
 
 
 
 
 
 
 

The Effects of Fire and Salvage Logging on Early Post-Fire 

Succession in Mixedwood Boreal Forest Communities of 

Saskatchewan 

 
 
 

 

 
A Thesis Submitted to the 

College of Graduate Studies and Research  
In Partial Fulfillment of the Requirements for the 

Degree of Master of Science 
 in the Department of Geography  

University of Saskatchewan  
Saskatoon 

 
 

by  
 
 

Dustin C. Guedo 
 
 
 
 
 
 
 
 

© Copyright Dustin C. Guedo, September 2007. 
All rights reserved. 

 



 i 

Permission to use 

In presenting this thesis in partial fulfilment of the requirements for a 

Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of 

this University may make it freely available for inspection.  I further agree that 

permission for copying of this thesis in any manner, in whole or in part, for scholarly 

purposes may be granted by the professor or professors who supervised my thesis work 

or, in their absence, by the Head of the Department or the Dean of the College in which 

my thesis work was done.  It is understood that any copying or publication or use of this 

thesis or parts thereof for financial gain shall not be allowed without my written 

permission.  It is also understood that due recognition shall be given to me and to the 

University of Saskatchewan in any scholarly use which may be made of any material in 

my thesis.  Requests for permission to copy or to make other use of material in this thesis 

in whole or part should be addressed to: 

 
Head of the Department of Geography 

University of Saskatchewan 

Saskatoon, Saskatchewan 

S7N 5A5 

 



 ii  

Abstract  

This study compared the effects of fire severity and salvage logging on early 

successional vegetation in the mixedwood boreal forest upland of Saskatchewan.  The 

effects of salvage logging on post-fire forest stands are poorly understood.  Few studies 

have investigated the short-term effects of salvage logging on the regeneration of boreal 

plant species or the long-term impact on overall forest composition and diversity.  This 

study examines  salvage logged and wildfire leave stands across three burn severity 

classes (no burn, low/moderate burn, and high burn) over two time periods (1 year post-

fire and 10 years post-fire).  The results indicate that salvage logging has a significant 

impact on the early regeneration of burned mixedwood boreal plant communities with the 

effect still evident in forest stands ten years post-fire.  Salvage logging has long-lasting 

residual effects on boreal forest plant community development. 

Salvage logging one year post-fire reduced the number, diversity, and 

abundance of species within each of the burn severities, creating a less abundant and 

simplified plant community.   It was also shown that salvage logging one year post-fire 

tended to create more homogenous plant communities similar to those communities 

typical of areas of moderate burn severity, constraining the effects of burn severity and 

decreasing the range of the vegetation communities.  These findings are less pronounced, 

but still evident, within salvage logged stands ten years post-fire as three regrowth cover 

types have developed, characterised by no disturbance, moderate disturbance either by 

fire or salvage logging, and severe disturbance.  The convergence of plant community 

characteristics between burn severity classes across logging treatments suggests that the 

effects of salvage logging do not have long lasting effects within areas of high burn 

severity. 
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1. Introduction:  

The boreal forest is the dominant forest region in Canada, extending from 

Newfoundland and the Labrador coast to northern British Columbia (Rowe 1972).  It is a 

complex and dynamic biome that is strongly influenced by natural disturbances, 

especially fire, which creates a canopy heterogeneous in stand structure and age.  Fire is 

the most ecologically important stand-replacing disturbance in the boreal forest (Bonan 

and Shugart 1989; Barnes et al. 1998; Schulze et al. 2005).  The boreal forest disturbance 

regime is also influenced by storms, insect and disease outbreaks.   

Fire disturbances within the boreal forest consume the tree canopy, understory 

vegetation and organic layer of the forest floor, altering tree stand structure, vegetation 

patterns, and successional dynamics (Johnson 1992).  The combustion of organics within 

the understory layer after a wildfire event leaves patches of bare mineral soil covered 

with a nutrient enriched layer of ash, and causes an increase in topsoil pH (MacLean et 

al. 1983), facilitating the quick germination of many shade intolerant, early successional 

species (Rowe 1983).  The capability of regeneration by in situ propagules in a post-fire 

environment is dependant on the burn severity and depth of burn (Archibold 1979; Rowe 

1983; Schimmel and Granström 1996), which ultimately influences successional 

processes and stand development. 

Historically, the fire cycle in western Canada typically ranges from 50 to 100 

years (Johnson and Rowe 1975; Bonan and Shugart 1989, Weir et al. 2000).  A fire cycle 

is defined as the number of years to burn over an area equal to the entire area of interest 

(Johnson and Van Wagner 1985).  Over the last century, the natural fire cycle has been 

altered by fire suppression and other human influences on the boreal forest.  Long-term 
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fire management policies, increased efficiency of fire detection and response, large-scale 

timber harvesting operations, and the expansion of agriculture have significantly altered 

the forest environment and the natural fire cycle (Weir et al. 2000; Timoney 2003).  

Boreal forest communities now commonly develop after an anthropogenic disturbance as 

opposed to a natural disturbance.  The replacement of natural disturbance by logging may 

profoundly influence the structure and composition of the forest. 

Burn severity influences early successional processes by determining the depth of 

burn, exposing patches of mineral soil exposure and consumption of the leaves and 

branches of the tree canopy, all of which affect the regenerative ability of boreal species 

(Rowe 1983; Schimmel and Granström 1996).  Plants within the boreal forest have 

evolved in a fire driven ecosystem and have adapted to the effects of fire (Rowe 1983).  

For species which may regenerate by rhizomes or suckering (such as Populus tremuloides 

and Betula papyrifera) buds within the organic layer will suffer lower mortality rates 

when a shallow burn occurs, allowing for regeneration without the need for exposed 

mineral soil.  Species which rely on seed dispersal for regeneration (such as Pinus 

banksiana) depend on a deep burn to consume the organic layer, leaving behind bare 

mineral soil and a more favorable seedbed (Rowe 1983; Schimmel and Granström 1996).  

Charron and Greene (2002) have shown that exposed mineral soil improves survivorship 

of both Pinus banksiana and Picea mariana seedlings while increasing depths of the 

organic layer cause elevated seedling mortality.  The act of salvage logging disrupts the 

post-fire areas by tilling the soil with machinery and leaving a layer of woody debris over 

top of the burned surface, diminishing the area of open mineral soil used by aerial seed.  

Compounded by the removal of seed bearing branches, specifically those containing 
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serotinous cones (Pinus banksiana) the aerial seed bank is essentially removed and input 

of seeds is relied on by cone bearing trees along the cut-block perimeter.  This lowers the 

chances for aerial seed germination and ultimately creates successional stands dominated 

by species which rely on suckering (Populus tremuloides) for regeneration (Greene et al. 

2006). 

Within burned areas it is now common practice to salvage harvest post-fire 

mixedwood stands immediately following the burn.  The act of salvage logging (clear-cut 

harvesting after a fire event) within burn areas causes a secondary disturbance which 

alters the forest structure and influences plant regeneration (Martinez-Sanchez et al. 

1999; Kurulok 2004; Purdon et al. 2004, Donato et al. 2006; Greene et al. 2006).  The 

initial conifer seedling regeneration and aspen suckering have been observed to be less 

abundant within salvage logged areas compared to wildfire areas, due to mechanical 

damage from harvesting and removal of the seed bank.  Stress on the seedlings also 

increases due to altered microclimate conditions, increased sunlight and the tillage of the 

forest soils.  The varied burn intensities within the fire perimeter, coupled with the effects 

of salvage logging, could delay forest regeneration and affect early post-fire succession in 

western mixedwood boreal forest stands. 

After a fire disturbance, salvage logging decisions are made quickly to maximize 

the volume of merchantable timber which can be harvested before the timber depreciates 

in quality.  Research with the Canadian boreal forest has shown that this creates profound 

changes in species richness and diversity (Kurulok 2004; Purdon et al. 2004) and tends to 

homogenize the stand structure within the early stages of regeneration.  These decisions 

are made without the knowledge of the long term effects that salvage logging has on the 
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forest ecosystem.  More research and insight is needed on what effects salvage logging 

has on the forest ecosystem and this question needs to be properly addressed for 

recommendations on the future of salvage logging and forest resource management 

within the Western Canadian boreal forest.  A comparative analysis of the effects of fire 

and salvage logging on forest flora and microclimate is the main component of this study. 

 

1.2 Objective and Hypotheses  

The principal objective of this study is to determine if salvage logging within areas of 

different forest fire burn severities has an effect on early succession in a mixedwood 

boreal forest community.  The effect of burn intensity and salvage logging was 

investigated in three comparative mixedwood stands in the boreal forest of 

Saskatchewan.  This study incorporates species composition, environmental 

characteristics, plant community comparisons, and microclimate variations between 

unlogged and salvage logged forest stands one and ten years post-fire.  To address the 

objective of the study, the following research hypotheses were developed: 

1. Ho: plant communities of unlogged burn areas = plant communities of salvage 

          logged burn areas. 

2. Ho: plant communities and microclimate do not vary among burn severities. 

3. Ho: plant communities of salvaged logged burn sites converges with plant 

    communities of adjacent unlogged burn sites. 

The impacts of salvage logging on the forest resource will be assessed in light of 

the results of the study. 
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2. Background   

648 forest fires burned in Saskatchewan in the summer of 1995.  Over 1,600,000 

ha of forestland were burned (IFFN 2005), with a record number of forest fires occurring 

within the southern commercial forest.   Salvage logging in 1995 and 1996 reached 

record levels, creating over 1,200 jobs and producing an estimated 1.4 million cubic 

meters of fire-killed timber (Saskatchewan Environment 1996; Saskatchewan 

Environment 1997; Greif 2000).  This large output of salvaged timber was made possible 

by the use of portable mills, an improved technique for utilization of charred stems and a 

newly developed market for salvaged timber products (Greif 2000; Araki 2002). 

Concern about the effects of salvage logging on the post-fire environment and the 

dearth of research on the impact of burn severity on forest succession prompted the Fish 

and Wildlife Branch of Saskatchewan Environment to initiate the Burned Forest 

Monitoring Project (BFMP) in 1995.  That project created a baseline on the effects of 

several large 1995 forest fires near Beaupré Creek and Mahigan Lake in Saskatchewan.  

The project focused on burn severity patterns and their effects within fire perimeters.  

The field information collected was also intended to be used as baselines for comparison 

with salvage logged areas of the same forest type to assess the effects of post-fire logging 

practices on the forest ecosystem. 

Permanent sites consisting of a variety of forest stand types were established 

within Weyerhaeuser Canada Ltd’s Prince Albert Forest Management Agreement (FMA) 

area.  Through cooperation with Weyerhaeuser, the study sites were reserved from 

logging in the interests of research on the forest ecosystem.   A grid pattern of survey 

lines spaced at 50 meters was established at three study sites and fire severity was 
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recorded at each grid point using scorch heights on trees and degree of consumption of 

the ground flora and surface duff.  These permanent sample plots were designed as part 

of a long term monitoring program which would catalogue the effects of fire severity on 

plant succession and the ecosystem over a ten to twenty year period.  Adjacent to the 

study sites were areas that were salvage logged following the fires, or had been logged 

just previous to the fire and then were site-prepared and planted in 1996 or 1997.  This 

created an ideal research area for comparing post-fire succession in wildfire and salvage 

logged areas.  However, due to a change in departmental priorities within the Fish and 

Wildlife Branch of Saskatchewan Environment all work on the BFMP was halted in 1997 

and no further research was conducted (Greif 2000). 

Before the project was halted, burn severity maps were created for the three 

sampled sites with markers left to facilitate relocation for future research.  A four-class 

burn severity rating system was also devised. A portion of the present study expands the 

initial work on fire severity effects conducted by the staff of the BFMP in the Beaupré 

and Mahigan Lake areas.   
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3. Literature review 

3.1 Introduction 

Salvage logging increasingly has become a very common practice within boreal 

forest management to harvest fire-killed merchantable timber present after fire.  Previous 

ideologies within forest management and general public perceptions are that forested 

areas affected by a major fire disturbances are considered wasted and damaged.  The loss 

of the ecological and aesthetic qualities of an old growth forest often leads to a 

misunderstanding of the vital role that fire plays within the boreal forest ecosystem.  This 

attitude towards post-fire forest environments has allowed forestry practices to increase 

within recently burned areas to harvest the charred stems before they become what the 

industry may refer to as a “wasted” forestry product.  Ecologically, burned forest stands 

are hot-spots of boreal plant diversity, early successional species regenerate and stand 

turn-over occurs while burned stems and dead trees act as instruments of shade, nutrients 

and homes for many species of plants and animals.  Consequently, there is no “waste” on 

a biological scale (Rowe 1983; Nappi et al. 2004). 

Salvage logging under current legislation within Saskatchewan does not take into 

account the ecological implications of disturbance on the post-fire productivity of forest 

stands.  Forest companies are encouraged to harvest disturbed stands as a measure to 

ensure allocated timber supplies are not reduced due to large-scale wildfires.  This places 

pressure on forestry companies to salvage harvest areas disturbed by wildfire, increasing 

the amount of disturbance within the wildfire perimeter without an understanding long 

term effects that salvage logging incurs on the boreal forest ecosystem.  As the frequency 
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of salvage logging increases throughout the boreal forest, there is growing uncertainty on 

what effects this practice has on the post-fire integrity and health of the forest. 

 

3.2 The mixedwood boreal forest of Saskatchewan  

The mixedwood boreal forest of Saskatchewan has an approximate area of 

11,156,000 ha and extends across the province in a northwest to southeast direction 

between 52° and 56° North latitude.  The mid-boreal upland ecoregion is located within 

the Boreal Plain Ecozone.  The mixedwood upland is characterized by trembling aspen 

(Populus tremuloides), white spruce (Picea glauca), balsam fir (Abies balsamea), white 

birch (Betula papyrifera), and balsam poplar (Populus balsamifera), with Picea glauca 

and Abies balsamea found prominently in old growth stands.  Depressions and areas of 

poor drainage form stands of black spruce (Picea mariana) and tamarack (Larix 

laricina).  Jack pine (Pinus banksiana) is found on more rapidly drained sandy soils 

typical of sand dunes and plains (Rowe 1972; Canadian Forestry Service 1986; 

Beckingham et al. 1996).   

The western mixedwood boreal forest area is composed of overlays of fluvial-

lacustrine deposits and areas of glacial till.  Soils found within this region include 

Luvisols, Brunisols, Gleysols and Organic soils (Canadian Forestry Service 1986).  

Luvisolic soils develop in moderately cool climates, under deciduous and coniferous 

forest vegetation.  The soils form in well-drained areas of sandy-loam to clay based 

parent material.  They are characterised by an eluviated light-colored A (Ae) horizon, a 

brownish illuvial B (Bt) horizon in which silicate clay has accumulated from the 

eluviated top layer, and a usually calcareous C (k) horizon.  Brunisolic soils are well 
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drained soils exhibiting brownish Bm or Btj horizons.  In this region they are typically 

sandy in texture and occur in areas under deciduous and coniferous forest vegetation.  

Gleysolic soils form in poorly drained areas that show signs of prolonged periods of soil 

saturation with water and a lack of oxygen.  They are defined by the presence of grey 

gleyed colours, prominent mottles or both within a soil horizon located within 50 cm of 

the mineral soil surface.  Organic soils form in low lying areas which are water saturated 

for much of the year and have developed from deposits of fen or bog peat.  Organic soils 

support coniferous vegetation comprised principally of Picea mariana and Larix laricina. 

 

   3.2.1 Forestry in Saskatchewan 

Each year an average of 24,000 ha of mixedwood boreal forest is harvested from 

Crown lands in Saskatchewan (Saskatchewan Environment 2003).  Approximately 58 

percent of the commercial forestland is allocated to Forest Management Agreement areas 

(FMA) with approved Forest Management Plans and Environmental Impact Assessments 

(Figure 1).  The majority of the harvest within the allocated FMA is done through clear-

cutting with extensive road networks throughout the region.  Disturbances, such as 

fragmentation of the forest and soil compaction, have led to concerns for the long term 

biodiversity of the mixedwood boreal forest (Saskatchewan Environment 2005). 
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Figure 3.1  Forest Agreement Areas (FMA) in Saskatchewan’s forests as of 2001 
source: Saskatchewan Environment, 2003. 
 

Based on a ten-year average for the period 1987-97, approximately 500,000 ha of 

the mixedwood forest is burned annually by an average of 785 fires.  This disturbance is 

equivalent to 500% of the area harvested each year in Saskatchewan.  The volume of 

merchantable forest burned each year is approximately 3 million cubic meters with a 

potential value of $72 million for the forest products industry of Saskatchewan 

(Saskatchewan Environment 1998).  Following a wildfire disturbance, accessible burned 

forest stands are assessed immediately and salvage harvesting operations ideally occur 

within the first two years following a fire to utilize the burned timber before 

decomposition renders it unmerchantable.  Salvage harvesting operations are focused on 

the first two years post-fire to safeguard the trees regenerating after disturbance. 
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3.3 Wildfire disturbance regime 

The boreal forest is a wildfire ecosystem and fire plays an essential role in stand 

dynamics, killing existing forest trees and decreasing understory organic matter (Johnson 

1992).  Wildfire plays a central role in the forest structure, composition, and ecological 

function of the boreal forest.  Crown fires occur where a predominantly coniferous 

overstory builds a large and very flammable fuel load over time.  Bonan and Shugart 

(1989) also suggest this is related to the slow decay of twigs and needles with low 

hanging branches which allow ground fires to quickly spread into the canopy.  Deciduous 

canopies tend to burn with less intensity, as recorded by Wang (2002), due to higher 

moisture contents within the canopy and understory. Consequently, mixedwood stands 

tend to burn in a more heterogeneous pattern with varying degrees of burn intensity and 

severity within the wildfire perimeter (Rowe and Scotter 1973; Johnson 1992). 

The heterogeneity of the forest is maintained through variations in the frequency 

and severity of forest fires.  Wildfires range from ground fires, which burn in the organic 

layer and root systems of the forest floor, to surface fires, which consume the organic 

layer and shrubs in the understory, scorching the bottom of tree trunks, to full canopy 

crown fires that may reduce most of the leaf and branch biomass to ash and charcoal 

(Johnson 1992; Archibold 1995; Johnson and Miyanishi 2001).  The size and frequency 

of wildfires is highly variable, creating both small and large scale disturbances which 

produce a mosaic of young, middle-aged and old aged forest stands throughout the boreal 

forest (Johnson 1992; Rowe and Scotter 1973). The availability and condition of fuels, 

such as standing dead trees (snags), ladder fuels, small trees (seedlings and saplings), dry 

litter, and any other decaying material in the area, affect fire severity (Archibold 1995; 
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Franklin et al. 2002).  Fire severity is further influenced by weather conditions at the time 

of the fire and during the antecedent period (Johnson 1992), 

 

3.3.1 Plant adaptation and succession 

Plants within the western boreal forest have evolved with fire and are adapted to 

this form of disturbance, and even depend on fire for regeneration.  Adaptive 

characteristics include serotinous cones, root and trunk suckering, and small wind 

dispersed seeds that need exposed mineral soil created by fire for successful germination.  

Rowe (1983) differentiates five functional adaptations utilized by boreal forest plants to 

cope with frequent forest fire disturbances.  In Rowe’s scheme, forest species are 

categorized by reproductive strategy following disturbance.  The five strategies are 

invaders, evaders, avoiders, resisters, and endurers (Table 3.1). 

 
Table 3.1  Plant adaptations and strategies in the context of fire (Rowe, 1983) 

Strategy Description 

Disseminule-based, propagating primarily by diaspores 

Invaders 
Highly dispersive, pioneering fugitives with short-lived 
disseminules 

Evaders 
Species with relatively long-lived propagules that are stored in 
soil or in canopy 

Avoiders 
Shade-tolerant species that slowly reinvade burned areas; late 
successional, often with symbiotic requirements 

Vegetative-based, propagating primarily by horizontal and vertical extensions 

Resisters 
Shade-intolerant species whose adult stages can survive low-
severity fires 

Endurers 
Re-sprouting species, shade-intolerant or tolerant, with 
shallow or deep buried perennating buds 
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Boreal plant species such as fireweed (Epilobium angustifolium) are early 

invaders of the post-fire environment, as they are shade-intolerant, needing an open 

canopy and areas of exposed mineral soil in which to establish.  Invader species 

regenerate both by seed dispersal and vegetative means.  Evader species such as 

Bicknell’s geranium (Geranium bicknellii) and corydalis (Corydalis sempervirens) rely 

on seed banks within the soil to regenerate.  Typical avoiders include Abies balsamea and 

bishop’s-cap (Mitella nuda).  These species often need some modification of the post-fire 

environment, such as a shade-producing leafy canopy before they can regenerate 

successfully.  Resisters, such as Pinus banksiana, can survive low intensity surface fires 

due to the thickness of the bark which protects the underlying cambium.  Pinus 

banksiana has also adapted to the fire regime by developing serotinous or semi-

serotinous cones which open when the heat from a wildfire melts the resin bonds which 

seal the cone shut (Wright and Bailey 1982).  Resister species, such as Pinus banksiana 

and Picea mariana, typically regenerate in high densities following a wildfire event 

providing the in-situ seed bank and mineral soil are available (Greene et al. 1999).  

