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ABSTRACT 

A chemical splitting cycle of H2S to produce H2 for sustainable oil sands bitumen 

upgrading was recently developed 

O2HSOSSHSOH 22242   

42222 SOH2HIO2HISO   

22 IH2HI   

in which the second reaction, Bunsen reaction, is the link with the other two reactions. 

With the involvement of organic solvents such as toluene, it is hoped that the reaction will 

be able to occur without transportation difficulty at room temperature such that side 

reactions, corrosion and iodine deposition can be effectively mitigated or minimized. The 

apparent kinetics of the Bunsen reaction is studied in the presence of toluene in a 

fixed-volume, batch reactor and using the initial rate analysis method. The system 

includes gas, oil and water phases where reaction and mass transfer coexist. The apparent 

rate was measured by SO2 pressure drop vs. time. 

In this research project, the effects of SO2 initial partial pressure from 49.6 kPa to 

122.7 kPa and iodine concentration in toluene from 0.045 to 0.235 mol/L on initial 

reaction rate are reported. The reaction rate is found to be the first order with respect to 

SO2 and I2, respectively. The results of temperature effect show that the reaction 

followed the Arrhenius equation with an activation energy of 6.02 kJ/mol. The effects of 

operating conditions on reaction rate including water/toluene volume ratio and stirring 

speed are also investigated. 

The study concludes that the rate-limiting step of the Bunsen reaction in the 

presence of toluene is the SO2 dissolving in the liquid phases..  
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m  Order of reaction 
n  Order of reaction 
n mol Number of moles 
P kPa or psi Pressure 
r mol/s   Initial rate  
rpm  Revolutions per minute 
R J mol-1K-1 Gas constant 
RP kPa/s Initial partial pressure drop rate 
t s Time 
T K or oC Temperature 
UV-Vis  Ultraviolet-visible spectrophotometer 
VW mL Volume of water in reaction 
VO mL Volume of organic (toluene in this study) in reaction  
[  ] mol/L Molarity 

 

 

 



 

 
1 

 

 
CHAPTER 1 

 
INTRODUCTION 

1.1 H2S splitting cycle  

The efforts of converting hydrogen sulfide from gas and oil industries into 

hydrogen are always beneficial economically. In petroleum industry, especially bitumen 

and heavy oil upgrading and refining process, vast amount of hydrogen is required and 

H2S is produced. H2S is then turned into elemental sulfur such as the Claus plant 

(Gamson et al., 1953), and the water is disposed into the environment. The hydrogen 

used here is mainly produced by steam reforming of natural gas. This process not only 

consumes clean fossil fuels but also releases greenhouse gas CO2. Furthermore, 

hydrogen produced by this way finally goes into water and is difficult to recycle. In 

view of the adverse effect as mentioned above, a novel hydrogen production by H2S 

splitting cycle was proposed for the first time by Wang, (2007). It contains reactions 

(1.1), (1.2) and (1.3) as follows: 

                        O2HSOSSHSOH 22242                     (1.1) 

42222 SOH2HIO2HISO                         (1.2) 

22 IH2HI                                            (1.3) 

The overall reaction is: 

 SHSH 22                                          (1.4) 
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This new H2S splitting cycle allows the conversion of H2S into H2 and elemental S with 

two working reagents I2 and H2SO4 recycled. Furthermore, if the sulfur produced by 

reaction (1) is continued to be oxidized into SO2 by reaction (1.5), reactions (1.2) and (1.3) 

would occur in a double scale because two moles of SO2 are produced. As a result, the 

overall reaction becomes reaction (1.6) instead of (1.4). In this way, the modified cycle 

called H2S-H2O splitting cycle was further proposed: 

O2HSOSSHSOH 22242                          (1.1) 

                  22 SOOS                                         (1.5) 

                  42222 SOH24HIO4HI22SO                  (1.2) 

22 IH2HI                                            (1.3) 

The overall reaction is  

422222 SOH2HOO2HSH                       (1.6) 

This new cycle produces two moles of hydrogen and one mole of sulfuric acid from one 

mole of H2S. Both H2S and H2S-H2O splitting cycles are sustainable processes to 

facilitate a sustainable upgrading process of oil sands without CO2 emission. The 

engineering objective of both cycles is to develop processes carrying out all of the above 

reactions and related separations. 

H2S or H2S-H2O splitting cycle is based on two reaction system, one is the 

gas-liquid reaction system of H2S and H2SO4 (reaction 1), which has been studied by 

Zhang et al. (2000) and Wang et al. (2002a; 2002b; 2003). The other is the well-known 
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thermochemical sulfur-iodine (S-I) water splitting cycle (Brown et al., 2000; 2002) 

shown as follows:  

           OHSO0.5OSOH 22242                           (1.7) 

42222 SOH2HIO2HISO                        (1.2) 

22 IH2HI                                          (1.3) 

The overall reaction is  

222 0.5OHOH                                       (1.8) 

Sulfuric acid is decomposed at high temperature (800-900 oC) (reaction 1.7). The S-I 

cycle has been considered the one of the most promising routes for hydrogen production 

in large scale (Goldstein et al., 2005; Vitart et al., 2006).  

Since the only difference between S-I water splitting cycle and the H2S splitting 

cycle is reactions (1.1) and (1.7), the research progresses achieved in the former system 

can be applied to the latter. The current research on S-I water splitting cycle indicates 

that the Bunsen reaction is the key reaction to determine the overall efficiency, because 

its products, mixture of H2SO4 and HI, have to be purified to feed reactions (1.7) and 

(1.3), and this purification process is the most energy consuming step (Brown et al., 

2000; 2002). This situation is the same for H2S or H2S-H2O splitting cycle. Therefore, in 

order to optimize the H2S or H2S-H2O splitting cycle, it is important to develop an 

efficient way to carry out the Bunsen reaction. A literature review about the current 

routes of operating the Bunsen reaction will be given in Chapter 2. 
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1.2 Organization of this thesis 

In this thesis, Chapter 1 introduces the background of H2S splitting cycle. Chapter 

2 is a literature review on the studies of Bunsen reaction and gas-liquid-liquid reaction 

system. Following the review, the knowledge gap and research objectives of this project 

are included in this part. Chapter 3 describes the experimental methods, including the 

specific experimental procedures, analytical methods of various components in the 

system and calculations of reaction rates in the closed gas-liquid reactor. Chapter 4 

presents the results and discussion. Chapter 5 draws the conclusions made from the 

discussion and future work.   
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CHAPTER 2 
 

LITERATURE REVIEW 

The Bunsen reaction has been widely studied in the S-I water splitting cycle, which 

is the key step to decide on the efficiency of both cycles: S-I water splitting cycle and 

H2S splitting cycle. A review on the research background of Bunsen reaction and 

gas-liquid-liquid reaction system is discussed in this chapter.  

2.1 General Atomic stoichiometry of Bunsen reaction in S-I cycle 

2.1.1 Operation and application 

The operation of General Atomic stoichiometry on the Bunsen reaction was 

proposed by General Atomics (Norman et al., 1981) in the study of the S-I water 

splitting cycle. This method is to operate the Bunsen reaction in a large excess of iodine 

in the liquid water media to separate the two products acids into two immiscible liquid 

phases: a Heavier HIx phase and a lighter sulfuric acid phase. The heavier HIx phase 

consists of hydrogen iodide, iodine and water, where the lighter phase is the diluted 

sulfuric acid, described by the following equation (Giaconia et al., 2007):  

phase acid Sulfuric242phaseHIx 22

222

O)4HSO(H)8IO10H(2HI

9IO16HSO




                 (2.1) 

The temperature of reaction (2.1) is 120 oC to maintain the I2 in liquid state since the 

melting point of I2 is 113.7 oC. A demonstration process for Reaction (2.1) combined with 
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reaction (1.3) built in Japan was able to produce H2 at rate of 50 L/h for 33 hours (Mizuta 

et al., 1990). Yields of the constituent reactions, and the amount of water used in the cycle, 

thermal efficiency of the whole Mg-S-I cycle was evaluated to be 17-39 % as a function 

of the overall heat recovery (65-85 %). 

The General Atomic method was widely studied as a part of the S-I cycle. Some of 

researchers focused on the separation and purification of sulfuric acid and HIx phases. 

The purification process was investigated by Zhang et al., (2010) in a continuous mode 

by reacting sulfuric acid and HI in a packed column. In this study, the influences of 

operational parameters were evaluated including the reaction temperature, the flow rate 

of nitrogen and the raw material solutions, on the purification efficiency. The suitable 

conditions for continuous purification process of the two phases were proposed also by 

Guo et al., (2010). 

2.1.2 Problems in operation 

Although the method based on the GA stoichiometry allows physical separation 

between HI and H2SO4, it leads to more other problems in operation. Intensive energy 

was required to extract and recycle prior to the decomposition subunits. Moreover, 

sulfuric acid phase contains only 57 (wt)% H2SO4 and needs to be concentrated. The 

molar ratio of HI to H2O is 1:5 in HIx phase, which is very close to the ratio of 

azeotrope of HI and H2O (1:5.36) at atmospheric pressure. H3PO4 (O’Keefe et al., 1982) 
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and reactive distillation (Roth et al., 1989) were used for the extractive distillation, 

which were believed to be the most expensive and energy intensive consumption steps.  

Furthermore, this method is to run the Bunsen reaction at 120 oC, slightly above the 

melting point of iodine (113.7 oC) at atmospheric pressure, which leads to the iodine 

vapor deposition everywhere in the setup that may block the tubes, and also causes 

severe corrosion due to H2SO4 and HI/I2 solutions. Large amounts of I2 and water 

circulated in the system, and as a result, water removal becomes a critical concern.  

