

Coordination and P2P Computing

A Thesis Submitted to the College of

Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon, Canada

By

Lichun Ji

Keywords: coordination, distributed computing, Manifold, Peer-to-Peer

 Copyright Lichun Ji, August 2004. All rights reserved.

ACKNOWLEDGMENTS

I am deeply indebted to my advisor, Professor Ralph Deters, for his constant

support. Without his help, this work would not be possible. I would also like to thank

the members of my committee who attended my defense: Professor JulitaVassileva,

Professor Dwight Makaroff and Professor Chris Zhang. Their advice and patience is

appreciated. Special thanks go to Professor Dwight Makaroff for his invaluable advice

on system evaluation and simulation. I would also like to thank all graduate students of

MADMUC labs for their helps.

I dedicate this thesis to my parents.

ii

ABSTRACT

Peer-to-Peer (P2P) refers to a class of systems and/or applications that use

distributed resources in a decentralized and autonomous manner to achieve a goal. A

number of successful applications, like BitTorrent (for file and content sharing) and

SETI@Home (for distributed computing) have demonstrated the feasibility of this

approach.

As a new form of distributed computing, P2P computing has the same

coordination problems as other forms of distributed computing. Coordination has been

considered an important issue in distributed computing for a long time and many

coordination models and languages have been developed.

This research focuses on how to solve coordination problems in P2P computing.

In particular, it is to provide a seamless P2P computing environment so that the

migration of computation components is transparent. This research extends Manifold, an

event-driven coordination model, to meet P2P computing requirements and integrates

the P2P-Manifold model into an existing platform. The integration hides the complexity

of the coordination model and makes the model easy to use.

iii

TABLE OF CONTENTS

ABSTACT .. ii

LIST OF TABLES.. v

LIST OF FORMULAS .. vi

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS & TERMS ... ix

CHAPTER 1 INTRODUCTION .. 1

1.1 Motivation
1.2 Research Statements
1.3 Research Questions

CHAPTER 2 P2P COMPUTING ... 5

2.1 P2P Characteristics
2.1.1 Decentralization
2.1.2 Dynamism
2.1.3 Heterogeneity

2.2 Case Studies
2.2.1 Condor
2.2.2 Avaki
2.2.3 SETI@Home
2.2.4 JXTA
2.2.5 .NET
2.2.6 Summary

CHAPTER 3 COORDINATION MODELS AND LANGUAGES 19

3.1 Data-driven Models and Languages
3.2 Process-oriented Models and Languages

3.2.1 Manifold
3.2.2 Darwin

3.3 Hybrid Models and Languages
3.3.1 STL

3.4 Comparison and Discussion
3.4.1 Data-driven vs. Process-oriented Coordination Models
3.4.2 STL, Darwin vs. Manifold
3.4.3 Coordination in P2P Computing

CHAPTER 4 P2P-MANIFOLD ... 33

4.1 Components
4.2 Services

iv

4.3 Migration
4.4 .NET Implementation

CHAPTER 5 EXPERIMENTAL SETUP AND METHODOLOGY............................... 40

5.1 Data Collecting
5.2 Performance Metric
5.3 Theoretical Analysis

5.3.1 Network Overhead
5.3.2 Network Latency

CHAPTER 6 EXPERIMENTS .. 46

6.1 Throughput and Response Time Experiments
6.1.1 One Provider and One Consumer and One Coordinator
6.1.2 One Provider and One Consumer and One Coordinator (Advanced)
6.1.3 Two Providers and Two Consumers and One Coordinator
6.1.4 Two Providers and Two Consumers and One Coordinator (Advanced)
6.1.5 Organization Experiments
6.1.6 Conclusion