Endurers, such as Populus tremuloides, exhibit large densities of saplings in post-fire 

environments due to suckering from the root systems. 

The reproductive strategies of species present combined with the environmental 

conditions mould succession after a disturbance.  Many boreal species display more than 

one method of reproduction (Rowe 1983).  Following a wildfire event, early successional 

communities are dominated by species which utilize in situ seed bank germinants and 

vegetative reproduction plus seed dispersal tactics for regeneration (Archibold 1979; Lee 

2004).  Later stages are dominated by species which rely on vegetative regeneration, with 



 14 

old growth communities dominated by shade tolerant species that can reproduce under a 

fully developed canopy. 

 
3.3.2 Fire impact 

Wildfires within the boreal forest vary in their intensity and frequency, resulting 

in differing mortality rates for canopy and understory species across the forest.  Fire 

frequency is defined as the average number of fires that occur per unit of time at a given 

point.  Fire intensity is the rate at which heat is given off by the flame; this energy 

transfer allows adjacent fuels to become heated and burned, thereby transferring more 

heat and propagating the fire outwards (Johnson 1992; Kafka et al. 2001).  The mortality 

of plant species within a wildfire will depend on the local intensity of the burn itself and 

the fires ability to raise the temperature of a species to a lethal level.  The intensity, 

frequency, and size of wildfires in the mixedwood boreal forest directly affect the spatial 

and temporal patterns in the vegetation cover (Alexander 1982; DeGrandpre et al. 1993).  

Fire intensity determines the mortality of above ground vegetation in both the canopy and 

understory, but has less effect on the temperature and survival of vegetation and seed 

stored below the surface, both of which are crucial to successful regeneration of the post-

fire environments. 

Ecological effects of fire on the mixedwood boreal forest depend on the fire 

severity (Alexander 1982; Schimmel and Granström 1996).  Fire severity is generally 

characterized as the amount of organic material, or duff, consumed by the fire and the 

extent and depth to which the soil is heated (Alexander 1982; Rowe 1983).  Fire severity 

is different from fire intensity in that it is characterized by duff removal and depth of 

burn, while intensity is the measured as the rate at which heat is given off by the flame.  
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Severity looks at the physical effects of the burn on plant and forest floor structure, while 

intensity measures the behaviour of the fire.   The period in which forest soils endure 

direct heating of a wildfire is usually short and the effects of heat transfer within the soil 

layer depend on the thickness of the duff layer and the heat capacity of the soil itself 

(Aston and Gill 1976).  Therefore the level of soil heating and its effects on underground 

vegetation can be assessed through the amount of the duff layer that is consumed.  A 

greater level of duff consumption results in a larger area of exposed mineral soil 

(Nguyen-Xuan et al. 2000).  Schimmel and Granström (1996) found that depth of burn 

and amount of duff consumed affects the initial succession of boreal forest species, with 

the effects lasting over many years post-fire.  Rhizomatous plant species regenerate quite 

quickly following light fire occurrences, while species which rely on seed dispersal need 

severely burned areas with an exposed seed bed of mineral soil for more successful 

germination.  This is shown in the hypothetical model derived from Schimmel and 

Granström in Figure 3.2. 

 
Figure 3.2  Hypothetical model of the regeneration of different categories of 
plants in relation to depth of burn: A - rhizomatous species; B - seed bank 
species; C - species that depend on post-fire seed dispersal. 
source: Schimmel and Granström, 1996. 
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Fire severity will vary throughout the burned area due to the fuel load, natural fire 

breaks, duff moisture, and topography of the forest stand and weather conditions during 

the burn (Rowe and Scotter 1973; Johnson 1992).  Miyanishi and Johnson (2002) 

reported that variations in fire severity within the burn perimeter create patches of 

burned, partially burned, and unburned areas.  Such variability affects the amount of 

mineral soil exposure and is a key factor which determines of the early stages of 

succession.  Fire severity generally tends to be higher in areas where conifer species 

dominate the canopy and lower where aspen is dominant (Wang 2002); this implies that 

fire severity will be heterogeneous within mixedwood areas (Flinn 1977; Granström 

1993).   

 

3.3.3 Standing-dead trees (snags)  

 Disturbance created by wildfire creates an environment with increased resources 

available to the plant species.  Removal of the local vegetation cover increases light 

levels, nutrients and water for plant growth (Barnes et al. 1998).  Post-fire mixedwood 

stand structure varies with the severity of the burn.  Typically, it is composed of many 

standing dead and downed trees and varying amounts of litter on the forest floor.  One of 

the longest lasting effects of a stand replacing wildfire is the presence of standing dead 

trees (snags). 

The standing dead tree component of the post-fire environment plays an important 

role in the early successional stages.  The removal of the canopy by a high severity fire 

immediately increases the amount of light that reaches the forest floor (Figure 3.3), and 

this alters soil and microclimate conditions in the post-fire environment (Ahlgren and 
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Ahlgren 1960).  Snags will still cast shadows which may partially limit the amount of 

incident light at ground level and will help to moderate temperatures (Carleton and 

MacLennon 1994).  Snags also provide an environment for a wide variety of early post-

fire habitat specialists, such as bark beetles (Scolytidae) and wood boring beetles 

(Cerambycidae), which quickly colonize burned snags (Hutto 1995; Drapeau 2000).  The 

large influx of wood-boring beetles imposes economic damage on the salvaged timber 

which may lower returns if harvest is delayed.  However, post-fire environments also 

host a large number of woodpeckers (Picoides) which feed on the insects, and the snags 

provide habitat for many cavity nesters (Hutto 1995; Hitchcox 1996). 

 
Plot N2 – 31.9 % Open Sky          Plot H1 – 72.9 % Open Sky 

 
Figure 3.3  Canopy coverage at the Candle Lake burn site in an unburned forest 
stand (left) and a high severity burned stand (right).  Note the large number of 
burned snags still standing within the high severity burn. 
 

Snags can remain standing up to 10-15 years after the burn (Figure 3.4), by which 

time most snags have fallen due to wind and decay.  Snags can remain as a prominent 

element within post-fire environments for up to 25-30 years (Greif et al. 1999; Lee and 
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Crites 1999; Russell et al. 2006).  The standing dead tree component of the mixedwood 

forest plays an important role in nutrient cycling as fallen snags decay slowly.  Thus, they 

provide a long-term source of nutrients (Barnes et al. 1999) in contrast to the rapid 

release of nutrients which occurs through combustion (MacLean et al. 1983; Brais et al 

2000). 

 

 
 

Figure 3.4  Large numbers of standing-dead snags still persist in an area of high 
burn severity at the Mahigan burn site approximately 8 years after the fire. 
 

3.3.4 Nutrient Cycling 

Wildfire greatly alters the distribution of nutrients within the post-fire 

environment (MacLean et al. 1983).  Changes in the radiation balance of a burned site 

due to removal of the canopy, blackening of the forest floor, removal of the insulating 

organic layer and altered moisture regimes may contribute to a shift in nutrient 

availability (Nguyen-Xuan et al. 2000).  Fire temporarily increases the soil temperature 

and pH, as well as removing large amounts of high carbon:nitrogen woody debris which 
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may promote nutrient cycling in the post-fire environment (Kimmens 1996).  The 

volatilization of nitrogen through fire (Raison 1979) and increase of phosphorus in the 

form of ash create an initial nutrient imbalance following a fire disturbance (Certini 

2005).  The magnitude of these effects depends on the severity of the fire. 

Within a burn perimeter, a complex blend of burn severity is found ranging from 

areas of severe high burn to residual green patches of unburned forest (Eberhart and 

Woodard 1987).  Similarly, the nutrient regime will vary between the areas of burn 

intensity (Nguyen-Xuan et al. 2000), which creates an environment for early successional 

species which rely on wildfire disturbance.   The long term result is a healthy 

heterogeneous forest stand (Johnson and Miyanishi 2001; Rees and Juday 2002).  The 

introduction of salvage logging operations alters the post-fire environment away from the 

natural state by removing snags and disturbing of the forest floor.  This may alter the 

environment making it less favourable for early successional species, thereby adversely 

affecting forest diversity. 

 
 
3.4 Salvage logging  
 
3.4.1 Salvage logging operations 

Salvage logging within wildfire disturbances not only harvests fire-killed or 

damaged trees, but also removes the residual areas of unburned forest.  This creates an 

additional incentive for forestry companies to invest resources in salvage.  Salvage 

logging operations by Weyerhaeuser Canada Ltd in Saskatchewan, as of 2004, use a burn 

code to target areas when salvage harvesting.  The burn code consists of five categories 

ranging from light scorching of the understory and lower tree trunk to a severe stand 
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replacing high trunk canopy burn.  These burn codes are used to target the most 

commercially viable areas within the burn perimeter (Pshebnicki per. comm. 2004).   

Unburned or green timber within Weyerhaeuser’s Saskatchewan FMA areas has 

on average a volume of 140-170 m³/ha.  When these forest stands are disturbed by 

wildfire, variable amounts of timber are rendered non-merchantable within the burned 

areas. Generally timber crews contracted by Weyerhaeuser will target burn codes 1 and 2 

(stands burned 1m or 2m up the trunk) for salvage as they are the most valuable for the 

production of pulp and saw timber.   

Burn code 1 stands are considered areas affected by a ground burn with timber 

loss being as little as 0 m³/ha.  However there may still be small areas within these stands 

with stems partially to completely consumed resulting in a 30-40 m³/ha loss.  Burn code 2 

stands will have a higher timber loss as any charred portions of the wood will need to cut 

off before the stem is processed.  These stands may incur losses as high as 50 m³/ha. Burn 

code 3 stands are rarely targeted for harvest intended for pulp or saw timber as losses 

may exceed 70 m³/ha.  Burn code 3 stands, as well as burn code 4 stands, are generally 

targeted by third party operators who convert the wood into alternative products, such as 

rail road ties and fencing posts.  Stands classified with a burn code of 5 or higher are too 

damaged to harvest as they would not provide any economic return (Pshebnicki per. 

comm. 2004). 

 

3.4.2 Effects of salvage logging   

Salvage logging operations, when feasible, will usually occur immediately after 

the fire is extinguished.  All timber is usually salvaged within one to two years of the fire 
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disturbance to ensure that it is commercially viable, because post-fire quality deteriorates 

quickly due to weathering of the timber and damage by invasive species, such as wood- 

boring beetles.  The post-fire environment provides an important habitat for many early 

successional bird and insect species.  Removal of standing timber from post-fire 

environments by salvage logging negatively affects early post-fire habitat specialists.  

Morissette et al. (2002) and Nappi et al. (2004) have both shown in separate studies that 

the removal of habitat and nesting sites through salvage logging creates a greater 

disturbance than fire alone, negatively affecting songbird communities.  Russell et al. 

(2006) support this claim by showing that remaining snags within areas which have been 

salvage logged fall at an accelerated rate, shortening the time span for cavity nesting bird 

habitat.  Older-aged, burned forest stands are essential habitat for many breeding boreal 

forest bird species (Stambaugh 2003); salvage logging within a burn significantly 

diminishes that habitat. 

The act of salvage logging alters an already disturbed forest environment.  Clear-

cutting modifies the forested environment by removing the tree cover and understory 

shrubs from the area, opening up the forest floor to sun and higher wind velocities which 

severely alters the local microclimate, disturbs the forest floor, lessens the ability of the 

forest to regenerate naturally and creates different post-disturbance conditions than those 

following most natural disturbances (Franklin et al. 2002).  This in turn affects soil 

properties, reducing soil fertility and altering the moisture regime and chemical attributes 

(Nguyen-Xuan et al. 2000).  The removal of timber from the post-fire environment can 

be quite variable on the forest floor due to the amount of coarse woody debris left by the 

salvage logging operation (Figure 3.5).  This coarse woody debris is mainly composed of 
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unmerchantable wood materials such as branches, twigs, bark and wood chips.  A large 

increase in the coarse woody debris cover within salvage logged areas compared to non-

logged areas has been observed by Donato et al. (2006) and has been found to impede the 

regeneration of Populus tremuloides up to two years following salvage logging (Kurulok 

2004).   

 

   

Figure 3.5  Downed woody debris on ground surface in a high severity burn salvage 
logged site (right) and a high severity burn unlogged site (left) at the Candle Lake site. 
 

During harvesting, heavy machinery may compact soil, especially along skid 

trails and roads (Archibold et al. 2000; Van Rees and Pennock 2001).  This can create 

variable microsites by compressing soils and creating wetlands through the construction 

of ditches along skid trails and haul roads.  Haul roads and skid trails also tend to persist 

in the post-harvest area for many years if they are not reclaimed after harvesting is 

complete (Buckley et al. 2003; Sumners 2005; Figure 3.6).  The presence of skid trails 

within salvage logged sites increases the amount of exposed mineral soil available for 

aerial germinants within the first few years of harvest, which is a crucial period for 

successional regeneration.  However, Greene et al. (2006) concluded that the exposed 

mineral soil from skid trails does not provide a hospitable environment for seedlings due 
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to the removal of the seed bank from the salvage harvest and the drier soil conditions 

created by the removal of the forest canopy.     

 

    

Figure 3.6  Salvage logging effects on the forest environment.  A clear-cut stand one 
year post-fire (left), and a residual haul road (right) ten years after a salvage logging 
operation. 
 

3.4.3 Impacts of salvage logging on boreal plant species 

Until recently most of the research on salvage logging occurred in non-boreal 

forest stands (Martinez-Sanchez et al. 1999; McIver and Starr 2001; Lindenmayer 2004; 

Hanson and Stuart 2005; Donato et al. 2006; Lindenmayer and Noss 2006) and has 

focused on the disturbance effects on the dominant tree species.  Studies in the Canadian 

boreal forest have mainly taken place in Quebec and Alberta (Brais et al. 1999; Crites 

and Hanus 2001; Fraser et al. 2004; Purdon et al. 2004; Greene et al. 2006) and have 

considered the understory components as well as the effects of fire severity within 

salvage logged sites. 
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Purdon et al. (2004) reports that salvage logging in areas of differing burn 

severity in the eastern Canadian boreal forest tend to homogenize understory composition 

and make it more representative of a severe fire environment.  They note that species 

diversity fell within all fire severity ratings that had been salvaged logged.  The overall 

effect is not to create a new successional pathway, but rather to create a sparser and more 

simplified post-fire environment than that seen in similar unsalvaged stands.  Plant 

regeneration was less abundant along with a decrease in diversity, due to factors such as 

forest floor disturbance and accelerated forest floor drying creating a difference in plant 

communities between salvage logged and unlogged stands.  Similar results are reported 

by Kurulok (2004) in early successional (2 years post-fire) mixedwood boreal stands in 

western Canada. 

Initial tree establishment following salvage logging is typically reduced within the 

first four years.  The mechanical process of tilling soils and the deposition of woody 

debris onto the burned forest surface tends to lower initial seed and suckering within 

salvage logged areas compared to wildfire controls.  Martinez-Sanchez et al. (1999) 

found that conifer seedling regeneration was reduced by 33% in pine dominated forests 

of Spain, while Donato et al. (2006) support this claim as salvage logging reduced conifer 

regeneration by 71% within conifer forests of Oregon, U.S.A.  Greene et al. (2006) also 

reports a loss of seedling regeneration, four times less for spruce and five times less for 

pine in salvage logged stands in comparison to non-salvaged stands.  Within deciduous 

dominated forests Fraser et al. (2004) observed a severe impact on aspen sucker densities 

and growth in Alberta when salvage logging was implemented two years after the fire 

occurrence.  Areas of severe burn combined with high salvage logging traffic showed 
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significantly lower densities and growth height of aspen suckers in comparison to 

unsalvaged sites of the same burn severity.   

Mechanical disturbance and local network of skid trails and haul roads within 

salvage stands may act as a conduit for invasive species. Kurulok (2004) observed an 

increase in species diversity within salvage logged stands 2 years post-fire, due mainly to 

weedy species such as common dandelion and Canada thistle.  Similar changes in 

diversity have been reported by Hanson and Stuart (2005) in Douglas-fir/hardwood 

forests of northern California where invasive species were found exclusively within 

salvage logged stands. 

Salvage logging following a wildfire disturbance within the mixedwood boreal 

forest has not been fully researched to understand the short term and long term effects on 

post-fire stand development.  Secondary disturbance inflicted by machinery and the 

removal of burned timber disrupt initial regeneration, disturb the forest floor, creating an 

early successional environment with sparse regeneration and lower species densities in 

comparison to unlogged burned forest stands.  The introduction of invasive and weedy 

species within salvage logged stands can alter the heterogeneity of the forest structure.  In 

addition, the removal of the aerial seed bank and mechanical tillage of the soil diminish 

the chance for regeneration by conifer species, increasing the likelihood that the 

regenerating forest stand will be dominated by deciduous species which rely on suckering 

for regeneration. 
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4. Study area 

4.1 Location 

The study area was located in the Mid-Boreal Upland Ecoregion of the Boreal 

Plain Ecozone in north-central Saskatchewan (Ecoregions of Saskatchewan 1994), 

situated between 53° and 55° N latitude and 105° and 107° W longitude.  All sites 

examined are located in the commercial forest within the Weyerhaeuser Canada Ltd - 

Prince Albert FMA area (Figure 2).  The Mid-boreal Upland Ecoregion is characterized 

by well-drained uplands with a mixture of coniferous and deciduous trees interspersed 

with wetlands dominated by Picea mariana with a moss understory (Acton et al. 1998). 

 

  
 

Figure 4.1  Prince Albert FMA, Weyerhaeuser Canada Ltd. 
source: Weyerhaeuser, 2005. 

 

Topography of the study area is of gently to strongly rolling hills. The area is 

composed of overlays of fluvial-lacustrine deposits and glacial till, with common 
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occurrences of Brunisolic soils found throughout the ecoregion (Canadian Forestry 

Service 1986).  The climate is continental with typical summer (May-August) 

temperatures ranging from 9.3 to 16.2°C and winter (November – February) temperatures 

ranging from -7.4 to -17.9°C Mean annual precipitation is 467 mm with the majority 

occurring as rainfall during the summer (Environment Canada 2005). 

 

4.2 Vegetation 

Research was conducted within upland mixedwood boreal forest communities in 

which the forest canopy was dominated by mature Populus tremuloides and Picea 

glauca.  Stands dominated by Populus tremuloides - Picea glauca had a stand 

classification of HS (25 to 50% softwood by volume) and Picea glauca - Populus 

tremuloides have a stand classification of SH (50 to 75% hardwood by volume).  These 

stand types were selected as they are the principal commercially viable stands harvested 

within the region. 

Other tree species commonly found within mixedwood stands of this region are 

balsam fir (Abies balsamea), white birch (Betula papyrifera), balsam poplar (Populus 

balsamifera), jack pine (Pinus banksiana) and black spruce (Picea mariana).  Common 

tall shrub species found in upland mixedwood stands include various willow species 

(Salix spp.), alder (Alnus spp.), beaked hazelnut (Corylus cornuta), red-osier dogwood 

(Cornus stolonifera), and buffalo-berry (Shepherdia canadensis).  Short shrub species 

include prickly rose (Rosa acicularis), wild red raspberry (Rubus idaeus), low bush-

cranberry (Viburnum edule), and currants (Ribes spp.), blueberries (Vaccinium spp.), and 

Labrador tea (Ledum groenlandicum).  Herb species catalogued within the study sites 
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belong to the following plant families: clubmoss (Lycopodiaceae), horsetail 

(Equisetaceae), grass (Gramineae), dogwood (Cornaceae), evening-primrose 

(Onagraceae), honeysuckle (Caprifoliaceae), lily (Liliaceae), madder (Rubiaceae), orchid 

(Orchidaceae), pea (Leguminosae), rose (Rosaceae), violet (Violaceae) and wintergreen 

(Pyrolaceae). The plant nomenclature was taken from Johnson et al. (1995). 

 

4.3 Site selection  

Three unsalvaged burned forest sites and adjacent salvage logged sites were 

selected, representing two early successional stages (1 and 8 years) in mixedwood forest 

stand development.  Two sites were burned in separate wildfire events in 1995 and set 

aside for study by the BFMP, with the third site being burned in the summer of 2003.  

Each site is representative of upland mixedwood boreal forest stands and their typical fire 

disturbance regime (Table 4.1). 

