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Abstract

The choice of the model framework in a regression setting depends on the nature of the data.

The focus of this study is on changepoint data, exhibiting three phases: incoming and outgoing,

both of which are linear, joined by a curved transition. These types of data can arise in many

applications, including medical, health and environmental sciences. Piecewise linear models have

been extensively utilized to characterize such changepoint trajectories in different scientific fields.

However, although appealing due to its simple structure, a piecewise linear model is not realistic

in many applications where data exhibit a gradual change over time.

The most important aspect of characterizing a changepoint trajectory involves identifying the

transition zone accurately. It is not only because the location of the transition zone is of particular

interest in many areas of study, but also because it plays an important role in adequately describing

the incoming and the outgoing phases of a changepoint trajectory. Note that once the transition is

detected, the incoming and the outgoing phases can be modeled using linear functions. Overall, it

is desirable to formulate a model in such a way that it can capture all the three phases satisfactorily,

while being parsimonious with greatly interpretable regression coefficients. Since data may exhibit

an either gradual or abrupt transition, it is also important for the transition model to be flexible.

Bent-cable regression is an appealing statistical tool to characterize such trajectories, quantifying

the nature of the transition between the two linear phases by modeling the transition as a quadratic

phase with unknown width. We demonstrate that a quadratic function may not be appropriate to

adequately describe many changepoint data. In practice, the quadratic function of the bent-cable

model may lead to a wider or narrower interval than what could possibly be necessary to adequately

describe a transition phase. We propose a generalization of the bent-cable model by relaxing the

assumption of the quadratic bend. Specifically, an additional transition parameter is included in the

bent-cable model to provide sufficient flexibility so that inference about the transition zone (i.e.,

shape and width of the bend) can be data driven, rather than pre-assumed as a specific type.

We discuss the properties of the generalized model, and then propose a Bayesian approach for

statistical inference. The generalized model is then demonstrated with applications to three data
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sets taken from environmental science and economics. We also consider a comparison among the

quadratic bent-cable, generalized bent-cable and piecewise linear models in terms of goodness of

fit in analyzing both real-world and simulated data. Moreover, we supplement the motivation for

our generalized bent-cable methodology via extensive simulations – we simulate changepoint data

under some realistic assumptions, and then fit the quadratic bent-cable, generalized bent-cable

and piecewise linear models to each of the simulated data sets to compare the performance of

these models with respect to the overall quality of fit. A sensitivity analysis is also performed

to investigate the sensitivity of Bayesian inference to prior specifications. This study suggests

that the proposed generalization of the bent-cable model can be valuable in adequately describing

changepoint data that exhibit either an abrupt or gradual transition over time.
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Chapter 1

INTRODUCTION

Data showing a trend that characterizes a change are commonly observed in medical, health

and environmental sciences. An example is the atmospheric concentrations of chloroflurocarbons

(CFCs) monitored from different stations across the globe (NOAA/ESRL Global Monitoring Divi-

sion 2016; see also Chapter 2). The atmospheric concentrations of CFCs exhibit a similarly shaped

trajectory, where it rises initially in a linear fashion, then goes through a curved transition phase,

followed by a linear decreasing trend. The piecewise linear model (Muggeo 2003) is a natural

candidate to describe a continuous trend with an abrupt change. An issue with such modeling is

that the abrupt change can be artificial, with possibly a more natural smoothness reflecting the tra-

jectory change. In practice, the piecewise linear is not realistic in applications where data exhibit

a gradual change over time. Therefore, it is desirable to formulate a model that is flexible enough

to handle both gradual and abrupt transitions. One such methodology is the bent-cable regression

(Chiu et al. 2006), which provides a regression framework to analyze changepoint data that exhibit

a transition between two approximately linear phases. It quantifies the nature of the transition by

modeling the transition as a quadratic phase with unknown width.

In this study, we demonstrate that the assumption of a quadratic bend of the bent-cable model

is arguably a restrictive assumption in modeling the transition zone for changepoint data. Specif-

ically, this assumption may lead to the starting and the end points of the transition period to be

either underestimated or overestimated. We propose a generalization of the bent-cable model to

overcome this problem. It provides sufficient flexibility so that inference about the transition zone

can be data driven, rather than a specific type.
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1.1 Background of the Study

The bent-cable methodology (Chiu et al. 2006) provides a regression framework to analyze change-

point data that exhibit a transition between two approximately linear phases. The model is parsi-

monious, and appealing due to its simple structure, great flexibility and interpretability. Mathe-

matically, the model can be expressed as (see also Figure 1.1)

yi = β0 + β1ti + β2q(ti; τ, γ) + εi, (1.1)

where

q(ti; τ, γ) =
(ti − τ + γ)2

4γ
I{τ − γ < ti ≤ τ + γ} + (ti − τ)I{ti > τ + γ}; (1.2)

yi is the response at time ti (i = 1, 2, . . . , n); I(A) is an indicator function that equals 1 if A is true

and 0 otherwise; β0 and β1 are the intercept and slope of the linear incoming phase, respectively;

β1+β2 is the slope of the linear outgoing phase; τ and γ are the transition parameters, characterizing

the center and half-width of the bend, respectively; and εi is the random error component. Under

this formulation, the transition begins at time τ1 = τ−γ and ends at τ2 = τ+γ, and the critical time

point (CTP) at which the slope of the bent-cable changes signs is τ − γ − 2β1γ

β2
(Chiu and Lockhart

2010).
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Figure 1.1: A graphical description of the bent-cable function f (t; β0, β1, β2, τ, γ) = β0 +

β1t + β2 q(t; τ, γ).
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The bent-cable model assumes a quadratic bend (Equation (1.2)) to characterize the transition

zone. In practice, the quadratic function of the bent-cable model may lead to an interval [τ1, τ2]

which is either wider or narrower than what could possibly be necessary to adequately describe

the transition zone (see Chapter 2 for detail). This may also lead to biased estimates of the linear

parameters β0, β1 and β2. In this study, we propose a generalization of the bent-cable model by

relaxing the assumption of the quadratic bend. We demonstrate that the proposed model can be

valuable in adequately describing different types of changepoint trajectories.

1.2 Objectives of the Study

In light of the apparent three phases of a changepoint trajectory (linear incoming and outgoing,

joined by a curved bend), there are two main objectives of changepoint data analyses (Muggeo

2003): (a) quantification of the transition [τ1, τ2], and (b) estimation of the incoming and outgoing

slopes β1 and β1 + β2. Note that the estimates of the linear parameters β0, β1 and β2 largely depend

on the estimated transition, which as a whole determine the quality of the overall fit of a model.

Therefore, it is important to describe a changepoint trajectory using a model that provides an

accurate estimate of the transition. Although the assumption of a quadratic bend of the bent-cable

model could be reasonable to characterize the transition phase for many changepoint data, it can

also lead to unsatisfactory fits to many other changepoint trajectories (see Chapter 2 for detail).

In this study, we propose a generalization of the bent-cable model by relaxing the assumption of

the quadratic bend. Specifically, an additional transition parameter is included in the bent-cable

model to provide sufficient flexibility so that inference about the transition zone (i.e., shape and

width of the bend) can be data driven, rather than pre-assumed as a specific type. Although the

primary intention is to model the transition phase more accurately, the proposed model is also

expected to provide more precise estimates of the linear parameters β0, β1 and β2. We develop

a Bayesian framework for statistical inference. Extensive simulations are conducted to evaluate

the performance of the proposed model in comparison with the bent-cable and piecewise linear

models. Henceforth, we will use the term quadratic bent-cable to refer to the model Equations

defined by (1.1) and (1.2) and generalized bent-cable to refer to the proposed generalization of the

quadratic bent-cable model.
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Apart from the methodological development, we also apply our method to three data sets taken

from environmental science and economics, and discuss our findings in the context of scientific

inquiry. The first example involves characterizing the atmospheric concentrations of CFC mea-

surements over time, and the second example considers modeling the trends in housing values in

the United States during two different time periods (January of 2001 to December of 2008 and

June of 2006 to July of 2016). The objectives are to address some questions of broad interests,

including (i) How long did it take for the CFC/housing value trend to show an obvious change?

(ii) What were the rates of increase/decrease before and after the change? (iii) What was the time

point at which the trend went from increasing to decreasing, or vice versa?

1.3 Changepoint Models: A Review from Literature

Prior to 1950’s, the exploratory data analyses were extensively used to roughly identify the change

point of a trajectory (Page 1954). Since this approach was not reliable, regression method was sub-

sequently proposed (Quandt 1958), which is now the most widely used approach for changepoint

data analyses. The general framework of a regression setting can be expressed as

yi = f (ti) + εi, (1.3)

where f (·) is a suitably chosen function that describes the trend over time and εi is the random

error term. Depending on the form of f (·), changepoint models can be broadly classified to fall

into one of three families: piecewise linear (also known as broken-stick or segmented) models,

smooth changepoint models, and polynomial and spline regression.

1.3.1 Piecewise Linear Models

Piecewise linear models have been extensively utilized to characterize changepoint trajectories in

different scientific fields (e.g. Ghosh and Vaida 2007, Slate and Turnbull 2000, Bellera et al. 2008,

Toms and Lesperance 2003, Ruch and Claridge 1992, Wu et al. 2001). The general form of f (·)
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for a piecewise linear model is

f (ti; β0, β1, β2, τ) = β0 + β1ti + β2(ti − τ)I(ti > τ), (1.4)

where β0 and β1 are, respectively, the intercept and slope of the incoming phase, β1 +β2 is the slope

of the outgoing phase, and τ is the CTP (see Figure 1.2).

τ

y

Time, t

Inc
om

ing
 slo

pe 
β 1 Outgoing slope β1  + β2

Figure 1.2: A graphical description of the piecewise linear model.

The piecewise linear function (1.4) is also popular for graphic analyses, including curve fitting,

interpolation and extrapolation (e.g. Bian and Menz 1998, Dai et al. 2007, Magnani and Boyd

2009, Misener and Floudas 2010, Jimenez-Fernandez et al. 2014). Although appealing due to its

simple structure, a major limitation of the piecewise linear model is that the first derivative of the

function is discontinuous at the breakpoint (i.e. not continuously differentiable). This leads to

considerable challenges in asymptotic theory for frequentist approach (Chiu et al. 2006, Chiu and

Lockhart 2010, Kelly et al. 2004, Muggeo 2003, Tishler and Zang 1981) – either the frequentist

approach is used under some non-standard regularity conditions (Muggeo 2003) or a Bayesian

framework is considered for statistical inference so that the concern about unsatisfactory perfor-

mance of asymptotics is irrelevant (Kiuchi et al. 1995, Bellera et al. 2008). Another shortcoming

is that a piecewise linear model is not realistic in many applications where data exhibit a gradual

change over time. To overcome these problems, smooth changepoint models have been proposed
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(e.g. Bacon and Watts 1971, Chiu et al. 2006, van den Hout et al. 2010), utilizing a curved bend

between the two linear phases to model the transition zone.

1.3.2 Smooth Changepoint Models

Bacon and Watts (1971) proposed a class of smooth changepoint models by considering a different

parameterization of the piecewise linear model. In terms of the average slope α1 = (β1 + β2)/2 and

the average difference in slope α2 = (β2 − β1)/2, the piecewise linear model was written as

yi = α0 + α1(ti − τ) + α2(ti − τ)sgn(ti − τ) + εi, (1.5)

where τ is the unknown join point, and sgn(·) is a sign function defined by

sgn(d) =


−1, if d < 0

0, if d = 0

+1, if d > 0

(1.6)

A smooth changepoint model was then formulated by replacing the sign function by a transition

function trn
( ti−τ
γ

)
, where γ > 0 is a transition parameter. The model can be written as

yi = α0 + α1(ti − τ) + α2(ti − τ) trn
( ti − τ

γ

)
+ εi, (1.7)

where the transition function should satisfy the following conditions (Bacon and Watts 1971):

(a) limd→∞ trn
( |d|
γ

)
=1, so that trn

( d
γ

)
behaves like sgn(d) for large d;

(b) trn(0) = 0, so that trn
( d
γ

)
= sgn(d) for large d = 0;

(c) limγ→0 trn
( d
γ

)
= sgn(d), so that trn

( d
γ

)
behaves like sgn(d) for small γ; and

(d) limd→∞ d trn
( d
γ

)
= d, so that d trn

( d
γ

)
behaves like d sgn(d) = |d| for large d.

Under these conditions, large values of γ lead to a gradual transition, whereas γ close to zero

results in an abrupt transition. These conditions also ensure that the Bacon-Watts model is a con-
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tinuously differentiable model. Examples of Bacon-Watts’ transition function include cumulative

distribution function of any symmetric probability density function and hyperbolic tangent. One

difficulty of the Bacon-Watts model is that interpretation of α1 and α2 is not straightforward, as

these parameters are linked to the shape of the transition (van den Hout et al. 2010). Consequently,

inference about the slopes of the linear incoming and outgoing phases is not possible.

