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ABSTRACT 

With the popularity and expansion of Cloud Computing, NoSQL databases (DBs) are 

becoming the preferred choice of storing data in the Cloud. Because they are highly de-

normalized, these DBs tend to store significant amounts of redundant data. Data de-duplication 

(DD) has an important role in reducing storage consumption to make it affordable to manage in 

today’s explosive data growth. Numerous DD methodologies like chunking and, delta encoding 

are available today to optimize the use of storage. These technologies approach DD at file and/or 

sub-file level but this approach has never been optimal for NoSQL DBs.  

This research proposes data De-Duplication in NoSQL Databases (DDNSDB) which 

makes use of a DD approach at a higher level of abstraction, namely at the DB level. It makes 

use of the structural information about the data (metadata) exploiting its granularity to identify 

and remove duplicates. The main goals of this research are: to maximally reduce the amount of 

duplicates in one type of NoSQL DBs, namely the key-value store, to maximally increase the 

process performance such that the backup window is marginally affected, and to design with 

horizontal scaling in mind such that it would run on a Cloud Platform competitively. 

Additionally, this research presents an analysis of the various types of NoSQL DBs (such as key-

value, tabular/columnar, and document DBs) to understand their data model required for the 

design and implementation of DDNSDB. 

Primary experiments have demonstrated that DDNSDB can further reduce the NoSQL 

DB storage space compared with current archiving methods (from 17% to near 69% as more 

structural information is available). Also, by following an optimized adapted MapReduce 

architecture, DDNSDB proves to have competitive performance advantage in a horizontal 

scaling cloud environment compared with a vertical scaling environment (from 28.8 milliseconds 

to 34.9 milliseconds as the number of parallel Virtual Machines grows). 
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 CHAPTER 1

INTRODUCTION 

Cloud computing is transforming computing into a utility like service, changing the scale 

of computing operations. The cloud platforms composed of storage, computational power, and 

web access are becoming the choice for deploying highly available and scalable systems, 

changing the data landscape. At the same time the rapid growth of data pushed by Web 2.0 

companies, social networking and user contributed content brings new challenges to the DB 

management systems, compelling them to consider data storage options beyond the traditional 

SQL-based relational DBs. Properties like elasticity and high availability are becoming 

increasingly important for these systems.  

To be able to store and analyze the rich information, through custom engineering 

development at large web sites and services like Amazon, Google, Yahoo!, Facebook, etc., new 

types of DBs have emerged called NoSQL (Not Only SQL). More specifically, they are designed 

with horizontal scaling, availability, cost, and performance in mind. NoSQL DBs introduce new 

storage architectures that scale horizontally and parallel algorithms designed to efficiently 

process the distributed data (MapReduce being the most popular example). Many of the NoSQL 

DBs are open source and run on commodity hardware, making them significantly less expensive 

per terabyte than traditional DBs from vendors. NoSQL DBs introduce also new data structures, 

more appropriate to the web based data [14]. 

Three main types of NoSQL DBs are becoming more popular these days: the key-value 

DBs, columnar/tabular DBs, and document DBs. One problem that they all have in common is 

the amount of redundant data which they store because of their highly de-normalized structure. 
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One can argue that storage is cheap and getting cheaper but besides the price of acquiring the 

storage, companies also have to be able to efficiently store and maintain this data. The amount of 

processing power and energy needed to handle and manage the data, the network resources for 

transmitting of the data to different locations, the time and resources dedicated to backup and 

replication all add to the “cheap storage” cost, making it not “cheap” anymore.  

Data DD has received broad attention both in industry [21; 29; 30; 39; 28; 22], and 

academia [37; 23; 33; 36; 43; 53; 13; 26] in recent years as the method to optimize storage 

capacity. The way DD works is by detecting exact copies of data blocks or by detecting similar 

or near duplicate blocks and storing the difference. 

Some more mature NoSQL DBs like Amzon’s BigTable have implemented optional 

archiving - a combination of different DD algorithms combined with archiving – which is 

applied to each SSTable (Sorted String Table) block [12] to help reduce the duplicated data. The 

SSTable is “…an on-disk file format that represents a string-to-string mapping” [49] and 

consists of immutable key-value pairs. 

 

 

Figure 1.1: SSTable internal structure. 

 

An intuitive assumption is to approach DD at the DB level and to make use of the 

structural information about the data to locate the duplicate data. This is another layer which can 

be added to help reduce duplicate data in NoSQL DBs. The effectiveness of this approach 
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depends on the granularity of structural information available in the DBs. There are reasons why 

we should not have too much structure, like fast response, and there are also reasons why we 

should have more structure, like reducing duplicate data. Although these two concepts seem very 

contradictory in the sense that you can only have one at a time, there is no reason why we should 

not try and take advantage of both at the same time. The way data is stored with minimal 

structure does not have to be affected, maintaining the quick access response. Instead, a new 

layer is introduced for storing separately the additional structural information, and making use of 

it only at the time of backup when the DD process needs it.  

The key contributions of this research are: 

 Introduces of a new concept of approaching DD at the NoSQL DB level using the 

metadata for chunking. 

 Creates a comparison between the three main types of NoSQL DBs. 

 Develops a DD tool using the MapReduce architecture for the key-value DBs as a 

proof of concept.  

The benefit of such a DD tool is that it can easily be adapted for other types of NoSQL 

DBs, and that there are no major changes required by the specialized backup tools to integrate 

with. 

The rest of the document is organized as follows: Section two presents the duplicate data 

problem present in the NoSQL DBs. Section three reviews the related work about the four areas 

of interest involved in this research namely:  Cloud Computing and MapReduce principals, 

NoSQL DBs, data DD, and DB backups. Section four introduces the data model of the three 

main types of NoSQL DBs (key-value, columnar, and document based), and explains why the 

key-value DB was chosen for the prototype. Furthermore, it investigates and points out the 

importance of structural information used in the chunking for DD in NoSQL DBs. Then, it 

presents how the design considerations for DDNSDB share the MapReduce programming 
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principals for performance and scalability of the DD process. Section five describes the 

architectural design and execution overview of DDNSDB. Section six describes the evaluation 

approach, experimental setup, and the datasets used in the experiments. Section seven describes 

the experiments and the evaluations of the DDNSDB. Section eight summarizes the research 

contribution and presents potential future work. 
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 CHAPTER 2

PROBLEM DEFINITION 

 

2.1 Applying Data De-duplication to NoSQL Database Backup 

NoSQL DBs generally follow a simple data model with dynamic control over data layout 

and form. There are three main types of NoSQL DBs based on their data model: key-

value DBs, columnar DBs, and document DBs. Due to their simpler design compared 

with the relational databases which are highly normalized, they tend to have a large 

amount of duplicated data. In distributed environments where NoSQL database are used, 

redundancy is desired but that is done in a controlled manner generally through 

replication. What we are referring to is the uncontrolled duplicate data which is a result of 

highly de-normalized structures. This duplicate data is then further propagated into the 

backups increasing the storage requirements even more. While it made no sense to 

approach DD at the DB level for RDBMS, it makes a lot of sense to approach it for 

NoSQL DBs. 

This research is using the key-value DB as the representative structure for its De-

Duplication of NoSQL Databases (DDNSDB) implementation. The key-value DB is the 

most popular type of NoSQL DB used today though it has the least complex data model.  

Like an associative array composed of a collection of unique keys and a collection of 

values where each key is associated with one value or a set of values, the values of a 

Key-value DB can be simple attributes or a vector of attribute-value pairs. This type of 
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structure gives flexibility to create very complex schema-less structures with a very fast 

retrieval, based on the unique key. 

DD approaches can be divided into two broad categories: hardware DD 

approaches and software DD approaches. For backup systems at software level, two other 

categories can be distinguished based on the placement: source DD where duplicate data 

is identified at the server being backed up, and before it is sent across the network or 

target where DD is presented to the backup server as a Network-Attached Storage (NAS) 

share or Virtual Tape Library (VLT). For the target option modern storage technology 

(e.g. large computational resources at disk array controllers like Network-Attached 

Storage (NAS) share, and Virtual Tape Library (VTL) controllers) has been the choice of 

placement for the DD technology. This option however, rules out the possibility of using 

DD algorithms which are content aware, plus all the data has to cross over the 

LAN/WAN contributing to the increase of network traffic. DD at the target/client reduces 

the network traffic, and the technology can be embedded in the backup architecture. The 

internal DB information is only available at the client/DB level, making the placemat of 

the DD process an easy choice for this research.   

Existing DD technology reduces the cost of storage and network traffic making it 

more affordable but many companies are still struggling to complete their backups on a 

regular scheduled basis. Data loss is similar to hurricanes, leaving behind devastated 

enterprises which may not be able to ever recover. Because all data is mostly organized in 

a form of files, existing technologies mostly use file and sub-file DD strategies. Various 

chunking strategies provide higher or lower DD ratios depending on the type of data and 

how much the strategies are aware of the content. But this has been proven as not enough. 
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This novel idea of approaching DD at the databases level where metadata information 

can be made available to help identifying duplicate data, can be used in parallel with 

existing DD approaches. This will increase the overall DD ratio and implicitly reduce the 

data footprint. 

There are two main challenges in the DD process of NoSQL database: 

 

Challenge 1- Granularity of the structural information – The structural 

information is the key element used in identifying duplicate data. Generally, the finer the 

granularity, the higher the probability of finding duplicate data but it can become very 

costly compared with the increase in the DD ratio obtained. 

Challenge 2 - Scalability – The backup window is very limited regardless of the 

data growth. At the same time, the backup process is a very intensive I/O process, while 

the DD process is a CPU and memory intensive operation. By adding a DD process as 

part of the backup process, it can slow down the backup, and increase the backup 

window.  In such situations, the backup may not be able to finish in time interfering with 

other processing which needs to happen, and potentially causing business loss. In these 

circumstances, the DD process will need to be able to scale horizontally, parallelizing the 

processing to reduce the overhead. 

 

2.2 Research Goal 

The focus of this research is to find a scalable architecture for DD of NoSQL DBs 

backup.  

Goal 1 – adapt the file and sub-file base DD approaches to the NoSQL DB DD. 
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Goal 2 – explore the use of structural information about the data and its 

granularity to reduce the uncontrolled duplicate data in NoSQL DBs. 

Goal 3 – develop a scalable architecture for the DD tool to minimize the time of 

the processing. 
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 CHAPTER 3

LITERATURE REVIEW 

The work in this research combines ideas from different industry and research 

fields: cloud computing, NoSQL DBs, and DD methods. Combing these areas the 

research tries to minimize storage challenges in the new emerging NoSQL DBs by using 

existing DD techniques at a different level. 

 

3.1 Cloud Computing 

Cloud Computing has generally been defined either by what it is considered to be 

made of (components), by its purpose, and sometimes using a combination of the two. 

Looking at what it is made of, Pinase et al. [42] define Cloud Computing (CC) as a 

distributed logical entity with managed computing resources deployed in big data centers 

around the globe and connected using public networks, like the Internet. As for the 

purpose of such entity, Maia et al. [35] define CC as a service with remote access to 

hardware and software in a highly reliable and transparent way like the electrical 

network. The increase in popularity of concepts like Infrastructure as a Service (IaaS), 

Platform as a Service (PaaS), and Software as a Service (SaaS), presented by Luis et al. 

[51] was the next step in the evolution of CC. This challenged the Web 2.0 companies 

which were already facing huge data and infrastructures growths. Companies like Google 

(through Google App Engine – GAE [25]) and Amazon (through Amazon Elastic 

Compute Cloud - EC2 [1]) provide users with hardware resources, computational 
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resources, and software resources which have properties like elasticity, availability, and 

cost effectiveness in mind. 

Elasticity is required for flexibility in scaling these systems easily, allowing 

applications with fast growth like the social networking applications to embrace it. 

Availability was a must when one thinks about computing as a service provided to 

millions of users and/or businesses for which downtime may mean revenue loss. And last 

but not least, cost effectiveness comes into play. It has to be worth paying for these 

services instead of owning your own. 

In summary, CC is a new computing paradigm providing elasticity, availability, 

and cost effectiveness. These are important infrastructure characteristics to efficiently run 

a scalable Data De-duplication in NoSQL Databases (DDNSDB).  

With the emergence of CC and its inherent properties, other areas have been 

challenged as well to meet these requirements, and that is the DB management Systems 

[47]. 

 

3.2 Databases 

DBs at high level can be split into two categories: relational DBs and distributed 

DBs providing alternatives on architecture and management systems, depending on the 

type of data one needs to store and manipulate. 

 

3.2.1 Relational DBs  

The relational data model is based on the mathematical concept of a relation, 

which in this case is the notion of table. In a relational model, the data is stored in tables 

with columns and rows which imply a rigorous structure. The relational model is very 
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popular because it maps very well to a large variety of real-world data storage needs from 

the organization of information point of view. They fit best the structured type of data. 