 
Table 4.1 Study site attributes 

Study Site Fire Name Year Fire Size (ha) Location 

Mahigan burn site Late/Swan Fire 1995 51,438 54°43’ N, 106°26’ W 

Beaupré burn site Hillyer Fire 1995 48,745 54°31’ N, 107°17’ W 

Candle Lake burn site Pasture Fire 2003 21,028 53°44’ N, 105°28’ W 

 
Prior to establishing sample plots within the field site, fire severity maps were 

created using the burn severity rating system described by the BFMP (Greif 2000).  Burn 

severity maps for the Mahigan burn site (Figure 4.2) and Beaupré burn site (Figure 4.3) 

utilized a 50 meter grid system.  Areas of differing burn severity within the Candle Lake 

burn site (Figure 4.4) were marked off using a handheld GPS device. 
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Figure 4.2 Mahigan burn site – Burn severity map produced by the BFMP 
                  (Greif 2000).
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Figure 4.3 Beaupré burn site – Forest composition map produced by the BFMP 
                  (Greif 2000). 
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Figure 4.4 Candle Lake burn site – Leave stands and Microclimate sites. 
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4.4 Site descriptions 

Mahigan burn site 

The study site is accessible from the Pear Lake Road, adjacent to the southwest 

corner of Mahigan Lake.  A large leave stand approximately 147 ha in area, was secured 

from salvage operations (Figure 4.2).  The leave stand is dominated by Picea glauca and 

Populus tremuloides on the upper slopes with stands of Picea mariana found in low-

lying areas.  Logging operations were occurring within the adjacent area during the time 

of the fire disturbance, allowing easy access to the site from established road networks.  

Salvage logging operations occurred on the southern border of the leave stand and the 

area was prepared with a disc trencher and replanted with jack pine (Pinus banksiana) by 

a Weyerhaeuser contractor (D. Desrosiers, Weyerhaeuser Canada Ltd, pers. com.).  

Characteristics of the leave stand are listed in Tables 4.2 and 4.3 respectively. 
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Table 4.2 Mahigan Burn Site – Burned Leave Stand Ch aracteristics 

Characteristic No Burn Light - Medium Burn Heavy Burn 

Mean Tree Height (m) 12.37 13.05 12.58 

Mean  Tree DBH (cm) 23.95 24.23 16.36 

Soil Group* Gray Luvisol, Eutric Brunisol Gray Luvisol, Eutric Brunisol Gray Luvisol, Eutric Brunisol 

Overstory Veg based on Basal area WS, TA TA, WS, JP WS, BS, JP, TA, WB 

Primary Understory Vegetation** Alnus crispa Epilobium angustifolium Cornus canadensis 

Aralia nudicaulis Equisetum arvense Epilobium angustifolium 

Cornus canadensis Equisetum pratense Ledum groenlandicum 

Equisetum arvense Gramineae spp.  Pinus banksiana 

Equisetum pratense Petasites palmatus Populus tremuloides 

Ledum groenlandicum Populus tremuloides Salix spp. 

Petasites palmatus Rosa acicularis Vaccinium myrtilloides 

Rosa acicularis Rubus idaeus  

 
 
 
 
 
 
 *Common great group as per 
Canadian Soil Classification system 
 
**all species that covered 10% or 
more of a 100 m2 plot 
 
 Rubus pubescens Salix spp.   

BS = Black Spruce (Picea mariana) TA = Trembling Aspen (Populus tremuloides) 

JP = Jack Pine (Pinus banksiana) BF = Balsam Fir (Abies balsamea) 

WS = White Spruce (Picea glauca)  WB = White Birch (Betula papyrifera) 

 
 
 

Figure 4.5 Representative photographs of the Mahigan 
burn site – Leave stand showing an area of high burn 
(above) and an area of surface scorching (right).  Note the 
high density of standing snags left within a high burn leave 
stand.  Scorching is still visible on the lower trunks of 
white spruce 8 years following the fire disturbance. 
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Table 4.3 Mahigan Burn Site – Burned Salvage Logged  Stand Characteristics 

Characteristic No Burn Light - Medium Burn Heavy Burn 

Mean Tree Height (m) -- -- -- 

Mean  Tree DBH (cm) -- -- -- 

Soil Group* Gray Luvisol Gray Luvisol Gray Luvisol, Eutric Brunisol 

Overstory Veg based on Basal area TA, JP, WB TA, JP, WB JP, TA 

Primary Understory Vegetation** Alnus crispa Alnus crispa Cornus canadensis 

Aralia nudicaulis Aralia nudicaulis Epilobium angustifolium 

Aster spp. Cornus canadensis Ledum groenlandicum 

Cornus canadensis Epilobium angustifolium Pinus banksiana 

Equisetum arvense Equisetum arvense Populus tremuloides 

Gramineae spp. Ledum groenlandicum Salix spp. 

Ledum groenlandicum Linnaea borealis  

Linnaea borealis Petasites palmatus  

Lonicera involucrata Populus tremuloides  

Mertensia paniculata Ribes triste  

Petasites palmatus Rosa acicularis  

Rosa acicularis Rubus idaeus  

Rubus idaeus   

Rubus pubescens   

Salix spp.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Common great group as per 
Canadian Soil Classification system 
 
 
**all species that covered 10% or 
more of a 100 m2 plot 
 
 Viburnum edula   

BS = Black Spruce (Picea mariana) TA = Trembling Aspen (Populus tremuloides) 

JP = Jack Pine (Pinus banksiana) BF = Balsam Fir (Abies balsamea)  

WS = White Spruce (Picea glauca)  WB = White Birch (Betula papyrifera) 

 
 

 
Figure 4.6 Representative photographs of the Mahigan burn site – Salvage logged stand.  Decomposing 
salvage stump (left), area of regrowth following a salvage logging operation (right).   Note the open bare 
surface of haul road ten years following salvage logging operations. 
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Beaupré burn site      

The study site is accessible from logging trails located off highway #924 near the 

community of Dore Lake.  The Beaupré Burn site was originally planned as harvest leave 

blocks by Weyerhaeuser logging operations.  Clear cut operations occurred prior to the 

1995 fire event leaving three separate leave stands, approximately 25 ha, 49 ha, and 20 ha 

in area (Figure 4.3).  The leave stands are dominated by Populus tremuloides, Picea 

glauca and Abies balsamea growth types.  Prior to the 1995 burn the non-leave areas 

were harvested in early 1994, site prepared by a disc trencher and V-blade, and replanted.  

Seedlings were again replanted in 1996, following the 1995 Hillyer Fire, by a 

Weyerhaeuser contractor (D. Desrosiers, Weyerhaeuser Canada Ltd, pers. com.).  

Characteristics of the leave stand are listed in Table 4.4. 
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Table 4.4 Beaupré Burn Site – Burned Leave Stand Ch aracteristics 

Characteristic No Burn Light - Medium Burn Heavy Burn 

Mean Tree Height (m) 13.81 11.97 13.13 

Mean Tree DBH (cm) 22.96 24.09 22.60 

Soil Group* Gray Luvisol, Eutric Brunisol Gray Luvisol, Eutric Brunisol Gray Luvisol, Eutric Brunisol 

Overstory Veg based on Basal area TA, BF, WS TA, WS, BF WS, TA, JP 

Primary Understory Vegetation** Cornus canadensis Aralia nudicaulis Cornus canadensis 

Cornus stolonifera Cornus canadensis Epilobium angustifolium 

Aralia nudicaulis Cornus stolonifera Gramineae spp. 

Equisetum pratense Gramineae spp. Mertensia paniculata 

Mertensia paniculata Linnaea borealis Petasites palmatus 

Mitella nuda Mertensia paniculata Populus tremuloides 

Petasites palmatus Petasites palmatus Rosa acicularis 

Rosa acicularis Rosa acicularis Rubus idaeus 

Rubus pubescens Rubus idaeus Salix spp. 

Viburnum edula Rubus pubescens  

 Salix spp.  

 
 
 
 
 
 
 
 
 
 
 
 
*Common great group as per 
Canadian Soil Classification system 
 
**all species that covered 10% or 
more of a 100 m2 plot 
  Viburnum edula  

BS = Black Spruce (Picea mariana) TA = Trembling Aspen (Populus tremuloides) 

JP = Jack Pine (Pinus banksiana) BF = Balsam Fir (Abies balsamea) 

WS = White Spruce (Picea glauca)  WB = White Birch (Betula papyrifera) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7 Representative photographs of 
the Beaupré burn site – Leave stands.  
Transition area between high burn and no 
burn (top).  Fallen trembling aspen snag 
in a no burn area (bottom). 
 



 37 

Candle Lake burn site 

The research site is composed of three separate leave stands and is located 

approximately 2 km west off of the Snowfield Road, approximately 42 km from the 

Candle Lake town site.  After the Pasture Fire disturbance in the spring of 2003, three 

leave stands were secured from salvage logging operations, approximately 2.3 ha, 2.6 ha, 

and 5.0 ha in area (Figure 4.4).  The leave stands are dominated by Populus tremuloides 

and Picea glauca.  Other species, occurring in varying proportions between the three 

separate stands include Abies balsamea, Betula papyrifera, Pinus banksiana and Picea 

mariana.  Characteristics of the leave stand and salvage logged stands are listed in Tables 

4.5 and 4.6 respectively. 

Sections within the Candle Lake study site were originally clear cut by 

Weyerhaeuser prior to the 2003 Pasture Fire with plans for harvesting to continue.  With 

roads already established in the area, the area was subsequently allocated for salvage 

logging operations in early 2004.  Three leave stands located within un-harvested burned 

forest were selected in November 2003 and their boundaries were flagged in December 

2003.  Salvage logging operations occurred adjacent to the leave stands in January and 

February, 2004 by both Weyerhaeuser Canada and third party operators (Montreal Lake 

Enterprises and Quin-Tec).  The area was salvage logged using a feller buncher and 

skidded with a grapple skidder as well as by conventional chainsaw - cable skidder 

combination.  The salvage logged areas and adjacent leave stands were replanted with 

white spruce seedlings.  Planting was completed in July and August, 2004 by a 

Weyerhaeuser contractor (R. Pshebnicki, Weyerhaeuser Canada Ltd, pers. com.). 
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Table 4.5 Candle Lake Burn Site – Burned Leave Stan d Characteristics 

Characteristic No Burn Light - Medium Burn Heavy Burn 

Mean Tree Height (m) 20.56 20.49 17.84 

Mean Tree DBH (cm) 24.09 25.07 22.70 

Soil Group* Gray Luvisol, Eutric Brunisol Gray Luvisol, Eutric Brunisol Gray Luvisol, Eutric Brunisol 

Overstory Veg based on Basal area TA, WS, BF WS, TA, JP, BF WS, TA, JP, BF, BS 

Primary Understory Vegetation** Alnus crispa Alnus crispa Aralia nudicaulis 

Aralia nudicaulis Aralia nudicaulis Cornus canadensis 

Cornus canadensis Cornus canadensis Corydalis aurea 

Equisetum arvense Dracocephalum parviflorum Dracocephalum parviflorum 

Equisetum pratense Epilobium angustifolium Epilobium angustifolium 

Ledum groenlandicum Geranium bicknellii Geranium bicknellii 

Linnaea borealis Gramineae spp. Gramineae spp. 

Maianthemum canadens Linnaea borealis Mertensia paniculata 

Mertensia paniculata Mertensia paniculata Petasites palmatus 

Petasites palmatus Petasites palmatus Populus tremuloides 

Rubus pubescens Populus tremuloides  

Salix spp. Rosa acicularis  

 
 
 
 
 
 
 
 
 
 
 
 
 
*Common great group as per 
Canadian Soil Classification system 
 
**all species that covered 10% or 
more of a 100 m2 plot 
   
 

Viburnum edula Rubus pubescens  

BS = Black Spruce (Picea mariana) TA = Trembling Aspen (Populus tremuloides) 

JP = Jack Pine (Pinus banksiana) BF = Balsam Fir (Abies balsamea)  

WS = White Spruce (Picea glauca)  WB = White Birch (Betula papyrifera) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8 Representative photographs of the Candle Lake burn site – Leave stands.  Microclimate station 
within an area of no burn (left).  High burn stand one year following fire disturbance (right).   Note the 
dense regrowth of hardwood and herb species in the high burn understory. 
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Table 4.6 Candle Lake Burn Site – Burned Salvage Lo gged Stand Characteristics 

Characteristic No Burn Light - Medium Burn Heavy Burn 

Mean Tree Height (m) 20.77 19.47 16.63 

Mean Tree DBH (cm) 25.30 21.19 24.23 

Soil Group* Gray Luvisol, Eutric Brunisol Gray Luvisol, Eutric Brunisol Gray Luvisol, Eutric Brunisol 

Overstory Veg based on Basal area 
Clear-cut, several standing 

TA, WS 
Clear-cut, several standing 

TA, WS 
Clear-cut, several standing 

WS, JP 

Primary Understory Vegetation** Aralia nudicaulis Cornus canadensis Epilobium angustifolium 

Cornus canadensis Epilobium angustifolium Geranium bicknellii 

Epilobium angustifolium Petasites palmatus Gramineae spp. 

Rosa acicularis Populus tremuloides Mertensia paniculata 

Rubus pubescens Rosa acicularis Petasites palmatus 

 
*Common great group as per 
Canadian Soil Classification system 
 
**all species that covered 
approximately 10% or more of a 100 
m2 plot  Rubus pubescens Populus tremuloides 

BS = Black Spruce (Picea mariana) TA = Trembling Aspen (Populus tremuloides) 

JP = Jack Pine (Pinus banksiana) BF = Balsam Fir (Abies balsamea)  

WS = White Spruce (Picea glauca) WB = White Birch (Betula papyrifera) 

 

 
Figure 4.9 Representative photographs of the Candle Lake burn site – Salvage logged stands.   Note the 
large amounts of woody debris left scattered over the forest floor within salvage logged areas and the 
sparse regrowth of vegetation. 
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5. Methods 

5.1 Study design  

The field sites were sampled during the summer growing periods (mid-June 

through August) of 2003, 2004, and 2005.  The study sites were selected because they 

were representative of upland mixedwood stands and were commercially viable for 

salvage harvesting operations.  The study sites provided an experimental design 

comprised of combinations of disturbance types (salvaged or unsalvaged forest stands), 

time since disturbance (1 year to 10 years), and burn severity within each treatment 

(unburned, low to medium burn, and high burn areas).   

The time since disturbance was separated into two categories (1 and 10 years 

following disturbance) to represent two stages in early successional development within 

the mixedwood boreal forest.  In both successional stages, the salvage logged stands were 

clear-cut for hardwood and softwood timber, with some smaller areas of selective logging 

for softwood within the 1 year since disturbance study site.  For both successional stages, 

the forest stands were salvage logged within one year of the wildfire disturbance. 

The range of burn severity was divided into three categories:  NB (no burn), MB 

(light to medium burn), and HB (high burn).  These burn severity categories were used 

for both the leave stand and salvage logged stand treatments.  Each burn severity 

category was identified by specific characteristics (Table 5.1) and was based on a 

modified version of the burn severity classification system developed for the Burned 

Forest Monitoring Program (Greif 2000). 
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Table 5.1  Burn severity classification 
   

Severity Description 

No Burn (NB) - no sign of damage 

Moderate Burn (MB) 
- damage/charring of tree trunk up to 3 meters 
- ground vegetation slightly to mostly consumed 

 
High Burn (HB)                  

- taller shrubs (alders, willows) may be consumed 
- majority of trees sustained severe fire damage 
- tree branches and crowns have been consumed 
- shrubs and ground vegetation consumed 

 

5.2 Field methods 

5.2.1 Vegetation sampling 

Sample plots (100 m2) were established using a stratified random design within 

the study stands differentiated by three fire severity classes and two logging treatments.  

Within each stand, fire severity boundaries were identified and plots were selected based 

on a random pin drop on map coordinates of each site.  All sites had a total of 12 to 18 

plots with an overall total of 102 plots established during the 2003-2005 field seasons 

(Table 5.2).  Sampling occurred between the months of June to late August to facilitate 

plant identification.  A higher number of plots were established in leave stand treatments 

due to an absence of a salvage logged treatment at the Beaupré Burn Site and the limited 

spatial extent of salvage logged treatment at the Mahigan Burn Site. 

 
Table 5.2  Study design field plot selection 
 

Site Salvage Logged  Leave Stand 

  NB MB HB   NB MB HB 
Mahigan Burn Site 4 4 4  6 6 6 
Beaupré Burn Site -- -- --  6 6 6 
Candle Lake Site 9 9 9   9 9 9 

Total  39    63  
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Field sampling was conducted using protocols outlined in the Forest Ecosystem 

Classification (FEC) plot establishment and field data collection manual (Jiricka et al. 

2002).  For each sample plot a primary quadrat size of 10m × 10m was established, with 

2m × 2m sub-quadrats located in the Northwest and Southeast corners (Figure 5.1).  Plots 

were randomly established within burn severity boundaries with a minimum of 50 meters 

between each plot, and if possible, 50 meters from the margins of the burn severity patch 

or cut-block to reduce the edge effect. 

 
Figure 5.1  Sample plot and subplot design (Jiricka et al. 2002) 

 

In each of the sample plots, data were collected on cover and stratum layer of 

each plant species.  Plants were identified to the species level except for certain plant 

groups (willow and sedges) which were classified at the genus level.  Species cover was 
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recorded using a percent cover class based on a modified version of the Braun-Blanquet 

scale (Table 5.3) and  plant stratum layer was recorded according to codes and heights 

listed in Table 5.4.  All cover class data collected was converted to mid-point percentages 

for statistical analysis.  Assessments of woody debris, leaf litter, needle litter and exposed 

rock or soil also were based on the cover/abundance scale. 

 

Table 5.3  Saskatchewan FEC cover-abundance scale (Jiricka et al. 2002) 
 

Class Description 

7 > 75% 
6 > 50 and < 75% 
5 > 25 and < 50% 
4 > 15 and < 15% 
3 > 5 and < 15% 
2 > 1 and < 5% 
1 < 1% - more than one plant stem of the species 
0 < 1% - one plant stem only 

 
 
 
 
Table 5.4  Saskatchewan FEC stratum layer classes and height ranges 
                  (Jiricka et al. 2002) 

 

Physiognomy class Height Range Physiognomy Class Code 

Trees  > 10 m (dominant in canopy) 1 

Trees > 10 m (subdominant in canopy) 2 

Tree & Shrub > 2 m & < 10 m 3 

Tree & Shrub > 0.5 – 2 m 4 

Tree & Shrub < 0.5 m 5 

Forbs & Graminiods  6 

Bryophytes & Lichens  7 
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5.2.2 Tree composition 

Within each plot all tree species with a diameter at breast height (dbh) greater 

than 7.5 cm were numbered and recorded.  The trees were identified to the species level 

and their condition, living or dead, noted.  The dbh of each tree in the plot was recorded 

using a dbh measuring tape.  Each tree within the plot also had its height measured in 

meters using either a hand held clinometer (2003 field season) or a laser hypsometer 

(2004, 2005 field season).  A prism sweep from the center of the plot was conducted 

using a 2 m² BAF prism.  Trees were tallied by species in each sweep. 

 

5.2.3 Site attributes and soil profiles 

  For each plot the slope of the main quadrat was measured with a hand held 

clinometer and the corresponding aspect was recorded in azimuthal degrees.  The slope 

position of the plot (e.g. crest, upper slope, lower slope) and general physiography (e.g. 

level, concave) were also noted.  Soil pits were dug to determine the depth of the organic 

layer, the type of parent material, seepage, drainage, and soil type (such as luvisol or 

brunisol).  Soil data also included depth and soil texture of the different horizons. The 

soil profiles were recorded outside of the Southwest corner of the main plot to reduce 

vegetation disturbance.   

 

5.2.4 Microclimate 

During the 2004 field season at the Candle Lake burn site a comparative study 

was conducted of the microclimates in six different treatment types.  Within Stand 1 of 

the burn site, a small recording station was set up within each treatment type (near the 
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centre of the most representative area to minimize any edge effect) and data were 

collected from April 2004 until August 2004.  The treatment sites used were divided into 

six categories: a highly burned plot (HB), a low to moderately burned plot (MB), and an 

unburned plot (NB) in an unsalvaged leave stand, with corresponding plots within an 

adjacent salvage logged stand (HBL, MBL, NBL) (see Figure 4.4).  Canopy openness, 

solar radiation, humidity, air temperature, soil temperature, soil moisture, and 

precipitation were recorded (Figure 5.2).  The data were used to determine the effect of 

stand structure on microclimate under various burn severity and logging conditions. 

 
    
 
 
 

 

 

 

 

 

 

 

 

   
Figure 5.2  Weather monitoring equipment at salvage logged micro-sites HBL (left) 
and MBL (right).   Note large amount of woody debris left from salvage logging and 
scattered distribution of the regrowth vegetation. 

 

Each weather station measured soil temperature at 4 depths (5 cm, 10 cm, 20 cm, 

and 50 cm) using soil temperature probes (Model 107B) connected to a CR10X 

Datalogger (Campbell Scientific) excluding site MB, which used 4 soil thermistors 

(Model 101) connected to a CR21 datalogger (Campbell Scientific).  Air temperature and 
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humidity at 50 cm and 150 cm were measured using combination temperature and 

humidity probes (Model 207) connected to a CR10X datalogger at micro-sites NB, HB, 

HBL, and MBL.  Thermistor and Humidity Sensors (Model PCRC-11) for the CR21 

datalogger were used at micro-sites MB and NBL.  Incoming and outgoing radiation were 

recorded using Li-Cor pyranometers (L1-2000SZ) at a height of 2 m at sites NB, MB, 

HB, and HBL, and incoming radiation only was recorded at sites NBL and MBL.  