As described in Section 1.1, Chiu et al. (2006) introduced another class of smooth change-

point models, referred to as the bent-cable regression methodology. A quadratic function was

considered to model the transition phase. As opposed to the Bacon-Watts model, an appealing fea-

ture of the bent-cable model is that inference about the slopes of the linear incoming and outgoing

phases is straightforward. Although the bent-cable model is continuously differentiable, the second

derivative of the likelihood function does not exist everywhere. Therefore, the asymptotics were

developed under some non-standard regularity conditions (Chiu et al. 2006). Khan et al. (2009),

Khan et al. (2012) and Khan et al. (2013) subsequently proposed Bayesian method of inference,

which avoids the substantial complexity of asymptotics. As indicated in Section 1.2, our work is

motivated by Chiu et al.’s bent-cable regression methodology, and considers a generalization of the

bent-cable model to describe the transition phase more accurately.

1.3.3 Polynomial and Spline Regression

A polynomial regression model (Fan and Gijbels 1996) is sometimes used to characterize the over-

all trend of a changepoint trajectory. However, although a pth order polynomial f (ti; β0, β1, . . . , βp) =

β0 + β1ti + β2t2
i + . . . + βptp

i might be appealing to characterize the overall convexity of the trend, it

would not be expected to fit the observed data all that well, in light of the apparent three phases: in-

coming and outgoing, joined by the curved transition. That is, as opposed to a changepoint model

(see the characterization given in Figure 1.1), a polynomial model does not have the ability to re-

veal useful information regarding the rates of change in the incoming and outgoing phases and the

transition. Other flexible modeling approaches such as penalized spline regression (Ruppert et al.

2003) can also handle abrupt and/or gradual changes, though the added flexibility in the shape of

the fitted model can come at a cost of interpretability.
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1.4 Organization of the Thesis

This is a manuscript-based thesis. We present our manuscript (Khan and Kar 2017) in Chapter 2,

which includes (a) a motivating example to demonstrate the importance of this work, (b) the pro-

posed model and its properties, (c) a Bayesian framework for statistical inference, (d) applications

of our methodology to three real-world data sets, and (e) a simulation study to evaluate the perfor-

mance of our methodology. We conclude in Chapter 3 by summarizing our findings.
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Chapter 2

GENERALIZED BENT-CABLE METHODOLOGY FOR

CHANGEPOINT DATA

The bent-cable methodology (Chiu et al. 2006) provides a regression framework to analyze

changepoint data that exhibit a transition between two approximately linear phases. It quantifies

the nature of the transition between the two linear phases by modeling the transition as a quadratic

phase with unknown, positive width. The model is appealing due to its simple structure, great

flexibility and interpretability, and the model can be expressed as (see also Figure 2.1)

yi = β0 + β1ti + β2 q(ti; τ, γ) + εi, (2.1)

where

q(ti; τ, γ) =
(ti − τ + γ)2

4γ
I{τ − γ < ti ≤ τ + γ} + (ti − τ)I{ti > τ + γ}; (2.2)

yi is the response at time ti (i = 1, 2, . . . , n); I{A} is an indicator function that equals 1 if A is true

and 0 otherwise; β0 and β1 are the intercept and slope of the linear incoming phase, respectively;

β1+β2 is the slope of the linear outgoing phase; τ and γ are the transition parameters, characterizing

the center and half-width of the bend, respectively; and εi is the random error component. Under

this formulation, the transition begins at time τ1 = τ−γ and ends at τ2 = τ+γ, and the critical time

point (CTP) at which the slope of the bent-cable changes signs is τ−γ−2β1γ/β2 (Chiu and Lockhart

2010). The model is identifiable, though the frequentist estimation method and asymptotics of

bent-cable regression are highly complicated (Chiu et al. 2006). Since the second derivative of the

likelihood function does not exist everywhere, the asymptotics were developed under non-standard

regularity conditions (Chiu et al. 2006). Khan et al. (2013; 2009; 2012) subsequently proposed the
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Figure 2.1: A graphical description of the bent-cable function f (t; β0, β1, β2, τ, γ) = β0 +

β1t + β2 q(t; τ, γ) (for completeness of this chapter, we re-introduce this figure from chapter
1).

Bayesian method of inference, which avoids the substantial complexity of asymptotics.

The bent-cable model assumes a quadratic bend (Equation (2.2)) to characterize the transition

zone. Although the assumption of the quadratic bend could be reasonable to characterize many

changepoint data (e.g. the housing data described in Section 2.3.2), it may also lead to unsatis-

factory fits to many other changepoint trajectories. To illustrate, we reconsider here the monthly

mean chlorofluorocarbon-11 (CFC-11) data described in Khan et al. (2009): “CFCs are nontoxic,

nonflammable chemicals containing atoms of carbon, chlorine, and fluorine. CFCs were exten-

sively used in air conditioning/cooling units and as aerosol propellants prior to the 1980s. While

CFCs are safe to use in most applications and are inert in the lower atmosphere, they do undergo

significant reaction in the upper atmosphere. Chlorine inside the CFCs is one of the most important

free-radical catalysts to destroy ozone. Because of this, CFCs were banned globally by the 1987

Montréal Protocol on Substances That Deplete the Ozone Layer. Since this protocol came into

effect, the atmospheric concentration of CFCs has either leveled off or decreased.” CFCs are mon-

itored from different stations all over the globe by the Global Monitoring Division of the National

Oceanic and Atmospheric Administration (NOAA/ESRL Global Monitoring Division 2016). We

fit the bent-cable model to the monthly mean CFC-11 data from Barrow, Alaska, with a study pe-

riod ranging from January of 1988 to September of 2010. The bent-cable fit (Figure 2.2a) suggests

10
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(a) Quadratic bent-cable fit: β̂0 =

254.00, β̂1 = 0.85, β̂2 = −1.02, γ̂ =

42.64, τ̂ = 33.37 (Oct. 1990), τ̂1 =

−9.28 (Mar. 1987), τ̂2 = 75.99 (May
1994), ĈTP = 62.06 (Mar. 1993),
and DIC = 940.01.
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(b) Generalized bent-cable fit: β̂0 =

252.30, β̂1 = 0.73, β̂2 = −0.90, κ̂ =

1.26, γ̂ = 68.55, τ̂ = 40.82 (May
1991), τ̂1 = 23.14 (Dec. 1989), τ̂2 =

109.36 (Feb. 1997), ĈTP = 60.94
(Jan. 1993), and DIC = 887.46.
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(c) Piecewise linear model fit: β̂0 =

255.55, β̂1 = 0.46, β̂2 = −0.62,
ĈTP = 50.15 (Mar. 1992), and DIC
= 1263.50.

Figure 2.2: Observed data and the corresponding fitted curves (solid) for Barrow CFC-11
data, with a study period ranging from January of 1988 to September of 2010 (273 months
with t1 = 0, t2 = 1, . . . , t273 = 272). Estimated transitions are marked by solid vertical lines,
estimated τ by dot-dashed vertical lines, and estimated critical time points by dashed vertical
lines.

that a gradual transition is in progress from the beginning of the study period. However, careful

examination of the trajectory indicates apparently three phases within the study period: roughly

linear incoming and outgoing phases at the ends of the profile, with a continuous transition between

phases (Figure 2.2b). Model selection procedure also provides more support to the fit displayed in

Figure 2.2b than the bent-cable fit shown in Figure 2.2a (see Section 2.3 for detail). Therefore, it

is desirable to formulate a model that is flexible enough to characterize the transition phase more

accurately.

In practice, the quadratic function of the bent-cable model may lead to a wider or narrower

interval than what could possibly be necessary to adequately describe a transition phase (see Sec-

tion 2.1 for a discussion). In this study, we propose a generalization of the bent-cable model by

relaxing the assumption of the quadratic bend. Specifically, an additional transition parameter,

κ, is included in the bent-cable model to provide sufficient flexibility so that inference about the

transition zone (i.e. shape and width of the bend) can be data driven, rather than pre-assumed as

a specific type. The fit of the proposed model to the CFC-11 data is displayed in Figure 2.2b,
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the detail of which is presented in Section 2.3. As mentioned in Chapter 1, we will use the term

quadratic bent-cable to refer to the model Equations defined by (2.1) and (2.2), and generalized

bent-cable to refer to the proposed generalization of the quadratic bent-cable model.

The piecewise linear (broken-stick) model (Muggeo 2003) has been extensively utilized to

describe a continuous trend exhibiting an abrupt change over time (e.g. Bellera et al. 2008, Hall

et al. 2003). As an extremely sharp bend reduces the bent-cable to a piecewise linear model,

the former encompasses the latter as a limiting case. In fact, γ = 0 reduces the bent-cable to a

piecewise linear model for which

q(ti; τ, γ = 0) = (ti − τ)I{ti > τ}. (2.3)

When γ = 0, any sign change of the slope occurs at the point τ, the CTP for an abrupt transition.

In practice, the abruptness of change imposed by the piecewise linear model is unrealistic in many

applications where data exhibit a gradual transition over time. To illustrate, we fit the piecewise

linear model to the CFC-11 data as displayed in Figure 2.2c. A comparison of the fits of Figure 2.2

using a model selection criterion suggests that the generalized bent-cable model would be preferred

over the quadratic bent-cable and piecewise linear models in terms of the overall fit (see Section 2.3

for detail). Figure 2.2 also suggests that the estimates of the linear parameters β0, β1 and β2 largely

depend on the estimated transition, which as a whole determine the quality of the overall fit of a

model. Note that the research interest usually lies not only in quantifying the transition, but also in

the slopes (β1 and β1 + β2) of the incoming and outgoing phases (Muggeo 2003). Therefore, it is

important to describe a changepoint trajectory using a model that provides a superior fit overall. We

present more comparisons of these models in Sections 2.3 and 2.4, using real-world and simulated

data.

In Section 2.1, we introduce the generalized model and discuss some of its properties. The

model is then formulated under a Bayesian framework for statistical inference (Section 2.2). We

then apply our method to three data sets taken from environmental science and economics, and

discuss our findings in the context of scientific inquiry (Section 2.3). In Section 2.4, simulations

demonstrate (a) the flexibility of the generalized model, and (b) the importance of such flexibility
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in adequately characterizing a changepoint trajectory. We conclude in Section 2.5 by summarizing

our findings.

2.1 The Generalized Bent-Cable Model

For the types of data under consideration, consider a changepoint trajectory that comprises two

linear segments (incoming and outgoing) joined by a curved bend. Let the transition spans [τ1, τ2],

where τ1 = τ − γ1, τ2 = τ + γ2, τ1 < τ < τ2 and γ1, γ2 are both positive. To characterize the

trajectory, we define a continuously differentiable function as follows:

f (t; θ) =


β0 + β1t if t ≤ τ1

β0 + β1t + β2
(τ2−τ)(t−τ1)κ

(τ2−τ1)κ if τ1 ≤ t ≤ τ2

β0 + β1t + β2(t − τ) if t ≥ τ2

(2.4)

where θ = (β0, β1, β2, τ, γ, κ)′ and κ > 1. As written, the function is continuous both at t = τ1

and t = τ2. Note that the function is continuously differentiable if f ′(t; θ) exists and is itself a

continuous function. The left-hand and the right-hand derivatives of f (t; θ) at t = τ1 are both β1,

and therefore f ′(t; θ) is continuous at τ1. At t = τ2, the left-hand and the right-hand derivatives of

f (t; θ) are β1 + β2
κ(τ2−τ)
(τ2−τ1) and β1 + β2, respectively. In order for f ′(t; θ) to be continuous at t = τ2, we

must have

β1 + β2
κ(τ2 − τ)
(τ2 − τ1)

= β1 + β2,

which leads to the solution γ1 = (κ−1)γ2. Taking γ2 = γ, we have τ1 = τ− (κ−1)γ and τ2 = τ+γ.

Model (2.4) can then be written as

f (t; θ) =


β0 + β1t if t ≤ τ − (κ − 1)γ

β0 + β1t + β2
γ[t−τ+(κ−1)γ]κ

(κγ)κ if τ − (κ − 1)γ ≤ t ≤ τ + γ

β0 + β1t + β2(t − τ) if t ≥ τ + γ.

(2.5)

Note that (2.5) can also be written using β0, β1, β2, τ1, τ2 and κ, in which case γ and τ can be

obtained from γ = (τ2 − τ1)/κ and τ = [τ1 + (κ − 1)τ2]/κ, respectively.
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We can now formulate a changepoint regression model using Equation (2.5). Let ti be the ith

measurement occasion (i = 1, 2, . . . , n) and yi be the response at time ti. Note that the definition of

time includes a time scale and a time origin. We assume that t is chronological or calendar time,

with origin t1 = 0. We then model the response at time ti by the relationship

yi = f (ti; θ) + εi, (2.6)

where

f (ti; θ) = β0 + β1ti + β2 g(ti; τ, γ, κ), (2.7)

and

g(ti; τ, γ, κ) =
γ[ti − τ + (κ − 1)γ]κ

(κγ)κ
I{τ − (κ − 1)γ < ti ≤ τ + γ} + (ti − τ)I{ti > τ + γ}. (2.8)

Equations (2.6)-(2.8) constitute our generalized bent-cable model. Some properties of the proposed

model are presented below.

1. The generalized bent-cable function (2.7) is continuously differentiable when κ > 1.

2. The generalized bent-cable reduces to the quadratic bent-cable model when κ = 2, and to a

piecewise linear model when γ = 0, κ > 1 or γ > 0, κ = 1. Note that when γ > 0 and κ = 1,

Equation (2.8) reduces to g(ti; τ, γ, κ = 1) = (ti − τ)I{τ < ti ≤ τ + γ} + (ti − τ)I{ti > τ + γ} =

(ti−τ)I{ti > τ}. This leads to the piecewise linear function f (ti; θ) = β0+β1ti+β2(ti−τ)I(ti > τ).