6.2 System Usage Experiments
6.2.1 System Usage Experiment
6.2.2 Potential of P2P Computing

6.3 Coordination Communication Experiments
6.3.1 Coordination Messages
6.3.2 SOAP/HTTP Message Sending

6.4 Summary

CHAPTER 7 SUMMARY & CONTRIBUTIONS .. 73

7.1 Summary
7.2 Contributions

CHAPTER 8 FUTURE WORK.. 75

LIST OF REFERENCES.. 77

APPENDIX A .NET REMOTING ... 79

APPENDIX B .NET P2P-MANIFOLD IMPLEMENTATION 85

v

LIST OF TABLES

2-1. Comparisons of Case Studies ... 17

3-1. Taxonomy of Coordination Models and Languages .. 20

3-2. Comparisons of STL, Darwin and Manifold .. 32

6-1. 1:1:1 Experiment Settings .. 47

6-2. 1:1:1 Average Service Response Times ... 48

6-3. 1:1:1 (Advanced) Experiment Settings... 50

6-4. 1:1:1 (Advanced) Average Service Response ... 50

6-5. 2:2:1 Experiment Settings .. 52

6-6. 2:2:1 Average Service Responses Time ... 54

6-7. 2:2:1 (Advanced) Experiment Settings... 55

6-8. 2:2:1 Average Service Response Time... 57

6-9. Reduction of Service Throughput... 57

6-10. Organization Experiment settings .. 59

6-11. Organization Experiment Service Average Response Time 59

6-12. System Usage Experiment Machine Performance ... 62

6-13. System Usage of a New Local Proxy ... 63

6-14. System Usage of a Busy Local Proxy .. 63

6-15. System Usage of a New Coordinator.. 64

6-16. System Usage of Root Coordinator .. 64

6-17. System Usage of a Hello-World Application ... 65

6-18. MADMUC Lab Daily Resources Usage .. 66

vi

LIST OF FORMULAS

1. The Overhead of Non-Cross-Coordinator Service .. 42

2. The Simplified Overhead of Non-Cross-Coordinator Service................................... 43

3. The Average Overhead of Service ... 43

4. The Simplified Average Overhead of Service ... 44

5. The Response Time of Service Call... 44

6. The Response Time of Web Service.. 44

7. The Average Transmitted Bytes of Service Search ... 68

8. The Size of Transmitted Message of Coordinator Migration 68

vii

LIST OF FIGURES

2-1. High-Level Views of P2P Network.. 6

2-2. The Layers of Condor... 8

2-3. The Layers of Avaki ... 10

2-4. SETI@Home Architecture ... 12

2-5. JXTA Architecture.. 13

2-6. Generic Web Service Architecture ... 15

3-1. Shared Dataspace Principle .. 21

3-2. IWIM Process Model.. 23

3-3. A Manifold Example .. 25

3-4. Darwin Tree Constructor View .. 26

3-5. Composite Component ... 27

3-6. The ECM Coordination Model... 28

4-1. P2P-Manifold Architecture... 34

4-2. Cross-Coordinator Service Example .. 35

4-3. P2P-Manifold Interaction ... 36

4-4. Architecture of .NET P2P-Manifold Implementation .. 39

5-1. Data Collecting Model.. 40

6-1. 1:1:1 Service Calls in 5 Minutes... 48

6-2. 1:1:1 Service Response Time ... 49

6-3. 1:1:1 (Advanced) Service Calls in 5 Minutes... 50

6-4. 1:1:1 (Advanced) Service Response Time ... 51

6-5. 2:2:1 Architecture ... 52

6-6. 2:2:1 Service Calls in 5 Minutes... 53

6-7. 2:2:1 Average Service Response Time... 54

viii

6-8. 2:2:1 Service Calls in 5 Minutes... 56

6-9. 2:2:1 Average Service Response Time... 56

6-10. Organization Test Architectures ... 58

6-11. Organization Experiment Service Calls in 5 Minutes .. 59

6-12. Organization Experiment Service Response time .. 60

6-13. MADMUC Lab Weekly Resource Usage .. 66

6-14. Peak Usage (%) for Individual Computer .. 66

6-15. Daily Average Usage.. 67

6-16. An Example Consumer Registration Message ... 69

6-17. Local SOAP message sending test ... 70

6-18. Comparison of Local Test and Emulation Test .. 70

ix

LIST OF ABBREVIATIONS & TERMS

Condor A general-purposed distributed computing platform

CORBA Common Object Request Broker Architecture

C/S Client/Server Distributed Computing Model

Darwin A Configuration Language

ECM Encapsulation Coordination Model (a coordination model)

IWIM Ideal Worker Ideal Manager (an event-driven coordination model)

