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ABSTRACT 

The rapidly increasing emergence of antibiotic resistance amongst pathogenic bacteria is 

a major clinical and public
 
health problem.  The increase in resistant pathogens, accompanied 

with the small number of new antibiotics introduced in recent years, has limited the number of 

effective antimicrobials.  The classical paradigm suggests that antibiotic resistance emerges by 

selection for pre-existing mutants in the bacterial population exposed to antibiotics.  In contrast, 

recent data suggested that mutations evolve after cells encounter antibiotic therapy.  This kind of 

mutation is known as adaptive mutation, which is activated by the SOS DNA repair and 

mutagenesis pathways.  Accumulation of single-stranded DNA (ss-DNA) is the signal that 

induces the SOS response by promoting the formation of the RecA filament, which in turn 

activates the auto-cleavage activity of LexA and allows expression of SOS genes, including the 

SOS error-prone polymerases.  In this project, phthalocyanine tetrasulfonic acid (PcTs)-based 

RecA inhibitors were characterized.  PcTs molecules were found to potentiate the activity of 

bactericidal antibiotics and reduce the ability of bacteria to acquire antibiotic resistance 

mutations.  This study highlights the ability of RecA inhibitors to potentiate the activity of 

antibiotics and provides a strategy for prolonging the life span of existing and newly developed 

antibiotics.  We predicate that RecA inhibitors will be part of an antibiotic “cocktail” that 

enhances the activity of antibiotics and blocks resistance, which will ultimately prolong 

antibiotic lifespan. 
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction  

In recent years, there has been escalating concern over the growing number of antibiotic 

resistant bacteria, which reduces the efficacy of current antibacterial agents and discourages the 

incentive of developing new therapeutic agents.  Despite contemporary efforts by some 

pharmaceutical companies, it is considered inadequate to continue introducing new and better 

antibiotics that are needed to forestall the threat of bacterial drug resistance to the market (Projan 

and Shlaes, 2004).  Consequently, there is a clear and urgent need for developing and introducing 

novel strategies to overcome the antibiotic resistance crisis.  Combination therapy is one 

approach for overcoming the problem of antibiotic resistance.  Combination therapies can be 

roughly classified into four principal modes of action, which describe the mechanism by which a 

second compound enhances the activity of the main antibiotic.  These modes of functions can act 

in the following ways: (i) when a second compound (an adjuvant) prevents the degradation or 

modification of the primary drug, (ii) when an adjuvant suppresses the accumulation and 

retention of the primary drug by inhibiting the efflux pumps, (iii) when an adjuvant is itself an 

antibiotic that targets the same or different pathway that is inhibited by the first antibiotic drug, 

or (iv) when an adjuvant inhibits the intrinsic repair pathway of cells exposed to the primary drug 

(Cottarel and Wierzbowski, 2007).  The bacterial RecA protein represents an attractive target for 

treating bacterial infections, which fits into the last category of combination therapy.  Bacterial 

RecA is a key player in regulating processes involved in repairing DNA damage or stalled 

replication forks.  In addition, RecA and one of its downstream targets LexA control processes 

that lead to stress-induced mutations (Little et al., 1980; Luo et al., 2001; Thi et al., 2011) and 

horizontal gene transfer (Beaber et al., 2004).  Because bacteria play a more proactive role in 

inducing stress-induced mutations or adaptive mutations in their genomes in response to certain 

antibiotics (Cirz and Romesberg, 2007; Riesenfeld et al., 1997), an emerging option to fight the 

growing number of resistant pathogens is to develop inhibitors for RecA, which would function 

as an adjuvant with the current or novel antibiotics.  These adjuvants could potentiate the activity 

of antibacterial agents and prevent the acquisition of drug resistance.  
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The SOS pathway plays a critical role in the acquisition of mutations that lead to the 

emergence of antibiotic resistant bacteria.  RecA and LexA are key elements in the SOS system, 

regulating DNA repair and mutagenesis mechanisms (Cirz et al., 2005).  Certain antimicrobial 

agents exert stress that damages DNA structure or interferes with DNA replication (Cirz and 

Romesberg, 2007).  These actions lead directly or indirectly to the production of free double-

stranded breaks (DSBs) or ends (DSEs) (Cirz et al., 2005).  DSBs or DSEs and stalled 

replication forks are consequently processed to ss-DNA, which is the signal that initiates SOS 

induction (Cirz et al., 2005).  In this fashion, RecA is activated to form an active helical 

nucleoprotein filament (NPF), which coats the resulting ss-DNA.  The NPF has both enzymatic 

and signaling activities.  It mediates recombinational DNA repair, an enzymatic process that 

exchanges strands between homologous DNA strands.  The NPF promotes the auto-cleavage of 

the LexA repressor (Cirz and Romesberg, 2007; Janion, 2001; Riesenfeld et al., 1997).  Early 

expressed SOS gene products maintain the genetic integrity of the cell by high fidelity DNA 

repair mechanisms of the damaged DNA, while late SOS gene products induce stress-induced 

mutations (Cirz et al., 2005) and genome-wide hypermutation (Jolivet-Gougeon et al., 2011).  

Activation of the late stage of the SOS response includes expression of SOS error-prone 

polymerases IV (polIV) and V (polV).  In this case, error-prone polymerases are active and 

produce mutations when the mismatch repair system (MMR) declines (Cirz et al., 2005).  It has 

been demonstrated that RecA–dependent repair mechanisms result in acquired resistance to 

ciprofloxacin (CFX), and ∆recA strains are more susceptible to cell killing by CFX than wild 

type strains (Cirz et al., 2005).  Additionally, a great number of DNA damaging antibiotics 

(CFX, mitomycin C, and naldixic acid) and an RNA polymerase inhibitor (rifampcin) show a 

stronger effect on ∆recA
- 
cells than on the wild type cells (Singleton and Hill., 2010).  Therefore, 

we hypothesize that drugs that modulate RecA biological activity will provide an attractive 

pharmaceutical adjuvant by blocking the SOS pathway which will potentiate damaging effects of 

antimicrobial agents and inhibit mutagenesis mechanisms.  

Acquisition of hypermutability reduces the fitness of bacterial mutators (Jayaraman, 

2009).  However, mutators can adapt to changing environments and stress more easily than non-

mutators because of their mutagenic variation potential (Miller et al., 1999).  Hypermutation is a 

property that leads to indiscriminate accumulation of unwanted mutations (Jayaraman, 2009).  

The cost of the increase in general mutability can be divided into two categories.  First, lethal 
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mutations eliminate cells from the mutagenized population and reduce the potential yield of 

individuals with beneficial mutations.  Second, beneficial mutations and deleterious nonlethal 

mutations can cause defects under most conditions, but others can cause major growth defects 

under specific conditions (Blazquez et al., 2002).  The cost of most mutations in stable mutators 

that are deficient in the MMR is either neutral or lethal.  Development of mutations in transient 

mutators costs less in terms of fitness since a mutation is produced only when needed (Macia et 

al., 2005).  Environmental stressors, including antibiotics, can temporarily increase mutation 

frequency in a bacterial population.  Bacterial cells transiently benefit from the elevated mutation 

frequency to overcome stressful conditions, while reducing the risk of accumulating deleterious 

mutations.  A recent study suggests that the transient mutation state is turned on when cells are 

exposed to sub-lethal antibiotic selective pressure, and turned off when the stress disappears 

(Macia et al., 2005).  The SOS system is activated in response to the formation of DSB or DSE 

in the DNA strand, eventually leading to the formation of ss-DNA.  As a result, RecA is 

activated to form the NPF, coating the resulting ss-DNA.  The NPF provokes the auto-cleavage 

of the LexA repressor, causing the activation of a series of about 40 different genes that are 

regulated by the product of the lexA gene and recA.  Error-prone DNA polymerase IV and V are 

expressed and activated to overcome the blockage of DNA replication or the damage in DNA 

structure (Cirz and Romesberg, 2007; Janion, 2001).  Moreover, induction of the SOS system by 

antibiotics increases the mutation rate in MMR-deficient cells (Jayaraman, 2009).  Thus, the 

combined effects of both stable and transient hypermutations in a bacterial population, subjected 

to stress, increase the chance of acquiring antibiotic resistance.  Transient hypermutations take 

place by using nonlethal conditions.  In terms of antibiotics, the induction develops by using sub-

lethal concentrations which are close to lethal since high concentrations will kill almost all the 

cells in the population and low concentrations will not activate the transient hypermutation 

system (Krasovec and Jerman, 2003). 

To date, the number of natural or synthetic cell-permeable RecA inhibitors is extremely 

low.  RecA and its structural and functional homologues are present in virtually all organisms, 

ranging from bacteria to humans (Cox, 2007).  RecA belongs to recombinase proteins, which are 

a superfamily of strand exchange proteins, including archaeal RadA, and eukaryal Rad51 and 

DMC1.  These proteins play a critical role in the DNA strand exchange process between a ss-

DNA and a homologous ds-DNA in homologous recombination (Li et al., 2009).  These proteins 
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exhibit noticeably similar filamentous assemblies from the electron microscopic and 

crystallographic data (Li et al., 2009).  In principle, three common functionally important sites: 

(i) recruitment and polymerization, (ii) ATP binding, (iii) and DNA binding (Li et al., 2009) in 

RecA and its homologues filamentous structures could be targeted, which in turn inhibit these 

strand exchange proteins.  

Candidate RecA inhibitors examined in this project were available from commercial 

small anionic aromatic libraries, specifically phthalocyanine molecules coordinated with 

different metal ions.  The selection of these molecules was inspired by the ability of sodium 

tungstate (Na2WO4), a phosphate analogue, to be a potent inhibitor of ATPase and strand 

exchange activities of the RecA homologue MvRadA (Li et al., 2009).  The metatungstate 

Na2WO4 cluster appears to be bound between the DNA-binding loops (L1 and L2), anchoring the 

protein in its inactive conformation (Li et al., 2009).  The results suggest that small molecules 

could competitively inhibit DNA binding by RecA.  A follow-up study showed that Na2WO4 was 

unable to abrogate RecA activity in living cells (Li et al., 2009).  Therefore, in order to advance 

our goal of identifying molecules that are cell permeable and modulate RecA’s biological 

activity, we screened commercially available anionic, aromatic molecules.  Based on this 

screening, two phthalocyanine tetrasulfonic acid (PcTs) compounds coordinated with different 

metal ions, iron (III) phthalocyanine-4,4′,4′′,4′′′-tetrasulfonic acid (Fe-PcTs) and copper 

phthalocyanine-3,4′,4′′,4′′′-tetrasulfonic acid (3,4′ Cu-PcTs), which inhibit RecA ATPase 

activity, were identified (Geyer and Luo personal communication, unpublished data).  

Abrogating ATPase activity is a useful tool to indicate the inhibition of the NPF and, 

consequently, the suppression of RecA activity.  As a result, these RecA putative inhibitors 

represent attractive candidates to potentiate antibiotic efficacy and reduce the acquisition of 

resistance.  

1.2 Antimicrobial Resistance 

Since antibiotic discovery, antibiotics have been considered “miracle drugs”, 

overwhelmingly used to fight infectious diseases.  Antimicrobial drugs have saved many lives 

and contributed significantly to the control of infectious diseases (Bang et al., 1999; Zaidi et al., 

2011).  Looking back on the history of humans, infectious diseases were the leading cause of 

human morbidity and mortality (Aminov, 2010).  The idea of a “magic bullet” that exclusively 
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steers its full action on disease-causing microbes, but not the host, was originated in 1904 by 

Paul Ehrlich (Abraham and Chain, 1988).  This idea led him to start developing drugs that could 

cure diseases, such as syphilis.  Salvarsan was the first synthetic antimicrobial drug and it had 

great success in treating syphilis (Projan and Shlaes, 2004).  Following that, hundreds of drugs, 

including sulfonamides, were identified by Ehrlich for clinical settings.  Sulfonamides were 

synthesized in 1935, yet they had limited clinical applications in terms of safety and efficacy 

(Projan and Shlaes, 2004).  However, the true modern antibiotic era has been linked to Alexander 

Fleming, and his contribution to the clinical world.  Fleming found that the growth of 

Staphylococcus aureus was inhibited in a zone surrounding a contaminated blue mold, named 

Penicillium genus, in culture plates (Aminov, 2010).  This led to the hypothesis that a 

microorganism produces substances that could inhibit the growth of other microorganisms.  

These substances are weapons in the hands of antibiotic producer organisms to fight competitors, 

which might coexist with them.  The antibiotic was named penicillin G, and it came into clinical 

use in the 1940s (Aminov, 2010).  Following these discoveries, new classes of antimicrobial 

agents were developed, leading to the golden era of antimicrobial chemotherapy (Projan and 

Shlaes, 2004).  

The major problem the world is encountering with antibiotic therapy is the ongoing race 

between the discovery and introduction of novel antibiotics and the remarkable ability of bacteria 

to evolve resistance against existing antibiotics.  This scenario has been repeated on multiple 

occasions, demonstrating interesting facts about adaptive capabilities of bacteria to overcome the 

immense antibacterial drug abuses.  Generation of resistant microbes or “superbugs” makes 

bacterial infections difficult to cure (Wright, 2000).  Exposure to small doses of antibacterial 

agents introduces extreme selective pressure, causing bacteria to become resistant to these 

antibiotics instead of clearing up bacterial infections (Cirz and Romesberg, 2007).  Lately, one of 

the greatest problems in medicine is bacterial resistance since diseases caused by microbes 

represent the second leading cause of death and is a primary cause of disability worldwide 

(Fauci, 2001).  Twenty five thousands patients in the EU die from an infection by multidrug 

resistance bacteria per year while in the US more than 63.000 patients die every year by 

nosocomial infections (Aminov, 2010).  The wide occurrence of antibiotic resistance suggests 

that, theoretically, any microbes could develop resistance to any antibacterial agents.   
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Additionally, the production of new agents for clinical use has dropped in the last 10-15 

years (Alanis, 2005) (Figure 1.1), reflecting both the difficulty of discovering new drug classes 

and a declining interest in antibacterial drug discovery by the pharmaceutical industry (Aminov, 

2010; Wright, 2000).  As a result, the contemporary efforts by some pharmaceutical companies 

is considered inadequate to continue introducing new and better antibiotics needed to forestall 

the threat of bacterial drug resistance to the market (Projan and Shlaes, 2004).  Since the same 

period has been accompanied with an escalating increase in bacterial resistance to existing 

antibacterial agents (Aminov, 2010) (Figure 1.1), it amplifies the emergence of a serious threat to 

global public health. 

The accelerating evolution of antimicrobial resistant bacteria creates a considerable threat 

to public health and clearly is an unavoidable trend, demanding urgent solutions with either the 

discovered of new antibiotics or the revitalized of the pharmaceutical efficacy of current 

antibacterial agents.  Improvement in existing antibacterial classes of drugs has been made to 

achieve better pharmacodynamic activity, including the absorption of oral drugs, concentration 

in the blood, distribution to the inflammatory tissue (Aminov, 2010), and overcoming the 

emergence of resistance (Hall, 2004).  However, most of the current antibacterial agents in 

clinical use are already in their second or third generation of modification (Barbachyn and Ford, 

2003).  One approach to deal with antimicrobial resistance involves screening targets that are 

considered non-essential for bacterial viability (Cottarel and Wierzbowski, 2007).  In principle, 

combination mutations in two non-essential genes can lead to a synthetic lethal phenotype, 

resulting in cell death; however, one mutation in any of these genes can slow down the cell 

growth.  This principle could be employed chemically.  An example would be the identification 

of two drugs, named drug A and drug B.  Each drug inhibits a specific protein independently.  

Inhibition of any protein alone does not kill the cells, but slows down the growth. However, the 

combined effect of both drugs leads to lethal activity.  This principle has been applied in 

Mycobacterium tuberculosis.  M. tuberculosis utilize lipids as a source of energy when sugar is 

limited, which requires the activation of isocitrate lyase enzyme, encoded by ICL1 and ICL2 

genes.  Deletion of one of these genes alone in M. tuberculosis in an animal model has no lethal 

effect on the pathogen while deletion of both genes renders M. tuberculosis unable to replicate 

and the infection completely cleared.  A dual ICL protein inhibitor suppressed bacterial  
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Figure 1.1.  Trends associated with antibiotic resistance. 

Upper graph: The percent of the increased incidence in nosocomial infections by resistant pathogens, including 

Methicillin-Resistant S. aureus (MRSA), Vancomycin-Resistant Enterococci (VRE) and Fluoroquinolone-Resistant 

Pseudomonas aeruginosa (FQRP) in the past 25 years.  These data were collected from hospital intensive care units 

in the USA that participate in the National Nosocomial Infections Surveillance System, a component of the Centers 

for Disease Control and Prevention. The figure was obtained from the Infectious Diseases Society of America 

website, http://www.idsociety.org/.  Lower graph: The declining number of licensed antibiotics in the past.20 

years.  This figure was reprinted: Spellberg et al, trends in antimicrobial drug development: implications for the 

future, clinical infectious diseases, 2004, 38, 9, 1279-1286, by permission of Oxford University Press. 
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replication in macrophage (Cottarel and Wierzbowski, 2007).  This paradigm has shown that 

chemical inhibition of two non-essential proteins could produce a synthetic lethal phenotype, 

which can be applied to treat bacterial infections.  Another way to resolve the antimicrobial 

resistance issue is the development of inhibitors of antibiotic resistance mechanisms, which can 

accompany the classical antimicrobials.  In this manner, a current antibiotic is combined with an 

inhibitor that neutralizes the resistance mechanisms and, consequently, could potentiate the 

antibiotic’s efficacy.  This approach has the advantage of extending the lifetime of the current 

antimicrobials.  The best well-known example is the combination of the β-lactam class antibiotic 

(amoxicillin) with a lactamase inhibitor (clavulanate).  The β-lactamase inhibitor neutralizes the 

activity of β-lactamase to degrade amoxicillin and enhances amoxicillin ability to exert its action 

on bacterial cell wall (Cottarel and Wierzbowski, 2007; Wright, 2000).  There are other 

examples of combination therapeutic drugs being introduced to the market, such as the semi-

synthetic antibiotic, ampicillin, with the β-lactamase inhibitor, sulbactam (Wright, 2000).  

Another example of combination therapy is trimethoprim and sulfamethoxazole; these drugs 

inhibit different steps in the folic acid metabolism pathway at the transcription level.  All 

combination therapy examples indicate that combination therapy could be a useful approach to 

combat antimicrobial resistance. 

1.2.1 Factors Leading to Antimicrobial Resistance 

There are two hypotheses regarding the emergence of resistance-conferring mutations. 

The classical theory links the evolution of antibiotic resistance to the selection of pre-existing 

mutants in a population of microbes exposed to an antibiotic therapy.  This mutation is an 

unavoidable trend occurring as a result of replicating the bacterial chromosome with low fidelity 

polymerases (Cirz and Romesberg, 2007).  This suggests that the emergence of mutations 

conferring resistance is a random event where intervention is not possible.  Resistant microbes 

possess inherited resistant traits that allow them to survive killing or inhibitory effects of 

antimicrobial agents.  Interestingly, these resistant genes can be transferred to other microbes by 

one of many genetic mechanisms, including transduction, transformation, and conjugation 

(Tenover, 2006).  Nevertheless, current data suggests that the acquisition of mutations is a 

regulated process for which bacteria play a very proactive role by inducing particular proteins, at 

least when the DNA is exposed to certain antimicrobials and DNA-damaging agents (Cirz and 
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Romesberg, 2007).  This kind of mutation belongs to adaptive or stress-induced mutations, 

occurring as a response to prolonged drug exposure or exposure to small doses of antibacterial 

agents for which these mutations relieve stress and allow microbes to grow (Cirz et al., 2005).  

