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ABSTRACT 

 

This work develops a methodology for the FEM simulation of a multi-piece crankshaft.  Various 

simulation models that include press-fit joint contact conditions and complex meshing schemes 

are examined in order to accurately capture details of the stress fields present at the stress 

concentration area (labeled as the SCA) on the edge of the press-fit.  The maximum stress 

components are demonstrated to be of limited values (non-singular) and Hertzian in nature. To 

obtain the stress convergence sufficiently small elements, which can be determined using a 2-D 

axisymmetric model, are required at the vicinity of the SCA.  The same level of mesh refinement 

is then used for large 3-D FEM models of the crankshaft geometry, to study the resulting 

behavior of the press-fit joint for the dynamic operating loads.  However, it may not always be 

possible or practical, as some limits on the mesh refinement have to be imposed to obtain a 

reasonable computational time to run such models.  Less complex 'equivalent' symmetrical FEM 

models are investigated to determine if these models can provide a sufficient level of accuracy at 

an acceptable computational effort.  Such models may be useful as practical design tools, 

producing data to speed up the decision making process.   The simulation results are compared to 

some test data for the stress state monitored in real crankshafts under operating conditions.  

'Intuitive' design sensitivities to various crankshaft parameters are examined as well.  The 

numerical tools and engineering rules developed in the thesis may be applied to systematically 

improve the design by extending the joint's life and/or load carrying capability. 
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1  Introduction To Multi-Piece Crankshaft Analysis Methods 

1.1  Introduction 

Multi-piece crankshafts are prevalent in 2-stroke engines used throughout the recreational 

vehicle market, and in particular for snowmobiles.  This type of crankshaft is also used in 4-

stroke engines, but is not nearly as widely employed.  The research effort will focus on certain 

challenges present in the computer simulation and design of a durable multi-piece crankshaft for 

application in the high performance snowmobile market.   

 

The snowmobile performance segment of the market requires engines of high horsepower and 

high specific performance.  Knowledgeable customers who purchase performance snowmobiles 

are typically aggressive drivers and are very demanding of the engine.  The engine use in 

performance snowmobiling could be best compared to a race track environment in the 

automotive world.  Therefore the design of a durable engine for the performance snowmobile 

customer is a challenge. 

 

Low overall vehicle mass is very desirable to the snowmobiling customer; the floatation of the 

vehicle on softly packed snow is a basic engineering concept, determined by the distributed mass 

on a set vehicle footprint.  Thus, there is a fundamental desire to keep the overall ratio of mass to 

footprint constant for good flotation.  This creates difficult engineering challenges since the 

customer continuously demands greater engine and vehicle performance; the engine typically 

makes up around 20 to 25 percent of the overall vehicle mass.  Therefore the engine and 

crankshaft mass is highly scrutinized, as the cranktrain system is considered the heart of the 

engine, and fundamentally it is important to the overall engine dimension and mass.  Note also 

the ride and handling of a snowmobile responds poorly to an over-weight engine, which also 

very un-desirable.   

 

A typical multi-piece crankshaft for use in a high performance 2-stroke engine as developed by 

Polaris is shown in Fig. 1.1.1. The 2-stroke twin cylinder engine is to provide 110 HP from a 

600 cc capacity, which is a specific performance of over 175 HP / litre.  For comparison, 

performance engines in sports car applications range in output from 80 to 125 HP / litre, and in 
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race motorcycles sit near 150 HP / litre.  Engines with higher specific performance require 

challenging design trade-offs to manage both mass and durability. 

 

 

Figure 1.1.1  An assembled multi-piece crankshaft for a twin cylinder engine. 

 

A multi-piece crankshaft uses a press-fit joint construction style to connect all the required pieces 

together.  For each cylinder of the engine the crankshaft consists of a non-integral web and an 

integral web plus crankpin, as shown in Fig.1.1.2.  Note that the integral web refers to a pin that 

is integral to the web or is one continuous piece.  The crankpin is held by the cylindrical hole in 

the non-integral web through a positive cylindrical interference or press-fit.   
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Figure 1.1.2  Components of a multi-piece crankshaft in an exploded view. 

 

Generally, the press-fit interference is sized to adequately transmit the torque from the 

combustion events in the engine.  The press-fit introduces stress concentrations in the pin and 

non-integral web which compromises the joint's durability.  Both engineering logic and 

durability testing indicate that the design's weakest point is at the press-fit interface of location A 

as indicated in Fig. 1.1.3, and is referred to as the SCA point.  The stress concentration there 

seems to be crucial to selecting the proper geometry that would secure adequate durability and 

torque retention.   

 

Understanding the stress/strain fields in the vicinity of SCA during the phases of assembling and 

normal engine operation poses a challenge.  Computer simulation models that include 

sophisticated meshing control, contact conditions, complex load instances, etc need to be 

considered to improve the performance of multi-piece crankshafts. The employed numerical 

methods have to be verified by carefully designed experimental techniques to measure the 

structural behavior of the crankshaft.  The computer simulation may then be viewed as a reliable 

design tool, which is the key to developing improved and optimized crankshaft designs.   



4 

 

 

Figure 1.1.3 Components of a multi-piece crankshaft in an assembled state. 

 

Finally, as the overall design and development process matures, the complex computer 

simulations may grow into easy to use design tools facilitating the design process (especially in 

the earliest phases).  Still though, balancing the tradeoff between higher performing engines with 

higher output torque and the life requirements of such a multi-piece crankshaft remains a very 

difficult task. The requirement to be as light as possible and carry high loads for a high number 

of cycles only adds to the crankshaft’s design challenges. 
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1.2 Objectives 

1.2.1 General Objectives 

Multi-piece crankshafts are presently of great interest to industry because of manufacturing and 

packaging advantages over a one-piece forged crankshaft.  It allows the design of the connecting 

rod to be one piece, and will slip onto the integral crankpin before it is pressed into the web’s 

cylindrical hole.  A single piece crankshaft requires that this ‘big end’ of the connecting rod be 

split into two pieces, and bolted together around the crankpin.  The orbital path of the 1-piece 

connecting rod during crankshaft rotation is much smaller than a comparable 2-piece bolted 

design.  This allows a smaller engine case design envelop, which offers the best solution from a 

mass optimization perspective.  

 

The over-reaching objective of this research is to enhance the application of numerical tools used 

in industry to further the durability and application of engines with multi-piece crankshaft 

construction. (Objective 1, minor significance)  Lightweight and efficient engine design is one of 

the most exciting and challenging engineering problems throughout the snowmobile industry. 

 

Historically one-piece crankshafts were designed based on the mixture of experiments and 

engineering formulas derived from simplified and intuitive models with high stress concentrators 

resulting in fatigue being the main concern.  Such simplified models are not enough for the 

design of modern high-output engines, and so advanced numerical tools and processes have 

evolved to promote these designs, which may be commonly found in technical journals. 

 

However, since the application of multi-piece crankshafts is somewhat limited in industry, there 

is also a lack of technical guidelines and published research on their design.  In particular, design 

details which describe how to handle the high stress condition due to the press-fit interference 

are not covered adequately in the literature.  Historically the press-fit was sized using the so-

called Lame solution, but the stress concentration point SCA was somewhat ignored since there 

was a lack of understanding of the detailed stress field present.  A second broad objective in this 

research is to assemble the engineering process and tools to calculate accurately the detailed 

stress field present on the press-fit joint for assembly and engine operating conditions (Objective 
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2, novel significance).  From the start of the research project, all facets of this body of work were 

developed from a very limited knowledge base. 

 

As stated previously, the design of weight efficient crankshafts necessitates more sophisticated 

models, which nowadays can be obtained by employing FEM (finite element method).  Current 

methods in place for a one-piece crankshaft construction must be considered, but also these 

numerical methods must extend to accurately calculate the physical behavior at the press-fit 

joint.  Contact algorithms used in the FEM model are used to capture the non-linear interaction at 

the press-fit joint, which require many equilibrium iterations, and do not allow the linear 

assumptions prevalent in the current methods. 

 

1.2.2 Definition of Stress Field Characteristics 

 

It is virtually impossible to create numerical tools to accurately represent a physical problem if 

the details of that problem are not well understood.  The assembly problem including the stress 

concentration point SCA was first examined using commercial FEM software to understand the 

characteristics of a stress concentration at the press-fit.  A critical objective identified here is to 

build the FEM model capable of handling the high stress gradient at the SCA (Objective 3, novel 

significance).  

 

1.2.3 Mesh Refinement Objective Based On The Assembly State 

The finite element method represents the behavior of a large object or domain by using a 

collection of small discrete units or elements with repetitive mathematical formulas employed 

throughout the entire domain.  If the elements are larger than a feature in the domain, then that 

behavior in that feature of the domain will be lost.   

 

Consider the press-fit joint, and the web stretching around the pin at the end of the joint at 

location A.  The press-fit condition on the pin suddenly changes from press-fit to no press-fit, 

and the pin is free to expand in the radial direction.  As described above, if the element size at the 

SCA is not refined to a point to capture this detail the stress field present there will not be 

calculated properly.  Only an expert will not to miss these details!  Since the stress gradient at the 
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SCA is very sharp, and occurs over a very small distance, proper judgment in model 

construction, mesh refinement, and convergence checking would be required in conjunction a 

good working knowledge of error in FEM solution.  In fact early on in this research, mesh 

sensitivity testing was not carried out to a degree to determine convergence because such high 

mesh refinement was required. 

 

Actual fatigue failures from testing may alert an engineer that the SCA point is a durability 

concern, while failures are common in this general location for one-piece crankshafts as well, 

and so this would be expected.  If the assembly stress state is ignored in the FEM model, and the 

multi-piece geometry is considered one continuous volume, the stress state in the pin is also high 

when this rudimentary approach is used. 

 

The examination of the press-fit joint assembly stresses using a 2-D axisymmetric FEM model 

show that the stress field at location A is sensitive to mesh size, to a point.  If the elastic 2-D 

assembly solution is singular, convergence will never be achieved because the stress tends to 

infinity with decreasing mesh size, and elasto-plastic models are needed to get more realistic 

results.  If the solution is not singular, then the results should be mesh-independent or converged 

but will only suffice if the stress is below the yield point.  An objective of the research is to 

define the mesh sensitivity and refinement that is required for acceptable accuracy (Objective 4, 

minor significance).  High sub-surface stress values at the stress concentration need to be 

understood and explained also (Objective 5, novel significance). 

   

1.2.4 Objectives Based On 3-D Models Under Operating Loads 

So far the discussion has covered only the 2-D axisymmetric solution for the assembly problem.  

The overall FEM analysis of the multi-piece crankshaft is organized in this research to examine 

both the press-fit assembly phase and the engine operating condition, which requires 3-D 

geometry based FEM models as well (Objective 6, minor significance).    

 

Overall, there are three different 3-D models used in this research.  First a 30 degree symmetrical 

slice that is consistent geometry-wise to the 2-D model was created to examine the assembly 

solution differences between the exact same 2-D and 3-D geometry.  Next a ‘bench test’ model 
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using symmetry assumptions on the 3-D crankshaft geometry was created to minimize solution 

size.  This model was created for ease of use to accelerate the numerical studies, which is also a 

practical requirement for any of the numerical design tools that are produced by this research 

effort.  Finally the full 3-D geometry of crankshaft was examined with a 3-D FEA model for 

assembly and operating loads.  

 

The 2-D determined mesh refinement required to predict the accurate stress fields at the SCA 

creates a very large 3-D model size.  Since the press-fit interference between the pin and web is 

handled with contact algorithms, many equilibrium iterations are required with the large models 

to solve the difficult non-linear interaction between the pin and web.  The high number of 

equilibrium iterations coupled with a large mesh makes only static solutions realistic for 

evaluation of the full crankshaft assembly under operating conditions. 

 

To minimize model size and solution time, sophisticated meshing strategies are demonstrated at 

the SCA to obtain accurate and uniform results.  The meshing strategies consider uniformity 

control for solution accuracy at the SCA, contact algorithm best practices, as well as 

minimization of the overall mesh size.  Meshing strategy was the single biggest roadblock to 

complete this research.  The most successful meshing strategies will be presented along with 

some that were not as successful (Objective 7, minor significance).   

 

The behavior of the 3-D press-fit joint under operating loads will be defined and discussed, 

including the details at the SCA, in a similar fashion to the 2-D assembly data (Objective 8, 

minor significance).    Any implications of mesh refinement on stress local maximums are 

detailed as well.  Maximum pin stress locations at the SCA, which matched with historical 

fatigue failures are also tracked and discussed for several operating conditions.   

 

Practical model size limitations for the 3-D models do not allow a mesh refinement that is 

present in the 2-D solution.  The accuracy of the 3-D model mesh discretization will be defined 

for some practical limitations in the solution size.  A practical real world goal for solution time is 

48 hours for all 3-D models; solution times greater than this may inhibit the usage of the 

numerical design tools and may not add value to the design process.  Detailed 2-D axisymmetric 
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solutions with a highly refined mesh at the SCA are extended to the 3-D domain for press-fit 

assembly (Objective 9, minor significance).    

 

As described above, the model size required for an accurate solution at the SCA is simply un-

usable in the time domain, and so methods must rely on a static numerical approach.  To guard 

from potential problems caused by examination of the problem only in the static domain, steps 

must be taken to ensure good correlation exists with experimental data, and that the crankshaft 

also does not show any heightened response due to the excitation of natural frequencies.  If 

modal excitation exists and the static solution is no longer valid,  sub-modeling techniques may 

be employed at the press-fit joint, using inputs from a crudely meshed continuous FEM dynamic 

solution.  (The topic of sub-modeling is only covered briefly in the discussion, and is not the 

focus of this research effort). 

 

1.2.5 Model Reliability Objectives 

The crankshaft is usually a high technical risk in a performance engine program, and could be a 

very expensive warranty issue also creating low customer satisfaction.  It is an objective of the 

research process to develop good reliability in the overall application of CAE tools to design 

multi-piece crankshafts (Objective 10, minor significance).   All Computer Aided Engineering 

(CAE) processes should have matching test components so that good confidence will be present 

for the CAE tasks.  Numerical and experimental tools will be combined to grow confidence in 

crankshaft analysis. 

 

The benefit of good CAE model reliability is extremely important to modern engineering design 

practice.  If the FEM analysis/simulation is found sufficiently accurate/reliable then it can be 

treated as a virtual experiment.  Such computer experiment may be done quickly and may 

substantially reduce the number of costly physical experiments. They allow investigating 

'invisible' details and 'non-measurable' effects (such as stresses in locations inaccessible for strain 

gauges or under the surface). Design's weak points can be identified early and possibly removed 

prior to building and testing the prototype.    
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1.2.6 Objectives Relating To Design Rules and Tool 

 

Modern design and development programs also require shortcuts where possible to facilitate 

increased design iterations to create a higher quality product for the customer.  Lengthy 

numerical processes are condensed into ‘virtual bench tests’ so that easy to apply numerical tools 

may drive product design.  In particular for the multi-piece crankshaft research effort, geometry 

symmetry assumptions are used to reduce model effort, size, solution time, and data post-

processing (Objective 11, minor significance).   The behavior of a press-fit joint design may be 

quickly evaluated with an analysis template (Objective 12, minor significance).  These simplified 

models may be used for design studies, creation of bench tests, and optimization.   

 

As the stress details at the press-fit SCA become well understood, geometry parameters and 

historical engine designs are evaluated to determine rules of thumb for application early in 

design.  In particular design rules are also created for assembly stresses at the SCA, as an aid in 

fast upfront design (Objective 13, novel significance).   By interpolating/extrapolating the results 

from such models obtained for a range of parameters some simple but accurate 'engineering' 

formulas (to be used as 'quick' design tools) can be derived.  

 

1.2.7 Design Optimization Objectives 

Finally, the improved understanding of the press-fit joint and the overall crankshaft behavior is 

leveraged to study design improvements (Objective 14, novel significance).  Geometry 

modifications on the pin and web at the SCA are evaluated and optimized to reduce assembly 

and operating condition stresses.  The optimization routines are made possible because of the 

reduced effort required to evaluate such problems since virtual bench tests, meshing regimes, and 

mesh size sensitivity knowledge is in place.  The primary focus of the optimization in this 

research effort is reduction in the assembly stress at the SCA. 
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2  Multi-Piece Crankshaft Background Information 

Basic information on crankshaft design is provided in this chapter, first beginning with some 

general vehicle information.   

 

2.1  Engine–Vehicle Integration 

Performance oriented snowmobiles currently have similar design architectures regardless of the 

manufacturer.   The engine must be designed to interface with the vehicle chassis, intake, 

exhaust, cooling, drivetrain, and electrical systems. Figure 2.1.1 shows a typical 2-stroke engine 

in place in a sectioned engine compartment, detailing some of the major engine interfaces. 

 

 

Figure 2.1.1  A typical snowmobile with a sectioned through the engine compartment.  

 

The engine power is output to a Continuously Variable Transmission (CVT) mounted on the 

Power Take-Off (PTO) end of the crankshaft.  Typical for snowmobile twin cylinder 2-Stroke 

engines, the magneto or MAG end would then describe the opposite end of the crankshaft, which 

contains the magnetic based electrical charge system on a flywheel on the end of a crankshaft.  

The use of the terms PTO and MAG are commonly extended to other nearby parts of the engine, 

and are referenced here for the purpose of naming convention. 
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Of particular interest for the structural evaluation of the crankshaft is the integration of the 

engine with the chassis and the integration of the engine with the rest of the driveline.  The 

engine mounting scheme typically uses rubber ‘puck’ isolators, and is designed to provide good 

drivetrain performance, durability, and generate low vibration to the rider interfaces.  CVT 

operational loads and the interaction of the engine’s output torque and engine mounting are 

covered in detail later in this chapter. 

 

2.2 Crankshaft Design Layout 

Some details of the engine configuration is provide to help put the design of a crankshaft into 

perspective.  Figure 2.1.2 shows a typical 2-stroke engine with a section cut-away on the PTO 

end cylinder and upper engine case.  A few items are of particular interest for this research topic; 

first is the overall case structure, which constrains the crankshaft with bearings, and harnesses 

the combustion pressure developed to produce high loading on the crankshaft, which in turn 

produces torque output by the crankshaft. Second is the piston and connecting rod assembly 

which is packaged very tightly in the schematic.  These components transmit the combustion 

forces to the crankshaft, but also impart high loading on the crankpin because of their own 

masses and the high velocities these components experience in the engine running condition.   

 

The details of the components that make-up a typical multi-piece crankshaft are given Figs. 

2.1.2. thru 2.1.4.  A typical crankshaft is shown in the assembled state in Fig. 2.1.2, with the rod 

and main bearings present.  Next a section view of the bare crankshaft is given so that the 

locations of the press-fit joints are clear (see Fig.2.1.3).  The PTO outer web has a cylindrical 

hole in it, which the PTO inner web integral pin is fit into.  The same approach is used on the 

MAG end of the crankshaft, as shown in Fig. 2.1.4, a reverse view of Fig.2.1.3.  Four major 

press-fit joints are shown in Fig.2.1.4, including the press-fit joints used to fix the PTO and 

MAG inner webs to the main shaft.  The press-fit joint of primary interest for this research is the 

PTO end crankpin joint between the inner and outer webs. 
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Figure 2.2.1 An engine sectioned through the PTO end case and cylinder. 

 

 

Figure 2.2.2 A typical 2-stroke twin cylinder crankshaft. 
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Figure 2.2.3 A bare two cylinder crankshaft with sections cut-away. 

 

A multi-piece crankshaft construction offers the lowest mass solution both from a component 

perspective and a systems perspective.  Prior to inserting the pin in the web cylindrical hole, the 

connecting rod and its bearing are set around the pin.  This assembly is shown in detail in the 

next section.  A one piece rod has a lower mass and requires less design space since it does not 

have a bolted joint on its big end (crankpin end).  Since the connecting rod big end is smaller in 

size, a smaller overall engine package is also required.  A close view of the section cut-away is 

provided in Fig.2.1.5 to demonstrate the perspective of the tight packaging present on all these 

components, a result of overall system mass minimization.   

 

Figure 2.2.4 A reversed view of the sectioned crankshaft. 

 



 

15 

 

Figure 2.2.5  A close view of the section cut-away provided in Fig.2.1.1. 

 

2.3 Crankshaft Design Approach 

The crankshaft design is part of an overall design challenge, and is actually only a very small 

part of that effort.  Figure 2.3.1 is a crankshaft design process diagram taken from [1].  The 

crankshaft sub-system interfaces with many other systems (engine case, cylinder, head, CVT, 

lubrication, electrical, etc.) and must meet design criteria for manufacturability, cost, durability, 

vibration, and packaging.  Trading off all the design requirements of the overall engine system is 

a complex task.  Cost and manufacturability often dictate the design solutions, include the re-use 

of existing expensive engine case tooling.  Often this presents design challenges because of 

design space restrictions. 
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Figure 2.3.1 A crankshaft design process (from [1]). 

 

To demonstrate the complexity of the design task, three component level design variables at the 

press-fit joint are examined.  Figure 2.3.2 shows the pin radius r, the web outer diameter D, and 

web width w.      

 

Figure 2.3.2  Design variables for the press-fit joint. 
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The design sensitivity of pin dimension r is shown to affect many items: torque retention of the 

press-fit; general pin bending (from the operating loads) and durability concerns; the modal 

response of the crankshaft in bending and torsion; the magnitude of the rotating imbalance; and 

the lower rod bearing size, durability, and packaging.  The web width w needs to be sensitive to 

overall engine packaging width, the web bending stiffness requirement for controlling crank 

bending modes, imbalance, and press-fit joint torque retention.  Finally the web diameter D 

requires design sensitivity to stresses on the top of the web from the press-fit joint; engine 

imbalance; overall engine packaging; connecting rod thrust washer area, etc.  Therefore, to 

change one of these variables to improve aspects of the press-fit joint will affect many other 

design variables. 

 

A design process flow chart is presented next in Fig.2.3.3, detailing the structural design 

approach for the crankshaft and how design tools are applied to the problem.   

  

Figure 2.3.3  A process flow diagram for the structural design of a crankshaft. 

 

The classical crankpin bending calculations are done early in the design process along with other 

sizing exercises (bearing capacity, packaging, connecting rod design) to compare to existing 

benchmarked engine parameters.  The crankpin bending calculations use design load values such 
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as maximum combustion pressure, maximum rotational inertial loads for the reciprocating 

components, and the rotational inertia loads of the counter weights [2].  Pin size sensitivity is 

examined by calculation of general pin bending stress for the gross design loads (see Fig 2.1.9); 

shear moment diagrams are constructed using the design loads to calculate the pin bending 

moment input.   

In Fig.2.3.4, the rotational inertia loads are calculated using a form of  

  2ϖmrFINERTIA =     (2.3.1) 

where m is equal to mass, r is equal to the radius of the throw of the crankshaft, and ω is the 

rotational velocity of the crankshaft about the spin axis [3].  

 

Figure 2.3.4  Crankpin bending calculation for approximate pin sizing. 

 

The press-fit joint is initially sized using a torque retention design requirement.  The value of 

torque the joint must carry is based on a safety factor applied to the peak torque pulse produced 

by the engine under the maximum power condition.  As discussed in the introduction, the torque 

capacity of the joint is usually constrained by either 1) the assembly stress created in the pin at 

the SCA location, or 2) the assembly hoop stress in the thin section of material on the web 

directly above the crankpin.  A joint without adequate torque retention capacity will result in 

relative motion between the pin and the web (the web ‘walks’ on the pin), which will lead to 

crankshaft failure. 
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The approximate average press-fit radial pressure is calculated with the Lame solution [4]. 

Average interface radial and hoop stresses are typically in agreement with the 2-D axisymmetric 

FEM model, which is a fact well covered in the literature.  The details of the stress condition at 

the SCA are determined with the axisymmetric FEA model.  Design values for the overall joint 

torque capacity are tested experimental with a ‘joint push-out’ or a ‘joint twist’ test, both of 

which are discussed in chapter 6. 

 

Next, the overall CAD layout of the engine along with the sizing of the crankshaft by design 

equations, competitive benchmarking, and simplistic numerical tools would result in a somewhat 

detailed 3-D geometrical representation of the crankshaft in CAD.   

 

At this stage it is very critical that the full crankshaft assembly modal analysis is performed. If 

any calculated natural frequencies coincide with the operating range or are spaced at a harmonic 

order of a critical engine speed, the design process may not go forward until an acceptable 

crankshaft geometry is determined for the modal criterion.  Next the press-fit joint should be 

examined early for assembly stresses using a 2-D axisymmetric FEM model.  Both of these tasks 

supported by experimental data that ensures quality numerical methods are in place. 

 

After several design iterations to hit modal and press-fit design targets, fully detailed numerical 

models are used to evaluate the crankshaft behavior under operating loads.  This numerical work 

may be done in the static or dynamic domain, depending on crankshaft modal targets, experience 

with other similar engines, numerical model size, and other technical risks.   The iterative loop is 

completed until the stress target or fatigue life targets are met, prior to building a prototype.  

Again some experimental data should be available to compare to the detailed analysis work of 

the FEA methods.  Also the FEA work should be validated later again with tests on the first 

prototype.   

 

At any step in this process, the design effort may be reset back to the start because of changes 

required for other systems.  Chapter 6 contains examples of experimental data that is used as 

correlation for the FEA models.  
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Please note that the FEA methods referred to in the structural design process in Fig. 2.1.8 are 

well documented in the literature review (section 3.1) and the numerical results chapters (4, 5, 7, 

and 8). 

 

2.4 Crankshaft Operating Loads  

The topic of crankshaft design would not be complete without some discussion on the operating 

loads.  The basic load components present on the crankshaft are the crankpin loads, the rotational 

inertial load, and the CVT belt force which act on the PTO end of the crankshaft.  The crankpin 

loads are comprised of combustion pressure force and reciprocating mass (connecting rod and 

piston) forces which vary with engine rotational position.  The CVT belt force on the PTO end of 

the crankshaft is directly related to the power or torque output of the engine through the CVT.  

Figure 2.4.1 shows the relative position of the CVT and the resulting belt forces on the engine, in 

part determined by the direction of spin of the engine while running.  The operating load time 

history information is covered in detail in chapter 5. 

 

The engine and the engine loading environment is very complex, and difficult to represent with 

numerical methods.  In particular, crankshaft torsional vibration coupled with the excitation of 

any crankshaft modes that fall with in the operating speeds are difficult to manage; the goal is 

always to design crankshafts with modes that do not fall within the operating range.  This is not a 

major topic of this research effort, but is a considerable technical concern on any engine 

program. 

 

The CVT loading is very complex due to both its own performance and also its interaction with 

the dynamic motion of the engine.  The CVT consists of a primary and secondary clutch, for 

which belt position changes with speed and torque output.  The primary clutch mounted on the 

PTO end of the crankshaft changes belt position with increasing engine speed.  The secondary 

clutch, which is (see Fig.2.4.1) the next mating transmission element in the drivetrain, has a 

radial belt position that is sensitive to torque.  
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Figure 2.4.1  Belt forces the CVT places on the engine are described. 

 

  The transmission system works on the principle that belt position changes on each clutch to 

create the desired output ratio.  For low engine speed / high torque conditions, the belt is ‘low 

(small diameter)’ on the primary clutch and ‘high (large diameter)’ on the secondary clutch, 

producing a low transmission ratio.  And in the case of the high engine speed / high torque 

condition, the belt is ‘high’ on the primary clutch and ‘low’ on the secondary clutch, producing a 

relatively high transmission ratio.   

 

Belt forces calculated for the crankshaft analysis assume a steady state position of the CVT, and 

are correlated to some degree with experimental data.  When the CVT is not in a steady state, the 

loads are changed very quickly and it is a very dynamic environment to examine numerically.  

For this research, a reasonable simplification of the duty cycle for the engine would place the 

CVT at steady state.   

 

To add to this complexity, the engine is typically mounted on rubber isolators for reduction of 

vehicle rider vibration as discussed earlier.  The engine moves rigidly on these soft rubber 

mounts because of engine shaking and engine torque and imbalance loads.  Since the distance 

between the primary and secondary CVT is not fixed there is relative motion between them as 
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the primary clutch moves with the engine (shaking), while the secondary clutch is attached to the 

chassis.  Obviously the belt force from the CVT will then interact with the dynamic motion of 

the engine.  High fidelity Multi-Body Dynamics (MBD) models are required to calculate 

accurate belt loads. 

 

 Finally, the customer usage of the performance engine was noted in the introduction section as 

aggressive and abusive.  A typical endurance test duty cycle for a performance engine is 

described in Fig. 2.4.2 by engine speed (versus time) and in Fig.2.4.3 by normalized power 

output (versus time) [5].  This single cycle is repeated until the engine surpasses the validation 

time target.  During the cycle the engine remains at speeds or conditions which create the highest 

damage in the engine systems to accelerate the testing.  

 

Figure 2.4.2 A typical engine duty cycle; engine speed versus time. 

 

The duty cycle is usually specific for each engine, and is determined by actual customer usage 

profiles.  Note that in the example provided, a significant portion of the test occurs between 

7,000 and 8,000 rpm.  This duty cycle suggest aggressive use of the engine, and would represent 

the extra abuse a performance oriented engine would see for a typical customer.  Insight into the 

customer use of the engine, or the validation duty cycle is ideal when the engineer must select a 

fatigue approach or stress target for design. 
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Figure 2.4.3  Normalized power versus time for a performance engine duty cycle. 

 

2.5 Crankshaft Assembly Methods 

Finally, a brief overview of the assembly process used for multi-piece crankshafts is provided.  

Prior to the assembly, each forged component is machined to high tolerances for best system 

level tolerance stack-up and crankshaft straightness.  In particular the machining operation for 

the bearing surfaces, and the pin and the hole in the web for the press-fit joint are critical to the 

design.   

 

After machining the crankshaft pieces are ready for assembly.  Figure 2.5.1 shows a partially 

assembled crankshaft set in a fixture, ready for the PTO inner web to be pressed on the main 

shaft.  A hydraulic press is used to force the web onto the main shaft, by overcoming the friction 

in the press-fit joint.  Center main bearings and a gear are already shown assembled at this stage.  

The crankshaft is secured in a fixture, which provides support in the axial direction of the 

crankshaft (the direction the press exerts force in), and holds the crankshaft from rotation about 

its center axis.  The PTO inner web is shown assembled onto the main shaft in Fig.2.5.2. 
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Fig. 2.5.1  PTO inner web prior to assembly onto the main shaft [6]. 

 

After all components of the crankshaft have been pressed together, the crankshaft is measured 

for proper alignment.  For crankshaft that fall outside of the tolerance range, effort is taken to 

straighten these to within acceptable limits.  The crankshaft may be ‘hit’ in the appropriate 

location and direction with a rubber mallet, causing the crankshaft to move or re-align at the 

nearest press-fit joints.  The crankshaft may also be ‘pinched’ at the counterweights, on the 

opposite side to the crankpin, using large tongs, which also causes the crankshaft to move or re-

align itself at the nearest press-fit joint.  The straightening process requires some operator skill 

and experience when employing either the hit or the pinch tactic. 
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Fig. 2.5.2  The PTO inner web assembled to the main shaft [6]. 

 

Some comments should be provided about the assembly stresses created by any mis-alignment.  

A numerical evaluation of this problem most practically always considers perfect geometry and 

ideal insertion direction.  What sort of stress conditions are created when the pin is inserted into 

the hole with the pin at a very small angle with respect to the hole axis?  Deviations from the 

perfect case almost certainly occur in a manufacturing environment, with slight assembly 

differences.  However, because of the violent nature of the operating condition and the vibrations 

it induces in the crankshaft, and because of the symmetrical nature of the press-fit joints present 

on a typical crankshaft, it is thought that the crankshafts press-fit joints naturally try to relieve 

any axis mis-alignment to maintain a symmetrical shape.  FEA ‘perfect assembly geometry’ 

assumptions are thus noted and considered more practical than first thought. 
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3  Literature Review and Theoretical Background 

3.1  Literature Survey 

Current crankshaft numerical methods are challenging the boundary of software engineering 

tools and computer hardware limitations.  As engineering tools and computational technologies 

grow, the techniques applied need to push the boundaries, but also still need to supply rapid 

feedback to affect the design cycle. 

 

3.1.1  General Numerical Methods For The Design Of Crankshafts 

Prior to an examination of any previous research in the area of multi-piece crankshafts, a review 

of the current state of numerical tools applied to crankshaft design is supplied for the context of 

this research.   

 

Common numerical practices exist in the design of crankshaft systems, which are in constant 

evolution because of advances in engineering tools, engine design, and customer expectations.  

Improvements in commercially available engineering software (typically based on FEM 

methods) and the advancement of the computational ability of the desktop computer hardware 

have alone made great strides in the last 20 years of development.  Commercial FEA software 

may be easily parameterized, so that tasks may be automated and analysis methods may be easily 

captured.  Economic desktop computer hardware will readily handle large FEA problems over 

short time periods that previously required expensive super-computing facilities.  Certainly the 

numerical methods presented in this research will be viewed differently after the next 20 years of 

computational development.   

 

Initially, desktop computers were most suitable to run Computer Aided Design (CAD) geometry 

drawing packages that were available commercially for engineering and research.  Classical 

design calculations were used to size the crankshaft structure, based on the geometric layout 

created in CAD [7].  The crankshaft pin and web sections (width, height, diameters, center of 

gravity value) taken from CAD measurements were finalized by free body diagrams, static 

bending moment calculations, as well as other design requirements [8].  Crankpin and main shaft 

fillet radii were sized using stress concentration factor tables.  Geometry CAD iterations closely 

followed the structural calculations by hand to create a crankshaft of adequate design.   
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Obviously these classical design methods at some point were captured in computer software 

based mathematical spreadsheets.  At this point the design formulas are calculated in a 

computerized format, and become easy to share with other design engineers or researchers.  (A 

survey of crankshaft numerical design methods over time shows that this idea will repeat itself.) 

  

In a similar fashion, the early implementation of FEM was applied in a simplistic manner to 

crankshaft design.  Beam element formulations were used to calculate general pin bending stress 

for complex multi-cylinder and multi-input static load cases.  Dynamic evaluation using FEM 

based beam elements soon followed, which examined crankshaft bending and crankshaft 

torsional loading [9].  Early commercially available FEM crankshaft design tools [10] employed 

these methods, and provided reasonable quick evaluation early in the design process, as the 

design input was readily parameterized and automated [11].  These software tools typically 

evaluated the dynamic response of the crankshaft in the time or frequency domain using modal 

super-position [10].  Note though that a detailed understanding of the crankshaft displacement 

and stress field is lacking in this approach.  General pin bending and general structural 

deformations would be available, but detailed stress field information on the crankshaft would 

not have been understood.  So, fillet radii values most likely would still have to use stress 

concentration tables to set the design value. 

 

The early application of FEM solid element formulations to crankshaft design would have been 

limited in scope because of model creation time and computer hardware capability (solution time 

would be long [9]).  FEM geometry creation or FEM mesh creation pre-processors would have 

been (manual) cumbersome and time consuming to create anything but a crude simplified 

crankshaft geometry [12].   

 

Improvements in commercial FEM software allowed the import of crankshaft geometry from an 

external CAD package.  Solid element automatic meshing algorithms progressed to a point to 

empower engineers to reasonably examine complex crankshaft geometry, allowing true 3-D 

design and optimization.  FEA model and solution size was an obstacle though that required 

constantly improving computational resources.  Improved computing finally allowed the 
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calculation of the previously un-available detailed stress fields for the multi-phase load 

environment of the engine, using static load assumptions.   

 

At this stage in development of the crankshaft analysis tools, engineers were able to employ a 

form of the classical crankshaft design approach.   Complex load calculation by classical 

techniques or by computer simulation along with engineering intuition was used in conjunction 

with high quality (geometry) ‘CAD driven’ FEA models.  This analysis would have followed the 

architectural layout of the crankshaft using the more simplistic beam element tools, and would 

use knowledge of the detailed stress field to confirm the selection of the proper crankshaft 

architecture.  Crankshaft design and optimization likely has progressed at a faster rate since the 

engineering tools reached this level of maturity.  

 

Crankshaft FEA solutions in both the static and dynamic domain may be calculated; each with 

advantages and dis-advantages.  Static solutions require less computational effort, and so may 

examine the crankshaft geometry with greater mesh refinement.  The post-processing of data for 

a static model is also less demanding than for the dynamic evaluation.  Research by [12] shows 

that the design margin of a crankshaft using a static approach is calculated at a lower value than 

when dynamic methods are used. 

 

Static solutions are not adequate though when the crankshaft dynamic response is altered by 

interaction with natural frequencies of the crankshaft or other components of the drive-train 

system[13,14].  A good practice for any crankshaft design effort includes the FEM based modal 

calculation of the crankshaft natural frequencies, to check for modes that fall within the engine 

operating range.  Dynamic analysis methods must be used for a crankshaft with natural 

frequencies that fall within the operating range.  Figure 3.1.1 shows the dynamic displacement 

response of an in-line 4-cylinder crankshaft across a band of operating speed with a marked 

increase in response near 4200 to 4400 rpm [15].  Crankshaft modes are excited at this engine 

speed, and create much larger displacement responses.  
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Figure 3.1.1 The displacement response of a crankshaft excited by natural frequencies [15]. 

 

When dynamic solutions are required, typically a crude FEA mesh is used to predict the overall 

behavior [12].  Solution time for a moderately meshed model (which has a linear material) using 

modal super-position can extend from 24 to 48 hours on a workstation class desktop computer to 

solve for 8 to 10 complete cycles of the engine.   

 

If detailed results are required that are not captured with this crude model, sub-modeling 

methods may be employed.  Sub-modeling works on the principle of capturing the boundary 

conditions of a segment of the FEM model behavior with a global crude mesh, and using these 

boundary conditions for a detailed model of the area of interest (see Fig.3.1.2).  Several 

examples of sub-models exist in the literature; sub-models have been used for detailed stress 

evaluation [15] as well as locally employing non-linear material behavior or assembly stresses.  

Dynamic solutions that use modal super-position are linear in form, and therefore a sub-model 

could be used to model a local non-linear behavior. 

 

Figure 3.1.2 Sub-modeling technique for the detailed local examination of a global crankshaft 

FEM model [15]. 
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For example, Henry et al [15] used 3-D geometry of the crankshaft and an elastic material 

assumption to calculate the response of the crankshaft (an in-line 4 cylinder diesel-Renault) 

considering inertial, combustion, and vibratory loading.  The crankshaft response was calculated 

using a crude but efficient FEM mesh, and then the details of the stress field at the fillet radius 

between the pin and web were examined with a BEM / FEM approach.  The boundary of the 

local FEM model was determined by the crude FEM system model.   

 

In summary, numerical tools have been used in abundance for crankshaft design evaluation.  

Both static and dynamic analysis methods are routinely employed.  Dynamic evaluations for the 

full 3-D geometry of a crankshaft system mostly use linear dynamic methods.  Obviously non-

linear methods would be required to model the interaction of the press-fit joint for a multi-piece 

crankshaft; highly refined meshes at the press-fit interface are required that use contact 

algorithms and a large number of equilibrium iterations.  For a large model these iterations 

would be lengthy, and would not produce data in a time efficient manner, and therefore would 

not be a realistic design tool.  Static crankshaft analysis has been shown to be a successful but 

conservative design tool, only if the crankshaft natural frequencies are out of the operating range 

of the engine [9].  Since data post-processing and evaluation will be very important in the 

examination of multi-piece crankshafts, static methods seem ideal as a first step.  The 

conservative nature of a static analysis can be reduced by setting aggressive (low) safety factors 

through the evaluation of similar designs that have shown adequate durability. 

 

An alternative approach to evaluating the press-fit joints in a multi-piece crankshaft may be to 

use linear dynamic models to capture the overall behavior of the crankshaft, and employ sub-

modeling techniques to examine the press-fit joint.  This approach assumes a continuous volume 

at the press-fit joint, and that any change in the press-fit joint stiffness with respect to load is 

minimal.  This approach is the most costly from a solution standpoint (versus a non-linear static 

evaluation), as there are two significant numerical problems to solve.  This approach is also more 

complex; there are more steps to execute and it would be viewed as a more cumbersome design 

tool.   
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In final then, the non-linear static approach is the first choice because of advantages in solution 

time, data post-processing, and ease of use.  A sub-modeling approach would be warranted if a 

dynamic solution was required to accurately predict the crankshaft operating behavior. 

