (SuperDARN) to obtain bulk measurements of the velocity and spectral width of F

region ionospheric plasma irregularities. The measurements are obtained by fitting estimates

of the mean autocorrelation function (ACF) of the radar target. To accurately and consis-

tently extract target parameters from the mean unnormalized ACF, it is necessary to utilize

error-weighted fitting algorithms with a weight given by the variance of the ACF. Currently

implemented weights are ad hoc and a detailed description of the statistical characterization

of SuperDARN ACFs is needed. Following the discussions in Farley (1969) and Woodman

and Hagfors (1969), which describe the variance for the mean normalized ACF used with

Incoherent Scatter Radars, we present analytic expressions for obtaining the variance of the

real and imaginary components of the mean unnormalized SuperDARN ACF. These expres-

sions are based on models by André et al. (1999) and Moorcroft (2004) of the voltage signal

received by SuperDARN radars, but may be used for other soft target radar systems. An

algorithm for obtaining the variance of both the magnitude and phase of the mean ACF is

also presented. The results of this study may be directly integrated into existing SuperDARN

data analysis software and other pulse-Doppler radar systems that utilize estimates of the

mean unnormalized ACF.

6.4 Introduction

The Super Dual Auroral Radar Network (SuperDARN) is an international network of iono-

spheric pulse-Doppler radars used to measure the bulk E × B drift velocity in the F region

ionosphere (Greenwald et al., 1995; Chisham et al., 2007). The radars operate in the high-

frequency (HF) band from 8 to 20 MHz and diagnose decameter-scale field-aligned plasma

density irregularities. Pulse-Doppler Radar systems diagnose the range and Doppler charac-

teristics of a target by transmitting a pulse-sequence and recording the signal that is returned.

Plasma parameters may be obtained via a frequency-domain analysis of the power spectrum

of the signal, or via time-domain auto-covariance techniques if the conditions of the Wiener-
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Khinchin Theorem hold (Chatfield , 2013). SuperDARN uses a time-domain analysis to obtain

an estimate of the auto-correlation function (ACF) of the plasma irregularities. Estimates of

the mean ACF are obtained by averaging several complex products of pairs of time-lagged

voltage samples. Written algebraically, the population mean ACF at lag time t (R(t)), may

be estimated using K pairs of complex voltage samples (where the voltage samples in each

pair are separated, or lagged, in time by t), is given by

R̂(t) =
1

K

K
∑

k=1

Ṽ1kṼ
∗
2k, (6.1)

where R̂(t) is the estimator for the sample mean of R(t) and the subscripts denote each one

of the two complex voltage samples (V1k, V2k) separated by a time of t (e.g. Reimer and

Hussey , 2015). Equation 6.1 yields a complex number describing the mean “lag” product

of the mean ACF at time t. Equation 6.1 is applied to calculate each of the available

lags to obtain the time-dependent behaviour of the mean ACF. The number of unique lags

of the mean ACF obtained depends on the pulse-sequence transmitted by the radar (e.g.

Reimer and Hussey , 2015). The multiple pulse technique used by SuperDARN radars involves

transmitting several pulses with non-redundant delays between pulses. This reduces range

ambiguities in comparison to uniform pulse spacing techniques, but unwanted echoes from

multiple ranges returning to the radar at the same time cause interference in the ACF known

as self-clutter (Farley , 1972; Barthes et al., 1998; Reimer and Hussey , 2015)

An example of the components of a typical mean ACF measured by a SuperDARN radar

are plotted in Figure 6.1. The real and imaginary components of the ACF, as obtained using

Equation 6.1, are plotted in the top left and top right panels of the figure, respectively. The

magnitude and phase of the mean ACF, plotted in the bottom left and bottom right panels

respectively, are obtained using

〈|R̂|〉 =
√

(

R
[

〈R̂(t)〉
])2

+
(

I
[

〈R̂(t)〉
])2

(6.2)

and
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Figure 6.1: Plots of the real (top left), imaginary (top right), magnitude (bottom
left), and phase (bottom right) of a mean ACF estimated from measurements by the
Saskatoon SuperDARN radar, for beam 0 range gate 20, on 14 July, 2014 at 7:42 UT.

∠R̂(t) = tan−1





I
[

〈R̂(t)〉
]

R
[

〈R̂(t)〉
]



 . (6.3)

In Equations 6.2 and 6.3, R and I denote the real and imaginary components of R̂(t),

respectively. The time varying behaviour of the mean ACF for a single Doppler-peaked

scatterer can be modeled by a decaying complex exponential, given by

R(t) = Pe−2πwdt/λej2πfdt (6.4)

where P = R(0) is the echo power at time t = 0 (the so-called lag-zero power), wd is the

spectral width, fd is the Doppler shift, and λ is the transmitted signal wavelength (e.g.

Ribeiro et al., 2013a; Spaleta et al., 2015). Shortly, we will discuss R(t) in terms of its real
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and imaginary components with the notation R(t) = Rr + jRi. The mean ACF may also be

described in terms of a correlation coefficient, ρ, at time t such that

R(t) = R(0)ρ, ρ = ρr + jρi. (6.5)

Here we note that from Equations 6.4 and 6.5, ρr, ρi ∈ [−1, 1] and |ρ| ∈ [0, 1] for t > 0 and

that ρr = ρ cos (φ) and ρi = ρ sin (φ), where φ is the population mean phase.

As discussed by Villain et al. (1996), the functional form of the magnitude of Equation 6.4

changes for different plasma conditions. Similarly, it is important to note that Equation 6.4

will change in the presence of mixed scatter (e.g Ponomarenko et al., 2008). However, the

results of this study do not depend on the time varying behaviour of the ACF.

In the present SuperDARN data analysis procedures, the velocity and spectral width of

the plasma are obtained by fitting analytic models to the mean ACF using weighted least-

squares techniques (e.g. Ribeiro et al., 2013a). Usually, the velocity is obtained by fitting

the phase of Equation 6.4 to the phase of the mean ACF and the spectral width is obtained

by fitting the magnitude of Equation 6.4 to the magnitude of the mean ACF. Currently, the

weighted least-squares fitting algorithms use ad hoc weights. These weights are described

in a technical report by Kile Baker (White Paper on FITACF, 2003) and are based on the

assumption that the variance of the mean ACF estimates is inversely proportional to the lag

power (|R(t)|). As will become evident, these ad hoc weights are only qualitatively correct

for the phase of the mean ACF and only for lags with large signal-to-noise ratio (SNR).

For error-weighted least squares techniques, inaccurate weights lead to inaccurate estimates

of the fitted parameter and the fitted parameter error. Quantitatively accurate weights are

required to obtain accurate fitted parameter errors (Press et al., 1986).

Previously, Farley (1969) studied the statistics and estimation errors of the normalized

mean ACF used in Incoherent Scatter Radar (ISR) applications. They presented the statis-

tics of the real and imaginary components of the normalized mean ACF for three different

normalization factors, including derivations of the analytic expressions for the variance of

the estimates both with and without the presence of noise. Small estimation errors require

small normalization factor estimation errors, which can only be obtained with a large number

of samples (i.e. > 1000) of the normalization factor. For SuperDARN, typically only ≈30

116



samples are obtained, meaning that a normalized ACF estimator cannot be used, therefore

SuperDARN utilizes the unnormalized ACF estimator. The literature does not appear to

discuss the statistics and estimation errors of an unnormalized mean ACF.

Here we present and discuss the statistics of the unnormalized mean ACF with appli-

cations to SuperDARN data analysis, with a focus on the variance of the ACF estimates

(i.e. the variance of Equation 6.1). An immediate application of these results to Super-

DARN radars, as will be presented in a manuscript under preparation, is replacing the ad

hoc weights with the variance of the unnormalized mean ACF estimates will lead to more

reliable and self-consistent fitted parameter errors. For example, accurate errors are partic-

ularly useful when comparing datasets between different instruments, or when assimilating

SuperDARN data into predictive models (e.g. Ridley et al., 2006). Accurate velocity errors

will enable accurate error estimates of SuperDARN derived data products (e.g. convection

maps, cross polar cap potential, etc.) through error propagation methods.

Section 6.5.1 discusses the statistics of the complex voltage samples measured by Super-

DARN and their relationship to the mean ACF. In Section 6.5.2, the analytic form of the

distribution of the mean ACF is derived and discussed. The distributions for the magni-

tude and phase of the mean ACF are also presented. Section 6.6 is dedicated to numerical

verification of the mean ACF distributions presented in Section 6.5.2 and comparison of the

results to experimentally obtained mean ACFs. An efficient way to numerically compute the

variance of these distributions is also discussed. As will be shown in a subsequent publication,

the variance of these distributions can be used in error-weighted fitting techniques to obtain

improvements to SuperDARN data products, including statistically consistent estimates of

plasma parameter errors.

6.5 Mean ACF Estimate Statistics

The statistics of the mean ACF estimator, given by Equation 6.1, follow from the statistical

distribution of the complex voltage samples that are received by SuperDARN radars. Using

the statistics of the voltage samples allows one to derive analytic expressions for the variance

of the estimators for the real and imaginary components of the mean ACF. Applying the
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Central Limit Theorem, analytic probability distribution functions for the mean ACF and

for the magnitude and phase of the mean ACF may be obtained.

6.5.1 Voltage Sample Statistics

SuperDARN radars receive echoes from a large illuminated volume of the ionosphere, referred

to as a range cell, which generally extends 45 km in range with 3 dB beam-width of 3.24

degrees. At the largest transmitted SuperDARN wavelength, 37.5 m (8 MHz), the volume

is more than a thousand wavelengths in each dimension. To explain the shape of the power

spectra measured by the SHERPA HF radar, Hanuise et al. (1993) assumed that received

voltage signals are given by the volume integral of the contributions from multiple field aligned

irregularities inside a range cell. To explain the behaviour of SuperDARN ACFs observed in

the cusp, André et al. (1999) modeled the scattered signal as a sum of the scattered signals

from many individual irregularities. Moorcroft (2004) derived a backscatter model capable of

explaining the observed shape of auroral backscatter spectra, for radar frequencies from 10 to

933 MHz, by assuming that a large number (L) of individual scatters, sℓ(t), each contribute

to the total scattered signal, V (t), such that

V (t) =
L
∑

ℓ=1

sℓ(t). (6.6)

The total received signal is a sum of the signals provided by each individual scatterer. A

radar data simulator based on the work of Moorcroft (2004) was shown by Ribeiro et al.

(2013b) to realistically model experimentally measured SuperDARN ACFs.

Following Moorcroft (2004), if the field aligned scatterers are randomly distributed in the

volume illuminated by the radar, then by the Central Limit Theorem, the distribution of

the sum of the random scattered signals is given by a Gaussian distribution (Westfall and

Henning , 2013). This result is valid regardless of the form of the probability distribution

function that characterizes the individual scatterers. To test the validity of this model, a

typical example of the distributions of the real and imaginary components of the voltage

signal obtained from the Saskatoon SuperDARN radar is shown in Figure 6.2. The plots

were produced using 256 signal dominated voltage samples, from 32 pulse-sequences with 8

pulses each obtained in ≈3 seconds, with SNR >20 dB. These were then binned into 10 bins

118



(shown by the red dots). The grey curves were generated by running 500 simulating of the

voltage data by sampling Equation 6.7 (presented below). As expected, due to the finite

number of voltage samples used, there is some deviation of the data from the population

mean (black dashed line); however, as indicated by the grey curves, this deviation is within

the variance given by the model.
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Figure 6.2: The distributions of the real (top) and imaginary (bottom) components of
complex voltage samples measured using the Saskatoon SuperDARN radar (red dots),
for beam 0 range gate 25, on 14 July, 2014 at 7:42 UT. The grey lines indicate distri-
butions derived from Monte Carlo simulations of the data using Equation 6.7.

As assumed theoretically and just demonstrated experimentally, the voltage samples mea-

sured by SuperDARN radars follow a zero-mean Gaussian distribution. Specifically, the real

and imaginary components of two voltage samples (i.e. V1 = x1 + ix2 and V2 = x3+ ix4) can
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be described by a 4-dimensional joint Gaussian distribution (e.g. Simon, 2007)

p(x1, x2, x3, x4) =
1

(2π)2|C|1/2exp
(

− 1

2|C|
4
∑

i,j=1

|Cij|xixj

)

(6.7)

with a covariance matrixC. Following the example given by Donald Farley and Tor Hagfors in

an unpublished textbook (AGF-304, Arctic Geophysics, The University Courses on Svalbard,

Textbook manuscript, 1999), the covariance matrix of Equation 6.7 is written as

C = σ2

















1 0 ρr −ρi

0 1 ρi ρr

ρr ρi 1 0

−ρi ρr 0 1

















. (6.8)

The covariance matrix C describes the correlation between the real and imaginary compo-

nents of 2 voltage samples received at 2 different times by a quadrature receiver (such as

is used by SuperDARN radars). The real and imaginary components of a single voltage

sample are not correlated, but the real and imaginary component between two voltage sam-

ples separated in time will be correlated as described by the population mean coefficients

of correlation, ρr and ρi. The variance, σ2, is proportional to the echo power or lag-zero

power (R(0) = 2σ2) received by the radar. As detailed in Section 6.6, Equation 6.8 may be

used in a Monte Carlo simulation to numerically verify the analytically derived distribution

and variance of the mean ACF and to test for when the assumption that the Central Limit

Theorem can be applied breaks down.

6.5.2 Mean ACF Component Distributions

To derive the probability distribution function for the mean ACF, an approach similar to that

taken by Woodman and Hagfors (1969) was used. We have not considered contributions of

noise as it is a simple exercise to add this later (e.g. Farley , 1969). The noise in SuperDARN

voltage samples is Gaussian (see Figure 8 in Goh et al. (2014)), so the noise contribution to

the voltage samples is accounted for by adding the variance of the noise, σ2
N , to the main

diagonal of C. Equation 6.1 shows that estimates of the mean ACF are given by the sum of

random variables (the voltage samples, V1 and V2, are random variables and therefore their
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products are random variables). The sample mean estimators for the real and imaginary

components of the ACF are given by

R̂r =
1

K

K
∑

k=1

(x1kx3k + x2kx4k) , R̂i =
1

K

K
∑

k=1

(x2kx3k − x1kx4k) (6.9)

with expected values Rr = Pρr and Ri = Pρi, where P = R(0). The variance for each

of these estimators is the difference of the expectation value of the square of the estimator,

〈R̂2〉, and the square of the expectation value, 〈R̂〉2, of the estimator (e.g. Farley , 1969;

Reimer and Hussey , 2015). For voltage samples characterized by Equation 6.7, the variance

of the real (σr) and imaginary (σi) components of the population mean ACF, derived from

Equation 6.9, are given by

σ2
r = P 2

(

1− |ρ|2
2K

+
ρ2r
K

)

(6.10)

and

σ2
i = P 2

(

1− |ρ|2
2K

+
ρ2i
K

)

(6.11)

where again P is the signal power at lag-zero. Note that this result is independent of the

functional form of the ACF and therefore does not depend on Equation 6.4 nor does it

depend on the probably distribution function of the mean ACF, but rather on the probability

distribution function of the voltage samples. For voltage samples of a different distribution,

Equations 6.10 and 6.11 need to be re-derived following the discussion presented here and

in Farley (1969). To include contributions of Gaussian noise, N , and clutter (including

self-clutter), C:

P → P +N + C, ρ → R(t) +RN (t) +RC(t)

P +N + C
, (6.12)

where RN and RC are the noise and clutter correlation functions (Farley , 1969). In current

practice for SuperDARN, RN(0) = N with RN = 0 elsewhere and the clutter term may be

estimated using one of the estimators derived in Reimer and Hussey (2015).

The probability distribution function of the real and imaginary components can be de-

scribed by a 2-dimensional joint Gaussian distribution. Here the Central Limit Theorem is

invoked by assuming “large” values of K. How large K must be depends on how “close”

one wishes the distribution to be to Gaussian, where only K → ∞ produces a distribution
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identical to a Gaussian (Westfall and Henning , 2013). Westfall and Henning (2013) suggests

a “dirty rule of thumb” of K = 30 is sufficient and as will be shown in Section 6.6, K = 30

(the typical number of sample obtained in 3 seconds of integration on SuperDARN radars)

produces acceptable results. Assuming large K, the real and imaginary components of the

mean ACF are given by (e.g. Simon, 2007)

p(x, y) =
1

2πσrσi

√

1− ρ2ri
e
− (x−x̄)2

2σ2
r(1−ρ2

ri)
− (y−ȳ)2

2σ2
i (1−ρ2

ri)
+

ρri(x−x̄)(y−ȳ)

σrσi(1−ρ2
ri) , ρri = 2ρrρi (6.13)

where x and y correspond to samples of the real and imaginary components of the mean ACF.

Here the bar notation is used to denote expected values (population mean), with x̄ = Rr and

ȳ = Ri.

It is a straightforward matter to derive the distribution functions of both the magnitude

and phase of the mean ACF from Equation 6.13 (e.g. Beckmann, 1962; Aalo et al., 2007;

Dharmawansa et al., 2009). Equation 6.13 is first converted to polar coordinates and then

integrated with respect to either r or θ. The distribution of the phase of the mean ACF,

given by Equation C.3 in the Appendix, is found by integrating Equation C.1 (Appendix)

with respect to r from 0 to ∞ , yielding a result similar to Aalo et al. (2007) but differing

fromWoodman and Hagfors (1969). The distribution of the magnitude of the mean ACF (see

Equation C.13 in the Appendix) is found by integrating Equation C.1 with respect to θ from

0 to 2π. This is straightforward in principle, but as detailed in the Appendix the calculation

is rather involved. It is difficult if not impossible to calculate an analytic expression for the

variance of both Equations C.3 and C.13 (Appendix), thus we defer this to numeric methods

as discussed in Section 6.6. Equations C.3 and C.13 are also computationally slow and

therefore it is impractical to use them to determine the variance of the phase and magnitude

distributions for error-weighted fitting in place of other methods, but they were included for

the sake of completeness. Here again, we will defer to numeric methods in Section 6.6 where

we present a more computationally efficient numeric method for determining the variance of

magnitude and phase of the mean ACF estimator given in Equation 6.1.
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6.6 Analysis and Discussion

As a test of the analytic expressions derived in Section 6.5.2, they were compared with

distributions that were numerically derived from Equation 6.7 with a Monte Carlo simulation.

While similar analytic results were obtained by Beckmann (1962) and Aalo et al. (2007), their

expressions were not verified numerically. Using the Monte Carlo method, we were able to

determine the value of K at which the validity of invoking the Central Limit Theorem to

obtain Equation 6.13 from Equation 6.7 breaks down. Experimentally obtained SuperDARN

data was also compared with Equation 6.13.

6.6.1 Comparison with Monte Carlo

To test the Central Limit Theorem assumption, K voltage samples were drawn from Equa-

tion 6.7 and using Equation 6.1 a sample of the mean ACF was numerically obtained; this

process was repeated several times until M samples were obtained and a distribution of the

mean ACF was numerically produced. Values for σ, ρr, and ρi in Equation 6.8 were deter-

mined using Equation 6.4 with realistic values for echo power, P , spectral width, wd, and

Doppler shift, fd, derived from real SuperDARN data. Various permutations of velocities,

spectral widths, and number of samples, K, were explored.

Figure 6.3 compares the numerically and analytically derived mean ACFs for the real and

imaginary (equation 6.13), magnitude (equation C.13), and phase (equation C.3) distribu-

tions. The top panels in the figure show the real and imaginary marginal distributions and

the bottom panels compare the numeric magnitude and phase distributions with the analytic

results given by Equations C.3 and C.13. The relative difference between the Monte Carlo

and analytic distributions was studied and found to be less than the expected statistical

sampling error (i.e. < 1/
√
M with M as the number of samples of the Monte Carlo derived

mean ACF distribution).

The good agreement observed in the Figure 6.3 is an expected result, but it confirms

that the expressions derived here and by previous authors (e.g. Aalo et al., 2007) are correct.

This agreement was observed for all lags, regardless of the values of velocity and spectral

width selected. Specifically testing various values of K (not shown), we observed that the
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Figure 6.3: A comparison of the Monte Carlo generated marginal distributions for lag
5 of the mean ACF with the respective analytic expressions for the distributions of the
components of the mean ACF given by Equations 6.13, C.3, and C.13. For a velocity
of 300 m/s and a spectral width of 200 m/s.
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assumption that the Central Limit Theorem can be applied to derive Equation 6.13 is invalid

when K < 10, indicating that Equation 6.13 may be used so long as K ≥ 10 (note that

SuperDARN radars typically operate with K > 20). So for K < 10, Equation 6.7 must be

used to numerically obtain the probability distribution function of the mean ACF. As will

be discussed, using Equation 6.7 is more computationally intensive by a factor of K.

The analytic expressions for the variance of the mean ACF (Equations 6.10 and 6.11) were

also directly compared with Monte Carlo-derived results. This was done to both visualize the

variance for typical SuperDARN mean ACFs and to demonstrate that Equations 6.10 and

6.11 have been properly derived. Figure 6.4 shows the variances of the real (left column) and

imaginary (right column) components of the mean ACF. A velocity of 300 m/s was used for

all plots and spectral widths of 10 m/s, 200 m/s, and 1000 m/s, were used for the top, middle,

and bottom rows of plots respectively. These values were chosen to explore the typical range

of spectral widths observed by SuperDARN radars.

