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ABSTRACT 

 

Amorphous selenium and its alloy are important materials for flat panel digital X-ray 

detectors. The performance of the X-ray detector is directly related to the carrier mobility and 

carrier-trapping lifetime of amorphous selenium and its alloy. An experiment was conducted 

to examine the dose rate effects on the carrier-trapping lifetime reduction of amorphous 

selenium alloy due to X-ray irradiation. In addition, an experiment was conducted to 

investigate the temperature effects on X-ray induced carrier-trapping lifetime decrease and 

relaxation process. X-ray induced capacitance changes have been investigated as well. The 

interrupted field time of flight (IFTOF) techniques are used in order to acquire the 

carrier-trapping lifetime. Several amorphous selenium alloy films are irradiated under X-ray. 

The composition of films are a-Se: 0.3% As: 5ppm Cl and the thickness of the films are about 

150 µμm. Different dose rates, which range from 0.2 Gy/s up to 2 Gy/s, are applied during the 

irradiation. The experiments are done for both electrons and holes. The dose rate difference 

does not result in a significant change in the X-ray induced carrier-trapping lifetime decrease. 

The same set of samples is studied under three different temperatures, 10 ℃, 23.5 ℃ and 

35.5 ℃. The X-ray induced hole-trapping lifetime changes at different temperatures are 

investigated. After irradiation, the hole-trapping lifetime begins to recovery gradually. The 

temperature during the relaxation process remains unchanged. The change of hole-trapping 

lifetime is measured by IFTOF measurement. At higher temperature, upon receiving a certain 

amount of X-ray dose, the hole-trapping lifetime decreases more than it at lower temperature; 

however, it also recoveries more quickly at higher temperature. The relaxation process at 

different temperature also gives activation energy for holes. The X-ray irradiation does not 

result in any capacitance changes for a-Se films. 
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1. Introduction 

 

1.1 Introduction 

 

      Radiography, Ultrasound and Magnetic Resonance are the most widely used 

diagnostic tools for medical treatments around the world. Among them, X-ray based 

radiography has been recognized as the most important and common diagnostic tool. From 

tissue to bones and from breast to chest, they all can be diagnosed with the help of X-ray 

imaging. The imaging techniques for X-ray imaging have been evolved from Rontgen to 

Computed Tomography and from 2 dimensional imaging to 3 dimensional imaging. The 

materials for X-ray films or imaging plates also vary from small atomic number element to 

large atomic number element. The most recent development of X-ray based radiography is 

digital imaging technology. Amorphous Selenium (a-Se) is currently used as the main 

material for mammography，as the direct conversion photoconductor. Amorphous selenium 

has a lot of advantages as an X-ray photoconductor. Amorphous selenium can be fabricated 

into large-size uniform films by conventional vacuum deposition techniques. [1] In addition, 

amorphous selenium based photoconductors have relatively low dark currents compared to 

other material based photoconductors. [1] The performance of a-Se based X-ray detector is 

directly controlled by the carrier mobility and carrier-trapping lifetime. Therefore, it is 

necessary to conduct research on these properties of a-Se in order to improve the overall 

performance of a-Se based X-ray detectors. 

 

      In order to study these properties of a-Se, appropriate measurement techniques need to 

be applied. Time-of-Flight (TOF) and Interrupted-Field Time-of-Flight (IFTOF) transient 

photoconductivity measurements are developed aiming to measure the carrier transportation 



	   2	  

properties in a-Se. These measurements measure the transient response caused by the 

carriers induced by a short pulse of light. A bias electrical field is applied to the sample in 

order to assist the drift of the carriers. The TOF measurement provides the transit time of 

the injected carriers as they travel through the sample. This is further used to determine the 

carrier drift mobility, µ. The IFTOF experiment measures the fractional change in 

photocurrent caused by the interruption of the bias voltage while the carriers are travelling 

through the sample. The bias voltage is switched off and then backs on after a short period. 

This fractional loss of transient current determines the deep carrier-trapping lifetime. The 

product of the mobility (µ) and lifetime (τ), which is found in the TOF and IFTOF 

experiments, is directly related to the sensitivity of the photo-detector. [1]  

           

      TOF and IFTOF experimental systems provide information about the carrier 

mobility and carrier-trapping lifetime. In addition, these techniques can be applied to 

investigate how environmental factors would affect carrier mobility and carrier-trapping 

lifetime. Then, several experiments are developed in order to provide a better understanding 

of properties of carrier-trapping lifetime. Since the a-Se is used as the material for X-ray 

detector, it is important to understand how X-ray photons are going to change the properties 

of the a-Se. Through a better understanding of how the carrier-trapping lifetime of a-Se 

responds to X-ray effects, better operating modes for a-Se based X-ray detectors could be 

developed. 

 

1.2 X-ray Imaging 

 

As mentioned before, X-ray based radiographic imaging is one of the most widely 

used diagnostic techniques. X-ray imaging depends on the imaging technique and detector 

function. One of the most common X-ray imaging techniques works by measuring the 

amount of X-ray radiation that has passed through an object. Since different material and 

composition have different attenuation coefficient for X-rays, the amount of X-ray absorbed 
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by these objects is different. The amount of X-rays, which pass through the objects, depends 

on the X-ray photon energy, properties of object and its thickness. [2] X-ray, which passed 

through the object, is then converted into image on the X-ray detector. The attenuation 

difference makes it possible to distinguish different materials and structures on the image. A 

typical system that applies X-ray absorption imaging technique is shown in Figure 1.1 

below. 

 

Figure 1.1 A typical projection radiography system consists of X-ray tube, collimator and 

X-ray detector. After Fogal [3]. 

 

      X-rays are emitted from a medical X-ray tube. The X-rays are collimated before 

they reach the patient. The patient body absorbs some of the X-ray photons and the rest of 

them reach the X-ray detector. The X-ray detector provides imaging of the patient’s body 

depending on the flux of X-rays that reach the detector. This X-ray absorption imaging 

technique works well for both tissues and bones; therefore, it is the most common X-ray 

technique used in hospitals. This method has a relatively low resolution compared to 

Magnetic Resonance Imaging (MRI) and a relatively high risk since the patient’s body 

absorbs most of the X-ray photons. Hence, some other X-ray based imaging techniques, like 

diffraction enhanced imaging and K-edge subtraction imaging, have been studied in recent 

years. However, most medical X-ray tubes cannot be used as the X-ray source for these 

techniques; therefore, these techniques are only designed and tested for synchrotron 
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radiation imaging. [5][6] 

 

For conventional medical imaging, X-ray absorption based radiography is still the 

mainstream diagnostic technique. In order to improve the performance of the X-ray imaging 

system, an improvement of X-ray detector should be achieved. The original radiography 

detector consists of a phosphorescent screen and a film. Together they serve as an X-ray 

cassette. The cassette is inserted into radiography system before the exposure and 

transferred to a separate place for imaging processing after irradiation. It takes a long time 

to acquire the X-ray image and it is very inconvenient for frequent X-ray imaging demands. 

In order to improve the efficiency, digital radiography is developed. The digital X-ray 

detector would convert the X-ray incident photon intensity into electronic response. The 

magnitude of the electronic response depends on the intensity of X-ray that hits the panel. 

Based on how the X-ray detector converts the X-ray photon into electronic response, X-ray 

detectors can be divided into two groups. 

 

There are two methods to convert the X-ray photon intensity into electronic response: 

indirect conversion and direct conversion. Indirect conversion is a two-step conversion 

process. The X-ray photons are first coupled with scintillation screen, which converts the 

X-ray photons into the photons of visible light wavelength. Based on the amount of X-ray 

photons absorbed by the scintillation screen, different fractions of visible-wavelength 

photons will be generated. These photons are then collected by photodiodes. Some of 

indirect conversion X-ray detectors have optical fiber to aid the transmission of photons. [7] 

These photodiodes would further convert these visible lights into electronic response. The 

computer will use the electronics response to construct the image. A typical setup of an 

indirect conversion X-ray detector is shown in Figure 1.2.  
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Figure 1.2 A typical structure of an indirect conversion X-ray detector. A reflector is used 

as a filter, which only allows designed X-ray to reach scintillator layer. The scintillator layer 

absorbs X-ray photons and emits visible light, which is then absorbed by photodiode array.  

After Kim et al [8]. 

 

In a direct conversion detector, the detector will directly convert X-ray photons into 

electronic response. An X-ray sensitive photoconductive material based film or panel will 

absorb the incoming X-ray photons. The field created by the bias voltage will separate the 

electron and hole generated by X-ray photons. These carriers will then drift under the field 

and be collected by electrodes. A typical direct conversion X-ray detector is shown in 

Figure 1.3. 

 

Figure 1.3 A flat panel amorphous selenium based X-ray detector from Analogic Canada 
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Corporation. After Kasap et al [9]. 

 

Direct conversion detectors have several advantages over indirect conversion 

detectors. The inherent resolution for direct conversion X-ray detector is better than that for 

indirect conversion X-ray detector. [3] In direct conversion, the X-ray generated charged 

carriers drift perpendicular to the imaging plane, which makes the position on the readout 

plane matches the position on the absorption plane. This helps to reduce the lateral spread of 

the x-ray image. In indirect conversion, even though optical fiber and lens setup help to 

reduce spread out of the light emitted by the scintillating screen, it dose not perfectly match. 

In addition, using new material and improving the relationship between bias voltage and 

material can improve the sensitivity of direct conversion X-ray detector. [10] On the other 

hand, for an indirection conversion X-ray detector, improving the performance of the 

scintillation screen is the only way to improve the x-ray sensitivity of the system.   

 

One of the most common direct conversion X-ray detectors is the large area digital 

flat-panel x-ray detector. This technology relies on the Active Matrix Array (AMA) 

technology to capture the data. [11] This AMA technology is widely used in liquid crystal 

display and other imaging technologies. An AMA circuit consists of a lot of small 

image-producing element, pixel. Each pixel contains a mall charge capacitor and a 

thin-film-transistor (TFT) switch. [3] These small pixels are placed in an N by M array and 

then form a complete display AMA circuit. For a direct conversion x-ray detector, a layer of 

X-ray photon conversion material is coated onto the surface of the AMA. A thin layer of 

semi transparent metal contact is deposited on the X-ray photon conversion layer. This 

contact layer serves as the electrode, which makes possible to apply a bias voltage across 

the X-ray conversion material layer. A cross section of an individual pixel is shown in 

Figure 1.4. 
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Figure 1.4 A cross-section view of a-Se direct conversion X-ray detector. Adapted from 

Fogal [3]. 

       

      For a typical direct conversion X-ray detector, the layer of X-ray photosensitive 

material will absorb the X-ray photons that pass through the patient. This layer serves as the 

photoconductor and converts X-ray photon into electron-hole pair. Depending on the bias 

voltage, the surface contact layer will collect one type of carriers and the other type of 

carriers will be collected by each pixel. The voltage change of will be determined by 

number of charges stored in the capacitor of pixel. The total x-ray image can be constructed 

based on the charges collected by the pixels in the AMA. The image can be read from the 

AMA by carefully coordinating the activation of the TFTs in the array. For transistors in a 

row, a Gate Line connects all their gate terminals. For transistors in a column, a Data Line 

connects all their source terminals. For each transistor, its drain terminal is connected to the 

capacitor corresponds to each pixel. The data information is transferred to digitizer and 

collected by computer row by row. When the Gate Line for a row is activated, then the 

entire row is on and the stored charge in each capacitor is passed onto each corresponding 

Data Line. The charge signals from transistors in a row are collected column by column 

through each Data Line. The charge signal will be converted into digital signals by digitizer 

before computer collects it. The process continues until charges from all rows are collected. 

The computer then uses the data to reconstruct the X-ray image. A small section of an M x 

N AMA is shown in Figure 1.5. 



	   8	  

 
Figure 1.5 A section of active matrix array structure thin film transistors. After Fogal [3] 

 

1.3 Materials for X-ray detector.  

  

     The performance of the direct conversion X-ray detector relies on the quality of the 

photoconductive material. As mentioned before, the performance of the indirect conversion 

X-ray detector also relies on the quality of the scintillating material for the screen. For the 

direct conversion X-ray detector, there are several criteria that could be applied to choose 

the best X-ray photoconductive material. First, the material should have a strong ability to 

absorb X-ray. In general, for single element material, the larger atomic number of the 

material, the more X-ray it can absorb. Second, the electron-hole pair creation energy 

should be as small as possible. Lower electron-hole pair creation energy allows more 

charges to be generated by the X-ray. Third, the dark current of the photoconductor should 

be as small as possible in order to provide a high signal noise ratio. There are multiple ways 

to reduce the dark current, like using a large band-gap material and non-injecting contacts. 

Fourth, the deep trapping effect within the photoconductor should be negligible. In other 

words, the Schubweg should be much greater than the photoconductor thickness. Fifth, the 

longest transit time of the generated carriers should be shorter than the access time for a 
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pixel. Sixth, the material should be stable. The properties of the material should not be 

completely destroyed by X-ray. These are criteria for an ideal material for X-ray detector. [3] 

However, it is extremely hard to find a material that satisfies all the conditions. Normally, 

an element with large atomic number absorbs more X-ray; however, its band-gap is small, 

which creates a worse signal noise ratio and large electron-hole pair creation energy. 

Therefore, continuing research has been done on the current X-ray detector materials in 

order to understand their electronic properties better and optimize their performance. 

 

As mentioned above, there are some parameters that could be used to decide 

whether the material is suitable for X-ray detector or not. The X-ray absorption depth 

provides information of whether the materials have good X-ray absorption. The X-ray 

absorption depth δ  gives the thickness of the photoconductor needed to absorb 63% of the 

incident X-ray photons. Twice thickness of the X-ray absorption depth will absorb 86% of 

the incident X-ray photons. The X-ray absorption depth depends on the X-ray photon 

energy as well. In general, the large atomic number element has a short X-ray absorption 

depth. It makes large atomic number element material absorb much X-ray energy with a 

limited thickness. Another important parameter to evaluate materials for X-ray detectors is 

electron-hole pair creation energy. The electron-hole pair creation energy is the amount of 

radiation energy needed to generate a single electron-hole pair. The amount of charges 

generated by a certain amount of X-ray energy is directly related to this electron-hole pair 

creation energy. Some research has shown that the electron hole pair creation energy 

depends on the energy of the mobility gap in amorphous materials based semiconductor. [12] 

The electron hole pair creation energy also has some dependence on the applied electric 

field. [13] As mentioned before, in order to have good carriers transportation, the schubweg 

should be much larger than the thickness of the film. [3] The schubweg is the product of the 

mobility (µ), carrier-trapping lifetime (τ), and applied field (E). It gives the average distance 

a generated carrier will travel without becoming trapped. Conspicuously it depends on the 

applied electrical field. In order to have good carrier transportation, the thickness of the 
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photoconductive material should be much less than the schubweg of the material. For a 

given material, increasing the applied field is used to increase the schubweg.    

 

Amorphous selenium is a major material that is used in direct-conversion detectors. 

It is mainly used in digital mammography flat panel X-ray detectors. These flat panel 

detectors with an AMA using a-Se as an x-ray photoconductor are self-scanning and can 

produce good images for general x-ray imaging. Since selenium has a relatively small Z 

number compared to other high Z materials, the optimized X-ray energy range for a-Se 

based X-ray detector is low X-ray energy range. Therefore, a-Se based X-ray detector is 

usually used in mammography. A typical breast image taken by a-Se based digital X-ray 

detector is shown in Figure 1.6 

 
Figure 1.6 A breast image taken by a-Se based flat panel X-ray detector. After Kasap et al 

[14] 
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      Amorphous selenium can be easily coated onto an AMA panel using conventional 

vacuum deposition techniques. The deposition process will not damage the 

thin-film-transistors that are used in AMA circuits. In addition, a-Se has good electron and 

hole transport properties, acceptable x-ray absorption, and a low dark current. The atomic 

number of Se is 34 so it is not too small. The X-ray absorption in a-Se depends on the X-ray 

photon energy. For mammography, the mean X-ray photon energy is 20 keV. A 200 µμm 

layer a-Se would absorb 98% of X-ray photons. For chest radiography, the mean X-ray 

photon energy is about 60 keV. The thickness required to absorb 98% of X-ray photons is 

about 4 mm. The thickness of amorphous selenium required to absorb most of X-ray in 

chest radiography is so large that it makes it impossible to use a-Se based X-ray detector for 

chest imaging. It is because it is very difficult and expensive to deposit the photoconductor 

onto the AMA with large thicknesses while still maintaining the uniformity and preventing 

defects from occurring. In addition, the large thickness requires a higher bias voltage and it 

could be as high as 10 kV. For a-Se, its electron-hole pair creation energy decreases as the 

applied field increases. The relationship of electron hole pair creation energy and applied 

field can be approximated by [13] 

𝑊!"# ≈ W!"#
! + !

!
                        (1.1) 

where 𝑊!"#is the electron hole pair creation energy, W!"#
!   is the saturated electron hole 

pair creation energy (at infinite applied field), B is a constant that depends on the x-ray 

photon energy, and E is the applied field. The intrinsic electron-hole pair creation energy is 

about 5 eV. [15] This makes it possible to generate more carriers at a higher field and 

strengthen the readout signal. With a higher field the schubweg for amorphous selenium 

also increases, which makes carriers be able to travel longer before they are trapped by 

defects. For holes in a-Se, the schubweg under a field of 10 V/µμm is about 500 µμm. This 

means that one can make a layer of a-Se with good hole transportation up to 100  µμm. 

However, a higher field normally causes a larger dark current in amorphous selenium based 

semiconductors. The magnitude of dark current has a dependence of the contact material for 

the electrode. [16] Amorphous selenium is a good material for X-ray detector especially at 
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low X-ray energy. 

 

There are other materials that could be used as the material for X-ray detector. Lead 

oxide has once been considered to be a good candidate for X-ray detector. One of the 

advantages of lead oxide is that it can absorb a lot of X-ray photons because lead is a heavy 

metal element with an atomic number 82. Since lead oxide is a modified high Z material, 

the thickness for lead oxide to absorb high-energy X-ray photons is much less than that for 

amorphous selenium. This makes lead oxide a better material for chest imaging than 

amorphous selenium. The schubweg for lead oxide under a field of 3 V/µμm is about 132 

µμm. Under 10 V/µμm field, the schubweg is about 450 µμm. The dark current density of 

lead oxide with aluminum contact is about 150 pA/𝑚𝑚! when applied field is about 

2  V/µμm. [17] Another potential high Z modified material candidate is mercury iodide. The 

schubweg for mercury iodide at 10 V/µμm is about 10mm. This means that mercury iodide 

has good carrier transportation. The dark current density for mercury iodide varies from 22 

pA/m𝑚! to 1100 pA/m𝑚! under 1 V/µμm. [18] This variation is caused by the different 

technique applied during the sample preparation. There is another material named lead 

iodide. Lead iodide has a band gap of 2.3 eV, which is very close to the band gap of 

mercury iodide. In general lead iodide has a higher dark current density than mercury iodide 

and a smaller schubweg than mercury iodide. The electron-hole pair creation energy for 

lead iodide is slightly larger than that of mercury iodide. [18] 

 

Some research also focuses on developing an organic material based X-ray detector. 

Methylammonium lead iodide perovskite (CH!NH!PbI!) is one of the candidates. Organic 

perovskites are known to be potential solar cell materials. Methylammonium lead iodide 

perovskite based photovoltaic cells show a high power conversion efficiency of up to 20%. 