2.1.3 Side reactions 

At 120 oC at which the Bunsen reaction is run , the following two side reactions are 

feasible during the Bunsen reaction, which consume the formed HI and H2SO4 (Sakurai 

et al., 2000): 

6HI+H2SO4 ⇌ S+ 3I2 +4H2O                      (2.2) 

8HI+H2SO4 ⇌ H2S+ 4I2 +4H2O                           (2.3) 

The concentration of HI, H2SO4 and I2 solutions and temperature conditions were 

studied under which those side reactions occur: reaction (2.3) is favored between 20 oC 

and 95 oC over reaction (2.2), the opposite under low iodine excess. Both equations are 

enhanced by a higher acid concentrations and higher temperatures.  
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2.2 Survey of the Bunsen reaction routes to improve its energy efficiency 

Besides the General Atomic, abundant relevant researches on the Bunsen reaction 

were devoted to reduce the consumption of I2 and H2O and therefore decrease the 

energy burden caused. Recent progresses of the Bunsen reaction operations are reviewed 

below. 

2.2.1 The Bunsen reaction with a precipitation agent 

Metathesis reactions with formation of insoluble solid salts lead to liquid-solid 

separation instead of original liquid-liquid separation of hydroiodic acid and sulfuric 

acid (Sau et al., 2008). For example, lead sulphate was used in this method as shown in 

Figure 2.1. The accompanying reactions are: 

(aq)SOH(s)PbI2HI(aq)(s)PbSO 4224   (20-120 oC)                (2.4) 

2332 )Pb(PO2HI(g)(aq)2HPO(s)PbI  (420-450 oC)                  (2.5) 

(aq)PO2H(s)PbSOO2HSOH)Pb(PO 43424223  (20-80 oC)         (2.6) 

Reaction (2.5) and (2.6) regenerate PbSO4 and recycle it to the process. This route 

strongly decreases the recirculation rate of recycling agents (iodine and water) and avoids 

energy-intensive HIx process, but it has the disadvantage of adding solid material and 

concentrated phosphoric acid management.  
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Figure 2.1 Scheme of the Bunsen reaction with insoluble lead sulphate       

(Giaconia et al., 2009) 

2.2.2 The Bunsen reaction in organic solvents 

The Bunsen reaction in organic solvents was first discussed by De Beni et al., 

(1980). Organic solvents were involved into the system to dissolve reactants I2, SO2 and 

H2O, and the product HI. Thus, HI stays in organic phase and so is separated from 

H2SO4 which stays in the water phase. For example, tributyphosphate (TBP) was 

selected for the Bunsen reaction due to its good solubility for SO2. The resulting TBP 

and SO2 mixture can dissolve a smaller but sufficient amount of I2 and H2O for the 

Bunsen reaction. The process is illustrated simplified in Figure 2.2, where the product 

H2SO4 and HI were separated by staying in the different phases. This method greatly 

reduced the excess amount of iodine, but the most difficult part was the HI recovery 

from the organic solvent. 
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Figure 2.2 Scheme of the Bunsen reaction in TBP (Giaconia et al., 2009) 

2.2.3 The Bunsen reaction in an electrochemical membrane reactor 

The application of electrochemical membrane reactor (Figure 2.3) to run the 

Bunsen reaction was proposed by Nomura et al., (2004a, 2004b). 

Anode side reaction:   2e2HSOHO2HSO 4222                 (2.7) 

Cathode side reaction: 2HI2e2HI2                               (2.8) 

In this method, two acids are physically separated by the electrochemical membrane 

reactor and the excess use of iodine is effectively avoided. However, the products are two 

diluted acids for large amount of water is required for the permeation of proton through 

the exchange membrane (Figure 2.3). Thus, this method still needs more improvement.  
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Figure 2.3 Scheme of an electrochemical membrane reactor (Nomura et al., 2004a) 

2.3 The proposal of the Bunsen reaction in the presence of organic solvents 

From the literature above, it can be noted that one big challenge for the operation of 

the Bunsen reaction is to substantially reduce the excess use of I2 and H2O. Moreover, 

it is also a challenge to lower the reaction temperature and facilitate the purification of 

HI and H2SO4 aqueous mixture. Wang (2008) proposed a new method of carrying out 

the Bunsen reaction in organic solvents. The idea is to use organic solvents to dissolve 

the solid iodine. Toluene and water (excess amount) are fed into a reactor, a two-phase 

reaction mixture is formed. Once the gaseous SO2 is introduced into water phase, the 

Bunsen reaction is initiated. Figure 2.4 illustrates this suggestion. During the reaction, 

the reactant iodine has much higher solubility in toluene than in water and easily 
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moves to water phase to supply the Bunsen reaction; the HI and H2SO4 will stay 

preferentially in water phase. As a result, the Bunsen reaction does not have to occur at 

120 oC for melting solid iodine and the use of iodine and water is greatly reduced. The 

reaction can be operated at room temperature, so that the vapor pressure of I2 is low 

and thus, the I2 deposition becomes negligible. Moreover, HI should not dissolve in the 

organic solvent, and HI/I2 solution should not form so that the corrosion problem is 

eased.   

 
Figure 2.4 Schematic diagram of the Bunsen reaction in the presence of organic solvents 

2.4 The selection of organic solvents suitable for the Bunsen reaction 

The purpose of the introduction of organic solvents in the Bunsen reaction is to 

dissolve the solid iodine to make it in fluid below it melting point. Therefore, the 

organic solvents with higher solubility for iodine should be reviewed. Hildebrand et al. 
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(1950) studied the iodine solubility in the ordinary organic solvents, from which the 

suitable organic solvents for the Bunsen reaction was screened out by Yang (2010) as 

Table 2.1 shows.  

Table 2.1 Screening of organic solvents for the Bunsen reaction                                                                      
reproduced from Yang (2010) 

Organic solvents 
Iodine 

Solubility, 
g/mL,25oC 

Boiling 
pointoC H/F/R* 

Density 
g/mL 

Solubility 
in water 

(g/100mL,20oC) 
Benzene 0.146 80 2/3/0 0.88 0.08 
Toluene 0.163 110 2/3/0 0.87 0.05 
o-xylene 0.180 144 2/3/0 0.88 insoluble 
p-xylene 0.169 138 2/3/0 0.86 insoluble 
m-xylene 0.185 139 2/3/0 0.86 insoluble 

1,2,3-trimethylbenzene 0.208 175 0/2/0 0.89 0.005 
1,2,4-trimethylbenzene 0.187 169 1/2/0 0.88 very poor 
1,3,5-trimethylbenzene 0.216 165 2/2/0 0.86 very poor 

1,2,3,4-tetramethylbenzene 0.226 205 1/2/1 0.90 insoluble 
ethylbenzene 0.129 136 2/3/0 0.87 0.015 

n-butylbenzene 0.114 159 0/2/0 0.86 slightly 
cumene 0.108 152 2/3/0 0.86 insoluble 

n-butylbenzene 0.094 183 0/2/0 0.86 insoluble 
isobutylbenzene 0.081 170 2/2/0 0.85 insoluble 

tert-butylbenzene 0.086 169 2/3/2 0.87 insoluble 
chlorobenzene 0.086 132 1/3/0 1.11 low 
bromobenzene 0.140 156 1/2/0 1.49 insoluble 

n-C6H14 0.009 69 1/3/0 0.65 0.0013 
n-C7H16 0.012 98 1/3/0 0.68 immiscible 

CCL4 0.030 76 3/0/0 1.59 0.08 
CHCl3 0.074 61 2/0/0 1.48 0.8 

CS2 0.243 46 3/4/0 1.26 0.29 
cyclohexane 0.022 81 1/3/0 0.78 immiscible 
ethyl alcohol 0.215 78 1/3/0 0.78 miscible 
ethyl ether 0.240 35 2/4/1 0.71 6.9 

*H: Level of health hazard; F: level of flammability; R: level of reactivity 
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Although ethyl ether and ethyl alcohol have higher solubility for iodine, ethyl ether 

is very volatile and highly flammable and ethyl alcohol is miscible in water. The 

aromatic solvents such as toluene, xylene, trimethylbenzene, chlorobenzene and 

bromobenzene may be suitable for the Bunsen reaction. These water-insoluble 

compounds have low volatility and good chemical inertia. Initially in our lab, Le Person 

(2008) chose toluene as the solvent for the Bunsen reaction. Toluene is a water-insoluble 

aromatic solvent with boiling point at 110 oC and low toxicity, thus suitable for the 

Bunsen reaction. Also, there is no reaction between toluene and iodine by the NMR 

results obtained by Yang. 

2.5 Iodine solubility in water and the dissolving effect of HI on the solubility 

The Bunsen reaction is proposed to run in the presence of organic solvents, which 

is a combination of an organic solvent, iodine, water, HI and H2SO4. Iodine solubility in 

pure water is very small (0.3404 g/L). However, the existence of iodide and proton will 

greatly increase the iodine solubility in water. One reason is that iodine crystals can 

dissolve rapidly in an iodide aqueous solution by forming soluble triiodide ions (I3
−). 

The other reason is that polyiodine species, I2X, where X=1, 2, 3 etc., will be stabilized 

by H+ in the solution (calabrese et al., 2000). Iodine solubility in the concentrated 

hydroiodic acid solution (45.9-66.7 wt % HI) was summarized in Table 2.2 (Adapted 

from Powell et al., 1947) 
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Table 2.2 Iodine solubility in concentrated hydroiodic acid 

 

 

 

 

 

2.6 Mechanism and kinetics of Gas-liquid-liquid reaction 

With the involvement of the organic solvent such as toluene in the Bunsen reaction, 

a gas–liquid–liquid system of gaseous phase, aqueous phase and organic phase is 

encountered. The kinetics of such processes tends to be complex, for most practical 

cases, there is no way to determine mass transfer rates and chemical reaction rates 

separately. The gas-liquid mass transfer and reaction, liquid-liquid mass transfer and 

reaction may influence the kinetics of reaction. The two-film model is always used to 

describe the mass transfer and the reactions in either gas or liquid phase. 