In contrast to the real and imaginary components of the ACF, analytic expressions for

the variance of the magnitude and phase distributions are not easily, if at all, calculable,

and therefore must be obtained numerically. One could use the distribution for the voltages

(equation 6.7) in combination with a Monte Carlo method to obtain the distributions of

the magnitude and phase of the mean ACF and then numerically determine the variance

for each, but this process is slower (it requires K × M samples of Equation 6.7). Instead,

using Equation 6.13 in a Monte Carlo simulation enables the variance of the magnitude and

phase to be obtained with K fewer computations. For some SuperDARN experiments with

K < 10, such as Greenwald et al. (2008) where K = 2 and Theurer and Bristow (2012)

where K = 9, Equation 6.13 cannot be used, and the computationally slower method of

using Equation 6.7 must be performed. To obtain the variance of the magnitude and phase

distributions, one must obtain M samples of x and y from Equation 6.13, calculate vectors

of the magnitudes r and phases θ from the x and y samples, and then calculate the variance

of the magnitudes and phases. This method is also faster at obtaining the variance of the

magnitude and phase than a numeric algorithm that obtains samples of the magnitude and

phase using Equation C.3 or C.13. For directional data (such as the phase of the mean ACF),

it is important to note that the variance must be calculated using the square of the mean
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Figure 6.4: A comparison of the variance of the analytic (red dashed curves) and
Monte Carlo simulated (solid blue curves) real (left column) and imaginary (right col-
umn) component distributions. A power of 1830000 (arb), a velocity of 300 m/s, and
spectral widths of 10 m/s (top), 200 m/s (middle), and 1000 m/s (bottom) were used.

deviation, d0, given by Mardia (1972) as

d0 = π − 1

N

∑
∣

∣π −
∣

∣θs − θ̄
∣

∣

∣

∣ (6.14)

where N is the number of samples of the phase distribution (θs) and θ̄ is the sample circular

mean.

Figure 6.5 compares the Monte Carlo derived and analytic variances for the magnitude

(left column) and phase (right column) of a mean ACF. The figure was generated using the

same velocity and spectral widths as in Figure 6.4. Note that the phase variance in the top

row is essentially 0 being barely visible along the x-axis.

The behaviour of the real, imaginary, magnitude, and phase variance of the mean ACF
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Figure 6.5: A comparison of the variance of the analytic (red dashed curves) and
Monte Carlo simulated (solid blue curves) magnitude (left column) and phase (right
column) component marginal distributions. A power of 1830000 (arb), a velocity of 300
m/s, and spectral widths of 10 m/s (top), 200 m/s (middle), and 1000 m/s (bottom)
were used.

components differs for various values of input parameters ρ and K. Figures 6.4 and 6.5

were produced with spectral width increasing from the top row down. As the spectral width

increases, the correlation coefficient, ρ, decreases more quickly as a function of increasing lag

number (not shown). In general, as described by Equation 6.4, as the lag number increases

(t increases) the correlation coefficient will decrease.

Exploring the asymptotic behaviour of the variances, we observe different behaviours for

the different components. Note that to generate the figures, P = 1830000 and K = 32 were

used. For narrow spectral width (top row Figure 6.4), the variance of the real component (c.f.
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Equation 6.10) is P 2/K at t = 0 but then oscillates between P 2/K and P 2/(2K) for larger

lags. Similarly, the variance of the imaginary component (c.f. Equation 6.11) is 0 at t = 0,

but then oscillates between P 2/K and P 2/(2K) for larger lags. This behaviour is observed for

both the Monte Carlo (numeric) and analytic variances of the real and imaginary components.

As the spectral width increases, the variance of the real and imaginary components both

converge to a value of P 2/(2K) for increasing lag number.

Observing the asymptotic behaviour seen in Figure 6.5, the variance of the magnitude

distribution at lag-zero (variance of |R̂(t)| for t = 0) is P 2/K for small lags but approaches

4−π
2

P 2

2K
for large lags when the spectral width is large (bottom row). This behaviour at large

lags results from the distribution of the magnitude of the mean ACF, given by Equation C.13,

becoming a Rayleigh distribution as ρ → 0 (e.g. Beckmann, 1962). The variance of the phase

distribution is 0 at lag-zero, but increases as ρ decreases (as the lag number increases). For

ρ → 0 the variance approaches (π/2)2 ≈ 2.47 as observed in the bottom right panel of

Figure 6.5, as the phase distribution approaches a circular uniform distribution.

Here it is important to note that the ad hoc weights for fitting the magnitude and phase as

reported by Kile Baker (White Paper on FITACF, 2003) are inconsistent with the behaviour

of the variance seen in Figure 6.5. Whereas the ad hoc weights discussed by Baker produce an

increasing variance as lag power decreases (Z/|R(t)|2 where Z is a constant), the variance of

the magnitude and phase shown in Figure 6.5 clearly do not follow a simple inverse-squared

relation.

6.6.2 Comparison with Experimental ACFs

The probability distribution function of the mean ACF, given by Equation 6.13, was com-

pared with experimentally obtained SuperDARN ACFs from the Saskatoon SuperDARN

radar. For each comparison, it was determined that the model was able to reproduce the cor-

responding experimentally obtained mean ACF. To perform the comparison, first the power,

velocity, and spectral width of the experimental ACF was determined using a least-squares

fit to Equation 6.4 and then the fitted parameters were substituted into Equations 6.4, 6.10,

6.11, and 6.13. Figure 6.6 compares 100 Monte Carlo simulated ACFs (grey lines) obtained

using Equation 6.13 with an experimentally measured ACF (red dots). The average of the
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simulated mean ACFs is indicated by the black line, which corresponds to Equation 6.4 with

K = 26, P = 1141899, vd = 307 m/s and wd = 188 m/s. It is clear from the figure that the

model given by Equation 6.13 is able to accurately reproduce the experimental data since all

of the data is within the variability observed in the simulated mean ACFs.
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Figure 6.6: A comparison of the ACF model given by Equation 6.13 with an experi-
mentally measured SuperDARN mean ACF. See text for details.

6.6.3 Comparison to Previous Work

Woodman and Hagfors (1969) derived an expression for the distribution of the phase of the

mean ACF and an approximate analytic form for the variance of the phase, given by

〈(δφ̂)2〉 = 1

2K

1− |ρ|2

|ρ|2
, (6.15)

valid only where
Kρ2

1 + ρ2
> 1. (6.16)
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The distribution and variance expressions were derived for use with ISRs, which use the

normalized mean ACF, but the results are also applicable to SuperDARN radars that use

the unnormalized mean ACF. This is because any normalization constant applied to the

mean ACF is cancelled while calculating the phase using Equation 6.3.

Figures 6.7 and 6.8 compare the results derived by Woodman and Hagfors (1969) with

those presented in the current study. Figure 6.7 shows a comparison between the phase

distribution of Woodman and Hagfors (1969) (solid blue curve) with Equation C.3 (red

dashed curve); the plot was made using ρ = 0.5, K = 30, and φ = π/4. Notice that the

distribution ofWoodman and Hagfors (1969) is bimodal and encloses a total area greater than

1 compared to the curve produced by Equation C.3, which is unimodal and encloses a total

area equal to 1. Comparing the largest peaks, we see that both curves follow an approximately

Gaussian shape and have equivalent full-width-at-half-maximums. Here we remark that the

phase distribution given by Equation C.3 is only unimodal due to the major axis of the

mean ACF distribution being restricted to lie on the radial axis (in polar coordinates) by the

assumed mean ACF model given by Equation 6.4. For other assumed mean ACF models,

such as the mixed scatter model given by Equation 1 in Barthes et al. (1998), Equation C.3

may become bimodal; however, it is important to note this bimodality does not explain the

bimodality observed in Woodman and Hagfors (1969).

Figure 6.8 compares the approximate expression for the phase variance of Woodman and

Hagfors (1969) (blue solid curve) with that derived from Equation 6.13 (red dashed curve).

The curves were made using K = 10, and φ = π/4. Good agreement between the two curves

is observed in the region to the right of the black dashed line (ρ > 0.33), where the condition

given by Equation 6.16 is satisfied. To the left side of the black dashed line Equation 6.15

diverges to infinity, whereas the red dashed curve converges to (π/2)2 as previously discussed

(c.f. bottom right panel of Figure 6.5).

It is clear that despite the bimodal nature of phase distribution derived by Woodman and

Hagfors (1969), Equation 6.15 is valid so long as the condition in Equation 6.16 is satisfied.

When Equation 6.16 is satisfied, one may utilize Equation 6.15 to calculate the variance in

the phase of the mean ACF, but when it is not satisfied, the method discussed earlier to

numerically obtain the variance in the phase from Equation 6.13 should be used, which is
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Figure 6.7: A plot of the probability distribution function for the phase of the mean
ACF given by Woodman and Hagfors (1969) (blue solid curve) and Equation C.3 (red
dashed curve). The distributions were made using ρ = 0.5, K = 30, and φ = π/4.

computationally slower than using Equation 6.15.

6.7 Conclusions

The present study has derived and numerically verified analytic expressions for the mean

ACF based on the statistics of the voltage samples measured by SuperDARN radars. The

study was motivated by a need to know the variance of the mean ACF estimator (equa-

tion 6.1) and the variance of its magnitude and phase (Equations 6.2 and 6.3) for use in the

error-weighted fitting data analysis techniques used by SuperDARN. The results presented

here are broadly applicable to any pulse-Doppler radar systems that utilize components of

the mean unnormalized ACF to diagnose radar targets. First, it was shown that pairs of
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Figure 6.8: A comparison of the variance of the phase distribution given by Equa-
tion 6.15 (blue solid curve) and that derived from 6.13 (red dashed curve). The plots
were made using K = 10, and φ = π/4.

voltage samples obtained by the SuperDARN radars can be characterized by a 4-dimensional

Gaussian distribution by modeling the received voltage signal from field-aligned ionospheric

plasma irregularities as the sum of a large number of individual scattered signals (André

et al., 1999; Moorcroft , 2004; Ribeiro et al., 2013b). This result was confirmed with exper-

imentally obtained voltage data (for example Figure 6.2). Next, using the Central Limit

Theorem it was shown that the distribution of the mean ACF may be accurately character-

ized by the 2-dimensional Gaussian distribution described by Equation 6.13, with variances

given exactly by Equations 6.10 and 6.11. Analytic expressions for the distributions of the

phase and magnitude of the mean ACF, Equations C.3 and C.13 (see Appendix), were de-

rived, numerically verified, and studied with a Monte Carlo method. It was determined that

both the Central Limit Theorem assumption and Equation 6.13 are valid so long as K ≥ 10.

132



Equation 6.13 was also compared with experimentally obtained SuperDARN mean ACFs

and found to accurately reproduce measured ACFs (see Figure 6.6).

The variance of the distributions given by Equations 6.13, C.3, and C.13 were also studied

and numerically verified. The variance of the real component of the mean ACF was found to

be bounded by σ2
r ∈ [P 2/(2K), P 2/K], decreasing as the correlation approaches 0 (ρ → 0).

The variance of the imaginary component of the mean ACF was found to be bounded by

σ2
i ∈ [0, P 2/K], starting at 0 for complete correlation (ρ = 1) and then approaching P 2/(2K)

as the correlation approaches 0. The variance of the magnitude distribution was found to be

bounded by σ2
m ∈ [P 2(4− π)/(4K), P 2/K], decreasing as the correlation approaches 0. The

variance of the phase distribution was found to be bounded by σ2
θ ∈ [0, (π/2)2], approaching

0 as the correlation approaches 1 and approaching (π/2)2 as the correlation approaches 0.

It is important to note that the real and imaginary variances were derived directly from

Equation 6.9 and are exact results that only depend on the statistics of the voltage samples

and not do not depend on the assumption that usage of the Central Limit Theorem to obtain

Equation 6.13 is valid.

The variance results presented in this study can be used in error-weighted fitting algo-

rithms that extract plasma parameters from the mean ACF. For the real and imaginary

components of the mean ACF, analytic expressions for variance (Equations 6.10 and 6.11)

were derived. An computationally efficient algorithm for numerically calculating the vari-

ance of the magnitude and phase from Equation 6.13 was discussed, although Equation 6.15

(from earlier work by Woodman and Hagfors (1969)) for the variance of the phase is more

efficient and can be used as long as the condition in Equation 6.16 is satisfied. The results of

this study may be incorporated into existing radar signal processing routines (as discussed

in Ribeiro et al. (2013a)) currently utilized by the SuperDARN collaboration or new fitting

techniques, such as the Bayesian Inference method recently described by Spaleta et al. (2015).

Other pulse-Doppler radar systems that extract target characteristics from estimates of the

unnormalized mean ACF of soft targets would also benefit from this investigation. Future

work on approximate analytic expressions for the variance of the magnitude and phase based

on spline fitting would also be beneficial.
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Chapter 7

Self-Consistent Fitted Parameter Errors for

SuperDARN

7.1 Background

As was discussed in Section 5.1, during the investigation into current SuperDARN signal

processing methods, several improvements were identified to address numerous challenges.

Improvements 1 and 2 (Section 5.1, p. 82) were developed and discussed in Chapters 5 and 6.

In Chapter 5 a novel maximal power-based self-clutter estimator (Equation 5.15) was devel-

oped that can be used to provide an upper-limit estimate of the self-clutter that contributes

to each lag estimate of the SuperDARN ACF. The estimator accomplishes the objective of

improvement 1 (Section 5.1, p. 82) since it can be used in all past, present, and future Su-

perDARN data processing. In Chapter 6, the statistical properties of the SuperDARN ACF

lag estimates were determined, validated, and discussed. This research accomplished the

objective of improvement 2 by deriving techniques and expressions to determine the variance

of the magnitude, phase, real and imaginary components of the lag estimates. Using both

the power-based self-clutter estimator and the ACF lag variance expressions, specifically the

lag variance of the real and imaginary components (Equations 6.10 and 6.11), challenge 1

has been addressed, with challenges 2 and 3 remaining (Section 5.1, p. 80).

The current chapter presents an improved SuperDARN signal processing methodology

that addresses challenges 2 and 3 using a weighted non-linear least squares fit to the real

and imaginary components of the ACF lag estimates, where the weights are determined

using both the maximal power-based self-clutter estimator developed in Chapter 5 and the

exact real and imaginary ACF lag variance expressions developed in Chapter 6. This is in
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contrast to the current SuperDARN fitting methodology, which performs linear least-squares

fits to the magnitude and phase of the ACF and uses ad hoc expressions for the variances.

Performing fits to the real and imaginary components avoids the problems associated with

unwrapping the phase.

7.2 Published Manuscript

Authors: Ashton S. Reimer, Glenn C. Hussey, and Kathryn A. McWilliams

Reference: Reimer, A. S., G. C. Hussey, and K. A. McWilliams (2018), Statistically

self-consistent and accurate errors for SuperDARN data, Radio Sci., 53, 93–111.

doi:10.1002/2017RS006450

This chapter contains the final research towards developing an improved SuperDARN data

processing methodology, with a focus on providing improved and accurate fitted parameter

errors. The chapter presents and discusses a first-principles fitting methodology (FPFM) that

avoids the challenges associated with fitting the magnitude and phase of SuperDARN ACF lag

estimates by instead performing weighted non-linear least-squares regression on the real and

imaginary components of the ACF lag estimates. The exact analytic variance expressions for

the real and imaginary components of the ACF, which were developed in Chapter 6, are used

to weight the least-square fitting process. The variance includes estimates of the self-clutter

contained in each ACF lag using the maximal power-based self-clutter estimator developed

in Chapter 5.

Initially, research in to developing a new fitting methodology focused on a “brute-force”

technique, where the minimum χ2 value was determined by exploring the range of valid phys-

ical values for the fitted parameters. The advantage of this method was that it enabled a

thorough exploration of the χ2 space, and accurate confidence intervals, to be easily devel-

oped. The disadvantage was that the method was computationally very slow for non-linear

models involving transcendental functions such as sine, cosine, and exponential. Eventually,

the Levenburg-Marquardt algorithm was chosen to perform non-linear regression. Fitting

the magnitude and phase of the ACF lag estimates was also attempted. While attempting
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to fit the magnitude, it was found that the exponential model used in current SuperDARN

fitting was fundamentally incompatible with the statistical nature of the magnitude of the

ACF lag estimates. This is thoroughly discussed below. While attempting to fit the phase,

an error-weighted phase unwrapping algorithm was attempted; however, this was abandoned

after it was realized that a phase unwrapping algorithm that can unambiguously unwrap the

phase is fundamentally incompatible with the statistical properties of the phase of the ACF

lag estimates. This research was performed in conjunction with the research presented in

Chapter 6, which informed the development of the FPFM.

Significant testing of the FPFM was performed using synthetic SuperDARN data gener-

ated with the same simulator used to validate the self-clutter estimators in Chapter 5. These

simulation tests proved that the confidence intervals (errors bars) of the fitted parameters

varied as expected with signal, noise, and self-clutter, while also verifying that the confidence

intervals were consistent with the true fitting error. Finally, comparisons between the FPFM

and the current SuperDARN signal processing methodology were performed with real Su-

perDARN observations in a statistical study spanning eight years of data collected by the

Saskatoon SuperDARN radar. All of the testing and comparisons determined that the FPFM

is an improvement compared to the current SuperDARN signal processing methodology, es-

pecially in regards to the fitted parameter errors. Significantly more data is made available,

all with accurate errors, and all of the SuperDARN data that has ever been collected may

be reprocessed for improved research data analysis and insight.

What follows is the fitting methodology manuscript with the same content as was pub-

lished in Radio Science. I am licensed (see Appendix E for details) to reproduce this

manuscript within this thesis. The figure numbers, section headings and general format-

ting have been altered to ensure consistency with the rest of this thesis; however, no other

alterations have been made to the manuscript.
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7.3 Abstract

The Super Dual Auroral Radar Network (SuperDARN) fitted data products (e.g. spectral

width and velocity) are produced using weighted least-squares fitting. We present a new First-

Principles Fitting Methodology (FPFM) that utilizes the first-principles approach of Reimer

et al. (2016) to estimate the variance of the real and imaginary components of the mean

autocorrelation functions (ACF) lags. SuperDARN ACFs fitted by the FPFM do not use ad

hoc variance or data filtering criteria. Currently, the weighting used to fit the ACF lags are

derived from ad hoc estimates of the ACF lag variance. Additionally, a lag filtering criterion

is used that is over-cautious and sometimes discards data that contains useful information.

In low signal-to-noise (SNR) and/or low signal-to-clutter regimes these ad hoc criteria lead

to underestimated errors for the fitted parameter because the relative contributions of signal,

noise, and clutter to the ACF variance is not taken into consideration. The FPFM variance

expressions include contributions of signal, noise, and clutter. The clutter is estimated using

the maximal power-based self-clutter estimator derived by Reimer and Hussey (2015). The

FPFM was successfully implemented and tested using synthetic ACFs generated with the

radar data simulator of Ribeiro et al. (2013b). The fitted parameters and the fitted-parameter

errors produced by the FPFM are compared with the current SuperDARN fitting software,

FITACF. Using self-consistent statistical analysis, the FPFM produces reliable or trustworthy

quantitative measures of the errors of the fitted parameters. For an SNR in excess of 3 dB

and velocity error below 100 m/s, the FPFM produces 52% more data points than FITACF.

7.4 Introduction

Super Dual Auroral Radar Network (SuperDARN) radars can be used to study a wide variety

of magnetospheric and ionospheric processes. A search of the Scopus database (https:

//www.scopus.com) on 22 July, 2017 revealed more than 600 published journal articles using

SuperDARN data. For example: vorticity observed in F region SuperDARN convection

maps can be used to estimate the Birkeland currents (e.g. Sofko et al., 1995); individual

radar data are used in studies of polar cap patches (e.g. Dahlgren et al., 2012); SuperDARN
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data have been used to infer magnetospheric reconnection rates (e.g. Hubert et al., 2006).

Furthermore, SuperDARN data may also be ingested into assimilative models, as in Cousins

et al. (2015) where data from SuperDARN and data from the Active Magnetosphere and

Planetary Electrodynamics Response Experiment (AMPERE) were combined to produce

maps of both the electrostatic and magnetic vector potentials.

It is clear that SuperDARN contributes an invaluable dataset to the space physics re-

search community. Fitted-parameter errors that can be trusted as quantitative measures

of the error in fitted parameters will improve SuperDARN data products and are therefore

needed. Historically, due to limitations of available computer power in the 1980s and 1990s,

when SuperDARN fitting software was originally developed, ad hoc conditions and estimates

were implemented in the software. In an effort to eliminate self-clutter, SuperDARN fitting

software uses ad hoc conditions to filter what are referred to as “bad” lags. The software

also uses ad hoc variance expressions to weight the fitting of the remaining “good” ACF lags.

This results in non-optimal estimates of the fitted-parameter errors (Fisher , 1958), because

the ad hoc variance does not weight each individual lag estimate with the appropriate relative

contributions of signal, noise, and clutter. The resulting fitted-parameter errors therefore do

not vary as a function of signal-to-noise (SNR) and signal-to-clutter (SCR) as one would

expect, with some good data being discarded and some bad data being erroneously fitted.