Relational DBs also follow the ACID (Atomicity, Consistency, Isolation, and Durability) 

properties for transactions with which one can achieve extensive power, flexibility and 

reliability [7]. In 1983, Harder and Reuter [27] created the acronym ACID to describe 

them. In order for a transaction to achieve indivisibility it has to have the ACID 

properties: Atomicity (all-or-nothing), Consistency (only valid data will be written to the 

database), Isolation (events within a transaction must be hidden from other transactions 

running concurrently), and Durability (ability to recover the committed transactions 

against any kind of system failure) [27].  

Normalization – is the process of organizing data to minimize redundancy in the 

relational DB world. The concept of normalization and what we know now as the First 

Normal Form (1NF) was introduced by Edgar F. Codd, the inventor of the relational 

model. Today there are six normal forms defined but generally, a relational DB table is 

often described as “normalized” if it is in the Third Normal Form [16].  Normalization 

involves dividing large, badly-formed tables into smaller, well-formed tables and 

defining relationship between them.  This information about table’s structures and their 

relations is called metadata (or data about the data).  Depending on the degree of 

normalization, we have more or less information about the DB structure. 

However, some modeling disciplines such as the dimensional modeling approach 

to data warehouse design, explicitly recommend non-normalized designs. The purpose of 

such systems is to be intuitive and have high-performance retrieval of data [32]. 
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3.2.2 NoSQL DBs  

NoSQL DBs use a similar but more extreme approach in their design. These DBs 

have a simple data model - “large, badly-formed tables” - for the purpose of having 

dynamic control over data layout and form, and high-performance retrieval against very 

large amounts of data.  At the same time, they tend to have extensive amounts of 

duplicated data. While there was no reason to do DD at the DBs level for relational DBs, 

it makes a lot of sense to do DD at the DB level for NoSQL DBs. 

The concepts behind non-relational DBs and the DBs themselves like 

hierarchical, graph, and object oriented have been around for more than 20 years. One 

common characteristic of these DBs is that they are not relational and they are used best 

for unstructured and semi structured data or data that changes form and size often.  

These DBs do not have a unified Standard Query Language (SQL), instead they 

use their own APIs, libraries, and preferred languages to interact with the data they 

contain, hence the name Not Only SQL (NoSQL) DBs. 

In pursuing the need for high availability and abundance of data which needs to 

scale horizontally across multiple nodes, old concepts emerged into these new Data Store 

(DS) technologies. 

Some of the features of NoSQL DBs including seemingly large scalability 

(dynamic growth with no downtime), extensive fault tolerance and high availability 

(through partitioning and replication of data across nodes, and dynamically repair node 

failures capabilities), and integration of REST-ful and cloud computing technologies 

(web standards, ability to syndicate information directly to/from web sites and, replicate 

data directly to/from other DBs) are built in from the beginning [47].  
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3.2.2.1 MapReduce 

MapReduce - is a very successful programming model adopted for 

implementation of data-intensive applications to support distributed computing. Jeffrey et 

al. [17] introduces MapReduce as a master-slave model. The failure of a slave is managed 

by re-assigning its task to another slave, while master failures are not managed as 

considered unlikely to happen. Users specify a map and a reduce function. The map 

function processes key/value pairs and generates a set of intermediate key/value pairs. 

The reduce function merges all intermediate values associated with the same intermediate 

key and produces a result as a list of values [17]. The main advantage of MapReduce is 

that it allows for distributed processing of the map and reduces operations. All map 

processes can potentially perform in parallel and all reduce processes can potentially 

perform in parallel; provide that their operations is independent of the others. Figure 3.1 

illustrates the execution phases in a generic MapReduce programming model. 
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Figure 3.1: Generic MapReduce execution phases 

 

The current market of NoSQL is a “hodge-podge” of vendors and open source 

projects with different levels of maturity. CC prompted some companies like Amazon 

and Google to develop new management systems with elasticity, availability, and cost 

effectiveness as core features. These companies impelled other companies and the open 

source world into the same direction. Some of these systems which are today available 

are Google Bigtable [12], Amazon’s Dynamo [18], MongoDB [38], and others. 

There are two aspects that need to be taken into consideration when looking at the 

NoSQL DBs, namely the CAP theorem and the data model of the different NoSQL DBs.  

Following the CAP theorem (also called Brewer’s Theorem), which states that “in 

a distributed environment it is impossible to achieve all three properties: Consistency, 
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Availability, and Partition tolerance” [24] different NoSQL DBs focus on different 

properties. Some DBs focus on Consistency and Availability. Consistency here is 

implemented with the “eventual consistency” [52] concept which is based on the idea 

that “every change will be propagated to the entire DB eventually but some nodes may 

not have the latest data at a given time” [7]. Some DBs focus on the Availability and 

Partition tolerance compromising on Consistency. They converge mainly to provide low 

latency and high throughput. Some DBs are in between the traditional RDBMS and 

NoSQL focusing on Consistency and Availability. They provide data consistency 

guarantees by supporting some types of transactions. Das et al. [15] proposes Elastrans 

where transactions are allowed but only at partition level. A second solution proposed by 

Francisco M. et al. [35] builds on top of the former, expanding the consistency to a group 

of partitions by introduction of a new layer of replication which also ensures higher 

availability. 

Based on the data model, the different NoSQL DBs can be organized in the 

following categories: Key-value DS, Tabular/Columnar DS, Document DS [47; 34], 

graph DBs, object DBs, XML DBs, multi-value DBs, and other NoSQL related DBs [20]. 

The most popular are the first three categories. 

 

3.2.2.2 Key-Value DBs 

Key-value DBs have the least complex structure out of the NoSQL DBs. They 

store values indexed for retrieval by programmer-defined keys, and can hold structured 

and unstructured data. Some are built to run in-memory, some write to disk, and some do 

both to provide high-performance, scalable, and reliable DS. They have the flexibility to 

add new attributes that only apply to certain records at any point in time, without having 
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to rebuild tables or indices. Some of them follow the immediate or strong consistency 

model; others follow the eventually consistent model. The access is done through APIs 

(SOAP, REST-ful) and integrity is guaranteed by the application itself. 

 

 

Figure 3.2: Representation of key-value store with arbitrary data (no schema) 

 

Some of today’s more popular  key-value stores are: Amazon’s SimpleDB [2] 

which is mostly used for small projects due to limitations (10 GB per domain, 100 

domains per account, 256 attribute name-value pairs per item, manual partitioning), 

Oracle’s Berkeley DB [40] which now provides SQLIite-compatible SQL APIs, Scalaris 

[48] which offers multiple concurrent transactions across multiple keys, and Project 

Voldemort [44] a mature project and open source version of Amazon Dynamo [18]  

supporting versioning and eventual consistency. 
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3.2.2.3 Column-Based DBs 

Tabular or Columnar DBs are based on the concept of grouping closely related 

data into one extendable column [34]. In particular, they offer advantages to compute 

aggregate values on a limited number of columns. They emerged as implementations 

designed to meet certain needs (e.g. small footprint, highly compressible distribution of 

data or spare matrix emulation) rather than provide a general purpose column-oriented 

DBs. Like any new technology, they evolved to become more mature products. Google’s 

BigTable model represented in figure 3.3 [12] was used for most DS in this class. 

BigTable can be described as a “…distributed storage system organized as a sparse, 

multi-dimensional sorted map” [12]. Logically, data is organized in tables with rows and 

columns. The tables are indexed based on a row key, a column key, and a timestamp: 

(row: string, column: string, time:int64) -> string. 

 

 

Figure 3.3: Google’s BigTable structure, used to store Web pages 
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In figure 3.3 a row is a reserved URL where “contents:” is a column family to 

store versions of the page content and “anchor:” is another column family represented 

here by two names to store the text of the anchors which reference the page. 

Partitioning is dynamic at the row range level. Data is stored in lexicographic 

order based on the row key. The rows of one table can have an arbitrary number of 

columns. Columns keys are grouped into column families (“following syntax: family: 

qualifier”) in order to store data of the same type together. Multiple versions of the same 

data can reside in the same BigTable cell, each versioned with a timestamp. 

BigTable is a more mature proprietary DB that uses compression at the SSTable 

(Sorted Strings Table which is a file of key/value pairs sorted by keys) block level, yet 

not all columnar DS do that. The compression can be set by the clients and is usually a 

two pass compression. The first pass uses a long common string technique called also the 

Bentley and McIlroy scheme [8] and the second pass is a fast compression algorithm 

based on repetitions of small blocks (16 KB window of data). This scheme achieves a 

significant 10-to-1 reduction of space. This low level block compression is fast and 

avoids the decompression of the entire file when reading one small portion of an SSTable 

[12]. By introducing DD at the database level as well, the footprint of the data can be 

further reduced. Compared with the key-value data model, the columnar data model has 

by default some structural information available, like the column families where each cell 

can have multiple version of the same piece of data. This also gives valuable information 

where the potential duplicate data is located. 
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Some of the columnar DSs are: Google BigTable [12] used for many of Google’s 

applications like Google Maps and Google’s search engine; Facebook which created the 

high-performance Cassandra [4] which uses a gossip protocol to easily scale (the nodes in 

a cluster are aware of the state of each node), it also provides durability (writes once 

completed will survive permanently) by appending writes to a commit log first then, is 

fsync’d; Apache’s Hbase [6] is a distributed versioned store following Google’s Bigtable 

capabilities on top of their Hadoop Distributed File System (HDFS) [3]. HDFS is a 

distributed file system which operates on common hardware for a low cost 

implementation solution. The tables in Hbase can be used as the input and output for 

MapReduce jobs which run in Hadoop. 

 

3.2.2.4 Document-Based DBs 

Document–based DBs store and organize complex documents/objects which 

commonly refer to data items. The documents are indexed providing efficient queries, 

mostly rely on a new principle called BASE (Basically Available – appears to work all 

the time; Soft state – it doesn’t have to be consistent all the time; Eventual consistent – at 

some stage it will reach consistency) which trades some amount of consistency for 

availability. While ACID is pessimistic and forces consistency for all operations, BASE 

has an optimistic view and assumes that inconsistent operation will occur but will reach a 

consistent state at some point. Document-base stores support multiple types of documents 

and multiple indices per DB. The fact that they support multiple indices is the main 

difference between document and key-value DS. They also provide flexibility to add any 

numbers of fields of any length to any document at any time. This also means that some 
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structural information is available at the database level represented by the document 

attributes. 

In CouchDB, the documents are the primary unit of data and consist of any 

number of fields and attachments. Metadata is also associated with the documents. The 

uniquely named document fields can contain values of varying types with no limit on text 

size or element count.  JavaScript can be used for queries and indexes in a MapReduce 

fashion [5]. In MongoDB, the primary unit of data is an object; data is organized as one 

database collection for each top level objects; classes with embedded objects are used. 

The rule is that objects which follow an object modeling relationship should generally be 

embedded. There are limits on single object sizes [38]. 

In figure 3.3 there is a student collection where the student document embeds the 

address document and the score document. 
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Figure 3.4: Structural representation of a Document DS for MongoDB. 

 

Some of the more prominent projects are: MongoDB [38] – manages JSON (Java 

Script Object Notation) object collections with full index support, provides auto-

partitioning and fault tolerance, uses sharding (a method of horizontal partitioning) and 

replication for distributed environments, and it also offers commercial support. CouchDB 

[5] – uses multi-master support for master-slave replication, works well in distributed 

environments, provides REST-ful (Representational State Transfer) HTTP APIs for 

reading and updating DB documents featuring ACID properties, and provides auto-

partitioning and fault tolerance. Riak [46] – was inspired from Amazon’s Dynamo, 
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provides capability for pluggable storage, and uses the eventual consistency concept but 

it is a less mature project compared to MongoDB and CouchDB. 

In conclusion, there are three main types of NoSQL DBs Key-value, Columnar, 

and Document DBs used for managing unstructured and partially structured data, 

providing high scalability, availability, and fast retrieval requirements. One downside of 

these databases is that they tend to store large amounts of duplicate data which gets 

further propagated into the backup footprint.  

 

3.3 Data De-Duplication 

DD is “…the process of identifying duplicates information using different 

methods and, eliminates them by applying pointers to those duplicates instead of storing 

the same data multiple times” [23]. In the context of optimizing storage capacity, DD is 

one method of reducing storage consumption [23]. 

 

 

Figure 3.5: DD for two files split in chunks. 
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Figure 3.5 illustrates how the DD process will retain only one chunk of the same 

color, where the same color represents duplicate chunks. 