2.6.1 Two-film model 

The two-film model, originally proposed by Lewis and Whitman (1924), is a 

simplified model used to describe mass transfer at the gas-liquid interface (Figure 2.5). 

HI, wt % Gravity,25 oC I2,kg/L I2,kg/kg I2,mol/HI,mol 

66.7 1.95 5.22 2.68 2.03 
64.0 1.88 4.72 2.52 1.98 
54.4 1.64 3.47 2.11 1.95 

50.2 1.56 2.84 1.82 1.83 
45.9 1.49 2.28 1.85 1.68 
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Figure 2.5 Schematic of the two-film model adapted from Danckwerts (1970) 

It is assumed that the gas and the liquid are in equilibrium at the interface and that 

the thin films separate the interface from the bulk of both contacting phases. 

Furthermore, transfer occurs within these films by molecular diffusion alone. Outside 

the films, in the bulk fluid phase, the level of turbulence is so high that there is no 

composition gradient at all. Also, there is no gradient in the bulk gas phase. 

2.6.2 Rate-limiting step identification 

It is difficult to deduce the kinetic equation from the analysis of mass transfer and 

the reaction due to the complexity of the gas-liquid-liquid reactive process (Lu et al., 

2011). However, in many cases, the process rate is controlled by one or several 

rate-limiting steps. If the rate-limiting step could be identified, the kinetic equation can 

be simplified. In multiphase systems, either gas-liquid-solid or gas-liquid-liquid, 
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frequently the absorption rate of a soluble gas phase reactant is the rate-limiting step 

(Beenacher et al,. 1993; Poncin et al., 2002) for the overall process. Some relevant 

discussion below can be used to deduce the rate-limiting step.  

Chemical reaction are often classified as “fast” or “slow” perhaps with a vague 

category of “moderately fast” in between. In general, either of the three cases can exist 

(Danckwerts, 1970; Kaur et al. 2007): (1) When diffusion is slow by order of magnitude 

in comparison to chemical reaction, the mass transfer between reaction species, or in 

other words, diffusion of the reaction gas into bulk liquid phase (in gas-liquid reaction) 

controls the reaction rate. Thus, if the reaction is fast, the bulk flow properties can have 

a significant effect on the reaction rate. By inducing bulk movement, for example, by 

increasing the degree of agitation, the mass transfer increases, thus there is a 

corresponding increase in the rate of reaction. (2) If the chemical reaction is slow as 

compared to the rate of diffusion, bulk movements by means of increasing the degree of 

agitation have no effect on the reaction rate. In this case, the chemical reaction is the 

only rate-limiting step. (3) If the mass transfer and chemical reaction are of same order 

of magnitude, the bulk movements induced by agitation, can play a significant role in 

increasing the reaction rate, but it is not the sole criteria for rate-limiting step 

identification. This type of reactions comes under the category of “moderately fast” 

reactions. Besides, the process rate would be very sensitive to temperature by reaction 

control than by mass transfer control (Hu et al., 2002). 
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2.7 Knowledge gap 

According to above literature review and the proposal of the Bunsen reaction in the 

presence of organic solvents, the knowledge gaps are concluded as follows: 

1. Up to date, neither General Atomic stoichiometry nor other new methods are       

available to run the Bunsen reaction in an efficient way. 

2. One of new attempts to explore the Bunsen reaction is to run the reaction in the 

presence of organic solvents. The suitable organic solvents have been screened 

and toluene was chosen initially, but there is not any kinetic study of the Bunsen 

reaction in the presence of toluene in a closed batch reactor. 

3. The impact of reaction condition including phase ratio of water and toluene used 

in the system and agitation speed has not been reported. 

4. The kinetics of Bunsen reaction in the presence of toluene based on multiphase 

reactions has not been systematically studied yet. 

5. There is not any effective method to separate the main products: H2SO4 and HI. 
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2.8 Research objectives 

The goal of this project is to study the Bunsen reaction systematically in the 

presence of toluene in a batch reactor. The research objectives can be described as 

follows: 

1. Evaluate the effects of the operating conditions, such as water/toluene volume 

ratio and agitation speed on the reaction rate. 

2. Investigate the kinetics based on gas-liquid-liquid reaction system to have further 

understanding about reaction rate equation establishment and activation energy of 

Bunsen reaction, which has been prescribed as one of the primary goals of this 

project. 

3. Identification of the rate-limiting step.  
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CHAPTER 3 
 

EXPERIMENTAL METHODS  

3.1 Chemicals 

All chemicals used for experiments are ACS grade as received without further 

purification: Iodine (>99.9 %) supplied by Acros Organics, sulfur dioxide (>99.9 %), 

sodium hydroxide (EMD), sodium thiosulfate anhydrous (Fisher), sodium iodide (BDH), 

and toluene (BDH). Sulfuric acid (96 wt%) (Fisher). All solutions were prepared by 

dilution with deionized water. 

3.2 Experimental setup 

The setup used for experimentation is as shown in Figure 3.1. The reactor used in 

this experiment is a series compact mini-reactor with a 300 mL volume and made of 316 

stainless steel (Model 5500, Parr Instrument Co, USA), equipped with a magnetic stirred 

drive and a glass liner inside the reactor. The glass liner with a 5.7 cm inner diameter, 

was used to prevent the stainless steel parts of the reactor from contacting the corrosive 

solutions such as iodine in toluene, sulfuric acid and hydroiodic acid produced. The 

reactor was equipped with a block heater which was connected to the reactor controller 

(Model 4848, Parr Instrument Co, USA). The agitation speed could also be controlled 

by the reactor controller. The pressure of the system was measured by the pressure 
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transducer (Scadasense 4102, Control Microsystems), which has a 0.1 psi resolution. 

The temperature of the reactor was monitored by the reactor controller, read to 0.1 oC. A 

two-stage vacuum pump (Model 15601, Robinair Co, USA) was used to remove the air 

inside the setup. Two rotameters (which were calibrated in advance) were used to 

measure the flowrate of N2 and SO2 going in and coming out from the reactor 

respectively.  
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Figure 3.1 Schematic diagram of experimental setup for Bunsen reaction: (1) Pump; (2) Computer; (3) three-way valve; (4) Pressure 

transducer; (5) Reactor controller; (6) Series compact reactor; (7) two-way valve; (8) SO2 reservoir; (9)rotameter for N2; (10) 
rotameter for SO2; (11) SO2 cylinder; (12) N2 cylinder; (13) Gas Chromatograph (14) NaOH absorber 
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3.3 Experimental procedure 

3.3.1 General experimental procedure 

No matter what the conditions at which the experiments were run, the procedure of 

a general run is described as follows: 

1. Connect the reactor to the feed part of the experiment setup and vacuum the 

system. Fill the system with 10 psi nitrogen and vacuum it again, repeat several 

times to take the impurities of gas out of the system. 

2. Fill the system with nitrogen to 30 psi to check leakage. If the pressure drop is less 

than 0.1 psi in one hour, the system is considered to have no leakage.  

3. Leave 5-10 psig nitrogen, open the cap in the top of the reactor. Keep 100-200 

mL/min flowrate of nitrogen filled into the system. 

4. Inject a certain concentration of iodine in toluene solution and some volume of 

water into the reactor respectively by Teflon tube (1/8 inch) and syringe.  

5. Afterwards, cap the system and leave 2 psig nitrogen in the system. 

6. Heat the system to certain temperature if needed. 

7. After the temperature reached equilibrium, fill the pure SO2 from the cylinder to 

the reservoir firstly to a certain pressure and record it. 

8. After controlling the agitation speed to 100 rpm or 200 rpm, the system is ready 

for the reaction. Then introduce pure SO2 from the reservoir into the reactor, take 

this moment as time zero. Record this pressure, denoted as P1. Once SO2 has been 
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introduced into the reactor, record the pressure of the gas phase P, every second 

using the pressure transducer. This step is done automatically by a computer 

connected to the pressure transducer. 

9. Obtain the initial partial pressure drop rate, RP, in terms of the slope at t=0 of the 

curve of ΔP , or 1PP  , versus time. Then convert ΔP  to 
2SOΔN with nRTPV  , 

where the volume of the system was measured in advance. Then the SO2 

consumption, 
2SOΔN , versus time t was plotted, as shown in Figure 3.2. Then the 

function was obtained in terms of f(t)ΔN SO 
2

 for the time range of 0 to 100 s. 

The initial rate, r was obtained from the differential result of the function at t=0, 

that is )(fr 0 , which is the slope of the curve at t=0. The specific calculation 

for 
2SOΔN and r are reported later in Section 3.5. 