 

3.1.2  Numerical Methods For Multi-Piece Crankshaft Analysis 

Research has taken place studying the general behavior of the press-fit joint specifically for a 

multi-piece crankshaft [16].  The goal of this work was to create analytical formulas that could 

be used early in the design phase to predict the radial contact pressure for the joint and the 

circumferential (hoop) direction stress in the web.  The radial contact pressure was required to 

size the joint for adequate torque carrying capabilities, and the hoop stress calculation for the 

web was required to design within a safe limit with respect to the yield point of the material.   

 

The analytical equations were compared to a plane axisymmetric finite element solution; among 

the three included analytical solutions was the classical Lame’ solution, which was indicated as 

inadequate because it does not capture any variation in the stress field in the hoop direction [17].  

The typical crank-web geometry is assumed to a circular disk with an eccentric hole.  Radial 

contact pressure uniformity is shown to be less sensitive to the eccentricity of the hole in the 

web, while the hoop stress variation in the web is very sensitive.  The circumferential stress is 

shown to be not uniform, and depends on eccentricity of the hole in the web; as the hole gets 

closer to the edge of the web, higher stress values are obtained at the thinnest section of the web. 

 

A brief synopsis on a 3-D numerical model of the press-fit problem is also given.  The authors 

noted that at the extremity of the contact, where the pin protrudes from the web, theoretically 

infinite pressure peaks occur which are reduced by local material yielding.  There is no 

indication of any geometric shape on the interior edge of the cylindrical hole in the web, and so it 

is assumed a 90 degree corner.  Also, there is no data provided for distribution of the stress field 

calculated.  The 3-D and 2-D models had good correlation in average stress values calculated. 

 

Finally, [16] noted that the 3-D FEM assembly solution of a press-fit joint produced a rotation of 

the crankpin axis with respect to the main shaft axis, as shown in Fig.3.1.2.1.  Differences in the 

web hoop stretch across the joint occur, as the side at which the pin protrudes out is stretched 
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more by the additional pin stiffness there.  It is noted that a 3-D finite element model is required 

to calculate this pin mis-alignment produced by the press-fit.  In is the experience of the author 

that any changes in the web stiffness by the introduction of pockets (which also affect rotational 

imbalance) near the press-fit joint may affect and compensate for pin mis-alignment due to the 

press-fit. 

 

 

Figure 3.1.2.1:  Pin mis-alignment (α) caused by the unequal stiffness; the web on the pin side I 

stretches more than the non-pin side O [16]. 

 

3.1.3  Numerical Studies Of Press-fit Joints Used In Other Applications 

Little research work can be found on the numerical modeling of the multi-piece crankshaft press-

fit joint.  Press-fit or shrink-fit joints are used commonly in the construction of a locomotive 

axle, to fix the wheel / hub to a shaft.  Research in this application of press-fit joints is more 

common; but the geometry solutions examined tend to be slightly different, and not as 

numerically challenging as the crankshaft situation.  The design space available for the hub of 

the locomotive wheel tends to not have the premium on space that a high-performance engine 

has.  Therefore, stress relieving features on the hub may be used that may not package easily in 

an engine, and also may create a weight penalty throughout the entire engine, by making the 

press-fit joint larger and subsequently stretching the engine case. 

 

Research of particular interest by White et al [18] focused on the examination of several joints 

that would remove or reduce large axial strains created on the shaft, just beyond the interface 

between the plain hub and shaft.  As is the case for a crankshaft, bending stresses in the shaft (the 
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locomotive axle) combined with any tensile axial stress concentration due to the press-fit joint 

are un-desirable and lead to early fretting fatigue failures.  In [18], fatigue cracks are indicated to 

initiate just inside the hub seat surface, and are thought to originate from a combination of the 

high (mean) axial tensile assembly and (alternating) bending stresses combined with fretting 

wear. 

 

White et al [18] identify that the high radial stress at the start of the hub seat or press-fit led to 

large tensile axial stresses on the free surface of the shaft, but do not discuss the mechanisms.   

An axisymmetric FEM model shows high stress components leading up to the plain hub joint 

(see Fig. 3.1.3.1), but does not solve for the large stress components across the end of the press-

fit.  It is not apparent whether a sharp corner is present on the end of the hub bore, or whether a 

fillet radius or triangular chamfer finish is used.  A radial displacement plot (Fig. 3.1.3.2) across 

the area of interest shows a non-continuous change in the shaft outer diameter, which would 

indicate a stress singularity.  The authors suggested that there is error in the solution exactly at 

the end of the ‘seat’ and did not quantify further the details of this geometry case.   

 

Figure 3.1.3.1:  Shaft outer surface stress components at the press-fit joint for a plain hub and 

shaft on a locomotive axle [18].  
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Figure 3.1.3.2:  Shaft outer surface radial displacement at the press-fit joint for a plain hub and 

shaft on a locomotive axle [18]. 

 

The research paper [18] does not reference any comments on the shear stresses and their 

influence in the problem.  A ‘lubricated’ surface friction was assumed as the surface of the press-

fit, with a co-efficient of friction equal to 0, as it was deemed that any surface friction was not 

high enough to resist the axial growth in the problem created by the high radial pressures and 

Poisson’s ratio. 

 

Fillet radius and groove features were added to the shaft and studied with the same axisymmetric 

FEM modeling approach (see Fig.3.1.3.3), and it was shown that desirable compressive tensile 

stresses may be added to the shaft surface just outside of the press-fit.  A fillet radius proved to 

be more effective at this, while the groove approach still created a maximum tensile stress from 

assembly at the base of the groove, which also happens to be the location of maximum bending 

stress.  An over hang geometry for the hub may move this local maximum slightly further along 

in the groove away from the hub.  These details will be compared directly in Chapter 8, 

Optimization. 
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Figure 3.1.3.3:  Hub and shaft assemblies considered in [18] for FEM evaluation. 

 

Finally, White et al [18] comment on the addition of bending loads, from the wheel, into the 

press-fit joint.  It is speculated that the addition of bending loads will be super-imposed on the 

assembly stresses, and that this will cause an equal un-loading and loading of each opposite 

diametrical corner pair of the hub internal surfaces.  This point will also be demonstrated in this 

research body.   

 

Note there are distinct differences in the load path between the crankshaft and locomotive axle.  

For a crankshaft application the pin subjects the web to bending loads induced by the combustion 

forces and the reciprocating (piston) inertial loads.  The web also contains a counterweight that is 

opposite in position to the crankpin, which inputs bending loads back into the pin as the engine 

rotational velocity increases.  Crankshaft torsional loading also needs to be carried by the press-

fit joint.  For the case of the locomotive axle, the wheel hub puts all the loading (bending and 

torsion) into the axle. 

 

Kanber [19] uses Boundary Element and Finite Element Method solutions to examine a shaft on 

hub set of interference fit problems.  Four types of interference problems are examined including 

a ring on a solid disk, a hub on a shaft, a hub on shaft with a shoulder, and a hub with a groove 
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on a shaft (see Fig.3.1.3.4).  Axisymmetric models are used to study the variation in radial 

interface pressure along the shaft axis.  The BEM and FEM solutions are in agreement, while the 

BEM solution has greater computational efficiency. 

 

Figure 3.1.3.4  The four sets of hub on shaft geometry problems evaluated by [19].  

 

Interesting comments are given regarding the ‘hub on a shaft’ design.  The hub geometry 

considered had a ‘sharp’ corner on the edge of the hollow inner cylinder, causing what is 

described as stress deviations on the shaft.  A stress concentration is acknowledged, and this 

location is cited to initiate fatigue failures for the loading cycles studied.  Figure 3.1.3.5 plots 

radial interface pressure along the hub inner surface, showing a sharp rise in stress at the corner 

of the hub.  No geometry definition for the ‘sharp’ corner or the mesh details there are provided 

in the research paper. 
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Figure 3.1.3.5:  Radial interference pressure along hub inner surface from [19] for a hub with a 

‘sharp’ corner. 

 

The last two solutions explored, which use a shoulder and groove respectively, are relevant 

solutions to reduce the stress concentration present in crankshaft press-fit assembly, as shown in 

Fig.3.1.3.6.  These groove and shoulder designs are shown to reduce the stress concentration of 

the sharp shoulder are similar to those explored by [18].   

 

Figure 3.1.3.6:  Radial interference pressure along hub inner surface from [13] with a groove. 
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Makino et al [20] also published research in the examination of a rail wheel hub pressed onto an 

axle.  The goal of the research was to evaluate different round profiles on the edge of the hub 

using FEM and rotating bending fatigue tests.  Figure 3.1.4.7 shows the axle assembly, while 

Fig. 3.1.4.8 shows the FEA modeling approach, which uses a one-quarter symmetry assumption.  

The mesh size at the SCA area appears to be relatively coarse.   

 

Figure 3.1.3.7 The rail axle press-fit assembly from [20]. 

 

Figure 3.1.3.8 A one-quarter symmetry 3-D model from [20]. 
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Three geometry cases were considered at the ID of the hub edge, a small radius, a large radius, 

and no round.  Figure 3.1.4.7 plots radial stress on the axle surface across the ‘equivalent SCA’ 

area for the three geometry conditions.  As the radius increases, the location of maximum stress 

is shown to increase and move inboard.  This phenomena will be demonstrated in several 

instances in this research.  The radial stress at the edge (x equals 0 in Fig. 3.1.4.7) is shown to 

increase at a higher rate for the ‘no round’ geometry.   

 

Figure 3.1.3.7 Radial stress at the ‘SCA equivalent’ location for three different geometry press-

fit options [20]. 

 

Figure 3.1.3.8 shows the same radial stress distributions but includes the assembly plus wheel 

bending load; the model results are given for the ‘tensile’ side of the bending load input.  The 

radial stress curves are shifted positive, indicated that the high radial stress from assembly is 

‘unloaded’ as the bending load is input, another facet that will demonstrated in this research 

body.  Note that the ‘no rounding’ edge finish curve has changed drastically in shape with the 

addition of the bending load, and the sharp concentration present at x equals 0 has been 

eliminated.  It is interesting that the bending load curve remains approximately flat or linear.  It 

would be fair to observe that the coarse mesh discretization present in the model has some effect 

on the stress curve continuity and likely the local maximum values calculated. 

 

Axial stress plots across the axle OD at the area of interest are repeated for the assembly 

condition in Fig.3.1.3.9 for the three geometry cases.  Note that the assembly maximum tensile 
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axial stress values are shown to increase slightly with the larger radius profile, while also 

demonstrating a compressive to tensile stress reversal. 

 

Figure 3.1.3.8 Radial stress at the ‘SCA equivalent’ location for press-fit plus bending [20]. 

 

Figure 3.1.3.9 Axial stress at the ‘SCA equivalent’ location for three different geometry press-fit 

options [20]. 

 

Finally, in [20] the rotating bending bench fatigue test failures were shown to match the locations 

of high stress calculated in the FEA model.  Another technical paper published based on the 

same research activity [21] focused on furthering this FEM and experimental based fatigue work.  
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Failures in service of the axle are identified as fretting fatigue, and the location of the cracks 

relative to the round profile on the hub is shown in Fig.3.1.3.10 from [21].  The focus of this 

research was to predict fatigue crack growth or fatigue strength using fracture mechanics; a 

broad assumption is used regarding the accuracy of the FEA model developed earlier in [21]; 

since the failure location matched the FEA results, the accuracy is deemed acceptable. 

 

Figure 3.1.3.10 Rotating bending fatigue bench test crack location from [21]. 

 

In summary, there is sizeable work done in the area of press-fit joints used in other applications.  

For most of the research it is difficult to determine the profile of the edge geometry at the SCA, 

as the details of the stress field were not the focus of the effort.  Missing in the literature are the 

calculation of sharp stress concentrations at the edge of the press-fit and the high sub-surface 

stresses that become obvious when adequate mesh density is used to describe the stress gradient 

at the SCA.  Previous studies containing stress sensitivity comparisons to mesh density are also 

not present in the literature. 

 

Note also that for these other applications, where design space is not as much of a premium as it 

is on a crankshaft, geometry features are added on the joint to relieve stress or create a 

compressive stress to extend the joint life.  Therefore if these features can be easily added to the 

design, then there is not a great incentive to understand the true structural behavior of the press-

fit joint which does not have the stress relief feature.  This is likely one of the main reasons that 

little research has been published to date on the problem presented in this thesis. 
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3.1.4   Contact Stress And Sub-Surface Stress Studies From Other Applications 

The numerical analysis of the press-fit joint on a multi-piece crankshaft assembly reveals some 

interesting sub-surface stress.  Some relevant research in the area of contact stress is presented 

below. 

 

Gawronski et al [22] discuss some favorable compressive residual stresses that are generated on 

gear teeth by both a surface hardening technique (vacuum carburizing) and by final grinding.  

These favorable stresses are super-imposed on top of the bending and contact induced stresses on 

the gear teeth by means of a FEA model using a sub-modeling approach.  Details of the FEM 

model mesh are shown below in Fig.3.1.4.1. 

 

Figure 3.1.4.1 The FEM model showing the gear teeth and sub-model area from [22]. 

 

Next in Fig. 3.1.4.2 (from [22]) a fringe pattern (detailed stress plot) is shown with peak 

equivalent stresses directly below the contact patch surface for the gear teeth loading, at some 

distance which is indicated as the Bielajew Point.  This maximum equivalent stress location is 

given as 0.27 mm below the surface.  The location of the maximum stress was of interest 

because of concern regarding the depth of the strengthening treatment, and whether this point fell 

within the case depth range.  This is a similar concern in the case of accurately determining the 

location of the high sub-surface stress values due to contact (of curved surfaces) at the multi-

piece crankshaft press-fit joint.  Note that the maximum equivalent stress location appears to be 

directly below the center contact location.  There is not any description of the shear stress field 

present, and whether it is a prominent component of the equivalent stress field.  There also is not 
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any description about the mesh density requirement to accurately determine the stress field 

gradients and local maximums present. 

 

Fig. 3.1.4.2 FEM plot from [22] describing the location of a maximum sub-surface (equivalent) 

stress, the Bielajew point. 
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3.2  Theoretical Background 

Developing accurate and practical FEA models of the press-fit joint that captured the details at 

the SCA proved to be very challenging.  This section reviews the methodology created and some 

background theoretical information used to examine such press-fit joint problem. The problem is 

non-linear due to the necessity of using the contact elements.  Note that all research presented 

uses a linear elastic material model.  Also, the interfacial contact forces depend on the friction 

coefficient, which differentiate this problem from the Lame case that is friction independent.  

  

3.2.1  Introduction to the Mathematical Solution for Cylindrical Contact 

This research body presents the numerical evaluation of the high stress conditions typical of a 

multi-piece crankshaft press-fit joint for both the assembly and operating conditions.  The 

novelty in this research is the determination of the Hertzian like stress field at the press-fit edge, 

designated the SCA.  The high gradient stress fields present pose major challenges in the 

application of numerical tools for evaluation of the assembly and operating loads.  The research 

work does not include any new numerical formulations, but does employ good numerical 

practices and high quality modeling techniques which will be discussed in this chapter. 

 

The application of finite element method to solve an engineering problem is successful only if a 

practical description of the physical problem can be defined using a mathematical model.  FEA 

may then be employed to solve this mathematical problem, approximately, as indicated in Fig. 

3.2.1.1 [23].  The initial assumptions in both the mathematical model and the application of the 

numerical model usually require several iterations to obtain a set of useful tools that produce 

meaningful data in an efficient manner. 

 

Generally, the structural evaluation of the multi-piece crankshaft needs to consider the assembly 

and operating conditions.  The assembly condition requires the determination of the radial 

interference between the pin and the web to obtain the desired displacement and stress fields 

(after assembly). Subsequently, it is required  that the operating loads the crankshaft experiences 
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(in addition to the assembly loads) be added, so that the mean and alternating displacement and 

stress fields in the crankshaft  under combined load can be determined. 

 

Figure 3.2.1.1 The finite element process [23]. 

 

In the preliminary analysis of the assembly state the Lame solutions are most commonly used 

[24]. Such a solution predicts the behavior of two elastic cylinders which have a radial 

interference δ .  To employ the Lame formulas for the crankshaft press-fit problem, the web 

must be idealized as a concentric cylinder.  A differential slice and a section view of such a 

hollow cylinder are shown in Fig. 3.2.1.2, which defines the parameters used. The Lame solution 

originates from the equilibrium equation in the radial direction: 

0))(()( 2 =−++++− θσθσσθϖθσ θ hdrdhddrrdrhdrdphrd rrr   (3.2.1). 

 Note that the Lame solution assumes that the stress field is constant in the axial direction of the 

cylinder.  The developed Lame solution takes the form  
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for radial stress σr  at radial position r, where pi and po are the internal and external pressures 

while also a and b are the internal and external radius values respectively. 

 

Figure 3.2.1.2  Equilibrium forces on a differential slice of a thick cylinder [24]. 

 

These formulas can be used for the problem of a press-fit between two cylinders with the 

knowledge that 1) radial stress σr at the interface must be equal and 2) the radial stress σr at the 

external and internal surface must be equal to zero or any applied pressure.  Note the radial 

interference δ  is required as input also.   Figure 3.2.1.3 shows a typical radial and hoop stress 

distribution for two cylinders press-fit together ( cp  is given for the plain strain state or for 

infinitely long cylinders).   If there is internal pressure, one may super-impose the interference 

solution of two cylinder jackets with an internal pressure solution assuming the two cylinders are 

one continuous part.  

 

The Lame's ‘average’ radial and hoop stresses values are useful in the design of a crankshaft, and 

are typically used to size the press-fit joint for adequate torque retention, while balancing / 

minimizing hoop stress on the outer cylinder (the web).  There is significant research published 

in this area, which has been shown to correlate reasonably well to both test data (see chapter 6 
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for details) and the average values present on the more exact FEA solutions.  However, this 

solution ignores the fact that the web is of a finite length. 

 

Figure 3.2.1.3 The stress distribution between two cylinders with radial interference [24]. 

 

The Lame solution will not be able to calculate the high stress condition at the SCA because the 

stress variation in axial direction is neglected.  Also since the web is idealized as a concentric 

cylinder, the FEA solution for the 3-D geometry results in somewhat higher average radial and 

hoop stress values.  The actual web geometry has a greater stiffness than the concentric 

assumption which produces 1) higher radial stress overall, and 2) more stretch of the web 

material just above the pin at Top Dead Center (TDC) to compensate for the sections which have 

a higher stiffness. 

 

As outlined above, the Lame equations do not capture the details of the high stresses present at 

the SCA.  Reference books typically suggest examining such stresses as a contact problem.  The 

study of contact stress between two spherical bodies is generically called Hertizian contact stress, 

named after the originator.  The body of work by Hertz has evolved into commonly available 

formulas that have been derived for several shapes of contacting elastic bodies.    
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Common formulations available include the following body shapes in contact: 

1) sphere on sphere, 

2) sphere on a flat plate, 

3) cylinder on cylinder with both cylinder axis parallel to each other, 

4) cylinder on cylinder with one cylinder axis perpendicular to the other, 

where, for each instance the line of action of the force between the two bodies intersects the 

geometrical center of the radius of curvature for each body. 

Logic may suggest the closest representation to the press-fit geometry at the SCA is the cylinder 

on a flat plate, which requires a few assumptions.  Consider Fig.3.2.1.4, which shows the web 

mounted on the pin, with the ‘true radius’ web end finish equal to 25.0 D  highlighted as the 

geometry of interest for this calculation. 

 

 

Figure 3.2.1.4 The ‘cylinder on a flat plate’ Hertzian contact assumption [25]. 

  

 Next, the second cylinder (the pin) is considered flat (R2 >> R1), which is the equivalent of 

taking the pin and ‘unrolling’ it so that it is flat (see Fig.3.2.1.5).  In addition, the same is done 

then to the web, it too is ‘unrolled’ to a flat profile.  Radius R1 is set then to the value of the true 

radius feature at the SCA.  So in this manner the contact problem is simplified to be a thin 

narrow cylinder of radius R1 that is loaded against a flat plat.  Obviously, this is quite a stretch in 

assumptions, and is difficult to see any benefit to this approach.   

plane of symmetry 
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Figure 3.2.1.5 The axisymmetric geometry assumed as flat [25]. 

 

The Hertzian equations for the cylinder on flat plate assumption are 

D

o
K

pE
p 591.0=      (3.2.4) 

and 

E

pK
b D15.2=      (3.2.5) 

where 2DKD =  [25].  The contact patch width b and maximum contact pressure at the surface po 

are shown in Fig.3.2.1.6 [26] which details the contact pressure distribution for the case of 

cylinder on parallel cylinder.  The unit loading of the cylinder, p, is unknown, which in terms of 

the original problem geometry is logically a multiple of the press-fit interface radial stress.   

 

Experimentation with the formula does suggest that the stress field present is Hertzian in nature, 

as will be discussed in Chapter 3.  If the load input value p is varied until the maximum pressure 

po matches the FEA solution, the corresponding size b also matches the FEA solution.  The 

application of these Hertzian formulas to the SCA press-fit problem is not viewed as a precise 

design tool.  There has been no progress made in developing an theoretical formula relating 

average radial stress and the local maximum radial stress at the SCA.  This difficulty is exactly 

the reason why a good numerical approach is needed. 
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Figure 3.2.1.6  Hertizian contact pressure for two parallel cylinders [26]. 

 

3.2.2  Press-Fit Joint Numerical Model Challenges  

So far important structural details required to design a proper multi-piece crankshaft are not 

obtainable with sufficient accuracy from simplified formulas.   Finite element methods are very 

common in modern engineering to solve structural problems, which are applied here in phases to 

study the press-fit problem.  Both simplified 2-D models and accurate full geometry 3-D models 

are used together with contact elements to examine the behavior of the press-fit joint.  The 

axisymmetric 2-D models are used to study the press-fit problem around the SCA in great detail, 

while the 3-D full geometry models are used to study both the assembly and operating load 

behaviors. 

 

3.2.2.1  Mesh Refinement Requirement For High Gradient Stress Fields 

Significant portions of the research focus on controlling mesh density. The stress results 

presented are provided in terms of the element size at the SCA.  Early in the research, prior to the 

2-D assembly studies with element size h below 0.02 mm, it was thought that a stress singularity 

was present at the SCA.  Further mesh refinement determined that the surface and sub-surface 

stresses converged to a finite value, which allowed determining the stress concentration at this 

location.  It is therefore appropriate to discuss the mesh refinement required to model such high 

gradient stress fields. 
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A stress singularity may be defined as the stress magnitude going to infinity for an elastic 

solution, or also may be described as a material immediately yielding in the real world load 

situation.  In the case of the stress concentration at the SCA, it is shown that the peak stress have 

a final limited value that is mesh independent (note that the material models used in the research 

are all linear elastic).  Also note this converged value will be shown to fall within the elastic 

range of the surface hardened case depth of the high strength material. 

 

Mesh refinement studies show how the maximum stress calculated at the SCA is sensitive to 

element size. Very small elements are required for convergence. This is due to the relatively 

small size of the curvature or ‘kink’ in the pin at the point of contact / no contact and the 

resulting small size of the local sub-surface maximum stress.   

 

The level of discretization of the geometry needs to match size of the physical phenomena that is 

being numerically modeled , such as the pin kink (the curvature), or the sub-surface stress field, 

or the true radius edge finish.  Figure 3.2.3.1 demonstrates this from a finite element perspective, 

displaying the actual and the finite element calculation of the maximum stress at the presence of 

a high stress gradient [27].  The actual stress is shown to increase at a higher rate as the x-axis 

goes to zero.  For element size h equals 1 unit, the nodal stress at x equals 0 is calculated as 28 

stress units by the extrapolation from the element ‘a’ Gauss point stress values (the stress values 

calculated very accurately at the Gauss points of element ‘a’ and then are linearly extrapolated to 

the nodal location for most 2D and 3-D elements).  Next, for h equals 0.5 units, Fig. 3.2.6 

indicates a stress value which is re-calculated at 39 units for x equals 0.   
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Figure 3.2.2.1 Variation in stress magnitude calculated with element size h. 

 

Figure 3.2.2.2 Variation in stress magnitude calculated with element size 0.5h. 

 

As the element size decreases to match the stress field gradient, a more accurate result is 

determined.  So, if in fact the stress field at x equals 0 goes to infinity, a decreasing element size 
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h will calculate an increasing maximum stress value without reaching a limit.  In the other 

instance, when the maximum stress at x equals 0 has a definite value, as element size h is 

decreased the FEA solution will converge to that limit. 

 

So, in this light, the element size at the SCA needs to be well controlled for accurate stress 

calculations for both the assembly and operating load conditions.  The 2-D axisymmetric model 

is more numerically efficient, and was used in conjunction with mesh convergence studies to set 

the minimum mesh size for the 3-D work.  Large model size and solution time are not a concern 

for the 2-D model, but are for the 3-D work, as stated previously.   

 

3.2.2.2  Meshing Challenges For The 2-D Solution 

The research used ANSYS, a well established finite element method commercial software.  The 

2-D axisymmetric models were created with parametric geometry based on the ANSYS 

command language.  Details of this automated tool for press-fit design that is to be used by the 

design engineer is presented in section 8.5. 

 

The axisymmetric model uses element PLANE82 [28], which is a 2-D 8 node structural element 

that approximates displacements by quadratic function and may be used for axisymmetric 

problems with the appropriate option set (KEYOPT(3) = 1).  A mixed mesh was generated by 

the automatic meshing tool that ANSYS employs, which favored rectangular elements over 

triangular shapes.  PLANE82 may also form a 6 node triangular element for the case of a mixed 

triangular and rectangular element mesh.   

 

The 2-D meshing controls used were line and area based; the layout of the typical axisymmetric 

model used throughout the 2-D studies is provided in Fig.3.2.2.1.  Areas around the SCA are 

used to control mesh size exactly but reduce element count and minimize solution time.   

 

Major difficulties were encountered meshing the 2-D geometry, relating to the mesh quality in 

the transition zones.  The ANSYS auto-mesher needed help to gradually change the element size 

as the mesh moved away from the high density mesh in the SCA area.  Improvements in mesh 

quality in the transition zone was obtained by using several areas over which the element size 
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could be controlled to change gradually.   Keep in mind that it is important that the 2-D 

axisymmetric model be very robust from a modeling pre and post processing standpoint.  The 

intent of the evaluation tool created is that it be placed into the hands of less experienced design 

engineers which have low experience level in FEA.  The tool needs to fit in a design 

environment and have a robust meshing approach. 

 

Figure 3.2.2.1 Area plots of the 2-D FEA model; mesh control with area 3 at the SCA. 

 

3.2.2.3 2-D Contact Modeling At The Press-Fit Interface 

The axis symmetric model uses a contact algorithm to examine the interference between the pin 

and web.  TARGET169 and CONTACT 172 [28] are the contact pair which are surface to 

surface elements placed on the matching interface surfaces of the pin and web respectively.  The 

contact algorithm uses a Lagrangian penalty function method, which increases the contact 

stiffness for any measured penetration.  The discretization of the set of contact elements is 

determined by the solid elements below it.  Both element sets share the same real constants, 

including the surface co-efficient of friction. 

 

A single typical interference fit value was used as a baseline throughout the 2-D and 3-D 

solutions, which is a value that has passed endurance testing in a similar crankshaft design.  The 

interference was added through contact algorithms to the FEA model by two methods, the first 
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by creating geometry with the desired interference fit, and the second by thermal expansion.  

Both solutions have advantages and disadvantages.   

 

The desired interference fit method worked well for larger elements sizes, but as the size at the 

SCA became much smaller than the interference, the contact solution would not converge easily.  

The convergence issue stemmed from the reduction in size of the contact algorithms ‘pinball 

region’ search criterion for the matching contact and target nodes on the pin and web 

respectively.  As the 2-D element size is reduced at the SCA, so is (the contact element size and 

therefore) the region of search, to a point that it is much smaller than the radial interference 

value.  The pinball region could be set to a larger distance, but another shortcoming of the 

geometry based interference approach was non-uniform or ‘spotty’ contact pressure results.  The 

geometry based method did not reliably create the desired smooth and continuous contact 

pressure. 

 

The thermal expansion method created radial interference by applying a temperature change to 

the entire model while setting the web coefficient of thermal expansion to an artificially low 

value.  An appropriate temperature change is applied to the model which expands the pin only 

and creates the desired radial interference.  The temperature change was applied in a ramped 

fashion during the solution phase, and the number of sub-steps used to solve for the interference 

was set by the minimum element size at the SCA.  This approach works well for all element 

sizes at the interface, and provided a more consistent or smooth contact pressure distribution.  

Negative aspects include an increased solution time required when a small sub-step size 

(resulting in many equilibrium iterations) is chosen for a highly refined mesh.  Also, the 

thermally induced distortion often dominates the solution displacement plot and therefore is less 

meaningful to the analyst. 

 

3.2.2.4  Meshing Challenges For The 3-D Solution 

The approaches and challenges of the 3-D modeling followed closely those listed for the 2-D 

work.  The 3-D mesh used both brick and tetrahedral elements, with a focus on controlling 

element size exactly at the SCA by using small cylindrical volumes on the pin OD and the web 

ID.  An example of the manipulation of the crankpin geometry typical of the 3-D model is shown 
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in Fig.3.2.2.2.  A thin cylindrical slice was segregated into a separate volume at the SCA to use 

for brick mesh control.  The pin volume was also separated into wedges also so that different 

loading planes could be easily post-processed (see Fig. 3.2.2.2).  There are more details shared 

on the geometry manipulation created for the 3-D models in chapter 5.   

 

Figure 3.2.2.2  Pin geometry manipulation for mesh control and post-processing. 

 

Without some manipulation of the pin and web geometry, it is not possible to create an efficient 

FE mesh with the desired brick elements present at the SCA.  Different geometry manipulation 

schemes that did not work as well are also covered in chapter 5; a large effort was required to 

determine the best approach and without this effort the research would not have been possible.  

The final solution using a thin cylindrical volume at the SCA was the simplest and most robust 

for good mesh quality. 

 

The size of the cylindrical volume at the SCA was 1.0 mm wide by 0.1 mm deep, which was 

based on the size of the stress discontinuity present at the SCA.  Even the simple task of placing 

the relatively small SCA cylindrical volume at the correct axial position on the pin and web was 

laborious since the best location was found through trial and error.   

 

The ANSYS brick element used is SOLID186 [28], a higher order 20 node brick element with 

quadratic displacement approximations.  The brick element allows variation in shape and may be 

formatted by node numbering as a tetrahedral, pyramid, or prism (wedge) as needed by the local 

mesh and geometry requirement (see Fig.3.2.2.1).  Brick elements are required at the SCA, and 

dominate the local volumes created there, while tetrahedral elements dominate the rest of the 

crankshaft volumes.  Pyramid and prism elements are used in the transition from purely brick 
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elements at the SCA to tetrahedral elements elsewhere.  The meshing details, including the 

geometry manipulation used to create the mesh are provided in detail for each 3-D model type 

used in chapter 5. 

 

  

Figure 3.2.2.3 ANSYS SOLID186, 20 node brick element and its variations [28]. 

 

3.2.2.5  3-D Contact Modeling At The Press-Fit Interface 

The 3-D press-fit joint interference was modeled using contact algorithms in a similar manner to 

the 2-D problems.  ANSYS recommends CONTACT174 [28] and TARGET170 8 node surface 

element for deformable 3-D surfaces in structural contact.  The number of nodes present is 

consistent with the number of nodes on the solid element face at the surface.  The contact 

element is also capable of a 6 node format to match a wedge or tetrahedral element shape.  The 

contact element is capable including surface friction, and again both the contact and target 

element use the same real constant set. 

 

The 3-D FEA models introduced radial interference between the pin and web in the same manner 

as used for the 2-D studies; both thermal expansion and geometrical interference were used.  The 

advantages of each approach listed above apply for the 3-D case.  The thermal approach was 
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favored for the 3-D effort though because of the good consistency in contact results at the SCA, 

even with long solution times present. 

 

Interference by thermal expansion also created two bi-products that were sometime difficult to 

deal with, especially the larger models.  The thermal expansion on the full model is applied to 

the outer PTO web, which also creates axial growth and position change in the outer web relative 

to the pin.  The result is a small mismatch between the mating brick element mesh volumes at the 

SCA on the pin and web; the desire here is to match the mesh exactly.  The thermal expansion 

also requires that the spring boundary conditions for the PTO end bearings are reset so that 

reactions equal zero for the assembly load step. 

 

3.2.2.6  Computational Challenges 

Model size and solution time was not as critical for the 2-D models, although for such models the 

number of equilibrium iterations was around 8 times greater than for the 3-D models.  A typical 

refined 2-D model with adequate refinement at the SCA (such as h=0.0075 mm) had 34,000 

elements approximately which required 45 minutes to solve on a desktop class workstation (2 

CPU at 2.13 GHz clock speed with 16 Gb RAM).  The long solution time was a result of the 

large number of equilibrium iterations (32 to 38 total) required for each sub-step of the ramped 

temperature loading.  Approximately 250 hours in computational time was spent directly on 2-D 

solutions for this research effort, not including the time required to create the automated 2-D 

axisymmetric model input deck. 

 

Overall, three different 3-D models were used in this research.  First a 30 degree symmetrical 

slice that is consistent geometry-wise to the 2-D model was created to examine the assembly 

solution differences between the exact same 2-D and 3-D geometry.  Next a ‘bench test’ model 

using symmetry assumptions on the 3-D crankshaft geometry was created to minimize solution 

size.  This model was created for ease of use to accelerate the numerical studies, which is also a 

practical requirement for any of the numerical design tools that are produced by this research 

effort.  Finally the full 3-D geometry of crankshaft was examined with a 3-D FEA model for 

assembly and operating loads.  
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Solve time for the 3-D models are very significant because of the large model size plus the 

significant number of equilibrium iterations typical to evaluate the non-linear joint behavior.  

The minimum element size at the SCA was limited for all 3-D models to obtain reasonable 

solution times.  Typically a one-quarter symmetry model using h equals 0.02 mm at the SCA had 

solution times in the order of 18 to 24 hours using a desktop class workstation.  The average 

model consisted of 860,000 elements and required 15 to 19 equilibrium iterations. 

 

The full model was restricted further in minimum element size since it could not take advantage 

of any symmetry in the geometry.  The smallest element size that was practical to run and post-

process was h=0.05 mm, which still involved a 120 hour (5 day) solution time.  Approximately 

1900 hours in computational time was spent on the 3-D solutions.  Model sizes beyond this with 

extended solution times are not thought to add practical value in a design environment. 

 

3.2.3  Development of Numerical Model Reliability 

The introductory section in this chapter touched briefly on reliability of the computer simulation 

in Life Evaluation of the crankshaft design. All reliable FEA procedures require the integration 

of experimental tools and experimental data to develop sufficiently accurate FEA tools.  Also, 

the efficient and practical application of FEA to the overall process may require several types of 

numerical models with varying degrees of fidelity used at different stages of the design 

challenge. 

 

Figure 3.2.4.1 shows intent of this research process, which is to develop good reliability in the 

overall application of tools to the design of multi-piece crankshafts.  All FEA processes, shown 

in yellow, have matching test components (shown in grey), so that good confidence will be 

present for the FEA tasks.  The assembly (phase 1) and operating load (phase 2) FEA and 

experimental tasks are examined in chapter 6, and show good correlation.   
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Figure 3.2.3.1  The multi-piece crankshaft process for development of good reliability. 

 

Structural durability can not be discussed without reference to the material behavior, including 

the constitutive laws as well as the material fatigue (S-n) curve.  As a start, fatigue data may be 

produced for the core material using test coupons.  Usually though a strengthening treatment is 

applied to the crankshaft surface for improved durability; which means the core material fatigue 

curves are not applicable for the case depth of higher strength material.  Fatigue data for the 

strengthened material must come from either 1) fatigue tests done on the actual or similar 

geometry, or 2) it must be calculated approximately using ‘rules of thumb’. 

 

It is difficult and expensive to develop a reliable fatigue process for high cycle fatigue 

applications such as a crankshaft.   Collecting fatigue data from bench tests or from running 

engines usually requires long test time.  Also, any failure of the crankshaft likely destroys the full 

engine.  The biggest roadblock though is that the goal of any engineer working towards getting 

an engine into production is for the crankshaft to complete the full durability duty cycle without 

any failures.  Without any fatigue failure, the ultimate performance of the crankshaft design in 

questions is still unresolved.  
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The idea of slight undersized crankpin testing [15] to induce early failure was promoted in 

section 3.1, but often this is not feasible in a program short of time and accurate production 

representative components.  Therefore, fatigue approaches need to be developed with a durability 

specific bench test.  For the multi-piece crankshaft, this is more important than a one piece 

design, because both pin bending fatigue and fretting fatigue may occur on the bottom of the pin 

at the SCA.  At the time of writing of this thesis, such bench tests have not been developed, but 

the FEA ‘bench test tools’ have been used in chapter 8 to examine a proper loading approach.  

The lack of fatigue data remains the biggest challenge for further development of the FEA tools. 

 

A mature FEA process will have experienced several iterations of the design – analyze – build – 

test loop, and will continue to develop more efficient tools.  Phase 4 outlined in Fig.3.2.4.1 

indicates that the FEA process and data will be studied in depth to develop design rules that may 

be used early in design.  Historical (FEA and test) data will enhance the development of rules, 

and also facilitate a faster adoption if the historical data includes both successful and not so 

successful designs.  The focus of this phase of the research is to examine the high stress 

condition present at the SCA, and determine a relationship between the high local stress 

maximums and the average radial contact pressure in the press-fit.  

 

FEA tools that speed up the overall process are key for high computational effort problem sets in 

particular, which is the case for the multi-piece crankshaft.  Tools have been created to examine 

both the assembly and operating load conditions with reduced effort.  A user friendly 2-D 

axisymmetric model was created that automatically solves and post-processes the assembly 

problem.  A practical 3-D full crankshaft model solution time limits the element size employed at 

the SCA, and so the accuracy of the stress field there is in question.  Results from the higher 

quality 2-D press-fit analysis and the 3-D one-quarter bench test need to be used in conjunction 

with the full model.  Also, the one-quarter bench test model may be leveraged early in the design 

process to reduce the number of iterations that need to be examined with the full crankshaft FEA 

model. 

 

The final phase (5) optimization is highly desired in a robust FEA based design process.  So, as 

more confidence is gained with the FEA tools, solutions with improved operating life may 
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examined.  The primary focus of the optimization in this research effort is reduction in the 

assembly stress at the SCA. 
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4 FEM Modeling Of The Press-fit Assembly 
   

This chapter presents the numerical results for the press-fit assembly problem. 

 

 

4.1 Material Properties 

For this research document the properties of the core material are assumed to be that of an 

average high strength steel, as provided in Table.4.1.1 [29].  For core material the ultimate 

tensile strength (UTS) is 1180 MPa (mean value) and yield strength (SYS) is 785 MPa.  The 

fatigue strength is calculated approximately using the 0.5UTS rule of thumb [30], and ranges 

from 515 MPa to 663 MPa if surface finish and gradient fatigue factors are ignored. 

 

Table 4.1.1:  Mechanical Properties of Crankshaft Components [29]  

 

 

The material is hardened on the surface to improve its strength properties.  It is assumed that the 

case depth is 1.0 mm thick and that a significant increase in hardness strength is gained from the 

case hardening operation.  The UTS of the case hardened material increases to 1900 MPa (low 

value of range) and the calculated YS increases to 1348 MPa (low value of range).   Since it is 

very difficult to measure the YS improvement of the case hardened material, a value is calculated 

based on the core material ratio of YS to UTS plus the strengthened material UTS.  Fatigue 

strength ranges from 950 MPa to 1130 MPa, and is calculated based on the UTS lower and upper 

bounds.  The mechanical properties listed are considered typical for crankshaft applications, and 

are also given in Table 4.1.1 below.  It is assumed that all pin and web components of the 

crankshaft are made with this material for simplicity. 
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Figure 4.1.1 provides a plot of HRC hardness vs case depth measured across the case depth for a 

sample piece [31].  The hardness measurement is converted to an ultimate tensile strength (UTS) 

value using a conversion table [32]. 

 

Figure 4.1.1 An example of the HRC hardness measurement across the section of case hardened 

crankshaft material. 

 

Figure 4.1.2 The ultimate tensile strength across the section of case hardened crankshaft material 

corresponding to the hardness measurement in Fig. 4.1.1. 
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4.2  2-D Elastic Axisymmetric FEM Solution For the Press-fit Assembly 

Problem 

Several different finite element method (FEM) models are used to model the assembly and 

operational behavior of the crankshaft.  The press-fit assembly problem is studied by adopting an 

assumption for the web of axisymmetric behavior in a close vicinity of the pin during the 

assembly process.  It allows a representation of the 3-D geometry with a 2-D mesh. 