Since methylammonium lead iodide perovskite contains heavy elements lead and iodine, it 

is assumed to have a good absorption of X-ray photons. One recent research on 

methylammonium lead iodide perovskite based X-ray detector shows that the mobility 
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lifetime product is about 2 ∗ 10!!  cm!V!!. [19] This gives that schubweg under 10 V/µμm 

is about 200 µμm. This makes it very difficult to make a thick layer film while still preserve 

the carrier transportation quality. In addition, some other lead halide perovskite materials 

have been tested. Colloidal nanocrystals of cesium lead bromide has been tested for its 

performance as the material for X-ray detector. Previous experiment on cesium lead 

bromide nanocrystal has shown that it has a very good visible light absorption and exhibits 

a bright photoluminescence in the visible light range. [20] Since it contains a lot of large Z 

number materials, it is once thought to have a good absorption for X-ray photon. However, 

it turns out that cesium lead bromide nanocrystal based films does not have much advantage 

over the existing materials. 

  

Currently amorphous selenium is still the major material for X-ray detectors, 

especially for mammography. Alternative materials like lead oxide and mercury iodide have 

some promising features, but there are also some difficulties in manufacturing. Organic 

materials are quite limited. Though they have advantages in manufacturing, their 

performances are not good enough. Therefore, currently, it is still important to understand 

amorphous selenium better and improve the performance of amorphous selenium based 

X-ray detector. 

 

1.4 Research Objectives 

 

This research focuses on the X-ray irradiation effect on carrier transportation. It 

includes the investigation of X-ray irradiation effects on carrier-trapping lifetime in the 

amorphous selenium and the capacitance of the amorphous selenium samples. One of the 

main objectives of the research is to investigate if there is an X-ray dose rate dependence of 

X-ray induced carrier-trapping lifetime changes in the amorphous selenium. The other main 

objective of the research is to investigate the X-ray induced carrier-trapping lifetime 

changes under different temperatures.  
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The carrier-trapping lifetime of the amorphous selenium is obtained through 

interrupted field time of flight measurement. The measurement essentially measures the 

transient current caused by carrier drift. In order to measure the transient current, 

amorphous selenium based thin film samples need to be prepared initially. The structure of 

the samples should be amorphous selenium material sandwiched by two electrodes. In 

interrupted field time of flight measurement, the carriers are excited by ultra short laser 

pulse and drift under external field. The field is interrupted during the transient. The 

transient signal loss before and after field interruption provides the information about 

carrier-trapping lifetime. Therefore an experiment setup that could realize the interrupted 

time of flight measurement should be built. 

 

Based on the previous experiments, X-ray irradiation creates defects in amorphous 

selenium and it changes the carrier-trapping lifetime. The carrier-trapping lifetime decreases 

upon receiving X-ray dose. It brings out the question if there is a X-ray dose rate 

dependence. Some biological systems not only have dose dependence but also dose rate 

dependence. In addition, understanding the dose rate effects on the performance of X-ray 

detector provides some information about designing the X-ray tube. Adjusting the output of 

the X-ray tube and adjusting the dose that reaches the samples achieve the dose rate 

adjustment. The dose rate dependence is investigated for both electrons and holes.   

 

Previous research has also shown that X-ray induced carrier-trapping lifetime 

changes have temperature dependence. [21] The experiments were done on 

electron-trapping lifetime. In the accumulated dose measurements, the electron-trapping 

lifetime decreases as dose increases; in addition, same amount of dose generates more 

defects at higher temperature than that at lower temperature. The temperature variance has 

been investigated on electron-trapping lifetime relaxation process as well. The X-ray 

induced defects gradually disappear with respect to time. In previous experiments, at higher 

temperature, X-ray induced defects disappears much faster than those at lower temperature. 
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The previous experiments did not include hole-trapping lifetime; therefore, a similar 

experiment should be done on holes in order to see if both carriers share the same 

temperature dependence. 

 

An additional experiment could be done on X-ray induced capacitance changes for 

amorphous selenium. Theoretical analysis has suggested that X-ray induced defects are 

charged defects. Since polarized dipole moments in the material would change the 

capacitance, a capacitance measurement could be done on amorphous selenium films to see 

if X-ray has induced polarized dipole moments in the amorphous selenium.  



	  
	  

16	  

2. Background and Theory 

 

2.1 a-Se structure and properties 

 

2.1.1 Introduction 
 
      The major application of amorphous Selenium (a-Se) today is photoconductor in 

flat-panel x-ray imaging detectors. Its ability to directly convert X-ray photons into electronic 

charges makes it an appealing material for Mammography X-ray detector. Since the optical 

and electronic properties of a-Se significantly affect its performance as the photoconductor, it 

is important to understand its structure and properties. Theoretically, the band theory for 

solids provides a good theoretical base to study the properties of a-Se. In a crystalline solid, a 

band model can be easily derived due to the periodicity of the crystal. However, the disorder 

of an amorphous solid, like amorphous selenium, makes the derivation of an exact model 

extremely difficult. Nevertheless, a band model for amorphous solids can be found through 

noting the similarities to crystalline solids, as well as using experimental observations. 

Therefore, an experiment technique named TOF/IFTOF measurement is introduced to study 

the electronic and optical properties for amorphous selenium. Through TOF/IFTOF 

measurement, the transportation of carriers in the bulk structure of a-Se can be analyzed.         

 

2.1.2 Structure of Amorphous Solids 
 
      The majority of solid materials can be divided into two groups: amorphous solids and 



	  
	  

17	  

crystalline solids. The bonding structure of crystalline solids and amorphous solids are 

different and their bonding arrangements are shown in Figure 2.1.  

 
Figure 2.1 The bonding arrangements for crystalline and amorphous solids. The dark spheres 

in the figure represent the atoms. The lines between the spheres represent the bonds between 

each atom and its nearest neighbors. A crystalline structure is shown in Figure 2.1 (a).  The 

amorphous structure is shown in Figure 2.1 (b). After Fogal [3]. 

 
      A solid consists of a three dimensional network of atoms interconnected by atomic 

bonds. One of the main bonding interactions in solids is the covalent bond. It is formed when 

multiple atoms share their valence electrons to complete the sub-shells of each atom. The 

wave function no longer constrains to one atom, instead it overlaps with the whole volume. [3] 

The number of nearest neighbors of an atom is defined as the coordination number. The 

difference of crystalline solid and amorphous solid is decided by the difference of bond 

information and coordination number. As shown in Figure 2.1 (a), the crystalline structure 

exhibits a highly ordered arrangement of atoms. For each atom, the coordination number is 

the same and the bond lengths are all equal. Additionally, the bond angles are the same 

between all atoms. This order carries throughout the crystal and therefore, if the surface states 

are ignored, the equilibrium position of any atom in the crystal can be determined from any 

other position in the network. [14] Since such periodicity exists through the whole bulk 
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structure of the solid, one can define this as long-range order.                                                                                         

       

      On the other hand, an amorphous structure, shown in Figure 2.1 (b), is far more 

complicated than the crystalline case. The bond length and angles varies from atom to atom. 

The coordination number is not the same for each atom. Due to such variation, the periodicity 

is no longer valid beyond a few atom radii. [21] Though there is no long-range order observed 

in amorphous solids, some short-range order still exists. The short-range order in both 

amorphous and crystalline structure results in a similar electronic structure in both structures. 

The overall disorder in amorphous solids also generates various localized electronic states. 

The energy level and density of these localized states have strong impact on the electronic and 

optical properties of amorphous semiconductors. 
 
     Defects exist in both amorphous solid based semiconductors and crystalline solid based 

semiconductors. In the crystalline solids based semiconductors, defects are defined as atoms 

that are not in their equilibrium position. In the amorphous solid based semiconductors, 

defects are defined as atoms with abnormal coordination numbers. The bonding lengths and 

angles cannot be specified in the amorphous solids which leaves the coordination number as 

the major determination method. [22] The normal bonding structure of the atom has the same 

coordination number as its crystalline structure. A defect in amorphous solid based 

semiconductors is therefore any atom with a different number of bonds. As shown in Figure 

2.1(b), some atoms are labeled with U and some atoms are labeled with O. Atoms labeled 

with U represent those atoms are under coordinated which means they have a smaller 

coordination number than the normal ones. On the other hand, atoms labeled with O represent 

those atoms are over coordinated which means they have a larger coordination number than 

the normal ones. Both of under and over coordination case introduce localized electronic 

states. These localized electronic states play a big role in the electronic properties of 

amorphous solid based semiconductors.     
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2.1.3 Band Theory for Amorphous Semiconductors    
           

Band models are commonly used to explain the electronic and optical properties of 

semiconductors. The theory is based on quantum mechanics and is derived by treating a solid 

as a collection of atoms with specific arrangement. [3] For a single atom, its energy is discrete 

which can be easily understood through solving Schrodinger equation for a single atom. 

When a large number of atoms are assembled together, the energy levels may appear to be 

continuous. The formation of solid through a large quantity of atoms allows the solid to have 

a continuous band states. Density of states function g(E) is introduced to describe the 

distribution of electron states per energy per unit volume at energy E. Four different models 

of density of states distribution are shown in Figure 2.2. 

 

Figure 2.2 Density of states models for crystalline and amorphous semiconductors. (a) 

Crystalline semiconductor: two bands separated by a forbidden energy region. (b) Initial DOS 

model for amorphous semiconductors; localized states encroach into the band gap. (c) The 

CFO model; the localized states extend all the way into the band gap and overlap. (d) Marshal 

and Owen model; structural defects create a large number of localized states deep in the band 

gap. After Fogal [3]. 
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Figure 2.2 shows band diagrams for different phase of solids. The density of states 

model for crystalline semiconductors is shown in Figure 2.2 (a). It is one of the most 

simplified models for density of states of crystalline semiconductors. It considers periodicity 

of the crystalline structure as the key concept. A region of forbidden energy states separates 

only two bands of allowed energies. The lower band is known as the valence band while the 

upper band is known as the conduction band. The valence band is filled with electrons, so in 

principle electrons are not able to freely move in the valence band. The conduction band is 

almost completely devoid of electrons so that an electron can move freely in the conduction 

band. In addition, the travelling of electrons in the conduction band would result in an 

electron current. The region between the conduction band and the valence band is known as 

the band gap. Band gap energy is determined by the energy difference between the 

conduction band edge energy E!  and valence band edge energy  E!.  

 

     The density of states model for crystalline semiconductor is relatively simple due to its 

long-range order feature. Since the situation for amorphous semiconductor is relatively 

complicated, more than one models are introduced. The initial attempting comes from the 

modification of density of states model for crystalline semiconductors by N.F Mott. [23] Mott 

noticed that for crystalline semiconductors, the electrons could be well described by extended 

Bloch wave functions that possess long-range order in both amplitude and phase. He 

hypothesized that for amorphous semiconductor, the extended Bloch wave function possesses 

long-range order in amplitude but short-range order in phase. This difference would result in 

an encroachment of localized electron states into the forbidden gap region. As shown in 

Figure 2.2 (b), the tails of localized states are introduced to both conduction band and valence 

band. They begin at the band edges and trail off into the forbidden gap. Mott also argued that 

the transition from the tail of localized states to the extended band states was well defined, 

corresponding to a sharp increase in mobility where the extended band states began. [24] 

Electrons in the tail of localized states move with mobility controlled by thermally activated 

tunneling between states, while electrons in the extended band states would move with a 

mobility determined by the electron’s effective mass in the solid and scattering from potential 

fluctuations due to the randomness in the structure. A concept called the mobility gap is 
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introduced based on such a mobility transition. This mobility gap for amorphous 

semiconductor is analogous to the band gap for crystalline semiconductors.                  
 
    Cohen, Fritzche, and Ovshinsky later expanded the original model developed by Mott. 

[25] When they considered both topological and composition disorder, they believed that 

number of disorders in amorphous semiconductors should be larger than what Mott model 

states. They postulated that, the localized tail states extended much deeper into the mobility 

gap and overlapped around the Fermi level. Even though there would be a continuous 

distribution of states throughout the mobility gap, metallic conduction would not occur 

because the gap states are still highly localized in space. This model is referred to the CFO 

model. 
 
     In addition, there are over coordinated and under coordinated atoms in amorphous solid 

based semiconductors. These structures may cause some local defects such as dangling bonds, 

chain ends, vacancies, substitutable impurities, and interstitials. Due to these defects, there 

will be additional localized states within the mobility gap. Another model, by Marshal and 

Owen, has taken these local defects into consideration. [26] They argue that these defects 

caused by the abnormal coordinated structure should result in a significant density of mid-gap 

states. As shown in Figure 2.2 (d), there are two regions of localized states in the mobility gap. 

These states forms two small bands, which look like donor and acceptor states in the doping 

case. The Fermi level is determined by these mid-gap states and appears to be in the middle of 

gap. The amount and distribution of these local states will affect the electronic properties of 

amorphous solid based semiconductors. 

 

2.1.4 The Atomic Structure of Amorphous Selenium 
                   
     Selenium has an atomic number of 34, and belongs to Group VI in the periodic table. 

The elements in this group are normally referred to chalcogens. Six valence electrons in the 

outermost shell can occupy eight states. There are normally two different types of 

non-bonding states for chalcogens. Two electrons in the s-states form a lone pair and another 
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two electrons in p-state form another lone pair. Two remaining electrons in the p-state are 

used to form bonding with electrons from other atoms. The lowest energy configuration for 

Se atoms consists of a two-fold coordinated bonding structure with an optimum bond angle of 

105º and dihedral angle of 102º. [27] 

      

     There are two different forms of Se in its crystalline phase due to the two-fold 

coordinated bonding structure. α-Monoclinic Se (α-Se) and trigon Se (γ-Se) are the different 

forms of Se. In α-Se, the atoms bond together and form rings that contain eight Se atoms. [27] 

The trigon structure consists of parallel and spiral Se! molecule chains. The initial guessing 

of the amorphous selenium structure contains a mixture of both states. These states are 

randomly distributed in the solid. In the later study, it is suggested that a ‘random chain model’ 

is more accurate based on some observation of a-Se structural behaviors. This model specifies 

that the atoms be linked together in a two fold coordinated chain structure where the 

magnitude of the dihedral angle φ is constant but randomly changes sign. The dihedral angle 

is defined as the angle between two adjacent bonding planes. Since the angle is defined as the 

angle between two planes, four atoms totally are required to define the two planes. [27][28] 

The selenium atoms arrangement for selenium chain model is shown in Figure 2.3.                                                                                                                                            

 

Figure 2.3 The selenium chain model. The dihedral angle φis observed as the angle between 

the planes formed by atoms 1 and 2 and atoms 3 and 4. The bond angle ϑ between in plane 

atoms and the bond length r are also shown. After Kasap [29]. 
 

The positions of atoms in the crystalline structures are fixed due to the symmetry, bond 

length and bond angle. The magnitude of dihedral angle is decided by bond length and bond 
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angle and its sign depends on which type of crystalline Se is being observed. For trigon Se, 

the dihedral angle varies to form a spiral pitch of three atoms while its variation forms either 

chain-like or ring-like structures in α-Se structures. If plus + and minus – signs are used to 

represent the relative phase of dihedral angles, then the mixture of + and – signs will represent 

ring structure and mono combination of either + or – will represent chain structure. [27] The 

example shown in Figure 2.4 contains both ring-like and chain-like structures. The previous 

notation as +++-+-+--- characterizes it.  

 
Figure 2.4 The random chain model of the structure a-Se with both chain-like and ring-like 

regions. After Lucovsky [27] 

 
As shown in the previous section, there are some over-coordinated and under- 

coordinated atomic bindings in a-Se. These bonding configurations would contribute to the 

structural defects in the a-Se like amorphous chalcogen. Some of these structural defects are 

electrically charged while others are neutral. [3] For a-Se, the Electron Spin Resonance (ESR) 

studies have shown that the possibility for neutral defects is small. [30][31] Therefore, the 

major contribution to defects would come from thermodynamically derived charged structural 

defects. These defects are called valence alternation pairs (VAPs). These defects are either a 

negative charged one-fold Se atom Se!!, or a positive charged three-fold Se atom Se!!. These 

types of defects are prevalent because the formation of a diamagnetic pair of charged over- or 

under-coordinated VAP centers is energetically more favorable than the formation of singly 

or triply coordinated defects. [21] The valence alternation pairs can also form intimate 
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valence alternative pairs (IVAPs) together. The structure and energy of various simple 

bonding configurations of selenium atoms are shown in Figure 2.5. [32] Figure 2.6 shows 

possible defects formed by selenium atoms. [9] 

 
Figure 2.5 The structure and energy of simple bonding configurations for selenium atoms. a) 

It shows a two-fold coordinated neutral Se atom. b) It shows a one-fold coordinated neutral Se 

atom. c) It shows a one-fold coordinated negatively charged Se atom. d) It shows a three-fold 

coordinated neutral Se atom. e) It shows a three-fold coordinated positively charged Se atom. 

Adapted from Adler et al [32]. 
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Figure 2.6 The VAP defects with a distribution of a net charge a) two chain VAPs defects. b) 
Single IVAP defects while a one-fold coordinated negatively charged Se atom C!! and a 
three-fold coordinated positively charged Se atom C!! are on the same side. c) Two IVAPs 
belongs to different chains and form a common one. After Kasap et al [9] 

 

2.1.5 Density of States of a-Se and Carrier Transport in a-Se 
 
      There are various density of states models for a-Se. Abkowitz model as an extension 

of the Owen-Marshal DOS model has been the most commonly used model. [33] It is shown 

in Figure 2.7. 

 

Figure 2.7 Density of states model suggested by Abkowitz. After Abkowitz [33]. 
 

      It preserves most features of Owen-Marshal model with some additional peaks in the 

mobility gap. It has a decaying density of localized states from band edges, with two peaks 
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close to conduction and valence band respectively. These two additional peaks corresponds to 

localized states named shallow traps while the original peaks close to the Fermi level are 

known as deep traps. The mobility gap for a-Se in this model is 2.22 eV. [33] 

 
     The electron mobility and hole mobility in a-Se are believed to be shallow trap 

controlled through trapping and releasing process from these shallow traps. [34] The carrier 

mobility for a-Se, which consists of, a discrete set of monoenergetic shallow traps can be 

given as [1]   

𝜇 = µμ![1+
!!
!!
exp(− !

!!
)]!!                                       (2.1) 

where 𝑁! is the shallow trap concentration, 𝑁! is the density of states at the valence band 

mobility edge and E is the energy depth of the shallow traps from the edge. Since the density 

of states for shallow traps and their energy levels are very crucial to the mobility of carriers, a 

lot of studies have done to investigate these shallow traps. Based on the Abkowitz’s model 

and some experimental measurements, it has shown that the peak of shallow hole traps is 0.29 

eV above the valence band and the peak of shallow electron traps is 0.35 eV below the 

conduction band. These analyses also suggest that the peak of the deep hole traps is 0.87 eV 

above valence band and the peak of the deep electron traps is 1.22 eV below the conduction 

band. [35] The peaks for the deep traps have been measured using photo induced discharge 

measurements and cycled-up xerographic residual voltage measurements. [36] 

 
Some of the recent works have shown a more detailed analysis for shallow carrier 

traps distribution. This recent study shows a little different result as the analysis mentioned 

above. [9] Both of the previous analysis and recent study show that the deep carrier trap’s 

energy level is at least 0.55 eV away from the band edge. The band tails show an exponential 

behavior. However, the recent study has shown that there are two Gaussian peaks near the 

conduction band while there is no Gaussian peak near the valence band. Figure 2.8 shows a 

recent density of state model of amorphous selenium. [9] It provides a distribution in the near 

band edge region and an estimation of number of deep traps in the amorphous selenium 

mobility gap. Furthermore, a shallow electron trap distribution is shown in the Figure 2.9 as 

well. [9] 
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Figure 2.8 Generalized DOS model. The Left side is the DOS in the vicinity of conduction 

band while the right side is the DOS in the vicinity of valence band. The bars in the center 

show the concentration of deep carrier traps for both electrons and holes. After Kasap et al 

[9]. 

