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ABSTRACT

The operator-valued free central limit theorem and operator-valued semicircular random
variables were first introduced by D. Voiculescu in 1995 as operator-valued free analogues of

the classical central limit theorem and normal random variables, respectively.

In 2007, R. Speicher and others showed that the operator-valued Cauchy transform of the
semicircular distribution satisfies a functional equation involving the variance of the semicir-

cular distribution.

In this thesis, we consider a non-commutative probability space (A, F, B) where in which
A is a unital C*-algebra, B is a C*-subalgebra of A containing its unit and Ep: A - B is
a conditional expectation. For a given B-valued self-adjoint semicircular random variable
s € A with variance 7, it is still an open question under what conditions the distribution
of s has an atomic part. We provide a partial answer in terms of properties of n when B
is the algebra of n x n complex matrices. In addition, we show that for a given compactly
supported probability measure its associated Cauchy transform can be represented in terms
of the operator-valued Cauchy transforms of a sequence of finite dimensional matrix-valued
semicircular random variables in two ways. Finally, we give another representation of its
Cauchy transform in terms of operator-valued Cauchy transform of an infinite dimensional

matrix-valued semicircular random variable.
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CHAPTER 1

INTRODUCTION

This research thesis is divided in four main chapters of which the first three chapters

provide required background for the presented main results in the last chapter.

Chapter 2 begins by introducing the Cauchy transform of a probability measure on R
and studying its key properties. Then it characterizes functions which are Cauchy trans-
forms of a probability measure in terms of simple geometrical and analytical properties. The
chapter continues with dealing with the orthonormal polynomials associated with a proba-
bility measure, Jacobi coefficients, three term recurrence relations and how they relate to the
convergence of the continued fraction expansion of the associated Cauchy transform of the

probability measure. This self-contained chapter follows mainly [10].

Chapter 3 gives an outline of operator-valued free probability theory. It introduces
operator-valued noncommutative probability spaces and random variables. Next, it de-
fines freeness with amalgamation over a subalgebra and discusses some properties of free
random variables. A Fock space type construction provides an important example of free
random variables and allows one to express any operator-valued distribution as the distri-
bution of a canonical random variable belonging to such space. Having this canonical form,
one constructs the R-transform, an operator-valued free analogue of the logarithm of Fourier
transform in classical probability, and proves a free central limit theorem for operator-valued
random variables. The central limit is called the operator-valued free semicircular distribu-
tion and, as in the classical probability case, it is fully described by its first two moments.
Finally, the concept of complete positivity of a unital linear map is introduced and as a

necessary and sufficient condition, the complete positivity property of the second moment of



a semicircular random variable is proved. This self contained chapter follows mainly [13], [14].

Chapter 4 begins by expressing the R—transform in terms of the compositional inverse of
an operator-valued version of the Cauchy transform. Using the characterization of the R-
transform of a semicircular random variable in terms of first moment and variance, one finds
a quadratic functional equation satisfied by the operator-valued Cauchy transform of that
semicircular random variable. While that functional equation may have many solutions, it is
shown that exactly one of them is an operator-valued Cauchy transform. The presentation
of this chapter follows [14], [15], [2], and [5], with the simplification in the proof of the main
result of [5].

Finally, Chapter 5 is dedicated to the presentation and the proof of the main results. First,
it is shown that operator-valued semicircular random variables have a certain universality
property: for given arbitrary compactly supported probability measure p, there is a B(/3)-
valued semicircular random variable s and an extremal state p : B(¢3) — C so that the Cauchy
transform G, equals to the composition of p with the restriction of B(¢;)-valued Cauchy
transform of s to the complex upper half plane, G¥|c+1. Second, it is explored whether
distributions of matrix-valued semicircular random variables can have nontrivial discrete
part. This problem is expressed in the measure theoretic terms. For given M, (C)-valued
semicircular random variable s with symmetric distribution S|, it is investigated whether the
associated probability measure s given by the relation G, (&) = tr, o G:(£.1), & € C* has
an atom. It is shown that this necessarily happens if the variance of s is nilpotent, and an
example is given to show that the converse does not hold. The chapter closes with several

examples clarifying statements of the theorem.



CHAPTER 2
THE CAuUcCHY TRANSFORM AND ITS CONTINUED

FRACTION

This chapter provides some preliminaries used in Chapters 4 and 5. In section 1, the
Cauchy transform is introduced and some of its properties are studied. It is shown that three
of those properties are sufficient to identify a function as a Cauchy transform. In Section 2,
we discuss the idea of continued fractions and give a continued fraction representation of a

category of Cauchy transforms.

2.1 The Cauchy Transform and Its Properties

Definition 2.1.1. Let p be a probability measure on the Borel o-algebra of R . The associ-
ated Cauchy transform G, to p is defined by:

ault)

Gu(ﬁ): R f—t.

Some properties of G, are listed in the following proposition, [7, pp. 51-61]. In the follow-
ing we denote C* = {{ € C|[Im(§) >0}, C- = -C*, and Supp(p) = RNU{U < R|U open, u(U) =
0}.

Proposition 2.1.2. Let G = G, be the Cauchy transform of a compactly supported probabil-

ity measure p on R. Then:

(1) G is analytic on C~\ Supp(u),
(11) If Im(§) >0(<0), then Im(G(£)) <0(>0),
(i43) Hmr (0)se—o00 §-G(&) = 1 where I'y(0) = {£ € C* : |Re(§)| < adm(§)},
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(iv) |G(E)] < Im(&)|!

(v) Im(5gg) 2 Im(§),

(vi) G(&) = G(€), thus G(&) is completely determined by its values on the C*,

(vit) Bimp, (rysemr(§ = 7)G(€) = p({r}) —oo <7< o0,

(viii) For compactly supported p the associated G(&) is analytic around infinity and G(§) =

s t™mdu(t)
Zm:O Jx §m+lf |€| > SuptESupp(u) |t|

Proof. (i) Let & € C~ Supp(p) and r = 3dist(&y, Supp(p)) > 0. Then for any & € B,.(&), the

open disc with center & and radius r, we have ||E£ 50“ <1 for all £ € R, and hence, by uniform

convergence property we have that:

_ o [du(t) du(t)
GO - [ t‘fRf G+ b1

_ ngOI HO dut) - ltiéjg’)mdu(t)

m=0

3 (- [t-armidu) € - e B

(ii) Let Im(§) > 0, then by part (v),

m(G(E) = 3G -T@) = [ (é—gl )a(t)
_ du(t) Im Cdp(t)
- (5)f = (e ) J Gy

Now, let Im(¢) < 0, or Im(€) > 0. Then, by above result, Im(G(€)) < 0 or by part (v),
Im(G(€)) < 0. Hence, Im(G(€)) > 0.

(iii) This is an straightforward result of the Lebesgue convergence theorem.

(iv) This part follows from the following inequality:
dplt) . [ Al

CO1< [0 < [ lm(@ 1m(©) >0
(v) Let f(&) = 7=, £ € C*. Then by part (ii) we have:
e OO | Im(G(O)
IO =Imlgep) = Teer "
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Now, by part (iii), and Lemma 2.1.3 it follows that:

16 =€+ [ g +e

Lot (241)Im(e)
) = TR (m@) 0

and the assertion follows by I m(
(vi) It is trivial.

(vii) For fixed —oo < r < +00, we have:

(€=6©) ~uttr)) = [ (575 =0 ())dnto),

and

E-r
| m(t —00<t<+00,
edm (G X0 ®) =0 et oo

where in which ', (r) = {€ € C* : |Re(&) —r| < alm(&)}. On the other hand, for any £ € T, (r)

we have:

[t =]

((Re(€) -0+ (Im(€)))’}
= Re©l+|Re(©) =1l _
((Re(€) =D+ (Im(©)))’}

Now, the result follows by Lebesgue convergence theorem.

+1

‘E:Z—X{r}(t)’ ’%+1—X{r}(t)‘ﬁ

a+2 —oo<t<+o00.

(viii) This follows from the analyticity of the function

2 le—Lé.td“ ) |%| ) suptesjppm) g
at £ = 0. Moreover,
G@z/i ()" du(®) = > )
R 020 & mo &
for all |¢| > SUD4e Supp(1) It]. =

Now, we show that any Cauchy transform can be identified by the first three mentioned
properties in the Proposition 2.1.2. To begin with the proof, we first need a lemma, [10, pp.
23-26).



Lemma 2.1.3. Let f(§) be analytic in the upper half plane C*, and Im(f(&)) >0 for all
&eCr. Then:

(i) there exists a bounded increasing function V(t) such that:

F(€) = Ag + f du (1) + e,
where A and ¢ are real constants and A >0,
(ii)
lim & = A.

[ (0)3¢—00 &
Proof. (i) Consider an analytic function g(£') in [€'] < 1 with Im(g(¢')) > 0. Then, by

Herglotz’s theoremin Complex Analysis:

21 10
o) =i [ ) e

where ((f) is an increasing bounded function in [0,27]and ¢ is a real constant. Next,

the transformation ¢ = 2 é,é = 21 o maps |€'| < 1 conformally onto Im(&) > 0, whilst the
transformation ¢ = —cot( ), i +§ = ¢ maps the unit circle onto the real axis. Now, taking

9(51) = f(£), it follows that:

£ = 9€) 5
_ @foéjhg dﬁ(€)+zf2: e’ Sd3(0) + fzé; tt?dy(t)+c
where v(t) = B(~2cot ™ t), and § > 0 is small enough. Letting & > 0, we get:
FO) = iS50 - 50) +lem) - pEr) + [ TSt e
- <5<o+> 5(0) + B(em) - Bl )e+ [ 1”fdu<t>+c

completing the proof.

(i) Fix & € To(0) = {£ € C* : 0 < cot™ta < argé < 7 —cot™ta < 7}, then for any

[€0—t]
el >

and consequently | (t—gt;(tel—go)| < |2 for all

—00 <t < +00, we have sin(cot™! &) < (o)

£ e€T,(0). Now, for given € > 0, there is T' > 0 such that:

f(&) = (&) t?+1
| §—&o _A‘:|fR(t—f)(t—fo)dy(t)|g—4ﬂ

t2+1

(t =)t =)

‘du(t) + €,
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and by Lebesgue convergence theorem it follows that |limr, ()s¢-oco % - Al <€, and

consequently

e (52D 1O - F(&)y £E) - (&)
I B O ) e A Sy

yielding the assertion. O]

Theorem 2.1.4. If G(§) is analytic in the upper half plane C* and Im(G(§)) <0, and if in
addition limp_ (0)s¢—o0 §.G(§) = 1, then:

G(E) = [ du(t)

where in which u(t) is a bounded increasing probability measure.

Proof. By Lemma 2.1.3,
_G(E) = Af + fR %dy(t) re

where in which

) -G(§) ) 1
A= Iim —*=- lim .G lim =0.
La(0)36—00 & ra(opgﬁmg (€) Lo (0)36—>00 52
We now have:
2(1+¢2)

E P - [ i) >0)

+ 12

Re(iyG(iy)) = / Y

12 + 12

Since the left hand side tends to a finite limit as y - +00, we see that there exists a constant

M > 0 such that for some yq > 0:

1+¢2
AWdV(t) <M (y > Yo > 0)

Now, for fixed T > 0 we have:

f s dv(t) <M (y>yo>0)
———dv :
lt<r 1 + t2y~2 y=bo

Let y - +oo to obtain

f 1+ 2dv(t) < M (T>0).
[t)<T

7



and, hence, [p1+t2dv(t) < oo implying the existence of the integral [, t2dv(t) and conse-
quently existence of the integral [, tdv(t). Next, by defining the bounded increasing function
w(t) = [ (1+s2)dv(s) we may write:

~G(§) =c- [ tav(ny+ [ T2 du(ﬂ . fci”—(?

th £ fd“(t) ftdu(t)

R
and since in the area [',(0) = {€ € C* : 0 < cot™la < argé < m—cot™ta < 7}, we have
lt]

sin(cot™ta)~! > g it 1s easily seen that:

Lo (Ooren® f—(gthdu(t)'

From above results it follows that:

On the other hand:

1= lim £GE) = lim (—c’g—gfﬂg‘i"f(?): lim —c'§+fRd,u(t),

o (0)3¢—>00 T'a(0)36—>00 T (0)3¢é—>00

yielding ¢’ = 0, and the desired result follows. O]

The Cauchy transform turns out to be important in the context of free probability theory.

The following notion is fundamental in non-commutative probability theory, [12, pp. 5-9].

Definition 2.1.5. A pair (A, 7) consisting of a unital *-algebra A and a linear functional
7:A— C with 7(1) =1, and 7(a*a) >0 for all a € A is called a non-commutative probability

space. Any element a € A is called a non-commutative random variable.

Let (A, 7) be a non-commutative probability space in which A is a von-Neumann algebra,
and 7 is a positive normal trace. For a self adjoint random variable a € A we define the map
G, :Cr - C- via

Gu(©)= 3, T ().

One can easily check that all conditions of the Theorem 2.1.4 hold, and hence there exists a

probability measure p, on R, called the distribution of a, such that:

Ga(€) = fdua(t)'

The spectrum of a € A denoted by o(a) coincides with Supp(fi,).

8



2.2 The Continued Fraction Representation of The Cauchy

Transform

Definition 2.2.1. A sequence {w,}22; is called a Jacobi sequence if either w,, >0 (n > 1) or

there exists a number mg > 1 such that w, >0 (1 <n <mg) and w, =0 (n >myg).

Definition 2.2.2. A probability measure p on R is said to have finite moment of order m > 1

if [ [t™dp(t) < oo, and in this case the m*" moment of x is defined by M,, = [ t™du(t).

We denote the set of all probability measures on R having finite moments of all orders by

B (R). It is trivial that any compactly supported probability measure is in this set.

For a given sequence {M,,}>_, (My = 1) of real numbers we define its associated sequence

{A )22 of Hankel determinants via

MO Ml Mm
A,, = det ' ? o m >0,
Mm Mm+1 MQm

and we denote by M the set of all sequences {M,,}2_, (Mo =1) of the real numbers whose

associated sequence of Hankel determinants {A,,}2°_, are Jacobi sequences.

Classical Moment Problem: Given a sequence {M,,}2_, (M, = 1) of real numbers, find

its sufficient and necessary conditions so that {M,,}2_, = {M,, (1)}, for some p € By, (R).

The following theorem of Hamburger gives a necessary and sufficient condition for the

solution of the classical moment problem [7]:

Theorem 2.2.3. The infinite sequence {M,,}>_, (Mo =1) of the real numbers is a moment

sequence of a certain € By (R) if and only if {M,,}33_, € M.