This kind of mutation takes place only in non-dividing or slowly growing cells, and the stress 

that antibiotics create on bacteria is specific to a particular phenotype and produces a mutation in 

that phenotype that allows the bacteria to resume growth (Cirz et al., 2005; Riesenfeld et al., 

1997).  This paradigm supports the notion that resistance depends on particular biochemical 

pathways and intervention with these pathways would be a promising approach to combat the 

resistance issue.   

The major antibacterial drug targets are bacterial cell-wall biosynthesis, protein synthesis, 

DNA replication and repair, metabolic pathway, and membrane structure (Tenover, 2006) 

(Figure 1.2).  Numerous mechanisms have evolved in bacteria, which confer them with antibiotic 

resistance.  Bacteria can have intrinsic or acquired resistance.  In both cases, a heritable change 

in bacterial DNA is produced through either a mutation or acquisition of foreign resistant genes 

from other bacteria.  The processes of horizontal gene transfer and stress inducible mutations 

have been shown to increase the chance of acquiring antibiotic resistance (Cirz et al., 2005; 

Kohanski et al., 2007; Thi et al., 2011), where RecA play a critical role in both processes 

(Beaber et al., 2004; Cirz et al., 2005).  

Acquired mutations conferring resistance can render the ability of bacteria to: (i) 

chemically inhibit the active from of an antibiotic; (ii) physically remove an antibiotic from the 

cell through an efflux pump mechanism; or (iii) modify the target site of an antibiotic, so it is no 

longer recognized by the antibiotic (Tenover, 2006).  The first effective strategy of antibiotic 

resistance is the destruction of the antibiotic (Figure 1.3).  The most well-known example of this 

strategy is the hydrolytic deactivation of the β-lactam ring in penicillins and cephalosporins by 

production of the hydrolytic enzyme β-lactamase by resistant bacteria.  The β-lactam ring is the 

functional component in these drugs, which irreversibly acylates and modifies the cell wall-

crosslinking penicillin binding proteins (PBPs).  When the ring is hydrolysed, it is deactivated 

and becomes nonfunctional as a PBP pseudosubstrate.  The β-lactam resistant bacteria secrete 

this enzyme into the periplasm to destroy β-lactam antibiotics before they can reach the PBP  
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Figure 1.2.  The major antibacterial agent targets. 

There are five main antibacterial targets in bacteria: cell-wall biosynthesis, protein synthesis, DNA replication and 

repair, metabolic pathway, and membrane structure.  This figure was reprinted by permission from Macmillan 

Publisher Ltd: [NATURE REVIEW DRUG DISCOVERY](Coates et al., 2002), copyright (2002). 
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Figure 1.3.  The molecular resistance mechanisms of antibacterial antibiotics. 

The resistance mechanisms consist of chemical inhibition of the active from of an antibiotic, physical removal of an 

antibiotic from the cell through an efflux pump mechanism; or modification of the target site of an antibiotic.  The 

figure was reproduced from [the origins and molecular basis of antibiotic resistance, Hawkey, 317, 657-660, 

copyright 1998] with permission from BMJ Publishing Group Ltd. 
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targets in the cytoplasmic membrane (Bradford, 2001).  Other antibiotic classes, such as the 

aminoglycosides, use different mechanisms to neutralize antibiotic activity.  These protein-

synthesis inhibitors can be neutralized by antibiotic deactivating enzymes.  The three classes of 

enzymes that confer aminoglycoside resistance are adenylyltransferases (ANTs), O-

phosphoryltransferases (APHs), and N-acetyltransferases (AACs).  These enzymes modify 

aminoglycoside structure, which causes the antibiotic to bind to their RNA targets in the 

ribosome (the 30S ribosome unit) with lower affinity (Smith and Baker, 2002).  The second 

mechanism by which bacteria develop resistance to antibiotics is the physical removal of 

antibiotics from bacterial cells (Figure 1.3).  All bacteria possess membrane proteins that 

organize the movement of lipophilic or amphipathic molecules in and out of cells.  Gram-

negative bacteria possess an outer membrane that acts as a front line defensive mechanism to 

stop toxic molecules, including antibacterial agents, from entering the cell.  This mechanism has 

a non-specific property in protecting bacterial cells from toxic molecules.  Although Gram-

positive bacteria lack the presence of the outer membrane, they have the capability to restrict the 

movement of toxic drugs by physical means.  The influx system only restricts antibiotics from 

entering bacterial cells, so it cannot take the entire responsibility of resistance (Nikaido, 1994).  

Resistance to antibacterial agents is linked in many cases to activation of the efflux system that 

prevents the intracellular accumulation of antibiotics inside the cell (Hawkey, 1998; Levy, 1992; 

Nikaido, 1994).  Antibiotic-producing microorganisms use efflux pumps to transport antibiotics 

out of their cells (Nelson, 2002).  In this fashion, they create a defensive mechanism for the 

bacteria to prevent being killed by their own toxic defense molecules.  The same mechanism is 

used by resistant bacteria to pump antibiotics out of their system.  Accordingly, antibiotics do not 

accumulate to lethal or inhibitory concentrations and reach their specific bacterial targets 

(Jarmula et al., 2011).  Tetracycline-resistant bacteria (Gram-positive and Gram-negative 

bacteria) become resistant to tetracyclines by membrane proteins that act as efflux pumps for the 

antibiotic; therefore, the drug is pumped out faster than it can accumulate inside the cells, so the 

drug concentrations are maintained at a low level inside the cells and do not interrupt protein 

processes (Jarmula et al., 2011; Levy, 1992).  Lastly, resistance can result from mutations that 

render the drug ineffective against the target; therefore, the drug cannot interact with the target, 

making the drug ineffective as an inhibitor (Jacoby, 2005) (Figure 1.3).  In the case of 

quinolones, studies have shown that resistance is a result of de nova mutations in drug targets.  
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Mutations in gyrA, gyrB, parC, or parE result in quinolone resistance.  Mutations in the gyrA 

gene are more common in quinolone-resistant clinical isolates of E. coli (Cirz et al., 2005), while 

mutations in parC are more dominant in Gram-positive bacteria (Martinez et al., 1998; Roca and 

Cox, 1997). 

1.3 The SOS System 

To maintain genomic functional and structural integrity, microorganisms react to stressful 

environmental conditions by producing or activating specific proteins that play roles in 

translesion DNA synthesis, recombination, repair, and cell division inhibition until DNA repair 

and replication are complete.  This system is known as the SOS system, elaborately described in 

the E. coli by Walker in 1984 (Hilgers et al., 1989).  This phenomenon was first proposed and 

named by Miroslav Radman in 1974 (Cirz and Romesberg, 2007).  The SOS system is the 

bacterial DNA damage checkpoint response that is activated by DNA damage or stalled DNA 

replication.  Activation of the SOS system results in the upregulation of at least 40 genes.  The 

main proteins that regulate this system are LexA (transcriptional repressor) and RecA (SOS de-

repressor) (Cirz and Romesberg, 2007). 

1.3.1 The SOS Response  

Activation of the SOS response induces a cascade of reactions associated with DNA 

repair pathways, cell cycle arrest, and mutagenesis (Janion, 2001).  SOS genes are located at 

different sites on the E. coli chromosome and are normally activated by two proteins, LexA and 

RecA (Janion, 2001).  SOS genes are negatively regulated when LexA binds to a specific set of 

related sequences in the operator site of SOS boxes, blocking the transcription of all SOS genes 

(Michel, 2005).  A comparison of LexA regulons from several bacterial species revealed that the 

LexA regulon consists of approximately 42 genes and their expression is coordinated into three 

phases according to their functions.  SOS genes are generally classified based on the order of 

their expression as early, middle, and late SOS genes (Figure 1.4).  Their expression is dependent 

on the sequence of their SOS box and the position and strength of their promoter. lexA (a 

repressor of SOS genes), uvrA and uvrB (Uvr ABC-exonuclease-nucleotide exclusion repair), 

uvrD (HelicaseII), polB (DNA polyII), ruvA (RuvAB-helicase), ruvB (recombinational repair), 

and  dinI (inhibitor of UmuD processing) are expressed in the first phase of the SOS response 
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and play a role in nucleotide excision repair mechanisms.  If these genes do not repair the 

damaged DNA or the stalled replication fork, then recA (SOS de-repressor and recombinational 

repair) and recN (recombinational repair) are expressed and are responsible for recombination 

repair mechanisms.  Lastly, if the SOS response is not successful in overcoming the blocked 

DNA replication, then the sulA and umuDC genes are expressed.  sulA inhibits cell division and 

the umuDC operon encodes the error-prone DNA polV (Janion, 2001).  The interaction between 

LexA and RecA regulates the expression and activation of PolV by stimulating UmuD to 

undergo auto-cleavage.  Two cleaved UmuD units bind to one UmuC to create PolV.  The lack 

of the proof reading function in PolV and PolIV facilitates their function in bacterial cells 

(Goodman, 2000).  PolIV and V are crucial in translesion error-prone DNA synthesis, allowing 

for a gap across from the site of a lesion to be filled by any nucleotide, although they have 

distinctive preferences for particular lesions (Hastings and Rosenberg, 2002).  When sulA is 

expressed in the late stage of the SOS gene expression, it arrests cell division by binding FtsZ 

(Trusca et al., 1998) and provides extra time for the mutagenic error-prone polymerases to 

acquire mutations that allow cells to escape from the metabolic and genomic stress.  Induction of 

the SOS response is caused by the exposure of bacteria to stressful conditions, directly or 

indirectly interrupting DNA replication or damaging DNA structure.  Both of these actions lead 

to accumulation of an ss-DNA (Cirz and Romesberg, 2007; Janion, 2001; Riesenfeld et al., 

1997), which is the SOS signal that induces RecA to polymerize on the ss-DNA in the presence 

of dATP or ATP (Figure 1.5).  When RecA forms the long helical NPF on the ss-DNA in the 

presence of ATP, it becomes active (RecA*) and induces the auto-proteolytic activity of LexA; 

promoting auto-cleavage of the LexA dimer repressor and CI repressor, and processing of the 

UmuD protein to the mutagenic UmuD’ (Butala et al., 2009; Cirz and Romesberg, 2007; 

McKenzie et al., 2000).  During this process, the concentration of ATP and dATP are increased 

several fold, while the level of LexA is decreased (Janion, 2001).  This reduction in LexA 

concentration frees operator sites of SOS and allows the expression of SOS genes, which are 

responsible for DNA repair and mutagenesis mechanisms (Cirz and Romesberg, 2007; Janion, 

2001; Riesenfeld et al., 1997).  After cell revival from the DNA damage by DNA repair or 

mutations, the signal for activating RecA no longer exists, and as a result the de-repression of 

LexA is abolished.  Thus, the SOS system returns to its repressed state (Riesenfeld et al., 1997). 
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Figure 1.4.  The SOS response to DNA damage or collapsed replication fork. 

The SOS genes are divided into early, middle, and late genes based on their phase of expression.  The SOS response 

in E. coli includes up to 40 genes, which are normally de-repressed based on the direct impact of interaction between 

two proteins, LexA and RecA.  The early and middle expressed genes involve with repairing DNA damage while 

the late SOS genes activate the SOS mutagenesis in bacterial genome. The data used to drew this figure was 

obtained from (Janion, 2001) 

 

 

 

 

 

 

 

 

 

Figure1.5.  The SOS response is activated when RecA protein forms the NPF on ss-DNA 

that accumulates in the presence of DNA damage or stalled DNA replication. 

The active NPF assists repair of DSEs or restart collapsed replication forks.  The NPF binds to the ss-DNA in the 

presence of ATP and promotes the auto-cleavage of the SOS transcriptional repressor protein, LexA.  Cleavage of 

LexA leads to the dissociation from the SOS operator site and allows the transcription of the SOS genes.  Bold Ts 

indicate possible ways of interventions to block the SOS response.  This figure was reprinted by permission from 

Macmillan Publisher Ltd: [NATURE CHEMISTRY BIOLOGY], (Smith and Romesberg, 2007) copyright (2007). 
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1.3.2 Overview of RecA Protein and its Functions  

RecA is a ubiquitous protein with structural and functional homologues present in all 

organisms, ranging from bacteria to humans (Cox, 2007).  RecA is a recombinase protein, and is 

a member of the superfamily of strand exchange proteins, including archaeal RadA, and eukaryal 

Rad51 and DMC1 (Wu et al., 2005).  These proteins play a critical role in the DNA strand 

exchange process between ss-DNA and homologous ds-DNA.  Among bacteria, RecA is a 

highly conserved protein.  Bacteria are constantly challenged by environmental stressors, such as 

DNA damaging agents.  Bacteria have to maintain a dynamic conflict between the needs to 

reserve or vary their genetic information in the face of environmental stressors.  DNA repair 

mechanisms are essential for the maintenance of bacterial genetic information while genetic 

variation provides evolutionary adaption to changing environments (Kowalczykowski and 

Eggleston, 1994; Roca and Cox, 1997).  RecA plays a role in both pathways.  It detects DNA 

damage or stalled replication forks and initiates the SOS response by stimulating LexA repressor 

auto-proteolysis (Cirz and Romesberg, 2007; McKenzie et al., 2000).  The SOS response to 

DNA damage launches with up-regulating DNA repair activities, but if DNA damage is not 

successfully resolved, error-prone DNA synthesis is activated to promote mutagenesis (Cirz and 

Romesberg, 2007; McKenzie et al., 2000).  RecA has an enzymatic activity in bacterial cells to 

promote the auto-cleavage and inactivation of the LexA and CI repressors and in promoting the 

processing of UmuD to mutagenic UmuD’ (Cirz and Romesberg, 2007; McKenzie et al., 2000).  

RecA expression is also activated during the SOS response to perform recombinational activities 

which are the basis for DNA repair (Cox, 2007) and horizontal gene transfer processes (Beaber 

et al., 2004).  Signaling and recombinational activities of RecA are capable of sustaining the 

genetic information of the bacterial genome or allowing the same genome to adapt to stressful 

conditions (Kowalczykowski and Eggleston, 1994; Roca and Cox, 1997).   

Interestingly, RecA does not have any biological activities as a monomer.  It functions as 

a helical filament with thousands of monomers polymerized on ss-DNA in the presence of ATP 

(Kowalczykowski and Eggleston, 1994).  RecA protein is activated as a response to exposure to 

DNA damaging elements; however, it can be activated by a number of conditions such as 

antibiotic treatment, starvation, oxidative stress, heat shock, and pressure, all of which lead to 

metabolic and physiological stress that indirectly causes DNA damage and the ss-DNA 
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formation (VanBogelen et al., 1987).  RecA binds to ss-DNA and causes a cascade of reactions, 

starting with nucleation.  The active RecA NPF assembles and disassembles in one direction on 

the ss-DNA and ds-DNA.  The RecA filament uniquely extends in the 5′ to 3′ direction.  Its 

assembly is faster than its disassembly and its assembly on ss-DNA is faster than on ds-DNA.  A 

gap in the ds-DNA is the most attractive site for RecA nucleation.  If ss-DNA binding proteins 

(SSB) are bound to the DNA, the nucleation of RecA becomes significantly slower; therefore, 

RecO and RecR proteins form a complex that facilities RecA nucleation on SSB-bound ss-DNA.  

In addition, to prepare the ds-DNA for RecA binding, RecBCD cuts the 5′-end of DNA strands 

more than the 3′-ends of DNA strands, which generates a 3′ single-strand extension.  This 

facilitates RecBCD function to load RecA on the processed DNA substrate (Cox, 2003).  All 

types of DNA damage lead directly or indirectly to the formation of ss-DNA by processing the 

damage with recombinational accessory proteins to form the ss-DNA.  The formation of DSB or 

DSE in the DNA leads to a stalled replication fork, where the RecBCD enzyme loads at DSEs 

and produces ss-DNA.  In the case of DNA cross-link damage, the UvrABC exonuclease system 

nicks and removes small segments of DNA from one strand of the damaged duplex before and 

after the site of cross-linking, leaving a short ss-DNA gap (Sladek et al., 1989).  Following that, 

RecBCD proteins apply exo- and endonuclease activities to unwind and degrade one strand of 

the damaged DNA duplex and produce ss-DNA (Smith et al., 1987).  The active NPF starts to 

search for homologous DNA and mediates the ss-DNA invasion into the homologous DNA 

duplex, forming a D-loop structure or Holiday type structure.  The RuvABC proteins carry on 

the branch migration, resulting in strand exchange (Kowalczykowski and Eggleston, 1994).  This 

type of strand invasion is critical for resolving DSB in the DNA (Cox, 2003), stalled or collapsed 

replication forks, and cross-linked DNA strands (Roca and Cox, 1997).  

The hydrolysis of ATP is necessary for some RecA functions.  Upon RecA activation, 

RecA starts to polymerize on ss-DNA and forms the active ATP·RecA·ss-DNA nucleoprotein 

filament, promoting LexA auto-cleavage.  The cleavage of LexA is one of RecA’s signaling 

functions, which is dependent on the formation of the NPF, but does not require ATP hydrolysis 

(Courcelle and Hanawalt, 2003).  However, the subsequent hydrolysis of ATP bound to the NPF 

is essential for recombinational activities, which are necessary for horizontal transfer and 

recombinational DNA repair.  The recombinational DNA repair mechanism is necessary for 

restarting replication forks and repairing DNA damage even DNA damage that is bypassed by 
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the error–prone DNA synthesis (Cox, 2007).  ATP hydrolysis contributes to unique functions of 

RecA, such as dissociating the RecA-filament at the disassembly end, rendering the strand-

exchange reaction unidirectional (5′-3′ direction) in a three strand exchange reaction, and 

bypassing significant barriers in one of the DNA substrates since RecA-mediated bypass 

involves the unwinding of the entire DNA insertion.  In addition, the four strand-exchange 

reaction must be initiated in a single-strand gap (as in the three-strand exchanges), yet the 

exchange readily grows beyond the gap.  The transition from a three-strand reaction into a four-

strand reaction is dependent on ATP hydrolysis.  Lastly, upon RecA binding to a gap in the 

leading strand of the stalled replication fork, the fork regresses in a reaction that is dependent on 

ATP hydrolysis (Cox, 2007). 

1.3.3 Responsibility of RecA in the Development of Acquired Resistance to Antibiotic 

Treatment 

Some interesting features of RecA functions are its ability to facilitate the acquisition of 

antibiotic resistant genes by horizontal gene transfer and the development of stress-inducible 

mutations.  The DNA recombinational repair mechanisms by RecA is a non-mutagenic process 

where problems in the DNA duplex are resolved.  On the other hand, RecA-mediated 

recombination can incorporate a foreign DNA segment, which may contain resistant genes 

derived from exogenous homologous DNA, into the host genome through a process known as 

horizontal gene transfer (Beaber et al., 2004; McKenzie et al., 2000).  Bacteria show the ability 

to incorporate a DNA fragment from bacteria of the same or different species (Davison, 1999).  