 

 

Figure 2.9 Density of states distribution for shallow traps. One Gaussian peak is observed 

0.27-0.33eV below the band edge. Another Gaussian peak is observed 0.38-0.48eV below the 

band edge. After Kasap et al [9] 
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Evidence has shown that both shallow and deep carrier traps, which are generated by 

structural defects, are thermodynamically stable at room temperature. [37][38][39] 

Particularly, the deep traps are important because they are crucial for determining the carrier 

"schubweg". The sensitivity of the X-ray detector is then decided by these deep trap states.   

 

In addition, some of effort has been devoted to improve the carriers’ transportation 

and structural stability of the a-Se based semiconductor. [40] Impurities and alloying method 

have been tested on a-Se, and arsenic and chlorine are the most common elements for the 

research. Arsenic is doped into a-Se in order to increase its stability and prevent a-Se from 

crystallization. However, arsenic doping would increase number of VAPs and thus undermine 

the transportation of carriers, especially holes. In order to counter this negative effect on 

carrier transportation, chlorine is added to compensate the effects brought by arsenic. The 

balance of arsenic and chlorine would result in a stabilized a-Se with good carrier 

transportation. 

 

2.1.6 Optical Properties of a-Se  
 

Since a-Se is mainly used for photoconductors, its optical properties are important. 

Incident photons can excite electrons from the valence band up into the conduction band and 

the possibility for these photons to be absorbed is determined by the optical absorption 

coefficient. This coefficient depends on the wavelength of incident light and the magnitude of 

the density of states at the band edges. For a-Se, the optical absorption coefficient exhibits an 

Urbach edge of the form [14] 

α 𝐸 = 7.35 ∗ 10!!" exp !
!.!"#$%

cm!!                         (2.2) 

This also corresponds to the excitation of charge carriers from the mid-gap localized states 

into the extended states. [41] At higher photon energies, the absorption coefficient follows 

different forms. Davis suggests that the absorption coefficient is proportional to [42] 

α 𝐸 ∝ 𝐸 − 2.05eV                               (2.3) 

while Tauc’s law shows [43] 
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α 𝐸 ∝ 𝐸 − 1.9eV !                             (2.4) 

Electron-hole pairs (EHPs) are generated once photons are absorbed. An electron from the 

valence band is excited into the conduction band, while a hole is left in the valence band. 

Under external field photon excited electrons and holes will drift which result in the 

photocurrent. In addition, the probability for an electron-hole pair to be separated by the field 

before recombination is determined by the quantum efficiency. The quantum efficiency 

exhibits a strong dependence on the external applied field. Onsage theory gives a more 

explicit analysis for this dependence. In his theory, the quantum efficiency is defined as. [44] 

η = η!f 𝐸,𝑇, 𝑟                                  (2.5) 

where η! is the quantum efficiency for the intrinsic photon generation process and f(E,T,r) is 

the probability that an EHP will separate and r it the initial separation of the photo-induced 

pair. The relationship between X-ray photon energy and absorption coefficient and the 

relationship between X-ray photon energy and quantum efficiency are shown in Figure 2.10 

 

 

Figure 2.10 Absorption coefficient and quantum efficiency as a function of incident photon 

energy (hv) for various applied fields. After Pai et al. [44]  
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2.2 X-ray absorption 
 

X-ray is essentially one type of electromagnetic waves with photon energies ranging 

from 100 eV to 100 keV. Since the X-ray source that is used in this research is tungsten X-ray 

tube, Bremsstrahlung radiation is the major mechanism for generating the X-ray. It is realized 

by slowing down the high-speed electron from filament current at a tungsten plate. The 

spectrum of X-ray generated by X-ray normally spreads over a large range. A typical X-ray 

energy spectrum of a medical X-ray tube is shown in Figure 2.11. 

 

Figure 2.11 A typical spectrum of X-ray at 75Kvp coming from a tungsten X-ray tube. The 

spectrum was taken from X-ray spectrum simulation program provided by Siemens. 

 

This continuous spectrum of X-ray can be understood for following reasons: [45] 

1. The continuously varying voltage difference between the target and the filament, which  

  is characteristic of half wave rectification, causes the electrons striking the target to have    

  varying levels of kinetic energy. 

2. Most electrons participate in many interactions before all their kinetic energy is  

  expended. As a consequence, an electron carriers differing amounts of energy at the time  

  of each interaction with a tungsten atom that results in the generation of an X-ray  

  photon. 
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3. The bombarding electrons pass at varying distances around tungsten nuclei and are thus  

  deflected to varying extents, As a result, they give up varying amounts of energy in the  

  form of Bremsstrahlung photons. 

4. Depth of generation of photons in the target. 

 

X-rays interact with matter in different ways. Photoelectric absorption, coherent 

scattering, Compton scattering and pair production are the four main interactions between 

X-rays and matter. For medical application, photoelectrical absorption and Compton 

scattering are the primary interactions. [45] For photoelectric absorption, an X-ray photon 

collides with an inner shell electron. The electron is excited and ejected from the inner shell. 

The photon is absorbed and its energy is converted into the kinetic energy of the electron and 

the binding energy required to excite the electron. For Compton scattering, the X-ray photon 

is deflected instead of being absorbed. The X-ray photon interacts with an outer shell electron 

and the electron get excited and recoils. The loss of photon energy is then converted into 

kinetic energy of electron and dissipated for overcoming the binding energy. The scattered 

electron can go any direction. 
 
The energy per unit mass absorbed by the sample object is defined as dose. The dose 

measures the energy density absorbed in the sample and it is a very important quantity to 

evaluate the X-ray effects for the a-Se X-ray detector. In order to calculate the dose, it is 

essential to calculate the energy that is deposited into the sample. The X-ray energy absorbed 

in the sample follows both mass attenuation and energy attenuation. In other words, the X-ray 

photon energy absorbed inside the sample depends on the depth beneath the sample surface; 

different X-ray energy attenuates different distance. The energy attenuation at x position for 

energy 𝐸! is given as 

E 𝐸! , 𝑥 = N𝐸! exp −µμ!"##ρ𝑥                             (2.6) 

Where µμ!"##is the mass attenuation coefficient, which can be obtained from NIST websites, 

ρ is the sample density, and N is total number of X-ray photons, which can expressed as. 

N = Aψ 𝐸!                                  (2.7) 

Where ψ(𝐸!) is spectrum of the X-ray tube, A is the irradiation area. Since the X-ray tube 
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provides a continuous spectrum, it is necessary to figure out the flux at a specific energy. The 

energy attenuation is linear and can be expressed as 

d𝐸 = µμ!"!#$%ρE 𝐸! , 𝑥 d𝑥                              (2.8) 

Where µμ!"!#$% is the energy attenuation coefficient. Combining the previous three equations, 

the total energy absorbed in the thickness △ x = x! − x! can be expressed as [21] 

𝐸 = ρµμ!"!#$%Aψ(𝐸)Eexp(−µμ!"##ρ𝑥)d𝐸d𝑥
!
!                 !!

!!
        (2.9) 

The dose is then obtained as 

Dose = !
!!∆!

                                                           (2.10) 

 

For the actual measurement, since the actual flux of the X-ray tube is unknown, it has to 

be measurement by the dosimeter and then use the result to normalize flux, which is used to 

calculate the dose deposited into the sample. The normalized parameter is given as. 

ψ!"#$ 𝐸 = !!"#$%&"'
!!"#!"

ψ!"#$% 𝐸                            (2.11) 

Where ψ!"#$%(E) is a theoretical simulation of the spectrum of the X-ray tube at specific 

peak-voltage. Q!"#$%  and  Q!"#$%&"' are given as. [14] 

Q!"#$% =
!!!"#$%&'&(

!!"#
                                  (2.12) 

and 

Q!"#$%&"' = 𝑅Vρ!"#2.58×10!!(C/g)                          (2.13) 

where e is the electron charge, E!"#$%&'&( is the estimated energy that is absorbed by the ion 

chamber. The theoretical calculation for this energy involves applying Equation 2.9 with 

photon flux ψ!"#$%(E). R is the readout from dosimeter in unit of Rontgen. V is the volume of 

the ion chamber. By obtaining the real photon flux from the X-ray tube one is able to 

calculate the actual dose that is deposited into the sample. For average dose that is deposited 

in a sample, the ∆x is equal to the thickness of the sample while for dose at specific location. 

x! = x− δx < 𝑥 < 𝑥 + 𝛿𝑥 = x!                             (2.14) 

where δx ≪ x. 
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2.3. Time-of-Flight and Interrupted-Field Time-of-Flight Transient  

    Photoconductivity      

 

2.3.1 Introduction                  
 

     Since amorphous solids have a relative complicated structure, which makes it very 

difficult to determine the properties of amorphous solids only through theoretical model, 

experimental techniques are introduced. The major techniques that are applied in this research 

are time-of-flight (TOF) and interrupted-field time-of-flight (IFTOF) transient 

photoconductivity measurements, which are developed by Kasap [46][47]. The combination 

of the two techniques could provide a lot of information about the drift mobility and 

carrier-trapping lifetime in amorphous semiconductors. The experimental techniques are 

based on the current transient due to the carriers drift in the bulk of the amorphous solid based 

semiconductor. The carriers are injected by photons and drift by an external field. The 

experimental technique captures the signals and also manipulates the drift process. Though 

TOF is not used in the later research, it is the base for IFTOF. Therefore it is necessary to first 

understand the principle of TOF measurement.     

 

2.3.2 The Time-of-Flight Measurement Technique                  

 
The TOF technique measures the transient response generated by the drift of    

photo-injected carriers as they travel through a sample of highly resistive material. The 

carriers are excited by pulse of light. Absorbed photons generate electron-hole pairs. The 

absorption depth of the excitation must be much less than the sample thickness L in order to 

have carriers to travel through the sample. [3] Normally, the sample would have a top 

electrode and a bottom electrode. The light pulse would hit the top electrode and generate the 

carriers at very surface of the sample. If the absorption depth were in the magnitude of sample 

thickness, then dual types of carriers might be generated. This would largely interference the 

measurement of one type of carriers. The absorption depth has to be large enough so that the 
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top electrodes would not immediately absorb the injected carriers. Other than the wavelength 

of the light source, the duration of excitation is also important. The duration of excitation has 

to be relatively small compared to the transient time of carriers. Finally, the number of 

photons has to be limited. This is because, the TOF measurement has an assumption of weak 

injection, which would be explain in detail later. An external electrical field is applied through 

the sample in order to assist carriers’ drift. The resistance of sample is normally small enough 

that the majority of the voltage drops across the high resistivity of the sample. [3] As the 

injected carriers drift across the sample under the external field, they will induce a 

photocurrent i(t) through an external resistor. The measurement can be done for both holes 

and electrons by simply reverse the bias of applied field. In order to have a good and valid 

TOF measurement, it is crucial to maintain a good condition for the light excitation source.                              

 

One of the most important assumption for TOF measurement to be valid is that the 

internal field is uniform unchanged through the whole sample. [48] The carriers travelling 

through the sample would affect the electrical field inside the sample. In detail, the electrical 

field inside the sample at position x can be expressed as [49] 

𝐸 = E! +
!!!
!

!
!
                                (2.15) 

where E is the electrical field at position x, E!is the applied field, e is charge, p is the 

concentration of the carriers within the charge sheet, w is the width of charge sheet and L is 

the thickness of the sample. Carriers are considered as a narrow sheet of charges when they 

travel through the sample. The assumption is that the electrical field within in the sample is 

independent of position or the effect brought by the carriers can be neglected. [48] 

!!!
!
≪ !

!
                               (2.16) 

where V is the applied voltage on the sample. The electrical field caused by carriers has to be 

much smaller than the applied field. This condition can be referred as small signal condition 

as mentioned before. In experiment measurement, this condition is realized by controlling the 

number of injected carriers generated by photon excitation. In principle, the total injected 

carrier charge Q has to be smaller than the charges collected on the electrode, which is CV. C 

is the capacitance of the sample. This capacitance could be obtained through direct 
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experiment measurement or theoretical estimation. V is the voltage applied through the 

sample. The experimental adjustment for small signal condition would be explained in detail 

later. Figure 2.12 shows a typical process of TOF measurement.  

 
Figure 2.12 A typical schematic of TOF measurement. The small signal assumption is made 
so that the carrier’s drift velocity remains constant. After Kasap et al. [9] 

 

Once the electrical field is assumed to be uniform through the sample, a deeper 

understanding of the carrier transient current of TOF measurement can be achieved. The 

photocurrent produced by the drift of the charge sheet through the sample can be found using 

Ramo’s theorem. [50] On can consider a carrier with charge q travels through the sample 

under the applied field E. The applied field E is equal to V/L, which is the uniform through 

the sample. The drift velocity of the carrier can be expressed as 

v = µμE = !!
!
                            (2.17) 

where µμ is the mobility of the carrier. The drift velocity of the carrier through the sample 

remains constant under the small signal condition. The transient time for the carrier to cross 
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the sample is then expressed as 

𝑡! =
!
!
                                  (2.18) 

The transient time is the time of carrier travels from the surface of the sample to the bottom 

electrode of the sample. Knowing the above information, one can write down the transient 

current for a single carrier drift through the sample with thickness L under applied voltage V. 

𝑖!" =
!" !
!
                  0 < 𝑡 < t!

0                                                else
                   (2.19) 

This equation can be applied to the TOF experiment as long as the small signal condition is 

met. This equation for a single carrier can be expanded to a real case by applying the total 

number of injected carriers in the TOF experiment. [21] 

𝑄 = ep𝑤𝐴                                 (2.20) 

where p is the concentration of injected carriers, w is the width of the charge sheet and A is 

the area of the charge sheet. Since the small signal assumption is valid throughout the TOF 

experiments, the drift velocity of carriers remains constant during the transient process. In 

addition, it is more convenient to use the transient time to replace the drift velocity of the 

sample 

𝑖!"(𝑡) =
!"#$%(!)

!
= !"#$

!
× !
!!
= !"#$

!!
                  0 < 𝑡 < t!

0                                                                                                                                  𝑒𝑙𝑠𝑒
     (2.21) 

                                                                                                            

 A small signal AC analysis can be applied for the TOF experiment. [3] The whole 

system can be treated as a combination of capacitor and resistor. Cs is the combination of the 

sample capacitance and any parasitic in the external electronics. The photocurrent provides a 

voltage by passing through a combination of the Cs and the external resistor; R. Laplace 

transform can be applied for further studying. The voltage and current relation can be 

expressed as 

V 𝑠 = !
!!!!!!

I!" 𝑠                               (2.22) 

where V(s) is the Laplace transformation of the voltage signal and I!" 𝑠  is the Laplace 

transformation of the photocurrent. This relation can be used to study the photocurrent and 

voltage signal by taking the inverse Laplace transformation. Based on the relation among 
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resistance, capacitance and transient T, two different solutions exist. 
 
      The first one is called the I-mode signal because the magnitude of the received signal 

is directly proportional to the photocurrent. [3] This solution comes out when RC! ≪ t!.  

v 𝑡 = Ri 𝑡           0 < 𝑡 < t!
0                                else

                            (2.23) 

An ideal I-mode signal looks similar to a square wave pulse; it rises sharply at the start and 

remains constant as the photo-induced carriers drift through the sample, then drops back to 

zero. However, the real case in amorphous solid based semiconductors is more complicated 

than this. In amorphous solid based semiconductors, there are a large amount of localized 

states within the mobility gap of the semiconductors. Charge carriers will be trapped in these 

localized states and removed from the transportation band during the transient process. This 

will result in a decrease of number of mobile charge carriers. Since the photocurrent is 

proportional to the number of charge carriers or the concentration, the photocurrent is about to 

decrease with respect to time. 
        
       Therefore, taking these localized states into consideration should carry out a revised 

solution. [3] First, one can assume a set of traps at a discrete energy level in the mobility gap 

with a mean trapping time τ. Once these traps, which are some localized states, trapped the 

carriers, the time it took for carriers to be released would be much longer than the transient 

time. From previous research, it has already shown that the number of carriers in the charge 

sheet will decay exponentially as they travel through the sample, and are captured by the traps. 

Therefore, an exponential decay term could be added to previous equation     

i!" =
!"#$
!!

exp − !
!
                              (2.24) 

The I-mode signal can be then modified as 

v 𝑡 = Ri t exp  (−𝑡/τ)          0 < 𝑡 < t!
0                                else

                    (2.25) 

Another mode is known as the V-mode signal and it is the solution when  RC! ≫ t!. 

This signal begins at zero and will increase linearly as the carriers travel through the    

sample. After the carriers reach the collection electrode, the signal will flatten and remain 

constant at a value proportional to the total number of injected charges. 
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v 𝑡 = !
!!    
     i!" 𝛼 d𝛼!
!                                 (2.26) 

without considering any localized states. If the localized states are taken into account, the 

voltage signal is given by [51] 

v 𝑡

!"#$!
!!!!

1 − exp − !
!

                          0 < 𝑡 < t!
!"#$!
!!!!

1 − exp − !!
!

                                      t > t!
                    (2.27) 

Since V-mode is not used in this research, there are no further explanation and discussion for 

it. A typical signal shape of I-mode TOF and V-mode TOF are shown in Figure 2.13. 

 

Figure 2.13 Simulated TOF signal. a) I-mode: the solid line is the ideal case while dot is the 

case with defects. b) V-mode: the solid line is the ideal case while dot is the case with defects. 

After Fogal [3]. 

 

2.3.3 The Interrupted-Field Time-of-Flight Technique                  
 
     The interrupted-field time-of-flight technique is a method to determine the carrier-    

trapping lifetime in high resistivity materials. It is based on the Time-of-Flight technique    

described in the previous section. For TOF measurement, the applied field assists the carriers 
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to drift through the sample. The carriers initially drift through the sample under the applied 

field E. After time 𝑡!, the applied field is switched off. The applied field will be switched 

back on after time t! then the carriers are going to drift again under the applied field. This is 

the only difference between TOF measurement and IFTOF measurement. Since the carriers 

are going to be trapped by traps when the field is off, one can use the information from the 

reduction of photocurrent to analysis the carrier-trapping lifetime.  
 

The IFTOF technique measures the deep trapping lifetime of the carriers by    

interrupting the drift of the carriers and allowing them to interact with the deep traps in    

the semiconductor. As mentioned above, the applied field is switched off after 𝑡!. As soon as 

the applied field is off, the drift of carriers is halted, which result in the zero measurement of 

the photocurrent. The carriers remain stopped at this position. Note that carriers will not 

completely stop at the position. Instead, they would diffuse in all direction for a small region 

but they remain stop at the position averagely. The carriers would interact with traps during 

the stop. Once the applied field is resumed, the rest of carriers will begin to drift again. The 

photocurrent is going to drop because of the loss of charge carriers. Since the carriers are 

moving at a constant speed inside the sample, the drop of the magnitude of the photocurrent is 

proportional to the number of the loss of the charge carriers. If these traps in the mobility gap 

can be characterized by a carrier-trapping lifetime τ!, then the drop of photocurrent can be 

expressed as. [21] 

! !!
! !!

= exp − !!
!!
                           (2.28) 

The drop of the photocurrent is obtained during IFTOF measurement. It is then used to obtain 

the carrier-trapping lifetime. The carrier-trapping lifetime is then given as 

τ! =
!!

