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Abstract 

APOBEC3 (A3) enzymes are a family of intrinsic retroviral restriction factors that are coordinately 

expressed in CD4+ T-cells and function to restrict retroviral replication. In the case of HIV-1, this 

primarily occurs in the absence of the HIV-1 protein, viral infectivity factor (Vif). Vif induces the 

polyubiquitination and degradation of A3 enzymes using the host proteasome pathway. The A3 

enzyme family are single stranded DNA deaminases, capable of deaminating cytosine to form 

promutagenic uracil on single-stranded DNA substrates. In humans there are seven paralogs that 

comprise the A3 family, including: A3A, A3B, A3C, A3D, A3F, A3G, and A3H. However, only 

four paralogs have been associated with inhibition of retroviral replication in a large majority of 

the human populations, including: A3D, A3F, A3G and A3H. These four key enzymes have well-

characterized repertoires of single nucleotide polymorphisms (SNPs) that affect both cellular 

stability and deaminase activity. Each repertoire of polymorphisms is variable in human 

populations and is influenced by human ancestry. Here we have undertaken a Saskatchewan-based 

mixed population study examining human genotypes for common APOBEC3H (A3H), 

APOBEC3F (A3F) and APOBEC3G (A3G) SNPs and how combinatory SNP variations affect 

HIV-1 replication. Using Sanger-sequencing based genotyping we were able to isolate dominant 

polymorphisms in our population. We found that the dominant genotypes in our population were 

heterozygous for A3F 231V and 231I SNPs, homozygous for the A3G 186H SNP, and 

predominantly inactive A3H SNP profiles. We tested the dominant A3F and A3G polymorphisms 

for cellular stability, viral packaging and restriction capacity, and found that the A3F 231V SNP 

provided the most robust restriction response when co-expressed with both A3G and A3F 231I. 

We also show that A3F 231V can hetero-oligomerize with both A3G and A3F 231I polymorphic 

variants, resulting in greater cellular stabilization and steady-state cellular expression in the 

presence and absence of HIV-1 Vif. The observed rise in cellular stability and virion packaging 

when A3F 231V was co-expressed with A3F 231 and A3G had a positive correlation with HIV-1 

replication restriction efficiency. The various states of oligomerization between co-expressed A3 

enzymes demonstrates that whole genotype analysis of A3 repertoires is essential in accurately 

understanding host-pathogen interactions on a population level.  
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1.1 Evolution and diversification of APOBEC enzymes  

The apolipoprotein B mRNA editing, catalytic-enzyme polypeptide like 3 (APOBEC3) enzyme 

family are single-stranded (ss) cytidine deaminases, capable of deaminating cytosine motifs in 

both lentiviral and host ssDNA (1-3). Some A3s can deaminate single-stranded RNA (ssRNA), 

but the function of this activity is not known (4). Derivatives of APOBEC enzymes are found not 

only in placental mammals, but also in ancestors of jawless-fish dating back over 500 million 

years. Activation induced deaminase (AID) is the most ancestral variant (Figure 1.1) (5). AID is 

an ssDNA cytidine deaminase that is expressed in B-cells and is responsible for antibody 

maturation by initiating class-switch recombination and somatic hypermutation (5). As jawed 

vertebrates evolved, duplications of AID produced APOBEC1 (A1), APOBEC2 (A2) and 

APOBEC (A3) members of the APOBEC superfamily (5). Although A1 and A2 evolved prior to 

A3, the physiological function of A1 appears to only involve RNA editing, while A2 demonstrates 

no deaminase activity (6, 7). Until recently, the apex of APOBEC gene duplication was thought to 

be in the genomes of both humans and non-human primates, whereby a cluster of seven APOBEC3 

genes are encoded solely on chromosome 22. Other mammalian relatives only encode up to four 

APOBEC3 genes (8-10). However, bats have been found to encode at least 20 different APOBEC3 

genes (11) . In humans, each A3 loci is also variable, with prevalent polymorphic regions that vary 

in human populations, suggesting that A3 repertoires have yet to stabilize in placental mammals 

(12-14). The selective pressures influencing A3 evolution are largely unknown, but historical 

modulation in retroviral challenge has been theorized to alter the requirement for defense proteins, 

like A3 deaminases (6, 14, 15).  
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Figure 1. 1 Phylogenetic origins of APOBEC family members.  

The family originated with Activation Induced Deaminase (AID) in jawless fish. Timing of gene 

duplication events leading to the A3 subgroup is unclear, but likely occurred around 200 million 

years ago. Mammals express the largest diversity of A3 enzymes. Reprinted with permission from 

(16).    
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1.2 Mechanism of APOBEC-mediated cytosine deamination and repair 

Mammalian APOBEC3 deaminases scan ssDNA substrates and catalytically act on specific 

cytosine-containing motifs, deaminating cytosine to from uracil (Figure 1.2, 1.3) (1-3, 17). 

Because uracil does not have a coding function in DNA it is defined a pro-mutagenic lesion. If 

Uracil-based DNA lesions are promptly detected they can repaired by host cell DNA repair 

pathways, if not, they can be used as an erroneous template for replication and result in mutations 

(1-3).  

Base Excision Repair (BER) is a DNA repair mechanism initiated by a lesion specific repair 

enzyme. Specific to uracils, the main enzyme is a member of the Uracil DNA Glycosylase (UDG) 

superfamily; Uracil DNA N-Glycosylase (UNG), which catalyzes the cleavage of the N-glycosylic 

bonds between the uracil containing substrate and its deoxyribose backbone, creating an abasic 

site (18-20). The abasic site is then incised by an AP endonuclease on the 5′-side of the abasic 

site, creating a gap with a 3′-OH overhang for later polymerase priming on a single strand. The 

most prominent AP endonuclease in mammals being APE1, which accounts for over 95% of 

cellular endonuclease activity (21). Using the 3′-OH over-hang left by the APE1, a DNA 

polymerase will synthesize DNA to fill the gap. Under normal circumstances the result is 

restoration of the original nucleotide sequence due to the action of a high fidelity polymerase (9). 

If an error prone polymerase is recruited to the abasic site due to cell stress, then any base can be 

inserted into the DNA. Double stranded (ds) DNA breaks can also arise, but requires uracils on 

both strands in close proximity, and are repaired using host non-homologous end-joining (22).  

An alternative fate to uracil lesion repair is the faulty recognition of uracil as thymine during DNA 

replication. That is, during DNA replication if uracil is recognised as thymine opposing strand 

synthesis will add an adenine across from uracil, resulting in a uracil-adenine intermediate. 

Through BER, the U-A intermediate is converted to a thymine-adenine base pair. The result being 

the transition mutation from a Cytosine-Guanine (C-G) base pair prior to A3 deamination to a 

Thymine-Adenine (T-A) base pair  (23).  
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Figure 1. 2 Cytosine deamination and uracil repair 

(A) Structural similarities between thymine and uracil result in potential transition mutations 

following cytosine deamination events. (B) Diagram indicating the fate of uracil after cytosine 

deamination in genomic DNA, which results after the activity of AID. If uracil-based lesions fail 

to be repaired, the uracil is replaced with thymine, resulting in a T/A base pair instead of a C/G 

base pair. Alternatively, if uracils are created by cytosine deamination they are removed by uracil 

DNA glycosylase (UNG) to create an abasic site. APE processes abasic sites by cleaving the DNA 

backbone at the respective site. The cleavage reaction prompts host DNA repair pathways to repair 

the abasic site. DNA breaks can also occur. (C) A3 enzymes deaminate single-stranded (−) DNA 

substrates, which are present as replication intermediates in retroviruses. Uracils formed by 

cytosine deamination in the (−) DNA strand serves as a template for the reverse transcriptase 

during (+) DNA synthesis, resulting in G → A mutation in the (+) DNA. Depending on the number 

of uracils, this can lead to degradation of the template in the nucleus or repair of uracil and 

integration of proviral DNA. Reprinted with permission from (4).   
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1.3 Effects of APOBEC3 deamination on different ssDNA substrates 

However unlikely it may seem, either result of A3 mediated deamination correction or mutation 

have both costs and benefits to cellular fitness. The scales tip depending on the source of available 

ssDNA substrate. That is, if ssDNA is presented as a transposing retroelement or a ssDNA 

intermediate of an invading retrovirus, A3 enzymes will promote mutagenesis as a defence 

mechanism to block transposition or replication respectively; referred to as deamination dependent 

restriction (1, 24-26). A3-mediated deamination dependent restriction can result in the functional 

inactivation of essential genes, ultimately leading to DNA degradation by the host cell nucleases 

and re-purposed as cellular nutrients (1, 24, 27). Whereas, A3-mediated deamination independent 

mechanisms of replication restriction act cooperatively with deamination dependent pathways to 

strengthen the restriction response and do so without catalytic cytosine deamination (25, 28, 29). 

Rather, this mechanism inhibits second strand DNA synthesis of the virus by blocking the viral 

mechanism for reverse transcription. Reverse transcription can be inhibited by A3s in a 

‘roadblock’ fashion, where A3s bound to ssDNA block the progression of viral reverse 

transcriptase (RT), which allows ssDNA intermediates to be susceptible to deamination for a 

longer duration of time (30-34). 

However, due to the A3 enzyme’s inability to distinguish between sources of ssDNA substrate, 

they also pose a risk for self-mutation of host genomic DNA during replication. That is, if ssDNA 

substrate is presented as host-cell genomic DNA during replication, A3 enzymes that can enter the 

nucleus can impose the same deaminations observed on foreign retroviral ssDNA (21, 35, 36). 

This trend is also exacerbated under conditions of replicative stress or when the cell cycle is 

altered, leaving ssDNA exposed for greater durations; events that are synonymous with human 

cancers (37, 38). Under these conditions, A3 specific mutations begin to rise and fuel mutagenic 

evolution of human cancers (39-41). This scenario indicates the necessity for cooperative 

regulatory mechanisms between nuclear A3 enzymes and DNA replication to ensure stability of 

the host genome.  
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1.4 Variation in functional characteristics between APOBEC3 paralogs 

The A3 family is a highly diverse group of deaminases present in all placental mammals, and 

humans are of no exception. With seven characterized human A3 enzymes: A3A, A3B, A3C, A3D, 

A3F, A3G and A3H; although variable, all have been characterized to have catalytic activity on 

ssDNA substrates (2, 4, 29). Cellular localization plays a pivotal role in determining A3 enzyme 

function. Paralogs that have been observed to be localized to the nucleus: A3A, A3B, and A3H 

haplotype I, have all been associated with fueling mutagenesis in human cancers (36, 39-44). 

While A3s that have been associated with restriction of invading retroviruses: A3D, A3F, A3G, 

and A3H haplotypes II, V, VII are all localized to the cytoplasm (33, 45-48).  

The cytoplasmic fraction of A3 paralogs can be further distinguished into a hierarchy based on 

their ssDNA deamination efficiency (25, 26, 28, 29, 45, 46, 49-54). Causative components for the 

observed variations have been described to include: oligomerization, RNA binding affinities, and 

ssDNA scanning mechanisms (1, 50, 55-57). A3G, A3F, and A3H are the most potent restrictors 

of retroviral replication (50, 51, 58). One of the most prominent characteristics of A3 enzymes that 

alters deaminase activity is ssDNA scanning (Figure 1.3). The mechanisms of scanning ssDNA 

include  sliding, jumping or translocation by intersegmental transfer on ssDNA substrates (50). 

The ability to slide allows the enzyme to scan a local strand of ssDNA within 20 nucleotides (nt), 

jumping allows the enzyme to bypass short dsDNA segments or double stranded RNA-DNA 

hybrids on the same strand, and intersegmental transfer is similar to jumping, but requires the 

enzyme to simultaneously bind two ssDNA strands prior to strand transfer (50). The ssDNA 

scanning mechanisms vary between the A3 family and significantly affect the enzymes’ ability to 

deaminate ssDNA substrates and induce mutagenesis (50, 51, 58). A3G and A3H can scan and 

translocate three dimensionally, with A3G being able to jump, and A3H being able to jump and 

undergo intersegmental transfer (51, 58). Conversely, A3F is unable to slide on ssDNA and can 

only jump, resulting in a processivity deficit of nearly 4-fold in comparison to A3G and A3H (51, 

52). A3D is the least characterized from the A3 family; having minimal effect on retroviral 

restriction has resulted in less characterization of A3D’s deamination and scanning mechanisms 

that have been greatly elucidated in other A3 paralogs (45, 46, 53). 
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Figure 1. 3 APOBEC3 ssDNA scanning mechanisms 

DNA scanning by facilitated diffusion. (A) Illustration of DNA showing the negatively charged 

region of DNA. (B) Illustration showing 1-dimensional DNA scanning by sliding. Dotted orange 

line indicates enzyme path. Sliding enables a thorough search of local areas of ssDNA. (C) 

Illustration depicting 3-dimensional DNA scanning by jumping. Jumping enables larger 

translocations on DNA substrates but lacks a local search process. Jumping dissociations from the 

DNA occur when the enzyme does not leave the negatively charged domain of the DNA. The 

enzyme then has a higher likelihood of rejoining with the same strand of DNA compared to 

dissociation into the bulk solution. (D) Illustration depicting 3-dimensional DNA scanning by 

intersegmental transfer. Intersegmental transfer enables larger translocations on DNA substrates 

but also lacks a local search process. An enzyme with two DNA-binding domains binds two 

regions of DNA simultaneously before dissociating from one region to move to another. (B–D) 

Enzyme in illustration is shown as a dimer, although the oligomerization states may vary with 

different A3 enzymes. Reprinted with permission from (1).  
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1.5 Restriction of Human Immunodeficiency Virus Type 1 by APOBEC3 deaminases 

Evidence of APOBEC3 deaminase activity has been recorded in many fields, ranging from 

epigenetic gene regulation to human cancer studies, but the most characterized response is that of  

Human Immunodeficiency Virus Type 1 (HIV-1) replication restriction in human populations (2, 

3, 9). Global prevalence and severity of HIV-1infections and AIDs progression has fueled studies 

in the characterization  of HIV restriction factors like members of the A3 family, given the current 

absence of a cure for the disease (59, 60). HIV-1 is a retrovirus, which means that it has a single-

stranded RNA genome and replicates using a ssDNA intermediate synthesized via reverse 

transcription (61). The nascent ssDNA is then used as a template for second strand or (+) strand 

DNA synthesis to form dsDNA, which can then undergo nuclear import and integration into the 

host chromosome. The RNA genome is protected by bound p6 nucleocapsid that is cleaved from 

the Gag polyprotein after virion maturation (61). The HIV-1 genome and accessory proteins are 

surrounded in a protective capsid, which is subsequently surrounded by a protein matrix and 

envelope derived from the cost cell plasma membrane (61). The gp120 and gp41 proteins are HIV-

1 surface subunit and transmembrane proteins, respectively, that are on the surface of the virus 

outer membrane and facilitate viral entry and membrane fusion via binding to CD4 and 

CCR5/CXCR4 receptors on the surface of CD4+ lymphocytes (61). Once bound, the fusogenic 

properties of the HIV-1 gp41 peptide facilitates the release of the HIV-1 capsid into the cell. The 

only host component required for reverse transcription and copying of the HIV-1 RNA genome 

into dsDNA is a pool of deoxynucleotide triphosphates (dNTPs), which diffuse into the capsid 

from the host cell cytoplasm, allowing the virus to synthesize the proviral DNA under the 

protection of its capsid proteins (62, 63). The HIV-1 capsid is only semipermeable, allowing small 

charged particles to diffuse through capsid pores, but excluding larger proteins, and A3 enzymes 

are of no exception. Thus, due to the lack of access to nascent ssDNA intermediates of the reverse 

transcribing virus, the catalytic activity of A3 proteins is evaded in the initial virus producer cell. 