 

4.2.1 2-D Axisymmetric Model Description 

The press-fit joint receives strength from the stiffness of the web as it interferes and encloses the 

pin.  The corresponding press-fit stresses should be maximum at pin/web interface and also 

quickly reduce when moving away from this interface.  Therefore, the web may be idealized as 

an annular ring (see Fig. 4.2.1.1), concentric about the pin, of thickness equal to the web size 

directly above the pin.  The modeling and analysis of the interference between the two then 

becomes much more numerically efficient, as an axisymmetric 2-D meshing may then be used. 

 

Figure 4.2.1.1 Idealization of the 3-D web-pin geometry into a axisymmetric model. 

 

Figure 4.2.1.2 shows a typical 2-D meshing of the FEA model for simulating a press-fit.  Note 

the radial interference and the geometry of the web at the end of the press-fit at location A as 

shown in the exploded view Fig. 4.2.1.3.  The web geometry at A is also presented in Fig.4.2.1.3. 
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Internally at Polaris it is recognized as a “true radius” edge finish of the web.  This geometry was 

chosen over other shapes based on optimization work aimed at reducing stresses in this critical 

area, and also considering manufacturability and cost as well.  The details of the true radius 

geometry and optimization are covered further in Chapter 8.   

 

The FEM results presented in this research used the values of geometrical parameters a, r as 

given in Fig.4.2.1.3 to define the connection's geometry, unless otherwise indicated. 

 

 

Figure 4.2.1.2 Details of the 2-D press-fit FEM model. 
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Figure 4.2.1.3 The geometry of the edge finish on the web hole at A. 

 

4.2.2  General Characteristics of Displacement And Stress States 

The numerical solution of press-fit reflects the fact that the radial displacement of the pin and 

web must be such that the interference indicated in Fig.4.2.1.2 vanishes.  These displacements 

are plotted in Fig.4.2.2.1.  Although the pin and web displacements are negative and positive 

respectively, both parts are compressed in the radial (r) direction.  However, in the hoop (θ) 

direction the pin is compressed, while the web is stretched. This in turn causes (due to Poisson’s 

effect) the pin to grow and the web to shrink in the axial y-direction (see Fig.4.2.2.2). 

 

Figure 4.2.2.3 shows radial (x) stress for a typical elastic interference fit, which are compressive 

stresses in the pin and web, which became equal at the interface.  Note a high stress 

concentration occurring at location A of the interface's end.  Figure 4.2.2.4 provides a close-up 

view of the radial stress at this location A. Also note the location of maximum stress, which is 

just before (but not at) the end of the contact zone. 
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Figure 4.2.2.1 Plot of radial (r) displacement  for a typical interference fit.  

 

 

Figure 4.2.2.2 Plot of axial (y) displacement  for a typical interference fit.  
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Figure 4.2.2.3 Radial stress distribution for a typical interference fit.  

 

 

Figure 4.2.2.4 Radial stress distribution at Stress Concentration A (SCA). 
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As mentioned already, in the hoop direction the web is stretches and the pin is compressed, 

which is shown in Fig.4.2.2.5    A close up of the area at A (Fig. 4.2.2.6) indicates a stress 

concentration (SCA) that is higher for compressive σθ in the pin than for tensile σθ in the web. 

 

Figure 4.2.2.5 Hoop stress distribution for a typical interference fit. 

 

Figure 4.2.2.6 Hoop stress distribution at the SCA location for a typical interference fit. 
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The axial (y) stress plot in Fig.4.2.2.7 is generally consistent with the axial displacement plot 

(Fig. 4.2.2.2); that is  because of Poisson's effect the pin is too long and must be axially 

compressed, while the web shrinks and must be axially stretched.  

 

Figure 4.2.2.7  Axial stress distribution for a typical interference fit.  

 

Figure 4.2.2.8 Axial stress distribution at the SCA for a typical interference fit. 
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However the situation is complicated somewhat at A where high compressive stresses appear in 

the web. Also, over a short distance the pin surface axial stress goes from compressive (at A) to 

tensile (on the pin free surface just past A).    

 

Finally, the nature of the shear stress (τxy) is indicated in Figs.4.2.2.9 and 10. As can be seen this 

stress also rises significantly at location A.    

 

Figure 4.2.2.9 Shear stress distribution in pin and web for a typical interference fit.  

 

Figure 4.2.2.10 Shear stress distribution at the SCA for a typical interference fit. 
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Typically, the point of fatigue crack initiation is located on the pin, and therefore the stresses are 

of greater interest there. Each stress components, i.e. radial, axial, hoop, and equivalent are 

plotted along the OD of the pin in Figs. 4.2.2.14.  Note the large stress gradients and high stress 

concentrations in the vicinity of A. 

 

Figure 4.2.2.14 Plot of stress components along pin outer diameter path.  

 

4.2.3 Factors Contributing to the Stress Concentration At A (SCA) 

The previous section (4.2.2) describes the overall stress field for the press-fit problem, and 

reveals a high stress concentration at location A of the web-pin interface.  In this section some 

factors are presented which contribute to the stress concentration.   

 

The first is the effect of the geometrical transition from the no-contact to contact condition along 

the interface.  Figure 4.2.3.1 is a close view of axial stress in the area of interest plotted on the 

deformed shape with the radial and axial displacements distorted 40x. The transition from 

contact to no contact occurs over a very short distance, and contains some segment with a high 

curvature denoted as a ‘kink’ on the profile of the OD of the deformed pin at location A. Such a 

kink is accompanied by a high stress gradient.    
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Figure 4.2.3.1 Details of the pin deformation, axial stress field is shown also. 

 

A second factor is that the pin stress at A is magnified further because of Poisson’s effect 

elongating the pin axially, due to the radial compressive stresses.  The axial growth mismatch 

between the pin and web is counter acted by the interface shear stresses.  In support of this, Fig. 

4.2.3.2 shows that the axial displacement of the pin center is greater than the outer diameter.  

Axial stress on the free pin surface just outside of the contact region is counter-acted by the shear 

stress at the interface. 

 

The third factor contributing to the stress concentration is variation in distance v of unsupported 

web beyond the point of first contact, as shown in Fig. 4.2.3.3.  As v increases, a larger portion 

of the web cylinder is unsupported, and must then be supported by higher radial forces at 

location A.  This is equivalent to using a very small or finite segment of the pin surface to force 

the total unsupported section of the web outward in the radial direction. This factor can be tested 

by varying the geometry of the ‘true radius’ so that the contact start location is moved further in 

or out. 
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Figure 4.2.3.2 Displacement in the axial (y) direction for the pin and web. 

 

 

Figure 4.2.3.3 Effects of the unsupported web past location A on high radial stress at A. 
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4.2.4  Stress Details At The SCA 

The behavior of the pin and web at the SCA under assembly is now examined in detail.    Figure 

4.2.4.1 shows the vicinity of the SCA and several areas that are selected for further mesh 

refinements in the FEM model. The area 3 with the deformation magnified 40x is shown in Fig. 

4.2.4.2, with  a ‘kink’ visible in the pin material at the SCA. Initially, prior to ‘assembly’, all 

elements in this area, from the free pin surface (top of rectangle) to the compressed pin surface 

(bottom of rectangle), were square in shape. When assembled, the elements at the top end of the 

area are longer than the bottom end, because of the compressive forces exerted on the pin by the 

web. 

 

Figure 4.2.4.1 Identifying Areas 3 and 8 used in meshing refinement at the SCA. 
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Figure 4.2.4.2 A deformed equivalent stress plot of area 3. 

 

Two refined FEM models are studied in this section, one with a relatively coarse meshing 

defined by element size h=0.05mm, and one with a dense meshing defined by h=0.0025mm.  

Differences and similarities of the solutions rendered by these two models are discussed next to 

help in subsequent analysis of the problem.  Note all stress plots are shown on the deformed 

shapes with a 40x magnification of displacements, similar to Fig. 4.2.4.2. 

 

The radial stresses are shown in Fig. 4.2.4.3 and Fig. 4.2.4.4 for the coarse and fine mesh 

solutions respectively. High compressive radial stresses occur on the pin surface at similar 

locations for both solutions, but the refined mesh solution in Fig. 4.2.4.4 represents the 

continuous shape of the 'kink' at the SCA location more accurately.   

 

The axial stresses are plotted in Fig. 4.2.4.5 and Fig. 4.2.4.6 for the coarse and refined mesh 

respectively.  Note a transition from a high compressive stress at the SCA into a tensile stress on 

the free surface.  The tensile stress is due to the high curvature of the pin surface, this stress is of 

particular interest because of its additive nature to any pin bending stresses from operating loads.  



78 

It should be noted that all three normal stress components in the radial, axial, and hoop directions 

have compressive stresses at the SCA. 

 

Figure 4.2.4.3 A plot of radial stress in area 3 for meshing h=0.05 mm. 

 

 

Figure 4.2.4.4 A plot of radial stress in area 3 for meshing h=0.0025 mm. 
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Figure 4.2.4.5 A plot of axial stress for meshing h=0.05 mm. 

 

Figure 4.2.4.6 A plot of axial stress for meshing h=0.0025 mm. 

 

The shear stresses are examined at the SCA in Fig. 4.2.4.7 (fine mesh).  The maximum stress 

resides below the surface of the pin in the no-contact zone.   
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Figure 4.2.4.7 A plot of shear stress τxy at meshing h equals 0.0025 mm. 

 

Figure 4.2.4.8 A plot of equivalent stress σVM at meshing h equals 0.0025 mm. 

Finally, the Von Mises equivalent stresses are shown in Fig. 4.2.4.8.  Similar to the shear stress, 

the maximum equivalent stress is located under the surface. The maximum τxy  and σVM  are in 

different but close elements for the dense mesh solutions. 
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A vector plot of the principal stress values are also given for this same close up view in Fig. 

4.2.4.9.  Note high compressive stresses, S3 (the values and directions of these stresses are 

indicated by arrows) dominating this nodal plot.  Such stresses are created by the high radial 

compression and Poisson’s effect. 

 

Figure 4.2.4.9 A local plot of principal stress vectors at the SCA for a coarse mesh. 

 

The un-averaged (element) equivalent and shear stress distributions are shown in Figs. 4.2.4.10 

and 11 respectively.  Note the differences in stresses calculated for neighboring elements (along 

side KN in Fig.4.2.4.10, for example). These differences (stress errors) indicate high stress 

gradients in these locations. The stress errors are significantly smaller for the mesh with 

h=0.0025 mm.  Further mesh refinement studies are presented in section 4.2.5. 

 

Figure 4.2.4.12 shows the shapes of distorted elements in the vicinity of the maximum shear 

stress for the refined solution (it can be viewed as a close up of Fig. 4.2.4.2). At the transition 

from contact to no contact between the pin and web, the pin material at surface ‘explodes’ out in 

a radial direction past the SCA location to reach a ‘free state’ location at the distance of the pin 

radius.  It forces the elements to severely distort from a perfect square shape to parallelograms. 
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Figure 4.2.4.10 A coarse mesh σVM plot at the SCA showing the un-averaged stress. 

 

 

Figure 4.2.4.11 A coarse mesh τxy plot at the SCA showing un-averaged stress pattern. 

 

K 

N 
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Figure 4.2.4.12 Distortion of elements for the refined mesh.  

 

As described above, the stress distribution in the pin is similar to that for a Hertzian contact 

problem; a normal loading (radial contact stress in this case) which produces high compressive 

normal stresses directly below the contact.  Then, because of Poisson’s ratio, the material being 

compressed must expand or push out in directions normal to this direct pressure.  However, 

material normal to this direct loading axis will try to resist this expansion, creating compressive 

stresses in these ‘perpendicular to normal’ directions as well.  As the location moves away from 

directly beneath the contact, to a ‘no contact’ area, the shear stress becomes a maximum at some 

distance below the surface. The same situation can be observed on the top half of Figure 4.2.4.13 

from [26], which provides a elemental breakdown of the stress state for a Hertzian contact 

problem.  Note that the maximum shear stress location for both the press-fit FEM solution and 

the textbook Hertz contact problem both have maximum shear stress that is ‘off to the side’ from 

the location of maximum direct loading. 

 

The press-fit stress field and that of a Hertzian contact stress field will be examined and 

compared next.  Using terminology from [26], distance b in Figure 4.2.4.13 is defined as the 

radius of the contact patch surface area.  For the press-fit problem, b can be interpreted as the 
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distance from maximum pressure (at A) to pressure equals zero.  This assumes cylinders as the 

contact objects, one flat object (pin) and one cylindrical object (web), both of which are not 

planar in shape (see Fig.3.2.1.5 for the description of the axisymmetric geometry assumed as 

flat).  Parameter po is defined as the maximum contact pressure, which for the press-fit is the 

maximum radial stress (σr) at the SCA.  Both b and po are defined in Fig. 3.2.1.6 in section 3.2.   

 

Figure 4.2.4.13 The stress state for two spheres/cylinders in Hertzian contact [26]. 

 

The radial stresses at the SCA for a refined mesh are depicted in Figure 4.2.4.14, the geometry 

parameter b identified from the plot path information is also shown.  Note that the selection set 

has been expanded to include elements from both the pin and web.  Figure 4.2.4.15 is a plot of 
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shear stress τxy at the SCA, and shows the same path information overlaid, a path for τxy below 

the surface at a distance 0.66b is also included. 

 

Figure 4.2.4.14 A plot of radial stress at the SCA showing plot path information. 

 

Figure 4.2.4.15 A plot of τxy stress at the SCA showing plot path information. 
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Figure 4.2.4.16 Normalized 
rσ  and  xyτ stress for a Hertzian contact from [26]. 

 

Figure 4.2.4.16 is taken from Juvinall [26] and shows stress component values plotted along 

paths that lead from the surface of the contacting bodies at b equals 0 for σx,y,z and at b equals 0.4 

where τxy is maximum.   

 

The radial σr and shear τxy stresses for the press-fit problem are plotted in Figs. 4.2.4.17. The 

same stresses but normalized are plotted again in Fig. 4.2.4.18. All stresses are normalized in 

terms of maximum contact pressure σr at the SCA and the distance is normalized in terms of 

parameter b.  The shapes of the 'Hertzian' plots in Fig. 4.2.4.16 and for the press-fit problem 

plots are very similar.   
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Figure 4.2.4.17 A plot of σr and τxy using various path locations for geometry unit b. 

 

Figure 4.2.4.18 Normalized σr and τxy plots using geometry unit b path locations. 

 

Note that for the Hertzian contact stress problem, the location of the maximum shear stress 

occurs at a distance 0.5b to the side of the maximum direct stress and at a distance 0.4b below 
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the surface.  For the press-fit problem considered the FEA solution renders the maximum shear 

stress at location 0.83b to the side and 0.66b below the surface. The difference is most probably 

due to the fact that the press-fit problem is not symmetric about b equals 0 as is the Hertzian 

problem.  Other parameters such as interference, pin and web axial length, and the true radius 

geometry of the web may also affect the maximum value and location. 

 

Plots of τ xy stress (in MPa and normalized) for the press-fit problem along a path of 0.66b below 

the surface (through the maximum τxy  location) are shown in Figures 4.2.4.19 and 4.2.4.20.  The 

shape of the shear stress curve again is very close in shape to that displayed in Fig. 4.2.4.13 taken 

from [26] for the Hertz problem.  Because the press-fit problem is not symmetrical about the axis 

b equals 0, the maximum and minimum shear stress values are not equal as is the case for the 

Hertzian example.   

 

Figure 4.2.4.19 A plot of subsurface τxy stress along path 0.66b (τxy maximum). 
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Figure 4.2.4.20 Normalized subsurface τxy stress along path 0.66b (τxy maximum). 

 

4.2.5 Mesh Refinement Studies of Assembly Model  At The SCA 

As shown previously, high stress gradients are present in the vicinity of the SCA requiring a fine 

meshing at this location. A detailed sensitivity analysis of the maximum stress values versus 

element size is presented in this section.  The 2-D geometry of the axisymmetric model was 

constructed in such a way (see Figure 4 2.4.1) so as to control the mesh density at the SCA. The 

pin and web geometry at the SCA is split into smaller rectangular areas to be used for mesh 

refinement.  Other areas of the model will retain a coarse mesh for best numerical efficiency.   

 

Figure 4.2.5.1 provides an example of meshing areas 3 and 8 with this approach by elements of 

size h equals 0.1 and h equals 0.0075 mm.   It should be noted that one of the challenges in this 

task is to reasonably transition the mesh from fine to coarse size without creating unfavorable 

element shapes and aspect ratios. It worthwhile to add that the solve times increases from less 

than 1 minute for h equals 0.1mm to over 30 minutes for h equals 0.005 mm. 
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Figure 4.2.5.1 Areas 3 and 8 at the SCA with h equals 0.1mm and 0.0075mm.  

 

Locations of maximum or minimum of particular stress components are different (see points A B 

C, and D  in Fig. 4.2.5.2) and will be tracked independently.   

 

 

Figure 4.2.5.2 Stress component locations tracked for variation in element size h. 
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Figure 4.2.5.3 shows a typical relationship between the element size h and the pin minimum σr at 

location A.  The value of h varied from h=0.005 mm to h=0.375 mm. The results were obtained 

assuming the surface friction coefficient u=0.13 and then u=0 (no friction). As can be observed 

the convergence in both cases is achieved at about h=0.05mm. The minimum σr values are 

approximately 11% lower when a surface friction is considered. 

 

Figure 4.2.5.3 Plot of minimum pin σr at A versus h for different friction values. 

 

Figure 4.2.5.4 plots the same results (i.e. minimum radial stress at A versus h) using a 

logarithmic scale (also called a log-log plot). The slope of the curve from h equals 0.05 mm and 

below is very flat indicating convergence. 

 

Figure 4.2.5.4 Log-Log plot of minimum pin σr at A versus element size h. 
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Note that the minimum axial and hoop stress values at A have nearly identical sensitivity and 

convergence curves in comparison to the radial stress values at A.  Since the relative magnitudes 

of these stress components may be related because they occur at the same location, only the 

linear plots are shown to maintain brevity. 

 

Figure 4.2.5.5 Plot of minimum pin σy at A versus element size h. 

 

Pin minimum (compressive) axial stress occurring at location A does continue to grow with 

decreasing size h, as shown in Fig. 4. 3.5.5, until it levels of at h equals 0.01 mm.  The log-log 

plot supports this convergence value of 0.01 mm. 

 

The effect of h on the pin minimum σθ at location A is shown in Figs. 4.2.5.6 for the linear plot.  

The convergence has been reached again at h=0.01 mm (similar as for the axial stress).  A 

surface friction solution (u=0.13) lowers values calculated by about 16 percent over the no 

friction solution.  

 

As has been demonstrated in earlier sections, the axial stress on the surface of the pin changes 

from highly compressive at location A to moderately tensile on the free surface at C.  Linear and 

log-log plots for axial stress at location C is contained in Figs.4.2.5.7 and 8.  The tensile axial 

stress at C are much smaller than the (absolute) axial stress at A.  For the no friction case (u=0) 

they converge for h smaller than 0.4. 
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Figure 4.2.5.6 Plot of minimum pin σθ at A versus element size h. 

 

However, for u=0.13 the plots show much slower convergence (which also might be 

consequences of how the friction effects are calculated).  Note that the axial stress values for 

solutions considering friction are considerably higher, up to 220% for the smallest h used.   Since 

the axial assembly stress is considered as mean tensile pin stresses for any life predictions, this 

difference is considered important.  The fatigue life of the pin is always a design concern. 

 

Figure 4.2.5.7 Plot of maximum pin σy at C versus element size h. 
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Figure 4.2.5.8 Log-Log plot of maximum pin σy at C versus element size h. 

 

As discussed in the introduction section, it is unclear whether operating loads and vibrations will 

help relieve the effects of surface friction on the assembly, including the axial tensile stress at the 

SCA.  One can logically assume that there could be slight relative motion near the start of the 

joint (at the SCA) between the mating parts in the press-fit joint, when the crankshaft is loaded 

during engine operation.  

 

Figure 4.2.5.9 Plot of maximum pin τxy at B versus element size h. 
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Sensitivity of the pin maximum shear stress at B to mesh size h is depicted in Figs. 4.2.5.9 and 

10. As can be observed the convergence is achieved at h=0.05 mm for both friction conditions.  

As is shown, higher shear stress is obtained for the no friction condition. 

 

Figure 4.2.5.10 Log-Log plot of maximum pin τxy at B versus element size h. 

 

Figure 4.2.5.11 Plot of maximum pin σVM at B versus element size h. 

 

The location of the maximum Von Mises stress in the pin is very sensitive to the mesh size. It 

moves from the pin surface for a course mesh to below the surface with decreasing h and 
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stabilizes there.  Figures 4.2.5.11 and 12 show that at h equals 0.05 mm the value of this stress at 

location B converges, and that similar values for u=0 and u=0.13 were obtained.    

 

Figure 4.2.5.12 Log-Log plot of maximum pin σVM at B versus element size h. 

 

The web maximum Von Mises stress (which are about 30% higher then in the pin) remains at the 

surface of the cylindrical hole (at location A in the web) for all values of h.  The convergence is 

achieved at h equals 0.025 mm, as shown in Figs. 4.2.5.13 and 14. The values of these stresses 

are very little affected by friction.   

 

Figure 4.2.5.13 Plot of maximum web σ VM at A versus element size h. 
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Figure 4.2.5.14 Log-Log plot of maximum web σ VM at A versus element size h. 

 

Hoop stresses in the web at or near the inner diameter of the cylindrical diameter are of great 

importance because their maximum value is typically used as a limit in design.  The maximum 

hoop stress at location D (see Fig. 4.2.5.15) remains consistent throughout the element 

refinement studies, as it should, since its location is away from the high stress gradient at the 

SCA. 

 

Figure 4.2.5.15 Plot of maximum web σθ at D versus element size h. 
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The results of this section permit to set element size targets to be used in the 3-D studies, so that 

details of the structural behavior are not lost by inadequate mesh refinement.  Stress values 

generally converge by or near h equals 0.01 to 0.025 mm range, and so using h equals 0.01mm 

may be considered a good target.  When surface friction is considered, stress values at the SCA 

are generally lower, but the tensile axial stress component on the free surface of the pin, at 

location C, is considerably higher.   

Also, in should be emphasized that combining information from linear and log-log scale plots is 

a reasonably efficient way to check for convergence. Some scatter of the results in the plots is 

mostly because of error in the FEM solution due to contact element shape mismatch.   

 

4.2.6  The Stress Field at the SCA And The Elastic Assumption 

The results presented thus far were obtained assuming the elastic behavior of the material. This 

assumption is examined in detail in this section. Recall that the yield strength for the core 

material is 785 MPa, and for the case material hardened to about 1.0 mm depth is 1348 MPa.  

 

Figure 4.2.6.1 shows Von Mises stress plot at the SCA for pin material. The maximum stress is 

729 MPa, and is located approximately 0.035 mm below the surface, which is well within the 

harden core material.  

 

Figures 4.2.6.2 and 4.2.6.3 show maximum (P1) and minimum (P3) principal stress plots 

respectively. Both plots indicate that the high equivalent stress at the SCA is dominated by 

compressive stresses. This has already been shown in previous sections. Some of the components 

stresses at the SCA, for example radial compressive stress 1231 MPa in Fig.4.2.2.4 are still 

below the case hardened yield strength (1348 MPa). The maximum tensile stress is only 61 MPa 

as indicated in Figure 4.2.6.2.  
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Figure 4.2.6.1  Von Mises stress plot at the SCA for the pin material. 

 

Figure 4.2.6.2 A plot of pin maximum principal stress (P1) at the SCA. 
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Figure 4.2.6.3 A plot of pin minimum principal stress (P3) at the SCA. 

 

The web is examined next; Von Mises stress is plotted in Figs. 4.2.6.4.  Maximum equivalent 

stress (1247 MPa) on the web occurs on the surface at the SCA, and is less than the case 

hardened yield strength (1348 MPa). As shown in subsequent plots this equivalent stress is also 

dominated by compressive stresses. 

 

Next, Fig. 4.2.6.5 plots equivalent stress zoomed out from the web area shown in Fig. 4.2.6.4. 

The approximately grey circular area of 0.34 to 0.37 mm in diameter shows size of any web 

material that is greater than 785 MPa, the core material yield strength (SYS).  Contour bands that 

are red (see figure) and below have σVM stress values below SYS.  This area still falls within the 1 

mm case hardened depth, although it is much larger than on the pin.  
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Figure 4.2.6.4 A plot of web Von Mises stress at the SCA. 

 

Figure 4.2.6.5 A plot of σVM showing the area of web material with stress greater than the core 

material SYS. 
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The minimum principal stress (P3) is shown in Fig. 4.2.6.6. This stress component dominates the 

Von Mises stress plots in Figs.4.2.6.5 and 7.  

 

Figure 4.2.6.6 A plot of minimum principal stress (P3) in the web at the SCA. 

 

Lastly, to illustrate a point about the compressive nature of the stresses at the SCA in the web, 

hoop stress is examined in Fig. 4.2.6.7.  Along the length of the interface, generally there are 

tensile hoop stresses on the web side of the interface, except at the SCA.  The hoop stress here is 

slightly compressive (-3 MPa), which is not intuitive, and can be linked to the phenomena of 

Poisson’s effect and axial growth of the web and pin under interference.  Note the hoop stress 

and P1 maximum principal stress plots are virtually identical. 

 

Although high equivalent stress values exist at the SCA, the size of the high stress areas fall 

within the depth of the case hardened zone.  Since the values of maximum equivalent stress are 

lower than the estimated case hardened yield strength, the elastic assumption appears to be a 

good choice for examination of these particular press-fit problems.   
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The elastic assumption will be examined further in Chapter 5 where detailed stress behavior at 

the SCA also for operating loads is analyzed. 

 

Figure 4.2.6.7 A web σθ  plot at the SCA showing the contribution of compressive stress. 

 

4.3 3-D Elastic Solution For The Assembly Problem: 30 Degree Symmetry 

Model 

It becomes obvious that exploration of the pin and web assembly problem with 3-D modeling 

would require a very large numerical effort.  To minimize the numerical challenge, efficient 

meshing techniques are required which minimize size and solution time, but also need to 

accurately calculate stress results at the area of interest (the SCA), similar to the 2-D 

axisymmetric models.  A relatively small 30 degrees slice of the pin and web was chosen for the 

3-D meshing investigations.  The boundary conditions are set up in such a way that the model 

should behave axisymmetrically.  

 

Also this 30 degree slice model was created to examine any differences with the solutions for the 

3-D full crankshaft model. The 3-D full model has a web which is non-symmetrical about the pin 
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center axis.  Since the 30 degree slice model is nearly the 3-D approximate of the 2-D 

axisymmetric model, comparison between the 30 degree slice and the 2-D axisymmetric model 

results may be made as well. 

 

4.3.1 30 Degree Slice Models 

In building the model several geometry modification approaches were considered while 

attempting a sufficiently accurate mesh at the SCA.  From a meshing quality and meshing 

efficiency standpoint, a single rectangular area swept to form a ring or cylinder at the area of 

interest proved to work best.  Other swept geometry combinations produced higher quality 

meshes, at a cost of producing too many elements.   

 

Figure 4.3.1.1 A 3-D slice model showing the rectangular ring volume at the SCA. 

 

Figure 4.3.1.1 shows the rectangular ring volume at the SCA for both the pin and web, and Fig. 

4.3.1.2 show the pin geometry detail separately.   The size and location of the rectangular ring 

was set with knowledge of the size and location of the stress discontinuity at A calculated in the 

2-D model.  Trial and error was also used though with the variation in the size and location of the 

rectangle to obtain acceptable contact stress and a minimize model size.   
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Figure 4.3.1.2 A 3-D slice model showing the ring volume at the SCA for the pin. 

 

 

 

Figure 4.3.1.3 A typical mesh for the 30 degree 3-D slice model. 

 

Mesh details at the area of interest are provided in Figs. 4.3.1.3 and Fig. 4.3.1.4.  In particular 

note that the ring always used brick elements for best contact solutions results at the SCA.  Also 

note that because the ring is split into two separate volumes, meshing refinement may be focused 
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on one area if desired.  This mesh detail is provided because it will be shown that mesh quality 

and methodology will significantly impact accuracy. 

 

Figure 4.3.1.4 A typical mesh refinement on the pin by sweeping brick elements. 

 

4.3.2 30 Degree Slice Model: General Stress State 

The 3-D slice model's boundary conditions are given in Fig. 4.3.2.1. These conditions with an 

'almost uniform' meshing in the circumferential direction should force the model to behave 

axisymmetrically.  The interference between the pin and web is generated with a temperature 

change, where the coefficient of thermal expansion of the web is kept low (close to zero), 

allowing the pin to grow into the web when the appropriate temperature change is applied.  This 

approach provided the most consistent results at the SCA, including good contact pressure 

distribution.   

 

Equivalent stress is plotted in Fig.4.3.2.2 for a typical interference assembly problem, including a 

close up of the stress distribution at the SCA.  (The results posted use an element size of h equals 

0.002 mm).  Generally, these 3-D patterns look very much like the 2-D results, but are lower in 

magnitude.  For this combination of geometry, a variation in element size h was studied.  A 

relative comparison between 2-D and 3-D results magnitudes is provided is section 4.6.  Further 



 

107 

data for the slice model can be found in Appendix A, including investigations of alternative 

model constructions and meshing approaches. 

 

Figure 4.3.2.1 Boundary conditions for the 30 degree 3-D slice model. 

 

Figure 4.3.2.2 Assembly (press-fit) Von Mises stress plot, 3-D slice model. 
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4.4  3-D Elastic Assembly Solution: One-Quarter Bench Test Model 

The FEM model construction approach that was determined to work most efficient with the 3-D 

30 degree slice geometry is now tested on representative crankshaft geometry.  Since model size 

is a concern, it is desired to use symmetry in these tests.  Mesh density at the stress concentration 

will be refined as much as possible, the feasibility of which is determined by computer solution 

times (see section 3.2.2.6 regarding model size and solution time information). 

 

The physical bench test to determine crankshaft durability in the laboratory usually consists of a 

cyclic load applied to one single crankpin of the crankshaft assembly.    

The symmetry used in the following FEM modeling approach reflects the symmetrical nature of 

a pure bending bench test.  Thus, this model has been given the name ‘one-quarter bench test’.  

The test's results will be useful in the crankshaft quasi-static durability bench test usually consist 

of a cyclic load applied to one single throw or crankpin of the assembly. 

 

The one-quarter bench test model is the most numerically efficient 3-D crankshaft geometry for 

study of the assembly problem.  The numerical approach and general results for the assembly 

problem are presented next. 

 

4.4.1 One-quarter Bench Test Model: Types of Models Explored 

As is the case for the 30 degree 3-D symmetry model, several geometric volume shapes were 

examined to create a best approach for mesh refinement control at the SCA location.  Mesh 

efficiency, interface contact pressure smoothness, and logical trend variation in stress 

magnitudes with mesh refinement were all considered as metrics for selection.  Figure 4.4.1.1 

provides some mesh details at the SCA area for three different FEA models that were created to 

examine the crankshaft assembly problem.   

 

The same geometry approach as used for the 30 degree model was found to be robust for the 

one-quarter bench test model, a single rectangular area is revolved around the pin axis to create a 

cylindrical volume.  Figure 4.4.1.2 shows the pin and web geometry details.  The cylindrical ring 

volume that is ‘cut away’ from the pin is shown in detail for the pin geometry in Fig. 4.4.1.3.  A 

mating cylindrical volume that is embedded in the web at the SCA is shown in Fig. 4.4.1.4. 
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Figure 4.4.1.1 Meshing variations at the SCA which are guided by rectangular volumes. 

 

 

 

Figure 4.4.1.2 One-quarter bench model showing the geometry details at the SCA. 



110 

 

Figure 4.4.1.3 One-quarter bench model showing the pin geometry details at the SCA. 

 

Figure 4.4.1.4 One-quarter bench model showing the web geometry details at the SCA. 

 

The size and location of the rectangular ring was set using the size and location of the stress 

discontinuity at A calculated in the 30 degree slice model. Note the volume created here is wider 

in the pin axis direction.  This same mesh will be used to examine operating loads as well, and 

the additional width is needed to calculate detailed stress values as the pin bends under load and 

the joint experiences any relative motion between parts. 
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Mesh details at the area of interest are provided in Figs. 4.4.1.5 to Fig. 4.4.1.7 for a mesh density 

of h equals 0.02 mm.  In particular note that the rectangular ring predominantly uses brick 

elements for best contact solutions results at the SCA.   

 

Figure 4.4.1.5 A typical mesh for the one-quarter bench model press-fit problem. 

 

 

Figure 4.4.1.6 A typical pin mesh refinement, note swept brick elements on the ring. 
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Also note that because the ring is split into two separate volumes, meshing refinement may be 

focused on one area if desired.  This mesh detail is provided since mesh quality and model 

methodology may significantly impact accuracy. 

 

Figure 4.4.1.7 A typical web mesh refinement, note again the swept brick elements. 

 

4.4.2 One-Quarter Bench Test Model: Assembly Results 

Figure 4.4.2.1 shows the one-quarter bench FEA model details, including the two planes of 

symmetry used to minimize model size.  The crankshaft is supported on the main shaft by roller 

bearings, which are in turn encapsulated by the crankcase upper and lower castings.  The 

combined bearing and case stiffness that support the crankshaft are idealized as linear springs 

which act along the center of the bearings.  Stiffness values used are based on historical 

experimental data.   

 

Note that a temperature change based method is used to create the proper radial interference 

between the pin and web cylindrical hole.  This method has provided consistent results.  The 

thermal expansion of the web is kept low (close to zero) for the prescribed temperature change 

by setting the coefficient of thermal expansion sufficiently low.  This allows the pin to expand 
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into the web to create the interference fit.  Also note that all results presented in this section use a 

mesh refinement of h equals 0.02 mm. 

 

Figure 4.4.2.1 Boundary conditions for the one-quarter bench test model. 

 

First the radial displacement plot (Fig.4.4.2.2) shows that most of the web radial displacement 

occurs in the section above the pin, which accommodates the larger pin. 

 

Figure 4.4.2.2 Assembly radial (ur) deflection plot, one-quarter bench model. 
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The axial displacement plot (Fig. 4.4.2.3) shows that the pin only grows with the temperature 

change in this direction.   

 

Figure 4.4.2.3 Assembly axial (uz) deflection plot, one-quarter bench model. 

 

Figure 4.4.2.4 Assembly radial stress (σr) plot, one-quarter bench test model. 
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Radial stress (σr) based on the pin CS for the assembly problem is plotted in Figs. 4.4.2.4.  The 

detailed close-up views show similar stress distributions at the SCA as shown for the 30 degree 

slice model.  An isometric view of radial stress at the pin SCA area is provided in Fig.4.4.2.5, 

showing a reasonably symmetric response in the theta-direction. 

 

Figure 4.4.2.5 Assembly radial stress plot of the pin at the SCA. 

 

Figure 4.4.2.6  Assembly (press-fit) hoop stress (σθ) plot, one-quarter bench test model. 
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Hoop stress (σθ) is shown in Fig. 4.4.2.6 and indicates higher tensile stress in the web material 

above the pin in comparison to that below the pin.  The magnitude of the web stress away from 

the SCA, above the pin, is close to the values calculated with an axisymmetric model.  The local 

hoop stress distributions at the SCA are similar to those found in the 30 degree symmetry model.  

The values on the bottom of the pin are somewhat higher (11.8%) than those calculated on the 

top side of the pin, which is a good indicator of how reasonable the axisymmetrical assumption 

is.  

 

A plot of axial stress (σz) is provided in Fig.4.4.2.7 for the one-quarter bench test model, which 

contains the local stress distributions at the SCA.  Axial stress magnitude is calculated to be 

higher (16%) on the pin at the bottom.   

 

Figure 4.4.2.7 Assembly axial stress (σz) plot, one-quarter bench test model. 

 

Figure 4.4.2.8 plots axial stress at the SCA with an isometric view displaying the symmetry 

section and the pin outer diameter.  A favorable smooth stress distribution is shown with the 

axial stress changing from positive tensile on the free non-contact pin surface to negative 

compressive at the SCA.  The tensile stress is of particular interest because of the potential of the 

operating pin bending stress to add to this assembly stress. 
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Figure 4.4.2.8 Assembly (press-fit) axial stress (σz) plot of the pin at the SCA. 

 

Next the shear stress (τrz) component is displayed in Fig.4.4.2.9.  Note that the shear stress local 

maximum at the SCA occurs below the surface, as was exhibited for the axisymmetric problems.   

 

Figure 4.4.2.9 Assembly shear stress (τxy) plot, one-quarter bench model. 
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Figure 4.4.2.10 provides a comparison of the local maximum radial and shear stress locations at 

the SCA, in terms of the size of the ‘Hertzian’ contact patch introduced in Section 4.2.4.  The 

maximum shear stress value is located at a distance 0.8b towards the pin free surface, from the 

‘0b’ (maximum radial stress) location.  (The distance b is defined as the distance from maximum 

radial stress to zero radial stress, the point of no contact between the web and pin.)  The 

maximum shear stress location occurs at a distance 0.6 b below the surface.  Note that because of 

the element size h present, the distance measurement unit is + or – 0.2 b.  In comparison the one-

quarter bench model maximum shear stress location occurs at (0.8b,-0.6b; with a +/- 0.2b 

element size), while the 2-D axisymmetric model maximum shear stress location occurs at 

(0.83b, -0.66b; with a +/- 0.16b element size). 

 

Figure 4.4.2.10 A comparison of assembly τxy and σr stress maximum locations. 

 

Figure 4.4.2.11 plots assembly equivalent stress for the one-quarter bench test model.  Note that 

as discussed previously, the web exhibits higher σVM stress on the top side of the joint, while the 

pin exhibits higher σVM stress on the bottom side of the joint. 
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Figure 4.4.2.11 Assembly Von Mises stress (σVM) plot, one-quarter bench test model. 

 

4.5  Comparison of Elastic Assembly Solutions Obtained from FEM Models 

In the previous sections the crankshaft assembly was analyzed using axisymmetric and 3-D 

models. In this section the results of these models are compared and interpreted.  

Figures 4.5.1 through Fig.4.5.6 provide plots of various stress components versus the element 

size calculated by the particular model at the given locations A thru D. In these figures the results 

of the axisymmetric models are indicated by u=0 and u=0.13 (u represents the value of the 

friction coefficient), the 30 degree slice models by 3D(30d), and the one-quarter bench test 

model by 3D(1/4).  These results are discussed in the next subsection in detail. 
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Figure 4.5.1 Plot of minimum pin radial stress σr at A. 

 

Figure 4.5.2 Plot of maximum pin axial stress σy at C. 

 

4.5.1  Axisymmetric versus 3-D 30 Degree Slice Model 

First, the axisymmetric model with 2-D meshing and the 3-D 30 degree slice model results are 

compared.  The following points are made with respect to the comparison of these two models' 

results: 

1. In Fig.4.5.1, the 3-D model under-predicts pin radial stress at A by 23%, but is still 

climbing, and does not converge (at h equals 0.01 mm, the minimum element size ran).  

Further refinement is expected to result in higher stress values.  Axial and hoop stress 

values at A have similar trends in comparison. 
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2. The 3-D maximum shear stress value a location B on the pin has scattered data in Fig. 

4.5.3.  Overall maximum shear stress did not track well for the 3-D models in comparison 

to the axisymmetric model.  In this comparison, the 3-D model under-predicts by 37%. 

3. Pin 3-D equivalent stress greatly under-predicts (33%), and seems to converge, but this 

statement is given with caution, as there may not be enough data points to suggest this. 

Also, component stresses that make up the equivalent stress calculation are not 

converging. 

4. The web 3-D equivalent stress at A in Fig.4.5.5 under-predicts the axisymmetric solution 

by 24%, and is trending upward. 

5. The 3-D hoop stress on the web at location D tracks with the axisymmetric solution (2.9 

% difference, see Fig.4.5.6), as it should, since D is located away from the stress gradient 

at the SCA. 

 

The axisymmetric solution clearly calculates higher stress values for the same mesh refinement 

h.  Several points can be made on this; first the axisymmetric solution due to the 2-D meshing 

and built in symmetry in the hoop direction is more numerically efficient.  Less regular mesh 

patterns for the 3-D solution, and specifically any mesh deviation from uniformity in the hoop 

direction, will affect the results.  For the 3-D model it is more difficult achieve convergence and 

keep a balance between local refinement, global element size, and overall model size.  