Corollary 2.2.4. Let (A,7) be a non-commutative probability space. Then, for any self-

adjoint random variable a € A there is a probability measure p € By, (R) such that:

(™) = thmdu(t) (m>1).

Proof. For m >0 we set M, = 7(a™). Consider the associated Hankel determinant A, (m >
0). Let m > 1 be fixed and consider z = ¥, ¢;a’ where ¢; € C (0 <i<m). Then, x € A, and
0<7(z*z) = i cic;T(a") = i Cici M.
i,j=0 i1j=0
Since the above inequality holds for any choice of ¢; € C (0 < i < m), it follows that the
matrix (M;.;) € M,,.1(C) is positive definite, so that A,, > 0. To prove that the sequence
{An ), is a Jacobi sequence, assume that A, =0 for some mg > 1. Then, there exists a
choice (co, 1, Cmg) # (0,0,---,0) such that Yo CiciMirj = 0. Then, setting cpy41 = 0, we
obtain ZZ";P:Bl ciciMiy = ¥ CiciMivj = 0. Now, since (co, 1+, €mg,0) # (0,0,-+,0) we have

A1 =0, and accordingly A, =0 (m > my). O

The probability measure mentioned in above Corollary is called the distribution of the
self adjoint random variable a € A. Indeed, it coincides with the distribution g, introduced

in previous section.

Definition 2.2.5. A probability measure p € By, (R) is called the solution of the determinate

moment problem if y is determined uniquely by its moment sequence {M,, (1) }e2_,.
In this context, we have the following Carleman’s moment test:
Theorem 2.2.6. Let the sequence {M,,}>_, € M satisfy the condition
© a1
Z M3™m = +oo.
m=1

Then, there ezists a unique f € By, (R) whose moment sequence is { My, }22_, € M.

Corollary 2.2.7. A compactly supported probability measure p € B (R) is a solution of the

determinate moment problem.

Proof. Let Supp(p) € [-b,b] for some b > 0. Then,
-1 b .
MGy = (| erdp() s 207 (m 2 1),
-b
=
implying Y7y M2 (u) = +oo. -

10



Let p € B, (R) and consider the Hilbert space L2(R, i), with the inner product:

(fogdu= [ TDe@dn(t), fge L*®.p0)
We have:

Lemma 2.2.8. Let p1 € By, (R).
1) If |Supp = o0, then the monomials {t™}°_, € L?(R, i) are linearly independent.
l’[’ m=0 /"L
i) If |Supp(p)| = mo < oo, then the monomials {tm}™t ¢ L2(R, 1) are mazimal linearly
m=0

independent subset of {t™}o_,.
Proof. (i) Suppose for some (cg, ¢y, ) # (0,0,--,0) (m > 1) we have:
g(t) = Z cpt® =0, for p-ae. teR.
k=0

Since R\ ¢g71(0) is an open subset of R, by definition we have:
Supp(p) =R~ U{UcR:U open, p(U) =0} cR~ (R~ g1(0)) = g7 (0),

implying [Supp(u)| < |g71(0)| < m, a contradiction.

(i) Let Supp(p) = {amn}m,, and g(t) =0 p—a.e. t e R. Since u(R~ g71(0)) = 1, it follows

m=1>

that for some polynomial h(t) we have:

g(t) = h(t)(t = ar)--(t = am)-

On the other hand, any nontrivial linear combination of {tm}79:" is of degree less than

1

my, it is a non-zero function in L?*(R, u) showing that {t™}° " is linearly independent in

L2(R, 11). For maximality, it is sufficient to prove that {t"}™° ' u{t"} (n > mg) is not linearly

independent. To that end, we have:

0 = ha(8)(t = ar)(t = any) + F(1),

for some polynomials hy(t) and f(t) with deg(f) < mgo. But, hi(¢)(t — a1)---(t — amy) =
0 for p—-ae. teR, implying f(t) = t* for p—a.e. t € R, and consequently, n < mg, a

contradiction. O

11



By applying the Gram-Schmidt orthogonalization procedure to the sequence of mono-
mials {tm}_; < L2(R, p), if |Supp(p)| = oo, we obtain an infinite sequence of orthogonal

polynomials {p,,(t)}c_,, whilst if [Supp(p)| = my < oo, the procedure terminates in my

mo—1

0y > where in which

steps and we obtain a finite sequence of orthogonal polynomials {p,,(¢)}
deg(pm(t)) = m (m > 0), and (Pp,Pu)y = [z Pm(E)pa(t)dp(t) = 6mpn (m,n > 0). Since the
property of being orthogonal does not change by a constant factor, we adjust p,,’s to be
monic polynomials, and, the sequence {p,,(t)}>_, obtained in this way is called the orthog-

onal polynomials associated with pu.

Using the idea of orthogonal polynomials, we are in the position to prove the existence

of the so-called Jacobi coefficients of the given probability measure u € By, (R), [7].

Theorem 2.2.9. Let {p,(t)}_, be the orthogonal polynomials associated with given pu €
Bim(R). Then, there exists a pair of sequences {ou,}o0; € R and {wp,}o; € RY uniquely

determined by:

po(t) L,
p(t) = t-o, (2.1)

tpm(t) = pm+1(t) + am+1pm(t) + mem—l(t), m 2 1

where in which, if |Supp(p)| = oo, both {am}eo i, {wm}_, are infinite sequences, and if

’SUPP(IUN =mg < 00, we have {am}zzl = {am}zgl and {wm}%o:l = {Wm}zgl with pp, = 0.

Proof. Suppose that [Supp(j)| = co. As seen above, the orthogonal polynomials {p,,(t)}s_,
form an infinite sequence. By definition, po(t) = 1, and since p;(t) =t — a; and (p1,po), =0,

we see that:

ay zétdu(t).

Let m > 1, and consider tp,,(t). Since it is a monic polynomial of degree m + 1, it will be a

unique linear combination of po(t), p1(t), -, pms1(t), say:

(t) = pross (1) + icm,jpma).

12



Now, we have:
Cm,j (D Pidu = Pis 1aPm)u = (iaps: Pm)u =0 0<j<m =2,
and by (p;,p;j), # 0, it follows that ¢, ; =0 (0 < j < m —2). Consequently:
tPm () = Pra1 (1) + ConmPm (1) + Cmm—1Pm-1(t) m > 1,

proving the first part of the assertion with c,+1 = ¢y and wy, = ¢y m-1-

To prove the second part of the assertion, integrating Equation (2.1) with m =1 yields:

wn= [ tm@®dn(t) = [ (t=a0m@dn(t) = [ AOdu(t) >0,

Let m > 2, then from Equation (2.1) we see that:

<pm—1a idp*rn)u = (Z.dpm—lapm)u

wm<pm—17pm—1 >,u

(pm + mPm-1 t Wm—le—QaPm),u = (pmapm>,u7

giving w,, = % >0 (m >2), and, completing the proof for the case of |Supp(u)| = oo.
The proof of the case |Supp(p)| < oo is a small modification of the above proof. [

[ee]
m=1?

Definition 2.2.10. The pair of sequences ({w,, } {am}e ) determined in above theorem

is called the Jacobi coefficients of the probability measure p € By, (R).
To calculate the Jacobi coefficients we have the following:

Corollary 2.2.11. Let {p,,(t)}_, be the orthogonal polynomials associated with given i €
Bt (R). Then, the Jacobi coefficients ({wm}oo_q, {am 2 1) are calculated by:

[ () m>1,

fR tdu(t),

[t () m > 2

W1Wa* "Wy,

(651

Wi Wm-10m,

Proof. Referring to the proof of the above theorem, we have:

WWa* "Wy, = H <pj’pj># _ <pm7pm>,u,
J=1 (pj—bpj—l)li (p07p0>u

13



and

m
(6%
W1 Wm-10y = ij m:<pm7pm)u zam(pm—lapm—1>p
-1  Wm m

J
(ampm—l y Pm-1 ),u = (idpm—l y Pm-1 )}L‘
UJ

One important application of the Jacobi coefficients of a given probability measure p €
B (R), is that it enables us to calculate its moment sequence. Before stating the related

result, we need some definitions:

Definition 2.2.12. Let S be a finite set. A partition ¥} of non-empty subsets v of S is called
(i) a pair partition if |v| = 2 for all v € ¢, (ii) a pair partition with singletons if either |v| = 2

or |[v| =1 for all v €. Any element v € ¥ with |v| =1 is called a singleton.

Definition 2.2.13. Let 9 be a pair partition with singletons of S, = {1,---,m} (m > 1), say

0= {s1} o Asi b {l kol a3
where we may assume without loss of generality that:
§1< <8y, I <<y, by <y, 1, <1y
We call ¢ a non-crossing partition of S, (m > 1), if for any 1 < iy, < jo:

[li17ri1] S [liwriz] or [lizﬂﬂiz] S [liuril] or [linTh] n [liwriz] = ¢

We denote Pycp(m) and Pycps(m) as the set of non-crossing pair partitions of S,, (m >

1) and that of non-crossing pair partitions with singletons of S,, (m > 1), respectively.
Definition 2.2.14. Let 9 € Pycps(m). The depth of v € ¢ is defined by:

{{a<b}ed:a<s<b}+1 if v={s}

dy(v) = ,
{{a<b}ed:a<l<r<b}+1 ifv={l<r}.

As an example, for Sy = {1,---,9} with J = {{5},{1,2},{3,9},{4,8},{6,7}} we have
dy({1,2}) =1, dy({4,8}) = 2 and dy({5}) = 3.
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Remark 2.2.15. It is trivial that

m+ 2

max(dy(1)) < [“5=] (m > ).

The following theorem is referred as Accardi-BozZejko theorem, [7, pp. 29-34].

Theorem 2.2.16. Let p € By, (R), let {M,y,}o0_, be its moment sequence with associated
Jacobi coefficients ({wm 22 1, {am} ;). Then:

Mp= % (Il awey [ waw) m=21.

YePncops(m) ved:|v|=1 ved:|v|=2

It worths mentioning that from Accardi-BozZejko theorem it follows that to calculate the

m' moment M,, we need at most the first [”52] terms of Jacobi coefficients. We will use

this result in the proof of continued fraction representation of the Cauchy transform.

Definition 2.2.17. Let {a,,}>2_; and {b,,}>_; be two sequences of complex numbers. Ex-

pressions of the form:

a
CF({am} s n}i) = T
bl + ’ a3
2t b+ an,
o —
bn
00 ) ay
CF({am}m:D{bm}m:l) - Q9
bl + ; a3
2t b3+'..

are called the n*" convergent of continued fraction, and the continued fraction, respectively.

Ak
bk +27

To be more precise, for the map 7, : Cu{oo} > Cu{oo} (k> 1) defined by 7(z) =
we have:
CE{am}mer, {bm}mar) =T om0 07,(0) (n21)

and

CFE({am}m-1; {am}ma) = im 7075 00 7,(0).

Lemma 2.2.18. Let {a,,}22_; and {b,}3_; be two sequences of complex numbers. Define the

sequences { Ay} , and { By, }o°_ respectively by the following recurrence relations:

A—l = 17 AO = 0, An = bnAn—l + anAn—Z nx1
B_; = 07 BO = 17 B, =b,B,1+a,B,2 n>1.

15



Then:

An + An_lz

TioTy0 0T, (2) = B, + B, 1z
n n-1

(n>1), momo--o7,(0) = % (n>1).

Proof. Induct on n, and use 7y 0 79 0 ++-7, 0 Tyy1(2) = (T 0 To 0 - 0 T, ) (Try1(2)). O
A simple application of above lemma yields the following:

Proposition 2.2.19. Let ay,--,a, € R and wy; > 0,--,w, > 0 be constant numbers. Let
{e(€) 32, and {qr(§)}52, be monic polynomials defined respectively by the following recur-

rence relations:

po(§) =1, pi(§) =&~ a1, pe(§) = (€ = ar)pr-1(§) —wrapr2(§)2<k <n
(2.2)

(&) =1, q1(§) =& —az, (&) = (§ — ars)qe1(§) —wrqr2(§)2 <k <n - 1.

Then:
1 _ @-1(8)
5 - — w1 pk’(f)

%)
§-ag—

1<k<n.

5—043__ Wk
. 5—0%

Theorem 2.2.20. Let ({wy, -, wn_1},{a1, -, a,}) be Jacobi coefficients of finite type. Define

the polynomials po(€),p1(§), -, pn(&) by recurrence relations (2.2) and the measure p on R

by
TERED N POV O VIOV (Z pj()

Apn(A)=0
Then |Supp(w)| =n, and {po(&),p1(€), -+, pu-1(§)} form the orthogonal polynomials associated

with . Moreover:

1 d
5 - [ cecn o -0y
%)
5—043—" _ Wnol

§—an
Proof. (Sketch) Define the tridiagonal Jacobi matrix

§-ap -

§—ao—

1 1
T = (Wi Oy + Okt + W) O(ke1)1 ) rxn-

16



It follows that every eigenvalue of T is simple, hence |o0(T')| = n, and furthermore:

1

(e1,(6-T)"er)ry = - o (2.3)
— oy - =
pa— a pa—
: ? 5—043—.. _ Wnol
f —Qy
[7, pp. 45-47], and consequently, by Proposition 2.2.19,
_ -1 _ Qn—l(g)
(er,(§-T) "er)ey = o(©) (2.4)

where p, (£) and g,,-1(§) are the monic polynomials defined by the recurrence relations (2.2).
On the other hand, we have p,(§) = det({—T), and consequently, o(T") = {A € C: p,(\) = 0}.

Next, for any A € o(T"), for its associated eigenvector f(\) we have:

p;(A) )
wl"'wj ’

1712 = (Z

[7, pp. 48-49]. Now, define a measure p on R by

p= 3 IF)I6,

Xeo (T)

then, by considering the finite orthonormal basis {% :Aeo(T)}, the spectral decompo-
sition of T, and (2.4) it follows that the polynomials p(§), p1(&), -, Pn_1(§) defined by the

recurrence relations (2.2) are orthogonal with respect p, and

{e1,(€-T)"er)y = _[Rd;—_(i), (2.5)

[7, p. 50]. Eventually, by (2.3) and (2.5) the desired result is proved. O

We are interested in the continued fraction representation of the Cauchy transform G, (§).
For i having a finite support, the result established in the previous theorem. For general

€ By (R) we have:

17



Theorem 2.2.21. Let p1 € By (R) and ({wn}52q, {an}o2,) be its Jacobi coefficients. If p is
the solution of the determinate moment problem, then the Cauchy transform of it is expanded

into a continued fraction

Gu(§) = o Im(€) #0.

g_al_ Wa

§- Qag—-.