A3 proteins overcome this barrier through promiscuous binding of viral RNA to enable 

encapsidation in newly assembled viral particles by binding RNAs which are also bound to HIV-

1 Gag (57, 64). With A3 proteins now encased within the HIV-1 capsid, upon entry into a new 

target cell and initiation of reverse transcription, HIV-1 ssDNA becomes available for A3 mediated 

deamination to restrict replication of the invading retrovirus (Figure 1.4) (16).  
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Figure 1. 4 Model for APOBEC3 mediated restriction of HIV-1 

Model for HIV-1 restriction by APOBEC3 proteins. The figure depicts the necessary encapsidation 

of A3 proteins in producer CD4+ T-cells, which is facilitated by RNA binding domains associating 

with the RNA genome of the HIV-1 virus. This model depicts A3 deamination and RT-inhibition 

occurring in the target cell cytoplasm, however, this process occurs within the virus capsid. The 

A3s deaminate nascent ssDNA upon reverse transcription of (-) DNA. This results in degradation 

of viral DNA or integration of hypermutated proviral DNA (16). Each deamination event produces 

a uracil in place of a cytosine at specific motifs. Because HIV-1 lacks genome repair mechanisms 

the uracil base lesions remain and upon second strand synthesis, the uracil being recognized as a 

thymine causes an adenine to be inserted. Once integrated into the host genome, the U-A is repaired 

to T-A forming G-C transition mutations. This restriction activity is largely thwarted by the action 

of the viral protein Vif that recruits an E3 ligase complex and an A3 resulting in proteasomal 

degradation of A3s in the virus producer cell. Reprinted with permission from (16). 
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1.6 Inactivation of APOBEC3 deaminases by HIV-1 Vif 

HIV-1 has an inherent ability to adapt and escape the host immune response due to high mutational 

frequencies observed throughout the course of infection (65). The frequency of genetic variation 

is due to collaborative efforts of the HIV-1 RT that lacks proof reading, recombination between 

co-packaged HIV-1 genomes, and positive selective pressures from the host (66-69). These 

mechanisms of adaption have also allowed HIV-1 to develop defences against A3 deaminases 

through the action of the HIV-1 Virus Infectivity Factor (Vif).  

Vif is an HIV-1 accessory protein that binds to and targets A3 proteins for polyubiquitination and 

subsequent degradation through the proteasome (Figure 1.4 and Figure 1.5) (65, 70). Structural 

similarities between Vif and Human Suppressor of Cytokine Signalling 2 (SOCS2), a recognition 

subunit for the E3 ubiquitin ligase complex, allows Vif to mimic the role of SOCS2 and act as a 

substrate for receptor for the A3 enzymes (71, 72).  Upon binding to A3 proteins, Vif acts as 

scaffold protein for the assembly of a Cullin-5 RING E3 ubiquitin ligase complex. The formation 

of the complex is initiated by Vif association with an Elongin-B/C heterodimer and the host 

transcription cofactor CBF-β, followed by the recruitment of Cullin-5 (Figure 1.5) (73, 74). The 

recruitment of the host transcription cofactor CBF-β is an essential component for the stability of 

Vif and is not directly involved in the Cullin-5 RING E3 ubiquitin ligase complex. However, 

without CBF-β, the ubiquitin ligase complex cannot form because Vif is thermodynamically 

unstable and will become degraded in cells unless stabilized by binding to CBF-β (Figure 1.5) (75-

77). Following complex stabilization, Cullin-5 then interacts with RING finger protein (RBX2), 

which acts as a docking site for an E2 ubiquitin conjugating enzyme and causes subsequent K48-

linked polyubiquitination of A3 proteins (70, 78, 79).  

  



12 
 

 

 

 

 

 

 

 

Figure 1. 5 E3 Ubiquitin ligase complex formation by HIV-1 Vif 

Proposed mechanism by which Vif mediates proteosomal degradation of APOBEC3 enzymes via 

a Cullin 5 E3 ubiquitin ligase complex (78). Pathway 1 indicates Vif interaction with Elongin B 

and Elongin C followed by mandatory stabilization with CBF-β. If Vif does not interact with CBF-

β, it will become degraded in the proteasome. Pathway 2 indicates successful viral counteraction 

with Elongin B, Elongin C and CBF-beta leading to conformation change in Vif, which results in 

a higher affinity to Cullin-5. Both pathways merge after the E3 complex fuses with Cul-5 to form 

the ligase complex, which can then target A3 proteins for polyubiquitination and result in their 

degradation through the proteasome pathway. Reprinted with permission from (78). 
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1.7 APOBEC3 Interaction Domains with HIV-1 Vif 

The NL4-3 and LAI strains of HIV-1 are examples of once circulating strains from HIV-1 group-

M subtype-B that have multiple genomic variations, including areas of their Vif coding regions. 

Presently both NL4-3 and LAI have been adapted for lab use and through their genetic differences 

in Vif, they are useful as comparative strains for studying antagonistic HIV-1 responses to A3 

enzymes. Namely, LAI Vif has been observed to have a more robust response antagonizing A3H 

restriction in comparison to NL4-3 Vif. This has been attributed to a single amino acid substitution, 

at Vif position 48. The substitution of an asparagine (48N) for a histidine (H48) at this position 

confers resistance to the stable A3H haplotypes (80). The Vif activity is exacerbated by alterations 

in position 39 of the Vif coding region, where the substitution of a Valine (V39) for phenylalanine 

(39F), confers greater Vif sensitivity to A3H (80, 81). Interestingly, N48H and V39F 

polymorphisms are still prevalent in circulating strains of HIV-1 and appear to be selected for 

based on prevalence of active/inactive A3H haplotypes within a population (81, 82). Active and 

inactive A3H haplotypes are further discussed in Section 1.8, However, most A3G, A3F and A3D 

polymorphic variants show no resistance to either V39F and N48H Vif polymorphisms, with even 

the “weaker” NL4-3 Vif is still able to recognize and degrade A3G, A3F and A3D (80). 

Nevertheless, there are distinct Vif mutations that affect A3G-Vif and A3F-Vif interactions. These 

sites include Vif positions 14-17 for A3F and Vif positions 40-44 for A3G (83-86). Therefore, 

regardless of the potent A3 antagonism by HIV-1 Vif, the presence of multiple A3 interaction 

domains and high mutagenic potential of the virus can results in an ongoing coevolution at a 

population level between A3s and HIV-1 Vif. 

1.8 APOBEC3 polymorphisms result in HIV-1 Vif evasion 

The HIV-1 Vif  is an effective mechanism for defending against deaminase action of APOBEC3 

enzymes. However efficient, Vif function does not lead to the complete degradation of the cellular 

A3s due to observable A3 mutation patterns in HIV-1 proviral DNA through the course of fully 

competent viral infections (87). Mutational footprints of the cytoplasmic A3 enzymes, A3D, A3F, 

A3G, and A3H, have all been documented in cells infected with partially defective Vif or wild 

type Vif HIV-1 strains, indicating that this subset of cytoplasmic A3 enzymes can be expressed, 

encapsidated and catalytically deaminate HIV-1 ssDNA prior to integration even in the presence 

of Vif (45, 87, 88). However, the capacity for A3 mediated retroviral restriction differs between 

geographical populations, and these modulations have been attributed to numerous single 
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nucleotide polymorphism (SNPs) present in each A3 gene (89). Although all A3 enzymes have 

characterized SNPs that affect catalytic activity, the most prominent and abundant set of SNPs are 

in the gene coding for A3H. A3H has seven known haplotypes (hap I-VII) based on five SNPs that 

result in various amino acid deletions and alternate amino acids (N15∆, R18L, G105R, K121D, 

E178D) and an additional four splice variants (SV) of hap I (SV154, SV182, SV183, and SV200) 

(81, 90, 91). The most notable phenotypic changes resulting from A3H SNP variation is the 

alteration in both protein stability and susceptibility to Vif-mediated degradation (Figure 1.6) (81, 

90, 91). For example, A3H hap II, hap V, and hap VII are more stable in cells and become packaged 

in virions to a greater extent in comparison to unstable A3H haplotypes (hap III, hap IV, and hap 

VI) or partially unstable A3H hap I. This variation of A3H in the population results in variations 

in HIV-1 Vif ability to bind to A3H, resulting in the ability of some A3H stable haplotypes to 

restrict HIV-1 in the presence of an active, but “weak” HIV-1 Vif that is similar to HIV-1 NL4-

3(81, 90). The crucial polymorphisms that results in A3H resistance against Vif is the presence of 

the R105 SNP in combination with N15 and R18, the trailing SNPs ( K121D and E178D) can be 

variable among the Vif resistant K121D, which occurs in A3H hap VII (81, 90). A3H haplotypes 

are observed to be variable in all populations and are well characterized in African, European 

Caucasian, and Asian populations; with inactive haplotypes being associated with a greater 

susceptibility to HIV-1 infection, higher viral loads, greater decline of CD4+ T-cell counts, and 

more rapid progression to AIDs defining conditions (81, 90-92). Although A3H is the only A3 to 

have characterized resistance to HIV-1 Vif, the presence of circulating viral strains with 

inactivating Vif mutations and deletions have also been observed, which enables all A3s to affect 

HIV-1 replication (93, 94).  

Other notable A3 polymorphisms that effect HIV-1 restriction includes, A3G H186R and A3F 

A108S/V231I (95-98). The A3G H186R polymorphism is variable in African, European 

Caucasian, and Asian populations, with the 186R genotype being statistically linked to rapid 

decline of CD4+ T cell counts, increases in viral load and an accelerated progression to AIDS 

defining conditions (89, 95). The allelic frequency of the more robust A3G H186 polymorphism 

shows a progressive decline in African (0.37), European Caucasian (0.12) and Asian (0.03) 

populations (95, 96). The A3F 231I polymorphism is also associated to similar prognoses to the 

A3G 186R polymorphism; displaying higher viral loads and a more rapid progression to AIDS 

defining conditions (89, 97, 98). The allelic frequency of the more-active A3F 231V 
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polymorphism also shows a decline in allelic frequencies in African (0.80), European Caucasian 

(0.48) and Asian populations (0.30) (89, 97).  

 

 

 

 

 

 

 

 

Figure 1. 6 Stability and activity of APOBEC3H haplotypes 

Schematic overview of the amino acid changes that comprise the seven known haplotypes of A3H 

based on the following possible combinations of polymorphisms, N15∆, R18L, G105R, K121D 

and E178K. The SV182 is a single splice variant of A3H. The N15 and R105 amino acids are 

essential for A3H protein stability and only haplotypes II, V and VII contain these amino acids. 

Reprinted with permission from (99). 

 

 

 

 

 

  



16 
 

1.9 APOBEC3 polymorphisms reflect individual human ancestry  

Population-based genetic variation of A3 genes have been observed in African, European 

Caucasian and East Asian lineages, with certain polymorphisms compromising HIV-1 restriction 

efficiency (95-98). These polymorphic variations have also been correlated with human ancestry 

and appear to dampen when overlaid with classical theories of human ancestral dispersion from 

central Africa (100, 101). That is, according to human fossil records, using single or multiple wave 

dispersal models, human ancestors were residing and migration within central Africa 300 thousand 

years ago (Kya), and began expanding into regions of Eastern Europe by 120 Kya, and to the East-

Asian seaboard by 70-80 Kya (Figure 1.7) (100, 101). Central Africa is also the epidemiological 

epicenter of HIV-1 evolution, whereby the Simian Immunodeficiency virus from chimpanzees 

(SIVcpz) transferred zoonotically to humans (102-104). Africa has been termed an area of high 

retroviral challenge due to endemics of not only HIV-1, but also HIV-2, which resulted from a 

zoonotic transfer of SIV from Sootey Mangabeys (SIVsmm) (102-104). The high frequency of 

retroviral challenge in Africa is thought to have been a primary selective pressure in the 

development of highly HIV-1 restrictive A3 genes in primates (6, 15, 89). In support of this, A3 

repertoires of human ancestors that dispersed from Africa to settle in present-day Europe and East 

Asia exhibit a dampened effect with A3 anti-HIV-1 activity, where time/distance of dispersion 

from Africa is negatively correlated with HIV-1 restriction efficiency (89, 95, 96).  

Ancestral dampening of anti-HIV-1 responses is evident in all cytoplasmic A3 enzymes. For 

example, the more active A3G H186 SNP is most prevalent in African populations (37%), 

intermediate in European Caucasian populations (13%), and lowest in Asian populations (<1%) 

(89, 95, 96). The more active A3F 231V-108S SNP is highest in African populations (76%), 

intermediate in European Caucasian’s (48%), and lowest in Asian populations (26%) (89, 97, 98). 

Lastly, the N15 and R105 SNP, present in all active A3H haplotypes also has the greatest allelic 

frequency in African populations (88%), intermediate in European Caucasian’s (39%), and lowest 

in Asian populations (26%) (81, 90). 
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Figure 1. 7 Models for human dispersal from Central Africa 

Map of putative migration waves of human ancestors from Central Africa based on fossil 

recordings at each location. Single wave theory (blue) supports a single dispersal event away from 

central Africa and into central Europe and the to East Asia or Oceanic states. Multiple wave theory 

(Red) indicates at least two separate dispersal events separated by 40 Kya. Recurrent theory (green) 

indicates re-entry states from Western Europe and Central Asia approximately 180 Kya. Adapted 

from (100). 
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1.10 APOBEC3 Influence on HIV Evolution 

 

The diversity of A3 paralogs observed in human populations provides evidence of a co-

evolutionary arms race between A3 viral restriction factors of hominin ancestors and adaptive viral 

defense measures (105).  A3 enzymes are just one of many viral restriction factors present in the 

innate immune system, other constituents include Trim-5 alpha, SAMHD1 and Tetherin (106). 

Each subset of enzymes inhibits a separate stage of the viral lifecycle, for the examples given areas 

of inhibition include: capsid uncoating (Trim-5 alpha), reverse transcription (SAMHD1), and viral 

budding (Tetherin) (107-110). These restriction factors are all designated as interferon-stimulated 

genes (ISG), being that viral infections are typically detected by cytoplasmic membrane-bound 

pattern recognition receptors (PRRs) such as toll-like receptors (TLRs), which trigger an interferon 

(IFN) response (106). Regardless of IFN stimulation, some restriction factors like A3 paralogs are 

constitutively expressed in both T-cells and germ cells (22, 48). The constitutive expression of A3 

enzymes and HIV Vif antagonism has allowed for the development of one of the most pronounced 

relationships between host and viral defense factors. This interaction helped shape the cross 

species transfer of simian immunodeficiency virus in chimpanzees (SIVcpz) to HIV-1 in humans 

(105). 

HIV-1 resulted from the cross-species transfer to humans from SIVcpz on at least two separate 

occasions, one of which spawned the group M designated virus responsible for the global AIDS 

epidemic (103, 104). Host restriction factors including A3 enzymes decrease the likelihood of 

lentiviral transmission from the host, but are usually counteracted on a species-specific manner 

(106).  One trade-off alteration in the evolution of SIVcpz Vif allowed for the development of 

inter-species A3 antagonism at a cost of SAMHD1 susceptibility (105). The gene that encodes 

SAMHD1 antagonism is Vpx, although present in other lentiviruses such as SIVsmm, it is not 

present in SIVcpz and is theorized to have been deleted during the creation of SIVcpz. The creation 

of SIVcpz has been identified as being a result of cross-species recombination of two SIV lineages 

from red-capped mangabeys (SIVrcm) and SIVmus/mon/gsn from Cercopthiecus monkeys 

(Figure 1.8) (111, 112). The recombination event led to the deletion of Vpx and reconstruction of 

Vif via overlapping its 3’ end with the Vpr gene, allowing SIVcpz Vif to antagonize hominid A3s, 

lowering the barrier for inter-species infection in humans (105).  
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The modification of SIVcpz Vif facilitated the establishment of an infection in human hosts, giving 

rise to the HIV-1 virus. Due to the lack of DNA repair mechanisms, mutations arise in the HIV-1 

genome at a much faster rate than DNA segments of similar size in the human genome this fashion 

influences evolution at a much faster rate (113). The question then arises, how does a  host cope 

in this arms race? The answer comes from the relative size of each respective genome, whereby 

head-full packaging of lentiviral vectors can only accommodate around 10kb of coding RNA, 

whereas humans have 3000 Mb of coding DNA (114). Having over 30x the coding capacity per 

strand of HIV allows the human genome to carry duplicates of essential genes such as A3 paralogs 

and also carry two strand options of heterozygosity and homozygosity. Heterozygosity in 

restriction factors has been shown to be advantageous to populations of African green monkeys, 

where monkeys with heterozygous polymorphic variations of A3G disallowed the evolution of 

SIV Vif to antagonize A3G, while monkeys with both pairs of homozygous alleles resulted in Vif 

antagonism (115). Altogether, current data indicates that maintaining variable polymorphisms in 

a population is entirely beneficial when countering the offenses of a highly mutagenic virus like 

HIV-1. 

