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Abstract

The operator-valued free central limit theorem and operator-valued semicircular random

variables were first introduced by D. Voiculescu in 1995 as operator-valued free analogues of

the classical central limit theorem and normal random variables, respectively.

In 2007, R. Speicher and others showed that the operator-valued Cauchy transform of the

semicircular distribution satisfies a functional equation involving the variance of the semicir-

cular distribution.

In this thesis, we consider a non-commutative probability space (A,EB,B) where in which

A is a unital C∗-algebra, B is a C∗-subalgebra of A containing its unit and EB ∶ A → B is

a conditional expectation. For a given B−valued self-adjoint semicircular random variable

s ∈ A with variance η, it is still an open question under what conditions the distribution

of s has an atomic part. We provide a partial answer in terms of properties of η when B

is the algebra of n × n complex matrices. In addition, we show that for a given compactly

supported probability measure its associated Cauchy transform can be represented in terms

of the operator-valued Cauchy transforms of a sequence of finite dimensional matrix-valued

semicircular random variables in two ways. Finally, we give another representation of its

Cauchy transform in terms of operator-valued Cauchy transform of an infinite dimensional

matrix-valued semicircular random variable.
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Chapter 1

Introduction

This research thesis is divided in four main chapters of which the first three chapters

provide required background for the presented main results in the last chapter.

Chapter 2 begins by introducing the Cauchy transform of a probability measure on R

and studying its key properties. Then it characterizes functions which are Cauchy trans-

forms of a probability measure in terms of simple geometrical and analytical properties. The

chapter continues with dealing with the orthonormal polynomials associated with a proba-

bility measure, Jacobi coefficients, three term recurrence relations and how they relate to the

convergence of the continued fraction expansion of the associated Cauchy transform of the

probability measure. This self-contained chapter follows mainly [10].

Chapter 3 gives an outline of operator-valued free probability theory. It introduces

operator-valued noncommutative probability spaces and random variables. Next, it de-

fines freeness with amalgamation over a subalgebra and discusses some properties of free

random variables. A Fock space type construction provides an important example of free

random variables and allows one to express any operator-valued distribution as the distri-

bution of a canonical random variable belonging to such space. Having this canonical form,

one constructs the R-transform, an operator-valued free analogue of the logarithm of Fourier

transform in classical probability, and proves a free central limit theorem for operator-valued

random variables. The central limit is called the operator-valued free semicircular distribu-

tion and, as in the classical probability case, it is fully described by its first two moments.

Finally, the concept of complete positivity of a unital linear map is introduced and as a

necessary and sufficient condition, the complete positivity property of the second moment of
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a semicircular random variable is proved. This self contained chapter follows mainly [13], [14].

Chapter 4 begins by expressing the R−transform in terms of the compositional inverse of

an operator-valued version of the Cauchy transform. Using the characterization of the R−

transform of a semicircular random variable in terms of first moment and variance, one finds

a quadratic functional equation satisfied by the operator-valued Cauchy transform of that

semicircular random variable. While that functional equation may have many solutions, it is

shown that exactly one of them is an operator-valued Cauchy transform. The presentation

of this chapter follows [14], [15], [2], and [5], with the simplification in the proof of the main

result of [5].

Finally, Chapter 5 is dedicated to the presentation and the proof of the main results. First,

it is shown that operator-valued semicircular random variables have a certain universality

property: for given arbitrary compactly supported probability measure µ, there is a B(`2)-

valued semicircular random variable s and an extremal state ρ ∶ B(`2)→ C so that the Cauchy

transform Gµ equals to the composition of ρ with the restriction of B(`2)-valued Cauchy

transform of s to the complex upper half plane, G∗
s ∣C+.1. Second, it is explored whether

distributions of matrix-valued semicircular random variables can have nontrivial discrete

part. This problem is expressed in the measure theoretic terms. For given Mn(C)-valued

semicircular random variable s with symmetric distribution Sµs it is investigated whether the

associated probability measure µs given by the relation Gµs(ξ) = trn ○G∗
s(ξ.1), ξ ∈ C+ has

an atom. It is shown that this necessarily happens if the variance of s is nilpotent, and an

example is given to show that the converse does not hold. The chapter closes with several

examples clarifying statements of the theorem.
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Chapter 2

The Cauchy Transform and Its Continued

Fraction

This chapter provides some preliminaries used in Chapters 4 and 5. In section 1, the

Cauchy transform is introduced and some of its properties are studied. It is shown that three

of those properties are sufficient to identify a function as a Cauchy transform. In Section 2,

we discuss the idea of continued fractions and give a continued fraction representation of a

category of Cauchy transforms.

2.1 The Cauchy Transform and Its Properties

Definition 2.1.1. Let µ be a probability measure on the Borel σ-algebra of R . The associ-

ated Cauchy transform Gµ to µ is defined by:

Gµ(ξ) = ∫
R

dµ(t)
ξ − t

.

Some properties of Gµ are listed in the following proposition, [7, pp. 51-61]. In the follow-

ing we denote C+ = {ξ ∈ C∣Im(ξ) > 0}, C− = −C+, and Supp(µ) = R∖⋃{U ⊆ R∣U open,µ(U) =

0}.

Proposition 2.1.2. Let G = Gµ be the Cauchy transform of a compactly supported probabil-

ity measure µ on R. Then:

(i) G is analytic on C ∖ Supp(µ),

(ii) If Im(ξ) > 0(< 0), then Im(G(ξ)) < 0(> 0),

(iii) limΓα(0)∋ξ→∞ ξ.G(ξ) = 1 where Γα(0) = {ξ ∈ C+ ∶ ∣Re(ξ)∣ < αIm(ξ)},
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(iv) ∣G(ξ)∣ ≤ ∣Im(ξ)∣−1,

(v) Im( 1
G(ξ)) ≥ Im(ξ),

(vi) G(ξ) = G(ξ), thus G(ξ) is completely determined by its values on the C+,

(vii) limΓα(r)∋ξ→r(ξ − r)G(ξ) = µ({r}) −∞ < r <∞,

(viii) For compactly supported µ the associated G(ξ) is analytic around infinity and G(ξ) =

∑∞
m=0

∫R t
mdµ(t)
ξm+1 ∣ξ∣ > supt∈Supp(µ) ∣t∣.

Proof. (i) Let ξ0 ∈ C ∖ Supp(µ) and r = 1
2dist(ξ0, Supp(µ)) > 0. Then for any ξ ∈ Br(ξ0), the

open disc with center ξ0 and radius r, we have ∣ξ−ξ0∣∣ξ−t∣ < 1 for all t ∈ R, and hence, by uniform

convergence property we have that:

G(ξ) = ∫
R

dµ(t)
ξ − t

= ∫
R

dµ(t)
ξ − ξ0 + ξ0 − t

= ∫
R

1

ξ0 − t
1

1 − ξ−ξ0
t−ξ0

dµ(t) = ∫
R

1

ξ0 − t

∞
∑
m=0

(ξ − ξ0

t − ξ0

)mdµ(t)

=
∞
∑
m=0

( − ∫
R
(t − ξ0)−m−1dµ(t))(ξ − ξ0)m ξ ∈ Br(ξ0).

(ii) Let Im(ξ) > 0, then by part (v),

Im(G(ξ)) = 1

2i
(G(ξ) −G(ξ)) = 1

2i ∫R
( 1

ξ − t
− 1

ξ − t
)dµ(t)

= −Im(ξ)∫
R

dµ(t)
(ξ − t)(ξ − t)

≤ −Im(ξ)∫
R

dµ(t)
(∣ξ∣ + ∣t∣)2

< 0.

Now, let Im(ξ) < 0, or Im(ξ) > 0. Then, by above result, Im(G(ξ)) < 0 or by part (v),

Im(G(ξ)) < 0. Hence, Im(G(ξ)) > 0.

(iii) This is an straightforward result of the Lebesgue convergence theorem.

(iv) This part follows from the following inequality:

∣G(ξ)∣ ≤ ∫
R

dµ(t)
∣ξ − t∣

≤ ∫
R

dµ(t)
∣Im(ξ)∣

= ∣Im(ξ)∣−1 Im(ξ) > 0.

(v) Let f(ξ) = 1
G(ξ) , ξ ∈ C+. Then by part (ii) we have:

Im(f(ξ)) = Im( G(ξ)
∣G(ξ)∣2

) = −Im(G(ξ))
∣G(ξ)∣2

> 0.
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Now, by part (iii), and Lemma 2.1.3 it follows that:

f(ξ) = ξ + ∫
R

1 + tξ
t − ξ

dν(t) + c,

and the assertion follows by Im(1+tξ
t−ξ ) =

(t2+1)Im(ξ)
(t−Re(ξ))2+(Im(ξ))2 > 0.

(vi) It is trivial.

(vii) For fixed −∞ < r < +∞, we have:

(ξ − r)G(ξ) − µ({r}) = ∫
R
(ξ − r
ξ − t

− χ{r}(t))dµ(t),

and

lim
Γα(r)∋ξ→r

(ξ − r
ξ − t

− χ{r}(t)) = 0 −∞ < t < +∞,

where in which Γα(r) = {ξ ∈ C+ ∶ ∣Re(ξ)− r∣ < αIm(ξ)}. On the other hand, for any ξ ∈ Γα(r)

we have:

∣ξ − r
ξ − t

− χ{r}(t)∣ = ∣t − r
ξ − t

+ 1 − χ{r}(t)∣ ≤
∣t − r∣

((Re(ξ) − t)2 + (Im(ξ))2) 1
2

+ 1

≤ ∣t −Re(ξ)∣ + ∣Re(ξ) − r∣
((Re(ξ) − t)2 + (Im(ξ))2) 1

2

+ 1 ≤ α + 2 −∞ < t < +∞.

Now, the result follows by Lebesgue convergence theorem.

(viii) This follows from the analyticity of the function

G(1

ξ
) = ∫

R

ξ

1 − ξ.t
dµ(t) ∣1

ξ
∣ < 1

supt∈Supp(µ) ∣t∣

at ξ = 0. Moreover,

G(ξ) = ∫
R

∞
∑
m=0

1

ξ
( t
ξ
)mdµ(t) =

∞
∑
m=0

∫R tmdµ(t)
ξm+1

for all ∣ξ∣ > supt∈Supp(µ) ∣t∣.

Now, we show that any Cauchy transform can be identified by the first three mentioned

properties in the Proposition 2.1.2. To begin with the proof, we first need a lemma, [10, pp.

23-26].
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Lemma 2.1.3. Let f(ξ) be analytic in the upper half plane C+, and Im(f(ξ)) ≥ 0 for all

ξ ∈ C+. Then:

(i) there exists a bounded increasing function ν(t) such that:

f(ξ) = Aξ + ∫
R

1 + tξ
t − ξ

dν(t) + c,

where A and c are real constants and A ≥ 0,

(ii)

lim
Γα(0)∋ξ→∞

f(ξ)
ξ

= A.

Proof. (i) Consider an analytic function g(ξ′) in ∣ξ′ ∣ < 1 with Im(g(ξ′)) ≥ 0. Then, by

Herglotz’s theoremin Complex Analysis:

g(ξ′) = i∫
2π

0

eiθ + ξ′

eiθ − ξ′
dβ(θ) + c,

where β(θ) is an increasing bounded function in [0,2π]and c is a real constant. Next,

the transformation ξ
′ = ξ−i

ξ+i , ξ = i1+ξ
′

1−ξ′ maps ∣ξ′ ∣ < 1 conformally onto Im(ξ) > 0, whilst the

transformation t = − cot( θ2),
t−i
t+i = eiθ, maps the unit circle onto the real axis. Now, taking

g(ξ′) = f(ξ), it follows that:

f(ξ) = g(ξ′)

= i∫
δ

0

eiθ + ξ′

eiθ − ξ′
dβ(θ) + i∫

2π

2π−δ

eiθ + ξ′

eiθ − ξ′
dβ(θ) + i∫

cot( δ
2
)

− cot( δ
2
)

1 + tξ
t − ξ

dν(t) + c,

where ν(t) = β(−2 cot−1 t), and δ > 0 is small enough. Letting δ → 0, we get:

f(ξ) = i
1 + ξ′

1 − ξ′
(β(0+) − β(0) + β(2π) − β(2π−)) + ∫

R

1 + tξ
t − ξ

dν(t) + c

= (β(0+) − β(0) + β(2π) − β(2π−))ξ + ∫
R

1 + tξ
t − ξ

dν(t) + c,

completing the proof.

(ii) Fix ξ0 ∈ Γα(0) = {ξ ∈ C+ ∶ 0 < cot−1α ≤ arg ξ ≤ π − cot−1α < π}, then for any

−∞ < t < +∞, we have sin(cot−1α) ≤ ∣ξ0−t∣∣t∣ , and consequently ∣ t2+1
(t−ξ)(t−ξ0) ∣ ≤ ∣ 1+t−2

sin2(cot−1 α) ∣ for all

ξ ∈ Γα(0). Now, for given ε > 0, there is T > 0 such that:

∣f(ξ) − f(ξ0)
ξ − ξ0

−A∣ = ∣∫
R

t2 + 1

(t − ξ)(t − ξ0)
dν(t)∣ ≤ ∫

∣t∣≤T
∣ t2 + 1

(t − ξ)(t − ξ0)
∣dν(t) + ε,
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and by Lebesgue convergence theorem it follows that ∣ limΓα(0)∋ξ→∞
f(ξ)−f(ξ0)

ξ−ξ0 − A∣ ≤ ε, and

consequently

lim
Γα(0)∋ξ→∞

f(ξ)
ξ

= lim
Γα(0)∋ξ→∞

(f(ξ)ξ )

(f(ξ)−f(ξ0)ξ−ξ0 )
(f(ξ) − f(ξ0)

ξ − ξ0

) = lim
Γα(0)∋ξ→∞

f(ξ) − f(ξ0)
ξ − ξ0

= A,

yielding the assertion.

Theorem 2.1.4. If G(ξ) is analytic in the upper half plane C+ and Im(G(ξ)) ≤ 0, and if in

addition limΓα(0)∋ξ→∞ ξ.G(ξ) = 1, then:

G(ξ) = ∫
R

dµ(t)
ξ − t

,

where in which µ(t) is a bounded increasing probability measure.

Proof. By Lemma 2.1.3,

−G(ξ) = Aξ + ∫
R

1 + tξ
t − ξ

dν(t) + c

where in which

A = lim
Γα(0)∋ξ→∞

−G(ξ)
ξ

= − lim
Γα(0)∋ξ→∞

ξ.G(ξ) lim
Γα(0)∋ξ→∞

1

ξ2
= 0.

We now have:

Re(iyG(iy)) = ∫
R

y2(1 + t2)
t2 + y2

dν(t) = ∫
R

1 + t2
1 + t2y−2

dν(t) (y > 0).

Since the left hand side tends to a finite limit as y → +∞, we see that there exists a constant

M > 0 such that for some y0 > 0:

∫
R

1 + t2
1 + t2y−2

dν(t) <M (y > y0 > 0).

Now, for fixed T > 0 we have:

∫
∣t∣<T

1 + t2
1 + t2y−2

dν(t) <M (y > y0 > 0).

Let y → +∞ to obtain

∫
∣t∣<T

1 + t2dν(t) <M (T > 0).
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and, hence, ∫R 1 + t2dν(t) < ∞ implying the existence of the integral ∫R t2dν(t) and conse-

quently existence of the integral ∫R tdν(t). Next, by defining the bounded increasing function

µ(t) = ∫
t

−∞(1 + s2)dν(s) we may write:

−G(ξ) = c − ∫
R
tdν(t) + ∫

R

dµ(t)
t − ξ

= c′ + ∫
R

dµ(t)
t − ξ

.

On the other hand:

ξ ∫
R

dµ(t)
t − ξ

= −∫
R
dµ(t) + ∫

R

tdµ(t)
t − ξ

,

and since in the area Γα(0) = {ξ ∈ C+ ∶ 0 < cot−1α ≤ arg ξ ≤ π − cot−1α < π}, we have

sin(cot−1α)−1 ≥ ∣t∣
∣t−ξ∣ , it is easily seen that:

lim
Γα(0)∋ξ→∞

ξ ∫
R

dµ(t)
t − ξ

= −∫
R
dµ(t).

From above results it follows that:

1 = lim
Γα(0)∋ξ→∞

ξ.G(ξ) = lim
Γα(0)∋ξ→∞

(−c′ξ − ξ ∫
R

dµ(t)
t − ξ

) = lim
Γα(0)∋ξ→∞

−c′ξ + ∫
R
dµ(t),

yielding c
′ = 0, and the desired result follows.

The Cauchy transform turns out to be important in the context of free probability theory.

The following notion is fundamental in non-commutative probability theory, [12, pp. 5-9].

Definition 2.1.5. A pair (A, τ) consisting of a unital ∗-algebra A and a linear functional

τ ∶ A→ C with τ(1) = 1, and τ(a∗a) ≥ 0 for all a ∈ A is called a non-commutative probability

space. Any element a ∈ A is called a non-commutative random variable.

Let (A, τ) be a non-commutative probability space in which A is a von-Neumann algebra,

and τ is a positive normal trace. For a self adjoint random variable a ∈ A we define the map

Ga ∶ C+ → C− via

Ga(ξ) =
∞
∑
m=0

τ(am)
ξm+1

= τ( 1

ξ − a
).

One can easily check that all conditions of the Theorem 2.1.4 hold, and hence there exists a

probability measure µa on R, called the distribution of a, such that:

Ga(ξ) = ∫
R

dµa(t)
ξ − t

.

The spectrum of a ∈ A denoted by σ(a) coincides with Supp(µa).
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2.2 The Continued Fraction Representation of The Cauchy

Transform

Definition 2.2.1. A sequence {ωn}∞n=1 is called a Jacobi sequence if either ωn > 0 (n ≥ 1) or

there exists a number m0 ≥ 1 such that ωn > 0 (1 ≤ n <m0) and ωn = 0 (n ≥m0).

Definition 2.2.2. A probability measure µ on R is said to have finite moment of order m ≥ 1

if ∫R ∣t∣mdµ(t) <∞, and in this case the mth moment of µ is defined by Mm = ∫R tmdµ(t).

We denote the set of all probability measures on R having finite moments of all orders by

Bfm(R). It is trivial that any compactly supported probability measure is in this set.

For a given sequence {Mm}∞m=0 (M0 = 1) of real numbers we define its associated sequence

{∆m}∞m=0 of Hankel determinants via

∆m = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M0 M1 ⋯ Mm

M1 M2 ⋯ Mm+1

⋯ ⋯ ⋯ ⋯

Mm Mm+1 ⋯ M2m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

m ≥ 0,

and we denote by M the set of all sequences {Mm}∞m=0 (M0 = 1) of the real numbers whose

associated sequence of Hankel determinants {∆m}∞m=0 are Jacobi sequences.

Classical Moment Problem: Given a sequence {Mm}∞m=0 (M0 = 1) of real numbers, find

its sufficient and necessary conditions so that {Mm}∞m=0 = {Mm(µ)}∞m=0 for some µ ∈ Bfm(R).

The following theorem of Hamburger gives a necessary and sufficient condition for the

solution of the classical moment problem [7]:

Theorem 2.2.3. The infinite sequence {Mm}∞m=0 (M0 = 1) of the real numbers is a moment

sequence of a certain µ ∈ Bfm(R) if and only if {Mm}∞m=0 ∈M.