In this study we present a First-Principles Fitting Methodology (FPFM) based on pre-

vious work by Reimer and Hussey (2015) and Reimer et al. (2016). By employing physics

based first-principles, FPFM does not rely on ad hoc criteria to deal with noise and self-

clutter. The FPFM is implemented in a new SuperDARN fitting algorithm called LMFIT2

and has been tested and compared with existing SuperDARN software. It will be shown

that the fitted-parameter errors from FPFM are accurate measures of the uncertainty in the

fitted parameters. In addition, the amount of fitted data obtained with FPFM is increased

compared to the amount of fitted data obtained using the current SuperDARN FITACF

software. For clarity, we will refer to FPFM and its implementation in software, LMFIT2, as

FPFM-LMFIT2. If FPFM-LMFIT2 is used to process all SuperDARN data, researchers will

be able, for the first time, to quantitatively select which data from the SuperDARN dataset

to use based on meaningful fitted-parameter errors. Since the FPFM-LMFIT2 is applied in
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post-processing, the entire existing SuperDARN can be processed using FPFM-LMFIT2.

7.4.1 SuperDARN Measurements

The pulsed Doppler radars of SuperDARN measure the F region E × B plasma drift with

minute-scale temporal resolution (Greenwald et al., 1995; Chisham et al., 2007). Operating

in the high-frequency (HF) band, between 8 and 20 MHz, the radars record signals that are

scattered by decameter-scale magnetic field-aligned ionospheric plasma density irregularities.

To overcome the range-Doppler ambiguities associated with the long range (in excess of 1000

km range from the radar) and high velocity (of the order of 1 km/s) ionospheric targets,

SuperDARN radars use the multiple-pulse technique of Farley (1972), which involves trans-

mitting a sequence of pulses with non-redundant spacings at a variety of integer multiples

of a base inter-pulse period. Complex voltage samples are decoded from scattered signals

with a quadrature receiver. Time-lagged voltage samples from each pulse-sequence are used

to estimate the time-dependent auto-correlation function (ACF) of the received signals to

reveal the spectral properties of ionospheric irregularities (Villain et al., 1996). To reduce

both noise and statistical fluctuations, ACFs from several pulse-sequences (typically 30 or

so) are combined to produce a mean ACF. Using K pulse sequences, the i-th lag of the mean

ACF, R̂(τi), is estimated from the voltage samples using

R̂(τi) =
1

K

K
∑

k=1

Vk(t+ τi)V
∗
k (t), (7.1)

where Vk(t + τi) and Vk(t) are two voltage samples separated by a lag time of τi and the

asterisk denotes the complex conjugate (e.g. Villain et al., 1987; Reimer et al., 2016). For

SuperDARN, the lag times, τi, are integer multiples of the base inter-pulse period of the

transmitted multiple-pulse sequence (typically 1800 or 2400 µs). For simplicity, we will refer

to the mean ACF as the ACF. Estimating all lags of the ACF using Equation 7.1 yields

complex numbers describing the mean lag-products of the ACF at lag times τi. For a pulse

sequence with L pulses, the multiple-pulse technique enables L(L− 1)/2 lags of the ACF to

be estimated, which allows the time-dependent behaviour of the ACF to be observed (e.g.

Farley , 1972; Villain et al., 1996; Reimer and Hussey , 2015). From the ACF the echo power,
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spectral width, and line-of-sight Doppler velocity are extracted using error-weighted least-

squares fitting techniques (Ribeiro et al., 2013a). Figure 7.1 is an example of a measured

ACF (blue dots) from the SuperDARN radar in Clyde River, Nunavut. The top left and top

right panels in the figure show the real and imaginary components of the ACF, respectively.

The magnitude (|R̂(τi)|) and phase (∠R̂(τi)) of the ACF are plotted in the bottom left and

bottom right panels, respectively, and were obtained using

|R̂(τi)| =
√

(

R
[

R̂(τi)
])2

+
(

I
[

R̂(τi)
])2

∠R̂(τi) = tan−1





I
[

R̂(τi)
]

R
[

R̂(τi)
]



 , (7.2)

where R
[

R̂(τi)
]

and I
[

R̂(τi)
]

denote the real and imaginary components of R̂(τi), respec-

tively. Note that the magnitude and phase given by Equation 7.2 are not the mean magnitude

and mean phase of the ACF, but rather the magnitude and phase of the mean ACF. This

distinction is important since the mean magnitude/phase and magnitude/phase of the ACF

do not have the same statistical properties. The real and imaginary components plotted

in Figure 7.1 exhibit a decaying complex sinusoidal behaviour. The magnitude decays in a

similar manner, while the phase exhibits a linear wrapping behaviour.

7.4.2 Noise and Clutter

In general, the ACF measured by a SuperDARN radar contains contributions of signal, noise,

and clutter. Due to the statistical nature of the scattering process, the signal contribution

to the ACF has a sampling uncertainty. The presence of noise and clutter results additional

uncertainty in extracting information about the signal. This uncertainty is quantitatively

described by the variance of the ACF with both noise and clutter increasing the variance.

It is therefore important to quantitatively account for noise and clutter in SuperDARN

measurements in order to accurately extract signal information from the ACF.

Noise is generally only significant in zero-th lag of the ACF. This is because the first lag

after lag-zero occurs at a time that is much longer than the impulse response of the final stage

of filtering used for SuperDARN radars. For example, the last filter in the receiver chain is

typically approximately 300 µs wide where as the shortest lag time is typically 1800 µs. If
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Figure 7.1: The real, imaginary, magnitude, and phase components of a typical ACF
estimated from voltage data obtained with the Clyde River SuperDARN radar. The
error bars were calculated using the methodology described in Reimer et al. (2016).
The blue solid line and dots show the ACF data and the red dashed line indicates the
curve of the best least-squares error-weighted fit. The red dashed curves are plotted
using Equation 7.3 with best fit parameters of P = 9194.75 arb, wd = 95.8 m/s, and
vd = −413.9 m/s.

this were not the case, white noise passing through the filter would contribute a non-zero real

component to more lags of the ACF than just the zero-th lag. Estimates of the noise power

in a beam are currently made by averaging the lag-zero power from the 10 range gates with

the lowest lag-zero power.

Self-clutter is a type of signal-like noise that is a by-product of the waveform that is

transmitted by a radar. For SuperDARN radars, self-clutter is the dominant form of clut-

ter, and it is produced by the multiple-pulse technique (Farley , 1972; Barthes et al., 1998;

Ponomarenko and Waters , 2006; Reimer and Hussey , 2015). When more than one pulse

is transmitted, echoes from multiple ranges can arrive simultaneously at the receiver. The
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received signal is the sum of the signals that arrive together. Signals received at different

times have different sets of interfering range gates contributing to self-clutter. The variance

of each signal will be different than for any other signals and thus the self-clutter produces a

heteroscedastic contribution to the ACF lag variance.

When processing multiple-pulse radar data, it is assumed that the physical processes that

scatter signals in disjoint regions of the ionosphere are uncorrelated. Under this assumption,

the correlation between signals from different locations randomly fluctuate such that they

cancel out in the mean ACF, but the variance of the mean ACF is still affected by self-clutter.

If this assumption is valid, then for K transmitted pulse-sequences the contribution of self-

clutter, C, to a lag of the mean ACF is reduced to C/
√
K. SuperDARN radars routinely

estimate ACFs from K≈30 pulse-sequences, which according to the assumption should at-

tenuate the self-clutter contribution by ≈7.4 dB. SuperDARN radars routinely receive echoes

with a SNR greater than 20 dB, so self-clutter originating from such strong sources may not

be sufficiently attenuated. Additionally, Reimer and Hussey (2015) recently demonstrated

that self-clutter caused by signals with long correlation time and zero-Doppler characteris-

tics, such as ground scatter or long-lived plasma irregularities with velocity perpendicular

to the look direction of the radar, do not adhere satisfy this assumption. All of this means

that self-clutter may contribute significantly to the ACF and must be properly accounted for

when processing SuperDARN data.

In the current SuperDARN fitting software, the contribution to the received signal by

self-clutter from other range gates is not estimated (Ribeiro et al., 2013a). Instead, the

current software discards lags where signals from interfering ranges are believed to dominate

the signal from the discarded range. More details regarding the treatment of self-clutter in

current SuperDARN processing are presented in Section 7.6.

7.4.3 Fitting for Ionospheric Parameters

Estimates of the lag-zero signal power, P , spectral width, wd, and Doppler velocity, vd,

are obtained from least-squares fits of either the magnitude and phase, or the real and

imaginary component of the ACF (e.g. Ribeiro et al., 2013a). Estimates of the ACF lags

are heteroscedastic (e.g. Reimer et al., 2016), so SuperDARN fitting software must utilize

143



weighted least-squares fitting techniques since ordinary (non-weighted) least-squares fits do

not provide an efficient estimate of the fitted parameters for heteroscedastic data (Haines ,

1978). Usually, a single Doppler-peaked scatterer model is used to fit to the ACF, such as

R(τi) = Pe−2πwdτi/λej4πvdτi/λ (7.3)

with λ being the wavelength of the transmitted radar pulses. The red dashed curves in

Figure 7.1 show the model given by Equation 7.3 fitted to ACF data. Since R(τi) is complex

valued, one may write it in terms of real and imaginary components, R(τi) = Rr(τi)+jRi(τi),

in terms of the lag-zero power and normalized ACF, R(τi) = Pρ(τi), or in terms of the

lag-zero power and the real and imaginary components of the normalized ACF, R(τi) =

P (ρR(τi) + jρI(τi)). The functional form of the ACF model may vary depending on how the

plasma irregularities decay (e.g. Villain et al., 1996) or depending on the presence of mixed

scatter (e.g Ponomarenko et al., 2008). Equation 7.3 is the model for the exponentially

decaying ACF that is typically used in SuperDARN fitting software. In this study we will

use Equation 7.3 to validate the FPFM-LMFIT2 technique, but the results obtained do not

depend on the particular ACF model that is used.

7.5 Variance of ACF Lag Estimates

The fitted parameters and the fitted-parameter errors are dependent on the variance of the

lags of the ACF (referred to as the ACF variance). For example, as the ACF variance

increases so do the errors in the fitted parameters. Here we discuss several methods for

estimating the ACF variance. The dependence of fitted-parameter error on ACF variance

will be explored in more detail in Section 7.7.

Each lag of the ACF is composed of signal, noise, and clutter (e.g. Ulaby et al., 1982).

The variance of a lag increases/decreases as the noise and clutter increases/decreases (e.g.

Farley , 1969). It is therefore paramount to accurately estimate the noise and clutter in

order to accurately estimate the ACF variance. Reimer et al. (2016) showed that in the

absence of noise and clutter, the ACF lags are heteroscedastic, meaning that the variance of

each lag differs. Since SuperDARN radars use the multiple pulse technique, an additional
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heteroscedasticity due to self-clutter is contributed to the ACF lags. Self-clutter is discussed

in greater detail in Section 7.6.

7.5.1 Ad Hoc Variance Estimates

Currently, the SuperDARN FITACF software uses ad hoc variance expressions for weighting

the least-squares fit of the lags of the ACF. The software performs linear weighted fits to the

logarithm of the ACF magnitude and to the unwrapped phase of the ACF. In a technical

report by Kile Baker (White Paper on FITACF, 2003), it is stated that the ad hoc variance

was implemented due to a lack of a priori knowledge of the ACF variance. It was reasonably

assumed that the variance of the magnitude and phase of lag i should be inversely propor-

tional to the magnitude (or power) of lag i, which we will denote Pi. The ad hoc variance

for lag i, σ2
adhoc,i, suggested by Baker is

σ2
adhoc,i =

P̄ 2

P 2
i

σ2
all, σ2

all =
n

n− 1

∑

P 2
i (di −mi)

2

∑

P 2
i

(7.4)

where P̄ is the average magnitude of all lags of the ACF. The i-th measured ACF lag is di,

the value of the best-fit model for the ACF lag is mi, and the magnitude in each lag is Pi.

The magnitude-weighted average difference between the ACF and the best-fit model is given

by σ. In order to determine σadhoc,i, one must first fit the phase of the ACF to determine the

best fit model values, mi, so that σall can be calculated.

The ad hoc variance given in Equation 7.4 is used to fit both the magnitude and the phase

of SuperDARN ACFs, but Equation 7.4 does not accurately represent the variance of the

magnitude nor the variance of the phase. This can be seen by comparing the inverse-square

behaviour of the ad-hoc variance expression, 1/P 2
i , given by Equation 7.4 with the more

complicated behaviour of the variance of the magnitude and phase derived by and presented in

Reimer et al. (2016). Equation 7.4 also does not accurately account for variance contributions

from noise and clutter. This is why the ad hoc filtering conditions were implemented as an

attempt to remove lags contaminated with self-clutter.
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7.5.2 Variance Estimates from First Principles

Following Farley (1969) and Woodman and Hagfors (1969), Reimer et al. (2016) presented

the statistical characteristics of the lag estimates of the SuperDARN ACF. Using a model

that characterizes the voltage samples received by SuperDARN radars as correlated Gaussian

random variables, Reimer et al. (2016) derived the exact analytic expressions for the variances

of the real and imaginary components of the SuperDARN ACF. Expressions for the variance

of the magnitude and variance of the phase were also derived. The variance of the real (σ2
R)

and imaginary (σ2
I ) components of an ACF are given by

σ2
R = P 2

(

1− |ρ|2
2K

+
ρ2R
K

)

(7.5)

and

σ2
I = P 2

(

1− |ρ|2
2K

+
ρ2I
K

)

(7.6)

where P is the lag-zero power, ρ = ρR+jρI is the normalized ACF (e.g. ρ(τi) = R(τi)/P and

Farley (e.g. 1969)), and K is the number of pulse sequences averaged together to produce

the ACF. Here we have dropped the τi notation that was used in Equation 7.3 for simplicity

of presentation. These expressions are valid for all values of K ≥ 1. Equations 7.5 and 7.6

describe the true heteroscedastic nature of the ACF. They can be used to perform a weighted

least-squares fit of the real and imaginary components of the SuperDARN ACF (not the

magnitude and phase of the ACF as is currently done). There are several advantages to

fitting the real and imaginary components of the SuperDARN ACF, compared to fitting the

magnitude and phase, which are discussed in Section 7.7, so we will not discuss further the

variance of the magnitude and phase.

Notice that Equations 7.5 and 7.6 depend on the normalized ACF, which depends on the

best-fit values of wd and vd from the fitting procedure. This means that one needs a priori

knowledge of fitted parameters before one may fit for said parameters. A solution to this

apparent dilemma is to perform an iterative fitting procedure, where the fitted parameters

from one fitting step are used to estimate the variance for the next fitting step. The initial

variance estimates may be provided by an approximate variance estimate.

A first order estimate for the variance of the real and imaginary components of the
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SuperDARN ACF is readily available in the literature (e.g. Farley , 1969; Ulaby et al., 1982;

Skolnik , 1980). The first-order estimate of the variance of real and imaginary components

(σ2
FO) is given by

σ2
FO =

P 2

K
. (7.7)

Equations 7.5, 7.6, and 7.7, provide a solid foundation built on first-principles for performing

a properly weighted fit of the real and imaginary components of the SuperDARN ACF.

Including Noise and Self-Clutter

As with all radars, the signals that SuperDARN measures include contributions due to noise

and clutter. The noise and clutter increase the variance of the lags of the SuperDARN ACF.

To include the contribution of noise and clutter in Equations 7.5, 7.6, and 7.7 a normalized

ACF in the presence of noise and clutter ρ′(τi) Farley (e.g 1969) and total power P ′ must be

substituted for ρ(τi) and P (e.g. Farley , 1969; Reimer et al., 2016). We will refer to ρ′(τi) as

the reduced normalize ACF, which is given by

ρ′(τi) =
Pρ(τi)

P +N + C
. (7.8)

The total power must be used since the magnitude of the lags of the ACFs measured by

SuperDARN radars include contributions of signal, noise, and clutter power. The expression

for the total received power is given by

P ′ = P +N + C. (7.9)

As discusses in subsection 7.4.2, noise only contributes to the zeroth-lag so N = 0 is used in

Equation 7.9 for all other lags.

7.6 Estimating Self-Clutter

Since Equation 7.4 does not account for self-clutter, the current SuperDARN fitting software

attempts to identify lag estimates that are dominated by self-clutter so that those lags can

be eliminated from the fitting process. Elimination of the self-cluttered lags using an ad

hoc filtering criterion was found to improve estimates of spectral width (Ponomarenko and
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Waters , 2006). To filter the self-clutter contaminated lags, Ponomarenko and Waters (2006)

suggested that the lag-zero power, Pn, of the n potentially interfering ranges, be compared

with the lag-zero power, PR, of the range being fitted. If the power in any of the n interfering

ranges is larger than PR, the lag is discarded. The ad hoc criterion used to reject a lag due

to strong self-clutter can be written as

PR < Pn. (7.10)

Figure 7.2 shows an example of a SuperDARN ACF with discarded lags denoted by black

triangles. The discarded lags are not necessarily of any poorer quality or noisier in appearance

than the lags that have not been discarded. It is clear that the filtering criterion imposes a

false dichotomy of “good” and “bad” lags, when they are in reality somewhere in between,

depending on the SCR.

In addition, it can be argued that Equation 7.10 should have been written as

PR <
Pn√
K

(7.11)

since the multiple-pulse technique reduces self-clutter by a factor of 1/
√
K. Regardless of

whether this would improve the ad hoc filtering or not, such criterion will always be subjective.

Additionally, even a lag heavily contaminated by self-clutter contains some useful information

that is discarded by a filtering criterion. For these reasons, ad hoc criteria are undesirable.

Finally, an ad hoc criterion does not help determine the self-clutter term, C, which is required

to use Equations 7.8 and 7.9.

Motivated by the need to determine the contribution of self-clutter power to the variance

of ACF lag estimates, a maximal self-clutter power estimator was derived and validated using

a first-principles statistical methodology (Reimer and Hussey , 2015). The estimator includes

contributions from the interfering ranges that contribute to each of the voltage samples

(Vk(t + τ) and Vk(t) in Equation 7.1, respectively) that are used to estimate a lag of the

ACF (Reimer and Hussey , 2015). The maximal power-based self-clutter estimator (MPSE)

is given by

ĈMPSE(τi) =

N
∑

n=1

√

P̂nP̂ +

M
∑

m=1

√

P̂ P̂m +

N
∑

n=1

M
∑

m=1

√

P̂nP̂m, (7.12)

148



0 5 10 15 20
Lag Number

−10000

−5000

0

5000

10000

15000
R

e
a
l

0 5 10 15 20
Lag Number

0

2000

4000

6000

8000

10000

12000

14000

La
g
 P

o
w

e
r

0 5 10 15 20
Lag Number

-π

-2π/3

-π/3

0

π/3

2π/3

π

P
h
a
se

0 5 10 15 20
Lag Number

−10000
−8000
−6000
−4000
−2000
0
2000
4000
6000
8000

Im
a

g
in

a
ry

05 Jan, 2014 13:30:00 UT ACF Clyde River Beam: 15 Gate: 25

Figure 7.2: An illustration of the self-clutter filtering criterion of Ponomarenko and
Waters (2006). Black triangles indicate lags that satisfy Equation 7.10.

where P̂n and P̂m are the estimates of lag-zero power at the n-th and m-th interfering ranges,

respectively. Voltage samples Vk(t+ τ) and Vk(t) will have up to N and M interfering range

contributions (Reimer and Hussey (see 2015)). The MPSE provides an upper limit estimate

of the self-clutter contained in a lag of the ACF. The MPSE can be used with a measured

lag-zero power or a fitted lag-zero power. It is important to note that the lag-zero power is

a parameter that is saved for all SuperDARN radars, so the MPSE can be used to reprocess

the entire historical SuperDARN dataset.

When used in conjunction with Equations 7.5, 7.6, 7.8, and 7.9, the MPSE enables the

ACF variance to be estimated from first-principles for use in error weighted fitting. This

means that it is possible to perform error weighted fitting of SuperDARN ACFs without using

any ad hoc criteria (like Equation 7.10) or any ad hoc variance expressions (like Equation 7.4).
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7.7 Current SuperDARN Fitting Software

Presently, three fitting routines are used to process SuperDARN ACFs to obtain the fitted

parameters, power, P , velocity, vd, and spectral width, wd. These routines are called FITACF,

FITEX2, and LMFIT (Ribeiro et al., 2013a). The fitting routines rely on least squares

regression techniques to fit SuperDARN ACFs. Least squares fitting involves minimization

of the sum of the square of residuals, or minimization of the χ2 sum

χ2 =

N
∑

i

(

di −mi

σi

)2

, (7.13)

where di and mi are the i-th data and model values, respectively, and σi is the square root of

the variance of the i-th data point. The i-th residual is the weighted difference (di −mi)/σi.

Fitting the lags of an ACF (the di values) to some model (such as Equation 7.3, therefore the

model mi values) is accomplished by varying the parameters of the model (P , wd, and vd)

until a global minimum value for χ2 is found. The parameters that minimize χ2 are known

as the “best-fit” parameters.

If the model is linear, analytic solutions for the best-fit parameters are readily available,

which simplifies the fitting process (e.g. Press et al., 1986). FITACF performs a linear least-

squares fit to the logarithm of the ACF magnitude to obtain the fitted lag-zero power and

spectral width. The fitted velocity is obtained from a linear fit to the unwrapped phase.

Historically, implementing analytic solutions for linear least-squares fitting of SuperDARN

was favoured because linear fitting is much less computationally expensive compared with

non-linear alternatives. However, with the availability of modern computational resources,

non-linear least-squares techniques are now more attractive and more easily implemented.

FITEX2 performs a linear least squares fit to obtain the power and spectral width in the

same way as FITACF, but FITEX2 performs a non-linear least squares fit of the phase to

obtain the velocity. FITEX2 generates candidate wrapped-phase models for several velocities

and searches for the model, and therefore the best-fit velocity, that produces the minimum

χ2. If the model is non-linear (as in Equation 7.3), one can use the Levenburg-Marquardt

algorithm to minimize Equation 7.13 (Levenburg , 1944; Marquardt , 1963; Press et al., 1986).