§—ay -

Proof. The assertion for p1 € By,,(R) having a finite support, or equivalently, for ({w, }2>,, {@n}22;)
being Jacobi coefficients of finite type, has already proved in the previous theorem. So, we
may assume that p has an infinite support and its Jacobi coefficient ({w;,}2;, {an}22,) is of
infinite type. For this, define polynomials po(t),p1(t), -, pn(t), - by the recurrence relations
(2.2). For each n > 1, let p, be the unique probability measure whose Jacobi coefficient is
Awm ™4 {am ™ _,). Tt then follows from the previous theorem that {po(t),p1(t), -, pn-1(t)}

form the orthogonal polynomials associated with u, and:

diin
— 1 - = Rgf(::) Im(&) +0. (2.6)
—ag -
§—ag -

5 - O53__ Wn-1

Now, considering the m! moment of p,, it follows from Theorem 2.2.16 that for calcu-

lating M,,(ptn) we need at most the first [%2] terms of Jacobi coefficients of y,. Hence,

for a fixed m, the sequence M,,(u,) stays constant for all large n > [%52]. Since the Jacobi
coefficient of p,, is obtained by cutting off the Jacobi coefficient of u, the constant coincides

with M,,(u). Therefore, we have:
lim M,,(pn) = My () (m>1).

Since g is the solution of the determinate moment problem, it follows that that the
associated sequence of probability measures p, (n > 1) will be weakly convergent to the

probability measure p. Hence:

JL%ACZL_(? = Rd;—_(tt) Im(£) #0. (2.7)

18



On the other hand, using (2.6), we have:

dpn(t)

lim =
n—oo JR g—t 5_051_

The result now follows by (2.7) and (2.8).

w1

§—ag -

19
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CHAPTER 3

THE OPERATOR-VALUED FREE PROBABILITY THE-

ORY

This chapter discusses the operator valued free central limit theorem and semicircular
distributions, as operator-valued analogues of the classical central limit theorem and normal
distributions. In section 1, the non-commutative operator-valued probability space, the free
families of operator-valued random variables and their distributions are discussed. Then,
using a Fock space construction, one special case of non-commutative operator-valued proba-
bility space, called the canonical probability space, is introduced in which any distribution of
any random variable of the given non-commutative operator valued probability space can be
identified as a distribution of an element of that canonical probability space. Next, the con-
cept of R—transform is introduced and by investigating its linearization properties in the free
context, we gain enough tools to study the operator-valued semicircular random variables and
the operator-valued free central limit theorem. In section 2, the notion of complete positivity
of a unital linear map of a given *-algebra into one of its unital subx*-algebras is introduced
and in case of unital sub-C*algebras, some general properties of a completely positive map
are studied in a series of lemmas. Then, it is proved that complete positivity is a necessary
and sufficient condition for a given unital linear map of that unital sub-C*algebra into iteself,

to be identified as the variance of an operator-valued semicircular random variable.
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3.1  Voiculescu’s Operator-Valued Free Central Limit

Theorem

Definition 3.1.1. Let A be a unital *-algebra. Let B denote a fixed unital *-subalgebra
of A over C. A linear map FEg: A - B is called a conditional expectation if it satisfies the

following conditions:

(1) EB(blabg) = blEB(CL)bQ for all a € A, bl,bg € B, and EB(].) = ].,
(ii) Ep(a*a) >0, for all a € A,

It is noteworthy that the condition Fg(1) =1 is equivalent to being a projection onto B.

Example 3.1.2. Let A ¢ B(H) be a finite von Neumann algebra and 7: A - C be a faithful
normal trace, that is, a bounded linear functional such that 7(ab) = 7(ba) for all a,b € A,
7(a*a) =0 if and only if a = 0, and for any net {a;} of self-adjoint elements of A with a; / a
we have 7(a;) ~ 7(a). By considering the inner product (a,b) = 7(ab*) for all a,be A on A,
we denote the completion of A with respect to the norm [af, = 7(a*a)?, for all a € A, by

L2(A,7), [11, pp. 37-42].

(1) If B is separable in the |.|2 norm containing the sequence (b, )%, as the orthonormal

basis of L?(B,T), then:

Ep(x) =Y (z,by)b, = > 7(ab})b, x e A
n=1 n=1

(2) If B be a finite dimensional abelian subalgebra of A with minimal projections f;(1 < j < n),

then:
Ep(x) =Y 7(f) ' r(@f;) f; reA,
j=1
(In fact, Ep(x) = X7, A f;. To find A;, we have

(2 f;) = (. ;) = (Ep(2), ;) = Z i £y = A ()
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for all 1 <j<n.).
(3) If B =M,(C) for some n>1, and 7((a;;)) = @, then:
Ep(x) = i Zn;nT(Ejix)Eij,
b e
where Ei; = (0 k1)) for all 1<i,j<n (in fact, let Ep(r) = ¥, X7 ay;(r) Ejj, then using
T(aEp(b)) =7(Eg(a)ER(b)) = 7(Eg(a)b) for all a,be A

we have:

T(Ep(Eij)z) = T(EiiEp(x)) = 7(Eyj i iakl(I)Ekz)

k=11=1

7(Eijr)
= éé@kl(ﬂf)T(EﬁEkl) = é&jz(ﬂf)T(EijEﬂ) = é@jl(m)T(Eil)
-

Definition 3.1.3. A triple (A, Ep,B) as in Definition 3.1.1 is called a B— valued non-

S|

= aj(7)T(Ey) = aji(v)

commutative probability space. An element a € A is called a B- valued random variable.

Throughout this chapter we assume that (A, Eg, B) is a given fixed B- valued non-

commutative probability space.

Definition 3.1.4. Let (A, Ep,B) be as in Definition 3.1.3, and B ¢ A; ¢ A(i € I) be
subalgebras. The family {A,};; is called free if

EB(ailaiQ---ain) =0 1 FlgF - F in,aij € Aij,EB(aij) =0, (1 <5< TL)

We call the family {X;};e; of subsets of A (elements {a; };c; of A) free if the corresponding
family of subalgebras {(X; U B)}ier ({{{a;} U B)}icr) is free.

Proposition 3.1.5. Let (A, Eg, B) be as in Definition 3.1.3, and B ¢ A; € A(i € I) be
subalgebras such that the family {A;}icr is free and A is generated by Uj;A;. Then Ep is
completely determined by the Eg|a, (i€ ).

Proof. Let a € A. Then, by hypothesis a = Y,,,.anite ¥m@mi, ***Qmi,, 1Mplying

Eg(a) =¥ sinite “m EB(Amiy++@mi, ) S0, it is sufficient to prove that we can compute Eg(a;,---a;, )’s

whenever a;; € A;; (1< j <n). Define:
k=min{s e No|Ep(a;;) =0 s+1<jand dgq # g # - # ip ).
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We prove the assertion by applying strong induction on k. If £ = 0, then by definition of
freeness Ep(a;,---a;,) = 0. Assume our assertion has been established up to certain k. Then,

for k£ + 1 write:

EB(ail"'ain) = EB(ail"'aik (EB

Aik+1 (aik*-l ))aik+2 o 'ain )

+

EB(aif"a’ik (aik+1 - EB|Aik+1 (aik+1 ))aimzma’in)
if U F kst and

Ep(ai,-a;,) = Ep(ai-—a;_ (Ep

Ay, (aik iy yy ))aik+2 iy, )

+

EB(ail'”aik—l (aik Qigy — Ep

Aiy, (aik @iy iy ))aik+2 @, )
if 7 = 1x41, so that the induction hypothesis applies. O

Definition 3.1.6. Let B(X) = ({b1XbyX--b,_1Xb,Jn € N,b; € B,1 < j < n}u{lg}) be
the algebra freely generated by B and an indeterminate X, (A, Fg, B) be as in Definition
3.1.3, a € A be a B- valued random variable, and 7, : B(X) - A be the unique algebra
homomorphism such that 7,(b) =b (b€ B) and 7,(X) = a. Then, the conditional expectation:
e : B(X)->B
pa(P(X)) = Epoti(P(X))

is called the distribution of a. Next, quantities such as:
o (1Xb1--Xb,X1) = Eg(aby---ab,a)

are called moments. The zeroth moment myq is by definition Eg(1) =1, the first moment m;
is Fg(a), the second moment is the linear map b - Fg(aba), and in general the (n + 1)t
moment is the n—linear map (by,--+,b,) - Ep(ab;---ab,a). Thus, we can view the distribution
of a € A as the set of multilinear maps {m,, : B"® - B|m,,(by,---,b,) = Eg(ab;---ab,a) }>>, with

the above conventions for n =0, 1.

Finally, we define:
Yp={plp: B(X) > B conditional expectation}.
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As an example, for a = 0 we have that pg = Xp.Pg, where Pg denotes the projection onto

B.
Definition 3.1.7. Let S,(n > 1) denote the symmetric group and put:

So =1

Si(b) = b (beB)

Sn(bl, XN bn) = Z bo‘(l)X"'ba(n—l)Xba(n)‘ (bZ eB,n> 2)

oeSy

We define
SB(X) =1in{S,(b,--,b)|be B}:,.

Lemma 3.1.8. SB(X) = lin{S,(b1,--,b,)|bi € B,0< i <n}>,.

Proof. 1t is clear that SB(X) ¢ lin{S,(b1,---,b,)|b; € B,0 <i <n}>,. To prove the opposite

inclusion, for b; € B and 1 <7 <n we have:

Su((b)y) = Su((X b))
k=1
- > Su(C Y b))
Ano1e{bp}7_ 1 An_1]=n-1 bpeAn_1
+
+ (-1 > S(C Y b))
An-sS{by}7_ | An—s|=n-s breAn-s
+
DY S (X )
Aoc{by }y_:lAz|=2 breAz
G DD SR () S S}
Axc{b 3 1 Arl=1 breAy

We note that the number of summands on the left hand side is n! whilst on the right hand side
n
is Y )(n—s)"(-1)%. It is known these two numbers are equal. Thus, S, (b1,...,b,) €
n-s

SB(X) and hence the desired inclusion is established. O

Lemma 3.1.9. Let SB(X) =CX + X(SB(X))X. Then:
B(SB(X))B =B+ B(SB(X))B.
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Proof. We have:

BS,(b,-,b)B

B(Y bX--bXb)B = (Bb)X( Y bX--bXb)X (bB)

oeSy oeSy

B+ B(X(SB(X))X)B < B+ B(SB(X))B,

m

implying B(SB(X))B ¢ B+ B(SB(X))B. To prove the other inclusion, by considering:

(n-k)(n—k-1)XSo(br, by, 1, 1)X =
Sn(bl,"',bml,“',l)
— (n=k)kbX Sp_a(by, -+, by, 1, -+, 1) X
— (n=k)kXSno(by, b1, 1, 1) XD
— (k= 1)bX Sy o(br, -, bps, 1, 1) X,

form>k+1,n>3,and by =---=b =b, and
n(n-1)XS, (1, 1)X =5,(1,---,1) n>3,
and strong induction for 1 <k <n-2,n >3 we have:
X Sna(by, - bg, 1, 1) X € B(SB(X))B by =--=0bp=0.

But, we have X = 195(1,1) € B(SB(X))B, hence B(SB(X))B 2 B+ B(SB(X))B.

]

Corollary 3.1.10. For any p1 € ¥p, pilspx) is completely determined by ,u|S§<7) and con-

versely.

Definition 3.1.11. We define SXp = {S,,|S, = plpspix))s, 1 € Ep}. Let a € A be a ran-

dom variable. Then, S, is called the symmetric distribution of a, and 1, (S(b1,-+,by,)) or

pa(XS(by,+++,b,)X) are called symmetric moments of a.

Definition 3.1.12. Let a;,a; € A be two B— valued random variables. Then, it follows

by Proposition 3.1.5, that p4,1a, and p4,., depend only on p,, and p,,. Thus, there are

well defined binary operations @ and ® on Y g (called free additive convolution and free

multiplicative convolution, respectively), such that:

Hai+az = Hay B Hay Hayaz = Hay ™ Ha,-
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It is noteworthy that for a; = a and ay = 0, we have that p, = p, @ 0.

Now, we construct one special operator-valued non-commutative probability space called
the canonical probability space. Looking at B as a right B-module, let X, (B) = L(B®", B)
be the set of all n— linear B— valued maps of B™ into B (the ® and linearity are over C)
and Xy(B) = B. Let further, X(B) = ®,50X,(B) € [1,,50 Xx(B) = X(B) with its natural B-

module structure and obvious grading. Fix & € X,,(B) and define the endomorphism:

A&): X(B) - X(B)
by AM&)(n) (b1 ® -+ ® byir) = N(bps18(b1 @+ ® by) ® bpyo ® -+ @ byyy) if deg(n) = k > 0 and
A&)(n) =&énif deg(n) =k =0 (ne B). Next, fix b e B and define:

A(b): X(B) > X(B)
via A*(b)(n) (b1 ® - ®@bp_1) =n(b® by ® -+ ® by_1)if deg(n) =k >0 and A*(b)(n) =0 if deg(n) =
k=0(neB).
Definition 3.1.13. We define A(B) as the generated algebra of endomorphisms A(§), A*(b)
of the right B—module X'(B), that is:

A(B) = ({A(©)[€ € X (B),n 20} u{A"(b)[b e B}).

Lemma 3.1.14.

(1) MEDME) = AME)E)
{ AN (D)) if deg(€) > 0
N(bE) if deg(€) = 0.

Proof. (i) Let deg(&;) =ny, (i =1,2) and deg(n) = k> 0. Then:

(i2) A" (D)A(S)

AEDAEDN(D1 ® =+ @ by snyir) = A(E2)M(bny 4181 (b1 @+ ® by, ) @ bpys2 ® @ by sy
= N(bpysny+18§2(bny+161(b1 ® - ® by, ) ® bpyso ® - ® by )
®bny+ny+2 ® *+ ® by iny k)
= N(bnyrna 11 A(§1)62(01 ® - @ by 4y )
®bry1nz42 ® @ by nyak)

= /\(/\(51)52)77(51 ®-® bn1+n2+k)'
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(ii) Let deg(&) =n, and deg(n) = k > 0. Then:

NN ® - ®@bpeier) = MEN(bOb &+ @ bpip1)
= N0 E(b@b1® @by 1) ®bpi1 @ ®byip-1)
= N0 AN (D)E(D1 @ ®by1) ®byy1 ® - @ byyp1)

= (A O (br @+ @ bj1).

Next, let deg(§) =0 and deg(n) = k > 0. Then:

A OMEON(br @ @bya) = AEN(b@b @+ @ bir)

N(bE® by ® -+ ®by_1)

A (BE)n(by ® -+ @ bi_1),

completing the proof. O

Lemma 3.1.15. The linear map 7y : (®,50X,(B)) ® (©r0B®*) - A(B) given by

YO Y L@ ® @by )= D A& A (biny) N (b, 5)

finite:(4,5) finite:(4,5)

18 a bijection.