Nagapramod at al. [37] developed a taxonomy to characterize and classify the 

different DD technologies available. They used three dimensions for their classification: 

the placement of the DD functionality, the timing, and the algorithm used, and created a 

comprehensive picture of the different aspects involved in the DD process. The choices 

of one dimension influence the choices of the other two dimensions. The three main DD 

algorithms presented are whole file hashing, sub file hashing, and delta encoding [37]. As 

their naming suggests, different types of hashing are used for a faster byte comparison. 

Sub file hashing has been further divided into fix sized blocks and variable sized blocks 

also called content defined blocks. Nagapramod at al. [37] experimented with different 

chunking techniques against real life data to investigate the DD inherent (changes of data 

where multiple backups were not taken into consideration) to conclude that no one 

algorithm can fit all. 

One of the most popular algorithms to identify repetitions in strings is the Rabin 

Fingerprint algorithm. [45] It has been used to create the content-defined chunks of 

identical data or to discover near-duplicate documents in large collection of files [33; 36].  

Policroniades at al. [43] evaluates three alternatives of identifying identical 

portions of data (whole file content, fixed size blocks, and Rabin fingerprints) against 

five different types of real-world data sets of different sizes. Some data sets were more 

prone to have a high level of duplicate data, some less.  For the whole file and fixed size 

blocks granularity to identify the sharing patterns, they calculated the SHA-1 [50] digest 
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of the individual files, and correspondingly of each non-overlapping fixed size chunks of 

the files. For the third method of variable size chunks, they used Rabin’s fingerprinting 

which has the advantage that the chunks are created according to their contents. They 

conclude that the content defined chunking algorithm identifies the most redundant data, 

but when file access patterns, overhead storage, and computation are considered, the 

fixed block size strategy may be a better solution. 

Different types of semantic information about the data have been also used to 

increase the percentage of duplicate data detection and narrow down the search space to 

reduce the total disk access.  

Yujuan et al. [53] experimented with one type of semantic information, namely 

the data ownership and built a three layered DD approach which includes user level, 

group-level, and global-level DD. The system makes use of data stream locality, Bloom 

filters [10], and hash chunking. 

Chuanyi et al. [13] experimented with two types of semantic information, file type 

and file format to direct the file chunking along with Rabin fingerprinting. They define 

these types of chunks as “variable sized, self-identifying, and self-describing logical 

units”. The files are divided into representative semantic chunks, implementing different 

file dividing algorithms for different file types. Because the semantic chunks have 

different length and variable size, they also implemented a storage scheme to alleviate the 

fragmentation and random disk access problems. Their results show a range between 

20% and 50% of better compression ratio than the current conventional methods used in 

the archival storage. 
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Other hybrid DD approaches have been explored as well where two or more 

different algorithms are combined for enhancing the data DD ratio. 

 Guanlin et al. [26] proposes a two-step process which uses first the more 

common content defined chunk algorithm as a more coarse-grained chunking 

mechanism. It divides the files into content defined chunks and removes the duplicates 

identified. Second it applies a more finer-grain chunking mechanism using resemblance 

detection to perform delta-encoding and remove the duplicates detected. For the rest of 

the chucks, compression is applied. 

Different chunking algorithms at file and sub-file level have been extensively 

explored, proving to make a big difference in the duplicate elimination process. The main 

steps followed by these algorithms are as follow:  

 Each chunk of data is processed using hash algorithms like MD5, SHA-1 etc.. 

A unique number for each chunk gets generated with this algorithm which is 

then stored in an index. 

 When duplicate data is detected, by comparing the hash number generated for 

a chunk of data with the ones existing in the index, it is not retained; instead a 

“data pointer” is modified so that the system references an exact copy of the 

data object already stored on the disk.  

A potential problem with DD is hash collisions. In very rare cases, the hash 

algorithm may produce the same hash number for a different chunk of data. This is also 

called “false positive”, and can result in data loss. A solution to avoid hash collision 

would be to combine different hash algorithms. Another solution would be to examine 

the metadata to identify data and prevent collision [9]. 

Collisions tend to happen more often when we deal with big chunks of data like 

an entire file. By using smaller chunks the probability is lower. In the context of this 

research, due to the need to split the attributes - “big unstructured data” – in smaller 
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chunks using the metadata, the probability of hash collision will be very low therefore it 

will not be taken into consideration.  

In relational DBs, duplicate data was very minimal or almost nonexistent but with 

the increased interest in NoSQL DBs in the cloud environment, there is a new need to 

exploit possibilities of identifying duplicates within the DBs. While it made no sense to 

do DD at the databases for highly normalized data, it makes a lot of sense to approach it 

for NoSQL DBs which have highly de-normalized data, and where structural information 

may have a key role. 

 

3.4 Database Backup 

DB backups can have different purposes: to recover data after its loss (deleted, 

corrupted), and to recover data from an earlier time.  Data loss is a very common 

experience but at the same time can be catastrophic if there is no way of getting it back. 

DBs can store sensitively personal and financial information and institutions, companies, 

and enterprises make sure that they have an option to recover lost data. 

There are two main types of DB backups: consistent backups also called “cold 

backups” and inconsistent backups also called “hot backups”. Consistent backups have 

the advantage that they take less time to perform and the DBs can be consistently 

recovered to the time of backup. This requires that the DB has to be down and most 

companies cannot tolerate such downtime windows. The alternative is the inconsistent 

backup. A backup that is made when the DBs is open, is inconsistent. When a DB is 

restored from an inconsistent backup, media recovery is required before the DBs can be 

opened. Any pending changes which were committed but did not have a chance to be 

written to the data files are applied. Usually, there are some requirements that need to be 
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met by the DBs to be able to perform inconsistent backups which more or less consist of 

generation transaction logs. 

“Hot backups” can also be of multiple types depending on the needs. They can be 

full backups (all the data is backed up), incremental backups (based on a full backup; 

only the changed blocks since the last full or incremental are backed up leading to 

smaller backups and backups window), and cumulative backups (based on a full backup; 

only the changed blocks since the last full backup are backed up; used to reduce the 

recovery time since only two backups are required to be restored, the last full and the last 

cumulative) [41].  

The performance of backup tools is generally higher than using manual backups 

as they have in-depth knowledge of the format of data blocks, the order in which blocks 

will be read to be able to capture a known good checkpoint for the file, etc. [41]. The 

backups have usually a proprietary format which can only be read through those specific 

tools, and there is not much information available for the researchers as to how internally 

the backups are performed. Due to these restrictions, this research is using the manual 

backup option; hence the focus is on DD ratio and performance of the DD process 

through horizontal scaling. 

In the context of backup, DD can occur at the source or target. Source DD is 

reducing the size of backup data at the client (e.g. exchange, file server, DB server) so 

that only unique data is sent across the local wide area network during the backup 

process. In these situations, the DD technology is embedded in the backup application. 

Target DD is reducing the size of backup after it crosses the local area network when it 

reaches a DD storage system. Each has its own advantages and disadvantages and 
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depends on the needs. To take advantage of the metadata form within the databases, the 

source DD is the choice for DDNSDB which besides the fact that it reduces the amount 

of data backed up, it also helps to optimize network bandwidth. 

 

3.5 Conclusion 

Although still maturing, the different types of NoSQL DBs are becoming more 

popular in the context of CC and web programming. When dealing with new needs of 

storing and retrieving large amounts of data, NoSQL DBs tend to become the choice. 

However, their highly de-normalized structures retain a lot of duplicate data. Because 

ultimately data is represented into a file, the current research in DD focuses mainly on 

algorithms implemented at file and sub-file level to help reduce the data footprint. 

Because of  the dependencies between the placement of the DD process, timing of DD, 

and algorithm used to find and reduce redundancies in the data there is no one solution 

which fits all. It depends, and generally it depends on the type of data. For NoSQL DBs, 

the current DD algorithms can be brought at a different level where additional 

information about the data can be made available to help find and reduce the duplicate 

data in a highly efficient and scalable fashion.  

Table 3-1 is listing and summarizing the reviewed literature grouped by the 

different area of interest for this research. 
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Area Papers Notes 

Cloud 

concepts 

Pinase et al. [42] Cloud computing components. 

Maia et al. [35] Cloud computing purpose. 

Luis et al. [51] 
Infrastructure as a resource, Platform as a resource and 

Software as resources 

Mathew D. [47] Effects of Cloud computing in the DBMS world 

NoSQL 

databases 

Mathew D. [47] NoSQL databases general characteristics and classification 

Daniel B. [7] Comparison between RDBMS and NoSQL database 

Werner  V. [52] Eventually consistent  

Das et al. [15] Elastras - NoSQL database with minimal transaction support 

Seth et al. [24] CAP theorem 

Francisco M. et 

al. [35] 
Higher level of transaction support for Elastras 

Neal L. [34] NoSQL database characterization and classification 

Stefan E. [20] NoSQL database extensive classification 

Fay et al. [12] Google BigTable details 

[2, 40, 4, 5, 6, 3, 

44, 46, 48] 

Dedicated web sites for various NoSQL database with 

details about structure and functionality 

Data De-

duplication 

David G. [23] Data De-duplication in storage systems 

Nagapramod et 

al. [37] 
Taxonomy of data de-duplication technologies 

Rabin M. [54] Rabin fingerprint algorithm 

Purushottam et 

al. [33] 
De-duplication at file level to discover near-duplicate 

documents in large collection of files 
Udi M [36] 

Policroiades et al. 

[43] 

Evaluations of three de-duplication techniques against real-

world data sets 

Yujuan et al [53] 
Use of one type of semantic information in detecting 

duplicate data  

Chuanyi et al. 

[13]  

Use of multiple types of semantic information in data de-

duplication 

Guanlin et al. 

[26] 

Hybrid de-duplication approaches combining different de-

duplication algorithms. 

Stephen et al. [9] 
Detailed description of how chunk comparison is done using 

hash values and the hash collision problems. 
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[21, 29, 30, 39, 

28, 22] 
Implementation of data de-duplication in the industry. 

Database 

Backup 

[41] RMAN backup concepts in Oracle RDBMS. 

Theo et al. [27] Transaction oriented database recovery principals. 

MapReduce Jeffrey et al. [17] MapReduce framework, components and functionality. 

Table 3.1: List of research solutions by area 

 

In summary, the existing researches show the following: 

 CC, through properties like elasticity, reliability, and cost-effectiveness, 

provides a scalable platform for running distributed process applications.  

 MapReduce is a successful programming model used to support distributed 

computing. 

 All the different types of NoSQL DBs compared with the RDBMS have a 

highly de-normalized data structure therefor they store large amounts of 

duplicate data. 

 DD concepts focus only on the file and sub-file level algorithms. 

 Hash collision can lead to data loss, but in very rare circumstances, mostly 

when big chunks of data are dealt with. 

 DD has been implemented for backups both as synchronous and 

asynchronous processes. 

 

However, there are still open questions namely:  

 Can one DD approach easily fit different types of NoSQL DBs? 

 How to use the metadata in the NoSQL DBs to identify duplicate data? 

 How to improve the DD ratio in NoSQL DBs? 

 How to design a DD process to scale horizontally in a distributed 

environment using the MapReduce principles? 
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 CHAPTER 4

DE-DUPLICATION APROACH 

This section describes the data model of the three main types of NoSQL DBs, and 

why the key-value DB was chosen as the representative structure for the DD process. 

Then it presents the role of the NoSQL DBs metadata in identifying duplicate data, and 

how it can improve the DD ratio. The last part presents a high level architectural design 

for implementing DD in a key-value data store using a programming model called 

MapReduce [17] which supports distributed computing. 

 

4.1 NoSQL DBs Data Model 

Tables are one of the most commonly used conventions throughout many 

disciplines to organize and represent data, and for DBs, it is “the format”.  NoSQL DBs 

are not considerable different from this perspective than relational DBs. Depending on 

what they are designed for, the difference is in their physical layout. Row oriented 

representations store row values together while Column oriented representations store 

column values together. Their logical representations can still be as a table with column 

and rows, although one cell may be a very complex object with its own structure as well. 

In their logical representation, based on what was the need for which they were designed, 

NoSQL DBs have one or more columns, sometimes more complex grouping of columns, 

etc.. 
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4.1.1 Key-value DBs 

Key-value DBs have a very simple data model and store their data by row. Entries 

are stored as key-value pairs in large hash tables. The data domains (possible values of an 

attribute) are similar to relational DBs tables but no specific schema is defined. Keys are 

arbitrary while values are big large objects. There are no explicit relationships between 

data domains. In consequence, to have this level of flexibility which is reflected as no 

structural information about the data in the DB itself requires that the applications have 

that knowledge. Implicitly, the lack of structure at the DB level results in lots of duplicate 

data. 

 

4.1.2 Column-Based DBs 

Column-based DBs store their data by column. This allows for big performance 

uplift when you need to query many rows for smaller sets of data (not all columns).  