Precipitation was measured using copper rain gauges, though these were not recorded 

daily.  In addition, precipitation at micro-site MB was measured using a Sierra Tipping 

Bucket Rain Gauge (Model RG2501) connected to a CR21 datalogger.   

Supplemental data were collected manually from stands 2 and 3 during the period 

of vegetation sampling, from July 19-August 3 and August 14-19, 2004, respectively.  

Each site comprised of two Copper-Constantan (Cu-Co) thermocouples at heights of 50 

cm and 150 cm to measure air temperature.  Soil probes also with Cu-Co thermocouples 

at 5 cm, 10 cm, 20 cm, and 50 cm were set up to measure soil temperature.  A Licor hand 

held pyranometer (LI-2000) was used to make 10 random incoming/outgoing radiation 

measurements at 1.3m along two transects.  Random soil moisture measurements were 

made (12 cm and 20 cm) with a hand held HydroSense Device.  At all micro-sites, 

hemispherical photographs were taken with a Nikon 990 Coolpix digital camera with 

Nikon FC-E8 fisheye lens.  These photos were analyzed with Gap Light Analyzer (GLA), 

Version 2.0 (Frazer et al, 1999) to ascertain canopy openness and LAI values. 
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5.3 Statistical analysis  

5.3.1 Vegetation analysis methods 

The primary comparisons within this study were among the burn intensities of 

the two logging treatments (wildfire leave stand and salvage logging) and the burn 

intensities within each logging treatment.  Descriptive statistics were calculated by 

treatment and burn intensity for both the environmental and vegetation data sets for all 

three study sites (1 year and 10 years).  Several methods were used to examine the 

vegetation data at different levels of organization: species richness and diversity through 

a 2-way fixed factor analysis of variance (ANOVA); direct gradient analysis using 

Canonical Correspondence Analysis (CCA) ordination; comparative species 

compositions using multi-response permutation procedure (MRPP); at the species level 

through indicator species analysis (ISA); and grouping plot similarity through a 

hierarchical cluster analysis.  All tests for outlier analysis, CCA, MRPP, ISA, and cluster 

analysis were performed using PC-ORD, version 4 (McCune and Mefford 1999). 

Species richness was calculated down to the species level for each plot.  Using the 

tree, shrub, and understory species, richness was calculated as the number of species per 

unit area (100m²).  Diversity for all regenerating tree, shrub and understory plants was 

calculated with species abundance data using the Shannon-Weiner index (H’ )  

H’  = ∑
=

−
s

i
ii pp

1

)(ln           (5.1) 

where s = the number of species  
         pi = the proportion of the vegetation cover,  

in the plot, belonging to species i 
 

Species richness measures the number of species within each sample plot, while species 

diversity is a combined measure of the number of species and the distribution (sharing of 
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resources) of vegetation cover among the species (Barbour et al. 1999).  The species 

richness and diversity distributions for all burn severity and logging treatments were 

found to be normal using the Shapiro-Wilks’s tests. 

Differences among treatments were tested using 2-way fixed factor Analysis of 

Variance (ANOVA); this allows both factors to be tested independently of one another on 

the response variable.  When comparing differences among treatments for the Candle 

Lake and Mahigan sites the equation for the 2-way fixed factor (Model I) ANOVA was  

Y ij = µ + Bi + Lj + BLij + εijl                       (5.2) 

where  Yij = dependent variable; 
    µ = the parametric mean of the population; 

 Bi = burn severity; 
 Lj = logging treatment; 

          BLij = interaction between burn severity and logging treatment;  
εijk = residual error (sampling plot within burn   

severity within treatment).   
 
When comparing differences among treatments for the Mahigan and Beaupré sites the 

equation for the 2-way fixed factor (Model I) ANOVA was  

Y ij = µ + Bi + Sj + BSij + εijl                       (5.3) 

where  Yij = dependent variable; 
    µ = the parametric mean of the population; 

 Bi = burn severity; 
 Sj = site; 

          BSij = interaction between burn severity and site;  
εijk = residual error (sampling plot within burn   

severity within treatment).   
 

The ANOVA assumes that all variances are equal within each variable tested.  Equality 

of variance among the treatments was tested using Levene’s test with a critical value of 

0.05.  If the test was found to be significant, the variable was declared unbalanced and the 

data heteroscedastic.  All ANOVA’s were performed with SPSS (1999) using a critical 
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level (p-value) of 0.05 for the rejection of the null hypothesis being tested.  All F-ratios 

and p-values based on a Type III sum of squares with the confidence interval for the 

calculated means set at 95%.  

An outlier analysis test was run on all the individual plots using a Sørenson (Bray-

Curtis) distance measurement.  All plots found with a distance greater than 2.0 standard 

deviations from the overall mean were identified as strong outliers.  These potential 

outlier plots were monitored over the course of the multivariate analysis procedures, but 

did not adversely affect the outcomes.  All plots were included within all multivariate 

procedures. 

Canonical Correspondence Analysis (CCA) was used to visualize the variation in 

plant community composition (ter Braak 1986, 1994).  The use of a direct gradient 

analysis (CCA) allows examination of the relationship between species composition and 

environmental variables measured within the treatments.  Environmental variables 

measured were ground cover (downed woody debris, needle litter, leaf litter, and exposed 

soil), bryophyte cover, and lichen cover.  When a CCA is displayed visually the plots are 

shown as points and the environmental variables are shown as lines.  The greater the 

correlation with the environmental variable the longer the line that is depicted in one of 

the quadrant established by the axes; the direction of the line relative to an axis indicates 

the strength of the relationship with that axis.  The use of a CCA ordination displays the 

importance of environmental variables on species composition between disturbance 

types. 

Differences in species composition between and within logging treatments and 

burn severities were examined using multi-response permutation procedure (MRPP) 
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(Biondini et al. 1985; Miekle and Berry 2001; McCune et al. 2002).  The use of a MRPP 

analysis provided comparisons of species composition and structure between and within 

both the treatment and burn severity classes for the 1-year and 10-year data sets.  All 

analysis using MRPP were run using a Sørenson distance measurement to deemphasize 

the presence of outliers.  The test statistic A is known as the ‘chance-corrected within-

group agreement’; when all species are identical within the groups A=1, the highest 

possible value for A.  For ecological data from relatively diverse stands it is common for 

A to fall in the range <0.1 to 0.3 (McCune et al. 2002). 

Indicator species analysis (ISA) was utilized using methods outlined by Dufrêne 

and Legendre (1997).  ISA was conducted on the vegetation composition to determine 

specific species indicators for the logging treatments and within the burn severities.  Tests 

were first run between the logging treatments and then between each burn severity within 

each treatment; reciprocal tests were then run separately for each burn severity between 

each treatment.  Indicator values for the ISA tests range from 0 to 100, with 100 being 

equal to a perfect identification where the presence of a particular species is contained 

within a particular group or disturbance without error.  In all cases the statistical 

significance of indicator species was examined using a Monte Carlo test (n = 10,000). 

Similarities between treatments and burn severity were examined using a 

hierarchical cluster analysis to group the different treatments based on their similarity in 

species composition and abundance for both the 1-year and 10-year data sets.  Cluster 

distance was measured using the Sorensen (Bray & Curtis) distance as it retains its 

sensitivity with larger data sets and gives less weight to outliers, and groups were then 

linked using the nearest neighbor method.  The hierarchical structure of the cluster 
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analysis groups smaller more similar groups together and links them to larger dissimilar 

groups until all groups have been linked.  The use of a cluster analysis provides a visual 

representation of similarity in species composition between the different treatments. 
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6. Results  

6.1 Candle Lake burn site (1 year post-fire) 

6.1.1 Species richness and diversity  

A total of 68 species were catalogued within the Candle Lake Burn Site between 

both the salvage logged and wildfire leave stands.  Sixty-eight species were recorded 

within wildfire leave stands and a total of 57 within salvage logged stands (Table 6.1).  

Species richness, which is the number of species in the sample plots, was significantly 

lower within the salvage stands in comparison to the leave stands (Figure 6.1 and Table 

6.2).  Burn severity alone did not have a significant effect on the species richness, but the 

interaction between burn severity and logging treatments was significant (p = 0.018).  

The major differences were found between the NB and NBL plots, and the MB and MBL 

plots of both logging treatments (Tables 6.1 and 6.2) indicating that logging has a 

significant effect on the plant communities between the burn severities.  A complete list 

of all species recorded and the frequency at which they occur within the logging 

treatments and burn severities can be found in Appendix 1. 

Species diversity, which estimates a combination of composition and quantitative 

differences within sample plots, was also found to be higher within the leave stands 

(Table 6.1).  A difference in diversity between burn severities was found to be significant 

(p<0.001), indicating that unique species compositions have developed between the burn 

severities.  Diversity between logging treatments did not show a significant result, while 

the interaction of burn severity and the logging treatment was significant (p = 0.009; 

Table 6.2). 
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Total species cover was not affected by burn severity (p = 0.221), but differences 

in total cover between logging treatments were significant (p<0.001) and the interaction 

of burn severity and the logging treatments was also significant (p = 0.021; Tables 6.1 

and 6.2) indicating that salvage logging has an effect on total coverage within burn 

severities.  Total cover by regenerating species in the salvage logged sites was sparser 

and species composition more homogeneous than in the burned sites.  

Table 6.1  Species richness and diversity (Shannon`s diversity index H’ ) for all 
vascular plants within the Candle Lake burn site (1 year post-fire). 
 

Treatment 
Burn 
Severity 

# of sites 
sampled 

Mean Species 
Richness 

Total 
Species 

Total 
Tree 

Total 
Shrub 

Total 
Herb 

Total cover 
(%) 

Diversity 
(H’) 

 NB 9 26.89 52 4 18 30 100 2.55 

Leave MB 9 27.44 52 4 13 35 100 2.48 

 HB 9 21.89 50 4 13 33 90.78 1.96 
          
 NBL 9 19.67 45 4 15 26 38.43 2.50 

Salvage MBL 9 19.78 47 4 14 29 59 2.08 

 HBL 9 21.89 42 4 11 27 70.94 2.15 

Overall Wildfire 27 25.4 68 6 18 44 96.92 2.33 

Overall Salvage 27 20.4 57 4 18 35 56.12 2.24 
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Figure 6.1  Species richness for all vascular plants within the Candle Lake burn site 
(1 year post-fire). 
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Table 6.2  ANOVA results for species richness, diversity and total cover on the 
logging treatment and burn severity classes of the Candle Lake burn site (1 year 
post-fire). Comparisons found to be significant are shown in bold. 
 

 Total Species Richness  Diversity  Total Cover 

Source df F sig.  df F sig.  df F sig. 

Burn Severity 2 0.792 0.459  2 13.326 <0.001  2 1.558 0.221 
Logging 1 17.531 <0.001  1 1.380 0.246  1 47.994 <0.001 
Burn Sev. vs. Logging 2 4.394 0.018  2 5.187 0.009  2 4.185 0.021 
Error 48    48    48   

 
 
6.1.2 Environmental characteristics  

Differences in site conditions and stand structure variables such as bryophyte 

cover, exposed soil and canopy openness were noted between burn severity categories 

and logging treatments.  The removal of standing timber has created very different 

environments between the salvage logged stands and the wildfire leave stands (Table 6.3 

and 6.4).  A significant interaction between burn severities and logging treatments was 

apparent (Table 6.4).  The logging treatments alone had a very significant effect on the 

environmental variables (<0.001), with one exception found with the lichen species, as a 

large proportion of the lichen recorded was from the waste debris left from the salvage 

logging operation. 

All salvage logged sites were characterized by a decrease in bryophyte, leaf and 

exposed soil cover and showed a large increase in the cover of coarse woody debris, 

lichen and needle litter due to slash and waste created by the salvage logging operations 

(Table 6.3).  Coarse woody debris increased on average by 58% in all burn severities 

following logging which effectively reduced the amount of exposed soil at these sites; for 

example, the amount of exposed soil at HBL was reduced by 46.6% compared to the 

unlogged HB site.  The no burn and high burn severity sites showed the largest difference 
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between the wildfire leave stands and the salvage logged stands, with the least amount of 

disturbance found in the moderate burn severity sites. 

As expected, canopy cover declined significantly following salvage logging 

which removed the majority of the shade producing canopy and resulted in increased 

light levels within the salvage logged stand; this was particularly significant within NB 

plots.  The residual tree (standing trunk left by fire or harvesting) DBH and heights were 

similar between all burn severities and logging treatments.  The forest environment is 

altered considerably by salvage logging.  The combined effects of increasing the amount 

of downed woody matter and needle litter, and the removal of the canopy are fully 

described in chapter 3.4.2 Effects of salvage logging. 

 
Table 6.3  Environmental characteristics of the Candle Lake burn site (1 year post-
fire).  All values made available are means ± 1 S.E. 
 

Treatment Leave Stand  Salvage Logged 

Burn Severity NB MB HB  NBL MBL HBL 

% Ground Cover        

Bryophyte species 47.50 ± 7.53 10.4 ± 4.32 6.94 ± 4.05  4.17 ± 2.23 5.50 ± 2.76 1.32 ± 1.09 

Lichen species 4.17 ± 1.10 0.80 ± 0.33 0.06 ± 0.02  2.0 ± 1.04 2.22 ± 1.02 1.07 ± 0.36 

Coarse Woody Debris 21.39 ± 4.25 25.83 ± 2.92 12.22 ± 1.47  87.5 ± 0.0 68.89 ± 8.50 76.39 ± 4.39 

Leaf Litter 65.28 ± 6.51 35.56 ± 8.62 5.22 ± 2.26  12.61 ± 5.14 11.94 ± 6.62 1.39 ± 0.35 

Needle Litter 20.56 ± 5.66 40.83 ± 7.10 13.17 ± 4.80  43.89 ± 5.02 41.1 ± 6.11 53.89 ± 8.51 

Exposed Soil 0.01 ± 0.01 16.39 ± 3.09 70.83 ± 7.22  2.78 ± 1.41 13.06 ± 7.36 24.22 ± 6.92 

Forest Structure ( >10m )       

% Canopy Cover 80.33 35.00 5.11  1.39 8.06 0.67 

Residual DBH (cm) 24.09 ± 0.97 25.07 ± 1.15 22.70 ± 1.48  25.30 ± 5.93 21.19 ± 1.52 24.23 ± 5.03 

Residual Height (m) 20.56 ± 0.73 20.49 ± 0.78 17.84 ± 0.87  20.77 ± 4.93 19.47 ± 1.44 16.63 ± 3.31 

% Dead Snags 8.87 38.81 100.00  33.33 35.71 100.00 
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Table 6.4  ANOVA results for environmental characteristics of the Candle Lake 
burn site (1 year post-fire). Significant results are shown in bold type. 
 

 Bryophyte species  Lichen species  Coarse Woody Debris 

Source df F sig.  df F sig.  df F sig. 

Burn Severity 2 15.252 <0.001  2 5.427 0.008  2 2.703 0.077 

Logging 1 27.466 <0.001  1 0.020 0.889  1 250.161 <0.001 
Burn Sev. vs. Logging 2 13.730 <0.001  2 3.225 0.048  2 4.084 0.023 
Error 48    48    48   

            

 Leaf Litter  Needle Litter  Exposed Soil 

Source df F sig.  df F sig.  df F sig. 

Burn Severity 2 19.966 <0.001  2 1.112 0.337  2 40.823 <0.001 

Logging 1 33.388 <0.001  1 17.215 <0.001  1 13.433 0.001 
Burn Sev. vs. Logging 2 9.417 <0.001  2 5.136 0.010  2 13.121 <0.001 

Error 48    48    48   

 
 
 

6.1.3 Plant community comparisons  

Comparisons of species composition between logged and unlogged  treatments 

showed significant differences for all burn severities (Table 6.5) and was especially 

pronounced between the wildfire leave stands and the salvage logged stands (p<0.0001).  

Salvage logging created a strong difference between the logging treatments, creating 

unique stands within the same burn severity class.  This major division indicates that 

salvage logging has a major impact on the regeneration of species composition and 

coverage.  Within the wildfire leave stand, all plots were significantly different indicating 

that the wildfire disturbance has created unique species compositions between the burn 

severities.  Salvage logged stands also showed a significant difference in species 

composition between all burn severities, showing that the influence of burn severity is 

still strong enough to create unique species compositions even in the presence of salvage 

logging.   



 57 

 Table 6.5  Comparisons of species composition between logging treatments and 
burn severities within the Candle Lake burn site using MRPP.  Significant results 
are shown in bold type. 
 

Comparison A p 
Between Treatments    
Wildfire vs. Salvage 0.1594 <0.0001  
NB vs. NBL 0.1826 0.0001  
MB vs. MBL 0.0602 0.0010  
HB vs. HBL 0.0774 0.0011  
    

Within Wildfire    
Wildfire (All) 0.1371 <0.0001  
NB vs. MB 0.0906 0.0001  
NB vs. HB 0.1766 <0.0001  
MB vs. HB 0.0548 0.0051  
    

Within Salvage    
Salvage (All) 0.0601 0.0001  
NBL vs. MBL 0.0358 0.0095  
NBL vs. HBL 0.0723 0.0007  
MBL vs. HBL 0.0309 0.0291  

 
 
 

ISA analysis between the wildfire leave stands and the salvage logged stands 

resulted in a total of 16 species plus the bryophyte group being identified as significant 

indicators (p<0.05).  15 species plus bryophytes were identified as significant indicators 

within the wildfire leave stands.  Of these, 6 are also listed as indicators within the NB 

plots of the wildfire leave stand: Cornus canadensis, Bryophyte spp., Picea glauca, 

Viburnum edule, Aralia nudicaulis, and Lycopodium annotinum (Tables 6.6 and 6.7).  

Only Equisetum arvense was identified as an indicator species in the salvage logged 

stands.  Salvage logging has increased the disturbance across the burn severities, making 

them more similar in regenerating species composition. 
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Table 6.6  Indicator Species Analysis for the Candle Lake burn site between logging 
treatments. 
 

Species Name or Group Treatment IV p 
Populus tremuloides Wildfire 82.1 0.0001 
Cornus canadensis Wildfire 82.1 0.0001 
Bryophyte spp Wildfire 85.5 0.0002 
Picea glauca Wildfire 48.7 0.0005 
Viburnum edule Wildfire 75.1 0.0008 
Trientalis borealis Wildfire 75.3 0.0009 
Maianthemum canadens Wildfire 73.4 0.0010 
Linnaea borealis Wildfire 74.7 0.0014 
Aralia nudicaulis Wildfire 75.0 0.0023 
Viola renifolia Wildfire 54.3 0.0049 
Viola canadensis Wildfire 34.6 0.0057 
Lathyrus ochroleucus Wildfire 56.1 0.0065 
Vicia americana Wildfire 45.6 0.0070 
Alnus crispa Wildfire 48.2 0.0171 
Pinus banksiana Wildfire 22.2 0.0240 
Lycopodium annotinum Wildfire 33.0 0.0324 
Equisetum arvense Salvage Logging 23.8 0.0465 

 
 

Burn severity categories within the wildfire leave stands show 11 species plus 

lichens and bryophytes with significant indicator values (p<0.05; Table 6.7).  Ten of 

these were indicators of NB plots.  The MB plots listed only Petasites palmatus, while 

Geranium bicknellii and Dracocephalum parviflorum, species commonly associated with 

early successional stands, were listed as indicators for the HB plots.  Indicator species 

were found in each burn severity category indicating that unique species compositions 

were occurring due to the varying levels of burn severity disturbance.  All species had an 

indicator value (IV) greater than 50, identifying them as strong species indicators for 

those burn severities. 
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Table 6.7  Indicator Species Analysis for the Candle Lake burn site between burn 
severities within the wildfire leave stands. 
 

Species Name or Group Burn Severity IV p 
Aralia nudicaulis No Burn 76.3 0.0001 
Lichen spp. No Burn 83.0 0.0001 
Bryophyte spp. No Burn 73.3 0.0002 
Picea glauca No Burn 71.9 0.0005 
Betula papyrifera No Burn 68.3 0.0023 
Rubus pubescens No Burn 64.1 0.0034 
Pyrola secunda No Burn 57.1 0.0055 
Lycopodium annotinum No Burn 63.6 0.0068 
Cornus canadensis No Burn 53.1 0.0210 
Viburnum edule No Burn 57.6 0.0462 
Petasites palmatus Light/Medium Burn 72.7 0.0026 
Geranium bicknellii High Burn 78.8 0.0018 
Dracocephalum parviflorum High Burn 50.5 0.0404 

 
 

Burn severity categories within the salvage logged stands identified 4 species as 

significant indicators (p<0.05; Table 6.8).  All species were listed within the HBL plots 

and have an IV >50.  These species include: Epilobium angustifolium, Aster spp., 

Petasites palmatus, and Mertensia paniculata.  No species were identified as significant 

indicators within the NBL and MBL plots.  Since indicator species were identified only 

for the high severity burn sites, salvage logging has created a more homogenous species 

composition between the burn severities, losing the vegetative range found within the 

wildfire leave stands. 