Proof. Since (£ ® 1) = A(£), where 1 € B® =C, and A*(b) = A\(1)A\*(b) = v(1 ® b), it follows
that Range() contains all A(§)’s and all A\*(b)’s. Next, by Lemma 3.1.14 we have that :

k K
1€e (i o-ebn(E o (e-ot,)) = AOTTF GV ¢)
_ A(f)A(ﬁ»(b»s’)ﬁw(b;)

= AA(©) n A ()€ n A" (b;)

k
(M) HA*(bi)E') ® (b1 ®®by)),

implying that Range(y) is an algebra and so that ~ is onto.
For injectivity, we prove that if o # 0, then v(«) # 0. Let

a= Y > &r®UE#0,

ko<k<kj iely
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where &, € @,504,(B) and v, € B®* for i € I;. Since, a # 0, we may assume the v/, s are
linearly independent and the £, s are non-zero. Then, fixing iy € I, there is 1 € A}, (B) such

that n(vi k) =1 € B and n(vig,) = 0,i € Iy, — {io}. Let 0" € Xy, (B) be defined by:

n :B® - B

7],(51 R ® bk:o) = n(bko R ® bl)

Then, we have that:

’7(@)77’ = ’Y( Z Z gi,ko ® Vi,ko)n’ = Z )‘(gi,ko)n(yi,ko) = )\(51'0,]@0)1 = 61’07/60 * 0,

ko<k<ki iEIkO iEIkO

implying v(«a) # 0. O

Lemma 3.1.16. Let B = Xy(B) be identified with the subalgebra of A(B) via X\ : Xo(B) —
A(B). Then, the linear map:

ep : A(B)->B

0 Zf I’IIIHZ(TLz + k’l) > 0,
i:ni+ui=0 gnz Vni

5B( Z ’Y(€7lz®ykz)) = f . ( +]{;) 0
i MIng\n; i) = U,

finite

where &,, € X,,(B) and vy, € B® is a conditional expectation.

i

Proof. According to [14] we need only to check condition (i) of Definition 3.1.1. Let a € A(B).

Then, by Lemma 3.1.15, and a linearity argument, it is sufficient to consider a = v(§, ® vy).

Let by, by € B, v = (by®--®by) and denote A\*(v3) = A*(b1)---A*(bg). Then, we have two cases:
Case(i): n+k>0:

es(ABDAMEDN ()A (D))
= en(AADB)E)N (b))
= ep(YON(b))En ® viby))

= 0=bep(v(& ® vi))bs.

en(A(01)7(6n ® vi)A (D))



Case(ii): n+k=0:

es(A(b)V(&®v)A(2)) = ep(AB)A(Em)A(D,))
= ep(A(bi&omoby))
= by&oroby
= biep(7(é @ 10))bs-

Finally, for any b € B,
eg(A (D)) =ep(y(b®1))=b.1=h.

Let A(B) 2 A(B) be the algebra acting on X'(B) such that the map:
¥ : X(B) ® (&0B%") > A(B)
which naturally extends
7 X(B) ® (8120 B%") > A(B)
via

T((En0 @ (b1 @@ b)) = 3 Y(&n® (b1 @ @by))

n>0

= 2 A& (br)A* (bi),
n>0
is a bijection and the multiplication of the formal sums which constitutes A(B) is also

determined by Lemma 3.1.14. Next, let (.)q denote the component of degree zero and 1 €

B = X,(B) ¢ X(B). Then:
e+ A(B)- B
eg(T) = (T1),
is the extension of e5: A(B) - B.

Let B = By & By, X(B}) = [Tpso Xu(B;),ij : B; » B(i1(b1) = by @ 0,i5(by) = 0@ by), pr; :
B — B;(pr;j(by @ by) = b;) for (j =1,2). Define the injections:
X 1 X(B))® (@:0B") > X(B) ® (®h208°")
Xi((E)nz0®11) = (&noprE™nso ® (15 (1))

29



where for &, : [T;L; B — B and pr§™ : B®" - B?" we have that {,opr?™ : B®" - B for j = 1,2,

and o OPT?O = &o-
Lemma 3.1.17. The maps:

hi : A(Bj) ~ A(B)

hj°7 = WO/YJ (]=1a2)
are homomorphisms, h;(A(b)) = A(b) forbe B = Xy(B;) = Xy(B) andepoh; =cp, (j=1,2).

Proof. Fix j = 1,2, and let T; € A(B;) (i = 1,2). Since 7 is bijection, there are unique
Ui e X(B;)® (@ks0BE") with 3(U;) = T; (i =1,2). Then, by Lemma 3.1.14:

hi(Th13) hi (3 (U1)7(U2))
= hj(i((fn)nzo ® (bl Q- ® bk)ﬁ((f;n)mzo ® (bll Q- ® b;g’)))

= WY Y (e (e ab))y(E, @ (b @ 8b,)))

- ;gﬁv@n@(bl®-~-®bk>>v<s;n®<b1@---@b;o))

- nz;)Z;Ohjov((A@n)A*(bo---x(bk)g;)@(b;®...®b;€,))

- j;]:govo%((A(&M<b1>---A*<bk>g;n>@(b;®...®b;€,))

- 3 S AN ()N (g ) 0 2 (1 - 1)
= 207((@ @ pric)) @ (i (b & @ b)) Z>07((§ln @ priitn)) g (i (b & - o 1),)))
= 270%(&®(bl®'“®bk)) Z:O'VOXj(g;@r;_(bll®"'®b;€,)))

= éhjoy(gnea(bl@--.@bk))%hjoy(g;bqg(b’l@...@b;,)))

(T ® (& e B X (€ & (5, 0 01,)
(€0 ® (b 8By () ® (b @8 b))

U (F)

— (TR (Ty)

and extend by linearity to finite summations.
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Next, fix j = 1,2 and let b € B = Ay(B;) = Xy(B). Then, for A\(b) = y(£ ®1) € A(B) we
have that:

hi(A(b)) = h;(7(§@1)) =hje7({@1)

FoXj(€®l)=7(f@1)=A(b).

For the last part, fix j = 1,2 and let & € X,(B) = X(B;) = B and vy € B® = Bf’o = C. Then,
by 7(&®vp) =7(& ® o) = oo € B and X;(& @ 1) = (&o ®p7“§3’0) ® (i?oyo) =& ® 1y it follows
that:

ep(hjoy(§o®1n)) =ep(y o Xi(So ® 1))

= ep(v(&o®m)) =7(5 ® ) = St = EBj(V(fo ® 1))

epohj(v(§ ® 1))

Finally, by bijectivity of 7, injectivity of &X; and the equation hj o7 =7 o & it follows that h;
is injective and since X preserves the degree it follows that h; preserves the degree, as well.

Hence, ker(ep,) = ker(ep o h;) implying ep, = ep o h;. O

Now, considering the canonical operator-valued noncommutative probability space (A(B),eg, B),

we have:

Proposition 3.1.18. If B = B; ® B, then with hy, ho defined as above, the pair of subalgebras
(hi(A(B))Y2y is B-free in (A(B),2p, B).

Proof. We write:

X(B)

[1%.(B)

n>0

= Bo[[L((Bi®B:)®B*"' B)

n>1

= Beo[[L(Bi®B* ' B)e[][L(B;® B*"!,B)

nx1 n>1
where £(B; ® B®"', B)is identified as a subspace of L(B®", B) via: 1, - n, o (pr; ®id3" ).
Next, put I'; = [1,s; £((B;) ® B®*1, B) (j=1,2).

We claim that T € hy(A(B))(T € ho(A(Bs))) and 5(T) = 0 it follows T(I'y ® B) ¢
[(T(T1@ B) cTy).

31



Indeed, let T € hy(A(B,)) such that eg(T") = 0. It is trivial that 7'(B) c T'y, hence it re-
mains to show that T'(I'y) ¢ I'y. By assumption, 7" has the form of T' = ,.0 AM( &) A* (bn1)--A* (bg,,)
where &, € Xyege, (B1) and b, € By for 1 < j < k,. Passing to monomial, it is sufficient to
prove the case for T = A(§)A*(b1)---A*(br) where & € Xyege(B1) and b; € By for all 1 <i < k.
Let 1= (9y)ns1 € 'y where 1, € L(By ® B9t B) c LB B) = Xyegy,, (B), then:

T = (AEA"(b1)-+- A" (bk )11 Y1

Now we have several cases:

Case(i): If degn, — k <0 then, A(§)A*(by)---A*(br)n, = 0 and hence
MEN (by)-- N (br)nn =0 € L(B, ® B¥ ' B).
Case(ii): If degn, — k =0 then, A(§)A*(b1)--A*(bg)nn = Moo € B and hence
AN (b1) N (bk) 1 = ENoo € Xigege(B1) € L(By ® B! B).
Case(iii): If degn, — k > 0 then,

)‘(g)A*(bl))‘*(bk)nn(bll Q- ® b;legf+degnn—k) = )‘*(bl)"'/\*(bk)nn(b:ieg§+1€(b’1 Q- ® b:iegg)
®b/deg§+2 @ ® b;iegﬁeregnnfk)
= nn(bk X ® bl ® b/deg&-lg(b,l Q- ® b;legg)

®bdeg§+2 Q- ® bdeg§+deg77n—k:)7

so that A()A*(b1)---A*(bg)nn € L(By ® Begérdegnn=k=1'B) implying Tn € I';.

Next, let T € hy(A(By))and S; € ho(A(By)) and ep(T;) =ep(S;) =0 (1<j<n). Then:
Tll € F17 SlTll € FQ,TQSlTll € Fl, SQTQSlTll € F27 S SnTnSlTll € Fz,
so that eg(S,T,-S111) = 0. O

We should mention that similar to the above procedure, if we replace B with the right
B-module M = B™ (m > 1), we can construct the associated canonical operator-valued

noncommutative probability space (A(M), e, B).
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Definition 3.1.19. Elements of A(B') of the form

a=A(1)+ > A&) & eX.(BY)

n>0

are called canonical.

Proposition 3.1.20. Given a distribution j € X, there is a unique canonical element

a = )\*(1) + Z A(gn) gn € XN(Bl)

n>0

such that = p,. Here, &,’s are denoted by &, = R,1(p) (n20).

Proof. Since we want i = pu,, it follows that pu(X) = p.(X) = epi(a) = &, and consequently,
we define & = u(X). Let P(X) = ([T, Xb;)X € B(X). Then:

pa(P(X))
= em (1‘{ aA(b:))a)

p(P(X))

m>0 m>0

= e (IO + X MEDME)O (W) + 3 A(E))
= 531((ﬁ>‘*(1)>‘(bi)))‘(§n))+En(€07"'7§n—1)(b1®"'®bn)

= < (([TX BDAE)) + Eulé )t @ by)
= gn(bn@’"'@bl)+En(£0>"':£n—1)(bl®"'®bn)7

where E,(&o,+,&n-1) € L(B®", B) depends only on &y, ++,&,1. So we define &, inductively

and uniquely as:
én(bl ®® bn) = :U’(anXbrlele) - En(&]f"agn—l)(bn ®:® bl) (n 2 1)
O

Definition 3.1.21. The canonical form of all B—valued random variables with distribution

(4, is the unique canonical element in the proposition 3.1.20 such that p = p,.

It is noteworthy that when a = A*(1), we have pu, = pg, i.e. the distribution of the 0

random variable.
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Proposition 3.1.22. Let a; = A*(1) + X ,50 AM(§nk) k=1,2,3 be canonical elements. Then,

Hag = Hay B ey of and only if &3 =81+ n=0,1,--.

Proof. Let pg, = ftay B flay = [ay+ay- Then:

:uag(X) = :ua1+a2(X) = 831((11 + a2)

€Bl(a1) + €Bl(a2) = Mal(X) + ,uaz(X) = 50,1 + 50,2-

€03

Assume the assertion holds up to positive integer n — 1. Then, with E,, from the proof of

Proposition 3.1.20:

fn,?)(bl ®:® bn)

faz (X0p Xbp_1-- X1 X) = B, (0.3, §n-1,3) (b ® - ® by)

= flay+ay (X0n Xbp1-X01.X) = En (o1 + €02, §n-1,1 + §ne1,2) (0n ® - @ b1)
= (Epa(b1® - ®by) + En(Cot, Eno11)(bn ® @ by)

+ (§n2(b1® - ®by) + En(8o2,6n12)(bn ® - ® 1))

- E.(&o1+2, 611+ Enm12) (b, ® - @ by)

= (it &2)(bi®-eby,),

implying &, 3 = &1 + &n,2, and completing the proof.
Conversely, let &,3=E§,1+&,2 n=0,1,---. Then, by Proposition 3.1.18 for M = B? and

a=hi(ar) + ha(az) we have p, = g, B 1g,. But:

a = N(Ae0)+ Y AM&aopr) + A (0@1) + > A&z 0 pra)
n>0 n>0
= MAel)+ Y M&iopri+&naopra),
n>0

ep2(A(Bn o pr™)) = €2 (hi(M(B))) = €2 0 hie(A(Bn)) = e (A(Br)) (K =1,2),

where 5, € X,(B ® 0)orX,,(0 @ B),pr{" : (B?)®" - (B 0)®", and prg" : (B?)®" - (0 &
B)®n, (n>0), and

ep(A(1e1)) e (101) (X) = (Hr+ (100) B rs (0e1) ) (X)

(p0 8 10) (X) = po(X) = piar 1) (X) = e (A*(1)),
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implying:

Ma( :Ll (Xbi)X>

(3

_ Z 632(511/\(b1)Sm)\(bn)sz(wrl))

Sij=2* (1@1),A(Bnopre™):k=1,2, neN

= 3 e (SaA(b1)-+S5A(bn) S (1))
szf].:»a),,\(ﬁn): neN

= 631( ﬁ(%)\(bi))%)
b ﬁ(sz-)X).

Thus, e (P(X)) = pe; (P(X)) for all P(X) € B(X)and hence, pg = flg,- O

Corollary 3.1.23.
Ry(pn 8 p2) = Ry(pn) + Ro(p2) n=1,2,-,

for all piy, o € Xp.