There are three critical concepts which describe the column oriented DBs: 

 Column Family - logically can be represented as a table because it requires 

predefining column names from the beginning. Each column family is stored in a 

separate file with the purpose of grouping data of the same type together.  

 Super Column - is a dictionary; it is a column that contains other columns (but not 

other super columns). 

 Column - is a tuple of name, value, and timestamp. 

 The entries are indexed based on a row key and the data is stored based on the 

sort order of the column family. The sort order, unlike in a relational DB, isn’t affected 

by the columns values but by the column names. Considering a twitter model as an 

example, figure 4.1 illustrates three column families which can be defined: Users (a), 

Tweets (b), and Users Tweets (c) as a super column family. 



DE-DUPLICATION APROACH 

33  

 

 
Users 

   
Tweets 

 Key "@nid"   

 

Key Tweets/000000000001 

Columns Location Canada 

 

Data Application TweetDeck 

  Name 

Nicoleta 

Brad 

 

  Private TRUE 

  Profession DBA 

 

  Text "Hi there!" 

 

(a) 

  

Key Tweets/000000000002 

    

Data Application TweetDeck 

    

  Private TRUE 

    

  Text 

"Hello 

World!"!" 

    

  Version 1.2 

     
(b) 

  

 
UserTweets 

   
Key "@nid" 

Data   

Timeline Timeline/000000000003 Tweets/000000000001 

Timeline/000000000004 Tweets/000000000002 

  

  
(c) 

   Figure 4.1: Twitter model in a column oriented structure 

 

Based on the representation form figure 4.1, each column family or super column 

can logically be represented as a table with multiple columns or as a more flattened 

version as a key-value table. The tuple structures would look like this: 

Users: 

{{key,@nid},{columns,{location, Canada},{name, Nicoleta Brad},{profession, 

DBA}}}. 

Tweets 
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[ 

{{Key,Tweets/000000000001},{Data,{Application, TweetDeck},{Private, true},{Text, 

Hi there!}}}, 

{{Key,Tweets/000000000002},{Data,{Application, TweetDeck},{Private, true},{Text, 

“Hello World!”}, {Version, 1.2}}} 

]. 

UserTweets: 

{{Key,@nid},{Timeline,{Timeline/000000000003,Tweets/000000000001}, 

{Timeline/000000000004, Tweets/000000000002}}}. 

 

The attributes in a key-value DB can incorporate multiple column complexities 

therefore allowing for situations presented in figure 4.1 (b). In conclusion, the Columnar 

DBs can ultimately be represented as a set of key-value structure if needed. 

 

4.1.3 Document DBs 

Document based DBs are at their core, Key-value DBs, where each record is 

stored as a document/object (e.g. JSON) and can be identified by a unique ID. The 

objects consist of named fields which can be strings, numbers, dates, or more complex 

structures like associative maps, ordered lists, etc.. The benefits of document based DBs 

over the key-value DBs are that they allow multiple indices based on the uniquely name 

fields available, and offer additional query capabilities. They were designed to better deal 

with larger objects where key-value DBs were designed to deal with primarily smaller 

objects. There is no big difference in the data-model itself but in the way the data is 

manipulated for their corresponding needs. 
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In conclusion, the document DBs can ultimately be represented as sets of key-

value structures as well, if needed.  

Columnar and document DBs are logically built with certain features in mind to 

manipulate data in different ways and serve different needs. At the same time, their 

structure can be flattened to the key-value structure. Hence, with minimal adaptation, 

key-value DD concept could be easily converted to fit the other main types of NoSQL 

DBs, namely columnar and document DBs. The analysis of the data-model of the three 

main types of NoSQL DBs answers one of the open questions presented at the end of 

Chapter 3 namely “Can one DD approach easily fit different types of NoSQL DBs?”. 

 

4.2 NoSQL DBs Metadata 

Today, chunking based data DD is the dominant technology to reduce the space 

requirements for both primary file systems and data backups.  This technology 

approaches DD at file and sub-file level.  There are two steps involved in this DD 

technology: chunking - splitting the data into non-overlapping data blocks – and duplicate 

detection – each chunk is compared with all other stored chunks to detect if they have the 

exact same content. Various elaborate chunking techniques have been developed to better 

identify duplicate data, and applied against data files with reasonable results. In the DB 

context, making use of information about the data structure (metadata) corresponds to the 

“chunking” technique. 

Chunking - the key-value data store is very similar to a file system structure. The 

key is the name/inode of the file and the value is the content of the file. The chunking 

mechanism proposed in this research for the key-value store is also similar with the 

chunking mechanisms used for files. For example, some of the files chunking algorithms 
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use the semantic information about the file (e.g file structure) to obtain “semantically 

meaningful data chunks” [13]. An email file consists of several semantic segments: 

sender, attachment, receiver, and so on embraced by tags. Using the semantic 

information, the file is chunked in variable sized chunks using the tags as delimiters. This 

results in identifying larger duplicate chunks for a better DD ratio and less burden on the 

management of future file retrieval. The metadata in the key-value store is used in a 

similar manner. A row in a key-value store has metadata associated with the value (e.g 

position and/or identifier - 3/application, 5 /text). Using the metadata information, data is 

chunked in variable sized chunks, using the position/identifier as delimiters. 

( 

{key, Tweets/000000000001}, 

{data, 

[{application, TweetDeck}, 

{private, true}, 

{text, Hi there!}] 

} 

). 

Duplicate detection – stands for finding the duplicate values and replacing them 

with pointers. The duplicate detection step can be split into two sub steps:  (1) computing 

a hash for each data chunk; (2) comparing the hash values of data chunk to detect 

duplicates. In this research, the same steps are used for detecting the duplicates for a key-

value store. 
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To avoid confusions between the file chunks used as a unit of comparison in the 

file/sub-file DD process, this research will refer to the unit of comparison for key-value 

store as “data set”.  For example the tuple {f,g} can be a data set, meaning that the data 

stored in that tuple position and format will be compared across table rows. 

An important aspect for comparison accuracy is selecting a collision resistant 

hash function. This makes the probability of two different inputs to produce the same 

output so low that it is practical to assume that each chunk has a unique hash value. This 

research is using MD5 (Message-Digest Algorithm), a widely used cryptographic hash 

function that produces a 128-bit (16-byte) hash value. For the purpose of this research, 

the risk of losing data has no major consequences, and this algorithm was considered 

acceptable.  

In conclusion, it is a natural/easy way to apply the existing DD steps used at file 

and sub-file level for the DB level as well, and use the metadata for chunking and 

defining how the duplicate data search should happen efficiently. This answers another 

open question presented in Chapter 3, namely “How to use the metadata in the NoSQL 

DBs to identify duplicate data?”.  

 

4.3 De-duplication Ratio 

As explained by Duch [19], DD ratio or “Space reduction Ratio” is represented 

by the fraction:   
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This represents the number of bytes input to a data DD process divided by the 

number of bytes output, and are typically described as “ratio:X”. For example, if 100 GB 

of data consumes 10 GB of storage capacity, the space reduction ratio is 10:1 [19]. 

An intuitive assumption is that the more information about the data structure there 

is, the smaller the unit of comparison can be used implying a higher potential of 

identifying duplicate data. NoSQL DBs have very limited structure for various legitimate 

reasons. The lack of structural information at the DB level is compensated by 

incorporating it into the applications. Depending on the application needs, this 

information can have different granularity, varying form having no information at all to 

having all the information. There are different ways that this metadata could be collected 

to be made available to the DD process e.g: impose some level of structure automatically, 

ask for information about the structure at the DB creation time, collect information about 

the potential structure after the DB creation and presented to the user next time for 

confirmation, etc.. This research will assume that this information is available and is 

provided to the DD process through a configuration file. 

 

4.4 Data DD with MapReduce 

The architecture of the DDNSDB shares most of the design principals of 

MapReduce. It follows the master-slave design where the master node is responsible for 

managing the jobs, i.e., start the worker nodes, and assign the map/reduce tasks. Each 

worker can run a map or a reduce task at any given time. The job execution begins by 

splitting the input data and assigning it to individual map tasks.  When a worker finishes 

executing a map task, it stores the map results as intermediary key-value tables in 

memory. The intermediaries results of each map task are assigned to the existing reduce 
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workers. A reduce task begins by retrieving its corresponding intermediary results from 

all map outputs and then it apply the reduce function. 

Figure 4.2 illustrates the DDNSDB execution phases following the MapReduce 

master-slave model. 

 

 

Figure 4.2: Overview of the execution phases 

 

For the purpose of improving the DD ratio, the architecture leverages a two layer 

hierarchical reduction. Conceptually, the map and reduce tasks are organized as a tree 

where each level waits for all the tasks at the previous level to finish, before the work in 

the next level begins. Figure 4.3 outlines the map and the two reduce layers architecture. 
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The last layer of DD is executed by one reducer worker, which aggregates all the partially 

reduced results and creates a single output table with the data references resulted from the 

DD process.  

 

 

Figure 4.3: Hierarchical reduction 

 

Traditionally, the map function processes a key-value pair and returns a list of 

intermediate key-value pairs: map (k1, v1) -> list (k2, v2). The reduce function merges 

all intermediate values having the same intermediate key: reduce (k2, list (v2)) -> list 

(v3).  

In this implementation, to increase the efficiency of the DD process instead of 

materializing the intermediate key-value pairs within every map task, the data is kept in 
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memory and then directly pipelined to the reduce tasks. The same principal is applied 

between the two layers of reduce tasks. Moreover, between the separate reduce layers the 

data is not transformed into key-value pairs but pipelined raw as is manipulated by the 

reduce function. This way 6 extra back and forth transformation and materializations 

steps are eliminated for each pair of data-sets. 

In conclusion, the MapReduce framework has been adapted to the DD process of 

key-value DB to optimize the processing and increase the DD ratio. The metadata is the 

key element used for chunking the records into semantically aware data-sets, and to better 

identify duplicates by comparing only identical data-set types. There is a tight 

relationship between the degree of normalization and the amount of duplicate data. In the 

key-value store, it can be said that data is completely de-normalized.  

This analysis demonstrates Goal 1 of this research, namely how we “adapt the 

file and sub-file base DD approaches to the NoSQL DB DD”. Subsequently this is 

implemented into DDNSDB.  
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 CHAPTER 5

IMPLEMENTATION 

This chapter presents the prototype implementation of a DD process in the key-

value DB, the representative NoSQL DB, using a MapReduce approach. 

The implementation of this tool uses Erlang (http://www.erlang.org), a functional, 

concurrent programming language, and development platform. It was chosen because of 

its easy to implement scalability and the built in key-value store. For concurrency, Erlang 

uses light-weight “processes” and message passing, and comes with its own in memory 

key-value store called ETS, and the more permanent storage version of a key-value store 

called DETS. 

 

Execution overview – depending on the amount of data which needs to be 

processed, the required number of worker processes can be passed in as parameters along 

with the data file. The number of mapping worker processes “M” is passed separately 

from the number of reducing worker processes “R”. There is no relationship between the 

number of mapping and reducer processes. The input data is read sequentially and 

partitioned into a set of “M” data-sets. 

The map function parses each record, and based on the metadata information 

produces a sequence of {key,value} pairs which is then stored into a set of in memory 

temporary tables. There is one temporary table for each data-set type defined in the 

metadata. For example, if the metadata available for a key-value store which stores 

FaceBook profile data has the following information: {{key,1}, {name,2}, {location,3}, 
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{hometown,4}, {gender,5},{birthday,6},{languages,7},{picture,8}}…., the map function 

will split the record based on all attributes keeping their respective key as identifier, 

calculate the hash value, and insert it into ETS tables. Figure 5.1 illustrates how the 

structure of each table will look like. For the readability purpose, figure 5.1 (a) has the 

actual data represented, and figure 5.1 (b) has the calculated md5 hash values 

represented. 