!"  (!(!!)/!(!!))
                     (2.29) 

     The interruption time 𝑡! can be adjusted and normally it should be long enough for 

carriers to interact with traps. If the interruption time is too long then the recovered 

photocurrent will be too small to measure. There are two ways to obtain the carrier-trapping 

lifetime through the signal loss during the IFTOF measurement. One can choose an 

interruption time t and perform an IFTOF measurement. Then the carrier-trapping lifetime 
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can be obtained through Equation 2.29. Another way is to use set of different interruption 

time and perform multiple IFTOF measurements. Then one can plot i(𝑡!)/i(𝑡!) verse  t! 

on a semi-logarithmic plot and use the slope of the plot to obtain the carrier-trapping lifetime. 

The advantage for the second method is that it eliminates the time delay due to the actual 

circuit. The interruption time might be slight longer than it should be in the actual 

experiments. Therefore, if the circuit designed for the experiment is not sensitive enough, then 

the carrier-trapping lifetime obtained from the first method will be larger than its real 

carrier-trapping lifetime. Normally the interruption time for the carrier is slightly longer than 

its transient time, which can be acquired by a TOF measurement. A typical waveform of 

IFTOF measurement is shown in Figure 2.14.  

 

Figure 2.14 A typical waveform of IFTOF measurement. The waveform is a very ideal case 

with no trapping process during the transient. The photocurrent before interruption is i(𝑡!) 

and the photocurrent after the interruption is i(𝑡!). The interruption time is t!. After Fogal [3] 

 

2.4 Transient Trap Limited Theories 
 

The previous sections detailed the principles of the TOF and IFTOF experiments.     

However, as mentioned in the previous section, the amorphous solid based semiconductor is 

very complicated. In the previous TOF measurement section, localized states have been 

mentioned and an exponential decay term has been added to the photocurrent expression. 
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These localized states served as traps and interference the analysis based on the ideal model. 

Therefore, it is important to have a deeper understanding of the effects of these localized 

states. These traps can be analyzed in three different distributions. 

 

2.4.1 Monoenergetic Trap Level 
 

The first type starts with assuming the localized states have a single energy distribution 

in the mobility gap. These localized states as mentioned before serve as traps for carriers. In 

order to analysis how these traps affect the carrier transportation, one can first assume that 

carriers travel in the form of infinitesimal slice. The number of free carriers in the slice is due 

to the current flowing through the slice, as well as the thermal release of trapped carriers 

within the slice. The rate of change in the number of carriers in the slice can be then obtained 

[3] 

!!(!,!)
!!

= !
!
!! !,!
!!

− !!! !,!
!!

                            (2.30) 

where p(x,t) is the concentration of free carriers, J(x,t) is the net current density flowing, q is 

the carrier charge and p!(𝑥, 𝑡) is the concentration of trapped carriers in the slice. This 

continuous equation is only valid if the slice thickness is very small. 

 

      The net current density consists of the conduction current and the diffusion current. 

The drift of carriers under applied field will induce the conduction current. As discussed 

before, it can be given as [3] 

J! 𝑥, 𝑡 = qp 𝑥, 𝑡 v 𝑥, 𝑡 = qp 𝑥, 𝑡 µμE 𝑥, 𝑡                      (2.31) 

where µμ is the carrier mobility and q is the carrier charge. Carrier charge is –e for the hole 

and e for the electron. In addition, the diffusion current is caused by spatial variations in the 

concentration of charge carriers. It can be given as. [3] 

J! 𝑥, 𝑡 = q𝐷 !! !,!
!!

                                                (2.32) 

where D is the diffusion coefficient. The total current density can then be written as 

J 𝑥, 𝑡 = J! 𝑥, 𝑡 + J! 𝑥, 𝑡 = q𝐷 !! !,!
!!

+ qp 𝑥, 𝑡 µμE 𝑥, 𝑡         (2.33) 
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Then the continuity equation for the carrier transportation can be rewritten as 

!!(!,!)
!!

= 𝐷 !!! !,!
!!!

− !!! !,!
!!

+ µμE x, t !! !,!
!!

+ µμp 𝑥, 𝑡 !! !,!
!!

    (2.34) 

Since p! 𝑥, 𝑡  represent the trapped carrier density, ∂pt 𝑥,𝑡
∂x

 is then the change rate of trapped 

carriers. The change rate of trapped carriers is determined by the carrier-trapping rate and 

carrier-releasing rate. [3] 

!!! !,!
!!

= ! !,!
!!

− !! !,!
!!

                            (2.35) 

where τ! is the capture time or trapping time and τ! is the release time. The concentration 

of trapped carriers increases if more carriers are trapped and decreases if more trapped 

carriers are released. 
 

By solving the rate equation and the continuity equation for the carrier, one can obtain 

an expression for the carrier density in the charge packet. Though the continuity equation 

looks very complicated, there are some simplifications could be applied to solve the equation. 

One of the main assumptions that has bee made for TOF/IFTOF measurement is small signal 

condition. Under the small signal condition, the internal field inside the semiconductor is 

independent of time and position. Therefore, the applied field E(x,t) is actually equal to a 

constant field. The diffusion portion of the current density can neglected based on the 

assumption the diffusion of the charge carrier packet is negligible compared with the drift. 

The experimental observation has shown that when applied field is off the photocurrent is 

extremely small compared with that when applied field is on. This experimental observation 

accords with the assumption. Based on the previous section of TOF measurement, boundary 

conditions and initial states can be obtained to help solve the continuity equation for carrier 

density. There are no carriers at t < 0. The carriers are all excited by light pulse at t = 0. Since 

the duration of light pulse is extremely small, a delta function can be used to describe the 

carrier density at t = 0 

p 𝑥, 0 = Pδ 𝑥, 0                                (2.36) 

where P is the total number of generated carriers. In addition, the number of trapped carriers 

should remain zero at t=0. Carriers should be confined inside the sample; therefore, for both 

carriers and trapped carriers 
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p 𝑥, 𝑡 = p! 𝑥, 𝑡 = 0        𝑥 > 𝐿                           (2.37) 

Laplace transformation is applied. The solution is obtained based on boundary condition. It is 

given as [52][53] 

p 𝑥, 𝑡 = !
!!
exp − !

!!
δ 𝑡 − 𝑧 + !

!!
exp − !

!!
— !!!

!!

!
!
! !
!!!

U 𝑡 − 𝑧   (2.38) 

where E is the applied field, z is the time it takes for carrier to reach distance x, 𝑧 = 𝑥/µμ𝐸, 

I(𝜉) is the first order hyperbolic Bessel function and U(x) is the unit step function.  

𝜉 =
! !!! !!!

!!

!!
                                         (2.39) 

The equation contains two components. The first one represents the charge carriers remaining 

in the injected packet as it drifts across the sample. These carriers are not delayed by trapping 

and release as they travel through the sample, but do decrease exponentially. The second term 

represents carriers that have experienced at least one time trapping and releasing process. It 

represents the carriers have been trapped and released at a later time, t, into the transport band. 

These charges contribute to the photocurrent for times longer than the transient time. 
 

Integrating the carrier density equation can solve the I-mode transient current 

response in a medium with a monoenergetic distribution of traps. However, due to the 

complexity of the carrier density equation, it is not easy to apply the equation to study the 

transient response. In order to simplify the analysis, two limiting cases are usually considered. 

Usually they are distinguished by low field case and high field case. Based on the setup of the 

TOF measurement either one of them can be used to predict the carrier transient response. 
 
The low field case assumes that the transit time of the carriers is much longer                                                                                            

than the carrier capture time. Additionally this transient time is in the same order of releasing 

time. 

τ! ≪
!
!!
≈ τ!                               (2.40) 

This indicates that carriers are immediately been trapped and they are not to be released 

during the transient process. Since the trapped carriers have no contribution to the transient 

current, the second term in the equation can be neglected. Based on the conservation of total 

carriers and rate equation of the carriers, the number of free carriers inside the sample can be 



	  
	  

44	  

expressed as the total number of injected carriers. [54] 

P = P!
!!

!!!!!
                             (2.41) 

The photocurrent can be further expressed as 

i!" =
!"#!
!
                               (2.42) 

where 

µμ = !!
!!!!!

µμ!                            (2.43) 

where µμ! is the carrier mobility in a trap-free environment. The expression is very close to 

the ideal case of TOF. The only difference is that the carrier mobility becomes smaller due to 

traps. This mechanism can be referred as shallow trap controlled transportation. 
  

Another case is the high field case, of which the applied field is large. The capture 

time in this case is much larger than the transient time, which means that few carriers are 

trapped during the transient process. The photocurrent is divided into two different time 

regimes. One is the transient time regime, which means carriers have reached the bottom 

electrode yet. Marini et al give an expression. [55] 

i!" 𝑡 = !!!
!!

!!
!!!!!

+ !!
!!!!!

exp − !!!!!
!!!!

𝑡                           (2.44) 

Though the trapping time is much larger than the transient, there are still portion of carriers to 

be trapped during the transient. They will be released subsequently and contribute to the 

photocurrent after transient time. This can be expressed as [52] 

i!" =
!!!
!
(t!/τ!τ!)exp  (−𝑡/τ!)                                 (2.45) 

These two equations indicate that the transient photocurrent will initially decay    

exponentially until carriers reach the bottom electrodes. At that time a step down in 

magnitude will occur, followed by another exponential decay to zero as the trapped carriers 

are released and collected.   

 

2.4.2 Multiple Trap Distribution  
 

The previous section only considers one energy state traps; however, in reality, the 
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localized states would have more than one energy state. The easiest model is a binary trap 

distribution, which involves two different traps with different capture time and release time. A 

simplification is made in order to study the problem easier. The concentration of injected    

carriers is much less than the concentration of traps at each energy state. Since the 

concentration of carriers does not exceed the concentration of the trap, carriers would have 

chance to be captured by either of traps. It is also assumed that only trapping free carriers 

contribute to the number of carriers trapped at a particular level. In the binary trap distribution 

case, carriers are assumed to be trapped only once during the transient. However, in the 

multiple traps distribution, the carriers are trapped and released by different energy states of 

traps multiple times.  
      

Blakney and Grunwald give the transient current for a binary traps distribution. [56] 

Essentially it can be treated as a combination of two individual monoenergetic trap 

distribution with capturing time τ!",  τ!" and releasing time τ!",  τ!" respectively.  

j 𝑡 = Aexp −a𝑡 + Bexp −b𝑡 + j                       (2.46) 

where 

a + b =
!!!!"!!"
!!"

+
!!!!"!!"
!!"

                                        (2.47) 

ab =
!!"
!!"

!!!"!!"
!!!!"!!"

!!"!!"
                                   (2.48) 

aA + bB = !!
!!"
+ !!

!!"
                                                    (2.49) 

A + B + j = j!                                                                        (2.50) 

where j is the steady state current. If the binary trap distribution happens to be a combination 

of shallow and deep traps, then the equation can be simplified by assuming of the trap 

releasing time is extremely large. 

j t = Aexp − !
!!"

+ Bexp − !!"!
!!"!!"

                           (2.51) 

The first term indicates a spike that will decay exponentially until the carriers reach 

equilibrium with the shallower traps. [57][58] The second term is a slow exponential decay. 
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For multiple trap distribution, a photocurrent solution can still be obtained through 

solving the continuity equation and considering a combination of multiple monoenergetic trap 

distribution. The Laplace transformation of the photocurrent solution is given as. [9] 

i 𝑠 =
!"
!!

!!!"# !! ! !!

! !
                                 (2.52) 

where 

a 𝑠 = !
!!
t! +

!!!!
!!!!

                                     (2.53) 

where t! is the transient time for carriers in a trap free sample, c! is the capture rate for i 

level energy states and r! is the release rate for i level energy states. Figure 2.15 shows the 

multiple trapping transportation process. 

 

Figure 2.15 A schematic of carrier transportation under multiple traps distribution condition. 

Carriers can be trapped and released multiple times by different traps. However, carriers are 

not released in a short time once deep traps trap them. After Kasap et al. [9] 

 

2.5 Capacitance 

 

The capacitance shows the ability the material to store electric charges under a certain 

voltage. It is an essential concept for electronics since capacitor is normally recognized as one 

of the three basic element of electric circuit. Every material that could be electrical charged 
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has capacitance for itself. Though there are lot classifications of capacitance in different 

environment, in this section, only the basic capacitance is considered. The capacitance is 

defined as  

C = !
!

                          (2.51) 

where C is the capacitance, 𝑄 is the change rate of the stored charges or it normally refers to 

the current in the circuit, V is the change rate of the voltage. Since the amorphous selenium 

samples that are used in this research can be simplified as parallel plates capacitors, it is more 

efficient to consider the capacitance of parallel plates capacitors. The general capacitance of a 

parallel capacitor is given as 

C = !!!!!
!

                         (2.52) 

where A is the area of the plate, L is the distance between two plates, ε! is the electric 

permittivity in the vacuum and it is a constant, and ε! is the relative permittivity for the 

dielectric material. In addition, the relative permittivity can be further related to electric 

susceptibility, which can be given as 

ε! = 1 + χ!                      (2.53) 

where χ! is the electrical susceptibility of the dielectric material. In other words, the relative 

permittivity is related to the induced polarization. In the concept of molecular polarization, 

one can further write electric susceptibility as [59] 

χ! =
!!!"#

!!!!!!!"#
                     (2.54) 

where N is the total number of dipoles, and γ!"# is defined as molecular polarizability. It is 

the average molecular dipole moment to ε! times the applied field at the molecular.  

 

2.6 Summary 

 

In this chapter, the electronic and optical properties of amorphous selenium are 

introduced. The amorphous selenium shares a lot of common properties with other amorphous 

solids. Since amorphous selenium is not a crystalline material, its properties are more 

complicated and hard to observe. The electronic properties are determined by the atomic 
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bonding arrangement of selenium atoms. The single bonding configuration of selenium atoms 

takes various forms and they can further form defect structures for amorphous selenium based 

semiconductors. These defects largely affect the transportation of electronic carriers in the 

amorphous selenium based semiconductors. The density of states models, which are 

developed to enhance the understanding the carrier transportation, are reviewed. Since the 

nature of amorphous solids is complicated, there is no absolute right density of state model for 

amorphous selenium. Several models are introduced including some recent simulation models. 

Each model has provided some useful information about the distribution of defects in the 

mobility gap of the amorphous selenium based semiconductors. The optical properties of 

amorphous selenium are also introduced. Since the main research goal is to study the X-ray 

induced changes in electronic properties of amorphous selenium, the X-ray generation and 

absorption is introduced as well. A theoretical estimation method of X-ray energy absorbed in 

the material is introduced, which is used later in the experiment to estimate the X-ray dose 

deposited in the samples.  

 

The theoretical base for the measurement technique is introduced in this chapter as 

well. Time of flight and interrupted field time of flight are the techniques used in the later 

experiments. These techniques are developed in order to measure the electronic properties of 

amorphous selenium. Time of flight measurement provides a method to obtain the carrier 

mobility of amorphous selenium. Interrupted field time of flight measurement provides a 

method to obtain the carrier-trapping lifetime of amorphous selenium. The sensitivity of 

X-ray detectors can be then acquired by combining the information from these two 

parameters. The small signal condition is the prefix for both TOF and IFTOF measurements, 

which ensures the uniform distribution of the internal field during the measurement. Both 

measurements measure the photocurrent induced by the drift of carriers. The interruption of 

the applied field during the IFTOF measurement provides the information of carrier-trapping 

lifetime. Since the density of states in the mobility gap is very complicated, several modified 

carrier transit model for TOF/IFTOF measurements are also discussed. The transportation of 

carriers due to different trap models is discussed in detail. The shallow traps are the main 

governing elements for carrier transportation in the amorphous selenium based 



	  
	  

49	  

semiconductors. The models include monogenetic trap level and multiple trapping processes. 

 

The concept of the capacitance is briefly introduced in this chapter as well. Though it 

is not the main research goal for the experiment, the capacitance measurement is included in 

the later chapters. The changes of capacitance in the experiments are caused by generation of 

dipoles in the bulk of amorphous selenium. 
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3. Experimental Procedure 

 

3.1 Sample Preparation 
 
     Vacuum deposited amorphous selenium (a-Se) films (layers) are used as test samples 

for the experiments. The samples are chosen to be a-Se:0.3% As: 5ppm Cl films with a 

thickness of 150   µμm . The arsenic alloying is used to stabilize the a-Se films against 

crystallization. Since alloying with arsenic undermines the hole transport (hole-trapping 

lifetime becomes shortened), the alloyed material chlorine is doped in order to improve the 

hole transport. A standard vacuum deposition technique is used to fabricate the samples. 

Cleaned corning glass substrates coated with a layer of aluminum are used as substrates for 

the samples. The aluminum serves as the electrode for the TOF/IFTOF measurements. The 

aluminum layer is thin but has sufficient conductance to serve as the rear electrode. Some of 

the samples do not have this aluminum layer; instead, they use a thin layer of ITO as the 

electrode. Most samples use the aluminum layer. The substrates are put into an NRC 3117 

stainless steel vacuum coater system, which is shown in Figure 3.1. Vacuum deposition of 

samples begins with selenium pellets being evaporated inside an evacuated chamber. The 

selenium vapors then condense onto the substrate, which is held just above the glass transition 

temperature of a-Se. This allows the selenium atoms to rearrange themselves into a 

structurally relaxed amorphous state as they condense. Figure 3.2 shows a schematic diagram 

of what are inside the NRC 3117 stainless steel vacuum coating system and how it works.
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Figure 3.1 NRC 3117 stainless steel vacuum coater system 

            

 
Figure 3.2 Schematic diagram of the NRC 3117 vacuum deposition system used to make the 

samples in this study. After Fogal [3] 
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     As shown in Figure 3.2, the selenium pellets are loaded into a molybdenum boat and 

evaporated by running a large current through the boat. The boat is heated to about 

250  ℃  by  passing  a  100− 150  A  AC  current.  The chamber is evacuated to a base pressure of 

~ 10!! Torr. The substrate heater keeps the glass substrate around 60 °C, just above the 

glass transition temperature of a-Se. The temperatures of both the boat and substrate are 

controlled through temperature controllers. The temperature of the boat governs the rate of 

evaporation and the temperature of the substrate largely affects the condition of the sample. A 

mechanical shutter covers the substrate until the evaporation has reached a steady rate. At that 

time the shutter is opened, the selenium begins to condense onto the substrate. A digital 

quartz crystal rate monitor is used to monitor the evaporation rate of source selenium material. 

After the desired thickness is reached, the shutter is closed. The current will not be switched 

off immediately. It will be switched off when the evaporation rate of selenium becomes a 

small. The samples are kept in the chamber for 24 hours before they are taken out.  

      
     Since the research goal is to examine the electronic properties of the a-Se, electrodes 

are required on the samples. A layer of aluminum on the substrate has been served as the 

bottom electrode. Gold contact will be deposited on the surface of selenium samples. A 

Hummer VI sputtering system was used to deposit the top gold contact and it is shown in 

Figure 3.3. 

 
Figure 3.3 Hummer VI sputtering system      
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To begin the sputtering process, a mask with a circular opening 0.5 cm in diameter 

covers the sample. The chamber is pumped down to a pressure of 110 m Torr and filled with 

Argon gas. When a high voltage is applied between the anode and cathode within the chamber, 

the argon gas ionizes. These positively charged argon ions begin to collide with the negatively 

charged gold target at the top of the chamber and dislodge gold particles. These free gold 

particles evenly cover the exposed area on the sample surface. The sputtered gold films have 

an edge-to-edge resistance of 100 − 200 Ω, and were sufficiently thin to allow light to pass 

through. Figure 3.4 shows how the contact is deposited on the sample. Figure 3.5 shows the 

actual appreance of the a-Se film which is used in the experiment. 