Proof. By Proposition 3.1.20, there are canonical elements a; with ., = p; (i = 1,2). Hence,

by Proposition 3.1.22:

Rn(ﬂ/l ,UQ) = Rn(um Mag) = Rn(ﬂ/m) + Rn(ﬂ/ag) = Rn(ﬂ/l) + Rn(,u2) n=12--.
O

Lemma 3.1.24. Let ¢ € C and a € A with associated distribution p, € Xg. Then for any
P(X) = ([T~ Xb;))X € B{X) we have:

,uca(P(X)) = CnHNa(P(X))'
Proof.

tea(P(X)) = FEpoTe(Xb-X0,X) = Ey(caby-cabyca)

"1 Eg(aby---abya) = " Ep o 7,(Xby-- X b, X)

" pa(P(X)).
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Remark 3.1.25. Let ¢ € C, é(a) (n > 0) appeared in the canonical form of a € A, and
E,( éa), §(a) ) (n>1) be the n-linear map defined in the proof of the Proposition 3.1.20.
Then:

B (c€l® - €l = B (68 € (n2 1),

Proposition 3.1.26. Let a € A be a B—valued random variable with the canonical form
A1)+ 2 MEM),
n>0
and let c € C. Then, the canonical form of ca is
1) Z/\(cﬂwl (a) .
n>0
Proof. Let ca have the canonical form

(1) + 3 AEE™).

n>0

We prove the assertion by showing that & = 1€ (n > 0). Let n = 0, then féca) =
fea(X) = cpa(X) = c§éa). Assume the equality holds up to positive integer n — 1, then using
the proof of Proposition 3.1.20, Lemma 3.1.24, and Remark 3.1.25 it follows that:

by @ ®by) = prog(Xbp- X0 X) = (€69 - £CY (b, @ @ by)
(XX X) = B (c€§? o, "€0) (by @ - @ by )

¢ (1a(X by Xby X) = By (657, €9 (by ® - © 1) )
LD (b @ - ® by),

proving the desired assertion. O

Now, as an immediate consequence of the properties of the canonical form of random

variables, we can state and prove the B- valued central limit theorem, as before we follow

[14].
Definition 3.1.27. A random variable s € A is called B—semicircular if its canonical form is

AT(1) + A(mo) + A(n).
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The distribution of the B— semicircular random variable is called the B- semicircular
distribution. As an immediate consequence of the proof of Proposition 3.1.20 the distribution

of semi-circular random variable is seen to be entirely determined by its first two moments:

Ep(s) = Epoty(X)=ps(X)
= [ )+ato)+ae) (X) =10 € B,
Ep(sbs) = EpoTs(XbX) = us(XbX)

Liax (1)+A(n0)+A () (X X)) = mobno +n(b) b e B.

A B- semicircular random variable s is called centered if Eg(s) = 0. In this case Eg(sbs) =

n(b) for all b € B. Furthermore, for m > 1 we have that:

2m—2 2m—2

Egor( [] X1.X)=pns([] X1.X)
i=1 i=1
2m-1

531( H (A(1) + )‘(77))) = 531( Z Ul"'Ui"'U2m—1)
i=1 Ui=A* (1) A (n):i=1,,2m—1

= Z 831(U1"'Ui"'U2m_1): Z 0=0.

U;=2*(1),A(n):i=1,,2m-1 U;=2*(1),A(n):i=1,---,2m-1

EB (SQm—l )

Definition 3.1.28. Let B be a Banach algebra and pu, p,, : B{(X) - B (n € N) be B- valued

distributions. We say p,, convergence pointwise to p if
T {pn (P(X)) = n(P(X))] =0,

for all P(X) e B(X).
Lemma 3.1.29. Let p,, : B(X) > B (m € N) be a sequence of B— valued distributions with
corresponding sequence of canonical forms X (1) + 3,50 A(§nm) (m € N). Then, the following
two conditions are equivalent:
(i) There are constants C(0 <k <n) such that:

SUP [ (X b1 X0 X)|| < C[ba|-[B]| by € B, 0<k <m,
(1) There are constants Dy(0 < k <n) such that:

SUD & n (b1 ® -+ @ be) | < Di[ba-~~[bx| b€ B, 0 <k <.
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Proof. Referring to the proof of Proposition 3.1.20, the assertion follows from induction and

the fact that:

gk,m(bl ®-® bk:) = ,um(kaXle) - Ek:,m(go,ma "'7£k—1,m)(bk ®--® bl)
forall bpe B, 0<k<n,m>1. n

Lemma 3.1.30. Let B be a Banach algebra, p, ji, : B{(X) - B (m € N) be B— valued dis-
tributions so that the equivalent conditions of the previous lemma hold. Then, the following

assertions are equivalent:

(1) im0 o (X b1 X0k X ) = (X0 X0 X) b€ B, 0<k <,
(i) im0 Ep (b1 @ -~ @ by) = Ex(by @ - @ by) by € B, 0 <k <n.

Proof. Referring to the proof of Proposition 3.1.20, the assertion follows from strong induction

after n and the relations:
Eeom (D1 ® = ® by) = fan (X g X01.X) = By (S0, 5 Em1,m ) (b, ® - ® by)
for bye B, 0<k<n,m>1 and
k(b1 ® -+ @ by) = (X by Xb1.X) = Ep(§o, -+, §r-1) (b ® -+ @ by )
for by e B, 0<k <n. O

Theorem 3.1.31. (Free Central Limit Theorem) Let B be a Banach algebra and a,, (m € N)
be a sequence of free B-valued random variables in the non-commutative operator valued prob-

ability space (A, Eg, B)such that:

(1) Eg(am,)=0,meN,
(ii) there is a bounded linear map n: B - B such that

hm Zm:l EB(ambam) — 77(

n—oo n

b), be B,
(ii1) there are constants Cy (k € N) such that

sup | E (ambiam:--bram )| < Ci[[br]---[bx] (k € N).

meN
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Then the distributions of S, = Z”m:#am (n € N) convergence pointwise to the semicircular

distribution with canonical form \*(1) + X(n).

Proof. Let A\*(1) + X150 A(&km) be the canonical form of a,, (m € N). By Lemma 3.1.29 and

Lemma 3.1.30 we have:

gﬂ,m = 0, meN
ZZm:l gl,m(b)

lim = n(b), be B
n—oo n

Let A*(1) + X350 A(Mk.) be the canonical form of the random variable S,, (n > 1). Then, by

induction , Proposition 3.1.22, and Proposition 3.1.26 for ¢ = nz it follows that

—(k+1)

Men =N~ 2 (Epp + - +&kn) K20, neN.

Since:

Ton = 0
n(b),be B

lim 7 ,,(b)

n—>oo

7k (b1 ® - ® by )|

~(k-1)

Crl[br][-+-[bx ][0~

IN

,bkEB,kEN,

by Lemma 3.1.29, and Lemma 3.1.30 it follows that the distributions of S,, (n € N) conver-

gence pointwise to the B—semicircular distribution of \*(1) + A(n). O

3.2 The Complete Positivity Property of the Second
Moment

This section deals with the necessary and sufficient condition of the second moment of a
given random variable a € A ensuring it to be semicircular. Here, by M, (A) we denote the
algebra of all n x n matrices with entries from A, equipped with the canonical * structure.
The conjugate of a = (ay;)j;_; € Mn(A) will be a* = (aj;);.;. Throughout this section, we
assume that A to be a unital C*-algebra and B is its unital C'*-subalgebra containing its

unit, [13, pp. 41-44].
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Definition 3.2.1. Let Ay, A be two unital C'*-algebras. A unital linear map ®: A; - A, is
positive if ®(aa*) >0 for all a € A;. Moreover, it is completely positive, if for each n > 1, the

map

O, M (Ar) — My (Ay)

D, ((aij)ijz1) = (P(ay))i i
is positive.

Lemma 3.2.2. (1) Let a € M,(A) (n 2 1). Then, aa* = ¥i_(axajf ;)i -, for some ay; €
A (1<ik<n).

(2) Let : A — B be a unital linear map. Then, the following statements are equivalent:

(a) The map ®: A — B is completely positive.

or each n € N, and all aq,--, a, € the matriz a;a; 1S positive.
(b) F h N, and all A, th (P(aiar))r Tic1 1S D
(¢c) For each n €N, and all ay,--,a, € A, there exist elements by, € B

(1<i,k <n) such that ®(a;a}) = ¥y briby; for all 1<, 5 <n.

Proof. (1) Writing a = (ay;)};-; We have:

aa’ = ( Z azkagk) Z iy )} je1 = Z(ak,ia};j)ffj:l-

k=1 k=1 k=1
(2) Let part (a) hold. By part (1) for ay; = a;,ax; = 0 where 2 < k <n,1 <i<n, it follows
that (a;a})7;-, € M, (A) is positive. Hence, by complete positivity of ®, part (b) is proved.
Next, let part (b) hold. Consider the matrix (®(a;a}))i;., € My (B). Then, by part (b) it is

positive and hence by part (1):

(0, = Bt = (Sowtis)

and by comparing the corresponding entries in both matrices, part (c) is proved. Finally. let

part (c) hold. For any a € M, (A) (n > 1), using part (1) we have: aa* = ¥i_(akiaf ;)7
for some ay; € A (1 <k,i<n). Thus, part (c) implies:

n

O, (aa*) = Y (P(ania; ;))ijer = o Do Okaabiy )7 -1 2 0,
k=11=1

proving the positivity property of ®,,, and hence part (a). ]
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As one of key properties of the conditional expectation, the positivity property and com-

plete positivity property coincide. Before proving that we need the following lemma, [8].
Lemma 3.2.3. Let B be a unital C*-algebra and b;; € B (1 <14,j <n). Then, the following
statements are equivalent:

(a) The matriz (bi;)i ., € My (B) is positive.

(b) We have: ¥, ; bibi;b% >0 for all by,--,b, € B.

175 =

Proposition 3.2.4. Let B be unital C*-algebra, A be a unital *— algebra containing B.

Then, any conditional expectation Eg: A — B is completely positive.

Proof. Let ne€N and a; € A (1<i<n). Then:

%, b))t = 3% EnChas(bia)’) = B (3 had (b)) 2.

i.j=1 i.j=1

Hence, by Lemma 3.2.3 the matrix (Ep(a;ia}));;., € M,(B) is positive, and therefore, by
Lemma 3.2.2, Ep is completely positive. O

Theorem 3.2.5. Let B be a unital C*-algebra. A unital linear map n: B - B is the second

moment of a B— semicircular random variable if and only if it is completely positive.

Proof. Assume that s € A is a B-valued semicircular random variable. Let n(b) = Eg(sbs)

for all b e B. Then, for

(0(Bib}))i 1 = (Bi(sbibys))ijo = (Ep((sbi)(sh;)7)) € Mu(B) (n21),

ij=1
an application of Proposition 3.2.4, and two applications of of Lemma 3.2.2, respectively,

show that 7 is completely positive.

Conversely, let the unital linear map 7 : B - B be completely positive. We need to find
a semicircular random variable with second moment 1. We will construct the distribution
of such a random variable as the distribution of the sum of ‘creation’ and ‘annihilation’

operators on a ‘degenerate’ Fock space. The degenerate Fock space F is the B— B—- bimodule
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F = B® BXB equipped with a B-valued inner product:
(,) + FxF->1B
(by + b1 Xbo, by + b1 Xb) = bby + b (b2 by )bs.
Now, define a creation operator [* and an annihilation operator [ via:
rF-F [+ F—-F
I*(bo + b1 Xby) = 1X by [(bo + b1 X bg) =n(by)bs.
Next, as a result of positivity of n we have n(b*) = n(b)* for all b € B. Consequently, the

operators [ and [* are adjoints with respect to (,); i.e., for fi = by + b1 Xbs and f, = b~0 + b~1Xb~2

we have that:
(Ifi, f2) = (n(b1)ba+0X0,bg+ by Xby) = (17(b1)bs) by
= bin(bi.1)bo = (bo + b1 X by, 0+ 1Xby)
(fl:l*fZ)'

Now, we identify all elements b € B with their corresponding left multiplication operators
Iy : F — F, and also we consider b and b* as adjoints in this context. We consider our B-valued
non-commutative probability space (A, Eg, B), where A = ({l,l*,l,:be B}),and Eg: A > B
defined via: Eg(a) = (1,al). It is worth mentioning that since (f1by1, foba) = b3 (f1, f2)bs for
all fi, fo € F and all by,by € B, we have:

EB(blabg) = (]_,blabg]_) = b1<17a1>b2 = blEB(CL)bQ
for all a € A and all by,by € B. Let s:=[*+ 1€ A. Then:
Ep(sbs) = (1, (I* + Db(I* +1)1) = n(b) be B.

So, it remains to show that Ep is positive. Let a € A, then writing a*1 € F in the form

a*1=b+ ", b;Xb; where b,b;,b; € B (1<i<n), we have:

Eg(aa*) = (l,aa*1)={(a*1,a*1)

(b+ ibiXZ;i,b+ iijb})
=1

j=1

0o+ Y by n(bib;)b;.

2,j=1
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Now, by complete positivity of 7 and Lemma 3.2.2, we have:

n(bib;) = S0k bey brs€ B (1<i k<n).
k=1

Hence:
Epaa®) = b'b+ 3 b (X bk, )by
i,j=1 k=1
= b'h+ i i@*b,’;zbk,]b]
ij=1k=1
= b (Dbea) (X best)
k=1 "1i=1 j=1
> 0,
completing the proof. n

We close this section by stating M. D. Choi’s representation of completely positive maps

from a finite dimensional matrix algebra to another one, [1].

Theorem 3.2.6. Let 1: My, xn, (C) = Miyyun, (C) be a completely positive linear map. Then
there exist a; € My, xn, (C) (1< j <nyng), such that

ning

n(a) = . ajaq
bt
for all a € My, xn, (C).

Proof. Let Ej;, € My, «n, (C) be defined by Eii, = (6¢s),(100))s 1 < li,la < ny. Since 7 is
a ni—positive map, it follows that (n(ElllQ)) € My nyxnin, (C) is positive. Now, by spectral

nin2

resolution theorem we have (n(Ey,)) = s

Ajujui where v; € €2 and A; >0, 1<j<

niny. By absorbing A; in v; we have that:

(n(Eu,)) = nf VU] (3.1)

Next, writing the vector space C™1"2 in the form Cmn2 = @7, C"2, considering p; € My, nyxning (C)

as the projection on the i** copy of C"2, 1<1i<ny, and Equality (3.1) we have:

ning

(En) = pu-0(Euw))-pu =Y, puoj(puv;)* (3.2)
j=1
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for all 1 <1y,ly <ny. Now, define aj € M, «n, (C) by

aje; = pj 1<j<ning, 1<i<ny,

and from (3.2) it follows that:

ning nin2
* * *
n(En,) = ), ajeyeai= Y aiEy,a; 1<l <ngns.
j=1 =1

Accordingly, by linear extension of the Equality (3.4) the desired result follows.
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CHAPTER 4
A SPECIAL FUNCTIONAL EQUATION FOR SOME OPERATOR-

VALUED CAUCHY TRANSFORMS

This chapter discusses the operator-valued Cauchy transform of a random variable and
an associated functional equation to it for the case of semi-circular random variables. In the
section 1, the operator-valued Cauchy transform of a random variable is introduced, then
using a general implicit function theorem, we introduce the operator-valued R-transform
of a random variable satisfying a special functional equation involving its operator-valued
Cauchy transform. In section 2, we discuss sufficient conditions under which the mentioned
operator-valued functional equation involving the operator-valued Cauchy transform of the

semicircular random variable has a unique solution.

