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Abstract

In modern low pressure plasma discharges, the electron mean free path often exceeds

the device dimensions. Under such conditions the electron velocity distribution func-

tion may significantly deviate from Maxwellian, which strongly affects the discharge

properties. The description of such plasmas has to be kinetic and often requires

the use of numerical methods. This thesis presents the study of kinetic effects in

inductively coupled plasmas and Hall thrusters carried out by means of particle-in-

cell simulations. The important result and the essential part of the research is the

development of particle-in-cell codes.

An advective electromagnetic 1d3v particle-in-cell code is developed for modelling

the inductively coupled plasmas. An electrostatic direct implicit 1d3v particle-in-cell

code EDIPIC is developed for plane geometry simulations of Hall thruster plasmas.

The EDIPIC code includes several physical effects important for Hall thrusters: col-

lisions with neutral atoms, turbulence, and secondary electron emission. In addition,

the narrow sheath regions crucial for plasma-wall interaction are resolved in simula-

tions. The code is parallelized to achieve fast run times.

Inductively coupled plasmas sustained by the external RF electromagnetic field

are widely used in material processing reactors and electrodeless lighting sources. In

a low pressure inductive discharge, the collisionless electron motion strongly affects

the absorption of the external electromagnetic waves and, via the ponderomotive

force, the density profile. The linear theory of the anomalous skin effect based on

the linear electron trajectories predicts a strong decrease of the ponderomotive force

for warm plasmas. Particle-in-cell simulations show that the nonlinear modification

of electron trajectories by the RF magnetic field partially compensates the effects of

electron thermal motion. As a result, the ponderomotive force in warm collisionless

plasmas is stronger than predicted by linear kinetic theory.

Hall thrusters, where plasma is maintained by the DC electric field crossed with
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the stationary magnetic field, are efficient low-thrust devices for spacecraft propul-

sion. The energy exchange between the plasma and the wall in Hall thrusters is

enhanced by the secondary electron emission, which strongly affects electron tem-

perature and, subsequently, thruster operation. Particle-in-cell simulations show

that the effect of secondary electron emission on electron cooling in Hall thrusters

is quite different from predictions of previous fluid studies. Collisionless electron

motion results in a strongly anisotropic, nonmonotonic electron velocity distribution

function, which is depleted in the loss cone, subsequently reducing the electron wall

losses compared to Maxwellian plasmas. Secondary electrons form two beams prop-

agating between the walls of a thruster channel in opposite radial directions. The

secondary electron beams acquire additional energy in the crossed external electric

and magnetic fields. The energy increment depends on both the field magnitudes

and the electron flight time between the walls.

A new model of secondary electron emission in a bounded plasma slab, allowing

for emission due to the counter-propagating secondary electron beams, is developed.

It is shown that in bounded plasmas the average energy of plasma bulk electrons

is far less important for the space charge saturation of the sheath than it is in

purely Maxwellian plasmas. A new regime with relaxation oscillations of the sheath

has been identified in simulations. Recent experimental studies of Hall thrusters

indirectly support the simulation results with respect to the electron temperature

saturation and the channel width effect on the thruster discharge.

iii



Acknowledgements

I am grateful to my research advisor Andrei Smolyakov for his continual guidance,

help, financial support, his interest in my career, and for the numerous opportunities

he gave to me.

I heartily thank Igor Kaganovich and Yevgeny Raitses from the Princeton Plasma

Physics laboratory, who introduced me to the exciting problem of Hall thrusters, for

their advice and interest in my work, their time spent in numerous discussions, and

warm welcome during my visits to the Princeton Plasma Physics Laboratory.

I express my gratitude to Artem Smirnov, Edward Startsev, and Nathaniel J.

Fisch from the Princeton Plasma Physics Laboratory for helpful discussions.

I am thankful to Kaori Tanaka for providing the opportunity to use the 128-CPU

Beowulf-class PC cluster at the University of Saskatchewan, funded by the Canada

Foundation for Innovation.

Simulations were partially carried out using the WestGrid facilities at the Uni-

versity of British Columbia and the University of Calgary.

This study could not have been possible without the financial support of the

University of Saskatchewan. I am grateful to the Herzberg Fund at the University

of Saskatchewan for awarding me the Gerhard Herzberg Memorial Scholarship and

travel grants. I thank Dr. Robert Summers-Gill, whose generous donation allowed

the University of Saskatchewan to award me the Harold E. Johns Scholarship in

Physics. The financial assistance for travel provided by the President/Student Fund

and by the College of Graduate Studies and Research is greatly appreciated.

I deeply appreciate the warm and friendly atmosphere created by my friends:

Yuriy Tyshetskiy, Tatyana Chshyolkova, Leonid Benkevich, Elena Krestova, Ivan

Khalzov, Tatyana Novoselova, Sergei Ivanov, and Aaron Froese.

Many thanks to my family for their patience, support, and understanding.

iv



Contents

Permission to Use i

Abstract ii

Acknowledgements iv

Contents v

List of Tables viii

List of Figures ix

List of Abbreviations xix

1 Introduction 1
1.1 Kinetic and nonlinear effects in inductively coupled plasmas . . . . . 3

1.1.1 Description of the design of an inductive discharge . . . . . . . 3
1.1.2 Classical and anomalous skin effects . . . . . . . . . . . . . . . 3
1.1.3 Nonlinear force and the ponderomotive effect . . . . . . . . . . 7
1.1.4 Studies of ponderomotive and nonlinear effects in inductively

coupled plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Simulations of inductively coupled plasmas and motivation for

the present work . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Kinetic effects in Hall thrusters . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Hall thruster design and principles of operation . . . . . . . . 12
1.2.2 Plasma-wall interaction with secondary electron emission . . . 16
1.2.3 Experimentally found properties of Hall thruster operation . . 17
1.2.4 Hall thruster fluid theories . . . . . . . . . . . . . . . . . . . . 19
1.2.5 Kinetic studies of Hall thrusters and motivation for the present

research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Particle-in-cell simulations of ponderomotive effects in inductively
coupled plasmas 25
2.1 Description of the 1d3v PIC model . . . . . . . . . . . . . . . . . . . 26
2.2 Theoretical description of the ponderomotive force with thermal ef-

fects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Self-consistent linear ponderomotive force . . . . . . . . . . . 30
2.2.2 Ponderomotive force with exponentially decaying fields . . . . 31

2.3 Thermal effects in the ponderomotive force for linear electron trajec-
tories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



2.4 Effects of the nonlinear modification of the electron trajectories . . . 34
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 The electrostatic direct implicit particle-in-cell (EDIPIC) code 42
3.1 The plane geometry model of the Hall thruster acceleration region . 44
3.2 Implicit equations of motion and Poisson’s equation . . . . . . . . . 46
3.3 Boundary conditions for the electrostatic potential . . . . . . . . . . 52
3.4 Probabilistic model of secondary electron emission . . . . . . . . . . 54
3.5 Monte-Carlo model of electron-neutral collisions . . . . . . . . . . . . 60

3.5.1 The null collision algorithm . . . . . . . . . . . . . . . . . . . 60
3.5.2 Elastic collisions. Transformation of the scattered electron ve-

locity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.3 Excitation collisions . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.4 Ionization collisions . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5.5 “Turbulent” collisions . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Langevin model of Coulomb collisions . . . . . . . . . . . . . . . . . 72
3.6.1 Electron-electron collisions . . . . . . . . . . . . . . . . . . . . 72
3.6.2 Electron-ion collisions . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Testing and verification of the EDIPIC code 82
4.1 Two-particle test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Emission of secondary electrons . . . . . . . . . . . . . . . . . . . . . 88
4.3 Electron-neutral collisions . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Coulomb collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5 Simulations of the sheath with a Maxwellian plasma source . . . . . 97
4.6 Instability of a low density cold electron beam in a cold plasma . . . 101
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Electron velocity distribution function in Hall thruster plasmas 106
5.1 Properties of the EVDF . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.1 Initial parameters of simulations . . . . . . . . . . . . . . . . . 108
5.1.2 Anisotropy of the electron temperature . . . . . . . . . . . . 110
5.1.3 Depletion of the loss cone . . . . . . . . . . . . . . . . . . . . 118

5.2 Effects of Coulomb collisions . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.1 The effective frequencies of Coulomb collisions in Hall thrusters 122
5.2.2 Initial simulation parameters . . . . . . . . . . . . . . . . . . . 124
5.2.3 Coulomb collision effects for weak secondary electron emission 124
5.2.4 Coulomb collisions with strong secondary electron emission . . 126

5.3 Electron fluxes to the wall with space charge limited secondary elec-
tron emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Electron dynamics in the model of the accelerating region of a
Hall thruster 140

vi



6.1 Secondary electron emission with counter - propagating secondary
electron beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Dynamics of secondary electron beams in crossed electric and mag-
netic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Penetration of an electron beam through a non-Maxwellian plasma
slab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Relaxation oscillations of the sheath 169
7.1 Evolution of plasma parameters during the relaxation sheath oscilla-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.2 Reason for the stepwise transition to the space charge limited regime 177
7.3 Effects of plasma parameters on the relaxation sheath oscillations . . 183
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8 Conclusions 188

A Conservation of energy in Hall thruster simulations 207

B Parameters of Hall thruster simulations with EDIPIC code 209

C Derivation of the emission coefficient and the ratio of primary
electron flux components 210

vii



List of Tables

3.1 Parameters of partial emission coefficients (3.16 - 3.18), which approx-
imate the SEE properties of boron-nitride ceramics. . . . . . . . . . . 57

4.1 Comparison of the values calculated during the two-particle test with
the values calculated by Eqs. (4.5). . . . . . . . . . . . . . . . . . . . 87

4.2 Comparison of the potential profile parameters calculated with the
EDIPIC code [Φ(0), Φ(L/2)] versus the results of Ref. [118] (φc, φp). . 98

4.3 Comparison of the potential profile parameters calculated with the
EDIPIC code [Φ(0), Φ(L/2), and Φw] versus the results of Ref. [119]
(φc, φp, and ∆φ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Comparison of the parameters of the nonlinear stage of instability of
a low density cold electron beam in a cold plasma obtained with the
EDIPIC code (Φ1, Φ2, and TΩ) versus the results of Ref. [120] (φ1, φ2,
and τΩ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Initial parameters (constant) and results of Hall thruster simulations
with EDIPIC code. Coulomb collisions are omitted. The common
parameters are L = 2.5 cm and na = 2 · 1012cm−3. . . . . . . . . . . . 109

5.2 Initial parameters (constant) and results of Hall thruster simulations
with EDIPIC code. Here the simulations with Coulomb collisions are
compared with the simulations where Coulomb collisions are omitted.
The common parameters are L = 2.5 cm, na = 1012cm−3. . . . . . . 125

6.1 Plasma-wall interaction parameters for the simulations described in
Tables 5.1 and 5.2. Comparison of the values found directly from
simulations, γ and Γ1b/Γ1p, with the values (γ)calc and (Γ1b/Γ1p)calc

calculated by Eqs. (6.1) and (6.3). . . . . . . . . . . . . . . . . . . . 147

B.1 Parameters of EDIPIC simulations (complementary to Tables 5.1 and
5.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

viii



List of Figures

1.1 Schematic diagrams of ICP discharges. Figure (a) – side coil design;
figure (b) – top coil (pancake) design. . . . . . . . . . . . . . . . . . . 4

1.2 Schematic diagram of a Hall thruster and axial profiles of the electro-
static potential Φ, accelerating electric field Ez, and radial magnetic
field Br. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Schematic diagram of an inductively coupled plasma for PIC simula-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 The PMF as a function of the electron temperature. Curve 1 is cal-
culated from (2.4-2.6), curve 2 is from (2.8), curve 3 is obtained with
linear PIC simulations, and curve 4 is from PIC simulations with non-
linear electron dynamics. The amplitude of the electric field at the
plasma boundary is E0 = 10 V/m. . . . . . . . . . . . . . . . . . . . . 32

2.3 The transverse electric field amplitude at the plasma boundary E0

versus the electron temperature Te at constant amplitude of the inci-
dent EM-wave Ewave = 28800 V/m. Curve 1 corresponds to the linear
PIC simulations, curve 2 – to the nonlinear PIC simulations. . . . . . 33

2.4 The square root of the ponderomotive force versus the transverse elec-
tric field amplitude at the left plasma boundary E0 at constant elec-
tron temperature Te = 10 eV. Curve 1 corresponds to the linear PIC
simulations, curve 2 – to the nonlinear PIC simulations. . . . . . . . . 34

2.5 The transverse electric field (a), the magnetic field (b), the electric
current density (c), the nonlinear force (d), and the longitudinal elec-
tric field (e) versus time, for nonlinear (curves 1) and linear (curves
2) PIC simulations with Te = 10 eV , Ewave = 28800 V/m. . . . . . . . 36

2.6 Trajectories in the y–z plane of a single electron in the exponentially
decaying oscillating EM fields Ey, Bx and Ez. The transverse field
components are calculated as the real part of Eqs. (2.7). The lon-
gitudinal electric field (2.2) of PIC simulations is approximated as
Ez(z, t) = Ez0 exp(−2γz)(sin ωt)2. Curve 1 is the trajectory of an
electron specularly reflected from the plasma boundary z = 0; curve
2 is the trajectory of an electron reflected by the Lorentz force; curve
3 is the trajectory of a trapped electron. The arrows show the di-
rection of the electron motion. The transverse electric field has am-
plitude Ey = 16 V/m, the longitudinal electric field has amplitude
Ez0 = 100 V/m, the skin depth δ = 0.043 m, γ = 1/δ, the electron
initial velocity v = 1.88 · 106 m/s corresponds to the thermal velocity
vth = (2Te/m)1/2 with Te = 10 eV. The above parameters are close
to the corresponding values of the nonlinear simulation presented in
Fig. 2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



2.7 The ratio of the PMF obtained in nonlinear PIC simulations to the
PMF obtained in linear PIC simulations versus the ratio of the skin
layer depth to the Larmor radius of thermal electron. Curve 1 corre-
sponds to electrons with normal mass, m = 9.1 · 10−31 kg, Te = 10 eV
and ne = 1017 m−3; curve 2 corresponds to the “heavy” electrons,
m = 9.1 · 10−30 kg, Te = 100 eV and ne = 1018 m−3. . . . . . . . . . . 39

3.1 Schematic diagram of the simulated plasma system. The two dielectric
walls represent the coaxial ceramic channel of a Hall thruster. . . . . 45

3.2 The flowchart of the parallel code execution. Here NPROC is the total
number of processes with nonzero rank, NT is the required number of
time steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 The flowchart of the main cycle of implicit simulation. Here NT is the
required number of time steps. . . . . . . . . . . . . . . . . . . . . . . 51

3.4 (a) The emission coefficients of the components of secondary elec-
tron emission versus the incident electron energy for normal inci-
dence. Curve 1 is the the elastic reflection (3.16), curve 2 the inelas-
tic backscattering (3.17), curve 3 the true secondary emission (3.18),
and curve 4 the total emission coefficient (3.19). Squares mark the
available experimental data for boron nitride ceramics. (b) The total
emission coefficient (3.19) over a range of incident electron energies. . 55

3.5 The energy spectrum of secondary electrons fd(w2) produced by the
monoenergetic electron beam with energy w = 40 eV and normal
angle of incidence ϑ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 The flowchart of the injection algorithm for a multi-component sec-
ondary electron current. . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 The flowchart of the null collision algorithm in the Monte-Carlo colli-
sion model. Here Npart is the total number of electron macroparticles. 63

3.8 (a) The cross sections σsc,j of electron-neutral collisions in xenon ver-
sus the colliding electron energy, curve 1 – elastic collisions, curve 2
– excitation collisions, curve 3 – ionization collisions. (b) The corre-
sponding “accumulated” probabilities of collisions Pj versus the en-
ergy of colliding electron calculated by (3.22), region 0 corresponds
to null collisions, region 1 – elastic collisions, region 2 – excitation
collisions, region 3 – ionization collisions. . . . . . . . . . . . . . . . . 64

3.9 Transformation of the electron velocity before scattering on neutral
atom vinc to the velocity after scattering vsc. Angle χ is the angle of
scattering relative to the initial direction of electron motion, angle ϕ
is the azimuthal angle of rotation of scattered velocity in the plane
normal to vinc, calculated relative to the direction vinc × (vinc × k).
Vectors i, j, and k are the unit vectors along the x, y, and z directions,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.10 Flowcharts of the processes for electrons colliding elastically (left) and
inelastically (right) with neutral atoms. Subscripts “before” and “af-
ter” denote the values before and after the collision. . . . . . . . . . . 68

x



3.11 Flowchart of the process for ionization of a neutral atom by an elec-
tron. Subscripts “1,before” and “1,after” mark the values of the in-
cident electron before and after the collision. Subscripts “eject” and
“ion” mark the values of the ejected electron and ion, wionization is the
ionization energy threshold. . . . . . . . . . . . . . . . . . . . . . . . 71

3.12 The new “primed” coordinate system {v′x, v′y, v′z}, where the velocity
diffusion tensor (3.36) obtains diagonal form. Here v is the velocity of
the scattering electron, ue is the electron flow velocity, and w = v−ue.
The third axis of the “primed” coordinate system is directed along w,
angles θ and φ are the first two angles of the Euler transformation.
Coordinate system {vx, vy, vz} corresponds to the laboratory frame. . 77

3.13 Flowchart of the electron-electron collision process. Here Npart is the
total number of electron macroparticles in simulation. . . . . . . . . . 79

4.1 Particle dynamics during the two-particle test simulation. The parti-
cle coordinates (a) and velocities (b) versus time. In (a) and (b),
curves 1 (red) correspond to the negatively charged macroparticle
(electron), curves 2 (green) correspond to the positively charged macropar-
ticle (ion); vertical blue lines mark the moment t = 499.234 ns when
the snapshots presented in Fig. 4.2 were obtained. (c) The potential
energy (green curve 1), kinetic energy (red curve 2), and total (kinetic
plus potential) energy (blue curve 3) versus time. . . . . . . . . . . . 84

4.2 Spatial profiles of the charge density (a), the potential (b), and the
electric field (c) obtained at t = 499.234 ns during the two-particle
test simulation. In (a) spike 1 corresponds to the negatively charged
macroparticle and spike 2 corresponds to the positively charged macropar-
ticle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 The partial emission coefficients versus the primary electron energy
for: (a) the elastically reflected electrons, γe; (b) inelastically backscat-
tered electrons, γi; (c) and true secondary electrons, γt. Curves are
calculated by (3.16), (3.17), and (3.18). Markers are the values de-
termined in simulations with a monoenergetic beam bombarding the
wall. The red markers and curves 1 correspond to normal beam inci-
dence with angle ϑ = 0, and the blue markers and curves 2 correspond
to the angle of incidence ϑ = 80o. . . . . . . . . . . . . . . . . . . . . 89

4.4 (a) The EVDFs over velocity component vz parallel to the initial di-
rection of beam velocity. (b) The EVDFs over velocity component
vy perpendicular to the initial direction of beam velocity. On both
figures markers 1 (red) depict the theoretical EVDF of electrons scat-
tered once; curve 2 (green) is the EVDF obtained in simulations after
one scattering; curve 3 (blue) is the initial EVDF; curve 4 (magenta)
is the EVDF after six scatterings. . . . . . . . . . . . . . . . . . . . 92

xi



4.5 Frequencies of electron-neutral collisions versus energy of colliding
electrons: (a) elastic, νel; (b) excitation, νexc; (c) ionization, νion.
Curves are calculated with the known values of the cross sections for
xenon presented in Fig. 3.8a. Markers are the values determined in
simulations with monoenergetic electrons. Everywhere in this figure
red curves 1 and red markers correspond to the density of neutral
atoms na1 = 2 · 1018 m−3, blue curves 2 and blue markers correspond
to na2 = 2 · 1019 m−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Effects of Coulomb collisions on a plasma with initially non-Maxwellian
EVDF. (a) The average energies of electron motion along the x, y, and
z directions versus time. (b) The initial distribution functions for ve-
locity components, t = 0. (c) The distribution functions for velocity
components at t = 400 ns. In (b) and (c) the distribution functions
are plotted in energy coordinates, negative energy values correspond
to propagation in negative direction. In (a), (b) and (c) curves 1, 2,
and 3 correspond to the x, y, and z directions. (d) The phase plane
{vx, vy} at t = 0. (e) The phase plane {vx, vy} at t = 400 ns. . . . . . 96

4.7 Profile of the potential obtained in simulation with EDIPIC code with
Maxwellian plasma source and absorbing wall. M/m = 40, Ti/Te =
0.1, L = 22λD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.8 Profiles of potential obtained in simulation with EDIPIC code with a
Maxwellian plasma source and the emitting wall: the general shape
(a) and the enlarged potential well in the sheath adjacent to the wall
x = L (b). M/m = 40, Ti/Te = 1, L = 22λD, γp = 1.5, T2/Te = 0.01. . 101

4.9 Simulations of the instability of a low density, nb/np = 0.001, cold
electron beam in a cold plasma. (a) Perturbation of the potential
versus time for kvb/ωpe = 1.0053. (b) The theoretical values of fre-
quency (curve 1) and increment (curve 2) of the unstable branch of
oscillations versus the wave number; the red vertical crosses and the
blue diagonal crosses mark the values of frequency and increment,
respectively, obtained in PIC simulations. . . . . . . . . . . . . . . . 103

5.1 The potential barrier U(x) in the two-dimensional configuration space
(x,y) (left) and the circle in the corresponding two-dimensional veloc-
ity space (vx,vy) for particles with energy w = m(v2

x + v2
y)/2 > eΦ.

The red section of the circle is the loss cone (right). . . . . . . . . . 107

5.2 For simulation 1 from Table 5.1, the electron velocity distribution
over vx and vz in the middle of the plasma 10 mm < x < 15 mm
plotted in energy coordinates (negative energy values correspond to
propagation in the negative direction): (a) the 3D-plot, and (b) the
corresponding contour plot of the low energy region |wx,z| < 20 eV.
Any two neighboring contour lines in (b) have a level difference of
0.01. The plasma potential relative to the wall is Φp = 23 V. The

dashed bold line in figure (b) is wx = wzT̃x/T̃z + const. . . . . . . . . 111

xii



5.3 For simulation 1 from Table 5.1, the EVDF over vx (a) and vz (b) in
the middle of the plasma 10 mm < x < 15 mm plotted versus energy
(negative energy values correspond to propagation in the negative
direction). Curve 1 is the plasma EVDF in simulations. In (a), the two
symmetric vertical lines mark the confinement threshold energy wx =
eΦp and straight line 2 has a slope corresponding to T̃x = 10.1 eV. In

(b), straight line 2 has a slope corresponding to T̃z = 20.1 eV. . . . . 112

5.4 For simulation 2 from Table 5.1, the electron velocity distribution
over vx and vz in the middle of the plasma 10 mm < x < 15 mm
plotted in energy coordinates (negative energy values correspond to
propagation in the negative direction): (a) the 3D-plot, and (b) the
corresponding contour plot of the low energy region |wx,z| < 20 eV.
Any two neighboring contour lines in (b) have a level difference of
0.05. The plasma potential relative to the wall is Φp = 22 V. The

dashed bold line in (b) is wx = wzT̃x/T̃z + const. . . . . . . . . . . . . 113

5.5 For simulation 2 from Table 5.1, the EVDF over vx (a) and vz (b) in
the middle of the plasma 10 mm < x < 15 mm plotted versus energy
(negative energy values correspond to propagation in the negative
direction). Curve 1 corresponds to the bulk electrons; curve 2 to the
electron beam emitted from the wall x = L; curve 3 to the electron
beam emitted from the wall x = 0. In (a), the two symmetric vertical
lines mark the confinement threshold energy wx = eΦp, straight line

4 has a slope corresponding to T̃x = 12.3 eV. In (b), straight line 4

has a slope corresponding to T̃z = 35.7 eV. . . . . . . . . . . . . . . . 114

5.6 For simulation 3 from Table 5.1, the electron velocity distribution
over vx and vz in the middle of the plasma 10 mm < x < 15 mm
plotted in energy coordinates (negative energy values correspond to
propagation in the negative direction): (a) the 3D-plot, and (b) the
corresponding contour plot of the low energy region |wx,z| < 20 eV.
Any two neighboring contour lines in (b) have a level difference of
0.025. The plasma potential relative to the wall is Φp = 20 V. The

dashed bold line in (b) is wx = wzT̃x/T̃z + const. . . . . . . . . . . . . 116

5.7 For simulation 3 from Table 5.1, the EVDF over vx (a) and vz (b) in
the middle of the plasma 10 mm < x < 15 mm plotted versus energy
(negative energy values correspond to propagation in the negative
direction). Curve 1 corresponds to the bulk electrons; curve 2 to the
electron beam emitted from the wall x = L; curve 3 to the electron
beam emitted from the wall x = 0. In (a), the two symmetric vertical
lines mark the confinement threshold energy wx = eΦp, straight line

4 has a slope corresponding to T̃x = 11.8 eV. In (b), straight line 4

has a slope corresponding to T̃z = 22.7 eV. . . . . . . . . . . . . . . . 117

xiii



5.8 For simulation 4 from Table 5.1, the electron velocity distribution
over vx and vz in the middle of the plasma 10 mm < x < 15 mm
plotted in energy coordinates (negative energy values correspond to
propagation in the negative direction): (a) the 3D-plot, and (b) the
corresponding contour plot of the low energy region |wx,z| < 20 eV.
Any two neighboring contour lines in (b) have a level difference of
0.025. The plasma potential relative to the wall is Φp = 6.2 V. The

dashed bold line in (b) is wx = wzT̃x/T̃z + const. . . . . . . . . . . . . 119

5.9 For simulation 4 from Table 5.1, the EVDF over vx (a) and vz (b) in
the middle of the plasma 10 mm < x < 15 mm plotted versus energy
(negative energy values correspond to propagation in the negative
direction). Curve 1 is the plasma EVDF in simulations. In (a), the
two symmetric vertical lines mark the confinement threshold energy
wx = eΦp, straight line 2 has a slope corresponding to T̃x = 3.9 eV.

In (b), straight line 2 has a slope corresponding to T̃z = 4.2 eV. . . . 120

5.10 The EVDF over vx (a) and vz (b) for the bulk plasma, the EVDF
over vx (c) and vz (d) for the secondary electron beam emitted from
the wall x = 0. All EVDFs are plotted versus energy, with nega-
tive energy values indicating propagation in the negative direction.
Curves without markers correspond to simulation 5 (Coulomb colli-
sions turned off) and curves with markers correspond to simulation
6 (Coulomb collisions turned on) from Table 5.2. In (a) and (c), the
two vertical lines mark the confinement threshold energies wx = eΦp

corresponding to cases 5 (wx = 8.6 eV) and 6 (wx = 11.8 eV). The
EVDFs are calculated in the middle of the plasma 10 mm < x < 15 mm.128

5.11 The EVDF over vx (a) and vz (b) for the bulk plasma, the EVDF
over vx (c) and vz (d) for the secondary electron beam emitted from
the bottom wall. All EVDFs are plotted versus energy, with negative
energy indicating propagation in the negative direction. Curves with-
out markers correspond to case 7 (Coulomb collisions turned off) and
curves with markers correspond to case 8 (Coulomb collisions turned
on) from Table 5.2. In (a) and (c), the vertical line wx = 19.7 eV
marks the confinement threshold energy eΦp corresponding to case 8
(case 7 has a close value eΦp = 19.4 eV). The EVDFs are calculated
in the middle of the plasma 10 mm < x < 15 mm. . . . . . . . . . . . 129

5.12 Qualitative diagrams of wall fluxes for a semi-infinite plasma bounded
by a wall producing secondary electrons in the non space charge lim-
ited regime. The black curve is the potential profile. The orange and
green curves are the profiles of the electron and ion density, respectively.131

5.13 Qualitative diagrams of wall fluxes for a semi-infinite plasma bounded
by a wall producing secondary electrons in the SCL regime. The black
curve is the potential profile. The orange and green curves are the
profiles of the electron and ion density, respectively. . . . . . . . . . 133

xiv



5.14 Plasma-wall interaction parameters versus the electron temperature.
(a) The black curve is the primary electron flux due to the plasma
electrons Γ1p calculated from the analytical model of a Maxwellian
plasma (5.6); a pair of connected colored markers corresponds to one
Hall thruster PIC simulation, here the red vertical cross is the total
primary electron flux Γ1, and the green diagonal cross is the elec-
tron flux to the wall created by the plasma bulk electrons Γ1p. (b)
The black curve is the total emission coefficient γ in the analytical
model of a Maxwellian plasma (5.16); the blue dashed curve is the
emission coefficient due to the plasma electrons γp in the analytical
model (5.13); the red crosses are the total emission coefficients γ in
Hall thruster PIC simulations. (c) The black curve is the plasma po-
tential relative to the wall Φp obtained in the analytical model of a
Maxwellian plasma from the balance of fluxes (5.8); the red crosses are
the values of the plasma potential in the midplane Φp in Hall thruster
PIC simulations. The data for the Hall thruster simulations corre-
spond to those from Tables 5.1 and 5.2. For consistent comparison
with a Maxwellian plasma of density np, the fluxes are multiplied by
the factor np/ne. The numbers 1 − 8 denote the simulation number.
The vertical dashed red line separates the regions of non-SCL and
SCL SEE for a Maxwellian plasma. . . . . . . . . . . . . . . . . . . 137

6.1 (a) Qualitative diagram of the electron wall fluxes in a plasma with
large MFP bounded by the walls with SEE: red arrows are the compo-
nents of the primary electron flux, blue arrows are the corresponding
secondary electron fluxes. (b) Qualitative picture of the phase plane
{x,wx} of the bounded plasma: arrows “b”, “c”, and “w” depict
secondary electron beams, collision-ejected electrons, and weakly con-
fined electrons, respectively; the red curves are the envelope for the
confined electrons in phase space; the yellow bands are the weakly
confined electrons. In (b) the electrons moving to the right have
wx = mv2

x/2 > 0, electrons moving to the left have wx = −mv2
x/2 < 0. 142

6.2 Trajectory in phase space {x, vy, vz} of an electron emitted from the
wall x = 0 with zero transverse energy v2

y0 + v2
z0 = 0. Point A is the

start, point B is the end of the trajectory. The walls are at x = 0 and
x = 25 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3 (a) The local average energy Wb of the electron beam emitted from the
wall x = 0 versus the x coordinate (curve 1); the electrostatic potential
versus the x coordinate (curve 2). (b) The oscillating part of the beam
energy Wb,osc versus the x coordinate, the complete and incomplete
rotations are marked. The walls are at x = 0 and x = 25 mm. The
results are obtained from simulation 7 of Table 6.1. . . . . . . . . . . 151

xv



6.4 Qualitative flowchart of the plasma response to a small positive per-
turbation of plasma potential. Left column – perturbation is compen-
sated by the increased emission if criterion (6.13) is satisfied. Right
column – perturbation is amplified by the decreased emission if crite-
rion (6.13) is not satisfied. . . . . . . . . . . . . . . . . . . . . . . . . 153

6.5 The near-wall conductivity effect. (a) The total primary electron flux
Γ1 to the wall x = L versus time. (b) The average electron flow
velocity vz versus time, arrow 1 marks the value of the flow velocity
due to collisions with neutral atoms and turbulent collisions, arrow
2 marks the value of the flow velocity allowing for the electron-wall
collisions. (c) The profile of the electron current density Jz(x). The
walls are at x = 0 and at x = 25 mm. The results are obtained from
simulation 7 of Table 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.6 For simulation 2 of Table 6.1, the phase plane {x,wx} of the secondary
electron beam emitted from the wall x = 0. The other wall is at
x = 25 mm. Red points mark the beam particles, the blue line is the
plasma potential profile averaged over the plasma period. The phase
plane is obtained at t = 6.83 µs. . . . . . . . . . . . . . . . . . . . . 158

6.7 (a) The EVDF over velocity normal to the walls for all electrons (the
red curve), for plasma bulk electrons (the blue curve), and for the
secondary electron beam emitted from the wall x = 0 (the green
curve); the EVDFs are obtained in the midplane for case 2 of Table 5.1.
(b) The blue curve is the Maxwellian EVDF with temperature Te =

12.3 eV equal to the effective electron temperature T̃x in case 2 of
Table 5.1; the green curve is the EVDF of the secondary electron
beam, identical to that in figure (a); the red curve is the total EVDF
formed by the Maxwellian and the beam EVDFs. The velocity is
given in units of vth,e = (2eTe0/m)1/2, where Te0 = 53 eV is the initial
electron temperature in simulation 2 of Table 5.1. . . . . . . . . . . . 160

6.8 Simulation of the symmetric injection of constant electron current into
a collisionless Maxwellian plasma slab with immobile ions. (a) Curve
1 is the electron flux emitted at wall x = 0 versus time, curve 2 is
the corresponding penetrated flux detected at the boundary x = L.
(b) The plasma potential in the midplane versus time. The electron
injection is started at t = 20 ns. . . . . . . . . . . . . . . . . . . . . . 161

6.9 Simulation of the symmetric injection of constant electron current into
a collisionless Maxwellian plasma slab with immobile ions. (a) The
EVDF over velocity normal to the walls for all electrons (red curve),
for plasma bulk electrons (blue curve), and for the injected electron
beam emitted from the wall x = 0 (green curve) at the moment t =
27 ns. (b) Same as above, at the moment t = 90 ns. The EVDFs are
averaged over the region 1 mm < x < 2 mm. The velocity is given in
units of vth,e = (2Te0/m)1/2, where Te0 = 10 eV is the initial electron
temperature. The dashed magenta line is the Maxwellian EVDF with
temperature Te0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xvi



6.10 Simulations with periodic boundaries of propagation of a half-Maxwellian
electron beam through a cutoff Maxwellian plasma. (a) The cutoff en-
ergy (the minimal initial energy of beam particles) versus the relative
density of the electron beam. (b) Temporal evolution of the penetra-
tion coefficient calculated by (6.19), curves 1, 2, and 3 correspond to
the relative beam densities nb/n0 = 0.0016, 0.0064, and 0.099. (c) The
length of beam relaxation versus the relative beam density. (d) The
length of beam relaxation versus the initial beam flux. The dashed
line in (c) and (d) marks L = 2.5 cm – the width of the plasma gap
in Hall thruster simulations. The plasma density ne = 1017 m−3, the
plasma temperature Te = 10 eV, and the beam temperature Tb = 2 eV.164

7.1 Evolution of general plasma parameters with time in the RSO regime.
(a) Total emission coefficient γ at the wall x = L (red curve) and the
threshold emission coefficient for the SCL SEE (blue line). (b) Total
primary electron flux Γ1 to the wall x = L. (c) Electrostatic potential
in the middle of the plasma Φp. (d) Average electron energy 〈w〉. . . 173

7.2 The nonmonotonic spatial profile of the electrostatic potential in the
SCL state at the moment t = 9222.7 ns: (a) the entire domain, (b)
and (c) the fine scale plots of the potential wells near the walls x = 0
and x = L, respectively. (d) The monotonic spatial profile of the
potential in the non-SCL state at the moment t = 9415.4 ns. The
profiles correspond to the simulation presented in Fig. 7.1. . . . . . . 174

7.3 Evolution of parameters during one RSO period. (a) The average
electron energy. (b) The flux, (c) the average energy, and (d) the
partial emission coefficient of the components of the primary electron
flux. Curves 1,2, and 3 correspond to the secondary electron beam,
collision-ejected, and weakly confined electrons. (e) The total emission
coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.4 Evolution of parameters in the SCL state. (a) The total primary
electron flux. (b) The flux of the weakly confined and untrapped
plasma electrons. (c) The secondary electron beam flux. (d) The
average energy of the secondary electron beam at the target wall.
Curves 1 (red) correspond to the wall x = L, curves 2 (blue) to the
wall x = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xvii



7.5 (a) The primary electron flux to the wall x = L during one RSO
period, vertical lines A and B mark the beginning and the end of
the non-SCL state. (b) The emission coefficient at the wall x = L
versus the plasma potential, calculated by (7.3); the blue line is γ =
γcr. (c) The total electron current at the wall x = L versus the
plasma potential, calculated by (7.2). In (b) and (c), the green and
the red curves correspond to the moments A and B in (a), respectively.
Squares 1 and 2 mark the operating points at the moments A and B
in (a), respectively. The black dashed lines are the tangent lines at
the operating points. Parameters of the simulation are the same as in
Figs. 7.1– 7.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.6 Current-voltage characteristics of simulations without RSO: (a) sim-
ulation 1 of Table 5.1, and (b) simulation 7 of Table 5.2. The white
square marks the operating point. . . . . . . . . . . . . . . . . . . . . 183

7.7 Primary electron fluxes to the wall x = L versus time for different sizes
of plasma gap: (a) L = 1.5 cm, (b) L = 2 cm, (c) L = 2.5 cm, and
(d) L = 3 cm. (e) The relaxation oscillation period Tosc versus plasma
gap L; markers in each vertical set correspond to different oscillation
periods for the same plasma gap width. The common simulation
parameters are those of simulation 7 of Table 5.2. . . . . . . . . . . . 185

7.8 Primary electron fluxes to the wall x = L versus time for different
values of ion mass: (a) M = 8 amu; (b) M = 16 amu; (c) M =
32 amu; (d) M = 131 amu. (e) The ratio of the RSO period to
the corresponding average ion plasma period Ti = 2π(ε0M/〈n〉e2)1/2

versus the ion mass; markers in each vertical set correspond to different
oscillation periods in a single simulation with a given ion mass. . . . . 186

A.1 For simulation 7 of Table 5.2: (a) Curve 1 is the total energy (kinetic
plus potential), curve 2 is the energy gained due to the Joule heating,
curve 3 is the energy lost by electrons in inelastic collisions with neu-
tral atoms, curve 4 is the energy of injection of secondary electrons,
curve 5 is the energy of particles collided with the walls versus time,
here the negative energy value correspond to the energy loss. (b) The
relative deviation from the energy conservation law versus time. . . . 208

xviii



List of Abbreviations

AC Alternating Current
AR Acceleration Region
DC Direct Current
ECR Electron Cyclotron Resonance
EDIPIC Electrostatic Direct Implicit Particle-in-Cell
EM Electromagnetic
EEDF Electron Energy Distribution Function
EVDF Electron Velocity Distribution Function
ICP Inductively Coupled Plasma
MFP Mean Free Path
MPI Message Passing Interface
NWC Near-Wall Conductivity
PIC Particle-in-Cell
PMF Ponderomotive Force
RF Radio Frequency
RSO Relaxation Sheath Oscillations
SEE Secondary Electron Emission
SCL Space Charge Limited
1d3v one-dimensional in configuration space and three-dimensional

in velocity space

xix



Chapter 1

Introduction

The electron mean free path (MFP) is an important plasma characteristic. The

MFP is the distance l an electron travels between collisions, determined as l = vτ ,

where v is the electron velocity, and τ is the effective time between collisions. If

the MFP is small compared to the plasma size L, l ¿ L, the plasma is in thermal

equilibrium and may be considered as a mixture of conducting electron and ion fluids.

In the fluid approach, thermal motion of individual particles is not considered; the

plasma properties are completely determined by a few macroscopic values: density

n, temperature T , and flow velocity u [1]. The fluid equations 1

∂n

∂t
+∇ · (nu) = 0 ,

mn

[
∂u

∂t
+ (u · ∇)u

]
= −ne(E + u×B)−∇p

well describe processes with spatial and time scales much larger than the MFP and

the time between collisions, such as diffusion, Ohm’s law, etc. Here E and B are the

electric and magnetic fields, −e and m are the electron charge and mass, and p is

the electron pressure.

If the size of the plasma is small compared to the MFP, L ¿ l, the plasma

is no longer in thermal equilibrium and the description of such plasma must be

kinetic. In the kinetic approach, the plasma properties are defined by the electron

velocity distribution function (EVDF) f(v, r, t). The value f(v, r, t) is the number of

particles per unit of elementary volume d3rd3v in six-dimensional phase space {r,v}

1Here the continuity and the momentum balance equations for electrons are presented. The
latter equation is given in a simplified form without the drag force due to relative motion of
electrons and ions. Equations for ions are similar.
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at time t [2]. A collisional plasma in thermal equilibrium, which is well described by

the fluid approximation, has a Maxwellian EVDF:

fM(vx, vy, vz) = n
( m

2πT

)3/2

exp

[
−m(v2

x + v2
y + v2

z)

2T

]
,

where the electron temperature T is in energy units. In the kinetic, collisionless

regime the EVDF may deviate significantly from the Maxwellian EVDF [3, 4, 5, 6,

7]. In the absence of collisions, the main equation of kinetic theory is the Vlasov

equation:2

∂f

∂t
+ (v · ∇)f − e

m
(E + v ×B)

∂f

∂v
= 0 .