It is important to note that the Levenburg-Marquardt algorithm requires an initial guess of
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best fit parameters and will only converge on a local minimum in χ2. The local minimum

is not necessarily the global minimum. This means that if the χ2 surface contains multiple

minima, the choice of initial guess will determine whether a local or global minimum is found.

LMFIT performs a non-linear least squares fit to an ACF model (similar to Equation 7.3)

using the Levenburg-Marquardt algorithm and FITEX2 is used to provide an initial guess of

the best fit parameters. LMFIT assumes a lag variance of 1 for all lags.

7.7.1 Challenges of Fitting the Magnitude and Phase

In Section 7.10.1 it will be shown that the fitted data produced by FITACF is of good quality,

especially when the SNR is large, despite the challenges discussed here. While the FITACF

performs well with the ad hoc self-clutter filtering criterion enabled, some case studies are

presented to demonstrate that incorrect fitted velocities can result from FITACF due to the

ad hoc criteria and ad hoc variance it uses.

Out of the FITACF, FITEX2, and LMFIT alorithms, FITACF is the most commonly

used SuperDARN fitting routine. It uses an error-weighted linear least-squares method to

fit the magnitude and phase of the ACF (Ribeiro et al., 2013a). The signal power, P , and

spectral width, wd, are obtained by fitting the logarithm of the magnitude of the ACF to the

logarithm of the magnitude of Equation 7.3. The Doppler velocity, vd, is obtained by fitting

the phase of the ACF to the phase of Equation 7.3. FITACF uses the self-clutter filtering

criterion discussed by Ponomarenko and Waters (2006) to discard lags dominated by self-

clutter. FITACF uses an ad hoc variance (Equation 7.4) to perform the error-weighted linear

fits. There are two difficulties associated with fitting the magnitude and phase of the ACF,

but these challenges are not present when fitting the real and imaginary components of the

ACF.

One of the challenges is related to the fundamental statistical characteristics of the mag-

nitude of the ACF when the value of the ACF lags approach zero. Reimer et al. (2016)

demonstrated that as the correlation in the ACF approaches zero (ρ → 0) the value of the

magnitude of the ACF lags does not approach zero. This is because the magnitude of the

ACF lags are Rayleigh distributed at zero correlation and the mean of a Rayleigh distribution

is generally non-zero. FITACF uses the logarithm of the magnitude of Equation 7.3 to fit the
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logarithm of the magnitude of the ACF, but the magnitude of Equation 7.3 is an exponential

function, which approaches 0 for large negative values of the argument. Using the magnitude

of Equation 7.3 as a model for the magnitude of the ACF is therefore not valid when the

correlation is weak. The model given by Equation 7.3 is only valid for fitting to the real and

imaginary components of the ACF. It is incompatible with fitting the magnitude of the ACF.

In FITACF, the approach to dealing with this problem has been to use an additional ad hoc

criterion to discard lags that have a lag power below P/
√
K.

A second difficulty encountered in FITACF involves fitting the phase of the ACF. Since

the phase may be wrapped, due to the 2π ambiguity when estimating the phase from the

real and imaginary components of the ACF, the phase must be unwrapped before a linear

fit may be performed. For example, see the phase wrapping between lags 11 and 12 in

Figure 7.1. Unwrapping the phase is inherently challenging due to the presence self-clutter

in the ACF. To clearly demonstrate this point, 75,000 ACFs were synthesized using the

SuperDARN radar data simulator developed by Ribeiro et al. (2013b). We simulated 1000

ACFs at 75 different uniformly distributed velocities between 0 m/s and 2000 m/s, both

with and without strong self-clutter. All ACFs were simulated with P = 104, wd = 50 m/s,

K = 18, and a noise power equal to 104.5. Power is in arbitrary units since SuperDARN

hardware is not calibrated to measure power relative to a calibrated source. Using a modified

version of FITACF that had the ad hoc self-clutter filtering removed, the simulated ACFs

were then using FITACF. The average fitted velocity of the 1000 fitted ACFs at each of

the 75 simulated velocities was compared with the expected velocity. This comparison is

shown in Figure 7.3 where a line with a slope of one corresponds to a fitted velocity that is

exactly the same as the simulated (expected) velocity. Without self-clutter (top left plot),

FITACF velocities are nearly identical to the simulated velocities. In the presence of self-

clutter (green dots, top right plot), FITACF without the self-clutter filtering was unable to

unwrap the phase, resulting in incorrect fitted velocities (note that below ∼250 m/s the fits

are ok since no phase jumps occur below this speed). This clearly demonstrates that the

phase of the ACF cannot be unwrapped by the FITACF algorithm without the use of some

criterion to eliminated the self-clutter. The orange dots in the top right plot of Figure 7.3

show the results of processing the same simulated ACFs using FITACF with the self-clutter

152



filtering turned on. The orange dots show that, even with the ad hoc criterion to discard

cluttered lags, for velocities larger than approximately 800 m/s, FITACF is much less capable

at unwrapping the phase. Ribeiro et al. (2013a) also found that FITACF has difficulty with

fitting ACFs with velocities greater than 1000 m/s (see Figure 7 of Ribeiro et al. (2013a)

and note the large RMS velocity errors at high velocity). Finally, we attempted to perform

phase unwrapping using an error-weighted unwrapping algorithm where the phase variance

used was determined using the methodology of Reimer et al. (2016), but this was also found

to be unable to consistently unwrap the phase (not shown).
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Figure 7.3: This figure illustrates the difficulties associated with unwrapping the phase
of ACF data in FITACF (top panels) versus fitting to the real and imaginary compo-
nents of the ACF data in FPFM-LMFIT2 (bottom panels), both with and without
strong self-clutter in the ACF data. The black line in each panel indicates the expected
one-to-one trend of fitted velocities versus simulated velocities. Each dot represents
the mean fitted velocity obtained from 1,000 simulated ACFs. In green dots in the top
right panel, show fitted velocities from a version of FITACF without the self-clutter
criterion, which illustrates that the phase unwrapping is significantly more challenging
without using the self-clutter criterion. In the top panels, the orange dots represent
mean fitted velocities obtained using the standard unmodified version of FITACF. The
bottom panels show that fitting the real and imaginary components of the ACF, as
performed by FPFM-LMFIT2, results in correctly fitted velocities, even with strong
self-clutter present.
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7.8 A First-Principles Fitting Methodology

To address the issues identified in Section 7.7, a First-Principles Fitting Methodology (FPFM)

was developed. The FPFM uses Equations 7.5, 7.6, 7.7, 7.8, 7.9 and 7.12 to perform an error-

weighted fit to the real and imaginary components of the ACF. FPFM involves an iterative

fitting process where the best-fit parameters from the previous fit are used to provide initial

estimates of the ACF variance for the next fit. Using Equations 7.5 and 7.6 to determine

the variance of the real and imaginary components of the ACF requires knowledge of the

fitted power, spectral width, and velocity, so the first fit is performed using the first-order

error given by Equation 7.7. Subsequent fits are performed using Equations 7.5 and 7.6. One

could perform many iterations of fitting like this until the fitted parameters converged within

a user-specified tolerance, but in practice we observed that the process converged within two

iterations.

The software implementation of the FPFM was developed and called LMFIT2. The name

LMFIT2, for Levenburg-Marquardt Fitter version 2, was chosen to follow the naming con-

vention started by another fitting software, LMFIT. LMFIT was developed by Ribeiro et al.

(2013a) to perform an error weighted non-linear least-squares fit of the real and imaginary

components of the ACF. LMFIT uses the Levenburg-Marquardt algorithm to simultaneously

fit for the power, spectral width, and velocity. However, LMFIT employs the ad hoc self-

clutter filtering criterion and the ad hoc variance expression (with σ2 = 1 in Equation 7.4).

The new software, LMFIT2, also uses the Levenburg-Marquart algorithm to perform an

error-weighted fit of the ACF, but it performs the ACF fits using the FPFM. A non-linear

fit of the ACF using the model given by Equation 7.3 results in a χ2 surface with multiple

minima in the velocity dimension, as shown in Figure 7.4. The choice of the initial guess for

the model will determine whether a local minimum or global minimum is converged upon.

For example, in Figure 7.4, choosing an initial guess for velocity of 0 m/s would result in

the Levenburg-Marquardt algorithm finding the local minimum near 300 m/s instead of the

global minimum at -413.9 m/s. In LMFIT this issue was addressed by using the fitted velocity

from FITEX2 as an initial guess for LMFIT. LMFIT2 utilizes an alternate approach. The

maximum unambiguous velocity, usually called the Nyquist frequency, that can be measured
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by the multiple-pulse sequence is given by

vnyquist =
λ

4τB
(7.14)

where λ is the radar transmitted wavelength and τB is the base inter-pulse period of the

transmitted multiple-pulse sequence. The domain of measured Doppler velocity is bounded

by ±vnyquist/2. Since the range of possible velocities is bounded, and the number of minima

on the χ2 surface is finite, a local versus global minimum determination can be made from

the output of the Levenburg-Marquardt algorithm by using multiple initial guesses that are

uniformly distributed between −vnyquist/2 and +vnyquist/2. The χ2 for the fitted velocities

resulting from each initial guess can then be compared to find the fitted velocity that produces

the global minimum χ2. The number of initial guesses needs to be larger than the number

of minima in the chi-squared surface. The technique of using multiple uniformly distributed

initial guesses also enables better estimation of the confidence interval for the fitted velocity,

as will be discussed later.

Including the multiple initial velocity guesses technique, FPFM-LMFIT2, can be summa-

rized as follows:

For each SuperDARN ACF:

1. Estimate self-clutter for each lag of the ACF using the MPSE (Equation 7.12).

2. Estimate the first-order errors for the ACF using Equations 7.7 and 7.9.

3. Perform an error-weighted fit of the ACF using the Levenburg-Marquardt algorithm

using multiple initial guesses for the velocity

4. Determine which fitted parameters result in the global minimum χ2

5. Use best fit parameters to estimate real and imaginary variances using Equations 7.5,

7.6, 7.8, and 7.9

6. Perform an error-weighted fit of the ACF using the Levenburg-Marquardt algorithm

using multiple initial guesses for the velocity.

7. Determine which fitted parameters results in the global minimum χ2.
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Figure 7.4: An example curve of least-squares χ2 as a function of velocity (vd, a fitted
parameter). Note that the curve reaches a minimum value at χ2 = 2.7 corresponding to
vd = −413.9 m/s (red dot). The CCBCL method (see text for details) is also illustrated
for a ∆χ2 ≈ 9. Tracing the curve from χ2

min to χ2
min +∆χ2 results in bounds for a 3σ

confidence limit (black dots intersected by dashed lines). On the left side of the fitted
value, the bound extends to ∆vleft = 63.4 m/s (vleft = −477.3 m/s) and on the right
side it extends to ∆vright = 63.4 m/s (vright = −350.5 m/s), resulting in the best fit
vd = −413.9 m/s ±63.4 m/s.

8. Repeat from step 5 until convergence criteria are met.

9. Determine the confidence intervals for the best-fit parameters.

It is important to note that because FPFM-LMFIT2 performs fits of the real and imag-

inary components of the ACF, it does not need to unwrap the phase. FPFM-LMFIT2 is

therefore able to determine the Doppler-velocity even when self-clutter is present. This is

clearly shown in Figure 7.3 when comparing the top plots (FITACF fitted velocities) and the

bottom plots (LMFIT2 fitted velocities). FPFM-LMFIT2 is able to obtain accurate fitted

velocities even when self-clutter causes inaccurate fitted velocities from FITACF.
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7.8.1 Fitted-Parameter Errors

When the statistical characteristics of the residuals in Equation 7.13 can be described by

a Gaussian distribution, the confidence interval of the best-fit parameters can be estimated

using the covariance matrix of the best-fit parameters (e.g. Press et al., 1986). The covariance

matrix contains the squares of the so-called standard errors, from which a confidence interval

for each parameter may be constructed. The fitted-parameter errors are therefore actually

a measure of how certain one can be that the true value of the parameters lie within the

confidence intervals. When the residuals for the best-fit parameters are not small, they may

no longer be Gaussian, requiring alternative techniques to construct the confidence interval.

The “constant chi-square boundary as confidence limits” (CCBCL) method may be used

to determine the error in the best-fit parameters (Press et al., 1986). The CCBCL method

involves adding some chosen ∆χ2 to the global minimum chi-squared, χ2
min. The magnitude

of the difference between the value of a fitted parameter at χ2
min + ∆χ2 and the value of

the fitted parameter at χ2
min determines the bounds of the confidence interval for the fitted

parameter. As depicted in Figure 7.4, the bounds are determined with the CCBCL method

by “stepping up” from the minimum χ2 by some ∆χ2 value. For example, stepping up

by ∆χ2 = 9 from χ2
min on the right side yields a 3σ equivalent error bar of 63.4 m/s (the

figure shows a ∆χ2 of 8.9 due to error introduced by a discrete velocity spacing). Even

if the residuals are not Gaussian distributed, a confidence limit for a fitted parameter can

be obtained using the CCBCL method, but must be interpreted as “the confidence limit

assuming Gaussian distributed residuals” (Press et al., 1986).

In LMFIT2, both the CCBCL method and the covariance matrix method of obtaining

confidence intervals have been implemented. First, fitted-parameter errors are determined

using the covariance matrix method. The fitted-parameter errors are the product of the

standard error and
√

∆χ2 (Press et al., 1986). In LMFIT2, ∆χ2 = 4 was used, which

corresponds to a 2σ or 95% confidence interval; however, the value of ∆χ2 is subjective and

can be modified depending on the level of confidence desired.

After using the covariance matrix method, LMFIT2 also uses the CCBCL method. The

χ2 values at each minima of the χ2 surface, χ2
local, which were obtained using the Levenburg-
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Marquardt algorithm and the multiple uniformly distributed initial velocities, are compared

to see if:

χ2
local < χ2

min +∆χ2. (7.15)

If Equation 7.15 is satisfied, then the fitted-parameter error is given by the largest difference

between the fitted parameter value at χ2
local and the fitted-parameter value at χ2

min, instead

of the covariance matrix method. For example, referring to Figure 7.4, if ∆χ2 of 50 were

desired, corresponding to an excessive significance of
√
50σ, then the local minima at ∼ -

3100 m/s and ∼300 m/s both satisfy Equation 7.15. Since the largest difference between the

velocities at the local mimina and the global mimimum is 2686.1 m/s, the
√
50σ confidence

interval for the fitted velocity would be 2686.1 m/s. If Equation 7.15 is not satisfied, then

the error bar for the fitted velocity is specified using the covariance matrix method.

7.9 Synthetic ACF Tests of FPFM-LMFIT2

To assess the accuracy of FPFM-LMFIT2 fitted parameters and the reliability of the fitted-

parameter errors, a synthetic ACF dataset was generated using the SuperDARN radar data

simulator (Ribeiro et al., 2013b). The radar data simulator is available in the software package

RSTLite available on Github (https://github.com/vtsuperdarn/RSTLite). Two datasets

were generated: an ideal dataset without any self-clutter and a pathological dataset with a

large amount of self-clutter. The ideal dataset represents “best-case scenario” SuperDARN

ACFs, and the pathological dataset represents “worst-case scenario” SuperDARN ACFs. Any

fitting methodology that is able to reliably fit both the ideal and the pathological datasets

should be capable of reliably fitting real SuperDARN ACFs. The synthetic datasets were

generated by simulating the 8 pulse “katscan” pulse sequence with typical values correspond-

ing to an inter-pulse period of 1800 µs, a pulse-width of 300 µs, K = 18, and a delay from

the radar to the first range of 1200 µs. A transmission frequency of 10.537 MHz was used.

ACFs with a variety of powers, spectral widths, and velocities were simulated.

Figure 7.5 presents the results of using FPFM-LMFIT2 to fit the ideal dataset. Each

point on each line is an average result from 1000 fitted ACFs. In the left panel, all ACFs

were simulated with P = 104 and a noise power of 104.5. 75 range gates were simulated with
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different velocites, starting with 0 m/s for range gate 0 and linearly increasing to 1973 m/s at

range gate 74. The blue lines indicate ACFs with wd = 50 m/s, the red lines indicate ACFs

with wd = 250 m/s, and the green lines indicate ACFs with wd = 500 m/s. The solid lines

represent the magnitude of the difference between the fitted velocity and the true velocity (the

true error). The dashed lines represent the fitted velocity error output by FPFM-LMFIT2,

which in this case, the fitting error corresponds to the 95% confidence interval for the fit.

The solid line and dashed line convention is used in all panels of the figure.

In the left panel of Figure 7.5, the fitting error and the true error (“error” and “diff”,

respectively in the figure legends) follow the same trend and agree up to a multiplicative

factor. The factor is approximately
√
2 since we chose to construct a 95% confidence interval

(2 − σ) and the true error is expected to be 1 − σ since we expect the fitting residuals to

be small and Gaussian distributed with a variance of σ2. The fitting error is therefore an

accurate estimate of the uncertainty in the fitted velocity. The fitting error and true error

are not functions of velocity, but as the spectral width increases, the velocity error increases.

Considering the variance of the real and imaginary components of the ACF (Equations 7.5,

7.6, 7.8, and 7.9), this is expected behaviour because the SNR, SCR, nor the correlation for

any of the lags of the ACF are affected by the velocity, but vary with the spectral width

(recall the model given in Equation 7.3). If FPFM-LMFIT2 had used a higher confidence

interval, for example 3σ, the fitting error shown as the dashed lines in Figure 7.5 would have

been larger. The opposite is true for a lower confidence interval.

The middle panel in Figure 7.5 is similar to the left panel, except that the fitting error

and the true error are plotted as a function of spectral width. The ACFs were simulated

with P = 104, a noise power of 104.5, and a spectral width linearly increasing from 0 m/s

for range gate 0 to 1973 m/s for range gate 74. The blue lines indicate ACFs with vd = 50

m/s, the red lines indicate ACFs with vd = 250 m/s, and the green lines indicate ACFs with

vd = 500 m/s. Since the velocity error is not a function of the velocity (as seen in the left

panel), the blue, red, and green lines all overlap. The spectral width of the ACFs determines

the decorrelation time of the ACF (e.g. Equation 7.3), such that increasing the spectral

width results in a larger number of lags that have a smaller SNR, smaller SCR, and smaller

correlation. It follows that increasing the spectral width should increase the velocity error
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and that is what is observed in the middle panel of Figure 7.5. In the right panel in Figure 7.5

the velocity error is plotted as a function of SNR. The ACFs were simulated using wd = 250

m/s, vd = 250 m/s, and linearly increasing SNR starting at 0 dB at range 0 and ending at

29.6 dB at range 74. As expected the velocity error is largest when the SNR is smallest and

the velocity error is smallest when the SNR is largest. Simulations presented in Figure 7.5

demonstrate that FPFM-LMFIT2 is capable of accurately fitting ideal SuperDARN radar

data, while also producing statistically self-consistent and accurate fitting errors.

Figure 7.6 shows the results of using FPFM-LMFIT2 to fit the synthetic pathological

dataset, which contains an unrealistically (pathologically) large amount of self-clutter. The

self-clutter was simulated by including contributions of signals from each of the 75 simulated

range gates, according to the self-clutter characteristics of the katscan pulse-sequence (e.g.

Reimer and Hussey , 2015). As the range increases, there are fewer self-clutter contributions

since there are fewer ranges beyond the range of interest that could contribute self-clutter.

The radar data simulator was not designed to simulate self-clutter contributions from ranges

beyond the 75 range gates (Ribeiro et al., 2013b). The consequence of the decrease in the

number of ranges contributing self-clutter with increasing range is shown most clearly in

the right panel of Figure 7.6, where the velocity error is observed to decrease in a step-wise

manner at SNR values of approximately 3 dB, 11 dB, 21 dB, 23 dB, and 25 dB, corresponding

to ranges 9, 27, 51, 57, and 63. The steps occur starting with range 9 with additional steps

occurring at later ranges that are a multiple of 6 further in range. The multiplicative factor

is expected and is the ratio of the inter-pulse period and the pulse width (i.e. 1800 µs/300

µs). This factor determines the spacing between transmitted pulses in units of range gate

and therefore the ranges from which self-clutter originates (e.g. Reimer and Hussey , 2015).

Each panel in Figure 7.6 shows a similar behaviour as the corresponding panels in Fig-

ure 7.5, but with larger velocity errors. The confidence intervals were again constructed for

2σ. The increase in velocity errors from fitting the pathological dataset compared to the ideal

dataset is due to the larger ACF variance caused by the addition of self-clutter to the ACFs.

One would expect that the largest velocity error possible to be approximately the Nyquist ve-

locity (±1977 m/s for this synthetic data) and that is what is observed as the largest velocity

error in each of the panels. In the left panel, the velocity error is independent of the velocity.
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The slight decrease in error at the largest velocities is consistent with the decreased amount

of self-clutter in the simulated ACFs as was noted above. In the middle panel, the velocity

error is observed to increase with increasing spectral width as it did in Figure 7.5, plateauing

at the Nyquist velocity. In the right panel, the velocity error is observed to decrease as the

SNR increases, although it is clear that the SCR is the dominating factor influencing the

velocity error when the SNR is small (compare the smooth error curves in the right panel of

Figure 7.5 with the self-clutter induced step-wise error curves in Figure 7.6).