 
Table 6.8  Indicator Species Analysis for the Candle Lake burn site between burn 
severities within the salvage logged stands. 
 

Species Name or Group Burn Severity IV p 
Epilobium angustifolium High Burn 75.1 0.0018 
Aster spp. High Burn 56.7 0.0174 
Petasites palmatus High Burn 61.4 0.0176 
Mertensia paniculata High Burn 61.0 0.0340 
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The cluster analysis of burn severity and logging treatment on stand similarity at 

Candle Lake showed a strong division between the wildfire leave stands and the salvage 

logged areas (Figure 6.2).  The MB and HB leave plots displayed a high degree of 

similarity in terms of species composition due to the influence of a fire disturbance.  

These sites were noticeably different from NB plots.  The salvage logged plots showed 

varying levels of dissimilarity between the burn severities and overall differences were 

less pronounced than the wildfire leave stands, with the HBL plot shown to be the most 

dissimilar of the group.  NBL plots are more similar in composition to the MBL and HBL 

plots, indicating a more homogenous regeneration within the salvage logged areas.  The 

separation of the two clusters indicates that post-fire salvage logging does influence stand 

composition. 

 

  
 
Figure 6.2 Association analysis of burn severity stand similarity for Candle Lake 
burn site - 1 year post-fire.  NB, MB, HB indicate wildfire leave stands while NBL, 
MBL, HBL indicate salvage logged stands. 
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The summary results of the Canonical Correspondence Analysis (CCA) for all 

burn severity and logging combinations as related to environmental variables are shown 

in Table 6.9.  Axis 1 shows a strong negative correlation with leaf litter and cover of 

bryophytes and lichens, and a positive correlation with the amount of exposed soil.  Axis 

2 shows a positive correlation with needle litter cover and a negative correlation with 

exposed soil.  No variables were strongly related to Axis 3.  The total variance in species 

data explained by each axis is shown in Table 6.9. 

 
Table 6.9  Correlations on three axes for six variables using CCA on logging 
treatment and burn severity plots within the Candle Lake burn site (1 year post-
fire). 
 

Correlations 
Variables Axis 1 Axis 2 Axis 3 

Wood Matter Cover 0.219 0.320 0.237 
Leaf Litter Cover -0.870 -0.089 -0.020 
Needle Litter Cover 0.255 0.546 0.023 
Exposed Soil Cover 0.675 -0.616 0.098 
Bryophyte spp. Cover -0.805 -0.048 0.128 
Lichen spp. Cover -0.594 0.207 -0.150 
    

Total Variance (%) 11.6 5.6 3.8 

 

The CCA ordination visually separated the burn severities between the logging 

treatments (Figure 6.3).   NB plots are strongly separated from the HB and all salvage 

logged plots by axis 1.  NB plots are associated with leaf litter, lichen, and bryophyte 

cover which increases from the right to the left within the ordination.  The first axis 

placed the MB (light to medium burn severity) plots between NB and HB plots.  MB 

plots contain characteristics of both classes which differ in the amount of disturbance as 

shown through the dispersal across the ordination.  HB plots are associated with exposed 

soil cover as the organic layer has been consumed by the high severity wildfire, opening 
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up the forest floor.  HB plots were closer to the composition and environment of the 

salvage logged plots but remained significantly different on Axis 2.  All burn severities 

within the salvage logged plots, NBL, MBL, and HBL, are associated with needle litter 

cover indicating the larger amount of debris and slash which occurred due to the 

harvesting methods used for the salvage logging operation. 

MB and MBL plots tend to occupy the same ordination space indicating that 

species composition and environment variables of moderately burned forest stands are 

not drastically affected by salvage logging.  The major disturbance occurs within the high 

burn and low burn areas as they contract to the moderately burned ordination space when 

salvage logging is applied.  The high level of disturbance of the environmental variables 

of the salvage logging operation within the high burn and low burn areas makes them 

more similar to the moderately burned areas, decreasing the range of the vegetation 

communities and creating a more homogenous forest stand.   
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Figure 6.3  Canonical Correspondence Analysis (CCA) ordination plot of burn 
severity between logging treatments in the mixedwood boreal forest stands of the 
Candle Lake burn site (1 year post-fire). 
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6.2 Mahigan burn sites (10 years post-fire) 

6.2.1 Species richness and diversity  

A total of 73 species were catalogued in salvage logged and wildfire leave stands 

at the Mahigan Burn Site.  Seventy-two species were recorded within the wildfire leave 

stand and 54 within salvage logged stand (Table 6.10).  A total of 18 species found within 

the wildfire leave stand were not found within the salvage logged stand.  Overall species 

richness was found to be marginally higher within the salvage logged stand (Figure 6.4), 

but this may be influenced by a smaller sample size of 6 plots and was not found to be 

significant between the logging treatments (Table 6.11).  A significant difference in total 

species richness between burn severities was found (p<0.001; Table 6.11); all burn 

severities within salvage logged stands were found to have higher values (Table 6.10).  

The wildfire leave stands recorded a higher amount of shrub and herb species between all 

of the burn severities than the salvage logged areas.  A complete list of all species 

recorded and the frequency they occur between the logging treatments and burn severities 

is found in Appendix 2. 

Species diversity at the treatment level and between burn severities was found to 

be higher within the salvage logged stands (Table 6.10).  A significant difference in 

diversity between burn severities (p<0.001) and between logging treatments (p<0.001) 

was found in both cases, while the interaction between burn severity and logging 

treatments did not prove significant (Table 6.11).  No difference in total cover of species 

between the burn severities was found, but total cover differences between logging 

treatments were shown to be significant (p = 0.016).  The regeneration of the young tree 

and shrub species created a low thick canopy which can account for a large total coverage 
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within the salvage logged plots.  The difference in diversity and total cover between the 

logged and unlogged treatments is probably connected to the removal of residual trees 

and disturbance of the forest floor during the salvage logging operation. 

 
Table 6.10  Species richness and diversity (Shannon`s diversity index H’ ) for all 
vascular plants within the Mahigan burn site (10 years post-fire). 
 

Treatment 
Burn 
Severity 

# of sites 
sampled 

Mean Species 
Richness 

Total 
Species 

Total 
Tree 

Total 
Shrub 

Total 
Herb 

Total cover 
(%) 

Diversity 
(H’) 

 NB 6 26.83 52 3 14 35 88.7 2.10 

Leave MB 6 28.00 60 7 17 36 84.33 2.30 

 HB 6 17.67 43 5 10 28 80.3 1.58 
          
 NBL 4 31.00 47 6 12 29 100 2.75 

Salvage MBL 4 27.00 42 6 9 27 100 2.71 

 HBL 4 20.50 34 6 9 19 100 2.21 

Overall Wildfire 18 24.17 72 7 19 46 84.44 1.99 

Overall Salvage 12 26.17 54 6 16 32 100 2.56 
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Figure 6.4  Species richness for all vascular plants within the Mahigan burn site (10 
years post-fire). 
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Table 6.11  ANOVA results for species richness, diversity and total cover on the 
logging treatment and burn severity classes of the Mahigan burn site (10 years post-
fire).  Significant results are shown in bold type. 
 

 Total Species Richness  Diversity  Total Cover 

Source df F sig.  df F sig.  df F sig. 

Burn Severity 2 9.847 0.001  2 1.069 <0.001  2 0.612 0.851 
Logging 1 1.045 0.317  1 2.283 <0.001  1 6.666 0.016 
Burn Sev. vs. Logging 2 0.627 0.543  2 0.045 0.619  2 0.612 0.851 
Error 24    24    24   

 

6.2.2 Environmental characteristics  

Environmental differences between the two logging treatments are still evident 10 

years after the wildfire and salvage logging operation.  After removing the standing 

timber, the surface area of the salvage logged stand was tilled and replanted with Pinus 

banksiana; large trenches and berms are found throughout the site.  Comparative forest 

structure was not measured within the salvage logged stands because there were 

insufficient trees and snags due to the clear cutting method utilized.  The major 

differences in the environmental variables found at the Candle Lake site (1 year post-fire) 

are not as prominent 10 years post-fire between the salvage logged and wildfire leave 

stands (Table 6.4 and Table 6.13). 

Between the NB and NBL sites there was a noticeable decline in bryophyte cover, 

whereas the MBL and HBL had a considerably higher bryophyte cover compared to their 

respective leave stands (Table 6.12).  This is shown in Table 6.13 as the interaction 

between the burn severity and the logging treatment was significant (<0.001).  Lichen 

species were found to have no significant difference across the logging treatments and 

burn severities.  Coarse woody debris was slightly higher in the MB and HB leave stands 

due to the large amount of fallen snags which have tipped over since the fire disturbance 
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(Table 6.12).  The coarse woody debris coverage found no significant difference across 

the logging treatments, burn severity or their interaction.  This evenness in CWD between 

the wildfire leave stand and the salvage logged stand is predicted to change as more 

standing snags within the leave stand fall due to decay, increasing the input of CWD over 

a longer time period.  Both leaf litter and needle litter had higher total coverage within 

the salvage logged stands due to the high regeneration of Populus tremuloides and the 

planted Pinus banksiana.  Leaf litter was found to be significant within the burn severity 

and the logging treatments due to the unique species compositions found between the 

burn severities and the very high regeneration rate of Populus tremuloides within the 

salvage logged stand.  Needle litter was significantly different in the burn severity due to 

the increased presence of Pinus banksiana in the high severity burn areas.  Only the HBL 

treatment had an increased amount of exposed soil and it was not significantly different at 

any level.  Comparative forest structure was not measured because there were insufficient 

trees and snags after the sites had been clear-cut during salvage logging. 

 
Table 6.12  Environmental characteristics of the Mahigan burn site (10 years post-fire).  
All values made available are means ± 1 S.E. 
 

Treatment Leave Stand  Salvage Logged 

Burn Severity NB MB HB  NBL MBL HBL 

% Ground Cover        

Bryophyte species 35.42 ± 9.29 5.92 ± 1.85 2.75 ± 1.5  10.63 ± 3.59 23.75 ± 7.94 28.75 ± 5.05 
Lichen species 2.42 ± 1.55 0.50 ± 0.0 0.43 ± 0.07  0.30 ± 0.11 1.00 ± 0.5 0.80 ± 0.57 
Coarse Woody Debris 16.67 ± 2.11 24.17 ± 4.50 18.33 ± 1.67  15.0 ± 2.89 16.88 ± 6.88 12.5 ± 2.5 

Leaf Litter 34.17 ± 7.35 25.17 ± 7.80 19.67 ± 6.58  62.5 ± 10.2 56.25 ± 11.98 21.86 ± 5.72 

Needle Litter 2.42 ± 1.55 4.42 ± 3.14 41.25 ± 8.00  6.25 ± 2.17 13.13 ± 8.32 50.0 ± 7.22 

Exposed Soil 0.00 0.08 ± 0.08 0.00  0.00 0.00 10.63 ± 8.98 

Forest structure  ( >10m )       

% Canopy Cover 51.75 18.00 8.75  -- -- -- 
Residual DBH (cm) 23.95 ± 1.80 24.23 ± 1.86 16.36 ± 0.99  -- -- -- 
Residual Height (m) 12.37 ± 0.89 13.05 ± 1.23 12.58 ± 0.76  -- -- -- 
% Dead Snags 10.81 25.00 100.00  -- -- -- 
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Table 6.13  ANOVA results for environmental characteristics of the Mahigan burn 
site (10 years post-fire). Significant results are shown in bold type. 
 

 Bryophyte species  Lichen species  Coarse Woody Debris 

Source df F sig.  df F sig.  df F sig. 

Burn Severity 2 1.165 0.329  2 0.453 0.641  2 1.181 0.324 

Logging 1 1.749 0.198  1 0.378 0.545  1 2.680 0.115 

Burn Sev. vs. Logging 2 10.765 <0.001  2 1.574 0.228  2 0.313 0.734 

Error 48    48    48   

            

 Leaf Litter  Needle Litter  Exposed Soil 

Source df F sig.  df F sig.  df F sig. 

Burn Severity 2 5.758 0.009  2 31.144 <0.001  2 2.223 0.130 

Logging 1 8.996 0.006  1 2.290 0.143  1 2.206 0.151 

Burn Sev. vs. Logging 2 1.805 0.186  2 0.121 0.887  2 2.258 0.126 

Error 48    48    48   

 
 
6.2.3 Plant community comparisons  

MRPP comparisons between the salvage logged stand and wildfire leave stand 

showed that the species composition between logged and unlogged treatments 10 years 

post-fire are still significantly different (p<0.001) for all burn severities, with the 

exception of the HB and HBL sites (Table 6.14).  Differences are still evident in the 

species compositions between the no burn and moderate burn severities.  The similarity 

between the HB and HBL sites signifies that the effects of salvage logging do not have 

long lasting effects in areas of high severity burns.  Within the wildfire leave stand all 

burn severities were significantly different, indicating that separate plant communities 

have developed since disturbance.  The varying levels of disturbance caused by the burn 

severity have allowed different vegetative communities to develop in close proximity to 

one another.  Within the salvage logged stand, high burn severity plots were significantly 

different from both the NBL and MBL plots.  There was no significant difference found 

between the NBL and MBL sites indicating that the sites have become similar in the ten 
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years since the salvage logging disturbance.  The removal of the standing timber and the 

major tillage of the forest soils have caused the no burn and moderate burn severity sites 

to become similar in species composition, with salvage logging erasing the signs of burn 

activity and the unique species compositions that follow. 

 
 Table 6.14  Comparisons of species composition between logging treatments and 
burn severities within the Mahigan Burn Site using MRPP.  Significant results are 
shown in bold type. 
 

Comparison A p 
Between Treatments    
Wildfire vs. Salvage 0.2205 <0.0001  
NB vs. NBL 0.1434 0.0022  
MB vs. MBL 0.1130 0.0014  
HB vs. HBL 0.0493 0.1172  
    
Within Wildfire    
Wildfire (All) 0.1895 <0.0001  
NB vs. MB 0.0977 0.0005  
NB vs. HB 0.2284 0.0005  
MB vs. HB 0.1289 0.0019  
    
Within Salvage    
Salvage (All) 0.1667 0.0039  
NBL vs. MBL 0.0072 0.3833  
NBL vs. HBL 0.2089 0.0087  
MBL vs. HBL 0.1742 0.0114  

 

ISA analysis between the logging treatments resulted in a total of 12 species plus 

the Salix spp. group being identified as significant indicators (p<0.05) within the salvage 

logged stands (Table 6.15).  Of the species listed, Pinus banksiana is also considered as 

an indicator species for both the HB and HBL plots within the wildfire leave stand and 

the salvage logged leave stand (Tables 6.16 and 6.17).  At the logging treatment level no 

species was identified as an indicator for the wildfire leave stands; this relates to the loss 

of distinctive community structures between the burn severity classes within the salvage 
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logged area.  Tillage of the forest soil within the salvage logged area may have produced 

a more hospitable environment for species regeneration, resulting in a higher abundance 

of herbaceous species.  As the salvage logged area have become more homogenous, the 

burn severity classes are of similar species compositions, increasing the likelihood for 

individual species to be counted as an indicator for that logging treatment. 

 
Table 6.15  Indicator Species Analysis for the Mahigan burn site between logging 
treatments. 
 

Species Name or Group Treatment IV p 
Cornus canadensis Salvage Logging 91.5 0.0001 
Linnaea borealis Salvage Logging 80.4 0.0019 
Epilobium angustifolium Salvage Logging 82.9 0.0020 
Lathyrus ochroleucus Salvage Logging 72.0 0.0020 
Alnus crispa Salvage Logging 71.4 0.0039 
Vaccinium vitis-idaea Salvage Logging 63.1 0.0060 
Achillea millefolium Salvage Logging 56.7 0.0089 
Populus balsamifera Salvage Logging 46.8 0.0143 
Pinus banksiana Salvage Logging 62.3 0.0277 
Ledum groenlandicum Salvage Logging 65.5 0.0289 
Salix spp. Salvage Logging 59.2 0.0369 
Rubus idaeus Salvage Logging 62.3 0.0431 
Larix laricina Salvage Logging 31.6 0.0437 

 

Burn severity categories within the leave stands show 10 species plus bryophytes, 

Salix spp. and grasses with significant indicator values (p<0.05; Table 6.16).  Nine of 

these were indicators of NB severity.  The MB severity listed only grass species, while 

Pinus banksiana and Salix spp. were listed as indicators for the HB plots.  All species had 

an indicator value greater than 50, identifying them as strong species indicators for 

distinguishing between burn severities which have developed unique stand characteristics 

since the fire disturbance.  The no burn plots were untouched by fire and are 

characterized by species such as Picea glauca and bryophytes which are commonly 
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found in more mature undisturbed forests.  The high burn plots developed a strong 

association with Pinus banksiana which tends to regenerate in large abundance after high 

severity burns due to the large amount of mineral soil exposed after the fire. 

 
Table 6.16  Indicator Species Analysis for the Mahigan burn site between burn 
severities within the wildfire leave stands. 
 

Species Name or Group Burn Severity IV p 
Picea glauca No Burn 92.5 0.0003 
Bryophyte spp. No Burn 80.3 0.0009 
Alnus crispa No Burn 82.1 0.0030 
Aralia nudicaulis No Burn 85.4 0.0065 
Rubus pubescens No Burn 56.6 0.0158 
Ribes lacustre No Burn 79.6 0.0184 
Galium triflorum No Burn 68.2 0.0275 
Ribes triste No Burn 67.7 0.0346 
Cornus stolonifera No Burn 62.6 0.0438 
Grass spp. Light/Medium Burn 83.4 0.0140 
Pinus banksiana High Burn 99.5 0.0002 
Salix spp. High Burn 67.3 0.0273 

 

Burn severity categories within the salvage logged stands identified 2 species as 

significant indicators (p<0.05; Table 6.17).  The no burn plots listed Mertensia 

paniculata as a strong indicator species (IV = 83.2); high burn severity listed Pinus 

banksiana as a strong indicator (IV = 62.8).  No species were identified as significant 

indicators within the MBL plots.  The lack of indicator species found between the burn 

severity classes indicates a loss of heterogeneity within the salvage logged area as the 

regenerating species composition becomes similar.  The loss of distinctive stand structure 

between the burn severities is an indication of a decrease in diversity and a loss of species 

richness within the salvage logged areas ten years post-fire.  The only indicator species 

found within both logging treatments are Pinus banksiana and Salix spp. and both species 
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are identified with high burn severity signifying that salvage logging within high severity 

areas does not have long lasting effects. 

 
Table 6.17  Indicator Species Analysis for the Mahigan burn site between burn 
severities within the salvage logged stands. 
 

Species Name or Group Burn Severity IV p 
Mertensia paniculata No Burn 83.2 0.0361 
Pinus banksiana High Burn 62.8 0.0341 

 

The cluster analysis of burn severity and logging treatment on stand similarity at 

the Mahigan burn site indicated that the effects of salvage logging are still evident 10 

years post-fire (Figure 6.5).  Since the NB plots were undisturbed they showed a strong 

dissimilarity to the other treatments while the greatest similarity was found between the 

HB and HBL plots.  This indicates that the residual effects of salvage logging do not 

persist over a long period of time in areas of high burn severity.   Differences were still 

detected between the NBL and MBL plots and they have formed a weak cluster with the 

MB plots.  Whereas initial post-fire regeneration was clearly divided by salvage logging 

(Figure 6.3), over a ten year time period three regrowth cover types have developed, 

characterised by no disturbance, moderate disturbance either by fire or salvage logging, 

and severe disturbance. 

 



 73 

 
 
Figure 6.5  Association analysis of burn severity stand similarity for the Mahigan 
burn site - 10 years post-fire.  NB, MB, HB indicate wildfire leave stands while NBL, 
MBL, HBL indicate salvage logged stands. 
 
 
 

The summary results of the Canonical Correspondence Analysis (CCA) for all 

burn severity and logging combinations as related to environmental variables are shown 

in Table 6.18.  Axis 1 shows a strong negative correlation with needle litter.  Axis 2 

shows a negative correlation with the amount of bryophyte cover recorded.  No variables 

were strongly related to Axis 3.  The total variance in species data explained by each axis 

is shown in Table 6.18. 
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Table 6.18  Correlations on three axes for six variables using CCA on logging 
treatment and burn severity plots within the Mahigan burn site (10 years post-fire). 
 