3. As opposed to the quadratic model, τ for the generalized model is, in general, not the center

of the bend.

4. The width of the bend region is κγ. Thus, κ not only determines the shape of the bend, but

also controls the width of the transition zone. This is a desirable property of the general-

ized bent-cable model. For the quadratic model, [τ1, τ2] is determined by the underlying

assumption of a quadratic bend for the transition zone. As described earlier of this chap-

ter, this assumption forces τ and γ to be the center and half-width of the bend, respectively.

For example, the estimates τ̂ = 33.37 and γ̂ = 42.64 lead to τ̂2 = τ̂ + γ ≈ 76 for the fit

displayed in Figure 2.2a, which appears a reasonable estimate for the end of the transition
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period. However, the assumption of quadratic bend forces the starting point of the transition

to be τ̂1 = τ̂ − γ ≈ −9.3 (i.e. nine months before the start of the study, which is March 1987),

leading to a wider interval than what could possibly be necessary to adequately describe the

transition phase. As a consequence, the quadratic model failed to identify the apparent linear

incoming phase exhibited by the data. One way to overcome this problem is to consider an

adjusting factor c such that τ1 = τ−cγ. For the generalized model, k serves τ1 = τ− (κ−1)γ.

This also allows γ to take a value from a wider interval (i.e. a small/large value of γ can

be compensated by a large/small value of κ without affecting the width of the transition

zone), which may help to overcome computational difficulties in estimating the bent-cable

parameters as described by Chiu (2002).

5. The CTP for the generalized bend-cable model is τ − (κ − 1)γ + [−(β1
β2

)(κγ)κ−1]
1
κ−1 , which is

defined when the slope of the cable changes signs (i.e. β1 and β1 + β2 are of opposite signs).

Note that the concept of a CTP is meaningful only when the slope of the cable changes signs

(Chiu and Lockhart 2010).

2.2 Bayesian Inference

We consider a hierarchical modeling framework for Bayesian inference. We assume that εi’s in

Equation (2.6) are independent and identically normal with mean 0 and variance σ2. Our choices

of distributions for the random quantities allow us to write the generalized bent-cable model as

[yi|θ] ∼ N( f (ti; θ), σ2),[
β0|a01, a02

]
∼ N(a01, a02),

[
β1|a11, a12

]
∼ N(a11, a12),

[
β2|a21, a22

]
∼ N(a21, a22),

[τ|b11, b12] ∼ U(b11, b12),
[
γ|b21, b22

]
∼ U(b21, b22),

[κ|c1, c2] ∼ U(c1, c2),
[
σ−2|d1, d2

]
∼ G(d1, d2),

where N, U and G stand for normal, uniform and gamma distributions, respectively, and a’s, b’s,

c’s and d’s are the hyperparameters which are assumed known. The above specification can be
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modified to write the quadratic bent-cable and piecewise linear models. For example, we take

κ = 2 for the quadratic model, and θ = (β0, β1, β2, τ)′ and f (ti; θ) = β0 + β1ti + β2(ti − τ)I{ti > τ} for

the piecewise linear model.

For β0, β1, β2 and σ−2, we choose the hyperprior values that lead to fairly vague, minimally

informative priors: for normal, we take zero mean and a large variance (e.g. 103), and for gamma,

we take small values for the hyperparameters (e.g. d0 = d1 = 0.1). For κ, c1=1 and c2 = 3

or 4 could be reasonable to model many real-life data. Some remarks are required to explain

what would be a reasonable set of hyperprior values for τ and γ. An unbounded τ may lead to

a computational breakdown of the Markov chain Monte Carlo (MCMC) for Bayesian inference.

This can be explained from the definition of g(ti; τ, γ, κ) in Equation (2.8). We see that g(ti; τ, γ, κ)

is degenerate as τ → ∞, in which case f (ti; θ) approaches a straight line with intercept β0 and

slope β1. Moreover, as τ → 0, a small value of γ may also make g(ti; τ, γ, κ) degenerate (see

Chiu 2002 for detail). Therefore, informative priors could be necessary for τ and γ to overcome

computational difficulties. Since τ1 < τ < τ2 and γ play an important role in modeling the width

of the interval, a time-series plot of the data is useful to roughly determine (b11, b12) and (b21, b22)

for τ and γ, respectively. We have considered this approach for data analyses in Section 2.3. Note

that there is a software package “bentcableAR” (Chiu 2015) in R (R Core Team 2016) to fit the

quadratic model using frequentist estimation method, where it is highlighted that an estimation

algorithm may fail to converge with initial values that are unrefined guesses of the parameters. The

recommendation is to generate initial values for τ and γ using a grid-based procedure, based on

the deviance statistic (Chiu et al. 2006). This approach may also be used to roughly determine the

hyperprior values for τ and γ for Bayesian inference. Our simulation study (Section 2.4) reveals

that the Bayesian estimation is roughly robust if (a) b11 is a positive number, (b) b21 = 0, (c) b12

and b22 are some finite (could be large) upper bounds for τ and γ, respectively, and (d) the true τ

and γ fall in (b11, b12) and (b21, b22), respectively.

We have written our code in WinBUGS (Lunn et al. 2000) to generate MCMC samples for

Bayesian inference, which we subsequently analyzed using the “coda” package (Plummer et al.

2006) in R (R Core Team 2016). For simulation (Section 2.4), we generated data in R, and then
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used the “R2WinBUGS” package (Sturtz et al. 2005) to invoke WinBUGS from R for Bayesian

analysis.

2.3 Examples

Three data sets taken from the environmental science and economics are considered to demonstrate

the application of the generalized bent-cable model. We also fit the quadratic bent-cable and piece-

wise linear models to each data set, and use the deviance information criterion (DIC) (Spiegelhalter

et al. 2002) to compare the fits. In general, the minimum DIC estimates the model that offers the

best short-term predictions. Nevertheless, Spiegelhalter et al. (2002) suggest the following rule of

thumb: if ∆M = DICM − DICmin ≤ 2, then the minimum DIC model and model M deserve equal

consideration.

For each example, we construct two Markov chains each of 3,000,000 iterations to approximate

the posterior density (see Appendix Sections A1-A3 for WinBUGS and R codes). The Gelman-

Rubin statistic R (Gelman and Rubin 1992) is used to determine the burn-in and run length of the

chains (values of R substantially above 1 indicate lack of convergence; some authors suggest that

R < 1.1 is acceptable (Gelman and Shirley 2011)). For the examples presented in this article, the

initial 20,000 to 50,000 iterations are discarded as burn-in, depending on the mixing behavior of

the chains. The inferences are then based on every lth iteration of the chains (thinning), with l set

to a value between 100 and 500, depending on how fast the chain autocorrelation decays. For each

example, we obtain R < 1.05 for all the parameters and quantities of interest. We also consider

trace and density plots to diagnose the mixing of the chains.

Note that any function of the parameter vector θ = (β1, β2, τ, γ, κ)′ can be estimated using a

Markov chain. For example, the marginal posterior mean for τ1 can be approximated by τ̂1 =

1
N

∑N
j=1[τ( j) − (κ( j) − 1)γ( j)], where {θ( j), j = 1, 2, . . . ,N} is the MCMC output after discarding the

burn-in samples and thinning the chain. Similarly, the MCMC sample mean of f (ti; θ) at each

observed ti is regarded as the fitted value f̂ (ti; θ), and then the fitted curve is interpolated based on

the f̂ (ti; θ) values.

17



2.3.1 Example 1: Barrow CFC-11 Data

We present here analysis of the CFC-11 data described in Chapter 2. The study period ranges from

January of 1988 to September of 2010 (n = 273), and hence we take t1 = 0, t2 = 1, . . . , t273 = 272.

We then fit the bent-cable and piecewise linear models to these data. The lack of any trend in the

trace plots and no signs of multimodality in the density plots indicate good mixing of the chains

(see Appendix Section B.1).

Table 2.1: Barrow CFC-11 (in ppt) data analysis with a study period ranging from January
of 1988 to September of 2010 (273 months with t1 = 0, t2 = 1, . . . , t273 = 272) – posterior
summaries of the bent cable and piecewise linear parameters.

Generalized Bent-Cable Quadratic Bent-Cable Piecewise Linear
(DIC = 887.46) (DIC = 940.01) (DIC = 1263.50)

Posterior 95% credible Posterior 95% credible Posterior 95% credible
Parameter median interval median interval median interval
κ 1.258 (1.211, 1.340) − − − −

β0 252.300 (251.300, 253.200) 254.000 (252.700, 263.000) 255.600 (254.500, 256.600)
β1 0.729 (0.669, 0.809) 0.851 (0.644, 1.228) 0.462 (0.418, 0.504)
β2 −0.901 (−0.981,−0.842) −1.018 (−1.394,−0.811) −0.623 (−0.664,−0.580)
β1 + β2 −0.172 (−0.176,−0.169) −0.166 (−0.170,−0.163) −0.161 (−0.165,−0.157)
γ 68.550 (57.940, 78.670) 42.640 (33.730, 58.170) − −

τ 40.820 (38.120, 42.900) 33.370 (17.820, 42.080) − −

[τ1, τ2] [23.140, 109.355] − [−9.280, 75.990] − − −

CTP 60.939 (58.551, 63.398) 62.062 (60.223, 63.927) 50.090 (47.750, 52.880)
σ2 1.468 (1.245, 1.748) 1.799 (1.524, 2.140) 2.849 (2.418, 3.390)

The fits along with the estimates of the parameters are displayed in Figure 2.2, and numeri-

cal results are summarized in Table 2.1. We see that the estimated transitions (τ̂, τ̂1 and τ̂2) are

quite different for the three competing models. The DIC values for the quadratic, generalized

and piecewise linear fits are 940.01, 887.46 and 1263.50, respectively, suggesting that the fit of

the generalized model is superior to those of the quadratic and piecewise linear models for the

Barrow CFC-11 data. Therefore, we report here the key findings obtained from the generalized

bent-cable fit. The posterior medians for τ̂1 and τ̂2 are December 1989 (τ̂1 = 23.140) and Febru-

ary 1997 (τ̂2 = 109.355), respectively, suggesting a linear incoming phase during January 1988

- December 1989, followed by a transition between December 1989 and February 1997, and a

linear outgoing phase thereafter (February 1997 - September 2010). The average increase in CFC-
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11 was about 0.729 ppt for a one-month increase in the incoming phase (β̂1 = 0.729 with 95%

credible interval (0.669, 0.809)), and the average decrease was about 0.172 ppt in the outgoing

phase ( ̂β1 + β2 = −0.172 with 95% credible interval (−0.176,−0.169)). During the transition pe-

riod, CFC-11 went from increasing to decreasing around January 1993 (ĈTP = 60.939 with 95%

credible interval (58.551, 63.398) or (November 1992, April 1993)).

2.3.2 Example 2: Privately-owned Housing Units in the United States

Privately-owned homes completed in a month (in thousands of units) in the United States are given

in https://www.quandl.com/ (also available in R package “Quandl” (Raymond et al. 2016)).

We consider here time-series data from January of 2001 to December of 2008 (series 1) and from

June of 2006 to July of 2016 (series 2) to demonstrate another application of the bent-cable and

piecewise linear models. For series 1, n = 96 months with t1 = 0, t2 = 1, . . . , t96 = 95; and for

series 2, n = 122 months with t1 = 0, t2 = 1, . . . , t122 = 121. For computational convenience, the

monthly data are expressed in 100, 000’s of units. The trace and density plots of the parameters are

presented in Appendix Section B.2, which suggest no significant evidence of convergence issues.

The three fits (Figure 2.3) appear very similar for series 1: the estimates of the linear parameters

are identical and the estimates of the CTP are very close to each other. A comparison of DIC also

suggests that the three models agree closely in terms of the overall fit (DIC = 222.71, 222.76 and

221.38 for the generalized bent-cable, quadratic bent-cable and piecewise linear models, respec-

tively). Posterior summaries of the parameters are given in Table 2.2. We see that privately-owned

homes in the United States increased significantly since January 2001 (β̂1 = 0.08 with 95% credible

interval (0.07, 0.09)) before entering into a transition phase around March 2006 (τ̂1 ≈ 62). It took

about five months to complete the transition (τ̂1 ≈ 62 or March 2006, and τ̂2 ≈ 67 or August 2006),

during which privately-owned homes increased to a maximum around March 2006 (ĈTP ≈ 63 or

March 2006). After August 2006, privately-owned homes decreased significantly at the rate of

0.36 units (in 100, 000) per month ( ̂β1 + β2 ≈ −0.36 with 95% credible interval (−0.39,−0.33)).
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(a) Quadratic bent-cable fit: β̂0 =

14.93, β̂1 = 0.08, β̂2 = −0.44,
γ̂ = 2.38, τ̂ = 64.24 (May 2006),
τ̂1 = 61.78 (Feb. 2006), τ̂2 =

66.62 (Jul. 2006), ĈTP = 62.64
(Mar. 2006), and DIC = 222.76.
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(b) Generalized bent-cable fit: β̂0 =

14.93, β̂1 = 0.08, β̂2 = −0.44, κ̂ =

1.64, γ̂ = 3.05, τ̂ = 64.23 (May
2006), τ̂1 = 62.48 (Mar. 2006), τ̂2 =

67.34 (Aug. 2006), ĈTP = 62.90
(Mar. 2006), and DIC = 222.71.
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(c) Piecewise linear model fit: β̂0 =

14.93, β̂1 = 0.08, β̂2 = −0.44,
ĈTP = 64.08 (May 2006), and DIC
= 221.38.