 

key name 

 

key location 

{key,1122334455} Nicoleta Brad 

 

{key,1122334455} Canada 

{key,1122334466} Marin Ioan 

 

{key,1122334466} Hungary 

…   

 

…   

     key hometown 

 

key birthday 

{key,1122334455} Sinaia 

 

{key,1122334455} Nov-73 

{key,1122334466} Budapest 

 

{key,1122334466} May-71 

…   

 

…   

     key gender 

 
key languages 

{key,1122334455} female 

 

{key,1122334455} Romanian 

{key,1122334466} male 

 

{key,1122334466} Hungarian 

…   

 

…   

     key picture 

   {key,1122334455} file1.jpg 

   {key,1122334466} file2.jpg 

   …   

    

Figure 5.1 (a): Metadata base records split without hashing 

  



IMPLEMENTATION 

44  

key name  key location 

{key,112233445

5} 

<<221,238,54,78,206,12

9,0,15,141,17,231,162,53

,224,219,199>> 

 {key,112233445

5} 

<<68,93,51,123,92,213,2

22,71,111,153,51,61,246

,176,194,167>> 

{key,112233446

6} 

<<149,212,119,25,58,10

1,235,249,78,178,213,16,

83,179,49,202>> 

 {key,112233446

6} 

<<250,121,195,0,93,174,

196,126,207,248,74,17,1

06,9,39,161>> 

…    …   

     

key hometown  key birthday 

{key,112233445

5} 

<<199,207,37,28,91,129,

33,45,243,189,145,125,3

7,136,138,90>> 

 {key,112233445

5} 

<<136,217,34,219,72,62,

103,129,133,112,38,97,1

27,180,3,162>> 

{key,112233446

6} 

<<159,237,93,174,134,2

27,3,13,155,227,116,14,2

50,25,134,89>> 

 {key,112233446

6} 

<<109,218,83,98,221,16

6,98,106,96,86,181,42,1

68,31,210,88>> 

…    …   

     

key gender  key languages 

{key,112233445

5} 

<<39,59,154,229,53,222,

83,57,156,134,169,184,4

9,72,168,237>> 

 {key,112233445

5} 

<<239,167,57,78,202,16

7,252,112,118,169,218,1

9,167,114,54,184>> 

{key,112233446

6} 

<<7,207,79,143,93,139,1

18,40,41,23,50,7,21,221,

162,173>> 

 {key,112233446

6} 

<<123,134,17,46,198,64,

31,216,240,106,181,37,2

9,26,104,254>> 

…    …   

     

key picture    

{key,112233445

5} 

<<4,145,255,80,239,251,

236,55,146,9,31,74,124,2

15,130,251…..>> 

   

{key,112233446

6} 

<<110,215,162,212,19,3

6,108,200,247,194,188,1

27,110,70,120,84….>> 

   

…      

 

Figure 5.1 (b): Metadata base records split with hashing 
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Once the table traverse has finished, each mapping worker receives a message 

which indicates that the DD process can begin, and initiates the process by sending the 

data to the reducer worker processes. Each mapping process reads the data from its own 

temporary tables and sends it off as one message to one available reducer process. Once 

all the mapping workers have finished sending the data to the first layer of reducer 

workers, the reducer workers start the DD process. The reducer processes are the ones 

which perform the actual data DD. Figure 5.2 illustrates a streamlined graphical 

representation of how the data DD process works where the tuple complexity is three e.g. 

{name, birthday, avatar}. There are 4 mapping workers which create the data-sets based 

on the metadata, and 3 reducer processes, 2 on the first layer and one on the second layer. 

 

 

Figure 5.2: De-duplication steps. 
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Because the probability of finding duplicates is higher where data of the same 

type is compared, this implementation leverages this type of comparison algorithm. Not 

every data-set is compared with each other. Based on the metadata, only the data-sets of 

the same type are compared. For example: a tweeter name is compared with another 

tweeter name, a birthdate is compared with another birthdate, and an avatar is compared 

with another avatar. There is no comparison between a tweeter’s name and a tweeter’s 

birthdate or avatar. 

The master process receives a message from the reducer workers when the DD 

processing is complete. Once the first layer of reducer workers is done, the next layer of 

reducer worker receives the intermediary data and proceeds with one more DD process. 

The intermediary data is then transformed back into key-value pairs and the pointer table 

is built. The pointer table will consist of the unique data and its corresponding pointers to 

the data. 

The last step is writing the de-duplicated data into a backup file. This 

implementation uses the manual backup option by writing the data into a text file as a 

proof of concept; however the DD tool can be easily implemented into other more 

specialized DB backup tools as a pre-stage for reducing the amount of data to be backed 

up. 

The main design considerations for DDNSDB are: 

 Use the map/reduce technology for parallel processing and horizontal scaling. 

 Use the metadata in the algorithm of generating semantic chunks. 

 Use a hierarchical reducer process to obtain a higher space reduction. 
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 Compare only data-sets of the same type to minimize the time costs. 

 Use calculated hash values in the comparison step to minimize the time cost 

rather than compare the data chunks byte to byte.
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 CHAPTER 6

EVALUATION 

The evaluation approach of this research focuses on the following two aspects: 

 How much can the DDNSDB reduce storage space? Because DD was never 

approached at the NoSQL DB level before, we compare DDNSDB with two 

other compression algorithms: Windows Zip, and UNIX GZip. 

 How to speed up the DD process? Because backup generally has a limited 

time window, performing another high CPU process during this time can 

easily exceed this window. While the amount of data to be backed up is 

reduced by applying a DD process against the data before the backup, we can 

significantly decrease the time of the DD process through parallel processing. 

Goal 1 of this research, namely “Adapt the file and sub-file base DD approaches 

to the NoSQL DB DD” is evaluated in Chapter 4 through an analysis process, and 

implemented for DDNSDB.  

Goal 2 namely “Explore the use of structural information and its granularity to 

reduce the uncontrolled duplicate data in NoSQL DBs”, and Goal 3 namely“Develop a 

scalable architecture for the DD tool to minimize processing time” are assessed through 

the experiments of this research. They measure the degree of compression achieved in the 

key-value DB by the DDNSDB tool, the time involved in this process and the scalability 

of the process for potential improved performance and adaptability to the cloud 

environment.  
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A high level visual representation of the configurations to be used for the 

experiments is shown in figure 6.1 and consists of a table generator, different hardware 

architecture represented by a server with specifically large memory resources and 

reasonable processing power, and a set of smaller servers with an overall capacity similar 

to the first larger server. Subsequently, there is a result analyzer which will calculate the 

redundancy identified in the DB. 

 

 

Figure 6.1: Experiments topologies. 

 

6.1 Experiment Goals 

The main goals of the experiments will be to find out how to speed up the de-

duplication process and in the same time obtain an acceptable de-duplication ratio. 
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Goal 2 – explore the use of structural information about the data and its 

granularity to reduce the uncontrolled duplicate data in NoSQL DBs. 

 Evaluate how different metadata configurations influence the DD ratio.  

 Evaluate how these configurations will perform based on the size of the DB. 

 Evaluate how these configurations will perform based on the percentage of 

redundant data.  

Goal 3 – develop a scalable architecture for the DD tool to minimize the time 

of the processing.  

 Evaluate how different number of map and reduce processes influences the 

time cost; 

 Evaluate how different hardware configurations influences the time cost. 

There are two sets of experiments to evaluate the two goals involving three 

architectural topologies. The first set of experiments is used to determine the DD Ratio to 

evaluate goal 2. The second set of experiments is used to evaluate the performance of the 

DD process and its scalability in the different architectural topologies. The experiments 

run in different configurations, and on different types of hardware. Testing was 

performed on the Amazon Elastic Cloud Computing (EC2) Platform where several 

hardware configurations are readily available at competitive prices. The experiments ran 

as batch process, and the following were considered: 

 DD ratio; 

 Time of DD; 

 Network traffic; 

 Load on the machine(s) – memory and CPU. 

Goal 2 

Topology 1: – The topology for these experiments will consist of the following: 
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 One big machine with extensive memory resources (64 GB RAM) appropriate 

for the DBs and DD processing which is running in memory; 

 Four map processes and three reduce processes used in the configuration of 

the DD process. 

Under this topology there are three factors considered for the experiments: 

metadata structure (tuple complexity), DB size, and distribution of redundant data in the 

DB. Table 6.1 shows what values were used for the metadata structure, DB size as 

number of rows, and the percentage of redundant data generated in the DB. Since there 

are no benchmarks available for the NoSQL DBs, and in the same time we wanted to 

have a representation of most popular types of data currently stored in NoSQL DBs 

(pictures and web pages), the number of rows per DB were selected based on two factors: 

the size of the objects loaded, and Erlang’s limitations of a DB size. Based on the same 

reason, the values for the duplicate data distribution were selected based on the 

hypothesis that NoSQL DBs can have high percentages of duplicate data. Hence 80% 

was selected for the highest percentage, and the rest of the values we selected to keep the 

proportions comparable. The values for the tuple complexity were chosen based on the 

similarities with the DD process at file and sub-file. Also each algorithm comes with a 

relative probability of identifying duplicate data.  For example, algorithms which 

compare entire files can be compared with DB records with no structural information. 

Algorithms which chunk the file in variable size chunks based on certain algorithms can 

be compared with a DB records for which we now all the structural information. 

Algorithms which chunk the files in fixed size chunks, based on the probability to 

identify duplicate data, can be compared with DB records for which only partial 

structural information is available. 
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Nr # Metadata info 
 

Nr # Nr. of rows 
 

Nr# Redundancy % 

1 No info 0% 
 

1 1,000 
 

1 20% 

2 Some info 50% 
 

2 4,000 
 

2 40% 

3 All info 100% 
 

3 7,000 
 

3 60% 

   
4 10,000 

 
4 80% 

Table 6.1: Experiments variable and values. 

 

Factor 1 – Structural information: 

 How is the DD ratio influenced by the structural information? 

Factor 2 – Amount of data: 

 How is the DD ratio influenced by the amount of data? 

Factor 3 – Distribution of duplicate data: 

 How is the DD ratio influenced by the distribution of duplicate data? 

Goal 3 

Topology 1: - The topology for these experiments consists of the following: 

 One big machine with extensive memory resources (64 GB RAM) appropriate 

for the DBs and DD processing which is running in memory; 

 Four sets of numbers of map/reduce processes used in the configuration of the 

DD process (4/2, 8/4, 16/8, 32/16). 

Under this topology, there is only one Erlang Virtual Machine (EVM). The 

scheduling between the threads and the parallel processes message queues is done 

internally by Erlang. 

Factor 1 – Structural information: 
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 How is the DD time influenced by the structural information? 

Factor 2 – Amount of data: 

 How is the DD time influenced by the amount of data? 

Factor 3 – Distribution of duplicate data: 

 How is the DD time influenced by the distribution of duplicate data? 

Factor 4 – Number of parallel workers for the map-reduce processes: 

 How is the DD time influenced by the number of parallel processes? In this 

experiment the traffic between the message queues of the parallel processes is 

managed internally by Erlang. 

 

Topology 2: – The topology for these experiments consists of the following: 

 One big machine with extensive memory resources (64 GB RAM) appropriate 

for the DBs and DD processing which is running in memory; 

 Four sets of numbers of EVM nodes for the map / reduce processes used in 

the configuration of the DD process (4/2, 8/4, 16/8, 32/16). 

Under this topology each EVM node is independent of the others, competing 

potentially for the same CPU threads. There are no internal message queues scheduling 

between the nodes, thus everything is left at the operating system level. This 

configuration will be used along with the same three factors: metadata structure (tuple 

complexity), DB size, and percentage of redundant data in the DB. This will test the 

scalability of the DDNSDB and how the parallel EVM nodes influence its performance. 

The relationship between parallel processes and EVM nodes is 1 to 1. Each EVM node 

spawns “n” number of threads where “n” is equal with count of CPUs multiplied with 

number of threads per CPU. 

Factor 1 – Number of workers for the map-reduce processes: 

 How is the DD time influenced by the number of worker processes? 
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Topology 3: – The topology for these experiments will consist of the following: 

 Four sets of machines, each set with an approximate overall capacity as the 

one big machines used in the previous two sets of experiments. The maximum 

number of machines is less or equal with the number of processes. 

 Four sets of numbers of EVM nodes for the map / reduce used in the 

configuration of the DD process (4/2, 8/4, 16/8, 32/16). 

Topology 3.1: - First set has 4 XXL (extra-extra-large) machines. 

Topology 3.2: - Second set has 2  XL (extra-large) machines. 

Topology 3.3: - Third set has 4 L(large)  machines. 

Topology 3.4: - Fourth set has 4 Mi (Micro) machines. 

 

Under this topology a scaled out configuration made of multiple physical/virtual 

machines will be used along with the same three factors: metadata structure (tuple 

complexity), DB size, and percentage of redundant data in the DB. The same number of 

workers used in the previous two topologies will be used for map and reduce processes. 

This will test the scalability of DDNSDB and the performance influence due to network 

traffic across multiple commodity hardware machines, configuration specific for Cloud 

Computing. 

Factor 1 – Number of physical/virtual machines: 

 How is the DD time influenced by the network traffic across commodity 

hardware? 

 

6.2 Experimental Setup 

The two sets of experiments for this evaluation are performed on Amazon EC2 

Platform. EC2 allows scalable deployment of applications by providing a Web service 
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through which a user can boot an Amazon Machine Image to create a Virtual Machine 

(VM) also called Instance, containing any software desired. Amazon EC2 is built on 

commodity hardware, consisting of several different types of physical hardware. It uses 

the Amazon EC2 Compute Unit (ECU) as a measure to rent compute power rather than a 

particular processor type. The amount of CPU that is allocated to a particular instance is 

expressed in terms of ECUs [1]. One ECU “provides the equivalent CPU capacity of a 

1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor” [1]. The hardware configurations 

used for the experiments are presented in Table 6.2.  