This equation expresses the conservation of the number of particles in the phase

space.

Solution of the kinetic equation is usually cumbersome and often can only be

obtained numerically. The most widely used methods are the Vlasov and particle-in-

cell (PIC) algorithms. The Vlasov method directly solves the kinetic equation using

a multi-dimensional grid in configuration and velocity phase space. This method is

free of numerical noise persistent in PIC simulations, however, it requires many more

numerical resources [8]. The PIC methods represent the plasma as a large number

of charged particles and follow the motion of each particle [9, 10]. Because of the

finite number of particles, PIC methods suffer high statistical noise and have difficul-

ties in reproducing the tails of distribution functions. However, PIC algorithms are

relatively simple, they use very few approximations and retain most of the nonlin-

ear effects [11], can be applied to three-dimensional simulations on state-of-the-art

computational facilities [12], and allow numerous collisional processes to be easily

implemented [13].

The work described in this thesis includes the development of particle-in-cell

codes and their application to the study of kinetic effects in two types of low-pressure

discharges, namely inductively coupled discharges and Hall thrusters.

2The Vlasov equation is the specific case of the general Boltzmann equation without the collision
term (∂f/∂t)c on the right hand side.
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1.1 Kinetic and nonlinear effects in inductively

coupled plasmas

1.1.1 Description of the design of an inductive discharge

The inductively coupled discharge was observed for the first time by Hittorf in

1884 [14]. Inductive discharges are capable of producing plasmas of high density,

which are uniform over large scales, with low ion energy and low contamination

by sputtering products from the discharge chamber walls. Nowadays inductively

coupled plasmas (ICP) are widely used in industry for material processing [15] and

lighting sources [16].

A typical inductive discharge device consists of a cylindrically symmetric dis-

charge chamber and a driving antenna, which is usually a coil wrapped around the

chamber (see Fig. 1.1a) or a plane coil attached to one end of the chamber (see

Fig. 1.1b). A radio frequency (RF) current flows in the antenna and creates an

RF electromagnetic (EM) field which sustains the plasma. The range of operating

parameters for ICPs that manufacture integrated circuits is as follows: the electron

temperature is 1− 10 eV, the driving current frequency is 1 − 10 MHz, the plasma

density is 1016 − 1018 m−3. Note that in ICP the RF frequency ω ∼ 107 s−1 is much

lower than the electron plasma frequency ωpe ∼ 109−1010 s−1, where ω2
pe = ne2/ε0m,

and ε0 = 8.85 · 10−12 F ·m−1 is the vacuum permittivity.

1.1.2 Classical and anomalous skin effects

An electromagnetic wave cannot propagate inside a plasma if ω < ωpe. Consider a

uniform plasma of density n, with frequency of electron collisions ν, occupying a half-

space z > 0. Let the electric field at the boundary z = 0 be Ey(0, t) = E0 exp (iωt).

Neglect the electron thermal motion and the effects of the RF magnetic field. With

these assumptions the motion of the electron due to collisions and the RF electric
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Figure 1.1: Schematic diagrams of ICP discharges. Figure (a) – side
coil design; figure (b) – top coil (pancake) design.

field is described by

iωvy = − e

m
Ey − νvy . (1.1)

Equation of motion (1.1) corresponds to the case when the electric current is a local

function of the electric field, i.e., the current satisfies Ohm’s law

jy(z, t) = σ(ω, ν)Ey(z, t) , (1.2)

where jy is the electric current density and σ is the conductivity

σ(ω, ν) =
ε0ω

2
pe

iω + ν
=

ε0ω
2
pe√

ω2 + ν2
exp (iφσ) , (1.3)

with tan φσ = −ω/ν. Assuming that the plasma is dense enough to ensure ω2
pe À

ω
√

ω2 + ν2, the displacement current ∂ε0Ey/∂t ¿ jy(z, t) can be omitted in Maxwell’s

equations, and the dispersion relation of the low frequency EM wave inside the

plasma is

k2 = − iωσ

c2ε0

,
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where k is the complex wave number and c is the speed of light in vacuum. Here it

is assumed that Ey(z, t) = E0 exp (−ikz + iωt). The amplitude of the electric field

Ey(z) = E0 exp (−i(iImk)z) = E0 exp (Imk z) ≡ E0 exp
(
−z

δ

)

is an exponentially decreasing function of coordinate z, δ > 0. The spatial scale of

the exponential decay is

δ−1 = −Imk = Re

(
iωσ

c2ε0

)1/2

. (1.4)

For a collisionless plasma, ν ¿ ω ¿ ωpe, one obtains δ = c/ωpe ≡ δc. The exponen-

tial decay of a low frequency EM wave in conducting media (e.g., plasma or metal)

with the local relation (1.2) between electric current and electric field is called the

classical skin effect, the region of intense field adjacent to the boundary, 0 < z ≤ δ,

is called the skin layer, and the scale δ is called the skin depth.

In ICP, most interaction between the plasma electrons and the RF EM field

occurs in the skin layer. The different regimes of ICP operation are determined by

the speed of electron flight through the skin layer, which is characterized by the

nonlocality parameter λ, defined as [6]

λ =
vth

δ
√

ω2 + ν2
,

where vth is the electron thermal velocity. If the driving frequency is high, ω > vth/δ,

or if the collisions are frequent, ν > vth/δ, then the nonlocality parameter is small,

λ ¿ 1, the current is a local function of the electric field, the skin effect is classical,

and the plasma acquires energy from the RF field due to collisional Joule heating [6].

At the present time, inductive discharges tend to operate at low neutral gas

pressure (1 − 10 mTorr) and low driving frequencies (< 1 MHz). Transition to

lower operating frequencies reduces the effects of capacitive coupling, simplifies and

decreases the cost of the RF power source and RF circuit, decreases transmission line

effects in ICP inductors, and simplifies scaling the ICP to a larger size [17]. In warm

plasmas most of the electrons fly quickly through the skin layer and the nonlocality

parameter is large, λ À 1. In this regime, the electron velocity is determined by the
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profile of the EM field along the whole electron trajectory and the local Ohm’s law

(1.2) is no longer valid [18]. The skin effect under the condition of nonlocal induced

current is called the anomalous or nonlocal skin effect.

The anomalous skin effect was observed for the first time in metal by London [19]

and in a xenon plasma by Demirkhanov et al. [20]. To qualitatively explain the

anomalous skin effect in metals, Pippard [21] suggested that the major contribution

to the induced current is due to the electrons that enter the skin layer almost parallel

to the walls and thus spend a lot of time in the skin layer. The number of these

electrons is small, about the ratio of the skin depth to the electron MFP, i.e., the

inverse nonlocality parameter λ−1 ¿ 1. As an approximation, the anomalous skin

depth can be obtained from (1.4) with conductivity multiplied by the aforementioned

ratio [22], as follows:

δ−1 = Re

(
iωσ

c2ε0

δ
√

ω2 + ν2

vth

)1/2

.

Then the anomalous skin depth is

δ ∼
(

c2vth

ω2
peω

)1/3

∼ c

ωpe

(vthωpe

cω

)1/3

À c

ωpe

. (1.5)

In the anomalous regime, the depth of field penetration (1.5) increases with plasma

temperature.

Rigorous description of the anomalous skin effect assumes that the electric current

at a given point is calculated by taking into account the RF EM field profile in a

neighborhood the size of an electron MFP around this point. For metal this problem

was solved for the first time by Reuter and Sondheimer [23]. The first work on the

anomalous skin effect in plasma was done by Weibel [18]. The exact value of the

skin depth in the anomalous regime [18] differs from the estimated value (1.5) by a

factor of order unity:

δ =
8

9π1/6
×

(
c2vth

ω2
pω

)1/3

.

In Ref. [18], it was shown analytically that in the anomalous regime the field

decays nonmonotonically due to the current carried deep into the plasma by thermal

electrons, which acquire additional momentum in the skin layer. The nonmonotonic
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amplitude is a distinctive feature of the anomalous skin effect observed in numerous

experiments [20, 24]. Another important property of the anomalous skin effect is

the collisionless plasma heating due to the resonant absorption of damping electro-

magnetic wave by thermal electrons [18, 25, 26, 27]. Experimental confirmation of

collisionless power absorption is described in [28, 29].

1.1.3 Nonlinear force and the ponderomotive effect

Equation of motion (1.1) does not account for the RF magnetic field and describes a

linear motion. However, the amplitude of the RF magnetic field increases for the low

frequency EM wave, |B| ∼ (|k|/ω)|E|, eventually becoming non-negligible. When

the RF magnetic field is included, the electron equation of motion becomes

m
dv

dt
= −e(E + v ×B)−mνv ,

and the equation of momentum balance for the Maxwellian electron liquid is nonlin-

ear:

mn
∂u

∂t
= −enE−mnνu−∇p + FNL , (1.6)

where the nonlinear force FNL is

FNL = −enu×B−mn(u · ∇)u . (1.7)

The first term of FNL is the Lorentz force, the second term is the contribution

from the electron inertia. The nonlinear force acts on the electrons, resulting in

polarization of the plasma and excitation of the nonlinear polarization potential and

electron current [30]. The polarization potential contains a DC component and the

second harmonic, i.e., the oscillatory component with the frequency 2ω [30]. The

ions respond to the DC part of the potential Φdc = 〈Φ〉, so the plasma density profile

forms according to the equilibrium condition en∇Φdc+〈FNL〉−∇p = 0, see Ref. [31].

Thus, the average part of the nonlinear force, 〈FNL〉, leads to the modification of

the plasma density profile. This is the ponderomotive effect in fluid formulation.

In a nonuniform, time-varying EM field, the plasma motion separates into a “fast”

motion and a “slow” motion compared to the oscillation period. The slow motion
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occurs as if the plasma is affected by an external force Fp, called the ponderomotive

force (PMF) [32]. In the fluid formulation presented above, the PMF is the averaged

nonlinear force, Fp = 〈FNL〉. Alternatively, the PMF can be derived considering

the nonlinear motion of a single particle. For an electron moving in the field of an

EM-wave with spatially varying amplitude

E(r, t) = Es(r) cos ωt , B(r, t) = − 1

ω
∇× Es sin ωt ,

the PMF appears as a second order correction [33]:

m〈dv2

dt
〉 = − e2

4mω2
∇ (Es)

2 ,

where v2 is the velocity of the electron guiding center, time-averaging 〈〉 is done over

the wave period 2π/ω. In a cold plasma, the PMF acting on a unit volume is

Fp = −ε0ω
2
pe

4ω2
∇E2

s . (1.8)

The PMF describes a number of phenomena. It is responsible for the self-focusing

and filamentation of laser beams in plasmas, density profile steepening, formation

of cavitons, parametric instabilities, and magnetic field excitation in laser-produced

plasmas (see the review [34] and numerous references therein).

The value of the PMF in a low frequency ICP can be larger than the force from

the RF electric field. At low driving frequencies, the PMF is strongly affected by

the nonlocal electron dynamics. In Ref. [35], the PMF was obtained as the average

part of the Lorentz force by allowing for the nonlocal effects in approximation of

exponentially decaying RF field. It was shown that in a strongly nonlocal regime,

λ À 1, the PMF is

Fp =
ε0ω

2
pe

2ω2
E2

0

√
πω

vth

, (1.9)

where E0 is the amplitude of the electric field of the evanescent EM wave at the

plasma boundary. Note that expression (1.9) is meaningful only for a strongly de-

caying RF field with δ ¿ vth/ω. Comparing (1.9) with (1.8) one obtains

Fp, NLC ∼
√

π
1

λ
Fp, LC ¿ Fp, LC ,
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where Fp, NLC is the nonlocal PMF calculated by (1.9) and Fp, LC is the local PMF

calculated by (1.8). In the regime of the anomalous skin effect, the PMF (1.9)

decreases with electron temperature due to the nonlocal effects.

1.1.4 Studies of ponderomotive and nonlinear effects in in-

ductively coupled plasmas

Cohen and Rognlien [36] considered theoretically the dynamics of plasma electrons

in ICP in the transverse electric Ey and magnetic Bx fields with an exponentially

decaying spatial profile. They showed that some electrons can be trapped in the skin

layer and others can be reflected back into the plasma before they even reach the

plasma boundary. Electron heating by Lorentz force produces much more isotropic

EVDF than the case with omitted magnetic field effects. The nonlinear force causes

oscillations of the electron density in the skin region with a frequency double that of

the induced field. The electron density reduction excites a strong longitudinal elec-

trostatic field. In Ref. [37], both the transverse (electric and magnetic) and nonlinear

longitudinal electric fields are taken into account. The latter field restores immedi-

ate quasineutrality. Its averaged part pushes the ions from the plasma boundary,

modifying the plasma density profile.

Godyak et al. [24], in their studies of top coil ICP with relatively high operating

frequency (3.39− 13.56 MHz) found that the second harmonic of the RF plasma po-

tential is higher at low gas pressure and low driving frequency when the RF magnetic

field is large. An axial RF current oscillating at 2ω was also observed and measured.

This current appears because of the interaction of the azimuthal RF current and the

radial component of the magnetic field. Because of cylindrical geometry and two

components of the magnetic field (Br and Bz), the current formed a closed path in

the plane r− z within the plasma volume. As it was predicted in [37], the asymme-

try of the plasma density profile due to the PMF was observed with a larger plasma

gradient on the skin layer side.

The nonlinear effects in the low frequency low pressure ICP (0.45 MHz, 1 mTorr)
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were also studied in [38]. Intensive second harmonics of plasma potential, radial and

axial currents were registered. The decrease of the PMF in the warm low frequency

ICP caused by the electron thermal motion was observed.

In Ref. [31], the experimental observation of a significant decrease of the PMF

in the warm plasma of a cylindrical inductive discharge is described in detail. The

discharge parameters are: a driving RF frequency of 0.45 MHz, an electron temper-

ature of about 7 eV, a skin depth of 2.24 cm, and an effective collision frequency of

4 · 106 s−1. Since vth/δ À ω, ν, this experiment falls within the typical anomalous

skin effect regime. The PMF measured near the field maximum was about 10 times

smaller than the value calculated by Eq. (1.8).

Furthermore, the influence of the PMF on the electron energy distribution func-

tion (EEDF) in a cylindrical inductive discharge with a flat coil at low frequency

and low neutral gas pressure was observed experimentally [6]. Measurements of the

EEDF showed significant depletion at low energies in the skin layer. Because of the

reduction of the RF current in the skin layer due to thermal electron motion [38],

the major part of the current is created by low energy electrons. As a result, the

PMF mainly acts on the low energy electrons, thereby removing them from the skin

layer. Qualitatively similar anisotropic EEDF was obtained theoretically in [36].

The nonlinear skin effect was discussed in [39] for cylindrical ICP within the

magnetohydrodynamic framework. For a one-dimensional cylindrical ICP (side coil,

with azimuthal symmetry and infinite along the axis) it is shown that the axial

magnetic field (constant or RF) does not affect the field penetration because the

modification of the azimuthal electric current due to the magnetic field is cancelled

by the Hall current from the induced radial polarization field [39, 40]. However, in

a planar ICP, the curvature of the magnetic field and the electron inertia result in

nonlinear currents in r−z plane, and, thus, a nonlinear azimuthal magnetic field Bϕ

is produced. This field may lead to the enhanced penetration of the RF field.

Experimental observation of the deep RF field penetration in a side coil ICP

discharge is described by Tuszewski in [41, 42, 43]. He has found that the induced RF

magnetic field essentially lowers the plasma electron thermal conductivity, resulting
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in a much more uniform deposition of RF power. However, in experiments the EM

field distribution is strongly influenced not only by the plasma screening, but by the

chamber geometry as well. Additionally, the plasma density is usually nonuniform,

decreasing towards the boundaries. Therefore, it is hard to relate the available

observations of the changing of RF field penetration exclusively to nonlinear effects.

At the same time the nonlinear skin effect is well known in metals, producing a

decrease of the field penetration in the nonlinear regime (see [44] and the references

therein).

1.1.5 Simulations of inductively coupled plasmas and moti-

vation for the present work

The physics of low frequency ICP is rich in nonlocal and nonlinear effects. The

analytical description of these effects requires significant simplifications. For exam-

ple, the anomalous skin effect theory [18] and the calculation of the PMF in warm

ICP [35] assume that the electrons move through the skin layer with constant veloc-

ity in the direction normal to the plasma boundary. However, in low frequency ICP

the electron trajectories are strongly modified by the RF magnetic field, which could

affect the excited electron flow and, thus, the PMF. The only way to investigate

the nonlocal effects modified by the nonlinear force is through the use of numerical

simulations.

Simulations of discharge devices for industry purposes are often based on fluid

models [45] because of the great numerical cost of kinetic simulations. The per-

formance of both types of simulations can be increased by using advanced physical

models. Kortshagen et al. [46] proposed a kinetic model of ICP based on the non-

local EVDF obtained from the Boltzmann equation averaged over the fast electron

motion. Turner considered viscosity in the fluid model to add the effect of nonlocal

current spreading in fluid simulations [47].

A straightforward method of simulating a kinetic system is the use of PIC algo-

rithms [9, 10]. Impressive two-dimensional hybrid simulations of realistic discharge
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configurations with kinetic representation of electrons and fluid representation of

ions were carried out in Refs. [7, 48]. Turner [49] and Yoon et al. [50] studied the

collisionless heating in ICP with PIC simulations based on the advective EM algo-

rithm of Langdon and Dawson [10]. These simulations were carried out for high RF

frequency 13.56 MHz, where the nonlinear effects are negligible.

The ponderomotive effect in the strongly nonlinear, nonlocal, collisionless regime

typical for modern ICPs has not been previously considered, which motivates the

present study [51, 52, 53]. To investigate the effects of electron thermal motion on

the PMF in nonlinear low frequency ICP, a fully electromagnetic, quasineutral PIC

code was developed. The code resolves one spatial dimension and three velocity

components for every particle (1d3v). The code is applied to the calculation of the

PMF (i) in the nonlinear regime, when the electron trajectories are modified by

the RF magnetic field, and (ii) in the regime with linear electron trajectories, so

comparison with the linear theoretical results of Refs. [25] and [35] may be carried

out.

1.2 Kinetic effects in Hall thrusters

Hall thrusters [54] are low-thrust electric propulsion devices for orbital maneuvering

of spacecrafts. The operation of a Hall thruster relies on the large electron MFP

in the region where the accelerating electric field forms. In this region the electron

motion is nearly collisionless, and the plasma properties significantly deviate from

those of a Maxwellian plasma.

1.2.1 Hall thruster design and principles of operation

The development of Hall thrusters started in the middle of the 1960’s independently

in both the USSR and the US. The first satellite equipped with a Hall thruster

was launched into orbit at the end of 1971. It was the Russian satellite “Meteor-

18”. Since that time Hall thrusters were installed on about 100 spacecraft, mostly

Russian [55]. In November 2004 the European spacecraft “SMART-1” entered lunar
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orbit using a Hall thruster as its main propulsion system.

The design of a Hall thruster is presented in Fig. 1.2. Inside the thruster, the

plasma is contained in a coaxial ceramic channel. Between the cathode and the

anode a voltage of several hundred Volts is applied, producing an axial electric field

Ez. The magnetic core creates a magnetic field Br, which is maximal near the exit

plane of a thruster, see the blue curve in the graph in the bottom of Fig. 1.2. The

direction of the magnetic field is almost completely radial, thus, the magnetic field is

crossed with the axial electric field. The amplitude of the magnetic field is hundreds

of Gauss. In the region of maximal magnetic field the radius of electron cyclotron

rotation RLe = vthm/eBr−10−3÷10−4 m, where Br is the magnetic field amplitude, is

much smaller than the electron MFP l = vth/ν ∼ 1 m, and the width of the maximal

magnetic field region ∆zB ∼ 10−2 m, i.e., RLe/∆zB ¿ 1 and RLe/l ¿ 1. The ions

are heavy, the propellant is xenon with an ion mass M = 131 amu, and the radius

of the ion cyclotron orbit RLi is large, RLi/∆zB À 1. This mass difference results

in qualitatively different motion of electrons and ions in the maximal magnetic field

region. The electrons drift only in the azimuthal direction due to the crossed electric

and magnetic fields, along the axis the electrons can move only due to collisions,

while the ions are accelerated by the axial electric field and move freely across the

magnetic field.

In Hall thrusters single charge ions are accelerated to 2 · 104 m/s, i.e., about

ten times faster than the jet velocity of a typical thermochemical rocket engine.

The outgoing ion stream is neutralized by electrons ejected from the cathode. The

power of operating Hall thrusters is within the range 0.5−5 kW, the thrust is about

60 mN/kW, the propellant mass flow rate is ṁ ∼ 10−3 g/s, the lifetime is thousands

of hours [56].

In fluid formulation, the electron flow velocity is related to the applied electric

field via the electron mobility µe, u = µeE. Near the exit of a Hall thruster the axial

electron mobility is essentially suppressed by the strong magnetic field:

µe =
e

mν

1

1 + ω2
c/ν

2
, (1.10)
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Figure 1.2: Schematic diagram of a Hall thruster and axial profiles
of the electrostatic potential Φ, accelerating electric field Ez, and radial
magnetic field Br.
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where ωc = eBr/m is the electron cyclotron frequency. In this region, the major

drop of the potential occurs and the largest longitudinal electric field is excited (see

green and red curves at bottom of Fig. 1.2). This region is called the acceleration

region (AR). It is interesting that in the AR of a Hall thruster the actual elec-

tron mobility is significantly higher than the classical value (1.10) if the collision

frequency is determined by the scattering of electrons on neutral atoms only [57].

Possible theoretical explanations of this anomalously high conductivity involve the

anomalous Bohm diffusion due to magnetic field turbulence [58] and fluctuations

of the azimuthal electric field [57, 59]. These fluctuations can arise due to various

instabilities of electron current across the magnetic field [60, 61, 62]. There are a

number of experimental evidences of the microturbulence in Hall thrusters [57, 63].

Azimuthal oscillations of electric field and electron density in Hall thrusters as well

as the increase of axial electron mobility due to these oscillations were obtained in

two-dimensional simulations in [64, 65, 66]. The other possible mechanism explaining

high electron mobility is considered in the theory of near-wall conductivity (NWC),

which suggests that the scattering of electrons in electron-wall collisions can increase

the electron mobility across the magnetic field [67, 68]. The exact mechanism of

anomalous electron mobility in Hall thrusters has not been established yet. Various

analytical and numerical models usually introduce some effective collisions in ad-

dition to electron-neutral collisions in order to account for the anomalous electron

mobility [69, 70].

The formation of a gradual drop in potential over the length of about 1 − 2 cm

in the AR crucially depends on electron energy. The condition RLe/∆zB ¿ 1 must

be satisfied, which requires electron energies in the range of tens of electronvolts,

much smaller than the applied discharge voltage. The important role in limiting

the electron temperature is played by the ceramic walls of the thruster channel. The

wall material produces secondary electrons in response to bombardment by energetic

plasma electrons. This phenomenon is called secondary electron emission (SEE) [71].

The hot plasma electrons are substituted by cold secondary electrons, which contin-

ually decrease the electron temperature. Cooling of the electron component via
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interaction with the wall is largely determined by the processes that occur within

the narrow non-neutral region near the wall.

1.2.2 Plasma-wall interaction with secondary electron emis-

sion

In bounded plasmas a thin space charge layer (sheath) is formed at the plasma-

material interface [72, 73]. The drop of the potential across the sheath creates an

electric field that reflects most of electrons back to the plasma, thus limiting the

electron current and partially insulating the plasma from the wall. Total current

to the dielectric wall is zero, so the electron flux to the wall Γ1 must be equal to

the ion flux Γi, Γ1 = Γi. According to the Bohm condition [74], the ion flux is

Γi = ns

√
Te/M , where Te is the electron temperature, and ns is the plasma density

at the sheath boundary; Γi is relatively small because of the large ion mass.

If the wall emits electrons (e.g., due to the SEE), the emitted electron flux Γ2

(the secondary electron flux) partially compensates the electron flux Γ1 coming to

the wall from the plasma (the primary electron flux), and the flux balance equation

is Γ1 − Γ2 = Γi. The intensity of SEE is characterized by the emission coefficient

γ defined as the ratio of emitted and incident electron currents, γ = Γ2/Γ1. The

sheath with SEE was examined for the first time and the approximate expression for

the plasma potential Φ was found in Ref. [75]:

eΦ ' Te ln

[
(1− γ)

(
M

2πm

)1/2
]

. (1.11)

With SEE the plasma potential relative to the wall decreases.

Expression (1.11) is valid for small emission coefficients, γ ¿ 1, and corresponds

to a monotonic potential profile. When the emission coefficient approaches to unity,

γ → 1, the primary electron flux drastically increases, Γ1 = Γi/(1− γ) → ∞. In

fact, if the emission coefficient exceeds some threshold γcr, γ > γcr, a double charged

layer with nonmonotonic potential profile forms in the sheath region, and part of the

emitted current is returned back to the wall, thus limiting the secondary electron
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current that penetrates through the potential barrier adjacent to the wall. This

SEE regime is called the space charge limited (SCL) regime. The resulting emission

coefficient in the SCL regime does not exceed unity, γ < 1. In Ref. [75], the value

of the emission coefficient that corresponds to the transition to the SCL SEE, the

so-called critical emission coefficient, is found to be

γcr = 1− 8.3
( m

M

)1/2

. (1.12)

For many materials the emission coefficient increases with the energy of incident

electrons, as a result, plasmas with higher electron temperature produce emission

characterized by higher γ. Transition to the SCL regime occurs at γ = γcr and is

accompanied by an exponential growth of the plasma electron flux to the wall. For

plasmas with Maxwellian EVDF, the threshold value of the electron temperature

Tcr corresponding to the transition to the SCL regime is called the critical electron

temperature. This temperature is often considered to be the upper limit for the

electron temperature in plasmas bounded by the walls with SEE. In particular, for

boron nitride ceramic walls the critical electron temperature is only Tcr ≈ 18 eV [76].

However, in Hall thrusters significantly higher values of the electron temperature can

be achieved, which presents a significant theoretical problem.

1.2.3 Experimentally found properties of Hall thruster op-

eration

Experimental study of the 2 kW Hall thruster with boron nitride ceramic chan-

nel carried out at the Princeton Plasma Physics Laboratory [77, 78, 79, 80] reveals

the following discharge properties. There is a threshold value U∗ of the discharge

voltage Ud, about 400 V, which separates two regimes of electron temperature in

Hall thrusters. Below the threshold, the electron temperature is maximal inside the

thruster channel and increases linearly with the discharge voltage. Above the thresh-

old, the electron temperature saturates at the level of 50−60 eV and the temperature

maximum is outside of the thruster channel, in the near-plume region [79]. The max-

imal electron temperature observed inside the channel is about 40 eV [78, 79], which
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is more than two times larger than the critical electron temperature. The electron

temperature inside the thruster channel does not exceed the value 40 eV even if the

discharge voltage exceeds the threshold U∗.

It is reasonable to attribute the electron temperature saturation at Ud > U∗ to the

plasma-wall interaction enhanced by intense SEE, as it is predicted by several fluid

theories [81, 82]. This assumption is supported by the fact that for voltages above

this threshold, the relation between the local values of the electron temperature and

the plasma potential changes. In [83], the linear relation between the temperature

and the potential was introduced, Te ∼ βΦ. This law was later confirmed by many

researchers, with a proportionality coefficient in the range β = 0.09− 0.14 (see [78]

and numerous references therein). For Ud < U∗, the relation Te ∼ βΦ is fulfilled

both in the AR inside the channel and outside the channel in the near plume region,

while for Ud > U∗, this relation is violated inside the thruster channel. However, for

voltages around Ud = 450 V ≈ U∗ the fluid theories [81, 82] predict a transition to

the SCL regime, which is not confirmed by the experimental data.

The possibility of the transition to the SCL regime at different discharge voltages

was analyzed in Ref. [79] by comparing the frequencies of electron-wall collisions

with those for Maxwellian plasmas with corresponding temperatures. The electron-

wall collision frequencies are estimated from the experimental data as follows. It is

assumed that the electron energy loss at the walls is balanced by the Joule heating

νwwe =
jz

ne

∂Φ(z)

∂z
, (1.13)

where νw is the frequency of electron-wall collisions, we is the average energy carried

away by each collision, jz is the axial electron current density, and ne is the average

electron density. For plasmas with isotropic Maxwellian EVDF of temperature Te,

one obtains we ≈ 2Te. The value of νw is determined from (1.13). It is found [79]

that even for high discharge voltages Ud = 400 − 700 V, the experimental value of

the electron-wall collision frequency is far less than the frequency of electron-wall

collisions for a Maxwellian plasma in the SCL regime. Therefore, the SCL regime

is likely not realized even though the electron temperature significantly exceeds the
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critical value.

The aforementioned outward shift of the temperature maximum for Ud > U∗ is

accompanied with a shift of the electric field maximum in the same direction, thus,

the electric field inside the thruster channel decreases. In Ref. [79], the conclusion

is made that the saturation of electron temperature inside the thruster channel is

related to the decrease of the Joule heating jzEz rather than to the electron wall

losses enhanced by SEE.

For discharge voltages above the threshold U∗, the axial electron current and

the electron mobility increase [79]. This increase may be related with the NWC

effect [68]. The NWC is considered to be important if the SEE is close to the SCL

regime [82]. It is interesting that in a Hall thruster with a narrow channel the AR

forms almost completely outside of the thruster channel [80]. In a thruster with a

narrow channel, the electron-wall collisions are more important, and the observed

shift of AR may be related to the NWC as well. However, in narrow thrusters there

is no experimental evidence of a correlation between the energy of electrons and

the increased electron mobility inside the thruster channel, which is expected if the

additional mobility appears due to the SEE effects.

1.2.4 Hall thruster fluid theories

In modern fluid theories of Hall thrusters, sheath models are used to provide self-

consistent boundary conditions for the bulk plasma. In Ref. [69], the two-dimensional

(r, z) fluid model describing the plasma volume inside the channel of a Hall thruster

is based on the following system of equations:

nM(vi · ∇)vi = neE−∇pi − βnMnava ,

∇ · (vin) = βnna ,

∇ · (vana) = −βnna ,

0 = −en(E + v ×B)−∇pe − nνmve ,

3

2

∂(jeTe)

∂z
= Qj −Qw −Qion ,
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where n is the plasma density, na is the neutral atom density, β is the ionization

rate, Qj = jeE is the Joule heat, E is the axial component of the electric field, je

is the electron current density, Qw = νwn[2Te + (1 − γ)e∆Φw] represents the wall

losses, νw = (vth,e/h) exp (−∆Φw/Te) is the frequency of electron-wall collisions with

h = R2 − R1 as the channel width, R1 and R2 being the inner and outer radii of

the channel, vth,e is the electron thermal velocity, Qion represents ionization losses

and ∆Φw is the potential drop in the sheath. The value of ∆Φw is found from

the one-dimensional sheath model similar to [75], see equation (1.11) above. The

total electron collision frequency ν consists of the electron-wall collisions νw, the

electron-neutral collisions νen, and the anomalous collisions νB related to the Bohm

diffusion. It was found that the SEE significantly affects the electron temperature

distribution along the channel. Changing γ from 0.95 to 0.8 resulted in an almost

two-fold increase in the maximum Te value: from 16 eV to 30 eV. The Te peak is

attained inside the channel near the exhaust. In Ref. [69], only the non-SCL regime

is considered.

In Ref. [84], the sheath/presheath model of a plasma flowing along annular dielec-

tric walls with SEE was developed. The effects of the axial flow on the radial motion

were included by adding the corresponding source terms in the radial equations. In

Ref. [81], this model was combined with the one-dimensional macroscopic model of

the steady-state axial discharge, which reproduces the channel of a Hall thruster and

the near-plume region. The temperature in the acceleration region was determined

by the balance between the Joule heating, the wall losses, and the heat conduction.

It is shown that the temperature inside the thruster channel is limited by high losses

of electron energy at the walls. Transition to the SCL regime occurs for discharge

voltage Ud = 450 V.

The one-dimensional transit fluid model that allows for the electron temperature

anisotropy was developed in [82]. The sheath model similar to that of Ref. [75] was

used. A wide range of the discharge voltage Ud was considered. In simulations, the

SCL regime was obtained for Ud > 450 V. In this regime, the increase of the discharge

voltage results in rapid growth of the electron temperature. The average electron
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energy exhibits strong anisotropy Te⊥ À Te‖, where Te⊥ is the electron temperature in

the direction perpendicular to the magnetic field and Te‖ is the electron temperature

in the direction parallel to the magnetic field.

Fluid theories predict the saturation of the electron temperature when the dis-

charge voltage is below the SCL regime [82], Ud = 400−450V, and occurs due to the

intense wall losses enhanced by SEE [81]. Experiments [79] show that the tempera-

ture saturation is not simultaneous with the SCL regime, that the saturation occurs

at much higher discharge voltages, and the reason for it is the decrease in the Joule

heating. The difference between the results of fluid theories and the experiments

appears to be because the fluid theories use the Maxwellian EVDF with pronounced

high energy tails and intense wall fluxes, which are not present in Hall thrusters.

1.2.5 Kinetic studies of Hall thrusters and motivation for

the present research

In confined plasmas, the electron flux to the wall is determined by the EVFD and

by the sheath potential. In Hall thrusters, the electron MFP significantly exceeds

the dimensions of the device. Under such conditions, the EVDF may deviate from

Maxwellian, and the use of a Maxwellian EVDF for calculation of the electron fluxes

may result in significant overestimation of the losses of electron energy at the walls.

It is shown, mostly numerically but also experimentally, that numerous kinds of

low-pressure discharges, such as electron cyclotron resonance (ECR) discharges [5],

capacitively [85] and inductively coupled plasmas [6, 7, 46], DC discharges [4], do in-

deed have non-Maxwellian electron velocity distribution functions. Modifications to

the EVDF of collisionless plasmas can include depletion in the high energy range [4],

depletion in the low energy range [6], anisotropy [5], etc.

Similarly, measurements of the electron energy distribution function (EEDF)

inside Hall thrusters reveal that there are several groups of electrons with different

average energies and that the total EEDF is non-Maxwellian [86]. Numerical analysis

of kinetic equations reveal depletion of the high energy tail of the EEDF in Hall
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thrusters and a reduction of electron losses to the wall compared to fluid theories [87].

Three-dimensional Monte-Carlo simulations of Hall thrusters [88] found that the

EEDF exhibited a beam-like shape in high energy region.

Most available models of Hall thrusters are fluid, based on the Maxwellian EVDF;

the number of kinetic models is much smaller. Full kinetic simulation of a Hall

thruster has extremely high numerical cost because of several significantly different

spatial and temporal scales that must be resolved. For example, the typical time

of ion flight through the system is ti ∼ 10−5 s, while the typical time of electron

flight through the sheath is te ∼ ω−1
pe ∼ 10−10 s; the dimensions of a thruster are

L ∼ 10−1 − 10−2 m, while the width of the sheath is of the order of electron Debye

length λD ∼ 10−3 − 10−4 m. The electron scales have to be resolved at least in

the near-wall region in order to reproduce correctly the structure of the sheath and,

therefore, the plasma-wall interaction in simulations.

Available kinetic studies of Hall thrusters consider electron distribution over en-

ergy [87, 88], and thus are limited to isotropic distributions, while the advanced fluid

models [82] show that the velocity distribution in Hall thrusters may be anisotropic.

The sheath is represented by a potential drop at the boundary, obtained analytically

from some model [87] or simply set to some constant value [88]. PIC simulations

of plasma-wall interactions carried out in Ref. [89] consider only the sheath region

and assume that the EVDF of the bulk plasma remains Maxwellian. Thus, there

is a need to study the plasma-wall interaction in Hall thrusters with self-consistent

potential and EVDF.

For the purpose of a kinetic investigation of the effects of SEE on plasma-wall

interaction in Hall thrusters, a one-dimensional plane geometry model was devel-

oped [90, 91, 92, 93, 94, 95]. The considered plasma is a slab, bounded by sec-

ondary electron emitting dielectric walls, immersed in a constant external strong

magnetic field directed normal to the plasma boundaries and an electric field di-

rected parallel to the plasma boundaries. The electrons collide with neutral atoms,

ions, and other electrons, and perform additional “turbulent” collisions to reproduce

the anomalous axial electron mobility. The model considered is a plane geometry
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approximation of the AR of a Hall thruster. This model was originally proposed

by Dr. Igor Kaganovich from the Princeton Plasma Physics Laboratory. The 1d3v

electrostatic direct implicit PIC code (EDIPIC) was developed for simulations of

this system. The code resolves both the sheath regions and the plasma bulk. To

increase the simulation performance, the code has been parallelized. The code was

extensively applied to plasma simulations with experimental parameters, as well as

with parameters quite different from those observed in Hall thrusters. A whole set

of new properties and possible regimes of plasma-wall interaction in Hall thrusters

was discovered in simulations.

1.3 Thesis outline

In Chapter 2, the plane geometry model of ICP is studied by means of PIC simu-

lations. A description of the model and the details of the developed 1d3v advective

electromagnetic PIC code are given. The results of simulations with linear and non-

linear electron trajectories are compared with each other. The effect of nonlinear

electron trajectories on the PMF in nonlocal regime is analyzed.

Chapter 3 contains the detailed description of the models and algorithms imple-

mented in the EDIPIC code. The results of testing of the EDIPIC code are presented

in Chapter 4. Chapters 5-7 are devoted to the study of the plane geometry model of

the AR of a Hall thruster, carried out with the EDIPIC code.

In Chapter 5, the non-Maxwellian EVDF obtained in PIC simulations of the Hall

thruster model is presented. The effects of different plasma parameters, namely,

the frequencies of electron collisions with neutral atoms and “turbulent” collisions,

external electric and magnetic fields, and Coulomb collisions on the shape of the

EVDF are discussed. The counter-propagating beams of secondary electrons are

introduced. The electron flux to the wall in a Hall thruster plasma is compared with

that for a Maxwellian plasma.

In Chapter 6, the new model of SEE in a bounded plasma slab with counter-

propagating secondary electron beams is described. This model allows for the emis-
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sion produced by the secondary electron beams. The new criterion for the SCL SEE

regime is derived, which essentially decouples the SCL regime from the temperature

of the plasma bulk electrons. The energy gain of secondary electrons in crossed ex-

ternal electric and magnetic fields is described. The effect of the non-Maxwellian

EVDF on the beam propagation through the plasma slab is discussed.

In Chapter 7, the new regime of the SEE, with strongly nonlinear quasi-periodic

relaxation-type oscillations, is described. The detailed sequence of processes during

one period of such oscillations is presented. The nonmonotonic current-voltage char-

acteristic of the sheath with the region of negative conductivity is obtained. The

system becomes unstable when its state corresponds to the negative conductivity of

the sheath, which may be the reason for the relaxation-type oscillations. The effects

of the ion mass, collision frequency, and width of the plasma gap on the oscillations

are discussed.

In Chapter 8 the major results of the kinetic study of ICP and Hall thrusters are

listed. The directions of the future work are described.

Appendix A describes energy conservation in simulations with EDIPIC code with

large number of particles.

In Appendix B some parameters of Hall thruster simulations are presented.

Appendix C contains details of derivation of SEE characteristics in a bounded

plasma slab.
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Chapter 2

Particle-in-cell simulations of pondero-

motive effects in inductively coupled

plasmas

Oscillations of plasma particles in a time-varying inhomogeneous EM field result

in a net force applied to the plasma, which is called the ponderomotive force or

Miller force [32]. For cold plasmas, the PMF per unit volume is given by Eq. (1.8).

The PMF is significant for low frequency ICP. Cohen and Rognlien [36, 37] predicted

theoretically and Godyak et al. [31] found experimentally that the PMF modifies the

plasma density profile in ICP.

The PMF is strongly affected by nonlocal effects due to electron thermal motion.

In a number of works [96, 97, 98], thermal effects were considered as small corrections

(of the order of the nonlocality parameter λ ∼ vth/ωδ ¿ 1) to the classical expression

(1.8). However, in the anomalous skin effect regime [18, 22, 49, 99], the nonlocality

parameter λ is large, and thermal corrections of the PMF are no longer small. Ex-

perimental measurements have revealed that the PMF is significantly decreased in

the warm plasma of a cylindrical inductive discharge [31].