For the pathological dataset, Figure 7.6, the fitting error and true error follow similar

trends and have similar magnitudes as the ideal fitted dataset, Figure 7.5, but the differ-

ence between the fitting error and true error is larger for the pathological dataset for the

ideal dataset. This behaviour is expected. Since the MPSE is a maximal estimate of the

self-clutter, the MSPE provides an estimate of the largest possible self-clutter contribution.

In other words, the MPSE overestimates the self-clutter, which will then result in an over-

estimation of the variance of the real and imaginary components of the ACF (Reimer and

Hussey , 2015). This in turn produces an overestimate of the fitted-parameter error. Even so,

Figure 7.6 clearly shows that, in the presence of a pathological amount of self-clutter, FPFM-

LMFIT2 is still able to fit ACFs and produce statistically self-consistent and accurate fitting

errors.

7.10 Radar Data Analysis

The testing of FPFM-LMFIT2 with synthesized data indicates that it is able to fit Super-

DARN ACFs accurately while providing accurate error estimates for the fitted parameters.

Fitted parameters (velocity and SNR) obtained using FPFM-LMFIT2 and FITACF from

ACFs obtained from the Saskatoon SuperDARN radar are compared. For both the FITACF

and the FPFM-LMFIT2 data ground scatter has not been highlighted nor removed.

Figure 7.7 includes range-time-intensity (RTI) plots of the fitted velocity obtained using

FITACF (top panel) and FPFM-LMFIT2 (bottom panel) from the Saskatoon SuperDARN

radar. The data were recorded on June 14, 2012. For both fitting methods, only data with

SNR greater than 0 dB and velocity error less than 100 m/s are included. During the 8 hour

162



0
50

0
10

00
15

00
20

00
Si
m
ul
at
ed

 V
el
oc
it 

 (m
/s
)

10
−110
0

10
1

10
2

10
3

10
4

Velocit 
Error (m/s)

w
d
=
50

m
/s
 d
iff

w
d
=
50

m
/s
 e
rro

r
w
d
=
25

0m
/s
 d
iff

w
d
=
25

0m
/s
 e
rro

r
w
d
=
50

0m
/s
 d
iff

w
d
=
50

0m
/s
 e
rro

r

0
50

0
10

00
15

00
20

00
Si
m
ul
at
ed

 W
id
th
 (m

/s
)

v
=
50

m
/s
 d
iff

v
=
50

m
/s
 e
rro

r
v
=
25

0m
/s
 d
iff

v
=
25

0m
/s
 e
rro

r
v
=
50

0m
/s
 d
iff

v
=
50

0m
/s
 e
rro

r

0
10

20
30

Si
m
ul
at
ed

 S
NR

 (d
B)

di
ff

er
ro
r

F
ig
u
r
e
7
.6
:
T
h
e
sa
m
e
co
m
p
ar
is
on

as
p
lo
tt
ed

in
F
ig
u
re

7.
5,

b
u
t
u
si
n
g
sy
n
th
et
ic

d
at
a
w
it
h
st
ro
n
g
se
lf
-c
lu
tt
er

(t
h
e
p
at
h
o-

lo
gi
ca
l
d
at
as
et
).

163



interval, FPFM-LMFIT2 returns 79.8% more data than FITACF. Only a negligible number

of FITACF data points were filtered out by the SNR and velocity error filters, so the observed

increase in fitted data seen comparing FPFM-LMFIT2 to FITACF is not explained by this

filtering. The larger amount of data obtained with FPFM-LMFIT2 is a direct result of the

differences in how self-clutter treated and how the ACF lag variances are estimated by FPFM-

LMFIT2 and FITACF. A significant amount of acceptable lags with signal are discarded by

FITACF using the ad hoc self-clutter filtering criterion. FPFM-LMFIT2 does not use this

criterion, which was demonstrated to erroneously discard “good” lags (e.g. Figure 7.2).

If too many lags are discarded, there are not enough lags to perform a fit, and FITACF

does not return any fitted parameters (a failed fit). Instead, FPFM-LMFIT2 addresses lags

contaminated with self-clutter by using the MPSE (Equation 7.12), which identifies self-

clutter as an increase in the variance (error) of the contaminated lags. Consequently, lags

are not discarded, rather they are weighted appropriately, and FPFM-LMFIT2 is able to

perform a weighted fit to the ACF to obtain the fitted parameters. As a result, more fitted

data are produced by FPFM-LMFIT2 compared to FITACF. In Figure 7.7, only ranges with

SNR greater than 0 dB and velocity error less than 100 m/s, but FPFM-LMFIT2 performs

fits for all ranges. By changing the SNR and velocity error limits, more or fewer ranges can

be included in an RTI.

In general, FPFM-LMFIT2 and FITACF show good agreement in the band of scatter

closest in range to the radar. Comparing the SNR at ranges where FPFM-LMFIT2 and

FITACF both have data (Figure 7.8), the two methods give similar results, especially at

ranges less than 30 and where the SNR is greater than 20 dB. In all Figures 7.7, 7.8, and

7.9, in the FITACF panel before 5:30 UT the second band of scatter is visible, but after 5:30

UT the SNR of the first band increases and the second band almost completely disappears.

In the FPFM-LMFIT2 panel in Figure 7.7, two bands of scatter are visible. The first band

is approximately centered at range gate 20, and the second band is further from the radar

than the first band starting approximately at range gate 30 and shifting to range gate 50

as time progresses. In the FITACF panel, the first band is visible, but the second band

has a “speckled” appearance. This is an important distinction, since while interpreting the

FITACF data one may erroneously conclude that the second band of data is due to noise
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or perhaps the data are patchy due to poor propagation conditions. When interpreting the

FPFM-LMFIT2 fitted data one would not be tempted to make such an interpretation. The

second band found with FPFM-LMFIT2 extends over a much larger range and has very

consistent fitted velocities and fitted SNR. This allows for more structure to be visible in the

data than is visible in the FITACF panel.

The elimination of “bad” lags by FITACF is observed to favour the band of scatter at

near ranges. The first band of scatter has a larger SNR and larger SCR resulting in fewer

“bad” lags for ACFs in the first band of scatter compared to the ACFs in the second band

of scatter at larger range with lower SNR and lower SCR. This is because the first band of

scatter is producing self-clutter in the second band and the first band with a larger magnitude

than the power in the second band. In the second band of scatter, the self-clutter filtering

criterion in FITACF is discarding too many lags in the lower power range gates of the second

band resulting in an almost a complete loss of the second band of data. The self-clutter

criterion used by FITACF (Equation 7.10) is not satisfied when the power in the first band

is larger than the power in the second band, so “bad” lags are discarded. It should be noted

that the radars often record large power in a close range band of scatter and smaller power

in a second larger range band of scatter in SuperDARN data. This situation is particularly

susceptible to discarding too many lags when using the ad hoc self-clutter filtering criterion,

resulting in a loss of otherwise meaningful data.

The fitted velocity errors from FITACF and FPFM-LMFIT2 are plotted in Figure 7.9.

In the top panel, the FITACF velocity error is observed to be nearly zero for all data points,

which is not consistent with expectations. To first order, the error in the lags of an ACF are a

function of the SNR and SCR (recalling Equation 7.7), so to first order the fitted-parameter

errors should also vary as a function of the SNR and SCR. Comparing the FITACF panels in

Figures 7.8 and 7.9 we see that it would be reasonable for the velocity error to be low where

the SNR is very large (> 20 dB), and for the velocity error to be larger in regions where the

SNR is much lower (for example, at 10:00 UT), but the SNR trends in Figure 7.8 do not

appear in the FITACF velocity errors in Figure 7.9. In contrast the velocity error for FPFM-

LMFIT2 is generally lowest where the SNR is largest, and the velocity error increases as the

SNR decreases. For example, compare the SNR and velocity error of the blob-like features
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Figure 7.7: A RTI plot comparing fitted velocity data produced by FITACF (top
panel) and by FPFM-LMFIT2 (bottom panel) for 8 hours using ACF data from the
Saskatoon SuperDARN radar data. The velocity data are plotted with the range away
from the radar is plotted along the y-axis and the UT time is plotted in x-axis. The
colour represents the magnitude of the fitted velocity. Ground scatter has not been
highlighted or removed and is just included in the plot.
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Figure 7.8: A RTI plot comparing fitted SNR data produced by FITACF (top panel)
and by FPFM-LMFIT2 (bottom panel) for 8 hours using ACF data from the Saskatoon
SuperDARN radar data. The SNR data are plotted with the range away from the radar
is plotted along the y-axis and the UT time is plotted in x-axis. The colour represents
the magnitude of the fitted SNR. Ground scatter has not been highlighted or removed
and is just included in the plot.
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Figure 7.9: A RTI plot comparing fitted velocity errors produced by FITACF (top
panel) and by FPFM-LMFIT2 (bottom panel) for 8 hours using ACF data from the
Saskatoon SuperDARN radar data. The velocity errors are plotted with the range away
from the radar is plotted along the y-axis and the UT time is plotted in x-axis. The
colour represents the magnitude of the fitted velocity. Ground scatter has not been
highlighted or removed and is just included in the plot.
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between 11:00 UT and 11:30 UT. One can also see how the SCR affects the velocity error

by comparing the SNR in Figure 7.8 and velocity error in Figure 7.9 for the FPFM-LMFIT2

data, specifically in the region with high SNR in the first band of scatter between ranges 20

and 30 and between 8:00 UT and 9:30 UT. Despite the SNR exceeding 30 dB in this region,

the velocity error here is larger than it is in some ranges that have smaller SNR, like those

in the first band of scatter at 10:00 UT. This is due to the contribution of self-clutter caused

by the large SNR at interfering ranges.

7.10.1 Saskatoon SuperDARN Radar Analysis

For the eight hours of data plotted in Figures 7.7, 7.8, and 7.9, FPFM-LMFIT2 produced

79.8% more data with SNR greater than 0 dB and velocity error less than 100 m/s than

FITACF. To determine whether this increase in data is a persistently observed improvement,

eight years of Saskatoon SuperDARN radar data were analyzed.

SuperDARN data from July 2006 through August 2014, inclusive, was fitted using FPFM-

LMFIT2 and FITACF and for each method, the fitted data was binned into three SNR bins:

<3 dB, 3-20 dB, and >20 dB. The fitted data from FPFM-LMFIT2 was compared with fitted

data from FITACF and the extra data from FPFM-LMFIT2 was counted. The purpose of

this binning process was to determine how much additional data FPFM-LMFIT2 produces

compared to FITACF as a function of SNR and velocity error. Figure 7.10 displays the results

of statistical comparison where the amount of additional data obtained by FPFM-LMFIT2

compared to FITACF is plotted as a function of velocity error. The blue, green, and red

lines represents the amount of additional data in the <3 dB, 3-20 dB, and >20 dB SNR bins,

respectively.

From Figure 7.10, one can see that FPFM-LMFIT2 consistently produces more fitted

data than FITACF and that a significant amount of the additional data have small velocity

error. For example, note the amount of additional data with less than 100 m/s velocity error

compared to the additional data with greater than 100 m/s velocity error in Figure 7.10.

For the eight years of Saskatoon SuperDARN radar data, FPFM-LMFIT2 obtains more than

109 additional data points than FITACF, and of these 477 × 106 have less than 100 m/s

velocity error. The statistical comparison finds that for velocity errors less than 100 m/s,
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Figure 7.10: Distributions of the additional data produced by FPFM-LMFIT2 com-
pared to FITACF for a statistcal comparison of 8 years of Saskatoon SuperDARN data.
The additional data is plotted as a function of velocity error and binned in to three
SNR ranges. Each line plotted corresponds to a different range of SNR values. The
blue, green, and red lines corresponds to a SNR values below 3 dB, from 3 to 20 dB,
and above 20 dB.

FPFM-LMFIT2 produces 44.6% more data in the 3-20 dB SNR bin and 7.9% more fitted

data in the >20 dB SNR bin than FITACF. Therefore, it may be inferred that for large SNR

(>20 dB) FITACF data is of comparable quality to FPFM-LMFIT2 and has a velocity error

of less than 100 m/s, but for SNR less than 20 dB, FITACF is discarding lags that contain

meaningful information by using its self-clutter filtering criterion.

7.10.2 FITACF Velocity

Although FITACF performs well when fitting ACFs with large SNR, it does occasionally

produce erroneous fitted parameters. This is illustrated in Figure 7.11, which compares

FITACF (top panel) and FPFM-LMFIT2 (bottom panel) fitted velocities for 20 minutes of

data from the Rankin Inlet SuperDARN radar. In several locations, including in proximity

to the leading or trailing edges of a large band of scatter, FITACF returns a velocity that is
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inconsistent with the adjacent large-scale velocity feature. For example, the FPFM-LMFIT2

velocities at range gate 20 from 8:05 UT to 8:10 UT, are approximately 600 m/s, which is

consistent with the velocities in adjacent ranges, but FITACF returns velocities that are in the

opposite direction with a magnitude of approximately 200 m/s compared to fitted velocities

in adjacent ranges. By examining the ACF lags that are discarded by the self-clutter criterion

(not shown), it can be determined that the incorrect velocity returned by FITACF was caused

by discarding of lags that were crucial to performing the phase unwrapping. With the few

remaining “good” lags, FITACF incorrectly unwrapped the phase, which resulted in a fitted

velocity with the incorrect sign and an unrealistic magnitude. The FITACF fitted velocity

errors for the incorrectly fitted ranges are small and do not provide any indication that these

velocities are erroneous.

The issue of producing incorrect fitted velocities has a significant impact on the interpre-

tation of SuperDARN velocity data. If one does not realize that these velocities are incorrect,

one may erroneously interpret the FITACF data as having several interesting shears in the

velocity flow. Since FITACF produces fitted velocity errors for the erroneously fitted ve-

locities that are the same as for ranges that are correctly fitted, like those in Figure 7.9,

one cannot use the FITACF velocity error to filter erroneously fitted velocities. Instead the

ACF data needs to be examined to determine if the FITACF velocities are valid. For large

datasets this is impractical. This demonstrates the importance of having accurate velocity

errors, like those produced by FPFM-LMFIT2.

7.11 Summary

SuperDARN ACF fitting software obtains best-fit values for power, velocity, and spectral

width by applying error-weighted least-squares regression techniques that require accurate

knowledge of the statistical characteristics of the data. Current SuperDARN fitting routines

rely on three ad hoc criteria: 1) the ad hoc variance expression given by Equation 7.4; 2) an

invalid magnitude model to fit the magnitude of the ACF, requiring an ad hoc condition to

discard lags of the ACF when the power in the lags has decreased below an ad hoc criterion;

3) a self-clutter lag discarding criterion. When the SNR in a range gate is large, FITACF
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Figure 7.11: A RTI plot of the fitted velocity obtained using FITACF (top panel)
and FPFM-LMFIT2 (bottom panel) for 20 minutes of ACF data from the Rankin Inlet
SuperDARN radar, on February 22, 2014.

tends to produce realistic fitted values, but as shown in Figure 7.11, FITACF sometimes fails

to properly fit SuperDARN data. Note that these ad hoc criteria were designed to be conser-

vative, eliminating lags rather than risk self-clutter contamination during the fitting process.

As discussed in Section 7.10.1, for the most part SuperDARN fitted data are good, but, with

more widely available computational resources, modifications to the fitting procedures can

now be made to improve the fitted data and provide accurate estimates of the fitting error.

A First-Principles Fitting Methodology (FPFM) was presented to address these issues

and improve the fitting procedures. The FPFM was designed for fitting SuperDARN ACFs

without the use of any ad hoc filtering criteria and without ad hoc variance estimates. Using
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first-principles methods based on the statistical properties of the voltage signals received by

SuperDARN radars, Reimer et al. (2016) derived the statistical characteristics of ACF lag

estimates. The results of that study include exact analytic expressions for the variance of

the real and imaginary components of the ACF lag estimates (Equations 7.5, 7.6, 7.8, and

7.9). To address the contribution of self-clutter to the ACF variance, Reimer and Hussey

(2015) derived the MPSE (Equation 7.12), which can be used to estimate the upper limit of

the self-clutter power in a lag of the ACF. These previous works have been combined with

a fitting methodology to produce an improved operational ACF fitting methodology (the

FPFM) for SuperDARN data processing. To avoid the challenges associated with fitting

the magnitude and phase of the ACF (as detailed in Section 7.7.1), the FPFM performs a

fit to the real and imaginary components of the ACF. The FPFM then uses Equations 7.5,

7.6, 7.8, 7.9, and 7.12 to obtain the variance of the real and imaginary components of the

ACF and uses the Levenburg-Marquardt algorithm to perform a non-linear error-weighted

least-squares fit of Equation 7.3 to the ACF. The FPFM has been implemented in C and

in Python as the LMFIT2 fitting software. The LMFIT2 open source code is available on

Github (https://github.com/asreimer/lmfit2).

The main result of this work is that by using the FPFM-LMFIT2, one is capable of

producing statistically self-consistent and accurate measures of uncertainty for fitted param-

eters in all SuperDARN range gates. Tests of FPFM-LMFIT2 software using synthetic data

showed that the errors in fitted data products from FPFM-LMFIT2 vary as a function of

SNR, SCR, and ACF correlation time, as expected. Specifically, when the SNR, SCR, and

correlation time are large the fitting errors are small. When the SNR, SCR, or the correlation

time are small, the fitting errors are large. These results were illustrated in Figures 7.5 and

7.6. Additionally, all historical SuperDARN data can be reprocessed using FPFM-LMFIT2.

Another substantial advantage of FPFM-LMFIT2 is the significant increase in the amount

of fitted data produced compared to the amount produced by the SuperDARN FITACF

software. For example, in Figures 7.7, 7.8, and 7.9, FPFM-LMFIT2 produced 79.8% more

data than FITACF with SNR greater than 0 dB and velocity errors less than 100 m/s.

When comparing FPFM-LMFIT2 and FITACF statistically using eight years of Saskatoon

SuperDARN radar data, FPFM-LMFIT2 produced more than 109 more fitted data than
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FITACF. Of these additional FPFM-LMFIT2 fitted data points, 477 × 106 ranges had a

velocity error less than 100 m/s, resulting in 52.5% additional fitted data points when the

SNR is greater than 3 dB and 7.9% additional fitted data points when the SNR is greater

than 20 dB. From this comparison it can be concluded that FITACF produces good data as

long as the SNR is large (>20 dB).

FPFM-LMFIT2 may be used to process data from any other radar system that extracts

fitted parameters from an ACF. FPFM-LMFIT2 may also be utilized with other fitting

techniques. For example, instead of using least-squares regression, the Bayesian Inference

method (Spaleta et al., 2015) could be used in conjunction with Equations 7.5, 7.6, 7.8, 7.9,

and 7.12.

It should be noted that FPFM-LMFIT2 does not include contributions to the ACF lag

variance due to off-diagonal terms in the covariance matrix of the ACF. These terms are

non-zero, since some voltage samples are reused to estimate more than one lag of the ACF

(e.g. Farley , 1969). This means that some of the lags of the ACF are correlated with other

lags, because the same voltage sample being used to estimate both of them. Future work is

required to determine the significance of these off-diagonal terms and how to quantitatively

estimate their contributions to the ACF lag variance.

FPFM-LMFIT2 is compatible with all SuperDARN data collected to date, so a re-analysis

of all SuperDARN data products, such as velocity vectors in convection maps and the cross

polar cap potential, could be performed using fitted data obtained using the FPFM-LMFIT2.

Future studies could examine how the increase in the amount of data from FPFM-LMFIT2

affects SuperDARN-derived maps of F region ionospheric plasma convection. The fitted

velocity error for each velocity measurement should be included in the global convection

map fitting procedures when performing an error-weighted fitting of the statistical convec-

tion model to the input velocity measurements (e.g. Ruohoniemi and Baker , 1998b; Fiori

et al., 2010b; Cousins et al., 2013). Such a study could produce convection maps that in-

clude confidence intervals for the output convection velocity vectors and the cross polar cap

potential. In summary using the FPFM-LMFIT2 provides accurate confidence intervals to

be determined for all SuperDARN data products.
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Chapter 8

Conclusions and Future Applications

The main objective of this thesis was to develop accurate and statistically self-consistent

error bars for SuperDARN fitted power, spectral width, and velocity. The objective has

been accomplished by developing three improvements for the signal processing workflow: a

novel method for estimating self-clutter, determining the statistical properties of SuperDARN

ACF lag estimates, and a first-principles fitting methodology that improves upon existing

SuperDARN fitting techniques. The fitting methodology relies on the variance of the ACF

lag estimates, which was determined from the PDF of the lag estimates. The variance of

each lag estimate requires quantification of the self-clutter contributing to that lag, which

is provided using the novel self-clutter estimator that was developed. The first-principles

fitting methodology provides accurate and statistically self-consistent errors bars for the fitted

power, spectral width, and velocity obtained from fitting SuperDARN ACFs. Additionally,

the methodology provides fitted data for every range such that the fitting errors can be

used to filter undesirable data. In Section 8.1, summaries of the results and applications

of Chapters 5, 6, and 7 are provided. The remainder of this chapter, Section 8.2, presents

and discusses new research already in progress directly resulted from developing accurate

SuperDARN fitted parameter errors.

