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Abstract 

A new knee brace design is required to provide non-surgical distraction of the knee joint for 

extended periods of time. This knee brace needs to apply traction force to the joint directly, 

rather than indirectly unloading one compartment. In providing such a design, this research had 

two objectives: 1) to design a lower-leg knee brace that can apply traction load to the knee; and 

2) to test prototypes of these lower-leg knee brace components and relate the traction load to 

wearer discomfort and interface force. 

The first objective was met through prospective analysis and iterative design. A planar finite 

element (FE) model of the lower leg was used to analyse the effect of knee brace coverage. It 

was observed that increasing the coverage of the knee brace may reduce interface pressures and 

concentrations of force. A lower-leg knee brace was designed responding to this model, using 

fibreglass casts with embedded fasteners to transfer load. Braces were manufactured in three 

lengths for testing: 3”, 7”, and a combined (“mixed”) design with components from each. 

Nine participants were recruited for pilot testing of the lower leg knee brace. A mechanical test 

frame was built to apply traction load to the participants’ legs through each of the prototype knee 

braces. The load in the test frame was increased in 3kgf increments as interface force 

measurements were taken. Participants self-reported their discomfort on an 11-point Likert scale 

or Numerical Rating Scale (NRS). 

Results of the pilot study showed significant differences among the brace designs. The 3” design 

showed higher NRS scores than the 7” and mixed designs by a full NRS step. Graphical profiles 

of the interface force suggested that this difference may be the result of higher interface forces 

distributed across the smaller area of the 3” brace. However, no significant correlation between 

maximum interface force and self-reported pain was found. Parameters characterizing the shape 

of the participant’s lower legs indicated that leg shape may influence brace effectiveness. 

This study concluded that a rigid knee brace is indeed a valid design, but a longer knee brace 

interface is required for the anterior surface of the leg to improve comfort. This length may not 

be required for the posterior surface. Further, this study demonstrated simple relationships 

among applied load, interface force, and wearer discomfort. Future work will adapt this design to 

the upper leg and optimize the design to minimize force concentrations at the joints.  
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1 Introduction 

Osteoarthritis (OA) is a leading cause of disability, causing growing concern for many Canadians 

who wish to be active and healthy. According to the Canadian Chronic Disease Surveillance 

System, 13% of Canadians over the age of 20 years are affected by OA1. When the knee joint is 

affected by OA it may lead to disability and inferior quality of life. Total knee replacements are 

an option to restore function to those suffering most severely from OA but are only available at 

the advancing stages of the disease. There are non-surgical treatment methods for knee OA, 

summarized by the Osteoarthritis Research Society International (OARSI) in their published 

guidelines2. OARSI’s panel of experts and patients recommend weight management, strength 

training, and biomechanical interventions (e.g. knee bracing) as appropriate elements to a 

complete treatment regime. 

The subject of this thesis is the design of knee braces, an example of biomechanical interventions 

for OA management described in the OARSI guidelines. Evidence is surfacing that indicates that 

changes to the loads in the knee resulting from joint distraction may be key to delaying the 

degenerative effects of OA3-5. The main goal of this research is to adapt knee brace interface 

design to address current challenges in surgical methods of providing joint distraction.  

Current OA knee braces are “unloaders”, creating moments about the knee to limit joint torques 

that cause joint pain during gait. These braces provide a simple solution to a complicated 

biomechanical problem but see low long-term compliance due to poor fit and discomfort of the 

wearer6.  Instead, knee braces should adapt to directly oppose the forces acting through the knee 

rather than redistribute them, while simultaneously addressing issues of comfort and compliance. 

Further, it is desirable to obtain quantitative data relating these parameters for use in engineering 

models. This research attempts to address each of these problems through the redesign of a 

lower-leg component to a new knee brace.  This knee brace component is assessed by its 

capability to deliver traction load to a human leg, the behaviour of the mechanical interface 

between brace and leg, and the resulting comfort of the wearer. 

  



2 

 

2 Literature Review 

2.1 Functional Anatomy of the Knee Joint 

The tibiofemoral joint of the human knee is the joint between the three long bones of the lower 

leg – the tibia, fibula, and femur. These bones meet in the arrangement shown in Figure 2.1, with 

the tibia and fibula extending distally to meet the tarsal bones of the foot. The femur extends 

proximally to the hip. 

 

Figure 2.1: Anatomy of the knee joint (excluding patella)7 

The tibiofemoral joint is contained in a synovial capsule consisting of connective tissue, 

ligaments, and the femoral-patellar joint (not pictured in the image above). Inside this capsule is 

fluid that provides lubrication and nutrition to the tissues inside. The capsule includes the 

collateral ligaments (medial and lateral) and the cruciate ligaments (posterior and anterior). 

These ligaments hold the bones together and constrain movement as the joint articulates. 

The surfaces of the tibia and femur that act as bearing surfaces of the joint are covered by 

articular cartilage. This soft tissue provides a smooth surface for the bones to pass over with 

respect to each other. Between the articulating surfaces are the meniscii, small semi-disks of 

cartilage-like tissue that provide further shock absorption and alignment. Each of these tissues 
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help provide shock absorption and alignment for the knee joint as it articulates. The health of 

these tissues directly influences the knee joint’s ability to function. 

2.2 Osteoarthritis and Knee Joint Distraction 

OA is a debilitating disease that affects articulating joints, causing pain and decreasing 

functionality. The disease is characterized by physiological changes in the muscoloskeletal 

tissues of the affected joint such as the formation of cysts and bony protrusions (osteophytes), 

inflammation, degradation of articulating tissues and the closure of the joint space as well as 

pain8. The features of OA are numerous, but all influence the health of the tissues in the affected 

joint. The prevailing hypothesis is that OA progresses due to an imbalance of damaging and 

synthetic processes, resulting in tissues that cannot perform8.  

There are a number of metrics for measuring the severity of OA. The Kellgren-Lawrence scale 

employs radiographic measures to assess the severity of OA based upon features such as 

narrowing of the joint space width (JSW) and osteophyte formation9. Other changes in such as 

altered bone density and the formation of cysts have also been linked with OA progression8.  

Little is known about the degradation/synthesis mechanism of OA, so most treatments of OA 

focus on treating the primary symptom (pain) rather than combatting the cause of the disease. 

One such treatment is joint distraction, in which mechanical force is applied to the joint to 

separate the articulating surfaces of the bone for brief periods of time. Joint distraction can be 

applied by hand10 but is also applied using constant-traction force generating devices11,12. In 

patients with knee OA, knee joint distraction (KJD) has been shown to lessen pain and improve 

function when coupled with regular physiotherapy12. 

There is reason to believe that joint distraction may have greater effects than reducing pain. 

Surgical methods of joint distraction in the human ankle13 and canine models of knee OA14 have 

been somewhat successful at restoring function and health to tissues. These studies led to pilot 

work in using KJD to combat OA in humans.  

The first trials in long-term surgical KJD were performed using monotube fixators (typically 

used for fixing bones in the wrist after fracture). In the pilot study by Intema et al3, participants 

with radiologically-confirmed knee OA had two fixators surgically inserted through the soft 

tissue of the leg into the tibia and femur. These fixators were adjusted to set the endpoints of the 
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tibia and femur with a JSW of 5mm as confirmed by radiographs. Because these fixators are 

spring-loaded, participants were able to walk with their full weight on their fixated knee with 

some degree of compliance (despite the angular position of the knee being fixed). Participants’ 

knees were fixated for approximately two months with intermittent appointments to remove the 

fixators and flex the knee. 

 

Figure 2.2: Surgically distracted knee with two monotube fixators (medial and lateral), 

reproduced with permission4 

The initial results from this pilot study were extremely promising. Like short-term, non-surgical 

KJD, pain scores and functionality in the treated joints were improved. Unlike other methods for 

KJD, physiological changes were observed. Immediately after the distraction protocol, the JSW 

in the knee compartment most affected by OA was much greater than at baseline. Similarly, the 

overall JSW in the knee was improved3. Other earmarks of OA such as subchondral bone density 

and the thickness and area coverage of the articular cartilage were also significantly improved by 

surgical KJD. By changing the method of distraction to allow for long-term manipulation of the 

joint (as opposed to short bursts in a medical appointment), KJD was able to relieve the 

symptoms of OA and combat some of the physiological damage from the disease. 

Even more impressive are the results of two- and five-year follow-ups to the pilot study. At two-

year follow up, WOMAC pain and function scores were still significantly better than baseline 

(although lower than at 1 year)4. Physiological markers such JSW and cartilage coverage and 
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thickness were also still improved over baseline but lower than at 1-year follow up. Examples of 

these trends for the most affected compartment (MAC) are demonstrated for thickness of 

cartilage over bone area, percent of denuded bone, and cartilage thickness over cartilage-covered 

area in Figure 2.3. 

 

Figure 2.3: Physiological and radiological trends in cartilage thickness following KJD, 

reprinted with permission5 

Five-year follow-up to this pilot study still showed positive effects from KJD, although trends 

through this timeframe continued towards decline5. In fact, three of the original cohort of twenty 

participants had total knee replacements in this time due to declines from OA. However, 

WOMAC and VAS pain and function scores were still improved from baseline. Similarly, the 

minimum JSW in the distracted knee was still higher than at baseline, although the most affected 

compartment JSW had returned to baseline levels. 

The results of this pilot study point to a new direction for OA research. Unfortunately, the pilot 

study saw serious complications due to the surgical fixators that will limit the widespread 

application of this technique. Specifically, two participants in the pilot study had pulmonary 

emobli because of open pin tracts, and almost all (n=17) are reported to have needed antibiotics 

to treat pin tract infections3. These complications pose serious limitations on future widespread 

testing of KJD as a method for treating OA, as larger cohorts increase the number of harmed 

individuals. 

To further study the benefits of long-term KJD, a method for providing distraction load is 

required that does not require an open wound tract. Ideally such a method would not require 
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surgical intervention at all. The method proposed to overcome this challenge is a knee brace that 

can apply distraction loads, providing a long-term method for applying force without surgery.  

2.3 Osteoarthritis knee braces 

Knee braces are orthotic devices that are designed to apply mechanical load to the leg for support 

or correcting alignment. Knee braces for treating OA typically try to correct varus/valgus 

moments and malalignments15. This countermoment is usually created through a narrow rigid 

frame or nylon surface, applying opposing coupled forces at three or four points along the leg. 

An example of such a knee brace is shown below: 

 

Figure 2.4: Left: An example of a knee brace, reused with permission16. Right: A diagram 

showing the moment-generating loads applied by a knee brace 

The knee braces presently available in the market are made from aluminum or magnesium 

alloys, carbon fibre and rigid plastic, or flexible nylon. These knee braces apply their forces with 

one or two arms running along the leg with connecting bars, which are coupled with straps to 

hold the brace on the leg. Because the forces are applied across the leg as concentrated loads 

(rather than being distributed across broader components), there are few braces that cover much 

of the leg – their designs are highly optimized for creating varus/valgus moments and little else. 

This method of loading seeks to treat the symptoms of OA (pain, stiffness, and malalignment) 
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with no other physiological effects. There is, however, existing controversy concerning their 

effectiveness.  

The OARSI guidelines on the treatment of osteoarthritis summarize the controversy around OA 

knee braces as part of their review of biomechanical interventions in general – they recommend 

these devices as prescribed by specialists but acknowledge reviews that describe the evidence for 

their effectiveness as "limited due to heterogeneity and poor quality of the available evidence"2. 

The review in question was published by Duivenvoorden et al.17, which assessed clinical trials 

involving knee brace effectiveness at reducing pain and improving function. Duivenvoorden et 

al.'s review presents a dissenting voice compared to other reviewers, most of whom agree that 

knee braces at least succeed in reducing pain18-20. This difference may arise from the constraint 

of clinical trials in the Duivenvoorden review – the reviews by Steadmann et al.18, Petersen et 

al.19 and Maleki et al.20 did not have this constraint and included observational and pilot studies. 

Even with dissent among reviewers, there is evidence towards knee braces reducing OA pain. 

Summarized by Moyer et al. in their review21, many studies find that knee braces improve 

WOMAC scores for pain22-27.  Interestingly, Draganich et al.28 compared off-the-shelf knee 

braces to custom braces and found that while both groups improved pain scores, custom knee 

braces helped restore function where off-the-shelf braces did not. This suggests that custom knee 

braces interact more effectively with the body.  

The crux of the controversy around knee brace effectiveness is biomechanical rather than 

clinical. This controversy is best summarized by Steadman et al.'s review18, which focusses on a 

number of biomechanical measures of gait such as external knee adduction moment (EKAM), 

walking speed, self-selected walking parameters, and (in some cases) knee JSW. In general, 

unloader knee braces appear to reduce EKAM26,27,29-31 with some caveats. Again, Draganich's 

study found that the custom knee braces successfully reduced EKAM where the off-the-shelf 

braces did not28. Factors such as pairing with insoles24 and initial direction of malalignment16 

may also influence reductions in EKAM. In contrast, Hart et al.'s study suggests that the load 

applied to a brace does not affect whether or not a knee brace may reduce adduction moments32. 