Another mechanism for host competition with viral evolution is gene duplication, with the seven 

paralogs of human A3s being of prime example. By duplicating genes, not only can the host evolve 

against multiple different viral targets by increasing copy numbers, but also provide a more diverse 

defenses against a single target like HIV-1. For example, A3F and A3G paralogs interact with 

HIV-1 Vif on separate domains, limiting the ability of the virus to evolve (85, 88, 116). Similar 

interactions have also been observed between A3H and HIV-1 on a population level, where A3 

polymorphic variations in a population influence Vif polymorphisms (81). In populations of higher 

retroviral challenge such as central Africa, the prevalence of more robust, stable, A3H haplotypes 

(II, V, VII) increase and where stable A3H haplotypes are more prevalent so is more robust F39 

HIV-1 Vif variant (Figure 1.9) (81). In areas were unstable A3H haplotypes are prevalent, such as 

in Asian populations, the less robust V39 HIV-1 Vif variant is more prevalent (Figure 1.9) (81).  
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Figure 1. 8 HIV-1 group evolution through recombination of ancestral simian viruses 

Diagram depicting the reservoirs of SIVrcm and SIVgsn, which under co-infection and 

recombination events resulted in the deletion of Vpx and fusion of the 3’ end of Vif to Vpu, 

creating SIVcpz. The modified SIVcpz Vif allows for inter-species A3 antagonism with humans. 

The lowering of this inter-species barrier to infection ultimately lead to the adaptation of SIVcpz 

to HIV-1 groups M, N, and O. Reprinted with permission from(112).   
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Figure 1. 9 Global distributions of HIV-1 Vif alleles correlated with human A3H 

haplotypes 

The HIV-1 Vif bar chart depicts the frequency of HIV-1 isolates encoding a phenylalanine or 

valine at Vif residue 39 from the indicated geographic regions (n = 9713). The Human APOBEC3H 

bar chart shows the frequency of stable versus unstable A3H alleles from the same geographic 

regions (n = 1092). Reprinted with permission from (81). 
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1.11 Effects of APOBEC3 co-expression in cells 

Within the A3 family there is a cascade of deaminase activity, with A3G being the most potent 

restrictor of ΔVif HIV-1, followed by A3F, A3H, and A3D respectively (45, 46, 49, 53, 70, 83, 

117, 118). However, from quantitative analysis in human PBMCs and CD4+ T-cell lineages we 

know that all cytoplasmic A3s are constitutively expressed and can be upregulated when 

stimulated with interleukins and interferons associated with cell stress and viral infection (22, 48, 

119, 120). A3s also share a great extent of nucleotide consensus and have been shown to self-

oligomerize into higher order complexes (33, 51, 52, 55, 56). Additionally, A3G and A3F have 

been shown to hetero-oligomerize when co-expressed and have a cooperative effect on HIV-1 

proviral hypermutation and restriction (55). When A3F and A3G are co-expressed in cells, there 

is a greater decline in ΔVif HIV-1 infectivity and two-fold greater levels of A3F and A3G -specific 

mutations in comparison to A3F or A3G expressed alone (Figure 1.10) (55). The increased 

mutational frequency observed in the A3F and A3G dual expression condition also results in a 

higher frequency of virus inactivating mutations indicating an inter-A3 cooperative that 

compounds viral restriction (Figure 1.10). The study used size exclusion chromatography, 

rotational anisotropy, and co-immunoprecipitation to show that A3F and A3G directly interact, 

without a nucleic acid intermediate, and form a hetero-oligomer that and can more efficiently scan 

for deamination sites on ssDNA with intervening RNA-DNA hybrids using both sliding and 

jumping ssDNA scanning mechanisms (55).  
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Figure 1. 10 Effects of APOBEC3G and APOBEC3F co-expression in cells 

Co-expression of A3F and A3G is shown to result in co-encapsidation and co-mutation of ΔVif 

HIV-1 proviral DNA. (A) Mutation spectrum plots using HIV-1 protease sequences isolated from 

10 individual clones generated with the expression of A3G, A3F or A3G/A3F expression vectors. 

A3G specific mutations (GG→GA) are shown in red and A3F specific mutations (GA→AA) are 

in cyan. (B) For each A3F, A3G and A3F/A3G, individual amino acid changes were analyzed for 

mutations resulting in an active HIV-1 protease (orange), inactive HIV-1 protease (blue) or a non-

mutated protease (grey). Reprinted with permission from (33). 
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2.0 OBJECTIVES AND HYPOTHESIS  
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2.1 Rationale for Hypothesis 

Current literature supports cause for ancestral ties to A3 repertoire variations in global populations, 

with activity declines correlating with human ancestral dispersal from Central-Africa. This trend 

has been attributed to a decline in positive selective pressures maintaining robust retroviral 

restriction factors; with pressures being frequency of retroviral challenge from endemic SIV, HIV-

2 and HIV-1 present in Central Africa. The effects of physical human dispersal away from an area 

of high retroviral challenge thereby decreases the selective pressure to maintain robust A3 

repertoires. (41, 100-102, 121, 122). 

Current studies examining A3 genotype variation between populations focus on single ethnic 

lineages, individual expression of A3s, and analysis bases on allelic prevalence of A3 SNPs. Being 

current with the times and acknowledging the current state of globalization indicates that most 

populations have diversified from historic migration patterns of our human ancestors and that 

ethnic lineages reflect mix populations. We currently do not know the effects of A3 polymorphic 

variations on a mixed population and how variation in A3s affect inter-A3 interactions when 

expressed in combination.  

HIV-1 affects more than 85,000 Canadians with mortality rates of 1,750 individuals per year since 

the advent of blood screening tests developed in 1983. There were 2,500 new infections in Canada 

in 2017, a steady increasing trend and an estimated increase to 3,700 infections by 2018 (123) , 

HIV-1 is a growing public health concern for all Canadians and novel methods for treatment and 

resolve are of the greatest priority. The province of Saskatchewan is an extraordinary example, 

having incidence of HIV-1 infections over 3-fold greater than the national average of 5.4/100,000 

population, providing the province with the highest HIV-1 prevalence in Canada. Even more 

concerning is the  infection prevalence in rural populations of the province; where disease 

prevalence distends to over 14x the national average. These values are comparable only to endemic 

areas in Central Africa. The rise of HIV-1 prevalence in the province is attributable to 

socioeconomical, demographic and genetic factors. However, due to current states in globalization, 

population diversity may be altering innate mechanisms for restricting retroviral challenge. The 

current demographics of Saskatchewan indicate a mixed-population consisting of European 

Caucasian (70.9%), Indigenous (16.6%) and East Asian (9.3%) (124). We expect the SNP 
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repertoires will reflect this demographic, resulting in a population genetically more susceptible to 

HIV-1 infection than African populations.   

 

 

Figure 2. 1 Statistics Canada 2016 census report 

Population census summary from 2016 displaying percentage of population of Canada, overlaid 

with Saskatchewan percentage of population. (B) Population census summary from 2016 

displaying population values of Saskatchewan, percent Indigenous population and percent 

Indigenous identity. 
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2.2 Experimental Questions 

1. How variable are APOBEC3 (A3) genotypes in Saskatchewan? 

2. Do variable A3 genotypes affect HIV-1 restriction when expressed in combination? 

 

2.3 Hypothesis 

• We hypothesize, that due to global diversification and variations in regional selective 

pressures for A3 SNP maintenance, A3 repertoires will be unique in Saskatchewan 

populations but will reflect current demographics (European Caucasian and East Asian). 

2.4 Project objectives 

The experimental strategy can be broken up into five main objectives: 

1.) Genotype A3 repertoires from donor populations in Saskatchewan to determine 

prevalent A3 subsets in the mixed population of Saskatchewan.  

2.) Use population-based genotypes as a template for A3 expression vector design for use 

in single-cell infectivity assays to determine if A3 interactions influence HIV-1 

restriction in the presence and absence of HIV-1 Vif. 

3.) Examine cellular expression and viral encapsidation frequencies of genotype derived 

A3 repertoires when co-expressed. 

4.) Sequence circulating HIV-1 strains from HIV-1+ donors in the province of 

Saskatchewan. 
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3.0 Genotyping of Patient Sample PBMCs 
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3.1 Introduction 

Genotyping our PBMC donor set was an essential component in determining the A3 repertoire in 

the Saskatchewan population. A significant amount of time was spent in the development and 

troubleshooting of these foundations. Troubleshooting was not limited to the restriction digest 

genotyping assay, but it was certainly a large contributor, and ultimately due to inconsistencies in 

data outputs this assay was replaced with more accurate Sanger sequencing genotyping. The end-

product being the genotyping of the complete A3H loci for 13 individual donors in our population, 

consisting of the compilation of five SNPs, producing one of seven known haplotypes.  

3.2 Materials and Methods 

 

3.2.1 Donor PBMC and DNA isolation 

PBMCs were isolated from whole blood samples using Ficoll-Paque (GE-Healthcare) density 

gradient centrifugation in Sepmate50 tubes (STEMCELL Technologies). DNA was isolated from 

donor PBMCs using a PAXgene Blood DNA Kit (Qiagen). 

3.2.2 Restriction Digest Genotyping  

Methods for A3H genotyping were drawn from Wang et al. (90), and adapted for A3F, A3G, and 

A3D genotyping. Previously identified polymorphisms resulting in A3H (R18L, G105R, K121D, 

and E178D, E140K), A3F (A108S and 231IV), A3G (H186R) and A3D (R97C) amino acid 

changes were genotyped using restriction enzyme digestion of amplified genomic DNA from 

human donors  (90). Each experiment and selected restriction enzymes were designed around 

naturally occurring restriction sites that can distinguish and cut at polymorphic alleles. Digestion 

positive controls were designed so that the same enzyme that cuts the polymorphic site also cuts a 

non-polymorphic or conserved region on both alleles creating a secondary band digestion, this 

verifies complete digestion. Restriction enzymes, primer sequences, PCR condition, and banding 

patterns are shown in Appendix Tables 1, 2 (A-I), and 3. Due to a lack of control restriction sites 

for A3F (A108S and 231IV), A3G (H186R) and A3D (R97C) SNPs within the amplicon, separate 

double-stranded (ds) DNA-based controls were designed to ensure complete restriction enzyme 

digestion. Each control was a 30 nt or 40 nt synthesized double-stranded oligonucleotide with each 

restriction site used for genotyping. Enzyme digestion with each control was done in tandem with 
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donor digestions. Primer sequences and restriction enzymes are shown in Appendix Table 4. The 

only polymorphism that could not be determined via restriction digestion was the A3H N15∆ 

deletion. The deletion was detected by resolving the PCR product on a 15% urea-PAGE gel and 

the amplicon size determined the presence or absence of a deletion. 

3.2.3 Sanger Sequencing genotyping  

The A3G, A3F, A3D, and A3H polymorphic sites were amplified using PCR. The A3G H186R 

polymorphism was detected using the following primers: (forward) 5′ 

AATTTCAGCACTGTTGGAGC and (reverse) 5′ GAGAATCTCCCCCAGCAT. The A3F V231I 

polymorphism was detected using the following primers: (forward) 5′ 

AGCCTATGGTCGGAACGAAA and (reverse) 5′ CTGGTTTCGGAAGACGCC. The A3D 

R97C polymorphism was detected using: (forward) 5’ GTGTATTTCCGGTTTGAGAACC and 

(reverse) 5’ GATGGTCAGGGTGACATTGG. The five A3H polymorphism detection primers are 

listed in Appendix Table 1. The PCR amplification used Q5 High Fidelity polymerase (New 

England Biolabs) and cycling conditions were 95° C for 5 min followed by 45 cycles of 95° C for 

10 sec, 52° C for 20 sec, 72 ° C for 20 sec. Amplicons were cloned into pJET1.2 using the 

CloneJET PCR cloning kit (ThermoScientific). Amplicons were Sanger sequenced at the National 

Research Council of Canada (Saskatoon, Saskatchewan). The resulting A3 sequences were 

translated using the Expasy Translate tool to identify polymorphisms (125)(125)(125)(125) and 

clones from each donor were analyzed for each A3 condition and their respective polymorphisms 

to determine homozygosity or heterozygosity of each allele in combination with allelic frequency. 

3.2.4 Proviral Sequencing 

For proviral sequencing, 1 x 105 293T cells were infected with 40 μL of supernatant containing 

virus in the presence of 8 μg/mL polybrene. The plates were spinoculated at 800 x g for 1 h. Cells 

were harvested after 48 h by removing the media, washing with PBS, and lysing the cells and 

extracting DNA with DNAzol (Invitrogen). The PCR amplification of the protease region of HIV-

1 (351 bp) was conducted as previously described Ara et al. 2014 (50). Sequences were analyzed 

with Clustal Omega and Hypermut software programs (126) (127). 

3.2.5 Typing integrated provirus from HIV-1+ Donors 

Using the Qiagen Purgene Cell Kit A, DNA was extracted from 2-4 x 106 PBMCs. This kit was 

utilized because some of the PCRs required large reads of up to 6.5Kb and the kit is able to 
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minimize fragmentation up to 200Kb. Prepped DNA samples we subjected to nested PCR 

protocols using Platinum Taq High Fidelity polymerase (Life Technologies) as described in Bruner 

et al. (87). The outer PCR product amplifies nucleotides 623 to 9686 of the HIV-1 HXB2 strain 

genome. Then, 1uL of the outer amplification is used in each nested reaction. Detailed PCR 

protocols and primer sets are Appendix Table 5 and Appendix Figure 1 and were adapted from 

Buner et al. (87). Each product was resolved using agarose gel electrophoresis. The PCR products 

were then purified using the QIA quick Gel Extraction kit followed by cloning and Sanger 

Sequencing.  

3.2.6 Typing circulating virus 

Protocol and primers were from Brumme et al. 2011 and Grossman et al. 2015 (128, 129). Virus 

is isolated from cell free patient plasma using 0.25-micron filter syringes, followed by RNA 

extraction using QIAamp viral RNA extraction kit. RNA quantity and purity were determined 

using a NanoDrop (Thermo Scientific, DE, USA) and samples were stored at -80 until required. 

First strand cDNA synthesis was performed using random hexamer PCR primers with 1 

µLSuperScript III Reverse transcriptase (Invitrogen), 1 µL of 10mM dNTPs 13 µLPCR 

grade/RNase Free water (Roche), 1 µL DTT and 5 µL of RNA template. cDNA synthesis is 

facilitated by heating at 65oC for 5 min followed a 2 min incubation on ice. A second master mix 

containing 4 uL of 5x First-Strand Buffer (375 mM KCl, 250 mM Tris-HCl, 15 mM MgCl2), 1 µL 

0.1 M DTT, 1 µL of 40U/mL RNase inhibitor (Roche) and 2 mL of SuperScript-III RT (200 

U/mL). The final 20 µL reaction mix is then incubated at 25oC for 5 min followed by 55oC for 1 

h and finally 70oC for 10 min to terminate the reaction. Amplification of the target region of RT is 

facilitated by nested touchdown PCR reactions using primers sets detailed in Appendix tables 6 

and 7.  

Ethics Statement. This study has been reviewed and approved by the Research and Ethics Board 

at the University of Saskatchewan (Bio# 14-62 and 13-293). Peripheral Blood Mononuclear Cells 

(PBMCs) were isolated from de-identified individuals Donors were either HIV+ and recruited 

through the Positive Living Program (PLP) at the Royal University Hospital or West Side Clinic 

in Saskatoon or HIV- Donors (HD). 
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3.3 RESULTS 

 

3.3.1 Isolation of HIV-1 proviral DNA from donors  

Through collaboration with Dr. Steve Sanche and Dr. Kris Stewart we began receiving blood 

donations from consenting patients. We received nine HIV-1+ blood samples in total, termed PLP-

001 to PLP-009, which we used for both A3 repertoire genotyping and proviral typing. Here we 

used a protocol and primer set from Bruner et al. 2016 (87) to amplify near-full-length HIV-1 

provirus from DNA isolated from donor PBMCs. After multiple rounds of template dilutions, we 

were unable to amplify any of the six nested fragments using the published protocol (Figure 

3.3.1A-B). 

3.3.2 Isolation of circulating virus from HIV-1+ donors  

Due to setbacks in HIV-1 proviral isolation from donor PBMCs we then attempted to isolate viral 

RNA directly from donor plasma to be amplified using RT-PCR. We chose this methodology as a 

secondary outlet for typing circulating virus because most of the donors were on anti-retroviral 

therapies (ART) and had undetectable viral loads. The only exception was PLP-003, which had a 

viral load of approximately 20,000 copies/mL. From the literature, we found that copy numbers 

above 3000/mL would most likely have yields of enough RNA for cDNA synthesis and subsequent 

PCR reactions (129). Here we used primer sets and protocols from Brumme et al. 2011 and 

Grossman et al. 2015, to isolate amplify HIV-1 RNA using RT-PCR (128, 129). Because we were 

only able to obtain 10 mL of blood from our HIV-1+ donors, the filtered plasma resulted in 2 mL 

of virus containing supernatant, in which we expected between 20,000 and 40,000 HIV-1 copies. 