The significance that horizontal gene transfer has on bacterial evolution is emphasized by the 

fact that foreign DNA can represent up to one-fifth of a given bacterial genome (Rowe-Magnus 

et al., 2001).  

The mechanism of stress-inducible mutagenesis involves switching the high fidelity DNA 

double strand-break repair (DSBR) mechanism via homologous recombination into a mutagenic 

version, controlled by SOS proteins.  Fluoroquinolones have the ability to induce the SOS 

system.  Bacterial RecA is known as a crucial element of the response to antibacterial quinolones 

that inhibit topoisomerase II.  CFX is a member of the quinolones.  The main target of CFX in E. 

coli is DNA gyrase, which is a tetrameric enzyme composed of two A subunits and two B 

subunits, encoded by gyrA and gyrB, respectively.  The main function of this enzyme is to 
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supercoil and to uncoil the DNA helix by cleaving both strands of the helix, passing another 

piece of the helix through the resulting DSBs and rejoining these DSBs in the presence of ATP.  

These actions are necessary in DNA replication, transcription and recombination.  There are 

additional targets for CFX in Gram-negative bacteria such as ParC and ParE, which encode 

subunits for topoisomerase IV (Jurado et al., 2008).  CFX functions by reversibly binding to the 

topoisomerase II bridged-DSB intermediate and inhibiting rejoining of DNA ends.  The 

proposed model for CFX resistance conferring acquired mutations begins with the formation of 

DSBs or DSEs, which can lead to DNA damage or a stalled replication fork (Fig. 1.6).  The 

RecBCD enzyme loads at DSEs and produces ss-DNA where RecA can bind.  The RecA-ss-

DNA filament catalyzes strand invasion of the ss-DNA into a homologous sequence, resulting in 

the formation of the D-loop structure (Cirz et al., 2005).  The persistence of the RecA-ss-DNA 

filament eventually leads to the degradation of LexA and activation of the SOS system, including 

the SOS error-prone polymerases.  In this case, error-prone polymerases start to function and 

produce mutations when the MMR declines (Cirz and Romesberg, 2007).  Criz et al., showed 

that E. coli cells with the uncleavable LexA transcriptional repressor do not develop resistance 

either in culture or in a murine infection model (Cirz et al., 2005)..  Additionally, inhibiting 

LexA cleavage activity by mutating or deleting the lexA gene in vitro, considerably reduces the 

emergence of resistance to CFX (Cirz et al., 2005), and any defective mutations in one or more 

of the mutagenic polymerases are not able to develop post-exposure mutations (Cirz et al., 

2005).  DNA PolIV and PolV are Y-family error-prone DNA polymerases and mediate 

translesion DNA synthesis (Babynin, 2004).  This indicates that the induction of error-prone 

polymerases (Pol II, PolIV and PolV) is required for CFX-resistant cell development.  Defais et 

al., showed that deletion of the recA gene prevents mutations (Defais et al., 1971).  RecA–

dependent repair mechanisms resulted in acquired resistance to CFX, and ∆recA strains are more 

susceptible to cell death from CFX than wild type strains (Cirz et al., 2005).  It has been revealed 

that a great number of DNA damaging antibiotics (CFX, mitomycin C, and naldixic acid) and an 

RNA polymerase inhibitor (rifampcin) have a stronger effect on ∆recA
- 
cells than on wild type 

cells (Singleton and Hill., 2010).  These studies indicated that the induced mutation process is 

regulated and related to regulation of the SOS response.  Rifamycins function by inhibiting the 

initiation step of bacterial RNA synthesis by the binding to the β-subunit of RNA polymerase 

bound to DNA (Kohanski et al., 2010). 
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Figure1.6.  Model of ciprofloxacin-acquired mutation conferring resistance.  

Free DSBs are repaired by nuclease and polymerase-dependent illegitimate recombination, resulting in small 

deletions (Pathway A) in the absence of homologous sequences.  Free CFX-induced DSBs can be repaired by 

recombination-dependent replication (Pathway B) in the presence of a homologous sequence.  Lastly, replication 

forks that encounter topoisomerases that are covalently-bound to the DNA are repaired by recombination-dependent 

fork repair (Pathway C).  This involves RecG-mediated fork regression and RuvC cleavage to free DSEs where 

RecBCD loads RecA on an ss-DNA to form the NPF.  The NPF catalyzes strand invasion of a homologous sequence 

where PriA, and possibly Pol II, help to restart a processive replication fork.  Sufficient accumulation of DSBs and 

blocked forks, persistent of the NPF induces LexA cleavage to levels sufficient to de-repress the error prone 

polymerases, Pol IV and Pol V, which cooperate to induce mutations (Pathway D).  Once resistance-conferring 

mutations are made, DSBs, collapsed replication forks, and the NPF are no longer present and the cellular 

concentration of LexA increases, turning off expression of the error-prone mutagenic polymerases.  This figure was 

obtained from (Cirz et al., 2005).  
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The inhibitory effect of rifamycins is attributed to two molecular actions: (i) binding of rifamycin 

molecule to the β-subunit (encoded by rpoB) of a DNA-bound RNA polymerase blocks 

transcription and (ii) oxidizing the hydroquinone moiety of rifamycin Sv-bound to RNA 

polymerase into rifamycin S leads to the production of free radicals (Kono, 1982).  The ability of 

rifamycin to cycle between a radical and nonradical form (rifamycin Sv and rifamycin S, 

respectively) can damage DNA through a direct drug–DNA interaction (Kono, 1982).  This can 

explain SOS induction following rifamycin Sv treatment.  Later studies showed that during 

stress, a subpopulation of bacterial cells undergoes a transient state of hypermutation (Rosenberg 

et al., 1998).  The cause of the temporary increase in mutations is linked to the SOS response 

since the SOS response regulates the expression of three nonessential DNA polymerases 

(Babynin, 2004).  Error-prone polymerases PolIV, or PolV can bypass lesions that block 

replicative PolIII in a process known as translesion synthesis (Kang et al., 2006).  These 

polymerases facilitate bacterial survival, but they have low fidelity and concurrently introduce 

mutations into the genome at high frequency (Kang et al., 2006).  Activation of E. coli 

alternative sigma factor RpoS down-regulates the MMR genes during stressful conditions 

(Foster, 2007).  The MMR remains active in stationary-phase cells, but two of the MMR 

proteins, MutS and MutH, are down-regulated in an RpoS-dependent manner.  Consequently, 

decreases in the levels or functions of the MMR elevate mutation rate during stressful conditions 

(Foster, 2007).  The MMR plays crucial roles in elevating the mutation rate and the emergence of 

antibiotic resistance (Blazquez et al., 2002; Macia et al., 2005).  The main protein in the 

depletion of the MMR activity is mutS.  The MMR mechanism could be an independent 

mechanism that allows spontaneous mutations to take place (Blazquez et al., 2002).  However, in 

the case of LexA and RecA dependent acquired mutation, the MMR is dependent on the 

interaction between LexA and RecA since the complete inhibition of LexA cleavage and 

induction of the SOS system blocked the emergence of antibiotic resistant mutations in the E. 

coli mutS mutants (Cirz et al., 2005; Cirz and Romesberg, 2006).  This indicates that evolution of 

antibiotic resistance is more likely to be inhibited by preventing the cleavage of LexA and 

induction of the SOS system, even in hypermutators.  Isolating drugs that inhibit RecA; 

therefore, represents a fundamental new approach to combating the emergence of antibiotic 

resistance.  
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1.4 SOS Involvement in Biofilm Formation 

Bacteria have been traditionally considered as individual organisms growing in 

homogenous planktonic populations.  In most natural, clinical, and industrial settings, bacteria 

form biofilm communities of sessile cells embedded in an extracellular polymeric mixed matrix, 

consisting of proteins, polysaccharides, and nucleic acids (Wood, 2009).  The functions of this 

structured community are dependent on a complex web of interdependent interactions.  Biofilm 

formation is a dynamic process that passes through specific sequences (Fig. 1.7).  Biofilm 

development is initiated with the attachment of sessile cells to an abiotic or biotic surface.  

Planktonic cells reversibly attach to the abiotic or biotic surface within a few minutes when 

microbes live in a liquid environment.  In approximately two hours, the cells commit to 

irreversible attachment.  Following the initial attachment to substratum, cells undergo 

programmed physiological changes (Wood, 2009).  Therefore, early biofilm maturation starts to 

form a highly organized structure and then a more sophisticated structure is formed (Stoodley et 

al., 2002).  Finally, some sessile cells disappear between the ninth and the twelve day.  A 

remarkable feature of biofilm growing cells is the increased resistance to antimicrobial therapy 

and the eukaryotic immune system.  The spatially extracellular matrix plays an important role in 

antimicrobial resistance and persistent infections (Costerton et al., 1999).  It has been shown that 

biofilm formation was the cause of persistence infection by P. aeruginosa in cystic fibrosis 

(Costerton et al., 1999; Stewart and Costerton, 2001; Tart and Wozniak, 2008) and in immuno-

compromised hosts (Costerton et al., 1999).  The difficulty in eradicating bacterial infections is 

associated with biofilm development, and causes 65% of human infections in developed 

countries (Hall-Stoodley et al., 2004).  This represents a serious threat to the health care system. 

1.4.1 Role of Replication Inhibitory Drugs in Biofilm Formation 

The concern of biofilm development is linked to multidrug resistance, persistent 

infections (Costerton et al., 1999) and increased resistance (Donlan and Costerton, 2002) to the 

host immune system (Donlan and Costerton, 2002).  Interestingly, bacterial biofilm development 

can be induced by some antimicrobial and DNA damaging agents (Gotoh et al., 2008). 

Specifically, E. coli and P. aeruginosa biofilm formation is induced via treatment with 

subinhbitory concentrations of aminoglycosides (Hoffman et al., 2005).  Quinolone  
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Figure1.7.  The development of a biofilm in a five-stage process. 

The first stage involves initial attachment of cells to the surface.  In the second stage, production of extracellular 

polymeric substance matrix (EPS) results in irreversible attachment.  The third Stage consists of early development 

of biofilm architecture while maturation of biofilm architecture takes place in the fourth stage.  The fifth Stage 

contains dispersion of single cells from the biofilm.  The figure was reprinted from Current Opinion in 

Biotechnology, 13, 3, 228-233, Hall- Stoodley and Stoodley, Developmental regulation of microbial films, copyright 

2002, with permission from Elsevier.  
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antimicrobial drugs and hydroxyurea induce biofilm formation in P. aeruginosa (Gotoh et al., 

2008; Takahashi et al., 1995).  It has been proposed that, since such biofilm formation occurs 

under stressful conditions, it be named stress-inducible biofilm formation (Gotoh et al., 2010). 

1.4.2 Role of LexA and RecA in Biofilm Formation  

Regulatory mechanisms of stress-inducible biofilm formation response are not yet clear; 

however, it has been suggested that the SOS response may play a role (Walker, 1984).  A study 

investigating the link between SOS induction and stress-inducible biofilm formation by DNA 

damaging agents suggested that stress-inducible biofilm formation is regulated by two SOS 

regulators, RecA and LexA.  A mutant in recA, in which LexA is uncleavable, hindered biofilm 

formation in response to a DNA replication inhibitor hydroxyurea treatment (Beloin et al., 2004).  

These observation suggested that the positive role of RecA in biofilm formation.  Another study 

showed that biofilm formation was repressed by the non-cleavable LexA of P. aeruginosa, while 

knocking out lexA resulted in a decrease in both normal and stress-inducible biofilm formation 

(Gotoh et al., 2010).  These data suggest that the cleavable and non-cleavable LexA and RecA 

play a role in stress-inducible biofilm formation.  In E. coli, SOS induction includes the 

expression of SOS genes dinI, dinP, dinG, sbmC, recN, and sulA.  These genes were 

overexpressed in E. coli biofilms (Beloin et al., 2004).  Additionally, the SOS genes including 

recA, uvrD, uvrC, and recX were induced in M. smegmatis biofilms (Gotoh et al., 2010).  These 

SOS genes apparently play roles in biofilm formation since repression of those genes by LexA is 

expected to lead to biofilm reduction.  Collectively, the data indicate that the SOS regulators, 

RecA and LexA play a role in biofilm formation since the repression of their role via mutation in 

recA or lexA and deletion of lexA prevent the formation of a biofilm.  The link between the SOS 

system and stress inducible biofilm formation has a significant application in combating bacterial 

infections.  It represents a novel approach to controlling biofilm formation by identifying drugs 

that modulate the SOS regulators, RecA or LexA.  

1.5 The Oxidative Stress System and the SOS Response 

The conventional model of how antimicrobials stimulate bacterial cell death is based on 

essential bacterial cell functions that are blocked by the primary drug-target interaction and 

whether this inhibition of cellular function is lethal or not (Kohanski et al., 2007).  
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Antimicrobials can be classified based on their systemic effects into bactericidal drugs that lead 

to bacterial cell death and bacteriostatic drugs that inhibit cell growth (Kohanski et al., 2010).  

Antimicrobial-mediated bacterial cell death is linked to: (i) the formation of DSBs following 

treatment with inhibitors of DNA gyrase, (ii) the inhibition of DNA-dependent RNA synthesis 

following treatment with rifamycins, (iii) the suppression of cell wall synthesis and loss of 

structural integrity following treatment with inhibitors of cell wall synthesis, and (iv) the 

inhibition of protein synthesis following treatment with inhibitors of protein synthesis (Kohanski 

et al., 2010).  

1.5.1 Bactericidal Antibiotics Induce Hydroxyl Radical Formation 

Antibiotic-induced cell death is a complicated process that involves specific sequences of 

events, beginning with the primary effect of the physical interaction between a drug molecule 

and its specific target in bacteria and terminating with bacterial cell death (Kohanski et al., 2010; 

Wright, 2007).  In principle, inhibition of essential cellular function should lead to a sequence of 

consequences.  Recent evidence has pointed out that all antibiotic-induced bacterial cell death 

involves the same killing mechanism (Kohanski et al., 2007).  The major classes of bactericidal 

antibiotics, including β-lactams, aminoglycosides, and quinolones, stimulate the oxidative 

damage cellular death pathway (Kohanski et al., 2007).  Despite the difference in their primary 

physical drug-target interactions, it has been found that all bactericides induce the generation of 

lethal hydroxyl radicals in both Gram-negative and Gram-positive bacteria (Kohanski et al., 

2007), ultimately, contributing to cell death by interfering with the tricarboxylic acid (TCA) 

cycle and iron metabolism (Kohanski et al., 2007).  However, the oxidative stress response 

following treatment with various bactericidal compounds has not been studied yet in anaerobic 

bacteria (Falconer et al., 2011).  Oxygen (O
2
) diffuses into bacterial cells and interacts with 

biomolecules, particularly, flavoenzymes, which have catalytic redox cofactors within their 

active sites and readily participate in electron transfer reactions with O2, producing superoxide 

(O
2•

), hydrogen peroxide (H2O2), and highly destructive hydroxyl radicals (OH
•
) (Dwyer et al., 

2009).  Both O
2•-

 and H2O2 can be enzymatically eliminated from the cells by the actions of 

superoxide dismutases and catalases/peroxidases, respectively, as shown in equations (i) and (ii) 

(i)  2O
2•−

 + 2H
+
 → H2O2 + O2  

(ii) 2H2O2 → 2H2O + O2  
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In contrast, there are no known enzymes that can eradicate and detoxify OH
•
.  The hydroxyl 

radical is one of the highly deleterious molecules that can indiscriminately oxidize proteins, 

lipids, and DNA (Dwyer et al., 2009; Imlay, 2003) and exhibit cytotoxic or mutagenic effects on 

bacterial cells (Dwyer et al., 2009).  Hydroxyl radical formation occurs via the Fenton reaction in 

vivo.  The accessible solvent ferrous iron (Fe
2+

) is oxidized into ferric iron (Fe
3+

) by H2O2 to 

yield OH
•
 (H2O2 + Fe

2
+ → OH

•
 + OH

− 
+ Fe

3+
).  To complete the cycle, O

2•−
 reduces 

unincorporated Fe
3+

, or it interacts with iron-sulfur cluster-bearing enzymes, resulting in the 

destabilization of Fe
2+

 and/or release Fe
2+ 

through a process known
 
as the Haber-Weiss reaction 

(Dwyer et al., 2009) (Figure 1.8).  It appears that Fenton reaction is the most significant 

contributor to cell death among the reactive oxygen species. 

1.5.2 Bactericidal Antibiotics Induce the SOS System and Mutagenesis  

Induction of the SOS response is associated with the phenomena of induced mutagenesis 

and the possibility of blocking the emergence of resistance by inhibiting SOS regulators: RecA 

or LexA.  Considering that SOS induction is efficiently activated by DNA-damaging 

antimicrobials (Hassett and Imlay, 2007), it is not surprising that the majority of evidence 

connecting antimicrobial treatments to inducible mutagenesis and acquired resistance has been 

derived from quinolones studies.  Induction of the SOS response by antimicrobials that do not 

cause direct DNA damage has been reported.  One example is β-Lactam drugs that achieve their 

lethal action by disrupting cell wall integrity and inhibiting cell wall biosynthesis.  It has been 

demonstrated that β-Lactam drugs trigger the SOS system via activation of the DpiAB two-

component system (Kohanski et al., 2007; Miller et al., 2004).  Additional studies have shown 

trimethoprim (a dihydrofolate reductase inhibitor), which is commonly formulated together with 

sulfamethoxazole (a sulfonamide) as co-trimoxazole and used to stem urinary tract 
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Figure 1.8.  Proposed model for the oxidative cell death pathway by bactericidal 

antimicrobials. 

The primary drug-target interactions with the RNA, DNA gyrase, and cell wall biosynthesis by aminoglycoside, 

quinolone, and β-lactam, respectively, induce oxidation of nicotinamide adenine dinucleotide (NADH) via the 

electron transport chain, which is dependent upon the TCA cycle.  Hyperactivation of the electron transport chain 

decreases the reducing environment and increases superoxide formation.  Superoxide damages iron-sulfur clusters, 

making ferrous iron available for oxidation by the Fenton reaction.  The Fenton reaction leads to hydroxyl radical 

formation, and the hydroxyl radicals damage proteins, lipids, and DNA, resulting in cell death.  The figures was 

reprinted from  Cell, 130, 35, 797-810, Kohanski et al, A common mechanism of cellular death induced by 

bactericidal antibiotics, copyright 2007, with permission from  Elsevier.  
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infections, induces the SOS system (Cirz and Romesberg, 2007).  This drug combination applies 

stress on intracellular pools of deoxyribonucleotides by inhibition of ribonucleotide reductases.  

This signal may be perceived by the cell as a sign of overwhelming DNA stress (Cirz and 

Romesberg, 2007). 

A recent study has demonstrated that all major classes of bactericidal drugs such as 

ampicillin, norfloxacin, and kanamycin, stimulate the production of highly deleterious ROS 

radicals in Gram-negative and Gram-positive bacteria, which ultimately contribute to cell death 

(Imlay, 2003; Kohanski et al., 2007).  On the other hand, bacteriostatic drugs fail to stimulate the 

production of ROS molecules (Kohanski et al., 2007).  Hydroxyl radicals are ROS molecules, 

which are extremely toxic and readily damage proteins, membrane lipids, and DNA (Imlay, 

2003).  Interestingly, it has been shown that following application of only bactericidal drugs, 

there is an increase in the DNA damage SOS response, where RecA is activated, promoting the 

autolysis of LexA.  This would lead to the expression of the SOS genes (Kohanski et al., 2007).  