The variety of findings and range of factors raises concerns regarding the compatibility of knee 

braces with individual cases. The research reported in this thesis was performed under the belief 

that the inability of knee braces to have consistent biomechanical effects is partly rooted in the 
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indirect method of loading – countermoments do not directly oppose the forces passing through 

the knee joint but rather shift their location. Inter-personal variability add even more variability 

to this indirect mechanical approach. 

The evidence surrounding OA knee braces in the literature shows symptomatic relief without the 

physiological or gait changes required to delay OA progression. The disparity in these results can 

be directly compared to the distraction enforced in the KJD pilot study. Some knee brace studies 

have found changes in alignment24,32 including one that used three-dimensional (3D) 

fluoroscopy33. Contrastingly, fluroscopic results found that this alignment change could open the 

most-affected-condyle but was inconsistent across brace design and participants. Another study 

using biplane radiographs found similarly inconsistent results25. 

Varying results across different designs speak to a mechanical problem rooted in the operating 

principle itself. The loads required for an unloader knee brace to pry open a collapsed knee 

compartment are extremely high; too high for the narrowness of the frame of current knee braces 

to distribute into the leg, It may be more effective to directly oppose the loads passing through 

the knee and pull the bones apart, as provided by surgical fixators, than to rely on a moment to 

open one compartment of the knee indirectly. The difference between these two loading schemes 

is illustrated in Figure 2.5. 

 

Figure 2.5: Comparisons of the traction and moment loads applied by knee braces16 and 

surgical devices5 
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To achieve the desired transformation in loading, a change to knee brace interfaces (the 

components of the knee brace that contact the body) is required. This change necessitates study 

of the interface forces and their distribution across the leg surface. 

2.4 Modelling of Biomechanical Interfaces 

Biomechanical interfaces are challenging to quantify through both empirical measurements and 

modelling. However, the results of these investigations can provide detailed models which can 

be used in design and optimization of knee braces for desired applications. Pierrat et al. have 

developed one such model using CT images and non-linear tissue models to create a FE model 

that could then be employed in parametric optimization of a knee brace. The authors were able to 

study the effect of parameters such as brace stiffness, length, and coefficient of friction at the 

brace interface on stress at the tissue surface34. An example colour map of their simulation 

illustrating the model’s ability to predict these interface stresses is depicted in Figure 2.6. 

 

Figure 2.6: Example of an interface model, reproduced with permission34 

A similar model would be an asset in designing an OA traction knee brace but these models 

require validation. Considerable work has been done for similar studies of lower leg prosthetics 

(which create traction loads similar to the desired effects of KJD), evolving towards dynamic, 
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validated models35. Flexible pressure sensors have been designed and tested for measuring 

prosthetic socket interfaces36,37. These sensors are designed to measure forces normal to the 

surface and have well-known limitations in combined loading such as buckling, folding, and 

shear biasing in output voltages. Ideally more complicated systems such as Fibre Bragg 

Gratings38 can be used to provide 3D dynamic data. However, given the scarcity of data, there is 

still significant clinical relevance to simple pressure measurements given that they can be related 

to comfort and overall effectiveness35. 

There have been attempts to relate indenter pressures on the residual limb to a model to 

determine goodness of fit35,39,40. These models employ subject-specific imaging to develop 

models that accurately capture differences in geometry between subject's bodies. However, while 

these models relate interface stresses to the pain pressure threshold of the wearer, they do not 

validate these relationships with an overall pain score or interface sensor data. For a 

biomechanical interface such as a knee brace or prosthetic socket, the relationship between 

interface force and the comfort of the wearer are important areas for future investigation. 

2.5 Summary 

OA is a widespread musculoskeletal disease that affects tissues in the joints, causing pain, 

stiffness, and loss of function. A new method for combating the degeneration of these tissues in 

the knee may be long-term joint distraction, in which the joint is separated by a fixed distance for 

a number of months. This procedure has demonstrated the possibility for cartilage and 

subchondral bone to recover but has major complications due to the requirement for an open pin 

tract to externally fixate the bones. 

The proposed method for overcoming the challenges of KJD is to instead employ a knee brace to 

apply distraction load, removing the need for surgery to distract the knee. Current knee braces 

employed in the treatment of OA use coupled forces to create moments about the knee to unload 

one compartment of the knee. These knee braces are effective at relieving pain but have not 

shown that they can apply the forces required to fully distract the knee. The problems with knee 

brace effectiveness necessitate a change in their design as they are constructed using frames that 

cannot apply the required traction forces. Further study of the biomechanical interface of such a 

high-load device is required. 
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Biomechanical interfaces are often investigated using FE models with experimental validation. It 

has been shown that such a model may be used to optimize soft brace designs, so there is 

potential to use interface information to optimize a high-load brace. However, the closest 

analogies to a KJD knee brace that are studied in this manner are prosthetic socket interfaces. In 

addition to FE models, flexible pressure sensors can be used to investigate the stress-state and 

forces at the boundary between the socket and residual limb. These methods may be replicated to 

analyze this boundary in a KJD knee brace and, ideally, relate the mechanical performance of 

such a brace to the comfort of the wearer. The current design paradigm of OA knee braces may 

be shifted to apply traction load rather than cross-loading to apply varus/valgus moments, 

allowing large-scale investigation into the promise of KJD as a conservative treatment of 

osteoarthritis. 
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3 Research Questions and Objectives 

3.1 Research Question 

The proposed research will investigate the design of a lower-leg knee brace and its interactions 

with the human body. The overall research question is: can a rigid knee brace be used to apply 

traction load to the lower leg? Further, the proposed research will investigate relationships 

between distraction load and wearer discomfort, and attempt to relate these factors to the 

mechanical interface between the brace and wearer's leg. 

3.2 Objectives 

To address the research question, the following objectives will be pursued: 

1. To design lower-leg knee braces that can apply traction load to the knee; and 

2. To test prototype lower-leg knee brace components and relate the traction load to wearer 

discomfort and interface force. 

3.3 Hypotheses 

For the design process prescribed in Objective 1, the hypothesis was that the artefact or system 

proposed (the lower-leg knee brace) would succeed in its purpose (to apply traction load to the 

knee). 

The hypotheses for the pilot test described in Chapter 5 were determined during the design 

phase. We hypothesized that the longest knee brace design would have the lowest interface 

forces and, as a result, the lowest reported discomfort by study participants. We hypothesized 

that a “mixed” brace design comprised of short and long halves would have intermediate 

discomfort scores, and the shortest design the highest discomfort scores (with accompanying 

increases in interface forces). 

Repeated brace failure for one participant prompted investigation of the relationships among leg 

shape, interface forces, and wearer discomfort. This investigation is described in Chapter 7. It 

was hypothesized that leg shape would correlate to measurements taken during the pilot study. 

Specifically, we hypothesized that increases in leg size and shape complexity (curvature) would 

reduce interface forces and wearer discomfort ratings. 
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3.4 Scope 

Chapter 4 describes the design of the lower leg knee brace using planar FE modelling to 

determine different brace shapes to be tested. Chapter 5 describes the testing method that was 

developed to perform a pilot study on the prototype braces. This method was employed on a 

small cohort of 9 participants. The data from this pilot test was analyzed to for the relationships 

from Objective 2. Chapter 5 also describes the results of this analysis in terms of statistics and 

graphical relationships. In Chapter 6, post-hoc geometric analysis is used to relate participant leg 

shape to outcomes from Chapter 5. Chapter 7 discusses these results in the context of existing 

research. Chapter 8 concludes the research, addressing the limitations and future work arising 

from the pilot study. 
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4 Design Development 

4.1 Introduction 

The purpose of the design process was to create a new knee brace that delivers traction loading 

to the knee through the lower leg. These loads are of a large magnitude on a physiological scale 

(on the order of the wearer’s bodyweight) but are relatively low compared to the strengths of 

engineering materials. The key issue in the design was then to distribute the load onto the body 

safely and comfortably. The distraction knee brace will need to be worn for long periods of time 

(up to two months to match the distraction period of the surgical pilot study). A prosthetic socket 

provides such a load and is usually worn for much longer than this time frame, but the force is 

directed proximally rather than distally. An effective design may then re-arrange a prosthetic 

socket to apply load in the opposite direction. By changing the orientation of the applied force 

and adjusting the area covered by the socket, this design has been adapted to the traction knee 

brace. 

The design factors manipulated in this design were the area of coverage of the knee brace and the 

stiffness of the material. Area of coverage is a balancing act between avoiding sensitive areas 

while maximizing the area across which load can be distributed. Stiffness was determined by 

selecting the material for the knee brace. Investigation of the interaction between these factors 

began with a simple finite element model, leading to the iterative design of prototypes. 

4.2 General Design Features 

The proposed design employs high-coverage, prosthetic socket-like interfaces to apply traction to 

both the upper and lower leg. The initial concept for this design had nearly full coverage of the 

leg, with rigid connections to apply traction load at multiple points across the leg surface. A 

rapid-prototyping model of the design is demonstrated in Figure 4.1. 
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Figure 4.1: Model of a complete design concept 

This design concept uses a simple mechanism (threaded rods) to apply traction load to the 

interfaces. At this stage of the design, straps (partially represented by hose clamps in Figure 4.1) 

apply preload to adhere the brace to the leg surface. 

Early renditions of this design covered the entire surface of the thigh and the calf muscle. 

However, it was unknown if this was the ideal configuration for the design and, if the design 

were changed to cover more or less of the leg, what the comparative differences would be. The 

area covered by the brace became the primary factor to be manipulated while improving the 

design. The lower-leg interface was studied here due to the relative complexity of directing load 

away from the body. 

4.3 Design Improvements 

4.3.1 FE Analysis 

4.3.1.1 Methods 

A planar FE analysis of the lower leg was employed to observe the effects of changing brace 

area coverage on the brace-body interface. A simple shape was derived in ANSYS mechanical to 

simulate a generic lower leg (purple areas in Figures 4.2 and 4.3). Two rigid bodies representing 

Upper Leg Interface 

Lower Leg Interface 

Fixating Rods 
Retaining Straps & 

Clamps 
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a knee brace (blue and red in Figures 4.2 and 4.3) were fitted directly to this body with a no-slip 

boundary condition at contact with the lower leg. 

 

Figure 4.2: 3-dimensional representation of bodies used in FE simulation 

All three bodies were modeled with 2-dimensional Plane42 elements representing the leg in the 

sagittal plane. Soft tissue was modelled with an elastic modulus of 13.8MPa and a Poisson's ratio 

of 0.475. These properties are considerably stiffer than 3D models for similar contact scenarios41. 

However, this tissue modulus allowed the models to converge without non-linear deformation. 

Without subject-specific data numerical results were only estimates for relative comparison of 

different lengths, so convergence of the model was prioritized. The elastic modulus of the brace 

material was 138MPa with a Poisson’s ratio of 0.30. The properties for the brace material were 

analogous to a generic polyethylene thermoplastic42. This material model was selected to 

represent a common industrial plastic which is many times stiffer than the soft tissue. 

Preload 

Applied traction load 
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Figure 4.3: Boundaries and bodies in FE planar simulation of lower leg in the sagittal plane 

(colours of bodies match Figure 4.2) 

Constraints were put on the planar FE model to simply simulate the bones and load applied to the 

brace. The vertical degree of freedom was restrained at the shin to simulate the tibia (the line 

between points 6, 8, 9 and 7 in Figure 4.3). The tangential degree of freedom was not restrained 

to allow for some skin-like movement at that surface. The distal edge of the body was fixed to 

act like a foot resting in place (against the ground or a wall) on the lines 7-5 and 5-4.  

In this two-dimensional approximation, applied pressures were modelled as forces per length. A 

preload pressure of 0.876N/mm was applied to the exterior surfaces (line 16-13 and 14-12). A 

pressure of 17.5N/mm was applied to the proximal edge of each brace (lines 1-14 and 6-16). As 

the length of the knee brace was manipulated, the distraction force acting on the brace remained 

constant while the net preload increased (as a result of a constant distribution along the surface of 

the brace). This load case was solved for each brace configuration. 

The effect of changing length was determined by resolving the load case for braces of increasing 

length. The percent of line segment 8-9 covered by the brace was the factor used to manipulate 

the length of each brace - braces were modeled for a coverage ratio of 0.05 to 0.99. Each brace 

had the same starting point (just below where the knee would be).  

Von Mises stresses were contoured for all three bodies for comparison. Von Mises stress was 

selected as a stress measure to represent the net stress state in the leg. Any combination of 

compressive, tensile, and shear forces can affect comfort and the performance of the brace. 

0.876N/mm 

17.5N/mm 

0.876N/mm 
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Visualizing the interface using von Mises stresses provided an overview of these combined 

effects. Maximum von Mises stresses and their locations were recorded for each configuration. 

Although units of MPa were recorded for von Mises stresses, these values could only be 

compared relative to each other due to the generic leg geometry and material models that were 

used. 