10. Run the reaction for one or two hours, then the system was purged with nitrogen 

for about half an hour to remove any SO2 unreacted. The final gas in the reactor 

was analyzed using Varian CP3800 gas chromatograph (GC) equipped with 

pulsed flame photometric detector (PFPD) if needed. The liquid phase after 

reaction would be analyzed after dilution.    
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Figure 3.2 Plots of SO2 consumption vs. time for Bunsen reaction:                  

the slope at time zero gives the initial reaction rate  

3.3.2 Specific conditions for each group of runs 

The experiments were run at room temperatures (22 oC) unless indicated. The 

experiments were run at 32, 42 and 52 oC respectively to study the effect of temperature 

on initial reaction rate. The temperatures of the gas and the liquid in the closed reactor 

should be the same and constant even though this may difficult to realize. In this study, 

the temperature of the liquid was heated and controlled by the reactor controller. The 

gas phase was not heated directly and therefore, was assumed to be at room temperature 

when the moles of gas were calculated by the equation of state for an ideal gas. In fact, 

as the temperature of the gas and liquid differed, the warmer liquid would heat the gas 

close to the liquid, leading to a temperature gradient in the gas phase (Wang et al., 2002). 
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However, the error thus introduced to the calculation of total moles of SO2 would not 

significant because, firstly, SO2 at room temperature was introduced into the reactor just 

before the reaction started, secondly, the gas phase was at room temperature initially and 

only the gas close to the liquid would be heated and reacted, most importantly, the 

temperature difference between the gas (22 oC) and the liquid (maximum 52 oC) was not 

large. 

The conditions for the experiments are including agitation speed, volume phase 

ratio of water to toluene, iodine concentration in toluene, SO2 initial partial pressure and 

temperature. The agitation speed was usually set to 100 rpm or 200 rpm, phase ratio was 

set to 0.7:80 unless indicated. The specific conditions as above for each group are 

reported in Chapter 4 accordingly.   

3.4 Analytical methods 

As mentioned earlier, the composition of the liquid phases after reaction runs was 

analyzed. The corresponding analytical methods for various components in the liquid 

phase were as followings: 

The proton concentration in water phase was determined by titration with a 

standard 0.5 mol/L sodium hydroxide solution using phenolphthalein as the indicator. 

The iodine concentration in water phase was determined by titration with a standard 0.1 

mol/L sodium thiosulfate using thyodene as the indicator. The iodine concentration in 
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toluene phase and the iodide ion concentration in the water phase were determined by 

UV mini 1240 UV-Vis spectrophotometer from Shimadzu and Mandel 10 mm path 

length quartz cuvettes (see details in Appendix A).  

3.5 Calculation of the initial rate 

Take the run for 0.146 mol/L iodine concentration, 100 rpm, 0.35:80 phase ratio 

and 22 oC as an example. 
2SOΔN was calculated from ΔP  by 

RT
VPN SO



2

                                      (3.1) 

where, V is the volume of gas phase, which is 0.000308 m3, R is 8.314 Pa m3K-1mol-1, T 

is the absolute temperature in K. Then 
2SOΔN corresponding to ΔP  between any time 

and the initial time in the unit of second can be calculated, then the plot of the SO2 

consumption against time was plotted by the software Origin 7.5 in Figure 3.2. Then 

several regressions were fit to the curve for the range of 0 to 100s, the second order 

exponential decay regression was the best fit (R2 > 0.999). Then the function was 

obtained in terms of f(t)ΔN SO 
2

, as Eq. (3.2) shows.   

C-exp(-t/b)*B + exp(-t/a)*A )(
2

 tfN SO                           (3.2) 

A= 0.00336 ± 0.00003       a= 7.24 ± 0.19 

B= 0.00450 ± 0.00006       b= 41.99 ± 1.22 

C= 0.00790 ± 0.00003 

R2= 0.9997 
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Then, the initial rate, r was obtained from the differential result of the function at t=0, 

that is smoltfr /107.5)0( 4 . 
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CHAPTER 4 
 

RESULTS AND DISCUSSION  

4.1 Mechanism aspect of Bunsen reaction in the presence of toluene 

With the involvement of organic solvent such as toluene in the Bunsen reaction, a 

gas–liquid–liquid reaction is encountered where there are one gas phase and two 

immiscible liquid phases, the aqueous phase and organic phase. However, our 

understanding of the gas-liquid–liquid reaction system is not well developed today 

despite their widespread use in the process industries. The Bunsen reaction in the 

presence of toluene would lead to very complicated mechanism. Without toluene in the 

system, the Bunsen reaction can be translated into two steps: 

  SO2(g) + H2O(l) ⇌ H+(aq)+ HSO3
−(aq)                 (4.1) 

H+(aq) + HSO3
−(aq) + I2(l) + H2O(l) ⇌ H2SO4(aq) + 2HI(aq)     (4.2) 

Although it has not been discussed in publications, the `two-step mechanism can be 

supported by the following arguments. (1) SO2 is a stable gas and its reducing ability is 

small. The study in the Claus reaction has shown that gas SO2 and H2S will not react at 

any temperature unless there is involvement of a catalyst or liquid medium (Gamson et 

al., 1953). (2) The experiment involving only I2 and SO2 shows no reaction. Iodine 

consumption was not observed after passing SO2 gas through the I2-toluene solution (Le 

Person, 2008). (3) SO2 is soluble in water, and the dissolution results in the formation of 
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sulfurous acid solution or hydrogen bisulfite solution, which has stronger reducing 

ability (Jolly, 1991). The Gibbs free energy calculation also indicates that the two-step is 

more thermodynamically favorable. Table 4.1 and 4.2 shows the results of ΔGΔS,ΔH,  

and K of reaction 4.2 and Bunsen reaction (1.2), respectively, calculated by HSC 

software for the temperature range of the interest of this investigation. The results 

indicate that the Bunsen reaction can not occur without ionizing the products ( ΔG>0 at 

22-52 oC). It can be seen that water plays not only the role of a solvent for SO2 to form 

more reducible bisulfate anion but also the role to ionizing the products, HI and H2SO4, 

such that the thermodynamics favors the reaction to proceed to the right-hand side. This 

discussion also confirms that the reaction must take place in the aqueous phase where 

the I2 molecules and bisulfate anions contact. 
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Table 4.1 ΔGΔS,ΔH,  and K of reaction (4.2) calculated by HSC  

(aq)SO(aq)2I(aq)4HO(l)H(l)I(aq)H(aq)HSO 2
4223

   

T, oC △H, kJ △S, J/K △G, kJ K Log(K) 

22 -136.3 -237.5 -66.2 5.2×1011 11.7 

32 -142.7 -258.9 -63.7 8.0×1010 10.9 

42 -148.8 -278.4 -61.0 1.3×1010 10.1 

52 -154.6 -296.9 -58.1 2.2×109 9.3 

 

Table 4.2 ΔGΔS,ΔH,  and K of Bunsen reaction calculated by HSC  

2HI(g)(l)SOHO2H(g)SO(l)I 42222   

T, oC △H, kJ △S, J/K △G, kJ K Log(K) 

22 106.2 29.1 97.6 5.4×10-18 -17.3 

32 105.4 26.7 97.3 2.2×10-17 -16.6 

42 104.7 24.4 97.0 8.2×10-17 -16.1 

52 104.0 22.2 96.8 2.8×10-16 -15.6 
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Makitra et al. (2010) reported SO2 dissolution in toluene. When toluene and water 

coexist, SO2 equilibrium among the three phases, gas, water and toluene, can be 

illustrated in Figure 4.1. When I2 is brought to the reaction site by the solution of 

I2-toluene, I2 molecules have to diffuse to the interface between the two liquid phases or 

to the aqueous phase where the reaction takes place. According to the two-film model 

developed by Lewis and Whitman (1924), the mass transfer direction or the 

concentration gradient of iodine in this gas-liquid-liquid reaction system is also shown 

in Figure 4.1.  

  
Figure 4.1 Concentration profile of the gas-liquid-liquid Bunsen reaction 

In a multiphase reaction system (either gas-liquid-solid or gas-liquid-liquid) in an 

agitated reactor, the absorption rate of a soluble gas phase reactant is often the 

rate-limiting step (Poncin et al., 2002). The kinetics of such processes tends to be 
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complex, for most practical cases, there is no way to determine mass transfer rates and 

chemical reaction rates separately.   

Since only the initial reaction rate is taken into consideration in this study, it is 

important to analyze the possible rate-limiting steps at time zero. Series of experiments 

were run to identify how mass transfer and reaction influence the apparent kinetics of 

the reaction and what the rate-limiting step is. 

4.2 Enhancement of rate with Bunsen reaction  

Levenspiel (1972) discussed the enhancement of the absorption rate of a gas by 

adding a reactant to the liquid for the system without gas phase resistance. The 

enhancement factor was defined as the ratio of the rate with reaction to the rate for mass 

transfer alone. 

As discussed previously, the Bunsen reaction can be described by the two-step 

mechanism. The first step is the formation of sulfurous acid solution. Because only the 

initial reaction rate is taken into consideration, it is important to analyze the mass 

transfer and diffusion features at time zero of the reaction. At time zero, the gas phase 

contain more than 50 % SO2 for most of the runs, along with the other half of nitrogen 

and the ignorable amount of toluene vapor. The total initial pressure of nitrogen and 

toluene is slightly higher than atmospheric pressure to keep the air out of the reactor 
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before closing the system. Thus, it is reasonable to assume that the resistance to mass 

transfer in the gas phase be neglected.  