4.1 Some Analytic Transforms in Operator-Valued Set-
tings

Given an operator-valued noncommutative probability space (A, Eg, B), we recall that any
a € A can be written as a = Re(a)+i.Im(a) where Re(a) and Im(a) are self-adjoint elements.
We define H*(A) = {a € A|Im(a) > 0}, where Im(a) >0 means I'm(a) > e.1 for some € > 0,
and similarly H*(B). Then the operator-valued Cauchy transform of a € A is defined via:

Go(b) = Ep((b-a)™).
We notice that if |b7!| < @]~ (and hence [b] > |a]|), so that |ab!| < 1, then we have:
Ga(b) = Ep((b—a)™) =3 b~ Ep((ab™")").
n=0
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This is an analytic function with Fréchet derivative
(DyGi(0))(h) = -Ep((b-a) ™ h.(b-a)™"), (heDB).
Next, by Lemma 3.1.8 from Chapter 3 and the fact that the nt* derivative of the function
LGB = 1+ S (b, b)
n=0

in b =0 gives exactly the symmetric part of m,,, it follows that the symmetric distribution of
a; € A equals to the symmetric distribution of a; € A if and only if G = G,.

Let S, (n > 1) be the symmetric group. The subspace of symmetric n-linear maps of

X, (B) is defined as
SX(B) = {& € Xn(B)|&n (b1 ® - ®by) = £ (bo(1) ® - ® by(yy) for all o €5, }.
If &, € X,(B), we denote by S¢, € SX,,(B) the element defined by

1
Sén(b1®--®by) = > 180 (be1) @ ® bon))

oeSy, '

such that S&,(b%") = &,(b®"). Next, we represent the elements of SX(B) = [1,,50 SX.(B) <
ano XTL(B) = ?(B) by ZnZO én

Definition 4.1.1. Let S, € S¥ . We define:

GS#ZB—>B FS#IB—>B
G, (b) = Z)M(b(Xb)”) [s,.(b) = Zou((Xb)”X)-

Here, by conditional expectation properties of y it follows that:
G, (b) = u(b) + Zl uw(b(Xb)") =b+ Zl bu((Xb)" ' X)b=b+0blg,(b)b.
It should be mentioned t};at for a € A we ha\;e
Gs,,(0) = Go (07, [b] < laf ™.

Next, since the Frechet differential of G, at b= 0 is the identity map, G, is invertible with
respect to composition in a neighborhood of zero. Before introducing the R- transform of a
random variable a € A, we need a general implicit function theorem due to T. H. Hildebrandt

and L. M. Graves, [6].
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Theorem 4.1.2. Let X,Y and Z be normed linear spaces, of which X and Z are also
complete. Suppose that G: X xY — Z is of class C™ on a region Rc X xY, and let (xq,yo)

be an initial solution of the equation

G(z,y) = 0 (4.1)

at which the partial differential B%G(xo,yo) has an inverse. Then in a sufficiently small
neighborhood of yo in Y the equation (4.1) has a unique solution y = y(z) of C™ class
defined on a neighborhood of xy in X.

Now, the R— transform of a is introduced in the following theorem, [2].

Theorem 4.1.3. There is a unique B—valued analytic function R,, defined in a neighborhood

of 0 in B, such that

G5t (b) = (1+bR.(b))""b = b(1 + Ru(b)b) ™", (4.2)

where the inverse in the left hand side is considered as invertibility with respect to composition.

Proof. First, the uniqueness is clear by power series expansion. Second, the right-most
equality in (4.2) holds for and analytic function R,. Hence, it remains to find a function R,,
such that

Gs,. ((1+bR,(b))'b) =b.

But,

Gs,, ((1+bR,(b))"b) (L+0R, (D))"

+

(1+bRa(6)) 8, ((1+ bR.(6)) ') (1 + bR(b)) ",
so it will suffice to find R, so that any of the following hold:

(1+bRa(0))™ + (1+bRa(6)) "0, ((1+bRa(6))0) (1 +bRo(5) " = 1,
1+ b0s,,, (1 +bRa(6))70) (1 + bRa(b)) ™ = 1+ bR (D),
Is,, ((1+ bRa(b))‘lb)(l + bR, (D)) = Ry (b). (4.3)
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However, R,(0) = E(a) is a solution of equation (4.3) at b= 0, and the Frechet differential of
the function z - I'y, ((1 + bx)‘lb)(l +bx)~' —x at b=0 is the negative of the identity map,

hence is invertible. Now, the existence of R, is guaranteed by Theorem 4.1.2. [
It should be mention that by [14], we have:

Ra(b) = Z;)SRR+1(Slta)(b®n)

where SR,41(S,,) (n>0) are given by the canonical element with distribution S,,, .

Corollary 4.1.4. If aj,as € A are free over B, then:

Ra1+a2(b) = Z SRn+1(Sua1+a2)(b®n) = Z SRn+1(S a1 San)(bgm)

n>0 n>0
= D SRua (S, )(0°") + 3 SRai1(S,,) (0°") = Ray (b) + Ray (D).
n>0 n>0

Corollary 4.1.5. Let b(1 + R,(b)b)™! = Gg}m (b) as in Theorem 4.1.3. Replacing b with
Gs,, (b71) in the equation and considering G, (b™) = G4 (b), we get G5 (b)(1+ R, (G5 (b))Ga (b))t =
b=t yielding:

bG(b) = 1+ Ro(G3(0)) G5 (D).

In particular, for the semicircular element s € A with the first moment D = Eg(s) € B and

the variance n(b) = Eg(sbs) we have that:

bG(b) = 1+ (D +n(G5(0))) G (D).

4.2 The Functional Equation of the Operator-Valued
Cauchy Transform of a Semicircular Random Vari-

able

Let A be a unital C'*-algebra, B be a C*-subalgebra of A, and Eg: A — B be a conditional
expectation. For a given self-adjoint semicircular random variable s € A with a completely

positive linear map n: B — B as its variance, its operator-valued Cauchy transform G? maps
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H*(B) into H=(B). Indeed, let b e H*(B) where b = Re(b) +i.Im(B) with Im(b) > e.1 for

some € > 0. Then as in [15] we have that:

(b-s)™* (Re(b) — s +i.Im(b))™ )
()2 (et - @) 1))

Here, since Re(b) — s is self adjoint, it follows that (Im(b))= (Re(b) - s)(Im(b))= is self-
adjoint too. But, -i ¢ o (Im(b))F (Re(b)-5)(Im(b)) ¥ ) € R, implying that (Im(b)) = (Re(b)-

s)(Im(b))= +i is invertible and, consequently | ((Im(b)ﬁ((lm(b))_zl(Re(b) —s)(Im(b)) = +

Z)(Im(b))é) is invertible. Hence, by equation above (b—s)! is well-defined. Next, we have:

Im((b-s)")

Jm(((fm(b))é((fm(b))S(Re(b) —$)(Im(b)) T + z')(fm(b))é)_ )
- (Im(b))_zl.Im((([m(b))_zl(Re(b) —5)(Im(b)) = + i)_l).(lm(b))_zl

(Im(b))? (Re(b) - s)(Im(b)) 7 ~ i
((Im(®)) 7 (Re(v) - 5)(Im(b)) 7 ) +1

= —(m(®) " (((Im) (Re(v) - ) (Im(0)7) +1)
< 0,

= (Jm(b))‘;.fm( ).(Im(b))_zl

and by complete positivity of Eg it follows that:
Im(G; (b)) = Im(Ep((b-5)")) = Ep(Im((b-s)"")) <0.

By Corollary 4.1.5 of section 1, the operator-valued Cauchy transform operator-valued Cauchy
transform of the semicircular random variable, G : H*(B) — H~(B) satisfies the the equa-

tion:

b.GX(b) =1+ (D +n(G*(b))).G:(b)  Im(b) >0 (4.4)

where D = Eg(s) € B is self-adjoint. We want to show that this equation for the analytic
G:: H*(B) - H(B) together with its asymptotic condition:

lim b.G*(b) = 1 (4.5)

b=1-0
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uniquely determines the G?%. For that aim, we need a special fixed point theorem. Before

proceeding to its statement, we need some definitions, [4], [3].

Definition 4.2.1. Let (B, |.||l;) i = 1,2, be two complex Banach spaces and D; € B; i = 1,2,

be two bounded domains.

(i) A subset D'2 € By lies strictly in Dy € By, and we write D; € D, strictly, if there is
e > 0 such that for all b, € D, :
D(Bg,b;, 6) = {bQ € Bg|||b2 - b,2||2 < E} c DQ.

(ii) Let H*°(D;) be the Banach space of all bounded holomorphic functions on D, and I" be

the set of all curves in D; with piecewise continuous derivative. Define:
o D1 X Bl i RS
a(by, b)) = sup{|(Df(b)))b1]|f is in the unit ball of H*®(D;)},

and set L(v) = fol a(y(t),7'(t))dt v € T. The Caratheodory-Reiffen Finsler metric (CRF-

metric) p is defined as follows:
p  DyxD;—>Rj
p(by,b7) = inf{L(y)ly e T:7(0) = by, 7(1) = by }.
Regarding the CRF-metric p we have:
Proposition 4.2.2. Let p be the CRF-metric. Then, there exists a constant m >0 such that
p(b},b7) >m|by = b |1 for all b},b] € D.
Proof. Since Dy is bounded, d = diam(D;) < oo and we take m = é. For given b; € D; and
b, € B; define:
fii o D1->C
fi) = mi(by - by)
where [ € Bf with |I| = 1. Then, f; is in the unit ball of H>(D;), and Df;(b})b; = mi(by).
Hence, La(by,b1) > |I(b1)| for all [ € Bf with || = 1, and, consequently, by a corollary of the

Hahn-Banach theorem, Za(b;,b;) > |b1]. Now, by integrating from both sides the assertion

is proved. O
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The following fixed point theorem is due to C. J. Earle and R. S. Hamilton, [4].

Theorem 4.2.3. Let D be a non-empty domain in a complex Banach space B, and let
h: D — D be a bounded holomorphic function. If h(D) € D strictly, then h is a strict
contraction in the CRF-metric p, and thus has a unique fixed point in D. Furthermore, for

any by € D, the sequence (h°"(by))o>, converges in norm to this fized point.

Using above mentioned theorem we can state and prove the following theorem which has

previously appeared in [5]:

Theorem 4.2.4. Let A be a unital C*-algebra, B a C*-subalgebra of A, and s € A be a
self-adjoint B-valued semicircular random variable with first moment D € B and variance
n: B — B. Then its associated operator-valued Cauchy transform G: : H*(B) — H~(B) is

the unique solution of the functional equation (4.4) together with asymptotic condition (4.5).

Proof. Fix be H*(B) where Im(b) > e.1 for some € > 0. Then the equation (4.4) holds if and
only if b— (D +n(G%(b))) = Gz7(b). Now, define:

F,: H'(B) > H*(B)
Fy(w) =b— (D +n(w™)).

Let r=2(|b||+ || DI+ n | e?'), and define :
D,.=(H*(B)+ei)n{weB|||w|<r}.

Let w € D,.., then by I'm(w) > e.1 and using properties of C*-algebra and functional calculus

it follows that:

Fw™ I = Il (Re(w) +i.Im(w)) ™ |

I (m(w)) ((Im(w))? Re(w).(Im(w))# +i) (Im(w)¥ |

I ((Im(w)F Re(w).(Im()? +3) " | (Im(w))? |2

IN

IN

L | (Im(w))™ |

6_1,

IN

o1



yielding:

I Fo(w) I = o= (D+n(w ) <l o+ 1D+l I w™ i

IA

_ r
Lol + 1Dl +lnlet=s.

Next, since || w ||< r, by complete positivity of n it follows that:

Im(Fy(w))

|
~
3
=
<>

) = Im(n(w™)) > e=n(Im(w™))

Im(w) _ 2 -1 -1
w) - zmz(w)) = e+ (Re?(w)Im™ (w) + Im(w)) ")

€+ 77((|| Re2(w)Im ™ (w) + Im(w) ||)_1.1)

v

e+ (1 Be(w) I B () 1+ 1 ) 1) 1]

KAl
r2el 4+

v

[\

€+

Accordingly, F,(w) € D, oI, implying:
27 1

T4 €T 4T

Fy(Dre) €D,y ., 1 ¢ Dy strictly,
27

r2.e1ip

foralle>0,r>2(]|b |+ | D ||+ || n| €e!) and fixed b € H*(B). Now, by Theorem 4.2.3,
we conclude that there is a unique wj € D, such that Fy(wy) = w,, and furthermore, for any
wo € D, the sequence (F2™(wg))s,, converges to this fixed point. Hence, Fy(ws) = wy if and

only if
w,= b= (D +n(w;")) (4.6)

where wy, is a unique element in D, . satisfying this equation for all r > 2(|| b | + || D || + || 1 ||
¢1). On the other hand, since Im(G51(b)) = Im(b— (D +n(G,(b)))) > €, we have Gx(b) ' €
H*(B) +1i.€, and consequently, for some large enough r > 2(|| b || + || D || + || n || €1), we

have:
Gi(b)" = b= (D+n(GI(0)). (47)
By comparison of equations (4.6) and (4.7), we conclude that w;! = G (b) so that G (b) is

unique. O

52



CHAPTER 5

MAIN RESULTS

This last chapter is divided into two sections. In section 1, using the continued frac-
tion representation of the Cauchy transform of a compactly supported probability measure,
we give two of its representations in terms of sequences of finite dimensional matrix-valued
Cauchy transforms of semicircular random variables. The section closes with a representa-
tion of the mentioned Cauchy transform of the compactly supported probability measure in
terms of an infinite dimensional matrix-valued Cauchy transform of a semicircular random
variable. In section 2, the existence of atoms of distributions of finite dimensional matrix
valued semicircular random variables are discussed. Using M. D. Choi’s representation of
completely positive maps from a finite dimensional matrix algebra to another one, we give
some sufficient conditions on the variance of a semicircular random variable such that its

associated probability measure has atom.