4.3.1.2 Results 

Von Mises contour plots were used to visualize the distribution of stresses along the brace-leg 

interface. Figure 4.4 demonstrates two of these contour plots. Plots for all lengths are given in 

Appendix A. Stresses were reported in default units of thousands of pounds per square inch (ksi) 

and converted into MPa. However, because this model used generic two-dimensional geometry 

with approximated material properties, the resulting values are only be interpreted comparatively 

within this study. 
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Figure 4.4: Contour colourmaps of von Mises stresses (shown in ksi) resulting from planar 

simulation. Two length ratios shown: 0.05 (top) and 0.99 (bottom) 

Investigation with this model focussed primarily on the stresses in the leg directly immediately at 

and below the interface with the brace. The maximum von Mises stress and its location were 

recorded for each segment length. 
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Table 4.1: Summary of maximum von Mises Stresses in planar simulations, categorized by length 

ratio of lower-calf line coverage 

% Segment Covered Maximum 𝝈𝑽𝑴 [Mpa] Maximum Stress Location 

5 1.87 Anterior Surface 

10 1.80 Anterior Surface 

20 1.14 Anterior Surface 

30 1.14 Anterior Surface 

40 0.996 Anterior Surface 

50 0.862 
Both anterior and posterior 

surfaces 

75 1.02 Posterior Surface 

80 1.11 Posterior Surface 

99 1.48 Posterior Surface 

 

4.3.2 Prototype Development 

4.3.2.1 Methods 

4.3.2.1.1 Design Model for Prototyping 

Design of the prototypes began with a design space model to describe the relationship among 

concepts. A situated function-behaviour-principle-system-state (FBPSS) model44 summarizes the 

requirements of a prototype knee brace. The FBPSS model was selected for the knee brace 

because it defines the design space in a way that is easily translated to numerical models (i.e. 

finite element models) and topographical and parametric optimization, all of which have already 

proven to be useful tools for studying mechanical interfaces. The FBPSS was applied to design a 

prototype brace for testing that could then be adapted into a complete knee brace with its own 

loading mechanism. This perspective on the design resulted in a design space that included 

additional functionality for quick changes to configuration and pressure measurement that may 

differ from or be excluded from a design space for a production knee brace. 
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Table 4.2: Summary of FBPSS Design Model 

Model Component Definition Application to Knee Brace 

Function 

That which must be 

accomplished; the required 

transforms of energy and material 

1) To sustain tensile load and 

transfer it to the human body 

2) To be donned and removed by 

the wearer (with assistance) 

System 

The structure, boundaries, and 

components that define the 

design space 

Minimum of two components: 1) 

Bounded by the shape of the 

wearer's body at contact surface 

2) One boundary must have a fixed 

pattern to interface with other 

machinery 

State 

The quantities that define the 

system's way of existing; used in 

principle and behaviour 

equations. 

1) Internal stresses/loads 

2) Interface force (at human 

boundary) 

3) Applied force (at standard 

boundary) 

4) Geometry (brace coverage) 

Principle 
The chief concept that governs 

the system's performance 

Static equilibrium of forces acting 

at the system boundary 

Behaviour 

Response of the system to 

stimulus (changes in state 

variables) 

1) Distribution of forces at human 

interface 

2) Deformation of the brace and 

human boundary 

This model was an important tool for the comparison of different designs, and for interpreting 

the performance of different configurations of the same design during testing. 
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4.3.2.1.2 Design Iterations 

4.3.2.1.2.1 Iteration 1 – Extruded Foam 

The first prototype design that rose from the FBPSS model used extruded foam blocks as a 

building material. Blanks were machined from this foam to a common pattern that fit between 

the jaws of a testing system with an accommodating bolt pattern. The radius of the blocks was 

such that the interior could be machined to fit a wearer’s leg. Changes in brace length were 

accomplished by stacking and bolting together sections of foam. An off-the-shelf drawer liner 

was used to pad the interior of these braces and provide higher coefficients of friction against the 

wearer’s skin. 

 

Figure 4.5: Prototype foam knee brace 

The primary shortcoming of this design was in the expense required for customizing the shape to 

the wearer's leg. Ideally, computer numerical control (CNC) machining would be used to remove 

material from the foam blanks but this process proved costly and difficult. Similarly, producing 

die for moulding the foam was expensive due to the size of the die required. In testing, hand-

fabrication was effective but slow and required a model of the wearer's leg to be freely available 

for fitting. Additional problems with this design included destructive wear on the foam and 

To test system 

Machined foam semi-circle 

Corrugated liner 
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bulkiness. Further, the foam deformed with respect to the leg surface – in cross section (as shown 

in Figure 4.6) like a cantilever beam fixed at the leg surface. This change in direction caused 

misalignment of the forces applied at the edge of the brace. 

 

Figure 4.6: Foam knee brace loaded in cross section (undeformed and deformed shapes shown) 

This deflection and destructive wear within the foam indicated that the foam designed was 

unable to sustain traction load (thereby failing to meet the function described in the FBPSS 

model). A stronger, stiffer material was required to achieve the balance of forces described in the 

FBPSS. 

4.3.2.1.2.2 Moulded Fibreglass 

Here a manufacturing process to fit fibre-reinforced polymers was selected. The first step in this 

process was to build a physical model of the wearer's leg. A plaster bandage was used to capture 

the shape of the lower leg, starting just below the patellar tendon and extending to the distal 

surface of the gastrocnemius muscle body. 

 

Figure 4.7: Plaster cast on participant's leg 

Plaster Bandage 

Orthopaedic Stocking 
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This bandage, once solidified, was cut along the posterior line of the leg and removed. The 

bandage was then stabilized with polyurethane before being taped to a base and sealed with tape 

to form a mould. Moulds were sprayed with vegetable oil as a parting agent before plaster was 

poured in. Once set, models were scarified and smoothed with additional plaster as necessary. 

Care was taken during this process to preserve the shape of the leg – only blemishes resulting 

from the casting process were removed. 

The next step in building a knee brace from this mould was to wrap the material around the 

plaster model. For a prosthetic socket, this process is simplified because the limb being fitted 

terminates – a full sheet of the socket material can be wrapped over the end and trimmed to 

create a manifold. This method was available (even though the limbs of the wearer extend, the 

mould itself terminates nearby) but the large amounts of material that would be fit and then cut 

away if we made the braces this way would be extremely wasteful. Delta-Lite Plus fibreglass 

casting bandages45 were selected as a replacement material. Bandages were wrapped tightly 

around the leg model in a close approximation of the desired shape and then trimmed. 

The advantages of the Delta-Lite Plus bandages extend beyond ease of manufacture. These 

bandages include a fibreglass substrate with a water-activated adhesive. It was observed that 

multiple layers of these bandages allowed the adhesive to consolidate into a visibly contiguous 

material. This property is highly desirable for the knee braces as it reduces the likelihood that 

layers will delaminate when fasteners and plates are held between the layers. Being able to hold 

on to fasteners is a requirement from the FBPSS design model, as is the rigidity and light weight 

of the material. 

The final prototype design for testing arose from this manufacturing process. Complete Delta-

Lite casts were made in two lengths, 3.5 inches and 7 inches. These lengths were selected to 

correspond (approximately) to the shortest length tested in our FE sensitivity study and the 

longest using the author’s leg as the example. Parts from each cast were then able to be 

combined to create the third test design, with 7 inches of brace coverage on the shin and 3.5 

inches on the posterior muscle bodies. This design was derived to observe the effect of 

increasing length on the anterior surface (hypothesized to reduce the interface force there) 

without the accompanying presence of the posterior brace to cause folding-over of the soft tissue. 
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The interior surface of each cast included orthopedic stockingette (to prevent the wearer's skin 

from contacting the fibreglass) and padded drawer liner to provide comfort and grip.  

 

Figure 4.8: Section showing order of brace materials 

Parting lines were required to fulfill the donning/doffing requirement from the FBPSS. These 

parts were placed to allow for testing of the load scenario described in our FE model. The parting 

line of the cast was made one the medial and lateral sides of the leg, leaving the solid brace in 

two halves (one posterior, one anterior). Early fittings indicated that a straight cut caused these 

the joint between these parts to pinch the skin, so a large chamfer was applied to the edge and the 

corners trimmed to reduce pinching and pain. These cuts made the brace surfaces over the tibia 

and gastrocnemius muscle body continuous, moving potential stress concentrations from the 

edge and providing a close analogy to the FE model in the sagittal plane. 
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Figure 4.9: Edge and corner adjustments on fibreglass brace 

Bolts were positioned in the centre of each brace half to act as the load transfer point with an 

external system. To maintain consistency in the bolt pattern, the bolts were held in place between 

two laser cut slates and glued in place. The plates and bolts were wrapped between layers of 

bandage as the brace was formed. The top edges of the plates were aligned with the proximal 

edge of the knee brace. The pocket of cast that formed around the fasteners was observed to be 

sufficiently stiff to transfer force into the surrounding brace.  

 

Figure 4.10: Completed prototype knee brace on plaster model leg 

Removed 

corners 

Chamfered 

edge 
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4.4 Discussion 

4.4.1 FE Model 

Planar elements were used to simulate a generic lower leg interacting with a rigid knee brace at a 

constant traction load. Up to 50% coverage of the lower calf line, maximum von Mises stresses 

at the brace interface reduced as brace length increased. These stresses were concentrated at the 

distal edge of the brace. This distribution pattern is likely the result of a moment created by the 

offset of the traction load from the surface of the leg, which also explains the reduction in stress 

at the distal end as the brace length increased. Beyond 50% coverage of the lower calf line, 

maximum von Mises stresses began to increase. Peak stresses initially occurred at the anterior 

surface of the leg, transferring to the posterior surface as the brace approached full coverage. It 

was observed that stress concentrations still occurred at the anterior surface of the leg – peak 

stresses in the posterior surface appeared to be the result of “folding-over” of the calf muscle 

(visible in Figure 4.4). 

The results from this simple FE study also influenced understanding of how a rigid knee brace 

would function. Observed deformation and stress patterns indicated that the muscle body of the 

gastrocnemius (calf muscle) carried significant load and “pulled” along with the brace. In this 

case, the brace is pulling on the muscle body much in the way that physiotherapists would when 

applying traction with their hands. This pattern highlights the importance of the muscle body in 

carrying load although the peak stresses occurred over the tibia. 

The conclusions of the FE analysis are limited because there is no validation for the quantities. It 

is well-established that there is a relationship between the surface pressure applied to a tissue and 

the pain felt, typically described as the Pressure Pain Threshold (PPT). These relationships are 

location-dependent and highly variable although lower stresses are generally more comfortable43. 

In this simulation, the different brace lengths can only be compared relative to each other and not 

in terms of an absolute estimate of wearer comfort. Despite this limitation, the patterns observed 

provided a hypothesis for physical testing. It was hypothesized that a longer brace would result 

in lower interface pressures and greater user comfort. This study also piqued interest in studying 

asymmetrical braces – that is, a brace that is longer in the front than it is in the back. It was 

hypothesized that such a brace may reduce the peak pressure felt by the wearer on the tibia while 

covering less skin overall (reducing concerns with ventilation, weight, and form factor). 
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However, it was hypothesized that an asymmetrical brace would compromise comfort for these 

benefits. 

4.4.2 Prototype development 

Prototype development indicated that the bandage-cast fibreglass prototype design satisfies the 

design model set out in the FBPSS. The two-piece design had strong components to transfer load 

into the body, meeting the functional requirement with sufficient stiffness and strength to balance 

the state. This design helped ensure customization to each wearer's body while maintaining a 

standard bolt pattern for attachment to a testing system. By combining brace halves of different 

lengths, this design method had potential to be used to test multiple brace configurations.  

One important improvement made through iterative design of the knee brace was the addition of 

the friction liner to the cast fibreglass. Early prototypes were not able to sustain even low loads 

without slipping down the surface of the lower leg. The addition of this liner allows the brace to 

fixate on the leg, more closely approximating the idealized boundary conditions of the FE model. 

The main limitation on this design is its dynamic fit – as a wearer moves, the muscle body will 

change shape. Future work on this design could be to provide splits or areas of thinner material 

with higher compliance that could flex with the body during gait. However, the first tests on this 

prototype were be static tests that do not include muscle flexion. 
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5 Lower Leg Brace Testing 

5.1 Introduction 

The purpose of this study was to fulfill Objective 2 and test a lower leg traction/distraction knee 

braces for effectiveness, measured in terms of wearer comfort and ability to bear load. The 

interface forces for these braces were also investigated. This chapter details a pilot test for 

measuring these factors in a small sample (n=7) of healthy participants with three brace lengths 

(3”, 7” and a mixed design). Braces were manufactured to match each participant's right leg, and 

were tested by applying load with a cable which pulled the lower leg away from the body. 

5.2 Methods 

5.2.1 Participants 

Nine participants were initially recruited from among the graduate students and faculty of the 

Colleges of Engineering and Kinesiology at the University of Saskatchewan (aged 25 ± 6 years). 

Participants were required to be over the age of twenty to prevent damage to growth plates in the 

knee as load was applied. The only other criterion for exclusion was a history of knee injury or 

surgery within the previous 12 months. Of the 9 participants, 3 were female and 6 were male. 