 

Figure 4.5.3 Plot of maximum pin shear stress τxy at B. 
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Figure 4.5.4  Plot of maximum pin equivalent stress σVM at B. 

 

Figure 4.5.5 Plot of maximum web equivalent stress σVM at A. 

 

Mesh quality in terms of element type is also of importance considering differences in the 

axisymmetric and 3-D solutions.  The elements with linear shape functions are more numerically 

efficient but are less accurate. Linear triangular shaped elements suffer from an over-stiff 

behavior because of the direct interaction of any nodal displacement with the other two corner 

nodes on that face.  Quadratic triangular elements reduce this error, but the triangular shape still 

requires that the displacement of any one corner node will interact with the other two corner 
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nodes, which by definition would be considered as ‘all sides’ of the unit element.  Any ‘over-

stiff’ behavior of the elements used, in particular at the SCA area with a high stress gradient, will 

result in lower deflections and therefore lower stress values calculated. 

 

Therefore, in both solutions the quadratic elements are used (with complete quadratic shape 

functions). The axisymmetric solution uses the rings with the cross-section defined by 8-node 

(quadratic) 2-D rectangular elements.  For the 3-D solution, generally 20 node quadratic brick 

elements were used. 

 

Figure 4.5.6 Plot of maximum web σθ at D versus size h comparing 2-D and 3-D results. 

 

The general conclusion is that for this particular problem the convergence of the 3-D model was 

very difficult to achieve. The run times for the h=0.01mm were up over 24 hours. It is believe 

that higher stress values would be calculated with further mesh refinement of these models, 

however, such an approach does not seem to be practical and cannot be considered a useful 

design tool. 

 

Finally, it should be noted that contact element uniformity on the matching pin and web surfaces 

has some effect on solution accuracy for both models.  In particular, it is more challenging to 

match pin and web interface nodal locations at the SCA area with high mesh refinement when 
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radial interference is input by a material temperature change.  This error is felt to be secondary, 

relative to any meshing or refinement effect. 

 

4.5.2  3-D 30 Degree Slice Model, Uniform vs Mixed Mesh 

The following summary points can be made in comparing the uniform and mixed mesh solutions 

for the 3-D 30 degree slice model (see Appendix A for mixed mesh 30 degree slice model 

details): 

 

1. The coarse mesh solutions track compare well between the mixed and uniform mesh 

solutions. 

2. The mixed mesh direct component stress value (σr, σθ, σz) at the SCA do not track with 

the consistent mesh values at the refined h values, and are much lower.  The values 

calculated seem to be limited by the coarse element size for the coarse and refined 

element size pair.  

3. Maximum shear stress (τrz) trends at location B are very erratic on the mixed mesh 

approach; note that this matches the consistent mesh approach. 

4. Maximum pin and web equivalent stress values at A are very similar, but still the 

components do not track.  (A calculated equivalent stress can not be used as the only data 

point for comparing two different solutions!) 

5. The maximum web hoop stress value σθ tracks as it should at location D away from the 

SCA. 

 

The differences in the mixed and consistent mesh are thought to stem from the poor mesh quality 

of the mixed mesh in the hoop direction.  Based on the points above, a mixed mesh approach is 

not considered worth pursuing further for larger crankshaft geometry assemblies.  Slight gains in 

numerical efficiency are seen for the 30 degree model but at the cost of a poor match in 

maximum stress values calculated at the higher mesh refinement.  The efficiency of the mixed 

mesh approach would be greater for a full crankshaft 3-D model; but still may suffer an even 

greater error in the hoop direction calculations because of the larger circumferential distances 

considered when using full CAD geometry for the crankshaft components. 
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4.5.3 3-D 30 Degree Slice Model vs 3-D One-Quarter Bench Test Model  

So far, the comparisons in sections 4.6 examined the differences in modeling approaches, for the 

same purely symmetric pin and web geometry.  Comparisons are made now between the ideal 3-

D symmetric ’30 degree’ model and the 3-D non-symmetric ‘1/4 bench test’ model; all 

comments are directed at the one-quarter bench test model and how it matches to the 30 degree 

model: 

 

1.  The maximum pin radial stress at A is close in magnitude (-3.3%) and matches in 

trend at the h equals 0.01mm point, when comparing the one-quarter model results to the 

30 degree symmetry model.  (Note further refinement was not studied in the one-quarter 

bench test model as the solution time is greater than 24 hours for the h equals 0.01mm 

data point).  The pin axial stress (-20%) and pin hoop stress (-10%) at A under-predict but 

otherwise follow the trends of the radial stress curve. 

2.  Pin maximum shear stress at B data does not match well for the one-quarter bench test 

model, the magnitudes are decreasing with smaller h which is opposite in trend, and it 

under-predicts by 20.7%.  The one-quarter bench test model results will be affected to a 

greater degree by non-uniformity in mesh in the hoop direction, since the geometries 

considered are much larger in this direction than considered previously.  

5.  Both the pin and web maximum Von Mises stress trends match for the one-quarter 

bench test model, under-predicting by 10.4% and 11.4% respectively (see Figs.4.5.4 and 

4.5.5). 

7. Maximum web hoop stress at D matches well for the one-quarter bench model, as it 

should.  Both the top and bottom values are plotted, which show the differences due to 

the variation in the web stiffness at top dead and bottom dead center locations on the pin. 

 

Great effort was made with the 30 degree slice 3-D model to create an accurate stress field, in 

particular at the SCA.  The one-quarter bench test 3-D model shows acceptable accuracy and 

tracking when compared to the 30 degree results, with the exception of the shear stress state.  

Note that both 3-D models (the one-quarter bench and the 30 degree slice) under-predict the 

maximum stress values at the SCA when compared to the 2-D axisymmetric model.  A minimum 

element size of 0.01mm was used on the 30 degree slice model in comparison to 0.02 mm for the 
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one-quarter bench model.  Therefore it is thought that even with a much greater model size and 

solution effort, a much larger 3-D one-quarter bench test model will not attain the level of 

stresses calculated with the 2-D model.  It is for this reason that a much large model size with a 

much longer solution time has not been pursued with the one-quarter bench and the yet to be 

discussed full crankshaft geometry 3-D model.  
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5  FEM Modeling Of The Operating Loads  

 

This chapter presents the numerical results for the operation loads applied to 3-D crankshaft FEA 

models. 

 

5.1  Description Of The Operating Loads 

The research presented to this point has focused on the structural details of the assembly 

problem.  All of the following evaluations which consider operating loads use the assembly 

process as the first step in the numerical solution.  In this chapter an analysis of the crankshaft 

press-fit joint under operating loads is presented using FEM modeling and computer simulation. 

 

The running engine is a violent environment.  The engine crankshaft rotates at very high angular 

velocity, while at the same instant high pressures developed during the combustion event drive 

the piston into the connecting rod, producing crankshaft torque output to the vehicle’s 

transmission.  These operating conditions are challenging to model numerically. 

 

An engine section cut-away was presented in Fig.2.1.1, which showed the connectivity between 

the piston, connecting rod, and crankshaft.  The crankshaft is supported by the engine case at six 

locations by bearing elements.  The two-stroke engine displayed in Fig.2.1.1 is a twin cylinder 

configuration for use in a snowmobile (a recreational vehicle).  Power is delivered from the 

engine to the vehicle’s tracks (propulsion method) by a Continuously Variable Transmission 

(CVT).  The CVT uses a rubber belt to carry the engine’s torque; the belt force creates a torque 

reaction and bending moment on the crankshaft Power Take-Off (PTO) end (see Fig.2.4.1), as 

was discussed in chapter 2. 

 

As a refresher, also recall Fig. 2.2.3 which shows a typical crankshaft assembly for a twin 

cylinder snowmobile engine.  Each crankpin ‘throw’ is 180
 
degrees opposite to the other (an 

opposed twin crankshaft).  The solid geometry of the crankshaft design is used to create the finite 

element mesh.  
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The operating loads that are required as input to the finite element model are calculated with a 

multi-body dynamics (MBD) software package, as shown in Fig.5.1.1 [33].  The software 

dynamics formulation considers the mass, inertia, and geometry of all components in the system.  

Besides predicting internal operating loads, the CVT belt loads plus the interaction of the engine 

with its mounting system to the vehicle are calculated.  Belt loads may be influenced by the 

engine’s mounting system.   

 

 

Figure 5.1.1 The MBD model to calculate operating load inputs for FEM [33]. 

 

A measured or scaled combustion pressure curve is used to drive the MBD solution, and the 

dynamic forces at all joints in the system are solved for over many cycles of the engine at several 

prescribed speeds.  A typical combustion curve is provided in Fig.5.1.2.  The combustion 

pressure peaks at approximately 17 degrees after top dead center (ATDC), and repeats on each 

cylinder for every cycle of the two-stroke engine. 

 

The loads generated on the crankpins and on the PTO end of the crankshaft (by the CVT belt) are 

of particular interest in the MBD model.  Figure 5.1.3 provides the local co-ordinate systems 

(LCS) of the belt force and the PTO and MAG crankpin forces.  Note that while the local co-
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ordinate systems for the crankpin forces rotate with the crankshaft position, the belt load co-

ordinate system is stationary. 

 

Figure 5.1.2 A typical combustion pressure curve for input to the MBD model [33]. 

 

 

Figure 5.1.3 Local MBD model co-ordinate systems used for belt and crankpin loads. 

 

Next the typical crankpin and belt forces are plotted in Fig.5.1.4 over 2 cycles of the engine with 

the combustion force activated.  Note the timing of the peak combustion after TDC, just as the 
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reciprocating mass loads start to fall.  The minimum loads generated on the crankpin at BDC are 

logically not sensitive to the combustion event. 

 

 

Figure 5.1.4 Operating loads calculated for the PTO and MAG crankpins [33].   

 

For understanding the press-fit joint this research work uses static load cases and the large 

element size FEM models which are required to model the details of the SCA. Generally, such 

models cannot be reused for running dynamic cases in the time domain because the solution 

times would be prohibitively long, as was outlined in section 3.2.  Also, the complexity of the 

joint behavior requires detailed post-processing of the numerical results.   A static solution has 

been reported to calculate an overly safe design [15]; but also is deemed a very powerful design 

tool when coupled with experimental tests. 

 

For brevity, and based on experience, the structural analysis of the crankshaft will focus initially 

on two load cases of primary interest.  The first is a combustion event on the PTO crankpin (LC3 

in Fig.5.1.4) which creates a high tensile stress condition on the bottom of the pin.  The second is 

a high rotational inertia load on the PTO crankpin (LC4 in Fig.5.1.4) which bends the pin in the 

opposite direction creating a compressive stress on the bottom of the pin.  These two load 

conditions typically create the highest stress reversal on the pin, and combined may be used early 

in design to examine crankshaft durability.  Note also that the PTO end crankpin is the focus of 
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the numerical work as the belt forces present on there also influence the stress state of the 

crankpin.   

 

Typically the crankshaft stress and deflections are highest in a maximum horsepower (maximum 

speed) or maximum torque (moderate speed) condition.  For this study, the crankshaft structure 

is evaluated at maximum horsepower at 8,000 rpm.  For a less computationally challenging 

linear static evaluation of a one-piece crankshaft, many engine speeds and load instances could 

be evaluated. 

 

For the second load case of interest, when the PTO crankpin is near BDC, the opposite MAG 

crankpin is nearing the maximum combustion pressure.  So, the PTO crankpin experiences high 

bending load (from the PTO piston reciprocating mass) and also must transmit the torque from 

the MAG cylinder combustion event.  By definition, the static assumption generates belt forces 

at the same moment, which also further loads the PTO crankpin. 

 

5.2  Operating Load Results For The One-Quarter Bench Model 

Results from the one-quarter bench model are reviewed next as there are many aspects of the 

loaded press-fit joint to understand before progressing to a structural model of the full crankshaft 

assembly.   

 

5.2.1  One-quarter Bench Model Description 

The one-quarter bench test model uses symmetry to reduce model size, and also may replicate 

the sort of physical durability test that would be exercised in the lab to prove out crankshaft life.  

Initially the one-quarter bench test is studied with inertial loads applied due to rotations of the 

crankshaft.  A lab environment would not likely use a rotating crankshaft, and so the results 

presented in the section are not exactly the behavior of the structure in the lab tests.  Such tests 

are discussed in section 8.4 showing how 'equivalent' static loads are determined to match 

closely the behavior of the press-fit joint in rotating crankshafts. 

 

The details of the one-quarter bench test FEA model are provided in Fig.5.2.1.1.  Model 

construction and mesh quality are the same as outlined in section 4.5.1.  The one-quarter bench 
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test model assumes symmetrical geometry about two planes, which is true only for one of the 

planes, plane x-y in Fig.5.2.1.1.  The crankshaft geometry is not symmetrical about the y-z plane 

at the mid-span of the crankpin, as is assumed.  Inner and outer web stiffness values would be 

very similar, but the crankcase stiffness and the support that it provides to the main bearings of 

the crankshaft will be higher towards the center of the engine.  General deflection and stress 

values may be examined with a full crankshaft model check to validity of this symmetry 

assumption. 

 

The linear elastic model is used to study four static load or time steps, which are provided in 

Table 5.2.1.  The first load step is assembly, results for which have already been presented in 

section 4.4.  Next the rotational velocity is applied (time step 2), followed by a pin force Fy 

equal to the magnitude at maximum combustion (time step 3).  Lastly, time step 4 evaluates the 

case of a maximum reciprocating inertia load, which applies a pin load Fy in the opposite 

direction to time step 3.   

 

Figure 5.2.1.1 One-quarter bench model boundary conditions and load inputs. 

 

The structural state of the crankshaft at time step 2 (assembly plus rotating speed) may be 

idealized of as the mean stress state, while time steps 3 (combustion) and 4 (reciprocating inertia) 

will produce the alternating maximum pin bending stress in opposite directions.  Time step 3 



 

133 

occurs while the crankshaft is close to top dead center or TDC (the piston’s highest point of 

travel), while time step 4 occurs while the crankshaft is at bottom dead center or BDC.  

 

 Table 5.2.1 One-quarter bench test load steps using the pin local CS (see Fig.5.2.1.2). 

 

 

Note that because of the symmetry assumption, loads in the z-direction of the pin local CS that 

produce a torque output for the crankshaft are not considered.  This short-coming will be 

evaluated in section 8.4 with the full crankshaft assembly. 

 

5.2.2  Operating Load Results 

General behavior under load for the one-quarter bench test model is indicated in Figures 5.2.2.1-

3 with the total displacement vector sum plotted on the deformed shapes.  The total displacement 

for assembly time step 1 indicates stretch of the web around the pin, as discussed in Chapter 4.   

 

As the crankshaft spins to the operating speed (8,000 rpm), the counterbalance lobes on the web 

introduce a bending moment to the pin, as described by the deformed shape in Fig.5.2.2.1.  Since 

this loading is constant at a single engine speed, it may be considered as the mean state of the 

crankshaft under operating loads.   

 

The pin combustion load (time step 3) Fy further increases the bending load on the pin, as shown 

in Fig. 5.2.2.2.  Lastly the reciprocating load on the pin in load step 4 bends the crankpin and 

web assembly back in the reverse direction, as shown in Fig.5.2.2.3.  The order of these 

displacement plots provides a reasonable description of the type of durability duty cycle that the 

crankshaft must withstand. 
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Figure 5.2.2.1 Total displacement plot, rotational inertial loads (time step 2). 

 

 

Figure 5.2.2.2  Total displacement plot, maximum combustion load. 
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Figure 5.2.2.3  Total displacement plot, maximum reciprocating inertial load. 

 

The next set of images show equivalent (σvon), maximum (P1) and minimum (P3) 

principal stress plots for each load step.  These plots introduce the subject of press-fit joint 

loading.  The joint loading is not intuitive, and so the details need to be explained first. 

 

Figure 5.2.2.4 shows the three stress plots (σvon, P1, P3) for the assembly time step 1.  As 

examined in Chapter 4, there is a great amount of detail needed to understand this state.   

 

Second, in Fig.5.2.2.5 the rotational speed load is applied, which begins to bend the bottom of 

the pin in a tensile manner.  The counterweight mass opposite to the pin ‘pulls’ the pin towards 

the crankshaft centerline; the pin attempts to stay straight but the counterweight applies a 

bending moment to the pin through the press-fit joint.  Even with these general stress plots, the 

bottom of the pin at the end away from the SCA is shown to begin to load in the P3 plot.  This 

larger negative P3 compressive stress at the pin web interface indicates higher compressive 

radial stress.   
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Figure 5.2.2.4 Equivalent, maximum and minimum principal stress plots (assembly). 

 

Figure 5.2.2.5 Equivalent, P1 and P3 principal stress plots (rotational inertia). 



 

137 

Next the pin is loaded further by the combustion event in time step 3 (shown in Fig.5.2.2.6) 

which increases the tensile bending stress on its bottom side.  

 

Figure 5.2.2.6 Equivalent, P1 and P3 principal stress plots (maximum combustion). 

 

 At the joint interface, the combustion load appears to further increase stress on the bottom of the 

pin end (away from the SCA).  This also unloads the bottom of the pin at the SCA, which is not 

intuitive.  Note that the rotational inertia loads (LC2) are present in this time step also. 

 

During load step 4, the reciprocating loads applied to the pin are opposite in direction to those in 

load step 3.  These reciprocating mass loads act in an opposite direction to the counterweight 

inertia load (see Fig.5.2.2.7), which clearly creates tensile axial stress on top of the pin, and 

compressive stress on the bottom.  A detailed explanation of joint loading is to be provided after 

a further description of the general stress is provided next. 
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Figure 5.2.2.7 Equivalent, P1 and P3 principal stress plots for load step 4. 

 

Equivalent and maximum principal stress are plotted together in an isometric view for load case 

3 in Fig. 5.2.2.8.  For all the load cases considered, the web stress state is dominated by the 

assembly interference; some minor stress sensitivity is shown in the thin web material above the 

pin though.   The pin bending stress does show some sensitivity to loading, as shown in 

Fig.5.2.2.8.  

 

Next joint loading is examined for the operating loads using a set of highly distorted radial stress 

plots.  Figure 5.2.2.9 shows the web only, with a close up view of the radial stress on the press-fit 

bore.  The radial stress is reasonably uniform (both in the axial and hoop directions), and has 

local stress concentrations at each end.     

 



 

139 

 

Figure 5.2.2.8 Equivalent and P1 principal stress plot (maximum combustion load). 

 

 

Figure 5.2.2.9 A highly distorted radial stress plot of the web (assembly). 
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As the crankshaft spins to operating speed for LC2, the counter-mass creates a bending moment 

on the pin.  The counter-mass is supported by bearings offset along the crank axis; the moment 

on the pin is a bi-product of the offset axial bearing support.  The counter mass moves laterally 

as the structure deforms under rotational load, and the radial contact stress increases at opposite 

‘corners’ of the pin, (as shown in Fig.5.2.2.10) as the pin opposes this moment. 

 

Figure 5.2.2.10 A highly distorted radial stress plot of the web (rotational inertia). 

 

As the combustion force is added to the structure in load step 3, (see Fig.5.2.2.11) both the pin 

and web continue to deform, so much so that the pin radial interface pressure partially unloads at 

the SCA, and the bottom end corner of the pin is loaded further.  The blue set of vertical force 

vectors (Fig.5.2.2.11) on opposite diagonals of the bore are indicative of the bending moment 

carried by the pin or joint. 

 

In time step 4 the pin force and the counter balance inertia forces cancel somewhat, and the joint 

becomes more evenly loaded again.  The radial stress distribution is shown to be very uniform 

across the bore in, similar to the assembly state of Fig.5.3.2.9.  
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Figure 5.2.2.11 A highly distorted radial stress plot of the web (load step 3). 

 

Next Fig. 5.2.2.12 details the changes in pin radial stress for time steps 1 thru 4, which also 

support the discussion on the joint loading.  Radial stress at the bottom end corner of the pin is 

sensitive to the bending loads carried through the joint. 

 

Figure 5.2.2.12 A highly distorted pin radial stress plot, time steps 1 thru 4. 
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Pin axial stress plots are now shown for all 4 time steps.  In Fig.5.2.2.13 a high stress gradient is 

shown across the SCA, which was detailed in Chapter 4.  As the rotational velocity is applied, 

tensile axial stresses are created on the bottom of the pin (see Fig. 5.2.2.14) just outside of the 

contact with the web.  Also, pin compressive axial stress is still present on the other side of the 

SCA.   

 

Figure 5.2.2.13  Pin axial stress (σz) plot (assembly). 

 

Figure 5.2.2.14 Pin axial stress (σz) plot (rotational inertia). 
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In Fig. 5.2.2.15 the time step 3 combustion forces create tensile axial stress across the SCA 

entirely, as the radial compressive stress at the SCA have now completely unloaded (see Fig. 

5.2.2.15).  Compressive axial stress on the top side of the pin at the SCA is prevalent also for 

time step 3.  

 

Figure 5.2.2.15 Pin axial stress (σz) plot (maximum combustion). 

 

Figure 5.2.2.16 Pin axial stress (σz) plot (maximum reciprocating inertia). 
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Finally Fig. 5.2.2.16 shows that axial stress at the bottom of the pin now becomes compressive 

again, including at the SCA, because of the opposite direction loading in time step 4.  Exact 

details of the axial stress field at the SCA are provided in section 5.2.4. 

 

Next, Fig. 5.2.2.17 plots hoop stress at the web bore for load cases 1 thru 4, which only shows 

minor sensitivity to the bending loads imparted on the joint in load cases 2 and 3.  Stress 

distributions and magnitudes do not change a great deal. 

 

Figure 5.2.2.17 Hoop stress (σθ) plots for the web, time step 1 thru 4. 

 

The final set of plots in this section examines the details of the stress field at the SCA over all 

time steps.  A close view of the radial stress field at the SCA, on the bottom of the pin is 

provided in Fig.5.2.2.18 or all four load cases.  Radial stress is shown to unload the assembly 

pressures in load steps 2 and 3.  For load step 4 the interface radial stresses begin to load again, 

but do not return to the same level as for assembly.  This indicates that the mean radial stress 

state at the bottom of the pin is unloaded (as the engine spins faster), and does not again become 

as highly loaded as during assembly, even upon application of the operating loads. 
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Figure 5.2.2.18 Radial stress (σr) plot near the SCA at BDC, time steps 1 thru 4. 

 

Figure 5.2.2.19  Axial stress (σz) plot near the SCA at BDC, time steps 1 thru 4. 
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Figure 5.2.2.19 shows a near view again at the SCA (bottom of pin location) for axial stress for 

load steps 1 thru 4.  As the pin bends, axial stress increases in time steps 2 and 3.  Note though 

that the web stress is very low at the SCA, indicative of the radial stress unloading there shown 

in the previous plot.  Because the web has a very low radial stress at the SCA at time equals 3, it 

may not carry axial stress through the radial contact and friction of the two mating surfaces.  

High compressive axial stresses dominate the SCA area for load step 4.  Compressive radial 

stresses shown in the previous figure allow the joint to carry the pin bending loads in the axial 

direction at the outer diameter of the pin. 

 

Shear stress at the SCA is shown for load cases 1 thru 4 in Fig.5.2.2.20 on the bottom of the pin.  

Shear stress increases during time step 2 as the rotational spin creates higher axial tensile stress 

while there is still the compressive radial stresses present at the SCA.  Note that radial stresses 

were shown in chapter 4 to be primarily responsible for the shear stress.  As the pin radial stress 

unloads, the pin surface nearly loses the kink from assembly, and the shear stresses are lowered 

(LC3).  Shear stresses become significantly higher for time step 4 when the reciprocating mass 

loads are applied, and the highly compressive radial stresses are introduced again at the SCA. 

 

Figure 5.2.2.20  Shear stress (τrz) plot near the SCA at BDC, time steps 1 thru 4. 
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Figure 5.2.2.21 plots equivalent stress at the SCA (bottom of pin) for time steps 1 through 4.  

The equivalent stress plots do not lend themselves to as much description as do the component 

stresses, but generally show the joint loading and unloading outlined previously.   

 

Figure 5.2.2.21  Equivalent stress (σVM) plot near the SCA at BDC, time steps 1 thru 4. 

 

Finally Fig. 5.2.2.22 shows equivalent stress at the SCA on the top of the pin for all 4 time steps.  

Generally component stresses are higher on the top side of the pin, but do not have as significant 

changes in the alternating magnitudes.  Because the focus is on the bottom of the pin area and 

durability concerns there, details at the top side of the pin are not included to maintain brevity. 
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Figure 5.2.2.22  Equivalent stress (σVM) plot near the SCA at TDC, time steps 1 thru 4. 

 

5.2.3 Variation of Local Stress Maximums At The SCA By Load Step 

In sections 4.3.5 and 4.6, the effects of element size h on the assembly local stress maximum 

values at the SCA were determined.  The values of these stress components are again presented 

for variation in element size across load steps 1 to 4.  Figure 5.2.3.1 describes the stress 

components at the SCA and their locations A, B, and C.   

 

Pin minimum σr at the surface (location A) is shown for load cases 1 thru 4 in Fig.5.2.3.2 for h 

equals 0.1 mm, 0.05 mm, and 0.02 mm.  (Results presented in this section all contain models 

with these three element sizes.)  The bottom side of the pin unloads assembly σr through load 

cases 2 and 3, while the top side of the pin increases in compressive σr.  And, as expected the 

reciprocating mass loads that are opposite in direction for time step 4 (vs 3) in turn creates higher 

compressive σr at A on the bottom side of the pin.  The top side of the pin unloads to near the 

original level (t1) for time step 4 also.  Note the difference in σr from time 1 to 3 is much greater 
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on the bottom side.  A good overall match in stress values exist for the changes in elements size 

h.  

 

Figure 5.2.3.1  Locations of stress component of interest at the SCA. 

 

Next minimum pin σθ at A is shown for load cases 1 thru 4 in Fig.5.2.3.3.  The data here closely 

follows that shown for the previous radial stress plot.  This is logical, since the σθ is driven by the 

radial compressive stresses and Poisson’s ratio. 

 

Figure 5.2.3.2 Local minimum σr at A (pin) versus load step and element size h. 
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Figure 5.2.3.3 Local minimum pin σθ at A versus load step and element size h. 

 

The maximum tensile σz at location C is plotted next for the top and bottom of the pin in 

Fig.5.2.3.4.  Load step 2, assembly plus rotating inertia, actually creates the highest stress 

condition on the bottom of the pin.  As the pin bends further and further, and the radial stress 

‘unloads’ at A, the stress concentration (the kink) is removed and σz is lowered.  The reversal of 

pin loading Fy for load case 4 creates a highly compressive σz.  The top side of the pin develops 

increasingly compressive axial stress for load cases 2 and 3, and then reverses trend as well for 

load case 4.  The h equals 0.02 mm solution calculates significantly higher axial stress for both 

the top and bottom, supporting the previously presented findings that suggest h equals 0.02 mm 

is required for accurate results. 

 

Shear stress maximum values located on the pin at B just below the surface are shown in 

Fig.5.2.3.5.  As described earlier, when the bottom side of the pin σr unloads at A, the τrz follows.  

High compressive σr at A for load case 4 drives the high τrz on the bottom of the pin.  The top 

side stress values are less prone to change, in part this may be due to the thin flexible nature of 

the web material just above the pin.  If the pin bends and moves a certain distances, a flexible 

section is less prone to unloading because it is stretched a greater amount than a relatively stiff 

section. 
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Figure 5.2.3.4 Local maximum pin σz at C versus load step and element size h. 

 

Figure 5.2.3.5 Local maximum pin τrz at B versus load step and element size h. 

 

Figure 5.2.3.6 shows the trend in maximum σVM on the pin at B for load cases 1 thru 4.  The σVM 

value is not changing significantly, only by 10 percent of the total magnitude for the bottom 

location.   
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Figure 5.2.3.6 Local maximum pin σVM at B versus load step and element size h. 

 

The web maximum σVM at A is shown in Fig.5.2.3.7.  Since the web σr component significantly 

unloads from assembly to time step 3 (combustion), the σVM values must follow this same trend.  

Equivalent stresses on the top side of the pin are very constant across the load steps, and show 

only slight sensitivity to element size. 

 

Figure 5.2.3.7  Local maximum web σVM at A versus load step and element size h. 
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5.2.4 Variation of Pin Axial Stress By Load Step And Element Size 

Axial stress is of particular interest because of the potential negative consequences to crankshaft 

life.  Figure 5.2.4.1 provides a close up view of the axial stress on the bottom side of the pin for 

the assembly load step, using h equals 0.02 mm.  The high axial stress gradient along a line from 

point f to point g in Fig.5.2.4.1 is now plotted for all load steps and mesh refinement. 

 

Figure 5.2.4.1  Axial stress at the SCA indicating the location of line fg of interest. 

 

Figure 5.2.4.2 shows axial stress along line fg for load cases 1 thru 4 for the bottom side of the 

pin.  The axial stress curve present on the bottom of the pin for LC1 (assembly) is offset in a 

positive direction by the pin bending (positive axial) stress of LC2. Note also that the LC3 

maximum tensile stress at location C is lower than for LC2, even though the combustion loads 

are added to the spin loading.  This decrease is caused by the ‘radial unloading’ present at the 

bottom side of the pin for LC3, while for LC2 the ‘kink’ is still present when the spin load is 

added to the assembly state.  The tensile axial stress added during LC2 with the ‘kink’ in the pin 

present maintains the stress concentration effect of the kink, while for LC3 this multiplier is not 

present. 
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Figure 5.2.4.2 Axial stress along line fg for load cases 1 thru 4, bottom of pin. 

 

Load step 4, which has pin loading in the opposite direction (vs load case 3), offsets the axial 

stress curve in the negative direction.  Note that the location (A) of the minimum compressive 

axial stress and the location (C) of maximum tensile axial stress occur in two locations 

approximately 0.1 mm apart. These two locations of high stress reversal will potentially have a 

negative impact on crankshaft life.   

 

An incremental pin combustion loading was evaluated to check if a larger tensile axial stress 

could be determined.  Figure 5.2.4.2 showed that the maximum value for load case 3 was lower 

than that calculated for load case 2.  Next Fig. 5.2.4.3 plots axial stress for 50, 100, 150, and 200 

percent increments of the pin combustion load of time step 3.  The axial stress values along line 

fg is shown to be very sensitive to this loading; the initial 50% combustion load decreases 

maximum σz, but then increasing the combustion load through to 150% increases maximum σz 

again.  For the application of 200% combustion load, a further reversal occurs again in maximum 

σz, and this value begins to decrease once more.  Potentially a further study is required here with 

smaller increments in combustion force to confirm for which load increment the maximum value 

is found. 
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Figure 5.2.4.3 Axial stress along line fg for increments of load case 3. 

 

Figures 5.2.4.4 thru 5.2.4.6 show the effect of mesh refinement on axial stress along line fg for 

time steps 2 thru 4.  Mesh refinement in particular is required to accurately evaluate load case 2 

and 4 (see Fig.5.2.4.4), which are shown to still have the most ‘kink’ present in the pin.  For 

example, load case 3, the combustion event, is not sensitive to the mesh refinement because the 

pin has ‘unloaded’ at this point.  For all load cases, increased mesh refinement is shown to 

produce a higher axial stress gradient; the axial stress turns from positive to negative over a 

shorter distance. 
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Figure 5.2.4.4 Axial stress versus h along line fg for load case 2, bottom of pin. 

 

 

Figure 5.2.4.5 Axial stress versus h along line fg for load case 3, bottom of pin. 
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Figure 5.2.4.6 Axial stress versus h along line fg for load case 4, bottom of pin. 

 

5.2.5 Cyclic Pin Axial Stress Across the SCA 

Figure 5.2.4.2 indicated that locations A and C on the surface of the pin have significant axial 

stress reversals.  Axial stress is plotted again in Fig.5.2.5.1 for the load cases 1 thru 4, with the 

crankshaft rotational position noted at position A.  Position  C is more complex to show because 

of the significant change in stress at top dead center (0
o
, TDC) near the combustion event.  At 

location A, the maximum tensile stress occurs during the combustion event at 17 degrees after 

top dead center (ATDC).  At location C, the maximum tensile stress occurs just prior to this, 

during LC2, or approximately when the pin force Fy crosses towards the zero mark.  During 

combustion, the stress is reduced slightly at C as the radial stress component is unloaded and the 

kink removed from the pin outer surface. 

 

Finally, the axial stress σz is plotted against crank angle using the data in Fig. 5.2.5.2.  Some 

interpretation of the data is required to do so; for instance pin force Fy is close to zero at the TDC 

position, and so the LC2 value (free spinning) is assigned.  The values at A and C for the 90 

ATDC and 270 ATDC are assumed to lie somewhere along the line from LC3 to LC4, which is a 

logical assumption given the load inputs described in Figure 5.1.7.  Solutions for more crank 

angle positions with the full 3-D crankshaft assembly could help confirm these assumptions. 



158 

 

 

Figure 5.2.5.1 Axial stress versus engine cycle position for locations A and C. 

 

 

Figure 5.2.5.2  Stress σz at locations A and C extrapolated over 2 complete engine cycles. 
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5.2.6  One-quarter Model Results Summary Comments 

In summary the press-fit joint under load was shown to carry the general pin bending by 

interface σr based force couples on opposite diagonal corners of the joint.  So as pin bending 

varies under operating loads, so too does the σr at the interface; which in particular loads and 

unloads the highly compressive σr at the SCA.  Some maximum stress components at the SCA 

follow the trend of the maximum σr as these are dependent on the compressive σr and Poisson’s 

ratio.   

 

For the range of element sizes studied, the local maximum values stress did not change 

significantly, but did show some sensitivity.  The maximum tensile σz at the bottom of the pin 

for LC3 though is not sensitive to mesh size because the ‘kink’ has been reduced by the 

unloading as the pin bends which significantly reduces the stress gradient.  The maximum tensile 

σz in particular showed sensitivity to mesh size, due to the large stress gradient at the SCA, 

where the σz changes from tensile to compressive over a 0.1mm span. 

 

5.3  Numerical Results For the Full Geometry 3-D Crankshaft Model 

5.3.1 Full Geometry 3-D Crankshaft FEA Model Details 

The modeling approach used to study the full 3-D geometry is now presented.  In Fig.5.3.1.1 a 

side view of the crankshaft is presented, and includes the naming convention given to each piece 

in the crankshaft construction.  As has been discussed earlier, the PTO crankpin and neighboring 

PTO inner and outer web are of particular design interest because of the relatively higher loading 

in comparison to the MAG end.  The PTO belt loads combine with the PTO crankpin 

combustion and inertial loads to create a typically higher stress field.  Therefore, in this study the 

press-fit joint on the PTO crankpin is studied in detail, while the MAG side press-fit joint is 

ignored and assumed continuous for the sake of numerical efficiency. 
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Figure 5.3.1.1 A side view of the crankshaft geometry including the naming convention. 

 

To enhance the post-processing of the results at the PTO crankpin press-fit joint, the pin and web 

are split in to volume segments.  Figure 5.3.1.2 shows an end view of the crankshaft, which has 

volume split in pie shaped wedges that center on the crankpin longitudinal axis.  

 

Figure 5.3.1.2 The volumetric make-up of the PTO outer web. 
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Figure 5.3.1.3 shows the crankpin only, which has a partial selection set of the wedge volumes 

for each of the two views.  Note that the 10
o
 pie shaped segments include the thin profile 

rectangular cylinder at the SCA, on both the pin and web.  This thin cylindrical volume is used 

for good control of the mesh at the SCA, an approached that is demonstrated in the other 3-D 

models. 

 

Figure 5.3.1.3 The pin is cut into pie shaped segments for element selection during post-

processing. 

 

Note that Appendix B contains further details of the modifications of the full 3-D crankshaft 

Geometry. 

 

The geometry approach presented above was key to creating an efficient mesh.  Figure 5.3.1.4 

shows the solid element FEM mesh for the full crankshaft assembly.  Overall the mesh used is 

described as coarse except for at the SCA cylindrical volume, as the focus of the model is good 

accuracy in the stress field in the vicinity of the SCA. 
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Figure 5.3.1.4 The FEM solid element mesh of the crankshaft assembly. 

 

The pin mesh refinement at the SCA is shown in Fig. 5.1.4.5; the high refinement in the 

cylindrical volume at the SCA transitions to a relatively coarse mesh in the neighboring 

segments of the pin.  Notice the different colored pie shaped sets of elements present for post-

processing.  Also note that the thin cylindrical volume at the SCA contains only a brick element 

based mesh.  The element size is controlled in both thin cylinder volumes on the pin OD and the 

web ID so that stress sensitivity studies may be mapped relative to element size. 

 

The solid mesh is a mixture of 20 node brick and 10 node tetrahedral quadratic elements, which 

require prism and wedge elements in the transition from a brick shape to tetrahedral shape (see 

bottom right corner of Fig.5.1.4.5). 

 

The PTO outer web meshing approach is shown in Fig.5.4.1.6; again showing a color coded 

element selection set comprised of pie shaped wedges centering on the crankpin axis.  Further 

mesh details are also contained in Appendix A.5.3.1. 
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Figure 5.3.1.5  The PTO outer pin mesh showing the details of the mesh at the SCA. 

 

Figure 5.3.1.6 The Wedge segmented mesh for the  PTO outer web. 

 

The load inputs and boundary conditions for the full 3-D crankshaft FEA model are explained 

well in Fig.5.3.1.7.  At each bearing location, the crankshaft FE model is supported by the case 

using a linear spring with a directional stiffness that is equal to the case stiffness.  These stiffness 

values are based on historical values which have provide good strain and modal correlation with 
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experimental data.  The load inputs described in section 5.1 apply to this model, and are captured 

in Fig. 5.3.1.7.  The torque produced by the crankshaft during the combustion events is 

transferred out the PTO end of the crankshaft; and a rot x equals 0 boundary condition is used on 

a torsional spring there to constrain the crankshaft rotation. 

 

 

Figure 5.3.1.7 The FEM model, including load inputs and boundary conditions. 

 

The load cases studied with the full 3-D FEA model are given in Table 5.3.1, which are created 

with a MBD model as described in section 5.1.  Load step 1 is the solution for the press-fit 

assembly, and the same ‘typical’ radial interference is used in this model as has been used 

throughout the research.  Load step 2 studies the effect of applying a rotational inertia (8,000 

rpm) on the crankshaft.  Load step 3 examines the crankshaft structure for the application of 

maximum combustion loads on the PTO crankpin, and finally load step 4 examines the 

crankshaft for a maximum reciprocating loads on the PTO crankpin.  The rationalization for the 

selection of load case 3 and 4 are provided in section 5.1, which are based on engineering logic 

and experience. 
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Table.5.3.1 Full 3-D Crankshaft Model Operating Load Cases 

 

 

5.3.2 Full Geometry 3-D Crankshaft FEA Assembly Results 

First the assembly behavior is examined for the full 3-D model using a typical radial 

interference, which is time step 1.  The resultant displacement plot in Fig.5.3.2.1 shows that 

virtually all the deflection is on the PTO outer web, as all other press-fit joints are ignored in this 

study.  The interference is created between the web and pin by applying a uniform temperature 

change to the model, and setting all components to have a very low coefficient of thermal 

expansion except the PTO outer web.  The temperature change creates the desired radial 

interference between the pin and web through thermal contraction of the PTO outer web.  The 

displacements shown in Fig.5.3.2.1 are dominated by the thermal distortion.  

 

Figure 5.3.2.2 plots displacement in the y-direction, for which the magnitudes are reduced 

significantly in comparison to Fig.5.3.2. 1.  The press-fit assembly creates a non-parallel tilt on 

the PTO outer web main shaft, as the web stiffness is not constant along the axial length of the 

pin.  As a start, the web has mass reduction pockets near the pin bore for the purpose of 

crankshaft balance.  Also the pin stiffness is higher on the inner side of the joint, which stretches 

the web more, creating additional the misalignment.  Since the pin terminates at the end of the 

joint, it is more easily compressed than on the other end of the joint where the pin continues 

through the web. 

 

Since the press-fit joint behavior and assembly stresses have been covered in great detail in 

chapter 4, further study of the full 3-D model will not be presented for this time step.  Additional 

FEM data is presented in Appendix C, where it is shown that the 3-D model and one-quarter 

model provide very similar results for the assembly problem. 
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Figure 5.3.2.1 Resultant displacement plot for LC1 assembly. 

 

Figure 5.3.2.2 Y-direction displacement plot for LC1 assembly. 
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5.3.3 Full Geometry 3-D Crankshaft FEA Rotational Inertial Results 

Next, results for time step 2, which is the rotational inertia load case, are examined for the full 3-

D model.  The solution for time step 2 also includes the press-fit assembly interaction, which is 

solved for in the previous time step.  