The discrepancy between the Miller PMF (1.8) and the experiment may be at-

tributed to the effects of thermal motion of electrons, which are crucial for the

anomalous skin effect regime [18, 25], but are neglected in the classical cold plasma

approach. Kinetic treatment of the PMF [35] shows that in the nonlocal regime

the PMF (1.9) is strongly reduced due to finite electron temperature, in qualitative

agreement with [31].

25



Calculations of the PMF in [35] were carried out with the assumption of linear

electron trajectories, where the electrons moved with constant speed in the direc-

tion normal to the plasma boundary. However, in ICP the electron trajectories are

strongly modified by the RF magnetic field, which affects the excited electron flow

and, thus, the PMF. To further investigate the effects of the electron thermal mo-

tion on the PMF in the ICP, a 1d3v electromagnetic quasineutral PIC code was

developed.

This Chapter discusses the results of numerical calculations of the PMF in a

warm ICP. Section 2.1 describes the simulated plasma system and the details of the

1d3v EM PIC code. In Section 2.2, the analytical expressions for the nonlocal PMF

calculated with self-consistent EM fields [25] and prescribed exponentially decaying

EM fields [35] are presented. Section 2.3 compares the PMF calculated in linear

electron trajectory PIC simulations with the theoretical PMF values of Refs. [25, 35].

Section 2.4 contains the results of nonlinear PIC simulations, where the electron

trajectories are modified by the driving EM field. Conclusions are given in the

Summary Section.

2.1 Description of the 1d3v PIC model

The simulated plasma has the form of a slab with thickness Lpl, which is uniform

and infinite along the x and y directions. The electromagnetic algorithm used in

these simulations requires vacuum regions on both sides of the plasma (see Fig. 2.1).

The whole system has length Lsys along the z direction, Lsys > Lpl. The plane EM-

wave (Ey, Bx) propagates through the left vacuum region in the positive z direction,

impinges normally on the plasma and propagates back in the negative z direction

after the reflection. The plasma electrons are presented as macroparticles. In the

present study, the ions form the immobile uniform background. No collisions between

particles are considered. The initial velocity distribution is isotropic Maxwellian and

the plasma density is uniform.

The developed PIC code uses the advective EM algorithm of Langdon and Daw-
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Figure 2.1: Schematic diagram of an inductively coupled plasma for
PIC simulations.

son [10, 100, 101] to calculate the transverse field components. Assuming that there

are no perturbations along the x and y directions, the Maxwell equations can be

written in the form (
∂

∂t
± c

∂

∂z

)
±F = −Jy

ε0

,

where c = 1/
√

ε0µ0 is the speed of light in vacuum, the left (−) and the right (+)

propagating field combinations are

±F = Ex ± Z0Hy ,

Z0 = (µ0/ε0)
1/2, and µ0 = 4π · 10−7 H · m−1 is the magnetic permeability. The

transverse fields are recovered from ±F as

Ey =
1

2

(
+F + −F

)
,

Hx =
1

2Z0

(
+F − −F

)
.

The combination (∂/∂t)±c(∂/∂z) is the total derivative d/dt for the observer moving

with the velocity ±c. The finite difference form of the equations is

±F n+1
j±1 − ±F n

j

∆t
= − 1

ε0

±J
n+1/2
j±1/2 ,
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where

+J
n+1/2
j−1/2 =

∑
i

v
n+1/2
i,y qi

1

2

[
S(Zj − zn+1

i ) + S(Zj−1 − zn
i )

]
,

−J
n+1/2
j+1/2 =

∑
i

v
n+1/2
i,y qi

1

2

[
S(Zj − zn+1

i ) + S(Zj+1 − zn
i )

]
.

Index n denotes time step number, index j denotes the spatial node with the coordi-

nate Zj, sum over i is the sum over particles with velocity component vi,y, coordinate

zi, and charge qi, and function S is the profile function of charge distribution over

the neighbor nodes.

The advantages of the algorithm are, first, that such a time-centered scheme is

stable against the numerical Cerenkov instability [102]. Second, that the fields are

calculated at integer positions j and time steps n, which is convenient for the particle

mover. Third, that the boundary conditions can be easily formulated.

One can show that +F = 2E+
y , where E+

y is the electric field amplitude of the

wave propagating in the positive z direction. Similarly, −F = 2E−
y corresponds to

the wave propagating in the negative z direction. For the wave (Ey, Bx) propagating

in the positive z direction, the boundary condition at the left system boundary (not

the left plasma boundary!) is

+F (z = 0, t) = Ewave sin(ωt) , (2.1)

where Ewave is the amplitude of the incident EM-wave. In the right vacuum region

there is only the wave propagating to the right. Therefore, the boundary condition

at the right system boundary is

−F (z = Lsys, t) = 0 .

The main disadvantage of the described algorithm is a small time step ∆t defined

by the condition ∆z/∆t = c where ∆z is the distance between two neighboring nodes.

The longitudinal electric field was calculated from the quasineutrality condition.

Such an approach was used in Ref. [103]. On a long time scale, which is of interest

for the PMF studies, deviations from quasineutrality are small, since it is restored

within a time scale of several plasma oscillation periods. The longitudinal electric
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field that maintains equal electron and ion densities ne = ni is determined from the

equation

Ez = − 1

nie

∂

∂z
(niTez)− JeyBx

ene

, (2.2)

where Tez is the longitudinal component of the electron temperature. It was found by

comparison of quasineutral simulations with simulations where the Poisson’s equa-

tion was involved1 that the quasineutral algorithm decreases the noise in Ez by

(roughly) a factor of 100. Note that in quasineutral simulations the longitudinal

plasma oscillations disappear, while the transverse EM waves are not affected.

In PIC simulations, the PMF is calculated as follows:

Fp(z) = 〈−Jy(z, t)Bx(z, t)〉 ,

where 〈...〉 means averaging over the wave period, Jy is calculated as the sum of

contributions from separate macroparticles. This is equivalent to the calculation of

the electric current density in the kinetic approach as the moment of the EVDF. In

general, the total nonlinear force in the electron fluid equation of motion has also a

contribution from the nonlinear convective term ne[−m(u · ∇)u − e(u × B)]. The

convective term does not appear in the considered one-dimensional plane geometry,

provided the electron flow normal to the plasma boundary is zero, uz = 0, so that

the PMF is due to the time-averaged Lorentz force only.

For all calculations presented in this Chapter, if not specified otherwise, the

following parameters of plasma were chosen: ne = 1017 m−3, ω = 3.14 · 106 s−1. All

values are calculated at a distance z = 2 mm from the left plasma boundary. The

system width is Lsys = 20 cm, the plasma slab width is Lpl = 10 cm, the width of

each vacuum region is 5 cm. The uniform computational grid has 200 cells, with 100

cells inside the plasma slab. The number of electron macroparticles is 2 · 105.

1The initial version of the PIC code was solving the Poisson’s equation. It was the high noise
of Ez in simulations with the old version of the code that motivated transition to the quasineutral
approach.
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2.2 Theoretical description of the ponderomotive

force with thermal effects

2.2.1 Self-consistent linear ponderomotive force

In Ref. [25] the coupled Maxwell and kinetic equations are solved self-consistently for

an EM wave penetrating into a uniform plasma halfspace. The following expressions

for the complex amplitudes of electric field and current are obtained:

Ec
y(z) = −2ηvth

πω

∞∫

0

dκ
cos(κζ)

κ2 − β2
t + gkξ(κ)

, (2.3)

J c
y(z) =

ηω2
pevth

π5/2ω2

(
−2

ξ

) ∞∫

0

dκ
cos(κζ)kα(κ)

κ2 − β2
t + gkξ(κ)

, (2.4)

where ζ = zω/vth, βt = vth/c, η = d
dz

Ey and η is calculated at the plasma boundary

z = 0, g = 2iω2
peβ

2
t /
√

πω2ξ, ξ = ν/ω + i,

kξ(κ) =

(
ξ

κ

)3
∞∫

0

dxx exp(−x2)×
{[

1 +

(
κx

ξ

)2
]

i ln

(
1− iκx/ξ

1 + iκx/ξ

)
− 2

κx

ξ

}
.

Substituting (2.3) into the corresponding Maxwell equation one obtains the complex

amplitude of the magnetic field

Bc
x(z) = −i

2ηc

πω

∞∫

0

dκ
κ sin(κζ)

κ2 − β2
t + gkξ(κ)

. (2.5)

For the complex electric current density Jy(z, t) = J c
y(z) exp(iωt) with complex

amplitude J c
y = |J | exp(iφJ) given by equation (2.4) and the complex magnetic

field Bx(z, t) = Bc
x(z) exp(iωt) with complex amplitude Bc

x = |B| exp(iφB) given by

equation (2.5), the expression for the PMF is

Fp = − 1

2c
|J ||B| cos(φJ − φB) . (2.6)
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2.2.2 Ponderomotive force with exponentially decaying fields

Instead of the complicated self-consistent procedure of Ref. [25], in Ref. [35] the

electric and magnetic fields are taken in the form [18, 31]

Ey(z, t) = E0 exp(−γz) exp(−iωt) ,

Bx(z, t) =
iγ

ω
E0 exp(−γz) exp(−iωt) ,

(2.7)

where E0 is the field amplitude at the plasma boundary, γ = 1/δ− iκ is the complex

longitudinal wavenumber,2 δ is the skin depth, and κ determines the energy flux into

the plasma. Using these prescribed fields, the following expression for the PMF in a

semi-infinite uniform plasma is obtained:

Fp =
ω2

pe

8πω
E2

0 exp

(
−2z

δ

)
Re

{
i

γ∗

γvth

[Z(−is)− exp(γz)G(γz, s)]

}
, (2.8)

where

Z(p) =
1√
π

∞∫

−∞

exp(−x2)

x− p
dx

is the plasma dispersion function, s = (ω + iν)/γvth, and

G(γz, s) =
2√
π

∞∫

0

t exp (iγzs/t− t2)

t2 + s2
dt .

Expression (2.8) approaches (1.9) for s ¿ 1.

Note that PMF (2.6) and (2.8) are represented in cgs units, as in the original

papers [25, 35].

2.3 Thermal effects in the ponderomotive force

for linear electron trajectories

In an effort to verify the PIC code by comparison with analytical solutions, the

values of the theoretical PMF were calculated using Eqs. (2.4-2.6) and Eq. (2.8). An

2Note, in Chapters 3 – 7 notation γ is used instead for the emission coefficient.
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Figure 2.2: The PMF as a function of the electron temperature.
Curve 1 is calculated from (2.4-2.6), curve 2 is from (2.8), curve 3
is obtained with linear PIC simulations, and curve 4 is from PIC simu-
lations with nonlinear electron dynamics. The amplitude of the electric
field at the plasma boundary is E0 = 10 V/m.

electric field amplitude of E0 = 10 V/m at the plasma boundary and various electron

temperatures Te (see curves 1 and 2 in Fig. 2.2) were tested. The PMF obtained

with self-consistent Eqs. (2.4-2.6) is close to the prescribed-field PMF (2.8) in the

whole range of considered temperatures 0.001 eV ≤ Te ≤ 10 eV. The PMF rapidly

decreases with the increase of the electron temperature. At low temperatures the

calculated magnitude of the PMF approaches the cold plasma value (1.8).

Both in the self-consistent approach [25] and in the approach of prescribed EM

fields [35], the linearized kinetic equation,

∂f1

∂t
+ vz

∂f1

∂z
+

e

m
Ey

∂f0

∂vy

= −νf1 ,

where f0 is the Maxwellian distribution function, was solved by integration along

the linear electron trajectories with a constant velocity vz along the z direction.

To reproduce the linear trajectories in PIC simulations, the Lorentz force and the

longitudinal electric field Ez were omitted in the equations of electron motion.

For a consistent comparison with linear theoretical results, which use an electric

field amplitude of E0 = 10 V/m at the left plasma boundary, the PIC simulations

must have the same electric field amplitude. Note that E0 is not the amplitude of
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Figure 2.3: The transverse electric field amplitude at the plasma
boundary E0 versus the electron temperature Te at constant amplitude
of the incident EM-wave Ewave = 28800 V/m. Curve 1 corresponds to
the linear PIC simulations, curve 2 – to the nonlinear PIC simulations.

the incident wave Ewave used in the boundary condition (2.1). The EM field in the

left vacuum region is the superposition of the EM fields of the incident wave and the

wave reflected from plasma. Due to the strong reflection of a low frequency EM wave

from a dense plasma, the incident and the reflected waves have close amplitudes and

opposite phases of the electric field. Therefore, the amplitude of the total electric

field at the plasma-vacuum boundary E0 is much smaller than the amplitude of

the incident wave in vacuum Ewave. In the simulations, the value of Ewave was set

to 28800 V/m, which produces E0 = 10 V/m in cold plasma. In a plasma with

higher electron temperature the absorption of the EM energy increases (the linear

anomalous skin effect) and E0(Te) becomes larger (see curve 1 in Fig. 2.3), although

Ewave remains constant. The values of the PMF obtained for different amplitudes

E0 were scaled to the desired base amplitude E0 = 10 V/m by using the following

relation:

Fp(Te, E0b) =
E2

0b

E2
0(Te)

Fp(Te, E0) , (2.9)

where Fp(Te, E0b) is the PMF at a given electron temperature Te and the base electric

field amplitude E0b = 10 V/m, Fp(Te, E0) is the PMF produced in a plasma with

the electron temperature Te by RF field with the actual value of the electric field
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Figure 2.4: The square root of the ponderomotive force versus the
transverse electric field amplitude at the left plasma boundary E0 at
constant electron temperature Te = 10 eV. Curve 1 corresponds to the
linear PIC simulations, curve 2 – to the nonlinear PIC simulations.

amplitude E0(Te). The above relation is valid provided Fp ∼ E2
0 , which is confirmed

in several linear simulation tests (see curve 1 in Fig. 2.4).

The dependence of the PMF on Te, obtained in PIC simulations with linear

trajectories, is presented in Fig. 2.2 by curve 3. The PMF decreases as the electron

temperature Te increases. At low temperatures the PMF is very close to the value

of the PMF in a cold plasma (1.8). The linear PIC simulations and the analytical

solution to the system of kinetic and Maxwell equations (2.4-2.6) give similar values

of the PMF over a wide range of electron temperatures (compare curves 3 and 1 in

Fig. 2.2). The overall comparison of the linear PIC simulations with the theoretical

results gives confidence that the PIC code is working properly, and allows one to

understand the effect of various approximations.

2.4 Effects of the nonlinear modification of the

electron trajectories

This Section presents the results of PIC simulations when the RF magnetic field and

the longitudinal electric field are retained in the equations of motion of electrons.
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The electron trajectories are no longer straight lines and the classical theory of the

anomalous skin effect is not valid in this case.

As in linear simulations described in Section 2.3, the amplitude of the electric field

at the vacuum-plasma boundary E0 is larger in a warm plasma than in a cold one

(see curve 2 in Fig. 2.2). However, this effect is less strong in nonlinear simulations

than in linear ones for plasmas of the same temperature, i.e., the EM wave reflection

is enhanced in the nonlinear case. The scaling law Fp ∼ E2
0 is not valid in nonlinear

simulations (curve 2 in Fig. 2.4 is not a straight line, unlike curve 1).

Curve 4 in Fig. 2.2 shows the temperature dependence of the PMF calculated in

the nonlinear PIC simulations. The decrease of the PMF in warm plasmas is ob-

served. However, the PMF in nonlinear simulations is from two to three times larger

than the corresponding linear values at Te > 1 eV. Therefore, the nonlinear effects

of the RF magnetic field partially compensate the reduction of the ponderomotive

force due to the electron thermal motion.

Compare two simulations carried out with the same initial parameters of the

plasma and the incident wave: the first simulation with the electrons moving in the

complete EM field (curves 1 in Fig. 2.5) and the second linear simulation with the

electrons moving only under the influence of the transverse electric field (curves 2

in Fig. 2.5). The latter model corresponds to the linear electron trajectories. The

RF electric field amplitude in nonlinear simulation is about 25% lower than that in

simulation with linear electron dynamics (see Fig. 2.5a). The phase shift between

the magnetic and the electric fields in simulation with complete fields is close to

π/2, i.e., wave penetration into the plasma decreases compared to the case of the

linear electron dynamics. The time dependence of Bx is almost identical in both

simulations (Fig. 2.5b). The most noticeable effect is the increase of the electric

current density: its amplitude in the nonlinear case is 2.5 times larger than in linear

simulation (see Fig. 2.5c). The increased current results in a proportional increase of

the Lorentz force and its mean value – the PMF – in the nonlinear case (Fig. 2.5d).

Qualitative explanation of the increase of the electric current can be as follows.

The nonlinear Lorentz force expels electrons from the strong field region near the
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Figure 2.5: The transverse electric field (a), the magnetic field (b), the
electric current density (c), the nonlinear force (d), and the longitudinal
electric field (e) versus time, for nonlinear (curves 1) and linear (curves
2) PIC simulations with Te = 10 eV , Ewave = 28800 V/m.
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plasma boundary [6]. Since the ion mobility is low (in fact, in present simulations,

the ions are immobile), a strong longitudinal electric field (2.2) arises (see curve 1 in

Fig. 2.5e), which restores the quasineutrality of the plasma in the skin layer [36, 37].

Note that in the linear PIC simulations Ez = 0 (curve 2 in Fig. 2.5e). When ωc À ω,

where ωc is the electron cyclotron frequency, the crossed Ez and Bx fields result in

an electron drift in the y direction, which increases the electron flow already caused

by the Ey component of the EM wave. This effect is somewhat similar to the effect

of the Hall polarization field which increases the electric current in a plasma with a

constant magnetic field [39, 40].

In fact, modification of the electron trajectories by the RF magnetic field is

much more complicated than just the Larmor motion and the slow drift in the

crossed electric and magnetic fields. Besides the fields being nonuniform and time-

dependent, the plasma is bounded. Some electrons reach the plasma boundary and

are reflected there, moving along the trajectories which are close to the linear ones

(curve 1 in Fig. 2.6). At other times, the electrons can be reflected by the Lorentz

force back into the plasma before reaching the plasma boundary (curve 2 in Fig. 2.6)

or even be trapped [44] in the skin layer (curve 3 in Fig. 2.6).

The electron paths shown in Fig. 2.6 exemplify strongly nonlinear conditions. The

ratio of the width of the skin layer to the Larmor radius near the plasma boundary,

where the magnetic field is the strongest, is ρ(v) = δωc0/v = 0.72 ' 1, where

ωc0 = eBx(0)/m. For faster particles with ρ ¿ 1 the trajectories are close to the

linear ones. Slower particles with ρ ≥ 1 have strongly perturbed trajectories. There

are enough such low energy particles to significantly affect the results, even though

the value of ρ obtained using the thermal velocity is small.

A set of linear and nonlinear simulations with Te = 10 eV has been carried out

over a range of RF field amplitudes and, correspondingly, values of ρth ≡ ρ(vth).

Simulations with the electric field amplitude at the plasma boundary below 2 V/m

could not be run because the numerical noise becomes comparable to the RF field.

The smallest ρth achieved in this set of simulations was ρth = 0.092. The ratio of the

PMF in nonlinear simulation to the PMF in linear simulation is 4.9 at ρth = 1.44,
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Figure 2.6: Trajectories in the y–z plane of a single electron in
the exponentially decaying oscillating EM fields Ey, Bx and Ez. The
transverse field components are calculated as the real part of Eqs. (2.7).
The longitudinal electric field (2.2) of PIC simulations is approximated
as Ez(z, t) = Ez0 exp(−2γz)(sin ωt)2. Curve 1 is the trajectory of an
electron specularly reflected from the plasma boundary z = 0; curve 2
is the trajectory of an electron reflected by the Lorentz force; curve 3 is
the trajectory of a trapped electron. The arrows show the direction of
the electron motion. The transverse electric field has amplitude Ey =
16 V/m, the longitudinal electric field has amplitude Ez0 = 100 V/m,
the skin depth δ = 0.043 m, γ = 1/δ, the electron initial velocity
v = 1.88 ·106 m/s corresponds to the thermal velocity vth = (2Te/m)1/2

with Te = 10 eV. The above parameters are close to the corresponding
values of the nonlinear simulation presented in Fig. 2.5.
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Figure 2.7: The ratio of the PMF obtained in nonlinear PIC sim-
ulations to the PMF obtained in linear PIC simulations versus the
ratio of the skin layer depth to the Larmor radius of thermal electron.
Curve 1 corresponds to electrons with normal mass, m = 9.1 ·10−31 kg,
Te = 10 eV and ne = 1017 m−3; curve 2 corresponds to the “heavy”
electrons, m = 9.1 · 10−30 kg, Te = 100 eV and ne = 1018 m−3.

and it decreases to 2.1 when ρth = 0.092 (see curve 1 in Fig. 2.7). The “nonlinear”

PMF tends to its “linear” value in low intensity RF fields because the contribution

of nonlinear electrons becomes less important.

To investigate the behavior of the PMF at even lower values of ρth, the electron

mass, electron temperature, and plasma density were artificially increased in simula-

tions by a factor of 10. Such scaling conserves the electron thermal velocity and the

electron plasma frequency, thus the linear anomalous skin effect remains unchanged,

while for the same RF field amplitude, the value of ρth decreases by 10 times. A

set of nonlinear and linear PIC simulations was performed, similar to the one de-

scribed above, with “heavy” electrons. The ratio of the “nonlinear” to the “linear”

PMF decreases from 3.3 at ρth = 1.2 to 1.9 at ρth = 0.075 (see curve 2 in Fig. 2.7).

Unfortunately, heavier electrons raise the noise level, so the range ρth < 0.075 (cor-

responding to the electric field amplitude E0 < 20 V/m for “heavy” electrons) was

impossible to study. However, the available data from both sets of PIC simulations

show the strong tendency to transition from the nonlinear to the linear regime at

ρth < 0.075. The dynamics of normal electrons at Te = 10 eV could be linear if

the RF electric field amplitude is less than 2 V/m, which is negligible in comparison

with the intensity of the electric field (E0 ∼ 100 V/m) in experimental devices.
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In fact, the higher “nonlinear” PMF is in better agreement with the experimental

results of Ref. [31] than the “linear” PMF. In experiment [31], the ponderomotive

potential U was obtained from the plasma equilibrium equation Te∇n + n∇V +

n∇U = 0, where V is the plasma potential and n is the plasma density. The

PMF term −n∇U includes the contribution from the Lorentz force u × B and the

contribution due to the convective part of the inertia force (u ·∇)u. The DC Lorentz

force measured in Ref. [31] was about three times larger than the full PMF −n∇U ,

therefore, the Lorentz force was partially compensated by the convective term. Since

the present simulations are performed in the idealized one-dimensional geometry, the

electric current flows along the plasma boundary in the y direction only, and the PMF

is only the time averaged Lorentz force. In the realistic cylindrical geometry [31],

the nonlinear force can be further modified by the effect of curvature of the electron

flow [39, 40] when (u · ∇)u 6= 0, as well as by the effects of the particle reflections

from the curved sheath at the plasma boundary [104].

2.5 Summary

The 1d3v fully electromagnetic quasineutral collisionless PIC code is developed to

study the nonlinear modification of the effects of the electron thermal motion on the

PMF in ICP.

The standard analytical theory of the anomalous skin effect [18, 25] is based on

the assumption of the linear trajectories of electrons, which are not affected by the

RF magnetic field. The PIC simulations are carried out under similar conditions to

compare with linear theoretical results [25, 35]. In these simulations the magnetic

field is omitted in the electron motion equations. The linear PIC simulations give

the values of the PMF, which are close to the theoretical values. The strong thermal

reduction of the PMF is reproduced in linear simulations.

The nonlinear simulations of the ponderomotive effect are conducted with elec-

tron trajectories modified by the RF magnetic field and the ambipolar electric field.

It is found that at high electron temperatures the PMF values are several times
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larger than the corresponding values obtained in linear simulations. The nonlinear

increase of the PMF can be qualitatively explained as a result of the additional trans-

verse electron current due to the drift in the crossed ambipolar electric field and the

transverse magnetic field.

Trajectories of electrons, whose Larmor radius is smaller than or comparable

with the skin layer depth, are strongly modified. The plasma dynamics can be

nonlinear due to these low energy electrons, even when the trajectories of electrons

with thermal velocity are weakly perturbed. The increased PMF (2 times larger

than the linear value) is obtained, although the ratio of the Larmor radius to the

skin depth for a thermal electron was 0.092 ¿ 1. The simulations show that the

small linear PMF value can be achieved only at very low amplitudes of RF field,

typically much smaller than the RF field amplitudes in operating ICP discharges.
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Chapter 3

The electrostatic direct implicit particle-

in-cell (EDIPIC) code

The fully three-dimensional PIC simulation of a Hall thruster is of extremely high

numerical cost and cannot be accomplished on commonly available computational

facilities within a reasonable period of time. The required computational resources

are significantly smaller for one-dimensional simulations. The one-dimensional ap-

proximation of a Hall thruster is possible because of the strong radial magnetic field:

the EVDF inside the AR of a Hall thruster is established on a spatial scale much

smaller than the entire length of the device, which permits the consideration of only

a short axial section of the AR, where the modification of the plasma properties, the

axial electric field, and the radial magnetic field in axial direction can be neglected.

Such a section is well described by the model of a plasma slab uniform along the

directions parallel to its boundaries, which leaves only the radial direction to be

resolved in simulations.

Even utilizing this one-dimensional approximation, the cost of simulations re-

mains high because of the existence of essentially different spatial and temporal

scales that must be resolved. In the sheath, the computational grid must finely re-

solve the Debye length λD = vth/ωpe, which imposes a condition on the size of the

grid mesh ∆x ¿ λD. At the same time, the width of the plasma slab is of the order of

L ∼ 102λD. Assuming that the computational grid is fine and uniform, ∆x ∼ 0.1λD,

and the number of macroparticles per cell is Nmacro ∼ 103, the total number of

macroparticles of a single species must be at least Npart = Nmacro(L/λD)(λD/∆x) ∼
106. The mesh size imposes a further limitation on the particle advance time step
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∆t: to properly reproduce Debye shielding, the time step must be smaller than the

typical time of electron transit across the mesh [105], ∆t < ∆x/vth, a typical choice

being ∆t ∼ 10−1ω−1
pe .

Note that implicit schemes enable converging simulations with large time steps,

∆t À ω−1
pe , and coarse spatial resolution, ∆x À λD, to be performed [106]. However,

the limitation on the electron transit time ∆t < ∆x/vth does not allow this advantage

to be exploited when the spatial resolution remains fine, ∆x ¿ λD [105].

The evolution of the simulated plasma must be followed during a time interval

Tsim comparable to the ion time scales, Tsim ∼ L/ci, where ci = (Te/M)1/2 is the

ion sound velocity1. Assuming a xenon plasma with M/m ∼ 2.4 · 105, and setting

∆t = ∆x/vth, one obtains an estimate for the total number of time steps of NT =

Tsim/∆t ∼ [L/(Te/M)1/2]/(∆x/vth) = (L/∆x)(2M/m)1/2 ∼ 106.

The computer time of a simulation with the above parameters can be estimated

as follows. The explicit electromagnetic simulations described in Chapter 2 were

performed on a single 3 GHz Xeon processor where calculation of 3 · 104 time steps

for 4 · 105 macroparticles of a single species required about 2 hours. From this test,

the estimated time to run a simulation of the entire plasma slab with the sheath

resolved is (Npart/4 ·105)× (NT /3 ·104)×2 hours ∼ 2 ·102 hours > 8 days if one uses

a single processor and an ordinary algorithm. The performance of the simulations

can be increased using the multi-scale approach [107], which uses a nonuniform grid

with a small mesh near the wall and large mesh in the middle regions [108], with cor-

responding variable time steps of particle advance. Such approach can significantly

reduce the computational time. However, the multi-scale algorithm is complex and

has a number of difficulties related with the possible violation of energy conservation.

Another approach, essentially simpler for programming but with high hardware re-

quirements, is the parallel execution of a simple and robust single-scale algorithm on

a cluster of processors.

1Note that since the objective of simulations is the study of plasma-wall interaction, acceler-
ation of ions along the thruster axis is not important in the considered model, which is why the
characteristic time of simulation is the time of ion flight between the walls of the ceramic channel
of a thruster.
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Such powerful computers suitable for parallel calculations are available at both

WestGrid2 and the University of Saskatchewan. The availability of these compu-

tational resources strongly affected the choice of the method of high performance

calculations. The PIC code was developed on the basis of a single-scale implicit

algorithm with a uniform spatial grid of mesh size ∆x ¿ λD and execution of the

code was parallelized. The implicit scheme was chosen instead of a simpler explicit

scheme because implicit schemes show much better energy conservation than the

explicit ones. This is especially important when a simulation lasts for many time

steps, where the numerical heating produced by explicit schemes may become intol-

erable [10].

This Chapter is organized as follows. Section 3.1 presents the general character-

istics of the EDIPIC code and the simulated system. In Section 3.2, the equations of

motion and the modified Poisson’s equation are described. The modified boundary

conditions for the electrostatic potential are discussed in Section 3.3. Section 3.4

contains a description of the probabilistic model of SEE with multiple components.

Section 3.5 describes the Monte-Carlo model of electron collisions with neutral atoms

(elastic, inelastic, ionization) and “turbulent” collisions. Finally, the Langevin model

of Coulomb collisions is presented in Section 3.6.

3.1 The plane geometry model of the Hall thruster

acceleration region

The EDIPIC code was developed for kinetic studies of plasmas inside the AR of

a Hall thruster. The plasma is simulated as a slab of thickness L with the x axis

directed normal to and the y and z axes parallel to the plasma boundaries. The

slab is infinite and uniform along the y and z axes. The external constant electric

field Ez and magnetic field Bx are applied as shown in Fig. 3.1. Both electrons and

ions are considered as particles. The ion-to-electron mass ratio is realistic. One

2Western Canada Research Grid (www.westgrid.ca)
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Figure 3.1: Schematic diagram of the simulated plasma system. The
two dielectric walls represent the coaxial ceramic channel of a Hall
thruster.

spatial dimension x and three velocity components vx, vy, and vz are resolved for

each particle. The electron motion is affected by the external electric and magnetic

fields, and by the self-consistent electrostatic field directed normal to the walls. The

motion of ions only in the direction normal to the walls is of interest, which is why in

simulations it is affected by the self-consistent electrostatic field only. Acceleration

of ions by the external electric and magnetic fields is omitted.

The direct implicit scheme of time integration of particles is used [105]. The

modified Poisson’s equation is solved using the particle positions at the intermediate

stage of particle advance to obtain the longitudinal electrostatic field [109]. The

code includes a model of secondary electron emission [110], which is tailored to

approximate the emission properties of grade HP boron nitride ceramics – a typical

material for Hall thruster channels [111]. The Monte-Carlo model of electron-neutral

collisions [13] and the Langevin model of Coulomb collisions for electrons [112] are

also implemented.

The code is written in Fortran 90 and parallelized with the Message Passing

Interface (MPI)3. The parallel algorithm implemented in the code distinguishes a

server process (a process with rank 0)4 and a set of Nproc client processes (with ranks

from 1 to Nproc). A single process runs on a single processor of a computational

cluster. All processes initialize global variables by reading the simulation parameters

3MPI is the standard protocol for communication between nodes when running a parallel pro-
gram on a computer system with distributed memory, e.g., a Beowulf Linux cluster.

4Here the rank is a unique integer identifier assigned to the process by MPI.
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from the common input data files. The server process performs initial distribution

over velocity and coordinate for all particles, and then uniformly distributes the

particles between the client processes. Every client process follows particle dynamics

across the whole system. During the main cycle of simulations, each client process

advances its particles and calculate charge density distribution due to these particles,

as well as the diagnostic values. The server process collects the charge density

distributions and the diagnostic data from all client processes, solves the Poisson’s

equation, sends the potential profile back to the client nodes, and performs the

diagnostic output. The qualitative flowchart of the parallel execution of the code is

presented in Fig. 3.2.

EDIPIC code can be run with a wide variety of boundary conditions, which allows

one to simulate a plasma bounded by dielectric or metal walls, a semi-infinite plasma,

and a periodic plasma-beam system. The code is equipped with numerous, diverse

diagnostics.

3.2 Implicit equations of motion and Poisson’s equa-

tion

The implicit finite difference equations of motion are taken in the following vector

form [109]:

vn+1/2
s = vn−1/2

s + ∆tan
s +

qs∆t

ms

(
Eext +

v
n+1/2
s + v

n−1/2
s

2
×Bext

)
,

xn+1
s = xn

s + ∆tvn+1/2
s ,

an
s =

1

2

(
an−1

s +
qs

ms

En+1

)
,

(3.1)

where qs is the charge, ms the mass, vs the velocity, as the acceleration, and xs the

coordinate of a particle of species s, E is the electrostatic field calculated from the

Poisson’s equation, the superscripts correspond to the time level when the value is

calculated, and Eext and Bext are the external constant electric and magnetic fields.

The acceleration an
s is an implicit value because it contains the advanced electrostatic
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Figure 3.2: The flowchart of the parallel code execution. Here NPROC

is the total number of processes with nonzero rank, NT is the required
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field En+1. The particle push is performed in two steps. First, the quantities known

at the n-th time level are used to advance particles to the so-called “streaming”

position. Then the “streaming” quantities are used to estimate the advanced field

En+1, and this field is used to finish the particle push.

The first equation of system (3.1) can be transformed to the form

vn+1/2
s = Ksv

n−1/2
s + A−1

s

(
∆t

2
an−1

s +
qs∆t

2ms

En+1 +
qs∆t

ms

Eext

)
,

where in Cartesian coordinates, matrix A−1
s is

A−1
s =

1

1 + θ2
s

×



1 + α2
sB

2
ext,x α2

sBext,xBext,y + αsBext,z α2
sBext,xBext,z − αsBext,y

α2
sBext,xBext,y − αsBext,z 1 + α2

sB
2
ext,y α2

sBext,yBext,z + αsBext,x

α2
sBext,xBext,z + αsBext,y α2

sBext,yBext,z − αsBext,x 1 + α2
sB

2
ext,z


 ,

matrix Ks is

Ks = 2A−1
s − 1 ,

1 is the unity matrix, θ2
s ≡ α2

s(B
2
ext,x + B2

ext,yB
2
ext,z), and αs ≡ qs∆t/2ms. Then the

equations of particle push to the “streaming” position are

ṽs = Ksv
n−1/2
s + A−1

s

(
∆t

2
an−1

s +
qs∆t

ms

Eext

)
,

x̃s = xn
s + ∆tṽs .

(3.2)

Provided En+1 is known, the equations of the final particle push are

δvs =
qs∆t

2ms

A−1
s En+1 ,

vn+1/2
s = ṽs + δvs ,

δxs = ∆tδvs ,

xn+1
s = x̃s + δxs .

(3.3)

The advanced charge density at time level n + 1, which is necessary to define the

advanced electric field En+1, can be obtained via the Taylor expansion of the charge
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density calculated using the “streaming” particle positions:

ρn+1(xg) =
∑
s,i

qs

∆x
S

(
xg − xn+1

si

)

=
∑
s,i

qs

∆x
S (xg − x̃si − δxsi)

=
∑
s,i

qs

∆x

[
S (xg − x̃si) + δxsi

∂

∂x̃si

S (xg − x̃si) + . . .

]

'
∑
s,i

qs

∆x
S (xg − x̃si)− ∂

∂xg

∑
s,i

∆tδvsi
qs

∆x
S (xg − x̃si)

= ρ̃(xg)− ∂

∂xg

∑
s,i

qs∆t2

2ms

A−1
s En+1

si

qs

∆x
S (xg − x̃si) .

(3.4)

Here ρn+1(xg) is the charge density in the node with coordinate xg at time level

n + 1, ρ̃(xg) is the charge density in the node xg obtained with the “streaming”

coordinates, x̃si is the “streaming” coordinate of particle i of species s, the sum over

i and s is the sum over all particles (including different species), S (xg − x) is the

shape function, which determines the distribution of the charge from particle with

coordinate x to the grid node xg, ∆x is the volume of the mesh.

The field En+1
si in (3.4) is, in fact, the field at the position of a particle, which

may significantly complicate calculation of the sum in the second term of the last

line of (3.4). However, in Ref. [105], it has been found that the use of the grid

values En+1(xg) instead of En+1
si is one of the most stable and least computationally

expensive methods. Therefore, the grid values of the advanced charge density are

ρn+1(xg) = ρ̃(xg)− ∂

∂xg

[
X(xg)E

n+1(xg)
]

, (3.5)

where tensor X is

X(xg) =
∑
s,i

q2
s∆t2

2ms∆x
S(xg − x̃si)A

−1
s .

The Poisson’s equation for the advanced electrostatic potential Φn+1 with charge

density (3.5) becomes

∇ [
(ε01 + X)∇Φn+1

]
= −ρ̃ . (3.6)

Tensor X is often called the implicit susceptibility tensor [105].
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The considered plasma system is nonuniform along the x direction only, so ∇ →
(∂/∂x), the external electric field is Eext = (0, 0, Ez), and the external magnetic field

is Bext = (Bx, 0, 0). Eqs. (3.2) that push a particle of species s to the “streaming”

position transform to

ṽx = vn−1/2
x +

∆t

2
an−1,

ṽy = vn−1/2
y

1− α2
sB

2
x

1 + α2
sB

2
x

+ vn−1/2
z

2αsBx

1 + α2
sB

2
x

+
2α2

sB
2
x

1 + α2
sB

2
x

Ez

Bx

,

ṽz = −vn−1/2
y

2αsBx

1 + α2
sB

2
x

+ vn−1/2
z

1− α2
sB

2
x

1 + α2
sB

2
x

+
2αsBx

1 + α2
sB

2
x

Ez

Bx

,

x̃ = xn + ∆tṽx .

(3.7)

Eqs. (3.3) for the final push of a particle of species s take the following form:

vn+1/2
x = ṽx + αsE

n+1
x ,

vn+1/2
y = ṽy,

vn+1/2
z = ṽz,

xn+1 = xn + ∆tvn+1/2
x ,

an =
1

2

(
an−1 +

q

m
En+1

x

)
.

(3.8)

Note, that in Eqs. (3.7) and (3.8) the subscript s is omitted in the particle velocities,

accelerations and coordinates.

The one-dimensional finite difference form of Poisson’s equation (3.6) is

(
2 +

Xj+1

ε0

+
Xj

ε0

)
Φj+1 −

(
4 +

Xj+1

ε0

+ 2
Xj

ε0

+
Xj−1

ε0

)
Φj

+

(
2 +

Xj

ε0

+
Xj−1

ε0

)
Φj−1 = −2∆x2

ε0

ρ̃j , j = 1, ..., Ncell − 1 ,

(3.9)

where Xj ≡ X(xj), Φj ≡ Φ(xj), ρ̃j ≡ ρ̃(xj), xj is the coordinate of the node with

index j, and Ncell = L/∆x. The nodes are numbered from zero at the plasma

boundary x = 0 node to Ncell at the plasma boundary x = L node.
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Figure 3.3: The flowchart of the main cycle of implicit simulation.
Here NT is the required number of time steps.
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3.3 Boundary conditions for the electrostatic po-

tential

The EDIPIC code allows one to apply different field boundary conditions, thus broad-

ening the range of simulated systems.

First, the plasma can be bounded by metal walls with a given potential difference

U . In this case, the values of the potential at the plasma boundaries x = 0 and x = L

have to be constant:

Φ0 ≡ Φ(0) = U ,

ΦNcell
≡ Φ(L) = 0 .

(3.10)

Condition Φ0 = ΦNcell
= 0 is appropriate for simulations of periodic plasmas.

Second, the plasma can be bounded by dielectric walls. If the relative dielec-

tric permittivity of the wall material is εd, the modified one-dimensional Poisson’s

equation takes the form

∂

∂x

[
(ε0 + X)ε

∂Φ

∂x

]
= −ρ̃ , (3.11)

where in the dielectric, i.e., for x < 0 and x > L, one has X = 0, ρ̃ = 0, and ε = εd,

while in plasma, 0 < x < L, the implicit susceptibility X and the “streaming” charge

density ρ̃ are defined as usual with ε = 1. Eq. (3.11) can be integrated over a small

segment including the boundary point x = 0 as follows:

∆x/2∫

0−δx

dx
∂

∂x

[
(ε0 + X)ε

∂Φ

∂x

]
= −

∆x/2∫

0−δx

dxρ̃ . (3.12)

After transforming Eq. (3.12) and performing a similar integration at the boundary

x = L, one obtains two additional equations:

Φ1 − Φ0 =
∆x

ε0 + (X0 + X1)/2

[
−σ̃0 − ρ̃0

∆x

2
+ εdε0

(
∂Φ

∂x

)

−0

]
,

ΦNcell
− ΦNcell−1 =

∆x

ε0 + (XNcell−1 + XNcell
)/2

[
σ̃Ncell

+ ρ̃Ncell

∆x

2
+ εdε0

(
∂Φ

∂x

)

L+0

]
,

(3.13)
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where σ̃0 and σ̃Ncell
are the “streaming” surface charge density at the boundaries

x = 0 and x = L, respectively, and −
(

∂Φ

∂x

)

−0

and −
(

∂Φ

∂x

)

L+0

are the electric

fields inside the dielectric layers x < 0 and x > L, respectively.