9



Corollary 2.2.4. Let (A, τ) be a non-commutative probability space. Then, for any self-

adjoint random variable a ∈ A there is a probability measure µ ∈ Bfm(R) such that:

τ(am) = ∫
R
tmdµ(t) (m ≥ 1).

Proof. For m ≥ 0 we set Mm = τ(am). Consider the associated Hankel determinant ∆m (m ≥

0). Let m ≥ 1 be fixed and consider x = ∑m
i=0 cia

i where ci ∈ C (0 ≤ i ≤m). Then, x ∈ A, and

0 ≤ τ(x∗x) =
m

∑
i,j=0

cicjτ(ai+j) =
m

∑
i,j=0

cicjMi+j.

Since the above inequality holds for any choice of ci ∈ C (0 ≤ i ≤ m), it follows that the

matrix (Mi+j) ∈ Mm+1(C) is positive definite, so that ∆m ≥ 0. To prove that the sequence

{∆m}∞m=0 is a Jacobi sequence, assume that ∆m0 = 0 for some m0 ≥ 1. Then, there exists a

choice (c0, c1,⋯, cm0) ≠ (0,0,⋯,0) such that ∑m0
i,j=0 cicjMi+j = 0. Then, setting cm0+1 = 0, we

obtain ∑m0+1
i,j=0 cicjMi+j = ∑m0

i,j=0 cicjMi+j = 0. Now, since (c0, c1,⋯, cm0 ,0) ≠ (0,0,⋯,0) we have

∆m0+1 = 0, and accordingly ∆m = 0 (m ≥m0).

The probability measure mentioned in above Corollary is called the distribution of the

self adjoint random variable a ∈ A. Indeed, it coincides with the distribution µa introduced

in previous section.

Definition 2.2.5. A probability measure µ ∈ Bfm(R) is called the solution of the determinate

moment problem if µ is determined uniquely by its moment sequence {Mm(µ)}∞m=0.

In this context, we have the following Carleman’s moment test:

Theorem 2.2.6. Let the sequence {Mm}∞m=0 ∈M satisfy the condition

∞
∑
m=1

M
−1
2m

2m = +∞.

Then, there exists a unique µ ∈ Bfm(R) whose moment sequence is {Mm}∞m=0 ∈M.

Corollary 2.2.7. A compactly supported probability measure µ ∈ Bfm(R) is a solution of the

determinate moment problem.

Proof. Let Supp(µ) ⊆ [−b, b] for some b > 0. Then,

M
−1
2m

2m (µ) = (∫
b

−b
t2mdµ(t)) −1

2m ≥ b−1 (m ≥ 1),

implying ∑∞
m=1M

−1
2m

2m (µ) = +∞.
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Let µ ∈ Bfm(R) and consider the Hilbert space L2(R, µ), with the inner product:

⟨f, g⟩µ = ∫
R
f(t)g(t)dµ(t), f, g ∈ L2(R, µ).

We have:

Lemma 2.2.8. Let µ ∈ Bfm(R).

(i) If ∣Supp(µ)∣ =∞, then the monomials {tm}∞m=0 ⊆ L2(R, µ) are linearly independent.

(ii) If ∣Supp(µ)∣ = m0 < ∞, then the monomials {tm}m0−1
m=0 ⊆ L2(R, µ) are maximal linearly

independent subset of {tm}∞m=0.

Proof. (i) Suppose for some (c0, c1,⋯, cm) ≠ (0,0,⋯,0) (m ≥ 1) we have:

g(t) ∶=
m

∑
k=0

ckt
k = 0, for µ − a.e. t ∈ R.

Since R ∖ g−1(0) is an open subset of R, by definition we have:

Supp(µ) = R ∖ ∪{U ⊆ R ∶ U open, µ(U) = 0} ⊆ R ∖ (R ∖ g−1(0)) = g−1(0),

implying ∣Supp(µ)∣ ≤ ∣g−1(0)∣ ≤m, a contradiction.

(ii) Let Supp(µ) = {am}m0
m=1, and g(t) = 0 µ− a.e. t ∈ R. Since µ(R∖ g−1(0)) = 1, it follows

that for some polynomial h(t) we have:

g(t) = h(t)(t − a1)⋯(t − am0).

On the other hand, any nontrivial linear combination of {tm}m0−1
m=0 is of degree less than

m0, it is a non-zero function in L2(R, µ) showing that {tm}m0−1
m=0 is linearly independent in

L2(R, µ). For maximality, it is sufficient to prove that {tm}m0−1
m=0 ∪{tn} (n ≥m0) is not linearly

independent. To that end, we have:

tn = h1(t)(t − a1)⋯(t − am0) + f(t),

for some polynomials h1(t) and f(t) with deg(f) < m0. But, h1(t)(t − a1)⋯(t − am0) =

0 for µ − a.e. t ∈ R, implying f(t) = tn for µ − a.e. t ∈ R, and consequently, n < m0, a

contradiction.
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By applying the Gram-Schmidt orthogonalization procedure to the sequence of mono-

mials {tm}∞m=0 ⊆ L2(R, µ), if ∣Supp(µ)∣ = ∞, we obtain an infinite sequence of orthogonal

polynomials {pm(t)}∞m=0, whilst if ∣Supp(µ)∣ = m0 < ∞, the procedure terminates in m0

steps and we obtain a finite sequence of orthogonal polynomials {pm(t)}m0−1
m=0 , where in which

deg(pm(t)) = m (m ≥ 0), and ⟨pm, pn⟩µ = ∫R pm(t)pn(t)dµ(t) = δm,n (m,n ≥ 0). Since the

property of being orthogonal does not change by a constant factor, we adjust pm’s to be

monic polynomials, and, the sequence {pm(t)}∞m=0 obtained in this way is called the orthog-

onal polynomials associated with µ.

Using the idea of orthogonal polynomials, we are in the position to prove the existence

of the so-called Jacobi coefficients of the given probability measure µ ∈ Bfm(R), [7].

Theorem 2.2.9. Let {pm(t)}∞m=0 be the orthogonal polynomials associated with given µ ∈

Bfm(R). Then, there exists a pair of sequences {αm}∞m=1 ⊆ R and {ωm}∞m=1 ⊆ R+ uniquely

determined by:

p0(t) = 1,

p1(t) = t − α1, (2.1)

tpm(t) = pm+1(t) + αm+1pm(t) + ωmpm−1(t), m ≥ 1

where in which, if ∣Supp(µ)∣ = ∞, both {αm}∞m=1,{ωm}∞m=1 are infinite sequences, and if

∣Supp(µ)∣ =m0 <∞, we have {αm}∞m=1 = {αm}m0
m=1 and {ωm}∞m=1 = {ωm}m0−1

m=1 with pm0 = 0.

Proof. Suppose that ∣Supp(µ)∣ =∞. As seen above, the orthogonal polynomials {pm(t)}∞m=0

form an infinite sequence. By definition, p0(t) = 1, and since p1(t) = t − α1 and ⟨p1, p0⟩µ = 0,

we see that:

α1 = ∫
R
tdµ(t).

Let m ≥ 1, and consider tpm(t). Since it is a monic polynomial of degree m + 1, it will be a

unique linear combination of p0(t), p1(t),⋯, pm+1(t), say:

tpm(t) = pm+1(t) +
m

∑
j=0

cm,jpm(t).
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Now, we have:

cm,j⟨pj, pj⟩µ = ⟨pj, idpm⟩µ = ⟨idpj, pm⟩µ = 0 0 ≤ j ≤m − 2,

and by ⟨pj, pj⟩µ ≠ 0, it follows that cm,j = 0 (0 ≤ j ≤m − 2). Consequently:

tpm(t) = pm+1(t) + cm,mpm(t) + cm,m−1pm−1(t) m ≥ 1,

proving the first part of the assertion with αm+1 = cm,m and ωm = cm,m−1.

To prove the second part of the assertion, integrating Equation (2.1) with m = 1 yields:

ω1 = ∫
R
tp1(t)dµ(t) = ∫

R
(t − α1)p1(t)dµ(t) = ∫

R
p2

1(t)dµ(t) > 0.

Let m ≥ 2, then from Equation (2.1) we see that:

ωm⟨pm−1, pm−1⟩µ = ⟨pm−1, idpm⟩µ = ⟨idpm−1, pm⟩µ

= ⟨pm + αmpm−1 + ωm−1pm−2, pm⟩µ = ⟨pm, pm⟩µ,

giving ωm = ⟨pm,pm⟩µ
⟨pm−1,pm−1⟩µ > 0 (m ≥ 2), and, completing the proof for the case of ∣Supp(µ)∣ =∞.

The proof of the case ∣Supp(µ)∣ <∞ is a small modification of the above proof.

Definition 2.2.10. The pair of sequences ({ωm}∞m=1,{αm}∞m=1) determined in above theorem

is called the Jacobi coefficients of the probability measure µ ∈ Bfm(R).

To calculate the Jacobi coefficients we have the following:

Corollary 2.2.11. Let {pm(t)}∞m=0 be the orthogonal polynomials associated with given µ ∈

Bfm(R). Then, the Jacobi coefficients ({ωm}∞m=1,{αm}∞m=1) are calculated by:

ω1ω2⋯ωm = ∫
R
p2
m(t)dµ(t) m ≥ 1,

α1 = ∫
R
tdµ(t),

ω1⋯ωm−1αm = ∫
R
tp2
m−1(t)dµ(t) m ≥ 2.

Proof. Referring to the proof of the above theorem, we have:

ω1ω2⋯ωm =
m

∏
j=1

⟨pj, pj⟩µ
⟨pj−1, pj−1⟩µ

=
⟨pm, pm⟩µ
⟨p0, p0⟩µ

,
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and

ω1⋯ωm−1αm =
m

∏
j=1

ωj
αm
ωm

= ⟨pm, pm⟩µ
αm
ωm

= αm⟨pm−1, pm−1⟩µ

= ⟨αmpm−1, pm−1⟩µ = ⟨idpm−1, pm−1⟩µ.

One important application of the Jacobi coefficients of a given probability measure µ ∈

Bfm(R), is that it enables us to calculate its moment sequence. Before stating the related

result, we need some definitions:

Definition 2.2.12. Let S be a finite set. A partition ϑ of non-empty subsets ν of S is called

(i) a pair partition if ∣ν∣ = 2 for all ν ∈ ϑ, (ii) a pair partition with singletons if either ∣ν∣ = 2

or ∣ν∣ = 1 for all ν ∈ ϑ. Any element ν ∈ ϑ with ∣ν∣ = 1 is called a singleton.

Definition 2.2.13. Let ϑ be a pair partition with singletons of Sm = {1,⋯,m} (m ≥ 1), say

ϑ = {{s1},⋯,{sj1},{l1, r1},⋯,{lj2 , rj2}}

where we may assume without loss of generality that:

s1 < ⋯ < sj1 , l1 < ⋯ < lj2 , l1 < r1,⋯, lj2 < rj2 .

We call ϑ a non-crossing partition of Sm (m ≥ 1), if for any 1 ≤ i1, i2 ≤ j2:

[li1 , ri1] ⊆ [li2 , ri2] or [li2 , ri2] ⊆ [li1 , ri1] or [li1 , ri1] ∩ [li2 , ri2] = φ.

We denote PNCP (m) and PNCPS(m) as the set of non-crossing pair partitions of Sm (m ≥

1) and that of non-crossing pair partitions with singletons of Sm (m ≥ 1), respectively.

Definition 2.2.14. Let ϑ ∈ PNCPS(m). The depth of ν ∈ ϑ is defined by:

dϑ(ν) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∣{{a < b} ∈ ϑ ∶ a < s < b}∣ + 1 if ν = {s}

∣{{a < b} ∈ ϑ ∶ a < l < r < b}∣ + 1 if ν = {l < r}.

As an example, for S9 = {1,⋯,9} with ϑ = {{5},{1,2},{3,9},{4,8},{6,7}} we have

dϑ({1,2}) = 1 , dϑ({4,8}) = 2 and dϑ({5}) = 3.
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Remark 2.2.15. It is trivial that

max
ν∈ϑ

(dϑ(ν)) ≤ [m + 2

2
] (m ≥ 1).

The following theorem is referred as Accardi-Bożejko theorem, [7, pp. 29-34].

Theorem 2.2.16. Let µ ∈ Bfm(R), let {Mm}∞m=1 be its moment sequence with associated

Jacobi coefficients ({ωm}∞m=1,{αm}∞m=1). Then:

Mm = ∑
ϑ∈PNCPS(m)

( ∏
ν∈ϑ∶∣ν∣=1

α(dϑ(ν)) ∏
ν∈ϑ∶∣ν∣=2

ω(dϑ(ν))) m ≥ 1.

It worths mentioning that from Accardi-Bożejko theorem it follows that to calculate the

mth moment Mm we need at most the first [m+2
2 ] terms of Jacobi coefficients. We will use

this result in the proof of continued fraction representation of the Cauchy transform.

Definition 2.2.17. Let {am}∞m=1 and {bm}∞m=1 be two sequences of complex numbers. Ex-

pressions of the form:

CF ({am}nm=1,{bm}nm=1) = a1

b1 +
a2

b2 +
a3

b3+⋱ + an
bn

(n ≥ 1),

CF ({am}∞m=1,{bm}∞m=1) = a1

b1 +
a2

b2 +
a3

b3+⋱
are called the nth convergent of continued fraction, and the continued fraction, respectively.

To be more precise, for the map τk ∶ C ∪ {∞} → C ∪ {∞} (k ≥ 1) defined by τk(z) = ak
bk+z ,

we have:

CF ({am}nm=1,{bm}nm=1) = τ1 ○ τ2 ○ ⋯ ○ τn(0) (n ≥ 1)

and

CF ({am}∞m=1,{am}∞m=1) = lim
n→∞

τ1 ○ τ2 ○ ⋯ ○ τn(0).

Lemma 2.2.18. Let {am}∞m=1 and {bm}∞m=1 be two sequences of complex numbers. Define the

sequences {Am}∞m=1 and {Bm}∞m=1 respectively by the following recurrence relations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A−1 = 1, A0 = 0, An = bnAn−1 + anAn−2 n ≥ 1

B−1 = 0, B0 = 1, Bn = bnBn−1 + anBn−2 n ≥ 1.
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Then:

τ1 ○ τ2 ○ ⋯ ○ τn(z) =
An +An−1z

Bn +Bn−1z
(n ≥ 1), τ1 ○ τ2 ○ ⋯ ○ τn(0) =

An
Bn

(n ≥ 1).

Proof. Induct on n, and use τ1 ○ τ2 ○ ⋯τn ○ τn+1(z) = (τ1 ○ τ2 ○ ⋯ ○ τn)(τn+1(z)).

A simple application of above lemma yields the following:

Proposition 2.2.19. Let α1,⋯, αn ∈ R and ω1 > 0,⋯, ωn > 0 be constant numbers. Let

{pk(ξ)}∞k=1 and {qk(ξ)}∞k=1 be monic polynomials defined respectively by the following recur-

rence relations:

p0(ξ) = 1, p1(ξ) = ξ − α1, pk(ξ) = (ξ − αk)pk−1(ξ) − ωk−1pk−2(ξ)2 ≤ k ≤ n

(2.2)

q0(ξ) = 1, q1(ξ) = ξ − α2, qk(ξ) = (ξ − αk+1)qk−1(ξ) − ωkqk−2(ξ)2 ≤ k ≤ n − 1.

Then:
1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱ − ωk−1

ξ − αk

= qk−1(ξ)
pk(ξ)

1 ≤ k ≤ n.

Theorem 2.2.20. Let ({ω1,⋯, ωn−1},{α1,⋯, αn}) be Jacobi coefficients of finite type. Define

the polynomials p0(ξ), p1(ξ),⋯, pn(ξ) by recurrence relations (2.2) and the measure µ on R

by

µ = ∑
λ∶pn(λ)=0

∥f(λ)∥−2δλ ∶ ∥f(λ)∥−2 = (
n−1

∑
j=1

p2
j(λ)

ω1⋯ωj
)−1.

Then ∣Supp(µ)∣ = n, and {p0(ξ), p1(ξ),⋯, pn−1(ξ)} form the orthogonal polynomials associated

with µ. Moreover:

1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱ − ωn−1

ξ − αn

= ∫
R

dµ(t)
ξ − t

ξ ∈ C ∖ {λ ∶ pn(λ) = 0}.

Proof. (Sketch) Define the tridiagonal Jacobi matrix

T = (ω
1
2

k−1δk(l+1) + αkδkl + ω
1
2

k δ(k+1)l)n×n.
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It follows that every eigenvalue of T is simple, hence ∣σ(T )∣ = n, and furthermore:

⟨e1, (ξ − T )−1e1⟩`n2 = 1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱ − ωn−1

ξ − αn

(2.3)

[7, pp. 45-47], and consequently, by Proposition 2.2.19,

⟨e1, (ξ − T )−1e1⟩`n2 = qn−1(ξ)
pn(ξ)

, (2.4)

where pn(ξ) and qn−1(ξ) are the monic polynomials defined by the recurrence relations (2.2).

On the other hand, we have pn(ξ) = det(ξ −T ), and consequently, σ(T ) = {λ ∈ C ∶ pn(λ) = 0}.

Next, for any λ ∈ σ(T ), for its associated eigenvector f(λ) we have:

∥f(λ)∥2 = (
n−1

∑
j=1

p2
j(λ)

ω1⋯ωj
),

[7, pp. 48-49]. Now, define a measure µ on R by

µ = ∑
λ∈σ(T )

∥f(λ)∥−2δλ,

then, by considering the finite orthonormal basis { f(λ)
∥f(λ)∥ ∶ λ ∈ σ(T )}, the spectral decompo-

sition of T , and (2.4) it follows that the polynomials p0(ξ), p1(ξ),⋯, pn−1(ξ) defined by the

recurrence relations (2.2) are orthogonal with respect µ, and

⟨e1, (ξ − T )−1e1⟩`n2 = ∫
R

dµ(t)
ξ − t

, (2.5)

[7, p. 50]. Eventually, by (2.3) and (2.5) the desired result is proved.

We are interested in the continued fraction representation of the Cauchy transform Gµ(ξ).

For µ having a finite support, the result established in the previous theorem. For general

µ ∈ Bfm(R) we have:
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Theorem 2.2.21. Let µ ∈ Bfm(R) and ({ωn}∞n=1,{αn}∞n=1) be its Jacobi coefficients. If µ is

the solution of the determinate moment problem, then the Cauchy transform of it is expanded

into a continued fraction

Gµ(ξ) =
1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱

Im(ξ) ≠ 0.

Proof. The assertion for µ ∈ Bfm(R) having a finite support, or equivalently, for ({ωn}∞n=1,{αn}∞n=1)

being Jacobi coefficients of finite type, has already proved in the previous theorem. So, we

may assume that µ has an infinite support and its Jacobi coefficient ({ωn}∞n=1,{αn}∞n=1) is of

infinite type. For this, define polynomials p0(t), p1(t),⋯, pn(t),⋯ by the recurrence relations

(2.2). For each n ≥ 1, let µn be the unique probability measure whose Jacobi coefficient is

({ωm}n−1
m=1,{αm}nm=1). It then follows from the previous theorem that {p0(t), p1(t),⋯, pn−1(t)}

form the orthogonal polynomials associated with µn and:

1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱ − ωn−1

ξ − αn

= ∫
R

dµn(t)
ξ − t

Im(ξ) ≠ 0. (2.6)

Now, considering the mth moment of µn, it follows from Theorem 2.2.16 that for calcu-

lating Mm(µn) we need at most the first [m+2
2 ] terms of Jacobi coefficients of µn. Hence,

for a fixed m, the sequence Mm(µn) stays constant for all large n > [m+2
2 ]. Since the Jacobi

coefficient of µn is obtained by cutting off the Jacobi coefficient of µ, the constant coincides

with Mm(µ). Therefore, we have:

lim
n→∞

Mm(µn) =Mm(µ) (m ≥ 1).