Correlations 
Variables Axis 1 Axis 2 Axis 3 

Wood Matter Cover 0.098 0.036 -0.151 
Leaf Litter Cover 0.371 0.338 -0.352 
Needle Litter Cover -0.912 -0.097 0.085 
Exposed Soil Cover -0.285 -0.051 -0.052 
Bryophyte spp. Cover -0.006 -0.743 0.051 
Lichen spp. Cover 0.188 -0.204 0.161 
    

Total Variance (%) 15.0 7.5 6.4 

 

The CCA ordination visually separated the burn severities between the logging 

treatments (Figure 6.6).   NB plots are associated with bryophyte species cover which 

increases from the centre to the bottom of the ordination.  HB and HBL plots are 

associated with needle cover due to the high density regeneration of Pinus banksiana 

found within both burn severities.  The remaining environmental variables did not 

significantly correlate with any of the burn severities.   

The ordination has separated the plots into three groups with similar species 

composition and environmental variables.  NB plots were grouped together on the bottom 

right of the axis with a second group of MB, NBL and MBL plots together on the centre 

of the axis and a third group of HB and HBL plots to the left side of the axis.  The NB 

plots were undisturbed and are grouped together showing a separate species composition 

unique to that of the disturbed plots.  MB, NBL, and MBL are clustered together 

indicating that in ten years post-fire the MBL and NBL plots are becoming similar in 

both vegetative and environmental structure to the MB plots.  HB and HBL plots have 

become quite similar in composition 10 years post-fire indicating that high severity burn 

areas show little long lasting effects to salvage logging.  
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Figure 6.6  Canonical Correspondence Analysis (CCA) ordination plot of burn 
severity between logging treatments in the mixedwood boreal forest stands of the 
Mahigan Burn site (10 year post-fire). 
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6.3 Comparison of the Mahigan and Beaupré burn sites (10 years post-fire) 

6.3.1 Species richness and diversity  

A total of 62 species were identified at the Beaupré Burn Site, while the Mahigan 

site catalogued a total of 72 species (Table 6.19).  Species richness within the burn 

severity classes at the Mahigan and Beaupré sites was similar for the NB and MB plots.  

However, the Beaupré site had much higher species richness in the HB severity class; this 

is possibly due to a higher density of Populus tremuloides within the pre-fire stand which 

resulted in a less severe burn.  Species richness and diversity was significantly different 

between the burn severity classes and between sites, and also between burn severities 

within the sites (Tables 6.20).  These significant differences may be due to the Mahigan 

site being located in a moister low lying area (personal observation) which would create 

the habitat for a wider range of plant species.  A complete list of all species recorded and 

their frequency at the Beaupré burn is found in Appendix 3. 

Diversity was slightly higher within the Beaupré site (Table 6.19).  The difference 

in diversity between the two sites was found to be significant between burn severity 

classes and between sites, as well as the interaction between the burn severities and the 

sites (Table 6.20).  The species compositions were all significantly different between the 

two sites.  Total species cover was not significantly affected by burn severity or by the 

interaction between burn severity and the sites, but total cover between the two sites was 

significantly different (p = 0.035) indicating that there is a difference in the species 

composition between the two representative upland mixedwood boreal forest stands.    
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Table 6.19  Species richness and diversity (Shannon’s diversity index H’ ) for all 
vascular plants within the Beaupré burn site (10 years post-fire). 
 

Treatment 
Burn 
Severity 

# of sites 
sampled 

Mean Species 
Richness 

Total 
Species 

Total 
Tree 

Total 
Shrub 

Total 
Herb 

Total 
Cover (%) 

Diversity 
(H’) 

 NB 6 26.67 44 5 12 27 93.92 2.14 

Beaupré MB 6 28.50 50 5 14 31 93.67 2.39 

 HB 6 27.50 52 5 10 37 100 2.22 
          

 NB 6 26.83 52 3 14 35 88.70 2.10 

Mahigan MB 6 28.00 60 7 17 36 84.33 2.30 

 HB 6 17.67 43 5 10 28 80.30 1.58 

Overall Beaupré 18 27.56 62 6 17 39 95.86 2.25 

Overall Mahigan 18 24.17 72 7 19 46 84.44 1.99 

 
Table 6.20  ANOVA results for species richness, diversity and total cover on the 
effect of burn severity classes between the Mahigan and Beaupré burn sites (10 
years post-fire).  Significant results are shown in bold type. 
 

 Total Species Richness  Diversity  Total Cover 

Source df F sig.  df F sig.  df F sig. 

Burn Sev. 2 4.405 0.021  2 6.634 0.004  2 0.067 0.936 
Site 1 4.401 0.044  1 6.635 0.015  1 4.901 0.035 
Burn Sev. vs. Site 2 3.993 0.029  2 3.803 0.034  2 0.698 0.505 
Error 30    30    30   

 

6.3.2 Environmental characteristics  

Differences in site conditions and stand structure between the two sites are 

minimal (Table 6.21).  Bryophyte cover is significantly different between the burn 

severities, the sites and the interaction between the burn severities and the sites (Table 

6.22).  The significant difference in bryophyte cover between the two sites may be 

explained by the forest canopy difference as the Beaupré canopy is dominated by 

Populus tremuloides which tend to grow in drier soils; this may lead to a lesser 

abundance of bryophyte cover on the forest floor.  Coarse woody debris, lichen and 

exposed soil coverage all did not show a significant difference between either the burn 

severities of the site difference.  The Beaupré site had a much higher cover of leaf litter 
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associated with the dense regeneration of Populus tremuloides in the high burn severity 

plots which is indicated by the significant difference (p = 0.002) between the two sites.  

The Mahigan site has a much higher needle litter cover within the high burn severity 

plots due to the greater density of conifers.  A difference in needle litter was found 

significantly different across all of the categories.  The forest structure between the two 

sites does not differ greatly, indicating similar post-fire structure between the burn 

severities and sites. 

 
Table 6.21  Environmental characteristics of the Beaupré burn site (10 Years Post-
Fire).  All values made available are means ± 1 S.E. 
 

Treatment Beaupré Leave Stand  Mahigan Leave Stand 

Burn Severity NB MB HB  NB MB HB 

% Ground Cover        

Bryophyte species 7.92 ± 2.84 1.83 ± 0.42 1.50 ± 0.45  35.42 ± 9.29 5.92 ± 1.85 2.75 ± 1.5 
Lichen species 2.08 ± 1.58 0.50 ± 0 0.50 ± 0  2.42 ± 1.55 0.50 ± 0.0 0.43 ± 0.07 
Coarse Woody Debris 17.91 ± 6.31 26.67 ± 8.26 28.33 ± 5.80  16.67 ± 2.11 24.17 ± 4.50 18.33 ± 1.67 

Leaf Litter 54.17 ± 5.27 37.08 ± 9.63 53.75 ± 10.87  34.17 ± 7.35 25.17 ± 7.80 19.67 ± 6.58 

Needle Litter 3.75 ± 1.25 10.83 ± 10.8 4.08 ± 3.20  2.42 ± 1.55 4.42 ± 3.14 41.25 ± 8.00 

Exposed Soil 0.00 0.00 0.00  0.00 0.08 ± 0.08 0.00 

Forest structure  ( >10m )       

% Canopy Cover 69.25 10.83 2.25  51.75 18.00 8.75 
Residual DBH (cm) 22.96 ± 1.28 24.09 ± 2.03 22.60 ± 1.29  23.95 ± 1.80 24.23 ± 1.86 16.36 ± 0.99 
Residual Height (m) 13.81 ± 0.63 11.79 ± 1.66 13.13 ± 0.91  12.37 ± 0.89 13.05 ± 1.23 12.58 ± 0.76 
% Dead Snags 9.86 42.11 100.00  10.81 25.00 100.00 
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Table 6.22  ANOVA results for environmental characteristics of the Mahigan and 
Beaupré burn sites (10 years post-fire). Significant results are shown in bold type. 
 

 Bryophyte species  Lichen species  Coarse Woody Debris 

Source df F sig.  df F sig.  df F sig. 

Burn Severity 2 13.949 <0.001  2 2.539 0.096  2 1.264 0.297 
Site 1 10.718 0.003  1 0.014 0.905  1 1.118 0.299 
Burn Sev. vs. Site 2 6.191 0.006  2 0.028 0.972  2 0.397 0.676 
Error 30    30    30   
            

 Leaf Litter  Needle Litter  Exposed Soil 

Source df F sig.  df F sig.  df F sig. 

Burn Severity 2 1.295 0.289  2 6.468 0.005  2 1.000 0.380 
Site 1 10.977 0.002  1 4.439 0.044  1 1.000 0.325 
Burn Sev. vs. Site 2 0.951 0.398  2 8.741 0.001  2 1.000 0.380 
Error 30    30    30   

 
 
6.3.3 Plant community comparisons  

MRPP comparisons within the wildfire leave stands at the Beaupré site showed 

significant differences for all combinations of burn severity (Table 6.23) as well as for 

the overall stand analysis.  This reflects the distinctive community structures between 

burn severity classes within the wildfire leave stands.  Comparisons between the Mahigan 

and Beaupré burn severities show significant differences at all levels (Table 6.24), 

indicating a difference in species composition.  This difference is potentially due to a 

higher frequency of conifer species found throughout the Mahigan site and a higher 

frequency of deciduous species found throughout the Beaupré site (Appendices 2 and 3).  

Both the Mahigan and Beaupré sites show development of distinct species compositions 

among the burn severities in the 10 years since the wildfire disturbance.  Even though the 

two sites differ in species composition between burn severity classes (Table 6.24), they 

both show a similar trend in unique species composition among burn severities. 
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Table 6.23  Comparisons of species cover between burn severities within the Beaupré 
burn site using MRPP.  Significant results are shown in bold type. 
 

Comparison A p 
Within Wildfire    
Wildfire (All) 0.1704 <0.0001  
NB vs. MB 0.1461 0.0005  
NB vs. HB 0.2082 0.0005  
MB vs. HB 0.0565 0.0131  

 
 

Table 6.24  Comparisons of species cover within burn severities between the Mahigan 
and Beaupré burn sites using MRPP.  Significant results are shown in bold type. 
 

Comparison A p 
Within Wildfire    
Wildfire (All) 0.2104 <0.0001  
Mahigan NB vs. Beaupré NB 0.1309 0.0030  
Mahigan MB vs. Beaupré MB 0.0535 0.0034  
Mahigan HB vs. Beaupré HB 0.1735 0.0013  

 
 

ISA analysis of the Beaupré  leave stands resulted in a total of 8 species plus Salix 

spp. and bryophyte groups being identified as significant indicators (p<0.05; Table 6.25) 

of the wildfire treatments.  Of these species, three are identified as indicators of the NB 

treatment - Abies balsamea, bryophytes, and Aralia nudicaulis.  Only Rubus idaeus was 

identified as an indicator species for the MB treatment.  Within the HB treatment 6 

indicator species are listed - Taraxacum officinale, Epilobium angustifolium, Populus 

tremuloides, Salix spp., Populus balsamifera, and Fragaria virginiana.  This reflects the 

high regeneration of broadleaf tree species found throughout the HB severity plots at the 

Beaupré site (Appendix 3).  Indicator species were found in each burn severity category 

indicating that unique species compositions were occurring due to the varying levels of 

burn severity disturbance.  All species had an indicator value (IV) greater than 60, 

identifying them as very strong species indicators for those burn severities.  The Mahigan 

and Beaupré wildfire leave stands share some indicator species between the burn 
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severities.  Within the NB treatment both sites list Bryophyte spp. and Aralia nudicaulis 

as significant indicators.  Within the HB treatment only Salix spp. was listed as 

significant between both sites.   

 
Table 6.25  Indicator species analysis for the Beaupré burn site between burn 
severities within the wildfire leave stands. 
 

Species Name or Group Burn Severity IV p 
Abies balsamea No Burn 94.4 0.0005 
Bryophyte spp. No Burn 70.4 0.0175 
Aralia nudicaulis No Burn 73.9 0.0228 
Rubus idaeus Light/Medium Burn 71.1 0.0136 
Taraxacum officinale High Burn 90.9 0.0007 
Epilobium angustifolium High Burn 87.5 0.0017 
Populus tremuloides High Burn 64.1 0.0064 
Salix spp. High Burn 76.4 0.0091 
Populus balsamifera High Burn 62.9 0.0288 
Fragaria virginiana High Burn 61.1 0.0482 
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6.4 Microclimate variation between logging treatments within the Candle Lake burn 
site (1 year post-fire) 
 
6.4.1 Microclimate 

Available energy for each microclimatic system varied strongly between micro-

sites (Figure 6.7).  Compared to the NB site, average incoming radiation increased by a 

factor of 3 within the NBL site, with more than a fourfold increase in the MBL site 

compared to the MB site.  However, average radiation increased only by a factor of 1.2 

between the HBL and HB sites due to the smaller overall change in structure.   

 

 
 
Figure 6.7  Average radiation and albedo at the Candle Lake micro-sites. 
 

Albedo values were generally consistent within the MB and HB sites, averaging 

about 0.17 (Figure 6.7).  Albedo averaged 27% in the three NB sites, and values typically 

were more variable within each site.  The HBL sites showed the most within-site 

variation with albedos ranging from 12 to 24%.  The high albedo associated with the 

NBL sites can be attributed to the reflectivity of branches and foliage on the ground and 
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the absence of blackened, fire-charred materials which provides a surface that is 

comparable to the NBL site.   

Air temperatures differed significantly between sites and were highest in the 

salvage logged treatments MBL and HBL where mean monthly maximum temperatures 

at a height of 50 cm exceeded 33 °C in July (Figure 6.8).    Mean maximum temperature 

in July for HB was 32 °C which was similar to the NB control stand.  The 50 cm mean 

July temperature at MB was lower than HB by 3 ° C and by 7° C compared to MBL. 

Unfortunately, the datalogger at NBL failed.   Mean monthly air temperatures at 150 cm 

were less variable and in July ranged from 29 °C at MB to 34 °C at HBL. 

 

 

Figure 6.8  Mean monthly maximum air temperatures (°C) at 50 cm and 150 cm. 

Air temperature gradients calculated from 50 and 150 cm sensor heights indicate 

the direction of sensible heat flux and show how energy is transferred within the different 

micro-sites (Figure 6.9).  Negative values denote energy transfer away from the surface 

and positive values denote energy transfer towards the surface.  For the logged sites 
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(MBL and HBL) heat is generally moved away from the surface.  A similar effect was 

noted in the MB site.   However, in the case of the NB and HB sites, the heat flux was 

downwards.   

 

Figure 6.9  Air temperature gradients at treatment sites at Candle Lake based on 
difference between 50 cm and 150 cm.  Negative values denote an upward flux to the 
atmosphere.  Positive values denote a downward flux toward the surface. 

 

Rainfall during the summer of 2004 was higher than average for the region.  The 

nearest weather station operated by Environment Canada was located at Waskesiu Lake, 

approximately 100 km NW of the Candle Lake study area. A total of 350 mm of rainfall 

was recorded from May to August at Waskesiu Lake compared to the normal amount of 

275 mm (Figure 6.10). 
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Figure 6.10  Waskesiu Lake climograph showing 20 year normal monthly 
temperatures and precipitation vs. conditions during 2004. 
 

Short term measurements following periodic wet spells showed that noticeable 

variations occurred between the research sites (Figure 6.11).  In the wildfire leave stands 

rainfall values increased with burn severity and totaled 57 mm in the NB site, 71 mm in 

the MB site and 88 mm in the HB site.   Salvage logging further increased rainfalls of 90, 

95 and 94 mm recorded at NBL, MBL and HBL respectively. The difference in 

precipitation noted between NB and MB is due to the reduced rainfall interception caused 

by loss of foliage and the more open canopy at MB.  More complete canopy removal in 

HB further reduces interception and makes the site similar to the areas that have been 

salvaged logged. 
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Figure 6.11  Total precipitation at treatment sites at Candle Lake. 

 

Mean relative humidity (RH) values are presented in Figure 6.12.   Conditions 

were comparatively dry in May and June and RH at 50 cm was especially variable 

between sites during these months.  With higher rainfalls during July and August mean 

RH was uniformly high at all sites and increased from 60% in the early summer to 80% 

later in the growing season.  Mean RH values at 150 cm ranged from 65% in May to 

about 80% in August and, with the exception of MB, showed little variation between 

sites.  The low values at MB probably are caused by a defective sensor.    HB and HBL 

showed similar trends over the course of the summer, but HB displayed consistently more 

humid conditions than HBL.  HB had a denser vegetation cover than HBL and 

transpiration could attribute to the ~10% difference between these sites.   
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Figure 6.12  Monthly mean relative humidity at 50 cm and 150 cm at treatment sites 
at Candle Lake. 

 

A small RH gradient from the 50 cm to the 150 cm height occurred at HB, HBL, 

and NB throughout the growing season, while at MB there was a positive gradient 

(Figure 6.13).  MBL is considered to be spurious and should be ignored.  The NB site 

displayed the largest gradient moving from the surface to the atmosphere which may be 

associated with transpiration from the undisturbed ground cover.  Similarly, the rapid 

establishment of fast growing aspen and other early seral species at HBL may account for 

the negative RH gradient that develops in June and persists through the remainder of the 

growing season.  However, the negative RH gradient declined at NB, HB and HBL as the 

summer progressed and perhaps because of reduced available soil moisture later in 

August or slower growth and senescence.   
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Figure 6.13 Humidity gradients at treatment sites at Candler Lake: negative values 
denote movement of water upwards to the 150 cm height and positive values denote 
movement downwards to the 50 cm height. 
 
 

Minimum soil temperatures at 5cm depth in the treatment sites are shown in 

Figure 6.14. HBL is nearly always the hottest site with near-surface soil temperatures 

typically 1 to 5° C warmer than other sites.  The difference appears to be most marked in 

the mid season period, and becomes less apparent later in the year.   The NBL and MB 

sites were the coolest at the start of the growing season, but by mid season the near-

surface soils were coolest in the NB site, a condition that was essentially maintained with 

until the end of the season.   Maximum soil temperatures plotted at each of four depths 

for the NB are presented in Figure 6.15.  A fairly regular decrease in maximum soil 

temperatures was noted with depth with the range in temperatures increasing at mid 

season.  At this time the difference in temperature between the 5 cm and 50 cm depths 

was about 5° C  compared to about 3° C in May and less than 2° C in August.  The 

highest temperature at 5 cm at the NB site was 17° C.  
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Figure 6.14  Minimum soil temperatures at 5cm depth in treatment sites at Candle Lake.  
 
 
 

 
 
Figure 6.15  Maximum soil temperatures plotted at four depths for the NB site at 
Candle Lake.  
 

Similar soil temperatures were noted at the MB site (Figure 6.16) although here 

the temperatures at the 5 and 10 cm depths were quite similar and noticeably warmer than 

at 20 and 50 cm depth.  This dichotomy was even more pronounced in the MBL site 

where the upper soil layers were more than 7° C warmer than the deeper soils.  This 



 90 

presumably was caused by the two-fold effect of the charred debris that was left on the 

soil surface following salvage logging.    The blackened material would increase 

absorption of solar energy near the surface, but at the same time afford some insulating 

effect against energy transfer to the deeper soil layers.  The highest temperature recorded 

at the MBL site was 22° C compared to 17° C at the MB site. 

 

 
 
Figure 6.16  Maximum soil temperatures plotted at four depths for the MB and MBL sites 
at Candle Lake.  
 

A different pattern was seen at HB and HBL (Figure 6.17). At the HB site 

maximum soil temperatures at 5 cm were typically 2 degrees warmer than at 10 cm, 

presumably due to increased energy absorption by dark ash and charred material on the 

surface.   Temperatures 10 and 20 cm were almost identical and were about 1° C warmer 

than at 50 cm.  Temperatures at HB were comparable to those at NB and the warm soils 

at the start of the growing season distinguished HB from the other burned and logged 

sites.  Soil temperatures at HBL are similar to those at MBL and both fluctuate markedly 
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throughout the growing season.  In both cases soil temperatures appear to follow daily 

radiation levels quite closely. The differences noted at depth between these sites likely 

reflect moisture levels with wetter conditions prevailing at MBL. 

 

 
 
Figure 6.17  Maximum soil temperatures plotted at four depths for the HB and HBL sites 
at Candle Lake.  
 

Wind speed was measured at NB, HB, and HBL and illustrates the extreme range 

of site conditions (Figures 6.18 and 6.19).  Comparison of conditions at 50 cm at the NB 

and HB sites showed that HB had consistently higher wind speeds until the end of June at 

which time the regrowth aspen suckers and other vegetation were sufficiently tall to 

interfere with air movement (Table 6.18).  For the rest of the growing season the 50 cm 

wind speeds at both sites were steady at 0.45 m s-1.  This compares to values peaking of 

0.46 m s-1 at NB and 0.62 m s-1 at HB at the start of the growing season. 
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Figure 6.18  Mean wind speed at 50 cm. for NB and HB sites at Candle Lake.  
 