The majority of SOS genes expressed first function through the physical repair of damaged 

DNA.  Based on the type and number of lesions, DNA repair may occur via nucleotide excision, 

base excision, or recombination pathways.  The repair mechanisms involve the expression of the 

late SOS genes, error-prone polymerases (DNA polII, IV, and V) (Cirz and Romesberg, 2007).  

These polymerases catalyze error-prone DNA synthesis across lesions that cannot be achieved by 

the normal replicative DNA polymerase, DNA polIII.  Expression of pol V is SOS-dependent 

and its activity is RecA-dependent, while expression of polII and IV is SOS-independent, yet 

they increase approximately 10-fold upon SOS induction (Babynin, 2004). 

The discovery of a correlation between the activation of the SOS response and the 

common oxidative cellular damage pathway by a diverse set of bactericidal drugs has an 

important application in the development of more effective antibacterial therapies.  More 

specifically, it indicates that all major classes of bactericidal drugs can be potentiated by 

inhibition of RecA and consequently the SOS system since the SOS response plays a key part in 

the repair of hydroxyl radical-induced DNA damage.  This may be accomplished by identifying 

RecA inhibitors. 



29 

 

 

1.6 Previous Efforts to Develop RecA Inhibitors 

Development of antimicrobial resistance is associated in large part with mutations that 

arise during stress-induced mutagenesis (Cirz et al., 2005) and the lateral transfer of genes 

between organisms (Beaber et al., 2004).  In both cases, the bacterial RecA protein plays a 

crucial role as it is involved in DNA recombination and repair processes, including homologous 

recombination, SOS induction, and recombinational DNA repair (Cirz and Romesberg, 2007).  

The idea that RecA functions could be modulated by small molecules was previously 

investigated.  All RecA-associated functions require the formation of the active NPF, 

encompassing multiple RecA monomers, ATP, and ss-DNA (Cox, 2007).  Therefore, identifying 

small molecules that block RecA DNA-binding is a very attractive approach to develop 

inhibitors for the suppression of SOS-signaling and recombinational repairs, which, 

consequently, could potentiate the activity of bactericidal antibiotics, and inhibit the evolution 

and transmission of antibiotic resistance.  The NPF formation normally causes ATP hydrolysis, 

which is an essential step for regulating SOS induction.  ss-DNA-dependent ATP hydrolysis 

represents a valuable tool to detect the suppression of NPF formation (Sexton et al., 2010).  The 

abrogation of ATPase activity would serve as a diagnostic indicator for RecA inhibition.  To 

date, the number of cell-permeable natural or synthetic RecA inhibitors is extremely low.  The 

only known inhibitors include native bacterial proteins, such as RecX (Lusetti et al., 2004a), 

DinI (Lusetti et al., 2004b), RdgC, and UvrD (Cox, 2007).  These proteins play critical roles in 

regulating RecA functions.  The RecX protein binds to the growing NPF ends and terminates 

filament growth (Lusetti et al., 2004a).  DinI is one of the early expressed SOS genes, and 

functions by destabilizing the RecA filament in a concentration dependent manner; however, it 

would not be expected that an early SOS gene would terminate SOS induction.  Moreover, this 

protein is encoded by a single copy on the bacterial chromosome, so it is not possible to reach a 

high concentration within the cells.  At a low concentration, seen when it is expressed from a 

single copy in the bacterial chromosome, DinI’s main activity is inhibition of the auto-cleavage 

of UmuD protein, delaying the activation of the mutagenic translesion synthesis, mediated by 

PolV.  However, LexA cleavage is not affected, allowing the rest of SOS function to take place 

(Cox, 2007; Lusetti et al., 2004b).  At the low level, the role of DinI in stabilizing the RecA 

filament requires further investigation.  The RdgC protein competes with RecA to bind to DNA, 

specifically, to a ds-DNA.  Additionally, if  RdgC binds to the homologous DNA duplex bound 
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to the RecA-ss-DNA-ATP filament, it blocks stand exchange.  When RecA functions come to 

the end and the RecA filament is no longer needed, UvrD, a member of the helicases, removes 

the filament from the DNA (Cox, 2007).  In contrast, a variety of synthetic RecA inhibitors have 

been generated.  Mechanisms by which these molecules inhibit RecA activities are not yet clear; 

however, some of the molecules, including, nucleotide analogs (Wigle and Singleton, 2007), -

helical peptides (Cline et al., 2007), and polysulfated naphthyl compounds (Lee et al., 2005) 

showed the ability to abrogate RecA ATPase activity, while others, such as  metal cations, 

displayed the ability to aggregate RecA.  All these small molecules have proven the principle 

that RecA functions can be selectively controlled by synthetic small molecules.  

1.7 Phthalocyanine Drugs as Putative RecA Inhibitors 

Phthalocyanine (PcTs) drugs are porphyrin-like molecules that possess characteristics 

similar to tetrapyrrole compounds (Caughey et al., 2007; Caughey et al., 1998; Priola et al., 

2003; Priola et al., 2000).  Many PcTs compounds are commercially used as pigments and dyes 

(Priola et al., 2003).  Tetrapyrrole characteristics make PcTs compounds attractive as potential 

inhibitors since PcTs molecules contain hydrophobic aromatic rings and can be synthesized with 

sulfonate groups, making these molecules water soluble.  More than 60 different kinds of metal 

atoms can be inserted into the central ring.  Interestingly, tetrapyrroles can bind strongly and 

selectively to proteins and affect changes in protein conformation (Caughey et al., 2007; 

Caughey et al., 1998; Priola et al., 2003; Priola et al., 2000), potentially critical properties of an 

effective inhibitor.  Recent studies have shown that certain PcTs molecules are useful as drugs 

against transmissible spongiform encephalopathy (TSE) diseases, such as scrapie in sheep, 

Creutzfeldt-Jakob disease (CJD) in humans, chronic wasting disease (CWD) in deer and elk, and 

bovine spongiform encephalopathy (BSE) (Caughey et al., 2007; Caughey et al., 1998; Priola et 

al., 2003; Priola et al., 2000).  The pathological factor in these diseases is the accumulation of an 

abnormal form of the host prion protein, in the central nervous system.  PrP-resistant (PrP-res) 

protein is derived from its normal protease-sensitive isoform, PrP-sensitive (PrP-sen).  Normal 

PrP-sen, a glycoprotein that is expressed on the cell surface in a wide variety of tissues, is both 

soluble and sensitive to digestion with proteinase-K.  The PrP-sen-to-PrP-res conversion 

involves changes in the conformation of PrP-sen.  Significant amounts of data have demonstrated 

that PrP-res formation plays a major role in TSE disease pathogenesis.  Recently, it has been 
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shown that several cyclic PcTs molecules inhibit PrP-res formation in vitro and significantly 

delay TSE disease in vivo.  These PcTs molecules have several properties that work both 

prophylactically and therapeutically (Caughey et al., 2007; Caughey et al., 1998; Priola et al., 

2003; Priola et al., 2000).  The conversion of PrP-sen to PrP-res appears to be similar to the 

pathogenic processes of amyloid formation associated with a variety of other diseases including 

Alzheimer’s disease and Type 2 diabetes.  Thus, it is possible that these cyclic PcTs molecules 

might serve as inhibitors not only of PrP-res formation, but also of other types of amyloid 

formation (Lee et al., 2004).  Another potential use of PcTs molecules is antimicrobial 

photodynamic therapy (APDT).  It is a relatively novel therapeutic strategy, which is expected to 

be useful in the treatment of localized infections.  APDT is a treatment that utilizes a 

combination of light, a chemical known as a photosensitizer (PS) that could be activated by light, 

and oxygen to achieve a cytotoxic effect.  The process starts with delivering light of the 

appropriate wavelength to the PS molecule to bring it to its excited singlet state, which 

subsequently crosses to a more stable, lower-energy triplet state.  The interaction between the PS 

excited states and the endogenous oxygen in the proximity of the target cells provides the 

cytotoxic effects through the production of ROS inside the microbial cells.  APDT has high 

target specificity since the PS is localized in the microorganisms without affecting the 

surrounding tissues or cells (Giuliani et al., 2010).  According to the principal of photodynamic 

therapy (PDT), PcTs molecules have shown the ability to cure cancer (Chan et al., 1989; Kessel, 

1992).  The broad spectrum of PcTs molecule’s roles in biological system suggests that these 

molecules will play an important role in disease treatment.  

RecA and its homologues play a critical role in DNA strand exchange process between an 

ss-DNA and a homologous ds-DNA.  Recombinase proteins showed huge differences between 

the bacterial and nonbacterial (less than 30% sequence identity) in their primary structures.  

However, the electron microscopic and crystallographic data have revealed noticeably similar 

filamentous assemblies.  Three functionally important sites are remarkably conserved in these 

filamentous structures.  These sites are recruitment and polymerization, ATP binding, and DNA 

binding (Lee et al., 2005).  In theory, targeting these functionally important sites can inhibit 

these strand exchange proteins.  
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Candidate RecA inhibitors examined in this project were available from commercial 

small anionic aromatic libraries, specifically phthalocyanine molecules coordinated with 

different metal ions (Figure 1.9).  In an attempt to obtain a structure of the post-ATP hydrolysis 

conformation of the RecA homologue MvRadA, the MvRadA was co-crystallized in the 

presence of ADP and sodium tungstate (Na2WO4), a phosphate analogue (Lee et al., 2005; Li et 

al., 2009).  A cluster of 12 tungsten atoms was unexpectedly located by outstanding anomalous 

scattering signals near DNA binding loops (L1 and L2).  The metatungstate Na2WO4 was a 

potent inhibitor of ATPase and strand exchange activities of the MvRadA.  The tungsten cluster 

appears to be bound between the DNA-binding loops, anchoring the protein in its inactive 

conformation (Lee et al., 2005; Li et al., 2009).  The results suggest that small molecules could 

competitively inhibit DNA binding by RecA.  A follow-up study showed that Na2WO4 was 

unable to abrogate RecA activity in living cells.  In order to advance our goal of identifying 

molecules that are cell permeable and able to modulate RecA’s biological activity, we screened 

commercially available anionic, aromatic molecules that inhibit RecA ATPase activity.  Based 

on this screening, two drugs PcTs compounds, Fe-PcTs and 3,4′ Cu-PcTs, inhibiting RecA 

ATPase activity were identified (Geyer and Luo personal communication, unpublished data).  

Abrogating ATPase activity is a useful tool to indicate the inhibition of NPF and consequently 

the suppression of RecA activity.  As a result, these putative RecA inhibitors may be  good 

candidates to potentiate antibiotic efficacy and reduce the acquisition of resistance.  
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Figure 1.9 Structures of phthalocyanine tetrasulfonic acid molecules coordinated with 

different metal ions.  

Iron(III) phthalocyanine-4,4’,4’’,4’’’-tetrasulfonic acid (Fe-PcTs) (i), copper phthalocyanine-3,4’,4’’,4’’’-

tetrasulfonic acid (3,4′Cu-PcTs) (ii), aluminum(III) phthalocyanine tetrasulfonic acid (Al-PcTs) (iii), zinc(II) 

phthalocyanine tetrasulfonic acid (Zn-PcTs) (iii), nickel(II) phthalocyanine tetrasulfonic acid (Ni-PcTs) (iii), copper 

phthalocyanine tetrasulfonic acid (Cu-PcTs) (iii), and phthalocyanine tetrasulfonic acid (Apo-PcTs) (iii).   

3,4′ Cu-PcTs  

 

Fe-PcTs  

 

X = Al, Zn, Ni, Cu, H 

 

ii i iii 
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CHAPTER 2 

SPECFIC AIMS OF THIS PROJECT 

RecA is a very attractive target for potentiating antibiotic chemotherapy since blocking 

RecA activity would prevent induction of the SOS response and block antibiotic-induced DNA 

repair and mutagenesis pathways.  We hypothesized that aromatic anionic molecules may 

contain members that competitively bind to RecA in the DNA binding site.  Blocking RecA 

DNA-binding should inhibit SOS-signaling and recombinational repair, emphasizing the ability 

of RecA inhibitors to potentiate the activity of bactericidal antibiotics and provide a mechanism 

to prolong the life span of existing and newly developed antibiotics.  We envision that RecA 

inhibitors will be part of an antibiotic “cocktail” that enhances the activity of antibiotics and 

blocks of the emergence of resistance, which will ultimately prolong antibiotic lifespan. 

The overall objective of this study was to identify molecules that could modulate RecA 

activity and eventually block the SOS induction.  To achieve this goal, a group of experiments 

were performed to: 

2.1. Compare the CFX potentiating activity of PcTs molecules coordinated with different 

metal ions. 

2.2. Assay the ability of Fe-PcTs molecules to enhance the activity of bactericidal and 

bacteriostatic antibiotics. 

2.3. Evaluate the ability of Fe-PcTs to abrogate RecA biological activities. 

2.4. Determine whether Fe-PcTs blocks the development of CFX resistance in in vitro and in 

vivo assays. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 Standard Laboratory Methods 

3.1.1 Bacterial strains 

The strains used in this study were E. coli ATCC25922, P. aeruginosa ATCC27853, S. 

aureus ATCC29213, E. faecalis ATCC29212, and E. coli SS996.  All the clinical isolates were 

kindly provided by Dr. Joseph Blondeau.  The SS996 strain is an E. coli K-12 with an SOS 

inducible GFP reporter gene and was obtained from Susan Rosenberg (McCool et al., 2004).   

3.1.2 Storage of the Bacterial Isolates and Growth Conditions 

S. aureus, P. aeruginosa, and E. faecalis isolates were streaked for colonies on tryptic 

soy agar (TSA) plates and incubated at 37°C for 18 to 24 hours.  E. coli ATCC25922 and E. coli 

SS996 were cultured on Luria-Bertani (LB) plates and incubated at 37°C for 18 to 24 hours.  

All cultures were stored at -80°C in LB broth with 30% glycerol. 

Five major biological aspects (growth and survival, SOS induction, hydroxyl radical 

production, cell elongation, and biofilm formation) were compared between untreated 

exponential-phase bacterial cultures and cultures treated with the examined antibiotics at given 

concentrations or combinations of each of antibiotics and PcTs molecules.  Briefly, the S. aureus, 

P. aeruginosa, E. faecalis cultures were grown in 25 mL MHB while the E. coli ATCC25922 

and the E. coli SS996 were grown in 25 mL LB broth in 250 mL flasks in a light insulated 

shaker, and then all were diluted 1:500 in 25 mL MHB or LB according to the strain type.  

Cultures were grown to an optical density (OD600) of approximately 0.3, measured using the 

spectrophotometer (Thermo scientific, Genesys 20).  PcTs molecules, antibiotics concentrations, 

length of treatment were determined as a result of optimization experiments (data not shown) 

unless it is stated otherwise.  In all experiments, PcTs molecules were added to bacterial cultures 

at a concentration of 25 µM at early exponential phase and incubated for three hours.  Following 

this, the antibiotic alone, Fe-PcTs, or both were added to the cultures and incubated under the 

appropriate conditions for a specific period of time according to the assay. 
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3.1.3 Susceptibility Study  

3.1.3.1 Broth microdilution assay 

Minimum inhibitory concentration (MIC) values were determined by the broth 

microdilution test for all organisms in accordance with the Clinical Laboratory and Standards 

Institute (CLSI) guidelines ((CLSI), 2004).  Ninety-six well flat bottom microtitre plates (Falcon) 

were filled with 100 μL of MHB in each well of columns 2-to-12.  An antimicrobial agent was 

serially diluted down the panel with the wells of column 1 containing the highest concentration 

and the wells of column 11 having the lowest concentration of the drug.  The wells of column 12 

were used as a growth control and, therefore, did not receive any drug.  

All the clinical isolates were cultured onto TSA+5% sheep red blood cells (SRBC) plates 

and incubated under appropriate conditions for 18 to 24 hours at 37°C.  Each isolate was 

standardized to a 0.5 McFarland (~1.0 X 10
8
 cfus/mL) using a colorimeter (bioMérieux Vitek, 

Inc).  The bacterial suspension was then diluted 1/100 with MHB (~1.0 X 10
5
 to 10

6
 cfus/mL). 

One hundred microlitres of diluted cells were added to each well on the plate, resulting in a final 

volume of 200 μL.  Purity of the bacterial suspension was determined by plating a sample onto 

fresh TSA + 5% SRBC plates.  The microtitre panels and purity plates were then incubated under 

the appropriate conditions in ambient air for 18 to 24 hours at 37°C.  Following incubation, the 

lowest drug concentration at which there was no visible growth of the organism was recorded as 

the MIC.  To ensure organism viability, the wells in column 12 (growth control) were examined. 

The appropriate ATCC strains were used as controls for susceptibility testing each time a 

susceptibility test was performed to validate the results based on the current CLSI breakpoints 

for each ATCC strain ((CLSI), 2004). 

3.1.4 Synergy Testing 

3.1.4.1 Synergy studies using the checkerboard assay 

A two-dimensional checkerboard microdilution technique was used to characterize 

interactions between antibacterial agents and PcTs molecules.  The two-dimensional 

microdilution checkerboard plates were prepared by dispensing a serially diluted antibacterial 

agent into the x-axis and a PcTs drug in the y-axis into a 96-well microtitreplate (Tateda et al., 
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2006).  Drugs were diluted in serial twofold dilutions, and concentrations ranged from those for 

several wells below the MIC to several wells above the MIC of each drug for each of the clinical 

isolates.  Ninety-six well flat-bottom microtitre plates (Falcon) were filled with 50 μL of MHB in 

each well of columns 2-to-12.  An antimicrobial agent was serially diluted down the panel with 

the wells of column 1 containing the highest concentration and the wells of column 11 having the 

lowest concentration of the drug.  In the case of the PcTs molecule, it was serially diluted down 

the panel with the wells of row A containing the highest concentration and the wells of row G 

having the lowest concentration.  The wells of column 12 received only serial concentrations of 

the PcTs molecule while the wells of row H solely received serial concentrations of the 

antimicrobial agent.  Well H of column 12 was used as a growth control and, therefore, received 

no drug.  Purity of the bacterial suspension was confirmed by plating each sample onto a fresh 

TSA plate containing 5% SRBC.  

Inocula of the clinical isolates were prepared similarly to those for susceptibility testing 

with single drugs.  Following inoculation, microplates and purity plates were incubated in 

ambient air for 18 to 24 hours at 35 to 37°C.  At least three experiments were performed for each 

interaction.  The MIC of the antibiotics tested in combination was defined as the lowest 

concentration of the tested antibiotic in the presence of PcTs that showed no growth.  

3.1.4.2 Time-kill curve experiments 

In order to demonstrate the lethal activity of antibacterial agents and PcTs molecules, the 

rate of killing by fixed concentrations of both drugs under controlled conditions was applied. 

This rate was determined by measuring the number of viable bacteria at various time intervals. 