Since µ is the solution of the determinate moment problem, it follows that that the

associated sequence of probability measures µn (n ≥ 1) will be weakly convergent to the

probability measure µ. Hence:

lim
n→∞∫R

dµn(t)
ξ − t

= ∫
R

dµ(t)
ξ − t

Im(ξ) ≠ 0. (2.7)
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On the other hand, using (2.6), we have:

lim
n→∞∫R

dµn(t)
ξ − t

= 1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱

Im(ξ) ≠ 0. (2.8)

The result now follows by (2.7) and (2.8).
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Chapter 3

The Operator-Valued Free Probability The-

ory

This chapter discusses the operator valued free central limit theorem and semicircular

distributions, as operator-valued analogues of the classical central limit theorem and normal

distributions. In section 1, the non-commutative operator-valued probability space, the free

families of operator-valued random variables and their distributions are discussed. Then,

using a Fock space construction, one special case of non-commutative operator-valued proba-

bility space, called the canonical probability space, is introduced in which any distribution of

any random variable of the given non-commutative operator valued probability space can be

identified as a distribution of an element of that canonical probability space. Next, the con-

cept of R−transform is introduced and by investigating its linearization properties in the free

context, we gain enough tools to study the operator-valued semicircular random variables and

the operator-valued free central limit theorem. In section 2, the notion of complete positivity

of a unital linear map of a given ∗-algebra into one of its unital sub∗-algebras is introduced

and in case of unital sub-C∗algebras, some general properties of a completely positive map

are studied in a series of lemmas. Then, it is proved that complete positivity is a necessary

and sufficient condition for a given unital linear map of that unital sub-C∗algebra into iteself,

to be identified as the variance of an operator-valued semicircular random variable.
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3.1 Voiculescu’s Operator-Valued Free Central Limit

Theorem

Definition 3.1.1. Let A be a unital ∗-algebra. Let B denote a fixed unital ∗-subalgebra

of A over C. A linear map EB ∶ A → B is called a conditional expectation if it satisfies the

following conditions:

(i) EB(b1ab2) = b1EB(a)b2 for all a ∈ A, b1, b2 ∈ B, and EB(1) = 1,

(ii) EB(a∗a) ≥ 0, for all a ∈ A,

It is noteworthy that the condition EB(1) = 1 is equivalent to being a projection onto B.

Example 3.1.2. Let A ⊆ B(H) be a finite von Neumann algebra and τ ∶ A→ C be a faithful

normal trace, that is, a bounded linear functional such that τ(ab) = τ(ba) for all a, b ∈ A,

τ(a∗a) = 0 if and only if a = 0, and for any net {ai} of self-adjoint elements of A with ai ↗ a

we have τ(ai) ↗ τ(a). By considering the inner product ⟨a, b⟩ = τ(ab∗) for all a, b ∈ A on A,

we denote the completion of A with respect to the norm ∥a∥2 = τ(a∗a) 1
2 , for all a ∈ A, by

L2(A, τ), [11, pp. 37-42].

(1) If B is separable in the ∥.∥2 norm containing the sequence (bn)∞n=1 as the orthonormal

basis of L2(B, τ), then:

EB(x) =
∞
∑
n=1

⟨x, bn⟩bn =
∞
∑
n=1

τ(xb∗n)bn x ∈ A.

(2) IfB be a finite dimensional abelian subalgebra ofA with minimal projections fj(1 ≤ j ≤ n),

then:

EB(x) =
n

∑
j=1

τ(fj)−1τ(xfj)fj x ∈ A,

(In fact, EB(x) = ∑n
j=1 λjfj. To find λj, we have

τ(xfj) = ⟨x, fj⟩ = ⟨EB(x), fj⟩ = ⟨
n

∑
j=1

λjfj, fj⟩ = λjτ(fj)
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for all 1 ≤ j ≤ n.).

(3) If B =Mn(C) for some n ≥ 1, and τ((aij)) = ∑
n
i=1 aii
n , then:

EB(x) =
n

∑
i=1

n

∑
j=1

nτ(Ejix)Eij,

where Eij = (δ(i,j)(k,l)) for all 1 ≤ i, j ≤ n (in fact, let EB(x) = ∑n
i=1∑n

j=1αij(x)Eij, then using

τ(aEB(b)) = τ(EB(a)EB(b)) = τ(EB(a)b) for all a, b ∈ A

we have:

τ(Eijx) = τ(EB(Eij)x) = τ(EijEB(x)) = τ(Eij
n

∑
k=1

n

∑
l=1

αkl(x)Ekl)

=
n

∑
k=1

n

∑
l=1

αkl(x)τ(EijEkl) =
n

∑
l=1

αjl(x)τ(EijEjl) =
n

∑
l=1

αjl(x)τ(Eil)

= αji(x)τ(Eii) = αji(x)
1

n
.).

Definition 3.1.3. A triple (A,EB,B) as in Definition 3.1.1 is called a B− valued non-

commutative probability space. An element a ∈ A is called a B− valued random variable.

Throughout this chapter we assume that (A,EB,B) is a given fixed B− valued non-

commutative probability space.

Definition 3.1.4. Let (A,EB,B) be as in Definition 3.1.3, and B ⊆ Ai ⊆ A(i ∈ I) be

subalgebras. The family {Ai}i∈I is called free if

EB(ai1ai2⋯ain) = 0 i1 ≠ i2 ≠ ⋯ ≠ in, aij ∈ Aij ,EB(aij) = 0, (1 ≤ j ≤ n)

We call the family {Xi}i∈I of subsets of A (elements {ai}i∈I of A) free if the corresponding

family of subalgebras {⟨Xi ∪B⟩}i∈I ({⟨{ai} ∪B⟩}i∈I) is free.

Proposition 3.1.5. Let (A,EB,B) be as in Definition 3.1.3, and B ⊆ Ai ⊆ A(i ∈ I) be

subalgebras such that the family {Ai}i∈I is free and A is generated by ∪i∈IAi. Then EB is

completely determined by the EB ∣Ai(i ∈ I).

Proof. Let a ∈ A. Then, by hypothesis a = ∑m∶finiteαmami1⋯amin implying

EB(a) = ∑m∶finiteαmEB(ami1⋯amin). So, it is sufficient to prove that we can computeEB(ai1⋯ain)’s

whenever aij ∈ Aij(1 ≤ j ≤ n). Define:

k = min{s ∈ N0∣EB(aij) = 0 s + 1 ≤ j and is+1 ≠ is+2 ≠ ⋯ ≠ in}.
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We prove the assertion by applying strong induction on k. If k = 0, then by definition of

freeness EB(ai1⋯ain) = 0. Assume our assertion has been established up to certain k. Then,

for k + 1 write:

EB(ai1⋯ain) = EB(ai1⋯aik(EB ∣Aik+1(aik+1))aik+2⋯ain)

+ EB(ai1⋯aik(aik+1 −EB ∣Aik+1(aik+1))aik+2⋯ain)

if ik ≠ ik+1, and

EB(ai1⋯ain) = EB(ai1⋯aik−1(EB ∣Aik (aikaik+1))aik+2⋯ain)

+ EB(ai1⋯aik−1(aikaik+1 −EB ∣Aik (aikaik+1))aik+2⋯ain)

if ik = ik+1, so that the induction hypothesis applies.

Definition 3.1.6. Let B⟨X⟩ = ⟨{b1Xb2X⋯bn−1Xbn∣n ∈ N, bj ∈ B,1 ≤ j ≤ n} ∪ {1B}⟩ be

the algebra freely generated by B and an indeterminate X, (A,EB,B) be as in Definition

3.1.3, a ∈ A be a B− valued random variable, and τa ∶ B⟨X⟩ → A be the unique algebra

homomorphism such that τa(b) = b (b ∈ B) and τa(X) = a. Then, the conditional expectation:

µa ∶ B⟨X⟩→ B

µa(P (X)) = EB ○ τa(P (X))

is called the distribution of a. Next, quantities such as:

µa(1Xb1⋯XbnX1) = EB(ab1⋯abna)

are called moments. The zeroth moment m0 is by definition EB(1) = 1, the first moment m1

is EB(a), the second moment is the linear map b → EB(aba), and in general the (n + 1)th

moment is the n−linear map (b1,⋯, bn)→ EB(ab1⋯abna). Thus, we can view the distribution

of a ∈ A as the set of multilinear maps {mn ∶ Bn → B∣mn(b1,⋯, bn) = EB(ab1⋯abna)}∞n=0 with

the above conventions for n = 0,1.

Finally, we define:

ΣB = {µ∣µ ∶ B⟨X⟩→ B conditional expectation}.

23



As an example, for a = 0 we have that µ0 = XB.PB, where PB denotes the projection onto

B.

Definition 3.1.7. Let Sn(n ≥ 1) denote the symmetric group and put:

S0 = 1

S1(b) = b (b ∈ B)

Sn(b1,⋯, bn) = ∑
σ∈Sn

bσ(1)X⋯bσ(n−1)Xbσ(n). (bi ∈ B,n ≥ 2)

We define

SB⟨X⟩ = lin{Sn(b,⋯, b)∣b ∈ B}∞n=0.

Lemma 3.1.8. SB⟨X⟩ = lin{Sn(b1,⋯, bn)∣bi ∈ B,0 ≤ i ≤ n}∞n=0.

Proof. It is clear that SB⟨X⟩ ⊆ lin{Sn(b1,⋯, bn)∣bi ∈ B,0 ≤ i ≤ n}∞n=0. To prove the opposite

inclusion, for bi ∈ B and 1 ≤ i ≤ n we have:

Sn((bi)ni=1) = Sn((
n

∑
k=1

bk)ni=1)

− ∑
An−1⊆{bk}nk=1∶∣An−1∣=n−1

Sn(( ∑
bk∈An−1

bk)ni=1)

+ ⋯

+ (−1)s ∑
An−s⊆{bk}nk=1∶∣An−s∣=n−s

Sn(( ∑
bk∈An−s

bk)ni=1)

+ ⋯

+ (−1)n−2 ∑
A2⊆{bk}nk=1∶∣A2∣=2

Sn(( ∑
bk∈A2

bk)ni=1)

+ (−1)n−1 ∑
A2⊆{bk}nk=1∶∣A1∣=1

Sn(( ∑
bk∈A1

bk)ni=1).

We note that the number of summands on the left hand side is n! whilst on the right hand side

is ∑n−1
s=0 (

n

n − s
)(n−s)n(−1)s. It is known these two numbers are equal. Thus, Sn(b1, . . . , bn) ∈

SB⟨X⟩ and hence the desired inclusion is established.

Lemma 3.1.9. Let S̃B⟨X⟩ = CX +X(SB⟨X⟩)X. Then:

B(SB⟨X⟩)B = B +B(S̃B⟨X⟩)B.
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Proof. We have:

BSn(b,⋯, b)B = B(∑
σ∈Sn

bX⋯bXb)B = (Bb)X(∑
σ∈Sn

bX⋯bXb)X(bB)

∈ B +B(X(SB⟨X⟩)X)B ⊆ B +B(S̃B⟨X⟩)B,

implying B(SB⟨X⟩)B ⊆ B +B(S̃B⟨X⟩)B. To prove the other inclusion, by considering:

(n − k)(n − k − 1)XSn−2(b1,⋯, bk,1,⋯,1)X =

Sn(b1,⋯, bk,1,⋯,1)

− (n − k)kbXSn−2(b1,⋯, bk−1,1,⋯,1)X

− (n − k)kXSn−2(b1,⋯, bk−1,1,⋯,1)Xb

− k(k − 1)bXSn−2(b1,⋯, bk−2,1,⋯,1)Xb,

for n ≥ k + 1, n ≥ 3, and b1 = ⋯ = bk = b, and

n(n − 1)XSn−2(1,⋯,1)X = Sn(1,⋯,1) n ≥ 3,

and strong induction for 1 ≤ k ≤ n − 2, n ≥ 3 we have:

XSn−2(b1,⋯, bk,1,⋯,1)X ∈ B(SB⟨X⟩)B b1 = ⋯ = bk = b.

But, we have X = 1
2S2(1,1) ∈ B(SB⟨X⟩)B, hence B(SB⟨X⟩)B ⊇ B +B(S̃B⟨X⟩)B.

Corollary 3.1.10. For any µ ∈ ΣB, µ∣SB⟨X⟩ is completely determined by µ∣S̃B⟨X⟩ and con-

versely.

Definition 3.1.11. We define SΣB = {Sµ∣Sµ = µ∣B(SB⟨X⟩)B, µ ∈ ΣB}. Let a ∈ A be a ran-

dom variable. Then, Sµa is called the symmetric distribution of a, and µa(S(b1,⋯, bn)) or

µa(XS(b1,⋯, bn)X) are called symmetric moments of a.

Definition 3.1.12. Let a1, a2 ∈ A be two B− valued random variables. Then, it follows

by Proposition 3.1.5, that µa1+a2 and µa1a2 depend only on µa1 and µa2 . Thus, there are

well defined binary operations ⊞ and ⊠ on ΣB (called free additive convolution and free

multiplicative convolution, respectively), such that:

µa1+a2 = µa1 ⊞ µa2 µa1a2 = µa1 ⊠ µa2 .
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It is noteworthy that for a1 = a and a2 = 0, we have that µa = µa ⊞ µ0.

Now, we construct one special operator-valued non-commutative probability space called

the canonical probability space. Looking at B as a right B-module, let Xn(B) = L(B⊗n,B)

be the set of all n− linear B− valued maps of Bn into B (the ⊗ and linearity are over C)

and X0(B) = B. Let further, X (B) = ⊕n≥0Xn(B) ⊆ ∏n≥0Xn(B) = X (B) with its natural B−

module structure and obvious grading. Fix ξ ∈ Xn(B) and define the endomorphism:

λ(ξ) ∶ X (B)→ X (B)

by λ(ξ)(η)(b1 ⊗ ⋯ ⊗ bn+k) = η(bn+1ξ(b1 ⊗ ⋯ ⊗ bn) ⊗ bn+2 ⊗ ⋯ ⊗ bn+k) if deg(η) = k > 0 and

λ(ξ)(η) = ξη if deg(η) = k = 0 (η ∈ B). Next, fix b ∈ B and define:

λ∗(b) ∶ X (B)→ X (B)

via λ∗(b)(η)(b1⊗⋯⊗ bk−1) = η(b⊗ b1⊗⋯⊗ bk−1)if deg(η) = k > 0 and λ∗(b)(η) = 0 if deg(η) =

k = 0(η ∈ B).

Definition 3.1.13. We define A(B) as the generated algebra of endomorphisms λ(ξ), λ∗(b)

of the right B−module X (B), that is:

A(B) = ⟨{λ(ξ)∣ξ ∈ Xn(B), n ≥ 0} ∪ {λ∗(b)∣b ∈ B}⟩.

Lemma 3.1.14.

(i) λ(ξ1)λ(ξ2) = λ(λ(ξ1)ξ2)

(ii) λ∗(b)λ(ξ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ(λ∗(b)ξ) if deg(ξ) > 0

λ∗(bξ) if deg(ξ) = 0.

Proof. (i) Let deg(ξi) = ni, (i = 1,2) and deg(η) = k > 0. Then:

λ(ξ1)λ(ξ2)η(b1 ⊗⋯⊗ bn1+n2+k) = λ(ξ2)η(bn1+1ξ1(b1 ⊗⋯⊗ bn1)⊗ bn1+2 ⊗⋯⊗ bn1+n2+k)

= η(bn1+n2+1ξ2(bn1+1ξ1(b1 ⊗⋯⊗ bn1)⊗ bn1+2 ⊗⋯⊗ bn1+n2)

⊗bn1+n2+2 ⊗⋯⊗ bn1+n2+k)

= η(bn1+n2+1λ(ξ1)ξ2(b1 ⊗⋯⊗ bn1+n2)

⊗bn1+n2+2 ⊗⋯⊗ bn1+n2+k)

= λ(λ(ξ1)ξ2)η(b1 ⊗⋯⊗ bn1+n2+k).
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(ii) Let deg(ξ) = n, and deg(η) = k > 0. Then:

λ∗(b)λ(ξ)η(b1 ⊗⋯⊗ bn+k−1) = λ(ξ)η(b⊗ b1 ⊗⋯⊗ bn+k−1)

= η(bnξ(b⊗ b1 ⊗⋯⊗ bn−1)⊗ bn+1 ⊗⋯⊗ bn+k−1)

= η(bnλ∗(b)ξ(b1 ⊗⋯⊗ bn−1)⊗ bn+1 ⊗⋯⊗ bn+k−1)

= (λ(λ∗(b)ξ)η)(b1 ⊗⋯⊗ bn+k−1).

Next, let deg(ξ) = 0 and deg(η) = k > 0. Then:

λ∗(b)λ(ξ)η(b1 ⊗⋯⊗ bk−1) = λ(ξ)η(b⊗ b1 ⊗⋯⊗ bk−1)

= η(bξ ⊗ b1 ⊗⋯⊗ bk−1)

= λ∗(bξ)η(b1 ⊗⋯⊗ bk−1),

completing the proof.

Lemma 3.1.15. The linear map γ ∶ (⊕n≥0Xn(B))⊗ (⊕k≥0B⊗k)→ A(B) given by

γ( ∑
finite:(i,j)

ξi,j ⊗ (bi1,j ⊗⋯⊗ biki,j)) = ∑
finite:(i,j)

λ(ξi,j)λ∗(bi1,j)⋯λ∗(biki,j)

is a bijection.

Proof. Since γ(ξ ⊗ 1) = λ(ξ), where 1 ∈ B⊗0 = C, and λ∗(b) = λ(1)λ∗(b) = γ(1⊗ b), it follows

that Range(γ) contains all λ(ξ)′s and all λ∗(b)′s. Next, by Lemma 3.1.14 we have that :

γ(ξ ⊗ (b1 ⊗⋯⊗ bk))γ(ξ
′ ⊗ (b′1 ⊗⋯⊗ b′

k′
)) = λ(ξ)(

k

∏
i=1

λ∗(bi))λ(ξ
′)(

k
′

∏
i=1

λ∗(b′i))

= λ(ξ)λ(
k

∏
i=1

λ∗(bi)ξ
′)

k
′

∏
i=1

λ∗(b′i)

= λ(λ(ξ)
k

∏
i=1

λ∗(bi)ξ
′)

k
′

∏
i=1

λ∗(b′i)

= γ((λ(ξ)
k

∏
i=1

λ∗(bi)ξ
′)⊗ (b′1 ⊗⋯⊗ b′

k′
)),

implying that Range(γ) is an algebra and so that γ is onto.

For injectivity, we prove that if α ≠ 0, then γ(α) ≠ 0. Let

α = ∑
k0≤k≤k1

∑
i∈Ik

ξi,k ⊗ νi,k ≠ 0,
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where ξi,k ∈ ⊕n≥0Xn(B) and νi,k ∈ B⊗k for i ∈ Ik. Since, α ≠ 0, we may assume the ν′i,ks are

linearly independent and the ξ′i,ks are non-zero. Then, fixing i0 ∈ Ik0 there is η ∈ Xk0(B) such

that η(νi0,k0) = 1 ∈ B and η(νi,k0) = 0, i ∈ Ik0 − {i0}. Let η
′ ∈ Xk0(B) be defined by:

η
′ ∶ B⊗k0 → B

η
′(b1 ⊗⋯⊗ bk0) = η(bk0 ⊗⋯⊗ b1).