To test the phenomenon of enhancement of the Bunsen reaction to SO2 dissolving 

in toluene, the following experiments were conducted. First, with only toluene solvent, 

the SO2 dissolving rate was measured at different SO2 initial partial pressure. Second, 

the runs were repeated at the same conditions except the liquid phase containing not 

only toluene but also water and iodine. At 122.7 kPa SO2 initial partial pressure, the run 

was also made with toluene and water but not iodine. The details of experiment 

conditions are giving in the caption of Figure 4.2. The two lines at different conditions 

almost coincide with each other. Besides, when the SO2 initial partial pressure is 122.7 

kPa, the rate with reaction (toluene+I2+H2O), dissolution rate of toluene only and 

toluene-water are of the same order of magnitude. Hence, there is no significant 

enhancement of the Bunsen reaction to SO2 dissolving in toluene, indicating that SO2 

dissolving is the rate-limiting step. 
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Figure 4.2 Enhancement of rate with Bunsen reaction (22 oC, 0.7/80 phase ratio,    

200 rpm, 80 mL toluene  [I2]: 0.146 mol/L) 

4.3 Side reaction considerations  

As mentioned in the literature review, Sakurai et al. (2000) reported two side 

reactions that would occur between the products of the Bunsen section. They are: 

6HI+H2SO4 ⇌ S+ 3I2 +4H2O                       (2.2) 

8HI+H2SO4 ⇌ H2S+ 4I2 +4H2O                       (2.3) 

where sulfur and hydrogen sulfide would be produced. Thus, to test the occurrence of the 

side reactions at room temperature, the analysis of the substances in both liquid phase and 

gas phase after typical runs of the reaction rate measurement has been conducted. Unlike 

the work of Sakurai et al. (2000), where elemental sulfur was easily formed with the 

increase in acid concentration and the decrease in iodine concentration, no yellow solid 
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substance, elemental sulfur, was seen in all the runs of my experiments. The gas in the 

reactor after several typical runs at the lowest and highest temperatures in this study,  

22 oC and 52 oC was analyzed using gas chromatograph (GC) equipped with the flame 

photometric detector (FPD). As shown in one of the gas chromatography results in Figure 

4.3, no H2S was detected in the final gas for all the runs measured. The lowest limit of H2S 

that the FPD can detect is 0.1 ppm. Therefore, the two side reactions (2.2) and (2.3) that 

Sakurai et al., (2000) were not detected in this study. 

 

 
Figure 4.3 GC chromatogram of production of Bunsen reaction 
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4.4 Uncertainty discussion 

4.4.1 Reproducibility of data 

It is necessary to test the reliability of the experiment measurements by 

reproducibility of the data. For this reason, for the typical runs applied to most of the 

groups, such as the experiment at 22 oC with 0.7/80 phase ratio, 200 rpm, 122.7 kPa SO2 

initial partial pressure and 0.146 mol/L iodine concentration was repeated. Figure 4.4 

shows SO2 consumption versus time of the three runs under the same condition 

mentioned above.  

The uncertainties of data were analyzed based on Student’s t distribution which 

calculated the confidence interval at 95 %, as eq. (4.3) shows: 

n
stXX

2
α                                              (4.3)              

where 100%α)(1   is the confidence interval needed, 0.5α   as the 95 % confidence 

interval; X  represents for the mean value of each measurement, n  is the number of 

measurements and s  is the standard deviation. As a result, the concentration of iodine 

used for the typical runs is 0.146 ± 0.002 mol/L, the SO2 initial partial pressure is   

122.7 ± 2.0 kPa. The initial reaction rate, corresponding to the three runs as Figure 4.4 

shows, is 10.5 ± 0.2 mol/s. 
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Figure 4.4 Duplicate experiments of Bunsen reaction at 22 oC (0.7/80 phase ratio, 200 

rpm, 122.7 kPa SO2 initial partial pressure and [I2]: 0.146 mol/L) 

4.4.2 Mass balance 

The liquid product including water phase and toluene phase after each run were 

analyzed by the methods mentioned in Chapter 3. The analysis of various components 

was repeated three times after each run. Then mass balance for each run was carried out 

with respect to the ion of iodine. Take four runs as examples, the mass balance for 

iodine ion is shown in Table 4.3. The iodine mass balance is below 3.29 %, which is 

also the largest error of all the mass balance for iodine ion. From the mass balance of 

iodine, all the results of in-out of iodine is above zero, it may be due to the loss of iodine 

vapor during the reaction. On the other hand, from the last two row of Table 4.3, it can 

be seen that little amount of iodine was measured in aqueous phase after reaction, 
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indicating that the iodine diffused from organic phase to aqueous phase during the 

reaction to supply the reaction.   

Table 4.3 Iodine balance for the runs of Bunsen reaction in toluene 
Iodine in 

mol 
Iodine out 

mol 
[I2] in 

toluene 
mol/L I2/O I2/O I2/W HI/W 

in-out (in-out)/in 

0.146 0.0117 0 0 0.0115 0.0001 0.0128 
0.146 0.0234 0 0 0.0226 0.0008 0.0329 

0.146 0.0234 0.0067 0.0014 0.0145 0.0007 0.0299 
0.195 0.0313 0.0040 0.0020 0.0250 0.0003 0.0102 

* I2/O: iodine in toluene; I2/W: iodine in water; HI/W: HI in water. 

 

4.5 Effect of volume of liquid 

To determine whether the volume of liquid affect the reaction rate measurement,  

40 mL I2-toluene solution with a same iodine concentration and 0.35 mL water were 

charged into the reactor, compared with the 80 mL I2-toluene and 0.7 mL water reaction, 

the phase ratio kept the same. Also, the results, together with the operating conditions, 

are shown in Table 4.4. The rate is nearly the same no matter how much the volume of 

both liquids, the reaction rate is independent of the volume of liquids, indicating that 

Bunsen reaction might not take place inside liquid phases but the interface of the gas 

and liquid phases.  
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Table 4.4 Effect of reaction volume on reaction rate                       
Agitation speed: 100 rpm; SO2 initial partial pressure: 79.2 kPa;                     

Reaction temperature: 22 oC; [I2]: 0.146 mol/L                  

 

 

 

4.6 Effect of phase ratio (VW/VO) 

As mentioned, one of the objectives of water content study is to reduce the amount 

of water used in Bunsen reaction, so that the problems caused by large amount of water 

in the system can be eased. To investigate the effect of volume ratio of water to toluene, 

experiments were conducted at different phase ratios (VW/VO = 0.35/80, 0.7/80, 1.4/80, 

2.8/80, 5.6/80) with SO2 initial partial pressure 79.2 kPa, iodine concentration 0.146 

mol/L (Table 4.5a) and SO2 initial partial pressure 122.7 kPa, iodine concentration 

0.2152 mol/L (Table 4.5b) respectively. Here two different SO2 initial partial pressures 

were used to monitor the effect of phase ratio, to maintain excess amount of iodine in 

the system, the iodine concentration used for the two groups of experiment is different 

consequently. Table 4.5 also shows the mole ratio of water to SO2 and the corresponding 

reaction rates. The minimum phase ratio for each group is about the stoichiometric water 

needed with respect to the SO2 consumption (NH2O/NSO2=2) in the system. The initial 

reaction rate is increasing with the phase ratio increased for both groups of experiments, 

I2+toluene 
mL 

Phase ratio 
VW/VO 

rate ×104 
 mol/s 

40 0.35/40 5.9 
80 0.7/80 6.1 
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as Table 4.5 shows. The results can also be obtained from Figure 4.5, which shows the 

initial reaction rates measured at different phase ratios. It can be seen that at low phase 

ratio region, the initial rate of reaction increased slowly, at high phase ratio region, this 

increasing tends to be faster. There is an obvious increasing from phase ratio 1.4/80 to 

2.8/80 for both groups of experiments. This phase ratio 2.8/80 can be thus regarded as 

the desired level of volume ratio of water to toluene, considering reduced water amount 

is desired for the system.    

Figure 4.6 shows the SO2 consumption with time at 79.2 kPa SO2 initial partial 

pressure as an example. In the same reaction time, the consumption amount of SO2 is 

nearly the same for each phase ratio. Table 4.6 shows the amount of various components 

after reaction, such as iodine left in both toluene phase and water phase, the production 

of iodide and proton after each reaction at 79.2 kPa SO2 initial partial pressure. The 

amount of reacted iodine, produced iodide and proton for each phase ratio is nearly 

constant no matter the phase ratio. However, the mole ratio of iodine unreacted in water 

phase to that in toluene phase is increasing with the phase ratio increased, indicating that 

the increased water content may resulted in increased iodine dissolved in water during 

the reaction.  
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Table 4.5 Effect of phase ratio on reaction rate                           
Reaction temperature: 22 oC; Agitation speed: 100 rpm                          

(a) [I2]: 0.146 mol/L SO2 init. Pressure: 79.2 kPa;                               
(b) [I2]: 0.215 mol/L SO2 init. Pressure: 122.7 kPa 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

phase ratio  
VW/VO 

NH2O/NSO2 rate ×104 
mol/s 

0.35/80 2 5.7 
0.7/80 4 6.1 
1.4/80 8 6.5 
2.8/80 16 8.1 

5.6/80 32 9.6 

phase ratio  
VW/VO 

NH2O/NSO2 rate ×104 
mol/s 

0.7/80 2 6.5 
1.4/80 4 7.4 
2.8/80 8 10.3 
5.6/80 16 10.8 
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Figure 4.5 Effect of phase ratio (VW/VO) on the initial reaction rate (22 oC, 100 rpm) 

 

Table 4.6 Amount of various components after reaction with different phase ratio   
SO2 initial partial pressure: 79.2 kPa; [I2]: 0.146 mol/L 

phase ratio 
VW/VO 

I2 left 
toluene 

mol 

I2 left 
water 
mol 

I2 
reacted 

mol 

I− 
water 
mol 

H+ 
water 
mol 

0.35/80 0.0036 0.0006 0.0075 0.0160 0.0297 
0.7/80 0.0035 0.0007 0.0074 0.0145 0.0294 

1.4/80 0.0035 0.0008 0.0074 0.0148 0.0295 

2.8/80 0.0034 0.0008 0.0074 0.0140 0.0295 
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Figure 4.6 SO2 consumption vs. time at different phase ratio                   

(79.2 kPa, 22 oC, 100 rpm) 

It is clearly that, as the phase ratio increased, the initial rate of reaction also 

increased. Since the interface between aqueous-organic phases has the higher possibility 

for the reaction to occur, its area would affect the reaction rate undoubtedly. Al-Zuhair 

et al. (2004) used the microscopic method to determine the size of oil droplets in water 

for the water-oil agitation system, thus the specific interfacial area of oil-water system 

could be obtained. Although the accurate quantification of the effective interfacial area 

was not measured in this study, it is to be expected, as with more amount of water, more 

interfacial area between aqueous and toluene phase will be generated. The reaction rate 

then is increasing with the interfacial area increased, which is resulted from the increase 

of volume ratio of water to toluene. These results are similar to the effects of different 
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oil ratio on initial reaction rate of oils hydrolysis discussed by Ramachandran et al., 

(2006), where the interfacial area was determined by the microscopic method proposed 

by Al-Zuhair et al. (2004).  