These participants were recruited verbally at group meetings with the approval of the University 

of Saskatchewan Research Ethics Board.  

Each participant had an initial appointment during which their leg shape was captured using a 

plaster cast (previously discussed in Chapter 4). Using a plaster model made using these casts, 

two sets of brace components were manufactured per participant. Brace lengths were 

standardized across participants – 3.5” (nominally known as the 3” brace for note-taking clarity) 

and 7”. These lengths corresponded approximately to length ratios of 0 and 1 (maximum and 

minimum length) from the FE simulation when fit to a sample leg. The mixed design was 

derived from these components. 

5.2.2 Apparatus 

The loading apparatus for this study was adapted from previous works in physiotherapy which 

provided traction load to OA patients. In the original study, a soft greave was placed around the 

patients' lower legs and was connected to a cable. The cable was passed through a pulley with 

weights suspended from the end to apply a continuous force to the leg12. This system was 
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selected to be adapted as it allowed the person being tested to sit or lie down in relative comfort 

while the load was applied. 

The concept of using a cable in tension to pull the lower leg away from the body was adapted for 

this study with several adjustments. The soft greave was replaced with the knee brace being 

tested. As a result, the cable could not simply wrap around the leg. As such, a metal frame 

(shown in Figure 5.2) was built to connect the knee brace to the connecting cable. 

 

Figure 5.1: Frame and cable apparatus 

This metal frame supported preload to the knee brace as it connected to the embedded bolts in 

the knee brace. Two threaded rods joined the butterfly plates with nuts that were tightened with 

the brace and wearer's leg inside, aligned by the two fasteners embedded in the brace. The 

compression of these two plates with the brace and leg in between provided the force that closed 

and compressed the brace, thereby adhering it to the leg. The rest of the frame was also 

connected to these rods, pivoting in place but supported by nuts that could be adjusted to ensure 

alignment with the midplane of the leg. The rest of the frame was composed of simple bars and 
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bolts. If the alignment of this bar with the participant's leg required the bars to realign, tape was 

used to gently hold the cable loop in place. 

This study required increasing tension in the cable so an alternative to hanging weights was 

sought amid concerns that accidentally dropping weights could cause overloading (and thus 

injury) of the knee. To address this concern, the cable was attached to a turnbuckle which was 

then connected to a scale (to measure the applied force) and a fixed post. A shear pin was 

included at the connection between the cable and turnbuckle to release tension in case of an 

overload. A diagram of the apparatus is demonstrated in Figure 5.3. The tensile force was 

generated by shortening the turnbuckle, which pulled through the frame connected to the knee 

brace. 

 

Figure 5.2: Arrangement of apparatus during test 

5.2.2.1 Interface Force Sensors 

Eight Tekscan FlexiForce A502 flexible force sensors were used to measure the forces between 

the knee brace surface and the participant's leg. These sensors were piezoelectric resistors that 

change impedance when strained. Changes in voltage as a result of this changing impedance 

were measured using a MCP6004 comparator operational amplifier. A comparison voltage of 

0.125V and a feedback resistor of 1MΩ were used in this circuit to achieve the desired force 

sensitivity range. 

The leg surface was divided into eight sectors, each with a sensor measuring the peak force over 

a 4in2 area within the sector. The surface of the leg was divided into quadrants by drawing two 
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lines, one through the apex of the shin blade and another normal to the first. These lines defined 

the quadrants. The surface covered by the 7” brace was then divided into proximal and distal 

halves, resulting in a total of eight sectors. Each sector was numbered as shown in the diagram 

below. Sensors were placed in the distal-proximal midpoint of each sector, ¼” offset from the 

anterior or posterior line. 

 

4 

Figure 5.3: Division of brace area into measurement sectors, with sensors (numbered) mounted 

in a 7” brace prototype 

Each sensor was individually conditioned and calibrated. Shear sensitivity is a well-documented 

concern when employing pressure sensors in biomechanical applications. However, previous 

tests have indicated that repeated shear loading of flexible sensors reduces their sensitivity to 

shear loads46. A Zwick linear actuator was used for calibration such that each sensor was 

individually exposed to a cyclic compressive load with an amplitude range of 10-100N for 

10,000 cycles. This load was applied to the sensor with a 45-degree bit, resulting in a 

combination of compressive and shear loading across the sensor body.  

1 
2 

5 6 

3 4 

7 8 
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Sensors were further conditioned with static loads as per manufacturer guidelines before every 

test. Each sensor was individually calibrated using the Tekscan procedure of applying static 

loads and fitting a curve to the resulting voltages. Calibration was performed on a curved foam 

insert with the same liner material as the braces to best approximate the intended application. 

Either a ratio of polynomials or power-law relationship was fitted to the response of an 

individual sensor to provide a relationship between output voltage and force. 

5.2.3 Test Procedure 

The following procedure was performed three times for each participant with three brace 

configurations (as shown below). 

 

Figure 5.4: Three brace configurations for testing 

Before each test, the brace components for the specific configuration were placed on the 

participant’s leg outside the test frame and checked for fit. Slight modifications to the liner were 

made as required. Participants sat on a foam pad during each test with their right leg extended, 

using their left leg to brace themselves if required. The right knee was positioned with foam 

blocks and rollers to ensure that it was extended but relaxed. Participants were asked to keep 

their knee and toes upright but in a comfortable position, pointing their heels towards the post 

where the cable connected. 

Once in position, the brace halves were connected to the butterfly plates of the test frame and 

positioned below the knee as demonstrated in Figure 5.2. The frame was tightened around the leg 
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until the brace was firm and the liner visibly compressed (typically until the nuts were hand-

tight). If required for the longer braces, an additional strap was placed around the distal sectors of 

the brace to ensure full contact. The brace was considered fully closed when the joints of the 

brace were approximately in the manufactured position. With the brace in place, the first 

measurements were taken before the cable was connected and load applied. 

Participants self-reported their discomfort verbally. An 11-point Likert scale from 0 to 10, also 

known as the Numerical Rating Scale (NRS), was used. Patients were instructed in the use of this 

scale, zero being no pain at all and 10 being the worst pain imaginable47; a rating of 2 

corresponding to a skinned knee or stubbed toe; and a rating of 7 was determined to be greater 

pain than one would anticipate in their daily life (e.g. crushing a finger in a machine). At each 

load increment participants were asked to use this scale to report their discomfort while force 

readings were taken. 

Electrical leads from each sensor passed through small holes in the brace, allowing the 

comparator circuit to be connected to each force sensor in turn. Leads were colour-coded to 

ensure measurements were related to the correct sensor. A Diligent Analog Discovery Module 

(ADM) and Waveforms software48 were used to power the comparator circuit while 

simultaneously reading the voltage across the sensor. At each load increment, the oscilloscope 

channels of the ADM were connected to every set of leads and the cursor function was used to 

determine the output voltage, which was then recorded in a spreadsheet with the verbally-stated 

NRS score for that increment. 

Both measurements (discomfort and interface force) were taken at the outset of the test. Once 

complete, the cable was connected to the turnbuckle and scale and force applied to the cable. 

Throughout the test, load was increased by closing the turnbuckle, increasing the tension in the 

cable in increments of 3kgf (29.4N). However, the first non-zero increment of 3kgf was not used 

as this little force was not large enough to suspend the cable and ensure distribution into the 

aluminum frame. Once the load was set, NRS and force sensor measurements were taken. The 

scale reading was observed intermittently during measurements to ensure that slight movements 

by the participant did not reduce the tension in the cable. As measurements were taken, 

participants were free to give qualitative feedback on their perception of the brace (the location 
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of pressure points, comfort of one brace relative to the other, etc.) which was also recorded. This 

process continued until a limit was reached that would end the test. 

There were multiple conditions that could result in the end of a test. First, participants could 

choose to end the test at any point if they became too uncomfortable and did not wish to 

continue. Second, there were limits on how much force could be applied regardless of wearer 

discomfort. The first “soft” limit that was consistently striven for was one-third the participant’s 

bodyweight. If this limit was reached and the participant wished to continue, the test would 

proceed until the applied force was equal to one-half their bodyweight. One-half was the 

maximum force that could be applied during the test. The third condition that would conclude the 

test was if the patient reported a NRS of 7, which was deemed too high for this pilot study. 

Finally, it was observed that some circulation loss may occur at high loads. If discolouration of 

the skin was visibly detected (as shown in Figure 5.5), the test was immediately concluded. 

 

Figure 5.5: Example of discolouration due to loss of circulation 

Once one of the end conditions was met, the force was released from the turnbuckle and the 

brace was removed from the participant’s leg. Participants were encouraged to rise from the table 

and walk around the lab to restore circulation and relax their muscles between tests. A standard 

break length of 5 minutes was recommended to participants but they were encouraged to walk 

and stretch as long as necessary for the leg to feel normal. Once the participant was ready, the 

next test began. 

Normal 
Colour Discolouration 
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5.2.4 Analysis 

5.2.4.1 Self-Reported Pain 

Patient-reported Numerical Rating Scale (NRS) scores for each brace were investigated using an 

analysis of covariance (ANCOVA) with a significance level of p = 0.05 via ISPSS statistics 

software. This analysis compared the pain scores among brace designs. Applied load (F) was 

included as a covariate affecting pain scores. This test assumed no interaction among the brace 

species and applied loads, i.e. regression lines drawn through all three populations on F-NRS 

plots are the same. This assumption was tested using the LMATRIX function in SPSS to run 

one-to-one comparisons of the slopes of each regression curve to each other.  

5.2.4.2 Interface Force Profiles 

Interface force measurements were grouped by brace species, applied load, and sector. Interface 

force profiles were plotted by sector for each load step. In these profiles, the load for each sector 

was averaged among participants and plotted as a radial bar with the other sectors.  

The maximum interface force among all sectors of a brace was determined for every participant 

at every load step. This maximum interface force was compared to the self-reported pain for each 

load step. Pearson correlation coefficient was used to test for a relationship between maximum 

interface force and wearer-reported pain with a significance level of p = 0.05. 

5.3 Results 

5.3.1 Participant Inclusion 

Of the nine healthy volunteers initially recruited for this study, one male participant withdrew 

due to a psychosomatic event (fainting) during the test. This event was reported to the University 

of Saskatchewan Research Ethics Board. After review, the Board approved continuation of this 

study. 

One other male participated in all three tests but his data was excluded due to brace failure in two 

of his three tests. The mixed and 7-inch brace were tightened for this participant using the same 

criteria as the others, but the braces slipped off at low loads. This was attributed to a 

“smokestack-shaped” lower leg with little curvature. Attempts to tighten the braces any further 

were unattainable without alteration to the brace design, resulting in the exclusion of this 
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participant’s sensor and pain data from the data set. This participant’s results prompted the 

investigation of geometric parameters in Chapter 6. 

The resulting data set consisted of pain and interface force data for seven participants (four males 

and three females). Two (2) of the participants gave low pain ratings on the numerical rating 

scale that were significantly different from the rest of the participants across brace species and 

load. These ratings were found to be outside the 95% confidence interval for each individual load 

with respect to the rest of the sample. These two data sets were thus excluded from the analysis 

of pain data but their interface force data, which did not differ significantly from the sample, 

were included for analysis. Also, one participant had four points in the mixed-brace test where 

the maximum interface forces observed were significant outliers. These points were omitted 

from interface force analyses. 

5.3.2 Qualitative Feedback and Observations 

Qualitative feedback during the tests was consistent. Most participants reported that their pain 

was focussed around the joints of the knee brace. This pain was unilaterally described as a 

pinching sensation resulting from the brace pieces pushing the skin together. In some cases, 

participants reported that they could feel both the traction of the brace on their skin and the 

pinching simultaneously and that the pinching was dominating their pain (resulting in higher 

scores). Many participants reported that the pinching sensation was worse at the corners of the 

brace halves, specifically in the proximal corners where the two halves meet. 

Some evidence of load shifting to the distal edge of the brace was observed. Participants 

consistently reported the sensation that load was concentrated on the distal edges of the brace. At 

high loads, it was observed that a gap could form between the proximal edge of the brace and the 

participant's leg resulting from brace deformation. In these cases, contact was maintained over 

most of the leg surface. This effect was only visually observed in three participants. 

5.3.3 Pain Responses to Differing Brace Designs 

ANCOVA analysis of participants’ self-reported pain, in relation to the applied traction load and 

controlling for the brace type, demonstrated differences in the performance of the different 

braces. Applied load was determined to be a significant covariate (p < 0.001) with a significant 

difference among brace types (p<0.001). Post-hoc examination revealed that the mixed brace 

design resulted in the lowest pain scores. Pain responses for the 3” brace averaged 1.2 NRS steps 
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higher than the mixed brace (p < 0.001). Pain responses for the 7” brace were slightly higher 

than the mixed brace, but not significantly different (p = 0.349). A plot of applied load vs pain 

can be found in Figure 5.9 for the different braces. 

 

Figure 5.5.6: Regression model relating pain and applied load 

In this full-factorial model, there was shown to be no interaction between the brace and applied 

load, which would have resulted in a difference in slope among regression lines. One-to-one 

analysis using the LMATRIX command confirmed this finding. 