Then, we have that:

γ(α)η′ = γ( ∑
k0≤k≤k1

∑
i∈Ik0

ξi,k0 ⊗ νi,k0)η
′ = ∑

i∈Ik0

λ(ξi,k0)η(νi,k0) = λ(ξi0,k0)1 = ξi0,k0 ≠ 0,

implying γ(α) ≠ 0.

Lemma 3.1.16. Let B = X0(B) be identified with the subalgebra of A(B) via λ ∶ X0(B) →

A(B). Then, the linear map:

εB ∶ A(B)→ B

εB( ∑
finite

γ(ξni ⊗ νki)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if mini(ni + ki) > 0,

∑i∶ni+νi=0 ξniνni if mini(ni + ki) = 0,

where ξni ∈ Xni(B) and νki ∈ B⊗ki , is a conditional expectation.

Proof. According to [14] we need only to check condition (i) of Definition 3.1.1. Let a ∈ A(B).

Then, by Lemma 3.1.15, and a linearity argument, it is sufficient to consider a = γ(ξn ⊗ νk).

Let b
′

1, b
′

2 ∈ B, νk = (b1⊗⋯⊗bk) and denote λ∗(νk) = λ∗(b1)⋯λ∗(bk). Then, we have two cases:

Case(i): n + k > 0 ∶

εB(λ(b
′

1)γ(ξn ⊗ νk)λ(b
′

2)) = εB(λ(b
′

1)λ(ξn)λ∗(νk)λ(b
′

2))

= εB(λ(λ(b
′

1)ξn)λ∗(νkb
′

2))

= εB(γ(λ(b
′

1)ξn ⊗ νkb
′

2))

= 0 = b′1εB(γ(ξn ⊗ νk))b
′

2.
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Case(ii): n + k = 0 ∶

εB(λ(b1)γ(ξ0 ⊗ ν0)λ(b2)) = εB(λ(b
′

1)λ(ξ0ν0)λ(b
′

2))

= εB(λ(b
′

1ξ0ν0b
′

2))

= b
′

1ξ0ν0b
′

2

= b
′

1εB(γ(ξ0 ⊗ ν0))b
′

2.

Finally, for any b ∈ B,

εB(λ(b)) = εB(γ(b⊗ 1)) = b.1 = b.

Let A(B) ⊇ A(B) be the algebra acting on X (B) such that the map:

γ ∶ X (B)⊗ (⊕k≥0B
⊗k)→ A(B)

which naturally extends

γ ∶ X (B)⊗ (⊕k≥0B
⊗k)→ A(B)

via

γ((ξn)n≥0 ⊗ (b1 ⊗⋯⊗ bk)) = ∑
n≥0

γ(ξn ⊗ (b1 ⊗⋯⊗ bk))

= ∑
n≥0

λ(ξn)λ∗(b1)⋯λ∗(bk),

is a bijection and the multiplication of the formal sums which constitutes A(B) is also

determined by Lemma 3.1.14. Next, let (.)0 denote the component of degree zero and 1 ∈

B = X0(B) ⊆ X (B). Then:

εB ∶ A(B)→ B

εB(T ) = (T1)0

is the extension of εB ∶ A(B)→ B.

Let B = B1 ⊕ B2,X (Bj) = ∏n≥0Xn(Bj), ij ∶ Bj → B(i1(b1) = b1 ⊕ 0, i2(b2) = 0 ⊕ b2), prj ∶

B → Bj(prj(b1 ⊕ b2) = bj) for (j = 1,2). Define the injections:

Xj ∶ X (Bj)⊗ (⊕k≥0B
⊗k
j )→ X (B)⊗ (⊕k≥0B

⊗k)

Xj((ξn)n≥0 ⊗ νk) = (ξn ○ pr⊗nj )n≥0 ⊗ (i⊗kj (νk))
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where for ξn ∶∏n
i=1Bj → B and pr⊗nj ∶ B⊗n → B⊗n

j we have that ξn○pr⊗nj ∶ B⊗n → B for j = 1,2,

and ξ0 ○ pr⊗0
j = ξ0.

Lemma 3.1.17. The maps:

hj ∶ A(Bj)→ A(B)

hj ○ γ = γ ○Xj (j = 1,2)

are homomorphisms, hj(λ(b)) = λ(b) for b ∈ B = X0(Bj) = X0(B) and εB ○hj = εBj (j = 1,2).

Proof. Fix j = 1,2, and let Ti ∈ A(Bj) (i = 1,2). Since γ is bijection, there are unique

Ui ∈ X (Bj)⊗ (⊕k≥0B
⊗k
j ) with γ(Ui) = Ti (i = 1,2). Then, by Lemma 3.1.14:

hj(T1T2) = hj(γ(U1)γ(U2))

= hj(γ((ξn)n≥0 ⊗ (b1 ⊗⋯⊗ bk))γ((ξ
′

m)m≥0 ⊗ (b′1 ⊗⋯⊗ b′
k′
)))

= hj(∑
n≥0

∑
m≥0

γ(ξn ⊗ (b1 ⊗⋯⊗ bk))γ(ξ
′

m ⊗ (b′1 ⊗⋯⊗ b′
k′
)))

= ∑
n≥0

∑
m≥0

hj(γ(ξn ⊗ (b1 ⊗⋯⊗ bk))γ(ξ
′

m ⊗ (b′1 ⊗⋯⊗ b′
k′
)))

= ∑
n≥0

∑
m≥0

hj ○ γ((λ(ξn)λ∗(b1)⋯λ∗(bk)ξ
′

m)⊗ (b′1 ⊗⋯⊗ b′
k′
))

= ∑
n≥0

∑
m≥0

γ ○Xj((λ(ξn)λ∗(b1)⋯λ∗(bk)ξ
′

m)⊗ (b′1 ⊗⋯⊗ b′
k′
))

= ∑
n≥0

∑
m≥0

γ((λ(ξn)λ∗(b1)⋯λ∗(bk)ξ
′

mpr
⊗deg(ξn)+deg(ξ

′

m)−k
j )⊗ i⊗k

′

j (b′1 ⊗⋯⊗ b′
k′
))

= ∑
n≥0

γ((ξn ⊗ prdeg(ξn)j )⊗ (i⊗kj (b1 ⊗⋯⊗ bk))) ∑
m≥0

γ((ξ′m ⊗ prdeg(ξ
′

m)
j )⊗ (i⊗k

′

j (b′1 ⊗⋯⊗ b′
k′
)))

= ∑
n≥0

γ ○Xj(ξn ⊗ (b1 ⊗⋯⊗ bk)) ∑
m≥0

γ ○Xj(ξ
′

m ⊗ (b′1 ⊗⋯⊗ b′
k′
)))

= ∑
n≥0

hj ○ γ(ξn ⊗ (b1 ⊗⋯⊗ bk)) ∑
m≥0

hj ○ γ(ξ
′

m ⊗ (b′1 ⊗⋯⊗ b′
k′
)))

= hj(∑
n≥0

γ(ξn ⊗ (b1 ⊗⋯⊗ bk)))hj(∑
m≥0

γ(ξ′m ⊗ (b′1 ⊗⋯⊗ b′
k′
)))

= hj(γ((ξn)n≥0 ⊗ (b1 ⊗⋯⊗ bk))hj(γ((ξm)n≥0 ⊗ (b1 ⊗⋯⊗ bk))

= hj(γ(U1))hj(γ(U2))

= hj(T1)hj(T2)

and extend by linearity to finite summations.
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Next, fix j = 1,2 and let b ∈ B = X0(Bj) = X0(B). Then, for λ(b) = γ(ξ ⊗ 1) ∈ A(B) we

have that:

hj(λ(b)) = hj(γ(ξ ⊗ 1)) = hj ○ γ(ξ ⊗ 1)

= γ ○Xj(ξ ⊗ 1) = γ(ξ ⊗ 1) = λ(b).

For the last part, fix j = 1,2 and let ξ0 ∈ X0(B) = X (Bj) = B and ν0 ∈ B⊗0 = B⊗0
j = C. Then,

by γ(ξ0 ⊗ ν0) = γ(ξ0 ⊗ ν0) = ξ0ν0 ∈ B and Xj(ξ0 ⊗ ν0) = (ξ0 ⊗ pr⊗0
j )⊗ (i⊗0

j ν0) = ξ0 ⊗ ν0 it follows

that:

εB ○ hj(γ(ξ0 ⊗ ν0)) = εB(hj ○ γ(ξ0 ⊗ ν0)) = εB(γ ○Xj(ξ0 ⊗ ν0))

= εB(γ(ξ0 ⊗ ν0)) = γ(ξ0 ⊗ ν0) = ξ0ν0 = εBj(γ(ξ0 ⊗ ν0)).

Finally, by bijectivity of γ, injectivity of Xj and the equation hj ○γ = γ ○Xj it follows that hj

is injective and since Xj preserves the degree it follows that hj preserves the degree, as well.

Hence, ker(εBj) = ker(εB ○ hj) implying εBj = εB ○ hj.

Now, considering the canonical operator-valued noncommutative probability space (A(B), εB,B),

we have:

Proposition 3.1.18. If B = B1⊕B2 then with h1, h2 defined as above, the pair of subalgebras

(hj(A(B)))2
j=1 is B−free in (A(B), εB,B).

Proof. We write:

X (B) = ∏
n≥0

Xn(B)

= B ⊕∏
n≥1

L((B1 ⊕B2)⊗B⊗n−1,B)

= B ⊕∏
n≥1

L(B1 ⊗B⊗n−1,B)⊕∏
n≥1

L(B2 ⊗B⊗n−1,B)

where L(Bj ⊗B⊗n−1,B)is identified as a subspace of L(B⊗n,B) via: ηn → ηn ○ (prj ⊗ id⊗n−1
B ).

Next, put Γj =∏n≥1L((Bj)⊗B⊗n−1,B) (j = 1,2).

We claim that T ∈ h1(A(B1))(T ∈ h2(A(B2))) and εB(T ) = 0 it follows T (Γ2 ⊕ B) ⊆

Γ1(T (Γ1 ⊕B) ⊆ Γ2).
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Indeed, let T ∈ h1(A(B1)) such that εB(T ) = 0. It is trivial that T (B) ⊆ Γ1, hence it re-

mains to show that T (Γ2) ⊆ Γ1. By assumption, T has the form of T = ∑n≥0 λ(ξn)λ∗(bn1)⋯λ∗(bnkn)

where ξn ∈ Xdegξn(B1) and bnj ∈ B1 for 1 ≤ j ≤ kn. Passing to monomial, it is sufficient to

prove the case for T = λ(ξ)λ∗(b1)⋯λ∗(bk) where ξ ∈ Xdegξ(B1) and bi ∈ B1 for all 1 ≤ i ≤ k.

Let η = (ηn)n≥1 ∈ Γ2 where ηn ∈ L(B2 ⊗Bdegηn−1,B) ⊆ L(Bdegηn ,B) = Xdegηn(B), then:

Tη = (λ(ξ)λ∗(b1)⋯λ∗(bk)ηn)n≥1.

Now we have several cases:

Case(i): If degηn − k < 0 then, λ(ξ)λ∗(b1)⋯λ∗(bk)ηn = 0 and hence

λ(ξ)λ∗(b1)⋯λ∗(bk)ηn = 0 ∈ L(B1 ⊗B⊗n−1,B).

Case(ii): If degηn − k = 0 then, λ(ξ)λ∗(b1)⋯λ∗(bk)ηn = η00 ∈ B and hence

λ(ξ)λ∗(b1)⋯λ∗(bk)ηn = ξη00 ∈ Xdegξ(B1) ⊆ L(B1 ⊗B⊗degξ−1,B).

Case(iii): If degηn − k > 0 then,

λ(ξ)λ∗(b1)⋯λ∗(bk)ηn(b
′

1 ⊗⋯⊗ b′degξ+degηn−k) = λ∗(b1)⋯λ∗(bk)ηn(b
′

degξ+1ξ(b
′

1 ⊗⋯⊗ b′degξ)

⊗b′degξ+2 ⊗⋯⊗ b′degξ+degηn−k)

= ηn(bk ⊗⋯⊗ b1 ⊗ b
′

degξ+1ξ(b
′

1 ⊗⋯⊗ b′degξ)

⊗b′degξ+2 ⊗⋯⊗ b′degξ+degηn−k),

so that λ(ξ)λ∗(b1)⋯λ∗(bk)ηn ∈ L(B1 ⊗Bdegξ+degηn−k−1,B), implying Tη ∈ Γ1.

Next, let Tj ∈ h1(A(B1))and Sj ∈ h2(A(B2)) and εB(Tj) = εB(Sj) = 0 (1 ≤ j ≤ n). Then:

T11 ∈ Γ1, S1T11 ∈ Γ2, T2S1T11 ∈ Γ1, S2T2S1T11 ∈ Γ2,⋯, SnTn⋯S1T11 ∈ Γ2,

so that εB(SnTn⋯S1T1) = 0.

We should mention that similar to the above procedure, if we replace B with the right

B-module M = Bm (m ≥ 1), we can construct the associated canonical operator-valued

noncommutative probability space (A(M), εM ,B).
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Definition 3.1.19. Elements of A(B1) of the form

a = λ∗(1) +∑
n≥0

λ(ξn) ξn ∈ Xn(B1)

are called canonical.

Proposition 3.1.20. Given a distribution µ ∈ ΣB, there is a unique canonical element

a = λ∗(1) +∑
n≥0

λ(ξn) ξn ∈ Xn(B1)

such that µ = µa. Here, ξn’s are denoted by ξn = Rn+1(µ) (n ≥ 0).

Proof. Since we want µ = µa, it follows that µ(X) = µa(X) = εB1(a) = ξ0, and consequently,

we define ξ0 = µ(X). Let P (X) = (∏n
i=1Xbi)X ∈ B⟨X⟩. Then:

µ(P (X)) = µa(P (X))

= εB1((
n

∏
i=1

aλ(bi))a)

= εB1((
n

∏
i=1

(λ∗(1) + ∑
m≥0

λ(ξm))λ(bi))(λ∗(1) + ∑
m≥0

λ(ξm)))

= εB1((
n

∏
i=1

λ∗(1)λ(bi))λ(ξn)) +En(ξ0,⋯, ξn−1)(b1 ⊗⋯⊗ bn)

= εB1((
n

∏
i=1

λ∗(bi))λ(ξn)) +En(ξ0,⋯, ξn−1)(b1 ⊗⋯⊗ bn)

= ξn(bn ⊗⋯⊗ b1) +En(ξ0,⋯, ξn−1)(b1 ⊗⋯⊗ bn),

where En(ξ0,⋯, ξn−1) ∈ L(B⊗n,B) depends only on ξ0,⋯, ξn−1. So we define ξn inductively

and uniquely as:

ξn(b1 ⊗⋯⊗ bn) = µ(XbnXbn−1⋯Xb1X) −En(ξ0,⋯, ξn−1)(bn ⊗⋯⊗ b1) (n ≥ 1).

Definition 3.1.21. The canonical form of all B−valued random variables with distribution

µ, is the unique canonical element in the proposition 3.1.20 such that µ = µa.

It is noteworthy that when a = λ∗(1), we have µa = µ0, i.e. the distribution of the 0

random variable.
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Proposition 3.1.22. Let ak = λ∗(1) +∑n≥0 λ(ξn,k) k = 1,2,3 be canonical elements. Then,

µa3 = µa1 ⊞ µa2 if and only if ξn,3 = ξn,1 + ξn,2 n = 0,1,⋯ .

Proof. Let µa3 = µa1 ⊞ µa2 = µa1+a2 . Then:

ξ0,3 = µa3(X) = µa1+a2(X) = εB1(a1 + a2)

= εB1(a1) + εB1(a2) = µa1(X) + µa2(X) = ξ0,1 + ξ0,2.

Assume the assertion holds up to positive integer n − 1. Then, with En from the proof of

Proposition 3.1.20:

ξn,3(b1 ⊗⋯⊗ bn) = µa3(XbnXbn−1⋯Xb1X) −En(ξ0,3,⋯, ξn−1,3)(bn ⊗⋯⊗ b1)

= µa1+a2(XbnXbn−1⋯Xb1X) −En(ξ0,1 + ξ0,2,⋯, ξn−1,1 + ξn−1,2)(bn ⊗⋯⊗ b1)

= (ξn,1(b1 ⊗⋯⊗ bn) +En(ξ0,1,⋯, ξn−1,1)(bn ⊗⋯⊗ b1)

+ (ξn,2(b1 ⊗⋯⊗ bn) +En(ξ0,2,⋯, ξn−1,2)(bn ⊗⋯⊗ b1))

− En(ξ0,1 + ξ0,2,⋯, ξn−1,1 + ξn−1,2)(bn ⊗⋯⊗ b1)

= (ξn,1 + ξn,2)(b1 ⊗⋯⊗ bn),

implying ξn,3 = ξn,1 + ξn,2, and completing the proof.

Conversely, let ξn,3 = ξn,1 + ξn,2 n = 0,1,⋯ . Then, by Proposition 3.1.18 for M = B2 and

a = h1(a1) + h2(a2) we have µa = µa1 ⊞ µa2 . But:

a = λ∗(1⊕ 0) +∑
n≥0

λ(ξn,1 ○ pr1) + λ∗(0⊕ 1) +∑
n≥0

λ(ξn,2 ○ pr2)

= λ∗(1⊕ 1) +∑
n≥0

λ(ξn,1 ○ pr1 + ξn,2 ○ pr2),

εB2(λ(βn ○ pr⊗nk )) = εB2(hk(λ(βn))) = εB2 ○ hk(λ(βn)) = εB1(λ(βn)) (k = 1,2),

where βn ∈ Xn(B ⊕ 0)orXn(0 ⊕ B), pr⊗n1 ∶ (B2)⊗n → (B ⊕ 0)⊗n, and pr⊗n2 ∶ (B2)⊗n → (0 ⊕

B)⊗n, (n ≥ 0), and

εB2(λ∗(1⊕ 1)) = µλ∗(1⊕1)(X) = (µλ∗(1⊕0) ⊞ µλ∗(0⊕1))(X)

= (µ0 ⊞ µ0)(X) = µ0(X) = µλ∗(1)(X) = εB1(λ∗(1)),
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implying:

µa(
n

∏
i=1

(Xbi)X) = εB2(
n

∏
i=1

(aλ(bi))a)

= ∑
Sij=λ∗(1⊕1),λ(βn○pr⊗nk )∶k=1,2, n∈N

εB2(Si1λ(b1)⋯Sinλ(bn)Si(n+1))

= ∑
S
′

ij=λ∗(1),λ(βn)∶ n∈N
εB1(S ′

i1λ(b1)⋯S
′

inλ(bn)S
′

i(n+1))

= εB1(
n

∏
i=1

(a3λ(bi))a3)

= µa3(
n

∏
i=1

(Xbi)X).

Thus, µa(P (X)) = µa3(P (X)) for all P (X) ∈ B⟨X⟩and hence, µa = µa3 .

Corollary 3.1.23.

Rn(µ1 ⊞ µ2) = Rn(µ1) +Rn(µ2) n = 1,2,⋯,

for all µ1, µ2 ∈ ΣB.