In simulations, the plasma is neutral as a whole with no external electric field

normal to the boundaries applied, therefore, the fields inside the dielectric are zero

and the potential derivatives on the right hand side of equations (3.13) vanish. In this

case, one has two equations (3.13) together with the Ncell−1 finite difference Poisson’s

equations (3.9) for Ncell + 1 unknown values of potential Φj, where j = 0, ..., Ncell.

One of equations (3.13) can be expressed through the other equation and equations

(3.9) because of the condition of zero total plasma charge, i.e.

∆x

Ncell−1∑
j=1

ρ̃j +
∆x

2
(ρ̃0 + ρ̃Ncell

) + σ̃0 + σ̃Ncell
= 0 .

Therefore, only the first equation of (3.13) may be considered as the boundary con-

dition. The eliminated equation is not required, since the potential always contains

an arbitrary constant, one can simply set the constant value of potential at some

point.

Finally, the set of boundary conditions for the case of a plasma bounded by

dielectric walls is

Φ0 − Φ1 =
∆x

ε0 + (X0 + X1)/2

[
σ̃0 + ρ̃0

∆x

2

]
,

ΦNcell
= 0 .

(3.14)

Note, that the actual value of the relative dielectric permittivity of the wall material

is not important for the boundary conditions (3.14).

The flowchart of the main cycle of simulations is presented in Fig. 3.3. Processing

of electron-neutral and Coulomb collisions is carried out after the final advance of

particles. Collisions with walls and possible SEE are processed during both the

predicting and final pushes, every time a particle collides with the wall.
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3.4 Probabilistic model of secondary electron emis-

sion

In the EDIPIC code, the following regimes of particle interaction with the walls are

implemented. For ions, either complete absorption or perfect specular reflection can

be selected. Electrons can (i) be absorbed, (ii) be reflected specularly or at a ran-

dom direction, either elastically or inelastically, (iii) cause the emission of secondary

electrons. The user can combine and tune all these processes for electrons, so as to

adjust the wall properties to that of the material used in a real discharge device.

The major objective of the developed model of electron-wall interaction is the cre-

ation of the boundary with SEE characteristics similar to those found in grade HP

boron nitride ceramics – the typical channel material of Hall thrusters tested at the

Princeton Plasma Physics Laboratory [111].

Electrons that bombard the wall surface (primary electrons) cause the emission

of secondary electrons. The SEE intensity is characterized by the emission coefficient

γ, defined as γ = Γ2/Γ1, where Γ2 is the total secondary electron flux and Γ1 is the

total primary electron flux. When the energy of primary electrons ranges from tens

to thousands of electronvolts, many materials have an emission coefficient that is

described by the formula proposed by Vaughan [113]:

γV (w, ϑ) = γmax(ϑ){v(w, ϑ) exp [1− v(w, ϑ)]}k , (3.15)

where

v(w, ϑ) =
w − w0

wmax(ϑ)− w0

,

wmax(ϑ) = wmax,0

(
1 +

ks

π
ϑ2

)
, γmax(ϑ) = γmax,0

(
1 +

ks

2π
ϑ2

)
,

k =





0.62 if w < wmax

0.25 if w > wmax

,

w and ϑ are the primary electron’s energy and angle of incidence, w0 is the emission

threshold energy, ks is the smoothness factor for the surface (ks = 0 for a very rough
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Figure 3.4: (a) The emission coefficients of the components of sec-
ondary electron emission versus the incident electron energy for normal
incidence. Curve 1 is the the elastic reflection (3.16), curve 2 the inelas-
tic backscattering (3.17), curve 3 the true secondary emission (3.18),
and curve 4 the total emission coefficient (3.19). Squares mark the
available experimental data for boron nitride ceramics. (b) The total
emission coefficient (3.19) over a range of incident electron energies.

surface and ks = 2 for a polished surface), and wmax,0 and γmax,0 are the primary

electron energy and the emission coefficient at the maximum of emission for normal

incidence.

The general phenomenological model of SEE [71, 113] assumes that the total flux

of secondary electrons consists of (i) elastically reflected primary electrons with flux

Γ2e, (ii) inelastically backscattered primary electrons with flux Γ2i, and (iii) true

secondary electrons with flux Γ2t, i.e., Γ2 = Γ2e + Γ2i + Γ2t. The latter component

represents the electrons excited by primary electrons in the near-surface layer of the

wall. Injection of these components is determined by the partial emission coefficients

γe,i,t = Γ2e,i,t/Γ1.

Vaughan’s emission coefficient (3.15) vanishes if w < w0. However, for di-

electrics, the low energy primary electrons produce significant emission because of
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the increasing role of the elastic reflections [82]: γe has maximum γe,max ' 0.5 at

w = we,max = 5 − 10 eV. Also, at high energies, elastically reflected electrons com-

prise about 3% of the emitted current [110]. Therefore, in simulations, the emission

coefficient due to elastic reflection is approximated by a function, which has a max-

imum at w = we,max and gives 3% of total emission (Vaughan’s) at high energies:

γe(w, ϑ) = reγV (w, ϑ) + γe,max





v1(w) exp [1− v1(w)] if we,0 < w < we,max ,

[1 + v2(w)] exp [−v2(w)] if we,max < w,

(3.16)

where

v1(w) =
w − we,0

we,max − we,0

, v2(w) =
w − we,max

∆e

,

we,0 is the threshold energy for the elastic reflection, ∆e is the parameter controlling

the decay of the “bumping” part of γe for w > we,max, and re = 0.03 determines the

portion of the total emitted current that is made of the elastically reflected electrons.

The graph of the function γe(w, ϑ) for ϑ = 0 is presented in Fig. 3.4a by curve 1.

The current due to the inelastically backscattered electrons is about 7% of the

total secondary current Γ2 [110]. The corresponding emission coefficient is set to be

the constant fraction of the Vaughan’s coefficient:

γi(w, ϑ) = riγV (w, ϑ) , (3.17)

where ri = 0.07. The graph of the function γi(w, 0) is presented by curve 2 in

Fig. 3.4a.

The true secondary emission coefficient is

γt(w, ϑ) = (1− re − ri)γV (w, ϑ) . (3.18)

The corresponding graph γt(w, 0) is depicted by curve 3 in Fig. 3.4a.

The total emission coefficient is the sum of the three components:

γ(ε, ϑ) = γt(ε, ϑ) + γe(ε, ϑ) + γi(ε, ϑ) . (3.19)

The total γ defined by Eq. (3.19) is close to the Vaughan’s coefficient (3.15) for ener-

gies w > w0 (see Fig. 3.4b), while in the low energy region w0 > w > we,0, it deviates
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Table 3.1: Parameters of partial emission coefficients (3.16 - 3.18),
which approximate the SEE properties of boron-nitride ceramics.

w0 [eV] ks γmax,0 wmax,0 [eV] re we,0 γe,max we,max [eV] ri

13 1 3 500 0.03 2 0.55 10 0.07

from the Vaughan’s curve to ensure better correspondence with the experimental

data (compare curve 4 with the squares in Fig. 3.4a, which represent a compilation

of experimental data from [111, 70] and references therein). The emission parameters

are presented in Table 3.1.

The angular distribution of the intensity of secondary electron current from poly-

crystalline materials is isotropic over the azimuthal angle φ2, proportional to the

cosine law over the polar angle ϑ2, and independent of the primary electron angle of

incidence. For simulation, the angles of emission of a secondary electron are defined

as follows:

ϑ2 = sin−1 R ,

ϕ2 = R2π ,
(3.20)

where ϑ2 is the polar angle relative to the normal to the wall, 0 < ϑ2 < π/2, ϕ2 is

the azimuthal angle relative to the z axis, 0 < ϕ2 < 2π, and R is a random number,

0 < R < 1. The polar angle obtained in (3.20) corresponds to the distribution

over angle ϑ2 proportional to cos ϑ2. Note, for approximation of the SEE properties

of boron nitride ceramics, all three SEE components are emitted according to the

distributions (3.20). As an option, the user may select specular scattering of the

elastically reflected electrons.

It is important to distinguish between elastically reflected, inelastically backscat-

tered, and true secondary components of the secondary electron flux because they

are emitted with different energy distributions. The elastically reflected electrons

have the same energy w2e after the collision with the wall as the energy w before the

collision:

w2e = w .

The energy of inelastically backscattered electrons w2i is considered to be uniformly
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Figure 3.5: The energy spectrum of secondary electrons fd(w2) pro-
duced by the monoenergetic electron beam with energy w = 40 eV and
normal angle of incidence ϑ = 0.

distributed between zero and the energy of the backscattered electron before the

collision:

w2i = Rw ,

where R is a random number, 0 < R < 1. The true secondary electrons are emitted

with energies corresponding to a half-Maxwellian distribution of temperature Tt

ft(w) =
2w1/2

π1/2T
3/2
t

exp

(
−w

Tt

)
.

For every true secondary electron emitted, the energy w2t is calculated as a solution

of the equation

R =

∫ w2t

0

dwft(w) ,

where R is a random number, 0 < R < 1. An example of the energy spectrum of the

total secondary electron flow is presented in Fig. 3.5. This spectrum qualitatively

agrees with the energy distribution of electrons presented in Ref. [71].

The emission of secondary current with non-integer emission coefficients is per-

formed statistically – the value of the emission coefficient is treated as probability of

emission. A flowchart of the injection algorithm for multiple component SEE with

the partial emission coefficients (3.16-3.18) is presented in Fig. 3.6. This algorithm

tries to inject either elastically reflected or inelastically backscattered electron first,

and only then turns to the possible injection of true secondary electrons. Such order-

ing prohibits an error from occurring when a primary electron, capable of producing
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Figure 3.6: The flowchart of the injection algorithm for a multi-
component secondary electron current.
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more than one secondary electron (γ > 1), produces some number of true secondary

electrons first and then scatters back elastically or almost elastically, which may

result in a violation of the energy conservation law.

The SEE models similar to the one employed in EDIPIC are implemented in the

XPDP1 [114] and in the XOOPIC [115] programs.

3.5 Monte-Carlo model of electron-neutral colli-

sions

3.5.1 The null collision algorithm

The Monte-Carlo model of electron and ion collisions with neutral atoms is based on

the null collision algorithm [13], which proposes a highly effective, low numerical cost

method of determining the moments of particle collisions (in time). The implemented

model assumes that the density of neutral atoms na is uniform and constant in time.

When a particle with energy w moves through a set of scatterers with density

na, the probability that the particle collides during a time interval ∆t is

P = 1− exp [−∆tν(w)] ,

where ν(w) = vσsc(w)na is the total frequency of all collisions possible for a given

particle energy, σsc is the total cross section of possible collisions, v = (2w/m)1/2 is

the particle velocity, and m is the particle mass. In simulation, the straightforward

way to determine whether a particle collides during the interval ∆t is to compare

the probability of collision P with a random number R (0 < R < 1) – the collision

occurs if R < P . However, such a method is very expensive numerically, because it

requires calculation of an energy and a random number for each particle every time

step ∆t.

Note, if all particles in the system have the same probability of collision P , then

this probability is equal to the relative fraction of particles colliding during the time

interval ∆t, i.e., P = Nc/Npart, where Nc is the number of colliding particles and
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Npart is the total number of particles. Then, instead of comparing probability P with

a random number for each particle, one can randomly select P × Npart particles to

take part in collisions. The computational savings are significant if P ¿ 1.

The cross section σsc, the collision frequency ν, and the collision probability P

are functions of particle energy. The probability of collisions is maximal for particles

with energy wmax, corresponding to the maximum total collision frequency ν, i.e.,

max(ν) = ν(wmax). Introducing the maximal frequency of collisions νmax ≡ ν(wmax),

the corresponding maximal probability of collisions is

Pmax = 1− exp (−∆tνmax) . (3.21)

One can consider Pmax as an upper limit on the relative fraction of particles, which

collide during the time interval ∆t.

If a particle can participate in Ncoll types of collisions, the total frequency of

collisions is

ν(w) =

Ncoll∑
j=1

νj(w) ,

where νj(w) is the frequency of collision type j. The particular collisional frequencies

νj are calculated via the corresponding cross sections σsc,j as νj(w) = vσsc,j(w)na,

j = 1, . . . , Ncoll. The null collision method, in addition to the physical collision pro-

cesses, introduces a collision process, which does not change the velocity of scattered

particles – the so-called null collision. The frequency of null collisions νnull is a func-

tion of energy that makes the total collision frequency constant and equal to the

maximal frequency of physical collisions νmax:

νnull(w) = νmax − ν(w) .

With null collisions introduced as above, the probability of collisions becomes inde-

pendent of particle energy, P = Pmax. This value can be precalculated in simulations

and used as the relative fraction of particles collided at each time step. Then the

collided particles can be selected randomly from the list of particles.

For a colliding particle with energy w, the kind of collision is determined as
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follows. A set of values

P0 = 0 ,

P1 =
ν1(w)

νmax

,

P2 =
ν1(w) + ν2(w)

νmax

,

. . .

PNcoll
=

Ncoll∑
j=1

νj

νmax

(3.22)

has to be calculated and compared with a random number R, 0 < R < 1. Collision

type j occurs if Pj−1 < R < Pj. With R > PNcoll
corresponding to the null collision,

the particle does not collide. The general flowchart of the selection algorithm for

collision particles and types is presented in Fig. 3.7.

In EDIPIC, the values (3.22) are tabulated over the expected energy range of

colliding particles before the simulation. During simulation, the values of Pj for each

colliding particle are obtained by linear interpolation of the tabulated data.

In the current version of EDIPIC, the following types of collisions between elec-

trons and neutral atoms are implemented: elastic, excitation, and ionization. The

realistic cross sections for electron-neutral collisions in xenon are stored in the data

files, which are read at the initialization stage. Cross sections for electron-neutral

elastic collisions are obtained by averaging and compiling the data presented in

Ref. [116] for the electron energy range 0.01 eV−10 eV, Ref. [117] for 1 eV−100 eV,

and Ref. [118] for 10 eV − 1000 eV (see curve 1 in Fig. 3.8). Cross sections for

electron-neutral excitation collisions are presented in Ref. [118] for energies from

8.32 eV to 10000 eV (see curve 2 in Fig. 3.8). Cross sections for electron-neutral

ionization collisions are presented in Ref. [119] for energies from 15 eV to 1000 eV

(see curve 3 in Fig. 3.8).
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Figure 3.7: The flowchart of the null collision algorithm in the
Monte-Carlo collision model. Here Npart is the total number of electron
macroparticles.
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Figure 3.8: (a) The cross sections σsc,j of electron-neutral collisions
in xenon versus the colliding electron energy, curve 1 – elastic collisions,
curve 2 – excitation collisions, curve 3 – ionization collisions. (b) The
corresponding “accumulated” probabilities of collisions Pj versus the
energy of colliding electron calculated by (3.22), region 0 corresponds
to null collisions, region 1 – elastic collisions, region 2 – excitation
collisions, region 3 – ionization collisions.
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3.5.2 Elastic collisions. Transformation of the scattered elec-

tron velocity

Scattering of electrons in electron-neutral elastic collisions is characterized by the

normalized differential cross section in the form [13]

σsc(w, χ)

σsc(w)
=

w

4π[1 + w sin2(χ/2)] ln (1 + w)
, (3.23)

where χ is the angle of scattering relative to the initial direction of electron velocity

in the laboratory frame (see Fig. 3.9) and w is the electron energy in electronvolts.

Normalized differential cross section (3.23) is the differential cross section σsc(w, χ)

divided by the total cross section σsc(w), so that the following condition is satisfied:

2π

π∫

0

dχ sin χ
σsc(w, χ)

σsc(w)
= 1 .

The normalized differential cross section defined as above is the probability density of

scattering into angle χ, i.e., the distribution function of scattered particles over the

scattering angle χ. In simulations the scattering angle corresponding to distribution

(3.23) is calculated by

χ = cos−1

[
2 + w − 2(1 + w)R

w

]
, (3.24)

where R is a random number, 0 < R < 1. It is assumed that scattering is isotropic

with respect to the azimuthal angle ϕ in the plane normal to the initial electron

velocity (see Fig. 3.9). This angle is obtained by

ϕ = R2π , (3.25)

where R is a random number, 0 < R < 1. The velocity of an electron scattered

through angles χ and φ can be expressed by

vsc = vinc cos χ +
vinc × k

v sin θ
v sin χ sin ϕ +

vinc × (vinc × k)

v2 sin θ
v sin χ cos ϕ , (3.26)

where vinc is the vector of electron velocity before scattering, vsc is the vector of

electron velocity after scattering, v = |vinc| = |vsc| is the speed, k is the unity vector
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Figure 3.9: Transformation of the electron velocity before scattering
on neutral atom vinc to the velocity after scattering vsc. Angle χ is the
angle of scattering relative to the initial direction of electron motion,
angle ϕ is the azimuthal angle of rotation of scattered velocity in the
plane normal to vinc, calculated relative to the direction vinc×(vinc×k).
Vectors i, j, and k are the unit vectors along the x, y, and z directions,
respectively.
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in the z direction, and θ is the angle between k and vinc. Note that transformation

(3.26) does not change the speed. In Cartesian coordinates, transformation (3.26) is

vsc,x = vinc,x cos χ +
vinc,yv√

v2
inc,x + v2

inc,y

sin χ sin ϕ +
vinc,xvinc,z√
v2

inc,x + v2
inc,y

sin χ cos ϕ ,

vsc,y = vinc,y cos χ− vinc,xv√
v2

inc,x + v2
inc,y

sin χ sin ϕ +
vinc,yvinc,z√
v2

inc,x + v2
inc,y

sin χ cos ϕ ,

vsc,z = vinc,z cos χ−
√

v2
inc,x + v2

inc,y sin χ cos ϕ ,

(3.27)

where vsc,x, vsc,y, and vsc,z are the components of the electron velocity after scattering,

vinc,x, vinc,y, and vinc,z are the components of the electron velocity before scattering,

and v2 = v2
inc,x + v2

inc,y + v2
inc,z. In elastic scattering, the electron transfers a part

∆w =
2m

M
(1− cos χ)winc (3.28)

of its energy to the neutral atom, where winc is the electron energy before scattering,

and m and M are the electron and the neutral atom masses. The scattered velocity

components must be multiplied after rotation (3.27) by the factor

α =

√
1− ∆w

winc

(3.29)

in order to take into account the energy change (3.28). The energy of the neutral

atoms is not followed in the present version of the code. Note that the scattering

angle χ is obtained from Eq. (3.24) with w = winc. A flowchart of the process for

electron elastic scattering by neutral atoms is presented in Fig. 3.10.

3.5.3 Excitation collisions

Inelastic excitation collisions decrease the energy of scattering electron by the value

∆w = wexc , (3.30)

where wexc is the excitation threshold energy, wexc = 8.32 eV for xenon [118]. Elec-

trons with an energy below this threshold do not participate in excitation processes.

In contrast to the elastic collisions described above, the scattering angle χ is ob-

tained from (3.24) with the modified value of energy w = winc − wexc [13]. The
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Figure 3.10: Flowcharts of the processes for electrons colliding elas-
tically (left) and inelastically (right) with neutral atoms. Subscripts
“before” and “after” denote the values before and after the collision.
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azimuthal angle ϕ is obtained according to (3.25). The velocity components of the

scattered particles are calculated with equations (3.27), and then are multiplied by

factor (3.29) with ∆w from (3.30). A flowchart of the process for electron inelastic

excitation collisions with neutral atoms is presented in Fig. 3.10.

3.5.4 Ionization collisions

In the ionization process, an electron collides with a neutral atom and produces one

additional electron and an ion. The energy of the product ion is considered to be

equal to the energy of the neutral atom participating in the collision. The velocity

components of the product ion are obtained corresponding to a Maxwellian velocity

distribution function with the temperature of the neutral gas. The energy of the

incident electron before the collision winc must be above the threshold energy of

ionization wion, winc > wion, for xenon wion = 15 eV [118]. The energy of the electron

produced in collision (ejected from the atom) is calculated by

wej = B(winc) tan

[
R tan−1

(
winc − wion

2B(winc)

)]
, (3.31)

where R is a random number, 0 < R < 1, B(winc) is a function of incident electron

energy known from experimental measurements, and the energies are given in elec-

tronvolts. For xenon B ∼ 8.7 eV [120]. The energy of the electron that collided with

the atom (scattered electron) is obtained from the energy conservation

wsc = winc − wion − wej. (3.32)

After the energies of the scattered electron and ejected electron are determined,

their velocities vsc and vej are obtained via the procedure of scattering, which has

to be applied separately for each of these electrons. For both electrons, the velocity

vector to be transformed is the velocity of the incident electron before the collision

vinc. Scattering angles χ must be calculated by (3.24) with w = wsc for scattered

and w = wej for ejected electrons, respectively. Scattering angles ϕ are obtained

randomly by (3.25). The velocity components are calculated with Eqs. (3.27). The

ejected electron and the ion have the same coordinate x as the incident/scattered
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electron. A flowchart of the process for electron ionization collisions with neutral

atoms is presented in Fig. 3.11.

3.5.5 “Turbulent” collisions

Experimentally measured electron mobility in Hall thrusters greatly exceeds the

classical collisional mobility. It is believed that in Hall thrusters one of the possible

reasons of anomalous electron mobility is the perturbation of E × B electron drift

by fluctuations of azimuthal electric field [57, 59, 64, 66]. If field fluctuations are

random, motion of electrons in such fields may be considered as random walk [33].

This process can be described by the Monte Carlo model of collisions, which is why

the common approach is to introduce the so-called “anomalous”, or “turbulent”

collisions [69, 70].

Since scattering by azimuthal electric field occurs in the plane parallel to the walls,

“turbulent” collisions randomly scatter particles in this plane and does not affect

the electron velocity normal to the walls. The frequency of “turbulent” collisions

is the external parameter, which is adjusted to obtain the desired value of electron

mobility. The latter value may be known, e.g., from the experimental data. The

use of the additional collisional process allows to include the anomalous electron

mobility in analytical and numerical models without resolving azimuthal direction

of the discharge and field turbulence. The collisional “turbulent” model describes

the anomalous electron mobility caused by random field fluctuations.

In EDIPIC the “turbulent” collisions are included as a part of the Monte-Carlo

model of collisions. Since the properties of azimuthal field fluctuations causing the

anomalous electron mobility are not known, the frequency of “turbulent” collisions

νt is taken independent on the colliding electron energy. “Turbulent” collisions are

processed as follows. First, the angle ϕ of scattering in the y-z plane is obtained

as ϕ = R2π, where R is a random number, 0 < R < 1. Second, rotation of the

component of the velocity vector in the plane y-z by angle ϕ is performed by the

formulae
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Figure 3.11: Flowchart of the process for ionization of a neutral atom
by an electron. Subscripts “1,before” and “1,after” mark the values of
the incident electron before and after the collision. Subscripts “eject”
and “ion” mark the values of the ejected electron and ion, wionization is
the ionization energy threshold.
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vy,sc = vy cos ϕ− vz sin ϕ, vz,sc = vy sin ϕ + vz cos ϕ,

where vy and vz are the velocity components before scattering, and vy,sc and vz,sc are

the velocity components after scattering.

If one of the objectives of a simulation is to reproduce the experimental electron

mobility related to the given axial electric and radial magnetic fields, the value of νt

is obtained as follows. The neutral gas density determines the frequency of electron-

neutral collisions 〈νen〉, where 〈...〉 means averaging over all electrons. Then νt is

adjusted such that the electron mobility µe due to both “turbulent” and electron-

neutral collisions corresponds to the experimental value of the electron electric cur-

rent density Jexp:

Jexp = eneµeEz = ene
eνeff

m(ν2
eff + ω2

c )
Ez (3.33)

where νeff = νt + 〈νen〉 is the effective collision frequency due to both “turbulent”

and electron-neutral collisions, −e and m are the electron charge and mass, ne is the

electron density averaged over the width of the plasma slab, and ωc is the electron

cyclotron frequency. With strong plasma-wall interaction, νeff may also include the

electron-wall collision frequency, as it is described in Section 6.2.

3.6 Langevin model of Coulomb collisions

3.6.1 Electron-electron collisions

In contrast to collisions with neutral atoms and “turbulent” collisions, Coulomb

collisions are much more frequent and are characterized by predominantly small

scattering angles. Because of the long range of the electrostatic force, a scattering

charged particle “feels” a large number of scatterers simultaneously, so the direct

application of the Monte-Carlo model described above to simulations of collisions

between charged particles is, firstly, extremely ineffective numerically, and secondly,

physically inappropriate. In PIC simulations, the effect of Coulomb collisions can be
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represented as a result of dynamical friction and stochastic diffusion depending on

the local EVFD, i.e., scattering on many particles can be substituted by scattering

off the grid [112, 121].

The Fokker-Planck equation for electron-electron scattering is

∂f

∂t

∣∣∣∣
ee

= − ∂

∂v
Fd(v)f(v) +

1

2

∂2

∂v∂v
D(v)f(v) , (3.34)

where

Fd(v) =
ne4

4πε2
0m

2
Λ

∂

∂v
H(v) (3.35)

is the dynamic friction,

D(v) =
ne4

4πε2
0m

2
Λ

∂2

∂v∂v
G(v) (3.36)

is the velocity diffusion coefficient, n is the density of scatterers, i.e. the electron

density,

Λ = ln

(
1

2
csc θm

)

is the Coulomb logarithm,

θm = 2 tan−1

(
e2

2πε0mv2
thλD

)

is the minimal scattering angle,

H(v) = 2

∫
d3ṽ

f(ṽ)

|v − ṽ| , (3.37)

and

G(v) =

∫
d3ṽf(ṽ)|v − ṽ| . (3.38)

Coefficients H(v) and G(v) were introduced for the first time by Rosenbluth et al.

in [122] and are often called the first and the second Rosenbluth potential. Inte-

gration in coefficients H(v) and G(v) is carried out over the velocities of scatterers.

The dynamic friction Fd(v) describes the average rate of change of the electron mean

directed velocity due to Coulomb collisions. The velocity diffusion coefficient D(v)

describes the effect of electron spreading in velocity space.

Coefficients H(v) and G(v) must be calculated as grid quantities. The calculation

simplifies significantly if the EVDF of scatterers is a function of only the magnitude
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of the velocity in the frame where the fluid electron velocity ue is zero, ue = 0. This

is a reasonable simplification, since Coulomb collisions tend to make the EVDF more

isotropic.

Consider a scattering electron with velocity v and a scatterer electron with veloc-

ity ṽ in the laboratory velocity coordinate system. One can introduce a new velocity

coordinate system with origin at ue, and with its third axis directed along v−ue. In

the new coordinate system the velocity w of the scattering electron and the velocity

w̃ of the scatterer electron are

w = v − ue ,

w̃ = ṽ − ue .

The absolute value of vector v − ṽ can be expressed as

|v − ṽ|2 = |w − w̃|2 = w2 + w̃2 − 2ww̃ cos ϑ ,

where w̃ and w are the absolute values of vectors w̃ and w, and ϑ is the angle

between these vectors. Due to the choice of the third axis of the new frame, angle ϑ

is the polar angle of a scatterer electron in that frame, ϑ = ϑ̃. Then

H(v) = 2

∫
d3ṽ

f(ṽ)

|v − ṽ| = 2

∫
d3ṽ

f(|ṽ − ue|)
|v − ṽ|

= 2

∫ ∞

0

dw̃w̃2f(w̃)

∫ 2π

0

dφ̃

∫ π

0

dϑ̃
sin ϑ̃√

w2 + w̃2 − 2ww̃ cos ϑ̃

=
8π

w

∫ w

0

dw̃w̃2f(w̃) + 8π

∫ ∞

w

dw̃w̃f(w̃) = H(w).

(3.39)

Similarly,

G(v) =

∫
d3ṽf(ṽ)|v − ṽ| =

∫
d3ṽf(|ṽ − ue|)|v − ṽ|

=

∫ ∞

0

dw̃w̃2f(w̃)

∫ 2π

0

dφ̃

∫ π

0

dϑ̃ sin ϑ̃

√
w2 + w̃2 − 2ww̃ cos ϑ̃

=
4π

3

∫ w

0

dw̃w̃2

(
3w2 + w̃2

w

)
f(w̃) +

4π

3

∫ ∞

w

dw̃w̃
(
w2 + 3w̃2

)
f(w̃)

= G(w).

(3.40)

As one can see, transition from f(ṽ) to isotropic f(|ṽ − ue|) made the coefficients

H and G functions of the speed of the scattering particle in the frame moving with
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electron flow velocity ue. Substituting (3.39) into (3.35) and allowing for

∂

∂v
H(w) =

w

w

∂

∂w
H(w) ,

one obtains the drag force in the form

Fd(v) =
v − ue

|v − ue|nFd(|v − ue|)

=
v − ue

|v − ue|n
(
− 2e4

ε2
0m

2
Λ

1

|v − ue|2
∫ |v−ue|

0

dw̃w̃2f(w̃)

)
.

(3.41)

Equation (3.41) describes the force directed against the direction of electron motion

relative to the electron flow. The dynamic friction force written in the form (3.41)

can be readily obtained in the frame where v and ue are given.

To calculate the velocity diffusion, consider tensor D(v) in the velocity space

coordinate system with the third axis directed along v−ue. Below, the coordinates

and vectors in the new frame will be denoted with a prime, e.g., v′z or v′. Note that

this system is different from the one introduced above for calculation of coefficients

H and G — the origin is not shifted to ue but coincides with that of the laboratory

frame. Taking into account that w = |v − ue| = |v′ − u′e| = [(v′z − u′ez)
2]1/2, in the

new coordinate system one obtains

∂2

∂v′2z
G(w) =

∂2

∂w2
G(w) ,

∂2

∂v′2x
G(w) =

∂2

∂v′2y
G(w) =

1

w

∂

∂w
G(w) ,

∂2

∂v′i∂v′j
G(w) = 0 if i 6= j.

(3.42)

Therefore, only the diagonal components of the diffusion coefficient tensor D(v′) are

non-zero. Integration of (3.36) with (3.42) gives

D11(w) = D22(w) ≡ nD1(w)

= n

{
e4

3ε2
0m

2
Λ

[
1

w3

∫ w

0

dw̃w̃2(3w2 − w̃2)f(w̃) + 2

∫ ∞

w

dw̃w̃f(w̃)

]}
,

D33(w) ≡ nD3(w) = n

{
2e4

3ε2
0m

2
Λ

[
1

w3

∫ w

0

dw̃w̃4f(w̃) +

∫ ∞

w

dw̃w̃f(w̃)

]}
.

(3.43)

Transition to the new coordinate system does not modify the speeds, which is why

no special notation is introduced for w = |v′ − u′e| = |v − ue|.
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Coefficients Fd(w) and D1,3(w) use the EVDF f(w), which, in fact, has to be

determined locally. However, because of statistical fluctuations and finite particle

numbers in simulations, it is impossible to calculate the EVDF and the coefficients

at every grid point. In Ref. [112], the EVDF during simulation of an ECR discharge

was averaged over the magnetic field line (the electrons were magnetized and not

supposed to leave the line). In the EDIPIC code, the EVDF f(w) and the fluid

velocity ue are calculated using all electrons from the region δL < x < L − δL,

where δL is larger than the width of the strongly nonuniform near-wall region.

The Fokker-Planck equation (3.34) to first order accuracy in ∆t is equivalent to

the Langevin equation [112]

∆v = Fd∆t + Q , (3.44)

where Fd is the dynamic friction as above and Q is a random vector responsible for

the velocity diffusion. The Langevin equation allows one to obtain corrections for

the electron velocity due to Coulomb collisions in simulations.

In the “primed” coordinate system introduced above, coordinates Q′
1,2,3 of vector

Q′ correspond to the distribution

Ψ(Q′) =
1

(2π∆t)3/2D11D
1/2
33

exp

(
− Q′2

3

2D33∆t
− Q′2

1 + Q′2
2

2D11∆t

)
. (3.45)

To obtain coordinates of Q in the laboratory frame, one has to build a transformation

matrix using Euler angles [123]. It is convenient to assume that the first axis of the

“primed” coordinate system is in the plane vx−vy of the laboratory coordinate system

– in terms of Euler angles this means that the third angle is zero (see Fig. 3.12).

Then the coordinates of vector Q can be obtained by



Qx

Qy

Qz


 =




cos φ − cos θ sin φ sin θ sin φ

sin φ cos θ cos φ − sin θ cos φ

0 sin θ cos θ







Q′
1

Q′
2

Q′
3


 , (3.46)

where

sin θ =

√
w2

x + w2
y

w
, cos θ =

wz

w
,

sin φ =
wx√

w2
x + w2

y

, cos φ = − wy√
w2

x + w2
y

,
(3.47)
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Figure 3.12: The new “primed” coordinate system {v′x, v′y, v′z}, where
the velocity diffusion tensor (3.36) obtains diagonal form. Here v is
the velocity of the scattering electron, ue is the electron flow velocity,
and w = v − ue. The third axis of the “primed” coordinate system
is directed along w, angles θ and φ are the first two angles of the
Euler transformation. Coordinate system {vx, vy, vz} corresponds to
the laboratory frame.

and wx,y,z are the components of the velocity of scattering electron relative to the

electron flow w = v − ue, determined in the laboratory frame.

The probability function Ψ(Q′) depends on the speed of the electron to be scat-

tered w and the local electron density n (via the coefficients D11 and D33). In

simulations, a component of vector Q′ corresponding to the distribution (3.45), e.g.,

the component Q′
3, is the solution of the equation

R =

∫ Q′3

−∞
dy3

∫ ∞

−∞
dy2

∫ ∞

−∞
dy1Ψ(y) = Fg(Q

′
3/

√
2D3n∆t) ,

where R is a random number, 0 < R < 1, Fg(υ) = π−1/2
∫ υ

−∞ dτ exp(−τ 2). Note that

the equation R = Fg(υ) with random R has to be solved for υ every time a new value

corresponding to the Gaussian distribution π−1/2 exp(−υ2) is required. In addition

to the Langevin model of Coulomb collisions, this equation is exploited in the Monte-
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Carlo model of electron-neutral collisions for generating a velocity from a Maxwellian

EVDF. To reduce the numerical load, before a simulation one must tabulate NR pairs

of values (Rj, υj), where υj = υ0(2j/NR − 1), Rj = Fg(υj), j = 1, ..., NR, and NR is

some arbitrary large integer number (in EDIPIC NR = 180000 and υ0 = 3). Then,

for a given random number R, the solution of the equation R = Fg(υ) can be found

via interpolation over the tabulated values

υ = υj + (υj+1 − υj)
R−Rj

Rj+1 −Rj

, Rj < R < Rj+1 .

With a given coefficient D3(w) and density n(x), the component Q′
3 is obtained as

Q′
3 = υ

√
2D3n∆t. Similarly, components Q′

1,2 are calculated as Q′
1,2 = υ

√
2D1n∆t.

Note that a new random number has to be taken each time a component of Q′ is

calculated.

The general flowchart of the algorithm for electron-electron collisions is presented

in Fig. 3.13. At first, the electron flow velocity ue is determined and the EVDF f(w)

in the electron flow frame is found. Then the drag force coefficient Fd (3.41) and

the velocity diffusion coefficients D1 and D3 (3.43) are tabulated as functions of

w. In the main cycle, the velocity corrections for each electron due to the drag

force Fd∆t and the velocity diffusion Q are calculated by Eqs. (3.41), (3.45), and

(3.46); the velocity of every particle is modified by Eq. (3.44). The total energy of

electrons before Coulomb scattering Wbefore and after Coulomb scattering Wafter are

accumulated during this stage. Finally, the velocities of all scattered electrons are

multiplied by the factor (Wbefore/Wafter)
1/2 to ensure energy conservation.

3.6.2 Electron-ion collisions

Collisions of electrons with ions are also described by Eqs. (3.34)-(3.36). For single-

charged ions of mass M the dynamic friction coefficient H(v) is

H(v) =
m + M

M

∫
d3ṽ

f(ṽ)

|v − ṽ| , (3.48)

and the velocity diffusion coefficient G(v) is determined by (3.38). In calculation of

H(v) and G(v) for electron-ion collisions, function f(ṽ) is the ion velocity distribu-
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Figure 3.13: Flowchart of the electron-electron collision process.
Here Npart is the total number of electron macroparticles in simulation.
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tion function. Since most of electrons move much faster than ions, one can perform

integration in (3.38) and (3.48) assuming |v| À |ṽ| and obtain

H(v) ≡ H(v) =
1

v
,

G(v) ≡ G(v) = v ,

(3.49)

where v ≡ |v|. With (3.49), the drag force (3.35) and the velocity diffusion coeffi-

cients (3.36) for the electron-ion collisions are

Fd(v) =
v

|v|nFd(|v|) =
v

|v|n
(
− e4

4πε2
0m

2
Λ

1

v2

)
,

D11(v) = D22(v) ≡ nD1(v) = n

(
e4

4πε2
0m

2
Λ

1

v

)
,

D33(v) = nD3(v) = 0 .

(3.50)

The diffusion coefficients D above are obtained in the coordinate system that has its

third axis directed along v, the ion flux velocity is neglected. Note that coefficients

(3.50) grow infinitely as v approaches zero. The exact calculation of H(v) and

G(v) has to account for the ion velocity distribution function, so that the Langevin

coefficients will be finite for slow electrons with v ∼ vth,i, where vth,i is the ion

thermal velocity. However, the number of such electrons is very small. In EDIPIC,

all electrons with speed below some threshold, v < vthr, are scattered off ions with

constant Langevin coefficients Fd,thr = Fd(vthr) and D1,thr = D1(vthr), independently

of the electron energy. The speed threshold vthr is calculated as the electron speed

at which the correction due to the drag force is of the order of the speed itself, i.e.,

vthr = n∆tFd(vthr). Then, from (3.50), one obtains

vthr =

(
n∆t

e4

4πε2
0m

2
Λ

)1/3

. (3.51)

This simple algorithm eliminates the appearance of particles with extremely high

velocities by preventing unphysically large velocity corrections for slow electrons.

To ensure energy conservation, the electron velocity corrections due to electron-ion

collisions are calculated and accounted for in conjunction with the corrections due

to electron-electron collisions.
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3.7 Summary

The parallel, electrostatic PIC code EDIPIC is developed on the basis of the direct

implicit algorithm [105, 109]. The objective of EDIPIC is the self-consistent sim-

ulation of the plasma-wall interaction in the plane geometry model of the AR of

a Hall thruster. The code includes the important physical effects of Hall thruster

plasmas: the sheath, the secondary electron emission, the anomalous turbulent elec-

tron mobility, the collisions with neutral atoms, and the Coulomb collisions. The

use of high-performance massively parallel computers allows spatial scales far less

than the electron Debye length to be resolved, thus reproducing the narrow near-

wall sheath regions correctly. The probabilistic model of secondary electron emis-

sion [110], Monte-Carlo model of electron-neutral collisions [13], and Langevin model

of Coulomb collisions for electrons [112, 121] are implemented in the code.
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Chapter 4

Testing and verification of the EDIPIC

code

Testing is an important and necessary stage in the development of a trusted

numerical tool [10]. Parts of the EDIPIC code (the modules responsible for the ad-

vance of particles and the solution of the Poisson’s equation, the Monte-Carlo model

of collisions, the probabilistic SEE model, the Langevin model of Coulomb collisions)

were tested separately. These tests showed convincing results. The comprehensive

testing of the EDIPIC code has been carried out by simulation of several real phys-

ical problems with known numerical or analytical solutions. Here the benchmarks

were (i) the problem of sheath formation in the narrow layer between the Maxwellian

plasma and the wall [124, 125], and (ii) the two-stream instability of a low-current

monoenergetic beam in a cold plasma [126]. Below the details of the verification of

the EDIPIC code are presented.