5.3.4 Interface Forces 

Load profiles provide insight into differences in load distribution among the brace designs. The 

profiles for the baseline (zero load) point and two applied loads are given below. 
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Figure 5.7: Average interface force profiles (in Newtons) a) at baseline; b) at 117N of applied 

load; and c) at 206N of applied load. 

a) 

b) 

c) 
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The baseline profile shows the average distribution of brace preload across the leg surface. The 

profile for the 3” brace exists only in the proximal sector because this brace did not exist in any 

of the distal sectors. Similarly, the profile does not exist for the mixed brace in the posterior 

sectors of the distal profile. The baseline profile was compared with those corresponding to 

117N and 206N loads. The 117N profile is the highest profile with data from every test (all 

participants at all loads). The second profile for comparison to baseline was taken at a load of 

206N, as this was the highest load for which there was a minimum of three readings for all 

sensors. Qualitative comparison of these profiles shows increases in all sectors of the 3” brace 

except the proximal-posterior-medial sector, which demonstrated a moderate increase overall. 

Increases in interface force were modest for the 7” and mixed designs. The 7” brace appears to 

carry more load in the distal sectors of the brace than the mixed brace. 

Maximum interface forces for each load step were compared to self-reported pain across braces. 

A plot demonstrating the relationship between these variables is demonstrated in Figure 5.11. 

Each series has large variance in both pain and maximum interface force. No significant 

correlations were found between pain and maximum interface force for any of the three brace 

designs. 
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Figure 5.8: Self-reported pain and maximum interface forces for three brace designs 

 

5.4 Discussion 

The purpose of this study was to test the brace in terms of comfort and the ability to bear load. 

This study met this objective by showing that all participants were able to support 117N of 

applied load in all braces.  Most participants were able exceed that load, with some reaching up 

to 300N of applied force. 

The relationship between traction force applied to the brace and wearer discomfort was found to 

be brace-dependent. For the same applied load, the 3” brace had higher pain scores than the other 

two braces, indicating that it is the poorer of the three designs. The 7” and mixed brace did not 

differ from each other. Although there are variances to each data series, the rate at which applied 

load caused increased pain is the same across designs. Interface load profiles were developed for 

all sectors at 0lbf, 117N, and 206N of applied load. These profiles demonstrated an increase in 

force in the four sectors covered by the 3” brace. The 7” and mixed designs saw more moderate 

increases in force, but the 7” brace did demonstrate a shift in load towards the distal sectors. The 
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3” brace (the most uncomfortable) had large increases over few sectors, which would result in 

interface pressures approaching pressure pain thresholds and cause greater discomfort. 

Qualitative feedback from participants during the tests both confirmed findings from the design 

phase of this study and provided new insight. The FE study described in Chapter 4 indicated a 

stress concentration for all braces at the distal edges of the brace. Some participants described 

feeling such a load concentration. However, the planar FE model could not predict the pain 

concentration at the joints of the brace. 

The interface force profiles provided some insight into these differences. At 206N of applied 

force, the 3” brace carried larger loads in the proximal sectors than the 3” brace and the mixed 

brace, which could distribute load lower onto the leg.  However, due to variance in sensor data, 

we were unable to detect a correlation between pain and maximum interface force. 

Qualitative feedback from these tests suggests that different sensor locations may be required to 

correlate interface forces and wearer pain. Participants reported that their pain was localized 

around the edges of the brace. For this study, pressure sensors were located near the centre of 

each brace half. Qualitative feedback suggest that sensors are needed near the edges of the brace 

to measure the forces causing the perceived pain.   

This study provides insight into factors that are important for the continued refinement of a rigid 

lower-leg knee brace for traction loading. The consistency across metrics where the 3" brace has 

higher interface forces and self-reported pain suggests that, if both are to be minimized, it is the 

worst design. 

To achieve distraction of the knee joint that can be observed on radiographs, the forces passing 

through a knee brace will need to be greater than those applied in this pilot study. The 

relationships found in this study and the qualitative feedback suggest that the brace designers 

need to be cognizant of different ways of carrying load between the anterior and posterior 

surfaces of the lower leg. Designers should strive to maximize the area of the anterior surface of 

the lower leg that bears load, while being cognizant of the shape of the tissue on the posterior 

surface. Balancing these factors will allow the knee brace to bear load and generate traction 

comfortably.  



43 

 

One possible pathway to balance the design is to normalize the shape to the wearer’s leg. In this 

study, fixed braces lengths were used across participants rather than assigning brace coverage 

based on the lower-leg length of each participant. This extra step in the customization process 

may allow future designers to better balance shape and size of the wearer’s leg with the required 

distraction loads. Another possibility may be to normalize interface forces or pain responses to 

parameters such as leg length or use bodyweight – such analysis was omitted from this 

prospective study, 

The primary limitation of this research is the size of the cohort for the pilot study. A small 

sample size and high variability in the interface force limited the statistical significance of the 

results. The resolution and location of the interface force scanning array was the other major 

limitation on this study. The sensule area of the Tekscan sensors in this pilot study was 4 square 

inches – sufficient to provide an idea of the distribution of force across the surface but attempts 

to divide the output force by this total area would result in a considerable overestimation of the 

pressure acting on that area. These sensors also did not cover the full area of the leg and did not 

provide enough resolution to directly observe the transfer of load to the edges of the brace. These 

sensors were, however, sufficient to show trends in the force distribution and differences among 

the braces when plotted as average profiles. Sector-by-sector analysis of the force data indicated 

these trends even if they did not reach statistical significance. In addition to the individual effects 

of leg geometry, preload on the knee braces was standardized by relative position of the brace 

and not the interface force measurements. Baseline differences in interface force may have 

introduced additional variance in interface force measures, but the baseline interface forces were 

not observed to differ greatly between participants during testing. This pilot study succeeded in 

meeting the general objectives of identifying trends despite these limitations, while providing a 

basis for more detailed study. 

Sample size may have had an effect on the statistical significance of pain findings, in addition to 

the varying end conditions imposed to ensure participant safety. The ANCOVA analysis 

assumed that all pain scores were independent. In this study, each participant supplied a series of 

pain scores, meaning that each scores are in fact dependent. Another analysis, specifically a 

repeated measures ANOVA, could account for these within-subject effects. However, each 

participant’s tests consisted of a different number of measurements depending on their 
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bodyweight and pain tolerance. A repeated measures ANOVA would require each participant to 

provide a pain score at the same number of points (potentially reaching above pain or 

bodyweight limitations).By assuming measurement independence, ANCOVA analysis allowed 

data series of different lengths to be considered for each brace design.
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6 Geometric Analysis 

6.1 Introduction 

Conditions resulting in the exclusion of one participant indicated that the geometry of the lower 

leg may be an interesting factor for investigation. The factors chosen for analysis were the radius 

of curvature of the muscle body (as it was observed to carry significant load), the surface area of 

the leg in contact with the 3” brace, the volume of the section bounded by the 3” brace, and the 

maximum cross-sectional area of the leg. Curvature was analyzed in the sagittal plane as 

curvature in this plane would affect the shear-compression shift in surface forces that resist the 

applied load. Analysis of these parameters was performed using 3-dimensional STL files 

containing participant leg geometry obtained after the pilot test. 

6.2 Methods 

6.2.1 Digitizing Participant Leg Geometry 

Point-cloud data was acquired with assistance from the computer modelling lab in the College of 

Archeology. Digital point clouds capturing the outside of brace models were captured using a  

NextEngine ScanStudio optical scanner and stitched together with the accompanying ScanStudio 

HD software (200DPI at 300 micron accuracy)48. Binary standard tessellation language (STL) 

files were made from these point clouds and were imported into GeoMagics Studio 1449. 

Geomagics Studio was used to smooth the surface and patch holes. The STL file was then 

remeshed with 2-mm triangles to enable export to MATLAB for analysis. 
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Figure 6.1: Example of a STL surface of a lower leg 

6.2.2 Geometric Analysis 

A custom MATLAB code was written with elements drawn from the Mathworks community that 

uses surface triangulation and intersection50 to sweep from the distal edge to the proximal edge, 

searching for the greatest cross-sectional area (representing the widest point of the muscle body). 

The location of this maximum cross-sectional area was used as a basis for curvature analysis. 

Sections of the leg above this point were extracted from the complete scan, and another 

intersection taken (this time in the sagittal plane). The curved data representing the posterior side 

of the leg was then separated from the rest, and a circle fit using the Pratt algorithm for circle 

fitting51. The radius of the circle fit to these points represented the curvature of the extracted 

section. 

Root mean square errors (RMSE) for each fit were calculated using the centre of the circle 

returned by the Pratt circle fit. Each point from the fit data set was assigned an error defined as 

difference between the fit radius and the Euclidian distance between the centre of the fit circle 

and the point as demonstrated in Figure 5.7. The total RMSE of the fit was determined using 

these errors. 
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Figure 6.2: Sketch of error determination for Pratt fit circles 

Circles were fit to a number of sections of increasing length for every participant. Section lengths 

began at 5 slices of 1mm (0.039in) long and increased in size by 2 slices (the distal edge of the 

fit section was maintained at the point of maximum cross-sectional area). The maximum number 

of slices tested was determined by the number of slices in the scan and the location of the 

maximum cross-sectional area. These fits resulted in many different curvatures for a single 

participant, so convergence criteria were developed that helped determine the actual curvature to 

use. These criteria were: 

 A minimum section length of 35mm; 

 RMSE values less than 0.25mm; and 

 A section length that was 5-10mm smaller than a sudden increase in RMSE. 

The convergence of each participant's series of fits was determined by examining plots of both 

RMSE and the fit radius (an example is shown below in Figure 5.8). Once a candidate section 

was determined, the fit was checked for outliers. The radii of curvature were then included as a 

factor in further analysis of data. 

Posterior Anterior 
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Figure 6.3: Example of a convergence plot for curvature fitting showing thresholds for fit width 

and RMSE (green and grey), the section width near a sudden RMSE increase (red), and the 

selected fit width for a single participant 

Section surface area and volume were determined by extracting a 75mm (3”) section from the 

point cloud which was then bound with a triangulated shape object in MATLAB, which returned 

volume and surface area. The section width of 3” was selected because it was the maximum 

length available for all participants and corresponded closely to the length of the short brace. 

Four geometric parameters – radius of curvature, surface area, section volume, and maximum 

cross-sectional area – were calculated from the 3” section. These parameters were correlated to 

the maximum force sustained in each test with Pearson correlation coefficients. Pain scores and 

maximum interface forces were subdivided by brace for correlation to these geometric 

parameters (also using Pearson coefficients). Although participants reported pain scores on half-

points on the NRS, pain data was still technically ordinal (requiring Spearman’s Rho to find 

relationships with geometry). However, treating pain scores as continuous data allowed for 

Pearson’s correlations with geometric parameters to be determined using the same assumptions 

Selected curvature 

Fit radius 

RMSE 
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of linearity and distribution as interface force data. This approach was selected in the interest of 

consistency across results. 

6.3 Results 

Correlation coefficients were determined relating maximum interface force to geometric 

parameters. Interface force was subdivided by brace for this analysis. Radius of curvature had 

strongest correlations with maximum interface force (ranging from 0.538 to 0.770), whereas all 

other geometric parameters had medium to strong negative correlations with maximum interface 

force across brace types (coefficients ranging from -0.336 to -0.683). These correlations are 

summarized in Table 5.1 

Table 5.1: Pearson coefficients correlating geometric parameters and brace performance 

 Maximum Applied Load Maximum Interface Force 

 3" Brace 7" Brace 
Mixed 

Brace 
3" Brace 7" Brace 

Mixed 

Brace 

Radius of Curvature 0.466 0.376 0.389 0.77** 0.718** 0.538** 

Maximum Cross-Sectional Area -0.032 0.372 0.091 -0.547** -0.336* -0.503* 

Section Volume -0.166 0.273 -0.054 -0.628** -0.434* -0.588** 

Section Surface Area -0.222 0.215 -0.092 -0.683** -0.489* -0.61** 

*p<0.05  **p<0.001       

 

6.4 Discussion 

Brace failure for one participant raised interest in the interplay of leg geometry and interface 

force. Geometric analysis of the shapes of the participants' lower legs provided some insight as 

to why the 7" and mixed designs were not effective for this participant. It was observed during 

testing that this participant had a nearly cylindrical lower leg with little to no curvature 

(corresponding to a high radius of curvature across the surface of the leg). Pearson’s correlation 

coefficients were determined relating the leg’s radius of curvature and other geometric 

parameters to the load bearing and interface forces of the different braces. While these 

parameters did not significantly correlate with the maximum effective load, there were consistent 
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relationships to the maximum interface force for all braces. Radius of curvature had a positive 

relationship with maximum interface force where the other parameters all had negative 

correlation coefficients.  

We believe the orientation of the leg surface with respect to the applied load was the root of this 

relationship – the more aligned the leg surface was to the direction of loading, the less the 

proportion of applied load that is normal to the leg surface. The normal force component is 

directly related to the maximum friction force that will adheres the knee brace to the leg. 