Proof. By Proposition 3.1.20, there are canonical elements ai with µai = µi (i = 1,2). Hence,

by Proposition 3.1.22:

Rn(µ1 ⊞ µ2) = Rn(µa1 ⊞ µa2) = Rn(µa1) +Rn(µa2) = Rn(µ1) +Rn(µ2) n = 1,2,⋯ .

Lemma 3.1.24. Let c ∈ C and a ∈ A with associated distribution µa ∈ ΣB. Then for any

P (X) = (∏n
i=1Xbi)X ∈ B⟨X⟩ we have:

µca(P (X)) = cn+1µa(P (X)).

Proof.

µca(P (X)) = EB ○ τca(Xb1⋯XbnX) = Eb(cab1⋯cabnca)

= cn+1EB(ab1⋯abna) = cn+1EB ○ τa(Xb1⋯XbnX)

= cn+1µa(P (X)).
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Remark 3.1.25. Let c ∈ C, ξ(a)n (n ≥ 0) appeared in the canonical form of a ∈ A, and

En(ξ(a)0 ,⋯, ξ(a)n−1) (n ≥ 1) be the n−linear map defined in the proof of the Proposition 3.1.20.

Then:

En(cξ(a)0 ,⋯, cnξ(a)n−1) = cn+1En(ξ(a)0 ,⋯, ξ(a)n−1) (n ≥ 1).

Proposition 3.1.26. Let a ∈ A be a B−valued random variable with the canonical form

λ∗(1) +∑
n≥0

λ(ξ(a)n ),

and let c ∈ C. Then, the canonical form of ca is

λ∗(1) +∑
n≥0

λ(cn+1ξ
(a)
n ).

Proof. Let ca have the canonical form

λ∗(1) +∑
n≥0

λ(ξ(ca)n ).

We prove the assertion by showing that ξ
(ca)
n = cn+1ξ

(a)
n (n ≥ 0). Let n = 0, then ξ

(ca)
0 =

µca(X) = cµa(X) = cξ(a)0 . Assume the equality holds up to positive integer n − 1, then using

the proof of Proposition 3.1.20, Lemma 3.1.24, and Remark 3.1.25 it follows that:

ξ
(ca)
n (b1 ⊗⋯⊗ bn) = µca(Xbn⋯Xb1X) −En(ξ(ca)0 ,⋯, ξ(ca)n−1 )(bn ⊗⋯⊗ b1)

= cn+1µa(Xbn⋯Xb1X) −En(cξ(a)0 ,⋯, cnξ(a)n−1)(bn ⊗⋯⊗ b1)

= cn+1(µa(Xbn⋯Xb1X) −En(ξ(a)0 ,⋯, ξ(a)n−1)(bn ⊗⋯⊗ b1))

= cn+1ξ
(a)
n (b1 ⊗⋯⊗ bn),

proving the desired assertion.

Now, as an immediate consequence of the properties of the canonical form of random

variables, we can state and prove the B− valued central limit theorem, as before we follow

[14].

Definition 3.1.27. A random variable s ∈ A is called B−semicircular if its canonical form is

λ∗(1) + λ(η0) + λ(η).
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The distribution of the B− semicircular random variable is called the B− semicircular

distribution. As an immediate consequence of the proof of Proposition 3.1.20 the distribution

of semi-circular random variable is seen to be entirely determined by its first two moments:

EB(s) = EB ○ τs(X) = µs(X)

= µλ∗(1)+λ(η0)+λ(η)(X) = η0 ∈ B,

EB(sbs) = EB ○ τs(XbX) = µs(XbX)

= µλ∗(1)+λ(η0)+λ(η)(XbX) = η0bη0 + η(b) b ∈ B.

A B− semicircular random variable s is called centered if EB(s) = 0. In this case EB(sbs) =

η(b) for all b ∈ B. Furthermore, for m ≥ 1 we have that:

EB(s2m−1) = EB ○ τs(
2m−2

∏
i=1

X1.X) = µs(
2m−2

∏
i=1

X1.X)

= εB1(
2m−1

∏
i=1

(λ∗(1) + λ(η))) = εB1( ∑
Ui=λ∗(1),λ(η)∶i=1,⋯,2m−1

U1⋯Ui⋯U2m−1)

= ∑
Ui=λ∗(1),λ(η)∶i=1,⋯,2m−1

εB1(U1⋯Ui⋯U2m−1) = ∑
Ui=λ∗(1),λ(η)∶i=1,⋯,2m−1

0 = 0.

Definition 3.1.28. Let B be a Banach algebra and µ,µn ∶ B⟨X⟩→ B (n ∈ N) be B− valued

distributions. We say µn convergence pointwise to µ if

lim
n→∞

∥µn(P (X)) − µ(P (X))∥ = 0,

for all P (X) ∈ B⟨X⟩.

Lemma 3.1.29. Let µm ∶ B⟨X⟩ → B (m ∈ N) be a sequence of B− valued distributions with

corresponding sequence of canonical forms λ∗(1)+∑n≥0 λ(ξn,m) (m ∈ N). Then, the following

two conditions are equivalent:

(i)There are constants Ck(0 ≤ k ≤ n) such that:

sup
m∈N

∥µm(Xb1X⋯bkX)∥ ≤ Ck∥b1∥⋯∥bk∥ bk ∈ B, 0 ≤ k ≤ n,

(ii)There are constants Dk(0 ≤ k ≤ n) such that:

sup
m∈N

∥ξk,m(b1 ⊗⋯⊗ bk)∥ ≤Dk∥b1∥⋯∥bk∥ bk ∈ B, 0 ≤ k ≤ n.
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Proof. Referring to the proof of Proposition 3.1.20, the assertion follows from induction and

the fact that:

ξk,m(b1 ⊗⋯⊗ bk) = µm(Xbk⋯Xb1X) −Ek,m(ξ0,m,⋯, ξk−1,m)(bk ⊗⋯⊗ b1)

for all bk ∈ B, 0 ≤ k ≤ n,m ≥ 1.

Lemma 3.1.30. Let B be a Banach algebra, µ,µm ∶ B⟨X⟩ → B (m ∈ N) be B− valued dis-

tributions so that the equivalent conditions of the previous lemma hold. Then, the following

assertions are equivalent:

(i) limm→∞ µm(Xb1X⋯bkX) = µ(Xb1X⋯bkX) bk ∈ B, 0 ≤ k ≤ n,

(ii) limm→∞ ξk,m(b1 ⊗⋯⊗ bk) = ξk(b1 ⊗⋯⊗ bk) bk ∈ B, 0 ≤ k ≤ n.

Proof. Referring to the proof of Proposition 3.1.20, the assertion follows from strong induction

after n and the relations:

ξk,m(b1 ⊗⋯⊗ bk) = µm(Xbk⋯Xb1X) −Ek,m(ξ0,m,⋯, ξk−1,m)(bk ⊗⋯⊗ b1)

for bk ∈ B, 0 ≤ k ≤ n,m ≥ 1 and

ξk(b1 ⊗⋯⊗ bk) = µ(Xbk⋯Xb1X) −Ek(ξ0,⋯, ξk−1)(bk ⊗⋯⊗ b1)

for bk ∈ B, 0 ≤ k ≤ n.

Theorem 3.1.31. (Free Central Limit Theorem) Let B be a Banach algebra and am (m ∈ N)

be a sequence of free B-valued random variables in the non-commutative operator valued prob-

ability space (A,EB,B)such that:

(i) EB(am) = 0,m ∈ N,

(ii) there is a bounded linear map η ∶ B → B such that

lim
n→∞

∑n
m=1EB(ambam)

n
= η(b), b ∈ B,

(iii) there are constants Ck (k ∈ N) such that

sup
m∈N

∥EB(amb1am⋯bkam)∥ ≤ Ck∥b1∥⋯∥bk∥ (k ∈ N).
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Then the distributions of Sn = ∑nm=1 am√
n

(n ∈ N) convergence pointwise to the semicircular

distribution with canonical form λ∗(1) + λ(η).

Proof. Let λ∗(1) +∑k≥0 λ(ξk,m) be the canonical form of am (m ∈ N). By Lemma 3.1.29 and

Lemma 3.1.30 we have:

ξ0,m = 0, m ∈ N

lim
n→∞

∑n
m=1 ξ1,m(b)

n
= η(b), b ∈ B

sup
m∈N

∥ ξk,m(b1 ⊗⋯⊗ bm) ∥ ≤ Ck∥b1∥⋯∥bk∥, bk ∈ B,k ∈ N.

Let λ∗(1) +∑k≥0 λ(ηk,n) be the canonical form of the random variable Sn (n ≥ 1). Then, by

induction , Proposition 3.1.22, and Proposition 3.1.26 for c = n−1
2 it follows that

ηk,n = n
−(k+1)

2 (ξk,1 +⋯ + ξk,n) k ≥ 0, n ∈ N.

Since:

η0,n = 0

lim
n→∞

η1,n(b) = η(b), b ∈ B

∥ηk,n(b1 ⊗⋯⊗ bk)∥ ≤ Ck∥b1∥⋯∥bk∥n
−(k−1)

2 , bk ∈ B,k ∈ N,

by Lemma 3.1.29, and Lemma 3.1.30 it follows that the distributions of Sn (n ∈ N) conver-

gence pointwise to the B−semicircular distribution of λ∗(1) + λ(η).

3.2 The Complete Positivity Property of the Second

Moment

This section deals with the necessary and sufficient condition of the second moment of a

given random variable a ∈ A ensuring it to be semicircular. Here, by Mn(A) we denote the

algebra of all n × n matrices with entries from A, equipped with the canonical ∗ structure.

The conjugate of α = (aij)ni,j=1 ∈ Mn(A) will be α∗ = (a∗ji)ni,j=1. Throughout this section, we

assume that A to be a unital C∗-algebra and B is its unital C∗-subalgebra containing its

unit, [13, pp. 41-44].

39



Definition 3.2.1. Let A1,A2 be two unital C∗-algebras. A unital linear map Φ∶A1 → A2 is

positive if Φ(aa∗) ≥ 0 for all a ∈ A1. Moreover, it is completely positive, if for each n ≥ 1, the

map

Φn ∶Mn(A1)→Mn(A2)

Φn((aij)ni,j=1) = (Φ(aij))ni,j=1

is positive.

Lemma 3.2.2. (1) Let α ∈ Mn(A) (n ≥ 1). Then, αα∗ = ∑n
k=1(ak,ia∗k,j)ni,j=1 for some ak,i ∈

A (1 ≤ i, k ≤ n).

(2) Let Φ ∶ A→ B be a unital linear map. Then, the following statements are equivalent:

(a) The map Φ ∶ A→ B is completely positive.

(b) For each n ∈ N, and all a1,⋯, an ∈ A, the matrix (Φ(aia∗j ))ni,j=1 is positive.

(c) For each n ∈ N, and all a1,⋯, an ∈ A, there exist elements bk,i ∈ B

(1 ≤ i, k ≤ n) such that Φ(aia∗j ) = ∑
n
k=1 bk,ib

∗
k,j for all 1 ≤ i, j ≤ n.

Proof. (1) Writing α = (aij)ni,j=1 we have:

αα∗ = (
n

∑
k=1

aika
∗
jk)

n

i,j=1
=

n

∑
k=1

(aika∗jk)ni,j=1 =
n

∑
k=1

(ak,ia∗k,j)ni,j=1.

(2) Let part (a) hold. By part (1) for a1,i = ai, ak,i = 0 where 2 ≤ k ≤ n,1 ≤ i ≤ n, it follows

that (aia∗j )ni,j=1 ∈Mn(A) is positive. Hence, by complete positivity of Φ, part (b) is proved.

Next, let part (b) hold. Consider the matrix (Φ(aia∗j ))ni,j=1 ∈Mn(B). Then, by part (b) it is

positive and hence by part (1):

(Φ(aia∗j ))
n

i,j=1
=

n

∑
k=1

(bk,ib∗k,j)ni,j=1 = (
n

∑
k=1

bk,ib
∗
k,j)

n

i,j=1
,

and by comparing the corresponding entries in both matrices, part (c) is proved. Finally. let

part (c) hold. For any α ∈ Mn(A) (n ≥ 1), using part (1) we have: αα∗ = ∑n
k=1(ak,ia∗k,j)ni,j=1

for some ak,i ∈ A (1 ≤ k, i ≤ n). Thus, part (c) implies:

Φn(αα∗) =
n

∑
k=1

(Φ(ak,ia∗k,j))ni,j=1 =
n

∑
k=1

n

∑
l=1

(bk,l,ib∗k,l,j)ni,j=1 ≥ 0,

proving the positivity property of Φn, and hence part (a).
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As one of key properties of the conditional expectation, the positivity property and com-

plete positivity property coincide. Before proving that we need the following lemma, [8].

Lemma 3.2.3. Let B be a unital C∗-algebra and bij ∈ B (1 ≤ i, j ≤ n). Then, the following

statements are equivalent:

(a) The matrix (bij)ni,j=1 ∈Mn(B) is positive.

(b) We have: ∑n
i,j=1 bibijb

∗
j ≥ 0 for all b1,⋯, bn ∈ B.

Proposition 3.2.4. Let B be unital C∗-algebra, A be a unital ∗− algebra containing B.

Then, any conditional expectation EB ∶ A→ B is completely positive.

Proof. Let n ∈ N and ai ∈ A (1 ≤ i ≤ n). Then:

n

∑
i,j=1

biEB(aia∗j )b∗j =
n

∑
i,j=1

EB(biai(bjaj)∗) = EB((
n

∑
i=1

biai)(
n

∑
j=1

bjaj)∗) ≥ 0.

Hence, by Lemma 3.2.3 the matrix (EB(aia∗j ))ni,j=1 ∈ Mn(B) is positive, and therefore, by

Lemma 3.2.2, EB is completely positive.

Theorem 3.2.5. Let B be a unital C∗-algebra. A unital linear map η ∶ B → B is the second

moment of a B− semicircular random variable if and only if it is completely positive.

Proof. Assume that s ∈ A is a B-valued semicircular random variable. Let η(b) = EB(sbs)

for all b ∈ B. Then, for

(η(bib∗j ))ni,j=1 = (EB(sbib∗j s))ni,j=1 = (EB((sbi)(sbj)∗))
n

i,j=1
∈Mn(B) (n ≥ 1),

an application of Proposition 3.2.4, and two applications of of Lemma 3.2.2, respectively,

show that η is completely positive.

Conversely, let the unital linear map η ∶ B → B be completely positive. We need to find

a semicircular random variable with second moment η. We will construct the distribution

of such a random variable as the distribution of the sum of ‘creation’ and ‘annihilation’

operators on a ‘degenerate’ Fock space. The degenerate Fock space F is the B−B− bimodule
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F = B ⊕BXB equipped with a B−valued inner product:

⟨, ⟩ ∶ F ×F → B

⟨b0 + b1Xb2, b̃0 + b̃1Xb̃2⟩ = b∗0 b̃0 + b∗2η(b∗1 b̃1)b̃2.

Now, define a creation operator l∗ and an annihilation operator l via:

l∗ ∶ F → F l ∶ F → F

l∗(b0 + b1Xb2) = 1Xb0 l(b0 + b1Xb2) = η(b1)b2.

Next, as a result of positivity of η we have η(b∗) = η(b)∗ for all b ∈ B. Consequently, the

operators l and l∗ are adjoints with respect to ⟨, ⟩; i.e., for f1 = b0 + b1Xb2 and f2 = b̃0 + b̃1Xb̃2

we have that:

⟨lf1, f2⟩ = ⟨η(b1)b2 + 0X0, b̃0 + b̃1Xb̃2⟩ = (η(b1)b2)∗b̃0

= b∗2η(b∗1.1)b̃0 = ⟨b0 + b1Xb2,0 + 1Xb̃0⟩

= ⟨f1, l
∗f2⟩.

Now, we identify all elements b ∈ B with their corresponding left multiplication operators

lb ∶ F → F , and also we consider b and b∗ as adjoints in this context. We consider ourB−valued

non-commutative probability space (A,EB,B), where A = ⟨{l, l∗, lb ∶ b ∈ B}⟩, and EB ∶ A→ B

defined via: EB(a) = ⟨1, a1⟩. It is worth mentioning that since ⟨f1b1, f2b2⟩ = b∗1⟨f1, f2⟩b2 for

all f1, f2 ∈ F and all b1, b2 ∈ B, we have:

EB(b1ab2) = ⟨1, b1ab21⟩ = b1⟨1, a1⟩b2 = b1EB(a)b2

for all a ∈ A and all b1, b2 ∈ B. Let s ∶= l∗ + l ∈ A. Then:

EB(sbs) = ⟨1, (l∗ + l)b(l∗ + l)1⟩ = η(b) b ∈ B.

So, it remains to show that EB is positive. Let a ∈ A, then writing a∗1 ∈ F in the form

a∗1 = b +∑n
i=1 biXb̃i where b, bi, b̃i ∈ B (1 ≤ i ≤ n), we have:

EB(aa∗) = ⟨1, aa∗1⟩ = ⟨a∗1, a∗1⟩

= ⟨b +
n

∑
i=1

biXb̃i, b +
n

∑
j=1

bjXb̃j⟩

= b∗b +
n

∑
i,j=1

b̃i
∗
η(b∗i bj)b̃j.
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Now, by complete positivity of η and Lemma 3.2.2, we have:

η(b∗i bj) =
n

∑
k=1

b∗k,ibk,j bk,i ∈ B (1 ≤ i, k ≤ n).

Hence:

EB(aa∗) = b∗b +
n

∑
i,j=1

b̃i
∗(

n

∑
k=1

b∗k,ibk,j)b̃j

= b∗b +
n

∑
i,j=1

n

∑
k=1

b̃i
∗
b∗k,ibk,j b̃j

= b∗b +
n

∑
k=1

(
n

∑
i=1

bk,ib̃i)
∗
(

n

∑
j=1

bk,j b̃j)

≥ 0,

completing the proof.

We close this section by stating M. D. Choi’s representation of completely positive maps

from a finite dimensional matrix algebra to another one, [1].

Theorem 3.2.6. Let η ∶Mn1×n1(C)→Mn2×n2(C) be a completely positive linear map. Then

there exist aj ∈Mn1×n2(C) (1 ≤ j ≤ n1n2), such that

η(a) =
n1n2

∑
j=1

a∗jaaj

for all a ∈Mn1×n1(C).

Proof. Let El1l2 ∈ Mn1×n1(C) be defined by El1l2 = (δ(s,t),(l1,l2)), 1 ≤ l1, l2 ≤ n1. Since η is

a n1−positive map, it follows that (η(El1l2)) ∈ Mn1n2×n1n2(C) is positive. Now, by spectral

resolution theorem we have (η(El1l2)) = ∑n1n2
j=1 λjvjv∗j where vj ∈ Cn1n2 and λj ≥ 0, 1 ≤ j ≤

n1n2. By absorbing λj in vj we have that:

(η(El1l2)) =
n1n2

∑
j=1

vjv
∗
j . (3.1)

Next, writing the vector space Cn1n2 in the form Cn1n2 =⊕n1
i=1 Cn2 , considering pi ∈Mn1n2×n1n2(C)

as the projection on the ith copy of Cn2 , 1 ≤ i ≤ n1, and Equality (3.1) we have:

η(El1l2) = pl1 .(η(El1l2)).pl2 =
n1n2

∑
j=1

pl1vj(pl2vj)∗, (3.2)
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for all 1 ≤ l1, l2 ≤ n1. Now, define a∗j ∈Mn1×n1(C) by

a∗j el = plvj 1 ≤ j ≤ n1n2,1 ≤ l ≤ n1, (3.3)

and from (3.2) it follows that:

η(El1l2) =
n1n2

∑
j=1

a∗j el1e
∗
l2
aj =

n1n2

∑
j=1

a∗jEl1l2aj 1 ≤ l1, l2 ≤ n1n2. (3.4)

Accordingly, by linear extension of the Equality (3.4) the desired result follows.
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Chapter 4

A Special Functional Equation for Some Operator-

Valued Cauchy Transforms

This chapter discusses the operator-valued Cauchy transform of a random variable and

an associated functional equation to it for the case of semi-circular random variables. In the

section 1, the operator-valued Cauchy transform of a random variable is introduced, then

using a general implicit function theorem, we introduce the operator-valued R-transform

of a random variable satisfying a special functional equation involving its operator-valued

Cauchy transform. In section 2, we discuss sufficient conditions under which the mentioned

operator-valued functional equation involving the operator-valued Cauchy transform of the

semicircular random variable has a unique solution.