 

Experiment 

Dataset 

Nr. 

VMs 

API 

name 
RAM ECUs SMP Platform 

I/O 

Perform

ance 

Set1 & Set2  1 
M2.4

xlarge 

68.4 

GB 

26 (8 virtual 

cores * 3.25 

ECU each) 

smp:8:8

; rq:8 
64-bit High 

Set2 4 
M2.2

xlarge 

34.2 

GB 

13 (4 virtual 

cores * 3.25 

ECU each) 

smp:4:4

; rq:4 
64-bit High 

Set2 2 
M1.xl

arge 
15 GB 

8 (4 virtual 

cores * 2 ECU 

each) 

smp:4:4

; rq:4 
64-bit High 

Set2 4 
M1.la

rge 
7.5 GB 

4 (2 virtual 

core * 2 ECU 

each) 

smp:2:2

; rq:2 
64-bit High 

Set2 4 
T1.mi

cro 

613 

MB 

Up to 2 for 

short periodic 

bursts 

rq:1 64-bit Low 

Table 6.2: EC2 VMs hardware configuration 
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The instance configurations presented in table 6.2 are part of the Amazon EC2 

Standard, Micro, and High-Memory Instance types. SMP represents how many CPU 

threads Erlang detected, and how many parallel schedulers (generally one per thread) it 

created at startup. 

 

6.3 Dataset 

DD at the NoSQL DB level is a novel concept; therefor there is no research as 

how it will perform in a controlled or uncontrolled environment. For this reasons, rather 

than dealing with the uncertainty of the real life data in an uncontrolled environment, this 

research is generating data to be absolutely certain of its content and structure. This 

baseline can then be used for future research as a point of reference with not such in-

depth knowledge of the data from real life environments. 

There are two sets of data used in the experiments. The data was manually 

generated based on the three factors defined earlier: size, redundancy, and amount of 

structural information (tuple complexity) available resulting in 48 DB files presented in 

table 6.3, and table 6.4. 

 

DB 

Structure Col1 Col2 Col3 

AM file1.jpg file2.jpg file3.htm 

SM null file1.jpg file2.jpg || file3.htm 

NM null null file1.jpg || file2.jpg || file3.htm 

Table 6.3: Tuple complexity 
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Nr. Rows -  

Redundancy % All Metadata Some Metadata No Metadata 

1000 - 20% AM100020 SM100020 NM100020 

1000 - 40% AM100040 SM100040 NM100040 

1000 - 60% AM100060 SM100060 NM100060 

1000 - 80% AM100080 SM100080 NM100080 

4000 - 20% AM400020 SM400020 NM400020 

4000 - 40% AM400040 SM400040 NM400040 

4000 - 60% AM400060 SM400060 NM400060 

4000 - 80% AM400080 SM400080 NM400080 

7000 - 20% AM700020 SM700020 NM700020 

7000 - 40% AM700040 SM700040 NM700040 

7000 - 60% AM700060 SM700060 NM700060 

7000 - 80% AM700080 SM700080 NM700080 

10000 - 20% AM1000020 SM1000020 NM1000020 

10000 - 40% AM1000040 SM1000040 NM1000040 

10000 - 60% AM1000060 SM1000060 NM1000060 

10000 - 80% AM1000080 SM1000080 NM1000080 

Table 6.4: DB Files structure 

 

The source data is made from JPG and HTM files representing pictures and 

Facebook Blog page “Searching for Answers? Ask Facebook Questions.” by Blake Ross.  

Pictures and web pages are the most common type of data stored in NoSQL DBs, because 

they generally require fast access and retrieval capabilities. Internally, they are 

represented as binary large objects (BLOBs) in the DB.  

 The three scenarios for the tuple complexity represented in table 6.3 stand for All 

Metadata (AM = {file1, file2, file3}), Some Metadata (SM = {null, file2, file2 ++ file3}), 

and No Metadata (NM = {null, null, file1 ++ file2 ++ file3}).  The distribution of the 

redundant data is done differently for the two datasets. In the first dataset, the HTM file 

which is also smaller in size is unique for each row. The two JPEG files which are larger 
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in size stay the same to generate the redundant data percentage required. Subsequently 

they become unique for the rows with random data (e.g. the two JPG files size represent 

86% of a row size; 20% of redundant data in a 1000 rows table is represented by 229 

rows; 229 rows in the DB have the same file1 and file2, everything else is randomized).   

The same data is initially distributed over the three elements in the tuple presented in 

table 6.3, than over two elements, and lastly over one element by concatenating the data 

from the files.  

In the second dataset the redundant/duplicate data is generated using identical 

rows (all the files stay the same), and the random data is applied to all the elements of the 

tuple. (e.g. 20% of redundant data in a 1000 rows table is represented by 200 identical 

rows; 200 rows of the DB have the same file1, file2, and file3).  The same data is initially 

distributed over the three elements in the tuple presented in table 6.3, than over two 

elements, and lastly over one element by concatenating the data from the files. 

Based on the three parameters (tuple complexity, amount of data, and distribution 

of redundant data) 48 different DETS DB tables were loaded, generating an approximate 

of 36.7 GB of data. There are some size restrictions of DB files in Erlang DETS, which 

have prevented us at the moment to experiment with larger sizes of tables. The datasets 

used are still generous enough to represent the characteristics of data in a NoSQL key-

value DB, and to prove the concepts behind DDNSDB. 

The experiments were run using these files in an ordered manner. The DB files 

order is represented in Figure 6.4 and shows how the data was split in three sets. The first 

set consists of the files with AM, the second set consists of the files with SM, and the 

third set consists of the files with NM. Within each group the files were also sorted base 
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on the other two parameters descending, first on size and second on distribution of 

redundant data. 

The two data sets are meant to show how different structural information applied 

to the same set of data can influence the DD Ratio, and how different percentage of 

duplicate data can influence the DD Ratio and the performance of DDNSDB.  

 

-
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 CHAPTER 7

RESULTS 

 

7.1 De-Duplication Ratio 

A consistent backup of the DBs was performed before and after applying the DD 

process to record the size of the files. Similarly, the size of the backup files was measured 

after running the experiments in the first and second set three times. The results remained 

the same all across. This confirms the accuracy of the DDNSDB and the correctness of 

the generated data used in the experiments. At the end, the DDNSDB results are 

compared with the results of two traditional compression methods: Windows Zip and 

UNIX GZip. 

 

7.1.1 DD Ratio and Structural Information 

To determine how the structural information influences the DD ratio, two 

scenarios with two sets of data are considered in this experiment. The first scenario uses 

the dataset one where the duplicate data is spread across only two components of the 

tuple. The data generated with different percentage of redundancy is applied to the three 

different structures presented in figure 6.3. The results of the DD-Ratios calculated for 

the three types of file namely, All Metadata, Some Metadata, No Metadata (AM, SM, 

NM) are described in figure 7.1 and figure 7.2.  The DB files are grouped by structural 

information. Figure 7.1 illustrates the average DD Ratio of all files grouped by structural 

information and figure 7.2 illustrates the DD ratio for each file. 



RESULTS 

61  

 

 

Figure 7.1: Average DD Ratio for the three different DB structure 

 

Figure 7.2: DD Ratio based on structural information 
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There are different levels of granularity for the structural information, starting 

from zero to knowing everything. The more granular usually means a higher probability 

of identifying duplicate data. For the DB files with AM, all duplicate data is identified 

and replaced with pointers by the DDNSDB. For the DB tables with NM, no duplicate 

data is identified. The results show that the DD ratio for the AM files is significantly 

higher than for NM files. The average DD Ratio for AM is 1.6 higher than SM and 2.5 

higher than NM. This difference in DD Ratio is caused by changing only one character in 

the HTML file in each DB record. 

The second scenario is using dataset two where the duplicate data is spread across 

all the elements of the tuple creating duplicate rows. By applying this data to the three 

different structures presented in figure 6.3, the results will show how different sizes of 

chunks are affecting the DD ratio. In the second set of data the AM structure represents 

the smallest chunk sizes, the SM structure represents the medium size chunks, and the 

NM structure represents the largest size chunks. The same measurements were made for 

the data generated in the second set of experiments. The results of the DD-Ratios 

calculated for the three types of chunk size (AM-small, SM-medium, and NM-large) are 

described in figure 7.3 and figure 7.4. The DB files in figure 7.3 are grouped by chunk 

size showing the average DD Ratio per group. Figure 7.4 shows the DD ratio for each 

individual file. 
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Figure 7.3: Average DD Ratio for the three different data chunks. 

 

 

Figure 7.4: DD Ratio based on Chunk size. 
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Figure 7.3 and 7.4 show that the DD ratio for the files which have bigger 

duplicate chunks (NM files) is higher than for the ones which have smaller duplicate 

chunks (AM files). Figure 7.3 also shows that the sizes of the AM files are larger than the 

sizes of the SM and NM files. The generated data in the second set carries as the “null” 

atom the missing structure in its formatting, keeping pointers in each structural unit. This 

extra formatting becomes significant when identical rows are involved with different 

structural information.  

Based on the results from the two sets of data, it is observed that with more 

structural information, a higher DD ratio is obtained. Also, the probability of finding the 

duplicate data is higher, even if small changes of data occur to some of the fields. If there 

is no structural information, the smallest change to a row in the table makes it unique, 

increasing the DB backup footprint. On the other hand, a higher DD ratio is obtained with 

fewer larger chunks than with more but smaller chunks. The extra formatting for the 

pointers affects the backup space. However, the results based on chunk sizes, show much 

smaller differences between the DD ratios than the results based on tuple complexity 

proportion-wise. 

 

7.1.2 DD Ratio and the Amount of Data 

The next parameter taken into consideration in this set of experiments is the 

amount of data. The DB files have been loaded with four different numbers of rows to 

see how this parameter is affecting the DD ratio. Table 7.1 and figure 7.5 illustrate the 

results. The numbers on the x-axis correspond to the number of rows in DB files (from 

1000 rows to 10000 rows). The DB files are grouped based on the number of rows and an 
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average file size for each group was calculated before and after applying the DD process. 

The average DD ratios were calculated based on the above average DB file sizes. 

 

File Type AWG File Size AWG DDNSDB Size DD Ratio 

1000 rows 87165309 62615109 1.7513 

4000 rows 364807390 266684146 1.7295 

7000 rows 664868022 493178704 1.7116 

10000 rows 987516163 742254833 1.6956 

Table 7.1: Backup Files and DD Ratio 

 

 

Figure 7.5: Average DD Ratio based on DB file sizes 
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stored. The overhead of 3% decrease in the DD ratio while the file size increases 10 times 

is considered minimal. If the same percentage of duplicate data is present regardless of 

the size of the DB, we can say that the DD ratio stays the same. 

 

7.1.3 Distribution of Duplicate Data 

The third factor taken into consideration in this set of experiments is the 

distribution of redundant data in the DB files. Four different percentages of redundant 

data were chosen in the dataset generation: 20%, 40%, 60%, and 80%. The files for this 

experiment have been grouped based on the distribution of redundant data and size as 

illustrated in table 7.2. (e.g. the value for 100020 represents the average DD ratio 

calculated for all the files with 1000 rows and 20% of redundant data). Each peak in 

graph from figure 7.3 corresponds to the last file in each set of files from table 7.2. 