Although all knee braces had similar preload to adhere the brace, the shape of the leg will 

ultimately determine the traction load at which friction is overcome and whether the brace slips.   
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7 Discussion 

7.1 Overview of Findings 

The objectives of this research were to: 1) design lower-leg knee braces that can apply traction 

load to the knee; and 2) test these prototype knee brace components and relate traction load to 

wearer discomfort and interface force. These objectives were met in this research through the 

development of a hypothesis using a simple FE model, the iterative design of a lower leg knee 

brace, and a pilot study using a mechanical apparatus to test prototypes of the lower leg knee 

brace. 

Testing of the prototype knee braces demonstrated their capability to deliver traction load into 

the body, thus satisfying Objective 1. The traction forces applied to the braces over the course of 

our testing well exceeded 10kg of equivalent weight across all participants and brace designs. 

Most participants saw forces up to 225N, often approaching ½ their bodyweight. 

Self-reported pain demonstrated a statistically significant difference among the brace designs. 

Applied force was demonstrated to significantly increase self-reported pain. This finding is 

intuitive – any significant increase in force passing through the body will cause some level of 

discomfort. Among the designs, the mixed and 7” designs were the most comfortable. That both 

longer models were equally comfortable was a surprise. These results indicate that increasing 

covered area is important for distributing load and improving comfort where the posterior side is 

less so. Of note, there was a small, non-significant difference between the 7” and mixed brace 

designs. It may be that the distal side of the calf muscle body carries more load than the anterior 

surface of the leg, thereby explaining this small difference. 

In support of this premise, the interface measures indicated that the distal-anterior sectors of the 

7” knee began to carry more load than in the mixed design, in addition to the load carried from 

preload in the distal-posterior sectors. It appears from these profiles that the distal-posterior 

sectors will support large load when present. 

Surprisingly, this study did not observe a relationship between maximum interface force and 

self-reported pain. Qualitative feedback from participants suggests that this may be due to pain 

concentration at the edges of the brace components rather than a cumulative effect from force 
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distributed across the body of the brace. Both pain and interface force in the sensor areas were 

observed to increase overall as the applied traction load increased, but the relationship between 

these responding variables is unclear. We believe that higher forces must be occurring at the 

locations indicated verbally by participants – measurements of interface force at these locations 

may provide a more representative correlation with pain. 

Our experimental results support the hypothesis developed in Chapter 4 with the FE model, in 

that the shorter knee brace performs poorly compared to the longer designs. However, the 

comparison of the 7” brace to the mixed design contradicts the hypothesis. The mixed design 

offered similar interface forces and pain levels, and was also lighter and less bulky.  

7.2 Comparison to Existing Findings 

To the best of our knowledge, no other study has examined OA knee braces using an external 

testing apparatus to measure traction force. Comparisons of this study to other findings and 

standards are then limited to analogy rather than direct comparison. 

Other lower leg knee braces are abundant and are often formed using casting methods similar to 

that employed in our design52. These knee braces have an abundance of applications that usually 

focus on providing support, assisting gait, or correcting alignment. OA knee braces typically do 

not apply force over large areas of the knee, instead applying opposing loads over smaller 

regions through stiff, light frames. The designs proposed through this research are an amalgam of 

what has been learned through different areas of orthotics design, directed specifically at solving 

the problem of applying large traction loads. The distraction/traction knee brace proposed 

employs casting materials similar to polymer interfaces but is divided into stiff anterior and 

posterior sections similar to an OA unloader knee brace. 

Previous studies have investigated interface mechanics and pain responses using predictive 

models39,40. These models took pressure pain threshold (PPT) measurements of individuals 

before determining interface stresses using a subject-specific FE model. Our study attempted to 

employ direct measurement of interface pressures in comparison to an overall pain rating (rather 

than a series of site-specific PPTs). Our study did not take site-specific PPT values for 

comparison, choosing instead to examine of load distribution across the surface. A direct 

connection between site-specific PPT values and the self-reported discomfort or interface forces 
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of this study is not clear. The next step in connecting our work to these studies would be to relate 

all three of interface force measures, PPT, and the overall comfort rating. However, this level of 

detail is outside the scope of our pilot study. 

7.3 Strengths and Limitations 

The main strength of this research is its novelty. Here, current design ideas from the orthotics 

industry were adapted to design a lower leg knee brace component that can apply a new kind of 

load to the body. A testing procedure was then developed that could apply this load to new 

prototypes. This test method can detect differences in comfort and interface forces among brace 

designs and can directly contribute to the validation of future design models and investigation of 

biomechanical interfaces. 

The primary limitation of this research is the small sample size of the pilot study. As previously 

discussed, this small sample size limited the statistical significance of the study results. Further, 

brace order was not controlled for or randomized between trials within a single participant 

(thereby limiting the statistical power of the results). Despite these limitations, our research was 

able to show high-level differences between the braces. At this early stage in design 

development, trends in this data are sufficient to prompt further investigation using more refined 

designs and higher-resolution measures. 

Modifications to the experimental design will improve the ability of the test method to detect 

differences among braces. In comparing knee braces, a randomized cross-over design should be 

used to randomize the order in which participants wear braces to reduce the potential for intra-

participant effects (such as building of pain tolerance or shifting in position to increase comfort). 

Standardization of preload using interface force measures (rather than relative position between 

brace pieces) may reduce variance in interface force among participants but such a standard is 

not immediately apparent, as interface forces were shown to correlate strongly with individual 

leg shape and their relationships with participant pain are not yet clear. 

The goal of the designed knee brace is to provide distraction to the knee joint but no measures of 

distraction were taken in this research. This study is, to the best of our knowledge, the first to 

assess the load-bearing capability of a rigid knee brace. While previous studies have used short-

term loading to unload knees, this study applied increasing traction loads to observe an effect 
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(pain and interface force). Surface palpitations or radiographs may have been used to observe 

increases in JSW but these changes would be small – attempting distraction on the scale of 

millimeters in a short period drastically increases the risk of rupturing ligaments and tendons. 

This pilot study was needed to assess the feasibility and safety of applying traction load through 

the rigid lower-leg knee brace in low-level increments of load. To measure distraction, a longer-

term test is required which, in turn, necessitates the completed knee brace design. 
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8 Conclusions and Future Directions 

8.1 Conclusions 

First, this research provides a viable design for a lower-leg traction knee brace and demonstrates 

the brace’s capability to provide traction loading in excess of 1/3rd of the wearer’s bodyweight, 

thus fulfilling Objective 1. Objective 2 has also been fulfilled through the pilot testing described 

in this thesis. Relationships between load and wearer discomfort were found through this test and 

were found to be dependent on brace design. Relationships fulfilling Objective 2 distinguished 

between a 3” design, a 7” design, and a mixed design. This test demonstrated a difference in 

performance, with the 3” design being the least effective and the 7” and mixed designs the most 

effective. 

8.2 Contributions 

The contributions of this work begin with a proven design concept and prototypes for a lower-leg 

traction knee brace and providing evidence of their capability to distribute load into the leg. This 

design provides a foundation for future designs that may succeed in providing non-surgical 

distraction of the knee joint. 

This work also provides a methodology for testing the lower-leg components of new knee brace 

designs. Differences in brace comfort and interface behavior can be detected with this method, 

providing a useful tool for validating and further optimizing brace designs. Superior brace 

designs (the mixed and 7” designs) have already been selected using this method. 

Finally, this work provides a comparison of three simple designs that highlights the importance 

of surface area coverage, traction, and mechanical compliance, thereby providing grounds for the 

immediate refinement of the design. 

8.3 Clinical Significance 

This research will contribute to clinical practice by guiding the design of highly-effective devices 

for the treatment of OA. Using this research as a foundation, knee braces can be designed that 

will be able to load the knee in traction without the need for surgical devices. At sufficiently high 

magnitudes, this traction load will provide non-invasive distraction of the knee. This research 
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then provides an important utility in expanding research into the effects of knee joint distraction 

in reversing the effects of OA. 

8.4 Recommendations for Future Research 

This research was aimed at piloting investigation into high-load traction knee braces. Next steps 

for investigation in this area should be focused on the continued optimization and completing the 

design. The results from this study suggest that one improvement could be to improve fit and 

comfort near the edges of the brace. Reducing the stiffness of the brace near the edges would 

reduce the painful pinching sensation reported by participants in this study. 

Improvements on the current design will also need to be studied and validated, using similar 

methods to those employed in this study. A high-resolution sensor could provide sufficient 

resolution to more closely observe shifts in load distribution across brace interfaces. This higher 

resolution would also provide basis for comparison between PPT values and the overall score 

given in this study. Data from this study, specifically variances and means of self-reported pain 

and interface forces, can be used to estimate effect sizes and determine statistical power for 

future studies. 

Finally, this research should be expanded to include an upper-leg interface and loading 

mechanism. The rigid fiberglass design presented here can be adapted to the upper leg, provided 

that attention is given to the greater presence of soft tissue in the upper leg. An even greater 

surface of the upper leg may need to be covered to comfortably transfer load. Increasing this area 

may also require the point of force application to be moved away from the knee joint (reducing 

the effect of moments on shifting load away from the knee). 

8.5 Closing Remarks 

This research seeks to establish a foundation for the future development of traction-distraction 

knee braces to treat osteoarthritis. The lower-leg component of such a knee brace has been 

designed and tested on a small population of healthy participants. It has been shown that the 

mechanical testing method presented in this study identified relationships among traction load, 

interface force, and wearer comfort. Presently these relationships are general in nature but a 

method has been established that can be used to delve more deeply into interface biomechanics. 
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This study has shown the importance of moving towards the customizable, quantitative, and 

mindfully-optimized design of high-performance orthotics. 

  



58 

 

References 

1. Measure Description – Percentage of population with diagnosed osteoarthritis [web 

document]. Government of Canada – Canadian Chronic Disease Indicators. Published 

September 19th, 2016. 

2. McAlindon TE, Bannuru RR, Sullivan MC, Arden NK, Berenbaum F, Bierma-Zeinstra 

SM, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. 

Osteoarthr Cartil. 2014; 22(3):363–88. 

3. Intema F, Van Roermund M. P, Marijnissen ACA, Cotofana S, Eckstein F, Castelein RM, 

et al. Tissue structure modification in knee osteoarthritis by use of joint distraction: an 

open 1-year pilot study. Ann Rheum Dis. 2011; 70(8):1441. 

4. Wiegant K, van Roermund PM, Intema F, Cotofana S, Eckstein F, Mastbergen SC, et al. 

Sustained clinical and structural benefit after joint distraction in the treatment of severe 

knee osteoarthritis. Osteoarthr Cartil. 2013; 21(11):1660–7. 

5. van der Woude J, Wiegant K, van Roermund PM, Intema F, Custers RJH, Eckstein F, et 

al. Five-Year Follow-up of Knee Joint Distraction. Cartilage. 2016; 8(3): 263-71. 

6. Squyer E, Stamper DL, Hamilton DT, Sabin JA, Leopold SS. Unloader knee braces for 

osteoarthritis: Do patients actually wear them? Clin Orthop Relat Res. 2013. 

7. Stammen K. Human Knee Anatomy.jpg. Wikimedia Commons (free image repository) 

[Internet]. 2012. Accessed March 13th, 2018. 

8. Bijlsma JWJ, Berenbaum F, Lafeber FPJG. Osteoarthritis: an update with relevance for 

clinical practice. Lancet. 2016 Nov; 377(9783):2115–26. 

9. Kellgren JH, Lawrence JS. Radiological Assessment of Osteo-Arthrosis. Ann Rheum 

Dis. 1957; 16(4):494 LP-502.  

10. Sato T, Sato N, Masui K, Hirano Y. Immediate Effects of Manual Traction on 

Radiographically Determined Joint Space Width in the Hip Joint. J Manipulative Physiol 

Ther. 2014; 37(8):580–5. 

11. Ogawa D, Usa H, Abiko T, Matsumura M, Ichikawa K, Hata M, et al. Analysis of 

separation distance that accompanies the continuous traction of normal knee joints using 

ultrasound imaging. Physiotherapy. 2015; 101:e1120.  



59 

 

12. Khademi-Kalantari K, Mahmoodi Aghdam S, Akbarzadeh Baghban A, Rezayi M, 

Rahimi A, Naimee S. Effects of non-surgical joint distraction in the treatment of severe 

knee osteoarthritis. J Bodyw Mov Ther. 2014; 18(4):533–9.  

13. van Valburg AA, van Roermund PM, Marijnissen ACA, van Melkebeek J, Lammens J, 

Verbout AJ, et al. Joint distraction in treatment of osteoarthritis: a two-year follow-up of 

the ankle. Osteoarthr Cartil. 1999; 7(5):474–9. 

14. Van Valburg AA, Van Roermund PM, Marijnissen ACA, Wenting MJG, Verbout AJ, 

Lafeber FPJG, et al. Joint distraction in treatment of osteoarthritis (II): effects on 

cartilage in a canine model. Osteoarthr Cartil. 2000; 8(1):1–8. 