However, the RNA prep resulted in low yields (21 ng/µL). RNA was added to the cDNA synthesis 

reaction in a total amount of 200 ng. The primary nested PCR primers used for HIV-1 RT 

amplification from cDNA were 5’CP1 (F) + RT3.1 (R), or PRTO-5 (F) +Out3 (R), the secondaries 

being 2.5 (F) + RT3798R (R) or 2.5 (F) + 2.3 (R) (Appendix Table 6). As expected, the primary 

nested amplification resulted in a full band-length smear when ran on a 2% agarose gel (Figure 

3.3.1A), however, even with extensive modifications to PCR protocols and template 

concentrations, we were unable to optimize the assay to amplify HIV-1 RT from circulating HIV-

1 from donor PLP-003 (Figure 3.31B-D). The only exception was the sample in Figure 3.31C (lane 

2) that contained 10 µL of the outer amplification template and used primer set one (5’CP1 (F) + 

RT3.1 (R) and 2.5 (F) + RT3798R (R)), Appendix Table 6). This band was gel purified and 
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selected for cloning, but cloning reactions failed to yield colonies for sequencing. We started with 

this aim of the project with the intent to isolate a virus circulating in Saskatchewan and clone the 

sequence into a vector so that it could be used for experiments. However, since we were unable to 

amplify an HIV-1 sequence, for all further experiments, lab strain virus HIV-1 LAI was used.  
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Figure 3.3. 1 Near-Full-Length HIV-1 proviral amplification from donor PBMCs 

 (A) Lanes 2-10 show the outer 9Kb PCR amplifications for donor samples PLP-001 to PLP-009. 

The outer amplification was used as a template for all nested PCR reactions. Lanes 11-20 show 

the 1.5Kb amplification of HIV-1 gag for PLP-001 to PLP-009. (B) Lanes 2-10 show the 1.8Kb 

amplification of HIV-1 env for PLP-001 to PLP-009. Lanes 11-17 show the 4.5Kb amplification 

of HIV-1 ‘A’ segment for PLP-001 to PLP-007. (C) Lanes 2-10 show the 5.8Kb amplification of 

HIV-1 ‘B’ segment for PLP-001 to PLP-009. Lanes 11-20 show the 6.4Kb amplification of HIV-

1 ‘C’ segment for PLP-001 to PLP-009. (D) Lanes 2-9 show the 4.5Kb amplification of HIV-1 ‘D’ 

segment for PLP-001 to PLP-008. 

 

  



35 
 

 

 

 

 

 

 

 

Figure 3.3. 2 HIV-1 RT amplification from circulating virus from donor PLP-003    

(A) Outer amplification using primer set 1 (5’CP1 (F) + RT3.1 (R)) and primer set 2 (PRTO-5 (F) 

+Out3 (R)). (B) Nested RT amplifications using titrated templates from outer PCR amplifications. 

Template titrations range from 20 µL down to 1:10,0000. Nested primers included: 2.5 (F) + 

RT3798R (R) and 2.5 (F) + 2.3 (R).  
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3.3.3 Restriction Digest Genotyping 

The same DNA from donor PBMCs used for our attempts at proviral amplification and viral typing 

was also used for A3 repertoire genotyping. In anticipation of receiving high volumes of donor 

samples we designed the A3 genotyping to be through restriction digestion of amplified 

polymorphic sites from donor DNA, a process that was more cost effective than Sanger 

Sequencing. The A3H genotyping protocol was used from Wang et al. 2010 (90). The A3G, A3F, 

A3D genotyping assays were designed for this project. A3 amplification primers, banding patterns, 

and restriction enzymes are detailed in Appendix Tables 1, 2, and 3, respectively. If multiple SNPs 

were to be analyzed on the same exon and were in close proximity (A3F 231IV/A108S) single 

primer pairs could be used for multiple SNP typing. Alternatively, if multiple SNPs were to be 

typed on different exons, separate primer pairs were required, such as for A3H.  

One component of the genotyping assay that was initially overlooked during A3G, A3F and A3D 

assay design was the presence of an internal control. That is, upon running the first set of gels for 

A3G genotyping, all present bands ran at approximately 113 bp, which we designed as the ‘uncut’ 

condition indicating homozygosity for H186, whereas, homozygosity for R186 would result in the 

‘cut’ condition resulting in 90 bp and 23 bp segments. As a result, it was impossible to differentiate 

between the 186H homozygosity and a faulty restriction digest. We confirmed a sample being 

uncut by running the undigested PCR product next to the donor digests (Figure 3.3.2A). The band 

patterns were identical, indicating the requirement for restriction digest design to cut at both the 

polymorphic site and in a non-polymorphic region to ensure complete digestion.  
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Figure 3.3. 3 APOBEC3G and APOBEC3F restriction digest genotyping assays and 

restriction controls    

A) A3G exon amplification and FSPI digestions for H186R genotyping. Three donor samples were 

digested (PLP-001, 003 and 007) and ran on a 2% agarose gel and stained with ethidium bromide, 

along with an undigested control. (B) Synthesized oligonucleotides (40 nt) used for A3G, A3F and 

A3D control digests in restriction digest genotyping assay. A3G H186R and A3F 231IV were used 

as examples following FSPI and BSmaI digestion, respectively.  
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Unfortunately, restriction mapping for dual polymorphic and non-polymorphic control site cutters 

for A3G, A3F and A3D proved futile. That is, we could not identify restriction enzymes that would 

cut with single nucleotide specificity at each polymorphic site and at another upstream or 

downstream conserved site for a control. As a final attempt to incorporate an internal control into 

the A3G, A3F and A3D digests, a synthetic oligonucleotide-based control method was employed. 

30 nt or 40 nt dsDNA oligonucleotides were designed using the NEB cutter program (130) and 

contained the respective restriction sites for each A3 SNP digest. The 30 nt or 40 nt complementary 

oligonucleotides were annealed using a high salt annealing buffer at 95 oC for 5 min, then cycled 

down 1 oC every min to 25 oC and then digested using the same enzymes used for their respect A3 

paralog, as detailed in Appendix Table 3. Enzyme activity was determined by the production of a 

20 nt product in a control digest. After doing multiple sample control digests, the resolution of 

each banding pattern could not be increased to produce a reliable control. Input DNA 

concentrations, restriction enzyme concentrations, loading volumes and gel densities were all 

modulated. The product with the best resolution still left reasonable error (Figure 3.3.2B). Digested 

oligonucleotides did appear to shift lower than the undigested controls, but were still not 

discernible between 40 nt and 20 nt. 

 

Challenges with poor resolution, sample laddering and uncertain controls were a combined cause 

to stop the restriction digest genotyping assay and confirm and extend results with Sanger 

sequencing-based genotyping. However, due to the amount of time spent troubleshooting the 

restriction digest assay we decided to streamline the number of SNPs analyzed using the Sanger 

method. We still chose to examine all five A3H SNPs, A3G H186R and A3F 231IV SNPs, but 

A3D R97C was abandoned due the low capacity of A3D to restrict HIV-1, even with the more-

active Arginine (R) at position 97 (89). 

 

3.3.4 Sanger sequencing-based genotyping of A3H 

Using the same A3H primers used in the restriction digest genotyping assay, A3H was re-amplified 

from donor PBMC DNA, ligated into a pJet cloning vector, transformed into DH5-alpha E. coli 

cells and plated on LB-Amp plates for individual clone selection. Plasmid DNA from each clone 

set were then prepared for sequencing using supplied CloneJET primers. For accurate 

determination of the complete A3H genotype, 6-8 clones per A3 SNP were sequenced to ensure 
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probable detection of both alleles and determination of homozygosity and heterozygosity. When 

the A3H allelic frequency was analyzed a great diversity even in the small population set of 13 

donors was observed (Figure 3.3.3A-B). Specifically, we observed allelic frequencies of hap I (35 

%), hap II (4 %), hap III (25 %), hap IV (15 %), hap V (8 %), hap VI (8 %) and hap VII (5 %). 

Based on previously published data on A3H haplotype activity, A3H activity in our population 

was at 30% (Figure 3.3.3C), which is similar to combined data sets of larger population-based 

studies (90, 91). That is, in Wang et al. 2011, which looked at isolated individual populations 

showed active A3H haplotypes occurring at 44.4 % in European Caucasian lineages and at 25.0 % 

in Chinese lineages, averaging at 26.0 % (90).     
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 Figure 3.3. 4 APOBEC3H genotype analysis 

(A) Allelic frequencies, whole genotypes and summarized haplotypes from 13 donor PBMC DNA 

samples (B) Summary of haplotype variation as a function of allelic frequency from 13 donor 

PBMC DNA samples. (C) Proportions of active A3H haplotypes (hap II, hap V, and hap VII) in 

comparison to inactive A3H haplotypes (hap I, hap III, hap IV and hap VI) from 13 donor PBMC 

DNA samples. Activity of A3H haplotypes was previously published (90, 91). 

 

 

 

Patient Sample Allele 1 Allele 2               Haplotypes Activity 

HP-002 NRGKE ∆LRDD HapI HapIV inactive

HP-003 ∆RRDD NRGKE Hap III Hap I inactive

HP-004 ∆RRDD ∆LRDD Hap III Hap IV inactive

HP-005 NRRDE ∆RRDD Hap V Hap III active

HP-006 NRRDE NRGKE HapV Hap I active 

PLP-001 NRGKE ∆LGKD Hap I hap VI inactive 

PLP-002 NRRDD ∆RRDD  Hap II Hap III active 

PLP-003 NRGKE ∆LRDD Hap I hap  IV inactive 

PLP-004 NRRKE ∆LRDD Hap VII hap IV active 

PLP-006 NRGKE ∆LGKD Hap I Hap VI inactive 

PLP-007 NRGKE ∆RRDD HapI HapIII inactive 

PLP-008 ∆RRDD ∆RRDD hap III hap III inactive 

PLP-009 NRGKE NRGKE Hap I HapI inactive 
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3.4 Discussion  

3.4.1 Development, alteration, and completion of APOBEC3H Genotyping Assays 

 

In Chapter 3, the foundations for my project were laid through a series of trials and tribulations. 

The first component of the project was to process blood samples for both viral sequencing and A3 

and genotyping. Viral typing was an important feature in designing a more physiologically relevant 

infection model when using Saskatchewan-based donor sets. Our end goal was to characterize 

circulating strains, identify RT-based drug resistance and Vif mutation variations, and clone 

infectious molecular clones into plasmid expression vectors to be used in expression and infectivity 

assays. However, after months of troubleshooting HIV-1+ donor proviral amplification and 

circulating virus isolation with little success we chose to sacrifice this component of the project 

and use the field standard LAI strain HIV-1 for expression and infectivity assays. 

 

More issues plagued the start-up of donor A3 genotyping when using an adapted assay from Wang 

et al 2011, which did not enable accurate and interpretation of A3H genotypes from restriction 

digests (90). Sanger-sequencing proved to be a reliable and attainable source for the limited donor 

samples we received. From the data in Section 3.3, we concluded that A3H genotypes are 

incredibly diverse in our mixed-population set and the combined genotypes resulted in a 30% 

frequency of active A3H haplotypes. When compared to data presented in Wang et al 2011 and 

Duggal et al 2013, we observed that the frequency of A3H activity in our population correlated to 

a mixed population of European Caucasian and East Asian, which are 70.9% and 9.3% 

respectively, and is representative of current demographics in Saskatchewan (Figure  2.1) (89, 90, 

124). On a population level, low frequencies of active A3H, similar to that of our present 

population have been linked to a greater susceptibility to HIV-1 infection, lower CD4+ T-cell 

counts through the course of infection, higher viral loads and more rapid progression to AIDS (92).  
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4.0 Preface to studying polymorphic variants of A3F 

 

The data collected in Chapter 3 provided a foothold for examining other A3 paralogs in our 

population. As seen in Figure 3.3.4A-C a great diversity in A3H genotypes was observed with 

relative activity presenting at 30%, which correlated to current population demographics in our 

population of mostly European Caucasian and East-Asian, which have A3H activity profiles of 

50% and 11% respectively. With current population percentages taken into consideration, the 

predicted A3H activity profile correlates to the experimental values. Because we saw little 

variation between predicted and expected values for A3H activity in our population, we decided 

to shift our attention to A3G and A3F SNP variations. We wanted to investigate A3G and A3F 

SNPs together due to previous evidence supporting their co-expression, interaction and increases 

in HIV restriction when hetero-oligomerized (33). Further, we wanted to determine if common 

A3G and A3F SNPs affect these interactions and what the results would be in relation to HIV-1 

restriction capacity.  
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5.1 Abstract  

APOBEC3 enzymes are a family host restriction factors that can restrict lentiviral replication. This 

family of cytidine deaminases can act as a barrier to viral infection by inducing mutagenesis of 

lentiviral genomes, such as HIV-1, through the deamination of cytosine forming promutagenic 

uracil in nascent single-stranded (-) DNA. HIV-1 suppresses APOBEC3 activity through the HIV-

1 protein Vif that induces APOBEC3 degradation. Notably, for some APOBEC3s only some 

polymorphisms are active. Here we examined common polymorphisms of APOBEC3F that result 

in a protein with either 108A/231V or 108S/231I. We find that although both polymorphisms have 

HIV-1 restriction activity, APOBEC3F 108A/231V can restrict both Vif+ and Vif- HIV-1 more 

than APOBEC3F 108S/231I. The enhanced restriction resulted from enhanced encapsidation due 

to higher levels of steady state expression and incomplete Vif-mediated degradation. The 

APOBEC3F 108A/231V was not resistant to Vif-mediated degradation per se, but appeared to be 

maintained in cells at a level that exceeded the Vif degradation capacity. We show that individuals 

are commonly heterozygous for the APOBEC3F polymorphisms and in cell-based studies, these 

polymorphisms formed, independent of RNA, hetero-oligomers between each other and with 

APOBEC3G. Hetero-oligomerization with APOBEC3F 108A/231V resulted in partial 

stabilization of APOBEC3F 108S/231I and APOBEC3G in the presence of Vif. These data 

demonstrate how individual genotypes can affect HIV-1 restriction and are a functional example 

of how variations in host genotypes can protect a population or individual against virus infections. 

 

5.2 Importance  

APOBEC3 enzymes are a barrier to HIV-1 infection and suppress HIV-1 replication by inducing 

mutagenesis of HIV-1 proviral DNA. To counteract this host restriction system HIV-1 uses Vif to 

induce degradation of relevant APOBEC3 enzymes. Although there is a constant battle between 

host and virus for suppression of replication and a counteraction, the HIV-1 mutation rate far 

exceeds that of humans and facilitates a faster rate of adaptation. As a result, protective measures 

such as having multiple host genotypes can guard populations by slowing the rate of viral 

adaptation. We examined if two common genotypes of APOBEC3F were an example of multiple 

genotypes that can help protect the host. We found that the two common APOBEC3F genotypes 

most often occur as heterozygous alleles and that the one allele that was more protective could 
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stabilize APOBEC3F and APOBEC3G in cells to increase virus encapsidation and partially protect 

against Vif mediated degradation.  

5.3 Project Summary 

Here we assessed the A3F 108S/231I and A3F 108A/231V variants for their ability to restrict HIV-

1 replication in the presence and absence of Vif. Based on past evidence that A3F can interact with 

itself and A3G, in an RNA-independent manner, we assessed how each A3F variant restricted 

HIV-1 replication when expressed together and in the presence of A3G (33). Since the A3F 

A108S/V231I are in strong linkage disequilibrium and have been identified to commonly occur 

together in multiple genetic studies, we refer to these variants as 231V or A3F 231I, since this 

variation was correlated epidemiologically in affecting HIV-1 progression (89, 97, 98). We find 

that the A3F 231V is a more efficient restriction factor for HIV-1 than A3F 231I. The increased 

restriction is due to an increase in A3F steady state levels in cells. This increased steady state level 

of A3F 231V resulted in a partial resistance to Vif. Genotyping of a donor population showed that 

the A3F 231V and 231I alleles most often occur together, rather than the homozygous alleles. This 

appeared to have a functional benefit since the interaction of A3F 231V could also increase the 

Vif resistance of A3G and A3F 231I, providing a reasoning for how high numbers of A3 induced 

mutations may be acquired in HIV-1+ individuals.  