In Section 4.1, the results of the test simulation with two oppositely charged

particles are presented. The electric field and the parameters of particle motion

are compared with exact values obtained analytically. In Section 4.2, the partial

emission coefficients for the three components of SEE (the true secondary, elasti-

cally reflected, and inelastically backscattered electrons) obtained in simulations are

compared with theoretical curves. Section 4.3 contains a comparison of the EVDF

of a monoenergetic electron beam scattered by neutral atoms in simulations with

the corresponding theoretically predicted EVDF. The frequencies of elastic, excita-

tion, and ionization electron-neutral collisions obtained in simulations are compared

with the values calculated analytically using the known cross sections for xenon.
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Section 4.4 describes simulation of the relaxation of the non-Maxwellian EVDF to

the Maxwellian one due to the effect of Coulomb collisions. The results of the test

simulation are compared with the similar simulation of Ref. [112]. In Section 4.5, the

simulations of the semi-infinite plasma bounded by an absorbing or emitting wall is

compared with the simulations of Refs. [124, 125]. Section 4.6 compares the simula-

tions of the instability of a cold electron beam in a cold plasma with the predictions

of the linear and the nonlinear theories of the two-stream instability [126].

4.1 Two-particle test

The two-particle test [9] is a simple, but powerful method of verification of the major

parts of the computational cycle – the modules solving the equations of particle

motion (the so-called “mover”) and the field equations (the so-called “field solver”).

Energy conservation and the diagnostics can also be checked during this test.

Consider a one-dimensional system of two parallel charged sheets with charge

Q and −Q per unit area and mass MQ per unit area. At the moment t = 0, the

particle positions are x1 = x0 and x2 = −x0 with the particles at rest. The charge

densities are ρ1(x) = Qδ(x− x1) and ρ2(x) = −Qδ(x− x2), where δ(x) is the Dirac

delta-function. Each charged sheet produces an electric field normal to the sheet

surface with absolute value Q/2ε0. The electrostatic fields of each particle in the

region between the particles sum together, while in the outside region they cancel

each other. With no external electric field, the field between the particles is

Ex = Q/ε0 , (4.1)

while outside the particles it is zero.

The two charged particles described above attract each other with a force F =
1

2
QEx which does not depend on the distance between the particles until they change

their order. When the particles cross, the direction of the force changes, slowing them

down to a complete stop, at which point acceleration towards each other begins

again, and the process repeats. Such oscillations are not harmonic oscillations since

83



0

5

10

15

20

0 400 800 1200 1600 2000

(a)

1 2

-2

-1

0

1

2

0 400 800 1200 1600 2000

(b)

1 2

0

1

2

3

0 400 800 1200 1600 2000

t (ns)

(c)

1 2

3

v
(1

0
m

/s
)

x
5

x
 (

m
m

)
W

 (
1
0

e
V

)
8

Figure 4.1: Particle dynamics during the two-particle test simula-
tion. The particle coordinates (a) and velocities (b) versus time. In (a)
and (b), curves 1 (red) correspond to the negatively charged macropar-
ticle (electron), curves 2 (green) correspond to the positively charged
macroparticle (ion); vertical blue lines mark the moment t = 499.234 ns
when the snapshots presented in Fig. 4.2 were obtained. (c) The po-
tential energy (green curve 1), kinetic energy (red curve 2), and total
(kinetic plus potential) energy (blue curve 3) versus time.
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the force is not proportional to the displacement. The period of the oscillations T can

be calculated as 4 times the interval between the stationary start and the moment

when particles meet each other t1/4, i.e. T = 4t1/4. For motion with constant

acceleration a, one obtains t1/4 =
√

2x0/a, where a = Q2/2ε0MQ. Thus, the period

of the non-harmonic oscillations of two particles is

T = 8

(
x0ε0MQ

Q2

)1/2

. (4.2)

The particles attain their maximal velocity

Vmax =

(
x0Q

2

MQε0

)1/2

(4.3)

when they cross with each other.

In simulations, the charge of a single macroparticle is

Q =
n0q∆x

Nmacro

, (4.4)

where n0 is the scale density, q is the elementary charge (q = ±e depending on

the species, ions or electrons), ∆x is the mesh size, and Nmacro is the number of

macroparticles per cell. The masses of both positive and negative species are set to

equal the electron mass m. With (4.4), one obtains

Ex =
n0q∆x

ε0Nmacro

,

T =
23/2

π

(
∆LNmacro

∆x

)1/2

Tpe ,

Vmax =

(
∆L∆x

2Nmacro

)1/2

ωpe

(4.5)

for two-particle simulations, where ∆L = 2x0 is the maximal distance between the

particles, Tpe = 2π/ωpe is the period of electron Langmuir plasma oscillations, and

ω2
pe = n0e

2/ε0m.

The two-particle test simulation was carried out with a system of length L =

19.975 mm, Nmacro = 1000, ∆L = 0.8L = 15.98 mm, ∆t = 0.8759 ps, and ∆x =

0.013141 mm. Floating potential at the walls was taken as a boundary condition.

Initially, the two particles with opposite charge are positioned symmetrically relative
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Figure 4.2: Spatial profiles of the charge density (a), the potential
(b), and the electric field (c) obtained at t = 499.234 ns during the two-
particle test simulation. In (a) spike 1 corresponds to the negatively
charged macroparticle and spike 2 corresponds to the positively charged
macroparticle.
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Table 4.1: Comparison of the values calculated during the two-particle
test with the values calculated by Eqs. (4.5).

PIC Theory Difference [%]

Ex [V/m] 23.78 23.76 0.084

T [ns] 349.64 349.87 -0.066

Vmax [m/s] 1.827 · 105 1.8269 · 105 0.005

to the midplane of the system with zero velocities. The two particles oscillate relative

to the midplane of the system, showing no drifts in any direction (see Fig. 4.1a).

The velocity of each particle changes linearly between turns, as is expected for a

position-independent external force (see Fig. 4.1b). The potential energy Wpot =

(1/2)
∫ L

0
dxρ(x)Φ(x) shown by curve 1 in Fig. 4.1c and the kinetic energy Wkin =

∑
j mjv

2
j /2 shown by curve 2 in Fig. 4.1c oscillate with doubled frequency. The total

energy Wtot = Wpot + Wkin is constant (see curve 3 in Fig. 4.1c). It is necessary to

mention that the total energy is well conserved in simulations with large number of

particles, the detailed description of energy evolution during one such simulation is

presented in Appendix A.

In Fig. 4.2, the snapshots of spatial profiles of several system parameters obtained

at t = 499.234 ns are presented. The positions of the two macroparticles are marked

by the two spikes of charge density in Fig. 4.2a. The potential Φ(x) changes linearly

in the region between the particles, while in the outside regions it is constant (see

Fig. 4.2b). Subsequently, the electric field Ex(x) is constant and finite between

the particles and zero in the outside regions (see Fig. 4.2c). Comparison of the

results of the two-particle test simulation with theoretical predictions is presented

in Table. 4.1. There is very good correspondence between the theoretical values and

values obtained in simulations.

87



4.2 Emission of secondary electrons

The important benchmark of the SEE model is a test of the multi-component emis-

sion algorithm (see the flowchart in Fig. 3.6). The objective of the algorithm is to

produce fluxes of several components corresponding to the partial emission coeffi-

cients for different primary electron incidence angles and energies.

The test of the multi-component emission algorithm was done for case with the

following conditions: (i) the external and self-consistent fields, as well as the ion

motion, were neglected; (ii) the initial velocity distribution of electrons was taken

in the form of a monoenergetic electron beam with energy wb, beam velocity vb was

directed at angle ϑ relative to the normal to the wall x = L. Evolution of the system

was followed for a short period of time t < 2L/vb to ensure that secondary electrons

from the wall x = 0 (produced by secondary electrons emitted from the wall x = L)

do not reach the wall x = L and thus do not modify the energy spectrum of the

incident beam.

In Fig. 4.3, the results of such tests are presented for energies of primary electrons

from 5 eV to 400 eV and two angles of incidence, ϑ = 0 and ϑ = 80o. One can see that

the markers, which depict the values obtained in simulations, coincide with the solid

curves representing the analytically calculated values. The tests reveal very good

agreement of the calculated partial emission coefficients with the expected values

determined by Eqs. (3.16), (3.17), and (3.18).

4.3 Electron-neutral collisions

Benchmarking the Monte Carlo model of electron-neutral collisions involves testing

the velocity distribution of scattered electrons, and testing the null collision algo-

rithm.

For the first test, consider a monoenergetic electron beam with velocity vb and

corresponding energy wb = mv2
b/2. Let every particle in this beam scatter once ac-

cording to the differential cross section (3.23). Let the scattering occur isotropically
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Figure 4.3: The partial emission coefficients versus the primary elec-
tron energy for: (a) the elastically reflected electrons, γe; (b) inelas-
tically backscattered electrons, γi; (c) and true secondary electrons,
γt. Curves are calculated by (3.16), (3.17), and (3.18). Markers are
the values determined in simulations with a monoenergetic beam bom-
barding the wall. The red markers and curves 1 correspond to normal
beam incidence with angle ϑ = 0, and the blue markers and curves 2
correspond to the angle of incidence ϑ = 80o.
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with respect to the azimuthal angle ϕ. By definition of the differential cross sec-

tion, the number of particles scattered per unit time into the elementary solid angle

dΩ = 2π sin χdχ is dN = Γdσsc(wb) = Γσsc(wb, χ)2π sin χdχ, where Γ is the flux

of scattering particles and χ is the pitch angle of scattering. The total number of

particles scattered per unit time is N =
∫

Γdσsc(wb) = Γσsc(wb), where integration

is performed over the complete scattering cross section σsc(wb). The relative number

of electrons scattered into the elementary solid angle dΩ,

dN

N
=

σsc(wb, χ)

σsc(wb)
2π sin χdχ,

is the probability that a single electron will scatter into this solid angle. Then the

velocity distribution function of scattered electrons f(v, χ, ϕ) can be found from
∫ ∞

0

dvv2

∫ 2π

0

dϕ [f(v, χ, ϕ) sin χdχ] =
σsc(wb, χ)

σsc(wb)
2π sin χdχ . (4.6)

Assuming that scattering occurs off infinitely massive targets and the energy trans-

fer is zero, so that the speed of scattered electrons does not change, the velocity

distribution function must be of the form

f(v, χ, ϕ) → δ(v − vb)f̃(χ) , (4.7)

where δ(x) is the Dirac delta-function. Substituting (4.7) into (4.6), one obtains

f(v, χ, φ) = δ(v − vb)
m

8πe ln (1 + wbe)

1

1 +
wbe

2
(1− cos χ)

, (4.8)

where wbe is the electron energy in electronvolts and wbe = wb/e. If the beam is

initially directed along the z axis, then in Cartesian coordinates the EVDF (4.8) is

f

(
vx

v0

,
vy

v0

,
vz

v0

)
=

mv2
0

8πe ln (1 + wbe)

δ




√(
vx

v0

)2

+

(
vy

v0

)2

+

(
vz

v0

)2

− vb

v0




1 +
wbe

2

(
1− vz/v0

vb/v0

) . (4.9)

Here v0 is some scale velocity introduced to simplify comparison with the results of

numerical simulations. The EVDF (4.9) is normalized as
∫ ∞

−∞
d

(
vx

v0

) ∫ ∞

−∞
d

(
vy

v0

) ∫ ∞

−∞
d

(
vz

v0

)
f

(
vx

v0

,
vy

v0

,
vz

v0

)
= 1 .
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The distribution functions of the scattered electron beam over each velocity compo-

nent are obtained from (4.9) as follows:

fz

(
vz

v0

)
=

∫ ∞

−∞
d

(
vy

v0

) ∫ ∞

−∞
d

(
vx

v0

)
f

(
vx

v0

,
vy

v0

,
vz

v0

)

=
1

ln (1 + wbe)

(
vb

v0

2 + wbe

wbe

− vz

v0

) ≡ f||

(
vz

v0

)
,

(4.10)

fy

(
vy

v0

)
=

∫ ∞

−∞
d

(
vz

v0

) ∫ ∞

−∞
d

(
vx

v0

)
f

(
vx

v0

,
vy

v0

,
vz

v0

)

=
1

ln (1 + wbe)

√
4(vb/v0)

2

w2
be

(1 + wbe) +

(
vy

v0

)2
≡ f⊥

(
vy

v0

)
, (4.11)

fx

(
vx

v0

)
=

∫ ∞

−∞
d

(
vz

v0

) ∫ ∞

−∞
d

(
vy

v0

)
f

(
vx

v0

,
vy

v0

,
vz

v0

)
= f⊥

(
vx

v0

)
, (4.12)

The PIC simulation is carried out with the electrons initially represented as a mo-

noenergetic beam directed along the z axis, neglecting the ion dynamics and the elec-

tric and magnetic fields. These assumptions reproduce the conditions that resulted

in EVDFs (4.10), (4.11) and (4.12). The simulation is run for only 6 timesteps. After

each timestep, all particles are forced to perform elastic scattering without energy

exchange, as above. The initial velocity distributions for the velocity components

vz and vy are represented by narrow spikes 3 in Fig. 4.4. After the first scattering,

the velocity distributions fz and fy (curve 2 in Fig. 4.4a and Fig. 4.4b, respectively)

obtained in simulations exactly coincide with the theoretically obtained functions

(4.10) and (4.11) (red markers in Fig. 4.4a and Fig. 4.4b, respectively). Note that

after 6 collisions the velocity distribution became almost isotropic (see curve 3 in

Fig. 4.4a and Fig. 4.4b). The velocity distributions of inelastic scattering (excitation

and ionization) was tested in a similar way and showed good agreement between

simulations and theory.

The null-collision algorithm (see flowchart in Fig. 3.7) must reproduce correct

frequencies of multiple types of electron-neutral collisions (elastic, excitation, and

ionization) in the wide range of electron collision energy. To test this algorithm,

several sets of PIC simulations are carried out as follows. The initial plasma EVDF
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tered once; curve 2 (green) is the EVDF obtained in simulations after
one scattering; curve 3 (blue) is the initial EVDF; curve 4 (magenta)
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corresponds to a monoenergetic electron beam of energy wb, directed parallel to the

walls, the ion dynamics and the electric and magnetic fields are neglected, the walls

absorb particles. The non-zero density of neutral gas is the same for simulations of

one set. Two values of neutral atom density are considered: na1 = 2 · 1018 m−3 and

na2 = 2 ·1019 m−3. The electron beam energy in one set of simulations is varied from

0.05 eV to 100 eV. The frequencies of the three types of electron-neutral collisions

obtained for different electron energies are shown by markers in Fig. 4.5. The values

of the frequencies calculated analytically for given electron energies with known cross

section for xenon (see Fig. 3.8a) are represented by solid curves in Fig. 4.5, where

curves 1 correspond to the lower neutral atom density and curves 2 correspond to

the higher neutral atom density. There is good agreement between the frequencies

obtained in simulations and the theoretically predicted frequencies for all types of

collisions. Note that the drop of elastic collision frequency near 1 eV related to the

Ramsauer minimum of cross section [127] is reproduced well (see Fig. 4.5a). For

excitation and ionization collisions, the frequency of collisions in simulations is zero

if the electron energy is below the corresponding threshold.

4.4 Coulomb collisions

The Langevin model of Coulomb collisions was benchmarked by comparing the re-

sults from EDIPIC with the similar simulation described in Ref. [112]. The test

PIC simulation was carried out with periodic boundary conditions and strongly non-

Maxwellian initial EVDF. The external electric and magnetic fields were set equal

to zero. Collisions with neutral atoms were omitted. The initial EVDF is

f(vx, vy, vz) =
Θ(vx,−v0x, v0x)Θ(vy,−v0y, v0y)Θ(vz,−v0z, v0z)

8v0xv0yv0z

, (4.13)

where Θ(x, a, b) = 1 if a < x < b and Θ(x, a, b) = 0 otherwise. The electron density

is ne = 1018 m−3. In the test simulation, the EVDF (4.13) is characterized by the

maximal energy of electron motion in the x, y, and z directions, mv2
0x/2 = 2 eV and

mv2
0y,z/2 = 4 eV. The initial EVDFs are presented in Fig. 4.6b.
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The average energy of electron motion in the x direction 〈wx〉 is defined as

〈wx〉 =

∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞

−∞
dvz

mv2
x

2
f(vx, vy, vz) .

The average energies of electron motion in the y direction 〈wy〉 and z direction 〈wz〉
are defined similarly. Also, define the average total energy 〈w〉 = 〈wx〉+ 〈wy〉+ 〈wz〉.
For v0x and v0y,z introduced above, one obtains 〈wx〉 = 2/3 eV, 〈wy〉 = 〈wz〉 =

4/3 eV, 〈w〉 = 10/3 eV.

The Coulomb collisions drive the EVDF towards the isotropic Maxwellian EVDF,

so that in the simulation 〈wx〉 gradually increases and 〈wy〉 and 〈wz〉 gradually de-

crease, approaching the same value (see Fig. 4.6a). The EVDF with initial “rect-

angular” profiles (Fig. 4.6b) becomes the isotropic Maxwellian EVDF after 400 ns

(Fig. 4.6c). The temperature of this Maxwellian EVDF is TM = 2.22 eV = 2〈w〉/3.

The average total energy remains practically constant, 〈w〉 ≈ 10/3 eV, during the

simulations, decreasing by less than 1% after 400 ns of evolution (more than 3.6 ·105

time steps). Note that in simulations of Hall thrusters, the plasma density is about

10 times smaller, and therefore, the effects of Coulomb collisions are much weaker.

The isotropization and the Maxwellization of the EVDF due to the Coulomb col-

lisions are well seen on the phase plane {vx, vy}. Initially, all electrons are uniformly

distributed inside the rectangle −vx0 < vx < vx0, −vy0 < vy < vy0 (see Fig. 4.6d).

By the end of the simulation, the distribution took a clear isotropic circular shape

(see Fig. 4.6e), with more particles in the center than in the outer regions.

Note that the transition from the non-Maxwellian anisotropic EVDF to the

Maxwellian isotropic distribution was almost finished after about 150 ns, and dur-

ing the rest of the time 150 ns < t < 400 ns the evolution of the EVDF involved

mostly the slow approach of the high energy tails to the Maxwellian EVDF. For

comparison, in Ref. [112], the initial EVDF close to (4.13), with close electron ener-

gies and the same electron density, was turned into the isotropic Maxwellian EVDF

after 200 ns, which is close to the value of 150 ns mentioned above. Some difference

in the times may be attributed to the different initial EVDF in [112].1 Thus, the

1The PIC code in Ref. [112] was developed for simulations of ECR discharges, the electrons were
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Langevin model of Coulomb collisions implemented in the EDIPIC code qualitatively

and quantitatively reproduces the modification of the EVDF due to electron-electron

and electron-ion collisions.

4.5 Simulations of the sheath with a Maxwellian

plasma source

The comprehensive verification of the EDIPIC code was performed by comparison

with the results of sheath dynamics simulations carried out in Refs. [124, 125].

In Ref. [124], the region between a Maxwellian plasma source and an absorbing

floating wall is considered analytically and simulated numerically. To reproduce the

conditions of Ref. [124], the test simulations with EDIPIC were carried out as follows:

(i) the boundary x = 0 was the Maxwellian plasma source as described below; (ii)

the boundary x = L was purely absorbing; (iii) all collisions between particles were

omitted; (iv) no external fields were applied. The plasma slab width was L = 22λD,

and the ratio of ion to electron mass was M/m = 40, the values of the ratio of ion

to electron temperature in the plasma source was Ti/Te = 0.1 or Ti/Te = 1.

The Maxwellian plasma source at x = 0 performs injection as follows. First, every

time a particle leaves the plasma slab through the source boundary, another particle

of the same species is injected into the slab. Second, every time an ion is absorbed

by the wall at x = L, one electron and one ion are injected. The velocity vxα of

a particle of species α emitted by the plasma source is determined as a solution of

equation R =
vxα∫
0

dvS(v) with R the random number, 0 < R < 1, and the following

source function S(v):

S(v) =
mv

Tα

exp

(
−mv2

2Tα

)
, (4.14)

where α = e for electrons and α = i for ions. Injection with source function (4.14)

considered as firmly attached to the magnetic field lines, only the two electron velocity components
were resolved – the one along the magnetic field and the other one perpendicular to the direction
of the magnetic field. As a result, the non-Maxwellian EVDF tested in [112] corresponded to a
cylinder in the velocity phase space, while the EVDF (4.13) corresponds to a parallelepiped.
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Table 4.2: Comparison of the potential profile parameters calculated
with the EDIPIC code [Φ(0), Φ(L/2)] versus the results of Ref. [118]
(φc, φp).

Φ(0)

Te

φc

Te

Φ(0)− φc

φc

Φ(L/2)

Te

φp

Te

Φ(L/2)− φp

φp

Ti/Te = 0.1 1.525 1.5 +1.7 % 0.775 0.75 +3.3 %

Ti/Te = 1 1.025 1.0 +2.5 % 0.763 0.75 +1.7 %

produces a half-Maxwellian distribution in a field-free region [128]. Note that simu-

lations described in this Section are one-dimensional both in the configurational and

in the velocity space: velocity components vy and vz are omitted for all particles.

At the quasi-stationary stage of the test simulation, the plasma potential profile

consists of a monotonic drop in potential in the narrow “source sheath” adjacent

to the Maxwellian plasma source x = 0, a wide region with constant potential, and

a monotonic drop of potential in the “collector sheath” adjacent to the absorbing

wall x = L (see Fig. 4.7). This qualitative picture agrees with the potential profiles

presented in Fig. 6 of Ref. [124]. The potential profile in simulations with EDIPIC

is characterized by the values of the potential at the plasma source boundary Φ(0)

and in the midplane Φ(L/2). In Ref. [124], these parameters are denoted by φc and

φp, respectively.

Parameters of the potential profile established in the two test simulations with an

absorbing wall are presented in Table 4.2. Note that the relative difference between
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the values obtained with the EDIPIC code and the values presented in Ref. [124]

does not exceed 3.3 %.

In Ref. [125], the region between the Maxwellian plasma source and the wall,

which emits secondary electrons, is considered. The secondary emission coefficient

is constant and secondary electrons are emitted with a half-Maxwellian distribution

of temperature T2. It is assumed that secondary electrons, if they return to the wall,

do not create further secondary electrons, but only decrease the wall surface charge.

In order to reproduce the conditions of Ref. [125] in test simulations, the following

adjustments were made:

• The Maxwellian plasma source was introduced at x = 0.

• The electron collisions were turned off.

• The elastic and inelastic reflections at the wall were turned off.

• The emission coefficient of the true secondary component γt was set equal to

a non-zero constant γp if the energy of a primary electron at the wall exceeds

a threshold value wt,0, and zero otherwise.

• The secondary electrons were emitted perpendicular to the wall with the ve-

locities corresponding to a half-Maxwellian distribution with temperature T2.

• The emission threshold energy was chosen as wt,0 = 10 × T2, this guaranteed

that the secondary electrons reflected back to the wall by the nonmonotonic

potential in the sheath do not produce secondary emission themselves.

• No external fields were applied.

The test simulations with the EDIPIC code were carried out with L = 22λD,

M/m = 40, Ti/Te = 1, and T2/Te = 0.01. The constant secondary emission coeffi-

cient was either γp = 0.3 or γp = 1.5. Note that the plasma parameters are the same

as in one of test simulations with an absorbing wall considered above (see the last

line in Table 4.2).
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Table 4.3: Comparison of the potential profile parameters calculated
with the EDIPIC code [Φ(0), Φ(L/2), and Φw] versus the results of
Ref. [119] (φc, φp, and ∆φ).

Φ(0)

Te

φc

Te

Φ(0)− φc

Φc

Φ(L/2)

Te

φp

Te

Φ(L/2)− φp

φp

γ = 0.3 0.668 0.7 -4.6 % 0.383 0.4 -4.3 %

γ = 1.5 0.575 0.59 -2.5 % 0.283 0.27 +4.8 %

Φw

Te

∆φ

Te

Φw −∆φ

∆φ

γ = 0.3 n/a n/a n/a

γ = 1.5 0.01775 0.017 +4.4 %

After the stationary stage was established in the simulation with γ = 0.3, the

potential profile was qualitatively similar to the case with an absorbing wall, but

the drop of potential across the plasma significantly decreased. In the simulation

with γ = 1.5 the secondary emission is in the SCL regime and the stationary plasma

potential profile is nonmonotonic near the emitting wall (see Fig. 4.8). The potential

profiles in the test simulations are similar qualitatively to the profiles presented in

Fig. 9 of [125].

The nonmonotonic potential profile in the test simulation with high γp has the

same characteristics as above (see Fig. 4.8a), and one additional characteristic – the

depth of the potential well near the emitting wall Φw. The corresponding value from

Ref. [125] is denoted as ∆φ (see Fig. 4.8b).

The parameters of the potential profile obtained in the test simulations with

constant SEE are presented in Table 4.3. The maximum relative difference between

the potential profiles of the test simulations and of Ref. [125] does not exceed 4.8%.

The tests of the EDIPIC code carried out with a Maxwellian plasma source show

overall good agreement with the available numerical results.
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4.6 Instability of a low density cold electron beam

in a cold plasma

The beam-plasma instability has been studied extensively since 1949, when it was

theoretically predicted independently by Akhiezer, Fainberg [129] and Bohm, Gross

[130] (see, e.g., numerous references in the review [131]). The first applications of nu-

merical methods to the solution of this problem were made in the mid 60’s [132]. PIC

methods have been applied to the study of this instability since the early 70’s [133].

Simulation of the beam-plasma instability is considered to be an important bench-

mark for PIC codes [10].

Consider a one-dimensional cold electron plasma of density np with a monoener-

getic electron beam of density nb, nb ¿ np, and velocity vb. Oscillations in such a

system are described by the dispersion equation [134]

1− ω2
pe

ω2
− αω2

pe

(ω − kvb)2
= 0 , (4.15)
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where k is the wave number parallel to the direction of beam propagation, α is the

relative beam density, α = nb/np ¿ 1. Oscillations with ω ' kvb are unstable if

k < (ωpe/vb)(1+α1/3)3/2. At the linear stage of instability, the beam electrons group

in bunches and transfer their energy to the wave, causing the wave amplitude to grow

exponentially. At the nonlinear stage [126, 135], the beam particles are trapped in

the potential well of the excited wave and oscillate with frequency

Ω ' ωpeα
1/3. (4.16)

Test simulations of the electron beam instability were carried out with the EDIPIC

code with periodic boundary conditions. Initially all plasma (background) electrons

had zero velocity, relative density of the beam was α = 0.001, the initial beam energy

was wb = 40 eV, the beam velocity was vb = 3.75× 106 m/s, and the plasma density

was np = 1017 m−3. The wave number k of the excited oscillations was determined

by the length of the system L as k = 2π/L.

In simulations, both the linear stage of the beam-plasma instability, with the

exponential growth of the wave amplitude, and the subsequent non-linear stage, with

the slowly oscillating wave amplitude, have been observed (see Fig. 4.9a). Consider

the potential perturbation in the form Φ(t, x) = ΦA(t) sin (kx− Re ωt), where ΦA(t)

is the amplitude. At the linear stage, ΦA(t) ∼ exp (Im ωt), where Im ω is the

increment of oscillations, which can be calculated by

Im ω =

[
d

dt
ln ΦA(t)

]−1

.

The frequencies and increments of the linear instability obtained in the simulations

and calculated from Eq. (4.15) for different wave numbers k are presented in Fig. 4.9b.

There is very good agreement between the values obtained in the simulations (the

red and blue markers in Fig. 4.9b corresponding to Re ω and Im ω) and the exact

solutions (complex roots) of Eq. (4.15) (curve 1 for Re ω and curve 2 for Im ω in

Fig. 4.9b).

It is instructive to compare the nonlinear stage of the instability of a cold beam

with α = 0.001 and kvb/ωpe = 1.0053 observed in the EDIPIC simulation (see
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Table 4.4: Comparison of the parameters of the nonlinear stage of
instability of a low density cold electron beam in a cold plasma obtained
with the EDIPIC code (Φ1, Φ2, and TΩ) versus the results of Ref. [120]
(φ1, φ2, and τΩ).

Φ1 [V] φ1 [V]
Φ1 − φ1

φ1

Φ2 [V] φ2 [V]
Φ2 − φ2

φ2

TΩ [ns] τΩ [ns]
TΩ − τΩ

τΩ

1.1 1.2 -8.3 % 0.4 0.4 0.0 % 4.1 3.8 +7.9 %

Fig. 4.9a) and the nonlinear stage of the instability of the beam with the same density

and kvb/ωpe = 1.0 described in Ref. [126]. It is found numerically in Ref. [126] that

at the nonlinear stage the value of the wave amplitude in the first maximum φ1 is

φ1 ≈ 1.5

k

(
4πnpmv2

bα
4/3

)1/2

CGS
, (4.17)

and the value of the wave amplitude in the first minimum φ2 is

φ2 ≈ 0.5

k

(
4πnpmv2

bα
4/3

)1/2

CGS
. (4.18)

Eqs. (4.17) and (4.18) are presented in CGS units, as in the original paper [126].

The period of oscillation of the wave amplitude obtained in Ref. [126] is

τΩ ≈ 6.7

ωpeα1/3
, (4.19)

which is close to the value estimated by Eq. (4.16). For the purpose of comparison,

the values of φ1, φ2, and τΩ were calculated by Eqs. (4.17-4.19) with the values of np,

vb, and α used in the test PIC simulation. The calculated values are presented in Ta-

ble 4.4 and compared with the corresponding values Φ1, Φ2, and TΩ obtained directly

from the PIC simulation. Note that the difference between the values of [126] and the

values obtained with EDIPIC does not exceed 8.3% and is within the measurement

error.2

2The parameters of the nonlinear stage of instability described in [126] had to be copied from
the figure with relatively low resolution (Fig. 1 of [126]).
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4.7 Summary

The EDIPIC code has been extensively tested. The two-particle test showed the

correct motion of particles and solution of Poisson’s equation and demonstrated

very good energy conservation. The test of the probabilistic SEE model confirmed

that the three components of the SEE are emitted with the correct intensities for

various energies and angles of incidence of primary electrons. The test of the Monte-

Carlo model of collisions demonstrated (i) that the velocity distribution of scattered

particles corresponds to the selected differential cross section, and (ii) that the col-

lisions occur with the correct frequencies in a wide range of the colliding particle

energy. The Langevin model of Coulomb collisions ensured that the “rectangular”

non-Maxwellian EVDF transforms into the isotropic Maxwellian EVDF within the

correct time interval and with good energy conservation. The comprehensive tests

included the simulation of the sheath formation with a Maxwellian plasma source

and the simulation of the instability of a cold low density electron beam in a cold

plasma. All test simulations demonstrated the good agreement with the available

analytical and numerical results, therefore, the overall validity of the EDIPIC code

is confirmed.
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Chapter 5

Electron velocity distribution function

in Hall thruster plasmas

The flux of electrons leaving a plasma through the sheath at the wall is determined

by the EVDF of the plasma and by the potential barrier formed in the sheath region.

The EVDF in low pressure discharges is often far from Maxwellian [4, 5, 6, 7, 46, 85].

However, for the sake of simplicity, in the analytical models of Hall thrusters, the

EVDF is often approximated as a Maxwellian, which may give rise to misleading

results.

The walls of a Hall thruster channel emit secondary electrons. For a Maxwellian

plasma bounded by the wall with SEE, the flux of electrons leaving the plasma

at the wall grows considerably with the increase of the electron temperature [75].

The energetic plasma electrons are intensively replaced by the relatively cold sec-

ondary electrons, which is an important factor that limits the electron temperature.

The fluid theories of a Hall thruster based on the assumption that the EVDF is

Maxwellian [69, 76, 81, 82] predict fast electron cooling due to wall losses and sat-

uration of the electron temperature with the growth of discharge voltage. However,

in experiments [78, 79] the electron temperature inside the thruster channel (about

40 eV) was several times higher than the maximum value for the electron tempera-

ture (18 eV) predicted by some fluid theories [76]. Therefore, the intensity of wall

losses in Hall thrusters is lower than it is expected for a Maxwellian plasma.

Kinetic studies of plasmas in Hall thrusters [87] reveal a depletion of the high

energy tail of the EVDF and a reduction of the electron losses to the wall compared

to the fluid theories. Such depletion is well known for other types of discharges [3, 5].
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Figure 5.1: The potential barrier U(x) in the two-dimensional
configuration space (x,y) (left) and the circle in the corresponding
two-dimensional velocity space (vx,vy) for particles with energy w =
m(v2

x + v2
y)/2 > eΦ. The red section of the circle is the loss cone

(right).

It was shown in Ref. [5] for ECR discharges that the EVDF near a wall is far from

Maxwellian and is strongly anisotropic in the loss cone. Here the loss cone is defined

as follows. Electrons with a given kinetic energy w form a spherical shell in velocity

phase space (see Fig. 5.1 for the two-dimensional case). If w > eΦ, where Φ is the

plasma potential relative to the wall, then some of these electrons have an energy of

motion normal to the wall wx sufficient to leave the system, wx > eΦ. In the velocity

phase space the vectors of velocities of these electrons are inside the cone with the

opening angle β = 2 cos−1(
√

eΦ/w). Note that β depends on the energy w. This

cone is called the loss cone.

The EDIPIC code described in Chapter 3 has been applied to simulations of

plasmas in the accelerating region of a Hall thruster in the plane geometry approxi-

mation. The PIC simulations carried out reveal that there is an essential deviation of

the EVDF from the Maxwellian EVDF and, as a result, the plasma-wall interaction

in a Hall thruster is different from that of a plasma with a Maxwellian EVDF. The

present Chapter contains the analysis of the EVDF in Hall thrusters based on the

results of the PIC simulations.
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This Chapter is organized as follows. In Section 5.1, the properties of the non-

Maxwellian EVDF are described, the reasons for the strong anisotropy and the de-

pletion in the loss cone are discussed, the simulation data are collected in Table 5.1.

In Section 5.2, the effects of Coulomb collisions on the EVDF in Hall thruster are

described, the corresponding simulation data are collected in Table 5.2. Section 5.3

contains the derivation of the electron wall fluxes, plasma potential, and emission

coefficient for an isotropic Maxwellian plasma bounded by the wall with SEE in the

SCL regime. The results of Hall thruster simulations are compared with the corre-

sponding properties of Maxwellian plasmas. The major conclusions are given in the

Summary Section.

5.1 Properties of the EVDF

5.1.1 Initial parameters of simulations

The initial parameters of Hall thruster simulations described in this Section are

presented in Table 5.1. For all simulations, the width of the plasma slab is L = 2.5 cm

and the neutral gas density is na = 2 · 1012cm−3. In simulations 1 and 2, the axial

electric field Ez, the radial magnetic field Bx, and the frequency of “turbulent”

collisions νt correspond to the parameters of the 2 kW Hall thruster at discharge

voltages Ud = 300 V and Ud = 350 V [80], respectively. In these simulations, the

values of Ez and Bx were taken at the point of maximal electron temperature, which is

inside the thruster channel for the considered discharge voltages. The value of νt was

estimated by Eq. (3.33), as it is described in Section 3.5.5, without the correction due

to the electron-wall collisions. The initial EVDF in simulations 1 and 2 is isotropic

Maxwellian with temperatures 46 eV and 53 eV, respectively, these values are the

experimentally measured maximal electron temperatures in the 2 kW Hall thruster

for Ud = 300 V and Ud = 350 V [80]. Simulations 3 and 4 are carried out without

“turbulent” collisions in order to study the effect of the axial electric field on the

EVDF. In these simulations, the initial EVDF is a drifting isotropic Maxwellian
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Table 5.1: Initial parameters (constant) and results of Hall thruster
simulations with EDIPIC code. Coulomb collisions are omitted. The
common parameters are L = 2.5 cm and na = 2 · 1012cm−3.

Number 1 2 3 4

Ez , [V/cm] 52 200 200 40

Bx , [G] 91 100 100 100

〈wy〉, [eV] 15.3 35.9 22.2 2.6

〈wz〉, [eV] 14.4 24.5 10.8 2.15

〈wx〉, [eV] 4.1 5.75 4.8 1.32

T̃z , [eV] 20.1 35.7 22.7 4.2

T̃x , [eV] 10.1 12.3 11.8 3.9

Φp , [V] 23 22 20 6.2

〈νen〉, [106 s−1] 1.4 1.4 1.4 0.95

νt , [106 s−1] 7.81 1.46 0 0

ne , [1011 cm−3] 1.6 3.2 2.0 0.53

γ 0.72 0.97 0.967 0.45

Γ1p , [1021 m−2s−1] 0.35 3 1.4 0.09

Γ1 , [1021 m−2s−1] 0.89 20 10.3 0.15

with temperature 10 eV and Ez/Bx drift velocity in the y direction.1 Since Coulomb

collisions are typically considered negligible for plasmas of Hall thrusters [136], in

simulations described in this Section the electron-electron and electron-ion collisions

were omitted. Other parameters of simulations are given in Table B.1 of Appendix B.

In Table 5.1, the emission coefficient γ, the total primary electron flux Γ1 and

the primary electron flux due to plasma bulk particles Γ1p (see below) are calculated

at the wall x = L; Φp = Φ(L/2).

1It has been found that such initial EVDF essentially reduces the duration of the transitional
period in simulations.
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5.1.2 Anisotropy of the electron temperature

The simulations reveal that the average energy of electron motion along the accel-

erating electric field 〈wz〉 = 〈mv2
z/2〉 is several times larger than the average energy

of electron motion normal to the walls 〈wx〉 = 〈mv2
x/2〉 (see Table 5.1), where aver-

aging 〈...〉 is done over all electrons. The average energy of electron motion in the

y direction 〈wy〉 = 〈mv2
y/2〉 exceeds 〈wz〉 by the value related to the E × B drift

motion, 〈wy〉 = 〈wz〉 + mV 2
dr/2, where Vdr = Ez/Bx is the drift velocity. Thus, the

EVDF is strongly anisotropic. Regardless of the E ×B drift, the difference between

velocity distributions over vz and vy is minor and only the EVDFs for vx and vz are

discussed below.

Qualitatively, the anisotropy of the EVDF can be explained as follows. The

electrons gain their energy from the accelerating electric field Ez as a result of random

“turbulent” collisions and collisions with neutral atoms over the period of cyclotron

rotation after the scattering occurred. The field Ez directly affects only the z-velocity

and, therefore, modifies the energy wz of an electron. However, the cyclotron rotation

distributes this energy between the y and z degrees of freedom. As a result, the

heating occurs in the direction parallel to the walls (independent of the particular

choice of this direction in the E×B drift frame), while the electron-neutral collisions

drive the electron distribution function towards the isotropic EVDF [137]. If the

frequency of “turbulent” collisions is much higher than the frequency of collisions

with atoms

νt À νen , (5.1)

the electrons gain kinetic energy parallel to the walls much faster than this energy is

transferred by electron-neutral collisions to the motion normal to the walls, resulting

in an anisotropic EVDF [5, 138]. Case 1 in Table 5.1 is characterized by a dominating

turbulent conductivity (5.1), which corresponds to the low voltage regime of thruster

operation [80]. The EVDF in this case is presented in Figs. 5.2 and 5.3. In different

energy regions, the EVDF may be approximated by a Maxwellian EVDF with the

corresponding temperature. For instance, the EVDF over normal velocity fx(vx)
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Figure 5.2: For simulation 1 from Table 5.1, the electron velocity
distribution over vx and vz in the middle of the plasma 10 mm < x <
15 mm plotted in energy coordinates (negative energy values correspond
to propagation in the negative direction): (a) the 3D-plot, and (b) the
corresponding contour plot of the low energy region |wx,z| < 20 eV.
Any two neighboring contour lines in (b) have a level difference of 0.01.
The plasma potential relative to the wall is Φp = 23 V. The dashed

bold line in figure (b) is wx = wzT̃x/T̃z + const.
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Figure 5.3: For simulation 1 from Table 5.1, the EVDF over vx (a)
and vz (b) in the middle of the plasma 10 mm < x < 15 mm plotted
versus energy (negative energy values correspond to propagation in the
negative direction). Curve 1 is the plasma EVDF in simulations. In (a),
the two symmetric vertical lines mark the confinement threshold energy
wx = eΦp and straight line 2 has a slope corresponding to T̃x = 10.1 eV.