The obtained data were used to draw the time-kill curve.  The P. aeruginosa ATCC27853, S. 

aureus ATCC29213, and E. faecalis ATCC29212 were streaked onto TSA + 5% SRBC plates 

using a sterile wooden stick while the E. coli ATCC25922 cells were cultured onto LB plates. 

All plates were incubated under ambient conditions at 37°C for 18 to 24 hours.  Following 

incubation, bacterial growth was standardized to a 0.5 McFarland (~1.0 X 10
8
 cfus/mL) using a 

colorimeter.  The bacterial suspension was then diluted 1/100 with MHB (~1.0 X 10
5
 - 10

6
 

cfus/mL), exposed to either the antibiotic singly, Fe-PcTs, or both at the given concentrations in 

Table 3.1, and incubated for 48 or 72 hours at 37 °C with shaking (250 rpm).  One hundred 
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microlitre aliquots of the cultures were taken at 0, 24, 48, and 72 hours.  The aliquots were 

serially diluted in the appropriate 1x phosphate saline buffer (PSB), and applied to TSA + 5% 

SRBC or LB plates in triplicate and incubated at 37°C for 18 to 24 hours.  Following incubation, 

the number of colonies on each plate was recorded.  Aliquots were diluted 1/10 folds, so that 

viable counts had a countable number of colonies (20–200 cfus/plate).  Positive controls were 

used which contained similar cell and solvent concentrations.  Results were interpreted by the 

effect of the combination treatment in compared with the active single drug alone (Lin et al., 

2005). 
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Table 3.1.  Summary of the antimicrobial agent concentrations and PcTs molecules used in 

the time-kill curve assays  

Bacterial 

strain 

Drug Concentration 

(µM) 

E.coli 

ATCC25922 

Ciprofloxacin (CFX) 0.04 

Kanimycin (KAN) 43 

Ampicillin (AMP) 40 

Chloroamphenicol (CAM) 46 

Tetracycline (TET) 21 

Spectinomycin (SPECT) 808 

Fe (III) phthalocyanine-4,4′,4′′,4′′′-tetrasulfonic acid (Fe- PcTs) 25 

Cu (II) phthalocyanine-3,4′,4′′,4′′′- tetrasulfonic acid (3,4′-Cu-

PcTs) 

25 

Cu (II) phthalocyanine tetrasulfonic acid (Cu PcTs) 25 

Ni (II) phthalocyanine tetrasulfonic acid (Ni-Pcts) 25 

Al (II) phthalocyanine tetrasulfonic acid (Al-PcTs) 25 

Zn (II) phthalocyanine tetrasulfonic acid (Zn-PcTs) 25 

Phthalocyanine tetrasulfonic acid (Apo-PcTs) 25 

S. aureus 

ATCC29213 

E. feacilis 

ATCC29212 

P. areuginosa 

ATCC27853 

CFX 

Fe-PcTs 

6.5 

25 
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3.1.5 Inhibition of RecA Activities 

3.1.5.1 Inhibition of RecA-dependent SOS activation by Fe-PcTs 

The ability of Fe-PcTs to inhibit the RecA-dependent activation of the SOS response was 

assessed using the E. coli SS996 having the sulA SOS promoter fused to the green fluorescent 

protein (gfp) reporter gene, which was inserted at attλ on the chromosome (McCool et al., 2004).  

E. coli cells were cultured on LB plates and incubated under appropriate conditions for 18 to 24 

hours at 37°C.  Two to three colonies were inoculated into 25 mL of LB broth and incubated for 

18 to 24 hours at 37°C with shaking (250 rpm).  Twenty five LB broth cultures were inoculated 

with saturated overnight cultures of bacterial cells to an OD600 of 0.3 in the presence of CFX, Fe-

PcTs, or both at a concentration of 2.5 and 25 µM, respectively.  Cultures were grown in a 

shaking incubator at 37°C for 180 minutes.  Samples were taken immediately before the addition 

of the drugs (time zero) and then every hour for three hours.  At each time point, approximately 

10
6
 cells were collected, washed once, and resuspended in filtered PSB (pH 7.2) prior to 

measurement.  All data were collected using a flow cytometer (Beckman Coulter, Inc.) with a 

488 nm argon laser and a 515–545 nm emission at low flow rate.  Flow data were processed and 

analyzed with FLOWJO (Tree Star, Inc.). 

3.1.5.1.1 Hydroxyl radical induction by combination therapy of a bactericidal agent and 

Fe-PcTs 

We compared the production of hydroxyl radicals in cells treated with CFX to cells 

treated with both CFX and Fe-PcTs.  E. coli ATCC25922 cells were cultured on LB plates and 

incubated under appropriate conditions for 18 to 24 hours at 37°C.  Two to three colonies were 

inoculated into 25 mL of LB broth and incubated for 18-24 hours at 37°C with shaking (250 

rpm).  Twenty five millilitres of LB broth was inoculated with saturated overnight cultures of 

bacterial cells to an OD600 of 0.3.  E. coli cells in their exponential-phase were treated with CFX 

or Fe-PcTs, or both, at 40 nM and 25 µM, respectively, and incubated for 180 minutes at 37°C 

with shaking (250 rpm).  To detect hydroxyl radical formation, we used the fluorescent reporter 

dye 30-(p-hydroxyphenyl fluorescein (HPF, Invitrogen) at a concentration of 5 µM as described 

previously (Kohanski et al., 2007).  To ensure that light-induced redox cycling of antibiotics was 

not a confounding factor, all experiments were performed in light-insulated shakers (Martin et 
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al., 1987; Umezawa et al., 1997).  Samples were taken immediately before the addition of drugs 

(time zero) and then every hour for three hours.  At each time point, approximately 10
6
 cells 

were collected, washed once, and resuspended in filtered PSB (pH 7.2) prior to measurement.  

All data were collected using a flow cytometer (Beckman Coulter, Inc.) with a 488 nm argon 

laser and a 515–545 nm emission at low flow rate.  Flow data were processed and analyzed with 

FLOWJO (Tree Star, Inc.).  

3.1.5.2 Effect of CFX and Fe-PcTs on sulA induced-filamentation morphology 

The effect of CFX and Fe-PcTs on cell morphology was studied by direct observation of 

treated cultures following staining with basic Gram stain.  One hundred microliters of E. coli 

SS996 with the GFP reporter gene (1x10
5 

cfus/mL), calculated from OD600 nm measurements, 

were added to 5 mL of LB broth.  Bacterial cells were incubated with CFX or Fe-PcTs, or both 

(2.5 and 25 µM, respectively), for 180 minutes at 37°C with shaking (250 rpm).  After three 

hours of treatment, 2 mL from each culture was used to prepare samples.  These samples were 

stained with Gram stain and viewed by a Nikon Eclipse E400 compound microscope (Laboratory 

Optical Service, Inc.) at 100x power magnification.  Photographs were taken 3 hours post 

treatment. 

3.1.5.3 Biofilm formation suppression assay in 96 well Plates 

To study CFX and Fe-PcTS effects on biofilm formation, a 96 well plate assay was used 

with lids (Falcon) as closures.  One hundred microliter of E. coli ATCC25922 cells (1x10
5 

cfus/mL) quantified from OD600 nm measurements were added to each well.  Fixed 

concentrations of CFX and Fe-PcTs (40 nM and 25 µM, respectively) were applied.  Plates were 

covered and incubated at 37°C for 18 to 24 hours under the appropriate conditions.  To examine 

the biofilm formation by CFX alone, Fe-PcTs, or both, wells were washed 3 times with 150 μL 

of sterile filtered PSB, and then stained with 120 μL of 0.1% crystal violet (Fisher) for 20 

minutes.  The crystal violet stain was aspirated and wells were washed again 3 times with 150 μL 

of sterile PSB.  Plates were allowed to air dry and the dye bound to adherent cells was 

resolubilized with 150 μL of 30% (v/v) glacial acetic acid (Fisher) per well.  Plates were then 

placed on a rotational shaker for 20 minutes and the OD590 nm of each well was measured using 

a 96-well plate reader (Molecular Devices). 
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3.1.6 Inhibition of Antibiotic Resistance Induced by the SOS Response 

3.1.6.1 In vitro CFX-resistance assay 

The ability of Fe-PcTS to abrogate the emergence of CFX resistant mutations was 

assessed.  The mutation rate of CFX was calculated in vitro in the presence and absence of Fe-

PcTs and calculated by using the fluctuation test of Luria and Delbruck (DELBRUCK, 1943). 

3.1.6.1.1 Inoculum preparation and resistance testing  

E. coli ATCC25922 cells were cultured on LB plates using a sterile wooden applicator 

stick and incubated in ambient air at 37°C for 24 hours.  After overnight incubation, a single 

colony was grown in 5 mL of LB broth and incubated for 18-24 hours at 37°C with shaking (250 

rpm).  The overnight diluted culture was inoculated into 25 flasks containing LB broth or LB 

with 25 µM Fe-PcTs.  The twenty-five independent cultures were grown for 24 hours without 

selective pressure (CFX).  Viable cell counts in these cultures were determined by plating serial 

dilutions onto LB agar plates.  For determining resistance in the E. coli ATCC25922, 100 µL 

from each culture (approximately 10
8
 cells) was plated in duplicate on LB plates, containing 

CFX (40 nM) in the presence or absence of Fe-PcTs (25 µM).  Three additional 100 µL aliquots 

from three cultures were also plated on the same media to be used in the ‘‘survival’’ assay (see 

section 3.1.6.1.2).  At 24 hour intervals over 10 days, visible colonies were marked, counted, and 

removed from the plates with a sterile wooden applicator.  Isolated clones were grown in LB in a 

96 well plates for 18-24 hours at 37°C with shaking (250 rpm).  Each of these isolated clones 

was tagged with specific number and the day of isolation.  All the isolated clones were stored at -

80 °C in LB broth with 30% glycerol. 

3.1.6.1.2 Survival assay 

Every 24 hours, in parallel with the resistance assay, agar plugs among visible colonies 

were excised from plates used to assay cell viability.  These plugs were removed and 

homogenized in M9 buffer.  Dilutions were plated out in duplicate on LB plates to determine the 

total number of viable cells (CFX-sensitive cells present as a function of time) and on LB plates 

containing 40 nM CFX to determine if any CFX-resistant cells remained after excision (Cirz et 

al., 2005).  The number of viable cells per plate was estimated for each plate and corrected for 
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CFX-resistant cells that remained after excision, and the counts of viable cells from the three 

survival plates were averaged. 

To determine the number of viable cells present as a function of time in the presence of 

Fe-PcTs, a similar procedure was conducted with minor modifications.  Three LB plates, 

containing CFX and Fe-PcTs (40 nM and 25 µM, respectively) were plated with 10
8 

cells for use 

in the survival assay.  Dilutions were plated out in duplicate on LB, LB, containing CFX (40 

nM), or LB with CFX (40 nM) and Fe-PcTs (25 µM).  The number of viable cells per plate was 

determined for each plate and corrected for CFX-resistant cells that remained after excision, and 

the counts of the viable cells from the three survival plates were averaged. 

3.1.6.1.3 Reconstruction assay (low density) 

To determine whether colonies isolated after plating on CFX were formed as a result of 

post-exposure mutation or as a result of mutation prior to the drug exposure, liquid cultures of 

LB media were inoculated with CFX-resistant clones isolated during the resistance assay and 

grown to saturation overnight.  Overnight CFX-resistant cultures were diluted and inoculated 

with CFX-resistant clones stocked during the resistance assay in 96 well flat bottom plates.  

Cultures were replicated in duplicate using VP 408FH Replicator (V&P Scientific) on LB plates 

to confirm viability and LB plates containing CFX (40 nM) to confirm resistance.  Resistant 

clones that were isolated in the presence of Fe-PcTs were plated out on LB, LB containing CFX 

and Fe-PcTs (40 nM and 25 µM, respectively), and LB containing CFX alone (40 nM).  Clones 

that were resistant before exposure were defined as those that formed colonies on the CFX-

containing media in the same number of days in the reconstruction assay as they had in the 

original resistance assay.  On the other hand, clones that mutated after exposure to CFX were 

defined as those that formed colonies earlier than in the original resistance assay (Cirz et al., 

2005).  An additional reconstruction assay (high density) was employed to confirm results of 

pre- and post-exposure mutants.  

3.1.6.1.4 Reconstruction assay (high density) 

To recreate the conditions of the in vitro CFX-resistance assay and to determine if the 

presence of competing cells (CFX-sensitive cells) would affect colony regrowth time, the 
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reconstruction assay was performed in the presence of competing CFX-sensitive cells.  

Approximately 100 cfus of the CFX-mutant clones were plated on LB, containing CFX (40 nM) 

in the presence of ~10
8
 CFX-sensitive cells.  Five percent of randomly selected CFX-resistant 

clones stored during the resistance suppression assay in the absence of Fe-PcTs were analyzed, 

while all CFX-resistant clones isolated in the presence of Fe-PcTs were examined. 

3.1.6.1.5 Calculation the mutation rate for CFX-acquired resistance 

Mutation rate was defined as the number of CFX-resistant mutants per viable cell that 

evolved as a function of time.  Those mutations represent only surviving cells that confer 

resistance to the drug.  The mutation rate after exposure to ciprofloxacin was determined as the 

ratio of resistant colonies on a particular day to the number of viable cells present at the time the 

cells became resistant.  Based on the assumption that a colony takes two days to form, the viable 

cell count was calculated two days prior to colony formation, accounting for both the actual time 

required for colony growth and the time required to turn over any residual CFX-sensitive protein, 

i.e., phenotypic lag (Cirz et al., 2005).  The mutation rate was determined as the average of the 

mutation rate from the third day to the eighth day of incubation. 

3.1.6.2 In vivo murine thigh infection model 

A standard mouse thigh infection model described by Vogelman et al., was adapted 

(Vogelman et al., 1988) to examine the ability of Fe-PcTs to block CFX-resistance and to 

potentiate CFX activity in vivo.  Female outbred Swiss white mice (CD1) were purchased from 

the Animal Resource Center of the University of Saskatchewan.  These mice were six to eight 

week-old and specific-pathogen-free, weighing between 25 and 35 grams.  Nine mice were used 

per group.  Mice were rendered neutropenic (neutrophil counts less than 100/mm
3
) by 

intraperitoneal injection with 150 mg/kg cylcophosphamide (Sigma) four days before infection 

and 100 mg/kg cyclophosphamide 24 hours before infection.  This regimen has previously 

shown ability to induce neutropenia in this model for more than seven days (Andes and Craig, 

2007). 
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3.1.6.2.1 Inoculum preparation and infection 

The pathogenic E. coli ATCC25922 cells were cultured onto LB plates and incubated at 

37°C for approximately 24 hours.  After overnight incubation, a single colony was grown in five 

mL LB and incubated for 18-24 hours at 37 °C with shaking (250 rpm).  LB broth cultures 

inoculated from freshly plated bacteria were grown to logarithmic phase (OD600 of 

approximately 0.3), and diluted 1:1000 in LB broth.  Thigh infections were produced by 

injecting 0.05 mL volumes (approximately 10
6
 cfus) of diluted broth cultures into halothane-

anesthetized mice.  

3.1.6.2.2 Administration of CFX and Fe-PcTs 

A total of three treatment regimens were performed: (i) nine infected mice were given 

subcutaneous injections of 1 mg/kg CFX (CFX injectable USP, Hospira) alone every 24 hours 

for three days, (ii) nine infected mice received subcutaneous injections of 1 mg/kg CFX and 

interperitoneal injection of 10 mg/kg Fe-PcTs every 24 hours for three days, and (iii) nine mice 

received Fe-PcTs 24 hours pre-infection and then two hours after infection (defined as time zero) 

mice were given subcutaneous injections of 1 mg/kg CFX with interperitoneal injections of 10 

mg/kg Fe-PcTs every 24 hours for three days.   

3.1.6.2.3 Recovery of the infected thighs 

After 48 and 72 hours, the skin was separated from the infected thigh by blunt dissection 

using sterilized forceps and the infected thigh was cut, washed with sterile saline, and collected 

in a tube with two mL fresh LB.  Thighs were homogenized with conical tissue grinder (VWR 

international).  Serial dilutions of the homogenates of infected thighs were plated onto LB plates 

and LB plates containing CFX (58 nM).  MICs for CFX resistant clones were determined by 

standard microdilution methods as described previously (Andrews, 2006).  The MICs of post-

exposure to CFX mutants for E.coli were determined by examining ten clones isolated from LB 

agar plates at 48 and 72 hour time points. 
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3.1.6.3 DNA isolation, amplification and nucleotide sequence determination for recovered 

ciprofloxacin resistant mutatnts of the E. coli ATCC25922 

Mutants of the E. coli ATCC25922 that were recovered and maintained from the 

resistance assay plates in vitro and in vivo were randomly selected.  Ten CFX-resistant clones 

were cultured onto LB plates containing CFX (40 nM) and incubated at 37°C for approximately 

24 hours.  After overnight incubation, a single colony was grown in 5 mL LB and incubated for 

18-24 hours at 37°C with shaking (250 rpm).  Cells were centrifuged for 15 minutes and washed 

with PSB (pH 7.2) three times for 10 minutes.  Following a third centrifugation step, the 

supernatant was used to create a bacterial suspension in TE buffer DNA isolation was done 

according to the manufacturer’s recommendations (BioBasic). 

3.1.6.3.1 Primer preparation and storage 

The nucleotide sequences of the quinolone-resistance-determining regions (QRDR) of 

gyrA and parC were synthesized with an automated DNA sequencer at the Plant Biotechnology 

Institute, National Research Council of Canada.  A DNA fragment of 648 bps from nucleotide 24 

to 671 of the gyrA gene was obtained based on the procedure of (Oram and Fisher, 1991).  gyrA 

is the most consistent location of ciprofloxacin resistance mutations in Gram-negative bacteria 

(Vila et al., 1994).  To amplify parC, a DNA fragment of 395 bps from nucleotide 115 to 509 

was obtained according to the procedure described previously (Vila et al., 1996).  Primers were 

synthesized by Integrated DNA Technologies.  Each primer set was made as a stock 100 M 

concentration using TE buffer.  Primers were stored in aliquots at –20
o
C. 
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Table 3.2. Primers used to amplify and sequence gyrA and parC genes 

Primer name Sequence 5'-'3  Reference 

gyrA-Forward TACACCGGTCAACATTGAGG  (Oram and Fisher, 

1991) 

gyrA-Reverse TTAATGATTGCCGCCGTCGG  (Oram and Fisher, 

1991) 

parC-Forward 

parC-Reverse 

AAACCTGTTCAGCGCCGCATT 

GTGGTGCCGTTAAGCAAA 

 

 

(Vila et al., 1996) 

(Vila et al., 1996) 

 

3.1.6.3.2 Analysis of PCR products 

PCR reactions were performed in 50 µL volumes containing 0.4 μM of each primer, 

Buffer 1X, High Fidelity Platinum Taq Polymerase (Invitrogen), 1.5 mM MgSO4, 0.2 mM of each 

dNTP, 1 unit of Platinum Taq DNA Polymerase High Fidelity, and 4 µL of template DNA.  All 

reactions were performed in a DNA thermocycler (BioRad); thirty cycles were used for each 

reaction, with the following temperature profiles: two minute denaturation step at 94
o
C and each 

cycle consisted of a 94°C, 1 minute; 55°C, 1 minute; 72°C, 1 minute. 