 

5.4 Introduction 

5.4.1 APOBEC3 functional overview 

APOBEC3 (A3) enzymes are a family of deoxycytidine deaminases that can act as host restriction 

factors for HIV-1 (1, 131). The A3 enzymes deaminate cytosine in single-stranded (ss) DNA to 

form promutagenic uracil (3, 132-134). In the right context, this uracil is used as an immune 

defense (46, 91, 135-138). Namely, of the seven human A3 enzymes, there are five that can restrict 

the replication of HIV-1 through the formation of uracils, A3D, A3F, A3G, A3H (haplotypes II, 

V, and VII), and A3C (S188I) (45, 52, 139). In an HIV-1 infected CD4+ T cell, these enzymes can 

become encapsidated into assembling virions through an interaction with cellular or HIV-1 

genomic RNA that is also bound to HIV-1 Gag (57, 64). After virion maturation and infection of 

a target cell, the encapsidated A3 enzymes can access single-stranded HIV-1 (-) DNA after it is 

synthesized and exposed through reverse transcription and RNase H activity (140). The cytosines 
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that become deaminated to uracil are copied by the reverse transcriptase during (+) DNA synthesis 

and result in guanine to adenine (G→A) mutations on the coding strand (3, 132-134, 140). These 

mutations can induce DNA repair enzyme mediated degradation of proviral DNA or result in 

functional inactivation of integrated proviral DNA (16). HIV-1 Vif suppresses the encapsidation 

and activity of A3 enzymes by mediating their polyubiquitination and proteasomal degradation 

(74, 137, 141-146). HIV-1 Vif hijacks a Cullin 5 E3 ubiquitin ligase complex and acts as the 

substrate receptor by replacing the host protein SOCS2 (74). This enables HIV-1 Vif to directly 

interact with components of the ubiquitin ligase complex, Elongin C and Cullin 5 (147). HIV-1 

Vif can also directly interact with A3D, A3F, A3G, A3H, and A3C, which induces their 

ubiquitination and proteasomal degradation. For stability, Vif also interacts with the transcription 

cofactor CBF-β (75, 148). 

5.4.2 A3 and HIV-1 Vif Interactions 

Despite the presence of Vif, A3 enzymes are still able to be encapsidated into HIV-1 virions and 

induce mutagenesis (87, 149-159). Although translation of Vif mRNA results in high levels of Vif 

in cells before virus particle assembly, which would deplete A3s from infected CD4+ T cells, the 

induced degradation of A3s is not complete (160). Evidence of this comes from high levels of A3 

induced stop codons and missense mutations in HIV-1 proviral DNA in acute and chronic proviral 

DNA isolated from HIV-1+ individuals (87). Sequencing of integrated proviral genomes from 

multiple studies have revealed that the mutations are present on the (+) DNA in both a 

5′GG→5′AG context and a 5′GA→5′AA context (82, 87, 149-159). The 5′GG context originates 

primarily from A3G that deaminates preferentially in 5′CCA motifs on the (-) DNA (underlined C 

deaminated) (140). This sequence context most often results in mutations that introduce stop 

codons and mutations at glycines (4). The 5′GA context can originate from A3D, A3F, A3H, and 

A3C (S188I) due to a preference to deaminate in 5′TC motifs on the (-) DNA (46, 82, 136, 161). 

Mutations at the 5′TC motif can also introduce stop codons and missense mutations at a larger 

variety of amino acids (4). Although A3G is the most active deaminase in a ΔVif HIV-1 infection, 

it is also very sensitive to Vif (50, 162). Thus, despite there being lower activity from A3D and 

A3F in ΔVif HIV-1 infections, there is some evidence that A3F is less sensitive to Vif, and as a 

result, may be a larger contributor to mutagenesis during HIV-1 infections (45, 50, 97, 163, 164). 

There is also evidence that in chronically infected individuals that HIV-1 Vif can acquire mutations 

that result in partial activity, thereby enabling A3 encapsidation and mutagenesis (88). However, 
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it is unlikely that these mutations in Vif are acquired early in infection and A3-mediated 

mutagenesis is found in acute infections suggesting that other mechanisms can enable A3 

encapsidation in the presence of Vif (87). 

5.4.3 Vif resistance observed in common A3 SNPs 

Resistance to Vif mediated degradation has been characterized for some A3 enzymes. A3H exists 

as seven major haplotypes in humans with differential protein stability, HIV-1 restriction ability, 

and sensitivity to Vif (90, 91, 165). These haplotypes result from a combination of five different 

single-nucleotide polymorphisms (SNPs) (90, 91, 165). The diversity of A3H in the human 

population necessitates constant adaptation of HIV-1 Vif to A3H, especially since stable and 

restrictive A3H haplotypes (II, V, and VII) show population stratifications (82, 90, 91). This 

dynamic results in a situation where A3H can act as a transmission barrier for some HIV-1 strains 

or at least increase the time until CD4+ T cell counts decrease or until the development of AIDS 

(81, 82). The number of SNPs in other A3s is significantly lower and most commonly they have 

been found to result in inactivation of the A3 or no effect (89, 96, 166). Exceptions are A3D and 

A3C in which SNPs have resulted in increased activity (52, 89, 139). Interestingly, despite cell-

based assays not uncovering differences in a common variant of A3F A108S/V231I, a population-

based analysis of multiple pre-treatment cohorts of HIV-1+ individuals showed that the A3F 231V 

variant was associated with lower viral load and slower rate of progression to AIDS (89, 97, 98). 

The authors suggested that the A3F 231 position may increase resistance to Vif (97). Despite this 

amino acid not being within the canonical Vif binding interface on A3F, this observation was also 

previously reported for A3F 108A/231V (136, 167-170).  

 

5.5 Materials and Methods 

5.5.1 Donor PBMC and DNA isolation 

PBMCs were isolated from whole blood samples using Ficoll-Paque (GE-Healthcare) density 

gradient centrifugation in Sepmate50 tubes (STEMCELL Technologies). DNA was isolated from 

donor PBMCs using a PAXgene Blood DNA Kit (Qiagen). 
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5.5.3 Sanger Sequencing genotyping  

The A3G and  A3F polymorphic sites were amplified using PCR. The A3G H186R polymorphism 

was detected using the following primers: (forward) 5′ AATTTCAGCACTGTTGGAGC and 

(reverse) 5′ GAGAATCTCCCCCAGCAT. The A3F V231I polymorphism was detected using the 

following primers: (forward) 5′ AGCCTATGGTCGGAACGAAA and (reverse) 5′ 

CTGGTTTCGGAAGACGCC. The PCR amplification used Q5 High Fidelity polymerase (New 

England Biolabs) and cycling conditions were 95° C for 5 min followed by 45 cycles of 95° C for 

10 sec, 52° C for 20 sec, 72 ° C for 20 sec. Amplicons were cloned into pJET1.2 using the 

CloneJET PCR cloning kit (ThermoScientific). Amplicons were Sanger sequenced at the National 

Research Council of Canada (Saskatoon, Saskatchewan). The resulting A3 sequences were 

translated using the Expasy Translate tool to identify polymorphisms (125), clones from each 

donor were analyzed for each A3 condition and their respective polymorphisms to determine 

homozygosity or heterozygosity of each allele in combination with allelic frequency. 

5.5.4 Plasmids and Transfection Conditions 

To express two A3 enzymes on a single-cell level, the pVIVO2 plasmid (Invivogen) that contains 

two transcriptional units was used. For comparison to double expression experiments, pVIVO2 

was also used to express single A3 enzymes. The cloning of A3G-HA, A3F 108S/231I-V5, and 

A3G-HA/A3F 108S/231I-V5 into pVIVO2 was previously described (162). The pcDNA A3F 

108A/231V was kindly provided by Reuben Harris (University of Minnesota) and subcloned into 

pVIVO2 using the same cloning strategy as previously reported to create A3F 108A/231V-V5, 

A3F 108A/231V-HA, and A3G-HA/A3F 108A/231V-V5, and A3F 108A/231V-HA/A3F 

108S/231I-V5 (162). Since the A3F polymorphisms at 108 and 231 are in strong linkage 

disequilibrium, for brevity we refer to the A3F forms as either 231I or 231V (89, 97, 98).  

 

5.5.5 Single-cycle infectivity assay  

VSV-G pseudotyped HIV-1 LAI ΔVif ΔEnv were produced by transfecting 1 x 105 293T cells per 

well of a 12-well plate. The 293T cells were maintained in DMEM with 10% FBS. GeneJuice 

(Novagen) transfection reagent was used as per manufacturer’s protocol. Cells were transfected 

with 500 ng of pHIV-1 LAI ΔVif ΔEnv, 180 ng of pMDG, which expresses VSV-G, and 25, 50, 
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or 100 ng of A3 expression plasmid (124). The following pVIVO2 constructs were transfected for 

expression of tagged A3s: A3G-HA, A3F 231V-V5, A3F 231I-V5, A3G-HA/A3F 231I-V5, A3G-

HA/A3F 231V-V5, and A3F 231V-HA/A3F 231I-V5. The following pcDNA3 constructs were 

transfected for expression of untagged A3s: A3G, A3F 231V, and A3F 231I. To equalize the 

amount of plasmid DNA transfected, empty pVIVO2 or pcDNA3 vectors were used. After 16 h 

the media was changed and virus containing supernatants were harvested 24 h after the media 

change. Supernatants were filtered through a 0.45-micron polyvinylidene difluoride (PVDF) 

syringe filter. For infection of a reporter cell line to determine infectivity 1 x 104 cells per well of 

a 96-well plate containing either HeLa CD4+ HIV-1 LTR-β-gal (MAGI) or TZM-Bl cells were 

infected with a serial dilution of virus in the presence of 8 μg/mL polybrene. The LTR-β-gal 

provides β-galactosidase under HIV-1 Tat promoter control. Forty-eight hours after infection the 

cells were washed with PBS and infectivity was measured through colorimetric detection using a 

β-galactosidase assay reagent (Pierce) and spectrophotometer. Infectivity of each virus was 

compared by using the infectivity of the No A3 condition as 100%. 

5.5.6 Quantitative Immunoblotting 

293T cells expressing No A3, A3G-HA, A3F 231V-V5, A3F 231I-V5, A3F-231V-HA, A3G-

HA/A3F 231I-V5, A3G-HA/A3F 231V-V5, and A3F 231V-HA/A3F 231I-V5 from the single-

cycle infectivity assays were detected using rabbit anti-HA (1:1000, Sigma) or rabbit anti-V5 

(1:500, Sigma). 293T cells expressing No A3 or untagged A3G, A3F 231V, or A3F 231I were 

detected with ApoC17 rabbit antiserum (1:1000; Cat# 10082, NIH AIDS Reagent Program) for 

A3G or C-18 polyclonal rabbit antibody (1:500; GTX47211 (Gentex) for A3F (112). A3s were 

detected in cell lysates and virions. Cells were lysed using 2x Laemmli Buffer and 40 μg total 

protein was used. Virus was concentrated using Retro-X (Clontech) following the manufacturer’s 

protocol and 20 μL of concentrated virus was used. Loading controls for cell lysates (α-tubulin, 

Sigma) and virus (p24, Cat #3537, NIH AIDS Reagent Program) were detected with mouse 

monoclonal antibodies. Secondary detection was performed using Licor IRDye antibodies 

produced in goat (IRDye 680-labeled anti-rabbit and IRDye 800-labeled anti mouse).  

To detect Vif-mediated degradation of A3s, 1 x 105 293T cells per well of a 24-well plate were 

transfected with 50 ng of A3F 231I-V5, 10 ng A3F 231V-V5, or empty pcDNA3 (No A3) and a 

titration of VifLAI expression plasmid (0,10, 25, 50, 100, and 200 ng). A 5-fold greater amount of 
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A3F 231I was required to equalize the expression of both A3Fs. GeneJuice (Novagen) transfection 

reagent was used as described by the manufacturer. The media (DMEM and 10% FBS) was 

changed 16 h after the transfection. The cells were harvested 24 h after the media change with 2x 

Laemmli buffer and 40 μg total protein was used. The V5-tagged A3F and α-tubulin was detected 

as described above.  

Cell lysates were quantitatively analyzed where indicated in figures. Quantitation of band 

intensities was performed using Odyssey Software with normalization to either α-tubulin or p24, 

which were detected in parallel on the same blot with experimental samples. Relative expression 

levels were then determined by comparison to a control sample set at 1. 

5.5.7 Co-immunoprecipitation  

The co-immunoprecipitation protocol was from Baig et al. 2014 (162). In brief, 2.5 x 106 293T 

cells per 75 cm2 flask were transfected with 1 μg total DNA using GeneJuice (Novagen) as per 

manufacturer instructions. The plasmids transfected expressed A3G-HA, A3F 231I-V5, A3G-

HA/A3F 231I-V5, A3G-HA/A3F 231V-V5 or A3F 231V-HA/A3F-231I-V5. Sixteen hours post 

transfection media was changed with fresh DMEM+10% FBS. Forty-hours post transfection, cells 

were washed with PBS and lysed with buffer (50 mM Tris pH 7.4, 1% nonident-p40, 0.1% sodium 

deoxycholate, 150 mM NaCl, protease inhibitor (Roche)). Clarified supernatants were split into 

two fractions that were either used in a co-immunoprecipitation with nonspecific mouse IgG 

(mock) or the mouse anti-V5 (experiment). The co-immunoprecipitations were conducted in the 

presence of RNase A (33). A mouse anti-V5 (1:1000, Sigma) was used for immunoprecipitations 

and proteins were detected on the membrane using the same V5 antibody, mouse anti-HA (1:1000, 

Sigma), and polyclonal rabbit anti-α-tubulin (1:1000; Sigma). Secondary antibodies used were 

Licor IRDye antibodies IRDye 800-labled goat anti-mouse and 680-labled goat anti-rabbit 

secondary antibody.  

5.5.8 Proviral Sequencing 

For proviral sequencing, 1 x 105 293T cells were infected with 40 μL of supernatant containing 

virus in the presence of 8 μg/mL polybrene. The plates were spinoculated at 800 x g for 1 h. Cells 

were harvested after 48 h by removing the media, washing with PBS, and lysing the cells and 

extracting DNA with DNAzol (Invitrogen). The PCR amplification of the protease region of HIV-
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1 (351 bp) was conducted as previously described Ara et al. 2014 (50). Sequences were analyzed 

with Clustal Omega and Hypermut software programs (126) (127). 

 

Ethics Statement.  

This study has been reviewed and approved by the Research and Ethics Board at the University of 

Saskatchewan (Bio# 14-62 and 13-293). Peripheral Blood Mononuclear Cells (PBMCs) were 

isolated from de-identified individuals Donors were either HIV+ and recruited through the Positive 

Living Program (PLP) at the Royal University Hospital or West Side Clinic in Saskatoon or HIV- 

Donors (HD). 

 

5.6 Results 

5.6.1 A3F 231V more efficiently restricts HIV-1 infection than A3F 231I 

The A3F 231V allele has been shown to be protective in HIV-1+ individuals, but the reason for 

this was not fully explored (97). Here we conducted an assessment of the HIV-1 restriction ability 

of A3F 231V and A3F 231I. The effect of untagged A3F 231V and A3F 231I on VSV-G 

pseudotyped ΔVif HIV-1 infectivity was assessed using transient transfection of different amounts 

of A3F vector in single-cycle infectivity assays. Over a range of A3F plasmid transfection 

amounts, the A3F 231V restricted ΔVif HIV-1 1.4-fold (25 ng, p≤0.05), 1.6-fold (50 ng, p≤0.01), 

and 4.0-fold (100 ng, p≤0.001) more than A3F 231I (Figure 5.1A). Overall the ability for A3F to 

restrict ΔVif HIV-1 was still 1.5-fold (25 ng, p≤0.01), 1.8-fold (50 ng, p≤0.01), and 13.6-fold (100 

ng, p≤0.001) less than A3G, for the more active A3F 231V variant, consistent with previous reports 

(Figure 5.1A) (45). Also consistent with A3F 231V being protective in HIV-1+ individuals, the 

A3F 231V enabled some restriction of virus replication in the presence of Vif, which was not 

observed for A3F 231I or A3G (Figure 5.1B, p≤0.01 for 50 ng and 100 ng).  