 
Figure 3.4 Schematic diagram of the Hummer VI sputtering system used to generate contacts 

on the a-Se samples. After Fogal[3] 

 
Figure 3.5 A typical 150um thick a-Se:0.3%As:5ppm Cl sample. 
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3.2 X-ray dose measurement 

 
3.2.1 X-ray Tube System 

 
Gendex GX-1000 X-ray tube system is used as the X-ray source for the experiments. Its 

peak voltage can be adjusted from 50 kVp up to 100- kVp. Its filament current can be set to 

be either 10 mA or 15 mA. It has a 2.5mm aluminum half-value layer. The X-ray tube is a 

tungsten target X-ray tube that produces a wide range of x-ray energy spectrum. The X-ray 

beam pulses at 1/60 of a second impulse due to the half-wave rectifier used by the system and 

a 60 Hz power supply. The system has a timer, which can generate a succession of pulses for 

a duration from (1/12)th to 5 s. Figure 3.6 shows a photograph the X-ray system along with 

the protection steel chamber. 

 
Figure 3.6 Gendex GX-1000 X-ray system and steel chamber protection 

 
There is limited irradiation duration due to the overheating of the X-ray tube. The maximum 
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working cycle of the X-ray tube within 5 minutes is listed in Table 3.1. 

 

Table 3.1 Working cycle of the X-ray tube [60] 

kVp 10mA 15mA 

50-70 30 20 

80 26 17.5 

90 23 15.5 

100 21 N/A 

    

     A steel chamber was used to protect users from X-ray irradiation. The steel chamber 

was manufactured by X-ray Products Corp of Pico Rivera California; the model number of 

the unit is A9002-16 

 

3.2.2 X-ray Dose Measurement System 

 
The X-ray dose measurement system consists of two parts. One part is the dosimeter 

system for X-ray exposure measurement and the other is theoretical dose estimation program. 

A Keithley 35050 Ion Chamber along with the Keithley 35050 Dosimeter measures the actual 

X-ray exposure, in the units of Rontgens (R), irradiated from X-ray tube. A digital voltmeter 

was attached to the Keithley 35050 Dosimeter in order to obtain the read-out from the 

dosimeter and convert the voltage reading to exposure in Roentgens. The ion chamber is 1.25 

cm thick and the otal volume is 15  cm!. The dosimeter system and the ion chamber are shown 

in Figure 3.7. 

 
Figure 3.7 Keithley 35050 Dosimeter and Ion chamber for X-ray exposure measurement. 
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The voltage readout from the multimeter can be converted into dose by applying the 

conversion factor for this particular Keithley model, i.e. Keithley 35050 Ion Chamber. [21] 

𝑉 Volts ×0.743 !"#$%&#
!"#$%

= Dose Rontgen                     (3.1) 

Knowing the dose deposited into the ion chamber and the thickness of the sample, one can 

use program dose.py to calculate the dose deposited into the sample. The dose.py is written in 

Python 2.7 and it follows the methodology for the theoretical calculation of X-ray dose 

described in the theory part (Chapter 2). The dose.py can be run under terminal in Mac OS 

system or in command terminal in Windows system. The program asks user to provide some 

inputs in order to calculate the dose. The peak voltage of the X-ray tube, sample material 

composition, position or thickness of the sample, the exposure obtained from dosimeter and 

the density of the sample material are needed in order to calculate the dose. Figure 3.8 is a 

screenshot of an example of deposited dose calculation for a typical a-Se sample in the 

sample by dose.py. The code of dose.py is attached in Appendix A. 

 
Figure 3.8. An example of dose calculation by dose.py is shown above. The sample is 

selenium and its density is 4.3 g/cm!. The peak voltage of X-ray tube is 75 kVp and the 

exposure obtained from the dosimeter is 0.335 R. The dose is calculated for 40 µμm beneath 

the surface. The result is in the units of Gy. 

 

3.2.3 X-ray Dose Rate Adjustment 
 
     X-ray dose rate depends on two factors in the experiment. One is the output dose rate 

from the X-ray tube and other is the absorbed dose rate in the sample. The output dose rate of 

the X-ray tube can be adjusted through using different filament currents in the X-ray tube. At 
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the sample peak voltage, the output dose rate of X-ray tube is proportional to the filament 

current. The Gendex GX-1000 X-ray tube system provides two different filament current 

options. One is 10mA and other is 15mA. The dose rate for 15 mA is 1.5 times larger than 

that for 10 mA. In addition to the adjustment of the filament current in the X-ray tube itself, 

one can change the distance between the sample and X-ray tube. Since the X-ray energy that 

reaches the sample decreases with distance, the sample position is adjusted to achieve 

different dose rates. An adjustable sample holder is used to adjust the distance from sample to 

the X-ray tube. The setup is shown in Figure 3.9. 

 
Figure 3.9. A movable white sample holder holds the a-Se film. The film can be moved closer 

to X-ray tube or further away. The laser optical fiber is placed beneath in order to generate 

injected carriers at the surface of the sample. 

 

3.3 Carrier-Trapping Lifetime Measurement and IFTOF Experiments 

 

3.3.1 Overview 

 
The carrier-trapping lifetime is measured by the IFTOF method. A schematic diagram 
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of how the IFTOF measurement works is shown in Figure 3.11 below. A bias voltage V(𝑡) is 

applied onto the sample shortly before t = 0. The laser is triggered at t = 0 and photons are 

absorbed very near surface of the sample. The bias voltage separates the electrons and holes 

generated by the photons. Depending on the bias voltage, one type of carrier will be collected 

by the electrodes immediately. The other type of carrier will drift through the sample under 

the applied field. The bias voltage is normally switched on 500 µs before the laser is 

triggered.  

 
The drift of the carriers under the bias field generates a current i(t) which is monitored 

by the digital scope. In most cases, the response collected from the drift of the carriers is the 

voltage V(t) instead of current i(t); the latter is passed through a sampling resistor and the 

voltage V(t) is across the sampling resistor. Since the drift current due to carriers is relatively 

small, it requires a very sensitive and stable experiment setup. The drift current for an a-Se 

sample under 1 V/µμm field is typically on the order of 10 µμA. It is more convenient to 

measure the voltage across a sampling resistor instead of the current passing through the 

sample. The bias voltage is switched off at 𝑡!and back on at 𝑡!. Due to the protection circuit 

in the amplifier, a small delay occurs when the high voltage is switched back. The high 

voltage is switched back at 𝑡!, while the scope begins to receive signal at 𝑡! + ∆𝑡. The time 

delay ∆𝑡 is normally 5 to 20 µs depending on the resistance value set in the amplifier. The 

high voltage is switched off once all the carriers reach the collecting electrode. A typical 

signal response of the transient voltage during IFTOF measurement is shown in Figure 3.11. 

 
Figure.3.10. A schematic process of IFTOF measurement is shown above. The above diagram 

shows how bias voltage is applied and interrupted. The diagram shows the corresponding 

photocurrent. Adapted from Fogal [3].  
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Figure 3.11 A typical IFTOF signal. The transient voltage drops to zero when the applied 

field is switched off. When the applied field is switched on, the voltage response recovers. 

The signal experiences a magnitude drop due to deep trapping. A significant signal delay can 

be observed when high voltage is switched back. The protection circuit in the amplifier circuit 

causes this delay. Adapted from Walornjy [21] 

 

The voltage response (across the sampling resistor so that V(t) = Ri(t)) before the 

interruption V 𝑡!  and the voltage response after the interruption V 𝑡!  are captured from 

the IFTOF measurement signal. Since the interruption time 𝑡! is known, one can calculate 

the carrier-trapping lifetime based on Equation (2.29) in Chapter 2. For instance, in Figure 

3.11, the voltage before the interruption is 0.60 volts, and the voltage after the interruption is 

about 0.40 volts. The interruption time is about 75 µμs. The carrier-trapping lifetime is then 

given by 

𝜏 = !!
!!"(!(!!)/!(!!)  )

= !"
!!"  (!.!/!.!)

µμs = 185  µμs                (3.2) 

This carrier-trapping lifetime might be longer than this because of the inherent delay in the 

IFTOF measurement. The interruption time is set to be 60 µμs and the field is back after a 60 

µμs interruption. However, the system does not immediately begin to monitor the signal after 

the field is back. It begins to collect the signal 15 µμs later due to the protection circuit. 

Therefore, the photocurrent drop now is not completely caused by the deep trapping process 

during interruption; and the carrier-trapping lifetime obtained is not the real carrier-trapping 

lifetime. As suggested in the Chapter 2, in order to obtain the real carrier-trapping lifetime, 

one can use a set of different interruption times. For each interruption time, the voltage drop 
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is different. If the ratio of voltage drops and the interruption time are plotted on a 

semi-logarithmic plot, the slope will be the reciprocal of the real carrier-trapping lifetime. 

This multiple interruption time measurement depends on the actual experiments. If the delay 

time is very short or the results from two methods are very close, then there is no need to do e 

multiple IFTOF measurements for a single lifetime measurement. Therefore, it is necessary to 

do a test on the actual experimental system with an actual sample before extensive lifetime 

measurements especially in monitoring the effects of x-ray irradiation on the lifetime; and its 

recovery. The Figure 3.12 shows a typical case that uses semi-logarithm to obtain the 

carrier-trapping lifetime. 

 
Figure 3.12 A typical example of semi-logarithm plot of ratio of photocurrent drop and 

interruption time. The slope of the fitting line is the carrier-trapping lifetime. After Walornyj 

[21]  

 

 The mobility or carrier-trapping lifetime measurements are realized by a TOF/IFTOF 

experimental setup, which includes a laser, an amplifier system, a high voltage (HV) supply 

and a HV switch system and a control and data acquisition system. A nitrogen gas laser is 

used to generate a very short light pulse that is absorbed near the surface of the a-Se film; this 

induces carriers near the surface of the sample. Since the transient photocurrent response is 

very small, an amplifier is used to amplify the signal. The amplifier is a voltage amplifier 

system. A high voltage switch system is used to perform the bias voltage interruption for 
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IFTOF measurements. The data were collected through a digital scope.  

 

A grounded bridge network is used in the TOF/IFTOF experimental system. It is used 

to eliminate the displacement voltage transients that occur during the IFTOF measurement. 

[61] When the high voltage switches off and switches on during the IFTOF measurement, a 

displacement current will occur. In this bridge network, if the variable capacitance is adjusted 

to be equivalent to sample’s capacitance, the voltage caused by the displacement current on 

both branches is equal. Then the differential amplifier system will only detect the 

photocurrent response since it is the only contribution to voltage difference across the bridges. 

A typical setup of the TOF/IFTOF measurement system is shown in Figure 3.13. Figure 3.14 

and Figure 3.15 show the actual experimental setup used in the present experiments. 

 
Figure 3.13 The TOF/IFTOF system schematic diagram. The amplifier system and high 

voltage system are simplified as the functional blocks in the diagram. After Fogal [3] 
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Figure 3.14. A partial experimental setup for TOF/IFTOF is shown above. A LN103C 

nitrogen UV laser, a 10V supplied triggering system, an EG&G high voltage supply, a 

Tektronix digital oscilloscope and a GPIB data acquisition box has shown in the figure. 

 

 
Figure 3.15 The experimental setup inside the steel x-ray chamber. The Gendex GX-1000 

X-ray tube head is above the whole TOF/IFTOF system. The grounded bridge network is 

built inside the black box at the bottom. A high voltage switch system is placed on the left 

side of the bridge network. A differential amplifier system and a protection switch are placed 

in the box on the right side of the bridge network. A temperature control system, which 
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includes a 12 volts power supply and an Omega temperature control system, is placed on the 

left side. 

 

3.3.2 Laser and Trigger System 

 
     The experiments performed in this study used a nitrogen pumped LN103C laser with 

pulse duration of ~300 ps, power of 250 kW, and a peak spectral output at 337.1 nm (UV) 

with a 0.1 nm spread. This laser pulse is then fed through a Newport Optical Fiber adapter 

and into the X-ray chamber where the samples are placed for testing. It is possible to add a 

neutral density filter to reduce the photon flux within the laser path if the output is too intense, 

and the small signal condition is not satisfied. A black mask slightly smaller than the contact 

diameter is placed over the semitransparent top contact to stop any edge illumination and 

photo-generation within the fringe field around the edges.  

 
     The LN103C laser uses TTL signals to initiate triggering. Two inputs (REG and LOW) 

with BNC connections are used to fire the laser by creating a high voltage discharge across a 

spark gap. The timing begins with a pulse (with width longer than 100 ns) applied to REG. 

Between 30−50 µs later, a second 100 ns pulse must be applied to the LOW input; otherwise, 

after 50 µs, the laser will self-fire. This has been measured by Fogal [3] and it is shown in 

Figure 3.16. 

 
Figure 3.16 Trigger timing requirements for LN103C Laser. After Fogal [3] 

 
     These inputs have been optically coupled to the laser trigger electronic circuitry to 

avoid the feedback from large voltage switching transients effecting measurements. The laser 

triggering is controlled from a computer. A PCICTR05 counter board interfaced with the PCI 

bus provides the required signal timing. The counter board utilizes an AMD 9513 timer. The 

timing chip contains five 16 bit up/down counters. The counter board is controlled at a high 
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level by a library of manufacturer provided C++ functions. A LabView GUI called the C++ 

functions. Figure 3.17 shows the PCI-CTR05 interface circuit for generating the trigger 

system 

 
Figure 3.17 The PCI-CTR05 interface circuit for generating the trigger required trigger pulses. 

After Fogal [3] 

      
     The control signals from the counter board are sent to the interface circuit through a 

ribbon cable. The PCs power bus powers the interface circuit. A three setting manual switch 

allows for manual high voltage control. The switch allows user to choose high voltage mode 

during the measurement. The Timing signals from the PCI-CTR05 counter board and 

interface is shown in Figure 3.18. 

 
Figure 3.18 The Timing signals from the PCI-CTR05 counter board and interface. After Fogal 

[3]  
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      The off-mode switches the high voltage supply off all the time while the on-mode 

switches it on all the time. The pulse-mode lets the user control the high voltage through 

various control signals. An LED is used to indicate the current state of the high voltage. A 

timing diagram is shown in Figure 3.18. This diagram provides the information on the 

sequence of signal triggering pulses and durations. HVON controls the state of the high 

voltage supply. The LASERREG commands the laser to be charged while LASERLOW 

makes the laser fire. The oscilloscope and laser firing are triggered simultaneously.  

 

3.3.3 High Voltage Switch 

 
    The HV switch uses two fast switching n-channel HEXFETS in a totem pole 

configuration. It has a maximum switching voltage of 1 kV. When driven into conduction, 

the HEXFET passes current from the high voltage input to the high voltage output. Its circuit 

design is shown in Figure 3.19 below. 

 
Figure 3.19 a 1kV fast switching high voltage HEXFET switch. After Fogal [3] 

 
      The type of HEXFET transistor used is a fast switching n-channel IRFBG30. It has a 

maximum rated gate-source voltage of ∓20V. The gate voltage required to drive the 
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HEXFETs are supplied by two HCPL-3120 optocouplers, which also serve to isolate the 

control circuitry from the high voltage output of the switch. A floating, +18 V power supply 

provides the power to the upper optocoupler while a grounded +18 V power supply provides 

power to the lower optocoupler. The BJT transistors (Q1 − Q4) provide protection to the 

HEXFETS in case of a fault on the output since if the output current exceeds its maximum 

rating, Q1 and Q3 will switch on providing a short circuit path between the gate and source 

terminals. The bias voltage was supplied by an EG&G Ortec 556 high voltage power supply, 

which was connected to the input of the HV switch. To provide a positive bias for the 

transient photoconductivity measurements, the output of the HV switch was connected to the 

top electrode on the sample. The HV switch functions as a single pole double-throw switch 

with the output normally connected to ground through the lower HEXFET. A +5 V pulse at 

the trigger input connects the high voltage power supply to the sample through the upper 

HEXFET for the duration of the trigger pulse. A BJT invert (Q!) at the input of the lower 

optocoupler ensures that only one HEXFET is conducting at a given time. 

 

3.3.4 Amplifier System 

 
      A two-stage wide band differential amplifier is used to amplify the induced 

photocurrent signal across the sampling resistor. The design of this amplifier is shown is 

Figure 3.20 below.                                                                                

 
Figure 3.20 2-Stage bandwidth difference amplifier with 16 dB gain. Adapted from Fogal [3] 

 
      The first stage uses an Analog Devices AD830 wide bandwidth, which is a high 

CMMR video amplifier. This stage is configured to amplify the differential photocurrent 
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signal from the displacement current signal. The second stage uses an Analog Device AD827 

non-inverting operational amplifier configured with 16 dB of gain to raise the signal above 

the noise floor of the oscilloscope and to drive the capacitance of the coaxial line connecting 

the amplifier to the oscilloscope. In order to protect the amplifier from the high 

voltage-switching transients, a Maxim MAX318 is connected across the inputs of the 

differential amplifier. It is a normally open CMOS analog SPST switch. The operation of 

MAX318 is controlled by an additional circuit, which provides the timing control for the 

switch. The circuit consists of an LS123 monostable multivibrator and an LS74 

positive-clocked D flip-flop. The small signal bandwidth of the amplifier is estimated to be 12 

MHz [3]. The transit time of carriers in a-Se is normally much longer than 1 µμs; therefore, 

the performance of the amplifier is more than satisfactory for the TOF/IFTOF measurement 

for the present test samples. The circuitry of the protection circuit is shown below along with 

its timing pulse duration in Figure 3.21. 

 
Figure 3.21 (a) The circuitry of the protection system. (b) The timing diagram. After Fogal [3] 

 

3.3.5 Control and Data Acquisition System  

 
      The data acquisition system consists of two parts. The oscilloscope acquires the signal 

that comes out from the differential amplifier system. An 8-bit Tektronix TDS210 digital 

oscilloscope with a sampling rate of 1 Gb/s is used in the experimental setup. The amplifier is 

connected to the channel 1 of the oscilloscope through a cable. The input of channel 2 for the 

oscilloscope is the high-voltage controlling signal from the command terminal. The 

oscilloscope was interfaced with an OC using GPIB connection. A GUI user interface was 



	   68	  

implemented on the PC. This GUI user interface was realized through LabView software. The 

parameters of the oscilloscope can be adjusted on this interface. User is able to choose the 

TOF/IFTOF modes for the measurement. A laser trigger delay set allows oscilloscope to 

capture the signal simultaneously with laser firing. The delay time set allows user to decide 

when to interrupt the applied field during the IFTOF measurement. User is also able to set the 

interrupt field duration for the IFTOF measurement on the interruption set. The system also 

allows user to perform TOF/IFTOF measurements for multiple times. The program can 

capture both the background signal and the photocurrent signal. Then it can acquire the true 

photocurrent signal from background subtraction. The waveform can be save in text.txt form 

on the computer. In addition, the interface provides calculation for the drift mobility and 

carrier-trapping lifetime. The interface is shown in Figure 3.22. 

 

 
Figure 3.22 GUI user interface in LabView for TOF/IFTOF measurements 
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3.4 X-ray Induced Carrier-Trapping Lifetime Changes 

 
      The whole research hinges on two main goals. One goal is investigate how X-ray dose 

changes the carrier-trapping lifetime and other is to investigate how these changes recovery. 

Two measurement methods are then developed to achieve these goals 

 

3.4.1 Accumulated Dose Measurement 

 
     The accumulated dose measurement investigates the X-ray induced carrier-trapping 

lifetime changes. It tracks the carrier-trapping lifetime changes under rapid irradiation. The 

a-Se device was placed on the sample platform. Two metal needles were attached to the 

sample, one to the gold contact on the surface of the a-Se and the other to the ITO on the glass 

substrate of the sample. In order to reduce the contact resistance, a small piece of indium was 

pasted to make better contacts. The sample was irradiated from the X-ray tube described 

above at 75 kVp for a time t seconds. Then the IFTOF measurement was immediately 

performed in order to acquire the carrier-trapping lifetime. The carrier-trapping lifetime is 

recorded and the process is repeated at each 30 seconds. A schematic diagram of the 

experimental schedule is shown in Figure 3.23. 