Wind speeds at 150 cm were more variable throughout the growing season at all 

sites and were generally highest in the disturbed sites (Table 6.19).  Wind speed at HBL 

ranged from 0.25 to 1.6 m s-1 and was the most variable with both the lowest and highest 

speeds recorded for any site.  The complete removal of standing timber opens up the 

forest environment and takes away all shade, creating an extreme environment not found 

when a canopy is present.  At HB the range in wind speed was 0.75 to 1.3 m s-1 compared 

to 0.6 to 1.15 m s-1 at NB.   

 
 
Figure 6.19  Mean wind speed at 150 cm for NB, HB, and HBL sites at Candle Lake. 
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6.4.2 Microenvironment 
 

The most modified structural feature of the micro-environment was the canopy 

cover.  All three logged sites showed high canopy openness ranging from 72% in NBL to 

93% in MBL (Figure 6.20).   The lower value of canopy openness in NBL is due to the 

occurrence of many small aspen stems throughout the cut area and occasional short trees 

that were left standing.  The wildfire leave stand sites showed increasing canopy 

openness from NB, MB and HB respectively.  Canopy openness in the MB sites averaged 

43% as not all tree cover had been killed by fire and 70% in the HB sites where remnant 

dead snags provided some shade.  This compared to 30% in the undisturbed NB sites.  

 
 

 
 
Figure 6.20  Canopy openness between micro-sites at Candle Lake. 
 

Canopy openness was found to be significantly correlated to radiation received at 

1.3 m height on a cloudless day (r2 = 0.87 for Candle Lake site 1 and 0.81 for site 2, 

p<0.05; Figure 6.17).  Canopy openness was also found to be significantly correlated to 
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the amount of precipitation received at each micro-site (r2 = 0.92 for site 1 and 0.73 for 

site 2, p<0.05; Figure 6.21).   

 

 
 
Figure 6.21  Canopy cover (% openness) versus solar radiation (left) and versus 
precipitation (right) for all treatments at sites 1 and 2 at Candle Lake. 
 

Litter depth generally was negatively correlated to maximum soil temperatures at 

5 cm and 10 cm depths (Figure 6.22), with increase in litter depth producing a 

corresponding decrease in temperature.  The exception was site 1 where the reverse trend 

was noted; this was likely caused to the topographic position of the site which maintained 

relatively high soil moisture levels.  Higher soil moisture levels increase soil thermal 

conductivity and energy storage allowing the top soil layer to attain higher soil 

temperatures even with an increased litter depth (Al Nakshabandi and Kohnke 1965).    
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Figure 6.22  Average litter depth vs. maximum soil temperature at 5 cm at three 
sites and overall average for the study area at Candle Lake. 
 
 

Analysis of Variance (ANOVA) was used to quantify differences between 

treatment sites (Table 6.26).  Comparison of the burned and logged counterparts indicated 

that significant differences (p<0.05) occurred between MB and MBL for canopy 

openness, albedo, minimum soil temperatures and precipitation.  HB and HBL showed 

significant differences only for canopy openness and minimum soil temperatures.  NB 

and NBL showed significant differences for canopy openness maximum, minimum soil 

temperatures and precipitation received.  Comparison of non-logged sites showed that 

NB and HB differed significantly for all variables except minimum soil temperatures at 5 

cm and precipitation.  NB and MB showed significant differences in maximum soil 
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temperature at 5 cm and albedo.  For the salvage-logged sites no significant differences 

were noted between MBL and HBL.   

 
Table 6.26  ANOVA results between sites for environmental variables.  Values 
provided are p-values with significant differences shown in bold type. 
 

Soil Temp. (°C) at 5 cm 
Site Comparison 

Min. Max. 
Avg. Soil Temp. 

(°C) at 5 cm 

Canopy 
Openness 

(%) 

Precip. 
(mm) 

Albedo 

NB vs. NBL <0.001 0.022 0.005 0.002 0.018 0.765 

MB vs. MBL 0.151 <0.001 0.128 0.023 <0.001 0.002 
HB vs. HBL 0.715 0.035 0.096 0.022 0.162 0.763 

NB vs. MB 0.023 0.396 0.101 0.191 0.159 <0.001 
NB vs. HB 0.020 0.169 0.028 <0.001 0.320 <0.001 
MB vs. HB 0.194 0.591 0.211 0.018 0.732 0.005 

MBL vs. HBL 0.632 0.365 0.487 0.580 0.314 0.475 
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7. Discussion 
 

The results of this study agree with other authors in affirming that salvage logging 

immediately after a wildfire disturbance significantly alters early post-fire plant 

communities (Martinez-Sanchez et al. 1999; Fraser et al. 2004; Kurulok 2004; Purdon et 

al. 2004; Hanson and Stuart 2005).  Early post-fire salvage logging (1 year post-fire) 

tends to remove the boundaries between burn severities; creating similar patterns of 

species composition through the removal of the forest canopy and disruption of the forest 

floor.  The wildfire leave stands showed unique species composition among the burn 

severities as boreal forest species have developed different reproductive strategies in 

response to varying degrees of burn severity (Rowe 1983; Schimmel and Granström 

1996).  Salvage logged forest stands in my study showed a greater degree of homogenous 

plant communities among burn severities.  Logging appears to truncate the broader range 

of plant community characteristics found in plant communities of unlogged post-fire 

forest stands. 

The effects of salvage logging were less pronounced ten years post-fire, with 

plant communities converging between the salvage logged and unlogged sites.  The early 

distinct differences found between salvage logged and unlogged leave stands, developed 

into three plant community types described as no disturbance, moderate disturbance 

either by fire or salvage logging, and severe disturbance early succession communities.  I 

found that the effects of salvage logging do not persist over a long period of time in areas 

of high burn severity, but continue to be apparent in areas of low to moderate burn 

severity ten years after disturbance.  The effects of salvage logging on plant community 

development were still evident ten years post-fire causing a decrease in the range of 
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boreal plant community composition and structure among the no burn and moderate burn 

severities. 

 

7.1 The effects of salvage logging on species regeneration 

Within the very early succession wildfire leave stands (1 year post-fire) the 

variability in species richness, and diversity of the post-fire environment, is influenced by 

the structural and environmental characteristics at the sites.  The formation of distinctive 

species compositions between burn severities within the wildfire leave stands was typical 

of mixedwood boreal forest after a wildfire disturbance (Dix and Swan 1971; Rowe 

1983; Bonan and Shugart 1989, Schimmel and Granström 1996).  The fire disturbance 

affected the microclimate and availability of exposed mineral soil germination sites via 

the removal of forest canopy and the creation of residual snags.  Through the variation in 

burn severity and light availability, which taken together created unique plant 

regeneration sites, lead to differences in plant communities across the burnt areas. 

Although the salvage logged stands were established within the same range of 

post-fire conditions as the leave stands, the additive effects of the secondary logging 

disturbance resulted in significant differences in species composition.  Early successional 

regeneration in the salvage logged stands showed an overall loss in species richness and a 

drop in species diversity compared to stands disturbed by wildfire alone.  Overall 

vascular vegetative cover within salvage logged stands was 40.8% lower than for similar 

burn severities in the leave stands with the largest difference seeing a 41% decrease 

between the moderately burned (MBL) areas.  The salvage logged stands created a more 

simplified and sparse vegetative community.  These findings are similar to Purdon et al. 
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(2004) where they found a more homogenous understory composition with a decrease in 

species diversity and abundance among burn severities in salvage logged stands. 

The most noticeable effect of salvage logging is the removal of the residual forest 

canopy within all burn severities.  Removing the standing timber through salvage logging 

created substantial differences in the structural and environmental characteristics at the 

sites.  The decrease in the abundance of standing trees and snags created significant 

differences in canopy structure and the micro-environment.  At the Candle Lake burn 

site, changes such an increase in incoming radiation, air temperature, wind speed and soil 

temperature alter the growing conditions in the salvage logged stands.  Within the 

moderate to high burn severity salvage stands, the loss in shade and increase in wind 

speeds produced increased fluctuations in daily temperatures and humidity, which 

enhance like likeliness of drying out the top soil layer and increasing the potential for 

water stress in the regenerating plants.  The lower species richness and sparser plant 

cover found in the salvage logged stands is evidence of this effect.  Modification of the 

micro-climate of the salvage logged environment was most pronounced between the 

leave stands and salvage logged stands of the no burn areas as an undisturbed forest is 

vastly different in structure than a disturbed area.  As salvage logging encompasses areas 

which were not directly affected by the wildfire event, these areas of no burn are 

essentially clear-cut and the changes in species composition and environmental variables 

were similar to results described by Franklin et al. (2002).  Differences between the 

unlogged and salvage logged areas were progressively less noticeable as burn severity 

increased in the environments being compared. 
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In addition to modifying site micro-climate, the removal of standing snags and the 

residual live canopy also disturbed the forest floor by leaving behind a large amount of 

woody material and needle litter (i.e. logging slash).  Coarse woody debris left on the 

forest floor showed an overall increase of 58% in salvage logged areas with the largest 

increase of 64.2% occurring within the high severity burn (HBL) areas.  Salvage 

harvesting the burnt forest stands increased the amount of coarse woody debris on the 

forest floor inhibiting forest regeneration as documented in studies by Purdon et al. 

(2004), Kurulok (2004) and Donato et al. (2006).  This increase in coarse woody debris 

and disturbance of the forest floor caused a decrease in the amount of exposed mineral 

soil found between the burn severities.  Salvage logged stands showed an overall 

decrease in exposed mineral soil by 15.7% with the largest decrease of 46.6% occurring 

in high severity burn (HBL) areas.  The loss of the canopy also increased solar radiation, 

increasing the surface temperature of the forest floor and making it more susceptible to 

drying out.  The moderate and high burn severity areas within the salvage logged stands 

produced an average temperature 5°C higher within the top 5 cm of the soil layer.  The 

disturbance of the forest floor by the salvage logging operation has been found to inhibit 

the regeneration of plant species, specifically lowering the successful germination rate of 

tree seedlings (Martinez-Sanchez et al. 1999; Donato et al. 2006; Greene et al. 2006). 

Similar to the Candle Lake burn site (1 year post-fire), the variability in species 

richness and diversity at the Mahigan site wildfire leave stands (ten years post-fire) is 

influenced by the structural and environmental characteristics.  Ten years after the 

wildfire disturbance, the formation of distinctive species compositions between burn 

severities within the wildfire leave stands is typical of mixedwood boreal forest (Dix and 
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Swan 1971; Rowe 1983; Bonan and Shugart 1989, Schimmel and Granström 1996).  The 

variation in fire severity is important in determining the ability for species to recolonize 

after the wildfire event.  Areas affected by lower burn severities have a higher success 

rate of regenerating species which were present prior to the wildfire disturbance, while 

areas of high burn severities rely on recolonization to take place through aerial seed bank 

input and seed from surviving sources at the edges of the burn (Greene et al. 2004; 

Barnes et al. 1998).    

Species richness at the Mahigan site ten years post-fire was not significantly 

different between the logging treatments, but there were 18 fewer species recorded within 

the salvage logged stands compared to the wildfire leave stands.  This large decrease in 

the amount of individual species found in the salvage logged stand indicates that there is 

a long lasting effect on the species composition of salvage logged stands.  The wildfire 

leave stands recorded a higher amount of shrub and herb species between all of the burn 

severities than the salvage logged areas.  A reduction of species post-salvage logging was 

first seen in the loss of vegetative range recorded at the Candle Lake burn sites one year 

post-fire.  The loss in the number of boreal species is primarily associated with 

herbaceous species largely found in older mixedwood stands such as wintergreens 

(Pyrola secunda) and orchids (Goodyera repens).  Salvage logged stands also showed a 

loss of shrub species, particularly within the moderate burned plots.  This loss of 

understory shrub species may be due to the disturbance of the forest floor during the 

salvage logging operation, removing the residual shrub species which would have 

normally recolonized the area after surviving the exposure to a moderate burn.  Overall 

diversity was significantly higher within the salvage logged stands compared to the leave 
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stands.  This increase in diversity is possibly due to a smaller sample size, ground 

preparation, tillage of the soil, and the planting of Pinus banksiana seedlings post-salvage 

harvest.  Vegetation cover was also higher by 15.5% in the salvage logged stand due to 

the dense canopy cover by young regenerating trees, specifically Populus tremuloides.  

However, differences in composition between logged and unlogged sites became less 

pronounced with increasing burn severity.   

The effects of salvage logging on environmental variables were less pronounced 

at the Mahigan burn site.  The division between the wildfire leave stand and the salvage 

logged stand has lessened after ten years post-fire with no significant differences being 

found other than within the leaf litter coverage; this can be explained by the high 

regeneration rate of aspen species, specifically throughout the no burn to moderate burn 

severity salvage logged plots.  The large division in the abundance of coarse woody 

debris between wildfire leave stands and salvage logged stands displayed one year after 

the salvage operation has diminished and no significant difference was found between the 

post-fire sites ten years afterwards.  Within the Mahigan burn site, the increased coarse 

woody debris coverage after salvage logging has decreased since the salvage logging 

operation as there has been no long term input from standing snags.  Conversely, the 

wildfire leave stand has an increasing rate of coarse woody debris due to the natural 

collapse of snags which were killed by the wildfire disturbance.  The snags present within 

the wildfire leave stand provide a long term input of nutrients, shade, animal habitat (both 

standing and fallen), and the availability of nurse logs for the germination of tree 

seedlings.  This was most apparent in the moderately burned areas which have a mix of 

dead and living trees which were not completely consumed by the fire disturbance and 
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are dying and falling at a slower rate than seen in the high severity burn areas (Greif et al. 

1999; Lee and Crites 1999; Morissette et al. 2002; Nappi et al. 2004; Russell et al. 2006). 

 

7.2 Effects of salvage logging on plant communities 

Fires are important processes for maintaining the biodiversity within boreal forest 

communities (Wein and MacLean 1983; Johnson 1992).  Fire severity at the local level is 

important in determining the process of species recolonization after a wildfire 

disturbance.  Boreal forest species have developed different reproductive strategies in 

response to varying degrees of burn severity that create unique species compositions 

within the post-fire environment (Rowe 1983; Schimmel and Granström 1996).  Results 

of this research have found that significant differences in species composition between 

burn severities is common in the wildfire leave stands, while salvage logged stands 

tended to show similarity in species composition between the burn severities.  The 

negative influences to species composition by salvage logging can be attributed to the 

increase of forest floor disturbance and removal of the forest canopy.  It was found that 

salvage logging increased the ground cover of coarse woody debris and needle litter 

while decreasing the amount of exposed soil, resulting in reduced species richness and 

abundance, with similar findings by Purdon et al. (2004).  Removal of the forest canopy 

alters the post-fire micro-climate by increasing fluctuations in wind, temperature and 

moisture gradients; this has been shown to dry out the forest floor and topsoil, increasing 

stress on the emerging plant community and induces higher rates of mortality among 

seedlings in the post-fire environment (Kurulok 2004; Greene et al. 2006).       
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Although the logging treatments within the Candle Lake burn site were disturbed 

the same range of fire severity, the results have shown that the species composition 

between the logging treatments were significantly different (Table 6.5, Figure 6.2, Figure 

6.3) and this is substantiated by the indicator species analysis.  Indicator species of the 

leave stand were typical of those described by Rowe (1983), with early successional 

species such as Geranium bicknellii and Dracocephalum parviflorum, associated with the 

high burn severity, while late successional species, such as Picea glauca, were indicators 

of no disturbance.  Significant indicator species within the salvage logged stands were 

only identified within the high burn severity, indicating that secondary disturbance 

through salvage logging had altered the areas of no disturbance and moderate burn 

severity such that they showed similar species composition.  Complementing these results 

is the analysis from the ordination which indicated that the high level of disturbance 

caused by salvage logging one year post-fire has tended to homogenize the species 

composition towards that of the moderate burn severity plots and in doing so has 

decreased the range of the vegetative communities.  

The composition of plant community structure at the Mahigan burn site still 

shows the effects of salvage logging ten years post-fire.  In comparison to the logging 

treatments one year post-fire, where there was a distinct division between the salvage 

logged and unlogged stands, the Mahigan site ten years post-fire shows several groupings 

between the logging treatments (Table 6.14, Figure 6.5, and Figure 6.6).  Results from the 

indicator species analysis between logging treatments at the Mahigan burn site identified 

12 species, all of which were significant indicators of salvage logged stands.  This may 

be explained by the general loss of community structure between burn severities at the 
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stand level, tillage of the forest floor, and the replanting of Pinus banksiana, allowing for 

species to regenerate in a large abundance.  As witnessed within the leave stands one year 

post-fire, indicator species of the leave stand ten years post-fire were typical of those 

described by Rowe (1983).  Identified were endurer species, such as Pinus banksiana 

associated with high regeneration rates within high burn severity areas while areas of no 

disturbance were again indicated by late successional species such as Picea glauca.  

Within the salvage logged stands only two species were identified as significant 

indicators of burn severity, with Pinus banksiana being an indicator of high burn severity 

again.  There has been a loss of distinctive species assemblages normally associated with 

burn severity.  Initial post-fire regeneration one year post-fire was clearly divided into 

two groups composed of the salvage logged stand and the wildfire leave stand.  Over a 

ten year time period three regrowth cover types have developed, characterised by no 

disturbance, moderate disturbance either by fire or salvage logging, and severe 

disturbance.  The merging of the high severity burns between the logging treatments 

indicates that the effects of salvage logging do not have long lasting effects within areas 

of high burn severity.  

 

8. Conclusions 

8.1 Summary  

The principal objective of this study was to determine if salvage logging within 

areas of different forest fire burn severities has an effect on species regeneration and plant 

community composition in a mixedwood boreal forest community.  Results indicated that 

salvage logging had a significant impact on the composition of early succession plant 
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communities in burned mixwood boreal forests across different burn severities.  This 

effect was still evident in forest stands ten years post-fire, indicating that salvage logging 

had longer lasting residual effects on boreal forest community development.  The initial 

impact of salvage logging was to reduce species richness, diversity, and cover within all 

burn severities, creating a less abundant and more simplified plant community.   It was 

shown that salvage logging one year post-fire tended to create more homogenous plant 

communities similar to those communities found in an area of moderate burn severity, 

contracting the effects of burn severity and decreasing the range of the vegetative 

communities.  Such distinctions remained apparent over the course of the ten year 

regrowth period encompassed by this study.  As salvage logging becomes more prevalent 

within fire disturbed boreal forest communities, there will be an increase in the 

regenerating forest stands and understory compositions that have been altered by salvage 

logging.  These stands tend to be more homogenous, with a distinct loss of species and 

vegetative range, simplifying the successional pathways.  

The regeneration of plant communities after a fire disturbance is dependant on the 

plant community prior to the fire event, the intensity and severity at which the fire burns, 

and the presence of viable vegetative banks and seed banks, in situ or above ground.  As 

salvage logging removes the forest canopy, the main source for aerial seed input is also 

removed, requiring the salvage logged stand to depend on seed to be dispersed from the 

cut-block edge for seed input.  Increased disturbance of the forest floor, such as a large 

input of coarse woody debris, inhibits the regeneration of early post-fire species.  The 

initial effects of salvage logging on the number of species regenerating and their 
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abundance within the post-salvage logging environment have influence on the long term 

effect of the regenerating forest structure and understory component. 

One of the most distinct features of a salvage logged stand is the removal of the 

forest stand itself.  By harvesting the standing timber, the salvage logged area is left open 

and bare.  The removal of the standing timber and snags created a large increase of coarse 

woody debris on the forest floor, insulating the ground and potentially causing fuel loads 

to increase and in case of a re-burn, would create a more intense fire to occur.  The large 

coverage of coarse woody debris found within the salvage logged plots at the Candle 

Lake site (one year post-fire) has decreased in total coverage when compared to the 

Mahigan salvage logged stand ten years later.  In contrast to the salvage logged stand, the 

wildfire leave stand ten years later is receiving higher amounts of coarse woody debris 

due to the natural collapse of snags, receiving a long term input of nutrients, shade, 

animal habitat (both standing and fallen), seed bank input, and the availability of nurse 

logs for the germination of tree seedlings.  This division in coarse woody debris allows 

the wildfire leave stand a long term input of coarse woody debris while the salvage 

logged stands ten years after the salvage logging operation are starting to show a shortfall 

in coarse woody debris. 

 

8.2 Recommendations    

Areas of the boreal forest affected by wildfire are of high ecological value for the 

range of vegetation that develops, the unique plant communities forged by burn 

severities, and the turnover of the forest structure leaving large amounts of snags.  

Salvage logging disrupts the post-fire ecological value of the forest structure by causing a 
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secondary disturbance, removing the standing timber and disrupting plant community 

succession.  The use of logging roads and large cut blocks create major disturbances 

which are unnatural to the post-fire environment.  Salvage logging should emulate 

wildfire disturbances more, with larger blocks of standing trees, dead and alive to act as 

seed banks for post-fire regeneration, habitat for post-fire invaders, and to keep the large 

range of vegetation.  Based on the findings in this study, the author recommends that 

forest managers take measures to decrease the negative ecological effects of salvage 

logging.  To minimize the loss of species, vegetative range, and disturbance to the forest 

floor that occurs within salvage logged burned forest stands, it is suggested that: 

1. Large blocks of residual burned forest should be left un-salvaged to safeguard 

species diversity in the post-fire environment.  These large blocks of residual 

burned forest should contain large areas of all burn severity classes to ensure of a 

wide range of plant communities. 