15. Brooks KS. Osteoarthritis Knee Braces on the Market:  A Literature Review. JPO J 

Prosthetics Orthot. 2014; 26(1): 2-30. 

16. Brouwer RW, van Raaij TM, Verhaar JAN, Coene LNJEM, Bierma-Zeinstra SMA. 

Brace treatment for osteoarthritis of the knee: a prospective randomized multi-centre trial. 

Osteoarthr Cartil. 2006; 14(8):777–83. 

17. Duivenvoorden T, Brouwer RW, van Raaij TM, Verhagen AP, Verhaar JAN, Bierma-

Zeinstra SMA. Braces and orthoses for treating osteoarthritis of the knee. Cochrane 

Database Syst Rev. 2015. 

18. Steadman R, Briggs K, Pomeroy S, Wijdicks C, Briggs KK, Pomeroy SM, et al. Current 

state of unloading braces for knee osteoarthritis. Knee Surgery, Sport Traumatol 

Arthrosc. 2016; 24(1):42–50.  

19. Petersen W, Ellermann A, Zantop T, Rembitzki I, Semsch H, Liebau C, et al. 

Biomechanical effect of unloader braces for medial osteoarthritis of the knee: a 

systematic review. Arch Orthop Trauma Surg. 2016; 136(5):649–56.  

20. Maleki M, Arazpour M, Joghtaei M, Hutchins SW, Aboutorabi A, Pouyan A. The effect 

of knee orthoses on gait parameters in medial knee compartment osteoarthritis A 

literature review. Prosthet Orthot Int. 2016; 40(2):193–201. 

21. Moyer R., Birmingham TB, Bryant DM, Giffin JR, Marriott K., Leitch KM. 

Biomechanical effects of valgus knee bracing: a systematic review and meta-analysis - 

ScienceDirect. Osteoarthr Cartil. 2015;  23(2):178–88. 

22. Horlick SG, Loomer RL. Valgus Knee Bracing for Medical Gonarthrosis. Clin J Sport 

Med. 1993; 3(4):251–5. 



60 

 

23. Richards JD, Sanchez-Ballester J, Jones RK, Darke N, Livingstone BN. A comparison of 

knee braces during walking for the treatment of osteoarthritis of the medial compartment 

of the knee. J Bone Joint Surg Br. 2005; 87(7):937–39. 

24. Jones RK, Nester CJ, Richards JD, Kim WY, Johnson DS, Jari S, et al. A comparison of 

the biomechanical effects of valgus knee braces and lateral wedged insoles in patients 

with knee osteoarthritis. Gait Posture. 2013; 7(3):368–72. 

25. Haladik J, Vasileff W, Peltz C, Lock T, Bey M. Bracing improves clinical outcomes but 

does not affect the medial knee joint space in osteoarthritic patients during gait. Knee 

Surgery, Sport Traumatol Arthrosc. 2014; 22(11):2715–20. 

26. Gaasbeek RDA, Groen BE, Hampsink B, van Heerwaarden RJ, Duysens J. Valgus 

bracing in patients with medial compartment osteoarthritis of the knee: A gait analysis 

study of a new brace. Gait Posture. 2007; 26(1):3–10. 

27. Laroche D, Morisset C, Fortunet C, Gremeaux V, Maillefert J-F, Ornetti P. 

Biomechanical effectiveness of a distraction–rotation knee brace in medial knee 

osteoarthritis: Preliminary results. Knee. 2014; 21(3):710–6. 

28. Draganich L, Reider B, Rimington T, Piotrowski G, Mallik K, Nasson S. The 

effectiveness of self- adjustable custom and off-the- shelf bracing in the treatment of 

varus gonarthrosis. J bone Joint surgery American 2006; 88(12):2645. 

29. Della Croce U, Crapanzano F, Li L, Kasi PK, Patritti BL, Mancinelli C, et al. A 

Preliminary Assessment of a Novel Pneumatic Unloading Knee Brace on the Gait 

Mechanics of Patients With Knee Osteoarthritis. PM&R. 2013; 5(10):816–24.  

30. Pollo FE, Otis JC, Backus SI, Warren RF, Wickiewicz TL. Reduction of medial 

compartment loads with valgus bracing of the osteoarthritic knee. Am J Sports Med. 

2002; 30(3):414–21. 

31. Johnson AJ, Starr R, Kapadia BH, Bhave A, Mont MA. Gait and clinical improvements 

with a novel knee brace for knee OA. J Knee Surg. 2013; 26(03):173–8. 

32. Hart H, Collins N, Ackland D, Cowan S, Crossley K. The effects of varus bracing for 

predominant lateral knee osteoarthritis and valgus malalignment after ACL 

reconstruction. J Sci Med Sport. 2014; 18:16–7. 



61 

 

33. Nadaud MC, Komistek RD, Mahfouz MR, Dennis DA, Anderle MR. In vivo three-

dimensional determination of the effectiveness of the osteoarthritic knee brace: a multiple 

brace analysis. J bone Joint surgery American Vol. 2005; 87 Suppl 2:114–9. 

34. Pierrat B, Molimard J, Navarro L, Avril S, Calmels P. Evaluation of the mechanical 

efficiency of knee braces based on computational modeling. Comput Methods Biomech 

Biomed Engin. 2015; 18(6):646–61. 

35. Dickinson AS, Steer JW, Worsley PR. Finite element analysis of the amputated lower 

limb: A systematic review and recommendations. Med Eng Phys. 2017; 43:1–18. 

36. Buis AW, Convery P. Calibration problems encountered while monitoring stump/socket 

interface pressures with force sensing resistors: techniques adopted to minimize 

inaccuracies. Prosthet Orthot Int. 1997; 21(3):179. 

37. Convery P, Buis AW. Conventional patellar-tendon-bearing (PTB) socket/stump 

interface dynamic pressure distributions recorded during the prosthetic stance phase of 

gait of a trans-tibial amputee. Prosthet Orthot Int. 1998; 22(3):193. 

38. Al-Fakih EA, Abu Osman NA, Mahamd Adikan FR, Eshraghi A, Jahanshahi P. 

Development and Validation of Fiber Bragg Grating Sensing Pad for Interface Pressure 

Measurements Within Prosthetic Sockets. IEEE Sens J. 2016; 16(4):965–74. 

39. Wu C, Chang C, Hsu A, Lin C, Chen S, Chang G. A proposal for the pre‐evaluation 

protocol of below‐knee socket design - integration pain tolerance with finite element 

analysis. J Chinese Inst Eng. 2003; 26(6):853–60. 

40. Lee WCC, Zhang M. Using computational simulation to aid in the prediction of socket 

fit: A preliminary study. Med Eng Phys. 2007; 29(8):923–9. 

41. Lacroix D, Ramírez Patiño JF. Finite element analysis of donning procedure of a 

prosthetic transfemoral socket. Ann Biomed Eng. 2011; 39(12):2972–83.  

42. Polyethylene (PE). CES Edupack 2017. Produced by Granata Design.  

43. Kosek E, Ekholm J, Nordemar R. A comparison of pressure pain thresholds in different 

tissues and body regions. Long-term reliability of pressure algometry in healthy 

volunteers. Scandinavian journal of rehabilitation medicine. 1993; 25:117-124. 

44. Zhang WJ, Lin Y, Sinha N. On the function-behaviour-structure model for design. 

Proceedings of the Canadian Engineering Educators Assoc. 2011. 

https://link-springer-com.cyber.usask.ca/content/pdf/10.1007%2Fs10439-011-0389-z.pdf


62 

 

45. BSN Medical. Delta-Lite Plus [webpage]. 2018. Accessed May 29, 2018. Available from: 

http://www.bsnmedical.com/products/orthopaedics/category-product-search-o/fracture-

management/synthetic-casting/delta-liter-plus.html 

46.  Hall RS, Desmoulin GT, Milner TE. A technique for conditioning and calibrating force-

sensing resistors for repeatable and reliable measurement of compressive force. J 

Biomech. 2008; 41(16):3492–5. 

47. Williamson A, Hoggart B. Pain: a review of three commonly used pain rating scales. J 

Clinical Nursing. 2005: 14(7):798-804 

48. Digilent: a National Instruments company. Waveforms [Software]. 2015. Available from: 

https://store.digilentinc.com/waveforms-previously-waveforms-2015/  

49. NextEngine. ScanStudio Proscan [Software]. 2018. Available from: 

https://www.nextengine.com/products/scanstudio-hd/specs/overview  

50. 3D Systems. Geomagic Studio 14 [Software]. 2014. No longer available. Product updates 

available from: https://www.3dsystems.com/software  

51. Tuszynski J. Surface Intersection, version 1.0 [Software]. 2014. Accessed March 14, 

2018. Available from: https://www.mathworks.com/matlabcentral/fileexchange/48613-

surface-intersection  

52. Chernov N. Circle Fit (Pratt method) [Software]. 2009. Accessed March 14, 2018. 

Available from: https://www.mathworks.com/matlabcentral/fileexchange/22643-circle-

fit--pratt-method-  

53. Hsu JD, Michael JW, Fisk  1943- JR, Surgeons AA of O. AAOS atlas of orthoses and 

assistive devices. 4th ed.. Philadelphia: Philadelphia : Mosby/Elsevier; 2008. 

  

http://www.bsnmedical.com/products/orthopaedics/category-product-search-o/fracture-management/synthetic-casting/delta-liter-plus.html
http://www.bsnmedical.com/products/orthopaedics/category-product-search-o/fracture-management/synthetic-casting/delta-liter-plus.html
https://store.digilentinc.com/waveforms-previously-waveforms-2015/
https://www.nextengine.com/products/scanstudio-hd/specs/overview
https://www.3dsystems.com/software
https://www.mathworks.com/matlabcentral/fileexchange/48613-surface-intersection
https://www.mathworks.com/matlabcentral/fileexchange/48613-surface-intersection
https://www.mathworks.com/matlabcentral/fileexchange/22643-circle-fit--pratt-method-
https://www.mathworks.com/matlabcentral/fileexchange/22643-circle-fit--pratt-method-


63 

 

Appendix A. Von Mises Stress Contours 
from Planar FE Simulation 
 

Default settings for this finite element (FE) simulation were in Imperial units. Results from this 

simulation are shown in thousands of pounds per inch (ksi). The von Mises stresses are 

contoured through all three bodies for brace coverage in length ratios (LR) from 0.05 to 0.99 of 

the line defining the lower calf. 

 

Figure A.1: Von Mises stress contour plot for LR 0.05 

  



64 

 

 

Figure A.2: Von Mises stress contour plot for LR 0.10 

 

Figure A.3: Von Mises stress contour plot for LR 0.20 
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Figure A.4: Von Mises stress contour plot for LR 0.30 

 

Figure A.5: Von Mises stress contour plot for LR 0.40 
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Figure A.6: Von Mises stress contour plot for LR 0.50 

 

Figure A.7: Von Mises stress contour plot for LR 0.75 
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Figure A.8: Von Mises stress contour plot for LR 0.80 

 

Figure A.9: Von Mises stress contour plot for LR 0.99 
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Appendix B. Participant Information and 
Subject-Specific Test Data 
 

This document contains participant-specific data obtained during testing and post-hoc geometric 

analysis of participants’ leg geometry. Characteristic information (bodyweight, leg geometry) for 

all participants is reported in Table B.1. The remaining tables summarize test data by participant 

for all three knee braces. 