 

The resultant displacement plot in Fig.5.3.3.1 shows that the most significant deflection is still on 

the PTO outer web.  The induced temperature change used in time step 1 to create the desired 

radial interference created high x-direction displacement of the PTO outer web.  This 

displacement dominates the plot, which is a negative aspect of using the thermally based 

interference, since the results are less useful to the analyst. 

 

Figure 5.3.3.1 Resultant displacement plot for time step 2. 

 

Equivalent stress is provided for time step 2 for the full crankshaft model in Fig.5.3.3.2.  The 

crankshaft stresses are shown with a lower stress scale (0 to 300 MPa) detailing the local 

maximum equivalent stress values at the critical fillet radii on the design.  These local maximum 

stress values are much lower than maximum values at the SCA.  It is useful to track the local 
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stress maximums at various locations on the crankshaft, away from the press-fit, for comparison 

to other models and modeling methods to ensure consistency. 

 

Figure 5.3.3.2 Local equivalent stress maximums on the crankshaft, time step 2. 

 

The behavior of the one-quarter model and the full crankshaft model are very similar for load 

step 2 because of the symmetrical nature of the geometry and loading combined.  Stress 

magnitudes are very similar also when comparing the two models.  Therefore, supporting 

displacement and stress plots for the rotational inertia loading on the full crankshaft model is 

contained in Appendix D. 

 

5.3.4 Full Geometry 3-D Crankshaft Time Step 3 FEM Results 

Numerical data for the full 3-D crankshaft model is now presented for time step 3, which is a 

maximum combustion load on the PTO crankpin.  The solution for LC3 includes both the press-

fit assembly (LC1) and the rotational inertia loads (LC2) which are solved for in the previous 

time steps.  
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A front view of the resultant displacement plot for the crankshaft assembly is given in 

Fig.5.3.4.1, while a top view is shown in Fig.5.3.4.2.  The displacement plots indicate that the 

belt force on the PTO end has a significant influence on the overall structural distortion.  The 

main shaft on the PTO end of the crankshaft (beyond the PTO outer web) is shown to deform 

under the belt and combustion loads.  Note that a significant portion of the displacement 

calculated is still due to the thermal contraction of the PTO outer web in time step 1. 

 

Figure 5.3.4.1 Resultant displacement plot for time step 3. 

 

A Von Mises equivalent stress plot is shown next in Fig. 5.3.4.3 for time step 3, providing local 

maximum equivalent stress values at critical fillet radii on the crankshaft.  The local maximums 

are tracked to ensure consistency among the different meshing and modeling approaches.  There 

is a significant rise in stresses at the PTO crankpin fillet for time step 3 vs 2, due to presence of 

the combustion loading. 
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Figure 5.3.4.2 Top view of resultant displacement plot for time step 3. 

 

Figure 5.3.4.3 Local equivalent stress maximums on the crankshaft, time step 3. 
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For LC2 the equivalent stress on the PTO outer web was dominated by the press-fit assembly 

stress.  However for LC3 the stress field starts to show sensitivity to the crankpin combustion 

and belt loads.  The LC3 equivalent stress plot in Figure 5.3.4.4 and 5.3.4.5 shows that the belt 

force creates stress patterns typical of bending on the main shaft next to the PTO taper.  The 

stress fringe patterns on the crankpin are shown to be affected by the combined crankpin and belt 

loads.   

 

Engineering logic suggests the location of maximum stress on the PTO crankpin, shown in 

Fig.5.3.4.5 is potentially a location of high fatigue damage.  Therefore, stress fields on the pin 

and the web are studied in detail on cutting plane A which passes through this maximum location 

(see Fig. 5.3.4.6).  Cutting plane A also passes through the crankpin center axis.  The cutting 

plane is used simply to describe the elemental selection set present for post-processing the data.  

In section 5.3.1 it was shown how the PTO crankpin and outer web were split into pie shaped 

volumes for improved post-processing.  The viewing of results on cutting plane A uses the pie 

shaped volumes for selection. 

 

Figure 5.3.4.4 Front view of PTO end equivalent stress plot for time step 3. 
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Figure 5.3.4.5 Rear view of PTO end equivalent stress plot for time step 3. 

 

Figure 5.3.4.6 The plot of σVM across cutting plane A for time step 3. 
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Figure 5.3.4.7 The plot of σr across cutting plane A for time step 3. 

 

Now a set of plots viewing the stress field on cutting plane A will be examined.  Figure 5.3.4.7 

plots σr on cutting plane A, and shows the increasing σr on diagonal corners oriented in a manner 

to carry the pin bending loads due to the combustion and belt forces.  Location A1 (see Fig. 

5.3.4.7) is the location of maximum σVM on the pin as shown in 5.3.4.5, at which the σr appears 

to reduce in comparison to the values there for LC2.  The joint carries the load through σr and a 

‘force couple’ in a similar fashion to that demonstrated with the one-quarter bench model. 

 

For LC2, the rotational inertia loading on the counterweights created tensile σz on the bottom of 

the pin.  Figure 5.3.4.8 plots σz on cutting plane A, and the tensile σz in LC3 is shown in increase 

in magnitude on the bottom fibers of the pin for this section.  Both the combustion load and the 

belt force combine to bend the crankpin and add to the tensile stresses present.  Note that the 

stress plots use identical scaling throughout all load cases to permit easy comparison.  The σr 

unloading shown for LC3 in Fig.5.3.4.7 coincides with the increased tensile axial stress on the 
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pin, as was demonstrated for the one-quarter bench test model.  Location A1 is the maximum 

tensile axial stress on the pin for LC3. 

 

Figure 5.3.4.8 The plot of σz across cutting plane A for time step 3. 

 

Note that the hoop stress plot for cutting plane A is not provided; although the web stress is 

dominated by the high assembly hoop stress, the hoop stress component is not that sensitive to 

the operating loads. 

 

5.3.5 Full Geometry 3-D Crankshaft Time Step 4 FEM Results 

The final time step (4) evaluated using the full crankshaft FEM model is the application of 

maximum reciprocating inertia loads on the PTO crankpin.  The solution for LC4 also includes 

both the press-fit assembly (LC1) and the rotational inertia (LC2) which are solved for in time 

steps 1 and 2 respectively.  As presented earlier (see Table 5.4.1), the PTO end crankpin local y-

direction load is positive, in the direction of the crankpin throw, and is generated by the 

connecting rod and piston reciprocating inertia loads.  The MAG crankpin local y-direction load 

is negative, and is generated by the combustion event on the MAG cylinder.  The directionality 

of these loads relative to the crankshaft geometry is shown in Fig.5.3.5.1 



 

175 

 

Figure 5.3.5.1 Resultant displacement plot for time step 4. 

 

Figure 5.3.5.1 displays the LC4 resultant displacement plot for the crankshaft assembly.  Note 

for the first time there is significant displacement on the MAG end of the crankshaft due to the 

combustion load input on that crankpin.  A top view of the resultant displacement plot is shown 

in Fig.5.3.5.2, which also includes the direction of the belt force for this event.  Note that the 

LC4 belt force is approximately opposite in direction to the LC3 belt force.  Figure 5.3.5.2 

indicates that LC4 belt force on the PTO end has a significant influence on the overall structural 

distortion, as is the case for LC3.  

 

Local equivalent stress values at the crankshaft critical fillet radii are shown in Fig. 5.3.5.3, 

which uses a lower stress scale range (0 to 300 MPa) to emphasize the higher locations of stress.  

Note that the MAG crankpin fillet radius, on the bottom of the pin, has significant stress present 

in LC4. 

 

In Fig.5.3.5.4, an equivalent stress plots of the rear  view of the PTO end main shaft shows that 

the main shaft is sensitive to the belt load with bending like stress patterns present on each side, 
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as was demonstrated for LC3.  The stress field on the crankpin is also shown to be sensitive to 

the belt force, which is indicated by the high pin stresses near the PTO outer web in Fig.5.3.5.4. 

 

Figure 5.3.5.2 Top view of resultant displacement plot for time step 4. 

 

Figure 5.3.5.3 Fillet radius local equivalent stress maximums for time step 4. 
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Figure 5.3.5.4 Rear view of PTO end equivalent stress plot for time step 4. 

 

Figure 5.3.5.5 A plot of σz across cutting plane B for time step 4. 

 

In LC3 the maximum pin σVM was used to identify a cutting plane (A) for sectioning of the pin 

so that sub-surface stresses could be studied.  The crankpin σz generated in LC4 is plotted in 
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Fig.5.3.5.5, and denotes a cutting plane B which bisects the crankpin axis and the maximum 

crankpin axial stress (which is also identified).  Cutting plane B is near to a horizontal 

orientation, and is considered to be sensitive to belt load more so than crankpin load.  For load 

case 4, the PTO crankpin inertia load is opposed in part by the web counterweight loading, which 

overall generates less distortion than when the combustion load is applied for LC3.  The viewing 

of results on cutting plane b uses the pie shaped selection sets presented in section 5.3.1. 

 

Stress results across plane B are now used to describe how the joint behaves during LC4.  First 

σr across cutting plane B is shown in Fig. 5.3.4.6, where the belt force is carried across the joint 

by increasing σr at opposite corners of the web/pin interface.  The lower left hand side corner of 

the pin/web interface in Fig.5.3.5.6 designated as location B1, and is the location at which the 

maximum axial tensile stress is generated.  

 

Figure 5.3.5.6  A plot of σr across cutting plane B for time step 4. 

 

Next axial stress is plotted on Plane B in Fig.5.3.5.7 for LC4.  The maximum σz on the pin at 

location B1 is shown to coincide with belt force direction and the σr unloading (see Fig.5.3.5.6), 

which the other 3-D models have demonstrated as well. 
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Figure 5.3.5.7 A plot of σz across cutting plane B for time step 4. 

 

5.3.6 Full Geometry 3-D Crankshaft FEM Results Summary 

Numerical results for all load 4 cases have been presented in previous sections for the full 

crankshaft 3-D FEM model.  There is a significant amount of data to post-process and present to 

describe the detailed behavior at the SCA.  Summary plots that examine the stress field across 

the time steps are now presented.  Cutting planes A and B, which were introduced in sections 

5.3.4 and 5.3.5 respectively, will be put to use again. 

 

5.3.6.1   PTO Crankpin Results On Cutting Plane A 

First, results on cutting plane A are examined at the PTO crankpin. Radial stress is plotted on 

plane A for the PTO crankpin in Fig.5.3.6.1 for load cases 3 and 4. Note the locations of the SCA 

designated A1 (bottom of plot) and A2 (top of plot).  Location A1 is shown to unload σr for load 

step 3, and begin loading again in time step 4 when the crankpin input loads reverse direction. 
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Figure 5.3.6.1 Plot of σr on plane A of the PTO crankpin for times 3 and 4.  

 

Next Fig. 5.3.6.2 plots σz on plane A for the PTO crankpin for load cases 3 and 4.  As a 

reminder, A1 is the location of maximum axial stress on the pin for time step 3, combustion on 

the PTO crankpin.  Clearly the pin reverses the direction of bending for LC4, but the tensile σz 

are still much higher at location A1 in LC3 versus location A2 in LC4. 

 

Figure 5.3.6.2 Plot of σz on plane A of the PTO crankpin for times 3 and 4.  

 

Equivalent stress is also plotted on plane A for load cases 3 and 4 in Fig.5.3.6.3.  The σVM plots 

are not as descriptive as the stress component plots.  The web stress due to the press-fit stretch is 

significant throughout, and the pin shows some stress sensitivity to the joint loading for the LC3 

combustion event. 
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Figure 5.3.6.3 Plot of σVM on plane A of the PTO crankpin for times 3 and 4.  

 

The details of the stress field at location A1 are now examined for load cases 1 thru 4.  Figure 

5.3.6.4 plots σr at location A1 using a common scale for all.  The σr is shown to unload for LC2 

and LC3, and then begins to increase again for LC4.  This exact behavior was demonstrated in 

the one-quarter bench model also, at the bottom of pin position. 

  

Figure 5.3.6.4  Radial stress (σr) plot at location A1 for load steps 1 to 4. 
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The axial stress at location A1 is plotted next in Fig.5.3.6.5 for load cases 1 thru 4.  The location 

A1 at the bottom of the joint increases in σz for LC2 and LC3; σz then becomes highly 

compressive for LC4 (which again is similar to the one-quarter bench model). 

 

Figure 5.3.6.5 Axial stress (σz) plot at location A1 for load steps 1 to 4. 

 

Figure 5.3.6.6 Shear stress (τrz) plot at location A1 for load steps 1 to 4. 
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So far in this thesis τrz and σr increases trend with each other.  In Fig. 5.3.6.6 the highest τrz is 

present in LC4 for location A1, due to the high compressive σr caused as pin bending reverses 

direction with the application of the reciprocating inertial loads.  Shear stress also follows the 

same trend that was introduced with the one-quarter bench model. 

 

Figure 5.3.6.7 Equivalent stress (σVM) plot at location A1 for load steps 1 to 4. 

 

Figure 5.3.6.7 plots σVM at location A1 for load cases 1 thru 4.  The highest equivalent stress 

state is for load case 3, PTO crankpin combustion.  The web σVM does show some sensitivity to 

the loading, and high stress is created at the web for LC4 due to the compressive radial loading.   

 

Equivalent stress is also plotted at location A2 in Fig. 5.3.6.8; the stress field in the web also is 

significantly higher than in the pin, while the stress field displays the traits of loading and 

unloading.  
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Figure 5.3.6.8 Equivalent stress (σVM) plot at location A2 for load steps 1 to 4. 

 

5.3.6.2 PTO Crankpin Results On Cutting Plane B 

To maintain brevity in this thesis, the full set of detailed results for the stress condition on the 

PTO crankpin for cutting plane B is contained in Appendix E.  The press-fit joint is shown to 

carry load across plane B in a similar manner as demonstrated for cutting plane A.  The data 

suggests that PTO crankpin bending on plane A is more significant for time step 3 than crankpin 

bending on plane B for time step 4.  Thus, results on plane A were chosen for presentation in the 

summary section.  Note that stress at the two locations A1 and B1 will load and unload in an 

opposite manner for time steps 3 and 4, because of their relative positions on the crankpin. 

 

5.3.6.3   Variation of Local Stress Maximums At The SCA By Load Step 

The next set of plots examines the load step variation in local stress maximums or minimums at 

the SCA location.  Locations A1 and A2 from plane A and locations B1 and B2 from plane B are 

considered; as a reminder location A1 and B2 are near to each other separated by a 40 degree 

angle (see Appendix A.5.3.6).   
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First minimum σr at the SCA is plotted in Fig.5.4.3.9 for load cases 1 thru 4.  Radial stress is 

shown to unload and load on each respective side of the pin as bending varies with load case.  

The response of locations A1 and B1 are opposite because of their near opposite locations on the 

pin.  The σr at location A1 is shown to vary the greatest, because of the significant unloading at 

time step 3.  The identical plots for hoop stress σθ and shear stress τrz follow the trend of radial 

stress (see Fig.5.3.6.10 and 5.3.6.11); this has been identified previously in this chapter also.   

 

Figure 5.3.6.9 Local minimum σr at A (pin) vs load step and element size h. 

 

Figure 5.3.6.10 Local minimum pin σθ at A vs load step and element size h. 
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Figure.5.3.6.11 Local maximum pin τrz at B vs load step and element size h. 

 

Maximum σz is plotted next in Fig.5.3.6.12, and the stress variation due to crankpin and belt 

loading matches the expected results.  Note also here that stress variation at locations A1 and B1 

are opposite as should be the case. 

 

The last set of plots in this series is the Von Mises equivalent stress which is plotted for the pin 

and web locations at the SCA in Figs.5.3.6.13 and 5.3.6.14 respectively.   Low variation in 

equivalent stress is shown for the pin in Fig. 5.3.6.13, which is also true for the higher magnitude 

web equivalent stress. 

  

Figure.5.3.6.12 Local maximum pin σz at C vs load step and element size h. 
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Figure 5.3.6.13 Local maximum pin σVM at B vs load step and element size h. 

 

Figure 5.3.6.14 Local maximum web σVM at A versus load step and element size h. 

 

5.3.6.4   Variation of Pin Axial Stress With Load Step And Element Size 

The axial stress is now examined along a 1mm SCA zone (line fg in Fig.5.3.4.1) for cutting 

plane A across all 4 load cases.  Figure 5.3.6.15 plots σz along line fg for location A1. The axial 

stress curve is shown to be displaced in a positive direction from LC1 by the (bottom of) pin 

bending created by LC2 and LC3.  The curve for LC4 is displaced in a negative σz direction by 

LC4 because of the compressive axial stresses created by the reciprocating inertia loading.  The 

axial stress along line fg for location A2 follows the reverse trend established for A1 (see 
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Fig.5.3.6.16) since the same load inputs produce compressive instead of tensile axial stress 

changes. 

  

Figure 5.3.6.15 Plot of σz along line fg for load cases 1 thru 4, location A1. 

 

Figure 5.3.6.16 Plot of σz along line fg for load cases 1 thru 4, location A2. 

 

5.3.6.5  Summary Comments On Full 3-D Model Results 

The review of the full 3-D model press-fit joint behavior indicates that that the operating loads 

are transmitted across the joint in a similar fashion to the one-quarter bench model.  A cutting 

plane which bisects the pin center axis and maximum axial stress location on the pin surface (at 

location C near the SCA) may be used to effectively observe the joint loading and the sub-

surface stresses.  Results from both the full 3-D and one-quarter models are compared next.  
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5.4   Comparing Numerical Results For The 3-D Models 

Since the one-quarter bench test model uses an efficient mesh, solutions with a smaller mesh 

density (h equals 0.02 mm) could be analyzed.  In comparison, solution time and mesh density 

was limited to h equals 0.05 mm for the full 3-D model.  It is desired to compare results between 

the two models, first to check for the effect of a limited element size on maximum stress 

calculated.  Note also the one-quarter bench test model does not contain crankpin tangential 

loads or the belt force.  And so also it is desired to check if the one-quarter bench test is a 

reasonable approach for examination of the stress condition at the SCA.  

 

5.4.1 Variation of Local Stress Maximums At The SCA By Load Step 

General comparisons of the joint loading and the stress component behavior at the SCA in 

section 5.3 indicate both models produce generally the same response.  The results presented 

next will examine how closely the stress magnitudes match.  Note that for this section, 

comparisons are made between location A1 (full 3-D model) and the bottom of the pin (one-

quarter model), as both are the locations of maximum axial stress, and are the location of primary 

durability concerns for each model.  The terms bottom of pin and location A1 can be 

interchanged in the descriptions below. 

 

Figure 5.4.1.1 Local minimum σr at A (pin) versus load step comparing 3-D models. 
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The maximum radial stress at location A is plotted against load step for the two 3-D models in 

Fig.5.4.1.1.  The one-quarter bench test model includes results for h equals both 0.05 mm and 

0.02 mm on both the bottom and top position on the pin, while the full model displays results for 

h equals 0.05 mm at locations A1 and A2.  The plots trend very similar, and in particular the h 

equals 0.05 mm solutions on the bottom of the pin are nearly identical.  The h equals 0.02mm 

one-quarter model is offset approximately 71 MPa lower than either of the h equals 0.05 mm 

models, likely due to the increased mesh refinement.   

 

A similar comparison of hoop stress σθ is given next in Fig.5.4.1.2 where it is shown that the 

bottom hoop stress curves trend in a similar fashion for the one-quarter and full 3-D models.  The 

exception is the full 3-D assembly value which is lower by 27 % compared to the one-quarter 

bench test model.  Since the radial stress values compared earlier between models are very 

similar, this data point is suspect and may be the result of a poor quality (splotchy) contact 

solution. 

 

Figure 5.4.1.2 Local minimum pin σθ at A versus load step comparing 3-D models. 

 

Next local maximum axial stress at location C (on the SCA) is compared in Fig.5.4.1.3 for the 

two models.  On the bottom of the pin, the model results deviate at LC2 when the rotational 

inertia load is applied, but are very close for LC3 and LC4.  In particular, it is interesting how 

close the axial stress values are for the PTO crankpin combustion event in LC3.  Since the ‘kink’ 
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present at the SCA tends to be reduced during combustion, it is logical that mesh density present 

will have less affect on the accuracy.  Thus, the h equals 0.05mm full 3-D model is thought to 

have adequate mesh refinement to accurately predict stress at the SCA for LC3. 

 

Figure 5.4.1.3 Local maximum pin σz at C versus load step comparing 3-D models. 

 

The difference in the axial stress at the rotational inertia (LC2) load step requires some 

explanation.  The one-quarter bench model work showed that the maximum axial stress is 

sensitive to mesh density for LC2 (see section 5.2), and also the LC2 (rotational inertia) value 

was calculated as being higher than for LC3 (combustion).  This sensitivity to mesh size is 

explained by the kink, which is still present in LC2,  When a bending moment is applied to the 

bottom of the pin, the kink acts as a stress multiplier, until that kink becomes less pronounced.  

  

One final point may be made at the difference between the full 3-D and the one-quarter model 

here.  The location A1 (cutting plane A) is offset 50 degrees from the bottom of pin position 

(BDC).  The position of A1 for the full model is less sensitive to the spin loading (LC2) of the 

crankshaft because it is closer to the neutral axis for the crankshaft under this particular loading. 

 

Next shear stress τrz is compared in Fig.5.4.1.4 for the two modeling approaches, and very good 

correlation is shown.  This is expected as good radial stress correlation was shown in Fig.5.4.1.1 

also. 
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Figure 5.4.1.4 Local maximum pin τrz at B versus load step comparing 3-D models. 

 

Figure 5.4.1.5 plots local maximum equivalent stress on the pin at location B (on the SCA) for 

the two models.  Over both time steps 1 and 2, the full model (h equals 0.05 mm) is 

approximately 10% lower than the one-quarter 0.05 mm h model and approximately 15% lower 

than the one-quarter 0.02 mm h model.  Closer correlation is shown over time steps 3 and 4. 

 

The last in this series of figures is the maximum web equivalent stress plot which is provided in 

Fig.5.4.1.6.  Reasonable correlation is shown for the web stress between the full and one-quarter 

model. 

 

Figure 5.4.1.5 Local maximum pin σvon at B versus load step comparing 3-D models. 
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Figure 5.4.1.6 Local maximum web σVM at A vs load step comparing 3-D models. 

 

5.4.2 Variation of Pin Axial Stress By Load Step And Element Size 

The final series of plots examines axial stress σz plotted along line fg across the bottom of the pin 

(one-quarter model) and at position A1 (full 3-D model) as studied previously.  Results posted 

for the one-quarter model uses a 0.02 mm mesh size, while the full 3-D model results use a 0.05 

mm mesh size. 

 

First the axial stress at the bottom of the pin (or location A1) is plotted for LC2 in Fig.5.4.2.1.  

The difference in maximum value at location C is significant between the two models, and is due 

to element size limitations in the full model, and also the proximity of the full model A1 location 

to the neutral axis for this loading.  Further work will be outlined in chapter 10 which would 

examine further the differences in results here.  The primary difference in results here is thought 

to be due to the mesh refinement limitations in the full model. 

 

In contrast, a comparison of axial stress for load case 3 is given for the two models in Fig.5.4.2.2.  

Good correlation is shown for LC3, the combustion event, because the pin bending unloads the 

radial stress at the SCA, which reduces the presence of the kink in the pin material, and allows 

convergence on axial stress with a larger element size.   
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Figure 5.4.2.1 Plot of σz along line fg for load case 2 for both 3-D models. 

 

Figure 5.4.2.2 Plot of σz along line fg for load case 3 for both 3-D models. 

 

Finally, LC4 σz results for the one-quarter and full 3-D model are compared in Fig.5.4.2.3.  Both 

models are in compression at location C for this load case, due to the PTO crankpin reciprocating 

inertia loads, and do not differ significantly (-45 MPa for the one-quarter model and -125 MPa 

for the full 3-D model). 
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Figure 5.4.2.3 Plot of σz along line fg for load case 4 for both 3-D models. 

 

5.4.3  Summary Comments 

In summary, the detailed stress calculations at the SCA compare well between the 3-D full FEM 

model and the one-quarter bench test FEM model.  Thus it is thought that the one-quarter bench 

test model could be used more efficiently in the early design stage, and that after a prospective 

design has met stress design targets, hopefully only a final evaluation would occur with the full 

3-D FEM model.   

 

This approach suggests that pin bending due to crankpin loading is the most significant durability 

concern, while PTO end belt force loads have a secondary impact.  In chapter 10 some future 

work is proposed to study this idea.  One needs to take care in using this assumption.  Analysis 

with the full geometry should always take place as the final task to guard against departures from 

this relationship, and results from this model should take precedence over the one-quarter model.  

It is thought that with significant changes in crankshaft architecture, the idea of successfully 

leveraging a reduced one-quarter bench test model would need to be reconfirmed. 
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5.5   Combined 2-D And 3-D Predictions 
A comparison of the press-fit assembly stress state for the 2-D and 3-D models is provided in 

section 4.5.  The 2-D axisymmetric FEA model is shown to generate higher local stress 

maximums at the SCA because of the high mesh refinement and excellent 2-D mesh quality 

present, which is not feasible with the 3-D full crankshaft assembly due to the model size and 

solution time required.  The 2-D studies of h versus maximum stress at the SCA determined that 

convergence was obtained in the range of h equals 0.05 to 0.01 mm.  However since solution 

time limited the minimum element size studied to h equals 0.05 mm with the full 3-D model, it is 

uncertain whether assembly stress convergence has been reached.  

 

Based on an acceptable small difference in results between the perfect axisymmetric 2-D model 

assumption and the full 3-D web geometry, it may be reasonable to assume that the 3-D model 

solution would converge to near the 2-D values.  Therefore it may be appropriate to combine the 

converged 2-D assembly stresses with operating load 3-D stresses using super-position. 

 

A few assumptions are required to take this step; the first is that the axisymmetric solution is an 

accurate representation of the 3-D stress field.  Both the 2-D and 3-D solutions show very similar 

variation in stress along the pin axial direction.  The 3-D solution variation in the hoop direction 

though is not nearly so symmetric.  Considering the pin only, radial stress is reasonably 

consistent about the circumference in the hoop direction.  This may be explained simply by the 

fact that a summation of the compressive forces at the pin-web interface both on top and on 

bottom of the pin must be equal.  Since this is the case however, the thin section of material on 

the web above the pin is stretched significantly more than the thick web material below the pin.  

The 2-D model assumption does use a web outer diameter equal to the thin section of web on top 

of the pin, and so maximum hoop stress on both models are close in magnitude. 

 

The second topic that must be discussed is the use of the principle of super-position of the 3-D 

alternating results with the 2-D assembly stress since the loaded press-fit joint behavior is non-

linear.  A non-linear response of the local stress values at the SCA to joint loading is created 
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since the severity of the ‘kink’ at the SCA is changed as local interface radial stress σr increases 

(LC4) or decreases (LC3).   

 

For both 3-D models it has been demonstrated that as the location A1 on the bottom of the pin is 

loaded in tensile axial stress, while at the same time joint loading produces reduced local radial 

stress, the local stress maximum values converge for a lower element size h.  So, for the 3-D 

solutions there is confidence in the stress state at A1 for LC3, even for a larger element size h 

(see section 5.3.3). 

 

However, for the case when a ‘kink’ is still present during the application of the operating loads, 

(LC2 and L4), there is greater error in the FEM solution because element size h may not match 

well with the stress gradient present.  The highly compressive stress state is of interest because of 

the potentially damaging sub-surface stresses created, and also because of the wear that may 

result with any relative motion or joint slippage present in conjunction with the high radial 

interface stress. 

 

Since location A1 was identified as the most likely location to have a durability issue on the full 

3-D model, the alternating stress state at this location is studied for the entire series of plots.  

Also, the one-quarter model results are provided for the bottom of pin location.   

 

In Fig.5.5.1, alternating σr stress from the 3-D models are super-imposed on the 2-D assembly 

stress.  Note that both the 3-D and the 2-D plus 3-D results are contained.  Notice that the scatter 

is greater for the combined solution, as all solutions start at the same 2-D assembly radial stress 

value for LC1.  The radial stress component that is super-imposed on this LC1 ‘starting position’ 

is the 3-D determined change in radial stress.  Therefore the 3-D plus 2-D solution will follow 

exactly the 3-D solution trends for each time step.   Note that the hoop stress plot is not provided 

since it is very similar in form to the radial stress data shown in Fig.5.5.1; so far hoop and radial 

stress values have shown to track one another. 
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Figure 5.5.1 A plot of  3-D model σr at A versus load considering 2-D assembly stresses. 

 

Figure 5.5.2 plots σz for the combined and 3-D model solutions across the four load steps; the 

combined model trends match the 3-D solutions.  Note that there has been much discussion 

already in the previous sections about the difference in calculation of maximum σz at location C 

for the one-quarter and full 3-D geometry models.  Mesh refinement and proximity to the neutral 

axis were listed as factors creating lower σz calculated for the full model. 

 

Figure 5.5.2 A plot of 3-D model σz at C versus load using the 2-D assembly state. 
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The shear stress at location B is examined next in Fig.5.5.3, and very good trend matching is 

shown with the combined 2-D plus 3-D solutions.  Maximum sub-surface shear stress has been 

shown to be not as sensitive to mesh refinement as some of the other local maximum stress 

values. 

 

Figure 5.5.3 A plot of 3-D model τrz at B versus load using the 2-D assembly state. 

 

Equivalent stress at location B just below the pin OD surface is examined next in Fig.5.5.4.  

Since the equivalent stress value is calculated from the direct and shear stress components, a 

calculation of the super-position σvon at load steps 2 thru 4 is required using the super-position 

component stresses from the 3-D model.  Note that only the full 3-D model uses this approach.  

The 2-D plus 3-D data points published in Fig.5.5.4 for the one-quarter model simply add the 

magnitudes of 2-D and 3-D σvon stress.  Lower equivalent stress is shown to be produced when 

calculated for the full model using the 2-D plus 3-D component stresses.  This fact is logical 

since the equivalent stress calculation uses the ‘the square root of a sum of squares’ style of 

formula, which would decrease the effect of any stress variation added to any larger base stress 

values. 
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Figure 5.5.4 A plot of 3-D model σvon at B versus load using the 2-D assembly state. 

 

Finally equivalent stress in the web at location A is plotted in Fig.5.5.5 for the 3-D and the 

combined 2-D plus 3-D solutions.  At time of this writing, data was not available to calculate the 

combined equivalent stress values at LC2 thru LC4 using component stress information.  High 

web equivalent stress is shown to match the trend of the 3-D data. 

 

Figure 5.5.5 A plot of 3-D model σVM at A (web) versus load using a 2-D assembly. 
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5.6   Evaluation Of Material Yielding For the Operating Condition 

In section 4.2.6 the stress state was examined for any material yielding at the SCA generated by 

the press-fit assembly.  The stress magnitudes plus the size of the discontinuity were examined, 

and it was demonstrated that the area of high sub-surface stresses fall within the depth of 

strengthened material.  Also it was demonstrated that the maximum values calculated were 

below the range of calculated yield strength (see section 4.1).  Table 4.2.1 lists the mechanical 

properties of the crankshaft, and calculates a yield strength ranging from 1348 to 1448 MPa for 

the high strength, case hardened material. 

 

The stress field at the SCA does not change a great deal in size or shape while under operating 

loads, as is shown throughout Chapter 5.  The largest area of high stress identified in chapter 4 

for the 2-D assembly model is web area on top of the pin.  Figure 5.6.1 shows the web area on 

top of the pin at location A2 for load case 4; the size of the high stress area (0.4 mm) falls within 

the depth of hardened material (1.0 mm).  Note a scaling of 0 to 785 MPa, which is the core 

material SYS, is used to demonstrate this fact.   

 

Figure 5.6.1 A plot of LC4 σVM on the web at location A2 for  the full 3-D model. 
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Note that even with the combined 2-D plus 3-D calculated stress which is provided in the 

previous section 5.5, this area will still fall within the case depth.  The super-position approach 

only affects the local maximum value; this shape and size of the stress field and the general 

stress values away from the maximum location will not change significantly. 

 

The combined 2-D plus 3-D component stress values examined in section 5.6 all fall under the 

yield strength value of 1348 MPa, excluding the radial stress value at A.  The highly compressive 

σr value on the pin of near 1400 MPa in Fig.5.5.1 which is calculated at A1 for the combined 

solution is less of a concern since it is compressive.  Typically a significantly larger value of 

compressive stress is allowed in design if also the equivalent stress falls within the yield value.  

Note that for the case, the pin maximum equivalent stress at location B does not climb above 800 

MPa for the combined 2-D plus 3-D solution.   

 

Finally the web equivalent stress value at A calculated for the combined solution at location A1 

as shown in Fig.5.5.6 as 1332 MPa for LC4.  This value falls very close to yielding, and should 

examined closer with a more refined element size.  If yielding occurs, a solution using elastic-

plastic material models is required.  Potentially any yielding of the web will relieve some of the 

pin local elastic stresses at the SC 
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6 Verification of the Numerical Models 

Experimental verification is a necessary step in any mature FEA and design process.  Well 

correlated FEA models lead to more realistic results of the computer simulation which may drive 

the process to save time in redesign, validation, and tooling costs.  In this chapter some basic 

experimental data is presented to gain confidence in the finite element models created for the 

press-fit and operating load problem sets. 

 

6.1  Experimental Verification Of The Press-Fit Operation 

The average radial contact pressure in a press-fit joint may be used to calculate the torque 

retention capability of a joint, with knowledge of the surface coefficient of friction.  The 3-D 

numerical models presented show that radial stress is fairly constant about the circumferential 

direction of the bore.  Though, the radial stress distribution has sharp stress concentrations at 

each end of the web / pin interface.   

 

Experimental tests may be conducted to measure the torque carrying capability of the press-fit 

joint in a multi-piece crankshaft.  The crankshaft web with the cylindrical hole may be held 

rigidly, but not directly on the thin web section above the pressed in pin.  A pure torque load is 

then input on the assembled crankshaft about the pin axis (on the integral pin web) using a 

hydraulic powered rotary actuator.  The torque input is applied at a slow rate until the joint 

breaks free, with the pin twisting in the web cylindrical hole.  Figure 6.1.1 shows typical test data 

[34] indicating that the joint broke free when a torque of 1092 Nm was applied. 

 

The error in the average radial contact pressure (calculated using an average surface friction 

value) with this experimental method may be minimized by collecting many test samples.  Pin 

outer diameter and web inner diameter need to be measured so that variation in radial 

interference values track with the variation in break free twist.  This test also generates 

confidence in the surface friction coefficient values. 
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Figure 6.1.1 Experimental torque data for a crankshaft ‘twist test’ [34]. 

 

The average radial stress predicted by this test should be slightly greater than the FEM or Lame 

based average value calculated in the center of the press-fit area, away from the edges.  The 

higher contact pressures at the edges present greater torque resistance than the average value 

used in the simple hand calculation, and so the opposition to twist free with the actual test will be 

slightly greater than the design calculation. 

 

A static ‘push out’ test may also be used to check the joint integrity.  This test approach and 

reasoning is very similar to the twist test, except the assembled crankshaft is pushed apart very 

slowly using a hydraulic ram, and the maximum push-out force in monitored.  This push-out 

force may be used to with the joint geometry, average design radial contact pressure, and average 

coefficient of friction to check joint integrity. 

 

6.2  Experimental Verification Of Operating Behavior 

Dynamic operating strain on the crankshaft may be measured for design validation and 

numerical model correlation.  In particular, the general numerical methods that are applied to 

crankshaft systems, as presented in this thesis, can be verified.  
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Note the test data presented here is not from the crankshaft design studied in this research paper, 

at the time of writing this test data was not available yet.  The goal of the data presented in this 

section is to show general correlation of the numerical methods applied.  The experimental work 

presented here is not the work of the author and is courtesy of Polaris testing department. 

 

General measurements that ensure crankshaft overall behavior is understood are also required to 

calibrate the numerical methods.  If the overall behavior of the crankshaft can be calculated with 

FEM and confirmed with experimental data, then the computer simulation tests may be used to 

calculate other design information which may not be measured.  For example, it is up to the 

finite model to calculate the detailed stresses at the press-fit joint. 

 

Note that the strain field is difficult to measure near the press-fit joint during engine operation 

because of design space restrictions.  The ideal measurement would be axial strain measured on 

the free surface of the crankpin, very near to the SCA location.  However, the connecting rod and 

thrust washer allow little room for strain gauges.   

 

Some typical crankshaft strain measurements are shown in Fig.6.2.1.  Dynamic strain is 

measured on the main shaft just inboard of the PTO taper on which the drive clutch mounts.  

Axial strain is measured in 4 equally spaced locations, at top dead center (TDC), 90 degrees after 

TDC, bottom dead center (BDC), and 90 degrees before TDC (see Fig.B.2).  This set of gauges 

will measure general bending in the main shaft to capture the strain field induced by belt forces 

on the PTO end.  Since these strain gauges are sensitive to any bending of the main shaft, their 

presence will also check for any modal response issues in the crankshaft.   

 

Another torsion strain gauge may be set on that same main shaft on the PTO end of the 

crankshaft, as the PTO end bearing spacing allows.  The gages measure shear strain, in the theta 

direction which is sensitive to torque output to the clutch on the end of the crankshaft.   

 

The dynamic strain is measured at specific engine operating conditions that are key to 

understanding the design performance.  Usually the operating conditions measured place the 

crankshaft in a ‘worst condition’ to create the highest strain response.  These conditions include 
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maximum engine speed combined with full torque load; maximum engine torque with low 

engine speed; a high engine speed (over-wind) with low load, and also possibly a moderate 

engine load while the engine is ran across the full range of engine speed. 

 

Figure 6.2.1 Typical locations for strain measurement on a multi-piece crankshaft. 

 

Figure 6.2.2 displays two cycles of typical dynamic strain measured on the PTO end of a 

crankshaft for a maximum load / high engine speed situation [35].  A minimum compressive 

axial strain of -700 µe is measured at the 90 degrees ATDC position gauge location (on the PTO 

end as shown in Fig.6.2.1).  Figure 6.2.3 shows an axial stress plot from a full 3-D FEM model 

which correlates well to the measured strain.  Strain in the FEM model is measured at -690 µe 

for the application of a typical ‘PTO crankpin maximum combustion’ load case (which is LC3 in 

chapter 5).  The strain measurement location is sensitive to belt force, and so this correlation may 

be thought of as a check on the belt load calculations, as well as crankshaft structural behavior.  

The strain measured on the PTO end of the crankshaft may also be calibrated to output as a 

(CVT) belt force.  Belt force calculated by the MBD model, which is a FE model input as well, 

may be correlated to this experimental measurement. 

 



 

207 

Note that the crankshaft design from which these measurements were taken is very similar to that 

studied in this research.  As well, the numerical approach used to model this crankshaft is 

identical to those implemented here.  The method of using static load cases described in section 

5.1 are used to check that the crankshaft meets the intended stress targets for adequate design 

life. 

 

Figure 6.2.2 Typical dynamic  strain measured on the PTO end of the crankshaft [35]. 

 

If reasonable, a third set of gages may be placed to measure distortion of the PTO crankpin as 

shown in Fig.6.2.1.  However, wire routing and gauge application are a challenge to do so.  

These gauges are placed on an internal cylindrical hole in the crankpin, with the hole created by 

a drill machining operation specifically for the strain measurement.  The gauges measure general 

pin bending, and are sensitive to the combustion load and the reciprocating mass load.  This 

measurement may only occur if strain sensitivity is acceptable (the hole is large enough) while 

also not moving the bending natural frequencies of the crankshaft to an undesirable low value in 

the operating range.  A finite element model containing the modified pin geometry may be 

required to check the feasibility prior to the test. 
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Figure 6.2.3 Axial stress results for a similar engine configuration showing correlation to the 

measured strain. 

 

Figure 6.2.4 provides typical dynamic strain measured internally on a crankpin, as described 

above, which is calibrated as a force output [35].  The strain values may be correlated to the 

crankpin vertical bending predicted with the crankshaft FEM model.  Strain or force data from 

several engine speeds and design configurations is contained in Fig. 6.2.4.  Note that this strain 

measurement does not display the constant pin bending strains due to the rotation inertia of the 

crankshaft itself.  This strain is considered steady state, with low variation from cycle to cycle, 

and is removed from the signal using a low-pass filter for this test only. 