4.1 Some Analytic Transforms in Operator-Valued Set-

tings

Given an operator-valued noncommutative probability space (A,EB,B), we recall that any

a ∈ A can be written as a = Re(a)+i.Im(a) where Re(a) and Im(a) are self-adjoint elements.

We define H+(A) = {a ∈ A∣Im(a) > 0}, where Im(a) > 0 means Im(a) > ε.1 for some ε > 0,

and similarly H+(B). Then the operator-valued Cauchy transform of a ∈ A is defined via:

G∗
a(b) = EB((b − a)−1).

We notice that if ∥b−1∥ < ∥a∥−1 (and hence ∥b∥ > ∥a∥), so that ∥ab−1∥ < 1, then we have:

G∗
a(b) = EB((b − a)−1) =

∞
∑
n=0

b−1EB((ab−1)n).

45



This is an analytic function with Fréchet derivative

(DbG
∗
a(b))(h) = −EB((b − a)−1.h.(b − a)−1), (h ∈ B).

Next, by Lemma 3.1.8 from Chapter 3 and the fact that the nth derivative of the function

b−1.G∗
a(b−1).b−1 = 1 +

∞
∑
n=0

mn(b,⋯, b)

in b = 0 gives exactly the symmetric part of mn, it follows that the symmetric distribution of

a1 ∈ A equals to the symmetric distribution of a2 ∈ A if and only if G∗
a1 = G∗

a2 .

Let Sn (n ≥ 1) be the symmetric group. The subspace of symmetric n−linear maps of

Xn(B) is defined as

SXn(B) = {ξn ∈ Xn(B)∣ξn(b1 ⊗⋯⊗ bn) = ξn(bσ(1) ⊗⋯⊗ bσ(n)) for all σ ∈ Sn}.

If ξn ∈ Xn(B), we denote by Sξn ∈ SXn(B) the element defined by

Sξn(b1 ⊗⋯⊗ bn) = ∑
σ∈Sn

1

n!
ξn(bσ(1) ⊗⋯⊗ bσ(n))

such that Sξn(b⊗n) = ξn(b⊗n). Next, we represent the elements of SX (B) = ∏n≥0 SXn(B) ⊆

∏n≥0Xn(B) = X (B) by ∑n≥0 ξn.

Definition 4.1.1. Let Sµ ∈ SΣB. We define:

GSµ ∶ B → B ΓSµ ∶ B → B

GSµ(b) =∑
n≥0

µ(b(Xb)n) ΓSµ(b) =∑
n≥0

µ((Xb)nX).

Here, by conditional expectation properties of µ it follows that:

GSµ(b) = µ(b) +∑
n≥1

µ(b(Xb)n) = b +∑
n≥1

bµ((Xb)n−1X)b = b + bΓSµ(b)b.

It should be mentioned that for a ∈ A we have

GSµa(b) = G
∗
a(b−1), ∥b∥ < ∥a∥−1.

Next, since the Frechet differential of GSµa at b = 0 is the identity map, GSµa is invertible with

respect to composition in a neighborhood of zero. Before introducing the R− transform of a

random variable a ∈ A, we need a general implicit function theorem due to T. H. Hildebrandt

and L. M. Graves, [6].
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Theorem 4.1.2. Let X,Y and Z be normed linear spaces, of which X and Z are also

complete. Suppose that G ∶X ×Y → Z is of class C(n) on a region R ⊆X ×Y, and let (x0, y0)

be an initial solution of the equation

G(x, y) = 0 (4.1)

at which the partial differential ∂
∂yG(x0, y0) has an inverse. Then in a sufficiently small

neighborhood of y0 in Y the equation (4.1) has a unique solution y = y(x) of C(n) class

defined on a neighborhood of x0 in X.

Now, the R− transform of a is introduced in the following theorem, [2].

Theorem 4.1.3. There is a unique B−valued analytic function Ra, defined in a neighborhood

of 0 in B, such that

G−1
Sµa

(b) = (1 + bRa(b))−1b = b(1 +Ra(b)b)−1, (4.2)

where the inverse in the left hand side is considered as invertibility with respect to composition.

Proof. First, the uniqueness is clear by power series expansion. Second, the right-most

equality in (4.2) holds for and analytic function Ra. Hence, it remains to find a function Ra,

such that

GSµa((1 + bRa(b))−1b) = b.

But,

GSµa((1 + bRa(b))−1b) = (1 + bRa(b))−1b

+ (1 + bRa(b))−1bΓSµa((1 + bRa(b))−1b)(1 + bRa(b))−1b,

so it will suffice to find Ra so that any of the following hold:

(1 + bRa(b))−1 + (1 + bRa(b))−1bΓSµa((1 + bRa(b))−1b)(1 + bRa(b))−1 = 1,

1 + bΓSµa((1 + bRa(b))−1b)(1 + bRa(b))−1 = 1 + bRa(b),

ΓSµa((1 + bRa(b))−1b)(1 + bRa(b))−1 = Ra(b). (4.3)
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However, Ra(0) = E(a) is a solution of equation (4.3) at b = 0, and the Frechet differential of

the function x ↦ ΓSµa((1 + bx)−1b)(1 + bx)−1 − x at b = 0 is the negative of the identity map,

hence is invertible. Now, the existence of Ra is guaranteed by Theorem 4.1.2.

It should be mention that by [14], we have:

Ra(b) =∑
n≥0

SRn+1(Sµa)(b⊗n)

where SRn+1(Sµa) (n ≥ 0) are given by the canonical element with distribution Sµa .

Corollary 4.1.4. If a1, a2 ∈ A are free over B, then:

Ra1+a2(b) = ∑
n≥0

SRn+1(Sµa1+a2)(b
⊗n) =∑

n≥0

SRn+1(Sµa1 ⊞ Sµa2)(b
⊗n)

= ∑
n≥0

SRn+1(Sµa1)(b
⊗n) +∑

n≥0

SRn+1(Sµa2)(b
⊗n) = Ra1(b) +Ra2(b).

Corollary 4.1.5. Let b(1 + Ra(b)b)−1 = G−1
Sµa

(b) as in Theorem 4.1.3. Replacing b with

GSµa(b−1) in the equation and considering GSµa(b−1) = G∗
a(b), we get G∗

a(b)(1+Ra(G∗
a(b))G∗

a(b))−1 =

b−1, yielding:

bG∗
a(b) = 1 +Ra(G∗

a(b))G∗
a(b).

In particular, for the semicircular element s ∈ A with the first moment D = EB(s) ∈ B and

the variance η(b) = EB(sbs) we have that:

bG∗
s(b) = 1 + (D + η(G∗

s(b)))G∗
s(b).

4.2 The Functional Equation of the Operator-Valued

Cauchy Transform of a Semicircular Random Vari-

able

Let A be a unital C∗-algebra, B be a C∗-subalgebra of A, and EB ∶ A → B be a conditional

expectation. For a given self-adjoint semicircular random variable s ∈ A with a completely

positive linear map η ∶ B → B as its variance, its operator-valued Cauchy transform G∗
s maps
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H+(B) into H−(B). Indeed, let b ∈ H+(B) where b = Re(b) + i.Im(B) with Im(b) > ε.1 for

some ε > 0. Then as in [15] we have that:

(b − s)−1 = (Re(b) − s + i.Im(b))−1

= ((Im(b)) 1
2((Im(b))−12 (Re(b) − s)(Im(b))−12 + i)(Im(b)) 1

2)
−1

.

Here, since Re(b) − s is self adjoint, it follows that (Im(b))−12 (Re(b) − s)(Im(b))−12 is self-

adjoint too. But, −i ∉ σ((Im(b))−12 (Re(b)−s)(Im(b))−12 ) ⊆ R, implying that (Im(b))−12 (Re(b)−

s)(Im(b))−12 +i is invertible and, consequently , ((Im(b)) 1
2((Im(b))−12 (Re(b)−s)(Im(b))−12 +

i)(Im(b)) 1
2) is invertible. Hence, by equation above (b− s)−1 is well-defined. Next, we have:

Im((b − s)−1) = Im(((Im(b)) 1
2((Im(b))−12 (Re(b) − s)(Im(b))−12 + i)(Im(b)) 1

2)
−1

)

= (Im(b))−12 .Im(((Im(b))−12 (Re(b) − s)(Im(b))−12 + i)
−1

).(Im(b))−12

= (Im(b))−12 .Im( (Im(b))−12 (Re(b) − s)(Im(b))−12 − i

((Im(b))−12 (Re(b) − s)(Im(b))−12 )
2

+ 1
).(Im(b))−12

= −(Im(b))−1.(((Im(b))−12 (Re(b) − s)(Im(b))−12 )
2

+ 1)
−1

< 0,

and by complete positivity of EB it follows that:

Im(G∗
s(b)) = Im(EB((b − s)−1)) = EB(Im((b − s)−1)) < 0.

By Corollary 4.1.5 of section 1, the operator-valued Cauchy transform operator-valued Cauchy

transform of the semicircular random variable, G∗
s ∶ H+(B) → H−(B) satisfies the the equa-

tion:

b.G∗
s(b) = 1 + (D + η(G∗

s(b))).G∗
s(b) Im(b) > 0 (4.4)

where D = EB(s) ∈ B is self-adjoint. We want to show that this equation for the analytic

G∗
s ∶H+(B)→H−(B) together with its asymptotic condition:

lim
b−1→0

b.G∗
s(b) = 1 (4.5)
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uniquely determines the G∗
s . For that aim, we need a special fixed point theorem. Before

proceeding to its statement, we need some definitions, [4], [3].

Definition 4.2.1. Let (Bi, ∥.∥i) i = 1,2, be two complex Banach spaces and Di ⊆ Bi i = 1,2,

be two bounded domains.

(i) A subset D
′

2 ⊆ B2 lies strictly in D2 ⊆ B2, and we write D
′

2 ⊆ D2 strictly, if there is

ε > 0 such that for all b
′

2 ∈D
′

2 ∶

D(B2, b
′

2, ε) = {b2 ∈ B2∣∥b2 − b
′

2∥2 < ε} ⊆D2.

(ii) Let H∞(D1) be the Banach space of all bounded holomorphic functions on D1, and Γ be

the set of all curves in D1 with piecewise continuous derivative. Define:

α ∶ D1 ×B1 → R+
0

α(b′1, b1) = sup{∣(Df(b′1))b1∣∣f is in the unit ball of H∞(D1)},

and set L(γ) = ∫
1

0 α(γ(t), γ
′(t))dt γ ∈ Γ. The Caratheodory-Reiffen Finsler metric (CRF-

metric) ρ is defined as follows:

ρ ∶ D1 ×D1 → R+
0

ρ(b′1, b
′′

1) = inf{L(γ)∣γ ∈ Γ ∶ γ(0) = b′1, γ(1) = b
′′

1}.

Regarding the CRF-metric ρ we have:

Proposition 4.2.2. Let ρ be the CRF-metric. Then, there exists a constant m > 0 such that

ρ(b′1, b
′′

1) ≥m∥b′1 − b
′′

1∥1 for all b
′

1, b
′′

1 ∈D1.

Proof. Since D1 is bounded, d = diam(D1) < ∞ and we take m = 1
d . For given b

′

1 ∈ D1 and

b1 ∈ B1 define:

fl ∶ D1 → C

fl(b
′′

1) = ml(b′′1 − b
′

1)

where l ∈ B∗
1 with ∥l∥ = 1. Then, fl is in the unit ball of H∞(D1), and Dfl(b

′

1)b1 = ml(b1).

Hence, 1
mα(b

′

1, b1) ≥ ∣l(b1)∣ for all l ∈ B∗
1 with ∥l∥ = 1, and, consequently, by a corollary of the

Hahn-Banach theorem, 1
mα(b

′

1, b1) ≥ ∥b1∥. Now, by integrating from both sides the assertion

is proved.
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The following fixed point theorem is due to C. J. Earle and R. S. Hamilton, [4].

Theorem 4.2.3. Let D be a non-empty domain in a complex Banach space B, and let

h ∶ D → D be a bounded holomorphic function. If h(D) ⊆ D strictly, then h is a strict

contraction in the CRF-metric ρ, and thus has a unique fixed point in D. Furthermore, for

any b0 ∈D, the sequence (h○n(b0))∞n=1 converges in norm to this fixed point.

Using above mentioned theorem we can state and prove the following theorem which has

previously appeared in [5]:

Theorem 4.2.4. Let A be a unital C∗-algebra, B a C∗-subalgebra of A, and s ∈ A be a

self-adjoint B-valued semicircular random variable with first moment D ∈ B and variance

η ∶ B → B. Then its associated operator-valued Cauchy transform G∗
s ∶ H+(B) → H−(B) is

the unique solution of the functional equation (4.4) together with asymptotic condition (4.5).

Proof. Fix b ∈H+(B) where Im(b) > ε.1 for some ε > 0. Then the equation (4.4) holds if and

only if b − (D + η(G∗
s(b))) = G∗

s
−1(b). Now, define:

Fb ∶H+(B)→H+(B)

Fb(w) = b − (D + η(w−1)).

Let r = 2(∥ b ∥ + ∥D ∥ + ∥ η ∥ ε−1), and define :

Dr,ε = (H+(B) + ε.i) ∩ {w ∈ B∣ ∥ w ∥< r}.

Let w ∈Dr,ε, then by Im(w) > ε.1 and using properties of C∗-algebra and functional calculus

it follows that:

∥ w−1 ∥ = ∥ (Re(w) + i.Im(w))−1 ∥

= ∥ (Im(w))−12 ((Im(w))−12 .Re(w).(Im(w))−12 + i)
−1

(Im(w))−12 ∥

≤ ∥ ((Im(w))−12 .Re(w).(Im(w))−12 + i)
−1

∥∥ (Im(w))−12 ∥2

≤ 1. ∥ (Im(w))−1 ∥

≤ ε−1,
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yielding:

∥ Fb(w) ∥ = ∥ b − (D + η(w−1)) ∥≤∥ b ∥ + ∥D ∥ + ∥ η ∥∥ w−1 ∥

≤ ∥ b ∥ + ∥D ∥ + ∥ η ∥ ε−1 = r
2
.

Next, since ∥ w ∥< r, by complete positivity of η it follows that:

Im(Fb(w)) = Im(b) − Im(η(w−1)) > ε − η(Im(w−1))

= ε + η( Im(w)
Re2(w) + Im2(w)

) = ε + η((Re2(w)Im−1(w) + Im(w))−1)

≥ ε + η((∥ Re2(w)Im−1(w) + Im(w) ∥)−1.1)

≥ ε + ( ∥ Re(w) ∥2∥ Im−1(w) ∥ + ∥ Im(w) ∥ )
−1

∥ η ∥

≥ ε + ∥ η ∥
r2.ε−1 + r

.

Accordingly, Fb(w) ∈D r
2
,ε+ ∥η∥

r2.ε−1+r

, implying:

Fb(Dr,ε) ⊆D r
2
,ε+ ∥η∥

r2.ε−1+r

⊊Dr,ε strictly,

for all ε > 0, r ≥ 2(∥ b ∥ + ∥ D ∥ + ∥ η ∥ ε−1) and fixed b ∈ H+(B). Now, by Theorem 4.2.3,

we conclude that there is a unique wb ∈Dr,ε such that Fb(wb) = wb, and furthermore, for any

w0 ∈Dr,ε the sequence (F ○n
b (w0))∞n=0 converges to this fixed point. Hence, Fb(wb) = wb if and

only if

wb = b − (D + η(w−1
b )) (4.6)

where wb is a unique element in Dr,ε satisfying this equation for all r ≥ 2(∥ b ∥ + ∥D ∥ + ∥ η ∥

ε−1). On the other hand, since Im(G−1
s (b)) = Im(b − (D + η(Gs(b)))) > ε, we have G∗

s(b)
−1 ∈

H+(B) + i.ε, and consequently, for some large enough r ≥ 2(∥ b ∥ + ∥ D ∥ + ∥ η ∥ ε−1), we

have:

G∗
s(b)

−1 = b − (D + η(G∗
s(b)). (4.7)

By comparison of equations (4.6) and (4.7), we conclude that w−1
b = G∗

s(b) so that G∗
s(b) is

unique.
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Chapter 5

Main Results

This last chapter is divided into two sections. In section 1, using the continued frac-

tion representation of the Cauchy transform of a compactly supported probability measure,

we give two of its representations in terms of sequences of finite dimensional matrix-valued

Cauchy transforms of semicircular random variables. The section closes with a representa-

tion of the mentioned Cauchy transform of the compactly supported probability measure in

terms of an infinite dimensional matrix-valued Cauchy transform of a semicircular random

variable. In section 2, the existence of atoms of distributions of finite dimensional matrix

valued semicircular random variables are discussed. Using M. D. Choi’s representation of

completely positive maps from a finite dimensional matrix algebra to another one, we give

some sufficient conditions on the variance of a semicircular random variable such that its

associated probability measure has atom.

5.1 Representation of the Cauchy Transform Using Semi-

circular Random Variables

This section deals with some representations of the the Cauchy transform of a probability

measure in terms of operator-valued Cauchy transforms of semicircular distributions. The

proof of the following three results are based on the Theorem 4.2.4 of Chapter 4. Indeed,

given D and η as in that theorem, we are guaranteed that for each b ∈ H+(B) we shall find

a unique G∗
s(b) ∈H−(B) so that:

b − (D + η(Gs∗(b))) = G∗
s(b)

−1
and Im(G∗

s(b)
−1) ≥ Im(b) (5.1)
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and, hence, G∗
s(b) is defined as its operator-valued Cauchy transform of the B-valued semi-

circular random variable with the first moment D and variance η. In our following three

results we shall verify the conditions (5.1) for b = ξ.1 ξ ∈ C+ and G∗
s(b) a diagonal matrix

of complex analytic functions. Theorem 4.2.4 of Chapter 4 will guarantee us that there is

a semicircular random variable s with first moment D and variance η so that G∗
s(b) is the

restriction of the operator-valued Cauchy transform of s to C+.1.

The first two propositions deal with the finite dimensional matrix valued representations

of the Cauchy transform.

Proposition 5.1.1. Let µ be a probability measure with compact support in R. Then there

exists a sequence sn (n ≥ 1) of self-adjoint operator valued semicircular random variables with

associated operator valued Cauchy transforms G∗
sn ∶ Mn(C) → Mn(C) (n ≥ 1) such that the

Cauchy transform Gµ ∶ C+ → C− is represented as:

Gµ(ξ) = lim
n→∞

⟨G∗
sn(ξ.1n)en, en⟩`n2 Im(ξ) > 0.