 

100020 1.1339 

 

400020 1.1177 

100040 1.3473 

 

400040 1.3182 

100060 1.7406 

 

400060 1.7085 

100080 2.7833 

 

400080 1.7735 

     700020 1.1060 

 

1000020 1.0965 

700040 1.2958 

 

1000040 1.2765 

700060 1.6816 

 

1000060 1.6596 

700080 2.7630 

 

1000080 2.7527 

Table 7.2: DD Ratio based on distribution of redundant data 
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Figure 7.6: DD Ration based on distribution of redundant data 
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7.1.4 DD Ratio Comparison 

DDNSDB algorithm was applied to the entire data set along with Window Zip 

and UNIX GZip to better understand the differences between the results. The DB files are 

grouped first by structural information then by size, and lastly by distribution of 

redundant data. Figure 7.7 (a,b,c) illustrates the differences between the initial DB file 

size and the file sizes after applying the three different algorithms, and figure 7.8 (a,b,c) 

shows the comparison results of DD ratio for the three different algorithms.  The intervals 

on the x-axis correspond to each file in their respective group of DB files (AM, SM, and 

NM). 
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Figure 7.7 (a): DB Backup File sizes comparison for AM structure 

 

 

 

Figure 7.8 (a): DD Ratio for DDNSDB, Zip, and GZip for AM structure 
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Figure 7.7 (b): DB Backup File sizes comparison for SM structure 

 

 

 

Figure 7.8 (b): DD Ratio for DDNSDB, Zip, and GZip for SM structure 
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Figure 7.7 (c): DB Backup File sizes comparison for NM structure 

 

 

 

Figure 7.8 (c): DD Ratio for DDNSDB, Zip, and GZip for NM structure 
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The results show that for AM DB files with high percentage of duplicate data, 

DDNSDB outperforms considerably Windows Zip and UNIX GZip algorithms (e.g for 

DB file AM100080 the DD ratio obtained through the 3 algorithms are: DDNSDB = 

5.06, Zip = 1.115, and GZip = 1.113). For Zip and GZip algorithms the results are very 

similar, remaining more or less constant across the files.  On the other hand, the space 

reduction achieved using DDNSDB is 22% higher than the other two algorithms for the 

DB files with 80% duplicate data and the DD ratio is situated at approximately 5:1. For 

AM DB files with the lowest percentage of duplicate data (20%), the DD ratio of 

DDNSDB is very close, slightly larger than the DD ratio obtained by using either 

Windows Zip compression or UNIX GZip compression algorithms. There is always the 

internal formatting of data which contributes to the size of the file, directly affecting the 

measurements of DD ratio. As the structural information decreases (e.g. SM DB Files), 

the space reduction achieved by DDNSDB compared with Zip and GZip decreases too. 

Observing the patterns in each sub-group and group of files, the AM group 

outperforms the other two, because of the more granular structural information. For the 

NM files, Zip and GZip algorithms perform slightly better as there is no duplicate data to 

be detected by DDNSDB. For the SM and AM files, the space reduction goes from 17% 

to near 69% higher than the other two algorithms, as more structural information is 

available 

 DD ratios of 1.5:1 to 5:1 seem reasonable to expect for DB files. Nagapramod et 

al. [37] conclude in their research about different DD algorithms applied at file and sub-

file level that a fold factor of 1:6 to 2.0 is expected for variable sized chunking, out of a 

single day backup independent of rate of change of data, or backup schedule, or backup 
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algorithm used. Comparing DD at DB level with DD at file and sub-file level, we obtain 

similar results. The difference is that DDNSDB is used for NoSQL DBs, where file and 

sub-file level DD never proved to be as good. DDNSDB is also a fast process and it 

makes use of structural information at the DB level as chunking algorithm. This 

information helps identifying larger chunks of duplicate data, producing higher DD ratios 

in the end. 

Figure 7.7 shows the four different file sizes: the initial backup file size, the 

DDNSDB backup file size, the Windows Zip, and UNIX GZip files. Again, we observe 

that for low percentage of duplicate data, DDNSDB still outperforms Windows Zip and 

UNIX GZip. As the percentage of duplicate data increases, DDNSDB produces much 

smaller files reducing the data footprint significantly for files where structural 

information is available.  

 

7.2 Scaling the DDNSDB 

For all the topologies in the second set of experiments, only the second set of data 

is relevant. In order to accurately measure the DDNSDB performance,  the same amount 

of duplicate data has to be detected in all the three different scenarios considered for the 

structural information AM, SM, and NM (e.g. for AM100020, SM100020, and 

NM100020 there should be 20% of duplicate data detectable by DDNSDB regardless of 

the tuple complexity, hence the identical duplicate rows structure). 

The abbreviations used in the explanation of the results stand as follow: 

 T – Topology (e.g. T1 – Topology 1). 

 R – Run (e.g. R1 – first run – each experiment was run 3 times). 
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 The T and R are usually followed by a number which represents the number of 

map/reduce processes used in the experiment (e.g. T1R1-6 Topology1, Run1, 6 

map/reduce processes). 

 If R is not present, the average of the 3 runs was used for the table/figure 

calculations. 

There is not much information available regarding the platform on which EC2 is 

running. To evaluate the performance consistency on the Cloud Platform (CP), each 

experiment was run 3 times and the average was used for the calculations. Figure 7.9 and 

Figure 7.10 illustrate the results of the three runs on Topology 1 (T1) for two sets of 

parallel processes. All the results follow closely the same patterns presented in figure 7.9, 

and figure 7.10. Like in the previous set of experiments, the DB files are ordered first by 

structural information (AM, SM, NM), than by size (1000, 4000, 7000, and 10000 rows), 

and lastly by distribution of redundant data (20%, 40%, 60%, 80%). 

 

 

Figure 7.9: DDNSDB Timing for T1 with 6 map/reduce processes 
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Figure 7.10: DDNSDB Timing for T1 with 48 map/reduce processes 
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almost consistently across all the topologies considered.  There are other patterns that are 

observed in these experiments for each level of grouping and they are explained in more 

details next. 

 At the first level of grouping (structural information), the time cost is reducing as 

the tuple complexity decreases. 

 At the second level of grouping (size of the DB file), the time cost is rising as the 

number of rows in the DB file increases. 

 At the third level of grouping (distribution of redundant data), the time cost is 

decreasing as the percentage of duplicate data increases. 

 

7.2.1 DDNSDB Performance and Structural Information 

In order to measure how the structural information influences the performance of 

DDNSDB, the same amount of duplicate data is detected for each tuple complexity. The 

results are presented in figure 7.11 where the DDNSDB was applied to the AM, SM, and 

NM files. The DB files are ordered first by structural information then by size, and lastly 

by distribution of redundant data. The average between all runs in T1 was calculated for 

all AM, SM, and respectively NM in the graphical representation. 
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Figure 7.11: DDNSDB performance based on structural information 
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hash value of a larger chunk may take slightly longer but being fewer of them, overall the 

performance increases. 

 

7.2.2 DDNSDB Performance and Amount of Data 

The average time cost of DDNSDB is different for different size of DB Files. This 

is expected as more data gets processed. The tests were conducted for all the DB files in 

the second dataset, and the results are presented in figure 7.12. The values represented on 

the X axis represent the number of rows in a DB file where the DB files are grouped 

based on the number of rows. The average time cost for each group was calculated. 

 

 

Figure 7.12: DDNSDB Performance based on the amount of data 
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The results illustrate the relationship between the size of the files and the time it 

takes DDNSDB to complete the DD operations. As expected, the larger the DB File size, 

the longer the operations take to complete. For the smaller size DB files (1000 rows – 

102,113,391 bytes) the basic cost of the DD operation is 20 times smaller than for larger 

size DB files (10,000 rows – 1,132,138,892 bytes) while the file size is only 10 times 

smaller, making the time cost curve relatively steep. However, the DD process takes in 

the range of milliseconds (57) to complete for a 1 GB size DB file which is still very fast. 

 

7.2.3 DDNSDB Performance and Distribution of Redundant Data 

The distribution of redundant data is another important factor which influences 

the DDNSD performance. The experiments were run against all the files from dataset two 

and the measurements for DDNSDB time cost are illustrated in table 7.3, and figure 7.13. 

The files for this experiment are grouped by the percentage of distributed data and size. 

An average is calculated for the different structural information based on the above 

grouping. 

 

100020 400020 700020 1000020 

3.921 27.9447 94.755 177.4873 

100040 400040 700040 1000040 

2.2207 19.49 51.5843 89.3231 

100060 400060 700060 1000060 

1.383 8.2417 28.3817 48.1367 

100080 400080 700080 1000080 

0.7853 3.796 10.5093 14.9243 

Table 7.3: DDNSDB performance based on the distribution of duplicate data 
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Figure 7.13: DDNSDB performance based on the distribution of duplicate data 
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increase number of disk IO. When more duplicates are identified, only the pointers need 

to be written rather than the entire chunk of data. 

 

7.2.4 DDNSDB Performance and Number of Parallel Map/Reduce Processes 

To evaluate how the number of parallel processes used for map/reduce is affecting 

the DDNSDB performance, the experiments were run on the first and second topology 

chosen for goal 3. Both topologies involve one big machine, first one uses Erlang’s 

internal message scheduler exclusively, while the second one uses parallel EVM nodes 

where different scheduler threads may compete for the same resources. The four sets of 

map/reduce processes combinations used are: 4M+2R=6, 8M+4R=12, 16M+8R=24, and 

32M+16R=48. Table 7.6 and figure 7.15 illustrate the comparison results of the 

experiments run against the two topologies. The values in the table and graph 

representation indicate the overall averages of all the experiments against each set of 

map/reduce processes. 

 

T1 - 6 (4+2) T1 - 12 (8+4) T1 - 24 (16+8) T1 - 48 (32+16) 

27.1948 26.2258 24.8575 26.3027 

T2 - 6 (4+2) T2 - 12 (8+4) T2 - 24 (16+8) T2 - 48 (32+16) 

35.7125 32.2353 37.3025 32.9448 

Table 7.4: Comparison of average DD Ratio between T1 and T2  
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Figure 7.14: Comparison of AVG DD Ratio between T1 and T2  
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above this value have competing resource requirements making the DDNSDB slower in 

both situations. 

The second observation in figure 7.15 is that T1 outperforms T2 in all the 

experiments. This contributes to the fact that on a big machine with plenty of resources, 

Erlang’s internal message scheduling is more efficient than how the OS tries to evenly 

distribute the operations across resources (CPUs). 

 

7.2.5 DDNSDB Performance and Number of Physical/Virtual Machines 

To evaluate how DDNSDB would perform on commodity hardware and how the 

network traffic influences the time cost, four hardware configurations were considered in 

T3. The hardware configurations details are available in table 6.2. Each hardware 

configuration was mapped to a sub-topology of T3, and again each experiment was run 3 

times. The same four sets of map/reduce processes combinations used in the previous 

experiment are used for this experiment as well. Each experiment was run against the 

same 48 files from dataset two. The average run for each file in each map/reduce 

combination was calculated and to better observe the performance trend of DDNSDB in 

each seat, an average across all the files for that set was also calculated.  

In T3.1, T3.3, and T3.4 the same number (four) of EC2 VMs with different 

hardware configurations were used. Table 7.7 illustrates the average values results for 

each of these sub-topologies while figure 7.16 illustrates the graphical representation of 

these values. 
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T3.1 - 6 (4+2) T3.1 - 12 (8+4) T3.1 - 24 (16+8) T3.1 - 48 (32+16) T3.1 AWG 

59.7412 67.1078 56.2946 60.8778 61.00535 

T3.3 - 6 (4+2) T3.3 - 12 (8+4) T3.3 - 24 (16+8) T3.3 - 48 (32+16) T3.3 AWG 

62.8784 59.2976 73.4013 77.9474 68.381175 

T3.4 - 6 (4+2) T3.4 - 12 (8+4) T3.4 - 24 (16+8) T3.4 - 48 (32+16) T3.4 AWG 

242.8378 272.6891 307.7625 332.5421 288.957875 

 Table 7.5: DDNSDB average run-time for T3.1, T3.3 & T3.4  

 

 

 

Figure 7.15: DDNSDB performance comparison between T3.1, T3.3, and T3.4  
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processes. These results further demonstrate the conclusion reached in T2 where the 

closer the mapping of actual parallel processes to total number of parallel CPU thread, 

the better DDNSD performs. This is the case also when messages travel across network. 

Comparing the overall average performance between the three sub-topologies in 

table 7.7, the results shows that T3.1 which lies on more powerful EC2 VMs has the best 

performance. As the VMs performance is reduced, the DDNSDB performance decreases 

as well.  The CPU and RAM capacity used for T3.3 is at least 3.3 times lower than the 

CPU and RAM capacity used for T3.1 but the maximum performance difference is only 

by approximately 1.3 times lower (17.1 milliseconds). 

For a better understanding of the effects of multiple commodity like hardware 

over one big machine with plenty of resources, table 7.8 and figure 7.17 illustrates the 

comparison between T3.1, T3.2, and T1. T3.1 has the best performance out of all T3 sub-

topologies with 4 EC2 VMs and T3.2 sub-topology uses only 2 EC2 VMs with a similar 

overall capacity as T1. 

 

T1 - 6 (4+2) T1 - 12 (8+4) T1 - 24 (16+8) T1 - 48 (32+16) T1 AWG 

27.1948 26.2258 24.8575 26.3027 26.1452 

T3.1 - 6 (4+2) T3.1 - 12 (8+4) T3.1 - 24 (16+8) T3.1 - 48 (32+16) T3.1 AWG 

59.7412 67.1078 56.2946 60.8778 61.00535 

T3.2 - 6 (4+2) T3.2 - 12 (8+4) T3.2 - 24 (16+8) T3.2 - 48 (32+16) T3.2 AWG 

58.7685 38.6638 59.9429 63.173 55.13705 

Table 7.6: DDNSDB average run-time for T1, T3.1, and T3.2 
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Figure 7.16: DDNSDB performance comparison between T1, T3.1, and T3.2 

 

The results show that T1 outperforms T3.1 by 2.3 orders of magnitude and T3.2 

by 2.1 orders of magnitude due to lower resources and the network traffic between the 

parallel processes within one VM and across VMs. This can be considered significant but 

in reality the difference is respectively 34.9 milliseconds and 28.8 milliseconds, making 

the commodity hardware very acceptable for this type of processing. The comparison of 

the best time cost between the three scenarios shows the minimum time cost differences: 

 T1 (24) and T3.1 (24) => 31.3 milliseconds. 