Figure 2.3: Observed data and the corresponding fitted curves (solid) for housing data with
a study period ranging from January of 2001 to December of 2008 (series 1 for which t1 =

0, t2 = 1, . . . , t96 = 95). Estimated transitions are marked by solid vertical lines, estimated τ
by dot-dashed vertical lines, and estimated critical time points by dashed vertical lines.

Table 2.2: Housing data analysis with a study period ranging from January of 2001 to De-
cember of 2008 (series 1 for which t1 = 0, t2 = 1, . . . , t96 = 95) – posterior summaries of the
bent cable and piecewise linear parameters.

Generalized Bent-Cable Quadratic Bent-Cable Piecewise Linear
(DIC = 222.71) (DIC = 222.76) (DIC = 221.38)

Posterior 95% credible Posterior 95% credible Posterior 95% credible
Parameter median interval median interval median interval
κ 1.644 (1.022, 2.917) − − − −

β0 14.930 (14.570, 15.300) 14.930 (14.560, 15.300) 14.930 (14.570, 15.300)
β1 0.082 (0.073, 0.092) 0.082 (0.072, 0.092) 0.082 (0.072, 0.092)
β2 −0.438 (−0.471,−0.407) −0.439 (−0.472,−0.407) −0.435 (−0.467,−0.405)
β1 + β2 −0.356 (−0.388,−0.326) −0.357 (−0.389,−0.327) −0.353 (−0.384,−0.323)
γ 3.049 (0.165, 12.250) 2.378 (0.117, 6.350) − −

τ 64.230 (62.640, 65.740) 64.240 (62.710, 65.830) − −

[τ1, τ2] [62.480, 67.344] − [61.779, 66.618] − − −

CTP 62.908 (60.510, 64.987) 62.643 (60.243, 64.830) 64.080 (62.450, 65.650)
σ2 0.559 (0.422, 0.760) 0.560 (0.426, 0.764) 0.558 (0.425, 0.756)

For series 2, a comparison of DIC suggests that the two bent-cable models are virtually indis-

tinguishable in terms of the overall fit, and both are superior to the piecewise linear model (DIC

= 220.56, 220.01 and 301.02 for the generalized bent-cable, quadratic bent-cable and piecewise
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linear models, respectively; also see Figure 2.4). Posterior medians of the parameters also agree

closely for the bent-cable models (Table 2.3). As opposed to series 1, series 2 exhibits a dif-

ferent scenario: there was a significant decrease in privately-owned homes in the United States

around June 2006 - July 2007 (incoming phase, for which β̂1 = −0.40 with 95% credible in-

terval (−0.42,−0.36)), which followed by a transition phase until around March 2012 (τ̂2 ≈ 69

or March 2012), and a significant increase thereafter ( ̂β1 + β2 = 0.09 with 95% credible interval

(0.079, 0.095)). The number of privately-owned homes reached to a minimum around May 2011

(ĈTP ≈ 59 or May 2011).
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(a) Quadratic bent-cable fit: β̂0 =

20.25, β̂1 = −0.40, β̂2 = 0.48,
γ̂ = 28.18, τ̂ = 41.30 (Nov. 2009),
τ̂1 = 13.16 (Jul. 2007), τ̂2 = 69.50
(Mar. 2012), ĈTP = 59.38 (May
2011), and and DIC = 220.01.
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(b) Generalized bent-cable fit: β̂0 =

20.21, β̂1 = −0.40, β̂2 = 0.48,
κ̂ = 2.05, γ̂ = 27.73, τ̂ =

41.30 (Nov. 2009), τ̂1 = 12.26
(Jun. 2007), τ̂2 = 69.09 (Mar. 2012),
ĈTP = 59.23 (May 2011), and DIC
= 220.56.
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(c) Piecewise linear model fit: β̂0 =

19.25, β̂1 = −0.31, β̂2 = 0.38,
ĈTP = 46.12 (Apr. 2010), and DIC
= 301.02.

Figure 2.4: Observed data and the corresponding fitted curves (solid) for housing data with
a study period ranging from June of 2006 to July of 2016 (series 2 for which t1 = 0, t2 =

1, . . . , t122 = 121). Estimated transitions are marked by solid vertical lines, estimated τ by
dot-dashed vertical lines, and estimated critical time points by dashed vertical lines.

In summary, series 1 analyses demonstrate that the bent-cable and piecewise linear models

may perform equally well when data exhibit an abrupt change over time, whereas series 2 analyses

reveal that the bent-cable models can produce comparable but significantly superior fits compared

to the piecewise linear model (see Section 2.4 for a comparison of these models when data ex-

hibit an extremely sharp bend (i.e. broken-stick) over time). In terms of the trend in States during

January 2001 - July 2016, our findings can be summarized as follows: (a) a significant linear
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increase in privately-owned homes around January 2001 - March 2006, (b) a transition then oc-

curred around March 2006 - August 2006 when privately-owned homes took a downturn from an

increasing trend, (c) a significant decrease thereafter until around July 2007, (c) a transition then

occurred again around July 2007 - March 2012 when privately-owned homes took an upturn from

a decreasing trend, and (d) a significant increase thereafter until around July 2016.

Table 2.3: Housing data analysis with a study period ranging from June of 2006 to July of
2016 (series 2 for which t1 = 0, t2 = 1, . . . , t122 = 121) – posterior summaries of the bent cable
and piecewise linear parameters.

Generalized Bent-Cable Quadratic Bent-Cable Piecewise Linear
(DIC = 220.56) (DIC = 220.01) (DIC = 301.02)

Posterior 95% credible Posterior 95% credible Posterior 95% credible
Parameter median interval median interval median interval
κ 2.054 (1.742, 2.620) − − − −

β0 20.210 (19.800, 20.610) 20.250 (19.830, 20.630) 19.250 (18.680, 19.780)
β1 −0.396 (−0.419,−0.362) −0.397 (−0.420,−0.364) −0.306 (−0.330,−0.278)
β2 0.482 (0.448, 0.509) 0.484 (0.450, 0.509) 0.375 (0.352, 0.398)
β1 + β2 0.087 (0.079, 0.095) 0.087 (0.079, 0.095) 0.070 (0.060, 0.083)
γ 27.730 (23.170, 29.890) 28.180 (24.490, 29.900) − −

τ 41.300 (40.060, 43.960) 41.300 (40.070, 43.820) − −

[τ1, τ2] [12.260, 69.090] − [13.160, 69.500] − − −

CTP 59.226 (57.392, 60.599) 59.376 (57.741, 60.652) 46.120 (43.590, 49.780)
σ2 0.339 (0.265, 0.444) 0.335 (0.262, 0.438) 0.661 (0.518, 0.868)

2.4 Simulation

First, we supplement the motivation for our generalized bent-cable methodology with Scenario 1,

where we generate data from the generalized bent-cable model with (a) κ = 2 (quadratic bend),

(b) κ = 1.25, (c) κ = 3, and (d) γ = 0 (piecewise linear or broken stick). We then fit the bent-

cable and piecewise linear models to each of the simulated data sets, and compare the fits using

coverage probabilities and DIC (see below). Second, to assess the sensitivity of inferences to prior

specifications, we present Scenario 2, where the generalized bent-cable fits are compared using

different priors for γ (Scenario 2a) and τ (Scenario 2b).

In all the scenarios, we take n = 273 and ti = i − 1 for i = 1, 2, . . . , n. Model parameter values

were chosen to allow reasonable generalization and are given in Table 2.4. For each simulation,
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500 data sets were generated, and 5000 MCMC iterations after burn-in and thinning were used to

approximate posterior distributions per set. Posterior summaries were averaged over the 500 sets

for each parameters, and the coverage probability of 95% credible intervals (proportion of such

intervals out of 500 that capture the truth) was calculated. Letting M = G (generalized bent-cable),

Q (quadratic bent-cable) and B (broken stick or piecewise linear), we also defined a DIC-based

criterion for model comparison: pM = p1M + p2M, where p1M and p2M are the proportions of

model M fits out of 500 for which DICM = DICmin and DICM , DICmin but DICM − DICmin ≤ 2,

respectively, and DICmin = min{DICG,DICQ,DICB}. Note that pM is an estimate of approximately

how often model M is supported by the data (see Section 2.3 regarding the use of DIC for model

comparison).

2.4.1 Results for Scenario 1

Numerical results are summarized in Table 2.4. For Scenario 1a (quadratic bend), the two bent-

cable models perform well, and the results are comparable with respect to bias and coverage prob-

ability: averages of posterior medians are all close to the true parameter values, and coverage

probabilities are all reasonably close to the nominal 0.95. The DIC-based criterion suggests that

the quadratic model is supported by the data more often than the generalized model (pG = 0.626

and pQ = 0.808). This finding is not unexpected as the quadratic bent-cable is the true model

for Scenario 1a. Nevertheless, the performance of the generalized model in comparison with the

true model can be considered quite satisfactory. The performance of the piecewise linear model

is poor with respect to both coverage and the DIC-based criterion (p1B = pB = 0), suggesting its

inadequacy in characterizing gradual transition over time.

The generalized model performs well with respect to all the parameters when κ , 2 (Scenarios

1b and 1c). We see that the quadratic model can lead to very poor coverage when κ , 2: the

coverage probability ranges from 0 to 0.780 when κ = 1.25, and from 0 to 0.406 when κ = 3; we

also see that the parameters τ1 and τ2 are underestimated when κ = 1.25 (i.e. the transition zone is

shifted towards left when κ < 2), and overestimated when κ = 3 (i.e. the transition zone is shifted

towards right when κ > 2). Note that Example 1 of Section 2.3 supports the former statement

23



Table 2.4: Simulation results for scenario 1 with n = 273: table entries are average of 500
posterior medians of the parameters and coverage of 95% credible intervals; also pM = p1M +

p2M, where p1M and p2M are the proportions of model M fits out of 500 for which DICM =

DICmin and DICM , DICmin but DICM − DICmin ≤ 2, respectively.

Generalized Quadratic Piecewise
Bent-Cable Bent-Cable Linear

Scenario True Mean Coverage Mean Coverage Mean Coverage
Scenario 1a κ 2.00 2.003 0.944 − − − −

(quadratic β0 250.00 249.999 0.982 249.997 0.988 253.103 0.000
bend) β1 0.70 0.700 0.944 0.700 0.950 0.552 0.000

β2 −0.90 −0.900 0.940 −0.900 0.952 −0.740 0.000
τ1 30.00 29.869 0.934 30.003 0.946 − −

τ2 120.00 119.980 0.962 120.008 0.960 − −

CTP 100.00 99.996 0.956 100.004 0.946 83.543 0.000
σ2 0.10 0.101 0.958 0.101 0.958 2.111 0.000
p1M 0.344 − 0.656 − 0.000 −

pM 0.626 − 0.808 − 0.000 −

Scenario 1b κ 1.25 1.250 0.964 − − − −

β0 250.00 250.009 0.980 250.696 0.780 252.795 0.000
β1 0.70 0.699 0.938 0.835 0.388 0.504 0.000
β2 −0.90 −0.899 0.942 −1.028 0.526 −0.689 0.000
τ1 30.00 30.033 0.948 −2.879 0.000 − −

τ2 120.00 120.068 0.944 83.104 0.000 − −

CTP 62.94 62.914 0.952 67.005 0.000 54.055 0.000
σ2 0.10 0.101 0.944 0.609 0.000 1.990 0.000
p1M 1.000 − 0.000 − 0.000 −

pM 1.000 − 0.000 − 0.000 −

Scenario 1c κ 3.00 3.054 0.938 − − − −

β0 250.00 249.985 0.990 250.330 0.124 252.000 0.000
β1 0.70 0.701 0.940 0.681 0.000 0.621 0.000
β2 −0.90 −0.901 0.942 −0.883 0.000 −0.812 0.000
τ1 30.00 28.381 0.936 58.251 0.000 − −

τ2 120.00 119.904 0.954 125.088 0.000 − −

CTP 109.37 109.347 0.950 109.862 0.406 94.948 0.000
σ2 0.10 0.102 0.944 0.143 0.012 1.364 0.000
p1M 1.000 − 0.000 − 0.000 −

pM 1.000 − 0.000 − 0.000 −

Scenario 1d κ − 1.543 − − − − −

(broken β0 250.00 249.996 0.994 249.994 0.992 250.000 0.992
stick) β1 0.70 0.700 0.952 0.700 0.952 0.700 0.952

β2 −0.90 −0.900 0.954 −0.900 0.954 −0.900 0.952
τ1 − 74.384 − 73.965 − − −

τ2 − 76.663 − 76.036 − − −

CTP 75.00 75.334 0.992 75.579 0.586 75.006 0.956
σ2 0.10 0.102 0.940 0.102 0.946 0.102 0.946
p1M 0.220 − 0.164 − 0.616 −

pM 0.794 − 0.714 − 0.916 −
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about under-estimation of the transition parameters (Figure 2.2). The DIC-based criterion also

suggests clear superiority of the generalized model over the quadratic model for Scenarios 1b and

1c (p1G = pG = 1 and p1Q = pQ = 0). As indicated above, the piecewise linear model cannot

handle 1b and 1c data adequately (p1B = pB = 0).