 

Correlation to the measured crankpin loads may be shown with the MBD model results; the 

calculated MBD loads at the crankpin are used as inputs to the FEM model.  Figure 6.2.5 shows 

vertical direction crankpin loads generated for the same engine and operating conditions via the 

MBD model [35].  The signature of the time history loads calculated with the MBD model 

matches the measured data, and the maximum and minimum values fall within the range of 

engine configurations studied.  
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Figure 6.2.4 Dynamic experimental pin bending strain calibrated as a force output [35]. 

 

Figure 6.2.5 Dynamic crankpin Fy calculated with MBD for FEM model input [35]. 

 

An example of good correlation between dynamic measured strain and FEM for the static load 

case approach is given in Appendix F.  The modeling approach is equal to that in this research 

effort for the full crankshaft model, and shows correlation in the range of 5 to 16 %, which is 

very acceptable. 
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6.3   Summary Comments Regarding Model Reliability 

In this chapter some basic experimental data was presented to gain confidence in the FEM 

models created for the press-fit and operating load problem sets.  Good correlation between 

measured strain on a crankshaft and calculated strain on the FEM model has been demonstrated 

using the methods outlined in this research work.  The approach consists of static load cases 

which are chosen based on engineering logic and the successful implementation on other similar 

engine programs.   

 

The crankshaft operates in a very dynamic environment, and so the validity of the static 

assumption has to be a point of concern in the FEM model reliability.  Typically both dynamic 

and static FEM methods would be applied on a crankshaft design at appropriate junctures.  

However, since the behavior at the press-fit joint requires a very detailed mesh, model size and 

solution time only allow the evaluation of a static solution.   

 

As mentioned in section 3.2, static FEM approaches applied to a crankshaft design evaluation 

typically yields a design with an extra safety margin [9].  This statement can be considered valid 

only if the crankshaft dynamics are not affected by natural frequencies of the crankshaft itself.  

In that case, dynamic FE methods must be used instead of a static approach as provided here.   

 

As a pre-caution when employing static analysis methods only, the numerical calculation and 

experimental measurement of the crankshaft natural frequencies is a necessary first step to 

evaluate whether the static approach is sufficient.  Considering all of the background information 

given above, it seems reasonable that an acceptable understanding of the press-fit joint is yielded 

by the static FEM approach used in this research body. 

 

If dynamic methods are required to evaluate the crankshaft behavior, sub-modeling used in 

conjunction with a continuous material assumption at the press-fit joint could be used.  The sub-

modeling approach is described in section 3.2, and is an area to be discussed in chapter 11 as 

future work for this research effort.  
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The discussion above indicates that the overall structural behavior of the crankshaft is adequately 

described by the FEM approach used.  Currently though there is a lack of fatigue data to: 

1) characterize the types of fatigue failures at the press-fit joint according to the stress 

condition, 

2) determine a good case hardened material fatigue curve, and 

3) create high confidence in the design fatigue or stress targets which may be calculated 

with a FEM model. 

Durability testing which may create actual fatigue failures in the crankshaft are required to 

elevate the FEM tools to the next level of reliability.  The durability data points may be produced 

by either the engine operating or an ‘equivalent damage to the operating condition’ bench test.  

This task is to be outlined in chapter 11, Future Work. 
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7  Optimization Of the Press-fit Joint 

7.1  General Comments Regarding Optimization 

The interference fit pin joint is used in many applications in modern machine design.  By 

reducing the magnitude of the stress concentration the life of this type of joint could be improved 

[18].  However, the FEM and computer simulations have to be used to design a better joint, 

simple formulas and engineer's intuition are usually not sufficient.       

 

No detailed explanation of the problem of some basic press-fit design, which considers a pin 

inserted in to a hole with the edge finished as a round, has been available in the literature.  These 

details have been explained in the research body presented so far.  Having a better understanding 

of the joint's mechanics, it is worthwhile to revisit some classic solutions to the press-fit stress 

concentration, and how these might be applied to a multi-piece crankshaft design. 

 

Also of note, the ‘optimized’ solutions found in the literature survey [18, 19] evaluate the 

assembly condition only, and do not examine operating loads.  As was shown in Chapter 5, the 

manner in which the joint carries the load is not intuitively obvious.  So, in this light it is also 

worthwhile to study the performance of alternative solutions under operating loads. 

 

Lastly, since there will always be situations with high performance engines where the durability 

limit will be pushed, ‘back-up’ plans are important to have.  These back-up plans are usually 

required when there is not a significant amount of design and development time left in an engine 

design program.  So, these back-up plans need to be researched and ready for quick 

implementation. 
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7.2  Press-Fit Joint Optimization: Shoulder Solution 

7.2.1  Introduction To The Shoulder Solution 

The first optimization phase examines the shoulder solution to reduce the assembly stress at the 

press-fit SCA.  The shoulder solution extends a revolved section out at the machined face of the 

web ID, which is flexible, and allows a more gradual change in stiffness for the press-fit joint.  

This style of feature can be found in machinery design for applications such as gears pressed 

onto shafts [36].  The details of the geometry are provided in Fig  7.2.1.1; rSH is the radius of the 

shoulder, and tSH the thickness of the shoulder in the radial direction.  Note that distance ‘a’ is 

shown in Fig. 7.2.1.1 also, which is the distance from the vertical face of the shoulder to the 

tangent point of the ‘true radius’ curve on the ID surface of the web bore.  The distance ‘a’ used 

in this study is equal to the value used throughout the research presented. 

 

The shoulder feature is machined from the baseline geometry, therefore it may be added to the 

base design if durability issues arise through validation.  If the shoulder is added external to the 

width of the baseline web, it extends the length of the entire engine by the radius of the shoulder, 

something that is not desirable from a mass and packaging standpoint.  For example, a twin 

cylinder engine containing two shoulder features of 4.0 mm in length, the engine would grow in 

length by about 1.5%, resulting in an increase in mass.   

 

Therefore, it may make the most sense to keep this shoulder feature incorporated within the 

width of a typical web, and deal with any decreases in crankshaft bending stiffness by other 

means.  Introduction of the shoulder feature in this manner reduces the torque carrying capacity 

though; as around 10 percent of the axial length of the joint will have a somewhat reduced radial 

contact pressure, which is also an undesirable trade-off. Typically the interference of the joint 

has already been reduced to the low end of the allowable range when durability is a concern.  

Increasing interference to offset this loss in effective length may not be an option as the hoop 

stress in the web at the interface is typically already close to yield because of the low amount 

material in the web at the TDC (Top Dead Center) location.  
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Figure 7.2.1.1 Geometry for the shoulder optimization solution. 

 

Since the shoulder feature in this case removes web material and makes it weaker in bending, it 

may not be ideal as the overall crankshaft bending stiffness will be lowered and the associated 

bending modes of the crankshaft will also be lowered.  Potentially a washer may be fastened to 

the web structure to add to the web bending stiffness as well as provide a low friction surface to 

locate and control the connecting rod axial motion. 

 

From a practical standpoint, one concern with this design solution is a reduction in the thrust 

surface area available for the connecting rod washer.  To overcome this issue, a washer with an 

ID greater than the OD of the shoulder must be used, and the washer thickness could be set equal 

to that of the shoulder.  Care must also be taken to not reduce the shoulder thickness too much 

when attempting to relieve the stress concentration, creating a sharp edge that may crack easily 

with any machining imperfections (burrs).   
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7.2.2  Characteristics Of The Stress Field At The Shoulder 

First the characteristics of the joint are explained for the shoulder feature.  The introduction of a 

flexible shoulder feature reduces the local radial contact pressure at the SCA, allowing the web 

to expand more readily beyond the prescribed interference.  Figures 7.2.2.1 and 7.2.2.2 plot 

radial stress for the baseline and shoulder solutions respectively using a typical interference.  The 

minimum radial stress at the SCA is reduced to 50 percent for the chosen rSH (2.0mm) and tSH 

(1.5mm) values.  

 

Figure 7.2.2.1  Radial stress plot, baseline (no shoulder) solution. 

 

Next the hoop stress plot for the shoulder solution, given in Fig. 7.2.2.3, indicates a tensile 

stretch of the shoulder feature.  High tensile stress in this area may be a concern if the value of 

tSH becomes too thin.  Higher hoop stress on the shoulder is required though to make this design 

approach work; the shoulder’s flexibility allows for a more gradual loading of the pin. 

 

Shear stress τxy is provided in Fig. 7.2.2.4, indicating the shear distortion band of web material 

(note the 50 to 84 MPa yellow-green stress scale color) that must maintain continuity between 

the shoulder and the main body of the web.  The shoulder radial and hoop direction 
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displacements are higher than the main body displacements, and there is a transition zone of 

shear distortion, similar in nature to that described in section 4.3.4. 

 

Figure 7.2.2.2 Radial stress plot with shoulder solution for a typical interference fit. 

 

Figure 7.2.2.3 Hoop stress plotted at the SCA for the shoulder solution. 
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Figure 7.2.2.4 Shear stress plotted at the SCA for the shoulder solution. 

 

7.2.3  Optimization Of The Shoulder Feature 

The optimization results for a shoulder solution are now presented for the 2-D axisymmetric 

FEM model.  The two parameters of the optimization study for the shoulder solution are as 

follows:  

1) tSH, the shoulder thickness. 

2) rSH, the radius of the circular fillet between the shoulder and the web.   

 

Optimization trends for variation of tSH and rSH are shown in Fig.7.2.3.1 to Fig 7.2.3.4.  The plots 

contain values of local maximum stress at the SCA for varying tSH while rSH is held constant.   

 

The variation in pin minimum radial stress at the SCA shown in Fig.7.2.3.1 indicates that a lower 

rSH values, the shoulder is not that effective.  The effectiveness of the shoulder solution seems to 

be related to the relative size of rSH and a.  Between rSH equals 1 and 2 mm, the shoulder 

becomes much more effective.  The shoulder feature simply must reduce stiffness past the point 
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of radial contact at the interface, which is driven by the distance ‘a’.  Pin maximum equivalent 

stress shows similar trends in Fig. 7.2.3.2 

 

Figure 7.2.3.1 Variation in pin σr (at A) with tSH for a constant shoulder radius. 

 

Figure 7.2.3.2 Variation in pin σVM (at B) with tSH for a constant shoulder radius. 

 

Figure 7.2.3.3 plots maximum web Von Mises stress at location A for varying tSH and constant 

rSH.  This maximum stress at the surface is relieved by the shoulder feature which gradually 

changes stiffness, and eliminates the sudden change in stress.  Again, it is demonstrated that in 

general the radius rSH must be greater in size than the true radius distance ‘a’ to create the 
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preferential gradual change in stiffness.  Since a = 0.9 mm for all studies, Fig.7.2.3.3 shows 

clearly that when rSH and ‘a’ are approximately equal, the shoulder feature does not help to lower 

stress on the web.  As rSH increases past ‘a’, there is a sizeable impact on the stress magnitudes of 

the web. 

 

Figure 7.2.3.3 Variation in web σVM (at A) with tSH for a constant shoulder radius. 

 

The equivalent stress variation in the shoulder fillet is plotted in Fig.7.2.3.4.  The stress there is 

much more sensitive to the thickness tSH of the shoulder than to the radius size rSH.  As the 

shoulder thickness decreases, it flexes more and stress levels increase. 

 

When choosing a design, care must be taken to balance relief of the stress concentration at A (on 

the pin) with increasing stress levels created on the shoulder.  Note the radial stresses on the 

shoulder fillet radius are compressive in nature, while the hoop stress created are tensile. 

 

To pick an optimum configuration, the stress state must be considered for assembly and 

operating conditions.  It is relatively efficient to study the stress state for assembly with a 2-D 

model.  In comparison the operating condition stresses must be studied with a 3-D model, 

research work which requires a substantially greater computational effort.  Therefore, an 

improved solution will be chosen based on 1) the 2-D optimization of the assembly stress, plus 

2) engineering judgment will be used with respect to the general stress distributions calculated 
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for operating loads.  The area on the web where the shoulder feature would be created exhibits a 

low stress conditions on the baseline web geometry for evaluation under the operating load 

conditions. 

 

Fig. 7.2.3.4 Variation in shoulder radius σVM with tSH for a constant shoulder radius. 

 

In conclusion, the following configuration is chosen; rSH=2.0mm, and tSH=1.5mm.  Using rSH 

equals 2.0mm helps minimize the impact of the shoulder feature on the length of the press-fit 

joint, as the curves for rSH equals 2.0 and 2.5 mm do not differ that greatly for any of the stress 

measures plotted.  Shoulder thickness tSH equals 1.5 mm is chosen so that the feature here retains 

a practical thickness, yet still offers a reduction in the (radial) stress concentration by 50%.   
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7.3  Press-Fit Joint Optimization: Undercut Solution 

7.3.1 General Description 

The next optimization phase examines the undercut feature, which removes a circular segment of 

material from the end surface of the web, directly above the area of the singularity.  This 

solution, as shown in Fig.7.3.1.1, is ideal for a crankshaft, as it may be added at any point (ie. 

later) in the design process if need be.  Prior to examining the numerical data, there are several 

concerns to acknowledge. 

 

Figure 7.3.1.1 The geometry describing the undercut optimization solution. 

 

From a practical standpoint, one concern with this design solution applied to crankshafts is a 

reduction in the thrust surface area available for the Connecting Rod washer.  A ‘half moon’ 

bushing or washer may fill this void created by the under cut to increase the thrust face surface 

area.  Care must also be taken to not reduce the ‘lip’ thickness tL to a point that burrs from the 

machining operation will induce early cracking.   

 

If the area of the cut removed is large, it will reduce the effective length of the press-fit joint, 

which is also an undesirable trade-off.  Typically the interference of the joint has already been 

reduced to the low end of the allowable range when durability is a concern, as mentioned in 

section 7.2. 
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7.3.2  Assembly Optimization Of The Undercut Solution 

The 2-D axisymmetric model was used again for examination of the press-fit problem, 

employing an undercut geometry shape at the SCA area.  All configurations studied had the same 

true radius parameter values employed previously in this research.  Figure 7.3.1.1 above includes 

locations of the parameters of the optimization study for the under cut solution; the undercut ‘lip’ 

thickness tUC is the distance between the web ID and the lowest point on the cut, while rUC is the 

radius of the half circle cut of material removed.   

 

To show stress sensitivity to the undercut feature, three design iterations are examined in brief.  

Design 1 (Fig. 7.3.2.1) uses an undercut radius rUC equals 2.0 mm and a lip thickness tUC equals 

1.5 mm.  Designs 2 and 3 have lip thickness values tUC of 1.0 and 0.50 mm respectively, all using 

a constant undercut size, rUC equals 2.0 mm.    For design 3, with tUC equals 0.5 mm, the local 

maximum radial stress at the SCA has been reduced to a value of 36% of the original.   

 

As the undercut moves closer to the SCA (see design 2 in Fig.7.3.2.2), the pin radial loading at 

the interface shifts inwards, away from the end.  This occurs at the distance rUC approximately, 

which is the length of relief the undercut provides.  The axial stress plot provided for design 3 in 

Fig.7.3.2.4 supports this fact, as the axial direction stress on the interface requires the normal 

direction radial stress to carry load through friction at the interface. 

 

Figure 7.3.2.5 plots hoop stress due to assembly for design 3, for which high tensile hoop stress 

at the flexible lip indicates that it stretches more readily, which relieves the stress concentration 

at the SCA.  A shear distortion across a band of web material (see a design 3 plot of τxy 

Fig.7.3.2.5) just below the undercut is required to allow this lip to stretch in the hoop direction 

and displace in the radial direction. 
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Figure 7.3.2.1  Radial stress plot, undercut geometry design 1. 

 

Figure 7.3.2.2 Radial stress plot, undercut geometry design 2. 
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Figure 7.3.2.3 Radial stress plot, undercut geometry design 3. 

 

Figure 7.3.2.4 Axial stress plot, undercut geometry design 3. 
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Figure 7.3.2.5 Hoop stress plot, undercut geometry design 3. 

 

Figure 7.3.2.6  Shear stress plot, undercut geometry design 3. 
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There is a significant reduction in the in equivalent stress at the SCA location (Fig.7.3.2.7) when 

compared to the baseline solution in Chapter 4.  Local maximum stresses are lower, and the 

undercut feature creates a wider axial distribution of stress.  

 

Figure 7.3.2.7 Von Mises stress plot, undercut geometry design 3. 

 

Optimization trends for variation of tUC and rUC are shown in Figs. 7.3.2.8 thru 7.3.2.11.  

Figure 7.3.2.8 plots minimum pin radial stress at location A for decreasing lip thickness over 

constant groove sizes.  The undercut feature quickly begins reducing the minimum radial stress, 

even at larger lip thickness values.  If the undercut radius rUC is larger than the true radius 

distance ‘a’ the undercut is far more effective as shown in Fig.7.3.2.8. 

 

Next pin maximum Von Mises stress at location B is plotted (Fig.7.3.2.9) for the ranges of rUC 

and tUC studied.  Equivalent stress is reduced with decreasing lip thickness and is shown to be 

much more effective for rUC values greater than 1.0 mm.  Again, this is dependent on the size of 

parameter ‘a’ of the true radius geometry. 
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Next the web maximum equivalent stress is shown for the optimization study in Fig.7.3.2.10.  

The maximum stress at location A is affected less by the presence of the undercut in comparison 

with the reduction in stress in the pin.  Good web stress reductions are still created though near 

location A. 

 

Figure 7.3.2.8 Variation of pin maximum σr (at A) with tUC and constant undercut radius. 

 

Figure 7.3.2.9 Variation of pin maximum σVM (at B) with tUC and constant rUC. 
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Figure 7.3.2.10 Variation of web maximum σVM (at A) with tUC and constant rUC. 

 

Figure 7.3.2.11 Variation in web undercut maximum σVM with tUC and constant rUC. 

 

Finally, the maximum equivalent stress that occurs on the surface of the undercut was tracked for 

the various design combinations of rUC and tUC in Fig.7.3.2.11.  When considering an undercut 

radius of 2.0 mm or greater (since the lower sizes are not as effective), at around tUC equals 1mm 

the stresses climb to the 700 MPa region.  The core material has a yield strength of 785 MPa, and 
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so if an untreated material condition is assumed here the lip thickness should not decrease past 

this point in any proposed design. 

 

In summary, when choosing a design care must be taken to balance relief of the SCA area with 

the stress levels created in the web undercut.  The radius rL must be greater in size than the ‘true 

radius’ round feature of the web ID at the concentration. 

 

If the size of the undercut removed is large, it was thought that it may reduce the effective length 

of the press-fit joint, which is an undesirable trade-off.  However, the numerical results shown 

indicate that a higher average radial loading is created inboard of the undercut feature which 

offsets partially the reduction in joint length. 

 

7.3.3  3-D Numerical Results For An Undercut One-quarter Bench Solution 

Based on the 2-D optimization trend data, 3-D undercut geometry was studied using parameters 

rUC equals 2.0mm and tUC equals 1.0mm.  This was thought to offer the best reduction in stresses 

at the SCA and also create aggressive but acceptable stress conditions in the undercut area.  A 

one-quarter bench model was chosen as the FEM approach of greatest efficiency which could 

also describe the basic joint loading that is observed in Chapter 5.  The same operating load cases 

presented in Chapter 5 are used here for the evaluation of the undercut geometry. 

 

As expected, the manner in which the press-fit joint carries the operating loads does not change 

with the presence of the local undercut feature.  The joint loading described in Chapter 5 

remains, and is covered in detail in Appendix A.7.3. 

 

Since the press-fit joint loading is well understood, the next step is to ascertain what level of 

mean and alternating stresses develop in the undercut region for the application of the operating 

loads.  The general stress behavior of the undercut feature is described below in Fig. 7.3.2.7 for 

load step 3, the maximum combustion load case.  The equivalent and maximum principal stress 

plots are given, as was provided for the baseline geometry in Chapter 5.  Identical stress plots are 

provided for the other three time steps in Appendix A.7.3.   
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Figure 7.3.3.1 Equivalent and maximum principal stress plot isometric view, time step 3. 

 

The stress distribution shown in Fig. 7.3.3.1 does not vary a great deal for the time steps 

considered, including stresses at the undercut feature.  Local stress values on the undercut at 

locations r,s,t, and u, (see Fig. 7.3.2.7) were examined at each of the four load steps as provided 

in Table 7.3.3.1.  The stress variation is very low, with a maximum mean (774 MPa) and 

alternating value  (18.7 MPa) occurring at location u.  Note the stress values predicted with this 

3-D model match the 2-D results provided section 7.3.2. 

   

Table 7.3.3.1 Von Mises Stress Values for the Undercut Design, Load Steps 1 Thru 4 
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It is clear so far that the undercut feature allows more flexibility of the lip (web) to create a more 

gradual loading of the pin.  Next the stresses on the ID of the lip (web) are examined with a 

maximum principal stress plot in Fig.7.3.3.2 for the combustion load case 3; two stress scales are 

used to clearly identify the variation in stress.  Maximum P1 stress is tracked in Table 7.3.2.2 at 

locations l, m, and n for all load cases.  A small stress variation is shown in this area also for the 

4 load cases studied. 

 

Figure 7.3.3.2 Maximum principal stress plot, time step 3. 

 

Table 7.3.2.2 Maximum Principal Stress on the Undercut Design, Load Steps 1 to 4 
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The behavior of the general stress field has now been described for the undercut, and so next the 

detailed evaluation of stress field at the SCA is presented.  Pin radial stress at the SCA (bottom 

of the pin) is provided for the four load cases in Fig.7.3.3.3 (using an element size of h equals 

0.05 mm).  Figure 5.2.2.18 shows the radial stress plots for the baseline geometry, which has the 

same scaling.  Stress magnitudes are lower for the undercut solution (by 50%), but still show the 

loading and unloading behavior present for the specific load cases in the baseline geometry.   

 

Figure 7.3.3.3 Radial stress (σr) plot at bottom of pin, time steps 1 thru 4. 

 

Note the Chapter 5 results use h equals 0.02 mm, while the undercut results presented here use h 

equals 0.05 mm, which may produce slightly different numerical values.  However, the larger 

element size solution used here for the undercut solution should produce acceptable accuracy 

since the stress gradient is considerably lower.  Local maximum stress for the undercut solution 

with h equals 0.05 mm will be compared later in this section to the baseline geometry which uses 

several element sizes. 
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Figure 7.3.3.4 shows axial stress at the bottom of the pin in the vicinity of the SCA for load steps 

1 thru 4.  Again, stress magnitudes and local stress gradients at the SCA are reduced somewhat 

from the baseline geometry in chapter 5, especially for the highly compressive load step 4.   

 

Figure 7.3.3.4 Axial stress (σz) plot at bottom of pin, time steps 1 thru 4. 

 

The stress plots at the SCA above demonstrate the general decrease in stress at the SCA due to 

the undercut.  The variation in local maximum stress values at the SCA are now compared to the 

baseline design.  The maximum pin radial stress at A is plotted for the 4 time steps in Figure 

7.3.3.5.  The baseline shows results for h equals 0.1, 0.05, and 0.02 mm, while the undercut 

presents h equals 0.05 mm results.  Radial stress is decreased by around 50% for load steps 1,2, 

and 4, but converges for the 3
rd

 load step.  The stress values converge because of the unloading 

present at the bottom of the pin for the combustion load step 3, at which the local stress field has 

a very low ‘kink’ which is not sensitive to the presence of the flexible undercut. 

 

Next maximum axial stress at location C is shown for the baseline and undercut geometry in 

Fig.7.3.3.6.  Axial stress is decreased with the undercut feature because of the reduction of the 

‘kink’ in the pin during assembly (see section 4.3.4).  The undercut feature also reduces 

maximum equivalent stress on the web at A by around 30%, as shown in Fig. 7.3.3.7.   
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Figure 7.3.3.5 Minimum pin σr at A versus load step, baseline and undercut geometry. 

 

Figure 7.3.3.6 Maximum pin σz at C versus load step, baseline and undercut geometry.  

 

Now the axial stress details at the SCA are examined on the bottom of the pin across line fg in a 

similar fashion to the plots in Chapter 5.  Fig.7.3.3.8 plots pin surface axial stress at the SCA for 

load step 3 for both the undercut and baseline geometry. The axial stress distribution is similar to 

the baseline geometry, but the change in axial stress from location A to C is reduced in 

magnitude.  The baseline geometry has a very large change (331 MPa), while the undercut 

feature (which is loaded less in the radial direction) has a more moderate change (133 MPa).  A 

comparison of load steps 1,2, and 4 are provided in Appendix A.7.3. 
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Figure 7.3.3.7 Maximum pin σVM at A versus load step, baseline and undercut geometry.  

 

Figure 7.3.3.8 Stress σz along line fg for LC3, for the baseline and undercut (UC) data. 

 

Finally, the axial stress values at locations A and C are extrapolated over two engine cycles for 

the baseline and undercut (UC) geometry as shown in Fig.7.3.3.9.  Mean axial stress at A is 

reduced from -338 MPa to -22 MPa while alternating axial stress is reduced greatly from 643 

MPa to 325 MPa with the presence of the undercut feature.  Also, mean stress at C is increased 

from 29.5 MPa to 110.5 MPa, while alternating stress is decreased from 576 MPa to 121 MPa.  
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The gradual transition in stress allowed by the undercut features greatly decreases the alternating 

stress values. 

 

Figure 7.3.3.9 Extrapolated σz at locations A and C plotted over 2 complete engine cycles for the 

baseline and undercut (UC) designs. 

 

7.3.4  Summary Comments 

The undercut feature significantly reduces the local assembly stresses at the SCA, and also 

creates less stress sensitivity to the operating loads applied because of the gradual transition in 

web stiffness at the ‘lip’.  A surface strengthening treatment would be required at the undercut to 

counteract the high mean tensile stress present, which are required fundamentally to obtain the 

flexible lip.  The optimized undercut geometry parameters chosen appear to be a good design 

choice worth investigating further through fabrication and durability testing.   

 

Only one element size (0.05 mm) was evaluated with the 3-D model, but it is assumed that the 

undercut geometry will follow similar but lower element size sensitivity trends displayed for the 

baseline geometry.  Since the stress gradient has been reduced significantly, the undercut results 

should be less sensitive to element size at the SCA. 
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8  Rules and Tools  

A detailed analysis of a multi-piece crankshaft due to the assembly and operational loading has 

been presented thus far.  After the complex characteristics of the problem is sufficiently 

understood, the last phase of this research is to simplify the numerical results to make them 

friendlier to engineering applications.  In this chapter modified design rules for the assembly 

press-fit and design tools for multi-piece crankshafts, which were derived by adopting the results 

of the FE simulations, are presented.  

 

8.1  Stress Relationships At The SCA For The Press-fit Problem 

The numerical data presented in this thesis is now examined to create design ‘rules of thumb’ so 

that this knowledge may be leveraged earlier and more easily in the design process.  Tools that 

do not produce data in a reasonable manner may not be deemed as effective for modern design 

practice. 

 

Note that many 2-D axisymmetric FEM models of the assembly problem have been studied, but 

the component stress distributions calculated were very similar.  The stress field was dominated 

by compressive stress at the SCA, with equivalent and shear stress peaking just below the 

surface.  

 

To examine the effects of press-fit interference on the stress components at the SCA, a study was 

performed by applying the interference varied by + or -50%, in 10% increments, and tracking the 

local stress maximums at locations A thru D.  Note that true radius geometry parameters ‘a’ and 

‘r’ were left constant throughout this study, as well as element size h was set at 0.005 mm. 

 

The pin maximum stress values are shown in Fig.8.1.1 for the range of interference considered.  

All stresses appear to grow in a linear fashion as the interference value increases (which is 

similar to Lame's problem).  Note that for all plots in this section, the x-axis interference scale is 

given in terms of a percentage of the baseline interference value (which is x=0); for example an 

interference value of +20% higher uses the x equals 20 mark.  
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Figure 8.1.1 Local SCA pin stress maximums versus press-fit interference variation. 

 

The minimum (or maximum compressive) local radial stress value at location A is a key 

component of the high stresses at the SCA.  The stress field present at the SCA is predicated by 

the radial contact between the pin and web, including the peak compressive local radial stress.  

The other stress components are normalized with respect to the minimum (negative) σr value at 

A. Figure 8.1.2 plots the normalized pin stress components across the range of interference 

studied;   For the range of interference studied, the stress components follow closely the local 

minimum σr, which is indicated by a horizontal line.  Local minimum axial (σy for the 2-D 

models) and hoop (σθ) stress at location A are calculated at a ratio of 0.80 and 0.57 respectively, 

both with very low variation across the range of interference.  Local maximum Von Mises and 

Shear Stress at location B occur at a ratio of -059 and -0.21 (negative signs indicate positive Von 

Mises and Shear stresses), again with variation small enough to consider this constant across the 

ranges of interference.  The only stress component that did not track closely was the maximum 

axial stress at location C on the pin.  An average value of -0.34 with a variation of 20% across 

the press-fit range was calculated, which may be due to the questionable convergence of this 

axial stress component at the h equals 0.005 mm value (see section 4.3).  This indicates that only 

an approximate estimate of the maximum axial stress may be derived if the minimum σr at A is 

known. 
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Figure 8.1.2 Normalized pin SCA stress maximums versus interference variation. 

 

Next, the relationship between average σr at the interface (away from the SCA) and the local 

minimum σr at the SCA is evaluated.  If one is to plot these radial stress components across the 

range of interference considered, both appear to change in a reasonably linear rate.  If the 

minimum σr curve is normalized with respect to the average σr, as plotted in Fig.8.1.3, the 

minimum σr value does not track linearly (showing a 36.5% variation).  As interference 

increases, the average σr increases, but minimum σr at location A does not increase at a multiple 

of this rate of change.  An explanation could be that as the true radius feature becomes loaded 

higher and higher, the local stiffness increases, just like for a Hertzian contact problem between 

two spheres.  The contact stress between two spheres increases at a reduced rate as more surface 

area comes into contact. 
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Figure 8.1.3 Normalized (1/σr average) minimum pin σr (SCA) versus interference. 

 

It is critical to understand the relationship between the average σr and the local minimum.  A 

design formula may readily calculate the average σr at the interface using Lame [24] or other 

approaches.  If an approximate relationship between average contact pressure and local 

minimum σr can be determined, the stress component ratios determined in this section can be 

used with confidence based only on a calculated average σr.  Historical press-fit designs are 

further evaluated in section 8.3; the range of interference for this study is quite wide and may not 

be fully practical.   

 

Finally web local stress maximums are examined in Fig. 8.1.4.  Also included in the plot is the 

local minimum σr at A, since it has been demonstrated as a key measure of the stress field.  

Stress in the web varies linearly versus interference as expected.  The web stress components are 

normalized across the interference range in terms of minimum σr in Fig. 8.1.5.  The relationship 

shown is not a constant ratio, as both the web hoop stress ratio (at D) and the web equivalent 

stress ratio (at A) increase with higher interference.  The web hoop stress ratio varies by 34 

percent, while the web Von Mises stress ratio varies by 17 percent across the range of 

interference. 
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Figure 8.1.4 Web σ (SCA) versus press-fit interference, including pin σr  minimum at A. 

 

Figure 8.1.5 Normalized (1/σr min at A) web σ (SCA) versus interference variation. 

 

It may be expected that σθ at D does not track exactly with the σr component; location D is away 

from the SCA, and is more of an overall measure of the press-fit interference.  In fact, Fig. 8.1.6 

plots the web hoop stress normalized with respect to the average σr at the press-fit interface, and 
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exhibits a constant ratio.  The σθ on the web at location D is -2.82 times the average radial 

contact pressure, a ratio which only by varies by 3% across the interference range.  

Figure 8.1.6 also plots the web maximum σVM at A normalized using the average σr.  The stress 

ratio shown is not constant across the range of interference for this case either. 

 

Figure 8.1.6 Normalized (1/σr average) web σ (SCA) versus interference variation. 

 

For the pin stress components calculated at A, it is straightforward why the ratio holds constant 

for differing interference.  The stress state is compressive in the radial direction due to the end 

stress concentration, and the hoop and axial direction stresses are compressive as well, driven by 

Poisson’s ratio.  As interference increases, all the stress component values increase together at 

the same rate.   

 

The web stress state is similar because of the high compressive σr state at A, but is also dissimilar 

because of the generally tensile σθ present in the web, as it stretches around the pin.  At location 

A, this generally tensile σθ does become slightly compressive, but not to a significant amount (in 

the baseline 2-D problem, Fig. 4.3.2.6. indicates this value at A ranges from -107 to 43 MPa).   

As interference increases, the maximum σθ rises but at a different rate than the compressive σr.  

And so it appears that the combination of the direct stress components that make-up the σVM 

calculation on the web are changing at a different rate than the σr value at A. 
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8.2 Effects of True Radius Geometry on Stress Relationships at the SCA  

The previous section 8.1 examined the relationships between local maximum stresses at the SCA 

with the variation in press-fit interference.  This section will examine some variation in 

parameters which define the true radius geometry, but will maintain a constant press-fit 

interference.  Some simple tests are required to check if the stress ratio rules established in 

section 8.1 hold true for true radius geometry changes also. 

 

First, using a constant interference value with the 2-D FEM model, the sensitivity of pin's σr is 

examined at A for a wide range of true radius parameters a and r.  As the value a is reduced in 

Fig.8.2.1, σr decreases as well. The decrease was thought in part due to the reduction in stiffness 

of the ‘overhung’ web material that extends out past the point of first contact between the pin 

and web.  Minimum σr at A is calculated for several values of radius r in Fig.8.2.1 as well.  

 

Figure 8.2.1 Minimum pin σr at location A versus parameter a for constant r. 

 

Over the wide range of variation in parameters a and r, the response of minimum σr at A is not 

exactly linear, but could be approximated as such over a short range. 
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Next, the geometry parameter a for the true radius end finish was set at values of 0.9 mm, 1.15 

mm, and 1.40 mm and the press-fit problem was re-evaluated using r equals 2.0 mm.  (Note, the 

baseline press-fit geometry used throughout the research has a value of a equals 0.90 mm.)  

Figure 8.2.2 plots minimum σr at A and average σr for the three values of a.   

 

Figure 8.2.2 Average and minimum σr (at A) versus parameter a. 

 

Figure 8.2.2 agrees with Fig.8.2.1, and indicates that minimum σr (at A) decreases with a, while 

average σr remains constant throughout which produces a horizontal curve.  The minimum σr at 

A normalized with respect to average σr will not create a constant ratio across the range of ‘a’ 

(see Fig. 8.2.3.).   This data may seem redundant, but the σr magnitudes and ratios are important 

data to have for use of these rules early in design, since the average σr  may be calculated by 

hand approximately. 

 

The normalized (1/σr minimum at A) pin stress values are plotted in Figs. 8.2.4 for the studied 

range.  The stress ratios established in the previous section for interference variation also hold 

true for parameter ‘a’ variation.   
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Figure 8.2.3 Normalized (1/σr average) minimum pin σr versus parameter a. 

 

 

Figure 8.2.4 Normalized pin SCA stress maximums versus interference variation.  

 

In a similar fashion, the web local maximum stresses calculated for the variation in a result in the 

same normalized stress ratios (see Fig. 8.2.5) as presented in section 8.1. 
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Figure 8.2.5 Normalized web stress (1/σr average) versus parameter a. 

 

In summary, both sections 8.1 and 8.2 show that with the knowledge of the maximum radial 

stress component, other local maximum stress components at the SCA may be determined with 

acceptable accuracy using multipliers based on stress ratios.  Greater error is introduced into this 

approach if the local stress components at the SCA are to be derived from the average contact 

pressure.  But this approach is acceptable and could be used very early in the design selection 

stage reducing the numerical effort.  In order to evaluate how practical this assumption is, 

historical designs are examined with the same approach. 

 

8.3  Stress Relationships At The SCA: Variation In True Radius Parameter a 

Sections 8.1 and 8.2 demonstrate that with the knowledge of the maximum radial stress 

component, other local maximum stress components at the SCA may be determined with 

acceptable accuracy using stress ratio multipliers.   If the local stress components at the SCA are 

to be derived from the average contact pressure, then a greater error is introduced into this 

approach. Practicality of these assumptions will be evaluated against some available historical 

designs.  This approach might be used very early in the design selection stage to reduce the 

numerical effort.  
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Historical press-fit designs from various engines are presented that use the same basic web and 

pin geometry, including the true radius feature on the edge of the web hole.  All the engines 

included are of 2-stroke twin cylinder configuration with crankpin sizes that vary from 27 to 30 

mm diametrically.  Web shapes differ throughout, as does the amount of material on the web at 

TDC above the pin.  Local stress maximums are examined at the SCA for each engine in a 

similar manner to that in the two previous sections, 8.1 and 8.2. 

 

Average radial stress was chosen for the x-axis of the plots in this section since it conveniently 

categorizes the engines according to the aggressiveness of the press-fit.  Since stress component 

data will trend upwards with increasing average press-fit, the data from each engine will be most 

informative when categorized by the average interface σr.  With this approach the stress 

component data points for each engine are also always grouped on a vertical line. 

 

Figure 8.3.1 plots σr values versus average radial interface stress for the 7 engines considered.  

Minimum σr at A increases with increasing average press-fit, which agrees with engineering 

logic and the data from section 8.1 (see Fig. 8.1.4).   

 

Figure 8.3.1 Historical pin σr magnitudes plotted against average σr. 
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Note that the average σr ranges from -227 MPa to -338 MPa, which equates to a mean value of -

282MPa plus or minus 19.5%.  To put this range into perspective, for section 8.1 a mean value of 

-229 MPa plus or minus 50% was examined (-115 Mpa to -344 MPa).  The range press-fit 

interference for these historical engines is not as wide as the band of interference studied in 

section 8.1, but the upper limits are very close in magnitude. 

 

Figure 8.3.2 Normalized (1/ /σr avg) pin minimum σr at A plotted against average σr. 

 

Normalized minimum σr (with respect to average radial stress) is plotted in Fig.8.3.2.  The 

average ratio is 5.07, showing 13% variation, which is consistent with previous findings.  The 

variation is lower (13% vs 36%) for the historical study because the range studied is more 

narrow. 

 

The historical pin and normalized pin stress values are plotted against average radial stress in 

Figs.8.3.3 and 8.3.4 respectively.  The stress ratios for axial σy (0.80), hoop σθ (0.58), shear τxy (-

0.21), and equivalent σVM stress (-0.59, a ratio which is negative because of the negative radial 

stress divisor) are very consistent and match those calculated in 8.1 and 8.2.  The ratio for 

maximum pin axial σy stress (-0.35) at C matches the previous trends also, which also has a 

somewhat larger but acceptable variation (9 %). 
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Figure 8.3.3 Historical pin stress magnitudes plotted against average σr. 

 

 

Figure 8.3.4 Normalized pin SCA stress maximums versus average σr. 

 

 Finally the web stress components are examined in Figs. 8.3.5 and 8.3.6.  Some of the historical 

press-fit designs have very aggressive (high) interference values.  Of note in Fig.8.3.5 is the 
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maximum web hoop stress at location D indicated as 839 MPa for engine 7.  Significant 

equivalent stress values (1616 MPa) at point A on the web are also indicated.  A detailed 

examination of the 2-D press-fit and 3-D operating loads would be appropriate before further 

comment on these stress levels.  Greater variation in the stress values exist here because of the 

variation in the historical web geometries.  The normalized web stresses match the trends shown 

in section 8.1 and 8.2 as expected.  The hoop stress value at location D average ratio is -2.55 

with respect to the average radial interface stress.  The maximum equivalent stress ratio value 

averages at -5.02 (the ratio is negative, not the calculated Von Mises stress!) with a variation of 

13%. 

 

Figure 8.3.5 Web stress magnitudes at the SCA versus average σr. 

 

The historical engine data supports the previous findings.  Stress ratios can be used to predict 

local maximum stress components at the SCA, based on the average radial contact pressure.  

Accuracy will vary, but will fall in the 10 to 15 percent range.  The accuracy may be improved 

by using the extrapolated lines on the plots presented for those stress component ratios that show 

a greater variability.  For example, on Fig.8.3.2, instead of using the average value of 5.07 to 

calculate minimum radial stress at A, a ratio of 4.8 could be read of the graph if a press-fit 

average design value of -325 MPa was required for adequate torque retention in the joint.  This 
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level of accuracy is felt to be adequate early in the design process, as the error in this assumption 

will be lower than the range of stresses due to the manufacturing geometry tolerance. 

 

 

 

Figure 8.3.6 Normalized (1/σr avg) web stress versus average σr at the interface. 

 

8.4 Press-Fit Evaluation Tools 
In the engineering environment complex numerical tasks should be automated as much as 

possible to shorten the time frame necessary for applying a particular numerical tool. It should 

produce data faster and may speed up the design process.  Besides automation of these complex 

tasks, the numerical tool may also be more efficiently applied by applying reasonable 

assumptions which focus on the key design metrics only.   