 T1 (24) and T3.2 (12) => 13.8 milliseconds. 

 T3.1 (24) and T3.2 (12) => 17.6 milliseconds.   

These values are calculated based on the average run for all the files for each 

respective map/reduce set, and show even smaller time cost differences between a one 

big machine configuration versus several smaller machines. It is clear that the big 
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machine configuration has higher performance. However, the cost of such machine is 

also very high. By distributing the processing in parallel across several smaller machines, 

the performance obtained is very competitive achieving at the same time higher 

availability and fault tolerance. 

 

7.2.6 Summary 

DDNSDB was evaluated to determine the space optimization implications of 

employing a DD process at the NoSQL DB level and the performance implications of its 

map/reduce architecture on a Cloud Platform. The analysis and experiments results are 

summarized for each research goal for an overall view below. 

 

Goal 1. Adapt file and sub-file based DD approaches to the NoSQL DB DD 

Analysis Goal 1: Adapted the chunking DD methodology used in file and 

sub-file based DD to NoSQL DB DD.  The analysis presented in chapter 4, exposed how 

the two steps used in chunking based DD technology can be used for NoSQL DBs as 

well. The first step – chunking -    uses the structural information about the data to chunk 

the DB records, while the - duplicate detection - is adapted from the initial architecture to 

only compare the same data-set types, rather than all the data-set types. This adapted 

chunking technology was implemented for DDNSDB as a proof of concept. 

 

Goal 2.  Explore the use of structural information and its granularity to 

reduce the uncontrolled duplicate data in NoSQL DBs 

DD Ratio and Structural Information:  Evaluated the implications of 

structural information on the DD ratio. The experiments proved that significant higher 
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DD ratios are obtained as more structural information is available (from 1.6 to 2.5 

higher). When the same data is spread across multiple smaller chunks to be compared and 

if one character changes, the probability is higher to detect the other chunks as duplicates 

than when the data is spread across fewer but larger chunks. At the same time, the 

experiments show that the larger the duplicate chunks identified, the higher is the DD 

ratio obtained. This is essentially because of the additional formatting required for the 

chunks which tend to take space in the backup file. 

DD Ratio and the Amount of Data:  Evaluated the implications of the 

amount of data on the DD Ratio. The experiments show that the DD ratio is minimally 

impacted by the data growth. The slight data growth is caused by the additional 

formatting required for more data. For a file 10 times bigger the overhead is in the range 

of 7%. 

Distribution of Duplicate Data: Evaluated how the distribution of duplicated 

data affects the DD ratio. The experiments show a surge of the DD ratio when the amount 

of duplicate data increases. For a file with 60% redundant data, the backup file after DD 

is 60% smaller. 

DD Ratio Comparison: Evaluated the performance of DDNSDB in 

comparison with two file compression algorithms, Windows Zip and UNIX GZip. The 

experiments show that for DB files where duplicate data was detected, DDNSDB 

outperforms both compression algorithms. It also shows that for DB files with more 

structural information available for chunking, implying more duplicate data detected, 

DDNSDB reduces the data footprint overall with 22% more than the other two 
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algorithms (from 17% to near 69% as more structural information is available). Also the 

results are comparable with other existing DD technologies used at file and sub-file level.  

 

Goal 3.  Develop a scalable architecture for the DD tool to minimize 

processing time 

DDNSDB Performance and Structural Information:  Evaluated the 

performance implications of structural information on DDNSDB. As expected, the 

experiments show that for larger amounts of structural information, which translates in 

more chunks to be compared, it takes longer for the operations to complete.  Six 

milliseconds overall difference was registered between the three different types of 

structural information AM, SM, and NM. The results also show that comparing fewer 

larger chunks takes less time than comparing smaller chunks but more of them. 

DDNSDB Performance and Amount of Data: Evaluated the performance 

implications of the amount of data on DDNSDB. As expected, the experiments show that 

it takes longer to process larger amounts of data. For DB file sizes 11 times larger, the 

time cost is 20 times higher; however the time to process a 1GB file is only 

approximately 57 milliseconds making this operation still very cheap. 

DDNSDB Performance and Distribution of Redundant Data: Evaluated the 

performance implications of the redundant data on DDNSDB. The experiments show that 

it takes less time for the operation to complete when there is more redundant data. Also, 

the growth proportions drop significantly for larger amounts of data e.g for 80% duplicate 

data it takes 12 times less to process than for 20% duplicate data for the 10000 rows DB 
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files, while for 1000 rows DB files for 80% duplicate data it takes only 5 times less to 

process than for 20% redundant data. 

DDNSDB Performance and Number of Parallel Map/Reduce Processes: 

Evaluated the performance implications of the number of map/reduce processes on 

DDNSDB. The experiments show that the best performance is obtained when the number 

of parallel processes matches the total number of CPU threads available. At the same 

time, Erlang’s internal message scheduling outperforms the OS scheduling regardless of 

the number of map/reduce processes. 

DDNSDB Performance and the Number of Physical/Virtual Machines:

 Evaluated the performance implications of the number of machines on DDNSDB. 

As expected, the experiments show that overall it takes less time for the operations to 

complete for a lower number of VMs with higher CPU and RAM resources because there 

is less network traffic and message scheduling. However, the performance differences are 

not that significant to motivate the significantly more expensive hardware (from 34.9 

milliseconds to 28.8 milliseconds as the number of parallel VMs increases). Therefore, 

the resources provided in a cloud environment which grow horizontally rather than 

vertically prove to be just as competitive performance wise. They are also significantly 

cheaper for this type of processing, adding features like 99.9% availability to the 

package. 
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 CHAPTER 8

CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

The data landscape has changed and with it emerged the NoSQL DBs allowing for 

massive concurrent reads and writes, and horizontal scaling. New types of DBs require new ways 

of saving resources to store data. DD at the DB level was never required because normalizing the 

data in DBs was “the norm”. As more data are produced, new requirements of delivering the 

data arise changing the norms. An obvious evolution of how to make this data manageable has 

happened and DD is becoming more popular especially at the storage level.  

This research presents a novel approach of data DD for unstructured and semi-structured 

data stored in the NoSQL DBs. In order to understand the internal data model of the different 

types of NoSQL DBs used, a description of the three more popular types is presented (key-value, 

columnar, and document based DBs). Subsequently, the fundamental role of the metadata to 

overcome the huge duplicate data problem encountered with these types of DBs is pointed out. 

This duplicate data ultimately gets propagated into the DB backups increasing the data footprint. 

This research proposes Data De-duplication for NoSQL Databases (DDNSDB), targeting 

the key-value DB types, which can be used as a pre-step of the backup process. This allows for 

easy integration with existing backup tools, rather than having to develop new ones.  

DDNSDB makes use of the metadata to divide the data into semantic chunks. The 

amount of structural information available implies a certain degree of granularity based on which 

data can be compared. Higher granularity implies higher probability of identifying duplicate 

data. The experimental results proved a higher DD ratio and a better performance of DDNSDB 
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for DB files with more structural information available and higher percentage of duplicate data. 

Contrary to how other DD techniques do the comparison, DDNSDB compares only chunks of 

the same data-set type, minimizing the resource consumption and processing time.  

As CP are becoming more popular because of features like horizontal scalability and 

availability, so are the NoSQL DBs. One of the design considerations for DDNSDB was to be 

able to scale horizontaly and run on a CP. The current implementation is using an adapted 

hierarchical Map/Reduce methodology to allow for scalability and increase performance through 

parallel processing. This allowed for all the experiments of this research to actually run on a CP, 

more specifically EC2 CP. 

While the performance obtained on one big machine with lots of resource is higher than 

the performance obtain by running the same process on several smaller machines, the time cost 

differences are not substantial (average of 6 milliseconds). Horizontal scaling proved to be very 

elastic on Amazon EC2. It is well known that one machine can grow vertically only so much. 

Also the cost of a one big machine can be quite high compared to the cost of several smaller 

machines. Additionally, scaling horizontally also comes with higher availability and fault 

tolerance which are key requirements in today’s businesses.  

In conclusion, duplicate data is a major issue for NoSQL DBs. DDNSDB makes use of 

the structural information of the data to reduce the data footprint significantly in the key-value 

NoSQL DBs. DDNSDB can easily scale horizontally without significant performance impact to 

run on commodity hardware specific to CP. In the same time, DDNSDB’s standalone design can 

be used along with existing backup tools without requiring them to be redesigned. 
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8.2 Future Work 

Throughout this research, new characteristics that will need to be addressed in the future 

came to light: 

 Expand on the complexity of structural information. At present, DDNSDB allows 

only a fix number of structural information complexity which is hard coded. A 

more flexible approach needs to be implemented to allow for any complexity 

requirements.  

 Create a friendly interface for structural information input. At the moment, 

DDNSDB does not have an interface or the underlying architecture for collecting, 

storing, and maintaining structural information. DDNSDB assumes this 

information is available in three different configurations which are passed in as 

variables. Having such an interface, the underlying structure will allow DDNSDB 

to collect, store, and use this information repeatedly without having to provide it 

every time it runs for the same DB. The details of the structural information can 

be expanded to the DB level or even further to each type of structure within a DB.  

 Dynamic allocations of the number of map/reduce processes.  Currently, a fixed 

number of map/reduce processes can be passed as parameters. The experiments 

show that DDNSDB best performs when the number of map/reduce process maps 

close to the number of CPU threads. To take maximum advantage of the CPU 

resources, these values could be picked up dynamically once the processing starts. 

 Extend the capabilities of processing larger DB files. Erlang’s key-value DB - 

DETS – which was used for DDNSDB implementation has some DB file size 

restrictions. To overcome these restrictions, a different type of key-value DB can 
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be used (like Mnesia), or distribute the data across multiple DBs and processes 

them as a group. This will allow DDNSDB to process more real-life data where 

DB files sizes can be larger than 2GB. The performance expectations for 

processing larger DBs should be proportionate with the values obtained in the 

experiments of this research.  

 Extend the capabilities of processing other data models. DDNSDB was developed 

to address one type of NoSQL DB data model as being the most representative, 

namely the key-value DB. This research presents two other main types of NoSQL 

DBs, classifying them based on their data model. These DBs also have very basic 

structures, making them prone for storing duplicate data as well. DDNSDB can be 

extended to be able to process other data models following the same DD 

algorithm. This can be achieved in different ways. DDNSDB was built using the 

Erlang programming language because of its easy way of spawning and managing 

parallel process. Other NoSQL DBs use different programming languages and 

have their own APIs through which they allow the interaction with the data.  One 

way to achieve this is by implementing a set of APIs as a web service to interface 

with other types of NoSQL DBs. 

 Evaluate DDNSDB on different public Cloud Platforms. This research focused on 

implementing a novel idea and performing a proof of concept implementation 

through DDNSDB. The evaluation focused on the amount of space that can be 

saved with this approach, and how easily the toll can scale horizontally for a 

better performance on a CP, namely on Amazon EC2.  An interesting thing would 

be to evaluate the performance of DDNSDB on other existing CPs like Azure 
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Service Platform or Google App Engine. This will help to identify and improve 

how DDNSDB performs on different underlying cloud technologies.  

 Evaluate DDNSDB on private CP, where there is more control on the type of 

hardware used and the type of provisioning at storage level and/or virtualization 

level. Amazon EC2 most likely is using soft provisioning at storage and 

virtualization level. In a private cloud, it is possible to compare how soft 

provisioning performs versus hard provisioning, to evaluate if the extra cost is 

worth it. This can lead to different design improvements of DDNSDB to better 

make use of the resources.  

 Improve fault tolerance. During the experiments, situations were identified when 

long running processes were altering the results and had to be repeated. 

Implementing a more fault tolerant design where such processes can be detected 

and restarted or terminated depending on the nature can help the DD process 

performance. 

 Extend the scalability features, by implementing a “1 to n” relationship between 

the nodes and the number of parallel processes which run on each node, when 

scaling across multiple machines. This can avoid the potential of competing for 

the same resource between processes.  

 Perform online DD at the NoSQL DB level. DDNSDB was designed as a 

standalone tool which can be integrated with existing backup tools as a pre-step. 

Some DB may also require an online DD process because otherwise they may 

reach sizes which become unmanageable or unresponsive. The algorithm used for 

DDNSDB can be extended to be able to perform online DD at the DB level. 
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