In (b), straight line 2 has a slope corresponding to T̃z = 20.1 eV.
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Figure 5.4: For simulation 2 from Table 5.1, the electron velocity
distribution over vx and vz in the middle of the plasma 10 mm < x <
15 mm plotted in energy coordinates (negative energy values correspond
to propagation in the negative direction): (a) the 3D-plot, and (b) the
corresponding contour plot of the low energy region |wx,z| < 20 eV.
Any two neighboring contour lines in (b) have a level difference of 0.05.
The plasma potential relative to the wall is Φp = 22 V. The dashed

bold line in (b) is wx = wzT̃x/T̃z + const.
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Figure 5.5: For simulation 2 from Table 5.1, the EVDF over vx (a)
and vz (b) in the middle of the plasma 10 mm < x < 15 mm plotted
versus energy (negative energy values correspond to propagation in the
negative direction). Curve 1 corresponds to the bulk electrons; curve
2 to the electron beam emitted from the wall x = L; curve 3 to the
electron beam emitted from the wall x = 0. In (a), the two symmetric
vertical lines mark the confinement threshold energy wx = eΦp, straight

line 4 has a slope corresponding to T̃x = 12.3 eV. In (b), straight line

4 has a slope corresponding to T̃z = 35.7 eV.
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obtained by averaging the three-dimensional EVDF f(vx, vy, vz) is characterized by

the effective “normal” temperature Tx defined as

Tx(wx) = −
[
∂ ln fx(vx)

∂wx

]−1

, (5.2)

where fx(vx) =
∞∫
−∞

∞∫
−∞

dvydvzf(vx, vy, vz). If fx is not a Maxwellian EVDF, the

temperature Tx is a function of the normal energy wx. It is instructive to introduce

the average temperature as follows:

1

T̃x

=

ewx∫
0

dwx
1

Tx(wx)
ewx∫
0

dwx

, (5.3)

where the upper integration limit w̃x is chosen such that fx(
√

2w̃x/m) is e times less

than the maximum fx(0), here e = 2.71828 . . .. Integration of (5.3) with (5.2) gives

T̃x = w̃x .

Similarly, the effective average temperature in the z direction T̃z may be introduced

as the energy value at which the EVDF over the z-velocity

fz(vz) =

∞∫

−∞

∞∫

−∞

dvydvzf(vx, vy, vz)

is e times less than its maximum value, here e = 2.71828 . . . .

The ratio between the average temperatures T̃x and T̃z is a better characteris-

tic of the EVDF anisotropy than the ratio of the average energies 〈wx〉 and 〈wz〉,
(see the description of case 4 below). For a two-dimensional EVDF fxz(vx, vz) =
∞∫
−∞

dvyf(vx, vy, vz), the contour lines fxz(vx, vz) = const form rhombic structures if

the EVDF is Maxwellian, with the ratio of the rhombus diagonals equal to the ratio

of temperatures. The contour lines of the two-dimensional EVDF obtained in simu-

lations (e.g., Fig. 5.2b) are similar to rhombi; the linear graph wx = wzT̃x/T̃z +const

is parallel to the EVDF contour lines in one quadrant of Fig. 5.2b. The smaller

the slope of the linear graph – the stronger the anisotropy. The difference from the
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Figure 5.6: For simulation 3 from Table 5.1, the electron velocity
distribution over vx and vz in the middle of the plasma 10 mm < x <
15 mm plotted in energy coordinates (negative energy values correspond
to propagation in the negative direction): (a) the 3D-plot, and (b) the
corresponding contour plot of the low energy region |wx,z| < 20 eV. Any
two neighboring contour lines in (b) have a level difference of 0.025. The
plasma potential relative to the wall is Φp = 20 V. The dashed bold

line in (b) is wx = wzT̃x/T̃z + const.

116



0.01

0.1

1

-40 -30 -20 -10 0 10 20 30 40

E
V

D
F

 (
re

l.
u

n
it
s
)

wx (eV)

(a)

1

2 3

4

0.01

0.1

1

-40 -30 -20 -10 0 10 20 30 40

E
V

D
F

 (
re

l.
u

n
it
s
)

wz (eV)

(b)

1,4

2,3

Figure 5.7: For simulation 3 from Table 5.1, the EVDF over vx (a)
and vz (b) in the middle of the plasma 10 mm < x < 15 mm plotted
versus energy (negative energy values correspond to propagation in the
negative direction). Curve 1 corresponds to the bulk electrons; curve
2 to the electron beam emitted from the wall x = L; curve 3 to the
electron beam emitted from the wall x = 0. In (a), the two symmetric
vertical lines mark the confinement threshold energy wx = eΦp, straight

line 4 has a slope corresponding to T̃x = 11.8 eV. In (b), straight line

4 has a slope corresponding to T̃z = 22.7 eV.
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rhombic shape is due to the finite number of velocity boxes used to calculate the

EVDF during simulations.

For high discharge voltages, the difference between the classical and the anoma-

lous axial electron mobility decreases so that νt ∼ νen [79]. In this case, anisotropy

may develop if the axial electric field Ez satisfies the criterion

eEzrL > eΦp , (5.4)

where rL is the electron Larmor radius, Φp = Φ(L/2). If criterion (5.4) is satis-

fied, the first collision of a low energy electron mv2/2 < eΦp provides the electron

with a significant energy of motion parallel to the walls ∆w > eΦ, therefore the

subsequent electron-neutral collision may scatter this electron into the loss cone and

the isotropization does not occur. The corresponding simulation is number 2 in Ta-

ble 5.1. The 3D-plot of the anisotropic EVDF of such a low-collisional plasma is

presented in Fig. 5.4.

In fact, if criterion (5.4) is satisfied, the anisotropy develops even in the absence

of “turbulent” collisions, as it is proved by simulation 3 (see Table 5.1 and Fig. 5.6

with Fig. 5.7). Note that the anisotropy decreased compared to the case 2, where the

turbulent collision frequency was non-zero (compare the slopes of the bold dashed

lines in Fig. 5.4b and Fig. 5.6b).

When criteria (5.1) and (5.2) are not satisfied, the anisotropy practically disap-

pears, see simulation 4 in Table 5.1. The difference in the average energies 〈wx〉 and

〈wz〉 (see Table 5.1) is determined mostly by the strong depletion of the EVDF over

vx in the loss cone (see Fig. 5.8a and Fig. 5.9a). At the same time, for energies below

the plasma potential wx,z < eΦ, the distributions over normal velocity vx and par-

allel velocity vz are characterized by very close values of the effective temperatures

T̃x ' T̃z.

5.1.3 Depletion of the loss cone

The EVDFs of all simulations in Table 5.1 exhibit strong depletion in the region

with wx > eΦp, i.e., in the loss cone [3]. This occurs because the MFP between two
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Figure 5.8: For simulation 4 from Table 5.1, the electron velocity
distribution over vx and vz in the middle of the plasma 10 mm < x <
15 mm plotted in energy coordinates (negative energy values correspond
to propagation in the negative direction): (a) the 3D-plot, and (b) the
corresponding contour plot of the low energy region |wx,z| < 20 eV. Any
two neighboring contour lines in (b) have a level difference of 0.025. The
plasma potential relative to the wall is Φp = 6.2 V. The dashed bold

line in (b) is wx = wzT̃x/T̃z + const.
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Figure 5.9: For simulation 4 from Table 5.1, the EVDF over vx (a)
and vz (b) in the middle of the plasma 10 mm < x < 15 mm plotted
versus energy (negative energy values correspond to propagation in the
negative direction). Curve 1 is the plasma EVDF in simulations. In (a),
the two symmetric vertical lines mark the confinement threshold energy
wx = eΦp, straight line 2 has a slope corresponding to T̃x = 3.9 eV. In

(b), straight line 2 has a slope corresponding to T̃z = 4.2 eV.
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consecutive electron-neutral collisions (which may scatter an electron towards the

wall) l ∼ 1 m is much larger than the width of the plasma slab, l À L. The EVDF

in the loss cone is partially replenished via collisions. The plasma bulk electrons with

negative motion integral values wx−eΦ(x) < 0 are confined by the plasma potential.

But a confined electron with the positive total energy (wx + wy + wz) − eΦ(x) > 0

may be scattered to the wall after colliding with a neutral atom or a charged particle.

In the bounded plasma with SEE, there is another source of repopulation of the

loss cone. Note that the shape of the EVDFs of simulations 2 and 3 is quite different

from that of simulations 1 and 4: in the former two cases the EVDF fxz(vx, vz) is

non-monotonic in the loss cone (compare Fig. 5.4 and Fig. 5.6 with Fig. 5.2 and

Fig. 5.8). This happens because the loss cone is populated not only by the scattered

plasma bulk electrons, but also by the secondary electrons emitted from the walls. In

Fig. 5.5a for simulation 2, the EVDF over vx is plotted with contributions from the

secondary electrons and from the plasma bulk electrons separated (see also Fig. 5.7

for simulation 3). The secondary electrons form two counter-propagating beams

(see curves 2 and 3 in Fig. 5.5a), which travel between the walls almost without

collisions. The secondary electron beams may form a major component of the EVDF

for wx > eΦ, and, therefore, compose most of the current to the walls.2 The EVDFs

over vz of the emitted electron beams may be locally non-symmetric, as shown in

Fig. 5.4a and Fig. 5.5b. This asymmetry reflects the motion of the emitted electrons

along spiral-like trajectories: the acceleration and deceleration in the x direction

is combined with the cyclotron rotation in the y-z plane and E × B drift in the y

direction. The detailed dynamics of the secondary electron beams is described in

Chapter 6.

2Note that in the present thesis the electron flux to the wall created by the plasma bulk electrons
Γ1p is distinguished from the total primary electron flux Γ1.
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5.2 Effects of Coulomb collisions

5.2.1 The effective frequencies of Coulomb collisions in Hall

thrusters

Scattering of charged particles by Coulomb forces [139] is a basic physical process,

important for many phenomena in space plasmas [140, 141] and laboratory plas-

mas [7, 142]. Coulomb collisions between particles of the same species, e.g., electron-

electron (e-e) collisions, drive the velocity distribution function towards an isotropic

Maxwellian distribution. Coulomb collisions between particles with essentially dif-

ferent masses, such as electron-ion (e-i) collisions, are characterized by negligible

energy exchange and contribute to the isotropization of the velocity distribution

function of the light particles. In bounded plasmas, Coulomb collisions supply elec-

trons to the loss cone and thus play a role similar to the role of collisions with neutral

atoms. Coulomb scattering occurs predominantly at small angles. Although scatter-

ing through large angles θ > π/2 is infrequent, many successive small-angle collisions

lead to large-angle scattering. For e-i collisions, the effective frequency of large-angle

(θ = π/2) deflection after many small-angle collisions νdif
ei is given by [74, 143]

νdif
ei =

ngve4 ln Λ

2π3ε2
0w

2
,

where ng is the density of target particles (ions), w = mv2/2 is the electron kinetic

energy, v is the electron speed, and ln Λ is the Coulomb logarithm. The frequency

νsgl
ei of collisions, which scatter electrons by a large angle in a single collision, is

much smaller than the effective frequency of cumulative diffusive deflection νdif
ei ,

νsgl
ei = (π2/32 ln Λ)νdif

ei ¿ νdif
ei [74]. The difference between the frequencies of large-

angle diffusive deflection due to e-i and e-e collisions, νdif
ei and νdif

ee , is a factor of

order unity [2]. The effective total frequency of large-angle diffusive deflection νdif

and the effective total frequency of single large-angle scattering νsgl due to both e-i
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and e-e collisions are

νdif = νdif
ee + νdif

ei ≈ 2νdif
ei ,

νsgl ≈ π2

32 ln Λ
νdif .

(5.5)

It is commonly accepted that Coulomb collisions play a minor role [136] in

Hall thrusters, as long as the frequencies of Coulomb collision for such plasmas

(νdif ∼ 105 s−1 and νsgl ∼ 103 s−1) are much smaller than the frequencies of

electron-neutral (νen ∼ 106 s−1) and “turbulent” (νt ∼ 106 − 107 s−1) collisions.

The direct modification of the number of particles in the loss cone due to large-angle

Coulomb collisions is about νsgl/νen ∼ 0.001 of the unmodified value. The effective

frequency νdif characterizes the rate of isotropization of the EVDF due to Coulomb

collisions, and it can be responsible for filling the loss cone with modification of order

νdif/νen ∼ 0.1. The role of Coulomb collisions for electron heating is small, as long

as (νt + νen) À νdif .

Note that the collisional frequencies described in the previous paragraph depend

crucially on the design and operational regime of a thruster. The frequency of

electron-atom collisions νen is proportional to the neutral gas density na, which can

be decreased either by reducing the neutral gas flow rate (the so-called throttling

regime), or by performing ionization in a different section of the device, as it is in the

two-stage thrusters [144]. Additionally, νen can be decreased if lighter than xenon

gases are used (such as argon or hydrogen, with smaller cross sections of electron-

neutral collisions). It will be shown below that in some regimes of a conventional

thruster, a small modification of the degree of anisotropy T̃z/T̃x due to Coulomb

collisions may result in noticeable changes in the SEE intensity, plasma potential,

and wall current. Modification of the EVDF by Coulomb scattering is consistently

connected with modification of the emission coefficient γ. Since Γ1 = Γi/(1 − γ),

where Γ1 and Γi are the electron and ion fluxes towards the wall, respectively, the

closer γ is to unity, the more sensitive the plasma becomes with respect to small

modifications of γ, and therefore, of the EVDF.
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5.2.2 Initial simulation parameters

To investigate the modification of the EVDF in a Hall thruster by Coulomb collisions,

two sets of simulations with identical initial parameters were carried out with and

without Coulomb collisions. Initial parameters and major results of these simulations

are presented in Table 5.2. The width of the plasma slab is L = 2.5 cm and the

neutral gas density is na = 1012 cm−3. The gas density was reduced compared to the

value used in the previous section to enhance the effect of Coulomb collisions, but it

is still within the range of experimental parameters. Initially, the electron density is

ne0 = 1011 cm−3 and the EVDF is Maxwellian with drift velocity Ez/Bx along the

y axis with the electron temperature Te0 = 10 eV. Duration of the simulations until

reaching a quasi-steady state is 8 µs for cases 5 and 6, and 10 µs for cases 7 and 8.

Other simulation parameters are given in Table B.1.

In Table 5.2, the effective frequencies of Coulomb collisions νdif and νsgl are

calculated via Eq. (5.5) for electrons with energy equal to the electron confinement

threshold eΦp and ln Λ = 10. The emission coefficient γ, the total primary electron

flux Γ1, and the primary electron flux due to plasma bulk electrons Γ1p are calculated

at the wall x = L.

5.2.3 Coulomb collision effects for weak secondary electron

emission

Simulations 5 and 6 of Table 5.2 are characterized by the low axial electric field Ez

and the relatively low frequency of “turbulent” collisions νt; the effects of modifi-

cation of secondary emission are minimal in these simulations. Coulomb collisions

included in simulation 6 resulted in the following consequences (compare simulations

5 and 6 of Table 5.2):

• The degree of EVDF anisotropy T̃z/T̃x decreases from 1.86 to 1.67, by 10%,

the electron temperature T̃x increases.

• The plasma potential Φp increases by 37%.
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Table 5.2: Initial parameters (constant) and results of Hall thruster
simulations with EDIPIC code. Here the simulations with Coulomb
collisions are compared with the simulations where Coulomb collisions
are omitted. The common parameters are L = 2.5 cm, na = 1012cm−3.

Number 5 6 7 8

Ez, [V/cm] 50 50 200 200

Bx, [G] 100 100 100 100

Coulomb collisions off on off on

〈wy〉, [eV] 8.2 7.7 38.2 34.6

〈wz〉, [eV] 7.5 7.0 26.8 23.2

〈wx〉, [eV] 1.9 2.2 4.5 4.9

T̃z, [eV] 11.7 11.0 36.7 33.5

T̃x, [eV] 6.3 6.6 12.1 14.9

Φp, [V] 8.6 11.8 19.4 19.7

〈νen〉, [106 s−1] 0.66 0.66 0.7 0.7

〈νt〉, [106 s−1] 2.0 2.0 0.7 0.7

νdif , [106 s−1] n/a 0.09 n/a 0.08

νsgl, [106 s−1] n/a 0.0028 n/a 0.0024

ne , [1011 cm−3] 0.59 0.56 1.26 1.1

γ 0.61 0.59 0.957 0.965

Γ1p , [1021 m−2s−1] 0.1 0.11 0.7 1

Γ1 , [1021 m−2s−1] 0.25 0.24 4.54 5.44

125



• The emission coefficient γ decreases. Because a more isotropic EVDF has lower

energy of electrons in the loss cone, the decrease is insignificant.

• Due to the higher electron temperature T̃x, the flux of plasma bulk particles

(ions and electrons) to the wall increases, in this case, by 10%.

• The loss cone of the EVDF over vx for bulk electrons (line with markers in

Fig. 5.10a) is shifted to higher energies corresponding to the increased plasma

potential. The transition from the EVDF bulk to the loss cone is smoothed.

• The modification of the EVDF over vz is insignificant (see Fig. 5.10b).

• The EVDFs over vx for secondary electron beams (line with markers in Fig. 5.10c

for the beam emitted from the wall x = L) are shifted to higher energies, con-

sistent with the increased plasma potential.

• There is no significant difference between EVDFs over vz for secondary electron

beams in both cases (see Fig. 5.10d).

5.2.4 Coulomb collisions with strong secondary electron emis-

sion

In simulations 7 and 8 of Table 5.2, the electric field Ez is higher than in simulations

5 and 6. The emission coefficient γ is close to unity. In these simulations, the

frequency of “turbulent” collisions was reduced according to the correction due to

the near-wall conductivity effect, as discussed below in Section 6.2. The Coulomb

collisions included in simulation 8 resulted in the following difference from simulation

7, as shown in Table 5.2:

• The degree of anisotropy T̃z/T̃x decreases from 3.03 to 2.25, by 26%.

• The electron temperature T̃x increases by 23%.

• The plasma potential increases insignificantly despite the considerable change

in T̃x, because the growth of the plasma potential is compensated by the in-

creased intensity of secondary electron emission (see the next item).
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• Modification of the plasma potential results in a decreased electron flight time

between the walls, which leads to the increased energy of the secondary electron

beam at the target wall [94] and, correspondingly, to the enhanced emission

coefficient γ (the model of SEE with secondary electron beams is considered

in Chapter 6).

• Since γ is close to unity, a small increase of γ results in significant growth of

the plasma bulk electron flux to the wall Γ1p, by 43%, and the total primary

electron flux Γ1, by 20%.

• The EVDF over vx for bulk electrons with Coulomb collisions (curve with

markers in Fig. 5.11a) has a smoother transition to the loss cone region and

has slightly more particles in this region than the EVDF without Coulomb

collisions (curve without markers in Fig. 5.11a).

• The EVDF over vz for bulk electrons (curve with markers in Fig. 5.11b) has

fewer particles in the high energy tail than the same EVDF without Coulomb

collisions (curve without markers in Fig. 5.11b).

• The EVDFs over vx and vz for secondary electrons changes insignificantly,

mainly due to the increase of the secondary electron current (see Fig. 5.11c

and Fig. 5.11d).

In simulations 5 and 6, the electron energy is lower than in simulations 7 and 8,

but the effect of Coulomb collisions is noticeably stronger for the latter case. The

reason is the greater sensitivity of plasma parameters to the intensity of secondary

electron emission in regimes with γ ≈ 1.

5.3 Electron fluxes to the wall with space charge

limited secondary electron emission

It is instructive to compare the values of the electron flux to the wall, emission

coefficient, and plasma potential obtained in PIC simulations of the Hall thruster
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Figure 5.10: The EVDF over vx (a) and vz (b) for the bulk plasma,
the EVDF over vx (c) and vz (d) for the secondary electron beam emit-
ted from the wall x = 0. All EVDFs are plotted versus energy, with
negative energy values indicating propagation in the negative direc-
tion. Curves without markers correspond to simulation 5 (Coulomb
collisions turned off) and curves with markers correspond to simulation
6 (Coulomb collisions turned on) from Table 5.2. In (a) and (c), the two
vertical lines mark the confinement threshold energies wx = eΦp corre-
sponding to cases 5 (wx = 8.6 eV) and 6 (wx = 11.8 eV). The EVDFs
are calculated in the middle of the plasma 10 mm < x < 15 mm.
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Figure 5.11: The EVDF over vx (a) and vz (b) for the bulk plasma, the
EVDF over vx (c) and vz (d) for the secondary electron beam emitted
from the bottom wall. All EVDFs are plotted versus energy, with neg-
ative energy indicating propagation in the negative direction. Curves
without markers correspond to case 7 (Coulomb collisions turned off)
and curves with markers correspond to case 8 (Coulomb collisions
turned on) from Table 5.2. In (a) and (c), the vertical line wx = 19.7 eV
marks the confinement threshold energy eΦp corresponding to case 8
(case 7 has a close value eΦp = 19.4 eV). The EVDFs are calculated
in the middle of the plasma 10 mm < x < 15 mm.

129



model (see Tables 5.1 and 5.2) with the values obtained for a Maxwellian isotropic

plasma. The electron temperatures of the Maxwellian plasma corresponding to

the EDIPIC simulations can be taken by averaging the effective temperatures as

TM = (T̃x + 2T̃z)/3. Note that for simulations 2, 3, 7, and 8, the average tempera-

ture TM exceeds the critical temperature Tcr = 18.3 eV for boron nitride ceramics,

and the Maxwellian plasma will produce space charge limited SEE. Thus, the model

of the SCL regime of SEE for a Maxwellian plasma is necessary. Previously, similar

model was considered by Schwager [125] in his studies of the plasma layer between

the Maxwellian plasma source and emitting wall. The model described below, in

contrast to Schwager’s approach, (i) considers only the near-wall sheath region and

disregards the interface with the plasma source, (ii) allows for emission due to sec-

ondary electrons reflected back to the wall by the nonmonotonic sheath, (iii) uses

the emission coefficient, which is the realistic function of energy and incidence angle

corresponding to the properties of grade HP boron nitride ceramics.

Consider a semi-infinite, uniform plasma bounded by a secondary electron emit-

ting, dielectric wall. The x axis is directed normal to the boundary and the plasma

occupies the half-space x < 0. The plasma uniformity breaks near the wall, where

the plasma is nonuniform and non-neutral in the sheath. If the emission is in the

non-SCL regime, the charge density distribution in the sheath is qualitatively similar

to that of the case of a non-emitting boundary [74]: the electron density ne(x) is be-

low the ion density ni(x) (see orange and green curves in Fig. 5.12), and the potential

profile in the sheath Φ(x) is monotonic (see the black curve in Fig. 5.12). Far from

the boundary, the potential and the plasma density are constant: lim
x→−∞

Φ(x) = Φp,

lim
x→−∞

ne(x) = np.

Note that the electron wall fluxes can be calculated without knowing the exact

shape of Φ(x). Introduce the EVDF f(vx, vy, vz) at x → −∞ that satisfies the

condition
∞∫
−∞

dvx

∞∫
−∞

dvy

∞∫
−∞

dvzf(vx, vy, vz) = np. With a monotonic potential in the

sheath, the primary electron flux Γ1 (red arrow in Fig. 5.12) is:

Γ1 = Γ1p =

∞∫

v∗

dvxvx

∞∫

−∞

dvy

∞∫

−∞

dvzf(vx, vy, vz) , (5.6)
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Figure 5.12: Qualitative diagrams of wall fluxes for a semi-infinite
plasma bounded by a wall producing secondary electrons in the non
space charge limited regime. The black curve is the potential profile.
The orange and green curves are the profiles of the electron and ion
density, respectively.

where Γ1p is the electron flux to the wall created by plasma bulk electrons, v∗ =

(2eΦp/m)1/2. The primary electron flux (5.6) produces secondary electron flux Γ2

(blue arrow in Fig. 5.12):

Γ2 = Γ2p =

∞∫

v∗

dvxvx

∞∫

−∞

dvy

∞∫

−∞

dvzf(vx, vy, vz)γ(
√

v2
x − 2eΦp/m, vy, vz) , (5.7)

where Γ2p is the secondary electron flux produced by the plasma bulk electrons and

γ(vx, vy, vz) is the emission coefficient of the wall material. The general condition of

zero total current at the dielectric wall is

Γi = Γ1 − Γ2 , (5.8)

where Γi is the ion flux to the wall (green arrow in Fig. 5.12). Assuming a Maxwellian

EVDF f(vx, vy, vz) of temperature Te, and taking the Bohm condition for the ion

flow velocity at the sheath boundary, the ion flux is

Γi = np exp (−1/2)

√
Te

M
.

Provided γ(vx, vy, vz) is known, Eqs. (5.6), (5.7), and (5.8) are sufficient to calculate

the plasma potential Φp and the fluxes Γ1 and Γ2.
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If the emission is in the SCL regime, the electron density near the wall exceeds the

ion density (see the orange and green curves in Fig. 5.13), forming a double charged

layer with a non-monotonic potential profile (see black curve in Fig. 5.13). Denote

the potential at the deepest point of the potential well near the wall as −Φw, where

Φw > 0. The flux Γ1p of plasma electrons to the wall (solid red arrow in Fig. 5.13)

is calculated by Eq. (5.6) with v∗ = [2e(Φp + Φw)/m]1/2. These electrons produce

the secondary electron flux Γ2p (solid blue arrow in Fig. 5.13), which is calculated by

Eq. (5.7) with v∗ redefined as above. The flux Γ2p is directed into the plasma, and

its value (5.7) is calculated exactly at the wall. Part of this flux (the upper dashed

red arrow in Fig. 5.13) is reflected back to the wall by the adjacent potential well.

Introduce the reflection coefficient κ < 1 so that the reflected flux is κΓ2p. If the

emitted electrons have a Maxwellian EVDF f2(vx, vy, vz) with temperature T2, then

the part of the secondary electron flux Γ2p, which penetrates through the potential

well, is Γ2p exp (−eΦw/T2). Therefore, the reflection coefficient is determined by

the depth of the potential well and the secondary electron emission temperature as

follows:

1− κ = exp (−eΦw/T2) . (5.9)

Assume that the secondary electrons that are reflected by the non-monotonic

potential also produce SEE (dashed blue arrow in Fig. 5.13), which is characterized

by the average emission coefficient

γ2 =

vw∫
0

dvxvx

∞∫
−∞

dvy

∞∫
−∞

dvzf2(vx, vy, vz)γ(vx, vy, vz)

vw∫
0

dvxvx

∞∫
−∞

dvy

∞∫
−∞

dvzf2(vx, vy, vz)

, (5.10)

where vw = (2eΦw/m)1/2. Here the distribution of the emitted electrons with |vx| <
vw is used as the distribution of the incident electron flux. Note that

∞∫

0

dvxvx

∞∫

−∞

dvy

∞∫

−∞

dvzf2(vx, vy, vz) = Γ2p .

Assume that the temperature of secondary electrons is independent of whether the

SEE is caused by the plasma bulk electrons or by the reflected secondary electrons.
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plasma bounded by a wall producing secondary electrons in the SCL
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Then the total flux of primary electrons may be written as an infinite convergent

sum of decreasing components (see also Fig. 5.13):

Γ1 = Γ1p + κΓ2p + κγ2(κΓ2p) + κγ2[κγ2(κΓ2p)] + . . . . (5.11)

One can reduce (5.11) to the form:

Γ1 = Γ1p

[
1 +

κγp

1− κγ2

]
, (5.12)

where γp is the average emission coefficient for the plasma bulk electrons

γp =
Γ2p

Γ1p

. (5.13)

Similarly, the total flux of secondary electrons may be written as

Γ2 = Γ2p + γ2(κΓ2p) + γ2[κγ2(κΓ2p)] + γ2{κγ2[κγ2(κΓ2p)]}+ . . . , (5.14)

which reduces to

Γ2 = Γ1pγp

[
1 +

κγ2

1− κγ2

]
. (5.15)

Then the total emission coefficient is

γ =
Γ2

Γ1

=
γp

1 + κ(γp − γ2)
. (5.16)

Following Hobbs and Wesson [75], and Schwager [125], assume that the total

emission coefficient in the SCL regime does not exceed the critical value γcr < 1.

Condition γ = γcr with Eq. 5.16 determine the value of the reflection coefficient

κcr =
γp − γcr

γcr(γp − γ2)
, (5.17)

and, via Eq. 5.9, the depth of the potential well

Φw = −T2

e
ln (1− κcr) . (5.18)

Note that Schwager [125] obtained a different, though similar, expression for the

potential well depth in the case of γ2 = 0:

Φw = −T2

e
ln (γp/γcr) .
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The difference appears because Schwager defined the emission coefficient as the ratio

of the secondary current penetrated through the sheath to the plasma bulk primary

electron current. Hence, in his approach, the penetrated secondary current is limited

to

(1− κcr)Γ2p = γcrΓ1p ,

see Eq. 14 in [125]. In the present model and in simulations with EDIPIC, the

emission coefficient is determined at the wall, in the SCL regime the total primary

current at the wall increases due to the reflection of emitted electrons in order to

limit the total emission coefficient

Γ2p = γcr(Γ1p + κcrΓ2p) ,

which is equivalent to (1 − γcrκcr)Γ2p = γcrΓ1p if γ2 = 0. As a result, the critical

emission coefficient determined at the wall γcr is related to the critical emission

coefficient determined by Schwager behind the minimum of the potential well γSch

as

γcr =
γp

γp + 1− γSch

. (5.19)

The above expression is valid for γ2 = 0 and γp ≥ γSch. Note that γcr = γSch if

γp = γSch, and γcr → 1 if γp →∞.

Eqs. (5.12) and (5.15), together with Eqs. (5.17) and (5.18), combined with

Eq. (5.8), are sufficient to find Φp, Φw, Γ1p, γp, and γ, in the SCL regime, γp > γcr,

without the self-consistent solution of Poisson’s equation (the complete solution can

be found, e.g., in [145, 146]).

Calculation of wall fluxes, plasma potentials, and emission coefficients for Maxwel-

lian plasmas with different electron temperatures was carried out as follows. The

emission produced by the reflected electrons in the SCL regime was neglected,

γ2 = 0. The critical emission coefficient for xenon (in Schwager’s definition) was

γSch = 0.983 calculated by Eq. (1.12). For γp < γSch, Eqs. (5.6) and (5.7) with

v∗ = (2eΦp/m)1/2, and (5.8) were used. For γp > γSch, Eqs. (5.12) and (5.15) with

v∗ = [2e(Φp + Φw)/m]1/2, and Eqs. (5.17), (5.18), (5.8) were used. In the latter

case the required value of γcr was determined from (5.19). The plasma density was
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np = 1017 m−3, the ion mass was M = 131 u, the SEE emission coefficient ap-

proximated the total emission coefficient of boron-nitride ceramics (3.19), and the

temperature of the secondary electrons was the same as the temperature of the true

secondary electron in PIC simulations, T2 = Tt = 2 eV. The results for Maxwellian

plasmas calculated as above are compared with the data of the Hall thruster PIC

simulations in Fig. 5.14.

For a Maxwellian plasma, the primary electron flux due to the plasma electrons

Γ1p increases exponentially as the electron temperature approaches the critical value

Tcr = 18.3 eV, above this threshold the SEE falls into the SCL regime and the

electron flux Γ1p nearly saturates (see black curve in Fig. 5.14a). Transition to the

SCL regime is accompanied by the saturation of the total emission coefficient γ at

the level γSch < γ < 1 (see black curve in Fig. 5.14b). Note that this saturation

occurs due to the reflection of part of the secondary current back to the wall and

the corresponding increase of Γ1, as described by Eq. (5.12). The partial emission

coefficient due to plasma electrons γp defined in (5.13) is not affected by this reflection

and continues its increase while Te > Tcr (see dashed blue curve in Fig. 5.14b).

The plasma potential changes nonmonotonically with the increase of the electron

temperature, it drops considerably when the temperature approaches the transition

threshold of the SCL regime (see black curve in Fig. 5.14c).

Note that the average plasma density in Hall thruster simulations ne is different

from the density np of the Maxwellian plasmas used for the calculations above.

For consistent comparison with Maxwellian plasma, the fluxes in the Hall thruster

simulations have to be multiplied by a factor of np/ne.

The properties of the plasmas in Hall thruster simulations presented in Tables 5.1

and 5.2 are quite different from those of Maxwellian plasmas. Due to the depletion

of the EVDF in the loss cone, the thruster plasmas are characterized by substan-

tially smaller primary electron fluxes than Maxwellian plasmas with corresponding

temperatures. In simulations, the total primary electron flux Γ1 is about 2 − 10

times smaller (compare red markers with black curve in Fig. 5.14a), and the primary

electron flux due to the plasma bulk electrons Γ1p is about 10 − 50 times smaller
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Figure 5.14: Plasma-wall interaction parameters versus the electron
temperature. (a) The black curve is the primary electron flux due
to the plasma electrons Γ1p calculated from the analytical model of a
Maxwellian plasma (5.6); a pair of connected colored markers corre-
sponds to one Hall thruster PIC simulation, here the red vertical cross
is the total primary electron flux Γ1, and the green diagonal cross is
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(b) The black curve is the total emission coefficient γ in the analyt-
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the emission coefficient due to the plasma electrons γp in the analytical
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thruster PIC simulations. (c) The black curve is the plasma potential
relative to the wall Φp obtained in the analytical model of a Maxwellian
plasma from the balance of fluxes (5.8); the red crosses are the values
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numbers 1− 8 denote the simulation number. The vertical dashed red
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(compare green markers with black curve in Fig. 5.14a).

The huge difference between the wall fluxes due to the plasma electrons in Hall

thrusters (green markers in Fig. 5.14a) and in Maxwellian plasmas (black curve in

Fig. 5.14a) is attributed to the secondary electron beams that constitute most of the

primary electron flux in Hall thrusters, this issue is discussed in detail in Chapter 6.

Transition to the SCL SEE regime does not occur even for simulations 2, 3, 7, and

8, where the averaged effective temperature TM exceeds the critical value, TM > Tcr

(the markers in Fig. 5.14b are below the saturation level γ = γcr of the black curve).

The plasma potential in the simulations is usually lower than that of a Maxwellian

plasma because of the anisotropy and the strong depletion of the loss cone, compare

the markers and the black curve in Fig. 5.14c.

5.4 Summary

PIC simulations of the plane geometry model of a Hall thruster reveal that in the

AR the plasma EVDF is non-Maxwellian, anisotropic, and depleted for high energies

normal to the walls.

The anisotropy is largely determined by the high frequency of “turbulent” colli-

sions, which are introduced in order to reproduce the anomalous electron mobility

across the magnetic field. However, in the limit of strong external accelerating fields,

the anisotropy develops even without “turbulent” collisions.

The high-energy tail of the EVDF in the direction normal to the plasma bound-

aries is depleted because the electron mean free path far exceeds the width of the

plasma slab. As a result, the electrons with energy of motion normal to the walls

above the plasma potential quickly leave the plasma, forming a loss cone in velocity

phase space. The loss cone may be largely populated by secondary electrons emitted

from the bounding walls due to SEE. These electrons form two counter-propagating

secondary electron beams.

For electrons in Hall thrusters, the frequency of Coulomb collisions is much

smaller than the frequency of “turbulent” and electron-neutral collisions. As a re-
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sult, the effects of Coulomb collisions on the EVDF are typically weak. Considerable

changes occur when the SEE is close to the SCL regime, γ ≈ 1. For typical Hall

thruster parameters corresponding to this regime, the electron fluxes to the wall

increase by a few tens of percents when Coulomb collisions are included.

The parameters characterizing the interaction of the plasma with the wall (the

electron wall fluxes, the plasma potential relative to the wall, and the emission coef-

ficient) obtained in the PIC simulations of Hall thrusters and calculated analytically

for isotropic Maxwellian plasmas, exhibit different behavior with the increase of the

effective electron temperature.

Due to the depletion of the EVDF in Hall thrusters the primary electron flux is

considerably lower than that in a Maxwellian plasma with corresponding tempera-

ture. The SCL regime of the SEE does not occur in the considered Hall thruster

simulations, even though the averaged effective electron temperature exceeded the

critical value Tcr = 18.3 eV for a Maxwellian plasma.

These results agree with the experimentally observed anomalously high electron

temperature inside the ceramic channel of a Hall thruster [78] and the non-SCL

regime of the sheath [79] at high discharge voltages.
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Chapter 6

Electron dynamics in the model of the

accelerating region of a Hall thruster

As it was discussed in the previous Chapter, the EVDF in the AR of a Hall

thruster significantly deviates from Maxwellian. It is anisotropic – “cold” along

the magnetic field and “hot” in the perpendicular direction – and depleted in the

loss cone. The depleted tail of the EVDF leads to a significant reduction of wall

losses compared to a Maxwellian plasma. The emission coefficient remains below

the critical value (1.12), although the average electron energy of the anisotropic

Hall thruster plasma is much higher than the critical electron temperature for a

Maxwellian plasma. The difference appears because, contrary to the Maxwellian

plasma, the loss cone of the plasma inside the channel of a Hall thruster is largely

populated by the secondary electrons with energy quite different from that of the

plasma bulk electrons. Simulations with the EDIPIC code show that in Hall thrusters

most of secondary electrons emitted from one wall reach the opposite wall, thus

forming two counter-propagating secondary electron beams. These beams modify

the balance of charged particle fluxes at the walls, and therefore, affect the SEE

regime. The secondary electron beams also receive additional energy due to the

E × B motion, which is important because this additional energy is sufficient for

secondary emission.

The assumption that the EVDF in a Hall thruster is Maxwellian is equivalent to

assuming the complete mixing (or trapping) of emitted electrons inside the plasma.
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Recently Ahedo and Parra [147] discussed the effects of partial trapping of secondary

electron beams on the SEE regime in Hall thrusters. They showed that the SCL

regime may not occur if the beam trapping is weak. In their model, the E × B

effects were omitted and the emission due to the secondary electron beams was not

considered.

It was found in simulations with the EDIPIC code that the contribution of the

secondary electron beams to the SEE is significant, especially in strong accelerating

fields, and cannot be neglected. A model of SEE that includes electron production by

the counter-propagating electron beams has been developed. The results of Ref. [147]

can be obtained from the theory presented below in the limit of zero emission for

the secondary electron beams.

The model of SEE in the AR of a Hall thruster is presented in this Chapter. In

Section 6.1, the balance of the electron wall fluxes in the AR is described, allowing

for the SEE due to the secondary electron beams. The details of the derivations

are given in Appendix C. In Section 6.2, the mechanism for the increase of the

secondary electron beam energy and the near-wall conductivity effects are described.

The effects of the two-stream instability on the propagation of the secondary electron

beams through the plasma slab are discussed in Section 6.3.

6.1 Secondary electron emission with counter -

propagating secondary electron beams

In plane geometry, the electron flux to the wall of a Hall thruster channel (or the

primary electron flux) consists of several components. Consider the stationary non-

SCL regime, when the electrostatic potential Φ(x) has maximum Φp = Φ(L/2) in

the midplane x = L/2 and monotonically decreases towards the walls (red curve in

Fig. 6.1b). The plasma bulk electrons with wx − eΦ(x) < 0 are confined by the

plasma potential, but may be scattered to the wall after collision with a neutral

atom if w − eΦ(x) > 0. The primary electron flux created by these electrons is

called henceforth the collision-ejected electron flux, Γ1c. Due to the low frequency
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Figure 6.1: (a) Qualitative diagram of the electron wall fluxes in a
plasma with large MFP bounded by the walls with SEE: red arrows
are the components of the primary electron flux, blue arrows are the
corresponding secondary electron fluxes. (b) Qualitative picture of the
phase plane {x,wx} of the bounded plasma: arrows “b”, “c”, and “w”
depict secondary electron beams, collision-ejected electrons, and weakly
confined electrons, respectively; the red curves are the envelope for the
confined electrons in phase space; the yellow bands are the weakly
confined electrons. In (b) the electrons moving to the right have wx =
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of collisions, the secondary electrons travel between the walls almost freely, forming

two counter-propagating electron beams. The electron flux to the wall created by

the beam of secondary electrons emitted from the opposite wall is called the electron

beam flux, Γ1b. In addition to collisions with neutral atoms, the confined electrons

with energy slightly below the confinement threshold, wx − eΦ(x) ≈ 0, may be

accelerated by plasma waves excited by the secondary electron beams. In the velocity

phase space, such electrons form the narrow boundary layer between the secondary

electrons accelerated by the plasma potential and the plasma bulk electrons deeply

confined by the plasma potential (see yellow bands in Fig. 6.1b). Although the

number of these weakly confined electrons is small compared to the total number

of electrons in plasma, they need only a small perturbation of motion to leave the

plasma, which is why they create a noticeable electron flux to the wall. The primary

electron flux due to the electrons accelerated by plasma waves is called the weakly

confined electron flux, Γ1w.

The total primary electron flux Γ1 is expressed via the three components as

Γ1 = Γ1b + Γ1c + Γ1w .