However, the effect of phase ratio on reaction rate is not limited to the contribution 

by interfacial area, since water is the reactant in the system, which makes the system 

more complex. 

4.7 Effect of Agitation speed 

This section discussed the effects of agitation speed. Firstly, the maximum 

agitation speed for the system was measured by slowly increasing the agitation speed 

until the droplet splash appeared. Only 80 mL toluene was used in the determination of 

maximum agitation speed, and droplet splash appeared at an agitation speed of 425 rpm, 

indicating that the agitation speed must not exceed 425 rpm. In order to determine the 

effect of agitation speed on reaction rate, experiments were carried out at 0, 100, 200 

and 300 rpm, respectively keeping the other conditions the same. Figure 4.7 shows the 

photos of the appearance at four different agitation speeds. To make the observation 

easier, 10 mL water and 70 mL toluene were used for taking photos, with each photo 

taken after five minutes stirring to allow full development. As Figure 4.7 shows, the 

water droplets inside the toluene phase are becoming more and smaller with the 

agitation speed increases. It means the surface area of water droplet is increasing with 
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the agitation speed increases. This is in agreement with the results reported by Tang et 

al., (1998) about the interfacial area for gas-liquid-liquid reaction system of water and 

oil, where the quantitative measurements of interfacial area for different agitation speed 

was used.  

Figure 4.8 shows two sets of data. The solid boxes represent the initial SO2 

dissolving/reaction rate in the mixture of iodine-toluene solution and water at different 

agitation speeds; the open boxes represent the SO2 dissolving rate in only toluene. The 

trend of the rate increase in the former is the same observed with photos: no big 

difference between 0 and 100 rpm, a significant increase between 100 and 200 rpm, and 

small increase between 200 and 300 rpm. For an immiscible liquid system, there is 

always a minimum level of agitation speed above which a uniform dispersion can be 

produced (Kaul et al., 2007). For our system of toluene and water, 200 rpm can be 

regarded as the minimum level of agitation to produce a uniform dispersion. 
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Figure 4.7 Photos of the appearance at four different agitation speeds (VW/VO: 10:70) 
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Figure 4.8 Effect of agitation speed on the initial reaction rate (22 oC, Phase ratio: 0.7/80, 
[I2]: 0.146 mol/L, SO2 initial partial pressure: 79.2) 

As for the latter, the effect of agitation speed on the SO2 dissolving rate in only 

toluene, it is observed that the value of dissolving rate among the four different agitation 

speeds shows no significant difference, indicating that the dissolution rate is not affected 

by the agitation speed within the agitation range that this investigation used. This is 

because the surface area of one phase system is not significant increased by agitation. 

The comparison between these two sets of data tells that the agitation speed affects the 

rate when the second phase is added (Dumont et al., 2003). 

Figure 4.9 shows the plots of SO2 consumption versus time for 0, 100, 200 and  

300 rpm respectively. In the same reaction time, the consumption amount of SO2 is 
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increasing with the agitation speed increased. The observation shows a strong 

dependence of the conversion of reactant on agitation speed. This can be confirmed by 

the consumption of iodine in each phase ratio, as shown in Table 4.7. The amount of 

reacted iodine, produced iodide and proton are increasing with the agitation increased 

for 40 minutes of operation. This behavior is similar to what was shown by the agitation 

effects study for methyl ethyl ketazine production reaction (Kaul et al., 2007), also a 

gas-liquid-liquid system, where the percentage conversion is found to increase with 

increasing stirring speed for 6 hours of operation.   
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Figure 4.9 SO2 consumption vs. time for different agitation speed (22 oC, Phase ratio: 

0.7/80, [I2]: 0.146 mol/L, SO2 initial partial pressure: 79.2) 

 

Table 4.7 Amount of various components after reaction for different agitation speed 
reaction time: 40mins 

Agitation 
speed 
rpm 

I2 left 
toluene 

mol 

I2 left 
water 
mol 

I2 
reacted 

mol 

I− 
water 
mol 

H+ 
water 
mol 

0 0.0045 0.0012 0.0059 0.0126 0.0231 
100 0.0039 0.0009 0.0069 0.0140 0.0274 

200 0.0034 0.0009 0.0074 0.0148 0.0294 
300 0.0024 0.0008 0.0084 0.0160 0.0335 
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As shown in the results for the agitation effect, the agitation affects the reaction 

rate, indicating that the chemical reaction is not the rate determining factor definitely, 

since for the system controlled only by chemical reaction, the degree of agitation has no 

effect on reaction rate (Carpenter, 1986). 

Above all, the initial reaction rate is found to increase with increase in phase ratio 

(VW/VO) and agitation speed respectively. Although, the specific interfacial area was not 

investigated in this study, the effect of volume ratio of the two immiscible liquid and 

agitation speed on interfacial area for a gas-liquid-liquid system is supported by 

abundant literature. Thus, the initial reaction rate is increasing with the interfacial area 

increased. Although agitation can increase the speed of surface renewal, only initial 

reaction rate is taken into account for this study, the role of surface renewal could be 

negligible. (Kaur et al., 2007). 

Besides, the effect of temperature on interfacial area is neglected. Usually the 

viscosity reduction of liquid due to the increase in temperature would change the 

interfacial area (Calderbank, 1958). But the viscosity data of toluene between 22 and  

52 oC won’t change significantly. The viscosity of toluene is 0.580 cP for 20 oC and 

0.412 cP for 50 oC (Lide, 2007), also Al-Zuhair et al., (2004) showed that the change of 

interfacial area for the water-oil system with temperature is small with a low agitation 

speed (<500 rpm). Thus, temperature change will not change the interfacial area in the 

temperature range. 
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4.8 Establishment of effective interfacial area and kinetic equation  

As discussed above, the reaction rate is increased by 58 % when the phase ratio 

increases from 0.7/80 to 5.6/80 and by 37 % when the agitation speed increases from 0 

rpm to 300 rpm. To quantify the effect of momentum, the increased of rate by agitation 

and phase ratio is considered only to the increase of interfacial area. However, the 

accurate interfacial area for a gas-liquid-liquid reaction is difficult to measure. To 

establish the kinetic equation (eq. 4.4) of the reaction and make the reaction rate in a 

standard unit magnitude, we use an effective interfacial area.  

  n
SO

m
effSO PIkar

22 2                               (4.4) 

The effective area is defined to be a function of the volume of liquid, the volume ratio of 

water to toluene, the agitation speed and the temperature. The temperature effect has 

been neglected. The earlier discussion has indicated that, the reaction rate is independent 

of liquid volume within the range of interest. Thus, agitation speed and phase ratio are 

the only two factors to be taken into consideration. To quantify the effective interfacial 

area, the cross sectional area of the glass liner in the reactor, 0.00255 m2, is used as the 

base of the interfacial area when the system is at the zero agitation speed, 80 mL liquid 

volume and the VW/VO of 0.7:80. If at any other condition, the initial reaction rate 

changes due to the agitation speed or the change in liquid volume or the volume ratio of 

water to toluene, the change of the effective interfacial area can be determined according 

to the change of the initial reaction rate. Based on this analysis, the effective interfacial 
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areas at various agitation speeds and water to toluene volumetric ratio are listed in Table 

4.8. 

 

Table 4.8 Effective interfacial area at various conditions 
Agitation speed 

rpm 
Phase ratio 

VW/VO 
Effective interfacial area 

(aeff×103), m2 

0 0.7/80 2.55 
100 0.7/80 2.64 
200 0.7/80 3.25 

300 0.7/80 3.49 
100 0.35/80 2.30 
100 1.4/80 2.73 
100 2.8/80 3.47 

100 5.6/80 4.03 
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4.9 Effect of concentration of iodine 

To study the effect of iodine concentration on initial reaction rate, experiments 

were conducted at the iodine concentrations of 0.235, 0.195, 0.146, 0.118, 0.078 and 

0.045 mol/L at 22 oC and 52 oC, respectively. The specific conditions and their 

corresponding initial reaction rates are shown in Table 4.9. SO2 is excessive for the runs 

of 0.195, 0.146, 0.118, 0.078 and 0.045 mol/L iodine concentrations. From the results in 

Table 4.9, it is clear that the greater the iodine concentration, the greater the initial 

reaction rate at both temperatures. Afterwards, the relationship between reaction rate 

and iodine concentration at both 22 oC and 52 oC was plotted, respectively, in Figure 

4.10. The observation shows a strong dependence of reaction rate on iodine 

concentration. It can be seen that at low iodine concentrations, the initial rate of reaction 

increased linearly. At high iodine concentrations, this linear relationship tends to be 

flattened. This appears that when the iodine concentration is high, the interface between 

aqueous phase and toluene phase could be saturated with the iodine molecules 

(Ramachandran et al., 2006). Thus, any further increase in iodine concentration in the 

bulk could not enhance the initial reaction rate any more. In general, an increase in the 

bulk iodine concentration would increase the initial reaction rate, but there would be a 

critical iodine concentration at which the interfacial area would be saturated with the 

iodine. For this study, 0.146 mol/L could be considered as the critical iodine 

concentration. These results are in agreement with those revealed by Al-Zuhair et al., 
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(2004) about enzyme concentration on reaction rate of hydrolysis of oils. In the 

mechanism aspect, with a greater iodine concentration, more iodine is available in 

reaction mixture, and thus more iodine is in the aqueous layer to react.  