We see satisfactory performance of the piecewise linear model when data exhibit a broken trend

(Scenario 1d in which the piecewise linear is the true model). In terms of bias and coverage prob-

ability, the piecewise linear model provides slightly more accurate estimates than those obtained

using the generalized model. Note that the quadratic model may lead to under coverage for CTP

when data exhibit an abrupt transition (coverage probability for CTP = 0.586). All these results

are reflected in the DIC-based criterion: pG = 0.794, pQ = 0.714 and pB = 0.916.

The above results demonstrate the flexibility of the generalized bent-cable model in character-

izing a continuous trend exhibiting a gradual change over time. Its performance in describing an

abrupt transition is also satisfactory, as demonstrated in Example 2 (Section 2.3) and Scenario 1d.

2.4.2 Results for Scenario 2

To assess the sensitivity of inferences to prior specifications for γ (Scenario 2a) and τ (Scenario 2b),

we considered Scenario 1b to generate data for which γ = 72 and τ = 48, and used N(0, 10000)

prior for each of β0, β1 and β2, U(0, 3) prior for κ and G(0.1, 0.1) prior for σ−2. For Scenario

2a, we assumed τ ∼ U(8, 88), and then compared the generalized bent-cable fits for (i) prior1:

γ ∼ U(0, 62), (ii) prior2: γ ∼ U(0, 67), (iii) prior3: γ ∼ U(0, 92), and (iv) prior4: γ ∼ U(0, 372).

Note that prior1 and prior2 exclude γ = 72, whereas prior3 and prior4 include γ = 72, with prior4

representing a relatively wider interval. Similarly, for Scenario 2b, we assumed γ ∼ U(0, 92), and

then compared the generalized bent-cable fits for (i) prior1: τ ∼ U(5, 40), (ii) prior2: τ ∼ U(5, 45),

(iii) prior3: τ ∼ U(8, 88), and (iv) prior4: τ ∼ U(3, 348).

Numerical results are summarized in Table 2.5. We see that prior1 and prior2 lead to very

poor coverage and relatively large bias for all the parameters, whereas prior3 and prior4 result in

satisfactory performance of our methodology (averages of posterior medians are all close to the

true parameter values, and coverage probabilities are all reasonably close to the nominal 0.95).
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Table 2.5: Simulation results for scenario 2 (sensitivity analysis to the prior specification for
γ and τ), with simulated γ = 72 and τ = 48, and n = 273: table entries are average of 500
posterior medians of the parameters and coverage of 95% credible intervals.

Prior1 Prior2 Prior3 Prior4
Scenario True Mean Coverage Mean Coverage Mean Coverage Mean Coverage
Scenario 2a κ 1.25 1.308 0.000 1.277 0.000 1.250 0.964 1.250 0.962
Prior1: β0 250.00 250.115 0.928 250.054 0.968 250.009 0.980 250.003 0.986
γ ∼ U(0, 62) β1 0.70 0.692 0.842 0.697 0.932 0.699 0.938 0.700 0.966
Prior2: β2 −0.90 −0.890 0.744 −0.895 0.902 −0.899 0.942 −0.900 0.966
γ ∼ U(0, 67) τ1 30.00 28.787 0.202 29.388 0.710 30.033 0.948 29.995 0.964
Prior3: τ2 120.00 109.666 0.000 114.623 0.000 120.068 0.944 120.090 0.960
γ ∼ U(0, 92) CTP 62.94 64.581 0.000 63.861 0.132 62.914 0.952 62.932 0.954
Prior4: σ2 0.10 0.127 0.210 0.108 0.866 0.101 0.944 0.101 0.958
γ ∼ U(0, 372)
Scenario 2b κ 1.25 1.357 0.000 1.270 0.410 1.250 0.964 1.250 0.972
Prior1: β0 250.00 248.229 0.006 249.185 0.000 250.009 0.980 250.004 0.992
τ ∼ U(5, 40) β1 0.70 0.917 0.000 0.772 0.000 0.699 0.938 0.700 0.950
Prior2: β2 −0.90 −1.113 0.000 −0.971 0.000 −0.899 0.942 −0.900 0.952
τ ∼ U(5, 45) τ1 30.00 16.990 0.000 26.203 0.000 30.033 0.948 30.000 0.930
Prior3: τ2 120.00 103.896 0.000 114.571 0.020 120.068 0.944 119.995 0.960
τ ∼ U(8, 88) CTP 62.94 67.307 0.000 64.057 0.252 62.914 0.952 62.939 0.954
Prior4: σ2 0.10 0.333 0.000 0.148 0.004 0.101 0.944 0.101 0.948
τ ∼ U(3, 348)

These results suggest that the Bayesian estimation is roughly robust when the true γ and τ fall

within the bounds of their respective uniform priors. Note that since both γ and τ are positive, a

reasonable choice of the lower bound of γ is 0, and that of τ is a small positive number.

2.5 Conclusion

Bent-cable regression is an appealing statistical tool to model changepoint data due to the model’s

flexibility while being parsimonious with greatly interpretable regression coefficients. The model

assumes a continuous function comprised of three segments connected together: two linear seg-

ments to describe the incoming and outgoing phases, joined by a quadratic function to model the

transition zone. As demonstrated in this study, the assumption of a quadratic bend is arguably

a restrictive assumption in modeling the transition zone for changepoint data. Specifically, this

assumption may lead to the starting and the end points of the transition period to be either un-

derestimated or overestimated. In this study, a generalization of the bent-cable model is proposed
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to overcome this problem. The generalized model retains the interpretability of the regression

coefficients, while improves the accuracy of locating the transition phase at the small cost of esti-

mating one additional parameter. As highlighted in Section 2, it provides sufficient flexibility so

that inference about the transition zone can be data driven, rather than pre-assumed as a specific

type.

The piecewise linear model has been heavily utilized to describe a continuous trend exhibiting

at least one abrupt change over time (Muggeo 2003). An issue with such modeling is that the

abrupt change at the point where the stick breaks may be artificial, with possibly a more natural

smoothness reflecting the trajectory change. The concept of bent-cable regression allows for a

balance between model interpretability and forcing the response to change its trajectory in such an

abrupt manner. The examples presented in this article demonstrate that the generalized bent-cable

model has the ability to adequately describe changepoint data that exhibit either an abrupt (series 1

housing data) or gradual (CFC-11 and series 2 housing data) transition over time. These examples

also demonstrate that the quadratic bent-cable and piecewise linear models can adequately char-

acterize profiles that obviously follow the shape of the quadratic and abrupt bend, respectively.

Note that despite the broken stick being the limiting case of the bent-cable, reliable inference for

the broken-stick transition may require that the stick trajectory be explicitly characterized by the

model; our simulations suggest that the piecewise linear model may provide slightly more accurate

estimates than those obtained using the generalized bent-cable model when data follow the shape

of the broken stick. Nevertheless, the generalized bent-cable model can be valuable in modeling

different types of changepoint data as demonstrated in this article.
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Chapter 3

CONCLUDING REMARKS AND FUTURE WORK

The focus of this study is to model changepoint data exhibiting three phases, where it rises

initially in a linear fashion, then goes through a curved transition phase, followed by a linear

decreasing trend. A piecewise linear model is a natural candidate to characterize such trajectories.

It consists of two linear components with opposite signs of slopes, and a breakpoint where the two

lines intersect. However, the assumption of a broken-stick trend is not realistic in many applications

(Chiu et al. 2005). A more general class of models considers a smooth transition (gradual or abrupt)

over time, and takes the piecewise linear model as a special case (e.g. Bacon and Watts 1971, Chiu

et al. 2006). In this study, we propose a smooth changepoint model by considering a substantial

extension of the bent-cable regression model of Chiu et al. (2006). The bent-cable model utilizes

a quadratic function to characterize the transition phase. Although a quadratic function can be

adequate to describe many changepoint trajectories, it also limits its applications to a broader

context. Our model utilizes a more flexible function to describe the transition phase, making it

a more general model in characterizing different types of changepoint data. Note that both the

quadratic bent-cable and the piecewise linear models are special cases of our generalized bent-

cable model. We explore the properties of the generalized model, and develop a Bayesian approach

for statistical inference. The proposed methodology is then demonstrated with applications to three

examples. This study reveals that the generalized model is more flexible than the quadratic model

in characterizing different types of changepoint trajectories; unless a trajectory obviously follows

the shape of a quadratic or broken-stick trend, it is highly likely that the generalized model will

produce a fit which is superior to those produced by the quadratic bent-cable and piecewise linear

models.
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3.1 Cautionary Remarks

Although our methodology provides a flexible approach to model changepoint trajectories with

greatly interpretable regression coefficients, some caution is required for the following reasons.

1. Unrefined choice of the hyperparameters for γ and τ may lead to poor mixing of a Markov

chain, or even a computational breakdown of the MCMC. Therefore, a reasonable set of

hyperprior values for γ and τ is necessary for good mixing of the Markov chains and con-

vergence to the stationary distribution; see Sections 2.2 and 2.4 for our recommendation.

2. Despite the quadratic bent-cable and broken-stick being the limiting case of the generalized

bent-cable, reliable inference for the broken-stick/quadratic transition may require that the

model explicitly acknowledge the stick/quadratic trajectory. Our simulations suggest that (a)

the piecewise linear model may provide slightly more accurate estimates than those obtained

using the generalized bent-cable model when data follow the shape of the broken-stick, and

(b) the quadratic bent-cable model may provide slightly more accurate estimates than those

obtained using the generalized bent-cable model when data follow the shape of the quadratic

bend. However, it is not straightforward to assess the exact shape of a transition. The

generalized bent-cable model can be useful in this regard, as it takes the quadratic bent-

cable and the piecewise linear models as special cases. Although the likelihood ratio method

of frequentist approach is not justified in Bayesian inference (i.e. testing H0:κ=2 using the

likelihood ratio method to check whether the quadratic model fits the data as well as the

generalized model), we can use DIC for model comparison: fit all the three models under

consideration and choose the one with the smallest DIC value.

3. The bent-cable methodology is intended for data that exhibit only one transition period over

time.
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3.2 Future Work

There is scope to extend the generalized bent-cable regression to a more general framework, pre-

sented as follows.

1. The bent-cable model was utilized to study longitudinal data. Our proposed generalized

bent-cable model can also be extended to study longitudinal data. For example, CFC-11 and

CFC-12 data might be considered for this purpose.

2. Khan et al. (2012) studied the existing longitudinal bent-cable model to handle spatial effects

where they allowed the error terms to be correlated across space in a hierarchical Bayesian

framework. It might be the another possibility to extend the generalized bent-cable by con-

sidering spatial effects into the model; that would be possible for CFC data and others that

comprise spatial data.

3.3 Publication

An article is published in the Journal of Applied Statistics (Khan and Kar 2017). We intend to

write one more article on the computational aspects and software implementation of the MCMC

algorithm, possibly in a journal in computational statistics.
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Appendix A

SOFTWARE IMPLEMENTATION

A.1 WinBUGS Model

A.1.1 WinBUGS Model for Generalized Bent-Cable Regression

model{

for (i in 1:n) {

q0[i] <-

((t[i] - tau + gam * (kappa - 1)) / (gam * kappa)) *

(1 - step(tau - gam * (kappa - 1) - t[i])) *

(1 - step(t[i] - tau - gam))

q1[i] <- pow(q0[i], kappa) * gam

q2[i] <- (t[i] - tau) * step(t[i] - tau - gam)

q[i] <- q1[i] + q2[i]

mu[i] <- beta0 + beta1 * t[i] + beta2 * q[i]

y[i] ∼ dnorm(mu[i], inv.s2)

}

beta0 ∼ dnorm(a01, a02)

beta1 ∼ dnorm(a11, a12)

beta2 ∼ dnorm(a21, a22)

tau ∼ dunif(b11, b12)

gam ∼ dunif(b21, b22)

kappa ∼ dunif(c1, c2)

inv.s2 ∼ dgamma(d1, d2)

s2 <- 1 / inv.s2

}

A.1.2 WinBUGS Model for Quadratic Bent-Cable Regression

model{

for (i in 1:n) {

q0[i] <-

((t[i] - tau + gam * (kappa - 1)) / (gam * kappa)) *

(1 - step(tau - gam * (kappa - 1) - t[i])) *

(1 - step(t[i] - tau - gam))

q1[i] <- pow(q0[i], kappa) * gam

q2[i] <- (t[i] - tau) * step(t[i] - tau - gam)
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q[i] <- q1[i] + q2[i]

mu[i] <- beta0 + beta1 * t[i] + beta2 * q[i]

y[i] ∼ dnorm(mu[i], inv.s2)