8.1 Summary of Contributions

The three preceding chapters represent a significant contribution to the SuperDARN research

community. No previous published work exists that attempts to quantify the self-clutter

caused by the multiple-pulse technique. The contribution of self-clutter to the variance of

ACF lag estimates had never been considered when processing SuperDARN data. Using the
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power-based self-clutter estimator developed in Chapter 5, it is now possible to estimate the

upper limit of the contribution of self-clutter for the entire archive of SuperDARN data. The

new self-clutter estimator enables the reprocessing of all 25 years of SuperDARN data. Now

the self-clutter is properly accounted for in the variance of the ACF lag estimates. Addition-

ally, previous authors, such as Farley (1969), have explored the statistical properties of ACFs

for ISRs, but the literature lacked any such explorations for CSRs, such as SuperDARN and

its ACFs. The statistical properties of the SuperDARN ACF lag estimates were determined

and presented for the first time in Chapter 6. This is a significant contribution because exact

expressions for the variance of the lag estimates, which can be used in error-weighted fitting

techniques, were also developed. In contrast, current SuperDARN processing uses ad hoc

variance estimates that were found to result in inaccurate fitted parameter errors. Finally, a

new fitting methodology was developed in Chapter 7, which was based on the first-principles

research performed in Chapters 5 and 6. The new fitting methodology is also a significant

contribution because it provides accurate and statistically self-consistent fitted parameter

errors for SuperDARN data. Additionally, the fitting methodology enables much more data

to be extracted from the SuperDARN ACFs than was previously possible.

What follows are detailed descriptions of the results of the research performed in Chap-

ters 5, 6, and 7. A discussion of the applicability and the limitations of the results is also

provided.

8.1.1 Self-Clutter Estimation

The research performed in Chapter 5 involved developing a technique to estimate the self-

clutter that is present in SuperDARN ACFs caused by using the multiple-pulse technique

of Farley (1972). As discussed in Section 5.1, self-clutter estimates are needed to accurately

estimate the variance of ACF lag estimates. If the variance is not accurately estimated, the

fitted parameter errors will be incorrect and not useful. Three estimators were developed for

use in SuperDARN data processing: a voltage-based self-clutter estimator (VSE), a maximal

voltage-based self-clutter estimator (MVSE), and a maximal power-based self-clutter estima-

tor (MPSE). The mean-square-error of each of the self-clutter estimators was also derived.

The estimators were tested and validated using a modified, by this author, version of the
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radar data simulator of Ribeiro et al. (2013b).

The VSE, given by Equation 5.12, is only valid for a limited range of ionospheric pa-

rameters and cannot be used generally. However, it is possible to use the VSE to subtract

self-clutter produced by ground scatter or slow moving long lived ionospheric irregularities

from the SuperDARN ACF, as was demonstrated in Figure 5.6. The maximal estimators,

MVSE and MPSE, which are given by Equations 5.14 and 5.15, are generally applicable,

however they only provide an upper limit or “worst-case” estimate of the self-clutter. The

MVSE is a more efficient estimator than the MPSE; however, it requires voltages samples

to be used and voltage samples are not typically recorded and stored for later use by Super-

DARN radars1. Therefore, the MPSE, which uses the power estimates routinely recorded and

stored by all SuperDARN radars is the most practical estimator to use with SuperDARN.

Lastly, it should be pointed out that all three of the the self-clutter estimators can be used

with any radar system that uses the multiple-pulse technique.

Future improvement to the self-clutter estimators could involve developing a more accu-

rate estimator for SuperDARN. It may be possible to develop an improved estimator that is

based on the fitted parameters obtained at all ranges by utilizing an iterative fitting tech-

nique. Recall that the self-clutter contributions to a lag of the ACF depend on what signals

are scattering from different ranges. Also recall that the voltage samples received from a

range can be simulated using the fitted parameters obtained for that range. Using these

two facts, it may be possible to obtain a more accurate estimate of self-clutter using fitted

ionospheric parameters to simulate the self-clutter that is expected to result from ranges with

those same ionospheric parameters. An iterative algorithm could take the form:

1. estimate the self-clutter for all lags at all ranges using the power-based self-clutter

estimator,

2. fit all ranges using the First-Principles Fitting Methodology,

3. simulate the voltage samples that would produce ACFs consistent with the fitted pa-

1At least, not at the time of this writing. Members of the SuperDARN community have argued that too
much storage space is required to store the voltage samples. Although storage was an issue in the past, my
investigations have revealed that iqdat files are often less than ten times larger than rawacf files and that
several years of compressed iqdat files can fit on a 1TB hard drive.
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rameters obtained in step 2,

4. use the simulated voltage samples to estimate the self-clutter for all lags at all ranges

using the voltage-based self-clutter estimator, and

5. fit all ranges using the First-Principles Fitting Methodology and repeat the process

from step 3 onward until a convergence in fitted parameters has been reached.

In step 4, the upper limit of the self-clutter is still being estimated, however this estimate

will be in general better than that given by the MPSE since the simulated ionospheric-origin

self-clutter will average away as discussed in Chapter 5. Such an algorithm could provide

a more accurate estimate of self-clutter that would provide a more accurate estimate of the

variance of ACF lags, which would ultimately improve the accuracy of the fitted ionospheric

parameter errors.

8.1.2 SuperDARN Auto-Correlation Function Statistics

In Chapter 6, the statistical properties of ACF lag estimates were presented and discussed

for the first time. These properties were derived by propagating the statistical properties of

SuperDARN voltage samples through the ACF lag estimator given by Equation 6.1. Follow-

ing the arguments presented by other authors, such as André et al. (1999); Moorcroft (2004);

Ribeiro et al. (2013b), SuperDARN voltage signals were modelled as the sum of a large num-

ber of randomly spatially distributed ionospheric signals. It was then demonstrated that pairs

of SuperDARN voltage samples are characterized by a 4-dimensional Gaussian distribution,

a result that was experimentally verified (see Figure 6.2).

Next, the PDF of the real and imaginary components of the ACF lag estimates was

derived from the voltage samples and found to be characterized by a 2-dimensional Gaussian

distribution given by Equation 6.13. The PDFs of the magnitude and phase of the ACF

lag estimates (Equations C.3 and C.13) were also derived and found to be significantly more

complicated than the PDFs of the real and imaginary components. The variances of all

components of ACF lag estimates were also derived. For the real and imaginary components,

exact analytic expressions were obtained and are given by Equations 6.10 and 6.11. For the

magnitude and phase, it was not possible to obtain analytic expressions for the variance;
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however, an algorithm for calculating the variances numerically was developed. The PDFs

and variances of the ACF lag estimates were verified numerically using Monte Carlo methods.

It was determined that the PDF of the real and imaginary components of the ACF lag

estimates is applicable so long as the number of pulse-sequences used to estimate the lags is

≥ 10. A previously derived asymptotic expression for the variance of the phase of ACF lag

estimates, derived by Woodman and Hagfors (1969), was compared and validated against the

numerically derived phase variance. The variance of the real and imaginary components was

also compared with experimentally obtained SuperDARN ACFs (see Figure 6.6) and found

to be consistent.

Two statistical properties of the magnitude and phase relevant to current SuperDARN

fitting procedures were determined. The first statistical property found was that the PDF of

the magnitude of ACF lag estimates becomes a Rayleigh distribution when the correlation

in the ACF approaches zero. This is a significant property since a Rayleigh distribution is

identically equal to zero at zero power, meaning that the magnitude of the ACF lags does not

approach zero when the correlation in the ACF approaches zero. Instead, it was found that

the magnitude approaches (π/2)2 as the correlation approaches zero. This is in direct conflict

with the exponential model routinely used to describe and fit the magnitude of the ACF lags

in the current SuperDARN fitting methodology, since the exponential model approaches zero

as the ACF correlation approaches zero. The second statistical property found was related to

the PDF of the phase of ACF lag estimates. As the correlation approaches zero, the PDF of

the phase becomes a uniform distribution. This means that in low SNR conditions or strong

self-clutter conditions, the statistical properties of the phase are fundamentally incompatible

with unambiguous phase unwrapping. Unambiguous phase unwrapping is required to perform

a linear fit to the phase and this cannot be reliably done in the currently used SuperDARN

fitting methodology.

Finally, the results obtained in Chapter 6 are applicable to any pulse-Doppler radar system

that estimates an ACF and then fits it to extract target parameters. It is also important to

note that the real and imaginary variances were derived directly from Equation 6.9 and are

therefore exact results that only depend on the PDF of the voltage samples being Gaussian

and are not subject to the same criteria as the ACF lag PDF (Equation 6.13). Combining the
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MPSE from Chapter 5 with the variance expressions for the real and imaginary components

of the ACF lags from Chapter 6 enables statistically self-consistent error-weighted fitting of

SuperDARN data to be performed for the first time.

The variance expressions developed in Chapter 6 do not include contributions to the

variance from error correlations as discussed in Farley (1969). These error correlations are

a consequence of reusing the same voltage samples to estimate more than one lag of the

ACF. This results in correlations in the variance of the ACF lags and produces “smoother”

looking ACFs than would otherwise occur. Future work should be performed to quantify

these correlations as was done for ISRs by Farley (1969). Further future work could involve

deriving approximate analytic expressions for the variance of the magnitude and phase based

on spline fitting the numerically derived variances. The approximate expressions would be

computationally faster, which would be beneficial to fitting algorithms.

8.1.3 Self-Consistent Fitted Parameter Errors for SuperDARN

Utilizing the results obtained in previous chapters, a new first-principles fitting methodol-

ogy (FPFM) was developed in Chapter 7 that improves upon current SuperDARN fitting

methodologies. The research performed in this chapter utilized the results from all previous

chapters to achieve the objective of this thesis. Using the FPFM, it is now possible to pro-

cess SuperDARN data and obtain accurate and statistically self-consistent fitted parameter

errors. The FPFM was implemented in the C and Python programming languages as a soft-

ware package called LMFIT2. The LMFIT2 source code is open source and is available on

Github (https://github.com/asreimer/lmfit2).

The current standard SuperDARN fitting software uses error-weighted linear least squares

algorithms to perform fits to the magnitude and phase of the ACF lag estimates to extract

power, spectral width, and velocity of ionospheric irregularities. As mentioned in Section 5.1

and discussed in detail in Chapter 7, fitting the magnitude and phase requires overcoming

significant challenges, some of which are fundamentally incompatible with the statistical

properties of the magnitude and phase.

To avoid these challenges, the FPFM was instead developed to perform error-weighted

non-linear least-squares fits to the real and imaginary components of the ACF lag estimates
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using the Levenburg-Marquardt algorithm. To provide accurate weights, both the MPSE

developed in Chapter 5 and the variance expressions for the real and imaginary components

of the lag estimates developed in Chapter 6 are used. If either an incorrect model or incorrect

variance is used to fit the data, the resulting fitted parameters and fitted parameter errors

will be at best inaccurate, or in the worst case produce “good looking” data that is actually

meaningless.

The FPFM was tested significantly using synthetic SuperDARN ACF data produced

using the SuperDARN data simulator of Ribeiro et al. (2013b), where known ionospheric

parameter values were used to seed the simulator and then the fitted parameters obtained

using the FPFM were compared with the true (expected) parameter values. Two sets of

synthetic ACF data were used, ideal and pathological, containing no self-clutter and the

maximum possible self-clutter, respectively. The FPFM was found to be able to accurately

fit both synthetic datasets while simultaneously producing accurate fitted parameter errors

(see Figures 7.5 and 7.6).

The FPFM was also used to process real measured SuperDARN ACFs. SuperDARN data

processed using FPFM was compared with data processed using the current SuperDARN

fitting methodology, FITACF. By comparing the fitted data products, it was found that

the FPFM produces a significant increase in the amount of fitted data when compared to

the amount of fitted data produced by FITACF. In a statistical study comparing 8 years of

Saskatoon SuperDARN data, the FPFM produced 109 more fitted data than FITACF. Of

these additional FPFM data, 477×106 ranges had a velocity error less than 100 m/s, resulting

in FPFM producing an average of 52.5% additional fitted data points compared to FITACF

when the SNR > 3 dB. When SNR > 20 dB, an additional 7.9% fitted data points were

obtained. In summary, not only does the FPFM produce accurate fitted parameter errors,

but it also produces significantly more fitted data than the currently standard SuperDARN

fitting methodology. Clearly, the objective of this thesis has been accomplished and exceeded.

The following is a list interesting future research topics:

• Reprocessing the entire historical SuperDARN archive so that all fitted SuperDARN

data contains accurate fitted parameter errors.
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• Investigating the effects of including fitted parameter errors in deriving convection

maps. It is anticipated that the parameter errors can be used to filter and weight the

data input to the convention mapping software such that more accurate convection

maps can be derived.

• Investigate a potential systematic underestimation of fitted velocities from the FITACF

fitting software. As was reported by Ribeiro et al. (2013a), when comparing FPFM

with FITACF, it was found that the phase unwrapping algorithm in FITACF is unable

to reliably unwrap the phase of the ACF in the presence of strong self-clutter for

velocities & 1000 m/s, resulting in systematically lower fitted velocities on average

than expected (see orange dots in Figure 7.3). Such a systematic bias could have

significant consequences for derived data products, such as convection maps and the

cross polar cap potential.

• Elevation angle processing is not implemented in the LMFIT2 software, however I am

working on implementing this as part of future research.

8.2 Progress on Ensuing Work

Several other related and important projects organically resulted from this thesis research.

This dissertation will conclude with a brief description of three such projects2, including

some preliminary research results. All of the projects are fundamentally related to inferring

electron density from SuperDARN measurements as a standard data product.

The first project describes a methodology for designing an experiment mode to run on

a SuperDARN radar such that desired range and Doppler resolutions are achieved while

simultaneously obtaining a desired fitted parameter error given an expected set of ionospheric

2I actually have more that I would like to include; but, for the sake of brevity, will just list them here:
While working with the voltage sample data while developing the self-clutter estimators, I noticed that some
sets of voltage samples sometimes contained strong interference from HAM radio operators. This interference
should be filtered by discarding the “bad” voltage samples; however, in the current processing software, when
one ACF (≈ 100 ms of data) is “poisoned” by strong intermittent interference the entire mean ACF (≈ 3 s
of data) is discarded. Finally, an alternative fitting methodology that fits ACFs from each individual pulse
sequence simultaneously instead of the mean ACF could be investigated. The averaging process destroys
information, and fitting each individual ACF retains that information, resulting in a better fit.
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conditions.

The second project describes a joint experiment between the Clyde River SuperDARN

radar in Clyde River, Nunavut and the Resolute Bay Incoherent Scatter Radar (RISR-C)

in Resolute Bay, Nunavut that was performed to compare the inferred SuperDARN electron

density with the absolute electron density measurements obtained from RISR-C.

The third and final project describes a new and unique variation of the multiple-pulse

sequence that suppresses self-clutter from correlated interfering signals such as ground scatter.

8.2.1 Optimal SuperDARN Pulse Sequence Investigations

The goal of this investigation was to design a pulse sequence that is optimal for standard

operation on all SuperDARN radars. Using an optimal pulse-sequence ensures that the Su-

perDARN radars are collecting the highest quality data possible. For the purposes of this

investigation, the pulse width will be assumed to be a fixed value. The conditions determining

the optimal pulse sequence are fundamentally fixed by the characteristics of the ionospheric ir-

regularities that are being measured. For example, the optimum pulse-sequence must be able

to resolve the range of expected ionospheric velocities. The maximum unambiguous Doppler

(MUD) determines the range of resolvable velocities and for the multiple-pulse technique the

MUD is determined by the transmitted wavelength λ and the fundamental interpulse period

(or pulse-repetition time (PRT)) τ , such that

MUD = ± λ

4τ
. (8.1)

Another metric for determining the optimal pulse-sequence is to determine which pulse-

sequence produces the lowest fitted parameter errors. Fundamentally, the fitting errors de-

pend on the variance of the ACF lag estimates (recall Chapter 6). To first order, the ACF

standard deviation, which will be referred to as the ACF errors, depends on the SNR, the

SCR, and the number of pulse-sequences transmitted (recall Equation 5.1, p. 81). This can

be expressed as

dS/S = (1 + 1/SNR+ 1/SCR)/
√
K, (8.2)

where dS/S is the first-order approximation of the variance of the ACF lag estimate divided

by the signal power S. The SNR depends on propagation conditions and the presence of
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ionospheric irregularities and does not depend on the pulse sequence transmitted (the pulse

width controls the SNR too, but modifying it also modifies the range resolution). The SCR

is the only quantity contributing to the ACF variance that depends on the pulse-sequence

transmitted. Therefore, the self-clutter in SuperDARN ACF lag estimates depend on which

pulse-sequence was transmitted. Recall from Chapter 5 that the ranges where self-clutter

originates depend on pulse spacing, τ . The larger the spacing between the pulses, the further

away the interfering ranges are from one another. Due to the multiple hopping nature of HF

wave propagation in the ionosphere, it is common for SuperDARN radars to measure bands of

scatter. This means that there are ranges between the bands from which no signal is typically

received, so if the pulse spacings could be increased sufficiently to move the interfering ranges

into the “gaps” between the bands of scatter, the SCR can be increased. The upper limit

on pulse spacing is determined by the MUD. This means that an optimal pulse sequence is

one where the MUD is set only as high as it is needed so that the pulse-spacing can be as

large as possible to reduce the self-clutter and increase the SCR. Fundamentally, designing

the optimal pulse sequence is a exercise in finding the optimal value for the PRT, τ .

SuperDARN radars are designed to operate in the HF band with frequencies between 8

and 20 MHz. Additionally, the PRTs used on SuperDARN radars typically range from 1.8 ms

up to 2.4 ms. Figure 8.1 visualizes the relationship between the MUD, PRT, and transmitted

frequency. The figure shows how, for a given MUD, the PRT needs to be decreased as

the transmitted frequency increases. Also note that increasing the PRT or decreasing the

transmitted frequency increases the MUD. The hatched area shows the range of values for

the PRT and transmitted frequency for which SuperDARN radars typically operate.

To determine the upper bound for the PRT, the distribution of velocities measured by

every SuperDARN radar for 21 years (1992–2013, inclusive) were compiled and combined

into groups according to the latitudinal region in which the radar is located. Figures 8.2,

8.3, and 8.4 show the resulting velocity distributions for the polar cap, high-latitude, and

mid-latitude regions, respectively. The ground scatter identification method of Blanchard

et al. (2009) was used to filter out ground scatter echoes from the velocity distributions,

which results in the double peak structure observed in the velocity distributions centred at

zero velocity.
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Figure 8.1: A contour plot of Equation 8.1. Choosing combinations of τ and trans-
mission frequency (fTx

) to the left side of a contour of MUD guarantee a MUD ≥ the
MUD of the contour. The hatched area shows the region in which SuperDARN radars
currently operate: 1.8 ms ≤ τ ≤ 2.4 ms and 8 MHz ≤ fTx

≤ 20 MHz.

Since the main objective of SuperDARN radars is to measure plasma velocity, one must

be careful to ensure that the optimal choice of τ results in a MUD equal to or larger than

the largest plasma velocity flows in the ionosphere. This means that determining the largest

required MUD for SuperDARN is the same as determining the largest velocities that may be

observed in the ionosphere by SuperDARN.

Both a Laplace distribution and a Gaussian distribution were fitted to each velocity

distribution in an attempt to extract the standard deviation of the velocity data. Pear-

son’s goodness of fit parameter for each fitted distribution is displayed as the χ2 value in

the legend for each plot. Notice that the polar cap SuperDARN radar velocity measure-

ments (Figure 8.2) follow a Gaussian velocity distribution, whereas the high-latitude radar
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Figure 8.2: The normalized velocity distribution for SuperDARN radars in the polar
cap. The velocity bins are 25 m/s in size. N is the total number of points in the plot.
N5σL

and N5σG
indicate the amount of data points within 5 standard deviations of the

mean for the Laplace fit and the Gaussian fit, respectively.

velocity measurements (Figure 8.3) follow a Laplace distributed velocity distribution. The

mid-latitude radar velocity measurements (Figure 8.4) do not follow a velocity distribution

that is accurately described by either a Laplace or a Gaussian distribution.

This statistical study resulted in the following: for the polar cap radars 5σ ≈ 1500 m/s,

for the high-latitude radars 5σ ≈ 2000 m/s, and for mid-latitude radars 5σ ≈ 1250 m/s.

Being conservative, setting MUD = 2000 m/s for polar cap (P) radars, MUD = 2500 m/s for

high-latitude (HL) radars, and MUD = 1750 m/s for mid-latitude (ML) radars the following

constraints for PRT are obtained from Equation 8.1,
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Figure 8.3: The normalized velocity distribution for SuperDARN radars in the high-
latitudes. The velocity bins are 25 m/s in size. N is the total number of points in the
plot. N5σL

and N5σG
indicate the amount of data points within 5 standard deviations

of the mean for the Laplace fit and the Gaussian fit, respectively.

τP ≤ 75/fTx
, (8.3)

τHL ≤ 60/fTx
, (8.4)

τML ≤ 86/fTx
, (8.5)

where fTx
is the transmitted frequency in kHz.

With an upper limit for τ determined, how the ACF errors behave as a function of τ was

briefly explored. Minimizing the ACF error will help to determine an optimal choice for τ .

The average errors for 1 hour of data from the Saskatoon SuperDARN radar on 1 December
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Figure 8.4: The normalized velocity distribution for SuperDARN radars in the mid-
latitudes. The velocity bins are 25 m/s in size. N is the total number of points in the
plot. N5σL
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indicate the amount of data points within 5 standard deviations

of the mean for the Laplace fit and the Gaussian fit, respectively.

2013 were computed using Equation 8.2 for the cases where τ = 1.8 ms and τ = 2.4 ms. The

errors were then compared by plotting the difference between the errors for τ = 1.8 ms and

τ = 2.4 ms in Figure 8.5.