The three components of the electron flux to the wall produce respective parts of

the secondary electron flux, so that the total secondary electron flux Γ2 is

Γ2 = Γ2b + Γ2c + Γ2w .

where Γ2b, Γ2c, and Γ2w are the secondary electron fluxes due to the beam elec-

trons, the collision-ejected electrons, and the weakly confined electrons, respectively

(see the flux diagram in Fig.6.1a). One can introduce partial emission coefficients

corresponding to the three components of the primary electron flux as follows:

γb =
Γ2b

Γ1b

, γc =
Γ2c

Γ1c

, γw =
Γ2w

Γ1w

.

A secondary electron beam is emitted at the source wall with the current Γ2.

Some secondary electrons may be decelerated in the direction normal to the walls

(see Section 6.3) and be trapped by the plasma potential. As a result, at the other
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(target) wall the electron beam current is Γ1b < Γ2.
1 Quantitatively, the reduction of

the secondary electron beam current is characterized by the coefficient of penetration

of the secondary electron beam

α =
Γ1b

Γ2

.

With the fluxes and partial emission coefficients defined as above, one obtains a

total emission coefficient γ = Γ2/Γ1 in the form

γ =
γp

1 + α(γp − γb)
, (6.1)

where

γp =
Γ1c + Γ1w

Γ1c + Γ1w

=
γc + γwΓ1w/Γ1c

1 + Γ1w/Γ1c

, (6.2)

is the collective emission coefficient due to all plasma bulk electrons, both collision-

ejected and weakly confined. Similarly, one can find the ratio of primary electron

fluxes due to the beam and bulk electrons:

Γ1b

Γ1p

=
αγp

1− αγb

, (6.3)

where Γ1p = Γ1c + Γ1w is the collective primary electron flux due to all plasma bulk

electrons, both collision-ejected and weakly confined. The details of the derivation

of (6.1) and (6.3) are presented in Appendix C.

Eqs. (6.1) and (6.3) describe the stationary non-SCL SEE in the plane geometry

model of a Hall thruster. In general, the emission produced by the plasma bulk and

beam electrons depends on the energy of these groups of electrons. Thus, the total

emission coefficient (6.1), which determines the regime of the SEE and the sheath

potential profile, depends not only on the energy of the plasma bulk electrons, but

also on the energy of the secondary electron beams and on the degree of penetration

of these beams through the plasma slab. If γb < γp then γ < γp, i.e., the emission

weakens in presence of the low energy secondary electron beams. In the limit α → 0,

the total emission coefficient (6.1) becomes equal to the collective emission coefficient

of plasma bulk electrons, γ → γp. Eq. (6.3) states that the ratio of the primary

1Both bounding walls in Hall thruster simulations produce secondary electrons. Each of these
walls are simultaneously a source and a target.
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electron fluxes created by the beams and the plasma bulk electrons is determined, in

fact, by the flux energies and the coefficient of beam penetration. It is important to

know this ratio because, in presence of the secondary electron beams, the total flux

of particles and energy to the wall (∼ Γ1p + Γ1b) is different from the losses of the

confined plasma (∼ Γ1p). If αγb ∼ 1, then Γ1b/Γ1p À 1 and the major part of the

total primary electron flux is created by the secondary electron beams. In the limit

α → 0, the electron beam flux becomes zero. Eqs. (6.1) and (6.3) are meaningful

only if αγb < 1, otherwise the stationary non-SCL SEE is not possible.

In simulations with EDIPIC, various parameters of the three components of the

primary electron flux are traced. For simulations 1-8 of Tables 5.1 and 5.2, the values

of energy Wb,c,w, emission coefficient γb,c,w, and flux Γ1b,c,w of the three components

of primary electron flux are given in Table 6.1, as well as the collective plasma bulk

values γp, Γ1p and the beam penetration coefficient α. The total emission coefficient γ

is determined by diagnostics included in the EDIPIC code, the ratio Γ1b/Γ1p must be

calculated using the flux data output. Note that when α, γp, and γb are known, one

can use Eqs. (6.1) and (6.3) to calculate the values of the total emission coefficient

and the flux ratio, which provides an extra check for the model.

In Table 6.1, the values of the total emission coefficient γ obtained directly in the

simulations are given together with the corresponding values calculated by Eq. (6.1)

and denoted as (γ)calc. There is very good agreement between γ and (γ)calc; the

difference does not exceed 2.9%. The flux ratio Γ1b/Γ1p calculated via the flux values

is given together with the corresponding ratio calculated by Eq. (6.3) and denoted

as (Γ1b/Γ1p)calc. Both values of the ratio agree well with each other; the relative

difference does not exceed 4.2% (see Table 6.1). Thus, the developed model of the

balance of electron fluxes towards the walls of a Hall thruster channel is confirmed

by the PIC simulations.

The SCL SEE regime is established if γ > γcr, and with (6.1) the criterion of the

SCL regime is

γp > γp,cr(γb, α) = γcr
1− αγb

1− αγcr

, (6.4)

where γp,cr(γb, α) is introduced as the threshold value of the collective emission co-
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efficient for plasma bulk electrons corresponding to the SCL SEE regime for given

secondary electron beam parameters α and γb. If αγb ¿ 1 while αγcr ∼ 1, the

criterion (6.4) may be satisfied and the SCL SEE may occur only for γp À γcr. Note

that γp is a function of several parameters itself. It is instructive to introduce the

threshold value of the emission coefficient for collision-ejected electrons using (6.2)

and (6.4) as follows:

γc,cr(γw, Γ1w, Γ1c, γb, α) = γw
Γ1w

Γ1c

+ γcr
1− αγb

1− αγcr

(
1 +

Γ1w

Γ1c

)
. (6.5)

Then the SCL SEE regime occurs if γc > γc,cr.

The partial emission coefficients γb, γc, and γw depend on the corresponding

electron energy at the moment of impact with the wall: Wb, Wc and Ww. The values

of energy and emission coefficient of the three components of primary electron flux

may be essentially different from each other (see Table 6.1).

The secondary electrons acquire additional energy while moving in the crossed

electric Ez and magnetic Bx fields. This process is discussed below, in Section 6.2.

The collision-ejected electrons usually perform several “turbulent” collisions be-

fore they are scattered to the wall by a collision with a neutral atom, as described

in Section 5.1.2. The average energy of the collision-ejected electrons, Wc, is propor-

tional to the effective temperature in parallel direction T̃z. This energy may be large

and the corresponding partial emission coefficient γc may substantially exceed unity

(see Table 6.1).

The weakly confined electrons come from the region of the EVDF with wx ≤ eΦp,

which is populated mostly by the former secondary electrons slowed down due to the

two-stream instability, as described in Section 6.3. The lifetime of these electrons

inside the plasma is usually much shorter than the time between collisions (νen+νt)
−1,

which results in Ww ¿ Wc and γw ¿ γc. As a result, both the average energy

and the emission coefficient of the weakly confined electrons are much smaller than

those of the collision-ejected bulk electrons, and the collective plasma bulk emission

coefficient γp determined by Eq. (6.2) is lower than the emission coefficient of the

collision-ejected electrons γc (see Table 6.1).

146



Table 6.1: Plasma-wall interaction parameters for the simulations
described in Tables 5.1 and 5.2. Comparison of the values found directly
from simulations, γ and Γ1b/Γ1p, with the values (γ)calc and (Γ1b/Γ1p)calc

calculated by Eqs. (6.1) and (6.3).

Number 1 2 3 4 5 6 7 8

W2, [eV] 10.8 11.5 11.2 9.5 10.8 10.5 11.6 11.5

Wb, [eV] 13.8 35.46 35.3 10.5 12.5 12.4 34.8 35.9

Wc, [eV] 57.6 99.1 53.1 8.2 22 22 107 94.6

Ww, [eV] 21.8 21 24.9 5.3 12.6 14.1 31.3 32.2

γb 0.55 0.961 0.974 0.544 0.545 0.562 0.941 0.969

γc 1.18 1.53 1.17 0.44 0.74 0.73 1.59 1.5

γw 0.62 0.65 0.777 0.288 0.49 0.515 0.75 0.8

γp 0.976 1.022 0.915 0.400 0.690 0.610 1.029 0.936

γp,cr 2.845 1.144 1.051 6.703 5.767 4.497 1.279 1.056

γc,cr 4.120 1.818 1.558 8.982 7.087 9.562 2.340 2.119

Γ1b , [1020 m−2s−1] 5.2 179 88.9 0.77 1.37 1.29 38.3 44.5

Γ1c , [1020 m−2s−1] 2.2 11.5 4.8 0.76 0.84 0.5 2.34 1.93

Γ1w , [1020 m−2s−1] 1.26 15.7 8.9 0.27 0.21 0.636 4.7 8

Γ1p , [1020 m−2s−1] 3.46 27.2 13.7 1.03 1.05 1.14 7.04 9.93

α 0.825 0.895 0.898 0.945 0.932 0.908 0.891 0.854

γ 0.722 0.971 0.967 0.45 0.61 0.59 0.957 0.965

(γ)calc 0.722 0.969 0.966 0.463 0.608 0.584 0.954 0.963

Γ1b/Γ1p 1.50 6.58 6.49 0.75 1.30 1.14 5.44 4.48

(Γ1b/Γ1p)calc 1.48 6.54 6.55 0.78 1.31 1.13 5.66 4.64
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Note, that simulations 2 and 7 have γp > 1, while the total emission coefficient is

below the SCL SEE threshold, γ < γcr. For all simulations, criteria (6.4) and (6.5)

are not satisfied, γp < γp,cr and γc < γc,cr (see Table 6.1).

6.2 Dynamics of secondary electron beams in crossed

electric and magnetic fields

PIC simulations of thruster plasmas show that the energy of emitted secondary

electrons at the moment when they hit the target wall is typically higher than the

initial energy of emission. To understand the mechanism of this energy increase,

consider a secondary electron emitted from the wall x = 0 with initial velocity

components (vx0, vy0, vz0). Note that electrons emitted from the wall x = L and

propagating towards the wall x = 0 can be treated similarly. The equations of

motion of the electron are
d

dt
vx =

e

m

∂

∂x
Φ(x) , (6.6)

d

dt
vy = −ωcvz ,

d

dt
vz = − e

m
Ez + ωcvy , (6.7)

where ωc = eBx/m is the electron cyclotron frequency. Along the x direction (nor-

mal to the walls) the electron is accelerated and decelerated by the gradient of the

electrostatic potential Φ(x). Eq. (6.6) has an integral of motion mv2
x/2 − eΦ(x) =

mv2
x0/2 = const, which allows the vx velocity to be expressed as a function of the

x coordinate [here it is assumed that Φ(0) = 0]. Then, for a given potential profile

Φ(x), the electron flight time between the origin and the point with coordinate x

can be expressed as the following function of x and vx0:

τ(x, vx0) =

∫ x

0

dx′

vx(x′)
=

∫ x

0

dx′
[
v2

x0 +
2eΦ(x′)

m

]−1/2

. (6.8)

The solution of Eqs. 6.7 is

vy(t) = Vdr + v⊥0 cos (ωct + φ) ,

vz(t) = v⊥0 sin (ωct + φ) ,
(6.9)
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ted from the wall x = 0 with zero transverse energy v2
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z0 = 0. Point

A is the start, point B is the end of the trajectory. The walls are at
x = 0 and x = 25 mm.

where Vdr = Ez/Bx is the velocity of the E×B drift, v⊥0 = [v2
z0+(vy0−Vdr)

2]1/2, and

tan φ = vz0/(vy0 − Vdr). Eqs. (6.9) describe rotation in the y-z plane with frequency

ωc and drift in the y direction with velocity Vdr. The electron trajectory in phase

space {x, vy, vz} is a spiral, as seen in Fig. 6.2. Combining (6.9) with (6.8) one

obtains the energy wb of the electron at point x:

wb(x, vx0, vy0, vz0) =
m(v2

x0 + v2
y0 + v2

z0)

2
+ eΦ(x) + mV 2

dr

+ mV 2
dr

{
v⊥0

Vdr

cos [ωcτ(x, vx0) + φ]− vy0

Vdr

}
.

(6.10)

The external parameters that affect the energy wb are (i) the electric Ez and magnetic

Bx fields that determine the drift velocity Vdr, and (ii) the potential profile Φ(x) that

affects the electron flight time τ .

Introduce f2(vx, vy, vz) – the initial velocity distribution function of the emitted
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secondary electrons. Neglecting the loss of the secondary electron beam current

between the walls (associated with the two-stream instability, see Section 6.3), the

average energy Wb(x) of the secondary electron beam at the point with coordinate

x may be calculated by averaging over the initial beam flux, as follows:

Wb(x) =

∞∫
0

dvx

∞∫
−∞

dvy

∞∫
−∞

dvzvxwb(x, vx, vy, vz)f2(vx, vy, vz)

∞∫
0

dvx

∞∫
−∞

dvy

∞∫
−∞

dvzvxf2(vx, vy, vz)

= W2 + eΦ(x) + mV 2
dr + Wb,osc(x) .

(6.11)

Here

W2 =

∞∫
0

dvx

∞∫
−∞

dvy

∞∫
−∞

dvzvx

[
m(v2

x + v2
y + v2

z)/2
]
f2(vx, vy, vz)

∞∫
0

dvx

∞∫
−∞

dvy

∞∫
−∞

dvzvxf2(vx, vy, vz)

is the average energy of emission, and

Wb,osc(x) = −mV 2
dr

∞∫
0

dvx

∞∫
−∞

dvy

∞∫
−∞

dvzvx cos [ωcτ(x, vx)]f2(vx, vy, vz)

∞∫
0

dvx

∞∫
−∞

dvy

∞∫
−∞

dvzvxf2(vx, vy, vz)

≡ −mV 2
dr 〈cos [ωcτ(x, vx)]〉

(6.12)

is the component that depends on the cyclotron rotation phase ωcτ(x, vx) of each

particle and oscillates in space, 〈...〉 means averaging over the flux at the point x.

Thus, the average beam energy (6.11) contains a constant part W2 + mV 2
dr, the

contribution from the plasma potential eΦ(x), and an oscillating part Wb,osc. An

example of the secondary electron beam energy profile Wb(x) obtained in simulation

7 of Table 6.1 is presented by curve 2 in Fig. 6.3a.

At the target wall, the contribution from the plasma potential to the beam energy

vanishes, Φ(L) = 0 (see curve 1 in Fig. 6.3a). As discussed later, the oscillating part

at the wall is zero as well, Wb,osc(L) ≈ 0 (see Fig. 6.3b). The contribution of the

drift energy mV 2
dr to the constant part of the beam energy (6.11) may be significant.

This part determines the intensity of the SEE produced by the electron beam. The

values of Wb at the wall x = L and W2 for the beam emitted at x = 0 are given in
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Table 6.1. For simulations 2, 3, 7, and 8, the external fields are Ez = 200 V/cm and

Bx = 100 G, the drift velocity is Vdr = 2 · 106 m/s, the average additional energy

due to the drift motion mV 2
dr/e = 22.8 eV À W2, and Wb ≈ W2 + mV 2

dr À W2.

As a result, for these simulations the secondary electron beams produce SEE with

the partial emission coefficient in the range γb = 0.94 − 0.97. For simulations 1, 4,

5, and 6, the electric field and the drift velocity are about four times smaller than

above, so that the average additional energy is mV 2
dr/e ∼ 1 eV ¿ W2, Wb ≈ W2,

and γb = 0.54− 0.56.

The oscillating part Wb,osc plays an active role in formation of the stationary

plasma state, prohibiting certain states and permitting others. It is reasonable to

assume that γb = γb(Wb) and that dγb/dWb > 0, here Wb ≡ Wb(L). Then, one may

show that the stationary state must satisfy the following criterion

〈
−mV 2

dr

d

dτ
cos [ωcτ(x, vx)]

〉∣∣∣∣
x=L

< 0 . (6.13)

The criterion above is, in fact, the result of differentiation of the oscillating energy

(6.12) with respect to the flight time of the beam electrons.

Consider a plasma with a small perturbation of the amplitude Φp of the potential

profile Φ(x). If criterion (6.13) is satisfied, then the variation of the plasma potential

modifies the total beam energy Wb(L) [via the electron flight times τ and the oscil-

lating part Wb,osc(L)] such that the variation of the emission coefficient γ [via γb, see

(6.1)] compensates the plasma potential variation [75] (see left flowchart in Fig. 6.4

for a positive potential perturbation). The state, which does not satisfy criterion

(6.13), is unstable, because the modification of the emission coefficient amplifies the

perturbation of the plasma potential (see right flowchart in Fig. 6.4).

The form (6.13) of the stability criterion is exact, but it contains derivatives with

respect to the flight time of electrons with different energies and is difficult to analyze.

It is instructive to introduce a simplified criterion, where the individual flight times

are replaced with the average electron flight time. Most secondary electrons have

close values of the flight time because (i) they are emitted with an initial energy

much lower than the energy provided by the plasma potential, and (ii) the plasma
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Figure 6.4: Qualitative flowchart of the plasma response to a small
positive perturbation of plasma potential. Left column – perturbation
is compensated by the increased emission if criterion (6.13) is satisfied.
Right column – perturbation is amplified by the decreased emission if
criterion (6.13) is not satisfied.
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gap is narrow. If the average electron flight time TL is defined as

cos ωcTL = 〈cos [ωcτ(x, vx)]〉|x=L ,

then the oscillating part of the beam energy at the target wall (6.12) is

Wb,osc(L) = −mV 2
dr cos (ωcTL) . (6.14)

With the average electron flight time introduced as above, the simplified stability

criterion is
dWb,osc(L)

dTL

< 0 , or ωcmV 2
dr sin (ωcTL) < 0 . (6.15)

Similar to (6.13), criterion (6.15) states that, in the stationary state, variations of

the average electron flight time (increase or decrease) cause opposite variations of

the beam energy (decrease or increase, respectively). The most probable stable

states correspond to the minima of the derivative in (6.15) and are attained when

sin(ωcTL) = −1:

ωcTL = (2n + 3/2)π, n = 0, 1, . . . . (6.16)

Thus, the stationary potential profile must ensure that the emitted electrons, on av-

erage, perform some number of full rotations and 3/4 of a rotation during their flight

between the walls. In particular, the electron in Fig. 6.2 performs 23
4

rotations, the

profile of the oscillating energy in Fig. 6.3b has 23
4

periods, both figures correspond

to the same simulation. Substituting (6.16) into (6.14), one obtains that at the sta-

tionary state the oscillating part of beam energy at the wall is zero, Wb,osc(L) = 0,

which is confirmed by Fig. 6.3b.

Note that the electron flight time depends on the distance between the walls L.

Modification of L changes the range of stable parameters. Recently, it was observed

that the channel width had a strong effect on thruster operation [80], which may be

related to the dependence of the secondary electron beam energy on the width of

the channel.

Scattering of electrons by the wall is commonly considered as a source of the

increased electron mobility across the magnetic field in Hall thrusters. This is the

so-called near-wall conductivity (NWC) effect, described, e.g., in Ref. [68]. The NWC
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Figure 6.5: The near-wall conductivity effect. (a) The total primary
electron flux Γ1 to the wall x = L versus time. (b) The average electron
flow velocity vz versus time, arrow 1 marks the value of the flow velocity
due to collisions with neutral atoms and turbulent collisions, arrow
2 marks the value of the flow velocity allowing for the electron-wall
collisions. (c) The profile of the electron current density Jz(x). The
walls are at x = 0 and at x = 25 mm. The results are obtained from
simulation 7 of Table 6.1.
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effect is observed in simulations with the EDIPIC code. In Fig. 6.5b, the temporal

evolution of the electron flow velocity in the z direction

vz = L−1

∫ L

0

dx

∫
d3vvzf(vx, vy, vz, x) ,

where f(vx, vy, vz, x) is the plasma EVDF, is presented for simulation 7 of Table 6.1.

The simulation starts with the plasma occupying the region 0.05L < x < 0.95L.

At the initial stage 0 < t < 0.5 µs, until the ion background reaches the walls, the

electron flux to the wall is small (see Fig. 6.5a). At this stage the electron mobility

is determined mostly by collisions with neutral atoms and “turbulent” collisions, the

corresponding electron flow velocity is

vz =
e(νt + νen)

m[(νt + νen)2 + ω2
c ]

Ez .

The value vz calculated by the above expression with νen, νt, and Ez of simulation

7 from Table 5.2 is presented by arrow 1 in Fig. 6.5b and corresponds well to the

actual value of electron flow velocity (the red curve). After the ions reach the wall,

at t > 0.5 µs, both the electron flux to the wall (see Fig.6.5a) and the electron flow

velocity (see Fig.6.5b) increase significantly. Introducing the frequency of electron-

wall collisions as

νw =
2Γ1

neL
(6.17)

and using νeff = νt+νen+νw as the effective frequency for calculation of the electron

flow velocity, one obtains the increased value marked by arrow 2 in Fig. 6.5b. Note

that this simple estimation produces a value close to the actual electron flow velocity

in simulations that include the strong NWC effect.

It is interesting that the profile of the electron current Jz(x) is modulated (see

Fig. 6.5c) as it was predicted in Ref. [68]. The modulated current profile is formed by

the counter-propagating secondary electron beams that rotate around the magnetic

force lines. Note that the number of positive half-periods of the current profile

Jz(x) in Fig. 6.5c exceeds the number of the negative half-periods (three to two).

It is evident that if the secondary electron beams performed an integer number of

rotations, then the number of positive and negative half-periods of the current profile
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would have been equal to each other and the total current due to the NWC effect

would have been zero. If such a situation was possible, then the strong emission

would have been combined with low axial electron mobility, modifying the regimes

of a Hall thruster operation at high voltages [79]. However, the condition (6.16) on

the electron flight time in a steady state prohibits an integer number of rotations

and ensures that the NWC effect will contribute to the axial electron mobility as

long as the wall collision frequency is sufficiently large, νw ≥ νt + νen.

6.3 Penetration of an electron beam through a

non-Maxwellian plasma slab

In Section 6.1, the coefficient of the secondary electron beam penetration α was

introduced phenomenologically as the ratio of the beam current reaching the wall

to the current emitted from the opposite wall. In PIC simulations, the penetration

coefficient is usually high, α = 80 − 90% (see Table 6.1), even at high emission

currents. The process of the penetration of the electron beam through the plasma

slab is discussed below.

Due to the low frequency of collisions with neutral atoms, the main mechanism

that decreases the energy of beam electrons and the beam current through the plasma

is the two-stream instability [129, 130]. Consider simulation 2 of Tables 6.1 and 5.1,

where the penetration coefficient is α = 0.895. In the midplane x = L/2, the plasma

density is ne = 4.2 · 1017 m−3, the plasma potential is Φp = 22 V, and therefore,

the beam velocity is vb = 2.7 · 106 m/s (here the initial energy of beam emission is

neglected compared to the energy acquired from the plasma potential). With these

parameters, the beam density is nb = Γ1b/vb = 7.4 · 1015 m−3 and the relative beam

density is nb/ne = 0.018.

The EVDF over vx of the beam emitted at x = 0 is represented by curve 3 in

Fig. 5.5a. The beam has significant velocity dispersion, ∆vb/vb ≈ (Tt/eΦp)
1/2 ≈ 0.3,

where Tt = 2 eV is the temperature of the true secondary electrons (the major com-

ponent of the emitted current). Since (nb/ne)
1/3 ≈ 0.26 ∼ ∆vb/vb, the beam cannot
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Figure 6.6: For simulation 2 of Table 6.1, the phase plane {x,wx} of
the secondary electron beam emitted from the wall x = 0. The other
wall is at x = 25 mm. Red points mark the beam particles, the blue
line is the plasma potential profile averaged over the plasma period.
The phase plane is obtained at t = 6.83 µs.

be considered as a cold one [1] and the growth rate of the instability is much smaller

than the growth rate of the instability of a cold beam γcold = 31/22−4/3(nb/ne)
1/3ωp ≈

0.18ωp. The phase plane {x, vx} of the secondary electron beam emitted from the

wall x = 0 (see Fig. 6.6) shows that a small number of beam electrons lose energy

(signified by the “threads” with a period of about λ = 0.3 mm), however, trapping

of the beam particles by the excited electrostatic wave does not occur (the “threads”

do not exhibit twisting). The instability does not develop into the nonlinear stage,

and the number of beam particles with energy wx below the local value of potential

eΦ(x) (these particles cannot penetrate through the sheath near the target wall) is

much smaller than the number of particles with wx > eΦ(x).

The criterion of plasma stability with respect to the two-stream instabilities is
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the decreasing EVDF [134]:

∂

∂(v2)
f(v) < 0 for all v . (6.18)

For the considered case, although the two-dimensional distribution fxz(vx, vz) =
∫∞
−∞ dvyf(vx, vy, vz) presented in Fig. 5.5 is nonmonotonic, the total EVDF over

velocity normal to the walls fx(vx) =
∫∞
−∞ dvy

∫∞
−∞ dvzf(vx, vy, vz) is very close to the

stability condition (6.18) (red curve in Fig. 6.7a). The total EVDF is a decreasing

function of vx because of the non-Maxwellian EVDF of the plasma bulk electrons,

which is depleted in the loss cone wx > eΦp but “enriched” in the weakly confined

zone eΦp > wx > e(Φp − ∆Φ), where ∆Φ ¿ Φp (blue curve in Fig. 6.7a). If one

takes a Maxwellian EVDF for the bulk electrons with the same electron temperature

as the effective electron temperature T̃x found for the thruster plasma (blue curve in

Fig. 6.7b), and combines it with the secondary electron beam EVDF (green curve in

Fig. 6.7b, identical to that in Fig. 6.7a), then the total EVDF will have an increasing

part (red curve in Fig. 6.7b) and may produce a strong two-stream instability.

The “enrichment” of the EVDF by the weakly-confined electrons is important for

good beam penetration. This “enrichment” occurs similar to the formation of the

plateau on the EVDF at the non-linear saturation stage of the two-stream instabil-

ity [1]. To study the modification of the bulk EVDF during the beam propagation

through the plasma slab, the symmetric injection of electron beams with constant

current into the bounded plasma has been simulated in the following way. Initially,

a uniform Maxwellian plasma occupies the whole space 0 < x < L, boundaries

x = 0 and x = L have fixed potential Φ = 0 and absorb electrons. No external

fields are applied. It is assumed that the plasma is collisionless and the ions form

a uniform immobile background. The initial plasma parameters are close to that

of plasmas in Hall thruster simulations – the plasma density is ne = 1017 m−3, the

initial electron temperature is Te0 = 10 eV, and the system width is L = 2.5 cm.

After the system is released, the electrons with the highest energy leave the system,

the narrow sheath regions form at the boundaries, and the plasma acquires some

potential Φp (see Fig. 6.8b for t < 20 ns). The potential Φ(x) is uniform outside of
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Figure 6.7: (a) The EVDF over velocity normal to the walls for all
electrons (the red curve), for plasma bulk electrons (the blue curve),
and for the secondary electron beam emitted from the wall x = 0
(the green curve); the EVDFs are obtained in the midplane for case
2 of Table 5.1. (b) The blue curve is the Maxwellian EVDF with
temperature Te = 12.3 eV equal to the effective electron temperature
T̃x in case 2 of Table 5.1; the green curve is the EVDF of the secondary
electron beam, identical to that in figure (a); the red curve is the total
EVDF formed by the Maxwellian and the beam EVDFs. The velocity
is given in units of vth,e = (2eTe0/m)1/2, where Te0 = 53 eV is the initial
electron temperature in simulation 2 of Table 5.1.
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Figure 6.8: Simulation of the symmetric injection of constant electron
current into a collisionless Maxwellian plasma slab with immobile ions.
(a) Curve 1 is the electron flux emitted at wall x = 0 versus time, curve
2 is the corresponding penetrated flux detected at the boundary x = L.
(b) The plasma potential in the midplane versus time. The electron
injection is started at t = 20 ns.

the sheath regions, it has a Π-shaped profile. The EVDF is a cutoff Maxwellian, with

|vx| < (2eΦp/m)1/2. After 20 nanoseconds of system evolution, the symmetric injec-

tion of electrons with constant current is started from both boundaries (see curve 1

in Fig. 6.8a). The electrons are injected normal to the walls, with a half-Maxwellian

EVDF of temperature Tb = 2 eV (the true SEE component in Hall thruster sim-

ulations has the same temperature). The injection decreases the plasma potential

(see Fig. 6.8b) for t > 20 ns, similar to the SEE effect. The injected electrons are

accelerated by the drop of potential across the narrow sheath and then propagate

through the plasma slab. Eventually, at each boundary the current of the electrons

emitted from the opposite boundary is registered (see curve 2 in Fig. 6.8a).

At first, after the injection is started, the bulk EVDF remains a cutoff Maxwellian

(blue curve in Fig. 6.9a), with the cutoff velocity corresponding to the new plasma

potential. The total EVDF (red curve in Fig. 6.9a) does not satisfy stability criterion

(6.18). Thus, the two-stream instability develops, many beam electrons are slowed

down by the excited electrostatic wave and cannot penetrate through the sheath

161



at the target wall, the average beam penetration is low, about 50% (Fig. 6.8a for

27 ns < t < 50 ns). The slowed down beam electrons become part of the group

of weakly confined electrons. Accumulation of these electrons results in the total

EVDF, which nearly satisfies stability criterion (6.18) (red curve in Fig. 6.9b). Then

the two-stream instability weakens and the beam penetration increases (Fig. 6.8a

for t > 80 ns). Note that the plasma bulk EVDF (blue curve in Fig. 6.9b) at the

stage of enhanced beam penetration deviates from the Maxwellian EVDF (dashed

magenta curve in Fig. 6.9b) for 1.2vth,e < vx < 1.45vth,e.

In the simulation described above, the relative electron density is nb/n0 = 0.01

and the beam penetration coefficient is about α = 0.66, which is lower than in Hall

thruster simulation 2 of Table 6.1, where the value of beam penetration is α = 0.895

for a more dense beam nb/n0 = 0.018. The two-stream instability is strong in

simulations with constant injection and immobile ions because in such simulations

(i) the beam accelerates only in the narrow sheath region, and (ii) the beam interacts

with a uniform plasma, which maintains the resonance between the beam and excited

wave and supports the instability. In Hall thruster simulations, the ions are mobile,

so the plasma density and the electrostatic potential are not uniform across any

portion of the plasma gap, which disturbs the resonance between the beam particles

and the wave and suppresses the instability [148]. In such simulations, the width

of the region in the midplane, where the plasma potential and the plasma density

may be considered uniform, is typically about L/3 (see Fig. 6.6), i.e., less than 1 cm.

One-dimensional simulations of the two-stream instability with periodic boundary

conditions were undertaken to find (i) the distance a half-Maxwellian beam can travel

before it loses part of its current, and (ii) its final current loss. These simulations

are described below.

The simulated system consists of a plasma and an electron beam. Initially, the

plasma electrons of density ne have a cutoff Maxwellian velocity distribution function:

fp(vx) =
ne

N
exp

(
−mv2

x/2

Te

)
,
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Figure 6.9: Simulation of the symmetric injection of constant electron
current into a collisionless Maxwellian plasma slab with immobile ions.
(a) The EVDF over velocity normal to the walls for all electrons (red
curve), for plasma bulk electrons (blue curve), and for the injected
electron beam emitted from the wall x = 0 (green curve) at the moment
t = 27 ns. (b) Same as above, at the moment t = 90 ns. The EVDFs
are averaged over the region 1 mm < x < 2 mm. The velocity is given
in units of vth,e = (2Te0/m)1/2, where Te0 = 10 eV is the initial electron
temperature. The dashed magenta line is the Maxwellian EVDF with
temperature Te0.
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Figure 6.10: Simulations with periodic boundaries of propagation of
a half-Maxwellian electron beam through a cutoff Maxwellian plasma.
(a) The cutoff energy (the minimal initial energy of beam particles)
versus the relative density of the electron beam. (b) Temporal evolution
of the penetration coefficient calculated by (6.19), curves 1, 2, and 3
correspond to the relative beam densities nb/n0 = 0.0016, 0.0064, and
0.099. (c) The length of beam relaxation versus the relative beam
density. (d) The length of beam relaxation versus the initial beam
flux. The dashed line in (c) and (d) marks L = 2.5 cm – the width
of the plasma gap in Hall thruster simulations. The plasma density
ne = 1017 m−3, the plasma temperature Te = 10 eV, and the beam
temperature Tb = 2 eV.
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where |vx| < v0, v0 is the cutoff velocity, Te is the electron temperature, and

N =

∫ v0

−v0

dvx exp

(
−mv2

x/2

Te

)
.

The EVDF of the electron beam of density nb is

fb0(vx) = nb

(
2m

πTb

)1/2

exp

(
−mv2

x/2−W0

Tb

)
,

where vx > v0, mv2
0/2 = W0, and Tb is the beam temperature. The plasma tem-

perature is Te = 10 eV and the beam temperature is Tb = 2 eV. The cutoff energy

W0 equals the plasma potential eΦp that forms in the simulation with immobile

ions and two symmetrically injected constant current electron beams with the same

relative beam density nb/np. This energy decreases for beams with higher density,

as shown in Fig. 6.10a. The period of the system is chosen much larger than the

plasma wavelength, L = 2 cm, L À 2πv0/ωp, to decrease the effects of longitudi-

nal wavenumber detuning on the instability. The ions form an immobile uniform

background with density np + nb. No external fields are applied. The plasma is col-

lisionless. During the evolution of the system, the two-stream instability develops,

some of the beam electrons lose energy and the beam EVDF fb(vx) deviates from

the initial form fb0(vx). The coefficient of beam penetration in this case is defined as

the ratio of the current Γpass of beam electrons with energy wx > W0 to the initial

beam current Γ0:

α =
Γpass

Γ0

=

∫∞
v0

dvxvxfb(vx)∫∞
v0

dvxvxfb0(vx)
. (6.19)

In simulations, the beam energy loss and current reduction occur in two stages

(see Fig. 6.10b). Most of the current reduction takes place in the first stage. Dur-

ing the much longer second stage, the current Γpass decreases insignificantly, slowly

approaching a stationary value. The first stage finishes at the moment t1, when

trapping of the beam particles by the excited electrostatic wave begins. The length

of the beam relaxation Lb is introduced as the distance the beam travels until the

particle trapping begins. The value of t1 is obtained directly in simulations (see

Fig. 6.10b), from which the beam relaxation length is calculated as Lb = v0t1. In

Figs. 6.10c and d, the length of the beam relaxation is given as a function of the
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electron beam density and current, respectively. One can see that for nb/np < 0.01,

i.e., for Γ0 < 3 ·1021 s−1m−2 with np = 1017 m−3, the beam relaxation length exceeds

the width of the plasma gap L = 2.5 cm in Hall thrusters. In simulations with typical

Hall thruster parameters, presented in Table 6.1, the relative density of secondary

electron beams in the midplane is nb/np < 0.02. The corresponding beam relaxation

length Lb exceeds the width of the middle quasi-uniform region, which is about 1 cm.

Therefore, the two-stream instability may not reach its saturation level. This agrees

with the linear behavior of the two-stream instability represented in Fig. 6.6 and the

overall high level of penetration of the secondary electron beams in Hall thruster

simulations.

6.4 Summary

It is found from EDIPIC simulations that the total primary electron flux towards the

wall of a Hall thruster channel consists of three components that are characterized

by essentially different energy: (i) the secondary electrons emitted from the opposite

wall (in Hall thruster the secondary electrons form the two counter-propagating

electron beams), (ii) the electrons from the plasma bulk with anisotropic EVDF

scattered to the wall after collisions with neutral atoms, and (iii) the so-called weakly

confined electrons from the boundary layer on the phase plane {x, wx} between the

electrons of the plasma bulk (deeply confined by the plasma potential) and the

secondary electron beams (accelerated by the plasma potential). These three electron

groups produce SEE with different partial emission coefficients corresponding to the

energy of the group.

The model of SEE with multi-component primary and secondary electron fluxes

inside the ceramic channels of Hall thrusters is developed. The model reveals that

the total average emission coefficient contains contributions from the secondary elec-

tron beams, the collision-ejected electrons, and the weakly confined electrons. It is

important that the total emission coefficient is no longer the function of the energy of

the plasma bulk electrons only. The modified criterion of the SCL SEE is obtained.
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The criterion shows that, in presence of the low-energy primary electron fluxes of

secondary and weakly confined electrons, the SCL regime only occurs if the emission

due to the plasma bulk electrons is much more intense than in the case when the

plasma bulk is the only source of primary electrons. As a result, in simulations, the

average energy of plasma bulk electrons exceeds the threshold value of the SCL SEE

for a Maxwellian plasma by several times, yet the emission remains in the non-SCL

regime. This result agrees with the experimental observation of the anomalously

high electron temperature inside Hall thrusters [78, 79].

It is found in simulations that secondary electrons acquire additional energy re-

lated with the E × B drift motion after the emission. The average energy of the

emitted electrons at the moment when they impact the target wall exceeds the av-

erage initial energy of emission by m(Ez/Bx)
2. In strong external electric fields, the

final secondary electron beam energy is sufficient to produce equally strong SEE. In

this case, most of the primary electron current is created by electrons emitted from

the walls, not by electrons from the confined plasma. This is the other mechanism

that reduces plasma electron cooling due to wall losses, in addition to the depletion

of the EVDF loss cone discussed in Chapter 5.

It is found that the energy of the secondary electron beam contains the im-

portant component Wb,osc, which is an oscillating function of the average electron

flight time TL. It is shown that a stable stationary state must satisfy the criterion

dWb,osc(L)/dTL < 0 and that the emitted electrons must perform n + 3/4 rotations

before they reach the target wall (here n is an integer).

The increase of the axial electron mobility due to the NWC effect under the

condition of intense SEE is observed in simulations. A modulated profile of the axial

electron current qualitatively similar to that described by Morozov and Savel’ev in

Ref [68] is obtained. Physically, the oscillating behavior of the secondary electron

beam energy with respect to the electron flight time (and the distance from the

emitting wall) and the modulated profile of the axial electron current are based on

the same effect of cyclotron rotation.

PIC simulations show that the two-stream instability results in minor losses of
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the secondary electron beam current during its propagation between the walls. The

bulk EVDF (depleted in the loss cone and enriched in the region of weakly confined

electrons), when combined with the EVDFs of secondary electron beams (close to a

half-Maxwellian EVDF), forms a velocity distribution, which is a decreasing function

of the electron velocity normal to the walls and is stable with respect to the two-

stream instability. Additionally, simulations with periodic boundary conditions show

that for the typical parameters of Hall thruster plasmas, i.e., the plasma density and

the secondary electron beam current and energy, the width of the plasma gap in

Hall thrusters is too short for the two-stream instability to develop to the nonlinear

saturation level. Under such conditions the two-stream instability is weak, and most

of emitted electrons penetrate through the plasma slab.

168



Chapter 7

Relaxation oscillations of the sheath

Morozov [149] pointed out that in Hall thrusters the sheath structure can be

much more complicated than predicted by simple theories. He showed that the

sheath potential solution is unstable if it is characterized by negative conductivity,

which is possible for a non-Maxwellian EVDF. Basing on experiments that revealed

electrons randomly scattered by the walls with energy much lower than the expected

plasma potential, Morozov formulated the idea that an unstable potential profile

may flicker, dipping to zero and thus enhancing plasma-wall interaction.

The sheath at the interface between a Maxwellian plasma and a secondary elec-

tron emitting wall switches to the SCL regime if the plasma temperature exceeds

the critical value [76]. In bounded plasmas with non-Maxwellian EVDF, where the

counter-propagating beams of secondary electrons constitute part of the primary

electron fluxes to the walls (see Chapter 6), the critical value of the partial emission

coefficient for the plasma bulk electrons (6.4) is substantially larger than the critical

emission coefficient (1.12) for a Maxwellian plasma [75]. Thus, the SCL regime in

the bounded plasma requires the energy of the bulk plasma electrons to be much

higher than that of a Maxwellian plasma with critical temperature.