 
Figure 3.23 Procedure for accumulated dose measurements 

 
     The carrier-trapping lifetime of the sample is measured before the X-ray irradiation. 

This is not shown in the diagram above in Figure 3.23. The amount of dose that deposited into 

the sample is the same for each t period of irradiation. In most cases, the sample is irradiated 

multiple times until the dose deposited into the designed location reaches 10 Gy or more. In 

other cases, the experiment is terminated once the change of the lifetime is significant, 

normally a 40% change. Due to the nature of the defects generated by X-rays, the 
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carrier-trapping lifetime may recover a little during the 30 s step. At room temperature, the 

relaxation process is slow so that the carrier-trapping lifetime changes contributed from the 

relaxation process is negligible. The 30 s time step is shortened at higher temperatures. 

 

3.4.2 Lifetime Recovery Measurement 

 
     The carrier-trapping lifetime decreases after irradiation by X-rays, and the 

carrier-trapping lifetime will gradually recover to the state before the irradiation. The lifetime 

recovery measurement tracks the carrier-trapping lifetime changes over a long period. The 

carrier-trapping lifetime was recorded during this recovery process. The IFTOF 

measurements were performed every t(n) seconds for n time measurements, where  

𝑡 n = 𝑡! ∈ T ∥ 𝑡! < 𝑡!!! ,𝑇 = 𝑡!, 𝑡!…                  (3.2) 

The time step t(n) for different recovery measurements is different because some relaxation 

processes are rapid while others are not. The time t(n) increases with time because; initially 

the carrier-trapping lifetime changes quickly while the rate of change decreases later. A 

typical experimental process is shown in Figure 3.24. 

 
Figure 3.24 Schedule for lifetime recovery measurements 

 
The experiment does not terminate until the carrier-trapping lifetime is approximately 

equal to the carrier-trapping lifetime before the irradiation. The time it takes for 

carrier-trapping lifetime to return to its initial state is different for each measurement. Hole 

and electron lifetimes have different relaxation times. In addition, the relaxation time also 

depends on the temperature. The time of recovery measurement may range from minutes to 

weeks; therefore, some trial measurements are conducted for samples. These trial 

measurements provide information on the range of recovery times expected. 
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3.5 Temperature Control System 

 
     One of the major goals in this experiment is to investigate the temperature dependence 

of the X-ray induced hole-trapping lifetime changes. The sample is placed in a sealed 

chamber. The temperature in the chamber is controlled through a heater and cooler. A 50 

ohms resistor heater is used as a heating source. A CP60440 peltier cooler from CUI.inc is 

used as the cooling source. The Peltier cooler is 40×40 mm with a 6 A input. The Peltier 

cooler draws heat from the sample to the underside. A tube with continuous flowing water is 

used as the heat sink under the Peltier cooler in order to effectively dissipate the heat. The 

water following through the tube is about 0  ℃. The heater is able to heat up the sample to 

hundred degrees alone while the Peliter cooler is able to cool it down below zero degrees 

alone. An Omega CNI3252-C24 temperature controller externally controls the heater and 

cooler. The temperature controller is supplied by an external +20 V DC source. It controls the 

temperature through thermal coupling. It passes a controlled current through the heater when 

the sample temperature is below the desired temperature. Once the desired temperature is 

reached, it cuts the current into the heater and switches on the Peltier cooler simultaneously to 

prevent further heating. The temperature of the sample is controlled to within 0.5℃ of the 

desired temperature. Figure 3.25 shows a schematic diagram of the temperature control 

system. 

 
Figure 3.25 A chamber with the temperature control system. Adapted from Allen [62] 
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Before the experiment starts, the chamber is filled with ultra high purity nitrogen gas. 

A vacuum pump is connected to the chamber. It first drains air out of the chamber. Then, a 

bottle of ultra high purity nitrogen gas bottle is connected to the chamber. The chamber is 

filled with nitrogen gas before the temperature control system to adjust the temperature inside 

the chamber. The main goal for this process is to provide a stable environment for 

experiments. If the chamber is full of air, then water vapor condenses at lower temperatures 

(around and below 0 °C). Condensation will affect the photo-generation of carriers at the 

surface of the sample and it will also affect the stability of the a-Se sample, which may 

crystallize over time, before all the experiments could be done. Therefore, water vapor needed 

to be extracted from the chamber at the beginning of the experiments. 

 

3.6 Measurement of Capacitance Changes Due to X-rays 

 

3.6.1 Capacitance Measurement 
 
    The capacitance is measured through GenRed RLC 1658 digibridge. Two contact 

needles from GenRed RLC 1658 digibridge were attached to the top and bottom electrode of 

the sample. The capacitance of sample is then obtained. The digibridge is shown in Figure 

3.26 below. 

 
Figure 3.26 GenRed RLC 1658 digibridgre 
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3.6.2 Long Time Irradiation Measurement 

 
     The Faxitron X-ray cabinet system shown below is used to perform long-time 

irradiation. It is shown in Figure 3.27 below. 

 
Figure 3.27 Faxitron X-ray cabinet 

    The Faxitron X-ray cabinet system has a Tungsten X-ray tube head with a 0.76 mm 

Beryllium window. The filament current of X-ray tube is 2.5 mA and it can operate from 30 

kVp up to 140 kVp. The maximum continuous irradiation time for the system is 59 minutes 

and 59 seconds. For the capacitance changes measurement, the Faxitron X-ray tube was set to 

be 75 kVp and 30 minutes for the irradiation time. The sample is placed at the bottom of the 

chamber. The capacitance of the sample is measured after the 30 minutes irradiation and 

compared to its initial capacitance. 

 

3.7 Summary 

 
In this chapter, the experimental procedure for sample preparation is shown. The 

samples that are used in the research are stabilized amorphous selenium (a-Se) films and. The 

samples are fabricated through vapor deposition and the thickness of the samples is designed 

to be 150 µμm. The electrodes are deposited on the samples through a sputtering system. The 
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X-ray dose measurement and delivered dose estimation are also introduced in this chapter. A 

dental X-ray tube is used as the main X-ray source in the experiments that examined the 

carrier lifetimes. A dosimeter system along with an ion chamber is used to measure the 

exposure from the X-ray tube. A python based program is used to perform the estimation of 

X-ray dose delivered into the sample 

 

The main research goal is to investigate the X-ray induced changes in carrier-trapping 

lifetime. Therefore, IFTOF technique is used and a corresponding IFTOF measurement 

system is described. IFOTF measures the transient current caused by the drift of carriers. A 

pulsed UV laser and these photo-injected carriers move under an applied field, which is 

provided by a high voltage bias on the sample, generate carriers. During the IFTOF 

measurement, the applied field is interrupted. The field is switched off and it is switched on 

after an interruption time. A high voltage switching system realizes this process. Since a 

displacement current or displacement voltage transient will occur during the interruption, a 

grounded bridge network along with a differential amplifier system was used to eliminate this 

effect. The differential amplifier system also amplifies the transient signal, which makes it 

easier for the observer to acquire the signal. The transient signal is acquired by a digital 

oscilloscope and transferred to the computer. A user interface is created on the computer, 

which allows the user to control the whole IFTOF experimental setup and the measurement 

sequence  

In addition to the IFTOF measurement setup, a temperature control system is also 

developed to realize the control of the sample temperature. A resistance heater and a Peltier 

cooler are used to realize the thermal coupling process and the control of the temperature by a 

heater and a cooler. The sample and the platform are inserted in an isothermal chamber. Two 

sets of measurements are designed to study the X-ray induced carrier-trapping lifetime 

changes. The accumulated dose measurements track the carrier-trapping lifetime changes with 

deposited and accumulated X-ray dose. The IFTOF measurement is performed on the sample 

right after irradiation, and the whole process is repeated until a large amount of dose is 

deposited. The recovery process measurements track the carrier-trapping lifetime changes 

(recovery) after the cessation of all X-ray irradiation. The sample is put in the dark and 

IFTOF measurement is performed on the sample at certain time periods. In addition, a 

capacitance measurement is conducted. The latter measurement has the goal of investigating 

whether a=Se films experience capacitance changes under X-ray irradiation due to 

polarization effects such as trapped charges in the bulk. 
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4. Results and Discussion 

 

4.1 Introduction 

 

      The experimental setup and methodology have been introduced in the last chapter. 

The experiments have been conducted and the results are presented in this chapter. The 

experimental results include the X-ray dose measurement, dose rate dependence in carrier 

trapping lifetime measurements, temperature dependence in carrier-trapping lifetime 

measurements and lifetime recovery measurements, and X-ray capacitance measurements. 

All samples, which are used in the X-ray dose rate dependence and temperature dependence 

measurements, are a-Se:0.3%As:5ppm Cl samples. The nominal thickness of the samples is 

150 µm. The sample thickness has 1~2 µμm variance at different positions of the samples. 

Since the variance is very small, it does not affect the result of the experiments.  

 

4.2 Experimental Calculation of X-ray Dose Deposited in the a-Se Samples 

 

     The dose delivered into an ion chamber at fixed X-ray tube peak voltage depends on 

the distance between ion chamber and X-ray tube. It also depends on the filament current of 

the X-ray tube. A set of different sample positions and different X-ray filament currents are 

chosen in order to realize the dose rate difference. The X-ray tube is Gendex GX-1000 and its 

peak voltage has been fixed at 75 Kvp during measurement. The X-ray dose rate 

measurements are done for all different sample positions and X-ray tube filament current. 

The dose rates from dosimeter are shown below in Table 4.1. The sample position is the 

distance between sample and X-ray window. The X-ray window is not the head of the actual 
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X-ray tube, so the sample position and dose rate do not follow the inverse square relation. 

The exposure rate measured from X-ray tube is given in Table 4.1 below. The dosimeter and 

the ion chamber that are mentioned in Chapter 3 are used. 

Table.4.1 Dosimeter measurement results for Gendex GX-1000 at 75 Kvp at different 

position and different filament current. 

Sample Position (cm) Filament Current (mA) Dose rate (R/s) 

1.0 15 3.55 

7.5 15 0.67 

8.9 15 0.52 

8.9 10 0.35 

9.7 15 0.46 

9.7 10 0.31 

  

The measurements give the dose rate that is deposited into the ion chamber. The dose 

deposited into the sample is then calculated through a program dose.py. The dose.py follows 

the calculation methods described in the theoretical part and its code has been listed in the 

appendix part. Since the dose deposited into the sample has an exponential decay with respect 

to the depth from the surface, it is more accurate to examine the dose effect at a specific 

position. Since the dose varies though the bulk structure of the sample, the amount of traps 

generated by X-ray is different through the sample. Additionally, the IFTOF measurement 

studies the carrier-trapping properties at a specific location in the sample or a small region in 

the sample. Since average dose rate may not be the true dose rate at specific position, the 

result obtained from IFTOF measurement would lose its validity. In the experiment, the 

position was chosen to be 40 µμm beneath the top surface of the sample. The dose is at this 

position is then calculated through dose.py and the result is shown in Table 4.2. 

Table.4.2 Dose deposited rate at 40um beneath the surface. 

Sample Position (cm) Filament Current (mA) Dose rate (Gy/s) 

1.0 15 1.95 

7.5 15 0.37 

8.9 15 0.29 

8.9 10 0.19 

9.7 15 0.26 

9.7 10 0.17 
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     The estimated distance from X-ray tube to the window of the X-ray tube is about 4 cm. 

So a theoretical estimation of dose rate at different positions can be obtained through the 

relation 

Dose  rate(𝐷) ∝   Distance!!                      (4.1) 

The highest dose rate was used as the reference point. The dose rate was then examined at 

various positions to verify the inverse square decay relationship. The theoretical estimated 

dose rate at different positions was then calculated and listed in Table 4.3 below. 

Table 4.3 Theoretical dose rate estimation based on inverse square law. 

Distance (cm) Filament Current (mA) Dose rate (Gy/s) 

5.0 15 1.950 

11.5 15 0.369 

12.9 15 0.293 

12.9 10 0.195 

13.7 15 0.260 

13.7 10 0.173 

 
     The comparison of the theoretical estimation to experimental measurement shows that 

the result is very close and the maximum difference is only 2%. This indicates that our 

experimental setup for different dose rate measurements has been verified. 

      
     In summary, the X-ray dose rate measurement shows that the dose rate adjustment 

setup fulfills its design purpose. In addition, the dose rate result obtained from the X-ray dose 

rate measurement can then be applied in the following studies. 

 

 

4.3 X-ray Dose Rate Dependence of Carrier-trapping Lifetime Reduction 
    

The research goal is to examine if there is dose rate dependence in the carrier-trapping 

lifetime reduction due to accumulated X-ray dose. The research is conducted on both 

electrons and holes. The previous experiment has shown that the carrier-trapping lifetime for 

both electrons and holes will decrease upon X-ray irradiation deposition into the sample. The 

analysis is done on normalized carrier-trapping lifetime in order to have a better 

understanding of the reduction effects brought by X-ray irradiation. The normalized 
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carrier-trapping lifetime is the ratio between the carrier-trapping lifetime after irradiation and 

the carrier-trapping lifetime before irradiation. It provides a direct view of reduction 

percentage of the carrier-trapping lifetime. In addition, it allows the comparison of lifetime 

reduction between different samples. 

 

As mentioned in Chapter 3, the actual IFTOF experimental setup experiences a time 

delay during the interrupted field time of flight measurements. The carrier-trapping lifetime 

obtained from the transient signal drop might not be the true carrier-trapping lifetime from 

the IFTOF measurement. Therefore, it is necessary to test if the carrier-trapping lifetime from 

interrupted field time of flight measurement is sufficiently accurate enough to be useful. 

 

In Chapter 2 and Chapter 3, it is demonstrated that there are two ways to obtain the 

carrier-trapping lifetime through interrupted field time of flight measurements. The first one 

uses the voltage drop at certain interruption time to calculate the carrier-trapping lifetime. 

The other one uses the semi-logarithm plot of transient signal drop verse interruption time. 

The first one only requires one single IFTOF measurement while the second one requires 

multiple time measurements. For the current experiment setup in the laboratory, it is 

necessary to do a comparison of the results obtained from two methods. This comparison will 

provide the information on which method should be used to obtain the carrier-trapping 

lifetime in the later experiments.  

 

 The IFTOF measurements are performed on the sample and the carrier-trapping 

lifetimes are obtained. Three different interruption times are chosen and they are listed in 

Table 4.4. The corresponding IFTOF waveform is shown in Figure 4.1. 

 
Table 4.4 Different interruption times for IFTOF measurements. 

Label t! t! t! 

Interruption time 6  µμs 9  µμs 12 µμs 
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Figure 4.1. The interruption field time of flight waveform for three different interruption 

time. 

For different interruption times, the ratio between the transient voltage before the 

irradiation and after the irradiation is listed in Table 4.5 below. The logarithm of the voltage 

ratio versus the interruption time is also plotted in Figure 4.2 in order to obtain the 

carrier-trapping lifetime from the slope.  

Table 4.5 The transient voltage drop ratio for different interruption time. 

Interruption time (µμs) 6 9 12 

Voltage ratio v(t!)/v(t!) 0.89 0.84 0.80 

	  

 
Figure 4.2 The logarithm of voltage ratio verse the interruption time. 
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The slope of the Figure 4.2 is about 0.0175, which give a hole-trapping lifetime about 

of 57 µμs. The hole-trapping lifetime obtained from the direct calculation through Equation 

2.29 in Chapter 2 is about 52 µμs. This is much smaller than the slope method. However, if 

one uses the interruption time plus the delay time as the interruption time for the calculation, 

the result is about 57  µμs. This value is very close to the value that is obtained from the slope 

of Figure 4.2. Therefore in the later experiment, it is still valid to apply Equation 2.29 in 

Chapter 2 to calculate the carrier-trapping lifetime. The only difference is that the 

interruption time is the interruption set for the experiment plus the delay time due to 

protection circuit. 

 

Therefore, the carrier-trapping lifetimes for both hole and electron were acquired 

through IFTOF measurement at room temperature before X-ray irradiation. They are listed in 

Table 4.6 below. 

Table 4.6 Carrier-trapping lifetime before irradiation 
Carrier Carrier-trapping lifetime (µs) 

Hole 59±5 

Electron 462±40 

 
The hole-trapping lifetime is much smaller than electron-trapping lifetime. This 

indicates that it takes much less time for a hole to be trapped than for an electron when it 

drifts through the sample. This does not directly imply that concentration of electron traps is 

higher than that of hole traps. The drift mobility of holes is much larger than that of electron. 

The mobility of hole in a-Se alloy is normally about 4 - 5 times larger than that of electron. 
 

     Accumulated dose measurements are then repeated at different dose rates for the 

samples. The dose rate is chosen based on the previous X-ray dose measurements. The 

amounts of dose delivered into the sample each irradiation are fixed for different dose rates.  

Dose Gy = Dose  Rate !"
!
×Time s = Constant           (4.2) 

The dose for each irradiation interval is fixed so that the dose rate is the only variable for 

different dose rate measurements. The dose that is delivered into the sample at different dose 

rates may vary a little. Since the dose rate varies a lot, the irradiation time for each dose rate 

changes a lot. For instance, at a dose rate of 0.17 Gy/s, the irradiation time for each interval is 

5.5 s. At a dose rate of 1.95 Gy/s, the irradiation time for each interval is 0.5 s. The interval 

of irradiation for each measurement is smaller than the time step 30 s between each 
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irradiation. For both electron and hole measurements four different dose rates have been 

chosen. The dose rates that are used in the experiments are listed in Table 4.7. 

Table 4.7 Different dose rate chosen for electron and hole measurements 

Hole (Gy/s) 0.17 0.26 0.37 1.95 

Electron (Gy/s) 0.19 0.26 0.29 1.95 

 
     The carrier-trapping lifetime is obtained through accumulated dose measurement and 

saved as raw data. For each dose rate, a set of accumulated dose rate measurements are done 

on the samples. The raw data have been listed in the appendix. The carrier-trapping lifetime 

is normalized with respect to the carrier-trapping lifetime before the irradiation.  

𝜏!"#$%&'()* =
!!"#$"  !"#$%&"!"'(

!!"#$#%&
                              (4.3) 

For hole-trapping lifetime reduction due to X-ray irradiation, the accumulated X-ray dose 

was deposited up to 10 Gy. For electron-trapping lifetime reduction due to X-ray irradiation, 

the accumulated X-ray dose was deposited up to 20 Gy. The normalized hole-trapping 

lifetime changes due to X-ray accumulated dose is shown in Figure 4.3. The normalized 

electron-trapping lifetime changes due to X-ray accumulated dose is shown in Figure 4.4. 

The accumulated dose effect is conducted under four different dose rates for both electron 

and hole.  

 
Figure 4.3 Normalized hole-trapping lifetime reduction due to X-ray irradiation at different 

dose rates. 
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Figure 4.4 Normalized electron-trapping lifetime reduction due to X-ray irradiation at 

different dose rates. 

 
The normalized hole-trapping lifetime reduces up to 40% when the accumulated dose 

reaches 10 Gy. The normalized electron-trapping lifetime is reduced up to 60% when the 

accumulated dose reaches 20 Gy. For both electrons and holes, their normalized 

carrier-trapping lifetimes reduce as accumulated dose increases. Comparing electrons and 

holes, at same amount of dose, the normalized hole-trapping lifetime reduces more than 

normalized electron-trapping lifetime.  