 

A user friendly input deck was created using ANSYS command language to examine the press-

fit problem with a 2-D axisymmetric solution.  This tool was created so that model creation 

would be automated based on a few geometric parameter inputs at the beginning of the text file.  

The user need only input the pin and web inner and outer diameters values, along with the 

respective pin and web axial lengths.  Besides saving time by automating the model creation 
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process, high quality results are also ensured since the meshing approaches and other modeling 

details are captured in the macro.   

 

Two versions of the input deck exist, one which creates a geometry based interference, the other 

which creates a temperature based interference.  The temperature based approach assumes the 

pin and web interface start with a zero interference.  The desired interference is then created by 

applying the uniform temperature change to the pin which expands based on the coefficient of 

thermal expansion of a steel material. 

 

The input deck only takes a few minutes to modify to obtain the desired geometry.  After a 

solution time of approximately 35 to 40 minutes, results are then available for a highly refined 

mesh at the SCA.  An input deck also was created for post-processing the results.  General 

displacement and stress plots of the entire model and of the SCA local area are created 

automatically.  Stress data along the path of the pin outer diameter and the web inner diameter 

are also provided. 

 

The input decks are placed in Appendix H. 

 

8.5 An Equivalent One-Quarter Bench 3-D Model  

In section 5.2, the one-quarter bench model was described as being similar to the physical 

durability test that would be exercised in the lab to prove out crankshaft life.  Though, an 

oversight of this model is that rotational inertial loads would not be applied typically in a 

physical testing laboratory.  Durability bench tests are now presented which show how crankpin 

loads may be applied without rotating inertia to match closely the operating condition behavior 

of the press-fit joint presented in section 5.2. 

 

Radial and axial stress are now examined at the SCA region for the operating load and bench test 

conditions.  These two stress components will be the focus of the study, as a good match is 

desired between the bench and operating load response. The other maximum stress components 

at the SCA are shown to be a ratio of the highly compressive σr in sections 8.1 – 8.3, and so σr is 

a good metric for comparison.   
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First, σr across the SCA region is shown in Fig.8.5.1 for the operating load time steps 1 thru 4, 

which includes the rotational inertial loading (denoted as LC2).  The radial stress on the bottom 

of the pin is plotted using h equals 0.05 mm, and is shown to unload after assembly (LC1) 

through spin up (LC2), and further unload from the combustion event (LC3), and finally re-load 

compressively for the reciprocating inertia load (LC4).  At location A in Fig. 8.5.1, the spin load 

case 2 effectively shifts the radial stress curve higher.  For a recap of the joint loading please see 

section 5.3.   

 

To recreate the operating load stress (with spin) response shown in Fig.8.5.1, the FE model from 

section 5.3 is studied using crankpin loading only (no spin).  In this study the loads applied to the 

crankpins are described as multipliers of the crankpin loading at LC3 and LC4.  For example 

Fig.8.5.2 plots minimum σr at A across the SCA for crankpin loading which varies from 2.25 

times LC3 to 1.0 times LC4.  Note that the legend in Fig.8.5.2 designates the ‘No Spin’ loading 

as NS.  The variation in the crankpin loading is shown to shift the radial stress curve in a similar 

fashion, unloading and further loading the point A with compressive radial stress. 

 

Figure 8.5.1 Plot of σr across the SCA on the bottom of the pin (operating loads). 
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Figure 8.5.2  Plot of σr across the SCA for crankpin load variation (no rotational inertia). 

 

Next, Fig. 8.5.3 plots σz on the bottom of the pin for the operating load cases (1 to 4), which is 

the other metric which needed to be matched for the physical bench test.  Note that local minimum 

and maximum stress values are given at locations A and C.  Location C is the location of 

maximum σz on the free surface of the pin just outside the press-fit contact area.  The spin load 

(LC2) and combustion load (LC3) are shown to increase tensile σz, while LC4 creates 

compressive σz. 

 

Note the peak stress that occurs at location C for both load cases 2 and 3.  The spin load retains a 

sharp gradient in stress at the SCA with a peak at location C.  The combustion load though tends 

to unload σr (see Fig.8.5.1), which reduces the stress concentration affect of the ‘kink’ in the pin, 

resulting in an overall reduction in maximum σr at location C.  This subject is covered in section 

5.3, and is not intuitive on a first examination; this behavior creates some difficulty in recreating 

the stress field without a spin load. 
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Figure 8.5.3  Plot of σz across the SCA on the bottom of the pin (operating loads). 

 

Axial stress at the SCA is now examined for the application of crankpin loads without rotational 

inertial (spin) loading on the crankshaft.  Figure 8.5.4 plots the σz distribution at the SCA for 

crankpin loading in fractions of the forces applied for  LC3 and LC4.  The operating load (with 

spin) minimum and maximum values of stress at locations A and C are noted also.  The 

application of higher LC3 (combustion) loads produces increasing tensile pin stress on the 

bottom side while the opposite direction LC4 crankpin loading creates compressive stress. 

 

Figures 8.5.2 and 8.5.4 demonstrate that crankpin load variation may shift the σr or σz curves in a 

positive or negative direction to match the operating load curves.  First, a match of the operating 

load σr curve is provided with option 1.  Figure 8.5.5 plots σr for the operating condition LC3 

and LC4, which respectively create the maximum and minimum σr value at A.  For the no spin 

case, LC1 (assembly) and 2.25 LC3 are shown to match approximately. 
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Figure 8.5.4 Plot of σz across the SCA for crankpin load variation (no rotational inertia). 

 

Figure 8.5.5 Plot of σr across the SCA for the baseline and bench test option 1. 

 



 

257 

However, if there is a match between the radial stress profiles for the baseline and no spin case, 

axial stress will not match, as shown in Fig.8.5.6.  Figure 8.5.6 provides the difference in stress 

values between the goal and ‘no spin’ load cases.  Option 1 creates generally higher (tensile) 

axial stress across the SCA region, because of the elevated combustion loads (a 2.25 multiplier 

on LC3).  Maximum tensile stresses at C are 71 MPa higher (19%), and the alternating load is 

338 MPa, which is 58% lower.  

 

A second option is to match the axial stress components at locations A and C; a best match for 

this is shown in Fig.8.5.7.  Because of the ‘radial unloading’ of location A for a combustion 

force, an exact match of σz can not be obtained.  In choosing between a match of axial stress at A 

or C, location C was targeted since the maximum tensile value occurs there.  Crankpin loads of 

(1.0 x) LC3 NS (no spin) and (0.5 x) LC4 NS provide an approximate good fit at the lower and 

upper bounds.  The equivalent cyclic bench test loading is –LC3 NS to +0.5 LC4 NS.  The only 

mismatch in σz occurs at the maximum stress Location A as the no spin load case 3 creates a 168 

MPa shortfall in σz. 

 

 

Figure 8.5.6 A plot of σz across the SCA comparing the baseline and bench test option 1. 
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Figure 8.5.7  Plot of σz across the SCA for the baseline and bench test option 2. 

 

Since in option 2 the σz is matched approximately, a mismatch is created in σr across the SCA 

between the spin and no spin cases.  Figure 8.5.8 compares radial stress curves for option 2 

showing generally higher compressive radial stress for the ‘no spin’ data.  The baseline data in 

Fig.8.5.1 shows that rotating inertia (LC2) reduces or unloads the maximum radial stress at A 

while adding reciprocating inertial loads on the crankpin (LC3) reverses this trend.  And so for 

the test options present which do not contain the spin loading, the unloading effect on the bottom 

of the pin is missing.  Hence larger compressive radial stresses are created on the bottom of the 

pin while the alternating component is not as great (29% lower). 

 

In summary, both options 1 and 2 re-create accurate stress fields at A and C for σr and σz 

conditions respectively.  Option 1 though creates σz components that are 19% higher at location 

C.  Option 2 creates compressive σr components that are 13% larger.  Each stress component 

may create a different failure mechanism; the σr is indicative of the high subsurface stresses, 

which could trigger fretting fatigue when relative motion occurs between the two mating surface, 
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as the literature [18] indicates. Also, a high σz at C could initiate a fatigue crack if magnitudes 

are sufficient. 

 

Figure 8.5.8 Plot of σr across the SCA for the baseline and bench test option 2. 

 

The relative stress magnitudes seem to suggest that fretting fatigue damage is the more likely of 

the two for this combination of geometry and press-fit interference.  Maximum σVM below the 

surface at B will be greater than the maximum σz at C if a ratio of 0.59 (from section 8.1) is used 

to calculate the σVM stress (based on the value of minimum σr at A).  Therefore bench test option 

1 which matches maximum radial stress at location A would be more appropriate for the exact 

replication of the sub-surface stress field. 

 

Option 1 has another advantage with respect of matching σr variation at A; the amplitude 

variation is 29% lower for option 2.  If the radial stress at the bottom of the pin at A is not given a 

chance to unload, it also may not allow (incorrectly) any relative motion between the pin and 

web, and therefore not re-create the fretting fatigue accurately.  In the case of option 1 for which 

σz is higher, and creates a bending fatigue failure at C, then a bench test loading with option 2 

can be pursued. 
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Of course the bench test durability work is more valuable if the damage accumulated may be 

accelerated.  For option 1, it is simple to increase the minimum value o σr by increasing the 

combustion direction load on the crankpin, which further unloads the σr at the bottom of the pin.  

As this crankpin load is increased, the propensity for relative motion between the joints also 

increases, which could induce a fretting fatigue.  Since little research effort has focused on this 

aspect, an initial concern would be that the power laws present for a steel fatigue curve are not 

representative of the fretting fatigue behavior.  Careful testing is required to increase crankpin 

loads for the purpose of accelerating the test.  At some point as this load becomes large enough, 

the tensile axial pin stresses at C may dominate the fatigue testing.  The overly aggressive 

loading schemes could then result in an incorrect failure mechanism, and so it is recommended 

that load magnitudes are to be set higher in gradual increments. 
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9  Conclusions 

The conclusions are grouped into sections related to the particular chapters of the thesis; starting 

with general via technicalities of the FEM models to optimizations and proposed engineering 

tools. 

 

9.1 General Conclusions 

The over-reaching objective of this research is to enhance the application of numerical tools 

used in industry to further the durability and application of engines with multi-piece crankshaft 

construction (Objective 1).  It is early in the use of these tools to truly affect implementation in a 

large scale and more time is required.  Because of the use of these tools, and perhaps the 

implementation of design optimization ideas to increase life, hopefully lighter, more durable, or 

more cost effective designs are created for the customer.  Generally these engines will continue 

to push the performance envelop with very good specific horsepower and hopefully acceptable 

customer quality, with better overall performance than that of competitive performance 

snowmobiles that employ very good but somewhat heavier 4-stroke engines.   

 

A second broad objective in this research is to assemble the engineering process and tools to 

calculate accurately the detailed stress field present on the press-fit joint for assembly and 

engine operating conditions (Objective 2).  A related goal of the research focused strictly on the 

numerical aspects which is that the overall FEM analysis of the multi-piece crankshaft is 

organized in this research to examine both the press-fit assembly phase and the engine operating 

condition, which requires 2-D and 3-D geometry based FEM models (Objective 6).  The 

discussion on these similar objectives can be handled together nicely.  In chapter 2 a process 

diagram was presented for the design of a crankshaft.  Based on the work in this research, the 

process diagram presented in chapter 2 was modified for a multi-piece crankshaft to include all 

the new tools and information developed, as described below and shown in Fig. 10.1.1: 

1) The rules developed in chapter 8 that relate average radial stress at the interface to 

maximum local stress values at the SCA are applied early in the design process along with the 

general sizing of the press-fit (which uses the Lame [24] solution). 
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2) Efficient automated tools have been created based on a 2-D axisymmetric approach to 

examine the exact details of the stress concentration at the SCA, for the elastic assumption, and 

are inserted after the design calculations outlined in 1) above. 

 

 

Figure 10.1.1 The modified process diagram for the structural design of a multi-piece crankshaft. 

 

3) The one-quarter 3-D model should be used to carry out fast design iterations for 

operating loads before a larger effort is exerted to examine a higher quality design using the full 

3-D model. 

4) A physical bench test that uses a symmetry configuration similar to the one-quarter 

bench virtual model is to be added to the validation process.  This durability test induces high 

cycle fatigue failures which help validate the design and improve the CAE virtual models, 

including providing valuable fatigue data points for the case strengthened material.  Since fatigue 

failures may be induced by pin cracking at the pin BDC position or pin cracking induced by 

fretting, fatigue data points are very valuable to better leverage the results of the FEM models.  
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Note that the one-quarter bench FEM model is to be used to replicate the operating loads with 

and without the rotational inertia load. 

5)  Finally, crankshaft durability could be examined in the engine or running condition 

using slightly undersized geometry to induce early failure.  Perhaps it is not typical to promote 

ideas in the conclusion which are not part of the research, but fatigue data from real parts is 

imperative to improve overall reliability in this and any CAE process. 

 

9.2 Conclusions From Chapter 4, Assembly FEM Models 

The research first focused on the assembly press-fit stress problem.  Chapter 4 examines the 

assembly state with 3 different modeling approaches; the 2-D axisymmetric model, the 30 degree 

slice model, and the 3-D one-quarter bench test model.  Details of the stress field at the SCA 

were examined and also the structural behavior was explained.  A critical objective identified 

was to define the characteristics of the assembly stress field at the SCA (Objective 3) which 

create the high stress gradient, and are defined as: 

 1) The amount of unsupported web material that is beyond the SCA point of first contact 

between the pin and web, which must be stretched by the interference at the SCA.  The 

differential slice of pin material at the SCA stretches a much wider slice of the web which 

creates a radial stress concentration.  

 2) A highly compressive ‘kink’ due to the rapid (but continuous) transition in shape of 

the ‘free’ pin to the smaller ‘press-fit’ diameter, which is also where the change to full contact or 

interference occurs over a short distance.  There is a tensile axial stress also present near the kink 

on the free surface of the pin, which is due to the reverse in curvature of the pin outer surface to 

maintain continuity.   

 3) The axial stress created between the pin and web at the interface caused by the change 

in axial length of the pin and web.  Poisson’s ratio causes the pin to get longer under 

compression, while the web gets shorter while under stretch, resulting in shear stress at the 

interface acting in the axial direction. 

 

As the details of the high stress gradient present at the SCA were examined and understood, high 

sub-surface stress components were shown to exist in the FEM assembly solution.  The high sub-

surface stress values at the stress concentration are understood as follows (Objective 5): 
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1) At the surface of the pin at the SCA, very large compressive stress components exist, 

as the high contact radial stress is constrained by the pin material with high compressive 

axial and hoop stress components. 

2) At the same time, a kink in the pin material is present, where the compressed pin under 

interference fit wants to regain the free state as quickly as possible.  High shear stresses are 

required below the surface for the pin to grow in this manner.  The combination of high sub-

surface shear stresses and (still near to the pin surface) high compressive direct stress 

components creates high a maximum equivalent stress below the pin surface as well. 

3) The stress field described above in 1) is shown to have the size and shape of a Hertzian 

contact stress field, which was calculated with theoretical formulas [26] for the press-fit 

idealized as a flat plate and flat cylinder. 

 

Once the press-fit joint assembly behavior was understood, including the characteristics of the 

stress field at the SCA, meshing studies were employed with 2-D and 3-D FEM models to 

determine the element size required to capture the high stress gradient there.  An objective of the 

research is to define the mesh sensitivity and refinement that is required for acceptable stress 

accuracy (Objective 4): 

1) The 2-D mesh studies showed convergence of the local maximum values to a limit at h 

equals 0.025 mm to 0.01 mm, and so using h equals 0.01 mm may be considered a good target.  

2) When surface friction at the interface is considered in the 2-D axisymmetric model, the 

maximum stresses converges to a lower limit; except at the maximum tensile axial stress at 

location C, which was not shown to converge yet at h equals 0.005 mm.  It is uncertain whether 

the convergence had not been reached yet, or whether this variation is due to the variability in the 

FEM model. 

3) The assembly stresses for the 3-D models had reduced accuracy versus the 2-D values 

because of (solution time) limitations in minimum element size at the SCA that may be studied; 

the convergence of the 3-D models was very difficult to achieve.  It is unclear whether the 2-D 

maximum stress values at the SCA may be calculated with a 3-D model which is not 

axisymmetric, even with larger refined 3-D models. 

4) Combining information from both linear and log-log scale plots is a reasonable way to 

check for convergence.  Variance in the FEM solution over the entire range of h studied results 
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in some variation in maximum stress data points which differ somewhat from the expected 

smooth shaped curve.  Using a linear scale only to check for convergence is more sensitive to the 

variance in the FEM solution. 

 

The meshing studies which tested stress sensitivity to element size at the SCA required that 

efficient FEM meshing strategies were employed.  The most successful meshing strategies were 

presented along with some that were not as successful, and are described as (Objective 7): 

 1) The most successful and efficient meshing strategies employed were also the simplest 

tested.  Since the high gradient stress condition at the SCA was limited to a very small segment 

of the pin and web, a thin cylindrical section was be used at the interface, which determined that 

the mesh there would be based preferentially on bricks.  The optimum size and location of the 

rectangular volume was determined based on knowledge of the stress field at the SCA, and also 

based on trial and error.  The size and location of the brick elements on both the pin and web 

were equal for best results.  The bricks elements created a nice smooth contact pressure, and are 

the most efficient to fill the refinement volume at the SCA.  

 2) An acceptable meshing strategy was not possible without leveraging CAD to separate 

the pin and web SCA region into the cylindrical volumes.   

 3) Strategies that did not work as well included the construction of complex multi-tiered 

volumes near the SCA which resulted in better transition zones (refined to larger element sizes) 

but generated too many elements.  A mixed mesh approach was examined which used a refined 

mesh (at pin bottom) and coarse mesh (at pin top) but resulted in lower maximum stress values 

in comparison because of the non-symmetrical nature of the mesh. 

 

9.3 Conclusions From Chapter 5, Operating Condition FEM Models 

After the assembly problem was well understood, two 3-D FEM models were used to examine 

the press-fit joint of the crankshaft for the engine operating load conditions.  A full crankshaft 3-

D geometry model was considered along with a more efficient one-quarter bench test model.  

The behavior of the 3-D press-fit joint under operating loads was defined and discussed, 

including the details at the SCA, in a similar fashion to the 2-D assembly data, and is as follows 

(Objective 8):   



266 

1) As the crankshaft and pin experienced bending from rotational inertia or crankpin 

forces, the joint carried or transmitted load from the pin by a force couple on the pin acting at 

opposite diagonal corners of the press-fit.  The pin bending or force couple effectively ‘loads’ 

and ‘unloads’ the radial stress at the interface (SCA), which accordingly changes the Hertzian-

like stress field present. 

2) The pin loading / bending also creates compressive and tensile axial stress at the 

bottom of the pin, on the free surface near the SCA.  For the instance when the crankpin is 

loaded by combustion forces (LC3), the high tensile axial stresses coincide with the radial stress 

unloading at the SCA (which reduces the severity of the kink).  The maximum tensile axial stress 

(at location C) is shown to have a non-linear relationship with crankpin loading, due to two 

factors.  One, it is suspected that the radial stress unloads in a non-linear fashion because that is 

the nature of a spherical contact (the web true radius feature is assumed as a cylinder).  Two, the 

kink geometry acts as a stress concentration to the pin axial stress, and so both the axial stress 

value is increasing with increasing combustion forces, while at the same time the stress 

concentration of the kink reduces as the joint radial stress unloads there. 

3) Both 3-D models predicted the same joint behavior under load.  The only difference is 

the location of maximum pin bending changes because of loading differences.  

 

The 3-D FEM studies were limited in mesh refinement at the SCA because of extended solution 

times.  The element size of 0.01 mm which was recommended by the 2-D stress sensitivity 

studies was not feasible in the 3-D models, which had h equals 0.02 mm and 0.05 mm refinement 

for the one-quarter bench and full 3-D models respectively.  The implications of mesh refinement 

on stress local maximums were described, and also the detailed 2-D axisymmetric solutions with 

a highly refined mesh at the SCA were extended to the 3-D domain for press-fit assembly 

(Objective 9): 

1) Mesh refinement is required at the SCA to accurately evaluate the rotational inertia 

load (LC2) and the reciprocating mass load (LC4), which are shown to still have the most ‘kink’ 

present in the pin.  Since mesh refinement was limited, it is likely that these local maximum 

(compressive) values are under-predicted.  Potentially damaging high sub-surface shear and 

equivalent stresses would be generated by this loading.  Alternatively, the combustion event 

(LC3) is not sensitive to the mesh because the pin has ‘unloaded’ in the radial direction at this 
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point, which removes the kink / stress concentration.  So, there is good confidence in the 

accuracy of the maximum stress values calculated for the damaging tensile axial stresses on the 

surface of the pin.  For all load cases, increased mesh refinement is shown to produce a higher 

axial stress gradient; the axial stress turns from positive to negative over a shorter distance, 

approximately 0.1 mm. 

2) It is suspected that local maximum values calculated with a highly refined 2-D 

axisymmetric model would be matched with the 3-D solution if a higher mesh refinement was 

practical.  Therefore the higher value 2-D assembly stresses calculated were used as starting 

basis for the 3-D full crankshaft geometry solutions.  The local stress values tracked over 

operating load cases were determined using the principle of super-position.   

 

9.4 Conclusions From Chapter 6, Numerical Verification 

After the behavior of the multi-piece crankshaft was understood for the assembly and operating 

loads, the verification of the numerical models was examined.   It is an objective of the research 

process to develop good reliability in the overall application of CAE tools to design multi-piece 

crankshafts. (Objective 10): 

1) For assembly, good overall correlation between the FEA and Lame solution radial 

pressure at the interface exists which is a well researched fact.   

2) The detailed stress field at the SCA may only be examined by the FEM virtual test with 

which there is confidence. 

3) For the operating conditions, the overall structural behavior of the crankshaft may be 

modeled to an acceptable level using static load cases which are determined as worst case based 

on experience and experimental data.  This approach is the only practical route, as model size 

and the non-linear contact iterations at the joint do not allow a dynamic evaluation in the time 

domain that is feasible.  This is only acceptable if the crankshaft passes a modal test, and 

experimental data should always be used to confirm this modeling approach. 

4) Testing which is dedicated to fatigue failures through a) bench test or b) undersized 

crankshaft geometry (in a running engine) which induces high cycle fatigue failures earlier is 

required yet to fully prove the numerical methods. 
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9.5 Conclusions From Chapter 7, Press-fit Joint Optimization 

After good reliability of the numerical models is demonstrated, the next step considered in the 

research was optimization.  Since the high assembly stress state dominates the stress field for all 

the subsequent operating load cases, design solutions which minimize or reduce the local stresses 

at the SCA were studied for assembly with the 2-D model.  The improved understanding of the 

press-fit joint and the overall crankshaft behavior was leveraged to study design improvements 

as follows (Objective 14): 

1) The size of the feature was determined to need to extend past the SCA point in order to 

create the flexibility to relieve it in the radial direction.  The flexibility or gradual change in web 

stiffness which was introduced by the relief feature allowed significant reduction (40 to 60%) in 

the maximum stress values at the SCA for assembly, while still maintaining acceptable stress 

levels on the features itself, which by default must stretch (ie. have significant stress). 

3) The undercut and shoulder features are classic stress reduction methods which are 

implemented in reference books for other applications.  However, a body of research could not 

be found that implements these ideas and solves exactly the assembly stress field at the SCA for 

multi-piece crankshaft design, or also solves for the operating load conditions. 

4) An optimized undercut solution was examined for the operating loads, where the stress 

magnitudes and variations are shown to be acceptable from a design stress target perspective.   

Radial stress is decreased by around 50% for load steps 1,2, and 4, but converges for the 3
rd

 load 

step (which has an unloaded radial stress) .  Care had to be taken to balance the relief of the SCA 

area stresses with the higher stress levels created in the web at the undercut.  A surface 

strengthening treatment would also be required at the undercut to counteract the high mean 

tensile stress present, which is required fundamentally to obtain the flexible lip. 

5) The calculation of maximum stress values is thought to be more accurate with the 

undercut or shoulder feature since the stress gradient will be reduced. 
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9.6 Conclusions From Chapter 8, Rules And Tools 

The last phase of this research is to simplify the numerical models and results to make them 

easier to implement as engineering tools.  In particular for the multi-piece crankshaft research 

effort, geometry symmetry assumptions are used to reduce model effort, size, solution time, and 

data post-processing. (Objective 11) 

1) The one-quarter 3-D model was based on symmetry assumptions to reduce model size 

by over one-half, and improve computational efficiencies.  The detailed comparisons of the 

stress field and press-fit joint behavior in chapter 5 suggest that this virtual bench test creates a 

very similar response to the full 3-D crankshaft FEM model.  The symmetry assumption allows a 

more accurate evaluation by using a smaller element size h.  Also, the one-quarter bench test 

model offers greater accuracy with solutions times in 1/5 the time when compared to the full 3-D 

geometry model. 

2) Since a physical bench test likely would be a stationary without any crankshaft 

rotation, a ‘no-spin’ one-quarter bench test was also calibrated in chapter 8 so that modified input 

loads creates similar stress behavior in the pin at the SCA as calculated with the operating 

conditions.  Because of the non-linear behavior of the press-fit joint, load inputs for the physical 

testing may not simply use operating crankpin loads.  The one-quarter bench test model will 

become extremely valuable when physical durability testing occurs in the lab, which will create 

fatigue data and help improve material information. 

 

Another goal was to evaluate the behavior of a press-fit joint quickly using an analysis template, 

as described below (Objective 12): 

1) A user friendly axisymmetric model template was created that generates, solves, and 

post-processes the axisymmetric model automatically.  The manual task of creating each model 

would require many hours, which is reduced to several minutes with the template, and only 

needs the entry of a few geometry and mesh refinement parameters. 

 

The 2-D axisymmetric model was used to study the effect different variables had on the local 

maximum stress values at the SCA.  The following design rules were created for assembly 

stresses at the SCA, as an aid in fast upfront design (Objective 13):   
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1) It is desired to define the relationship between the average and the maximum σr since 

the design engineer may calculate by theoretical formula the approximate average value using 

Lame[24].  A study of the variation in interference (or average σr) for the baseline press-fit 

geometry revealed that the ratio of maximum σr at A does not vary linearly with the average σr at 

the interface, but a curve defining this relationship is available in Chapter 8 (for the particular 

true radius geometry used in this research).  This is due to the non-linear variation in the contact 

patch size between two loaded cylinders. 

2) The maximum local stress components at the SCA follow the magnitude of the local 

maximum radial stress.  Therefore, the average radial stress may be used to calculate the 

maximum radial stress at A using the curve defined (see Fig.8.1.3), and the other local stress 

maximums may be determined using the ratios below: 

o σaxial minimum at A (pin) = 0.80 σr minimum at A  

o σhoop minimum at A (pin) = 0.57 σr minimum at A 

o τxy maximum at B (pin) = -0.22 σr minimum at A 

o σvon maximum at B (pin) = -0.34 σr minimum at A 

o σvon maximum at A (web) = -0.59 σr minimum at A 

Note that the ratios of some stress components were more consistent with respect to σr minimum 

at A than others. 

3) Press-fit studies on historical engine designs supports the previous findings.  Simple 

ratios can be used to predict local maximum stress components at the SCA, based on the average 

radial contact pressure.  Accuracy will vary, but will fall in the 10 to 15 percent range.  The 

accuracy may be improved by using the extrapolated lines on the plots presented for those stress 

component ratios that showed variability. 
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10  Future Work  

The numerical tools researched in the thesis should facilitate design process of multi-piece 

crankshafts for various types of engines. The main benefit of applying these tools should be a 

significant reduction in costly testing of usual design alternatives (the ultimate aim would be to 

test only the final computer refined and optimal design). Despite the progress made, the 

numerical tools presented should be continuously upgraded and modified to be better able to 

simulate the real behavior.   

 

10.1 General Future Work 

In the future, the following general areas require work:  

1)  The complete design, analysis, and experimental validation process for multi-piece 

crankshafts should be put to use through several engine programs to improve the level of 

historical data and process maturity. 

 

10.2 Future Work with the 2-D Assembly FEM Models 

Some aspects of the (2-D) assembly problem have not yet been thoroughly investigated, 

including: 

1)  Further examine whether convergence has been reached for maximum axial (pin) stress at C 

by studying models with increased mesh density below 0.005 mm. 

2) Study the Hertzian stress distribution parameters b the for variation in press-fit geometry and 

interference, to determine the sensitivity of the position (depth) of the local maximum sub-

surface stresses. 

 

10.3 Future Work with the 3-D Models 

Many aspects of the (3-D) assembly problem have not yet been thoroughly investigated, 

including to following: 

1)  When more powerful computer hardware is available, larger 3-D model sizes can evaluate 

further the convergence of the maximum stress value at the SCA beyond h equals 0.02 mm. 

2) Further study the SCA area stress solution differences in the 30 degree slice and full 

crankshaft geometry models.  In particular determine, at much higher mesh refinement, the 
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sensitivity of the maximum stress values calculated with the near axisymmetrical (30 degree 

slice model) and non-symmetry geometry (crankshaft web). 

 

The following tasks require further research to better define the 3-D modeling effort of the 

operational loads: 

1) Re-calculate the stress conditions at the SCA for the pin and web using a higher density mesh 

refinement.  In particular, the details of the high compressive stress condition on the pin and web 

should be studied for LC4, on the bottom of the pin.  There is high confidence in the calculation 

of the stress condition there for the LC3 tensile condition since the radial interface pressure has 

unloaded at that time.  It is desired to determine any increase in the sub-surface stresses at the 

bottom of the pin (SCA) for an increased mesh density. 

2) The web maximum equivalent stress value (1332 MPa) at A1 calculated for LC4 (full 3-D 

crankshaft FEM model) falls very close to yielding, and should examined closer with a more 

refined element size.  If yielding occurs, a solution using elastic-plastic material models is 

required.  Potentially any yielding of the web will relieve some of the pin local elastic stresses at 

the SCA. 

3) Evaluate relative displacement or sliding between the pin and web surfaces at the SCA for the 

operational loads.  This relative displacement value could become a design metric with the 

eventual increased knowledge in this area.  The knowledge of joint relative motion will become 

relevant when crankshaft durability bench tests start producing fatigue data points, specifically 

when fretting is a contributing failure mechanism. 

4) Map the non-linear joint behavior in full, as only 3 specific load cases have been evaluated.  

Other operating load conditions could be studied.  For example, in chapter 5 the local maximum 

axial stress on the pin at C varied nonlinearly with the application of different crankpin 

combustion loads. (see Fig. 5.2.4.3) Potentially other non-intuitive maximum stress conditions 

exist.  At minimum the one-quarter FEM model should be used to study more combustion and 

inertial load increments determine exactly when the maximum tensile axial stress at C occurs. 

5) Examine the press-fit joint’s sensitivity to PTO crankpin and belt forces, so that it can be 

determined how effective the bench test approach is when it does not include the belt forces.  To 

do so, one would examine the changes in stress maximums with the full 3-D crankshaft FEM 

model for LC3, with and without the belt forces.  Potentially one could also examine historical 
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designs (of the same architecture) with to determine whether good correlation in local stress 

results at the SCA is shown between the full model and the one-quarter bench test model. 

6) Use sub-modeling methods to examine the press-fit joint behavior for a dynamic FEM 

crankshaft solution.  A relatively coarsely meshed continuous (one piece) crankshaft is used to 

calculate the dynamic response, from which the boundary conditions are taken for certain time 

steps of interest.  These boundary conditions are then imposed on the detailed non-linear sub-

model of the joint, which includes refined meshing at the SCA and a contact algorithm to 

replaces the continuous joint.  This solution approach is of interest when the crankshaft modes 

fall within the operating range and exhibit a heightened dynamic response. 

 

10.4 Future Work: Experimental Verification 

The following future work will be performed as part of the engine program’s regular testing 

regime: 

1) Collect crankshaft strain data to verify the dynamic behavior of the engine, and correlate to 

the FEM model predictions. 

 

In the future, it is extremely important that the following experimental activities take place so 

that this research area can take the next step forward in progress: 

1) Perform durability bench tests so that substantial fatigue data is generated.  There are two 

challenges with the bench test.  First, the fatigue damage accumulated in the bench test must be 

correlated to the engine running condition.  This becomes difficult with the non-linear joint 

behavior present and the designs susceptibility to both fretting and fatigue cracking failure 

mechanisms.   The second challenge is the lack of knowledge of the strengthened materials 

fatigue curve.  A second fatigue test which examines the strengthened material only, with a 

simple geometry shape (perhaps a pin coupon in bending) could help generate a material specific 

fatigue curve.  If one is to examine the numerical aspects of this problem, it is numerically 

challenging to calculate an accurate stress value, and it is also challenging to develop a 

representative material fatigue curve. 

2) Consistently generate crankshaft fatigue failures in the running condition.  This may be done 

either through undersized components or by testing the crankshaft component for extended 

lengths, past the typical validation confirmation mark. 
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10.5 Future Work: Tools And Rules 

Any further implementation experience with these numerical tools for multi-piece crankshaft 

design will result in the opportunity to enhance them.  Future work in this area includes: 

 

1) Further develop the one-quarter bench test FEM model to support physical bench testing by a) 

supplying the equivalent static loads which create the equivalent response as to when rotational 

inertia loads are applied to the crankshaft and b) leveraging the FEM model stress results along 

with fatigue calculations to compare with and correlate to fatigue data from the durability bench 

tests. 

2) Examine the structural response of the press-fit joint for a pure bending moment input to the 

crankpin using tje one-quarter bench test FEM model.  This load input would be similar to that 

for a common high frequency – high cycle crankshaft durability bench test apparatus.  It would 

be important to understand this type loading on the joint, including what stress field it produces 

at the SCA before any durability testing could be done with such an apparatus. 

 

10.6 Future Work: Optimization  

The optimization work thus far in the research focused on reducing the high mean assembly 

stress in the press-fit joint.  Future work in this area could consist of: 

1) Examine how the torque retention has been changed for the optimized solution, through both 

FEM and experimental methods.  One concern with the undercut design is that it reduces the 

torque retention capacity of the joint since it decreases the interface radial pressure at the SCA. 

2) Perform durability testing (bench or in running engine) with the optimized under cut design. 

3) Further develop other stress relieving features at the press-fit SCA such as the classic groove 

solutions in the pin, which create compressive axial stress at the pin surface. 

4) Re-examine the undercut 3-D one-quarter bench test model with a higher mesh refinement; h 

equals 0.05 mm was used, which could be decreased in size.  This size however should be 

adequate since the stress gradient in the area of concern has been improved substantially by the 

presence of the undercut. 
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Appendix A: 30 Degree Symmetry Model Supporting Data 

This appendix provides supporting information to section 4.4, a review of the 30 degree slice 

model construction and results.  The 30 degree slice model was created to examine efficient 

meshing practices, and also to compare its results for assembly to the 2-D axisymmetric and 3-D 

model. 

 

A.1 30 Degree Slice Models 

As discussed in section 4.4, a single rectangular area swept to form a ring or cylinder at the area 

of interest proved to work best for good meshing control.  Figure A.1.1 shows the rectangular 

ring volume at the SCA for the web. 

 

 

Figure A.1.1 A 3-D slice model showing the ring volume at the SCA for the web. 

 

Trial and error was also used with the variation in the size and location of the rectangle (see Fig. 

A.1.2) and matching mesh (see Fig.A.1.3) to obtain acceptable contact stress, but still minimize 

model size.   
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Figure A.1.2 Multiple rectangular areas were studied at the SCA. 

 

 

Figure A.1.3 Mesh variation for the rectangular areas at the SCA. 

 

Mesh details for the thin rectangular volume on the web (at the SCA) are provided in Fig. A.1.4, 

note ring always used brick elements for best contact solutions results.   
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Figure A.1.4 A typical ring (brick) mesh using a 2 volume approach. 

 

A.2 30 Degree Slice Model: General Displacement And Stress State 

Figure A.2.1 shows the radial displacement plot for the 3-D slice model.  The interference 

between the pin and web is generated with a temperature change.   

 

Figure A.2.1 Assembly (press-fit) radial deflection plot, 30 degree slice model. 

Component stress (σr, σz, τrz) for the assembly problem are plotted in Figs. A.2.2 thru A.2.4.  In 

each plot, a close up of the stress distribution at the SCA is provided.  The results posted use an 
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element size of h equals 0.002 mm.  Generally, these 3-D patterns look very much like the 2-D 

results, but are lower in magnitude.   

 

Figure A.2.2  Assembly (press-fit) radial stress plot, 3-D slice model. 

 

 

Figure A.2.3  Assembly (press-fit) axial stress plot, 3-D slice model. 
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Figure A.2.4  Assembly (press-fit) shear stress plot, 3-D slice model. 

 

Figure A.2.5 shows a highly distorted equivalent stress plot of the pin at the SCA.  The 3-D plot 

demonstrates the ‘kink’ of the pin free surface that the 2-D model exhibited.   

 

 

Figure A.2.5 A distorted plot of assembly σVM stress of the slice model pin. 
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Finally, in Fig.A.2.6 the (radial) contact pressure distribution at the SCA is shown on the pin 

surface.  Peak surface normal pressure matches peak radial stress on the pin surface, as is 

required.  Note how consistent the pressure distribution is in the hoop direction. 

 

 

Figure A.2.6 Assembly contact pressure plot at the SCA, 3-D slice model. 

 

A.3  30 Degree Slice Model: Results For A Mixed Mesh 

In order to reduce the model's size, alternative meshing approaches were examined.  Mesh size 

was varied across the theta (θ) direction, using a fine mesh at one end and a coarse end at the 

other in order to minimize the number of elements used.   

The mesh sizing was controlled with the ring volume on both the pin and web, and is shown in 

Fig.A.3.1.  For example, the mesh size may change from h equals 0.02 mm to h equals 0.1 mm 

across the θ distance of the ring.  For these studies, this approached was termed ‘mixed mesh’. 
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Figure A.3.1 Details of the Mixed Mesh model showing mesh variation across the geometry 

volume of interest at the SCA.  

 

Figure A.3.2 shows an isometric view of the pin detailing σz stress at the SCA.  This view 

provides the variation in the stress field across the pin outer diameter.  For an axisymmetric 

solution, there should be no variation in the hoop (θ) direction.  But to the mixed mesh models 

all stress components exhibit some variation in stress in the circumferential direction, and in 

particular shear stress variation is very noticeable in Fig.A.3.2.  Section 4.6 provides a more 

detailed examination of the effect of mesh density for the mixed modeling approach. 

 

Surface contact pressure is provided for a mixed mesh in Fig.A.3.3.  Poor mesh quality at the 

SCA, on the surface, is shown to greatly effect the maximum pressures calculated.  In particular 

the tetrahedral elements at the transition point from refined to coarse mesh appear to have a large 

affect on the stress field. 
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Figure A.3.2 Isometric view of axial stress on the pin at the SCA. 

 

 

Figure A.3.3 Isometric view of surface contact pressure on the pin at location A 
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Appendix B: Full Geometry 3-D Crankshaft FEA Model Details 

This appendix contains further information on the 3-D model details, in support of the model 

description in section 5.3.1.  The pin and web are split in to volume segments to enhance the 

post-processing of results; also a thin cylindrical volume is used for good control of the mesh at 

the SCA.  First note that the cylindrical volume is cut into 10
o
 segments, which is shown in Fig. 

B.1.   

 

Figure B.1  A  thin rectangular cylinder at the SCA is cut into pie shaped segments. 

 

Next the PTO outer web is shown with a partial selection set in Fig. B.2.  Since the wedge 

volumes center about the pin axis, the selection set chosen here is not symmetric about the main 

shaft.  This same web volume selection set is shown in Fig. B.3 in an isometric view, both with 

and without the pin.    

 

Figure B.2 The PTO outer web volume segments. 
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Figure B.3 The PTO outer web is cut into volume segments for post processing. 

 

Now additional FEM mesh descriptions are provided in support of section 5.3.1.  Some key fillet 

radii, which are shown on the crankshaft mesh in Fig. B.4, need to maintain adequate mesh 

refinement to predict accurate stress values around the curved surfaces. 

   

Figure B.4  Fillet regions on the crankshaft with good mesh refinement. 
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Next the brick element based mesh present in the thin cylindrical volume at the SCA is shown in 

Figure B.5.  The element size is controlled in both volumes on the pin OD and the web ID so that 

stress sensitivity studies may be mapped relative to element size. 