After the PCR was completed, products were visualized on an agarose gel at 1% (w/v) in 

order to verify amplification of the expected DNA segment of interest.  For visualization of 

DNA, samples were mixed with loading buffer 6X (50% glycerol, 0.2M EDTA pH 8.3, and 

0.05% bromophenol blue) to a final concentration of 1X, and 5 μL of the mixture were added per 

lane for PCR products.  Six microlitres of tracking dye were added to each PCR reaction tube.  

For the marker, two μL of 1000 bp ladder (Sigma) were added to 12 μL of sterile distilled water 

and 4 μL of tracking dye.  Samples were resolved on the agarose gel at 120 volts for 30 to 40 

minutes in SB Buffer (5 mM disodium borate decahydrate, pH 8.0), then visualized and 

photographed using a UV light Transilluminator (BioRad).  Agarose gels consisted of 0.5 to 

1.5% (w/v) agarose (ultrapure agarose, Invitrogen), 1X SB Buffer, and 0.5 μg/mL ethidium 
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bromide.  For purification of PCR products, a QIAquick kit from QIAgen was used according to 

the manufacturer’s recommendations. 

After PCR purification of DNA fragments, the same forward primers of gyrA and parC 

were used to sequence.  DNA sequencing was performed using an automated gene sequencer at 

the Plant Biotechnology Institute, National Research Council of Canada DNA was diluted to 

0.05 μg/μL, and primers were provided at a concentration of 3.2 pmol/μL. 

3.1.7 Statistical Analysis 

Unless otherwise noted, data was reported as the mean ± standard deviation. P-values 

were calculated using a two-tailed t-test with Prism 4.0c for Macintosh (Graphpad). 
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CHAPTER 4 

RESULTS 

4.1 Inhibition of RecA Activity 

Bacterial RecA protein is an attractive target in the treatment of bacterial infections. 

Bacterial RecA is a main player in processes involved in repairing DNA damage or stalled 

replication forks (Thi et al., 2011).  RecA and one of its downstream targets, LexA, control 

processes that lead to stress-induced mutations (Janion, 2008) and horizontal gene transfer 

(Beaber et al., 2004).  In this manner, bacteria play a very active role in inducing stress-inducible 

mutations or adaptive mutations in their genomes in response to certain antibiotics (Cirz and 

Romesberg, 2007; Riesenfeld et al., 1997).  Therefore, we hypothesized that an effective 

approach to combat the dramatically increasing number of resistant pathogens is to identify 

inhibitors for RecA, which could be utilized as an adjuvant to the current or novel antibiotics.  

These adjuvants could function as co-antibacterial agents that prevent the development and 

acquisition of genes conferring drug resistance.  This hypothesis was based on previous studies 

that showed that deletion of the recA gene prevents mutations (Defais et al., 1971), RecA–

dependent repair mechanisms result in acquired resistance to CFX and ∆recA strains are more 

susceptible to cell killing by CFX than the wild type strains (Cirz et al., 2005).  Furthermore, it 

has been shown that a great number of DNA damaging antibiotics, such as CFX, mitomycin C, 

and naldixic acids and an RNA polymerase inhibitor rifampcin have a stronger effect on ∆recA 

cells than on wild type cells (Singleton and Hill., 2010).  It has been shown that bactericidal 

antibiotics, which induce hydroxyl radical production, also induce the SOS response 

simultaneously (Kohanski et al., 2007).  In contrast, bacteriostatic antibiotics do not induce 

hydroxyl radical production or the SOS response (Kohanski et al., 2007). 

4.1.1 Inhibition of RecA-dependent SOS activation 

The first goal of this project was identifying molecules that were cell permeable and 

limited SOS induction mediated by RecA in vivo.  Fe-PcTs and 3,4′ Cu-PcTs molecules showed 

the ability to abrogate RecA ATPase activities in vitro (Geyer and Luo personal communication, 

unpublished data).  Fe-PcTs molecule was subjected to further analysis to determine its ability to 
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effect RecA-dependent SOS induction by bactericidal or bacteriostatic antibiotics in bacteria.  To 

examine the SOS response induced by various bactericidal or bacteriostatic drugs in the presence 

or absence of Fe-PcTs, we used an engineered promoter-reporter gene construct that expresses 

green fluorescent protein (GFP) upon LexA auto-cleavage.  Following application of 

bactericides, we expected to observe the induction of the SOS response by RecA, which is 

activated by DNA damage and promotes the autolysis of the LexA repressor protein and 

induction of SOS response genes (Cirz and Romesberg, 2007; Riesenfeld et al., 1997).  As 

expected, the E. coli exposed to CFX or AMP showed higher levels of SOS expression than 

untreated bacteria (Figs. 4.1, i & ii).  KAN showed no significant increase in the SOS activity 

upon treatment (Fig. 4.1, iii).  Three classes of ribosome inhibitors (bacteriostatic drugs), 

specifically, SPECT, CAM, and TET, were screened in this project.  These bacteriostatic drugs 

specifically TET and CAM slightly induced the SOS response above the basal line (Fig. 4.1, iv).  

When the GFP strain was co-treated with Fe-PcTs and bactericidal antibiotics CFX, AMP, or 

KAN, the SOS induction was completely blocked for CFX and AMP (Figs. 4.1, i & ii).  In the 

presence of Fe-PcTs, bacteria treated or untreated with CFX or AMP were characterized by a 

very similar SOS expression profile.  Fe-PcTs completely blocked the GFP signals mediated by 

CAM and TET (Fig. 4.1, iv), which was consistent with the ability of these antibiotics to only 

induce a very low level of SOS response. 
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Figure 4.1.  SOS suppression in E. coli by Fe-PcTs and bactericidal or bacteriostatic 

antibiotics. 

Suppression of the induced of the SOS (DNA damage) response mediated by the addition of bactericidal antibiotics, 

2.5 M CFX (i), 40 M AMP (ii), or 43 M KAN (iii), or bacteriostatic antibiotics, 808 M SPECT, 46 M CAM, 

or 21 M TET (iv), and 25 µM Fe-PcTs, or both Fe-PcTs and one of the bactericidal or bacteriostatic drugs, was 

monitored using an engineered sensor construct that employs the LexA repressor for control of green fluorescent 

protein (GFP) expression.  Representative GFP histogram measurements were taken three hours after addition of the 

drugs using flowcytometery. 
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To examine whether or not Fe-PcTs interferes with the mechanism of hydroxyl radical 

production, we monitored the ability of Fe-PcTs to alter hydroxyl radical levels in the presence 

of bactericidal antibiotics in the pathogenic E. coli ATCC25922.  Hydroxyphenyl fluorescein 

(HPF) was used to measure hydroxyl radical formation in bacteria, as described previously 

(Kohanski et al., 2007).  Fe-PcTs did not alter the ability of CFX to induce hydroxyl radicals 

(Fig. 4.2), which is in agreement with the ability of Fe-PcTs to potentiate the activity of CFX by 

inhibiting RecA and blocking induction of the SOS response. 

During growth of rod-shaped bacterial cells, two peptidoglycan synthesis mechanisms 

operate: (i) peptidoglycan insertion and (ii) septation (Uehara and Park, 2008; Varma et al., 

2007).  Inserting new peptidoglycan units into bacterial cell walls leads to cell elongation while 

septation causes cell division.  Cell division is initiated by formation of an FtsZ ring at the centre 

of the cell, and this FtsZ ring recruits the other division proteins, including PBP3 (Uehara and 

Park, 2008; Varma et al., 2007).  After activation of the SOS machinery, sulA, one of the SOS 

genes, is expressed.  sulA is a key component in the process of filamentation, taking place in the 

last stage of SOS induction.  The initiation of septation can be inhibited by SulA protein, a 

specific inhibitor of FtsZ functions causing cell elongation (Kohanski et al., 2010).  Interestingly, 

inhibition of PBP3 by β-lactams results in the induction of filamentation, which has been shown 

to stimulate the DpiAB two-component system (Kohanski et al., 2010).  Induction of this system 

can activate the SOS response.  It has been shown that two actions can enhance β-lactam 

lethality: (i) disrupting DpiAB signaling and (ii) knocking out sulA.  This suggests that sulA 

serves as a defense mechanism to protect bacterial cells from being killed by β-lactams, because 

SulA protects FtsZ and limits a ring interaction among PBPs and peptidoglycan hydrolases.  

Additionally, DNA-damaging antimicrobials, such as quinolones, which do not directly interrupt 

peptidoglycan synthesis, cause filamentation by activating the SOS response.  Since RecA and 

LexA play critical roles in SOS induction, we hypothesize that Fe-PcTs is able to block RecA 

biological activity, and consequently, attenuate filamentation mediated by CFX.  A subinhibitory 

concentration that induces expression of the sulA-GFP reporter gene in E. coli SS960 cells of 

CFX alone or combined with Fe-PcTs was added to the cultures.  Three hours post treatment; Fe-

PcTs was able to block filamentation mediated by CFX (Figure 4.3). 
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Figure 4.2.  Hydroxyl radical production in E. coli by CFX and Fe-PcTs. 

Generation of hydroxyl radicals following exposure to CFX and Fe-PcTs (40 nM and 25 µM, respectively), or both 

was determined.  We used hydroxyphenyl fluorescein (HPF) to measure hydroxyl radical formation in bacteria. 

Representative measurements were taken three hours following addition of the drugs.  
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Figure 4.3.  Suppression of filamentation mediated by the SOS response in E. coli by CFX 

and Fe-PcTs. 

E. coli SS960 cells with GFP reporter gene were treated with a subinhibitory concentration of CFX (2.5 µM) alone 

or combined with Fe-PcTs (25 µM).  The cells were stained using the basic Gram staining technique and viewed by 

a Nikon Eclipse E400 compound microscope at 100x power magnification.  Photographs were taken three hours 

after addition of the drugs.  
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Recent evidence has suggested that the connection between stress inducible biofilm 

formation and the SOS machinery.  RecA and LexA appeared to play a role in this response 

since biofilm formation was reduced in the presence of hydroxyurea in recA mutant cells 

compared with that of wild-type cells, and this defect was complemented by chromosomally 

inserted recA.  This suggests that stress inducible biofilm formation is dependent on RecA.  

RecA is known to facilitate the auto-cleavage of LexA and, consequently, induces the SOS 

response.  The biofilm repression in the recA mutant strain may have resulted from the fact that 

RecA was not able to promote the cleavage of LexA.  Thus, the non-cleavable LexA led to non-

inducible SOS machinery.  This phenotype can be employed chemically which manifests the 

same repression activity (Gotoh et al., 2010).  To test the hypothesis that Fe-PcTs was able to 

attenuate biofilm formation mediated by CFX, biofilm cell mass was determined in the presence 

and absence of Fe-PcTs.  In this assay, ATCC2599 cells were treated with subinhibitory 

concentrations of CFX, Fe-PcTs, or both, and biofilm mass was determined 

spectrophotometrically by measuring the optical density at 600 nm (OD600).  The results 

showed that Fe-PcTs was able to reduce the ability of CFX to induce in vitro biofilm formation 

(p-value ≤0.001) (Fig 4.4), which is mediated by SOS response (Gotoh et al., 2010). 
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Figure 4.4.  Suppression of biofilm formation mediated by the SOS response in the E. coli 

by CFX and Fe-PcTs. 

E. coli ATCC25922 cells were treated with a subinhibitory concentration of CFX (40 nM) alone or combined with 

Fe-PcTs (25 µM).  Biofilm cell mass on the wells of the 96-well microtiterplates after 24 hours of static conditions 

was determined spectrophotometrically by measuring the optical density at 600 nm (OD600) after crystal violet 

staining.  The results for the biofilm formation are from at least ten independent experiments and are plotted as the 

means and standard deviations. 

 

P≤ 0.001 P≤ 0.05 
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4.2. Assaying Phthalocyanine (PcTs) Molecules’ Ability to Enhance Bactericidal or 

Bacteriostatic Drugs Activities 

4.2.1 PcTs molecules (metal derivatives) and CFX potentiation 

The ability of PcTs compounds to potentiate the activity of CFX in the E. coli 

ATCC25922 was evaluated.  CFX produces free DSEs, which lead to a blocked replication fork.  

The formation of DSBs and a stalled replication fork are consequently processed to an ss-DNA, 

which is the signal that activates RecA to initiate SOS induction.  The early expressed SOS gene 

products maintain genetic integrity of the cell by high fidelity DNA repair mechanisms to the 

damaged DNA, while late SOS gene products cause stress-induced mutations (Cirz et al., 2005) 

and genome-wide hypermutations (Jolivet-Gougeon et al., 2011).  The potentiating activity of 

PcTs molecules in the E. coli ATTC25922 strain was characterized.  The MIC of CFX in the 

ATTC25922 was 57 nM (±0.0153).  Treatment of the ATCC25922 with Zn-PcTs, Al-PcTs, Ni-

PcTs, or Apo-PcTs alone did not reduce the MIC of CFX at concentrations up to 100 μM.  Co-

treatment with CFX and Fe-PcTs or 3,4′ Cu-PcTs decreased the MIC of CFX, where Fe-PcTs 

showed greater activity than 3,4′ Cu-PcTs.  MICs of CFX were 5.6 nM (±0.001) and 21 nM 

(±0.0043) in the presence of Fe-PcTs and 3,4′ Cu-PcTs, respectively (Table 4.1).  Fe-PcTs and 

3,4′ Cu-PcTs alone did not inhibit the growth of ATCC25922 cells at concentrations up to 100 

μM.  Fe-PcTs and 3, 4′ Cu-PcTs potentiated the activity of CFX and no colony forming units 

(cfus) were observed when ATCC25922 cells were co-treated with CFX and Fe-PcTs or 3,4′ Cu-

PcTs at concentrations of 25 μM and above (Figs. 4.5, i & ii). 
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Table 4.1.  MICs determination* in the E. coli ATCC25922 for PcTs and CFX treatment 

via the checkerboard assay. 

 

*The results are means and standard deviations calculated from three independent experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Drug MIC (nM) 

No PcTs 

Fe-PcTs (100 µM) 

Cu-PcTs (100 µM) 

57(±0.0153) 

 5.6(±0.001) 

21(±0.0004) 
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Figure 4.5.  The E. coli survival assay for CFX and various concentrations of Fe-PcTs or 

3,4′ Cu-PcTs treatments. 

E. coli ATCC25922 cells were cultured in LB broth with various concentrations of Fe-PcTs (i) or 3, 4′ Cu-PcTs (ii) 

(0, 15, 25, or 50 µM) for three hours and then cultured in the same LB broth treatment with the addition of CFX 40 

nM.  Cfus were determined by plating 10-fold serial dilutions from each tube on LB plates at 0, 24, 48, and 72 

hours.  Error bars represent means and standard deviations calculated from three independent experiments. 

i 

ii 
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The basic structure of the PcTs molecule is a flat aromatic macrocycle, four sulphonic 

groups, and a positively charged metal residue, attached in the middle of the PcTs molecules. 

The role of sulfonic acid position in the activity of Cu-PcTs was evaluated.  The activity of 3,4′ 

Cu-PcTs with copper phthalocyanine-tetrasulfonic acid (Cu-PcTs), which contains mixture of 

sulfonic acid regioisomers was compared.  Treatment of ATCC25922 cells with Cu-PcTs and 

CFX caused an ~30-fold decrease in cfus relative to CFX treatment alone, which was 

substantially less inhibitory than 3,4′ Cu-PcTs, where no cfus were detected (Fig. 4.6).  This 

result suggests that sulfonic acid position appears essential for the activity of the PcTs and their 

potentiation activity.  

To test whether the potency of PcTs molecules depends on the metal ion, the potentiation 

activity of the following molecules were evaluated: phthalocyanine tetrasulfonic acid (Apo-

PcTs), aluminum(III) phthalocyanine tetrasulfonic acid (Al-PcTs), zinc(II) phthalocyanine 

tetrasulfonic acid (Zn-PcTs), nickel(II) phthalocyanine tetrasulfonic acid (Ni-PcTs), and copper 

phthalocyanine tetrasulfonic acid (Cu-PcTs).  All these PcTs molecules consist of mixtures of 

different sulfonic acid regioisomers.  All of these PcTs molecules slightly potentiated the activity 

of CFX with similar activity (~ 40-fold).  We tentatively concluded that activities of PcTs 

molecules, which contain a mixture of sulfonic acid regioisomers, were not influenced by the 

identity of their chelated metal ion (Fig. 4.6). 

In order to confirm the effect of Fe-PcTs was not specific to the Gram-negative strain 

ATCC25922, the ability of Fe-PcTs to potentiate CFX activity was determined in another Gram- 

negative strain (P. aeruginosa ATCC27853) and two Gram-positive strains (S. aureus 

ATCC29213 and E. faecalis ATCC29212).  Co-treatment with Fe-PcTs and CFX eradicated 

bacterial growth 24 hours post treatment in the case of the ATCC 29213 and the ATCC 29212, 

while the combination therapy reduced the ATCC27853 growth at 48 hours (Figs. 4.7, i, ii, & 

iii).  
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Figure 4.6. PcTs structure-potentiating activity relationships. 
E. coli ATCC25922 cells were cultured in LB broth with two groups of PcTs moleculces:1) fixed sulfonic group site 

molecules (Fe-PcTs or 3,4′ Cu-PcTs) and 2) PcTs molecules consist of mixtures of different sulfonic acid 

regioisomers, at 25 µM for three hours.  Then, E. coli cells were cultured in LB broth with the same treatment in 

addition to 40 nM CFX.  Cfus were determined by plating 10-fold serial dilutions from each tube on LB agar plates 

at 24 hours.  Error bars represent means and standard deviations calculated from three independent experiments. 
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Figure 4.7.  Survival assay for CFX and Fe-PcTs treatment for three different ATCC 

strains.  

S. aureus ATCC29213 (i), E. feacilis ATCC29212 (ii), and P. areuginosa ATCC 27853 (iii) were cultured in MHB 

with Fe-PcTs 25 µM, CFX 6.5 µM , or both.  Cfus were determined by plating 10-fold serial dilutions form each 

tube on Tryptic Soy Blood plates at 0, 24, 48, and 72 hours.  Error bars represent means and standard deviations 

calculated from three independent experiments. 
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4.2.2 Effect of Fe-PcTs molecules on bactericidal or bacteriostatic antibiotic activity 

A previous study demonstrated that all major classes of bactericidal drugs, such as 

ampicillin, norfloxacin, and kanamycin, stimulate the production of highly deleterious ROS 

radicals in Gram-negative and Gram-positive bacteria (Kohanski et al., 2007), leading to protein, 

lipid, and DNA damage (Imlay, 2003; Kohanski et al., 2007).  On the other hand, bacteriostatic 

antibiotics do not induce hydroxyl radical production (Kohanski et al., 2007).  In order to 

examine the ability of Fe-PcTs to potentiate the activity of a group of bactericidal or 

bacteriostatic antibiotics, we co-treated the ATTC25922 with Fe-PcTs and bactericidal 

antibiotics (CFX, AMP, or KAN), which are members of the quinolone, -lactam, and 

aminoglycoside families, respectively, or bacteriostatic drugs (TET, CAM, or SPECT), which 

are ribosome inhibitors, and determined the MICs for both combination therapy and antibiotics 

alone.  Fe-PcTs potentiated the activity of all bactericidal antibiotics tested by reducing their 

MIC.  Fe-PcTs had no effect on the activity of bacteriostatic antibiotics (Table 4.2). 