In simulations with the EDIPIC code, the SCL regime was not observed for

the plasma parameters corresponding to the experimental values. However, in some

simulations with an artificially increased frequency of “turbulent” collisions (i.e., the

heating intensity), a new regime of sheath operation with quasi-periodic oscillations

has been observed, which qualitatively corresponds to Morozov’s predictions. In this

regime, the sheath becomes space-charge limited for only short periods of time, and

most of the time stays in the non-SCL regime.
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The period of these oscillations (0.1 − 1 µs) is in the same range as the period

of ion plasma oscillations Ti = 2πω−1
pi ' 0.1 − 0.2 µs. Therefore, the ion plasma

oscillations were considered a probable reason for such oscillations. Indeed, the

ion plasma oscillations may perturb the sheath structure and allow the anisotropic

energetic electrons of the plasma bulk to reach the walls, which results in the SCL

regime. Hernqvist [150] observed oscillations with a frequency corresponding to the

ion plasma oscillations in ion-neutralized electron beams. The mechanism supporting

these oscillations involved interaction of the secondary electron current (from the

bounding walls around the beam) with the AC electric field of ion oscillations. Low

frequency oscillations in beam-plasma systems have been observed, e.g., in Refs. [151,

152], and the excitation of the oscillations was attributed to the relative drift of

electrons and ions [153, 154]. In a gas discharge, the plasma ion oscillations were

observed with a negatively biased probe in [155]. The spectrum of the ion oscillations

extending from ion acoustic waves to ion plasma oscillations was measured in [156].

In the simulated plasma system, motion of the electrons relative to the ions in

the direction normal to the plasma boundary is observed only in the narrow sheath

region, thus the Buneman instability cannot be the reason for the excitation of

oscillations. It was found that the frequency of the observed sheath oscillations is

not proportional to the ion plasma frequency. Moreover, the frequency of the sheath

oscillations may significantly vary during the evolution of the simulated system.

Such behavior corresponds to the oscillations of nonlinear systems. For example,

in a one-dimensional low pressure thermionic converter, multiple electron DC states

are possible for the same ion DC state [157]. These states produce different potential

profiles and are responsible for low-frequency relaxation-type oscillations [158]. The

current-voltage characteristic of a thermionic discharge is nonlinear, with hysteresis

corresponding to the negative resistance; the oscillations in this system may become

irregular and chaotic [159, 160]. The sudden jumps in the behavior of a discharge

with negative conductivity may be described as a cusp catastrophe [161].

The negative resistance may be caused by different reasons. The negative dif-

ferential resistance of the electron sheath caused by electron inertia results in high
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frequency sheath oscillations being generated around a positively biased current-

carrying electrode immersed in a Maxwellian plasma [162]. The instability with the

low frequency of the order of the ion plasma frequency, which occurs in the current-

carrying sheath around the negatively biased grid in double-plasma devices, is related

with the negative sheath resistance due to ion inertia [163, 164]. In Hall thruster

simulations, the negative resistance of the sheath appears due to the non-Maxwellian

velocity distribution of confined electrons and SEE from the walls.

This Chapter is organized as follows. In Section 7.1, the evolution of plasma

parameters during one period of relaxation oscillations is described. Section 7.2

explains the mechanism of the stepwise transition from the non-SCL to the SCL

regime, also the current-voltage characteristics of the sheath with negative conduc-

tivity are presented. Section 7.3 contains the qualitative criterion of the oscillating

regime and the results of parametric studies of this regime. Conclusion are given in

the Summary Section.

7.1 Evolution of plasma parameters during the re-

laxation sheath oscillations

A PIC simulation of a thruster-like system was carried out with most of the pa-

rameters close to those used in simulation 7 described in Tables 5.2 and 6.1: the

distance between the dielectric walls was L = 2.5 cm, the external electric field was

Ez = 200 V/cm, the magnetic field was Bx = 100 Gauss, the neutral gas density was

na = 1012 cm−3, the initial plasma density was ne0 = 1011 cm−3, the initial EVDF

was a drifting Maxwellian with temperature Te0 = 10 eV and drift velocity in the

y direction Vdr = Ez/Bx. The “turbulent” collision frequency was increased by 4

times compared to simulation 7 to νt = 2.8 · 106 s−1. The simulation parameters

were not chosen so as to reproduce some regime of a real Hall thruster, but rather

to investigate the plasma-wall interaction and the regime of the sheath with SEE

while under the condition of intense turbulent heating. In particular, the SCL SEE

regime with γ > γcr and a nonmonotonic potential profile in the sheath regions was
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expected.

In the simulation, the plasma became strongly anisotropic: 〈wy〉 = 53 eV,

〈wz〉 = 42 eV, 〈wx〉 = 4.2 eV, 〈wy,z〉 À 〈wx〉, where averaging 〈...〉 is done over all

particles. The total average energy of motion parallel to the walls 〈wy〉+〈wz〉 ∼ 95 eV

significantly exceeds the critical electron temperature Tcr ≈ 18 eV for the SEE prop-

erties of the chosen wall material.

The SCL SEE regime was observed in the simulation, but a stationary SCL state

was not observed. Instead, it was found that the system “switches” quasi-periodically

between the SCL and non-SCL regimes. The SCL state lasts for a short time, while

the non-SCL state lasts much longer (the width of the spikes in Fig. 7.1a is much

smaller than the intervals between the spikes). In the SCL state, the primary electron

flux grows abruptly and is several times higher than during the non-SCL state (see

Fig. 7.1b) and the plasma potential decreases (see Fig. 7.1c). A typical nonmonotonic

potential profile from the SCL state with γ > γcr is shown in Fig. 7.2a,b,c. The

monotonic potential profile from the non-SCL state is presented in Fig. 7.2d. In

the SCL state, the electron energy losses at the walls are significantly enhanced

compared to the non-SCL state, which strongly limits the electron energy. Note

that the dependence of the average electron energy versus time shown in Fig. 7.1d

has a sawtooth shape, where the abrupt drops at the SCL state are followed by

gradual increases during the non-SCL state. The observed global oscillations of the

plasma parameters are strongly nonlinear, below they are referred to as the relaxation

sheath oscillations (RSO).

The SCL SEE requires the plasma electrons to have significant energy. Consider

the typical RSO period described in Fig. 7.3. The system accumulates the energy in

the non-SCL state due to collisional heating. Then, during the SCL state, this energy

is rapidly spent on intense emission (see Fig. 7.3a and Fig. 7.3e). The transition from

the non-SCL to SCL state occurs when the total emission coefficient γ approaches

the critical value, γ → γcr. Consider the evolution of the components of the primary

electron flux preceding the transition. For the secondary electron beam, the average

energy Wb (curve 1 in Fig. 7.3c) and the partial emission coefficient γb (curve 1 in
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Fig. 7.3d) change insignificantly. For the collision-ejected electrons, the changes of

Wc (curve 2 in Fig. 7.3c) and γc (curve 2 in Fig. 7.3d) are more intense, however,

the contribution of this component is minor because of its very low flux Γc (curve 2

in Fig. 7.3b). The most noticeable changes occur for the weakly confined electrons.

While the system is in the non-SCL state, the energy of this group Ww grows from

about 25 eV to about 40 eV (curve 3 in Fig. 7.3c) and the partial emission coefficient

γw changes from 0.67 to about 1.0 (curve 3 in Fig. 7.3d). Since γw grows, the

total emission coefficient γ increases, asymptotically approaching the value γ = 0.98

(follow the red arrow in Fig. 7.3e). The stepwise transition to the SCL state occurs

at the moment marked by the vertical dashed line B in Fig. 7.3 despite γ < γcr =

0.983. The reason for such a jump is the unstable plasma state discussed below in

Section 7.2.

Simulations show that the transition to SCL SEE starts at one of the walls, either

x = 0 or x = L. At the other wall, the SCL SEE occurs with a delay of about the

electron flight time between the walls. Consider the evolution of the components of

electron flux towards both walls during the SCL state shown in Fig. 7.4. Important

events at consecutive moments tA, tB, tC , and tD are marked by vertical dashed lines

with respective indices in Fig. 7.4. For this particular case, the SCL regime starts at

moment tA at the wall x = L, resulting in a rapid increase of the primary electron

flux to this wall (curve 1 in Fig. 7.4a). Transition to the SCL regime is accompanied

by a decrease of the plasma potential relative to the wall, Φp−Φ(L), so the electrons

moving towards this wall and previously confined by the higher plasma potential at

the non-SCL state suddenly become part of the primary electron flux (curve 1 in

Fig. 7.4b).1 By time tB, the fastest secondary electrons emitted from the wall x = L

have crossed the plasma gap to reach the opposite wall x = 0. These electrons carry

a large energy (curve 2 in Fig. 7.4d), which initiates the SCL regime there. Then

1The diagnostics of the EDIPIC code considers all primary electrons, which are not the secondary
beam electrons or the electrons scattered to the wall after collision with a neutral atom, as the
weakly confined electrons. As a result, in Fig. 7.4b, the primary electron flux due to the electrons
that became untrapped after the decrease of the plasma potential is contained in the weakly confined
electron flux.
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the plasma potential relative to the wall x = 0, Φp − Φ(0), decreases, the primary

flux of the untrapped plasma bulk electrons (curve 2 in Fig. 7.4b) and the total

primary electron flux to the wall x = 0 increase (curve 2 in Fig. 7.4a). By times tC

and tD, the major parts of the secondary electron fluxes (Fig. 7.4c) have reached the

walls x = 0 and x = L, respectively. These large fluxes have relatively low energy

(Fig. 7.4d) and extinguish the SCL emission, first at the wall x = 0, and then at

the wall x = L. The delay between moments tD and tC (when the SCL regimes

were terminated) is approximately the same as the delay between moments tB and

tA (when the SCL regimes were started). While the system is in the SCL state, with

the potential depressed, the confined plasma exchanges some of its electrons, which

have accumulated significant energy after several turbulent collisions, for secondary

beam electrons with lower energy. As a result, when the system leaves the SCL

regime, it must accumulate the energy again in order to return to the SCL state.

7.2 Reason for the stepwise transition to the space

charge limited regime

The final stage of the transition to the SCL state (marked by the vertical dashed

line B in Fig. 7.3e) occurs in a stepwise manner, with the emission coefficient chang-

ing abruptly from a value below the threshold γcr to a value above the threshold.

Simulations reveal that the processes immediately before the transition to the SCL

state and the processes that occur during the SCL state happen on time scales of

the order of the electron flight time between the walls. Under such conditions, the

formalism developed in Section 6.1 is not applicable since it considers the stationary

state and assumes that the SEE occurs symmetrically on both walls. As it is de-

scribed above, the SCL state lasts until the intense emitted secondary electron fluxes

with low energy reach the walls. It will be shown below that a similar delay may

result in instability and the transition to the SCL state.

In Ref. [149], the stability of the sheath of a semi-infinite plasma with SEE was

attributed to the electron conductivity of the sheath – the sheath was unstable if the

177



0

10

20

30

9740 9760 9780 9800 9820

(a)

0

10

20

30

9740 9760 9780 9800 9820

(b)

0

10

20

30

9740 9760 9780 9800 9820

(c)

30

35

40

45

9740 9760 9780 9800 9820

t (ns)

(d)

G
1

(1
0

m
s

)
2
1

-2
-1

G
1
w

(1
0

m
s

)
2
1

-2
-1

G
1
b

(1
0

m
s

)
2
1

-2
-1

W
(e

V
)

b

A B C D

1

2

1 2

1

2

1
2

non-SCL SCL non-SCL

Figure 7.4: Evolution of parameters in the SCL state. (a) The
total primary electron flux. (b) The flux of the weakly confined and
untrapped plasma electrons. (c) The secondary electron beam flux. (d)
The average energy of the secondary electron beam at the target wall.
Curves 1 (red) correspond to the wall x = L, curves 2 (blue) to the
wall x = 0.

178



conductivity was negative:
dJex

dΦp

< 0 , (7.1)

where Jex is the electric current created by electrons at the wall (includes contri-

butions of both primary and secondary electron fluxes) and Φp is the potential of

plasma relative to the wall. The stability of the plasma in the model of the AR of a

Hall thruster may be studied using a similar approach. Consider the plasma in the

stationary state, with equal SEE intensity and electron fluxes at both walls. Let, due

to some fluctuation, the potential of the plasma relative to one wall start changing,

correspondingly modifying the flux of the plasma electrons towards that wall. The

electron beam flux to this wall remains unchanged, Γ1b = const, during the period

equal to the electron flight time between the walls, τ ≈ L/(2eΦp/m)1/2. With respect

to a short-time (compared to τ) perturbation, the bounded plasma does not differ

from a semi-infinite plasma with the same EVDF. Then, considering the EVDF in

the middle of the plasma x = L/2 as a constant source EVDF, one may investigate

the dependence of the electron flux to the wall versus the potential of the source

relative to the wall (i.e., the current-voltage characteristic), and make conclusions

about the stability of the plasma state depending on the sign of the conductivity.

The total electric current Jex created by electrons at the wall x = L for a given

EVDF in the midplane f(vx, vy, vz, L/2) and potential profile Φ(x) is

Jex(L) = e[Γ2(L)− Γ1(L)]

= e

∫ ∞

v∗
dvxvx

∫ ∞

−∞
dvy

∫ ∞

−∞
dvzf(vx, vy, vz, L/2) {γ [wx(L), wyz(L)]− 1} ,

(7.2)

where v2
∗ = 2eΦp/m, γ [wx(L), wyz(L)] is the emission coefficient, wx(L) = wx(L/2)−

eΦp is the energy of motion of an incident electron in the direction normal to the

wall, and wyz(L) ≡ wy(L) + wz(L) is the energy of motion of an incident electron

parallel to the walls. The latter energy is a function of the phase of cyclotron rotation

in crossed fields Ez and Bx. Similar to (6.10), one obtains

wyz(L) =
m(v2

y + v2
z)

2
+ mV 2

dr

[(
1− vy

Vdr

) (
1− cos ωcTL/2

)− vz

Vdr

sin ωcTL/2

]
,
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where TL/2 is the duration of the electron flight from the midplane x = L/2 to the

wall x = L, calculated similar to (6.8) as

TL/2 =

∫ L

L/2

dx

[
v2

x +
2eΦ(x)

m

]−1/2

,

where vx, vy and vz are the velocity components of an electron in the midplane,

x = L/2.

The current-voltage characteristic of the sheath is obtained in the following pro-

cedure. The EVDF in the midplane f(vx, vy, vz, L/2) and the initial potential profile

Φ(x) corresponding to one point of the current-voltage characteristic are obtained

self-consistently, in PIC simulations, for a stationary non-SCL state. Below, this

point is referred to as the operating point. The potential profile is expressed in

the form Φ(x) = Φp × f(x), where f(x) is the profile shape function, f(L/2) = 1.

Then the total electron current at the wall is calculated for different values of Φp

by Eq. (7.2). Such a procedure is partially non-self-consistent, because it uses a

prescribed monotonic potential profile with variable amplitude Φp, without solving

Poisson’s equation. The results obtained with this approach are meaningful only if

the emission coefficient

γ =

∫∞
v∗

dvxvx

∫∞
−∞ dvy

∫∞
−∞ dvzf(vx, vy, vz, L/2)γ [wx(L), wyz(L)]∫∞

v∗
dvxvx

∫∞
−∞ dvy

∫∞
−∞ dvzf(vx, vy, vz, L/2)

, (7.3)

is below the critical value, γ < γcr.

The current-voltage characteristics at the beginning (marked by line A in Fig. 7.5a)

and at the end (marked by line B in Fig. 7.5a) of the non-SCL state are substantially

different from each other (compare green and red curves in Fig. 7.5c). At the begin-

ning of the non-SCL state, the operating point is in the region of the current-voltage

characteristic with dJex/dΦp > 0 (see marker 1 and the slope of the corresponding

tangent line in Fig. 7.5c). Thus, the non-SCL state is initially stable. The operating

point at the end of the non-SCL state, immediately before the transition to the SCL

state, is in the region of the current-voltage characteristic with negative conductivity,

dJex/dΦp < 0 (see marker 2 and the negative slope of the black tangent line pass-

ing through this marker in Fig. 7.5c). Thus, the non-SCL state becomes unstable
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with time and at this stage a small fluctuation of potential may result in the rapid

transition to the SCL state.

Note that the stable state satisfying criterion (7.1) is characterized by the positive

dγ/dΦp (see marker 1 and the slope of the tangent line passing through this marker

in Fig. 7.5b). The condition

dγ

dΦp

> 0 (7.4)

is qualitatively different from stability condition (6.13). Condition (7.4) characterizes

the stability of a plasma with a given EVDF with respect to the short-time potential

perturbations that do not modify the EVDF, i.e., when perturbation near one wall

occurs independently of emission at the other wall. Condition (6.13) characterizes

the stability of a plasma with respect to gradual modifications of the whole poten-

tial profile affecting the electron flight time, such perturbation does not violate the

symmetry of emission at the walls.

Differentiation of the electron current at the wall in the form Jex = eΓ1(γ − 1)

with respect to the plasma potential Φp gives

dJex

dΦp

= e
dΓ1

dΦp

(γ − 1) + eΓ1
dγ

dΦp

.

Since dΓ1/dΦp < 0 and γ < γcr < 1, the negative conductivity dJex/dΦp < 0 may

appear only if condition (7.4) is violated, dγ/dΦp < 0. The corresponding increase

of the emission coefficient for a plasma potential below the operating point potential

occurs because of the high energy of plasma electrons confined by the operating

point potential. These electrons accumulate energy due to anisotropic heating in

the non-SCL state. Thus, the negative conductivity of the sheath and the unstable

plasma state, which results in the transition to the SCL state, are induced by intense

anisotropic heating.
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7.3 Effects of plasma parameters on the relaxation

sheath oscillations

The exact criterion of the RSO regime is not clear yet. Qualitatively, the RSO regime

requires the presence of (i) the negative conductivity branch of the current-voltage

characteristic of the sheath, and (ii) the mechanism that “moves” the unstable branch

towards the operating point.

Simulations show that RSO do not occur if the current-voltage characteristic sat-

isfies criterion (7.1) for all values of the plasma potential, as it is shown in Fig. 7.6a

for simulation 1 of Table 5.1. Such a stable state is formed in low energy plasmas,

when the heating is weak. However, RSO may not occur even if the heating is

sufficient to maintain the high average electron energy and to form the branch of

the current-voltage characteristic with dJex/dΦp < 0 (see Fig. 7.6b). In the latter

case, corresponding to simulation 7 of Table 5.2, the operating point (white square

in Fig. 7.6b) remains in the stable branch of the current-voltage characteristic, pro-

hibiting the transition to the SCL regime.

183



The unstable branch of the current-voltage characteristic approaches the oper-

ating point with potential Φp if the electrons with e(Φp −∆Φ) < wx < eΦp, which

are confined by the plasma potential at the stationary state, reach some thresh-

old level of energy of motion parallel to the walls, 〈wy + wz〉 > wthr, sufficient to

violate condition (7.4). Here averaging 〈...〉 is performed over the electrons of the

group, ∆Φ is the amplitude of potential perturbations in the system, ∆Φ ¿ Φp

(potential perturbations may appear, e.g., due to the two-stream instability). Qual-

itatively, the maximal level of energy 〈wy + wz〉, which may be attained by the

aforementioned electron group, is determined by (i) the average energy a particle

obtains from a collision, wcoll ∼ mV 2
dr, and (ii) by the ratio between the lifetime

of electrons of this group τlife and the period between collisions τcoll ∼ ν−1
t (it is

assumed that νt À νen). The group is comprised of the weakly confined electrons

as well as some of the plasma bulk electrons, the lifetime τlife may be estimated as

τlife ∼ neffL/(Γ1p + Γ1b), where neff is the density of the electrons of the group.

Finally, 〈wy + wz〉 ∼ mV 2
dr[neffL/(Γ1p + Γ1b)]νt ∼ E2

zLνt, so the qualitative criterion

of the RSO regime 〈wy + wz〉 > wthr is equivalent to the condition that

E2
zLνt >

(
E2

zLνt

)
thr

, (7.5)

where the right hand side is a threshold value.

The effects of collision frequency νt and the distance between the walls L on

the RSO were investigated. First, a set of simulations was carried out with different

values of “turbulent” collision frequency, keeping the other simulation parameters the

same as those of simulation 7 of Table 5.2. In these tests, the relaxation oscillations

did not appear for νt = 0.7× 106 s−1 and νt = 1.4× 106 s−1, but were present when

νt = 2.8 × 106 s−1 (shown in Fig. 7.1). Second, a set of simulations was carried

out with different values of the plasma gap width L. The common parameters were

the same as in the simulation presented in Fig. 7.1. The RSO did not occur when

L = 1.5 cm and smaller (see Fig. 7.7a), but did when L = 2 cm and larger (see

Fig. 7.7b,c,d). The period of oscillations is not regular, typically decreasing for the

wider plasma gaps (see Fig. 7.7e). Quenching of the RSO regime in the case of low
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νt and small L agrees with the qualitative criterion (7.5).

The ion plasma oscillations, in principle, may result in sheath disturbance and

possible transition to the SCL regime, which is why the effect of the ion mass on the

frequency of relaxation oscillations was studied (see Fig. 7.8). A set of simulations

was carried out with Ez = 100 V/cm, Bx = 100 G, na = 2 · 1012 cm−3, 〈νen〉 =

1.4 · 106 s−1, νt = 2.2 · 107 s−1, and different values of ion mass M . The period

of oscillations was non-regular (see Fig. 7.8a-d) and significantly exceeded the ion

plasma period (see Fig. 7.8e). In simulations with variable plasma gap width (see

Fig. 7.7) and constant ion mass, some RSO periods were even smaller than the ion
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(c) M = 32 amu; (d) M = 131 amu. (e) The ratio of the RSO period
to the corresponding average ion plasma period Ti = 2π(ε0M/〈n〉e2)1/2

versus the ion mass; markers in each vertical set correspond to different
oscillation periods in a single simulation with a given ion mass.

plasma period. Thus, it is unlikely that the ion plasma oscillations are responsible

for the observed RSO. Modification of the average RSO period in simulations with

different ion masses is attributed to the difference in ion wall fluxes and corresponding

difference in position of the operating point on the current-voltage characteristic

relative to the minimum of the characteristic.
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7.4 Summary

A new regime with relaxation sheath oscillations is observed in simulations of a

bounded thruster-like plasma system. During one period of RSO the plasma spends

a long time in the non-SCL state with monotonic potential profile in the sheath, and

then switches to the SCL state with nonmonotonic potential profile in the sheath for a

short time. In the SCL state, the electron wall losses are several times greater than

the losses in the non-SCL state, significantly depleting the EVDF and decreasing

the average electron energy. The energy required for the intense emission at the

SCL state is accumulated during the long non-SCL state. Transition to the SCL

state occurs in a stepwise manner, when the non-SCL state becomes unstable with

respect to potential perturbations, which are short compared to the electron flight

time between the walls. This instability is related to the negative conductivity of

the sheath near the secondary electron emitting wall, which [conductivity] appears

from strong SEE due to the intense anisotropic heating. The SCL state is essentially

non-stationary, it starts with intense emission and quenches as soon as the emitted

electrons fly through the plasma gap and reach the walls.

It is found that the oscillations have a non-regular period, which may vary sig-

nificantly during system evolution in one simulation. Such behavior is related to the

mechanism of transition between the non-SCL and the SCL states, which depends on

the existing perturbations affecting the moment of exit from the unstable non-SCL

state.

The qualitative criterion of the RSO regime (7.5) shows that the oscillations may

not occur if the plasma gap is narrow or if the heating is not sufficient (the heating

is determined by both the axial electric field and the turbulent collision frequency).

This criterion agrees with the parametric studies of the RSO. Although the RSO

regime requires a significant level of heating, several times higher than the available

experimental parameters, this regime agrees with the prediction of Ref. [149] that

the sheath in Hall thrusters may be non-stationary and flickering.
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Chapter 8

Conclusions

Plasma behavior in low pressure discharges, where the electron mean free path

exceeds the dimensions of the device, is often far from a simple fluid picture. The ab-

sorption of energy may occur in a nonlocal manner, independently for different groups

of electrons, and as a result, the electron velocity distribution function (EVDF) may

deviate from Maxwellian [3, 4, 5, 6, 7, 87]. The physics of such plasmas is rich in

kinetic and nonlinear effects. In the present thesis, the two classes of such phe-

nomena are analyzed. In inductively coupled plasmas (ICP), the penetration of

radio-frequency (RF) electromagnetic (EM) fields and the nonlinear ponderomotive

force (PMF) become affected by electron thermal motion. In Hall thrusters, the

losses of electron energy to the walls with secondary electron emission (SEE) ap-

pear to be substantially smaller than predicted by fluid theories, which assume a

Maxwellian EVDF. The description of such plasmas must be kinetic, and because of

the complexity of the problem, the straightforward approach is to use particle-in-cell

(PIC) simulations. Several PIC codes have been developed by the author to study

kinetic effects in ICP and in Hall thrusters. The most important results of these

studies are presented in this thesis.

The 1d3v fully electromagnetic, quasineutral, collisionless PIC code simulating

propagation of a plane EM wave through an overdense plasma slab is applied to

investigate the effects of the electron thermal motion on the PMF in ICP. The stan-

dard approach of the linear theory of the anomalous skin-effect [18, 25] assumes

that the electron trajectories are not affected by the RF magnetic field. The PMF

obtained analytically in Ref. [35] with this assumption is strongly reduced in warm

plasmas. In low frequency ICP, the RF magnetic field is significant and the elec-
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tron trajectories are far from linear. The nonlinear electron trajectories can hardly

be accounted for in an analytical description. However, in PIC simulations these

trajectories are naturally implemented. Here are the major results found in PIC

simulations of ICP [53, 51, 52]:

• At high electron temperatures, the nonlinear electron trajectories result in a

PMF several times larger than predicted by linear theory.

• The trajectories of electrons, whose Larmor radius is smaller than or compa-

rable to the skin layer depth, are strongly modified. The ICP dynamics can

be nonlinear due to these low energy electrons, even when the trajectories of

thermal electrons are weakly perturbed. PIC simulations show that the small

linear PMF can be expected only at very low amplitudes of RF field, typically

much smaller than the RF field amplitudes in operating ICP discharges.

The practical importance of the obtained results is that the PMF, which con-

tributes to the formation of the density profile in low frequency ICP, is essentially a

nonlinear phenomenon and is stronger than predicted by the nonlocal linear theory.

The range of applicability of linear approximation appears to be much smaller than

one could expect from simple qualitative considerations.

Future investigations of the kinetic and nonlinear effects in ICP should include (1)

simulations with mobile ions, (2) implementation of electron-neutral and Coulomb

collisions in the electromagnetic PIC code, (3) simulations of cylindrical plasmas.

The latter two issues are related with the necessity to include in the PMF theory the

nonlinear convective term (u · ∇)u, which is important in curvilinear geometry [39,

40], and the nonlinearly modified plasma viscosity [165].

One of the most significant results of the present work is the development of the

1d3v electrostatic direct implicit PIC code (EDIPIC) for kinetic studies of plasmas

inside the channel of a Hall thruster. The important physical effects in such plasmas

are (i) the collisions with neutral atoms and Coulomb collisions, (ii) the anomalous

electron mobility across the magnetic field, (iii) the secondary electron emission, and

(iv) the non-neutral narrow sheath regions near the walls. Note that the frequency
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of collisions in Hall thrusters remains sufficiently low that the kinetic effects play a

significant role in such plasmas.

The EDIPIC code simulates a plasma slab bounded by secondary electron emit-

ting dielectric walls. The external magnetic field is applied normal to the walls and

the electric field is directed parallel to the walls. The SEE model describes the

properties of grade HP boron nitride ceramics. The Monte-Carlo model of electron-

neutral and “turbulent” collisions and the Langevin model of Coulomb collisions

are included in the code. The simulated system is the plane geometry approxima-

tion of the acceleration region (AR) of a Hall thruster. The code resolves both the

sheath regions and the plasma bulk. For effective simulation speed, the code has

been parallelized. The validity of the code has been confirmed in numerous tests.

The EDIPIC code is applied to study the effects of SEE on plasma-wall interaction

in Hall thrusters.

Operation of a Hall thruster depends crucially on the electron temperature and

the SEE from the thruster’s channel walls. Fluid theories assume that the EVDF is

Maxwellian and predict fast electron cooling due to high wall losses and saturation

of the electron temperature [69, 81, 82]. However, recent experiments [78, 79] show

that the plasma-wall interaction is less intense than predicted by fluid theories – the

measured electron temperatures are higher and the electron wall collision frequencies

are smaller than the values possible for a Maxwellian EVDF. Available kinetic studies

of Hall thrusters do not resolve the distribution over velocity components and use

simplified models of the sheath [87, 88]. In the model of the AR of a Hall thruster

considered in the present thesis, the EVDF and the potential profile are formed self-

consistently, depending on the applied external fields, collisions, width of plasma gap,

and SEE properties of wall material. The major results found in PIC simulations of

the considered model are [90, 91, 92, 93, 94, 95]:

• The EVDF of plasmas in the AR of Hall thrusters is non-Maxwellian, anisotro-

pic, and depleted in the region of high energy of electron motion normal to the

walls. The anisotropy is largely determined by the high frequency of “turbu-

lent” collisions, which are introduced in order to reproduce the anomalous elec-
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tron mobility across the magnetic field. However, in the limit of strong external

accelerating fields, the anisotropy develops even without the “turbulent” colli-

sions. The depletion of the high-energy tail occurs because the electron mean

free path far exceeds the width of the plasma slab, so electrons with energy of

motion normal to the walls larger than the plasma potential quickly leave the

plasma. Such electrons form the loss cone in velocity space. The depletion of

the loss cone results in a significant, of about one order of magnitude, decrease

of the electron wall losses compared to plasmas with Maxwellian EVDF.

• For Hall thruster plasmas, the frequency of Coulomb collisions is much smaller

than the frequency of “turbulent” collisions and collisions with neutral atoms.

Usually the effect of Coulomb collisions on EVDF in Hall thrusters is weak.

Considerable changes occur when the SEE is close to the SCL regime. For

typical Hall thruster parameters corresponding to such a regime, Coulomb

collisions increase the electron flux to the wall by a few tens of percents.

• PIC simulations show that the loss cone is populated by (i) the secondary

electrons, which form two counter-propagating beams, (ii) the electrons from

the plasma bulk scattered into the loss cone after collisions with neutral atoms,

and (iii) the weakly confined electrons from the narrow boundary layer in

phase space between the plasma bulk electrons and the secondary electron

beams. These three electron groups form the three components of the primary

electron flux to the walls, with different characteristic energies and partial

emission coefficients.

• The new model of SEE in a bounded plasma is developed, which considers

the three components of the electron flux to the wall – the secondary electron

beams, the collision-ejected electrons, and the weakly confined electrons – and

the secondary emission produced by each of the components. The total emis-

sion coefficient obtained in this model is no longer simply a function of the

plasma bulk electron energy. The modified criterion for SCL SEE is obtained.

The criterion shows that, when the primary electron flux of the collided elec-
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trons is combined with the low-energy primary electron fluxes of secondary and

weakly confined electrons, the SCL regime occurs if the emission due to the

plasma bulk electrons is much more intense than in the case when the plasma

bulk is the only source of primary electrons. This explains why the experiments

show that the SEE is in the non-SCL regime for electron temperatures several

times higher than the critical threshold for Maxwellian plasmas [78, 79]. The

proposed model of SEE in bounded plasmas is more general than the recent

model of Ref. [147], where the important effect of SEE emission due to the

secondary electron beams was not considered.

• It is found that secondary electrons may significantly increase their energy

during the travel between the walls. The axial electric field inside the AR of

a Hall thruster contributes to the energy of motion of secondary electrons in

the plane parallel to the walls when the electrons are taken up by the E × B

drift. The value of this additional energy depends on the external electric and

magnetic fields, as well as on the time of electron flight between the walls. The

latter parameter is determined by the potential profile in the plasma and by the

plasma gap width. Note that changing the width of the thruster channel results

in significant modification of discharge properties [80]. The additional energy

acquired by secondary electron beams may be much larger than the initial

energy of emission, and SEE produced by these beams may be significant.

These secondary electrons may contribute considerably to the electron current

to the walls.

• The important parameter in the SEE model with counter-propagating sec-

ondary electron beams is the coefficient of beam penetration through the

plasma slab, α. Due to the low collision frequency, the dominant obstruc-

tion to beam penetration is the electron deceleration caused by the two-stream

instability. PIC simulations show that in Hall thruster plasmas the beam pen-

etration is high and the current losses due to the two-stream instability are

not significant. The total EVDF of both plasma bulk and beam electrons is a
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decreasing function of the electron velocity normal to the walls and is stable

with respect to the two-stream instability. Simulations with periodic bound-

ary conditions show that for the typical parameters of the secondary electron

beams in Hall thruster plasmas, the width of the plasma gap in Hall thrusters

is too small for the two-stream instability to reach the nonlinear saturation

level. Under such conditions the two-stream instability is weak and most of

the emitted electrons penetrate through the plasma slab.

• A new regime, which contains relaxation sheath oscillations (RSO), is identified

from PIC simulations. In this regime, the plasma is in the non-SCL state most

of the time, but quasi-periodically, for a short periods of time, it switches to

the state of SCL SEE. In the SCL state, the electron wall losses increase con-

siderably, which limits the quasistationary level of the average plasma electron

energy. It is found that in the RSO regime, the current-voltage characteristic

of the sheath has an unstable branch with negative conductivity. This branch

appears due to intense anisotropic heating. Transition from the non-SCL to

the SCL state of the plasma occurs in a stepwise manner, when the nega-

tive conductivity branch approaches the point corresponding to the non-SCL

plasma state. The frequency of relaxation oscillations may vary significantly

during the system evolution. The qualitative criterion for the RSO regime

shows that it may not occur if the plasma gap width is small or if the heating

is low. Although the RSO regime requires a level of heating, which is sev-

eral times higher than that in ordinary Hall thrusters, the existence of such a

regime may be important for the physics of Hall thrusters. Some experimental

data [149] suggest that the sheath structure inside the thruster channel may

be non-uniform or a “mosaic”, and that the plasma potential relative to the

wall may locally become zero.

The practical importance of this kinetic study of the plane geometry Hall thruster

model is that the results provide an explanation of the anomalously high electron

temperature inside the Hall thrusters and show that the use of Maxwellian EVDF
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leads to a significant overestimation of the intensity of plasma-wall interaction. These

results emphasize a limited ability of fluid models to describe the wall losses.

Future study of kinetic effects in Hall thrusters must clarify the following is-

sues: (1) the functional dependence of the degree of EVDF anisotropy on collision

frequencies and the applied electric and magnetic fields; (2) the effects of different

initial energy distributions of SEE – the secondary electron beam penetration may

decrease if this energy distribution is not half-Maxwellian; (3) the effects of other

possible models of the anomalous electron mobility, e.g., approximating the electric

field of the azimuthal turbulence in Hall thrusters with an externally applied oscil-

lating electric field [64, 66]; (4) the quantitative criterion for the occurrence of the

relaxation oscillation regime; (5) the effect of cylindrical geometry on the EVDF

anisotropy. A most ambitious project would be to perform kinetic simulations re-

solving at least two spatial dimensions.
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Appendix A

Conservation of energy in Hall thruster

simulations

The energy conservation law in Hall thruster simulations is

dWtot

dt
=

(
dW

dt

)

heat

+

(
dW

dt

)

coll

+

(
dW

dt

)

emit

+

(
dW

dt

)

wall

, (A.1)

where Wtot = Wkin +Wpot is the total system energy. The right hand side of (A.1) is

the sum of rates of energy change due to the following processes: the Joule heating
(

dW
dt

)
heat

=
L∫
0

dxJz(x)Ez, the inelastic collisions with neutral atoms
(

dW
dt

)
coll

, the

injection of secondary electrons
(

dW
dt

)
emit

, and the losses of particles at the walls
(

dW
dt

)
wall

. Rates
(

dW
dt

)
coll

and
(

dW
dt

)
wall

describe energy loss and are negative, rates
(

dW
dt

)
heat

and
(

dW
dt

)
emit

describe energy gain and are positive. Introduce

Wheat(t) =

t∫

0

dt

(
dW

dt

)

heat

, Wcoll(t) =

t∫

0

dt

(
dW

dt

)

coll

,

Wemit(t) =

t∫

0

dt

(
dW

dt

)

emit

, Wwall(t) =

t∫

0

dt

(
dW

dt

)

wall

,

(A.2)

where Wheat(t) is the energy gained by the system due to the Joule heating, Wcoll(t)

is the energy lost by the system due to the inelastic collisions with neutral atoms,

Wemit(t) is the energy introduced into the system by the emitted secondary electrons,

Wwall(t) is the energy carried out of the system by particles (electrons and ions)

collided with the walls by the time t. The example of evolution of quantities (A.2)

during simulation is presented in Fig. A.3a. With (A.2), the energy conservation law

(A.1) can be expressed in the form

Wtot(t)−Wtot(0) = Wheat(t) + Wcoll(t) + Wemit(t) + Wwall(t) . (A.3)
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Figure A.1: For simulation 7 of Table 5.2: (a) Curve 1 is the total
energy (kinetic plus potential), curve 2 is the energy gained due to the
Joule heating, curve 3 is the energy lost by electrons in inelastic colli-
sions with neutral atoms, curve 4 is the energy of injection of secondary
electrons, curve 5 is the energy of particles collided with the walls versus
time, here the negative energy value correspond to the energy loss. (b)
The relative deviation from the energy conservation law versus time.

One can use the following ratio as a quantitative characteristic of energy conservation

in simulations:

∆W

W
=

Wtot(t)−Wheat(t)−Wcoll(t)−Wemit(t)−Wwall(t)−Wtot(0)

Wtot(t)
. (A.4)

In simulations with EDIPIC code this relative deviation from the energy conservation

law typically does not exceed 1% after about 107 timesteps (see Fig. A.1b).
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Appendix B

Parameters of Hall thruster simulations

with EDIPIC code

In Table B.1, Tsc and nsc are the values of electron temperature and density

used for scaling in simulations. These scale values are chosen within the range of

typical Hall thruster parameters. The size of the mesh of the computational grid is

∆x = λsc/16, where λsc = (2Tscε0/nsce
2)1/2 is the electron Debye length for Tsc and

nsc. The time step is ∆t = ∆x/4vsc, where vsc = (2Tsc/m)1/2 is the electron thermal

velocity for Tsc. The number of cells in the computational grid is Ncell = L/∆x,

where L = 2.5 cm is the plasma gap width common for all simulations. The number

of macroparticles per cell Nmacro is found empirically. On one hand, it is large enough

to provide overall convergence of simulations. On the other hand, it is limited to

ensure reasonable simulation run time. Spatially uniform distribution with Nmacro

macroparticles per cell produces plasma density equal to nsc.

Table B.1: Parameters of EDIPIC simulations (complementary to
Tables 5.1 and 5.2).

Simulation number 1 2 3 4 5 6 7 8

Tsc , [eV] 46 53 40 40 40 40 40 40

nsc , [1011 cm−3] 1 1 1 1 1 1 1 1

∆x, [10−6 m] 14.09 15.13 13.14 13.14 13.14 13.14 13.14 13.14

∆t, [10−12 s] 0.876 0.876 0.876 0.876 0.876 0.876 0.876 0.876

Ncell 1760 1648 1902 1902 1902 1902 1902 1902

Nmacro 500 2000 1000 1000 1000 1000 1000 1000
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Appendix C

Derivation of the emission coefficient

and the ratio of primary electron flux

components

It is convenient to combine the weakly confined and the collision-ejected plasma

bulk electrons into a single group of plasma bulk electrons, as follows:

Γ1p = Γ1c + Γ1w , Γ2p = Γ2c + Γ2w , γp =
Γ2p

Γ1p

=
γc + γwΓ1w/Γ1c

1 + Γ1w/Γ1c

, (C.1)

where Γ1p, Γ2p and γp are, respectively, the primary and secondary electron fluxes

and the general emission coefficient due to all electrons coming from the plasma bulk

(collision-ejected and weakly confined). Then the total primary electron flux is

Γ1 = Γ1p + Γ1b = Γ1p + αΓ2 , (C.2)

and the total emission coefficient can be found as

γ =
Γ2

Γ1

=
1

Γ1p/Γ2 + α
. (C.3)

The total secondary electron flux is

Γ2 = Γ2p + Γ2b = γpΓ1p + γbΓ1b = γpΓ1p + γbαΓ2 , (C.4)

which gives the ratio
Γ1p

Γ2

=
1− αγb

γp

. (C.5)

Substituting (C.5) into (C.3), one obtains the total emission coefficient in the form

γ =
γp

1 + α(γp − γb)
. (C.6)

Combining Eqs. (C.2) and (C.4) with Eq. (C.6), one obtains

γpΓ1p + γbΓ1b

Γ1p + Γ1b

=
γp

1 + α(γp − γb)
,

then the ratio of primary electron fluxes due to beam and bulk electrons is given by

Γ1b

Γ1p

=
αγp

1− αγb

. (C.7)
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