}

beta0 ∼ dnorm(a01, a02)

beta1 ∼ dnorm(a11, a12)

beta2 ∼ dnorm(a21, a22)

tau ∼ dunif(b11, b12)

gam ∼ dunif(b21, b22)

inv.s2 ∼ dgamma(d1, d2)

s2 <- 1 / inv.s2

}

A.1.3 WinBUGS Model for Piecewise Linear Regression

model {

for (i in 1:n) {

q[i] <- (t[i] - tau) * step(t[i] - tau)

mu[i] <- beta0 + beta1 * t[i] + beta2 * q[i]

y[i] ∼ dnorm(mu[i], inv.s2)

}

beta0 ∼ dnorm(a0, a1)

beta1 ∼ dnorm(b0, b1)

beta2 ∼ dnorm(c0, c1)

tau ∼ dunif(d0, d1)

inv.s2 ∼ dgamma(g0, g1)

s2 <- 1 / inv.s2

}

A.2 Barrow CFC-11 Data Analysis
The models given in Sections A.1.1 and A.1.3 can, in general, be used for Bayesian inference of
the generalized bent-cable, quadratic bent-cable and piecewise linear models. However, the “data”
and “initial values” components of WinBUGS have to be modified, depending on the data to be
analyzed. In this section, we present the data and initial values that we used in analyzing the
Barrow CFC-11 data.
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Data and Initial Values for the Generalized Bent-Cable Model

# Barrow CFC-11 Data

list(

y = c(252.765, 253.583, 254.68, 254.536, 252.981, 253.638, 253.764, 256.299, 258.14, 259.677,

263.172, 264.297, 263.477, 263.390, 263.763, 263.462, 263.156, 263.221, 263.601, 263.221,

265.145, 266.688, 267.909, 271.515, 272.458, 273.488, 270.130, 269.972, 269.742, 269.471,

269.183, 270.650, 270.194, 271.878, 273.478, 274.812, 275.219, 274.504, 273.822, 272.377,

272.328, 272.061, 272.219, 272.139, 272.276, 274.093, 274.917, 276.758, 276.696, 274.906,

275.193, 274.379, 274.818, 274.015, 273.628, 273.925, 273.724, 274.747, 275.154, 276.461,

276.215, 276.171, 275.877, 275.196, 274.542, 273.985, 273.817, 274.201, 273.885, 275.167,

275.624, 276.181, 276.254, 276.124, 277.264, 275.625, 273.167, 274.053, 273.264, 272.757,

272.804, 274.074, 274.263, 274.290, 272.839, 272.265, 272.530, 272.520, 272.526, 272.558,

271.769, 271.299, 272.071, 272.071, 272.071, 272.990, 272.521, 273.614, 272.928, 272.192,

271.672, 271.115, 269.800, 269.567, 269.261, 269.223, 270.284, 271.019, 271.849, 270.613,

269.987, 266.912, 266.856, 267.331, 266.935, 266.322, 267.856, 269.644, 268.863, 267.378,

267.232, 269.583, 269.060, 268.776, 268.490, 267.781, 266.610, 266.206, 266.188, 266.330,

266.486, 266.769, 265.790, 265.260, 264.970, 264.820, 264.640, 263.890, 263.410, 263.090,

263.010, 263.640, 264.320, 264.870, 265.140, 265.090, 264.580, 264.370, 264.430, 264.620,

264.120, 263.580, 263.300, 263.800, 263.880, 264.100, 263.980, 263.760, 263.560, 263.520,

262.950, 262.610, 261.950, 261.430, 261.070, 261.370, 261.670, 261.770, 262.100, 261.330,

261.220, 261.030, 260.520, 260.160, 259.720, 259.340, 258.930, 259.020, 259.220, 259.420,

259.310, 259.250, 258.980, 258.740, 258.780, 258.150, 257.620, 256.830, 256.610, 256.890,

257.060, 257.040, 256.880, 256.680, 256.550, 256.380, 256.160, 255.470, 254.950, 254.400,

254.130, 254.380, 254.630, 254.640, 254.680, 254.510, 254.340, 254.250, 253.970, 253.860,

253.350, 252.810, 252.210, 252.420, 252.420, 252.400, 252.190, 251.930, 251.880, 251.410,

251.100, 250.890, 250.080, 249.250, 249.030, 249.260, 249.530, 249.720, 249.590, 249.560,

249.270, 248.950, 248.680, 248.440, 248.050, 247.630, 247.260, 247.140, 247.370, 247.490,

247.220, 247.250, 247.240, 246.760, 246.380, 246.120, 245.650, 245.190, 245.270, 245.540,

245.800, 246.010, 245.860, 245.570, 245.410, 245.230, 244.540, 244.090, 244.010, 243.570,

243.280, 243.410, 243.630, 243.870, 243.860, 243.440, 243.320, 243.170, 242.910, 242.300,

241.870, 241.190,241.050),

t = c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,

90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,

128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,

146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,

164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,

182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,

200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217,

218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235,

236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253,

254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271,

272),

n = 273, a01 = 0, a02 = 0.001, a11 = 0, a12 = 0.001, a21 = 0, a22 = 0.001,

b11 = 5, b12 = 125, b21 = 0, b22 = 80, c1 = 1, c2 = 3, d1 = 0.1, d2 = 0.1

)

# Initial Values

list(beta0 = 255, beta1 = 0.64, beta2 = -0.81, tau = 50, gam = 50, kappa = 1.5, inv.s2 = 1)
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Data and Initial Values for the Quadratic Bent-Cable Model

# Barrow CFC-11 Data

list(

y = c(252.765, 253.583, 254.68, 254.536, 252.981, 253.638, 253.764, 256.299, 258.14, 259.677,

263.172, 264.297, 263.477, 263.390, 263.763, 263.462, 263.156, 263.221, 263.601, 263.221,

265.145, 266.688, 267.909, 271.515, 272.458, 273.488, 270.130, 269.972, 269.742, 269.471,

269.183, 270.650, 270.194, 271.878, 273.478, 274.812, 275.219, 274.504, 273.822, 272.377,

272.328, 272.061, 272.219, 272.139, 272.276, 274.093, 274.917, 276.758, 276.696, 274.906,

275.193, 274.379, 274.818, 274.015, 273.628, 273.925, 273.724, 274.747, 275.154, 276.461,

276.215, 276.171, 275.877, 275.196, 274.542, 273.985, 273.817, 274.201, 273.885, 275.167,

275.624, 276.181, 276.254, 276.124, 277.264, 275.625, 273.167, 274.053, 273.264, 272.757,

272.804, 274.074, 274.263, 274.290, 272.839, 272.265, 272.530, 272.520, 272.526, 272.558,

271.769, 271.299, 272.071, 272.071, 272.071, 272.990, 272.521, 273.614, 272.928, 272.192,

271.672, 271.115, 269.800, 269.567, 269.261, 269.223, 270.284, 271.019, 271.849, 270.613,

269.987, 266.912, 266.856, 267.331, 266.935, 266.322, 267.856, 269.644, 268.863, 267.378,

267.232, 269.583, 269.060, 268.776, 268.490, 267.781, 266.610, 266.206, 266.188, 266.330,

266.486, 266.769, 265.790, 265.260, 264.970, 264.820, 264.640, 263.890, 263.410, 263.090,

263.010, 263.640, 264.320, 264.870, 265.140, 265.090, 264.580, 264.370, 264.430, 264.620,

264.120, 263.580, 263.300, 263.800, 263.880, 264.100, 263.980, 263.760, 263.560, 263.520,

262.950, 262.610, 261.950, 261.430, 261.070, 261.370, 261.670, 261.770, 262.100, 261.330,

261.220, 261.030, 260.520, 260.160, 259.720, 259.340, 258.930, 259.020, 259.220, 259.420,

259.310, 259.250, 258.980, 258.740, 258.780, 258.150, 257.620, 256.830, 256.610, 256.890,

257.060, 257.040, 256.880, 256.680, 256.550, 256.380, 256.160, 255.470, 254.950, 254.400,

254.130, 254.380, 254.630, 254.640, 254.680, 254.510, 254.340, 254.250, 253.970, 253.860,

253.350, 252.810, 252.210, 252.420, 252.420, 252.400, 252.190, 251.930, 251.880, 251.410,

251.100, 250.890, 250.080, 249.250, 249.030, 249.260, 249.530, 249.720, 249.590, 249.560,

249.270, 248.950, 248.680, 248.440, 248.050, 247.630, 247.260, 247.140, 247.370, 247.490,

247.220, 247.250, 247.240, 246.760, 246.380, 246.120, 245.650, 245.190, 245.270, 245.540,

245.800, 246.010, 245.860, 245.570, 245.410, 245.230, 244.540, 244.090, 244.010, 243.570,

243.280, 243.410, 243.630, 243.870, 243.860, 243.440, 243.320, 243.170, 242.910, 242.300,

241.870, 241.190,241.050),

t = c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,

90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,

128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,

146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,

164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,

182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,

200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217,

218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235,

236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253,

254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271,

272),

n = 273, kappa = 2, a01 = 0, a02 = 0.001, a11 = 0, a12 = 0.001, a21 = 0, a22 = 0.001,

b11 = 5, b12 = 125, b21 = 0, b22 = 80, d1 = 0.1, d2 = 0.1

)

# Initial Values

list(beta0 = 255, beta1 = 0.64, beta2 = -0.81, tau = 50, gam = 50, inv.s2 = 1)
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Data and Initial Values for the Piecewise Linear Model

# Barrow CFC-11 Data

list(

y = c(252.765, 253.583, 254.68, 254.536, 252.981, 253.638, 253.764, 256.299, 258.14, 259.677,

263.172, 264.297, 263.477, 263.390, 263.763, 263.462, 263.156, 263.221, 263.601, 263.221,

265.145, 266.688, 267.909, 271.515, 272.458, 273.488, 270.130, 269.972, 269.742, 269.471,

269.183, 270.650, 270.194, 271.878, 273.478, 274.812, 275.219, 274.504, 273.822, 272.377,

272.328, 272.061, 272.219, 272.139, 272.276, 274.093, 274.917, 276.758, 276.696, 274.906,

275.193, 274.379, 274.818, 274.015, 273.628, 273.925, 273.724, 274.747, 275.154, 276.461,

276.215, 276.171, 275.877, 275.196, 274.542, 273.985, 273.817, 274.201, 273.885, 275.167,

275.624, 276.181, 276.254, 276.124, 277.264, 275.625, 273.167, 274.053, 273.264, 272.757,

272.804, 274.074, 274.263, 274.290, 272.839, 272.265, 272.530, 272.520, 272.526, 272.558,

271.769, 271.299, 272.071, 272.071, 272.071, 272.990, 272.521, 273.614, 272.928, 272.192,

271.672, 271.115, 269.800, 269.567, 269.261, 269.223, 270.284, 271.019, 271.849, 270.613,

269.987, 266.912, 266.856, 267.331, 266.935, 266.322, 267.856, 269.644, 268.863, 267.378,

267.232, 269.583, 269.060, 268.776, 268.490, 267.781, 266.610, 266.206, 266.188, 266.330,

266.486, 266.769, 265.790, 265.260, 264.970, 264.820, 264.640, 263.890, 263.410, 263.090,

263.010, 263.640, 264.320, 264.870, 265.140, 265.090, 264.580, 264.370, 264.430, 264.620,

264.120, 263.580, 263.300, 263.800, 263.880, 264.100, 263.980, 263.760, 263.560, 263.520,

262.950, 262.610, 261.950, 261.430, 261.070, 261.370, 261.670, 261.770, 262.100, 261.330,

261.220, 261.030, 260.520, 260.160, 259.720, 259.340, 258.930, 259.020, 259.220, 259.420,

259.310, 259.250, 258.980, 258.740, 258.780, 258.150, 257.620, 256.830, 256.610, 256.890,

257.060, 257.040, 256.880, 256.680, 256.550, 256.380, 256.160, 255.470, 254.950, 254.400,

254.130, 254.380, 254.630, 254.640, 254.680, 254.510, 254.340, 254.250, 253.970, 253.860,

253.350, 252.810, 252.210, 252.420, 252.420, 252.400, 252.190, 251.930, 251.880, 251.410,

251.100, 250.890, 250.080, 249.250, 249.030, 249.260, 249.530, 249.720, 249.590, 249.560,

249.270, 248.950, 248.680, 248.440, 248.050, 247.630, 247.260, 247.140, 247.370, 247.490,

247.220, 247.250, 247.240, 246.760, 246.380, 246.120, 245.650, 245.190, 245.270, 245.540,

245.800, 246.010, 245.860, 245.570, 245.410, 245.230, 244.540, 244.090, 244.010, 243.570,

243.280, 243.410, 243.630, 243.870, 243.860, 243.440, 243.320, 243.170, 242.910, 242.300,

241.870, 241.190,241.050),

t = c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,

90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,

128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,

146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,

164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,

182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,

200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217,

218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235,

236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253,

254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271,

272),

n = 273, a0 = 0, a1 = 0.001, b0 = 0, b1 = 0.001, c0 = 0, c1 = 0.001, d0 = 5, d1 = 125, g0 = 0.1, g1 = 0.1

)

# Initial Values

list(beta0 = 255, beta1 = 0.64, beta2 = -0.81, tau = 50, inv.s2 = 1)
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A.3 Analysis of the MCMC Samples