To confirm that decreases in infectivity in the presence and absence of Vif correlated with virion 

encapsidation of the A3 enzymes, the cell lysates and virions were analyzed after proteins were 

resolved by SDS-PAGE and transferred to membranes for immunoblotting. The native antibody 
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used to detect A3F was only able to detect cellular expression and not virion encapsidation, except 

at the 100 ng transfection amount. These blots showed that the A3F 231V had a higher steady state 

expression level than A3F 231I in the absence of Vif (5- to 10- fold) and presence of Vif (12.5-

fold, Figure 1C-E), consistent with higher decreases in HIV-1 infectivity in both of these 

conditions (Figure 5.1A-B). At the highest plasmid transfection amount (100 ng), the A3F variants 

could be detected in the virus particles. The A3F 231V was encapsidated 5-fold more than A3F 

231I in the absence of Vif and in the presence of Vif encapsidation of A3F231I was not detectable 

(Figure 5.1E). These data suggest that the A3F 231V is partially resistant to Vif mediated 

degradation. Similar limitations with native antibody were identified with A3G in that the cellular 

expression levels were easily detected with the native antibody, but the encapsidation was not 

detected until the plasmid transfection amount reached 100 ng, despite evidence of HIV-1 

restriction in the single cycle infectivity assays (Figure 5.1A and F-H). Although significant 

amounts of A3G were detected in the virus in the presence of Vif at the higher transfection amount 

(Figure 5.1H), there was no observable decrease in infectivity (Figure 5.1B), presumably due to 

Vif-mediated inhibition of A3G catalytic activity and processivity (171, 172). 

To confirm the partial resistance to Vif-mediated degradation by A3F 231V we used V5-tagged 

A3F 231V and A3F 231I constructs, which would facilitate quantification of immunoblots at lower 

plasmid transfection amounts. We also tested if the V5 tag would effect differences in infectivity 

using a single cycle infectivity assay. In the absence of Vif, the A3F 231V still restricted HIV-1 

more than the A3F 231I by 1.4-fold (50 ng) or 2-fold (100 ng), consistent with the untagged 

enzymes (Figure 5.1A and Figure 5.2 A). The V5 tag had no significant effect on the A3F231V 

restriction ability, although there appeared to be some enhancement the A3F 231I restriction ability 

in the absence of Vif (Figure 5.1A and Figure 5.2A). Nonetheless, comparable differences in 

restriction were found with and without the tag at the 50 ng plasmid transfection amount and was 

still observable at the 100 ng transfection amount (Figure 5.1A and Figure 5.2A). Further, in the 

presence of Vif, the A3F 231V was still able to restrict the HIV-1 infectivity more than A3F 231I 

(Figure 5.1, 100 ng). Altogether, these results indicated that a tag could be used to facilitate 

immunoblotting. 

The immunoblots of the V5-tagged A3F showed that at all transfection amounts the A3F 231V 

had higher steady state expression levels in cells, suggesting that the variant was more stable. The 
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A3F 231V had steady state levels that were 5-fold more than A3F 231I (Figure 5.2C-E), consistent 

with the untagged enzymes (Figure 5.1C-E). The A3F 231V was also present in cell lysates in the 

presence of Vif at all plasmid transfection amounts, in contrast to A3F 231I that could primarily 

be detected when 100 ng plasmid was transfected (Figure 5.2C-E). In the virus particles and the 

absence of Vif, the A3F 231V was encapsidated at 3- to 10- fold higher levels than A3F 231I, 

consistent with higher cellular expression levels (Figure 5.1C-E and Figure 5.2C-E). In the 

presence of Vif, the A3F 231I encapsidation was still not detectable at any transfection amount 

(Figure 5.2C-E). These data indicated that either the A3F 231V was more resistant to Vif or the 

steady-state expression levels in cells exceeded the ability of Vif to induce its degradation. 
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Figure 5. 1 A3F 231V and A3F 231I have different HIV-1 restriction abilities 

(A) HIV-1 ΔVif infectivity was measured by β-galactosidase activity in reporter cells infected with 

HIV-1 ΔVif that was produced in the absence or presence of untagged A3G, A3F 231V or A3F 

231I. Results were normalized to the no A3 condition. (B) HIV-1 +Vif infectivity was measured 

by β-galactosidase activity in reporter cells infected with HIV-1 +Vif that was produced in the 

absence or presence of untagged A3G, A3F231V or A3F231I. Results were normalized to the no 

A3 condition. (A-B) Error bars represent the standard deviations of the mean calculated from three 

independent experiments. Immunoblotting with A3F native antibody was used to detect (C) 25 ng 

(D) 50 ng and (E) 100 ng transfected A3F expressed in cells and encapsidated into HIV-1 virions 

in -Vif and +Vif conditions. Immunoblotting with A3G native antibody was used to detect (F) 25 

ng (G) 50 ng and (H) 100 ng transfected A3G expressed in cells and encapsidated into HIV-1 

virions in -Vif and +Vif conditions. The cell lysate and virion loading controls were α-tubulin and 

p24, respectively. (C-H) Expression levels shown below blots were calculated by setting a –Vif 

condition to 1.0 and determining the relative values of other lanes.  
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5.6.2 A3F 231V is more protected from Vif mediated degradation than A3F 231I due to 

higher steady state protein levels 

To differentiate between these possibilities regarding A3F 231V partial resistance to Vif mediated 

degradation, we expressed increasing amounts of Vif from an expression vector in the presence of 

10 ng of transfected A3F 231V-V5 and 50 ng A3F 231I-V5. Quantification of the immunoblot 

demonstrated that at these transfection amounts, the steady state levels of both A3F 231V and A3F 

231I were similar (Figure 5.3A). With increasing amounts of transfected Vif, the induced 

degradation of both A3F variants were similar. Thus, the resistance to Vif was not an inherent 

biochemical property of the A3F 231V (Figure 5.3A-B). Rather the data suggest that the partial 

resistance to Vif mediated degradation observed in single-cycle infectivity assay blots was due to 

the higher steady state levels of A3F 231V that exceeded Vif degradation capacity (Figure 5.1C-

E and Figure 5.2C-E). 
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Figure 5. 2 A3F 231V is expressed at higher steady state levels in cells 

(A) HIV-1 ΔVif infectivity was measured by β-galactosidase activity in reporter cells infected with 

HIV-1 ΔVif that was produced in the absence or presence of A3F 231V-V5 or A3F 231I-V5. 

Results were normalized to the no A3 condition. (B) HIV-1 +Vif infectivity was measured by β-

galactosidase activity in reporter cells infected with HIV-1 +Vif that was produced in the absence 

or presence of A3F 231I-V5 or A3F 231I-V5. Results were normalized to the no A3 condition. 

(A-B) Error bars represent the standard deviations of the mean calculated from three independent 

experiments. Immunoblotting to detect the V5 tag was was carried out for (C) 25 ng (D) 50 ng and 

(E) 100 ng transfected A3F to detect the amount of A3F 231V and A3F 231I expressed in cells 

and encapsidated into HIV-1 virions in –Vif and +Vif conditions. The cell lysate and virion loading 

controls were α-tubulin and p24, respectively. (C-E) Expression levels shown below blots were 

calculated by setting a –Vif condition to 1.0 and determining the relative values of other lanes. 
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5.6.3 A3F 231V more efficiently restricts HIV-1 infection through a deamination dependent 

mechanism 

A3F has been shown to inhibit HIV-1 through deamination dependent and independent 

mechanisms (32, 33, 136-138, 161, 173-175). To determine if the enhanced restriction of A3F 

231V was due to enhanced deamination, we PCR amplified a 351 bp region of HIV-1 protease for 

sequencing under the conditions shown in Figure 1A (untagged A3s, 50 ng transfection amount). 

We observed in the absence of Vif that G→A mutations per kb were 2.46 for A3F 231V and 1.42 

for A3F 231I (Table 5.1). This ~2-fold difference in mutations is consistent with the decrease in 

infectivity (Figure 1A, 50 ng). However, both A3F variants were still less able to induce mutations 

than A3G (Table 5.1, 13.4 G→A mutations/kb). This at least 5-fold difference in A3F and A3G 

induced mutations is consistent with previous data and has  been found to be due to differences in 

enzyme processivity (50). As a result, these data emphasize the importance of the inherent 

biochemical characteristics in restriction capacity between A3s. However, when comparing A3F 

variants, the level of encapsidation appears to be a determining factor that can increase A3F 

restriction efficiency for HIV-1 (Table 5.1, Figure 5.1E, and Figure 5.2C-E). 

Importantly in the presence of Vif, the number of A3-induced mutations by A3F 231V and A3G 

were less disparate. A3G did not show a decrease in infectivity in the presence of Vif and 

accordingly induced 10-fold less mutations than in the absence of Vif (Table 5.1, 1.3 G→A 

mutations/kb). Consistent with the ability to partially avoid Vif-mediated degradation, the A3F 

231V only had a 4.8-fold decrease in induced mutations (Table 5.1, 0.51 G→A mutations/kb). 

Thus, in the presence of Vif the difference between the A3F 231V and A3G was only 2.5-fold. In 

the presence of Vif, the A3F 231I induced mutations decreased 11-fold to 0.13 G→A 

mutations/kb, resulting in 10-fold less mutations than A3G and 4-fold less mutations than A3F 

231V (Table 5.1).  
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Figure 5. 3 A3F 231V and A3F 231I are equally sensitive to Vif-mediated degradation 

(A) A3F 231V-V5 and A3F 231I-V5 plasmids were transfected into 293T cells with amounts that 

resulted in equal steady state expression levels. Increasing amounts of Vif were cotransfected. The 

amount of Vif-mediated degradation was detected by analysing the intensity of the bands detected 

with antibody to the V5 tag. (B) Quantified intensities of the bands from immunoblotting are 

shown. Error bars represent the standard deviations of the mean calculated from three independent 

experiments.  

  



62 
 

Table 5. 1 Analysis of A3-induced mutagenesis in HIV-1 proviral DNA 

Virus 

Condition 

A3 

enzyme 

Base pairs 

sequenced 
G→A Mutations 

(per kb) 

-Vif No A3 7722 0.26 

 A3F 231V 7722 2.46 

 A3F 231I 7020 1.42 

 A3G 6669 13.4 

+Vif No A3 7722 0.00 

 A3F 231V 15795 0.51 

 A3F 231I 15093 0.13 

 A3G 20874 1.30 
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5.6.4 231V and A3F 231I hetero-oligomerize with each other and A3G 

Based on these results showing that different A3F variants can be coexpressed within an 

individual, we determined whether the A3F variants could hetero-oligomerize with each other or 

A3G. A3F has been shown to form homo-oligomers and to hetero-oligomerize with A3G, in the 

absence of RNA (33). To determine oligomerization, we used a cotransfection scheme where one 

A3 had an HA-tag and the other A3 had a V5-tag and determined if one A3 could co-

immunoprecipitate the other A3. To ensure co-expression on a per cell basis we used the pVIVO2 

plasmid that has two transcription units within a single vector. We used the V5-tagged A3 to 

immunoprecipitate the binding partner, in the presence of RNase A, and found through blotting 

for HA that A3G-HA can interact with A3F 231I-V5, as shown previously (Figure 5.4E) (33). We 

also determined that A3G-HA can interact with A3F 231V-V5 and that A3F 231V-HA can interact 

with A3F 231-V5 (Figure 5.4E). 
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Figure 5. 4 A3F 231V and A3F 231I commonly occur as a heterozygous genotype and can 

interact in cells 

The (A) allelic frequency and (B) genotype of 6 donors was determined for A3F 231V and A3F 

231I. The (C) allelic frequency and (D) genotype of 6 donors was determined for A3G 186H and 

A3G 186R. (E) The immunoprecipitation from cell lysates used either anti-V5 antibody or rabbit 

IgG (mock). Co-immunoprecipitation of A3F 231V-HA with A3F 231I-V5 or A3G-HA with A3F 

231V-V5 and A3F 231I-V5 was detected through the HA tag. The presence of the V5 antibody in 

the co-immunoprecipitation samples is also shown. The experimental and mock samples were 

from the same lysate. The lysate blot demonstrates the cellular expression of α-tubulin, HA, and 

V5. 
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Table 5. 2 Genotype analysis of donors 

Donor A3F 231VI A3G H186R 

PLP-002 V/V H/H 

PLP-004 I/V H/H 

PLP-007 I/I H/R 

HP02 I/V H/H 

HP03 I/V H/H 

HP06 I/V H/H 
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5.6.5 The presence of Vif A3F 231V promotes in higher steady state levels of A3F 231I and 

A3G  

Using the same pVIVO2 expression vectors that were used in the co-immunoprecipitations we 

conducted single-cycle infectivity assays to assess if combined expression changed the HIV-1 

restriction capability of the coexpressing A3s compared to the individual enzymes. In the absence 

of Vif, there was an increasing ability of the A3s to restrict HIV-1 with increasing amounts of A3 

plasmid transfected (Figure 5.5A). With each incremental increase of transfected A3 plasmid 

(25ng, 50ng, 100ng) we observed a uniform decrease in percent infectivity, for simplicity of 

discussion we have chosen to 50ng condition to represent the experiment. Notably, the V5-tagged 

versions of A3F 231I and A3F 231V were able to decrease HIV-1 infectivity more than the 

untagged proteins (Figure 5.1B and 5.5A), but the difference in restriction between the two A3F 

variants was the same (Figure 5.1B, 50 ng, 1.6-fold, p≤0.01; Fig. 5.5A, 50 ng,1.5-fold, p≤0.001). 

Conversely, the coexpression of A3F 231V and A3F 231I (A3F 231V/A3F 231I) resulted in a 

significant 2-fold decrease in HIV-1 infectivity in comparison to A3F 231I and A3F 231V alone 

(Figure 5.5A, 50 ng, (p≤ 0.001) (p≤ 0.05). In the presence of Vif, the greater ability to restrict HIV-

1 was most strikingly observed for coexpressed A3F 231V/A3F 231I, whereby a 1.7-fold decline 

in infectivity was observed in comparison to A3F 231I (Figure 5.5B, 50ng (p≤ 0.01). 

Immunoblotting demonstrated that the A3F 231V was not only more stable in cells, but that it 

resulted in increased steady state levels of coexpressed proteins, A3G or A3F 231I. In both the 

presence and absence of Vif, increased HIV-1 restriction correlated with increased cell expression 

of A3F 231I when coexpressed with A3F 231V (Figure 5.5C). In the absence of Vif and the 

presence of A3F 231V, the A3F 231I expression increased 2.2-fold (Figure 5C). In the presence 

of Vif and A3F 231V, the A3F 231I expression increased to a detectable level (Figure 5.5C). 

However, A3F 231V only increased A3F 231I encapsidation in the presence of Vif (Figure 5C). 

For A3F 231V, coexpression with A3F 231I increased A3F 231V cell expression 5-fold (+Vif) to 

3-fold (-Vif) and resulted in 1.5-fold (+Vif) to 7.8-fold (-Vif) increases in encapsidation (Figure 

5.5D). Altogether these data suggest that the enhanced restriction is primarily due to more A3F 

231V being encapsidated.  
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Effects on encapsidation were also observed with A3G when coexpressed with A3F 231V 

(A3G/A3F231V). Consistent with previous data, co-expression of the A3G and A3F 231I resulted 

in 3- to 14-fold higher levels of ΔVif HIV-1 restriction than A3F 231 alone, depending on the 

transfection conditions. There was no enhancement of A3F 231I or A3G encapsidation levels in 

the absence of Vif, consistent with a previous report (33), but in the presence of Vif A3G was 

encapsidated 2-fold more when coexpressed with A3F 231I (Figure 5.5C and Figure 5.5E) (33). 