Proof. Let

Gµ(ξ) =
1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱ − ωn−1

ξ − αn −
ωn

ξ − αn+1−⋱

be the continued fraction representation of Gµ. Fix positive integer n ≥ 1, then define b = ξ.1n,

Dn = (αn+1−kδkl)nk,l=1 and the completely positive map ηn via :

ηn ∶Mn(C)→Mn(C)

ηn((akl)nk,l=1) = (ω
1
2

n−k+1δk(l+1))nk,l=1(akl)nk,l=1(ω
1
2

n−kδ(k+1)l)nk,l=1.

Then, for the self-adjoint semicircular element sn with operator valued Cauchy transform

G∗
sn satisfying the functional equation:

bG∗
sn(b) = 1 + (Dn + ηn(G∗

sn(b)))G
∗
sn(b),
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we have G∗
sn(b) = (gn,k(ξ)δkl)nk,l=1 where in which:

gn,k(ξ) =
1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱ − ωk−1

ξ − αk

1 ≤ k ≤ n Im(ξ) > 0.

Accordingly:

Gµ(ξ) = lim
n→∞

gn,n(ξ)

= lim
n→∞

⟨G∗
sn(ξ.1n)en, en⟩`n2 Im(ξ) > 0.

Proposition 5.1.2. Let µ be a probability measure with compact support in R. Then there

exists a sequence sn (n ≥ 1) of self-adjoint operator valued semicircular random variables with

associated operator valued Cauchy transforms G∗
sn ∶ Mn(C) → Mn(C) (n ≥ 1) such that the

Cauchy transform Gµ ∶ C+ → C− is represented as:

Gµ(ξ) = lim
n→∞

⟨G∗
sn(ξ.1n)e1, e1⟩`n2 Im(ξ) > 0.

Proof. Let

Gµ(ξ) =
1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱ − ωn−1

ξ − αn −
ωn

ξ − αn+1−⋱
be the continued fraction representation of Gµ. Fix positive integer n ≥ 1, then define b = ξ.1n,

Dn = (αkδkl)nk,l=1 and the completely positive map ηn via :

ηn ∶Mn(C)→Mn(C)

ηn((akl)nk,l=1) = (ω
1
2

k δ(k+1)l)nk,l=1(akl)nk,l=1(ω
1
2

k−1δk(l+1))nk,l=1.

Then, for the self-adjoint semicircular element sn with operator valued Cauchy transform

G∗
sn satisfying the functional equation:

bG∗
sn(b) = 1 + (Dn + ηn(G∗

sn(b)))G
∗
sn(b),
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we have G∗
sn(b) = (gn,n−k+1(ξ)δkl)nk,l=1 where in which:

gn,n−k+1(ξ) =
1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱ − ωn−k+1

ξ − αn−k+1

1 ≤ k ≤ n Im(ξ) > 0.

Accordingly:

Gµ(ξ) = lim
n→∞

gn,n(ξ)

= lim
n→∞

⟨G∗
sn(ξ.1n)e1, e1⟩`n2 Im(ξ) > 0.

The following theorem deals with the infinite dimensional matrix valued representation

of the Cauchy transform. Here, we denote by B(`2(N)) the space of bounded operators on

the separable Hilbert space `2(N), and we consider the orthonormal basis {en}∞n=1 of `2(N)

given by en = {δmn}∞m=1 (n ≥ 1).

Theorem 5.1.3. Let µ be a compactly supported probability measure in R. Then there exist a

self-adjoint B(`2(N))−valued semicircular random variable s and an state ρ ∶ B(`2(N)) → C

given by ρ(T ) = ⟨T (e1), e1⟩`2(N) such that the Cauchy transform Gµ ∶ C+ → C− is represented

as:

Gµ(ξ) = ρ(G∗
s(ξ.1)) Imξ > 0.

Proof. Let

Gµ(ξ) =
1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱ − ωn−1

ξ − αn −
ωn

ξ − αn+1−⋱
be the continued fraction representation of Gµ. Define b = ξ.1 ∈ B(`2(N)), D = (αkδkl)∞k,l=1 ∈

B(`2(N)), and the completely positive map η is given by [9, Theorem 4.1]:

η ∶ B(`2(N))→ B(`2(N))

η((akl)∞k,l=1) = (ω
1
2

k δ(k+1)l)∞k,l=1(akl)∞k,l=1(ω
1
2

k−1δk(l+1))∞k,l=1.
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Note that both D and η are bounded in their respected norms; in fact using equation (2.1)

of Chapter 2 we have:

sup
m

(∣αm∣ + ωm) = sup
m

(∣∫
R
t.p2

m−1(t)dµ(t)∣ + ∫
R
t.pm(t)pm−1(t)dµ(t))

≤ sup
m

(∣ sup
t∈Supp(µ)

∣t∣(∫
R
p2
m(t)dµ(t))∣ + sup

t∈Supp(µ)
∣t∣(∫

R
∣pm(t)pm−1(t)∣dµ(t)))

≤ sup
m

( sup
t∈Supp(µ)

∣t∣ + sup
t∈Supp(µ)

∣t∣(∫
R
p2
m(t)dµ(t)∫

R
p2
m−1(t)dµ(t))

1
2)

≤ 2 sup
t∈Supp(µ)

∣t∣

< ∞.

Now, for the self-adjoint semicircular element s with operator valued Cauchy transform G∗
s

satisfying the functional equation:

bG∗
s(b) = 1 + (D + η(G∗

s(b)))G∗
s(b),

we have

G∗
s(b) = (xklδkl)∞k,l=1

where in which:

xnn =
1

ξ − αn −
ωn

ξ − αn+1 −
ωn+1

ξ − αn+2 −
ωn+2

ξ − αn+3 −
ωn+3

ξ − αn+4−⋱

n ≥ 1.

Consequently, for the state ρ ∶ B(`2(N))→ C defined by:

ρ(T ) = ⟨T (e1), e1⟩`2(N)

the assertion follows.

5.2 Atoms of Distributions of Matrix-Valued Semicir-

cular Random Variables

Let A be a unital C∗-algebra, B be a unital C∗-subalgebra of n × n complex matrices,

EB ∶ A → B be a conditional expectation, and G∗ ∶ H+(Mn(C)) → H−(Mn(C)) be the
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operator valued Cauchy transform of the self- adjoint semicircular random variable s ∈ A.

Define a map G∶C+ → C− via:

G(ξ) = trn(G∗(ξ.1)) = trn ○EB(
1

ξ.1 − s
),

where trn(.) denotes the normalized trace on n × n complex matrices. Referring to the note

after theorem 2.1.4 of Chapter 2 for the special case of positive normal trace τ ∶ A → C

defined by τ(a) = trn ○EB(a), we observe that there is a probability measure µ = µs on R,

which we call a semicircular distribution, such that:

trn(G∗(ξ.1)) = G(ξ) = Gµ(ξ) = ∫
R

dµ(t)
ξ − t

ξ ∈ C+.

Note that in the functional equation (5.1) if n = 2, D = 0 and η(a) = a, then using

dµ(t) = −1
π limy↓0 ImGµ(t + iy) it follows that dµ(t) = 1

2π

√
4 − t2 ∣t∣ ≤ 2, the Wigner semi-

circular distribution.

Proposition 5.2.1. Let G∗ ∶ H+(Mn(C)) → H−(Mn(C)) be the operator-valued Cauchy

transform satisfying the functional equation bG∗(b) = 1 + η(G∗(b))G∗(b), where in which

b = ξ.1 ∈Mn(C), and the completely positive map η is given by:

η ∶Mn(C)→Mn(C)

η(a) =
n2

∑
j=1

ajaa
∗
j aja

∗
j = a∗jaj (1 ≤ j ≤ n2), aj1aj2 = aj2aj1 (1 ≤ j1, j2 ≤ n2).

Then:

(i) the associated probability measure µ to G∗ has no atoms if and only if the matrix η(1) is

invertible,

(ii) the only possible atom of the associated probability measure µ to G∗ is x = 0 with possible

values k
n (1 ≤ k ≤ n).

Proof. Let aj = (aj,kl)nk,l=1 for (1 ≤ j ≤ n2) and G∗(b) = (xkl)nk,l=1. Since all the matrices

aj (1 ≤ j ≤ n2) are normal and commute with each other, there is an unitary matrix u =

(ukl)nk,l=1 ∈Mn(C) such that:

(au)j ∶= u∗aju = (αj,kδkl)nk,l=1 1 ≤ j ≤ n2.
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Also:

G∗∗
u (b) ∶= u∗G∗(b)u = (x′kl)nk,l=1

where in which x
′

kl = x
′

kl(us,t, xs,t ∶ 1 ≤ s, t ≤ n). Since the matrix u is unitary, it follows that:

trn(G∗(b)) = trn(G∗∗
u (b)) = ∑

n
k=1 x

′

kk

n
. (5.2)

Besides:

bG∗∗
u (b) = u∗(bG∗(b))u = u∗(1 + η(G∗(b))G∗(b))u

= 1 + u∗(
n2

∑
j=1

ajG
∗(b)a∗jG∗(b))u

= 1 +
n2

∑
j=1

(u∗aju)(u∗G∗(b)u)(u∗aju)∗(u∗G∗(b)u)

= 1 +
n2

∑
j=1

(au)jG∗∗
u (b)(au)∗jG∗∗

u (b). (5.3)

Next, we notice that:

u∗η(1)u =
n2

∑
j=1

(u∗aju)(u∗a∗ju) =
n2

∑
j=1

(au)j(au)∗j = ((
n2

∑
j=1

∣αj,k∣2)δkl)
n

k,l=1
,

and by defining W ∶= {k ∈ {1,2,⋯, n} ∶ ∑n2

j=1 ∣αj,k∣2 = 0} it follows that η(1) is invertible if and

only if W = φ.

To find trn(G∗(b)) in terms of b, using equations (5.2) and (5.3) it is sufficient to find

trn(G∗∗
u (b)) in terms of b or equivalently x

′

kk (1 ≤ k ≤ n) in terms of ξ. For that, substituting
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the introduced matrices in the equation (5.3), we have that:

(ξx′k,l)nk,l=1 = (ξδk,l)nk,l=1(x
′

k,l)nk,l=1

= bG∗∗
u (b)

= 1 +
n2

∑
j=1

(au)jG∗∗
u (b)(au)∗jG∗∗

u (b)

= 1 +
n2

∑
j=1

(αj,kδkl)nk,l=1(x
′

kl)nk,l=1(αj,kδkl)nk,l=1(x
′

kl)nk,l=1

= 1 +
n2

∑
j=1

(αj,kx
′

kl)nk,l=1(αj,kx
′

kl)nk,l=1

= 1 +
n2

∑
j=1

(
n

∑
s=1

αj,kαj,sx
′

ksx
′

sl)
n

k,l=1

= (δk,l)nk,l=1 + (
n

∑
s=1

n2

∑
j=1

αj,kαj,sx
′

ksx
′

sl)
n

k,l=1

= (δk,l +
n

∑
s=1

n2

∑
j=1

αj,kαj,sx
′

ksx
′

sl)
n

k,l=1
,

yielding the following system of n2 equations:

(
n2

∑
j=1

∣αj,1∣2)x
′

11

2 +
n

∑
s=2

(
n2

∑
j=1

αj,1αj,s)x
′

1sx
′

s1 − ξx
′

11 + 1 = 0

n

∑
s=1

(
n2

∑
j=1

αj,1αj,s)x
′

1sx
′

s2 − ξx
′

12 = 0

⋮
n

∑
s=1

(
n2

∑
j=1

αj,1αj,s)x
′

1sx
′

sn − ξx
′

1n = 0

⋮
n

∑
s=1

(
n2

∑
j=1

αj,kαj,s)x
′

ksx
′

s1 − ξx
′

k1 = 0

⋮
k−1

∑
s=1

(
n2

∑
j=1

αj,kαj,s)x
′

ksx
′

sk + (
n2

∑
j=1

∣αj,k∣2)x
′

kk

2 +
n

∑
s=k+1

(
n2

∑
j=1

αj,kαj,s)x
′

ksx
′

sk − ξx
′

kk + 1 = 0

⋮
n

∑
s=1

(
n2

∑
j=1

αj,kαj,s)x
′

ksx
′

sn − ξx
′

kn = 0
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⋮
n

∑
s=1

(
n2

∑
j=1

αj,nαj,s)x
′

nsx
′

s1 − ξx
′

n1 = 0

⋮
n

∑
s=1

(
n2

∑
j=1

αj,nαj,s)x
′

nsx
′

s(n−1) − ξx
′

n(n−1) = 0

⋮
n−1

∑
s=1

(
n2

∑
j=1

αj,nαj,s)x
′

nsx
′

sn + (
n2

∑
j=1

∣αj,n∣2)x
′

nn

2 − ξx′nn + 1 = 0.

(5.4)

Solving the system of equations (5.4) it follows that:

x
′

kl = 0 (1 ≤ k ≠ l ≤ n)

and

x
′

kk =
1

ξ
χW (k) +

ξ −
√
ξ2 − 4(∑n2

j=1 ∣αj,k∣2)

2(∑n2

j=1 ∣αj,k∣2)
(1 − χW (k)) 1 ≤ k ≤ n,

is one of possible solutions, yielding:

trn(G∗(b)) = 1

n
(∣W ∣
ξ

+ ∑
k∉W

ξ −
√
ξ2 − 4(∑n2

j=1 ∣αj,k∣2)

2(∑n2

j=1 ∣αj,k∣2)
).

A simple calculation shows that

lim
ξ→∞

ξ.trn(G∗(ξ.1)) = 1, Imξ > 0

where we put ξ = yi (y > 0) and let y → +∞. It follows that the given solution x
′

kl (1 ≤ k, l ≤ n)

to (5.4) is the only acceptable one. Next, to find the atoms of a probability measure µ such

that

trn(G∗(b)) = ∫
R

1

ξ − t
dµ(t),

fix −∞ < x <∞, then:

µ({x}) = lim
Γα(x)∋ξ→x

(ξ − x)∫
R

1

ξ − t
dµ(t) = lim

Γα(x)∋ξ→x
(ξ − x)trn(G∗(ξ.1))

= lim
y↓0

(iy)trn(G∗((x + iy).1)) = 0 if x ≠ 0,
∣W ∣
n

if x = 0.
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Thus, µ has no atoms if and only if W = φ or equivalently η(1) is invertible, proving (i).

In addition, the number of possible atoms of µ is at most one at x = 0 with possible values

∣W ∣
n (1 ≤ ∣W ∣ ≤ n), proving (ii).

Remark 5.2.2. In the above Proposition, the assumption of normality of the matrices aj (1 ≤

j ≤ n2) is necessary. To see this, let n = 2, 0 ≠ ∣α∣ ≠ ∣β∣ ≠ 0 and define:

a1 =
⎛
⎜
⎝

0 α

β 0

⎞
⎟
⎠
, aj = 0 (2 ≤ j ≤ 4).

Then, a1a∗1 =
⎛
⎜
⎝

∣α∣2 0

0 ∣β∣2

⎞
⎟
⎠
≠
⎛
⎜
⎝

∣β∣2 0

0 ∣α∣2

⎞
⎟
⎠
= a∗1a1 and η(1) = a1a∗1 is invertible. Let

b = ξ1 =
⎛
⎜
⎝

ξ 0

0 ξ

⎞
⎟
⎠

and G∗(b) =
⎛
⎜
⎝

z v

y w

⎞
⎟
⎠
.

Under these conditions we are interested in finding G(b) in terms of b or finding z, v, y,w in

terms of ξ. Now, substituting above matrices in the given equation, we have that:

⎛
⎜
⎝

ξz ξv

ξy ξw

⎞
⎟
⎠

=
⎛
⎜
⎝

ξ 0

0 ξ

⎞
⎟
⎠

⎛
⎜
⎝

z v

y w

⎞
⎟
⎠

= b.G∗(b)

= 1 + η(G∗(b))G∗(b)

=
⎛
⎜
⎝

1 0

0 1

⎞
⎟
⎠
+
⎛
⎜
⎝

0 α

β 0

⎞
⎟
⎠

⎛
⎜
⎝

z v

y w

⎞
⎟
⎠

⎛
⎜
⎝

0 β

α 0

⎞
⎟
⎠

⎛
⎜
⎝

z v

y w

⎞
⎟
⎠

=
⎛
⎜
⎝

1 0

0 1

⎞
⎟
⎠
+
⎛
⎜
⎝

α.y α.w

β.z β.v

⎞
⎟
⎠

⎛
⎜
⎝

β.y β.w

α.z α.v

⎞
⎟
⎠

=
⎛
⎜
⎝

1 0

0 1

⎞
⎟
⎠
+
⎛
⎜
⎝

α.β.y2 + ∣α∣2.w.z α.β.y.w + ∣α∣2.w.v

∣β∣2.z.y + β.α.v.z ∣β∣2.z.w + β.α.v2

⎞
⎟
⎠

=
⎛
⎜
⎝

α.β.y2 + ∣α∣2.w.z + 1 α.β.y.w + ∣α∣2.w.v

∣β∣2.z.y + β.α.v.z ∣β∣2.z.w + β.α.v2 + 1

⎞
⎟
⎠
.
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Consequently, we have the following equalities:

α.β.y2 + ∣α∣2.w.z + 1 − ξz = 0

α.β.y.w + ∣α∣2.w.v − ξv = 0

∣β∣2.z.y + β.α.v.z − ξy = 0

∣β∣2.z.w + β.α.v2 + 1 − ξw = 0.

Let v = 0 = y, to obtain:

∣α∣2.w.z − ξz + 1 = 0

∣β∣2.z.w − ξw + 1 = 0,

yielding:

z =
ξ2 − ∣α∣2 + ∣β∣2 ±

√
(±∣α∣2 + ∣β∣2 − ξ2)2 − 4.∣α∣2ξ2

2ξ∣β∣2

and,

w =
ξ2 + ∣α∣2 − ∣β∣2 ±

√
(−∣α∣2 + ∣β∣2 − ξ2)2 − 4.∣α∣2ξ2

2ξ∣α∣2
.

Thus,

tr2(G∗(b)) = z

2
+ w

2

=
ξ2 − ∣α∣2 + ∣β∣2 ±

√
(−∣α∣2 + ∣β∣2 − ξ2)2 − 4.∣α∣2ξ2

4ξ∣β∣2

+
ξ2 + ∣α∣2 − ∣β∣2 ±

√
(−∣α∣2 + ∣β∣2 − ξ2)2 − 4.∣α∣2ξ2

4ξ∣α∣2

=
∣α∣2ξ2 − ∣α∣2∣α∣2 + ∣α∣2∣β∣2 ± ∣α∣2

√
(−∣α∣2 + ∣β∣2 − ξ2)2 − 4.∣α∣2ξ2

4ξ∣β∣2∣α∣2

+
∣β∣2ξ2 + ∣β∣2∣α∣2 − ∣β∣2∣β∣2 ± ∣β∣2

√
(−∣α∣2 + ∣β∣2 − ξ2)2 − 4.∣α∣2ξ2

4ξ∣α∣2∣β∣2

=
(∣α∣2 + ∣β∣2)(ξ2 ±

√
(−∣α∣2 + ∣β∣2 − ξ2)2 − 4.∣α∣2ξ2) − (∣α∣2 − ∣β∣2)2

4ξ∣α∣2∣β∣2
.

Now, to verify the condition

lim
ξ→∞

ξ.tr2(G∗(ξ.1)) = 1 Imξ > 0,
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we put ξ = yi (y > 0) and let y → +∞. It follows that the positive sign is acceptable. Next,

we are looking for a probability measure µ such that

tr2(G∗(b)) = ∫
R

1

ξ − t
dµ(t).