The MCMC samples generated by the CODA output from the “Sample Monitor Tool” in Win-
BUGS are saved in external text files, which are subsequently analyzed using the “coda” package
(Plummer et al. 2006) in R (R Core Team 2016). In this section, we present R codes to analyze the
MCMC samples.

library(coda)

##################################################

CTP <- function(b1, b2, tau, gam, kappa = NULL) {

if (!is.null(kappa)) {

ctp <- tau - gam * (kappa - 1) + (-((kappa * gam) ˆ (kappa - 1)) * (b1 / b2)) ˆ

(1 / (kappa - 1))

} else{

ctp <- tau - gam - (2 * b1 * gam) / b2

}

return(ctp)

}

##################################################

llik <- function(theta, y, t) {

b0 <- theta["b0"]

b1 <- theta["b1"]

b2 <- theta["b2"]

gam <- theta["gam"]

tau <- theta["tau"]

kappa <- as.numeric(ifelse(is.na(theta["kappa"]), 2, theta["kappa"]))

s2 <- theta["s2"]

tau1 <- tau - (kappa - 1) * gam

tau2 <- tau + gam

q0 <- gam * ((t - tau + (kappa - 1) * gam) / (kappa * gam)) ˆ kappa

q1 <- t - tau

qq <- c(q0[t > tau1 & t <= tau2], q1[t > tau2])

qq <- c(rep(0, (length(t) - length(qq))), qq)

f <- b0 + b1 * t + b2 * qq

log.lik <- sum(dnorm(y, mean = f, sd = sqrt(s2), log = T))

return(log.lik)

}

##################################################

llik.b <- function(theta, y, t) {

b0 <- theta["b0"]

b1 <- theta["b1"]

b2 <- theta["b2"]

tau <- theta["tau"]

s2 <- theta["s2"]

q <- (t - tau) * ifelse(t >= tau, 1, 0)

f <- b0 + b1 * t + b2 * q

log.lik <- sum(dnorm(y, mean = f, sd = sqrt(s2), log = T))

return(log.lik)

}
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##################################################

q.cable <- function(alp, t) {

gam <- alp["gam"]

tau <- alp["tau"]

kappa <- alp["kappa"]

tau1 <- tau - (kappa - 1) * gam

tau2 <- tau + gam

q0 <- gam * ((t - tau + (kappa - 1) * gam) / (kappa * gam)) ˆ kappa

q1 <- t - tau

qq <- c(q0[t > tau1 & t <= tau2], q1[t > tau2])

qq <- c(rep(0, (length(t) - length(qq))), qq)

return(qq)

}

##################################################

f.cable <- function(theta, t) {

b <- c(theta["b0"], theta["b1"], theta["b2"])

kappa <- as.numeric(ifelse(is.na(theta["kappa"]), 2, theta["kappa"]))

alp <- c(theta["gam"], theta["tau"], kappa)

names(alp)[3] <- "kappa"

q <- q.cable(alp, t)

f <- b[1] + b[2] * t + b[3] * q

return(f)

}

##################################################

f.cable.b <- function(theta, t) {

q <- (t - theta["tau"]) * ifelse(t >= theta["tau"], 1, 0)

f <- theta["b0"] + theta["b1"] * t + theta["b2"] * q

return(f)

}

##################################################

f.cable.post <- function(mcmc.sample1, t) {

f <- apply(mcmc.sample1, 1, f.cable, t = t)

f.post <- apply(f, 1, quantile, probs = c(0.025, 0.5, 0.975))

f.med <- f.post[2, ]

f.lower <- f.post[1, ]

f.upper <- f.post[3, ]

return(list(f.med = f.med, f.lower = f.lower, f.upper = f.upper))

}

##################################################

f.cable.post.b <- function(mcmc.sample1, t) {

f <- apply(mcmc.sample1, 1, f.cable.b, t = t)

f.post <- apply(f, 1, quantile, probs = c(0.025, 0.5, 0.975))

f.med <- f.post[2, ]

f.lower <- f.post[1, ]

f.upper <- f.post[3, ]

return(list(f.med = f.med, f.lower = f.lower, f.upper = f.upper))

}

##################################################

DIC <- function(y, t, theta, mcmc.sample1) {

Dhat <- -2 * llik(theta, y, t)

Dbar <- mean(-2 * apply(mcmc.sample1, 1, llik, y = y, t = t))
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pD <- Dbar - Dhat

DIC.val <- Dbar + pD

return(DIC.val)

}

##################################################

DIC.b <- function(y, t, theta, mcmc.sample1) {

Dhat <- -2 * llik.b(theta, y, t)

Dbar <- mean(-2 * apply(mcmc.sample1, 1, llik.b, y = y, t = t))

pD <- Dbar - Dhat

DIC.val <- Dbar + pD

return(DIC.val)

}

##################################################

# The following function will produce posterior

# summaries.

# model = "G" (generalized bent-cable),

# "Q" (quadratic bent-cable), or

# "B" (piecewise linear).

# If time is calender time, give the starting date

# and the end date to produce a time series plot

# for the fit.

##################################################

post.summary <- function(y, t, chain1, chain2, burn, thin, model,

dic = FALSE, start.date = NULL, end.date = NULL,

fit = TRUE, density = TRUE, trace = TRUE,

xlabel = NULL, ylabel = NULL) {

if (model == "B") {

sam10 <- cbind(chain1, out.slope = chain1[, 2] + chain1[, 3])

sam20 <- cbind(chain2, out.slope = chain2[, 2] + chain2[, 3])

}

if (model == "G" || model == "Q") {

if (model == "G") {

tau1.dat1 <- chain1[, "tau"] - (chain1[, "kappa"] - 1) * chain1[, "gam"]

tau2.dat1 <- chain1[, "tau"] + chain1[, "gam"]

ctp.dat1 <- CTP(chain1[, "b1"], chain1[, "b2"], chain1[, "tau"],

chain1[, "gam"], chain1[, "kappa"])

tau1.dat2 <- chain2[, "tau"] - (chain2[, "kappa"] - 1) * chain2[, "gam"]

tau2.dat2 <- chain2[, "tau"] + chain2[, "gam"]

ctp.dat2 <- CTP(chain2[, "b1"], chain2[, "b2"], chain2[, "tau"],

chain2[, "gam"], chain2[, "kappa"])

} else{

tau1.dat1 <- chain1[, "tau"] - chain1[, "gam"]

tau2.dat1 <- chain1[, "tau"] + chain1[, "gam"]

ctp.dat1 <- CTP(chain1[, "b1"], chain1[, "b2"], chain1[, "tau"],

chain1[, "gam"])

tau1.dat2 <- chain2[, "tau"] - chain2[, "gam"]

tau2.dat2 <- chain2[, "tau"] + chain2[, "gam"]

ctp.dat2 <- CTP(chain2[, "b1"], chain2[, "b2"], chain2[, "tau"],

chain2[, "gam"])

}

sam1 <- cbind(chain1, out.slope = (chain1[, "b1"] + chain1[, "b2"]),
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tau1 = tau1.dat1, tau2 = tau2.dat1, ctp = ctp.dat1)

na.sam1 <- which(is.na(sam1), arr.ind = TRUE)[, 1]

inf.sam1 <- which(is.infinite(sam1), arr.ind = TRUE)[, 1]

indx.sam1 <- unique(c(na.sam1, inf.sam1))

sam2 <- cbind(chain2, out.slope = (chain2[, "b1"] + chain2[, "b2"]),

tau1 = tau1.dat2, tau2 = tau2.dat2, ctp = ctp.dat2)

na.sam2 <- which(is.na(sam2), arr.ind = TRUE)[, 1]

inf.sam2 <- which(is.infinite(sam2), arr.ind = TRUE)[, 1]

indx.sam2 <- unique(c(na.sam2, inf.sam2))

indx.sam <- unique(c(indx.sam1, indx.sam2))

if (length(indx.sam) > 0) {

sam10 <- sam1[-indx.sam, ]

sam20 <- sam2[-indx.sam, ]

} else{

sam10 <- sam1

sam20 <- sam2

}

}

sam11 <- sam10[(burn + 1):nrow(sam10), ]

sam12 <- sam11[(1:thin == thin), ]

sam21 <- sam20[(burn + 1):nrow(sam20), ]

sam22 <- sam21[(1:thin == thin), ]

mcmc.sam <- mcmc.list(mcmc(sam12), mcmc(sam22))

sum.coda <- summary(mcmc.sam)

sum.stat <- cbind(mean = sum.coda[1]$statistics[, 1],

median = sum.coda[2]$quantiles[, 3], SD = sum.coda[1]$statistics[, 2],

lower.95 = sum.coda[2]$quantiles[, 1],upper.95 = sum.coda[2]$quantiles[, 5]

)

if (!is.null(start.date)) {

if (model == "B") {

transition.date <- sum.stat[c("tau"), ]

mean.date <-

as.Date(ceiling(transition.date[1] / 12 * 365), origin = start.date)

median.date <-

as.Date(ceiling(transition.date[2] / 12 * 365), origin = start.date)

lower.date <-

as.Date(ceiling(transition.date[4] / 12 * 365), origin = start.date)

upper.date <-

as.Date(ceiling(transition.date[5] / 12 * 365), origin = start.date)

transition.date1 <-

data.frame(mean.date, median.date, lower.date, upper.date)

rownames(transition.date1) <- "tau"

} else{

transition.date <- sum.stat[c("tau", "tau1", "tau2", "ctp"), ]

mean.date <-

as.Date(ceiling(transition.date[, 1] / 12 * 365), origin = start.date)

median.date <-

as.Date(ceiling(transition.date[, 2] / 12 * 365), origin = start.date)

lower.date <-

as.Date(ceiling(transition.date[, 4] / 12 * 365), origin = start.date)

upper.date <-
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as.Date(ceiling(transition.date[, 5] / 12 * 365), origin = start.date)

transition.date1 <-

data.frame(mean.date, median.date, lower.date, upper.date)

}

}

mcmc.sam0 <- mcmc.list(mcmc(sam12[, 1:ncol(chain1)]), mcmc(sam22[, 1:ncol(chain2)]))

R <- gelman.diag(mcmc.sam0)

mcmc.sample1 <- rbind(sam12, sam22)

theta <- sum.stat[, 2]

dic0 <- NA

if (dic) {

if (model == "B") {

dic0 <- DIC.b(y, t, theta, mcmc.sample1)

} else{

dic0 <- DIC(y, t, theta, mcmc.sample1)

}

}

if (trace) {

x11()

if (model == "G") {

par(mfrow = c(3, 3))

plot(mcmc.sam0, trace = T, density = F, auto.layout = F)

}

if (model == "Q" || model == "B") {

par(mfrow = c(2, 3))

plot(mcmc.sam0, trace = T, density = F, auto.layout = F)

}

}

if (density) {

x11()

if (model == "G") {

par(mfrow = c(3, 3))

plot(mcmc.sam0, trace = F, density = T, auto.layout = F)

}

if (model == "Q" || model == "B") {

par(mfrow = c(2, 3))

plot(mcmc.sam0, trace = F, density = T, auto.layout = F)

}

}

if (fit) {

if (model == "B") {

post.med <- apply(mcmc.sample1, 2, median)

tau <- post.med["tau"]

f.post <- f.cable.post.b(mcmc.sample1, t)

f.med <- f.post$f.med

f.lower <- f.post$f.lower

f.upper <- f.post$f.upper

x11()

if (!is.null(start.date)) {

start.y <- as.numeric(substr(start.date, 1, 4))

start.m <- as.numeric(substr(start.date, 6, 7))
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end.y <- as.numeric(substr(end.date, 1, 4))

end.m <- as.numeric(substr(end.date, 6, 7))

plot(ts(f.med, frequency = 12, start = c(start.y, start.m), end = c(end.y, end.m)),

ylim = c((min(min(f.med), min(y)) - 1), (max(max(f.med), max(y)) + 1)),

col = 1, lty = 1, ylab = ylabel, xlab = xlabel)

lines(ts(y, frequency = 12, start = c(start.y, start.m), end = c(end.y, end.m)),

lty = 0, type = "p", col = "grey50")

abline(v = (start.y + (start.m - 1) / 12 + tau / 12),

lty = "longdash", col = 1, lwd = 2)

} else{

plot(t, y, lty = 3, col = "grey50", ylim = c(min(y), max(y)),

ylab = ylabel, xlab = xlabel)

lines(t, f.med, type = "l")

abline(v = tau, lty = "dotdash", col = 1, lwd = 2)

}

} else{

post.med <- apply(mcmc.sample1, 2, median)

tau <- post.med["tau"]

tau1 <- post.med["tau1"]

tau2 <- post.med["tau2"]

ctp <- post.med["ctp"]

f.post <- f.cable.post(mcmc.sample1, t)

f.med <- f.post$f.med

f.lower <- f.post$f.lower

f.upper <- f.post$f.upper

x11()

if (!is.null(start.date)) {

start.y <- as.numeric(substr(start.date, 1, 4))

start.m <- as.numeric(substr(start.date, 6, 7))

end.y <- as.numeric(substr(end.date, 1, 4))

end.m <- as.numeric(substr(end.date, 6, 7))

plot(ts(f.med, frequency = 12, start = c(start.y, start.m), end = c(end.y, end.m)),

ylim = c((min(min(f.med), min(y)) - 1), (max(max(f.med), max(y)) + 1)),

col = 1, lty = 1, ylab = ylabel, xlab = xlabel)

lines(ts(y, frequency = 12, start = c(start.y, start.m), end = c(end.y, end.m)),

lty = 0, type = "p", col = "grey50")

abline(v = (start.y + (start.m - 1) / 12 + tau1 / 12),

lty = 1, col = 1, lwd = 2)

abline(v = (start.y + (start.m - 1) / 12 + tau2 / 12),

lty = 1, col = 1, lwd = 2)

abline(v = (start.y + (start.m - 1) / 12 + tau / 12),

lty = "dotdash", col = 1, lwd = 2)

abline(v = (start.y + (start.m - 1) / 12 + ctp / 12),

lty = "longdash", col = 1, lwd = 2)

} else{

plot(t, y, lty = 3, col = "grey50", ylim = c(min(y), max(y)),

ylab = ylabel, xlab = xlabel)

lines(t, f.med, type = "l")

abline(v = tau1, lty = 1, col = 1, lwd = 2)

abline(v = tau2, lty = 1, col = 1, lwd = 2)

abline(v = tau, lty = "dotdash", col = 1, lwd = 2)
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abline(v = ctp, lty = "longdash", col = 1, lwd = 2)

}

}

}

if (!is.null(start.date)) {

return(list(posterior.summary = sum.stat, transition.date = transition.date1,

gelman.rubin = R, DIC = dic0))

} else{

return(list(posterior.summary = sum.stat, gelman.rubin = R, DIC = dic0))

}

}
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Below, we present the application of the function “post.summary()” to obtain posterior summaries
of the parameters for the CFC-11 data.