When comparing the infectivity variation between A3G and A3G/A3F 231V there was no 

significant difference observed (Figure 5.5, 50ng). However, when infectivity is compared 

between A3F 231V and A3G/A3F 231V a significant difference is observed, with the coexpressed 

A3G/A3F 231V exhibiting a 6-fold decline in infectivity in comparison to A3F 231V alone (Figure 

5.5A, 50ng, (p≤ 0.001). Although not as prominent, a similar trend is also observed in the 

comparison of infectivity between A3G and A3G/A3F 231I, where again we see no significant 

difference in infectivity (Figure 5.5A, 50ng). But when A3F 231I is compared to A3G/A3F 231I 

we do see a significant difference, with A3G/A3F 231I exhibiting a 3-fold decline in percent 

infectivity in comparison to A3F I231 alone (Figure 5.5A, 50ng (p≤ 0.001). Consistent with these 

data, the virion encapsidation of A3G when coexpressed with A3F 231V was increased in the 

absence of Vif by 2-fold above the A3G/A3F 231I condition (Figure 5.5E). Altogether, the data 

indicate that when A3F 231V is expressed, it can increase steady state levels of A3F 231I and 

increase steady state levels and encapsidation of A3G (Figure 5.5C and Figure 5.5E). Consistent 

with the partial restriction ability of A3F 231V/A3F 231I in the presence of Vif (Figure 5.5B, 55% 

infectivity) there was encapsidation of A3F 231V and A3F 231I into virions even in the presence 

of Vif (Figure 5.5C and Figure 5.5D). Although A3G encapsidation in the presence and absence 

of Vif was increased when coexpressed with A3F 231V, the infectivity the presence of Vif was 

not decreased more than A3G alone, suggesting that Vif inhibited encapsidated A3G activity (171, 

172).  
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Figure 5. 5 Co-Expression of A3F 231V and A3F 231I results in enhanced HIV-1 restriction 

ability 

(A) HIV-1 ΔVif infectivity was measured by β-galactosidase activity in reporter cells infected with 

HIV-1 ΔVif that was produced in the absence or presence of A3G-HA, A3F 231V-V5, A3F 231V-

HA, or A3F 231I-V5 in the combinations shown in the figure legend. (B) HIV-1 +Vif infectivity 

was measured by β-galactosidase activity in reporter cells infected with HIV-1 +Vif that was 

produced in the absence or presence of A3G-HA, A3F 231V-V5, A3F 231V-HA, or A3F 231I-V5 

in the combinations shown in the figure legend. Results were normalized to the no A3 condition. 

(A-B) Error bars represent the standard deviations of the mean calculated from three independent 

experiments. (C) Immunoblotting with V5 antibody was used to detect cellular expression and 

virus encapsidation of A3F 231I-V5 and A3F 231V-V5 in the presence of A3G-HA. (D) 

Immunoblotting with HA antibody was used to detect cellular expression and virus encapsidation 

of A3F 231V-HA in the presence of A3F 231I-V5. (E) Immunoblotting with HA antibody was 

used to detect cellular expression and virus encapsidation of A3G-HA in the presence of A3F 231I-

V5 and A3F 231V-V5. (C-E) Expression levels shown below blots were calculated by setting a –

Vif condition to 1.0 and determining the relative values of other lanes.  
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5.6.6 In the presence and absence of Vif, coexpressed A3F 231V and A3F 231I induce more 

mutations in HIV-1 proviral DNA 

To determine if the increased encapsidation of A3 enzymes resulted in increases in A3-induced 

mutations, we PCR amplified and sequenced a 351 bp portion of HIV-1 protease. The data 

demonstrated that the tagged versions of A3F 231V, A3F 231I, and A3G induced similar numbers 

of mutations to their untagged versions (+Vif and –Vif, Table 5.1 and Table 5.3). When the tagged 

A3F 231V and A3F 231I are coexpressed and encapsidate into ΔVif HIV-1 virons, there is a 2-

fold increase in mutations from A3F 231I alone and a 1.4-fold increase in mutations for A3F 231V 

alone (Table 5.3). Based on analysis of encapsidation, this is likely due to increased encapsidation 

of A3F 231V (Figure 5.5D, 7.8-fold more encapsidated when coexpressed). The conditions where 

A3G was coexpressed with an A3F, in HIV-1 ΔVif producer cells, did not have significant 

increases in the numbers of mutations above A3G alone, but when we examined the ratio of A3G 

induced mutations to A3F induced mutations based on the mutational footprint, we observed a 2.6-

fold (A3F 231V) and 2-fold (A3F 231I) increase in A3F-induced mutations in the presence of A3G 

(Table 5.3). Of more significance is that in the presence of Vif, there is a 2-fold increase in 

mutations from the A3F 231V alone condition (Table 5.3). Since A3F 231V and A3F 231I have 

the same deamination motif, we could not discern which variant is more active. However, based 

on analysis of encapsidation, since both had higher levels in virions, the deaminations could be 

due to both A3F variants.  
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Table 5. 3 Analysis of combined A3 expression on the induced mutagenesis in HIV-1 

proviral DNA 
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5.7 Discussion 

In HIV-1 genomes isolated from HIV-1+ individuals, there are mutational footprints in the (+) 

DNA of both 5′GG→5′AG and 5′AG→5′AA motifs (82, 87, 149-159). The 5′GG→5′AG are 

clearly attributable to A3G (140). The origins of the 5′AG→5′AA mutations has been attributed 

to stable A3H haplotype (II, V, VII) induced mutations, due to an inability of some HIV-1 Vif 

variants to efficiently induce degradation of A3H (81, 82). The role of A3D in inducing these 

mutations is known to be minor, but still significant (45, 53, 54, 163, 176). However, the role of 

A3F has been significant in some reports, but not others (45, 50, 53, 98, 136, 164, 177). In 

individual experiments with A3F, the mutational load is lower than A3G and A3H and this seemed 

incongruent with data demonstrating that A3F exerts a direct selective force on HIV-1 Vif and 

provides a protective effect in pretreatment HIV-1 cohorts (4, 50, 51, 97, 164, 174). Here we 

provide an explanation for these data demonstrating that the A3F 231V in comparison to the A3F 

231I is more stable in cells, is partially resistant to Vif-mediated degradation, is more highly 

encapsidated into virions, induces more mutations, and can increase encapsidation of coexpressed 

A3G. These data suggest that the A3F 231V through its own action and hetero-oligomerization 

with A3F 231I or A3G is a contributor to G→A mutations in HIV-1+ individuals.  

A protective effect of A3F 231V was demonstrated through genetic association analysis of 

pretreatment cohorts (97). Through this analysis it was shown that even when data are adjusted for 

known genetic factors (HLA allele and CCR5) the presence of even one A3F 231V allele can 

significantly delay progression to clinical AIDS and lower viral load (97). The authors suggested 

that this was due to partial resistance of A3F 231V to Vif, which had also been reported previously 

(97, 136). Here we show that the A3F 231V is protected from Vif mediated degradation in cells 7- 

12- fold more than A3F 231I at high A3F transfection amounts (Figure 5.1E and Figure 5.2E) and 

A3F 231V is always detected in virions in the presence of Vif, even at low A3F transfection 

amounts where A3F 231I is not detected (Figure 5.2). However, the A3F 231V was not “resistant” 

to Vif mediated degradation, consistent with the 231 amino acid not being within the Vif binding 

interface (167-170). The protection from Vif appears to be due to the 5- to 10- fold higher steady 

state expression of A3F 231V in cells (-Vif, Figure 5.1C and Figure 5.2C). When equal amounts 

of A3F 231V and A3F 231I were expressed in cells, the capacity of Vif to induce degradation of 

both enzymes was similar (Figure 5.3). Rather, the data suggest that the higher steady state levels 

of A3F in cells exceeded the degradation capacity of Vif. Despite the protective effect of A3F 
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231V in HIV-1+ individuals, the partial protection of A3F 231V from Vif mediated degradation 

resulted in only a 20% decrease in infectivity in a Vif+ HIV-1 single-cycle infectivity experiment 

(Figure 5.4, Table 5.2). The A3F 231V did correlate with a 2- to 4- fold improved activity over 

A3F 231I to restrict ΔVif HIV-1 (Figure 5.1 and Figure 5.2). This was consistent with 2-fold more 

G→A mutations with A3F 231V than A3F 231I (Table 5.1). However, some previous studies have 

even not observed differences between the A3F 231V and A3F 231I variants (89, 98). Nonetheless, 

these small effects in cell-based studies still appear to be significant based on HIV-1+ pretreatment 

cohort (97). This situation is similar when considering the A3G H186R polymorphism. The A3G 

H186R polymorphism results in only a 2-fold decrease in A3G processivity and mutations induced 

in an in vitro assay (58), but is nonetheless linked with faster progression to AIDS in HIV-1+ 

individuals (96, 166).  

A possible explanation for this is that the small effects observed in some cell-based studies may 

not be representative of the dynamics of multiple A3 enzymes in CD4+ T cells. We have 

previously shown that A3F 231I can hetero-oligomerize with A3G to produce an A3 complex with 

improved restriction activity against ΔVif HIV-1, consistent with other studies showing additive 

or synergistic effects of A3G and A3F (33, 136, 178, 179). However, this previously reported 

effect between A3G and A3F 231I had a different dynamic when A3G was coexpressed and 

hetero-oligomerized with A3F 231V (Figure 5.4, Figure 5.5, Table 5.2). Namely, the presence of 

A3F 231V with A3G increased A3G encapsidation in the presence of Vif (Figure 5.5). The 

coexpression and hetero-oligomerization of A3F 231V and A3F 231I increased the encapidation 

of A3F 231V 1.5-fold in the presence of Vif and resulted in a corresponding 1.7-fold increase in 

mutations and infectivity of 55% (Figure 5.5 and Table 5.3). Our data and previous analysis 

demonstrate that there are synergies between A3 enzymes that can enhance anti-HIV-1 activity, 

either directly due to changes in the biochemical characteristics of the enzymes or due to enhanced 

encapsidation in the presence of Vif (Figure 5.5) (33). Despite observations that A3F 231V on its 

own is partially protected from Vif-mediated degradation and our observation that A3F 231V 

appears to protect A3G from Vif-mediated degradation, the mechanism is not known (Figure 5.2 

and Figure 5.5) (97, 136). 

Our study suggests that the A3F 231V steady state expression levels exceed the Vif degradation 

capacity. Although Vif is expressed in sufficient time before virus assembly to purge cells of A3 
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enzymes, these biologically processes can never be considered complete as some A3 enzyme will 

always remain (160). Although the HIV-1 LTR is a strong promoter, having many transcription 

factor binding sites, the A3 enzymes are expressed constitutively in CD4+ T cells and expression 

is upregulated upon CD4+ T cell stimulation (22, 48, 180). In support of the idea that Vif-mediated 

degradation is incomplete, a study demonstrated that out of the functionally inactive HIV-1 

proviral DNA in HIV-1+ individuals, A3-induced mutations accounted for inactivation of 20% of 

this pool, with the remaining amount being due to reverse transcriptase induced insertions and 

deletions (87). Since A3F requires ubiquitination on multiple sites for Vif-mediated degradation, 

it is unlikely that the A3F polymorphisms can alter ubiquitination and proteasome degradation 

kinetics (181). The A3F has also been shown to have equal or higher capacity to encapsidate into 

HIV-1 virions, especially within the core (164, 182). Thus, considering virion encapsidation one 

could conclude that different encapsidation mechanisms could be responsible, but in cells A3F 

231V is protected from Vif-mediated degradation (Figure 5.1, Figure 5.2, and Figure 5.5). This 

together with the lower steady state levels of A3F 231I even when expressed from a plasmid 

suggest that there are structural stability differences between the A3F 231V and A3F 231I (Figure 

5.1, Figure 5.2, and Figure 5.5). Altogether, the data support that the higher amount of A3F 231V 

in cells is not fully purged by HIV-1 Vif and warrants further study.  

The reason for the stability differences between A3F 231V and A3F 231I remain to be elucidated. 

A nucleotide variant prediction model suggested that the A3F linked SNPs can have an effect on 

stability (96). The amino acid 108 is on predicted helix 3 in the noncatalytic N-terminal domain 

(NTD) and the amino acid 231 is on β-strand 2 in the catalytic C-terminal domain (1, 168, 183, 

184). Neither of these structures are near the catalytic center, predicted nucleic acid binding motifs, 

or the Vif interface (1, 167, 168, 183, 184). Although V231I is a conservative amino acid change, 

a Val to Ile amino acid change in other proteins, e.g., transthyretin, has been found to destabilize 

equilibrium kinetics of oligomerization and result in physiological dysfunction (185). The A108S 

is a nonpolar to polar amino acid change and the Ser can form hydrogen bonds, unlike Ala, which 

may alter protein stability (186).  

Numerous A3 polymporphisms have been identified that have affected HIV-1 restriction or 

restriction of retrotransposons (89-91). In regards to HIV-1 restriction, since lentiviral genomes 

have a mutation rate that far exceeds that of its host, a mechanism to combat this is by limiting the 
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genetic space for viral evolution through population and individual diversity in immune system 

polymorphisms (187-189). This has been demonstrated for A3G heterozygosity in Sabaeus 

African Green Monkeys where there exists forms of A3G that are sensitive or resistant to Vif-

mediated degradation (115). The heterozygous animals could constrain Vif evolution since the 

evolution of Vif to induce degradation of one form of A3G, 130H, resulted in the concomitant 

sensitivity to the alternate allele, A3G 130D (115). Even in cell-based experiments, this same 

trade-off has been identified for HIV-1 engineered to be sensitive to A3s due to tandem stop codons 

in Vif (174). The evolution of this engineered HIV-1 to overcome A3G resulted in Vif independent 

mutations, but the acquired mutations to antagonize A3F were Vif specific and resulted in a 

sensitivity to A3G (174, 190, 191). As a result, the polymorphisms of A3s, within one paralog and 

between paralogs, can limit virus escape options. In the case of A3G and A3F, we have found that 

even the less active allele that codes for A3F 231I can promote A3G activity by increasing A3G 

processivity and delaying reverse transcription (33). This increased activity is important in the 

presence of Vif where A3G activity is decreased by 10-fold in a single-cycle infectivity assay 

(Table 5.1). More striking however was the maintenance of A3G encapsidation when coexpressed 

with A3F 231V and Vif+ HIV-1 at a level comparable to A3G alone with a ΔVif HIV-1 (Figure 

5.5E). The disruption of Vif-mediated degradation through hetero-oligomerization of A3s appears 

to be an example of increasing host restriction factor diversity to combat virus evolution (188, 

189). Consistent with genetic population analysis, the most noticeable example of this is when the 

A3F 231V and A3F 231I were coexpressed, as would occur in over 50% of the population (Figure 

5.4, Figure 5.5, Table 5.2). In these individuals, that are protected against development of AIDS 

at an equivalent level to homozygous A3F 231V individuals (97), HIV-1 restriction in the presence 

of Vif was significant and resulted in a mutation rate only 2-fold less than A3F 231V expressed 

alone in a ΔVif HIV-1 single-cycle infectivity assay (Figure 5.5 and Table 5.3). Thus, although 

some polymorphisms may have small differences in the absence of Vif, their activity in the 

presence of Vif may be more significant.  

Overall, our data demonstrate that the A3F 231V has higher steady state expression levels in cells 

and virion encapsidation than A3F 231I, in the presence and absence of Vif. This results in larger 

decreases in HIV-1 infectivity and higher mutation rates. The A3F 231V when coexpressed with 

A3G can enhance A3G encapsdiation and restriction activity. When A3F 231V is coexpressed 

with A3F 231I, which is a common heterozygosity in humans, HIV-1 restriction is enhanced in 
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the presence and absence of Vif. This supports a model in which not only the genetic diversity of 

the host for each A3, but the ability of these A3s to functionally interact can contribute to a diverse 

and multifaceted protective response during HIV-1 infection 
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6.0 General Discussion and Future Directions 
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6.1 General Discussion 

The initial aims of this project began as a pilot study venturing outside familiar cell-based assays, 

and panning out to population-based experiments, working with primary cells and donor 

genotyping. Being able to start this project from its foundation allowed me to truly understand the 

realities and hardships that come along with optimizing and troubleshooting new experiments. The 

restriction digest genotyping assay is a prime example. From initial literature review, the assay 

described in Wang et al. 2011 was a simple and effective method for rapidly genotyping large 

numbers of donor SNPs in a cost-effective fashion (90). Although the methods were only described 

for A3H SNPs we used the same premise for assay design for A3G, A3F, and A3D SNPs. Due to 

a lack of reliable controls and in subjective error in interpreting results we chose to switch to 

Sanger Sequencing-based genotyping. The change in methods proved fruitful, with ease of data 

interpretation and reliable controls built into pre-sequence clone generation. The only reason we 

did not start with Sanger Sequencing was due to the projected volume of donor samples we 

expected to receive. However, with donor samples becoming limited this method became viable.  

The genotyping results gave us insight into the A3F, A3G and A3H polymorphisms in our 

population, which in the APOBEC3 field had yet to be characterized in a mixed population setting. 