5.1 Representation of the Cauchy Transform Using Semi-
circular Random Variables

This section deals with some representations of the the Cauchy transform of a probability
measure in terms of operator-valued Cauchy transforms of semicircular distributions. The
proof of the following three results are based on the Theorem 4.2.4 of Chapter 4. Indeed,
given D and 7 as in that theorem, we are guaranteed that for each b € H*(B) we shall find
a unique G:(b) € H=(B) so that:

b—(D+n(Gs*(b))) = G*(b)" and Im(G*(b)™") > Im(b) (5.1)
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and, hence, G (b) is defined as its operator-valued Cauchy transform of the B-valued semi-
circular random variable with the first moment D and variance 7. In our following three
results we shall verify the conditions (5.1) for b= £.1 & € C* and Gz (b) a diagonal matrix
of complex analytic functions. Theorem 4.2.4 of Chapter 4 will guarantee us that there is
a semicircular random variable s with first moment D and variance 1 so that G:(b) is the
restriction of the operator-valued Cauchy transform of s to C+.1.

The first two propositions deal with the finite dimensional matrix valued representations

of the Cauchy transform.

Proposition 5.1.1. Let o be a probability measure with compact support in R. Then there
exists a sequence s, (n > 1) of self-adjoint operator valued semicircular random variables with
associated operator valued Cauchy transforms G : M,(C) - M,(C) (n > 1) such that the

Cauchy transform G, : C* — C~ is represented as:
G#(i) = ALI&(G;R (6'1n)€n) en)fg [m(ﬁ) > 0.

Proof. Let

Gu(f) = w1

§—ap -
€~ s a1

§-ap -
" e .

be the continued fraction representation of GG,. Fix positive integer n > 1, then define b = £.1,,,
D, = (anﬂ_kékl)zﬂlzl and the completely positive map 7, via :

N = M (C) » M,(C)

1 1

(@) e1) = (W21 Oneen) Vit (@) oy (W2 S eenyt) s
Then, for the self-adjoint semicircular element s, with operator valued Cauchy transform
G satisfying the functional equation:

bGy, (b) =1+ (D +1ma(G7, (1)) G2, (D),

o4



we have G (b) = (gn,x(§)0m) .=, Where in which:

1

gn(§) = o) 1<k<n Im(&)>0.
§—ay - Wy
§-ag -
§— 043—_' | W1
S -y
Accordingly:

= lim (G5, (§-1n)en, en)e Im(&) > 0.
[l

Proposition 5.1.2. Let o be a probability measure with compact support in R. Then there
exists a sequence s, (n > 1) of self-adjoint operator valued semicircular random variables with
associated operator valued Cauchy transforms G, M,(C) - M,(C) (n > 1) such that the

Cauchy transform G, : C* — C~ is represented as:

Gu(§) = AE{L(G; (§-1n)er, en)e Im(&) > 0.

Proof. Let

Gu(f) = w1

§-ag -

§—ap -
€_a3_. Wn-1

Wh,
5 — Q1=

be the continued fraction representation of G,. Fix positive integer n > 1, then define b = £.1,,,

g_an

D, = (akékl)z,lzl and the completely positive map 7, via :
M - Mn((c) e Mn((c)
1 1
Un((akl)z,m) = (wg 5(k+1)l)Z,z=1(akl)Z,H(W§_15k(l+1));§,l=1-

Then, for the self-adjoint semicircular element s, with operator valued Cauchy transform

G satisfying the functional equation:

bG;, (b) = 1+ (Dn + (G5, (0))) G5, (b)),
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we have G (0) = (gnn-k+1(§)0x1)},-, where in which:

1
Gnn-kr1(§) = o 1<k<n Im(€)>0.

§-aq -

w2

f — Qg —
§- 043—_' Wn-k+1

é — Op_k+1

Accordingly:

GH(&) = Al_{lologn,n(g)
= %%(Gzn(éln)elaelﬂg Im(§) > 0.

]

The following theorem deals with the infinite dimensional matrix valued representation
of the Cauchy transform. Here, we denote by B(/2(N)) the space of bounded operators on
the separable Hilbert space ¢2(N), and we consider the orthonormal basis {e,}2; of (2(N)
given by e, = {0mn ., (n>1).

Theorem 5.1.3. Let pu be a compactly supported probability measure in R. Then there exist a
self-adjoint B({y(N))-valued semicircular random variable s and an state p: B({5(N)) - C
given by p(T) = (T'(e1), e1)e, vy such that the Cauchy transform G, : C* - C~ is represented

as:
Gu(6) = p(GI(ED))  ImE>0.
Proof. Let
1
Gu(&) = w1
—ay - o
5_042—5_6%_.. i o
Wn,
ST §—aps1—.,

be the continued fraction representation of G ,. Define b = £.1 € B({2(N)), D = (c0p1)5, €
B(¢3(N)), and the completely positive map 7 is given by [9, Theorem 4.1]:
n: B(£>(N)) » B(£2(N))
1 1
n((ar) 1) = (W5 Orsy) mr=r (an) wrmy (W7 Ok(ie1) ) itz -
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Note that both D and 1 are bounded in their respected norms; in fact using equation (2.1)
of Chapter 2 we have:

sup (| [ @]+ [ 40O (1))

sup(|am| + wim)
m

< swp(| s W[ phdu)]+ sw [ Ipn(Opns(Oldn(e)
m teSupp(p) teSupp(u)

< sup( s [+ sup ([ A (Odu(t) [ p(Ddu(t)?)
m teSupp(p) teSupp(p) R R

< 2 sup |
teSupp(u)

< 00,

Now, for the self-adjoint semicircular element s with operator valued Cauchy transform G}

satisfying the functional equation:
bGi(b) =1+ (D +n(G(b)))GL(b),

we have
G3(b) = (Trdr) =

where in which:

1
Tnn = Wn n>1
5 ~Qn Wna1
f —Opy1 — Wn+2
g ~ One2 — Wn+3
— Opy3 — g P
Consequently, for the state p: B(¢2(N)) — C defined by:
p(T) = (T'(e1), 1) e,y
the assertion follows. O

5.2 Atoms of Distributions of Matrix-Valued Semicir-
cular Random Variables

Let A be a unital C*-algebra, B be a unital C*-subalgebra of n x n complex matrices,

Ep : A - B be a conditional expectation, and G* : H*(M,(C)) - H(M,(C)) be the
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operator valued Cauchy transform of the self- adjoint semicircular random variable s € A.

Define a map G:C* - C~ via:

G(€) = (G (6.1)) =ty 0 (o),

€1

where tr,(.) denotes the normalized trace on n x n complex matrices. Referring to the note
after theorem 2.1.4 of Chapter 2 for the special case of positive normal trace 7: A - C
defined by 7(a) = tr, o Eg(a), we observe that there is a probability measure pu = s on R,

which we call a semicircular distribution, such that:

(G (E1) =GO =G0 - [T cec

Note that in the functional equation (5.1) if n = 2, D = 0 and n(a) = a, then using
du(t) = Zlimy0 ImG . (t +iy) it follows that du(t) = 5=V4 -t |¢] < 2, the Wigner semi-

circular distribution.

Proposition 5.2.1. Let G* : H*(M,(C)) - H~(M,(C)) be the operator-valued Cauchy
transform satisfying the functional equation bG*(b) = 1+ n(G*(b))G*(b), where in which

b=¢1eM,(C), and the completely positive map 1 is given by:
n: M,(C) - M,(C)
’I’LQ
_ * * _ % . 2 _ S 2
n(a) =Y ajaa; aja; =aja; (1<j<n?), aja;=aza; (1<j1,72 <n?).
j=1
Then:
(1) the associated probability measure p to G* has no atoms if and only if the matriz n(1) is
wnvertible,

(1) the only possible atom of the associated probability measure p to G* is x = 0 with possible

values £ (1< k <n).

Proof. Let a; = (ajm)},., for (1 < j <n?) and G*(b) = (x)},.,. Since all the matrices
a; (1 < j <n?) are normal and commute with each other, there is an unitary matrix u =
(urt)y - € My (C) such that:

(au)j = u*aju = (ajdp)iey  1<j<n®
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Also:

G (b) =u G (b)u = (x;cz)z,z=1

where in which z, = ¥, (uss, 75, ¢ 1< 5,t<n). Since the matrix u is unitary, it follows that:

(G (D)) = tr(Gre (b)) = 21 Tk (5.2)

Besides:
bG(b) = w (bG™(b))u=u"(1+n(G"(0))G*(b))u

_ 1+u*(§_;ajG*(b)a;G*(b))u

= 1+ E(U*aju)(u*G*(b)u)(u*aju)*(u*G*(b)u)

= L D (0),G (@) G (B, (5.
Next, we notice that:

wou = Sramen) = X)) = (Clo),

and by defining W := {k € {1,2,---,n}: Z;fl |ovj k|2 = 0} it follows that n(1) is invertible if and
only if W = ¢.

To find tr,(G*(b)) in terms of b, using equations (5.2) and (5.3) it is sufficient to find

tr,(Gz*(b)) in terms of b or equivalently z,, (1 <k <n) in terms of . For that, substituting
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the introduced matrices in the equation (5.3), we have that:
€z im = (0D (T )im
= bG:(D)

) (a4);G7 () (an) ;G ()

3

= 1+

M

.
I
—_

3
N

1 . /
= 1+ (aj,kékl)z,lzl(-’Ekz)z,lzl(aj,kékl)z,zz1(xkz)rkl,m

.
==Y

»

n
! 14
= 1+ Z(C“j,kmkl)z,lzl(O‘j,kxkl)z,lzl
-1

<.

2

n
’ 7
= 1+ ( > O‘j,k@j,s%sxsz)
s=1

3

n

k,l=1

n TL
= 5kl)kl 1+(ZZ%1€%5% sl)
s=1j=1

n n? n
! 7
GRS N

s=1j=1 k=1

A
1l
—_

n

k=1

yielding the following system of n? equations:

2

n? n
( Z @y, i )xll + Z ( Z 14, S)xls Ts1 fxn +1
j=1 s=2 " j=1
n n?
Z(Z J71aJS)xls Ty = €1
s=1 "gj=1
n n?
Z( Oé] 1a18)xls Lsn gmln
s=1 " j=1
n n?
Z( 5.k A, 5)$ks Ty =&y
s=1 "j=1
) ’ ’ n’ 2 r 2 7 n’ ’ / ’
Z ( Z aj,k@)l’ksxsk + ( Z |kl )xk;k + Z ( Z O‘j,k@)l’ksxsk —Exyy +1
s=1 "gj=1 =1 s=k+1 " j=1
n n?
7
Z ( Z ajakaj7 )xks Lgp, gxkn
s=1 ° j=1
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n n
Z < Z Oéijz] S)‘Tnswsl gxnl =0

s=1 " j=1
n n? ,
Z( ajvnajvs)xnsxs(n 1) 'an(nfl) =0
s=1 " j=1
n-1  n? n? . 9 ,
2 —
( Oé] na] S)xnsxsn + ( Z |aj,n| )xnn - gxnn + 1 - O
s=1 "j=1 7=1

(5.4)

Solving the system of equations (5.4) it follows that:
2, =0 (1<k#l<n)

and

O £-V€ - A o)
= — k
oo ) T S )

is one of possible solutions, yielding:

L £-\/E -4 |aj,k|2>)‘
n\ & pav 2(2?:21 lonl?)

(1-xw(k)) 1<k<n,

tra(G* (b))

A simple calculation shows that
Elim Etr,(G*(£.1)) =1, Imé&>0

where we put £ = yi (y > 0) and let y — +oo. It follows that the given solution x;, (1 < k,l <n)
to (5.4) is the only acceptable one. Next, to find the atoms of a probability measure p such
that

(G 0) = [ %du(t),

fix —00 <z < o0, then:

p({x})

lim (¢- x)/—du(t lim (5 x)tr,(G*(£.1))

Fa(x)sﬁ—m Fﬂt(x) &~

li{g(iy)trn(G*((eriy).l))=0 if x#0, Wi if z=0.
v n
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Thus, p has no atoms if and only if W = ¢ or equivalently n(1) is invertible, proving (i).
In addition, the number of possible atoms of ;4 is at most one at x = 0 with possible values

@ (1 <|W|<n), proving (ii). O

Remark 5.2.2. In the above Proposition, the assumption of normality of the matrices a; (1 <

j <n?) is necessary. To see this, let n =2, 0 # |a| # |5 # 0 and define:

0 «
ay = s CL]:O(QS]§4)
g0
a0 B0
Then, ajaj = # =aja; and n(1) = a1a; is invertible. Let
0 [BP 0 fof
§
b=£1= and G*(b)
0 Yy ow

Under these conditions we are interested in finding G(b) in terms of b or finding 2, v, y,w in

terms of £. Now, substituting above matrices in the given equation, we have that:

&z &v ~ &0 zZ v
§y Ew 0 &)\y w
= b.G*(b)

L+n(G*(0))G"(0)

10 0 « ) 0 8 v
= +

01 50 @ 0 w
~ 10 Qy aw y B.aw
) 01 : B.z B .z a.w
(1o a.fy?+|afw.z aByw+|ofwe
1o : |62.zy+ Bawv.z  |B2zw+ pav?
B afy?+|ofwz+l  aByw+|atwo
) 1B2.zy+Bav.z  |fPfzw+fav?+1
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Consequently, we have the following equalities:

afy+lafwzyl-E2 = 0
aByw+|afwv-&v = 0
1BPzy+Bavz-Ey = 0
|/3|2.z.w + B.E.UZ +1-&w = 0.

Let v =0 =y, to obtain:

1l
)

laffw.z—-¢z+1

1B zw - Ew + 1

I
o

yielding:
JOE Sl e L V(= + [P - €2)? - 4.|aPe?
26|82
and,
o 4ok - 0P + ClaF B - @~ 4jaPE
2|af?
Thus,
tro(G* (b)) = §+%
_ - lo + B2 £ \/(-|of? + |82 - £2)% - 4.]af?¢?
A¢(B)?
, ExlaP 18P £/ (o + 8P - €)° - 4Ja?¢
ALlaf?
_ [l = laPlaf + a8 £ of*/(=|of? + |82 - £2)% - 4.]af?¢>
AE|BP|af?
, 1BI2€ + |BPlaf - B2 + 8PV (P + 8P - €2)? - 4.|af2¢?
Alal?|BP?
(a2 +19)(€2 = /TP + B~ )2 - 11aPE) - (Jal - |32
) A¢laf?| B2 ‘

Now, to verify the condition
E'lim Etra(GH(E1)) =1 Imé >0,
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we put £ =yi (y >0) and let y - +oo. It follows that the positive sign is acceptable. Next,

we are looking for a probability measure p such that

(G 1) = [ édu(t)-

To find the atoms of p fix —oo < x < 0o, then:

pa)) = |l (€=a) [ Zmdu) = lim (6-a)ra(G (D)

Ta(z)3é—2 Ta(z)3é—zx

li (i) tr2(G* (& + i9)-1) = lig 7 i;‘l§|a|2| ks (W +161%)

(G i)+ VTP + ]3P = (@ + i9)?)? ~ LJaP(a + )?) - (af - |6|2)2)

1

0 if (x%0), —(1—|§|289n<1-|§|>) if (z=0).
2 o

O

Theorem 5.2.3. Let G : H" (M, (C)) - H-(M,(C)) be the operator valued Cauchy trans-
form satisfying the functional equation bG*(b) = 1+ n(G:(b))G:(b), b e H*(M,(C)), where
n: M,(C) - M,(C) is a nilpotent completely positive map. Then the associated probability

measure p to G has at least one atom .