##################################################

# CFC-11: Generalized Model

##################################################

b0.dat1 <- read.table("c://generalized/b0-1.txt")[, 2]

b1.dat1 <- read.table("c://generalized/b1-1.txt")[, 2]

b2.dat1 <- read.table("c://generalized/b2-1.txt")[, 2]

kappa.dat1 <- read.table("c://generalized/kappa -1.txt")[, 2]

s2.dat1 <- read.table("c://generalized/s2-1.txt")[, 2]

gam.dat1 <- read.table("c://generalized/gam-1.txt")[, 2]

tau.dat1 <- read.table("c://generalized/tau-1.txt")[, 2]

chain1 <- cbind(b0 = b0.dat1, b1 = b1.dat1, b2 = b2.dat1,

gam = gam.dat1, tau = tau.dat1, kappa = kappa.dat1, s2 = s2.dat1)

b0.dat2 <- read.table("c://generalized/b0-2.txt")[, 2]

b1.dat2 <- read.table("c://generalized/b1-2.txt")[, 2]

b2.dat2 <- read.table("c://generalized/b2-2.txt")[, 2]

kappa.dat2 <- read.table("c://generalized/kappa -2.txt")[, 2]

s2.dat2 <- read.table("c://generalized/s2-2.txt")[, 2]

gam.dat2 <- read.table("c://generalized/gam-2.txt")[, 2]

tau.dat2 <- read.table("c://generalized/tau-2.txt")[, 2]

chain2 <- cbind(b0 = b0.dat2, b1 = b1.dat2, b2 = b2.dat2,

gam = gam.dat2, tau = tau.dat2, kappa = kappa.dat2, s2 = s2.dat2)

cfc11 <- read.csv("c://CFC-11.csv", header = T)

y <- c(cfc11[, "barrow"])

t <- 0:(length(y) - 1)

burn <- 40000

thin <- 200

start.date <- "1988-01-01"

end.date <- "2010-09-01"

post.summary(y, t, chain1, chain2, burn, thin, model = "G",

dic = TRUE, start.date = start.date, end.date = end.date,

fit = TRUE, density = TRUE, trace = TRUE, xlabel = "Time",

ylabel = "CFC-11 concentration (in ppt)")

$posterior.summary

mean median SD lower.95 upper.95

b0 252.3059764 252.30000 0.492354904 251.30000 253.20000

b1 0.7327021 0.72880 0.043253385 0.66910 0.80860

b2 -0.9051533 -0.90130 0.043144413 -0.98090 -0.84150

gam 68.5643003 68.55000 5.446403719 57.94000 78.67000

tau 40.7067581 40.82000 1.413907161 38.11975 42.90000

kappa 1.2621341 1.25800 0.033564725 1.21100 1.34000

s2 1.4755551 1.46800 0.128179242 1.24500 1.74800

out.slope -0.1724513 -0.17240 0.001979497 -0.17640 -0.16860

tau1 22.8949471 23.14051 1.910531261 19.00844 25.35122

tau2 109.2710584 109.35500 5.738373598 97.68950 119.74000

ctp 60.9432303 60.93920 1.210756079 58.55082 63.39859
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$transition.date

mean.date median.date lower.date upper.date

tau 1991-05-24 1991-05-27 1991-03-06 1991-07-29

tau1 1989-11-28 1989-12-05 1989-08-02 1990-02-11

tau2 1997-02-06 1997-02-09 1996-02-20 1997-12-22

ctp 1993-01-28 1993-01-28 1992-11-16 1993-04-13

$gelman.rubin

Potential scale reduction factors:

Point est. Upper C.I.

b0 1 1

b1 1 1

b2 1 1

gam 1 1

tau 1 1

kappa 1 1

s2 1 1

Multivariate psrf

1

$DIC

[1] 887.4567

##################################################

# CFC-11: Quadratic Model

##################################################

b0.dat1 <- read.table("c://quadratic/b0-1.txt")[, 2]

b1.dat1 <- read.table("c://quadratic/b1-1.txt")[, 2]

b2.dat1 <- read.table("c://quadratic/b2-1.txt")[, 2]

s2.dat1 <- read.table("c://quadratic/s2-1.txt")[, 2]

gam.dat1 <- read.table("c://quadratic/gam-1.txt")[, 2]

tau.dat1 <- read.table("c://quadratic/tau-1.txt")[, 2]

chain1 <- cbind(b0 = b0.dat1, b1 = b1.dat1, b2 = b2.dat1,

gam = gam.dat1, tau = tau.dat1, s2 = s2.dat1)

b0.dat2 <- read.table("c://quadratic/b0-2.txt")[, 2]

b1.dat2 <- read.table("c://quadratic/b1-2.txt")[, 2]

b2.dat2 <- read.table("c://quadratic/b2-2.txt")[, 2]

s2.dat2 <- read.table("c://quadratic/s2-2.txt")[, 2]

gam.dat2 <- read.table("c://quadratic/gam-2.txt")[, 2]

tau.dat2 <- read.table("c://quadratic/tau-2.txt")[, 2]

chain2 <- cbind(b0 = b0.dat2, b1 = b1.dat2, b2 = b2.dat2,

gam = gam.dat2, tau = tau.dat2, s2 = s2.dat2)

cfc11 <- read.csv("c://CFC-11.csv", header = T)

y <- c(cfc11[, "barrow"])

t <- 0:(length(y) - 1)

burn <- 50000
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thin <- 100

start.date <- "1988-01-01"

end.date <- "2010-09-01"

post.summary(y, t, chain1, chain2, burn, thin, model = "Q",

dic = TRUE, start.date = start.date, end.date = end.date,

fit = TRUE, density = TRUE, trace = TRUE, xlabel = "Time",

ylabel = "CFC-11 concentration (in ppt)")

$posterior.summary

mean median SD lower.95 upper.95

b0 254.9978186 254.00000 2.686585089 252.70000 263.0000000

b1 0.8716898 0.85120 0.153684854 0.64420 1.2280000

b2 -1.0380954 -1.01800 0.153607030 -1.39400 -0.8107975

gam 43.4385058 42.64000 6.440235096 33.73000 58.1702500

tau 32.5672025 33.37000 6.371176546 17.82000 42.0800000

s2 1.8075426 1.79900 0.157232124 1.52400 2.1400000

out.slope -0.1664056 -0.16640 0.001669214 -0.16970 -0.1630000

tau1 -10.8713032 -9.28000 12.705561746 -40.31025 7.8900000

tau2 76.0057083 75.99000 1.644912785 72.83000 79.3100000

ctp 62.0621859 62.06188 0.942155157 60.22324 63.9267595

$transition.date

mean.date median.date lower.date upper.date

tau 1990-09-18 1990-10-13 1989-06-27 1991-07-04

tau1 1987-02-05 1987-03-25 1984-08-23 1988-08-28

tau2 1994-05-01 1994-05-01 1994-01-25 1994-08-10

ctp 1993-03-03 1993-03-03 1993-01-06 1993-04-29

$gelman.rubin

Potential scale reduction factors:

Point est. Upper C.I.

b0 1.03 1.04

b1 1.00 1.01

b2 1.00 1.01

gam 1.00 1.01

tau 1.00 1.01

s2 1.00 1.00

Multivariate psrf

1

$DIC

[1] 940.0075

##################################################

# CFC-11: Piecewise Linear Model

##################################################

b0.dat1<-read.table("e://piecewise/b0-1.txt")[,2]

b1.dat1<-read.table("e://piecewise/b1-1.txt")[,2]

b2.dat1<-read.table("e://piecewise/b2-1.txt")[,2]

45



s2.dat1<-read.table("e://piecewise/s2-1.txt")[,2]

tau.dat1<-read.table("e://piecewise/tau-1.txt")[,2]

chain1<-cbind(b0=b0.dat1,b1=b1.dat1,b2=b2.dat1,tau=tau.dat1,s2=s2.dat1)

b0.dat2<-read.table("e://piecewise/b0-2.txt")[,2]

b1.dat2<-read.table("e://piecewise/b1-2.txt")[,2]

b2.dat2<-read.table("e://piecewise/b2-2.txt")[,2]

s2.dat2<-read.table("e://piecewise/s2-2.txt")[,2]

tau.dat2<-read.table("e://piecewise/tau-2.txt")[,2]

chain2<-cbind(b0=b0.dat2,b1=b1.dat2,b2=b2.dat2,tau=tau.dat2,s2=s2.dat2)

cfc11 <- read.csv("c://CFC-11.csv", header = T)

y<-c(cfc11[,"barrow"])

t<-0:(length(y)-1)

burn<-50000

thin<-100

start.date<-"1988-01-01"

end.date<-"2010-09-01"

post.summary(y, t, chain1, chain2, burn, thin, model = "B",

dic = TRUE, start.date = start.date, end.date = end.date,

fit = TRUE, density = TRUE, trace = TRUE, xlabel = "Time",

ylabel = "CFC-11 concentration (in ppt)")

$posterior.summary

mean median SD lower.95 upper.95

b0 255.5524034 255.6000 0.531403348 254.5000000 256.6000

b1 0.4615851 0.4618 0.022130264 0.4177000 0.5042

b2 -0.6225493 -0.6226 0.021692635 -0.6644025 -0.5797

tau 50.1513824 50.0900 1.313499368 47.7500000 52.8800

s2 2.8638807 2.8490 0.248087657 2.4180000 3.3900

out.slope -0.1609642 -0.1610 0.001927983 -0.1648000 -0.1572

$transition.date

mean.date median.date lower.date upper.date

tau 1992-03-06 1992-03-04 1991-12-24 1992-05-28

$gelman.rubin

Potential scale reduction factors:

Point est. Upper C.I.

b0 1 1

b1 1 1

b2 1 1

tau 1 1

s2 1 1

Multivariate psrf

1

$DIC

[1] 1263.5
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Appendix B

DIAGNOSTIC PLOTS

B.1 Barrow CFC-11 Data Analysis: Trace and Density Plots

 

 Figure B.1: CFC-11 data analysis using the generalized bent-cable model – trace plots.
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 Figure B.2: CFC-11 data analysis using the generalized bent-cable model – density plots.
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 Figure B.3: CFC-11 data analysis using the quadratic bent-cable model – trace plots.
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 Figure B.4: CFC-11 data analysis using the quadratic bent-cable model – density plots.
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Figure B.5: CFC-11 data analysis using the piecewise linear model – trace plots.
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Figure B.6: CFC-11 data analysis using the piecewise linear model – density plots.
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B.2 Housing Data Analysis: Trace and Density Plots

 

 Figure B.7: Housing data (series 1) analysis using the generalized bent-cable model – trace
plots.
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 Figure B.8: Housing data (series 1) analysis using the generalized bent-cable model – den-
sity plots.
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 Figure B.9: Housing data (series 1) analysis using the quadratic bent-cable model – trace
plots.
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 Figure B.10: Housing data (series 1) analysis using the quadratic bent-cable model – density
plots.
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Figure B.11: Housing data (series 1) analysis using the piecewise linear model – trace plots.
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Figure B.12: Housing data (series 1) analysis using the piecewise linear model – density
plots.
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 Figure B.13: Housing data (series 2) analysis using the generalized bent-cable model – trace
plots.
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 Figure B.14: Housing data (series 2) analysis using the generalized bent-cable model –
density plots.
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 Figure B.15: Housing data (series 2) analysis using the quadratic bent-cable model – trace
plots.
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 Figure B.16: Housing data (series 2) analysis using the quadratic bent-cable model – density
plots.
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Figure B.17: Housing data (series 2) analysis using the piecewise linear model – trace plots.
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Figure B.18: Housing data (series 2) analysis using the piecewise linear model – density
plots.
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