With allelic frequencies of A3F, A3G and A3H SNPs characterized in European Caucasian, East 

Asian and African lineages, general trends of SNP prevalence in each ethnicity can be used to 

theorize the SNP frequency in a mixed population using current demographics. Current 

demographics of Saskatchewan were drawn from Statistics Canada 2016 Census, informing us 

that our mixed population should consist of approximately 70.9% European Caucasian, 16.6 % 

Indigenous and 9.3% East Asian (Figure 2.1) (124). For A3H genotyping we saw allelic 

frequencies of active A3H forms (A3H hap II, hap V and hap VII) of 30%; predictive of a mixed 

population (Figure 3.3.4). The same trend of mixed-population predictive allelic frequencies can 

be said for both A3G and A3F, where we respectively see 8% and 50% of the less active variant 

(Figure 3.3.4, A3G R186, A3F 231I). When allelic frequencies are analyzed independently, our 

mixed population has a relatively low field of activity countering HIV-1 infection, with both high 

frequencies of inactive A3H alleles and less active A3F 231I alleles (Figure 3.3.4, Figure 5.4). 

Donors with similar A3H and A3F repertoires have been correlated to increased susceptibility to 

HIV-1 infection, lower CD4+ T-cell counts, higher viral loads, and more rapid progression to AIDS 

through the course of infection (81, 90, 92, 96). However, when both alleles of each donor were 
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combined for whole genotype analysis we observed the genetic landscape of dominant A3F SNPs 

in our population drastically change. The dominant A3F genotype encoded for A3F 231V/231I 

heterozygotes (66%), compared to 231V/231V and 231I/231I homozygotes which both had a 

population prevalence of 17% (Figure 5.4B). Although it may seem counter intuitive, being 

heterozygous for alleles that vary in activity can increase the effectiveness of the restriction factor. 

This has been demonstrated for A3G heterozygosity in African Green Monkeys where there exists 

forms of A3G that are sensitive or resistant to Vif-mediated degradation; 130D and 130H 

respectively (115). The heterozygous animals resisted Vif evolution while homozygous conditions 

for both 130H and 130D alleles resulted in Vif sensitivity (115). This suggests that maintaining 

restriction factors with polymorphic regions can be functionally beneficial.  

Our data supports restriction factor heterozygosity can functionally beneficial in human A3 

repertoires A3G H186/H186 and A3F 231V/231I were dominant genotypes in our population, we 

then found that the A3F 231V variant when coexpressed with either A3G or A3F 231I resulted in 

an increase in cellular stability when expressed with both LAI and LAI ∆vif HIV-1 (Figure 5.2). 

The rise in cellular expression resulted in a higher frequency of viral encapsidation when compared 

to A3G, A3F 231V and A3F 231I single expression systems alone (Figure 5.2). Importantly, under 

co-expression conditions A3F 231V was shown to hetero-oligomerize with both A3G and the A3F 

231I SNP variant (Figure 5.4, Table 5.2). 

The hetero-oligomerization of A3G/A3F 231V and A3G/A3F 231I resulted in the co-

encapsidation of both enzymes allowing the enzymes to co-mutate the HIV-1 genome (Figure 5.2, 

Table 5.3). The rise in steady-state expression and encapsidation of A3F-231V when co expressed 

with A3G and A3F-231I also correlated to a rise in mutation frequency. That is, when A3F 231I-

231V were co-expressed we observed a 3-fold increase in GA→AA mutations in comparison to 

A3F 231I alone (Table 5.3). When A3G was co-expressed with A3F 231V we observed a 1.4-fold 

increase in GG→AG mutation and a 2-fold increase in GA→AA mutations in comparison to A3G 

co-expressed with A3F 231I. These data indicated that A3F 231V when encapsidated with A3G 

or A3F 231I increased A3F mediated restriction through cooperative interaction (Table 5.3). 

Heterozygous A3F interactions also showed an increased resistance to HIV-1 Vif. When A3F 

231V and A3F 231I were co-expressed in the presence of Vif we observed a 10-fold rise in 

GA→AA mutations in comparison to A3F 231I alone (Table 5.3). 
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The enhanced mutational capacity of coexpressed A3G and A3F 231V also translated into an 

increase in HIV-1 restriction. For A3F polymorphisms, the lowest percent infectivity was observed 

in the A3F 231V/A3F 231I co-expression condition of 18% at 50 ng (Figure 5.5) in the absence 

of Vif (Figure 5.5A). Mild Vif resistance was also observed from the A3F 231V-A3F 231I co-

expression condition, where a 40% decline in infectivity was observed (Figure 5.5B). 

A3F 231VI is a conservative amino acid change present on β-strand 2 in the catalytic C-terminal 

domain which does not localize to catalytic centers, predicted nucleic acid binding motifs, or the 

Vif interface (1, 168, 183, 184). Although, similar nucleotide variations in predictive models 

shows a link between stability and A3F SNPs. The reason for the stability infectivity differences 

between A3F 231V and A3F 231I remain to be elucidated (96). In the absence of Vif, A3G and 

A3G-A3F 231V conditions share the title of the most robust restrictors of HIV-1 replication, where 

we see nearly a 90% decline in infectivity at 50 ng for both conditions (Figure 5.5A). 

 

6.2 Conclusions 

From the data provided in our project, we see on a population level, individual allelic frequencies 

of A3 SNPs are more compromised than that of whole European Caucasian lineages, however 

novel APOBEC3 interactions elucidated by whole SNP genotypes are acting cooperatively to 

restrict retroviral restriction in the presence and absence of HIV-1 Vif. We confirm that A3F 231V 

is a more robust A3F variant than A3F 231I, that A3F 231V can modestly resist the function of 

HIV-1 Vif, when co-expressed with A3G and A3F 231I increases steady-state cellular expression, 

viral encapsidation and ssDNA mutagenesis; resulting in strong inter-A3 interactions that enhance 

retroviral restriction. 

With HIV-1 infection rates being the highest in the country, investigation into route causes and 

treatment are of paramount importance. In order to properly treat this disease we must first 

understand it. This study shows that we have yet to completely understand the host-pathogen 

relationships held by humans and HIV-1, and with current trends of globalization, mixed 

population analyses have proven to elucidate novel interactions between our innate immune 

system and this rapidly revolving pathogen. Further examination of other genotype specific multi-

A3 expression systems is the next logical step forward. 
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6.3 Future directions 

From our donor PBMC genotyping and cell-based recreation of A3G and A3F repertoires, we have 

characterized novel A3 interactions between A3F polymorphisms and with A3G. In reality, A3D 

and A3H SNP variants are also expressed alongside the other A3 paralogs, thus a full repertoire of 

A3 SNP variants would include all cytoplasmic and retrovirally antagonistic A3 enzymes (A3F, 

A3G, A3H, and A3D). We have already characterized A3H genotypes in our population, and 

although A3D is a weak restrictor of HIV-1 replication we have the primers to amplify A3D 

polymorphic regions as well. Thus, the next logical step moving forward from this study would be 

to characterize A3D SNPs from our current population set, along with increasing our sample size 

for all A3 SNP genotypes and recreate a physiologically relevant transfection model to mimic 

HIV-1 replication restriction by a representative dominant population genotype in cells. 

Once we have established prevalence of all A3 SNPs we could then begin to screen donors for 

specific combinations of A3 SNPs and monitor HIV-1 replication kinetics using Vif+ HIV-1 

strains in human PBMCs. Deaminations and mutations could be monitored through time and full 

A3 repertoires could be analyzed for replication restriction efficiency under physiologically 

relevant conditions. 

In our previous study we also show that by titrating in greater amounts of A3 coding plasmid in 

transfections, we see a negative correlation with viral infectivity. That is as A3 expression titer 

increase, viral infectivity decreases, that is, if more A3 is expressed in cells more is encapsidated; 

which increases the frequency of mutation thereby decrease viral infectivity. Thus, we are also 

interested in doing qPCR analysis of A3 transcripts between donors to determine if there is any 

variation in steady state A3 expression between donors. Finding variations between donors could 

indicate similar results to increasing A3 transfection amounts, where we may see enhanced 

retroviral restriction ability from different donors. 
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Table A.1 

Primer sequences for A3G, A3F, A3D and A3H amplification for use in restriction digest 

genotyping assay. A3H primers drawn from Wang et al. 2011 (90). 

SNP 

amplicon Primer Sequence 

A3G-H186R 

F AATTTCAGCACTGTTGGAGC 

A3G-H186R 

R 
GAGAATCTCCCCCAGCAT 

A3F A108S F GTGTATTCCCAGCCTGAGCA 

A3F A108S R  CTTCATCGTCCATAATCTTCACG 

A3F 231IV F AGCCTATGGTCGGAACGAAA 

A3F 231IV R CTGGTTTCGGAAGACGCC 

A3D R97C F GTGTATTTCCGGTTTGAGAACC 

A3D R97C R GATGGTCAGGGTGACATTGG 

A3D R248K F ACCCGATGGAGGCAA 

A3D R248K 

R 
CTGGTTTCGGAAGAC 

A3H N15∆ F CCGAAACATTCCGCTTACAG 

A3H N15∆ R GCGTCAGCTGGTAACACAAG 

A3H G105R F CATGGGACTGGACGAAGCGCA 

A3H G105R 

R 
TGGGATCCACACAGAAGCCGCA 

A3H 140K F GCATCTTCGCCTCCCGCCTGT 

A3H 140K R CCCTGCCAAGCCTGTGCCC 

A3H R18L F TGGGTTTGAAAAGTGGCTTG 

A3H R18L R AACTGGGCCACTCAGATCC 

A3H K121D 

F CCACGCACTAGAAAGTTCACC 
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A3H K121D 

R GGTTTGCACTCTTATAACTGCAAAG 

A3H E178D F CAAGAGCTCCTGGCACTG 

A3H E178D 

R CTGGTGCGAGAGGAGAACAC 
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Table A.2  

Templates for A3G, A3F, A3D, and A3H restriction digest genotyping assay. Indicating each 

SNP, restriction enzyme and proposed uncut and cut banding patterns for both homozygous and 

heterozygous conditions. All values are in base pairs (bp)  

 

Table A.2A 
     

APOBEC3H N15∆ 15N/15N 15N/15∆ 15∆/15∆ Tm: 60 
 

  90 90 
 

  
 

    87 87   
 

      
Table A.2B 

     
APOBEC3H R18L Uncut 18L/18L 18L/18R 18R/18R Tm: 61 

w/Fnu4HI 418 
   

  

Control: 
 

222 222 222   

Uncut = 40 
 

196 196 
 

  

Cut = 20 
  

141 141   

      55 55   

      
Table A.2C 

     
APOBEC3H G105R Uncut 105G/105G 105G/105R 105R/105R Tm: 72 

w/ HhaI 197 
   

  

Control: 
 

180 180 
 

  

Uncut = 40 
  

102 102   

Cut = 20 
  

78 78   

    17 17 17   
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Table A.2D 

APOBEC3H K121D Uncut 121D/121D 121D/121K 121K/121K Tm: 60 

w/HpyAV 441 
   

  

Control: 
 

322 322 
 

  

Uncut = 40 
  

220 220   

Cut = 20 
 

119 119 119   

      102 102   

      
 

Table A.2E 
     

APOBEC3H E178D Uncut 178D/178D 178D/178E 178E/178E Tm: 60 

w/SmlI 636 
   

  

Control: 
 

530 530 
 

  

Uncut = 40 
 

353 353 
 

  

Cut = 20 
  

177 177   

    106 106 106   

      
Table A.2F 

     
APOBEC3G H186R Uncut 186H/186H 186H/186R 186R/186R Tm:50 

w/FSPI 113 113 113 
 

  

Control: 
  

90 90   

Uncut = 30     23 23   

Cut = 15           
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Table A.2G 

     
APOBEC3F A108S Uncut 108A/108A 108A/108S 108S/108S Tm: 54 

w/BlpI 279 
 

279 279   

Control: 
 

151 151 
 

  

Uncut = 40   128 128     

Cut = 20           

      
Table A.2H   

    
APOBEC3F 231IV Uncut 231I/231I 231I/231V 231V/231V Tm: 52 

w/BSmaI 156 156 156 
 

  

Control: 
  

130 130   

Uncut = 30     26 26   

Cut = 15           

      
Table A.2I  

     
APOBEC3D R97C Uncut 97R/97R 97R/97C 97C/97C Tm: 53 

w/HaeII 180 
 

180 180   

Control: 
 

99 99 
 

  

Uncut = 40   81 81     

Cut = 20           
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Table A.3  

Restriction enzymes used for A3G, A3F, A3D, and A3H restriction digest genotyping assay.  

 

A3 coding region Restriction Enzyme  

APOBEC3H R18L Fnu4HI 

APOBEC3H G105R  HhaI 

APOBEC3H K121D HpyAV 

APOBEC3H E178D SmlI 

APOBEC3G H186R FSPI 

APOBEC3F A108S BlpI 

APOBEC3F 231IV BSmaI 

APOBEC3D R97C HaeII 
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Table A.4 

Synthesized oligonucleotides designed for restriction digest genotyping internal controls. A3G, 

A3F, and A3D enzyme recognition sites high labeled in GREEN and cut sites are labeled in 

RED. 

 

 

 

SNP 

amplicon Primer Sequence Restriction Enzyme 

H186R CON 

F 
AAATTTAAATTTGCGCAAAATTTAAATTT 

FSPI 

H186R CON 

R AAATTTAAATTTTGCGCAAATTTAAATTT FSPI 

A108S CON 

F 
AATTTAAATTTAAATTTGGCTGAGCTTTTAAATTTAAATT 

BlpI 

A108S CON 

R AATTTAAATTTAAAAGCTCAGCCAAATTTAAATTTAAATT BlpI 

A231V CON 

F 
TTTTCACCTGTCTCCTAAATTTAATTTAAAAT 

BSmaI 

A231V CON 

R AAAAGTGGACAGAGGATTTAAATTAAATTTTA BSmaI 

R97C CON F AAATTTAAATTTAAAGGCGCTAAATTTAAATTTAAATTTT HaeII 

R97C CON R TTTAAATTTAAATTTCCGCGATTTAAATTTAAATTTAAAA HaeII 

R18L CON F TTTAAAATTTTAAATTTCGCCGCAAAATTTTAAATTTAAA Fnu4HI 

R18LCON R AAATTTTAAAATTTAAAGCGGCGTTTTAAAATTTAAATTT Fnu4HI 

G105R CON 

F 
TTTAAAATTTTAAATTTGCGCAAAATTTTAAAATTTAAAA 

 HhaI 

G105R CON 

R AAATTTTAAAATTTAAACGCGTTTTAAAATTTTAAATTTT  HhaI 

K121D CON 

F 
TTTAAAATTCCTTCTCTCTGTAAATTTTAAAATTTTAAAA 

HpyAV 

K121D CON 

R AAATTTTAAGGAAGAGAGACATTTAAAATTTTAAAATTTT HpyAV 

E178D CON 

F  
TTTAATTTAAATTTAAATTCTTGAGTTTTAAAATTTAAAA 

SmlI 

E178D CON 

R AAATTAAATTTAAATTTAAGAACTCAAAATTTTAAATTTT SmlI 
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Table A.5 

Nested PCR primers and protocols for near-full-length HIV-1 provirus amplification from donor 

CD4+ T-cells from Bruner et al. 2016 (87). 
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Table A.6 

Primers and amplification regions for HIV-1 RT used for circulating virus isolation and typing.  

Sequences provided by Dr. Zabrina Brumme (Simon Fraser University) 

  

Primer Sequences NAME ORIGIN protein direction HXB2 start HXB2 end Length

GAAGGGCACACAGCCAGAAATTGCAGGG 5'CP1 HIV RT F 1981 2008 28

GCCCCTAGGAAAAAGGGCTGTTGG PRTO5 HIV RT F 2008 2031 24

CCTAGGAAAAAGGGCTGTTGGAAATGTGG 2.5 HIV RT F 2011 2039 29

CAAACTCCCACTCAGGAATCCA RT3798R HIV RT R 3798 3777 22

CTAACTGGTACCATAATTTCACTAAGGGAG 2.3 HIV RT R 3837 3808 30

GCTCCTACTATGGGTTCTTTCTCTAACTGG RT3.1 HIV RT R 3859 3830 30

CATTGCTCTCCAATTACTGTGATATTTCTCATG OUT3 HIV RT R 4295 4263 33
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Table A.7 

 Nested PCR primers for near-full-length HIV-1 From Grossmann et al. 2015 (128). 

.  
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Figure A.1 Nested PCR products for near-full-length HIV-1 provirus amplification from donor 

CD4+ T-cells. Adapted from Bruner et al. 2016 (87). 

 