Table B.1: Summary of Participant Charateristics 

Participant Sex 
Bodyweight 

[lb] 

Radius of 

Curvature 

[mm] 

Maximum 

Cross-

Sectional 

Area 

[mm^2] 

3” Section 

Volume 

[mm^3] 

3” Section 

Surface 

Area 

[mm^2] 

246145 F 139 281.3 1.0651 838300 27650 

345024 F 181 171.4 1.4638 1053000 30680 

631450 M 152 244 1.06282 757900 26760 

694828 M 263 590.3 1.8053 1309000 34760 

814723 F 127 511.1 1.0041 709800 25080 

867530 M 214 340.8 1.3796 973500 29560 

520016 M 231 278.3 1.625 1173000 32220 
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Table B.2: Test Data for Participant 246145 

3" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 64.2 47.8 18.2 4.1     1 

 58.7 60.5 35.3 18.6 4.2     3 

 88.1 57.9 22.5 18.1 4.1     5 

 117.4 64.2 8.6 18.1 4.1     6 

 146.8 58.7  18.1 4.1     6.5 

7" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 33.1 19.7 28.8 18.0 16.8 9.8 21.6 37.6 0.5 

 58.7 31.5 24.5 27.9 18.0 28.0 28.8 24.5 54.3 1 

 88.1 37.9 33.3 32.4 18.0 35.4 28.8 28.9 59.1 2 

 117.4 84.5 33.7 19.7 18.0 19.6 28.5 32.5 89.7 3 

 146.8 23.0 15.2 16.7 18.0 16.8 11.5 24.8 40.2 4.5 

 176.1 63.2 14.8 18.2 18.0 18.2 8.7 21.4 71.2 5.5 

Mixed 

Brace 

Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 37.3 22.7 43.2 18.0 16.5 7.2   0.5 

 58.7 13.3 17.7 25.8 18.0 16.6 20.3   3 

 88.1 28.5 32.9 4.4 18.0 16.5 25.2   5.5 

 117.4 23.0 40.5 3.4 18.0 17.1 33.2   6.5 

 146.8 22.9 42.7  18.0 20.3 44.4   6.5 
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Table B.3: Test data for Participant 345024 

3" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 0.0 11.0 20.3 4.6     0.0 

 58.7 2.4 25.8 13.4 4.3     1.0 

 88.1 3.4 25.8 16.8 5.8     3.0 

 117.4 3.1 23.9 15.6 5.2     3.0 

 146.8 6.0 23.4 10.6 5.5     4.0 

 176.1 52.0 30.0 6.5 5.3     5.0 

 205.5 10.5 34.4 3.7 4.5     6.0 

7" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 0.4 7.5 4.1 4.0 3.7 1.6 8.6 3.6 1.0 

 58.7 2.9 12.3 7.3 4.0 3.7 1.6 15.5 12.4 2.0 

 88.1 0.3 14.9 12.6 4.1 3.7 1.6 26.3 9.2 3.0 

 117.4 0.4 62.4 26.4 4.1 3.7 1.6 31.7 22.5 4.0 

 146.8 1.2 21.8 9.2 4.1 3.8 1.6 37.0 26.5 5.5 

 176.1 1.9 31.3 11.2 4.1 3.8 2.5 36.2 30.8 6.0 

 205.5 8.8 25.3 12.2 4.1 3.8 2.7 24.3 20.4 6.5 

Mixed 

Brace 

Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 0.1 3.9 2.1 4.0 3.7 1.9   1.0 

 58.7 1.7 16.8 6.1 4.8 3.7 2.3   1.0 

 88.1 1.6 10.5 5.9 4.3 3.8 1.9   2.0 

 117.4 2.1 21.0 2.9 4.8 4.1 2.8   5.0 

 146.8 3.5 33.6 4.2 4.4 3.7 1.6   5.0 

 176.1 3.1 18.3 0.5 4.3 3.9 2.7   6.0 

 205.5 3.8 27.5 0.9 4.0 3.7 1.7   6.5 
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Table B.4: Test results for Participant 631450 

3" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 0.0 1.7 8.6 4.1     0.0 

 58.7 0.5 4.4 3.7 4.0     0.0 

 88.1 2.4 11.6 8.6 4.4     0.0 

 117.4 1.2 5.7 4.5 6.0     0.0 

 146.8 1.5 5.3 5.8 4.0     0.0 

 176.1 2.5 6.5 8.6 4.1     5.0 

 205.5 10.3 26.9 16.6 15.7     4.0 

 234.9 12.9 27.5 19.5 7.7     4.0 

 264.2 19.9 41.2 14.1 7.1     3.0 

7" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 5.7 14.0 14.8 4.0 3.7 7.5 7.2 2.4 0.0 

 58.7 6.4 10.5 8.6 4.3 4.6 5.7 6.6 20.5 0.0 

 88.1 5.0 15.6 11.9 4.2 5.4 4.6 8.1 18.4 0.0 

 117.4 3.6 19.2 12.8 4.3 6.0 7.1 7.8 17.5 0.5 

 146.8 2.3 19.9 14.1 4.4 13.5 8.2 8.2 25.8 1.0 

 176.1 18.2 14.0 15.4 4.6 13.3 2.3 6.6 29.1 2.0 

 205.5 3.5 25.8 16.6 5.0 41.0 8.2 10.1 37.0 3.0 

 234.9 10.3 33.6 22.0 23.1 60.6 41.9 21.9 50.2 4.0 

 264.2 6.0 30.0 23.9 18.6 47.5 37.8 21.9 41.8 5.0 

Mixed 

Brace 

Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 8.4 49.1 23.5 4.4 3.7 1.6   0.0 

 58.7 10.5 110.1 37.6 21.2 5.0 1.8   0.0 

 88.1 10.7 102.8 27.1 15.1 7.2 1.7   1.0 

 117.4 8.7 73.2 19.5 7.3 11.5 1.9   3.0 

 146.8 12.7 88.2 20.3 6.2 16.8 1.7   3.5 
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 176.1 10.0 62.4 19.8 5.9 17.6 1.7   3.0 

 205.5 10.2 36.1 14.3 5.0 3.8 1.6   3.0 

 234.9 3.0 7.8 8.2 4.1 3.8 1.7   4.0 

 264.2 14.8 36.1 15.9 7.3 41.0 2.7   5.0 

 293.6 17.8 40.1 20.3 11.5 21.1 5.2   4.0 
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Table B.5: Test data for Participant 694828 

3" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 5.2 8.7 5.2 4.0     0.0 

 58.7 8.8 3.5 8.8 4.0     0.0 

 88.1 7.3 13.2 7.3 4.0     0.0 

 117.4 27.3 17.1 27.3 4.1     0.5 

 146.8 25.9 30.6 25.9 4.0     0.5 

 176.1 37.6 42.3 37.6 4.7     0.5 

7" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 6.8 17.1 20.3 4.7 3.7 5.9 4.7 3.2 0.5 

 58.7 10.0 13.2 23.9 7.5 3.7 4.2 5.1 1.0 1.0 

 88.1 9.0 12.8 25.2 7.9 3.7 5.4 4.9 1.4 2.0 

 117.4 7.4 15.3 30.2 5.9 3.7 8.2 4.6 1.2 3.0 

Mixed 

Brace 

Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 11.5 10.7 9.7 4.1 3.7 8.6   0.0 

 58.7 13.9 14.0 18.5 4.2 3.7 11.0   0.0 

 88.1 15.4 14.2 18.5 4.3 3.7 7.8   0.0 

 117.4 24.0 12.6 20.0 4.3 3.7 4.8   1.0 

 146.8 24.0 18.6 23.2 5.7 3.7 1.6   1.0 

 176.1 11.5 10.7 9.7 4.1 3.7 8.6   0.0 
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Table B.6: Test data for Participant 814723 

3" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 16.4 52.3 26.7 5.9     0.5 

 58.7 23.4 67.4 36.9 18.6     2.5 

 88.1 24.6 70.2 39.7 15.7     3.0 

 117.4 25.2 68.7 39.0 17.9     3.5 

 146.8 23.4 70.2 42.1 17.8     3.5 

 176.1 23.4 70.2 42.9 18.6     3.5 

 205.5 25.2 73.2 42.9 21.2     4.0 

 234.9 28.0 73.2 42.1 21.2     4.5 

 264.2 26.6 73.2 41.3 22.1     4.5 

 283.3 25.2 70.2 40.5 22.1     4.5 

7" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 68.0 25.3 15.9 5.5 6.6 8.2 9.2 37.0 1.0 

 58.7 75.5 15.6 19.5 7.9 11.5 10.0 10.5 20.9 1.0 

 88.1 71.6 14.9 18.3 6.6 11.0 10.0 11.3 18.1 1.5 

 117.4 56.5 12.8 15.0 5.9 8.2 7.8 10.7 18.7 1.5 

 146.8 71.6 12.3 14.6 6.3 16.1 11.0 11.1 38.8 2.0 

 176.1 79.7 14.2 15.8 5.1 11.5 6.9 12.2 36.2 2.5 

 205.5 84.4 11.5 13.3 5.6 13.5 10.0 11.2 20.1 2.5 

 234.9 79.7 11.3 15.0 5.5 14.7 7.1 12.4 24.3 3.0 

 264.2 75.5 11.4 13.6 5.1 17.6 9.0 12.2 21.3 3.0 

 283.3 79.7 11.4 15.6 5.0 16.8 11.0 14.8 23.8 3.0 

Mixed 

Brace 

Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 13.4 37.1 29.3 7.5 8.0 11.6   0.5 

 58.7 16.7 15.6 35.0 10.3 14.1 9.0   1.0 

 88.1 17.8 14.9 35.0 9.9 13.5 10.0   1.5 
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 117.4 16.7 12.8 33.8 8.2 11.9 8.6   1.5 

 146.8 16.4 12.3 32.2 8.4 18.4 7.8   2.0 

 176.1 15.4 14.2 30.2 8.4 16.1 4.8   2.0 

 205.5 15.1 11.5 28.4 43.8 6.3 26.3   2.5 

 234.9 16.4 11.3 29.3 9.6 23.1 8.2   2.5 

 264.2 16.7 11.4 30.2 11.9 25.4 11.6   3.0 

 283.3 18.6 11.4 26.7 12.8 29.1 14.2   3.0 
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Table B.7: Test data for Participant 867530 

3" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 5.8 7.7 18.1 4.0     1.0 

 58.7 5.8 9.5 20.8 4.5     2.0 

 88.1 4.5 8.2 19.8 4.0     2.5 

 117.4 3.5 4.7 18.8 4.0     3.5 

 146.8 4.4 3.6 26.7 4.0     5.0 

 176.1 4.3 7.7 19.0 4.0     6.0 

 205.5 11.1 13.4 19.8 4.0     6.5 

7" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 7.1 10.3 18.1 5.4 4.3 9.5 7.5 17.5 0.0 

 58.7 6.6 10.0 18.8 4.5 4.0 7.5 6.0 40.7 1.0 

 88.1 4.1 9.7 17.2 4.2 5.1 10.5 6.4 15.5 1.5 

 117.4 35.3 9.3 17.4 4.3 6.6 10.0 6.4 17.5 2.0 

 146.8 75.5 8.6 14.1 4.2 6.6 7.8 9.0 16.0 3.0 

 176.1 59.1 9.2 18.1 4.5 8.5 8.2 10.4 15.2 3.5 

 205.5 12.0 7.9 17.3 5.6 13.5 15.7 12.0 17.5 4.0 

 234.9 3.4 12.6 19.3 7.3 10.2 12.8 11.2 36.2 5.5 

 264.2 20.3 14.9 17.6 8.4 21.1 41.9 9.8 16.6 7.0 

Mixed 

Brace 

Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 2.5 9.1 15.0 4.0 3.7 4.2   0.5 

 58.7 33.2 12.3 22.6 4.0 3.8 3.6   1.0 

 88.1 79.7 8.4 16.6 5.1 4.4 8.6   1.5 

 117.4 24.6 12.1 13.3 4.0 3.8 5.7   2.0 
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Table B.8: Test data for Participant 520016 

3" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 6.8 14.0 17.6 4.4     4.0 

 58.7 2.9 15.6 23.2 5.2     5.0 

 88.1 3.8 14.9 21.4 4.8     4.0 

 117.4 2.9 12.8 21.4 4.7     4.0 

 146.8 3.6 12.3 26.4 5.2     5.0 

 176.1 3.4 14.2 32.7 5.8     6.0 

 205.5 3.9 11.5 36.3 6.3     6.0 

 234.9 3.2 11.3 38.3 6.9     6.5 

 264.2 3.3 11.4 39.0 6.2     7.0 

7" Brace 
Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 8.7 15.8 18.3 5.5 3.9 21.4 23.1 26.8 3.0 

 58.7 7.1 15.6 22.6 7.1 4.1 30.8 9.6 28.5 3.0 

 88.1 7.6 14.9 22.6 7.1 4.8 23.8 8.2 24.3 3.0 

 117.4 3.9 12.8 22.6 6.4 4.0 20.3 10.2 21.7 4.0 

 146.8 4.4 12.3 20.6 5.6 4.0 44.1 9.6 22.9 4.0 

 176.1 1.1 14.2 21.1 4.3 5.1 39.8 7.6 26.8 4.5 

 205.5 1.2 11.5 22.0 4.7 5.1 41.9 8.0 19.4 5.0 

 234.9 2.8 11.3 24.5 4.9 5.7 35.9 9.1 23.4 5.0 

 264.2 1.7 11.4 23.5 5.9 5.8 46.5 9.8 23.4 5.0 

 293.6 12.9 11.4 48.7 13.4 3.8 12.2  14.0 5.5 

 322.9 13.1 11.4 49.8 16.3 3.7 4.8  11.2 6.0 

 352.3 22.3 11.4 52.1 16.3 3.7 2.8  3.2 6.5 

Mixed 

Brace 

Load 

[N] 

Interface Forces [N] Pain 

Rating Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 0.0 1.6 10.7 12.2 4.1 3.7 1.6   0.0 

 58.7 1.9 15.6 14.5 4.0 3.7 6.2   1.0 
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 88.1 4.2 14.9 12.3 4.0 3.8 3.5   1.0 

 117.4 4.4 12.8 12.7 4.0 3.8 3.3   2.5 

 146.8 8.4 12.3 12.0 9.9 23.1 1.7   3.0 

 176.1 3.9 14.2 6.7 4.8 3.8 3.2   3.5 

 205.5 6.0 11.5 6.5 4.0 4.2 4.6   4.5 

 234.9 10.0 11.3 5.5 4.0 4.5 6.8   5.0 

 264.2 8.4 11.4 5.3 4.0 4.4 7.1   5.0 

 293.6 10.2 11.4  4.0 4.8 12.8   5.5 

 