Figure 4.11 shows the plots of SO2 consumption versus time for 0.235, 0.195, 

0.146, 0.118, 0.078 and 0.045 mol/L respectively at 22 oC, the consumption of SO2 in a 

same time only has little difference for different iodine concentration.  
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Table 4.9 Effect of iodine concentration on reaction rate                      
Phase ratio: 0.7/80; Agitation speed: 200 rpm NH2O/NSO2: 2                           

Reaction temperature: (a) 22 oC; (b) 52 oC 

 

(a) 

 

 

 

 

 

 

(b) 

 

[I2] in toluene 
mol/L 

NSO2/NI2 
SO2 init. pres 

kPa 
rate ×104 

mol/s 

0.235 0.8 122.7 11.3 
0.195 1 122.7 11.0 
0.146 1.3 122.7 10.5 
0.118 1.6 122.7 9.8 
0.078 2.5 122.7 8.8 
0.045 4.3 122.7 8.1 

[I2] in toluene 
mol/L 

NSO2/NI2 
SO2 init. pres 

kPa 
rate ×104 

mol/s 

0.195 1 122.7 14.0 
0.146 1.3 122.7 13.4 
0.118 1.6 122.7 12.3 
0.078 2.5 122.7 10.4 

0.045 4.3 122.7 9.5 
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Figure 4.10 Effect of iodine concentration on the initial reaction rate (Phase ratio:  

0.7/80; 200rpm, SO2 initial partial pressure: 122.7 kPa) 
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Figure 4.11 SO2 consumption vs. time for different iodine concentration (22 oC, Phase 

ratio:  0.7/80; 200rpm, SO2 initial partial pressure: 122.7 kPa) 
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Figure 4.12 adds the SO2 dissolution rate in toluene only and in toluene and water 

at 200 rpm agitation speed, 22 oC and SO2 initial partial pressure of 122.7 kPa to the plot 

of the reaction rate at different iodine concentration. Above 0.15 mol/L of iodine in 

toluene, the reaction rate is bigger than the dissolution rate of SO2 in toluene and in 

toluene and water mixture, while below this concentration, the reaction rate is smaller 

than the dissolution rate. The improved reaction rate can be explained by the 

enhancement effect; however, not any reliable explanation was developed.  
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Figure 4.12 Effect of coexistence of T-W-I2 on SO2 dissolution rate (22 oC, Phase ratio:  

0.7/80; 200rpm, SO2 initial partial pressure: 122.7 kPa)   
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4.10 Effect of initial partial pressure of SO2 

As one of the reactants, the initial partial pressure of SO2 must be a factor which 

affects the initial reaction rate. To investigate the influence of the SO2 initial partial 

pressure on the initial reaction rate, experiments were conducted at the SO2 initial partial 

pressure of 122.7, 98.7, 79.2 and 49.6 kPa at both 22 oC and 52 oC. The other conditions 

are water to toluene volumetric ratio 0.7:80, 80mL volume of I2-toluene, 0.146 mol/L 

iodine concentration and 200 rpm agitation speed. The iodine is excessive for the runs of 

98.7, 79.2 and 49.6 kPa. The initial reaction rates versus SO2 initial partial pressure are 

shown in Table 4.10. The plots of SO2 consumption vs. time for 122.7, 98.7, 79.2 and 

49.6 kPa at 22 oC respectively, are shown in Figure 4.13.   

From the results in Table 4.10, it is clear that the greater the SO2 initial partial 

pressure, the greater the initial reaction rate. Afterwards, the relationship between 

reaction rate and SO2 initial partial pressure at both temperatures was plotted in Figure 

4.14. It can be seen the initial rate of reaction increased linearly. 
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Table 4.10 Effect of SO2 initial partial pressure on reaction rate                      
Phase ratio: 0.7/80; [I2]: 0.146 mol/L Agitation speed: 200 rpm                                

Reaction temperature: (a) 22 oC; (b) 52 oC 

 

(a) 

 

 

 

 

 

 

(b) 

SO2 init. pres 
kPa 

NSO2/NI2 
rate ×104 

mol/s 

122.7 1.3 10.5 
98.7 1 8.5 
79.2 0.8 7.6 
49.6 0.5 4.3 

SO2 init. pres 
kPa 

NSO2/NI2 
rate ×104 

mol/s 

122.7 1.3 13.4 
98.7 1 10.7 
79.2 0.8 8.9 
49.6 0.5 4.9 
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Figure 4.13 SO2 consumption vs. time for different SO2 initial partial pressure (22 oC, 

Phase ratio: 0.7/80; 200rpm, [I2]: 0.146 mol/L) 
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Figure 4.14 Plots of initial reaction rate vs. initial SO2 pressure for different T    

(Phase ratio: 0.7/80; 200rpm, [I2]: 0.146 mol/L) 
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4.11 Specific reaction rate for Bunsen reaction in the presence of toluene 

The values of kinetic parameters such as the specific reaction rate, k, the orders 

with respect to iodine and sulfur dioxide, m and n, in the rate equation,    

  n
SO

m
effSO PIkar

22 2                               (4.4) 

can be determined from the experimental data. Firstly, at a given iodine concentration 

0.146 mol/L, the initial rates at various SO2 initial partial pressures from 49.6 kPa to 

122.7 kPa at two temperatures of 22 oC and 52 oC are listed in Table 4.10. The order of 

the reaction with respect to the partial pressure of SO2 was obtained by correlating the 

initial reaction rates with the initial partial pressure. As an example, the results at 0.146 

mol/L concentration of iodine at 22 oC and 52 oC are shown in Figure 4.14. This figure 

clearly demonstrates a first order behavior with respect to SO2 at both temperatures of 

22 oC and 52 oC, i.e., 

22 SOSO Pkr                                     (4.5) 

The slopes from the linear regression correspond to the value of k   at a given iodine 

concentration. k' values at the two temperatures are shown in Table 4.11.  

Table 4.11 Values of k   in Equation (4.5) 

T, oC k ×106, mol s-1 kPa-1 R2 

22 8.8±0.2 0.9946 

52 10.8±0.2 0.9974 
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Then attempts were made to correlate the reaction rate at a given pressure of SO2 

pressure with the iodine concentration in order to determine the values of the reaction 

order, m, with respect to iodine concentration. The linear portion of Figure 4.10 was 

replotted in Figure 4.15. Because the reaction rate is linear proportional to the iodine 

concentration in the low iodine concentration region, this figure clearly illustrates a first 

order behavior with respect to iodine concentration in the low concentration region at 

both temperatures.  But the lines do not pass through the origin point. Both linear 

regressions can be described by  

  )( 22
CIkrSO                                      (4.6) 

where the slopes of the linear regression curve correspond to the value of k  at a given 

SO2 initial partial pressure and the two temperatures. The k" values are shown in Table 

4.12. The values of the slopes are 0.002374 and 0.003869 L s-1 , respectively for 22 and 

52 oC, indicating the first order with respect to the iodine concentration at both 

temperatures. The intercepts of Ck   generated in Eq. (4.6) may be contributed by both 

dissolving and reaction. As discussed of the blank experiment, it is clear the initial rate 

is not zero when there is no iodine in the system. Thus, it is reasonable to have the 

constant C in Eq. (4.6) by correlating the initial reaction rates with the iodine 

concentration. 
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Table 4.12 Values of k   and C in Equation (4.6) 

T, oC k  ×103, L s-1 C, mol/L R2 

22 2.4±0.1 0.30±0.01 0.9984 

52 3.9±0.1 0.20±0.03 0.9906 
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Figure 4.15 Plots of initial reaction rate vs. iodine concentration for different T    

(Phase ratio: 0.7/80; 200 rpm, SO2 initial partial pressure: 122.7 kPa) 
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As a result from the above discussion, the reaction rate equation, Eq. (4.4) can be 

modified to the following equation: 

  )( 222
CIPkar SOeffSO                            (4.7) 

Based on Eq. (4.7), Eq. (4.5) and (4.6) can be modified to Eq. (4.8) or Eq. (4.9) 

respectively: 

    )( 2
2

22
CIP

CI
kr SOSO 



                        (4.8) 

 
2

2

2
)( 2 SO

SO
SO PCI

P
kr 


                           (4.9) 

Compared with Eq. (4.7), effka  corresponds to   CI
k



2

 in Eq. (4.8) and 
2SOP

k   

in Eq. (4.9). Take the results at 22 oC from Table 4.11 and 4.12 as an example, the 

calculations are as followings: 

When [I2] =0.146 mol/L, 

 
115

6

2

skPaL1097.1
30.0146.0

108.8 











CI

kkaeff  

When 
2SOP =122.7 kPa, 

115
3

skPaL1093.1
7.122

104.2

2











SO

eff P
kka  

The effka  calculated from the two equations with different sets of experiment changing 

either SO2 initial partial pressure or iodine concentration is nearly the same. As 

discussed earlier, the effective interfacial area under such conditions is 0.00325 m2, and 

then the specific reaction rate k  can be obtained. Theoretically, the constant C is not a 



 

 
66 

 

function of temperature, so we average the two value of C, 0.25, as part of the final rate 

equation: 

  )25.0( 222
 IPkar SOeffSO                       (4.10) 

The earlier, discussion shows that water is not only a reactant in the Bunsen 

reaction, but also provides effective interface to the reaction. Thus, it is difficult to work 

out a simple order of reaction with respect to water. 