 
2. Standing residual trees and coarse woody debris should be left on salvage logged 

sites to provide shade and a potential long term source of nutrients from tree 

decomposition. 

 
It has been shown that salvage logging reduces the species richness and abundance of 

the boreal plant community.  These effects were noticed across all burn severities but 

were the most prominent in the moderate burn sites.  Salvage logging these areas tends to 

create longer lasting effects on the successional growth.  This is a concern as forest 

managers target these sites as the main areas for salvage as they are the most valuable for 

the production of pulp and saw timber (Pshebnicki per. comm. 2004).  There is a lack of 

reliable research on the long term effects of salvage logging within the boreal forest.  

Many questions still need to be looked at to determine the long term effects salvage 
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logging has on the loss of species, vegetative range between burn severities, and other 

important issues such as seed input.  Salvage logging operations will continue to occur 

and there is a need to define what the consequences are and how to better manage the 

post-fire forest ecosystem. 
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Appendix 1  Frequency of all species within the Candle Lake burn site (1 year post-fire) 
between logging treatments and burn severities.  Frequency is shown as the percentage of 
plots in which a species occurs. Wildfire and Salvage n = 54 plots. x = species found only 
within the wildfire leave stands. 
 

  Wildfire  Salvage Logged   
Tree Species:  NB MB HB  NBL MBL HBL Species Code 
Abies balsamea x 0.22 0.00 0.00  0.00 0.00 0.00  Abie bal 
Betula papyrifera  0.89 0.33 0.08  0.78 0.33 0.22  Betu pap 
Picea glauca  1.00 0.56 0.00  0.22 0.11 0.11  Pice gla 
Pinus banksiana x 0.00 0.22 0.15  0.00 0.00 0.00  Pinu ban 
Populus balsamifera  0.00 0.00 0.04  0.11 0.11 0.11  Popu bal 
Populus tremuloides  1.00 1.00 0.35  0.89 1.00 1.00  Popu tre 
Shrub Species:           
Alnus crispa  0.78 0.56 0.15  0.22 0.56 0.33  Alnu cri 
Amelanchier alnifolia  0.11 0.11 0.04  0.11 0.11 0.00  Amel aln 
Cornus stolonifera  0.11 0.11 0.00  0.00 0.11 0.00  Corn sto 
Corylus cornuta  0.33 0.44 0.08  0.22 0.11 0.22  Cory cor 
Ledum groenlandicum  0.56 0.44 0.15  0.44 0.67 0.22  Ledu gro 
Lonicera dioica  0.11 0.00 0.04  0.22 0.11 0.22  Loni dio 
Prunus pensylvanica  0.11 0.00 0.08  0.00 0.11 0.00  Prun pen 
Ribes hudsonianum  0.11 0.00 0.00  0.11 0.00 0.00  Ribe hud 
Ribes lacustre  0.11 0.11 0.00  0.33 0.00 0.22  Ribe lac 
Ribes oxyacanthoides  0.11 0.00 0.04  0.11 0.00 0.22  Ribe oxy 
Ribes triste  0.67 0.56 0.08  0.44 0.67 0.44  Ribe tri 
Rosa acicularis  0.89 0.78 0.23  0.89 0.78 0.56  Rosa aci 
Rubus idaeus  0.33 0.56 0.04  0.22 0.33 0.67  Rubu ida 
Salix spp.  0.44 0.67 0.23  0.56 0.56 0.44  Sali spp 
Shepherdia canadensis  0.33 0.11 0.00  0.00 0.11 0.00  Shep can 
Vaccinium myrtilloides  0.22 0.00 0.04  0.11 0.00 0.00  Vacc myr 
Vaccinium vitis-idaea  0.33 0.56 0.00  0.33 0.22 0.00  Vacc vit 
Viburnum edule  1.00 0.89 0.31  0.56 0.67 0.78  Vibu edu 
Forb & Graminoid Species:         
Actaea rubra  0.11 0.11 0.00  0.11 0.00 0.22  Acta rub 
Apocynum androsaemifolium x 0.11 0.11 0.00  0.00 0.00 0.00  Apoc and 
Aquilegia brevistyla x 0.00 0.00 0.04  0.00 0.00 0.00  Aqui bre 
Aralia nudicaulis  1.00 0.89 0.27  0.89 0.89 0.67  Aral nud 
Aster conspicuus  0.00 0.11 0.08  0.00 0.00 0.00  Aste con 
Aster spp.  0.67 0.67 0.19  0.44 0.11 1.00  Aste spp 
Cirsium arvense  0.00 0.00 0.04  0.00 0.00 0.11  Cirs arv 
Coptis trifolia x 0.00 0.11 0.00  0.00 0.00 0.00  Copt tri 
Cornus canadensis  1.00 1.00 0.35  1.00 0.89 1.00  Corn can 
Corydalis aurea  0.00 0.33 0.12  0.00 0.00 0.22  Cory aur 
Corydalis sempervirens  0.00 0.44 0.12  0.00 0.11 0.22  Cory sem 
Disporum trachycarpum  0.11 0.00 0.04  0.33 0.11 0.11  Disp tra 
Dracocephalum parviflorum  0.00 0.67 0.27  0.11 0.33 0.78  Drac par 
Epilobium angustifolium  0.67 1.00 0.35  0.89 1.00 1.00  Epil ang 
Epilobium glandulosum x 0.00 0.00 0.04  0.00 0.00 0.00  Epil gla 
Equisetum arvense  0.00 0.00 0.04  0.11 0.11 0.56  Equi arv 
Equisetum pratense x 0.00 0.11 0.04  0.00 0.00 0.00  Equi pra 
Fragaria vesca  0.44 0.44 0.00  0.11 0.56 0.22  Frag ves 
Fragaria virginiana  0.44 0.33 0.12  0.44 0.44 0.56  Frag vir 
Galium boreale  0.22 0.22 0.12  0.33 0.00 0.33  Gali bor 
Galium triflorum  0.11 0.00 0.00  0.00 0.11 0.00  Gali tri 
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Geranium bicknellii  0.11 1.00 0.35  0.22 0.89 1.00  Gera bic 
Goodyera repens x 0.11 0.00 0.00  0.00 0.00 0.00  Good rep 
Grass spp.  0.89 1.00 0.31  1.00 1.00 0.89  Gras spp 
Lathyrus ochroleucus  0.89 0.78 0.19  0.67 0.44 0.44  Lath och 
Linnaea borealis  0.78 1.00 0.27  0.44 0.56 0.56  Linn bor 
Lycopodium annotinum  0.67 0.56 0.00  0.22 0.22 0.00  Lyco ann 
Lycopodium complanatum  0.22 0.44 0.00  0.00 0.11 0.00  Lyco com 
Lycopodium obscurum  0.00 0.33 0.08  0.11 0.22 0.00  Lyco obs 
Maianthemum canadens  1.00 1.00 0.31  0.78 0.89 0.89  Maia can 
Mertensia paniculata  0.89 0.56 0.15  0.67 0.44 0.78  Mert pan 
Mitella nuda  0.78 0.67 0.12  0.33 0.44 0.67  Mite nud 
Petasites palmatus  1.00 1.00 0.27  0.89 1.00 1.00  Peta pal 
Petasites sagittatus  0.00 0.33 0.15  0.00 0.11 0.22  Peta sag 
Pyrola asarifolia x 0.11 0.00 0.00  0.00 0.00 0.00  Pyro asa 
Pyrola secunda  0.67 0.11 0.00  0.22 0.00 0.00  Pyro sec 
Pyrola virens  0.33 0.11 0.00  0.00 0.11 0.00  Pyro vir 
Rubus pubescens  1.00 0.89 0.23  1.00 0.89 0.89  Rubu pub 
Solidago spathulata  0.00 0.22 0.04  0.00 0.11 0.00  Soli spa 
Trientalis borealis  1.00 1.00 0.31  0.89 0.67 0.78  Trie bor 
Vicia americana  0.33 0.67 0.23  0.00 0.11 0.44  Vici ame 
Viola canadensis  0.44 0.44 0.08  0.11 0.00 0.00  Viol can 
Viola renifolia  1.00 0.78 0.15  0.44 0.22 0.56  Viol ren 
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Appendix 2  Frequency of all species within the Mahigan burn site (10 years post-fire) 
between logging treatments and burn severities.  Frequency is shown as the percentage of 
plots in which a species occurs. Wildfire and Salvage n = 30 plots.  x = species found 
only within wildfire leave stands or salvage logged stands as indicated. 
 

  Wildfire  Salvage Logged   
Tree Species:  NB MB HB  NBL MBL HBL Species Code 
Betula papyrifera  0.50 0.67 0.67  0.50 0.75 0.50  Betu pap 
Larix laricina  0.00 0.17 0.00  0.50 0.25 0.50  Lari lar 
Picea glauca  1.00 0.83 1.00  1.00 1.00 1.00  Pice gla 
Picea mariana x 0.00 0.17 0.00  0.00 0.00 0.00  Pice mar 
Pinus banksiana  0.00 0.33 1.00  1.00 1.00 1.00  Pinu ban 
Populus balsamifera  0.00 0.17 0.17  0.75 0.75 0.25  Popu bal 
Populus tremuloides  0.83 1.00 1.00  1.00 1.00 1.00  Popu tre 
Shrub Species:           
Alnus crispa  0.83 0.33 0.00  0.75 1.00 1.00  Alnu cri 
Alnus rugosa x 0.00 0.17 0.00  0.00 0.00 0.00  Alnu rug 
Arctostaphylos uva-ursi  0.00 0.17 0.00  0.00 0.00 0.25  Arct uva 
Cornus stolonifera x 0.67 0.33 0.00  0.00 0.00 0.00  Corn sto 
Gaultheria hispidula  0.00 0.00 0.17  0.00 0.00 0.25  Gaul his 
Ledum groenlandicum  0.50 0.50 0.83  0.50 1.00 1.00  Ledu gro 
Lonicera dioica  0.33 0.00 0.17  0.50 0.00 0.00  Loni dio 
Lonicera involucrata  0.50 0.50 0.17  0.75 0.25 0.00  Loni inv 
Prunus pensylvanica x 0.17 0.17 0.00  0.00 0.00 0.00  Prun pen 
Ribes hudsonianum x 0.50 0.17 0.00  0.00 0.00 0.00  Ribe hud 
Ribes lacustre  0.83 0.33 0.00  0.25 0.00 0.25  Ribe lac 
Ribes oxyacanthoides  0.17 0.17 0.00  0.50 0.50 0.00  Ribe oxy 
Ribes triste  0.83 0.50 0.00  1.00 0.75 0.00  Ribe tri 
Rosa acicularis  0.67 1.00 0.17  0.75 1.00 0.00  Rosa aci 
Rubus idaeus  0.50 0.83 0.50  1.00 1.00 0.50  Rubu ida 
Salix spp.  0.00 0.67 1.00  0.75 0.75 1.00  Sali spp 
Shepherdia canadensis  0.00 0.00 0.00 x 0.25 0.00 0.00  Shep can 
Vaccinium myrtilloides  0.00 0.33 0.67  0.00 0.00 0.25  Vacc myr 
Vaccinium vitis-idaea  0.17 0.33 0.50  0.50 0.75 0.75  Vacc vit 
Viburnum edule  0.67 0.83 0.33  0.75 0.50 0.00  Vibu edu 
Forb & Graminoid Species:         
Achillea millefolium  0.17 0.33 0.17  0.75 0.75 0.50  Achi mil 
Actaea rubra  0.33 0.33 0.17  0.50 0.25 0.00  Acta rub 
Aquilegia brevistyla x 0.00 0.00 0.17  0.00 0.00 0.00  Aqui bre 
Aralia nudicaulis  1.00 0.67 0.17  1.00 0.50 0.00  Aral nud 
Aster spp.  0.83 0.83 0.17  1.00 1.00 0.50  Aste spp 
Astragalus canadensis x 0.17 0.00 0.00  0.00 0.00 0.00  Astr can 
Carex spp.  0.17 0.00 0.00  0.00 0.25 0.00  Carx spp 
Circaea alpina  0.33 0.00 0.00  0.25 0.00 0.00  Circ alp 
Coptis trifolia x 0.00 0.00 0.17  0.00 0.00 0.00  Copt tri 
Cornus canadensis  0.83 0.83 0.83  1.00 1.00 1.00  Corn can 
Disporum trachycarpum x 0.17 0.00 0.00  0.00 0.00 0.00  Disp tra 
Epilobium angustifolium  0.50 1.00 0.83  1.00 1.00 1.00  Epil ang 
Equisetum arvense  0.33 0.50 0.00  0.75 0.75 0.25  Equi arv 
Equisetum pratense  0.67 0.50 0.17  0.75 0.75 0.75  Equi pra 
Equisetum scirpoides x 0.33 0.33 0.17  0.00 0.50 0.00  Equi sci 
Equisetum sylvaticum x 0.17 0.33 0.17  0.00 0.00 0.00  Equi syl 
Fragaria vesca x 0.17 0.50 0.17  0.00 0.00 0.00  Frag ves 
Fragaria virginiana  0.33 0.33 0.17  0.50 0.50 0.25  Frag vir 
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Galium boreale  0.17 0.33 0.50  0.00 0.25 0.50  Gali bor 
Galium triflorum  0.83 0.33 0.00  0.50 0.25 0.00  Gali tri 
Goodyera repens x 0.17 0.00 0.00  0.00 0.00 0.00  Good rep 
Grass spp.  0.83 1.00 0.83  1.00 0.75 1.00  Gras spp 
Gymnocarpium dryopteris x 0.17 0.17 0.00  0.00 0.00 0.00  Gymn dry 
Habenaria hyperborea  0.00 0.33 0.00  0.25 0.00 0.00  Habe hyp 
Lathyrus ochroleucus  0.33 0.33 0.67  1.00 1.00 0.50  Lath och 
Lathyrus venosus  0.00 0.33 0.00  0.75 0.00 0.00  Lath ven 
Linnaea borealis  0.67 0.67 0.50  1.00 1.00 0.75  Linn bor 
Lycopodium annotinum  0.33 0.17 0.00  0.25 0.00 0.00  Lyco ann 
Lycopodium complanatum  0.00 0.17 0.17  0.00 0.25 0.50  Lyco com 
Lycopodium obscurum x 0.00 0.00 0.50  0.00 0.00 0.00  Lyco obs 
Maianthemum canadens  0.67 0.67 0.17  0.50 0.25 0.00  Maia can 
Mertensia paniculata  1.00 0.83 0.17  1.00 0.25 0.50  Mert pan 
Mitella nuda  0.83 0.83 0.00  0.50 0.50 0.00  Mite nud 
Petasites palmatus  1.00 1.00 0.67  1.00 1.00 0.75  Peta pal 
Pyrola secunda x 0.00 0.17 0.00  0.00 0.00 0.00  Pyro sec 
Pyrola virens x 0.00 0.17 0.33  0.00 0.00 0.00  Pyro vir 
Rubus pubescens  1.00 1.00 0.17  1.00 0.50 0.50  Rubu pub 
Rumex occidentalis x 0.00 0.17 0.00  0.00 0.00 0.00  Rume occ 
Smilacina stellata x 0.17 0.00 0.00  0.00 0.00 0.00  Smil ste 
Stellaria longifolia  0.00 0.17 0.33  0.25 0.00 0.25  Stel lon 
Taraxacum officinale  0.00 0.17 0.17  0.25 0.25 0.00  Tera off 
Trientalis borealis  0.67 0.33 0.17  0.25 0.50 0.50  Trie bor 
Urtica dioca  0.17 0.00 0.00  0.00 0.00 0.00  Urti dio 
Vicia americana  0.50 0.83 0.50  0.50 0.50 0.50  Vici ame 
Viola canadensis  0.50 0.17 0.00  0.00 0.00 0.00  Viol can 
Viola renifolia  0.67 0.50 0.00  0.50 0.25 0.50  Viol ren 
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Appendix 3  Frequency of all species within the Beaupre burn site (10 years post-fire) 
between burn severities.  Frequency is shown as the percentage of plots in which a 
species occurs. Wildfire and Salvage n = 18 plots. 
 

  Wildfire   
Tree Species:  NB MB HB  Species Code 
Abies balsamea  1.00 0.17 0.00  Abie bal 
Betula papyrifera  0.17 0.83 1.00  Betu pap 
Picea glauca  1.00 1.00 1.00  Pice gla 
Pinus banksiana  0.00 0.00 0.17  Pinu ban 
Populus balsamifera  0.17 0.67 1.00  Popu bal 
Populus tremuloides  1.00 1.00 1.00  Popu tre 
Shrub Species:       
Alnus crispa  0.50 0.17 0.00  Alnu cri 
Amelanchier alnifolia  0.17 0.00 0.00  Amel aln 
Cornus stolonifera  0.50 0.33 0.17  Corn sto 
Ledum groenlandicum  0.00 0.17 0.00  Ledu gro 
Lonicera dioica  0.17 0.17 0.17  Loni dio 
Lonicera involucrata  0.67 0.67 0.33  Loni inv 
Prunus pensylvanica  0.00 0.17 0.17  Prun pen 
Ribes glandulosum  0.00 0.17 0.00  Ribe gla 
Ribes hudsonianum  0.33 0.00 0.00  Ribe hud 
Ribes lacustre  0.17 0.17 0.17  Ribe lac 
Ribes oxyacanthoides  0.17 0.00 0.00  Ribe oxy 
Ribes triste  0.83 0.67 0.00  Ribe tri 
Rosa acicularis  1.00 0.83 0.50  Rosa aci 
Rubus idaeus  0.33 1.00 1.00  Rubu ida 
Salix spp.  0.00 0.83 1.00  Sali spp 
Vaccinium myrtilloides  0.00 0.17 0.17  Vacc myr 
Viburnum edule  1.00 0.83 0.50  Vibu edu 
Forb & Graminoid Species:       
Actaea rubra  0.33 0.33 0.17  Acta rub 
Aralia nudicaulis  1.00 0.83 0.83  Aral nud 
Aster conspicuus  0.00 0.00 0.33  Aste con 
Aster spp.  0.83 0.83 1.00  Aste spp 
Cirsium arvense  0.00 0.17 0.67  Cirs arv 
Cornus canadensis  1.00 1.00 0.83  Corn can 
Disporum trachycarpum  0.67 0.50 0.00  Disp tra 
Epilobium angustifolium  0.00 0.67 1.00  Epil ang 
Equisetum arvense  0.17 0.17 0.33  Equi arv 
Equisetum pratense  0.17 0.17 0.50  Equi pra 
Equisetum scirpoides  0.00 0.00 0.17  Equi sci 
Equisetum sylvaticum  0.00 0.00 0.17  Equi syl 
Fragaria vesca  0.67 0.67 0.50  Frag ves 
Fragaria virginiana  0.83 0.83 1.00  Frag vir 
Galium boreale  0.83 0.33 0.17  Gali bor 
Galium triflorum  0.83 0.83 0.67  Gali tri 
Grass spp.  1.00 0.83 0.83  Gras spp 
Lathyrus ochroleucus  0.17 0.83 0.50  Lath och 
Lathyrus venosus  0.50 0.67 0.50  Lath ven 
Linnaea borealis  0.83 0.83 0.83  Linn bor 
Lycopodium annotinum  0.17 0.00 0.17  Lyco ann 
Lycopodium complanatum  0.00 0.00 0.17  Lyco com 
Maianthemum canadens  1.00 0.83 0.67  Maia can 
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Mertensia paniculata  1.00 1.00 0.83  Mert pan 
Mitella nuda  1.00 1.00 0.50  Mite nud 
Monotropa uniflora  0.00 0.17 0.00  Mono uni 
Petasites palmatus  1.00 1.00 1.00  Peta pal 
Petasites sagittatus  0.00 0.00 0.17  Peta sag 
Pyrola asarifolia  0.33 0.33 0.17  Pyro asa 
Pyrola secunda  0.17 0.17 0.33  Pyro sec 
Pyrola virens  0.33 0.17 0.17  Pyro vir 
Rubus pubescens  1.00 1.00 0.83  Rubu pub 
Stellaria longifolia  0.00 0.00 0.17  Stel lon 
Taraxacum officinale  0.00 0.17 1.00  Tera off 
Trientalis borealis  0.67 0.50 0.33  Trie bor 
Trifolium hybridum  0.00 0.00 0.17  Trif hyb 
Vicia americana  0.17 0.83 0.83  Vici ame 
Viola canadensis  0.00 0.17 0.17  Viol can 
Viola renifolia  0.83 0.67 0.50  Viol ren 

 
 
 
  
 