 
     For accumulated dose measurement at a fixed dose rate, the normalized 

carrier-trapping lifetime decreases as the X-ray dose increases. The X-ray energy deposited 

into the sample generates new defects in the sample. As the number of defects increases, the 

average time of a carrier to be trapped by defects decreases. Comparing the carrier-trapping 

lifetime reductions due to X-ray dose at different dose rates, they vary only a little. 

Furthermore, the normalized carrier-trapping lifetime shows a decay with respect to dose. 

That can be described as [14] 

𝜏!"#$%&'()* =
!

!!!×!"#$
                         (4.4) 

where A is defined as normalized lifetime change rate. The larger normalized lifetime change 
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rate means that it requires less deposited X-ray energy to generate defects.  

 
     This relation can be explained by assuming that the probability of trapping per unit 

time is proportional to the connection of traps, that is !
!
∝   𝑁!"#$%. The traps are essentially 

capture centers in the samples. Before irradiation, carrier-trapping lifetime is determined by 

intrinsic defect concentration. One can define the initial carrier-trapping lifetime as [21] 

!
!!
= C×N!                            (4.5) 

Where C is the capturing coefficient and 𝑁! is the initial number of defects per unit volume 

in the sample. The X-ray dose generates new defects with a concentration N!!!"#; we 

assume the concentration of defects generated by X-ray is proportional to the dose [21]  

N!!!"# ∝ Dose                                (4.6) 

The total concentration of defects after irradiation is then  

N = N! + N!!!"#                               (4.7) 

By applying the proportional relation of reciprocal carrier-trapping lifetime and defects 

concentration, the equation can be simplified as 
!
!∙!
= !

!∙!!
+ Constant×Dose                      (4.8) 

Rearranging the equation 
!!
!
= 1 + C ∙ Constant×Dose                    (4.9) 

Using the notation of normalized carrier-trapping lifetime and defining C×  Constant as A 

τ!"#$%&'()* =
!

!!!×!"#$
                            (4.10) 

The normalized lifetime change rate A is then obtained through rational fitting of 

normalized carrier-trapping lifetime and the accumulated dose data. The normalized lifetime 

change rate is calculated for all dose rates. The fitting diagrams are listed in the appendix. 

The normalized lifetime change rate of hole at different dose rates is listed in Table 4.8. The 

normalized lifetime change rate of holes at different dose rates is listed in Table 4.9. 

Table 4.8 The dependence of the normalized lifetime change rate of holes on the dose rate. 

Dose rate (Gy/s) Normalized lifetime change rate (Gy!!) 

1.95 0.186 ∓ 0.03 

0.37 0.191 ∓ 0.02 

0.26 0.206 ∓ 0.11 

0.17 0.199 ∓ 0.02 
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  Table 4.9 The dependence of the normalized lifetime change rate of electrons on the dose 

rate. 

Dose rate (Gy/s) Normalized lifetime change rate (G𝑦!!) 

1.95 0.043 ∓ 0.01 

0.29 0.046 ∓ 0.01 

0.26 0.054 ∓ 0.02 

0.19 0.043 ∓ 0.01 

 
Figure 4.5 NLCR at different dose rates. 

 
The maximum dose rate is an order of magnitude larger than the minimum dose rate 

differs; however, the normalized lifetime change rate only varies by about 10%. The 

normalized lifetime change rate does not depend on the dose rate. At different dose rates, the 

decrease of normalized carrier-trapping lifetime, due to deposited X-ray dose, differs very 

little. The dose based exponential decay is sufficient to describe the normalized 

carrier-trapping lifetime decay. It does not show a necessity to add a new dose rate variable to 

describing the lifetime vs. X-ray irradiation data.  

 
The total amount of dose seems to determine the number of defects generated during 

the X-ray photon interaction in the sample. The dose rate decides the rate of energy deposited 

into the sample or X-ray photons interacted with the a-Se atoms. The experimental 

observation suggests that the defects generated by X-rays are stable. They do not disappear 

immediately which accords with other experiments. In addition, the generated defects will 

not be affected by X-ray photons. At higher dose rates, most of defects are generated 

simultaneously. At lower dose rate, some defects are generated initially and they have time to 
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further interact with later X-ray photons or a-Se structure itself. However, based on the 

experimental results, the defects either do not further interact with X-ray photons or have less 

priority when an X-ray photon interacts with a-Se structures. Therefore, when X-ray dose rate 

is in a range of 0.2 Gy/s to 2 Gy/s, the carrier-trapping lifetime due to X-rays only depends 

on the total X-ray energy that is deposited into the sample. This conclusion may not be 

applied to an extremely high dose rate. At extremely high dose rates, a large number of 

defects are generated at a short time. These defects tend to experience a structural relaxation 

process, which has a dependence on the number of defects in the sample. If the concentration 

of defects were extremely high, then the initial recovery speed would be very quick. Since the 

carrier-trapping lifetime is obtained through an IFTOF experimental measurement, there is 

small experimental time delay between the X-ray irradiation and IFTOF experimental 

measurement. Some of the defects may disappear during that time delay. Therefore, the 

carrier-trapping lifetime may be somewhat larger than the true carrier-trapping lifetime 

caused by X-ray.   

 

      In summary, for both electrons and holes, during the accumulated dose measurements, 

the carrier-trapping lifetime reduction due to deposited X-ray dose is independent of the 

X-ray dose rate. In addition, the normalized lifetime change rate for holes is much larger than 

that for electrons.  

 
     One can further explore the X-ray detector sensitivity changes due to accumulated 

dose based on the results above. The mobility change due to deposited X-ray dose is very 

small [3]. However, the carrier-trapping lifetime change due to accumulated dose is very 

significant. As shown in this section, the hole-trapping lifetime decreases by 40% of its initial 

value upon receiving a dose of 10 Gy. The electron-trapping lifetime also decreases down to 

70% of its initial state upon receiving 10 Gy. Therefore the sensitivity changes due to 

deposited X-ray dose will be mainly contributed from carrier-lifetime changes.  

 

      The sensitivity is related to mobility and carrier-trapping lifetime as stated in Chapter 

1. A numerical relationship between these two parameters and sensitivity can be given by 

[10].  

𝑆 = 𝑃×   𝑅! + 𝑅!                           (4.11) 

where 
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where 𝛼!"#  is the energy absorption coefficient for air, 𝛼!"  is the energy absorption 

coefficient of amorphous selenium, 𝛼 is the linear attenuation coefficient of amorphous 

selenium, 𝜌!"# is the density for air, 𝑊± is the EHP creation energy in amorphous selenium, 

E is the applied field, L is the thickness. The normalized sensitivity can be given as 

𝑆!"#$%&'()* =
!!""#$!#%!"
!!"#$$%&#%'(&

                     (4.15) 

One can assumes that the first term P for sensitivity remains unchanged after irradiation. A 

simple analysis of how deposited X-ray dose changes the sensitivity can be now done as 

follows. Considering two samples, one is 200 µμm and the other is 500 µμm. X-ray induced 

electronic property changes follows the result above. The normalized lifetime change rates 

for electrons and holes are 0.046 Gy/s and 0.2 Gy/s respectively. The hole mobility is about 

0.13 cm!V!!s!! and The electron mobility is about 0.03 cm!V!!s!!. The mean X-ray 

energy for 75 kVp is 40 keV. Two samples are examined under two operating field 

corresponding to 1 V/µμm and 10 V/µμm. Then, the normalized sensitivity changes due to 

X-ray dose can be obtained from Equation 4.11- 4.15 and it is plotted on Figure 4.6 

 
Figure 4.6 Normalized X-ray sensitivity versus deposited X-ray dose. 



	  
	  

87	  

      The X-ray sensitivity decreases with deposited X-ray dose. The X-ray sensitivity of 

the thicker sample decreases more under the same field. The X-ray sensitivity decreases less 

under a larger field. The results are in agreement with the theoretical analysis and 

experimental observations. The normal working field for a-Se based X-ray detector is about 

10 V/µμm. [3] The sensitivity loss is less than 2 %. Therefore, a-Se is a good choice as a large 

area X-ray photoconductor.  

 

4.4 Temperature Dependence of X-ray Induced Hole-trapping Lifetime  

   Changes 

 
     The previous experiments have shown that the X-ray induced carrier-trapping lifetime 

changes and its structural relaxation process depend on the temperature. [21] The 

measurement of electron-trapping lifetime changes due to a temperature difference has been 

done previously. In this work, the goal is to investigate the X-ray induced effects on the hole–

trapping lifetime as a function of temperature. In addition, samples, which have composition 

a-Se:0.3%As: 5ppm Cl are used for the temperature experiments. 

 

The hole-trapping lifetime is measured at different temperatures before the X-ray 

irradiation. The sample temperature was controlled through a temperature controller. Three 

different temperatures corresponding to 10  ℃, 23.5  ℃, 35.5  ℃  are chosen. The glass 

transition temperature of a-Se:0.3% As:5ppm Cl sample is about 50  ℃. All the experimental 

temperatures are chosen to be below glass transition temperature in order to avoid rapid 

structural changes at the glass transition temperature. The IFTOF measurements were 

conducted at different temperature in order to measure the hole-trapping lifetime. The 

hole-trapping lifetime at different temperature is given below in Table 4.10. 

 
Table 4.10 Hole-trapping lifetime before irradiation at different temperatures 

Temperature  (℃) Hole-trapping lifetime (µμs) 

10 76∓ 8 

23.5 60∓ 4 

35.5 48∓ 4 

   

The hole-trapping lifetime decreases as temperature increases. From 10℃ to 35.5℃, 
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the average lifetime decreases from 76µμs to 48µμs, from 10 ℃ to 35.5 ℃, nearly 40% 

reduction. The hole-trapping lifetime reduction is about 1.5% per temperature increase of 1℃. 

This increment is not a linear increment. At higher temperature, the carrier-trapping lifetime 

changes more rapidly.  

 

Accumulated dose measurements are performed on hole-trapping lifetime at different 

temperature. Since the carrier-trapping lifetime is different at each temperature, the 

hole-trapping lifetimes obtained from IFTOF measurements are normalized with respect to 

initial hole-trapping lifetimes at different temperature. The accumulated dose deposited into 

the sample at different temperature is different since the normalized carrier-trapping lifetime 

reduced at different rates. The measurements are terminated when the measured 

hole-trapping lifetime has been reduced to almost 45% of its initial hole-trapping lifetime for 

all the measurements. The total amount of the accumulated dose for different temperature 

varies significant. Only a very small amount of dose is deposited in the sample each time at 

high temperatures. This makes it possible to acquire enough data points in order to calculate 

the normalized lifetime change rate later. The normalized hole-trapping lifetime reduction 

due to accumulated dose at different temperatures is plotted in Figure 4.7.  

 
Figure 4.7 Normalized hole-trapping lifetime reduction due to X-ray dose at different 

temperatures. 

 
      At different temperature, as the X-ray dose increases, the hole-trapping lifetime 
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decreases at a different rate. Similarly to the analysis in the dose rate dependence 

measurement, the normalized lifetime change rate is introduced. The normalized lifetime 

change rates at different temperature are listed below in Table 4.11. 

Table 4.11 The normalized lifetime change rate of hole at different temperature 

Temperature (℃) Normalized lifetime change rate (Gy!!) 

10 0.054∓ 0.02 

23.5 0.231∓ 0.03 

35.5 6.61∓ 0.90 

 

The normalized lifetime change rates vary greatly at different temperatures. From 10 to 

35.5℃, the normalized lifetime change rate increases by a factor about 122 times. This 

implies that at higher temperature, same amount of X-ray energy can generate more defects 

than it at lower temperature. In addition, this increment is not linear from low temperatures to 

high temperatures. From 10 to 23.5 ℃, the normalized lifetime change rate increases about 4 

times. From 23.5 to 35.5℃, the  normalized  lifetime change rate increases about 29 times. At 

higher temperatures, the normalized lifetime change rate increases more; in other words, it 

becomes easier for X-ray to induce defects. The strong temperature dependence of the 

normalized lifetime change suggests that the defects or hole capture rate is probably 

thermally activated. Indeed if we were to fit an Arnhenius temperature dependence to the 

three points in Table 4.11, we would find an activation energy of ~ 1.4 eV. 

 

To have a better understanding of the temperature affect in carrier-trapping lifetime 

reduction, a comparison can be made with previous electron measurements. This comparison 

is shown in Table 4.12. [21] 

Table. 4.12 Comparison with previous measurement on normalized lifetime change rate at 

different temperature 

Temperature℃ a-Se:0.2%As 

Electron normalized lifetime 

change rate (Gy!!) 

a-Se:0.3%As:5ppm Cl 

Hole normalized lifetime 

change rate (Gy!!) 

10 N/A 0.054∓ 0.02 

21 − 23.5 0.052 0.231∓ 0.03 

35 ~− 35.5 0.19 6.61∓ 0.90 
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For both electrons and holes, the normalized lifetime change rate increases with 

increasing temperature. The normalized lifetime change rate for holes is larger than that for 

electron. This indicates that upon deposition of the same amount of dose, the hole-trapping 

lifetime reduced more than the electron-trapping lifetime. More hole defects are generated 

than electron defects. In addition, from 21 to 35 ℃, the normalized lifetime change rate for 

electrons increases about 4 times while the normalized lifetime change rate for holes 

increases about 29 times. This indicates that the X-ray induced lifetime changes are more 

sensitive to temperature for holes than that for electrons. This result is not completely 

accurate since the sample compositions are not identical. Based on the previous dose rate 

measurement, the average normalized lifetime change rate is about 0.043 for a-Se: 0.3%As: 

5ppm Cl at room temperature. So a composition difference will cause some variation in the 

parameters.  

 

     Beyond the carrier-lifetime reduction measurement, the carrier lifetime recovery 

measurements are performed on irradiated samples at different temperature. Three different 

temperatures, which are the same as the temperatures in the accumulated dose measurement, 

were chosen. The samples are kept in the dark and the temperatures of the samples remain 

stable during the whole experiment. The recovery process of hole-trapping lifetime after 

X-ray irradiation at different temperatures is shown in Figure 4.8. 

 
Figure 4.8 Normalized hole-trapping lifetime versus time on a semi-logarithmic plot. The 
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sample has been pre-irradiated and the normalized lifetime τnormalized has decreased as a result 

of irradiation. τnormalized recovers with time. 

 
     The X-ray dose amount deposited into the sample initially at different temperatures is 

the same as that in accumulated dose measurements. The normalized hole-trapping lifetime is 

reduced to 45% of its initial value. The normalized hole-trapping lifetime begins to recover 

gradually after the irradiation. At higher temperatures, the time it takes for sample’s 

normalized hole-trapping lifetime to come back to 100% is shorter than that at lower 

temperature. It takes less than 20 minutes for the normalized hole-trapping lifetime to come 

back to 100% at 35.5℃. It takes about 2000 minutes (33 hours) for the normalized 

hole-trapping lifetime to recover back to 100% at 23.5 ℃. It takes more than 20000 minutes 

(14 days) for the normalized hole-trapping lifetime to come back to 100% at 10℃. The 

hole-trapping lifetime shows a strong dependence in the recovery process of the normalized 

hole-trapping lifetime. The relaxation process of hole lifetime was observed to follow a 

stretched exponential behavior. [21] This relaxation process can be well fitted by 

𝜏!""#$!#%&$ = 𝜏!"#$$%&#%'(& − 𝜏!"#$$%&#%'(& − 𝜏!"!#!$% e
!( !

!!"
)!        (4.16) 

or 

𝜏!"#$%&'()* = 1 − 1 − 𝜏! e
! !

!!"

!

                  (4.17) 
where 𝜏!  is the normalized carrier-trapping lifetime after irradiation, 𝜏!" is the structural 

relaxation time and 𝛽 is the exponential stretch coefficient, which is between 0.8-0.9. The 

structural relaxation time 𝜏!" is different for each sample. It is independent of the X-ray dose, 

and it is a parameter that characterizes the recovery process of the carrier-trapping lifetime. 

      
     When time t is 0, which stands for immediately after irradiation, Equation 4.17 is 

simplified into 

𝜏!"#$%&'()* = τ!                                                                                                                    (4.18) 

since the exponential term becomes 1. When time t goes to infinity, which means that a 

sufficient long time has passed, the Equation 4.17 is simplified into 

𝜏!"#$%&'()* = 1                                                                                                                      (4.19) 

Since the exponential term becomes 0. Equation 4.14 shows that when time is long enough 

the carrier-trapping lifetime recovers to its unirradiated state. This agrees with the 

experimental observation. The Equation 4.17 can be also written as using Equation 4.5 
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△!!
!!

= △!!
!!
e!

!
!!"

!

                         (4.20) 

where 𝑁! is the concentration of traps at time t after irradiation and △ 𝑁! is the excess 

concentration of traps with respect to unirradiated state; 𝑁! is the concentration of traps 

initially at the recovery process and △ 𝑁! is the concentration of traps with respect to  

unirradiated state. As time increases, 𝑁!  and △ 𝑁!  both decrease. The ratio △!!
!!

 will 

follow a stretched exponential decrease with respect to time.  

 

      The structural relaxation time for different temperatures is obtained through fitting 

Equation (4.20) to experimental results. The fitting plots are given in the appendix. The 

structural relaxation times at three different temperatures are listed in Table 4.13 below. 

Table 4.13 Structural relaxation time for different temperatures 

Temperature ℃ Structural relaxation time (minutes) 

10 5836∓ 1090 

23.5 498∓ 26 

35.5 5∓ 1 

   

     The structural relaxation time takes a range from several minutes up to days. From 35.5 

to 23.5 ℃, the structural relaxation time increases about 100 times. From 23.5 to 10 ℃, the 

structural relaxation time increases about 10 times. Since the structural relaxation time is 

independent of normalized carrier-trapping lifetime, it provides a useful indication about the 

relaxation process. At a higher temperature the relaxation process of hole lifetime is much 

quicker than at a lower temperature. In addition, the lifetime was observed to change with 

temperature in an Arrhenius fashion, which suggests a thermally activated process. [21] The 

thermal activation energy can then be calculated based on the results obtained from previous 

measurements. By plotting the structural relaxation time versus the inverse temperature, the 

activation energy could be obtained. The structural relaxation time and temperature follows 

an exponential relationship, which is given by 

𝜏!" ∝ exp
!!"#$%!#$&'

!!!
                                                                                                (4.21) 

The activation energy is then obtained through fitting structural relaxation time versus 

inverse temperature data. The logarithm of structural relaxation time versus the inverse 

temperature is plotted in Figure 4.9 and the slope of this plot can be used to determine 
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activation energy. The activation energy is then the product of the slope and the Boltzmann 

constant. From Figure 4.9, the activation energy is 2.11∓ 0.24  eV for the relaxation of 

excess hole traps. 

 
Figure 4.9. The fitting plot of logarithmic structural relaxation time versus inverse 
temperature. 
 

A comparison can be made between the hole lifetime relaxation process and the electron 

lifetime relaxation process as shown in Table 4.14. [21]  

Table 4.14 Comparison with previous electron measurement 

Temperature  ℃ a-Se:0.2%As 

(𝜏!" for electron traps) 

a-Se:0.3%As:5ppm Cl 

(𝜏!" for hole traps) 

10 N/A 98∓ 18 hrs 

21 ~  23.5 3.36∓ 1.8 hrs 8.3∓ 0.4 hrs 

35 ~ 35.5 5.9∓ 1.4 mins 5.0∓ 1.0 mins 

Activation energy 1.89∓ 0.47 eV 2.11  ∓ 0.24 eV 

 
The structural relaxation time is quite short at high temperature. The activation energy 

for relaxation of electron traps is slightly smaller than that for relaxation of hole traps. For 

both electrons and holes, it shows that as the temperature increases, the structural relaxation 

time decreases. Since the two samples are not exactly the same, the result of comparison is 

not completely valid. A small portion of arsenic doping or chlorine doping may significantly 

change the relaxation process involved in carrier traps. In order to make a valid comparison 

between hole and electron trap relaxation process, the sample composition should be the 

same. 