Following determination that Fe-PcTs limited the RecA-mediated SOS induction in  

bacteria exposed to bactericidal antibiotics, but not bacteriostatic drugs, we attempted to test the 

hypothesis that such a small molecule may act synergistically with a bactericidal or bacteriostatic 

antibiotic to kill bacteria.  Experiments monitoring bacterial viability evaluated this hypothesis. 

Fe-PcTs increased the toxicity of CFX, and as the dose of Fe-PcTs was increased, the cell 

became more sensitive to CFX (Fig.4.5, i).  Fe-PcTs weakened the ability of bacteria to 

withstand exposure to CFX, which was consistent with the ability of Fe-PcTs to block SOS 

response-mediated DNA repair pathways and SOS mutagenesis pathways.  Although the killing 

effect of the β-lactam and the aminoglycoside drug alone were high, corresponding to the dose 

applied, Fe-PcTs increased these antibiotics’ ability to eradicate bacterial growth rapidly (Figs 

4.8, ii & iii).  In contrast, co-treatment of Fe-PcTs with bacteriostatic antibiotics (SPECT, CAM, 

or TET) did not potentiate their ability to suppress bacterial growth (Fig 4.8, iv, v, & vi). 
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Table 4.2.  MICs (µM) determination* in the E. coli ATCC25922 for Fe-PcTs and 

bactericidal or bacteriostatic antimicrobial treatment via the checkerboard assay. 

*The results are means and standard deviations calculated from three independent experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
CFX AMP KAN TET CAMP SPECT 

Fe-PcTs free 

Fe-PcTs (100 

µM) 

0.057 (±0.0153) 

 0.0056 (±0.001) 

 6.7  

 3.4  

 6.4 (±1.25) 

 1.6(±0.3125) 

 8.3 

 8.3 

 3.7 

 3.7 

10 

10 
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Figure 4.8.  E. coli survival assays for Fe-PcTs and bactericidal or bacteriostatic treatment.  

The E. coli ATCC 25922 was cultured in LB broth with 25 µM Fe-PcTs, or one of the bactericidal drugs, 40 nM 

CFX (i), AMP 40 M (ii), or KAN 43 M (iii), or one of the bacteriostatic drugs, CAM 46 M (iv), TET 21 M (v), 

or SPECT 808 M (vi), or both Fe-PcTs and one of the bactericidal or bacteriostatic drugs.  Cfus were determined 

by plating 10-fold serial dilutions form each tube on LB agar plates at 0, 24, 48, and/or 72 hours.  Error bars 

represent means and standard deviations calculated from three or two independent experiments. 

vi 

v 

iv 

iii 

ii 
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4.3 Determining whether Fe-PcTs Reduces Antibiotic Resistance 

4.3.1 Effects of Fe-PcTs molecules on CFX-resistance in vitro  

Antibiotic therapies that mediate DNA damage and/or lead to the formation of the RecA-

ss-DNA filament are associated with antibiotic resistance through adaptive mutations.  The 

blocked replication fork and the accumulation of RecA-ss-DNA filaments activate the SOS DNA 

repair and mutagenesis pathways (Cirz and Romesberg, 2007; McKenzie et al., 2000).  The 

accumulation of the RecA filament activates the auto-cleavage activity of LexA.  The 

inactivation of LexA frees the operator site of the SOS box and allows expression of SOS genes 

(Cirz and Romesberg, 2007; Janion, 2001; Riesenfeld et al., 1997).  The early expressed SOS 

gene products maintain the genetic integrity of the cell by high fidelity DNA repair mechanisms 

of the damaged DNA.  If these mechanisms are not successful in repairing the damage, this leads 

to the persistence of the RecA-ss-DNA filament and eventually results in the activation of the 

SOS error-prone polymerases (PolIV and PolV) (Cirz et al., 2005).  In this case, error-prone 

polymerases start to function and produce direct mutations and promote a hypermutable state 

when the MMR declines (Cirz and Romesberg, 2007).  Expression of these polymerases causes 

mutations in genes that enable the acquisition of resistance (Cirz et al., 2005).   

An in vitro resistance assay was established to estimate whether or not the Fe-PcTs was 

able to attenuate or block the acquisition of CFX resistance.  The E. coli ATCC25922 was plated 

onto two sets of plates containing CFX in the presence or absence of Fe-PcTs.  Resistant 

colonies were counted as they arose, in 24 hour intervals over 10 days, as was previously 

described (Cirz et al., 2005).  Colonies that formed immediately (at or before day 2) were 

attributed to cells that had acquired resistance prior to exposure to CFX, while colonies that 

formed on day three or later were attributed to cells that acquired resistance after exposure to 

CFX.  Mutants that appeared late in the assay could also have occurred by mutations that effect 

normal growth rates that occurred after plating on LB with CFX, or they could have resulted 

from slow growing pre-existing mutant cells.  To distinguish between pre- and post-exposure 

mutations, two different reconstruction assays were done to ascertain when mutations occurred.  

Clones that were resistant before exposure were defined as those that formed colonies on the 

CFX-containing media in the same number of days in the reconstruction assay as they did in the 

original resistance assay.  Clones that mutated after exposure to CFX were defined as those that 
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formed colonies earlier than in the original resistance assay.  Based on these criteria, we 

calculated that 29% of the CFX-resistant colonies were caused by pre-existing mutations in the 

presence of CFX (Table.4.3).  For ATCC25922 cells treated with CFX and Fe-PcTs, 60% of 

CFX-resistant colonies were from pre-existing mutations (Table.4.3).  To confirm that these 

observations were not due to the lower density of cell plating in the reconstruction assay, we 

repeated the reconstruction assay at a high cell density (10
8 

cells/plate).  The results of the high-

density reconstruction assay were in agreement with the low-density assay.  Treatment of 

ATCC2592 cells with CFX caused rapid emergence of CFX resistant clones (Fig.4.9). 

Cotreatment of ATCC25922 cells with Fe-PcTs and CFX dramatically reduced the number of 

CFX resistant clones (Fig. 4.9).  Since Fe-PcTs potentiated the activity of CFX, it decreased the 

number of viable bacteria on the plates compared to CFX treatment alone.  To determine the 

number of viable cells present as a function of time in CFX and CFX and Fe-PcTs treatments, a 

survival assay was conducted.  In the absence of Fe-PcTs, the number of viable cells decreased 

from 3×10
8
 to 10

4
 cfus/plate on the seventh day of incubation.  In the presence of Fe-PcTs, the 

number of viable cells decreased from 3×10
8
 to 1×10

4
 cfus/plate on the fourth day of incubation 

(Fig. 4.10).  Since Fe-PcTs potentiates the activity of CFX, there were fewer cells present that 

could acquire resistance mutations.  To account for the decreased viability in the presence of Fe-

PcTs, we defined the CFX mutation rate as CFX resistant colonies per viable cell per day (Fig. 

4.11), as described previously (Cirz et al., 2005).  Fe-PcTs reduced CFX-induced resistance by a 

factor of 38-fold in day four.  No mutations were observed in the Fe-PcTs cells after day four.  

These results are comparable to decreases in CFX-induced resistance observed in genetic 

mutations of SOS response and DNA repair genes.  E. coli MG1655 was not able to produce pre-

or post exposure mutants when recA, recB, recG, ruvB, or ruvC were deleted. (Cirz et al., 2005). 

These SOS gene products are essential for the acquisition of resistance-conferring mutations.  

To confirm that cells isolated in the resistance assay developed CFX-resistance, we 

determined the MICs of randomly selected clones.  The data showed that MICs of CFX for ten 

CFX-resistant mutants, isolated in the presence and absence of Fe-PcTs, were 189 or 377 nM, 

respectively.  The CFX-MIC of these isolated mutants increased significantly from 57 nM to 

either 189 or 377 nM, which is considered a low range for quinolone resistance (Vila et al., 

1994).  In addition, the sequence of the quinolone resistance determining rejoin (QRDR) was 

analyzed in the previous selected resistant clones.  The mutations in the gyrA gene involved in 
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the resistance are clustered in a region between nucleotides 199 (Ala-67) and 318 (Gln-106).  All 

the examined mutants had a mutation in QRDR region, specifically at 87-Asp to Asn (Fig. 4.12).  

Although changes in nucleotide 247 (Ser-83) are the most frequently changed in 

spontaneous gyrA mutations among clinical isolates or laboratory mutants of E. coli, and this 

mutation is responsible for the low-level resistance to fluoroquinolones, mutations in the Asp-87 

for two strains, one of which is a spontaneous mutant of E. coli K-16 with a change to Asn 

(Oram and Fisher, 1991) and the other of which is a clinical isolate of E. coli with a change to 

Val has previously been reported (Oram and Fisher, 1991).  In both cases, there was no 

accompanying mutation in Ser-83.  Double mutations in Ser and Asp could account for a high 

level of quinolone resistance (Vila et al., 1994).  
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Table 4.3.  In vitro CFX-resistance assay for the E. coli ATTCC25922 for CFX and Fe-PcTs 

therapy. 

*The results are means and standard deviations calculated from two independent experiments.  

 

 

 

 

 

 

Day CFX-mutants 

cfus/25 plates* 

CFX-Fe-PcTs  

mutants cfus/25  

plates* 

Number of viable 

CFX-susceptible 

cell/plate* 

Number of viable 

CFX-Fe-PcTs- 

susceptible cell/plate* 

1 (± 62) 166 (± 2) 9 (±2×10
5
) 1.92×10

7
 (±3×10

4
) 3.16×10

5
 

2 (± 97) 187 (±1) 3 (± 9.9×10
5
) 1.5×10

6
 (±5×10

3
) 1.5×10

4
 

3 (±70.5) 297 (±2) 4 (± 1×10
4
) 1.8×10

5
 (±1×10

3
) 1.3×10

4
 

4 (± 0) 276 (±3.5) 4 (±1.05×10
4
) 1.8×10

4
 (± 0) 1×10

4
 

5 (± 156) 293 0 (± 5×10
2
) 1.29×10

4
 - 

6 (± 8.5) 113 0 (±1.6×10
3
) 1.45×10

4
 - 

7 (± 1) 71 0 (±1.5×10
3
) 1.5×10

4
 - 

8 (± 10.5) 11 0 (± 0) 1×10
4
 - 

Total number of 

mutants 

1414 20  

Pre-existing 

mutants 

404 
 

12 

 

Early growing 

 

 

353 

 

12 

 

The late 

growing 

 

51 None 

Post-existing 

mutants 

1010 8 
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Figure 4.9.  Resistance assay in E. coli for CFX and Fe-PcTs treatments.  

E. coli ATCC2599 cells were plated out onto LB containing 40 nM CFX.  In an independent experiment the E. coli 

ATCC2599 were pre-incubated with 25 µM Fe-PcTs followed by plating on CFX and Fe-PcTs 40 nM and 25 µM, 

respectively.  The plates were incubated for 10 days. Every emerged mutant was isolated and stocked in -80 °C for 

use in the reconstruction.  Error bars represent means and standard deviations, calculated from two independent 

experiments 
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Figure 4.10.  Survival assays in E. coli for CFX and Fe-PcTs treatments.  

Three E. coli ATCC25922cultures, each of CFX or CFX and Fe-PcTs treatments were prepared exclusively for the 

survival assay.  Agar plugs between visible colonies were excised from these cultures.  These plugs were  

homogenized in M9 buffer.  Dilutions were plated out in duplicate on LB plates, to determine the number of CFX-

sensitive cells present as a function of time, and LB containing 40 nM CFX, to determine if any CFX-resistant 

colonies remained after excision.  Error bars represent means and standard deviations, calculated from two 

independent experiments.  
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Figure 4.11.  In vitro post-exposure mutation rate of E. coli ATCC25922 for CFX or CFX 

and Fe-PcTs treatments fix legend.  

The post-exposure mutation rate at each day of incubation (starting from the third to the eight day of incubation) for 

the ATCC25922 treated with CFX or CFX and Fe-PcTs was determined as the ratio of resistant colonies on a 

particular day to the number of viable cells present at the time the cells became resistant.  Since a colony takes two 

days to form, the viable cell count was calculated two days prior to colony formation.  The post-exposure mutation 

rate was determined as the average of the mutation rate from the third to the eighth day of incubation.  Error bars 

represent means and standard deviations, calculated from two independent experiments.  
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Figure 4.12. gyrA mutation determination in CFX-resistant isolates. 

Colonies stored from the in vitro and in vivo resistance assays were streaked on LB agar containing 58 nM CFX. A 

single colony from each plate was used as a colony PCR template for gyrA fragment amplification.  A substatution 

mutation from Asp into Asn at site 87 in gyrA was highlighted in red.  
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4.3.2 Effects of Fe-PcTs molecules on CFX-resistance in vivo murine thigh infection model  

To examine whether Fe-PcTs can attenuate the acquisition of CFX resistance in vivo, we 

assayed the activity of Fe-PcTs in a neutrapenic murine thigh bacterial infection model (Cirz et 

al., 2005).  Mice were rendered neutrapenic by intraperitoneal injection with cyclophosphamide.  

Mice were then injected with ATCC25922 cells.  Two hours after infection, mice were 

administered subcutaneous injections of CFX or CFX and intraperitoneal injections with Fe-

PcTs every 24 hours up to 72 hours.  At 48 and 72 hours post infection, nine mice from each 

group were sacrificed and their thighs removed and homogenized to determine viable cells 

numbers of both CFX-sensitive and CFX-resistant E. coli.  CFX-resistant cells were observed 

after 48 and 72 hours infection in the CFX-treatment group.  Approximately, 50,000 CFX-

resistant cells were observed after 72 hours infection when the mice were only treated with CFX.  

Remarkably, no CFX resistant cells were observed when mice were co-treated with CFX and Fe-

PcTs (Fig. 4.13).  Pretreatment of mice with Fe-PcTs prior to infection potentiated the activity of 

CFX more than when mice were only co-treated with CFX and Fe-PcTs shortly after infection 

(Fig. 4.13).  No CFX-resistant colonies were observed in any mice treated with Fe-PcTs, which 

may reflect the time required for E. coli to develop resistance.   

To confirm that cells isolated from a mouse model developed CFX resistant, we 

determined the MICs of randomly selected clones.  The data showed that MICs of CFX for ten 

CFX-resistant mutants, isolated in the absence of Fe-PcTs, were 189 or 377 nM, respectively.  

The CFX-MIC of these isolated mutants increased significantly from 57 nM to either 189 or 377 

nM, which is considered a low range for quinolone resistance (Vila et al., 1994).  In addition, the 

sequence of the QRDR was analyzed in the previous selected resistant clones.  The mutations in 

the gyrA gene involved in the resistance are clustered in a region between nucleotides 199 (Ala-

67) and 318 (Gln-106).  All the examined mutants had a mutation in QRDR region, specifically 

at 87-Asp to Asn (Fig. 4.12).  
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Figure 4.13. Survival and mutation of E. coli in vivo after starting CFX and Fe-PcTs 

therapy. 

Survival and mutation of E. coli ATCC25922 in thighs of neutropenic mice at 48 and 72 hours after starting therapy 

with  CFX, CFX and Fe-PcTs, or Fe-PcTs (pre and post treatment) and CFX.  Disconnected lines represent the total 

cfus/thigh in the surviving E.coli and sold lines correspond to the total cfus/thigh of the CFX resistance.  The results 

are means, calculated from nine sacrificed mice from each group and error bars are the standard deviations.  
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CHAPTER 5 

DISCUSSION 

Development and introduction of antimicrobial drugs have been considered a victory 

against the threat of infectious diseases.  Unfortunately,  numerous reports have demonstrated the 

ability of bacteria to evolve resistance to almost all current antibiotics (Aminov, 2010).  In fact, 

the continual emergence of antibiotic resistance has amplified the global impact of infectious 

disease in this century.  Antimicrobial resistance not only takes place rapidly, but it also spreads 

quickly.  In addition, the antibiotic discovery industry has remarkably declined (Projan and 

Shlaes, 2004).  This decline reflects both the difficulty of identifying novel classes of antibiotic 

and less commitment by the pharmaceutical industry towards discovering novel antibiotics.  

Some big pharmaceutical companies continue to invest billions of dollars in the development of 

new antibiotics; however, their production is considered insufficient to overcome the increased 

number of resistant pathogens (Projan and Shlaes, 2004).  

There are several molecular mechanisms for drug resistance, but the most threatening 

ones are those that involve acquisition of antibiotic resistance genes via a processes known as 

horizontal gene transfer (Beaber et al., 2004) and stress-inducible mutation mediated by RecA 

(Cirz et al., 2005).  The bacterial RecA protein is essential in both processes.  Inactivation of 

RecA’s biological activity in bacterial cells could abrogate DNA repair mechanisms, horizontal 

gene transfer, and SOS mutagenesis.  It has been demonstrated that the mutagenic effect 

mediated by the sub-lethal concentrations of certain antibiotics was completely abolished when 

the biological activity of RecA was inactivated (Cirz et al., 2005; Cirz and Romesberg, 2007).  In 

addition, bacterial cells became more susceptible to these antibiotics (Thi et al., 2011).  

Identification of molecules that inhibit RecA biological activities can potentiate the efficacy of 

current antibiotics and block the acquisition of resistant genes mediated by the SOS response. 

RecA and other recombination proteins are essential for cell viability under normal 

growth conditions in vivo.  The growth rate of ∆recA
-
 bacterial is approximately 20% that of wild 

type strains (Courcelle and Hanawalt, 2003; Cox et al., 2000).  Reactivation of stalled replication 

forks under normal growth conditions, occurring regularly in bacterial cells, involves the 

activation of non-mutagenic homologous recombination pathways, where RecA plays a master 
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regulatory role.  It has been previously shown that eliminating RecBCD leads to accumulation of 

unrepaired DNA-DSB, developing from fork inactivation and cleavage in 15-20% of cells under 

normal conditions (Courcelle and Hanawalt, 2003; Cox et al., 2000).  Bacterial cells were 

inviable when null mutations in both recA and pri were combined with mutations in other 

recombination proteins, while cells that encompass a null mutation in recA alone were viable 

(Cox et al., 2000).  However, the non-mutagenic recombination pathways can be switched to the 

mutagenic version when the damaged or stalled replication fork is not repaired successfully.  

Therefore, in order to maximize cell survival, the SOS response activates a number of 

downstream processes, such as cell-cycle arrest induced by SulA and the mutagenic repair, 

caused by DNA polIV (DinB) and V (UmuDC)-mediated replication fork bypass (Cirz et al., 

2005; Cirz and Romesberg, 2007; Riesenfeld et al., 1997; Thi et al., 2011).  As RecA functions 

rely upon active nucleoprotein filament formation stimulated by the simultaneous binding of 

ATP and ss-DNA, the NPF is an attractive target to block RecA functions.  Isolating inhibitors 

that competitively block the DNA binding sites of RecA, freeze RecA in its ATPase inactive 

conformation, and prevent active nucleoprotein filament assembly is desirable.  Inhibitors of this 

type would negate both the SOS response and processive recombinational activities of RecA by 

preventing the assembly of the active filament altogether.  Such functionally selective inhibitors 

of the RecA-mediated stress response would permit a greater understanding of the antibiotic-

induced bacterial stress response.   