To find the atoms of µ fix −∞ < x <∞, then:

µ({x}) = lim
Γα(x)∋ξ→x

(ξ − x)∫
R

1

ξ − t
dµ(t) = lim

Γα(x)∋ξ→x
(ξ − x)tr2(G∗(ξ.1))

= lim
y↓0

(iy)tr2(G∗((x + iy).1)) = lim
y↓0

iy

4(x + iy)∣α∣2∣β∣2
×
⎛
⎝
(∣α∣2 + ∣β∣2)

((x + iy)2 +
√

(−∣α∣2 + ∣β∣2 − (x + iy)2)2 − 4.∣α∣2(x + iy)2) − (∣α∣2 − ∣β∣2)2
⎞
⎠

= 0 if (x ≠ 0), 1

2
(1 − ∣β

α
∣2sgn(1−∣

β
α
∣)) if (x = 0).

◻

Theorem 5.2.3. Let G∗
s ∶ H+(Mn(C)) → H−(Mn(C)) be the operator valued Cauchy trans-

form satisfying the functional equation bG∗
s(b) = 1 + η(G∗

s(b))G∗
s(b), b ∈ H+(Mn(C)), where

η ∶ Mn(C) → Mn(C) is a nilpotent completely positive map. Then the associated probability

measure µ to G∗
s has at least one atom .

Proof. Let η,⋯, ηm−1 ≠ 0 and ηm = 0, for some m ≥ 1. Writing the functional equation in the

form of b −G∗
s(b)

−1 = η(G∗
s(b)) for ∥b−1∥ <<∞ it follows that:

ηm−1(b −G∗
s(b)

−1) = ηm(G∗
s(b)) = 0 Im(b) > 0, ∥b−1∥ <<∞.

Now, if ker(ηm−1) = 0, then G∗
s(b) = b−1 and it follows that

µ({0}) = lim
Γα(0)∋ξ→0

(ξ − 0)∫
R

1

ξ − t
dµ(t) = lim

Γα(0)∋ξ→0
(ξ − 0)trn(G∗

s(ξ.1))

= lim
y↓0

(iy)trn(G∗
s(iy.1)) = lim

y↓0
(iy)( 1

iy
)

= 1,

proving the assertion. Hence, we assume ker(ηm−1) ≠ 0. Pick 0 ≠ c ∈ ker(ηm−1) ∩M+
n (C) with

∥c∥ = 1, then by the Schwarz inequality for completely positive maps [9, p. 40], it follows

that:

ηm−1(c 1
2n )∗ηm−1(c 1

2n ) ≤ ∥ηm−1(1)∥ηm−1(c
1

2n−1 ) n ≥ 1,
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and by induction we conclude that ηm−1(c 1
2n ) = 0 (n ≥ 1). By defining:

p ∶=s.o.t lim
n→∞

c
1
2n ,

it follows that p is a projection in ker(ηm−1).

Claim (1): There exists a unique projection 1 ≠ q ∈ ker(ηm−1) such that for any projection

p ∈ ker(ηm−1) we have: p ≤ q.

We showed that there is at least one projection p in ker(ηm−1). Let p1, p2 be two projections

in ker(ηm−1). Then :

ηm−1((p1 + p2)
1
2n )∗ηm−1(p1 + p2

1
2n ) ≤ ∥ηm−1(1)∥ηm−1((p1 + p2)

1
2n−1 ) n ≥ 1,

and by induction it follows that ηm−1((p1+p2)
1
2n ) = 0 (n ≥ 1). Now, define p3 ∶=s.o.t limn→∞(p1+

p2)
1
2n , then p3 is a projection in ker(ηm−1). On the other hand

(p1 + p2)
1
2n ≥ p1, p2 (n ≥ 1),

yielding p3 ≥ p1, p2. Next, using the maximality argument and by repeating this process there

will be a unique maximal projection q in ker(ηm−1) such that for any other projection p in

it, we have p ≤ q. Finally, if q = 1, then using the same Schwarz inequality as above, and

the canonical decomposition of elements of Mn(C) into its positive elements it follows that

ηm−1 = 0, a contradiction.

Claim(2): For any 0 ≠ c ∈ ker(ηm−1) ∩M+
n (C), we have cq = qc = c.

Indeed, since c ∈M+
n (C), by spectral theorem we have:

c =
N

∑
k=1

λkpk

where the projections pk’s satisfy ∑N
k=1 pk = 1, pk1pk2 = 0 (1 ≤ k1 ≠ k2 ≤ N) and λk ≥ 0 (1 ≤

k ≤ N). Now, define:

r ∶=s.o.t lim
n→∞

c
1
2n .
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Then it follows that r = ∑λk≠0 pk, yielding pk ≤ r (λk ≠ 0). On the other hand, by definition

of q we have r ≤ q and hence pk ≤ q (λk ≠ 0). But all of pk ≤ q (λk ≠ 0), and q are projections

and, consequently, pkq = qpk = pk (λk ≠ 0). Now, by multiplying all sides by λk (1 ≤ k ≤ N),

and taking summation the claim is proved.

Next, take c0 = 1
i (G∗

s(b)
−1−b) where b = iy.1 (y > 0). Then using the fact that s is centered,

EB(s2m−1) = 0 m ≥ 1, by

Re(G∗
s(b)) = Re(

∞
∑
m=0

b−1EB((sb−1)m)) = Re(
∞
∑
m=0

im+1(−y)m+1EB(sm))

=
∞
∑
m=1

(−y2)mEB(s2m−1) = 0, y > ∥s∥

it follows that

G∗
s(b)

−1 − b = (Re(G∗
s(b)) + i.Im(G∗

s(b)))
−1

− b = i.( − Im(G∗
s(b))

−1 − b
i
),

and, hence c0 = 1
i (G∗

s(b)
−1 − b) = Im((G∗

s(b)
−1 − b)) ≥ 0. Now, by claim (2) for c = c0 we have

that:

G∗
s(b)(1 − q) = b−1(1 − q) = (1 − q)G∗

s(b) and G∗
s(b)q = qG∗

s(b),

and hence:

G∗
s(b) = (1 − q)G∗

s(b)(1 − q) + qG∗
s(b)q

= b−1(1 − q) + qG∗
s(b)q b = iy.1 (y > 0), ∥b−1∥ <<∞.

Now, applying analytic continution for the complex function trn ○ G∗
s ∣C+.1 ∶ C+ → C− we

conclude that:

trn ○G∗
s(ξ.1) = trn(ξ−1(1 − q) + qG∗

s(ξ.1)q) Imξ > 0,

and, consequently:

µ({0}) = lim
Γα(0)∋ξ→0

(ξ − 0)∫
R

1

ξ − t
dµ(t) = lim

Γα(0)∋ξ→0
(ξ − 0)trn(G∗

s(ξ.1))

= lim
y↓0

(iy)trn((iy)−1(1 − q) + qG∗
s(iy.1)q) = trn(1 − q)

> 0,

completing the proof.
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Before stating a more concrete and special case of the above theorem, we need a lemma:

Lemma 5.2.4. Let η be a completely positive map defined by

η ∶Mn(C)→Mn(C)

η(a) =
n2

∑
j=1

ajaa
∗
j aj ∈Mn(C) (1 ≤ j ≤ n2).

Then:

(i) if the map η is nilpotent, then all matrices aj (1 ≤ j ≤ n2) are nilpotent,

(ii) if all matrices aj (1 ≤ j ≤ n2) are nilpotent and commute with each other, then the map

η is nilpotent.

Proof. (i) Let ηm = 0 for some m ≥ 1. Then, it follows that:

∑
1≤j1,⋯,jm≤n2

(aj1⋯ajma)(aj1⋯ajma)∗ = ∑
1≤j1,⋯,jm≤n2

(aj1⋯ajm)aa∗(a∗jm⋯a
∗
j1)

=
n2

∑
j1=1

⋯
n2

∑
jm=1

(aj1⋯ajm)aa∗(a∗jm⋯a
∗
j1)

=
n2

∑
j1=1

aj1(⋯(
n2

∑
jm=1

ajmaa
∗a∗jm)⋯)a∗j1

= ηm(aa∗)

= 0

for all a ∈Mn(C). Consequently, by positivity of all elements of the form (aj1⋯ajma)(aj1⋯ajma)∗

it follows that

(aj1⋯ajma)(aj1⋯ajma)∗ = 0 (1 ≤ j1,⋯, jm ≤ n2),

for all a ∈Mn(C). On the other hand , Mn(C) is a C∗ algebra and hence:

aj1⋯ajma = 0 (1 ≤ j1,⋯, jm ≤ n2),

for all a ∈Mn(C), or equivalently:

aj1⋯ajm = 0 (1 ≤ j1,⋯, jm ≤ n2).
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Now, take j1 = ⋯ = jm = j where 1 ≤ j ≤ n2 and the desired result is proved.

(ii) Since aj (1 ≤ j ≤ n2) are nilpotent, it follows that anj = 0 (1 ≤ j ≤ n2). Put m = n3,

then by commutativity of the these matrices it follows that:

aj1⋯ajm =
n−1

∏
p=0

n2

∏
q=1

ajpn2+q = a
n
j(j1,⋯,jm)

∏ ∏
jpn2+q≠j(j1,⋯,jm)

ajpn2+q = 0,

for all 1 ≤ j1,⋯, jm ≤ n2. Consequently,

ηm(a) = ∑
1≤j1,⋯,jm≤n2

(aj1⋯ajm)a(a∗jm⋯a
∗
j1) = 0

for all a ∈Mn(C).

Considering above lemma , for a category of nilpotent η′s we have:

Corollary 5.2.5. Let G∗ ∶ H+(Mn(C)) → H−(Mn(C)) be the operator valued Cauchy trans-

form satisfying the functional equation bG∗(b) = 1+ η(G∗(b))G∗(b), b ∈H+(Mn(C)), and the

completely positive map η is given by:

η ∶Mn(C)→Mn(C)

η(a) =
n2

∑
j=1

ajaa
∗
j anj = 0 (1 ≤ j ≤ n2), aj1aj2 = aj2aj1 (1 ≤ j1, j2 ≤ n2).

Then the associated probability measure µ to G∗ has at least one atom at x = 0.

Remark 5.2.6. In the above theorem, the converse of the assertion does not hold. To see

this, we refer to Remark 5.2.2.

Remark 5.2.7. In the above theorem, the assumption of nilpotency of the map η is necessary.

To see this, consider the above corollary and let n = 2, ∣α∣ = ∣β∣ ≠ 0 and define:

a1 =
⎛
⎜
⎝

0 α

β 0

⎞
⎟
⎠
, aj = 0 (2 ≤ j ≤ 4).

Then, a2
1 =

⎛
⎜
⎝

αβ 0

0 αβ

⎞
⎟
⎠
≠ 0. Let

b = ξ1 =
⎛
⎜
⎝

ξ 0

0 ξ

⎞
⎟
⎠

and G∗(b) =
⎛
⎜
⎝

z v

y w

⎞
⎟
⎠
.
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Then, similar to computations of the previous remark, we conclude that:

w = z =
ξ −

√
ξ2 − 4∣α∣2

2∣α∣2
.

Thus,

tr2(G∗(b)) = z +w
2

=
ξ −

√
ξ2 − 4∣α∣2

2∣α∣2
.

This is the Cauchy transform of the standard semicircular law of Wigner which has no atom.

◻

Remark 5.2.8. In the above theorem , for given nilpotent map η the associated probability

measure to the operator valued Cauchy transform G∗(b) may not be purely atomic. To see

this, let n = 3 and consider the following completely positive map:

η ∶M3(C)→M3(C)

η(

⎛
⎜⎜⎜⎜
⎝

r s t

u v w

x y z

⎞
⎟⎟⎟⎟
⎠

) =

⎛
⎜⎜⎜⎜
⎝

0 1 1

0 0 1

0 0 0

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

r s t

u v w

x y z

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

0 1 1

0 0 1

0 0 0

⎞
⎟⎟⎟⎟
⎠

∗

,

where in which η3 = 0. Replacing b = ξ.1 and G∗(b) =

⎛
⎜⎜⎜⎜
⎝

r s t

u v w

x y z

⎞
⎟⎟⎟⎟
⎠

in the given functional

equation, it follows that:

⎛
⎜⎜⎜⎜
⎝

ξr ξs ξt

ξu ξv ξw

ξx ξy ξz

⎞
⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜
⎝

ξ 0 0

0 ξ 0

0 0 ξ

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

r s t

u v w

x y z

⎞
⎟⎟⎟⎟
⎠

= bG∗(b) = 1 + η(G∗(b)).G∗(b)

=

⎛
⎜⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜
⎝

0 1 1

0 0 1

0 0 0

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

r s t

u v w

x y z

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

0 0 0

1 0 0

1 1 0

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

r s t

u v w

x y z

⎞
⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜
⎝

u + x v + y w + z

x y z

0 0 0

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

0 0 0

r s t

r + u s + v t +w

⎞
⎟⎟⎟⎟
⎠

69



=
⎛
⎜⎜⎜
⎝

1 + (v + y)r + (w + z)(r + u) (v + y)s + (w + z)(s + v) (v + y)t + (w + z)(t +w)
yr + z(r + u) 1 + ys + z(s + v) yt + z(t +w)

0 0 1

⎞
⎟⎟⎟
⎠
,

yielding the following system of equations:

vr + yr +wr +wu + zr + zu + 1 − ξ.r = 0

vs + ys +ws +wv + zs + zv − ξ.s = 0

vt + yt +wt +w2 + zt + zw − ξ.t = 0

yr + zr + zu − ξ.u = 0

ys + zs + zv − ξ.v + 1 = 0

yt + zt + zw − ξ.w = 0

0 − ξ.x = 0

0 − ξ.y = 0

1 − ξ.z = 0.

Thus, x = y = 0 and z = 1
ξ . Putting these values in above system of equations and considering

the following Groebner basis program in Mathematica (with ξ replaced by c)

Clear[c, r, s, t, u, v,w, x, y, z];

poly = {v∗r+w∗r+w∗u+z∗r+z∗u+1−c∗r, v∗s+w∗s+w∗v+z∗s+z∗v−c∗s, v∗ t+w∗

t+w2 + z ∗ t+ z ∗w− c∗ t, z ∗ r+ z ∗u− c∗u, z ∗ s+ z ∗ v − c∗ v +1, z ∗ t+ z ∗w− c∗w,1− c∗ z};

B = GroebnerBasis[poly,{s, t,w, u, x, y, r, v, z}]

we obtain the following output:

{−1 + cz,−1 + c2 + cv − c3v − v2 + c2v2,−c − v + c2v − cv2 + z + v2z,−c + c3 + r − v + 2c2v − c4v, c +

u + v − c2v,w, t, c + s + v − c2v}.

It follows that:

z = 1

ξ
v =

ξ −
√
ξ2 − 4

2
r = (ξ2 − 1)(

ξ −
√
ξ2 − 4

2
)3.
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Hence,

tr3(G∗(b)) = 1

3
(1

ξ
+
ξ −

√
ξ2 − 4

2
+ (ξ2 − 1)(

ξ −
√
ξ2 − 4

2
)3),

and a simple calculation shows that

lim
ξ→∞

ξ.tr3(G∗(ξ.1)) = 1 Imξ > 0,

where we put ξ = yi (y > 0) and let y → +∞. It follows that the given values for z, v and r

are acceptable. Next, to find the atoms of a probability measure µ such that

tr3(G∗(b)) = ∫
R

1

ξ − t
dµ(t),

fix −∞ < x′ <∞, then:

µ({x′}) = lim
Γα(x′)∋ξ→x′

(ξ − x′)∫
R

1

ξ − t
dµ(t) = lim

Γα(x′)∋ξ→x′
(ξ − x′)tr3(G∗(ξ.1))

= lim
y↓0

(iy)tr3(G∗((x′ + iy).1)) = 0 if x
′ ≠ 0,

1

3
if x

′ = 0,

showing that µ is not purely atomic.

◻

Remark 5.2.9. Any probability measure µ on R whose support is a finite set can be real-

ized as a component of a (scalar-valued) semicircular distribution µs of some matrix-valued

semicircular random variable s with nilpotent variance. (If µ and ν are probability measures

on R, we shall say that ν is a component of µ if there exists a finite family {ν1, . . . , νn} so

that ν ∈ {ν1, . . . , νn} and µ = ∑n
j=1αjνj for some α1, . . . , αn ∈ [0,1] satisfying α1 +⋯+αn = 1.)

Indeed, assume ∣Supp(µ)∣ = n <∞, and let

Gµ(ξ) =
1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱ξ − αn−1 −
ωn−1

ξ − αn
be the continued fraction representation of Gµ. Then as in the proof of Proposition 5.1.2,

define b = ξ.1n, Dn = (αkδkl)nk,l=1 and the nilpotent completely positive map ηn via:

ηn ∶Mn(C)→Mn(C)

ηn((akl)nk,l=1) = (ω
1
2

k δ(k+1)l)nk,l=1(akl)nk,l=1(ω
1
2

k−1δk(l+1))nk,l=1.
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Then for the self-adjoint semicircular element sn with operator-valued Cauchy transform G∗
sn

satisfying the functional equation:

bG∗
sn(b) = 1 + (Dn + ηn(G∗

sn(b)))G
∗
sn(b),

we have

Gµ(ξ) = ⟨G∗
sn(ξ.1n)e1, e1⟩`n2 Imξ > 0.

Next, let µk (1 ≤ k ≤ n) be a finite purely atomic probability measure on R with associated

Cauchy transform:

Gµn−(k−1)(ξ) =
1

ξ − α1 −
ω1

ξ − α2 −
ω2

ξ − α3−⋱ξ − αk−1 −
ωk−1

ξ − αk

(1 ≤ k ≤ n).

Note that µ = µ1. Then by proof of Proposition 5.1.2, we have

Gµk(ξ) = ⟨G∗
sn(ξ.1n)ek, ek⟩`n2 (1 ≤ k ≤ n), Imξ > 0.

Consequently, we have:

Gµsn(ξ) = trn(G
∗
sn(ξ.1)) =

1

n

n

∑
k=1

⟨G∗
sn(ξ.1)ek, ek⟩`n2 =

1

n

n

∑
k=1

Gµk(ξ) Imξ > 0,

and by dν(t) = −1
π limy↓0 ImGν(t + iy) it follows that:

µsn =
1

n

n

∑
k=1

µk,

proving the desired result.
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Chapter 6

Summary and Future Work

In this thesis we proved some new results about the distributions of operator-valued semi-

circular random variables.

The first result shows that the Cauchy transform of any compactly supported probabil-

ity measure can be realized as a restriction to scalars of composition of an extremal state

and an operator-valued Cauchy transform of a semicircular random variable with values in

B(H) for some separable Hilbert space H. Moreover, we give a constructive method to find

the mentioned semicircular random variable using the Jacobi coefficients associated to that

given compactly supported probability measure.

The second result deals with the regularity property of distributions of Mn(C)−valued

semicircular random variables. We show that such semicircular distributions have nonzero

discrete part when the associated variance to the semicircular random variable is nilpotent.

It is still an open question to find necessary and sufficient conditions for such semicircular

random variables so that their distributions have nonzero discrete part.

The last result discusses on the covering property of distributions of Mn(C)−valued semi-

circular random variables. Whilst we show that any finitely supported probability measure

can be component of one of them, it still remains an open question to find whether any

compactly supported probability measure is a component of distribution of a semicircular

random variable or not.
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