Proof. Let n,---,n™ 1 0 and n™ =0, for some m > 1. Writing the functional equation in the

form of b— G (b)™" = n(G=(b)) for [b71| << oo it follows that:
b= GIB) ) =0 (GE(0) =0 Im(b) >0, |7 << oo,
Now, if ker(n™1) =0, then G*(b) =b! and it follows that

n({0})

l (6-0) [ du(t)= lim (€~ 0)ir,(GH(ED)

I'a(0)3¢-0 E-1 I'o(0)36-0
1
= lim(iy)tr, (G5 (iy.1)) = lim(iy) ()
y10 y10 Yy

1,

proving the assertion. Hence, we assume ker(n™1) # 0. Pick 0 # ¢ € ker(n™~1) n M (C) with
lc|l = 1, then by the Schwarz inequality for completely positive maps [9, p. 40], it follows
that:

7" ) g () < g D) e T ez
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and by induction we conclude that ™-1(¢27) = 0 (n > 1). By defining:

._s.0t 1; L
pi= lim c27,

n—>oo

it follows that p is a projection in ker(n™1).

Claim (1): There exists a unique projection 1 # ¢ € ker(n™!) such that for any projection

p € ker(n™1) we have: p<gq.

We showed that there is at least one projection p in ker(n™-1). Let p1, ps be two projections

in ker(n™=1). Then :

- Sk m— L m— m— 1
0" ((pr+p2) 7 ) 0" (pr + p27) < ™ (L) [0 ((pr + p2) 7T nxl,

and by induction it follows that ™ 1((p1+p2)27) = 0 (n > 1). Now, define ps :=5¢ lim,,_,. (p +
pg)%", then ps is a projection in ker(n™1'). On the other hand

1
(p1+p2)2™ > p1,p2 (n>1),

yielding ps > p1, p2. Next, using the maximality argument and by repeating this process there
will be a unique maximal projection ¢ in ker(n™1) such that for any other projection p in
it, we have p < ¢. Finally, if ¢ = 1, then using the same Schwarz inequality as above, and
the canonical decomposition of elements of M, (C) into its positive elements it follows that

n™-1 =0, a contradiction.
Claim(2): For any 0% ¢ € ker(y™) n M (C), we have cg = go = .

Indeed, since c € M (C), by spectral theorem we have:

N
¢= " bk

k=1

where the projections p,’s satisfy Yo pr =1, PrPr, =0 (1 <k #ky < N) and A\, >0 (1 <
k < N). Now, define:
1

r =5t lim ca7 .

n—>00
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Then it follows that r = ¥y .o Pk, yielding py <7 (Ax #0). On the other hand, by definition
of ¢ we have r < ¢ and hence p < q (Ax #0). But all of p,. < ¢ (A £0), and ¢ are projections
and, consequently, prq = qpr = pr (Ax #0). Now, by multiplying all sides by A (1 <k < N),

and taking summation the claim is proved.

Next, take ¢ = %(G;(b)_l—b) where b = iy.1 (y > 0). Then using the fact that s is centered,
Ep(s®™1)=0 m=21, by

Re(G5(D))

Re( 3 0 Ba((sb)™) = Re( 32 7)™ En(s™)
= S ()" Ep(s 1) =0, > |s]
it follows that B
G(0) = b= (Re(GL () +i.Im(G1(5)) ~b=i.( - Im(G(5) " - lf)

and, hence ¢ = %(G;(b)f1 ~b) = Im((G=(b)"" =b)) > 0. Now, by claim (2) for ¢ = ¢, we have
that:
Gib)(1-q) =7 (1-q) = (1-q)G:(b) and Gi(b)g=qGi(D),

and hence:

Gi(b) = (1-q)G(b)(1-q)+qG(b)g
b (1-q) +qGi(b)g  b=iy.1 (y>0),[b7"] << oo.

Now, applying analytic continution for the complex function tr, o G¥|c+1 : C* > C~ we
conclude that:

trpo GE(E1) =tr (61 (1 - q) +qGi(£1)q) Imé >0,

and, consequently:

p(0)) = i (€-0) [ du() = lim (60}t (GH(ED))

I'0(0)3¢6—0 E-t T'0(0)3¢—0
= lim(iy)tra((iy)™ (1 - ) + ¢G5 (iy-1)q) = tra(1 - q)
> 0,
completing the proof. O
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Before stating a more concrete and special case of the above theorem, we need a lemma:
Lemma 5.2.4. Let n be a completely positive map defined by

n: Mn(C) - Mn((c)

n(a) =Y ajaal aj € M,(C) (1<j<n?).
)

Then:

(i) if the map n is nilpotent, then all matrices a; (1< j <n?) are nilpotent,
(ii) if all matrices a; (1< j <n?) are nilpotent and commute with each other, then the map

n 15 nilpotent.

Proof. (i) Let n™ = 0 for some m > 1. Then, it follows that:

Z (aj,--a;,a)(aj,-a;, a)" = Z (aj,-aj,,)aa”(aj, --aj)
141, dm<n? 1<41 o jm<n?
2

3

n2
= , 1... .Zl(ajl...ajm)aa*(a;m...a;l)
Jm=

<
=
Il

7’L2
* % *
oo 8 )

jmzl

I
iM%

—_

= n™(aa”)
0

<
fary

for all a € M, (C). Consequently, by positivity of all elements of the form (a;,---a;,,a)(aj,---a;,a)*

it follows that
(aj,-a;,a)(aja;,a) =0 (1< g1, jm <02,
for all a € M, (C). On the other hand , M, (C) is a C* algebra and hence:
Ajy gy, A = 0 (1 <J1st Jm < n2)7

for all a € M,,(C), or equivalently:

g1 A, = 0 (]- Sjla"'ajm < n2)‘

Im
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Now, take j; = -+ = j,, = j where 1 < j <n? and the desired result is proved.

(ii) Since a; (1 < j <n?) are nilpotent, it follows that a? =0 (1 <j <n?). Put m =n?,
then by commutativity of the these matrices it follows that:

n-1 n?

gy g, = H H j 2,y = a?(h,..wjm) H H @ 2, =05

p=0 g=1 jpn2+q¢j(j17"xjm)

for all 1< jyi,-, jm < n?. Consequently,

n"(a) = >, (aj,a5,)a(aj, a5 ) =0

15j1:"':jm£n2

for all a € M, (C). O
Considering above lemma , for a category of nilpotent n's we have:

Corollary 5.2.5. Let G* : H*(M,(C)) - H (M, (C)) be the operator valued Cauchy trans-
form satisfying the functional equation bG*(b) = 1+n(G*(b))G*(b), be H*(M,(C)), and the

completely positive map n s given by:
n: Mp(C) > M, (C)
n(a) = g;ajaa; al =0 (L<j<n?®), aja4 =aza;, (1<j1,j2<n?).
=
Then the associated probability measure p to G* has at least one atom at x = 0.

Remark 5.2.6. In the above theorem, the converse of the assertion does not hold. To see

this, we refer to Remark 5.2.2.

Remark 5.2.7. In the above theorem, the assumption of nilpotency of the map 7 is necessary.

To see this, consider the above corollary and let n =2, |a| = || # 0 and define:

0 o
ay = 3 CL]:O(2§]S4)
g 0
0
Then, a? = op #0. Let
0 ap
&0
b=¢£1= and G*(b) =
0 ¢ Yy w
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Then, similar to computations of the previous remark, we conclude that:

—4|Oé|2
w=2z oJal?
Thus,
z+w  §—/E - 4|af?
tro(G* (D)) = =

This is the Cauchy transform of the standard semicircular law of Wigner which has no atom.

O

Remark 5.2.8. In the above theorem , for given nilpotent map 7 the associated probability
measure to the operator valued Cauchy transform G*(b) may not be purely atomic. To see

this, let n = 3 and consider the following completely positive map:

n: Ms(C) - M;(C)
r s t 01 1 r s 1 011

n(l v v wl=]l001 U vow 0011,
T Yy Z 0 00 AT 0 00

r s t

where in which 3 = 0. Replacing b = £.1 and G*(b) =| u v w | in the given functional

Ty z
equation, it follows that:

&r &s &t E 00 r s t
cu o o =] 0 g 0|l u v w060 =100G @) .00
§r &y &z 00 ¢&)\z vy =
1 00 011 r 0 00 r s t
=101 0|+ 001 u ] 1 00 U vow
0 01 0 00 Yy z 1 10 Ty z
1 00 u+r v+y w+z 0 0 0
=101 0 |+ x ( r s t
001 0 r+u s+v t+w
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1+ (w+y)r+(w+2)(r+u) (w+y)s+(w+2)(s+v) (v+y)t+(w+2)(t+w)

yr+z(r+u) 1+ys+2z(s+v) yt + z(t +w) ,

0 0 1

yielding the following system of equations:

vr+yr+wr+wu+zr+zu+1-&&r = 0
vs+ys+ws+wv+zs+zv—-£6s = 0
vt+yt+wt+w?+zt+zw-€6t = 0

yr+zr+zu—&u = 0
ys+zs+zv—&v+1 = 0
yt+zt+zw—-&w = 0
0-¢x =0

0-¢y = 0

1-¢2 = 0.

Thus, x=y=0and z = % Putting these values in above system of equations and considering

the following Groebner basis program in Mathematica (with £ replaced by c)

Clear[c,r, s, t,u,v,w,x,y, z];
poly ={v*T+wW*r+wW U+ 2*T+2% U+ 1 —CHT U SHW A SHWHV+2Z* S+ 2%V —C* S, V*t+W *
t+w?+zxt+zrw—c*t,z*r+zru—cru,z*s+z+v—c*v+ 1, zxt+zrw—crw,1—c*z};

B = GroebnerBasis[poly,{s,t,w,u,z,y,r,v, z}]

we obtain the following output:
{-1+cz,-1+2+cv-cBv-v?2+c2v? —c-v+v-—cv?+z+0%z,—c+ A3 +r-v+2ctv-ctv,c+

u+v-c2v,w,t,c+s+v-c?v}.

It follows that:

v r=(¢ 1)( Ly
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Hence,

(G 0) = (1 +

and a simple calculation shows that

@ -y

2

EILm Etrs(GF (1)) =1 Imé >0,

where we put £ = yi (y >0) and let y - +oo. It follows that the given values for z,v and r

are acceptable. Next, to find the atoms of a probability measure p such that

1r5(G (b)) = [ (),

fix —oo < 2’ < 00, then:

p(e)) = im0 [ dp( = Tm (€= a)in(GM ()

Lo(z')3e—2 5— Lo(z' )36z

! 1 7
li{g(iy)trg(G*((x +iy).1)) =0 if = #0, 3 if © =0,
Yy

showing that p is not purely atomic.

O

Remark 5.2.9. Any probability measure ;1 on R whose support is a finite set can be real-
ized as a component of a (scalar-valued) semicircular distribution ps of some matrix-valued
semicircular random variable s with nilpotent variance. (If 41 and v are probability measures
on R, we shall say that v is a component of y if there exists a finite family {v1,...,v,} so
that v e {v1,...,v,} and p= Y7 | a;v; for some ay, ..., o, € [0,1] satisfying ag +--- +a, = 1.)

Indeed, assume |[Supp(p)| =n < oo, and let

G,u(g) = w1

§-ay -

%)

§—az- Wn-1
'..5 —_ an71 —
5_ Qp

be the continued fraction representation of G,. Then as in the proof of Proposition 5.1.2,

§—ay—

define b=¢.1,, D, = (ak(skl)z,zﬂ and the nilpotent completely positive map 7, via:
N = Mn(C) » M, (C)
1 1
(@) im1) = (WE Oary) i1 (ann ) 1o (W71 Oren) Vs -
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Then for the self-adjoint semicircular element s, with operator-valued Cauchy transform G7%

satisfying the functional equation:
bG;,(b) = 1+ (Dy + (G5, ()G, (D),

we have
Gu(f) = (G;n(f-ln)ehelﬂg Im&>0.

Next, let pr (1 <k <n) be a finite purely atomic probability measure on R with associated

Cauchy transform:

Gﬂn-(k-l)(g) = w1 (1 <k< n)

§—ap— Wa

§-ag—
5_ Q3— Wk-1

- Qg -
5— g

Note that p = p1. Then by proof of Proposition 5.1.2, we have

G (&) = (G5, (E1n)er, ex)er (L<k<n), Im&>0.

Consequently, we have:

1 & 1 &
G, (&) =tr (G} (1)) = - Y AGE (E)e ex)e = - > G (&) Im&>0,
k=1 k=1
and by dv(t) = 2 limy,0 ImG, (¢ +iy) it follows that:
1 n
Ps, == D, My

1

proving the desired result.
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CHAPTER 6

SUMMARY AND FUTURE WORK

In this thesis we proved some new results about the distributions of operator-valued semi-

circular random variables.

The first result shows that the Cauchy transform of any compactly supported probabil-
ity measure can be realized as a restriction to scalars of composition of an extremal state
and an operator-valued Cauchy transform of a semicircular random variable with values in
B(H) for some separable Hilbert space H. Moreover, we give a constructive method to find
the mentioned semicircular random variable using the Jacobi coefficients associated to that

given compactly supported probability measure.

The second result deals with the regularity property of distributions of M, (C)-valued
semicircular random variables. We show that such semicircular distributions have nonzero
discrete part when the associated variance to the semicircular random variable is nilpotent.
It is still an open question to find necessary and sufficient conditions for such semicircular

random variables so that their distributions have nonzero discrete part.

The last result discusses on the covering property of distributions of M,,(C)-valued semi-
circular random variables. Whilst we show that any finitely supported probability measure
can be component of one of them, it still remains an open question to find whether any
compactly supported probability measure is a component of distribution of a semicircular

random variable or not.
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