Generally, there is improvement (decrease) in the ACF errors when increasing τ from 1.8

ms to 2.4 ms. This preliminary study suggests that a τ = 2.4 ms is the optimum choice

to balance both the MUD requirements and simultaneously minimize the ACF errors and

therefore achieve the lowest fitted parameter errors. Using a value of 2.4 ms also satisfies

Equations 8.3, 8.4, 8.5 for all SuperDARN operating frequencies. Future work on this topic

should explore a wider range of SuperDARN data for determining improvements in ACF
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Figure 8.5: A plot of the average difference in ACF lag variance as calculated using
Equation 8.2 between multiple-pulse sequences using τ = 1.8 ms and τ = 2.4 ms.
Improvement in error is indicated by red and deterioration is indicated by blue.

errors beyond the single hour of SuperDARN data that was considered. Additionally, the

range of theoretically observable velocities in the F region ionosphere should be considered

in deciding what MUD to set for the SuperDARN radars in each region.

8.2.2 Inferred Electron Density as a Standard SuperDARN Data

Product

SuperDARN radars are primarily used to measure the plasma circulation in the high-latitude

ionosphere, but, as was discussed in Chapter 1, a recent statistical analysis using months of

data by Gillies et al. (2012) showed that SuperDARN may also be used for electron den-
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sity measurements. Using Bayesian inference and a multiple-frequency ACF model derived

from the work of Gillies et al. (2012), Spaleta et al. (2015) demonstrated that minute res-

olution electron density measurements may be inferred from multiple-frequency experiment

modes running on SuperDARN radars. However, these minute resolution SuperDARN de-

rived electron density measurements have yet to be quantitatively compared with or verified

against established electron density measuring radar systems, such as incoherent scatter

radars. Since SuperDARN radars are more numerous and have much larger fields-of-view

than other ionospheric radar systems, verification of SuperDARN electron density measure-

ments may provide a significant electron density dataset to the space physics community. The

Canadian Resolute Incoherent Scatter Radar (RISR-C), located near Resolute, Nunavut, is

a Canadian radar that has been performing absolute electron density measurements of the

ionosphere since late 2015. The following presents the preliminary results of an experiment

from 3 March, 2016 where the electron density measurements from RISR-C were compared

with the electron density obtained using the Clyde River SuperDARN radar.

Following the previous work of Spaleta et al. (2015), a Bayesian inference data fitting

algorithm was built using the Python package emcee, which provides a Monte Carlo Markov

Chain method of constructing the posterior distribution of model parameters (Foreman-

Mackey et al., 2012). The Bayesian inference algorithm utilizes the FPFM developed in

Chapter 7, but uses Bayesian inference in place of the non-linear least-squares fitting tech-

niques. The resulting posterior distributions can be used to determine the most probable

values of the parameters given the model and the data (e.g. Spaleta et al., 2015). Addition-

ally, a joint experiment was performed where both the Clyde River SuperDARN radar and

RISR-C were run at the same time. The objective of this experiment was to compare electron

density measurements derived from SuperDARN radar data with calibrated absolute electron

density measurements from RISR-C. Such a comparison would provide a way to validate the

inferred SuperDARN electron densities.

In a statistical study using many months of SuperDARN data, Gillies et al. (2012) demon-

strated that measurements taken using different SuperDARN transmission frequencies may

be used to obtain estimates of the electron density. Subsequently, Spaleta et al. (2015)

obtained minute resolution measurements of the electron density measurements with Super-
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Figure 8.6: The posterior distribution functions for fitted power, velocity, spectral
width, and plasma frequency resulting from a Bayesian fit of simulated data.
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DARN using a model and a Bayesian fitting technique. To do this, SuperDARN ACFs were

fitted to the model given by

Ri(t) = Pie
kiwdtej4π

√
f2
i −f2

pvdt/c, (8.6)

where i denotes data recorded from the fi transmitted frequency, Ri is the autocorrelation

function at time t, Pi is the echo power, ki is the transmitted wavenumber, wd is the spectral

width, fp is the plasma frequency, vd is the Doppler velocity, and c is the speed of light. To

obtain the electron density, parameters Pi, wd, vd, and fp are fitted for and then simply

f 2
p =

nee
2

mǫ0
. (8.7)

Fitting the data to the model performs best when the phase difference between the lags of

ACFs measured from different frequecies is large. The difference in phase between the lags of

different ACFs is increased by larger ionospheric velocities and larger frequency separations.

Larger frequency separations also change the propagation paths of the two different frequen-

cies meaning that it is less likely that scatter from both frequencies is received from the same

volume of plasma. Figure 8.6 shows a plot of what the posterior distributions of the fitted

parameters is expected to look like when the power pr, velocity vd, spectral width wd, and

plasma frequency fp are all successfully resolved. As seen in the figure, if the parameters are

well-resolved, then the posterior distributions are single peaked with a low variance (narrow).

When a parameter is not well resolved, in general its posterior distribution will resemble a

uniform distribution (wide).

A new 10 pulse multiple-pulse sequence, called g10scan, was designed and tested using a

radar data simulation based on Equation 6.13 optimize the pulse-sequence parameters with

the expected polar cap ionospheric conditions. Then a joint experiment between RISR-C

and the Clyde River SuperDARN radar was performed on 3 March, 2016 from 16–20 UT.

RISR-C operated in a 1-minute resolution, 51 beam mode. Clyde River operated in a 6 beam

mode alternating transmitted frequencies scan-to-scan on 10 MHz and 12 MHz. The beams

on Clyde River were chosen to overlap with RISR-C. Figure 8.7 shows the fields of view of

both RISR-C and Clyde River during the experiment.

A comparison of the electron densities obtained by RISR-C and Clyde River are plotted

in Figure 8.8. The electron densities from beam 42 of RISR-C, at 200 km, 250 km, and 300

193



G
e
o
g
ra

p
h
ic co

o
rd

in
a
te

s

100°W 80°W

 80 ◦

Figure 8.7: An illustration of the overlap of the fields of view of both RISR-C and
the Clyde River SuperDARN radar during the 3 March, 2016 experiment.

km, are plotted as black, green, and red lines, respectively. The inferred Clyde River electron

densities are plotted in blue. The comparison presented is preliminary and does not filter

the data by considering propagation, nor does it attempt to use the Clyde River elevation

angle to ray trace the expected altitude of the backscatter. Despite this, there does seem

to be some agreement between the RISR-C and Clyde River electron densities near 16:15

UT and 17:15 UT. The anomalously large Clyde River densities (blue data points near 1012

m−3) are unrealistic. These unrealistic densities are produced when the ACF measured using

the lowest transmit frequency measures a larger velocity than the ACF measured using the
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highest transmit frequency. When this occurs, it is physically impossible according to the

magnetoionic theory (Appleton-Hartree equation), where the largest transmit frequency is

expected to measure the largest velocity, unless the scattered signals from which the ACFs

were made originated from two different places. Considering the frequency dependence of

HF wave propagation in the ionosphere, this is a frustrating but not unexpected result.
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Figure 8.8: A plot comparing the electron density measured along beam 42 of RISR-C
at different altitudes with the Clyde River inferred electron density.

Analysis of all the remaining coincident data is needed. Future experiments are also re-

quired such that a range of ionospheric conditions can be sampled and the optimal conditions

for inferring electron densities using SuperDARN can be determined. A desirable improve-

ment to the experiment mode would be to transmit on 2 or more frequencies simultaneously;
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however, the Clyde River radar does not yet have this capability, but is expected to gain

the ability in a year or two. To perform experiments using multiple simultaneous trans-

mit and receive frequencies right now, the experiment could be performed using the Kodiak

SuperDARN radar in Alaska in combination with the Poker Flat Incoherent Scatter Radar.

8.2.3 The Multiple-Incoherent-Pulse Technique

As discussed in detail in Chapter 5, the multiple-pulse technique of Farley (1972) solves the

Doppler-dilemma for SuperDARN radars, but does so at the expense of contributing self-

clutter to the SuperDARN ACF. When the interfering ranges that produce the self-clutter

are uncorrelated, the self-clutter acts like an incoherent noise source and is attenuated by

a factor of K, where K is the number of pulse sequences transmitted. However, when the

interfering ranges are correlated, such as when ground scatter contributes, the self-clutter

survives the averaging process, persisting and producing significant interference (recall the

“spikes” in the bottom left panel of Figure 5.6). In this subsection, a novel variation on

the multiple-pulse technique, called the Multiple-Incoherent-Pulse Technique (MIPT) will be

introduced and discussed. As will be shown, MIPT causes all interfering signals to behave as

incoherent noise, such that even ground scatter origin self-clutter is attenuated by a factor

of K.

Previous efforts to reduce the self-clutter of the multiple-pulse technique have involved

different variations of the multiple-pulse technique. A Multiple Pulse with Orthogonal Po-

larization (MPOP) technique, which involves alternating the transmitted pulses between left

and right circular polarizations, was developed for use with the Jicamarca incoherence scat-

ter radar (Grydeland and Gustavsson, 2011). For MPOP, the orthogonality of each pulse

must be preserved during the entire transit of the pulses. Compared to the multiple-pulse

technique, Grydeland and Gustavsson (2011) found that the MPOP reduces the variance of

ACF lag estimates by up to a factor of 4. In order to measure the ionospheric electric field

with a sample rate of 5 Hz, Greenwald et al. (2008) developed a novel pulse-sequence that can

be transmitted on SuperDARN radars. The pulse-sequence involves transmitting a standard

multiple-pulse sequence followed immediately by a time-reversed version of the same pulse

sequence. The sequence used in Greenwald et al. (2008) produces approximately 50% more
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voltage samples (from scattered signals returning to the radar). The red diamonds
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diamonds indicating signal backscattered from non-repeated unwanted ranges.

lag estimates per second compared to the standard katscan pulse sequence typically used. An

additional benefit of the Greenwald et al. (2008) technique is that it provides lag estimates

for ranges where lag estimates are missing from the standard multiple-pulse sequence, due to

receiver blanking when pulses are transmitted at the same time as signals are being received.

The end result is that self-clutter is reduced by roughly a factor of two compared to the

standard multiple-pulse technique and lag estimates are obtained for previously “bad” lags

due to receiver blanking.

The approach taken by the MIPT technique is completely different than those previously

attempted for SuperDARN, but is similar to the Simultaneous Multiple Pulse Repetition Fre-

quency (SMPRF) technique proposed for usage with Doppler-weather radars (Pirttilä et al.,
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2005). SuperDARN radars are not currently capable of transmitting on different polariza-

tions. Additionally, the mirrored multiple-pulse technique does not address the problems

caused by correlated self-clutter. Instead, the MIPT uses pseudo-random phase coding to

transmit pulses that are incoherent with respect to one another. Due to the hardware used

for Doppler-weather radars, transmitted pulses have a random phase with respect to one

another and this was leveraged in the SMPRF technique to reduce self-clutter to an inco-

herent noise source. If the random phases used during transmission are recorded and then

used to decode the received voltage samples, then on the average, the interfering ranges are

not decoded by the pseudo-random coding. This means that regardless of the properties of

the signals coming from the interfering ranges, they are “forced” to behave as an incoherent

noise source due to the pseudo-random coding.

Consider the simple 3 pulse multiple-pulse sequence shown in Figure 8.9 and imagine that

the pulses transmitted at times 0τ , 1τ , and 3τ are all coded with phase offsets given by ejφ1,

ejφ2, and ejφ3. The voltage samples received at 3τ , 4τ , and 6τ are then given by

V3τ = V1ae
jφ1 + V2ae

jφ2, (8.8)

V4τ = V1be
jφ1 + V2be

jφ2 + V3be
jφ3, (8.9)

V6τ = V1ce
jφ1 + V2ce

jφ2 + V3ce
jφ3 . (8.10)

In order to obtain the desired correlation of V2bV
∗
3c, we correlate V4τ and V6τ and obtain

(V4τe
−jφ2)(V6τe

−jφ3)∗ =[(V1ce
jφ1 + V2ce

jφ2 + V3ce
jφ3)e−jφ2] (8.11)

×[(V1be
jφ1 + V2be

jφ2 + V3be
jφ3)e−jφ3]∗, (8.12)

noting that in order to obtain the desired correlation, the random phase offsets need to be

removed (decoded). Simplifying yields

(V4τe
−jφ2)(V6τe

−jφ3)∗ = V2cV
∗
3b + V2cV

∗
1be

−j(φ1−φ3) + V2cV
∗
2be

−j(φ2−φ3) (8.13)

+ V1ce
j(φ1−φ2)V ∗

3b + V3ce
j(φ3−φ2)V ∗

3b (8.14)

+ V1cV
∗
1be

j(φ3−φ2) + V1cV
∗
2be

j(φ1−2φ2+φ3) (8.15)

+ V3cV
∗
1be

j(−φ1−φ2+2φ3) + V3cV
∗
2be

j(−2φ2+2φ3). (8.16)

198



Notice that all of the unwanted terms contain random phase offset. If several pulse-sequences

are transmitted, each with a different set of random phase offsets, then even if the interfering

ranges are correlated the random phase offset force the correlation of the interfering ranges

to vary randomly from pulse-sequence to pulse sequence since

〈V1iV
∗
2ie

jφi〉 = 〈V1iV
∗
2i〉〈ejφi〉 = 0, (8.17)

because

〈ejφi〉 = 0, (8.18)

if φi is a uniformly distributed random variable. So as long as the random phase offsets are

generated by sampling a uniform distribution, then the self-clutter produced by the MIPT

will be attenuated by a factor of K regardless of correlative properties of the interfering

ranges.

The significance of this result is that the MIPT will suppress the strong self-clutter caused

by ground scatter that is currently seen in SuperDARN data. Additionally, a new maximal

estimate of the self-clutter, obtained by dividing Equation 5.15 by K, can be used in the

FPFM to provide more accurate fitted parameter errors.

Currently, SuperDARN radar hardware is not capable of transmitting MIPT because the

radars are not able to change the phase of the transmitter fast enough. New digital radar

hardware that uses software defined radio technology is being developed and built by the

Saskatoon SuperDARN group. The new fully digital radar will be capable of transmitting

the MIPT. It is expected that the digital radar hardware will be operational at the Saskatoon

SuperDARN radar site in 2018. In the meantime, testing of the MIPT can be performed

using simulated SuperDARN radar data.
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Appendix A

Distributions Derived From Gaussian Ran-

dom Variables

If x is a Gaussian random variable, with mean x̄, and variance σ2, it has a PDF given by

p(x) =
1√
2πσ2

exp

(

−(x− x̄)2

2σ2

)

. (A.1)

If x1 and x2 are zero mean ( ¯x1,2 = 0) Gaussian random variables, then the sum of their
squares, r,

r =
√

r21 + r22 (A.2)

is Rayleigh distributed. A Rayleigh distributed random variable, r, has a PDF given by

p(r) =
r

σ2
exp

(

− r2

2σ2

)

, r ≥ 0. (A.3)

The magnitude of complex voltage samples is Rayleigh distributed if the real and imaginary
components are Gaussian random variables. The expectation value of r is

√

π
2
σ.

The square of a Gaussian random variable, y = x2, is a Chi-squared distributed random
variables with a PDF given by

P (y) =
1√
2πσ2

exp
(

− y

2σ2

)

, y ≥ 0. (A.4)

A Chi-squared random variable has an expectation value of σ2. The Chi-squared distribution
is central to the least-squares fitting techniques described in Chapter 7.
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Appendix B

Self-Clutter Estimator Derivations

B.1 Expected Maximum Magnitude of Self-Clutter

The expected value of any self-clutter estimator is given by

C =
1

K

K
∑

k=1

(

N
∑

n=1

Cn2 +
M
∑

m=1

C1m −
N
∑

n=1

M
∑

m=1

Cnm

)

, (B.1)

where Cxy denotes the expected value of the correlation between voltage samples Ṽx and Ṽy.
An estimate of the maximum magnitude of self-clutter contained in a lag estimate should

have an expected value of

CMAX =
N
∑

n=1

|Vn||VR|+
M
∑

m=1

|VR||Vm|+
N
∑

n=1

M
∑

m=1

|Vn||Vm|, (B.2)

or written in terms of expected power, assuming unit resistance,

CMAX =
N
∑

n=1

√

PnPR +
M
∑

m=1

√

PRPm +
N
∑

n=1

M
∑

m=1

√

PnPm (B.3)

B.2 VSE

The voltage-based self-clutter estimator is written as

ĈVSE =
1

K

K
∑

k=1

(

N
∑

n=1

ṼnkṼ
∗
2k +

M
∑

m=1

Ṽ1kṼ
∗
mk −

N
∑

n=1

M
∑

m=1

ṼnkṼ
∗
mk

)

. (B.4)

with a MSE given by the

MSE(ĈVSE) =
C2

K
. (B.5)

The MSE is equivalent to

MSE(ĈVSE) = 〈Ĉ2
VSE〉 − C2. (B.6)

〈Ĉ2
VSE〉 requires a large but simple calculation. First we start with Ĉ2

VSE and then we calculate
the expected value of the result. As will be shown, the expected value calculation requires
calculating 12 separate expected values.

Ĉ2
VSE =

1

K

1

K

K
∑

k=1

K
∑

l=1

(

N
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n=1

ṼnkṼ
∗
2k +
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m=1

Ṽ1kṼ
∗
mk −

N
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n=1
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m=1

ṼnkṼ
∗
mk

)
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(

N
∑

n=1

ṼnlṼ
∗
2l +

M
∑

m=1

Ṽ1lṼ
∗
ml −

N
∑

n=1

M
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m=1

ṼnlṼ
∗
ml

)

. (B.7)

Ĉ2
VSE =

1

K

1

K
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(B.8)

The subscripts k and l select voltage samples from the the k and l rows of the V matrix.
Voltage samples in one row are statistically independent from voltage samples in another
row. The expected value is equivalent to

〈Ĉ2
VSE〉 =

1

K
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∑
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∗
bl〉
)∣

∣

∣

∣

∣

k 6=l

(B.9)

The next step is to calculate the expected value of each of the 12 terms. The calculation is
made simpler using a specific form of Isserlis’ Theorem (Isserlis , 1918) given by Reed (1962)
referred to as the fourth moment theorem,

〈V1V2V3V4〉 = 〈V1V2〉〈V3V4〉+ 〈V1V3〉〈V2V4〉+ 〈V1V4〉〈V2V3〉. (B.10)

Then, assuming that correlations between voltage samples from differing multiple-pulse se-
quences are uncorrelated, we obtain

〈ṼnkṼ
∗
2kṼalṼ

∗
2l〉 =

{

2Cn2Ca2, k = l
Cn2Ca2, k 6= l

(B.11)
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〈Ṽ1kṼ
∗
mkṼ1lṼ

∗
bl〉 =

{

2C1mC1b, k = l
C1mC1b, k 6= l

(B.12)

〈ṼnkṼ
∗
2kṼ1lṼ

∗
ml〉 =

{

C1mCn2 + CnmC12, k = l
C1mCn2, k 6= l

(B.13)

〈ṼnkṼ
∗
2kṼalṼ

∗
ml〉 =

{

2Cn2Cam, k = l
Cn2Cam, k 6= l

(B.14)

〈Ṽ1lṼ
∗
bl ṼnkṼ

∗
mk〉 =

{

2CnmC1b, k = l
CnmC1b, k 6= l

(B.15)

〈ṼnkṼ
∗
mkṼalṼ

∗
bl〉 =

{

2CnmCab, k = l
CnmCab, k 6= l

(B.16)

From the above relations we obtain

〈Ĉ2
VSE〉 =

2

K
C2 +

K − 1

K
C2 +

2

K

N
∑

n=1

M
∑

m=1

(CnmC12 − C1mCn2) (B.17)

but CnmC12 − C1mCn2 = 0 since

C1mCn2 = V1V
∗
mVnV

∗
2

= V1V
∗
2 VnV

∗
n

= C12Cnm

(B.18)

which is to say that the correlations Cnm and C12 are each products of two complex numbers
and that products of complex numbers are commutative. With this relation, we finally obtain

MSE(ĈVSE) =
C2

K
. (B.19)

B.3 MVSE and MPSE

The maximum voltage-based self-clutter estimator is given by the relation

ĈMV SE =
4

πK

K
∑

k=1

(

N
∑

n=1

|Ṽnk||ṼRk|+
M
∑

m=1

|ṼRk||Ṽmk|+
N
∑

n=1

M
∑

m=1

|Ṽnk||Ṽmk|
)

. (B.20)

The voltage samples are zero mean complex Gaussian random variables, which means that
the magnitude of each voltage sample follows a Rayleigh distribution of order 2 (Simon,
2007). The expected value of the magnitude of a voltage sample is then given by

E
[

|Ṽ |
]

=
π

4
|V | (B.21)

where |V | is the population mean value of the magnitude of the voltage sample. This relation
shows why a constant factor of 4/π is used to ensure that the expected value of ĈMV SE =
CMAX (e.g. Sampath, 2005).