 
 In summary, at a higher temperature, the hole-trapping lifetime decreases more upon 
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receiving the same amount of dose than that at a lower temperature. The hole-trapping 

lifetime also recoveries more quickly at a higher temperature than that do at a lower 

temperature. The electron-trapping lifetime also has a similar behavior at different 

temperatures. The temperature effect is valid for both hole and electron traps. 

 

4.5 Capacitance Changes Due to X-ray Irradiation 
 
      The experimental goal is to see if there would be difference in the capacitance of the 

sample caused by X-ray irradiation. Two different samples are used in these experiments and 

the capacitance changes are listed in Table 4.15 below. 

Table 4.15 Samples used in effective capacitance measurements 

Sample / Capacitance  Before (pF) After (pF) 

Sample	  1:	  

α− Se: 0.03%SeO,  

144 µμm thickness 

51.8 51.6 

Sample	  2:	  

α− Se: 0.3%As: 5ppm  Cl,  

114 𝜇m thickness 

67.6 66.7 

   

The capacitance changes have shown in Figure 4.10. 

 
Figure 4.10 Measured capacitance changes due to X-ray 

       

Considering the measurement error in the bridge, which is about 1 %, the changes due 
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to X-ray irradiation are negligible. The capacitance does not change upon receiving the X-ray 

irradiation and this indicates that there are no trapped charges in bulk or changes in the 

relative permittivity. Based on the statements in chapter 2, the unchanged capacitance is 

mostly likely due to the absence of X-ray induced polarization. There is not enough evidence 

to say that deposited X-ray dose not generate any electric dipoles in the bulk. This is because 

the polarization that changes the electric susceptibility of the material is the vector sum of all 

the single polarization vectors. Deposited X-ray dose may result in the generation of local 

polarization of the medium but the sum, as indicated by the experiments, is negligible. 

 

4.6 Summary 

 

In this chapter, the results of several X-ray induced changes in electronic properties of 

amorphous selenium alloy are collected. The X-ray dose that deposited into the sample is 

measured before the experiment. The maximum dose rate that is used in later experiments is 

about 2 Gy/s and the minimum is about 0.2 Gy/s. 

 

The carrier-trapping lifetime test has shown the experiment setup is reliable for 

carrier-trapping lifetime measurements. The dose rate dependence measurements were 

carried out. Four different dose rates have been applied on the samples during the 

accumulated dose measurements. The measurements were done for both electrons and holes. 

The normalized lifetime change rate is obtained for each measurement as well. For 

hole-trapping lifetime measurement, the normalized lifetime change rate was about 0.2 Gy!! 

for all different dose rates. For electron-trapping lifetime measurement, the normalized 

lifetime change rate is about 0.046 Gy!! for all different dose rates. Though the dose rate 

has an order of magnitude difference, the X-ray induced carrier-trapping lifetime changes 

were very close for different dose rates. 

 

The temperature effects on X-ray induced hole-trapping lifetime changes have been 

investigated as well. Three different temperatures 10 ℃, 23.5  ℃, 35.5  ℃ were chosen to be 

the experimental temperature. The accumulated dose measurements at different temperatures 

provide the normalized lifetime change rates for different temperature. At higher temperature, 

the hole-trapping lifetime decreases very fast with a normalized lifetime change rate of about 

6.6 Gy!!. At the lower temperature, the hole-trapping lifetime decreases very slowly with a 
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normalized lifetime change rate of about 0.05 Gy!!. The same temperatures are chosen for 

the study of relaxation process as well. At the higher temperature, the hole-trapping lifetime 

recovers very quickly with a structural relaxation time of about 5 minutes. At the lower 

temperature, the hole-trapping lifetime recovers very slowly with a structural relaxation time 

of about 100 hours. The results are in accord with the results from the electron-trapping 

lifetime measurements. The activation energy for the relaxation of hole traps is about 2.11 eV. 

An accurate comparison cannot be made with the activation energy for electron lifetime 

relaxation due to the composition difference.  

 

The X-ray induced capacitance change measurements were also done for two different 

samples. The capacitance changes due to X-ray irradiation are negligible.  
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5. Conclusion and Summary 
 

The research objectives of this project were to investigate the X-ray induced 

carrier-trapping lifetime changes in amorphous selenium alloy based photoconductive 

layers. Carrier-trapping lifetime changes due to delivered dose at different dose rates were 

observed as well as hole-trapping lifetime changes due to delivered dose at different 

temperatures. These observations provide a deeper understanding of amorphous selenium 

and these could be useful to improve the performance of amorphous selenium based X-ray 

detectors. 

 

5.1 X-ray Induced Changes in the Electronic Properties of Amorphous   

   Selenium 

 

The samples that are used in the experiments are a-Se: 0.3% As: 5ppm Cl films. The 

thickness of the films is about 150 µμm. The exposure from the X-ray tube is measured by a 

dosimeter system and the delivered dose is estimated through a computer program, which 

includes photon energy dependence of attenuation and absorption coefficients. 

 

 One of the major experimental goals was to investigate if there is dose rate 

dependence in the accumulated and delivered dose measurement. The carrier-trapping 

lifetime decreases upon the sample receiving X-ray dose. The more X-ray dose that is 

deposited into the sample the more carrier-trapping lifetime decreases. This is observed for 

both electrons and holes. The amorphous selenium alloy samples were irradiated under 

different X-ray dose rates. After receiving a total 10 Gy of X-ray dose, the hole-trapping 
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lifetime decreased up to 40% of its unirradiated state. After the deposition of a total 20 Gy of 

X-ray dose, the electron-trapping lifetime decreased up to 60% of its unirradiated state. The 

dose rate ranged from 0.2 Gy/s up to 2 Gy/s, over an order of magnitude. There was no 

significant difference between different dose rates. The normalized lifetime change rates, 

which are used to describe the carrier-trapping lifetime changes due to deposited X-ray dose, 

are very close between different dose rates. Therefore, the X-ray dose induced 

carrier-trapping lifetime decrease does not depend on the X-ray dose rate. It makes X-ray 

imaging system design much simpler since the performance of X-ray detector is independent 

of the exposure rate to the X-rays 

 

Another experimental goal was to investigate the different temperature effects on X-ray 

induced hole-trapping lifetime changes. Two types of temperature dependence measurements 

were done. First, the temperature effects during the accumulated dose measurement were 

investigated. At higher temperature, the carrier-trapping lifetime decreases faster at the same 

amount of deposited dose. The normalized lifetime change rates can be different by more 

than 100 times. Such changes are greater at higher temperatures. The hole-trapping lifetime 

exhibits a relaxation process after irradiation. At higher temperatures, the relaxation process 

is very short while it takes a long time at lower temperatures. The structural relaxation time, 

which is used to characterize the relaxation process, varies sharply with temperature. From 

10  ℃  to  35.5  ℃, the difference can be more than 1000 times. These results are in agreement 

with the previous results obtained from electron-trapping lifetime measurements. At higher 

temperatures, the amorphous selenium structure is more flexible, which makes it easier for 

X-ray to generate defects. Because of this flexibility, this is also easier for these defects to 

relax. This suggests that an optimized mode of operation based on such temperature effects 

may be developed in order to minimize the accumulated dose effects. 

 

The carrier-trapping lifetime fall with deposited dose leads to a decrease of X-ray 

sensitivity, which is a metric crucial for the performance of these X-ray detectors. It is shown 
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that a thicker X-ray detector experience more significant sensitivity loss than a thinner one 

operating at the same field. It is also shown that a lower applied field will induce a more 

significant sensitivity loss than a higher applied field. Even though carrier-trapping lifetime 

may experience up to 50% loss, the X-ray sensitivity loss is only about 1% for a 200 µμm 

thick X-ray detector with 10 V/µμm applied field. This provides some guides to overcome 

carrier-trapping lifetime changes in X-ray detector design. An additional measurement for 

capacitance dependence on deposited dose was also done. Two different samples have been 

irradiated with X-rays for a long time. The capacitance is measured before and after the 

irradiation. The capacitance change due to deposited dose is negligible. The result suggests 

that there is no effective internal polarization after the irradiation. 

 

5.2 Future Works 

 

The current research has provided much information on amorphous selenium. The 

X-ray induced changes in the amorphous selenium have been intensively studied for changes 

in the mobility and carrier-trapping lifetime. However, there are still many issues to be 

investigated. The present study on X-ray induced carrier-trapping lifetime changes only 

investigated the dose rate dependence. It did not include the X-ray energy dependence. The 

number of defects is proportional to the total amount of X-ray energy deposited into the 

sample. It does not indicate if low-energy X-ray photons and high-energy X-ray photons have 

the same contribution. This investigation would provide a better understanding of the 

performance of the amorphous selenium based X-ray detectors under different X-ray energy 

range. In order to implement such an experiment, a more monochromatic X-ray source is 

required. As shown in the previous chapters, the conventional X-ray tube only provides a 

continuous spectrum of X-rays. Therefore, it is necessary to add some filters to the current 

X-ray tube or to replace the current X-ray tube with a synchrotron source. Besides the 

damage process, some experiments could be done on the recovery process as well. Bandgap 

of sub-bandgap light may have effects on the relaxation process of the defects generated by 
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the X-ray. However, the actual mechanism remains unknown. The amorphous selenium has 

an absorption band gap about 532nm. [21] Therefore; three separate experiments could be 

done on the relaxation process. One is in the dark, one is irradiated by a laser with 

wavelength below 532 nm, and the other is irradiated by a laser with wavelength above 532 

nm. The goal of the experiment would be to see if there is a difference caused by photons 

during the relaxation process. In addition, it would also help to understand if this difference is 

caused by absorption of photons or something else. Since the TOF and IFTOF are two 

powerful techniques for mobility and carrier-trapping lifetime measurement, the present 

study can also be applied to other potential X-ray detector materials. 
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Appendix A 

 
     The program, dose.py, which is used to calculate the dose deposited into the sample is 

listed in this appendix. The dose.py is used to calculate the dose deposited into the sample. It 

is based on the X-ray dose estimation in Chapter 2. It combines the experimental 

measurement and theoretical estimation. The code is written in python 2.7 but it can be also 

applied in other language.  

The code is listed below  
……………………………………………………………………………………….. 
##import library 
import os import 
string import 
numpy as np import 
shutil  
  
##..........................  
## The main program is dose.py and it consists of three major parts.  
## spectrum.py imports the X-ray energy spectrum from the library  
## thickness.py calculates the mass-attenuation effect which is related to thickness  
## acoeff.py imports the attenuation coefficient from the library  
## Norm.py normalized the flux based on the exposure measurement in the lab  
## integral.py is a integration function  
##...........................  
  
##..........................  
## Note that the spectrum of the X-ray tube can be directly measured by spectrometer or  
##  One  can  use  the  X-ray  spectrum  simulator  from  Siemens: 
http://www.oem-products.siemens.com/x-ray-spectra-simulation  
## The attenuation coefficient can be obtained from NIST or other X-ray material handbook  
##..........................  
  
##...........................  
##spectrum(pkv) convert the strings in the text file into float numbers in a list  
##pkv is the peak-voltage chosen for the X-ray tube def 
spectrum(pkv):  
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name=pkv+'.txt'     
file=open(name,'r')     
kvp=file.read()     
strlst=kvp.split()     
L=len(strlst)     
lst1=[]     lst2=[]  
    N=0  
## the separates the energy strings and photon flux strings in the files.     
while L>0:         if N%2==0:  
            lst1+=[float(strlst[N])]  
            N+=1             
L-=1         else:  
            lst2+=[float(strlst[N])]  
            N+=1             
L-=1  
    lst=[lst1,lst2]         
return lst  
##............................   
##............................  
## integral function that integrals the four lists.  
def integral(lst1,lst2,lst3,lst4):  
    L=len(lst1)  
    N=0     
Total=0     
while L>0:  
        Total+=lst1[N]*lst2[N]*lst3[N]*lst4[N]  
        N+=1         
L-=1     return 
Total  
##.............................  
  
##............................  
## Position coefficent  
## thickness calculates the attenuation effects brought by thickness  
## L is the thickness list. If it contains the two variable x1 and x2. The thickness if x2-x1 ## 
rho is the density of material; material is the name of material.  
def thickness(L,rho,material,lst):     
if L[-1]=='L':  
        Lposition=0  
        Rposition=float(L[:-1])     
else:  
        Lposition=float(L)*0.9999         
Rposition=float(L)*1.0001     
name=material+'mass'         
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mlst=spectrum(name)     
col_len=len(lst)     mlst1=mlst[0]  
    Dex=mlst1.index(lst[0])     
Aex=Dex+col_len     
coeff_lst=mlst[1][Dex:Aex]  
    Diff_L=Rposition-Lposition     
Length=col_len     thick_lst=[]     
density=float(rho)  
    Num=0     
while Length>0:  
## var is the thickness effect at each energy        
var=(np.exp(-1*density*coeff_lst[Num]*Lposition)-np.exp(-1*density*coeff_lst[Num]*Rposition))/Diff_L         
thick_lst+=[var]  
        Num+=1         
Length-=1     return 
thick_lst      
                  
##............................   
##............................  
##  atteunation coefficient def 
acoeff(M,lst):  
    M_energy=M+'energy'     
M_mass=M+'mass'     
lst_energy=spectrum(M_energy)     
lst_mass=spectrum(M_mass)     
lst_e=lst_energy[1]     
lst_m=lst_mass[1]     coeff_lst=[]     
L=len(lst)  
    Initial_energy=lst[0]  
    dex=lst_energy[0].index(Initial_energy)     
N=dex     while L>0:  
        ratio=lst_e[N]/lst_m[N]         
coeff_lst+=[ratio]  
        L-=1         
N+=1  
    return coeff_lst      
##...........................  
  
##............................  
##  Norm coefficient; pkv is the peak voltage and Rontgen is the readout from Dosimeter 
def Norm(pkv,Rontgen):     W_e=34.4     echarge=1.602e-19     coeff=2.58e-7     
rho_air=1.205e-3     R=float(Rontgen)     lst_spectrum=spectrum(pkv)     
lst1=lst_spectrum[0]     lst_coefficient=acoeff('Air',lst1)  
    lst_position=thickness('1.2L','1.25e-3','Air',lst1)  



	    
	    

109 

    Energy=integral(lst_spectrum[0],lst_spectrum[1],lst_coefficient,lst_position)  
    Q_ideal=1000*Energy*echarge/W_e  
    Q_real=R*coeff*rho_air     
Ratio=Q_real/Q_ideal     
return Ratio  
##...........................  
      
##..............................  
## Dose calculation function  
## It calculates the dose deliver to position x or average dose into thickness L by R(Rontgen) irradiation def 
dose():  
    Kvp=raw_input("Enter the peak voltage(kvp) of the X-ray tube:")  
    Material=raw_input("Enter the material for dose calculation:")  
    Position=raw_input("Enter the position(cm) of the sample for dose calculation, if it is for average dose 
please enter thickness+L(eg. 0.015L for average dose over 0.015cm sample):")  
    Rontgen=raw_input("Enter the read out from ionization chamber(R):")  
    Density=raw_input("Enter the density of the sample(g/cm^3):")  
    lst_spectrum=spectrum(Kvp)     
lst1=lst_spectrum[0]     
lst_coefficient=acoeff(Material,lst1)  
    lst_position=thickness(Position,Density,Material,lst1)  
    Energy=integral(lst_spectrum[0],lst_spectrum[1],lst_coefficient,lst_position)     
Norm_coefficient=Norm(Kvp,Rontgen)     rho=float(Density)  
    Dose=Energy*Norm_coefficient/rho*1.6e-13     
return Dose  
…………………………………………………………………………………… 
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Appendix B 

 
     In the chapter 4 a lot of results only have final numerical number. The measurement 

result and fitting plot is not shown in the chapter 4. The fitting applies the mean value for 

each measurement and the results for each measurement are listed in this part.  

  

Dose rate measurement  

Hole lifetime measurement  

Dose rate = 1.95 Gy/s  

  
Figure 1 Accumulated dose measurement for hole at dose rate 1.95 Gy/s. The left diagram is 

the fitting plot of the normalized lifetime verse dose. The right is the regular residual for the 

data points.  
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Dose Rate = 0.37 Gy/s  

   

Figure 2 Accumulated dose measurement for hole at dose rate 0.37 Gy/s. The left diagram is 

the fitting plot of the normalized lifetime verse dose. The right is the regular residual for the 

data points.  

  

Dose rate=0.26 Gy/s  

  
Figure 3 Accumulated dose measurement for hole at dose rate 0.26 Gy/s. The left diagram is 

the fitting plot of the normalized lifetime verse dose. The right is the regular residual for the 

data points.  
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Dose rate = 0.17 Gy/s  

  
Figure 4 Accumulated dose measurement for hole at dose rate 0.17 Gy/s. The left diagram is 

the fitting plot of the normalized lifetime verse dose. The right is the regular residual for the 

data points.  

  
Dose rate measurement  

Electron lifetime measurement  

Dose rate = 1.95 Gy/s  

  

Figure 5 Accumulated dose measurement for electron at dose rate 1.95 Gy/s. The left 

diagram is the fitting plot of the normalized lifetime verse dose. The right is the regular 

residual for the data points.  
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Dose rate = 0.29 Gy/s  

  
Figure 6 Accumulated dose measurement for electron at dose rate 0.29 Gy/s. The left 

diagram is the fitting plot of the normalized lifetime verse dose. The right is the regular 

residual for the data points.  

  

Dose rate = 0.26 Gy/s  

  
Figure 7 Accumulated dose measurement for electron at dose rate 0.26 Gy/s. The left 

diagram is the fitting plot of the normalized lifetime verse dose. The right is the regular 

residual for the data points.  
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Dose rate = 0.19 Gy/s  

  
Figure 8 Accumulated dose measurement for electron at dose rate 0.19 Gy/s. The left 

diagram is the fitting plot of the normalized lifetime verse dose. The right is the regular 

residual for the data points.  

  

Temperature effects measurement  

Accumulated dose measurements at different temperature  

T = 10    

  
Figure 9 Accumulated dose measurement for hole at 10 . The left diagram is the fitting 

plot of the normalized lifetime verse dose. The right is the regular residual for the data points.  
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T= 23.5   

  
Figure 10 Accumulated dose measurement for hole at 23.5 . The left diagram is the fitting 

plot of the normalized lifetime verse dose. The right is the regular residual for the data points.  

  

T=35.5   

  

  

Figure 10 Accumulated dose measurement for hole at 35.5 . The left diagram is the fitting 

plot of the normalized lifetime verse dose. The right is the regular residual for the data points.  
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Relaxation Process  
T= 10   

  
Figure 11 Hole-trapping lifetime relaxation process at 10 . The left diagram is the fitting 

plot of the normalized lifetime verse time. The right is the regular residual for the data points.  

  

T = 23.5   

  

  
Figure 12 Hole-trapping lifetime relaxation process at 23.5 . The left diagram is the fitting 

plot of the normalized lifetime verse time. The right is the regular residual for the data points.  
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T = 35.5   

  
Figure 13 Hole-trapping lifetime relaxation process at 35.5 . The left diagram is the fitting 

plot of the normalized lifetime verse time. The right is the regular residual for the data points.  
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