 

Figure B.5 The thin cylinder mesh at the SCA which is segmented by 10
o
 increments. 

 

The solid mesh is a mixture of 20 node brick and 10 node tetrahedral quadratic elements, which 

require prism and wedge elements in the transition from the brick shape to the tetrahedral shape.  

The transition from brick to tetrahedral elements is shown in different views in Figs.B.6 and B.7. 

 

Figure B.6 Details of the mesh at the PTO outer web, including bore mesh details. 
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Figure B.7  A sectioned view of the PTO outer web and pin. 

 

Appendix C: Full Geometry 3-D Crankshaft FEA Assembly Results 

The information included in this Appendix contains FEM results from the full 3-D crankshaft 

model used to evaluate the press-fit assembly problem, time step 1.  The assembly results are 

presented in great detail in Chapter 4, and in particular these results match closely to those for 

the one-quarter bench FEM model. 

 

 The equivalent stress on the PTO outer web is shown in Fig.C.1 for time step 1, assembly.  

Stress of any significance is limited to the local area around the press-fit joint, as the crankshaft 

main bearing boundary conditions are set such that the reactions there are zero for the assembled 

state.  The stress contours and magnitudes match the previous results provide in chapter 4 for this 

same geometry and radial interference.   

 

The contact pressure calculated at the SCA on the pin OD surface is very uniform for the 

meshing and contact approach used.  Radial stress for the pin SCA cylindrical volume is plotted 

in Fig.C.2.  A comparison of maximum radial stress to element size and the previous 3-D results 

is provided in section 5.4.  A high compressive radial stress peaks at location A which has been 

the case for all previous 2-D and 3-D models.   
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Figure C.1 End view of PTO outer web equivalent stress plot, LC1 (assembly). 

 

 

Figure C.2 Pin SCA cylindrical volume σr plot, LC1 assembly. 

 



292 

Axial stress is plotted considering the pin SCA cylindrical volume only in Fig.C.3.  Tensile stress 

on the pin free surface is shown to occur just outside the contact region as previously 

demonstrated. 

 

Figure C.3 Pin SCA cylindrical volume σz plot, LC1 assembly. 

 

Next assembly radial stress is shown at the SCA area for the web only in Fig.C.4, on the bottom 

side of the pin.  High compressive radial stress occurs at location A, and the stress drops quickly 

to zero at the point of no contact between the pin and the web.  The stress contour is very 

uniform in the theta direction, which supports the earlier assessment of the press-fit problem as 

axisymmetric. 

 

Figure C.5 shows a plot of radial stress on the pin and outer web plane of symmetry.  High 

compressive radial stress is present at the interface as has been demonstrated throughout this 

research document.  Note that the location of the SCA on the bottom of the pin is designated as 

the BDC (Bottom Dead Center) location.   

 

Hoop stress is shown next in Fig.C.6 for a model cut along the plane of symmetry.  High hoop 

stress in the web material above the pin dominates the plot, and again this is consistent with the 

previous data.  
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Figure C.4 Plot of σr on the web at the SCA, LC1 assembly. 

 

 

Figure C.5 Plot of σr on the PTO outer web plane of symmetry, LC1. 
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Figure C.6 Plot of σy on the PTO outer web plane of symmetry, LC1. 

 

Axial stress is plotted next in Fig.C.7 on the plane of symmetry, and demonstrates the tensile 

stress is created on the free surface of the pin (OD) just beyond the SCA location.   

 

 

Figure C.7 Plot of σz on the PTO outer web plane of symmetry, LC1. 



 

295 

Appendix D: Full Geometry 3-D Crankshaft FEA Rotational 

Inertial Results 

This appendix contains supporting FEM data from the full 3-D model for time step 2, the 

rotational inertia load case.  A plot of equivalent stress on the PTO outer web is shown in Fig. 

D.1; the press-fit stresses captured in the assembly LC1 are the basis for most of the high stress 

area in LC2.   

 

Figure D.1 PTO end equivalent stress plot for time step 2. 
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Figure D.2 PTO end web and pin axial stress plot for time step 2. 

Next LC2 axial stress is plotted for the pin and web in Fig. D.2.  As has been shown previously 

the rotational inertia load from the web counterweights creates pin bending.  This creates a 

tensile stress at the bottom of the pin, which adds to the tensile stress already present on the pin 

surface just next to the SCA location.   

 

Figure D.3 presents the same view as Fig. D.2 but plots equivalent stress; the high stress in the 

web that is created by the press-fit is shown to be significantly higher than the pin rotational 

inertia stresses. 

 

Figure D.3 PTO end web and pin equivalent stress plot for time step 2. 

 

The next set of plots examines stress components on the global x-y plane of symmetry.  A plot of 

radial stress on the pin and outer web plane of symmetry is shown in Fig. D.4.  For time step 2, 

the radial stress increases at the SCA on top of the pin, and also on the opposite diagonal corner 

of the pin at the bottom (indicated by arrows in Fig. D.4).  In section 5.2 it was demonstrated 

with the one-quarter model that this occurs as a result of the pin carrying the bending load 

created by the web counterweights. 
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Figure D.5 plots hoop stress for the model cut along the plane of symmetry, showing little 

change in stress overall from LC1 assembly to LC2 rotational inertia loading.  Previous one-

quarter symmetry results indicated that hoop stress levels and magnitudes are not very sensitive 

to inertia and crankpin loading. 

 

 

Figure D.4 Plot of σr on the PTO outer web plane of symmetry. 

 

Figure D.5 Plot of σθ on the PTO outer web plane of symmetry. 
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Previously in Fig. D.2, a high tensile stress was demonstrated on the bottom of the pin, created 

by the inertia loading of the web counter-weight.  Figure D.6 plots axial stress on the plane of 

symmetry, which also shows the tensile stress created at the bottom of the pin by the rotation 

inertia loading. 

 

 

Figure D.6 Plot of σz on the PTO outer web plane of symmetry. 

 

Appendix E: Full 3-D Model: PTO Crankpin Results On Cutting 

Plane B 

This appendix contains summary operating load results for the full 3-D FEM model, with a focus 

on the stress condition on the PTO crankpin using cutting plane B which was identified in 

section 5.3.5.  This data is presented in support of section 5.3.6, the full 3-D crankshaft FEM 

results summary. 

 

The information in this section examines the stress fields on plane B for the PTO crankpin.  As a 

reminder from earlier in this chapter, plane B was identified as the location of maximum axial 

stress on the pin for load case 4.     
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Figure E.1 plots radial stress across plane B for load cases 3 and 4.  Note in Fig. E.1 that location 

B2 unloads for time step 3, this is due to the fact that location B2 is only 40 degrees offset from 

location A1 (see Fig. 5.3.6.2).  Location A1 also unloads during time step 3 because of the 

combined effect of the combustion forces on the crankpin and the belt forces.  Since cutting 

planes A and B shown in Fig.5.3.6.2 are similar in orientation, and locations A1 and B1 are on 

opposite sides of the pin, stress at these two locations will load and unload in an opposite manner 

for time steps 3 and 4. 

 

 

Figure E.1 Plot of σr on plane B for PTO crankpin.  

 

Figure E.2 Cutting plane locations on PTO crankpin end view.  
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Note that the location B1 in Fig. E.3 shows high axial stress for LC4, but it appears to be lower 

than axial stress at location B2 for LC3.  This suggests that PTO crankpin bending is more 

significant for time step 3 than 4.  Both time steps have significant belt forces which influence 

pin bending, but time step 3 crankpin loading should create higher pin distortion, which supports 

Fig. E.3.  The combustion load applied to the PTO crankpin in LC3 adds to the rotational inertia 

bending on the pin, while the inertial loads applied in the opposite direction are opposed by the 

spin bending on the pin.   

 

Finally the equivalent stress is plotted on plane B for LC3 and LC4 in Fig. E.4.  The pin stress 

distribution does show minor sensitivity to loading on plane B. 

 

 

 

Figure E.3 Plot of σz on plane B for PTO crankpin. 

 

The stress details at location B1 are now presented, first by examining the radial stress field.  

Figure E.5 shows some radial stress unloading at time step 2 at B1, but since it is close to the 

neutral axis of the crankshaft, it is not significant.  Location B1 shows high radial stress loading 

for LC3 because of the location’s position relative to the belt and crankpin combustion loads. 
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Figure E.4 Plot of σVM on plane B for PTO crankpin.  

 

 

Figure E.5 Radial stress (σr) plot at location B1 for load steps 1 to 4. 
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Figure E.6 Axial stress (σz) plot at location B1 for load steps 1 to 4. 

 

Axial stress details for location B1 follow a trend opposite to location A1 on cutting plane A.  

Slightly compressive stresses are developed during time step 3 (see Fig. E.6) and tensile axial 

stresses follow in time step 4. 

 

 

Figure E.7 Shear stress (τrz) plot at location B1 for load steps 1 to 4. 
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The shear stress plot in Fig.E.7 follows the radial stress magnitudes of Fig.E.5, a trend that has 

been consistent for all result sets.  The highest shear stress τrz at location B1 occurs at time step 

3, when the compressive radial stresses are greatest. 

 

Next the equivalent stress at location B1 is plotted for load cases 1 thru 4 in Fig.E.8; variation in 

equivalent stress in the pin is shown to be very low.  However, the web experiences significant 

variation for time steps 3 and 4, created by the thin section of the web at location B1 (a thin 

section exists because of the pockets in the web near to the pin interface is used for mass 

balance).   

 

The equivalent stress is now examined at location B2 in Fig.5.3.6.9.  Much of the same trend 

reported for equivalent stress at location B1 is shown to hold true for location B2 as well. 

 

Figure E.8 Equivalent stress (σVM) plot at location B1 for load steps 1 to 4. 
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Figure E.9 Equivalent stress (σVM) plot at location B2 for load steps 1 to 4. 

 

Finally, the axial stress plots along line fg for locations B1 and B2 are provided in Fig. E.10 and 

E. 11.  Since location B1 is nearly opposite to A1 on the pin outer diameter, it is expected that 

the vertical shifting of the axial stress curve will trend oppositely.  What is noteworthy is that the 

changes in axial stress from LC1 (assembly) to LC2 (spin inertia) are very slight, which is due to 

the fact that plane B is oriented very close the neutral axis of pin bending created by the 

crankshaft spinning in LC2. 

 

Figure E.10 Plot of σz along line fg for load cases 1 thru 4, location B1. 
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Figure E.11 Plot of σz along line fg for load cases 1 thru 4, location B2. 

 

Appendix F: Example Experimental Verification Of Crankshaft 

Strain 

In this appendix an example of a correlated FEA crankshaft model which uses the static load 

case approach and the general FEM methodology outlined in this research is presented in brief to 

gain confidence in the numerical methods.  The FEM model of the full crankshaft uses the same 

overall approach deployed in chapter 5, specifically the static load cases and boundary conditions 

implemented.   

 

Note that the strain measurements described in Chapter 6 reflect only the engine operating 

conditions.  The strain gauges on a multi-piece crankshaft can be located only at some distance 

from the SCA and from the press-fit joint, in general.   

 

It is also assumed that both a multi-piece or a one piece crankshaft will behave similarly when 

considering the general displacement and stress field away from the press-fit connection.  For 

example, the fillet radius stress values tracked in chapter 5 (the full 3-D model) should be 

calculated as nearly identical values with the press-fit joint modeled either as continuous or non-

continuous.  The correlation data presented this appendix is taken from a crankshaft which is of 

one piece construction.  If a one piece crankshaft FEM model shows good correlation to the 
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measured data, it can be assumed that a FEM model of a multi-piece crankshaft would also 

correlate well to the measured strain data, when both models use the same general FEM 

methodology outlined in the research. 

 

First the degree of reliability of the input load data for the FEM full 3-D crankshaft model is 

discussed.  A measured combustion curve in Fig.F.1 [37] is used as an input to the MBD model 

to calculate crankpin loads as well as the belt forces for the FEM model.  The calculated MBD 

loads are thought to be of high quality with a measured combustion curve input; the crankpin 

loads will then be dependent on rotational speed, and part geometry, mass / inertia, all of which 

are known quantities. 

 

After belt and crankpin loads were calculated with the MBD model, several static load cases 

were extracted based on engineering logic and experience (see Fig.F.2).  Among the load cases 

extracted from the MBD force data is the ‘maximum PTO end combustion’ load case, which is 

used in the research also (LC3 in chapter 5).  This load case is highlighted in the MBD crankpin 

force data provided in Fig.F.2.  

 

Figure F.1 The measured ‘in-cylinder’ combustion curve for a 4-stroke engine [37]. 
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Figure F.2 Crankpin MBD loads calculated with the measured combustion pressure [37]. 

 

Next, in Fig. F.3 a general resultant displacement and equivalent stress plot are provided for the 

crankshaft design using the LC3 maximum PTO crankpin combustion load event.  The 

crankshaft displacement and stress plot shows sensitivity to belt and crankpin loading. 

 

 

Figure F.3 FEA model results for the twin cylinder crankshaft combustion event load case [37]. 

 

Dynamic strain measurements were taken on the crankshaft for several operating conditions in 

the locations presented in Fig. F.4. 
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Figure F.4 Experimental strain measurements locations on the crankshaft [37]. 

 

Next, the time history strain data for gauges 1, 2, and 3 [38] are presented in Fig. F.5 for the high 

speed maximum load condition, the same operating condition that is used in the FEM model 

assumption (LC3 in chapter 5).  The repetitive nature of the time history strain data is revealed, 

which is typical for data from an engine operating environment. 

 

The finite element model shows good correlation with respect to experimental strain measured 

on the crankshaft in three locations, as is shown in Fig. F.6. The maximum bending strain on the 

PTO end web (gage 3) occurs during the PTO end combustion event, and the experimental and 

FEA values match within 5 % (the numerical answer is higher).  The finite element model did 

not quite match the bending strain measured at gage 2 nearly as well, with predicted strains 16% 

higher than measured; but this should be still considered as acceptable correlation. 
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Figure F.5 Time history strain measured at gages 1, 2, and 3 [38]. 

 

 

Figure F.6 FEA model results at gage 3 for the correlated combustion event.  Note the high strain 

gradient in the area of measurement [37]. 
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Figure F.7 FEA model results at gage 2 for the correlated combustion event [37].   

 

Appendix G: Undercut Solution Optimization Results 

The following results from the one-quarter bench test FEM model are presented as supporting 

data to that discussed for the optimized undercut solution in section 7.3. 

 

Figures G.1 through G.4 demonstrates the general behavior of the press-fit joint with the 

undercut geometry.  Equivalent stress, maximum and minimum principal stress plots are 

provided for load cases 1 to 4, which may be directly compared to similar plots in section 5.2.  

Because of the added undercut, the web has higher stretch than the baseline geometry, especially 

at the bottom of the pin (see Fig. G.1).  As the joint is loaded by the rotational inertia (time step 

2), the joint exhibits the same basic loading mechanics that are discussed in detail in Chapter 5.  

Radial stress increases at opposite diagonal corners of the pin to carry the counter weight 

bending load.  Local stresses at the SCA are reduced when the combustion load is applied in load 

step 3 (Fig. G.3), and when the reciprocating mass load is applied in load step 4 (see Fig. G.4).  
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Figure G.1 Equivalent, maximum and minimum principal stress plots, time step 1. 

 

Figure G.2 Equivalent, maximum and minimum principal stress plots, time step 2. 
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Figure G.3 Equivalent, maximum and minimum principal stress plots, time step 3. 

 

Figure G.4  Equivalent, maximum and minimum principal stress plots, time step 4. 

 

Next the general stress behavior of the web at the undercut feature is outlined in Fig. G.5 through 

G.7 for load steps 1, 2, and 4 respectively.  For each time step, the equivalent and maximum 

principal stress plots are given, as was provided for the baseline geometry in section 5.3.   
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Figure G.5 Equivalent and maximum principal stress plot isometric view, time step 1. 

 

Note each plot uses consistent stress range scales, 0 to 785 MPa for equivalent stress, and 0 to 

700 MPa for maximum principal stress.  This set of stress plots do not show a great deal of 

variation in stress in the undercut feature. 

 

 

Figure G.6 Equivalent and maximum principal stress plot isometric view, time step 2. 
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Figure G.7 Equivalent and maximum principal stress plot isometric view, time step 4. 

The details of the stress field at the SCA are given next to describe fully the benefit of the 

undercut.  The axial stress details at the SCA are examined at the bottom of the pin at line fg.  

Fig.G.8 plots pin surface axial stress across the SCA area for load steps 1 thru 4 for the undercut 

geometry.  Note the stress gradient from location A to C appears to be reduced and also 

transitions over a longer distance, in comparison to similar plots in section 5.2 for the baseline 

geometry. 

 

Figure G.8 Axial stress at the SCA along line fg for time steps 1 to 4, bottom of pin. 
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The baseline and undercut geometry are compared directly in Fig. G.9 for load step 1.  Axial 

stress is significantly reduced (1/3 to 1/4 the value of the baseline) on the pin for the portion 

inserted into the web.  Maximum axial stress at location C is reduced from 257 MPa (baseline) to 

229 MPa (undercut) for the h equals 0.05 mm solution; it is felt this reduction will be greater 

with a refined mesh solution.  The baseline solution will be more sensitive to mesh refinement 

than the undercut geometry. 

 

Figure G.9 Stress σz along line fg for LC1, for the baseline and undercut (UC) data.  

 

 

Figure G.10 Stress σz along line fg for LC2, for the baseline and undercut (UC) data. 
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A comparison of load step 2 and 4 is given in Fig. G.10 and Fig. G.11 respectively, with the 

undercut providing a significant reduction in stress.   

 

Figure G.11 Stress σz along line fg for LC4, for the baseline and undercut (UC) data. 

 

Appendix H:  2-D Axisymmetric FEA Model Input Decks 
The following input deck listing is used to create the parametric 2-D axisymmetric model: 

 

/prep7 

!* 

!* 

!*  Define Parameters 

!***************************************** 

!*  Geometric Parameters 

!* This file generates parametric  

!*  geometry for a "true" radius, 

!* which has a tangent radius on the cylinder 

!* side, which is cut off. 

!* 

PIN_OD=(30.003/2) 

WEB_L=12.35 

!* 

CRANK=X 

PIN_OD=(29.000/2) 

PIN2OD=2*PIN_OD 

PIN_ID=0.25 

PIN_L=36 

WEB_ID=(29.000/2) 
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WEB_OD=(44.80/2) 

WEB_L=17.68 

TRUE_R=2.0 

TRUE_T=0.9 

IFER=(PIN_OD-WEB_ID) 

UR_B=0.15 !* radial distance path B is in from pin surf 

UR_C=0.25 

UR_D=0.35 

!***************************************** 

!*  Mesh size parameters 

!* 

web_h1=0.005 

web_h2=0.005 

pin_h1=0.005 

pin_h2=0.005 

pin_h3=0.010 !* sets e size for areas 4, 5 next to SCA 

pin_h4=0.020 !* sets l div for lines 20,23 (areas 4,5 above) 

e_globe=0.5 

!***************************************** 

!*  Coefficient of Friction 

fric1=0.13 

!* 

!***************************************** 

!* 

temp2=332 

!* 

!***************************************** 

!*  solution substeps 

!* 

n_sbsteps=20 

max_sbsteps=40 

min_sbsteps=10 

!***************************************** 

!* 

!*  /title, 72 alpha-numeric max w %parmeter% 

/title,ELASTIC, %CRANK% crank, %PIN2OD% pin OD, %IFER% interfere, %pin_h1% h  

!* 

!* 

!***************************************** 

!*   Database 

!*   

ET,1,PLANE82 

!* ET,1,PLANE42 

!*   

!*   

!*  
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!*   

KEYOPT,1,1,0 

KEYOPT,1,2,0 

KEYOPT,1,3,1 

KEYOPT,1,5,0 

KEYOPT,1,6,0 

!*     

!*   

!*  Pin Material 

!*   

MP,EX,1,206000,    

MP,NUXY,1,0.27,      

MP,DENS,1,7.829e-9,  

MP,ALPX,1,0.000012 

MP,MU,1,fric1 

!*   

!*  Web Material 

!*   

MP,EX,2,206000,    

MP,NUXY,2,0.27,      

MP,DENS,2,7.829e-9,  

MP,ALPX,2,0.000000012 

MP,MU,2,fric1 

!* 

!* 

TREF,22 

TUNIF,temp2  

!*   

!* 

!* 

K,1,PIN_ID,0,0,   

K,2,PIN_OD,0,0,  

K,3,PIN_OD,PIN_L,0, 

K,4,PIN_ID,PIN_L,0,   

K,5,WEB_ID,0,0,   

K,6,WEB_OD,0,0,  

K,7,WEB_OD,WEB_L,0, 

K,8,WEB_ID,WEB_L,0,  

!* 

!*      Define Points for True Radius Arc 

!* 

k,9,WEB_ID,WEB_L-TRUE_T,0 

k,10,WEB_ID+TRUE_R,WEB_L-TRUE_T,0 

k,11,WEB_ID+TRUE_R,WEB_L-TRUE_T+TRUE_R,0 

!* 

!* Define points for mesh refinement at interface 
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!* 

k,14,PIN_OD,WEB_L-TRUE_T-TRUE_T,0 

k,15,PIN_OD,WEB_L,0 

k,16,PIN_OD,WEB_L+TRUE_T,0 

k,17,WEB_ID,WEB_L-TRUE_T-TRUE_T,0 

!* 

!* 

!*      Create "true radius" arc 

!* 

larc,11,9,10,TRUE_R 

!*      Create Lines. 

!*  

!* Add v2 keypoints for creation of areas at SCA 

!* 

K,18,PIN_OD-UR_B,0,0, !* keypoints for path definitions 

K,19,PIN_OD-UR_C,0,0, 

K,20,PIN_OD-UR_B,PIN_L,0 

K,21,PIN_OD-UR_C,PIN_L,0 

k,29,PIN_ID,WEB_L,0 

!* 

!* LSTR,       1,       2   !line 2 

LSTR,       1,       19   !line 2 

LSTR,       2,       14   !3 

LSTR,       14,      15   !4 

LSTR,       15,      16   !5 

LSTR,       16,      3    !6 

!*LSTR,       3,       4    !7 

LSTR,       21,       4    !7 

LSTR,       4,       29    !8 

!* 

!*     

LSTR,       5,      6    !9 

LSTR,       6,      7    !10 

LSTR,       7,      8    !11 

LSTR,       9,      17    !12 

LSTR,       17,      5    !13 

!* 

!* Divide the arc by the interface edge 

!* 

lsbl,1,11,0,keep,keep 

!* 

!* Add line after intersection cut. 

!* 

LSTR,       7,      12    !14 

!* 

!* 
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LDELE,11 

LDELE,1 

LDELE,15 

!* 

!* Add v2 keypoints for creation of areas at SCA 

!* 

!* 

k,22,PIN_OD-UR_B,WEB_L-TRUE_T-TRUE_T,0 !* keypoints for  

k,23,PIN_OD-UR_B,WEB_L,0  !* new areas at 

k,24,PIN_OD-UR_C,WEB_L-TRUE_T-TRUE_T,0 !* the SCA 

k,25,PIN_OD-UR_C,WEB_L,0 

k,26,PIN_OD-UR_D,WEB_L-TRUE_T-TRUE_T,0 

k,27,PIN_OD-UR_D,WEB_L,0 

K,28,PIN_ID,WEB_L-TRUE_T-TRUE_T,0 

!* 

!* DEFINE NODES ON KEYPOINTS FOR PLPATH 

!* 

!* NKPT,1,2 

!* NKPT,2,3 

!* NKPT,3,5 

!* NKPT,4,8 

!* 

NKPT,1,2 

NKPT,2,3 

NKPT,3,5 

NKPT,4,12 

NKPT,5,9 

!* DEFINE NODES ON KEYPOINTS FOR PLPATH 

NKPT,6,18 !* path UR_B in from pin OD 

NKPT,7,20 

NKPT,8,19 

NKPT,9,21 

NKPT,10,14 

NKPT,11,15 

NKPT,12,22 

NKPT,13,23 

NKPT,14,24 

NKPT,15,25 

NKPT,16,26 

NKPT,17,27 

!* DEFINE NEW LINES 

LSTR,       19,       18   !line 1 

LSTR,       18,       2   !line 11 

LSTR,       14,       22   !line 15 

LSTR,       22,       23   !line 17 

LSTR,       23,       15   !line 18 
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LSTR,       22,       24   !line 19 

LSTR,       24,       25   !line 20 

LSTR,       25,       23   !line 21 

LSTR,       24,       26   !line 22 

LSTR,       26,       27   !line 23 

LSTR,       27,       25   !line 24 

LSTR,       3,        20   !line 25 

LSTR,       20,       21   !line 26 

LSTR,       26,       28   !line 27 

LSTR,       27,       29   !line 28 

LSTR,       29,       28   !line 29 

LSTR,     28,       1    !line 30 

!* 

!* Add in keypoints and lines for web 2nd area 

!* get kepoint location for kp12 

*get,kp12_xloc,kp,12,loc,x 

k,30,kp12_xloc,WEB_L-TRUE_T-TRUE_T,0 

LSTR, 12,  30 !line 31 

LSTR, 30,  17   !line 32 

!* 

!*      DEFINE AREAS 

!*   

AL,2,1,11,3,15,19,22,27,30 !* Area 1 

!* 

AL,9,10,16,31,32,13 !* Area 2 

!* 

AL,15,4,18,17  !* Area 3 

!* 

AL,19,17,21,20  !* Area 4 

!* 

AL,22,20,24,23  !* Area 5 

!* 

AL,27,29,28,23  !* Area 6 

!* 

AL,28,24,21,18,5,6,25,26,7,8  !* Area 7 

!* 

AL,32,31,14,12  !* Area 8, web 2nd area 

TYPE,   1    

MAT,       1 

REAL,    

ESYS,       0    

SECNUM,  

!*   

!*   

MSHAPE,0,2D  

MSHKEY,0 
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!************************************************************* 

!*  Set up mesh controls on lines 

!*************************************************************   

lesize,12,web_h1,, 

lesize,14,web_h2,, 

lesize,4,pin_h1,, 

lesize,5,pin_h2,, 

!* Set up h size on Pin Areas 

lesize,17,pin_h1,, 

lesize,20,pin_h4,, 

lesize,23,pin_h4,, 

lesize,31,web_h1,, 

!* 

!*  Areas 2,8 on Web 

!* 

!* Mesh areas 3,4,5. 

esize,pin_h1,  !*  Set default element edge size. 

!*  Areas 3 and 8 are at the SCA 

AMESH,3 

MAT, 2 

AMESH,8 

MAT, 1 

!*  Areas 4 and 5 are next to the SCA on the Pin 

esize,pin_h3,  !*  Set default element edge size. 

AMESH,4 

AMESH,5 

!* 

!* Mesh areas 1 and 2. 

esize,e_globe,  !*  Set default element edge size. 

!*   

AMESH,1 

MAT, 2 

AMESH,2 

MAT, 1 

AMESH,6 

AMESH,7 

!* 

!*      APPLY CONSTRAINTS TO LINES 

!*   

!* DL,8, ,UX,0   

DL,2, ,UY,0 

DL,1,,UY,0 

DL,11,,UY,0   

DL,9, ,UY,0   

!*   

!*   
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!*   

!* 

!*************************************** 

!* Generate the contact pair(s) 

!* 

/COM, CONTACT PAIR CREATION - START 

!* 

!*      CM Command is used to group entities into selection sets 

!* 

CM,_NODECM,NODE  

CM,_ELEMCM,ELEM  

CM,_LINECM,LINE  

CM,_AREACM,AREA 

!* 

!*      GSAV command for output of graphics to file 

!*  

/GSAV,cwz,gsav,,temp 

!* 

!*      Set up coefficient of friction for material 

MP,MU,1,FRIC1    

MAT,1    

R,4  

REAL,4 

!*      Define ET 169, the target element, and 

!*      ET 172, the contact element (2-D).   

ET,4,169 

ET,5,172 

RMODIF,4,1,,,1.0,0.1,,   

RMODIF,4,7,,,1.0e20,0.0,1.0  

KEYOPT,5,2,0 

KEYOPT,5,3,0 

KEYOPT,5,6,0 

KEYOPT,5,7,0 

KEYOPT,5,8,  

KEYOPT,5,9,0 

KEYOPT,5,11, 

KEYOPT,5,12,0    

! Generate the target surface    

LSEL,S,,,3  

LSEL,A,,,4  

CM,_TARGET,LINE  

TYPE,4   

NSLL,S,1 

ESLN,R,0 

ESURF,ALL    

CMSEL,S,_ELEMCM  
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! Generate the contact surface   

LSEL,S,,,13  

LSEL,A,,,12 

LSEL,A,,,14  

CM,_CONTACT,LINE 

TYPE,5   

NSLL,S,1 

ESLN,R,0 

ESURF,ALL    

ALLSEL   

ESEL,ALL 

ESEL,S,TYPE,,4   

ESEL,A,TYPE,,5   

ESEL,R,REAL,,4   

/PSYMB,ESYS,1    

/PNUM,TYPE,1 

/NUM,1   

EPLOT    

ESEL,ALL 

ESEL,S,TYPE,,4   

ESEL,A,TYPE,,5   

ESEL,R,REAL,,4   

CMSEL,A,_NODECM  

CMDEL,_NODECM    

CMSEL,A,_ELEMCM  

CMDEL,_ELEMCM    

CMSEL,S,_LINECM  

CMDEL,_LINECM    

CMSEL,S,_AREACM  

CMDEL,_AREACM    

/GRES,cwz,gsav   

CMDEL,_TARGET    

CMDEL,_CONTACT   

/COM, CONTACT PAIR CREATION - END    

*SET,_REALID,4   

/GSAV,cwz,gsav,,temp 

CM,_CWZ_EL,ELEM  

ESEL,S,REAL,,4   

ESEL,R,ENAME,,169,174    

KEYW,CWZCNTC,1   

KEYW,CWZTARG,1   

/PSYMB,ESYS,0    

/PNUM,TYPE,1 

/NUM,1   

EPLOT    

*SET,_REALID,4   



 

325 

CMSEL,S,_CWZ_EL  

CMDEL,_CWZ_EL    

/GRES,cwz,gsav 

FINISH   

 

The following input deck listing is used to post-process the parametric 2-D axisymmetric model: 

 

/POST1    

!***************************************** 

!*  Set no. of divisions for plot paths 

!* 

DIV_SEG=pin_h1/5 

PATH_DIV_p=PIN_L/DIV_SEG 

PATH_DIV_w=WEB_L/DIV_SEG 

!* 

/auto,1 

PLDISP,0 

*ask,n,next,plot 

PLDISP,2 

!********************************** 

/SHOW,JPEG   

JPEG,QUAL,75,       !* default quality 

JPEG,ORIENT,HORIZ   !* default orientation 

JPEG,COLOR,2     !* default color 

JPEG,TMOD,1      !* default bitmap text 

/GFILE,800,      !* default 800 pixel resolution 

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP        

/SHOW,CLOSE       !* purges graphic buffer, needed every time output format 

changes  

/DEVICE,VECTOR,0     !* vector mode default 0 areas shown as shaded colors 

!*********************************** 

!* 

!* Plot nodal stress in radial direction 

!* 

plnsol,s,x,2,10 

!********************************** 

/SHOW,JPEG 

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 



326 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP     

/SHOW,CLOSE  

!*********************************** 

*ask,n,next,plot 

!* 

!* Plot nodal stress in axial direction 

!* 

plnsol,s,y,2,10 

!********************************** 

/SHOW,JPEG 

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP   

/SHOW,CLOSE  

!*********************************** 

*ask,n,next,plot 

!* 

!* Plot nodal stress in theta direciton 

!* 

plnsol,s,z,2,10 

!********************************** 

/SHOW,JPEG   

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

!*********************************** 

*ask,n,next,plot 

!* 

!* Plot nodal stress, VonMises Equivalent 

!* 

plnsol,s,eqv,2,10 

!********************************** 

/SHOW,JPEG   

!*   
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/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE 

!*********************************** 

*ask,n,next,plot 

!*  

!* Plot nodal stress, Zoomed view Radial 

!* 

/ZOOM,1,SCRN,0.465342,-0.056204,0.503673,-0.145620 

/ZOOM,1,RECT,0.0999029,0.309615 ,0.517314991678 ,-0.104999995232 

PLNSOL, S,x, 1,1.0 

!********************************** 

/SHOW,JPEG   

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

!*********************************** 

*ask,n,next,plot 

!*  

!* Plot nodal stress, Zoomed view Axial 

!* 

PLNSOL, S,y, 1,1.0 

!********************************** 

/SHOW,JPEG   

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

!* 

!*********************************** 

*ask,n,next,plot 

!*  

!* Plot nodal stress, Zoomed view Theta 
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!* 

PLNSOL, S,z, 1,1.0 

!********************************** 

/SHOW,JPEG   

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

!* 

!*********************************** 

*ask,n,next,plot 

!*  

!* Plot nodal stress, Zoomed view Von Mises 

!* 

PLNSOL, S,eqv, 1,1.0 

!********************************** 

/SHOW,JPEG   

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE 

!************************************ 

asel,s,area,,1   !* select area 1 - pin 

asel,a,area,,3,7,1 !* select area 3-7 pin 

ALLSEL,BELOW,AREA !* select all below area 1 

!*********************************** 

*ask,n,next,plot 

!*  

!* Plot nodal stress, Zoomed view Von Mises, Pin Area Only 

!* 

PLNSOL, S,eqv, 1,1.0 

!********************************** 

/SHOW,JPEG   

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  
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/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE 

allsel,all 

!* 

!*********************************** 

*ask,n,next,plot 

!********************************** 

!*      Generate plots along the Pin OD 

!* 

!* Set path nodes for paths b and c 

pathb_t=7 

pathb_b=6 

pathc_t=9 

pathc_b=8 

!********************************** 

!* Select Pin Elements only 

asel,s,area,,1   !* select area 1 - pin 

asel,a,area,,3,7,1 !* select area 3-5 pin 

ALLSEL,BELOW,AREA !* select all below area 1 

NSEL,a,NODE,,1,2 

!* ksel,s,kp,,2 

!* allsel,below,kp 

!* 

path,pin_od,2,30,path_div_p   ! define path_name,no.points,no.sets,no.div. 

!* 

!* 

ppath,1,1               ! path point 1 is node 1. 

ppath,2,2               ! path point 2 is node 2. 

!* 

!* 

pmap                    ! mapping of discontinuities. 

!* 

pdef,sx_PIN,s,x             ! interpret radial stress. 

pdef,sz_PIN,s,z             ! interpret hoop stress. 

pdef,sy_PIN,s,y             ! interpret axial stress. 

pdef,seq_PIN,s,eqv     ! interpret equiv stress. 

!* 

!* 

!* 

plpath,sx_PIN,sy_PIN,sz_PIN         ! plot 

!********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 



330 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

!* 

plpath,sx_PIN,sy_PIN,sz_PIN,seq_PIN         ! plot 

!********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,seq_PIN       !plot 

!*********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,sx_PIN         ! plot 

!********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 
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!* 

plpath,sy_PIN         ! plot 

!********************************** 

/SHOW,JPEG   

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,sz_PIN 

!********************************** 

/SHOW,JPEG   

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

!* 

!********************************** 

allsel,all 

!* 

!* 

!* 

!********************************** 

!*      Generate plots along the WEB ID 

!********************************** 

!* Select Web Elements only 

asel,s,area,,2   !* select area 2 - web 

ALLSEL,BELOW,AREA !* select all below area 2 

NSEL,a,NODE,,3,4 

!* 

path,web_id,2,30,path_div_w   ! define path_name,no.points,no.sets,no.div. 

!* 

!* 

ppath,1,3               ! path point 1 is node 1826. 

ppath,2,4         ! path point 2 is node 1895. 

!* ppath,1,1826            ! path point 1 is node 1826. 

!* ppath,2,1895            ! path point 2 is node 1895. 
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!* 

!* 

pmap                    ! mapping of discontinuities. 

!* 

pdef,sx_WEB,s,x             ! interpret radial stress. 

pdef,sz_WEB,s,z             ! interpret hoop stress. 

pdef,sy_WEB,s,y             ! interpret axial stress. 

pdef,sxy_WEB,s,xy 

pdef,syz_WEB,s,yz 

pdef,sxz_WEB,s,xz 

pdef,seq_WEB,s,eqv     ! interpret equiv stress. 

!* 

!* 

plpath,sx_WEB,sy_WEB,sz_WEB         ! plot 

!********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,sx_WEB,sy_WEB,sz_WEB,sxy_WEB,syz_WEB,sxz_WEB,seq_WEB  ! plot 

!********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,seq_WEB       !plot 

!*********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  
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/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,sx_WEB         ! plot 

!********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,sy_WEB         ! plot 

!********************************** 

/SHOW,JPEG   

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,sz_WEB 

!********************************** 

!* 

allsel,all 

!************************************************* 

!* Plot stress along path x nodes in from OD 

!************************************************* 

!* 

!*  node 36, on symm plane 

!* node 130, on end of pin 

!********************************** 

!!*      Generate plots along the Pin OD 

!********************************** 

!* Select Pin Elements only 
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asel,s,area,,1   !* select area 1 - pin 

asel,a,area,,3,7,1 !* select area 3-5 pin 

ALLSEL,BELOW,AREA !* select all below area 1 

NSEL,a,NODE,,6,9,1 

!* ksel,s,kp,,2 

!* allsel,below,kp 

!* 

path,pin_od_b,2,30,path_div_p   ! define path_name,no.points,no.sets,no.div. 

!* 

!* 

ppath,1,pathb_t         ! path point 1 is node 36. 

ppath,2,pathb_b         ! path point 2 is node 130-h=0.25,134-h=0.2. 

pmap                    ! mapping of discontinuities. 

!* 

pdef,sx_PINb,s,x             ! interpret radial stress. 

pdef,sz_PINb,s,z             ! interpret hoop stress. 

pdef,sy_PINb,s,y             ! interpret axial stress. 

pdef,seq_PINb,s,eqv     ! interpret equiv stress. 

!* 

!* 

!* 

plpath,sx_PINb,sy_PINb,sz_PINb         ! plot 

!********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

!* 

plpath,sx_PINb,sy_PINb,sz_PINb,seq_PINb         ! plot 

!********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  
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*ask,n,next,plot 

!* 

plpath,seq_PINb      !plot 

!*********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,sx_PINb         ! plot 

!********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,sy_PINb         ! plot 

!********************************** 

/SHOW,JPEG   

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,sz_PINb 

!********************************** 

allsel,all 

!* 

!* 
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!*  node 36, on symm plane 

!* node 130, on end of pin 

!********************************** 

!!*      Generate plots along the Pin OD 

!********************************** 

!* Select Pin Elements only 

asel,s,area,,1   !* select area 1 - pin 

asel,a,area,,3,7,1 !* select area 3-5 pin 

ALLSEL,BELOW,AREA !* select all below area 1 

NSEL,a,NODE,,6,9,1 

!* ksel,s,kp,,2 

!* allsel,below,kp 

!* 

path,pin_od_b,2,30,path_div_p   ! define path_name,no.points,no.sets,no.div. 

!* 

!* 

ppath,1,pathc_t          ! path point 1 is node 35. 

ppath,2,pathc_b          ! path point 2 is node 130-h=0.25,n135-h=0.2. 

pmap                    ! mapping of discontinuities. 

!* 

pdef,sx_PINc,s,x             ! interpret radial stress. 

pdef,sz_PINc,s,z             ! interpret hoop stress. 

pdef,sy_PINc,s,y             ! interpret axial stress. 

pdef,seq_PINc,s,eqv     ! interpret equiv stress. 

!* 

!* 

!* 

plpath,sx_PINc,sy_PINc,sz_PINc         ! plot 

!********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

!* 

plpath,sx_PINc,sy_PINc,sz_PINc,seq_PINc         ! plot 

!********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 
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/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,seq_PINc      !plot 

!*********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,sx_PINc         ! plot 

!********************************** 

/SHOW,JPEG     

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 

!* 

plpath,sy_PINc         ! plot 

!********************************** 

/SHOW,JPEG   

!*   

/CMAP,_TEMPCMAP_,CMP,,SAVE  !* default color map, w 9 contours 

/RGB,INDEX,100,100,100,0    !* specifies RGB color format 

/RGB,INDEX,0,0,0,15  

/REPLOT  

/CMAP,_TEMPCMAP_,CMP 

/DELETE,_TEMPCMAP_,CMP  

/SHOW,CLOSE  

*ask,n,next,plot 
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!* 

plpath,sz_PINc 

!********************************** 

allsel,all 

!* 

 