217



The maximum power-based self-clutter is derived from the maximum voltage-based self-
clutter estimator using Cauchy’s inequality (Abramowitz and Stegun, 2012)

(

∑

anbn

)2

≤
∑

a2n
∑

b2n. (B.22)

Applying the inequality to the terms in the maximum voltage-based self-clutter estimator
and taking the square root we obtain

(

K
∑

k=1

|Ṽnk||Ṽmk|
)

≤

√

√

√

√

K
∑

k=1

|Ṽnk|2
K
∑

k=1

|Ṽmk|2. (B.23)

The terms inside the square root can be replaced with the power estimator in Chapter 5
(equation 5.3). The maximum power-based self-clutter estimator is then given by the relation

ĈMPSE =
N
∑

n=1

√

P̂nP̂R +
M
∑

m=1

√

P̂RP̂m +
N
∑

n=1

M
∑

m=1

√

P̂nP̂m, (B.24)

and relies on the power estimator. Calculation of the MSE in the MVSE and MPSE is
accomplished in a similar manner as for the MSE in the VSE. For the MVSE the following
relations were used,

〈|Ṽnk||Ṽmk||Ṽal||Ṽbl|〉 =























√
PnPmPaPb, n = a, b = m, k = l

(π/4)
√
PnPmPaPb, n = a, b 6= m, k = l

(π/4)
√
PnPmPaPb, n 6= a, b = m, k = l

(π/4)2
√
PnPmPaPb, n 6= a, b 6= m, k = l

(π/4)2
√
PnPmPaPb, k 6= l

. (B.25)

Here we have used the fact that for n 6= a and m 6= b, voltage samples are statistically
independent and

〈|Ṽnk||Ṽmk||Ṽal||Ṽbl|〉 = 〈|Ṽnk|〉〈|Ṽmk|〉〈|Ṽal|〉〈|Ṽbl|〉, (B.26)

and that for n = a or m = b
〈|Ṽn||Ṽa|〉 = 〈|Ṽn|2〉 = Pn. (B.27)

Also, recall that voltage samples Ṽn and Ṽm are statistically independent.
Calculation of the MSE in the MPSE was based on the fact that

〈
√

P̂nP̂a

〉

=

√

〈P̂nP̂a〉 (B.28)

with
〈P̂nP̂a〉 = 〈P̂n〉〈P̂a〉 (B.29)

for n 6= a and that

〈P̂nP̂a〉 = 〈P̂ 2
n〉 = P 2

n

(

1 +
1

K

)

. (B.30)

Finally, we can write a MSE for the MxPE (where x is either V or P for either voltage-based
or power-based, respectively) as

218



MSE(ĈMxSE) =
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)

. (B.31)

The coefficients for MSE of the voltage-based maximal self-clutter estimator are,

αna =

{

(1/K)
(

(4/π)2 − 1
)

n = a
(1/K) ((4/π)− 1) n 6= a

βna =

{

(1/K) ((4/π)− 1) n = a
0 n 6= a

γnmab =















(1/K)
(

(4/π)2 − 1
)

n = a, m = b
(1/K) ((4/π)− 1) n 6= a, m = b

n = a, m 6= b
0 n 6= a, m 6= b

, (B.32)

and the coefficients for MSE of the power-based maximal self-clutter estimator are

αna =

{

1/K n = a
√

1 + 1/K − 1 n 6= a

βna =

{ √

1 + 1/K − 1 n = a
0 n 6= a

γnmab =















1/K n = a, m = b
√

1 + 1/K − 1 n 6= a, m = b
n = a, m 6= b

0 n 6= a, m 6= b

. (B.33)
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Appendix C

Miscellaneous Derivations

C.1 Derivation of Probability Distribution Functions

of the Magnitude and Phase of the Mean Auto-

Correlation Function

Below we present our derivation of the distributions of the magnitude (or envelope) and
phase of Equation 6.13. It is worth noting that results in different forms have been obtained
for the magnitude distribution by Beckmann (1962) (only for the uncorrelated case), Aalo
et al. (2007), and Dharmawansa et al. (2009). The polar form of Equation 6.13 is given by

p(r, θ) =
r

2πσrσi

√

1− ρ2ri
e
−

(r cos(θ)−x̄)2

2σ2
r(1−ρ2

ri)
−

(r sin(θ)−ȳ)2

2σ2
i (1−ρ2

ri)
+

ρri(r cos(θ)−x̄)(r sin(θ)−ȳ)

σrσi(1−ρ2
ri) . (C.1)

To evaluate the integral for the phase distribution, as discussed in Section 6.5.2, we
rearrange Equation C.1 to take advantage of the fact that

∫ ∞

0

re−ar2+br+cdr =
ec

4
√
a

(

b
√
π√
a
exp

(

b2

4a

)(

1 + erf

(

b

2
√
a

))

+ 2

)

. (C.2)

This result can be derived using the symbolic mathematics Python package SymPy (SymPy
Development Team, 2014). Finally, only basic algebraic manipulations are required to obtain

p(θ) =
C√
A

(

B
√
π√
A

exp

(

B2

4A

)(

1 + erf

(

B

2
√
A

))

+ 2

)

(C.3)

where A, B, and C are given by

A =
cos2(θ)

2σ2
r (1− ρ2ri)

+
sin2(θ)

2σ2
i (1− ρ2ri)

− ρri cos(θ) sin(θ)

σrσi(1− ρ2ri)
(C.4)

B =
1

σr(1− ρ2ri)

[

x̄

σr
− ρriȳ

σi

]

cos(θ) +
1

σi(1− ρ2ri)

[

ȳ

σi
− ρrix̄

σr

]

sin(θ) (C.5)

C =
exp

(

x̄2

2σ2
r (1−ρ2ri)

+ ȳ2

2σ2
i (1−ρ2ri)

− ρrix̄ȳ
σrσi(1−ρ2ri)

)

4πσrσi(1− ρ2ri)
. (C.6)

which is a result similar in form to that presented in Aalo et al. (2007).
Evaluating the integral for the magnitude distribution is less trivial. First, we rearrange

Equation C.1 into the following form (where we have applied double-angle trigonometric
identities)

u (A, P,Q,R,H) = Ae−
P
2

∫ 2π

0

e−
P
2
cos(2θ)+Q cos θ+R sin θ+H

2
sin(2θ)dθ. (C.7)
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Next, the appropriate terms in the integral are substituted with the following trigonometric
and Bessel function identities (from Abramowitz and Stegun (2012)),

a cos (ωt) + b sin (ωt) =
√
a2 + b2 cos

(

ωt+ tan−1

(

b

a

))

(C.8)

ez cos x = I0 (z) + 2Σ∞
k=1Ik (z) cos (kx) (C.9)

ez sinx = I0 (z)+2Σ∞
k=0 (−1)k I2k+1 (z) sin ([2k + 1]x)+2Σ∞

k=1 (−1)k I2k (z) cos (2kx) , (C.10)

to obtain

u (A, P,Q,R,H) = Ae−
P
2

∫ 2π

0

[

I0

(

P

2

)

+ 2Σ∞
k=1Ik

(

P

2

)

cos (2kθ)

]

[

I0

(

H

2

)

+ 2Σ∞
m=0 (−1)m I2m+1

(

H

2

)

sin ([4m+ 2] θ) +

2Σ∞
m=1 (−1)m I2m

(

H

2

)

cos (4mθ)

]

e
√

Q2+R2 cos(θ+tan−1(R
Q))dθ. (C.11)

Finally, by expanding and utilizing angle sum and difference trigonometric identities, and
∫ 2π

0

cos (nx) ez cos xdx = 2πIn (z) (C.12)

we obtain

p(r) =
re−P/2−D

σrσi

√

1− ρ2ri

[

I0

(

P

2

)

I0

(

H

2

)

I0

(

√

Q2 +R2
)

+

2I0

(

H

2

)

Σ∞
k=1 (−1)k Ik

(

P

2

)

I2k

(

√

Q2 +R2
)

cos (2kφ)+

2I0

(

P

2

)
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m=1 (−1)m I2m

(

H

2

)

I4m

(

√

Q2 +R2
)

cos (4mφ)+

2Σ∞
k=1Σ

∞
m=1 (−1)k (−1)m Ik

(

P

2

)

I2m

(

H

2

)

[

I2k−4m

(

√

Q2 +R2
)

cos ((2k − 4m)φ)+

I2k+4m

(

√

Q2 +R2
)

cos ((2k + 4m)φ)
]]

(C.13)

where In is the modified Bessel function of the first kind and coefficients D, H, P, Q, and R
are given by

D =
1

1− ρ2ri

(

x̄2

2σ2
r

+
ȳ2

2σ2
i

+
r2

2σ2
i

− ρrix̄ȳ

σrσi

)

(C.14)

H =
r2

1− ρ2ri

(

ρri
σrσi

)

(C.15)

P =
r2

1− ρ2ri

(

1

2σ2
r

− 1

2σ2
i

)

(C.16)

Q =
1

1− ρ2ri

(

x̄r

σ2
r

− ρriȳr

σrσi

)

(C.17)

R =
1

1− ρ2ri

(

ȳr

σ2
i

− ρrix̄r

σrσi

)

. (C.18)
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C.2 Reduced Correlation in the Presence of Noise and

Clutter

To obtain Equation 7.8 presented in Section 7.5, the total voltage received by SuperDARN
radars, VT (t) is modelled as the sum of the received ionospheric signal voltage, VS(t), and a
contribution to the voltage by noise, VN(t):

VT (t) = VS(t) + VN (t). (C.19)

The noise and ionospheric signal are assumed to be statically independent. The ACF is
estimated using Equation 7.1. Using equations 7.1 and C.19, R̂(τi) can be written as

R̂T (τi) = R̂S(τi) + R̂N(τi), (C.20)

where R̂S(τi) and R̂N (τi) are the ionospheric signal and noise ACFs, respectively. The re-
ceived ionospheric signal voltage, VS(t), produced by the multiple-pulse technique contains
both signal and self-clutter. Using Equation 8 from Reimer and Hussey (2015), then we can
rewrite VS(t) as

VS(t) = VR(t) +
∑

Vi(t) (C.21)

such that the ionospheric signal voltage is the sum of the signal from the range for which we
wish to determine the ACF, VR, and the sum of ionospheric signal voltages from interfering
ranges, Vi. Rewriting R̂S(t) as in Equation 9 in Reimer and Hussey (2015) gives

R̂S(t) = R̂R(t) + R̂C(t), (C.22)

where R̂R(t) is the ACF of the ionosphere at the range of interest and R̂C(t) is the self-clutter
ACF. The estimate of the ACF from the measured voltage signal VS(t) is the sum of the ACF
at the range of interest, R̂R(t), and the ACF due to self-clutter, R̂C(t).

Following the discussion in section 8.4 of Bendat and Piersol (2000), we obtain

ρ̂T =
R̂S(t) + R̂N(t)
(

R̂S(0) + R̂N(0)
) , (C.23)

which is the estimate of total normalized correlation coefficient, ρ̂T . Equation C.23 is similar
to Equation 8.110 in Bendat and Piersol (2000) except that we have used the notation
R̂ = R̂xx = R̂yy. Substituting Equation C.23 in to Equation C.22 and taking the population
limit (number of samples becomes very large), we obtain

ρT =
RR(t) +RN (t) +RC(t)

(RR(0) + RN(0) +RC(0))
(C.24)

which is the total normalized correlation coefficient in the presence of noise and clutter. Since
RR(τi) = Pρ(τi), RR(0) = P , RN (0) = N , and RC(0) = C, the correlation coefficient of the
signal at the range of interest, ρ′, is

ρ′ =
Pρ

(P +N + C)
. (C.25)
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Appendix D

Reference Materials

D.1 SuperDARN IQDAT File Contents

D.1.1 Scalars

Variable Name Data Type Description

radar.revision.major char Major version number of the radar operating sys-
tem.

radar.revision.minor char Minor version number of the radar operating sys-
tem.

origin.code char Code indicating origin of the data.
origin.time string ASCII representation of when the data was gener-

ated.
origin.command string The command line or control program used to gen-

erate the data.
cp short Control program identifier.
stid short Station identifier.
time.yr short Year.
time.mo short Month.
time.dy short Day.
time.hr short Hour.
time.mt short Minute.
time.sc short Second.
time.us short Micro-Second.
txpow short Transmitted power (kW).
nave short Number of pulse sequences transmitted.
atten short Attenuation level.
lagfr short Lag to first range (microseconds).
smsep short Sample separation (microseconds).
ercod short Error code.
stat.agc short AGC status word.
stat.lopwr short LOPWR status word.
noise.search float Calculated noise from clear frequency search.
noise.mean float Average noise across frequency band.
channel short Channel number for a stereo radar (zero for all

others).
bmnum short Beam number.
bmazm float Beam azimuth.
scan short Scan flag.

223



offset short Offset between channels for a stereo radar (zero for
all others).

rxrise short Receiver rise time (microseconds).
intt.sc short Whole number of seconds of integration time.
intt.us short Fractional number of microseconds of integration

time.
txpl short Transmit pulse length (microseconds).
mpinc short Multi-pulse increment (microseconds).
mppul short Number of pulses in sequence.
mplgs short Number of lags in sequence.
nrang short Number of ranges.
frang short Distance to first range (kilometers).
rsep short Range separation (kilometers).
xcf short XCF flag.
tfreq short Transmitted frequency.
mxpwr int Maximum power (kHz).
lvmax int Maximum noise level allowed.
iqdata.revision.major int Major version number of the iqdata library.
iqdata.revision.minor int Minor version number of the iqdata library.
combf string Comment buffer.
seqnum int Number of pulse sequences transmitted.
chnnum int Number of channels sampled (both I and Q

quadrature samples).
smpnum int Number of samples taken per sequence.
skpnum int Number of samples to skip before the first valid

sample.

D.1.2 Arrays

Variable Name Data Type Dimensions Description

ptab[mppul] short mppul Pulse table.
ltab[2][mplgs] short 2,mplgs Lag table.
tsc[seqnum] int seqnum Seconds component of time past

epoch of pulse sequence.
tus[seqnum] int seqnum Microsecond component of time past

epoch of pulse sequence.
tatten[seqnum] short seqnum Attenuator setting for each pulse se-

quence.
tnoise[seqnum] float seqnum Noise value for each pulse sequence.
toff[seqnum] int seqnum Offset into the sample buffer for each

pulse sequence.
tsze[seqnum] int seqnum Number of words stored for this

pulse sequence.
data[totnum] int totnum Array of raw I and Q samples.
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D.2 SuperDARN RAWACF File Contents

D.2.1 Scalars

Variable Name Data Type Description

radar.revision.major char Major version number of the radar operating sys-
tem.

radar.revision.minor char Minor version number of the radar operating sys-
tem.

origin.code char Code indicating origin of the data.
origin.time string ASCII representation of when the data was gener-

ated.
origin.command string The command line or control program used to gen-

erate the data.
cp short Control program identifier.
stid short Station identifier.
time.yr short Year.
time.mo short Month.
time.dy short Day.
time.hr short Hour.
time.mt short Minute.
time.sc short Second.
time.us short Micro-Second.
txpow short Transmitted power (kW).
nave short Number of pulse sequences transmitted.
atten short Attenuation level.
lagfr short Lag to first range (microseconds).
smsep short Sample separation (microseconds).
ercod short Error code.
stat.agc short AGC status word.
stat.lopwr short LOPWR status word.
noise.search float Calculated noise from clear frequency search.
noise.mean float Average noise across frequency band.
channel short Channel number for a stereo radar (zero for all

others).
bmnum short Beam number.
bmazm float Beam azimuth.
scan short Scan flag.
offset short Offset between channels for a stereo radar (zero for

all others).
rxrise short Receiver rise time (microseconds).
intt.sc short Whole number of seconds of integration time.
intt.us short Fractional number of microseconds of integration

time.
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txpl short Transmit pulse length (microseconds).
mpinc short Multi-pulse increment (microseconds).
mppul short Number of pulses in sequence.
mplgs short Number of lags in sequence.
nrang short Number of ranges.
frang short Distance to first range (kilometers).
rsep short Range separation (kilometers).
xcf short XCF flag.
tfreq short Transmitted frequency.
mxpwr int Maximum power (kHz).
lvmax int Maximum noise level allowed.
rawacf.revision.major int Major version number of the rawacf format.
rawacf.revision.minor int Minor version number of the rawacf format.
combf string Comment buffer.
thr float Thresholding factor.

D.2.2 Arrays

Variable Name Data Type Dimensions Description

ptab[mppul] short mppul Pulse table.
ltab[2][mplgs] short 2,mplgs Lag table.
pwr0[nrng] float nrng Lag zero power.
slist[0-nrng] short 0-nrng List of stored ranges.
acfd[2][mplgs][0-nrng]] short 2,mplgs,0-

nrng
Calculated ACFs.

xcfd[2][mplgs][0-nrng] short 2,mplgs,0-
nrng

Calculated XCFs.

D.3 SuperDARN FITACF File Contents

D.3.1 Scalars

Variable Name Data Type Description

radar.revision.major char Major version number of the radar operating sys-
tem.

radar.revision.minor char Minor version number of the radar operating sys-
tem.

origin.code char Code indicating origin of the data.
origin.time string ASCII representation of when the data was gener-

ated.
origin.command string The command line or control program used to gen-

erate the data.
cp short Control program identifier.
stid short Station identifier.
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time.yr short Year.
time.mo short Month.
time.dy short Day.
time.hr short Hour.
time.mt short Minute.
time.sc short Second.
time.us short Micro-Second.
txpow short Transmitted power (kW).
nave short Number of pulse sequences transmitted.
atten short Attenuation level.
lagfr short Lag to first range (microseconds).
smsep short Sample separation (microseconds).
ercod short Error code.
stat.agc short AGC status word.
stat.lopwr short LOPWR status word.
noise.search float Calculated noise from clear frequency search.
noise.mean float Average noise across frequency band.
channel short Channel number for a stereo radar (zero for all

others).
bmnum short Beam number.
bmazm float Beam azimuth.
scan short Scan flag.
offset short Offset between channels for a stereo radar (zero for

all others).
rxrise short Receiver rise time (microseconds).
intt.sc short Whole number of seconds of integration time.
intt.us short Fractional number of microseconds of integration

time.
txpl short Transmit pulse length (microseconds).
mpinc short Multi-pulse increment (microseconds).
mppul short Number of pulses in sequence.
mplgs short Number of lags in sequence.
nrang short Number of ranges.
frang short Distance to first range (kilometers).
rsep short Range separation (kilometers).
xcf short XCF flag.
tfreq short Transmitted frequency.
mxpwr int Maximum power (kHz).
lvmax int Maximum noise level allowed.
fitacf.revision.major int Major version number of the FitACF algorithm.
fitacf.revision.minor int Minor version number of the FitACF algorithm.
combf string Comment buffer.
noise.sky float Sky noise.
noise.lag0 float Lag zero power of noise ACF.
noise.vel float Velocity from fitting the noise noise ACF.
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D.3.2 Arrays

Variable Name Data Type Dimensions Description

ptab[mppul] short mppul Pulse table.
ltab[2][mplgs] short 2,mplgs Lag table.
pwr0[nrng] float nrng Lag zero power.
slist[0-nrng] short 0-nrng List of stored ranges.
nlag[0-nrng] short 0-nrng Number of points in the fit.
qflg[0-nrng] char 0-nrng Quality of fit flag for ACF.
gflg[0-nrng] char 0-nrng Ground scatter flag for ACF.
p l[0-nrng] float 0-nrng Power from lambda fit of ACF.
p l e[0-nrng] float 0-nrng Power error from lambda fit of ACF.
p s[0-nrng] float 0-nrng Power from sigma fit of ACF..
p s e[0-nrng] float 0-nrng Powr error from sigma fit of ACF.
v[0-nrng] float 0-nrng Velocity from ACF.
v e[0-nrng] float 0-nrng Velocity error from ACF.
w l[0-nrng] float 0-nrng Spectral width from lambda fit of

ACF.
w l e[0-nrng] float 0-nrng Spectral width error from lambda fit

of ACF.
w s[0-nrng] float 0-nrng Spectral width from sigma fit of

ACF.
w s e[0-nrng] float 0-nrng Spectral width error from sigma fit

of ACF.
sd l[0-nrng] float 0-nrng Standard deviation of sigma fit.
sd s[0-nrng] float 0-nrng Standard deviation of lambda fit.
sd phi[0-nrng] float 0-nrng Standard deviation of phase fit of

ACF.
x qflg[0-nrng] char 0-nrng Quality of fit flag for XCF.
x gflg[0-nrng] char 0-nrng Ground scatter flag for XCF.
x p l[0-nrng] float 0-nrng Power from lambda fit of XCF.
x p l e[0-nrng] float 0-nrng Power error from lambda fit of XCF.
x p s[0-nrng] float 0-nrng Power from sigma fit of XCF.
x p s e[0-nrng] float 0-nrng Power error from sigma fit of XCF.
x v[0-nrng] float 0-nrng Velocity from XCF.
x v e[0-nrng] float 0-nrng Velocity error from XCF.
x w l[0-nrng] float 0-nrng Spectral width from lambda fit of

XCF.
x w l e[0-nrng] float 0-nrng Spectral width error from lambda fit

of XCF.
x w s[0-nrng] float 0-nrng Spectral width from sigma fit of

XCF.
x w s e[0-nrng] float 0-nrng Spectral width error from sigma fit

of XCF.
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phi0[0-nrng] float 0-nrng Phase determination at lag zero of
the ACF.

phi0 e[0-nrng] float 0-nrng Phase determination error at lag
zero of the ACF.

elv[0-nrng] float 0-nrng Angle of arrival estimate.
elv low[0-nrng] float 0-nrng Lowest estimate of angle of arrival.
elv high[0-nrng] float 0-nrng Highest estimat of angle of arrival.
x sd l[0-nrng] float 0-nrng Standard deviation of lambda fit of

XCF.
x sd s[0-nrng] float 0-nrng Standard deviation of sigma fit of

XCF.
x sd phi[0-nrng] float 0-nrng Standard deviation of phase fit of

XCF.
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Copyright Information
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