4.12 Effect of temperature on initial reaction rate 

To study the effect of temperature on initial reaction rate, two more runs were 

conducted at 32 and 42 ℃ respectively with certain iodine concentration and SO2 

initial partial pressure. The specific conditions and their corresponding initial reaction 

rates and specific reaction rate calculated from Eq. (4.10) are given in Table 4.13. From 

Table 4.13, it is clear that as temperature increases, the specific initial reaction rate 

increases. The temperature dependence of the reaction can be determined using 

Arrhenius equation. The relationship between k  and temperature T  may be described 

by  

)exp(0 RT
EAk a                               (4.11) 

where, the activation energy of the reaction can be obtained by correlating the specific 

reaction rate and the reciprocal of absolute temperature, as shown in Figure 4.16.  The 

activation energy calculated is (6.02 ± 0.14) kJ/mol according to Figure 4.16. The 
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Preexponential factor lnA0 is -9.46 ± 0.06. The reaction rate shows light dependence on 

temperature, furthermore, the activation energy is much lower than a normal chemical 

reaction. It suggests that the reaction process should be controlled by SO2 dissolving.  

   

Table 4.13 Effect of temperature on initial reaction rate                       
Phase ratio (VW/VO):0.7/80; Agitation speed: 200 rpm 

 

0.0031 0.0032 0.0033 0.0034
-11.95

-11.90

-11.85

-11.80

-11.75

-11.70

-11.65

ln
k

1/T, 1/K

 
Figure 4.16 Arrhenius plot for Bunsen reaction in the presence of toluene        

(Phase ratio: 0.7/80; 200rpm, [I2]: 0.146 mol/L, SO2 initial partial pressure: 122.7 kPa) 

Temperature 
oC 

SO2 init. pres 
kPa 

[I2] in toluene 
mol/L 

rate ×104 
mol/s 

k ×106 
m s-1kPa-1 

22 122.7 0.118 9.8 6.7 
32 122.7 0.118 10.7 7.3 
42 122.7 0.118 11.5 7.8 
52 122.7 0.118 12.3 8.4 
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CHAPTER 5 
 

CONCLUSIONS AND FUTURE WORK 

In the research of H2S splitting cycle for hydrogen production, the kinetics of 

Bunsen reaction, especially in the presence of toluene was explored. The followings 

were concluded: 

1.  The reaction rate was found to be the first order with respect to SO2 and I2 

respectively under certain conditions. A rate equation was established in which SO2 and 

I2 are involved. The results of temperature effect show that the reaction followed the 

Arrhenius equation with an activation energy of 6.02 kJ/mol.  

2.  Both of the agitation and water/toluene volume ratio affect the reaction rate. 

The 200 rpm of agitation speed was regarded as the minimum level desired for agitation. 

Water/toluene volume ratio 2.8:80 was regarded as the desired level of water content, 

considering reduced water amount is desired for the system. 

3.  The iodine diffused from organic phase to aqueous phase during the reaction 

since little amount of iodine was measured in aqueous phase after reaction. Bunsen 

reaction has no significant enhancement to the dissolution of SO2. The dissolution of 

SO2 and chemical reaction are of the same order of magnitude. Moreover, the agitation 

plays a significant role in increasing the reaction rate, indicating that the chemical 
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reaction must not be the rate-limiting step. The magnitude of the small activation energy 

also suggests that the reaction is controlled by SO2 dissolution. 

4. Therefore, the Bunsen reaction rate in the gas-liquid-liquid system as discussed 

in this thesis can be improved by enhancing the SO2 dissolving rate. 

It is recommended that other reactors that are able to largely enhance the mass 

transfer among phases be used in the future study. Other solvents such as xylenes that 

have higher iodine solubility should be taken into consideration. 
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APPENDIX A                                                     
Measurements of I2 and I－ by UV-Vis 

The concentrations of iodine in toluene and iodide in water were measured by 

UV-Vis, using Beer Lambert law, the concentration of iodine and iodide can be 

calculated according to the absorbance: 

c
I
IA  1lg
0


 

The peak used is the one at 496 nm for iodine in toluene (Figure B.1) and that  

226 nm (Figure B.2) for iodide in water. The absorbance is increasing with the 

concentration. With known concentrations and their responding absorbance for both 

iodine and iodide, UV-Vis calibration curves can be plotted in Figure B.3 (Iodine) and 

Figure B.4 (Iodide), respectively. The slopes of the linear regressions are the molar 

extinction coefficients, respectively, which is 1.025×103 L mol-1cm-1 for iodine and          

1.33×104 L mol-1cm-1 for iodide. 
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Figure A.1 Absorption spectrum of iodine in toluene 
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Figure A.2 Absorption spectrum of iodide in water 
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Figure A.3 UV calibration curve for iodine in toluene 

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-5 1.0x10-4 1.2x10-4
0.0

0.5

1.0

1.5

y = 13296x
R2 = 0.998

Ab
so

rb
an

ce

iodide in water, mol/L

 
Figure A.4 UV calibration curve for iodide in water 
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APPENDIX B                                                 
Experimental Raw data 

The reading for the pressure for each experiment is through the pressure transducer 

in which the unit of the pressure is in psi. Since the transducer read the pressure for 

every second, the tables with experimental raw data presented in this appendix only 

shows the first 60 seconds for the experiments in the group of different agitation speed 

to save space, other data can be found in the CD handed to Dr. Wang.  

Table B.1 Raw data of pressure recorded for the runs of different agitation speed 
Time Pressure (psi) 

s 0 rpm 100 rpm 200 rpm 300 rpm 

0 12.67 12.58 12.41 12.62 
1 11.99 11.88 11.65 12.01 
2 11.40 11.37 10.66 10.75 

3 11.18 10.64 10.24 10.27 
4 10.73 10.44 9.52 9.36 
5 10.46 9.97 9.19 8.88 
6 9.90 9.69 8.61 8.36 

7 9.69 9.30 8.12 7.81 
8 9.40 8.93 7.79 7.60 
9 9.11 8.59 7.46 7.12 
10 8.88 8.30 7.13 6.96 
11 8.66 8.14 6.82 6.55 
12 8.50 7.88 6.55 6.31 
13 8.30 7.71 6.35 6.09 
14 8.12 7.46 6.12 5.84 
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15 7.93 7.26 5.96 5.78 
16 7.78 7.07 5.74 5.56 
17 7.65 6.91 5.70 5.44 

18 7.53 6.79 5.49 5.22 
19 7.45 6.63 5.39 5.13 
20 7.32 6.58 5.21 5.03 
21 7.20 6.40 5.14 4.89 

22 7.13 6.30 5.06 4.78 
23 7.00 6.21 4.90 4.68 
24 6.94 6.07 4.84 4.66 
25 6.85 6.00 4.76 4.56 

26 6.79 5.88 4.72 4.50 
27 6.65 5.87 4.61 4.43 
28 6.63 5.73 4.54 4.34 
29 6.53 5.67 4.46 4.29 

30 6.46 5.58 4.40 4.23 
31 6.42  5.52  4.38  4.18  
32 6.31  5.46  4.29  4.14  
33 6.26  5.37  4.24  4.08  

34 6.19  5.32  4.19  4.04  
35 6.13  5.25  4.13  4.00  
36 6.09  5.22  4.10  3.95  
37 6.04  5.16  4.04  3.91  

38 6.00  5.11  4.00  3.89  
39 5.94  5.07  3.95  3.86  
40 5.86  5.01  3.94  3.80  
41 5.80  4.99  3.90  3.79  

42 5.79  4.93  3.87  3.73  
43 5.72  4.88  3.81  3.72  
44 5.69  4.84  3.79  3.67  
45 5.68  4.80  3.77  3.69  

46 5.60  4.74  3.73  3.63  
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47 5.61  4.70  3.70  3.62  
48 5.52  4.67  3.66  3.58  
49 5.49  4.61  3.63  3.57  

50 5.45  4.62  3.61  3.54  
51 5.41  4.55  3.58  3.52  
52 5.38  4.52  3.55  3.50  
53 5.31  4.48  3.53  3.50  

54 5.28  4.46  3.52  3.49  
55 5.25  4.42  3.49  3.45  
56 5.24  4.37  3.49  3.44  
57 5.19  4.37  3.46  3.43  

58 5.16  4.32  3.44  3.41  
59 5.13  4.29  3.42  3.41  
60 5.07  4.27  3.41  3.40  

 

Besides, the analysis of the substances in both aqueous phase and toluene phase 

after each run of the experiment was conducted. Then mass balance with respect to the 

ion of iodine (Table 4.3) was carried out based on the data of the analysis. Table C.2 

shows the analysis data of the runs after the experiments in the group of different iodine 

concentration at 22 oC to save space, other data can also be found in the CD handed to 

Dr. Wang. 

 

 

 

 

 



 

 
80 

 

 

Table B.2 Amount of various components after reaction with different [I2]         
SO2 initial partial pressure: 79.2 kPa; phase ratio: 0.7:80; Agitation: 200 rpm 

[I2] in 
toluene 
mol/L 

I2 left 
toluene 

mol 

I2 left 
water 
mol 

I－ 
water 
mol 

H+ 
water 
mol 

0.195 0.00199 0.00099 0.02498 0.05084 
0.146 0 0 0.02263 0.04672 

0.118 0 0 0.01843 0.03880 
0.078 0 0 0.01227 0.02534 
0.045 0 0 0.00692 0.01477 

 

 