Recombinase proteins are ubiquitous proteins, which are present in all organisms, 

including bacterial RecA, archaeal RadA, and eukaryotic cells Rad51 and DMC1(Li et al., 

2009).  The similarity among RecA, Rad51, and RadA is mostly functional as the structural and 

biochemical approaches of these proteins are distinct (Yang et al., 2001a).  The only common 

feature is the core ATP-binding domain, and even these domains are only modestly similar (Cox, 

2007).  RecA and its homologues can be inhibited by targeting three functionally important sites: 

recruitment and polymerization, ATP binding, and DNA binding (Li et al., 2009).  The 

recruitment and polymerization site has a central hydrophobic residue that matches a 

hydrophobic pocket in an adjacent subunit (Li et al., 2009).  Inhibition at the recruitment and 

polymerization site of Rad51 has been reported using a peptide mimicking the conserved 

polymerization motif in RecA orthologues (Tal et al., 2009).  The ATP binding site, located at 

the inter-subunit interface, binds, hydrolyzes ATP, and regulates the conformation of the DNA 
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binding site (Li et al., 2009).  The ATPase center of EcRecA has also been targeted (Sexton et 

al., 2010).  The third site is the DNA binding center, consisting of L1 and L2 loops.  The larger 

L2 has two universally conserved residues at each end while the smaller L1 is not highly 

conserved between bacterial RecA and nonbacterial recombinase proteins (RadA, Rad51, and 

DMC1).  Despite the fact that the structure of the nonbacterial recombinase in complex with 

DNA is not yet determined, the structural similarities between the bacterial and nonbacterial 

recombinases indicate that L1 and L2 sites in the nonbacterial homologues are the most likely 

site of DNA interaction (Li et al., 2009).  Developing a RecA inhibitor for therapeutic purposes 

involves identification of an inhibitor that is selective for a specific target since off target drugs 

can increase the toxicity by exposure to that particular drug.  Therefore, when isolating a RecA 

inhibitor, this drug should not interfere with RecA homologues in eukaryotes, including Rad51 

and DMC1.  As bacterial RecA proteins are only functionally similar to their eukaryotic 

homologues, it should be possible to inhibit RecA specifically without blocking Rad51 and 

DMC1 functions.  In agreement with the mentioned difference between RecA and Rad51, our 

research team’s results have showed that the Fe-PcTs complexes were not toxic to mouse bone 

marrow at the maximum concentration tested (100 µM) or leukemia cells (Geyer and Luo 

personal communication, unpublished data).  These results showed that Fe-PcTs has no toxicity 

in mice, which is in consistent with other studies showing that PcTs-based molecules are well 

tolerated by mice going under long-term treatment (Caughey et al., 2007).  Additionally, PcTs-

based molecules have been used to suppress infection mediated by prion such as scrapie 

infection in mouse models (Priola et al., 2003; Priola et al., 2000). 

Potential RecA inhibitors tested in this work were available from commercial small 

anionic aromatic libraries, specifically phthalocyanine molecules coordinated with different 

metal ions.  The selection of these molecules was inspired by the ability of metatungstate 

Na2WO4 to inhibit the ATPase and strand exchange activities of the RecA homologue, MvRadA.  

Metatungstate ions appears to be bound between the DNA-binding loops, anchoring the 

MvRadA in its inactive conformation (Li et al., 2009), unfortunately, this molecule could not 

block RecA biological activity in living cells.  Interestingly, when a copper phthalocyanine 

complex (3,4′ Cu-PcTs) was co-crystallized with MvRadA, the 1.9 Å resolution structure 

showed that a single 3,4′ Cu-PcTs molecule was sandwiched between two hexameric rings of 

MvRadA.  3,4′ Cu-PcTs binds near the L1 DNA-binding loop of MvRadA in its ring-shaped 



79 

 

 

oligomeric form (Geyer and Luo personal communication, unpublished data).  Since such ring 

shaped oligomers are known to be the storage form for all studied RecA orthologues (Chen et al., 

2007; Yang et al., 2001b), this mode of inhibitor/RadA interaction could be exploited for RecA.  

Phthalocyanine molecules (Fe-PcTs and 3,4′ Cu-PcTs) inhibited the ATPase, as well as DNA-

binding, DNA stand-exchange, and LexA cleavage activities of EcRecA.  The tested PcTs 

compounds have also been found to be micromolar inhibitors of ds-DNA-binding activity of 

EcRecA form (Geyer and Luo personal communication, unpublished data).  These results 

suggest that anionic metatungstate molecules (Li et al., 2009) and PcTs inhibitors (Geyer and 

Luo personal communication, unpublished data), interacting with L1 DNA-binding loops of 

MvRad, could also effectively interact with the DNA binding loops of EcRecA. 

RecA controls processes that are responsible for an increased tolerance to antibiotic 

chemotherapy and pathways, which ultimately lead to complete antibiotic resistance.  Small 

molecules capable of abrogating RecA biological activities impact the following pathways: (i) 

DNA repair, (ii) SOS-response mutagenesis, and (iii) recombination-based horizontal gene 

transfer.  It has been shown that bacteria impairing these functions by mutations in the recA gene 

are more susceptible to antibiotic treatments and are not able to develop resistance (Cirz et al., 

2005; Cirz and Romesberg, 2007; Thi et al., 2011).  A RecA inhibitor induces this phenotype to 

act synergistically with currently prescribed antibiotics, greatly enhancing their potency and 

preventing the accumulation of resistant cells.  Therefore, identification of RecA inhibitors that 

are cell permeable, limit SOS induction, and increase the sensitivity of bacterial cells to the 

current antibiotics in vivo was investigated in this project.  The Fe-PcTs, examined in E. coli 

cultures, abrogated the SOS response under stress conditions resulting from exposure to CFX or 

AMP, bactericidal agents known to upregulate SOS expression.  CFX is considered a good 

inducer of the SOS response (Hassett and Imlay, 2007), since SOS induction is efficiently 

activated by DNA damaging antibiotics, leading to the expression of the DNA repair 

mechanisms and transcriptional induction of the error prone polymerases.  Consequently, an 

increase in the acquisition of resistant genes, through either horizontal gene transfer or stress 

inducible mutation, takes place (Beaber et al., 2004; Riesenfeld et al., 1997; Thi et al., 2011).  In 

addition, β-lactams have recently been shown to induce the expression of the SOS response 

through the DpiBA two-component system.  The effector of the DpiBA component system, Dpi, 

regulates all the following processes: DNA transcription, replication, and segregation by binding 
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to A+T rich sequence in the replication origin of the E. coli chromosome by unknown 

mechanisms.  DpiA competes with the replication proteins DnaA and DnaB to bind to the 

replication origin.  The overexpression of DpiA blocks replication and induces the SOS response 

(Miller et al., 2004).  KAN induction of the SOS response could not be monitored by the GFP 

reporter gene since KAN is a translation inhibitor, and in order to monitor the GFP expression, 

active transcription and translation of the GFP reporter, regulated via LexA, are needed 

(Kohanski et al., 2007); therefore, the effect of Fe-PcTs could not be evaluated.  However, it has 

been proven by Kohanski’s group that abrogating the SOS response activity by knocking out 

recA made the cells more sensitive to KAN than the wild type, confirming the role of the SOS 

response in neutralizing the killing effects of the aminoglycoside family (Kohanski et al., 2007).  

Moreover, the compound Fe-PcTs potentiated the effect of a low dose of CFX, and this cocktail 

of compounds killed bacteria 24 hours post treatment with an efficiency equal to that of CFX by 

itself.  It appears that the molecule Fe-PcTs weakens the ability of bacteria to withstand exposure 

to CFX based on the assumption that Fe-PcTs blocks the SOS response-mediated DNA repair 

pathways and SOS mutagenesis which repairs CFX-induced DNA DSB.  The effect of Fe-PcTs 

carried over to other classes of bactericidal drugs, not the bacteriostatic drugs.  Collectively, all 

the results related to induction of the DNA damage response by bactericidal or bacteriostatic 

microbial were consistent with the previous experiments by Kohanski’s group.  Fe-PcTs 

represented in the phthalocyanine class display a unique biological activity in antibacterial 

chemotherapeutics and may serve as lead candidates for the development of adjuvants for the 

treatment of bacterial infectious diseases.  Additionally, using such cell-permeable small 

molecules, controlling RecA, proves the principle that RecA may be a novel target for 

antibacterial chemotherapy not belonging to the traditional classes of traditional antibiotics. 

The SOS response is universally conserved in the entire bacterial kingdom, which repairs 

DNA spontaneously and environmentally stress-induced damage (Brendel et al., 1997; Roca and 

Cox, 1997).  A small number of bacteria lack the SOS-inducible stress response.  These bacteria 

are parasites, colonizing internal anaerobic environments in animals, such as the intestinal tract 

and reproductive system which are essentially free of DNA-damaging elements, like UV light 

and oxygen radicals (Black et al., 1998).  These bacteria are member of Neisseriaceae spp. 

(Black et al., 1998; Kline et al., 2003), Acinetobacter calcoaceticus (Rauch et al., 1996), 

Thiobacillus ferrooxidans (Ramesar et al., 1989), and Bacteroides fragilis (Goodman et al., 
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1987).  However, RecA holds a highly conserved function in repairing DNA damage through its 

recombinational activity.  Bacterial organisms that showed ability to express a defined SOS 

response were able to catalyze repair mechanisms and the SOS mutagenesis.  Since, among 

bacterial species, RecA is a highly conserved protein in both structural and functional aspects, it 

is more likely that an inhibitor of RecA from one bacterial species will cross-inhibit the RecA 

from another bacterial species.  The ability of Fe-PcTs to potentiate CFX activity in strains other 

than the ATCC25922 showed that the DNA damage by CFX treatment that produces DSB in the 

DNA and leads to the formation of a stalled replication fork that could not be repaired or to be 

tolerated in the presence of Fe-PcTs.  The only exception was P. aruginosa, which showed a 

poor synergistic response to CFX and Fe-PcTs compared to the other strains.  This strain’s MIC 

exhibited moderate susceptibility to CFX (MIC ≥ 1.5-32 µg/ml), which is mediated by the efflux 

pumps that raises the MICs for penicillins, cephalosporins, quinolones, tetracyclines, and 

chloramphenicol (Pankey and Ashcraft, 2005).  The poor sensitivity to the synergistic effect of 

CFX plus Fe-PcTs may be related in some part to the resistance property to CFX, exhibited by 

this strain.  A study investigating the synergistic efficacy of synergistic antibiotic combinations 

in multidrug resistant P. aeruginosa strains showed no synergy has been detected in CFX and 

imipenem or tobramycin combinations (Dundar and Otkun, 2010).  Resistance to CFX in 

Pseudomonas strains is due to a relative impermeability of the organism to CFX, which cannot 

be overcome by combination therapy. 

The conventional paradigm links the evolution of antibiotic resistance to selection for 

pre-existing mutants in a population of microbes exposed to an antibiotic therapy.  It suggests 

that resistance-conferring mutations are the inevitable consequence of polymerase errors and are 

random events where intervention is not possible.  In contrast, the modern paradigm suggests a 

regulated process, for which bacteria play a very proactive role in the mutation of their own 

genomes by inducing particular proteins, at least when the DNA is exposed to certain 

antimicrobials and DNA-damaging agents (Cirz and Romesberg, 2007), including PolIV and 

PolV (Cirz et al., 2005).  This is a paradigm supporting the notion that resistance depends on 

particular biochemical pathways, and intervention with these pathways would be a promising 

approach to combat the resistance issue.  More specifically, inhibition of regulator proteins of 

these pathways, or the prevention of their de-repression by inhibition of LexA cleavage, with 

suitably designed drugs, might represent a fundamentally new approach to combating the 
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emerging threat of antibiotic-resistant bacteria.  Based on the in vitro resistance assay, Fe-PcTs 

was able to suppress the acquisition of CFX resistance in the pathogenic E. coli ATCC25922 

treated with CFX.  These results are comparable to the decrease in CFX-induced resistance 

observed in genetic mutations of SOS response and DNA repair genes (Cirz et al., 2005).  The in 

vivo resistance assay confirmed that Fe-PcTs attenuate the acquisition of CFX resistance in a 

neutrapenic murine thigh bacterial infection.  Remarkably, no CFX resistant cells were observed 

when mice were co-treated with CFX and Fe-PcTs.  

Drug-resistant pathogen infections are becoming more prevalent and one of the major 

issues in the health field.  The increase in resistance has limited the number of effective 

antimicrobials, creating a problematic situation that has been amplified by the small number of 

new antibiotics introduced in recent years.  The mechanism of killing by which bactericidal 

antibiotics kill bacteria, recently reported, provides new avenues for the development of new 

antibacterial compounds, as well as adjuvant molecules that could enhance the potency of current 

antibiotics.  The roles that RecA plays in the SOS DNA repair, recombinational repair, 

mutagenic repair, and lateral gene transfer mechanisms are important to be effectively used in 

identifying inhibitors of RecA that potentiate the activity of bactericidal drugs and block 

resistance.  Translation of this knowledge into new clinical treatments and approaches can 

effectively help to fight the growing threat from resistant pathogens.  Most of the available 

combination therapies that are aimed to neutralize resistance mechanisms are specific to certain 

antibiotic classes.  The best-well known example is the β-lactam class antibiotic (amoxicillin) 

with a lactamase inhibitor (clavulanate).  In striking contrast, Fe-PcTs can be part of a wide-

range of bactericidal antibiotic cocktails, providing a more general approach to counter the 

effects of resistance.  Fe-PcTs can be combined to a wide array of antibiotic therapies, which will 

potentiate their activity and prolong their lifespan by reducing the acquisition of antibiotic 

resistance mutations.  
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APPENDIX A 

6.1 Solutions and Media 

PSB 

Dissolve the following ingredients: 8 gram of NaCl, 0.2 gram of KCl, 1.44 gram of Na2HPO4, 

and 0.24 gram of KH2PO4 in 800 mL of distilled water. Adjust pH to 7.4.  Adjust volume to 1L 

with additional distilled H2O. Sterilize by autoclaving 

M9 

Combine the following ingredients: 3 gram of KH2PO4,  6 gram of Na2HPO4, 5 gram of NaCl, 1 

mL of MgSO4 (1M) in 1 L of distilled water in a large beaker or a graduated cylinder using 

magnetic stir bar.  Aliquot into appropriate sized bottles and then autoclave. 

SB 

Combine the following ingredients: 8 gram NaOH, and 45 gram boric acid in 1L of distilled 

water. 

MHB 

Add 21 gram MHB powder to 1 L of distilled water and then autoclave. 

LBB 

Add the following ingredients: 10 gram Bacto-tryptone, 5 gram yeast extract, 5 gram NaCl to 

800 mL H2O. Adjust pH to 7.5 with NaOH.  Adjust volume to 1L with distilled water. Sterilize 

by autoclaving. 

LBA 

Prepare 1L of LBB and then add 15 gram agar.  Sterilize by autoclaving. 

TSA 

Add 40 gram of TSA to 1 L of distilled water and then autoclave.
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APPENDIX B 

7.1 List of Reagents, Equipment and drugs 

Table 7.1.1 List of reagents used in this project.  

Item  Supplier  

Agarose  

Acetic acid, glacial  

dNTP set  

Ethidium bromide  

Ethyl alcohol 95% 

EDTA (ethylenediaminetraacetic acid) 

Glycerol 

Magnesium sulfate 

Sodium chloride 

Sodium hydroxide 

Sodium phosphate dibasic 

Sodium phosphate 

TRIS [Tris (hydroxymethyl) aminomethane] 

10X Buffer Taq polymerase (platinum, high fidelity) 

Taq DNA polymerase (platinum, high fidelity) 

30-(p-hydroxyphenyl) fluorescein (HPF)  

Crystal violet 

Invitrogen  

Fisher  

Fermentas  

BDH  

Commercial Alcohols 

EM Science 

EMD 

EMD 

EMD 

BDH 

EMD 

EMD 

EMD 

Invitrogen 

NEB  

Invitrogen 

Fisher 
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Table 7.1.2. List of reagents used in media preparation. 

Item Supplier 

Agar 

Trypton 

Yeast extract 

Muller Hinton broth (MHB) 

Tryptic soy agar (TSA) 

Sheep red blood cells (SRBC) 

BD Biosciences 

BD Biosciences 

BD Biosciences 

Becton Dickinson 

Becton, Dickinson 

Oxoid 

 

Table 7.1.3. List of equipment used in this study.  

Item Supplier 

96-1.2ml tube rack 

Centrifuge 5810 

Glass beads, 450-600μm in diameter 

MaxQ 4000 shaking incubator 

Microfuge 18 centrifuge 

Micropipettors 

Spectramax M5 microplate reader 

Ultraspec 3000 spectrophotometer 

Spectrophotometer  

Ultra-Tech WJ 301D incubator 

VP 408FH Replicator  

Colorimeter 

Cytometer  

Molecular Bioproducts 

Eppendorf 

Sigma 

Barnstead 

Beckman Coulter 

Gilson 

Molecular Devices 

Pharmacia Biotech 

Thermo scientific, Genesys 20 

Baxter 

V&P Scientific 

BioMérieux Vitek, Inc  

Beckman coulter, Inc  
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Nikon Eclipse E400 compound microscope 

Tissue grinder 

UV light transilluminator  

Thermocycler 

Laboratory Optical Service, Inc 

VWR international 

BioRad 

BioRad 

 

Table 7.1.4. Drugs used in this study and their sources. 

Drugs Types Source 

Ampicillin (AMP) Powder Shelton Scientific 

Ciprofloxacin hydrochloride (CFX) 

Kanamycin monosulfate (KAN) 

Powder Bayer Pharmaceutical 

Powder Sigma-Aldrich Co. 

Chloramphenicol (CAM) Solution Sigma-Aldrich Co. 

Spectinomycin dihydrochloride 

(SPECT) 

Powder Sigma-Aldrich Co. 

Tetracycline hydrochloride (TET) Powder Fluka  

Iron (III) phthalocyanine-4,4′,4′′,4′′′-

tetrasulfonic acid, compound with 

an oxygen monosodium salt hydrate 

(Fe-PcTs) 

Powder Sigma-Aldrich Co. 

Copper phthalocyanine-3,4′,4″,4″′-

tetrasulfonic acid tetrasodium salt 

(Cu-PcTs) 

Powder   Sigma-Aldrich Co. 

Copper phthalocyanine-tetrasulfonic 

acid (Cu-Pcts isomer) 

Powder  Sigma-Aldrich Co. 

Nikel phthalocyanine tetrasulfonic 

acid (Ni-PcTs) 

Powder   Sigma-Aldrich Co. 

Phthalocyanine tetrasulfonic acid 

tetrasodium salt (Apo-PcTs) 

Powder Sigma-Aldrich Co. 

Aluminum (II) phthalocyanine 

chloride tetrasulfonic acid (Al-PcTs) 

Powder Frontier Scientific 
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Zinc (II) phthalocyanine 

tetrasulfonic acid (Zn-PcTs) 

Powder Frontier Scientific 

 