JXTA A P2P Platform

Linda A Date-driven Coordination Language

MADMUC Multi-Agent Distributed Mobile and Ubiquitous Computing

Laboratory

Manifold An event-driven Coordination Language

P2P Peer-to-Peer

SETI@HOME A P2P Distributed Computing Application. SETI (the Search for

Extraterrestrial Intelligence)

SOAP Simple Object Access Protocol, an XML-based protocol for the

exchange of information

STL Simple Thread Language (hybrid coordination language)

UDDI Universal Description, Discovery and Integration, service location

and contracts advertisement approach

WSDL Web Services Description Language, an XML-based grammar for

describing network services

XML Extensible Makeup Language

.NET Microsoft Framework

.NET Remoting A component of .NET Framework dealing with cross-application

domain communication

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

The continuing growth in processing power, memory and network bandwidth

has dramatically changed desktop computing. With the pervasive deployment of desktop

machines and increasingly powerful handheld devices, an ever-growing pool of

resources is emerging. Currently there are over 400 million computers worldwide of

which the majority is often either idle or underutilized.

Recently, the term “P2P” has been used to refer to a collection of applications

that harvest the unused processing cycles of desktop computers in a network [1]. A

number of successful approaches, like BitTorrent [2], Gnutella [3], and Freenet [4] for

file and content sharing and SETI@Home [5] for distributed computing, have

demonstrated the feasibility of this approach. Peers (nodes) in a P2P system have

equivalent capabilities in providing other parties with data and/or services and cooperate

in a decentralized manner.

As a new type of distributed computing, P2P computing has the same

coordination problems as other forms of distributed computing, for example:

communication, security and synchronization. In the area of distributed computing,

coordination in a large community of cooperative heterogeneous components has been a

major concern for a long time. This led to the design and implementation of a number of

coordination models and their associated languages. These models and languages

provide frameworks, which enhance modularity, component reusability, portability and

language interoperability [6].

Due to the autonomy and dynamic nature of participants in a P2P environment, it

is hard to predict or infer the location and lifetime of the system’s resources. In other

words, computation components may often need to migrate from location (peer) to

2

location during execution. This requires additional coordination-oriented features in P2P

computing such as autonomous reconfiguration, platform-independent communication

and decentralized coordination management.

1.2 Research Statements

This research focuses on how to apply/adapt a coordination model for solving

coordination problems in P2P computing. It extends Manifold, an event-driven

coordination model, to meet P2P computing requirements and integrates the proposed

model into an existing platform. The new P2P coordination model has the following

features:

• Transparency

The model needs to hide the migration of components and provide a transparent

development and execution environment so that P2P computing application can be

treated and developed as normal distributed computing application. This will

improve the programmability and adaptability of P2P application.

• Flexibility

The new coordination model should be easy to use and integrate. P2P computing

applications are heterogeneous in terms of their programming language, underlying

middleware (i.e. software that connects two otherwise separate applications or

separate products that serve as the glue between two applications) and running

environment. The heterogeneity requires a flexible and adaptable model.

• Usability

The model should add little new work and concepts for programmers developing

applications.

P2P computing is viewed here as web-services-style P2P computing. From this

perspective, each peer in the network contributes its idle resources through its web

services interface. The web services are provided by a (set of) service object(s) and can

be either context-independent or context-dependent in terms of the type of the object.

Context-independent services are services in which each invocation is isolated. Context-

3

dependent services are services that contain states and the state of the service object is

changed during invocation.

Several assumptions are made in this research:

• The resources of the P2P network are plentiful and there are always enough suitable

peers available.

• The selection of participants and the deployment of application components are done

prior to the execution and the component migration. In addition, any associated

external data components, such as database and data files, are deployed or moved

with the component.

• The mobility of coordinators in the model is low. A coordinator is always located on

a relatively long-lived host. This assumption is due to the high cost of coordinator

migration and the special role a coordinator plays.

• The sudden departure of a participating peer is ignored in this research. A

component in the model has enough time for sending necessary messages (e.g. state

change messages) and completing a migration. For example, a service provider

won’t leave until completing any ongoing service call and the migration request of

the replacement.

• All participants (hosts) are fully trusted (no security concerns).

1.3 Research Questions

This thesis will focus on the following two main issues:

• Design & Implementation

How to design and implement a coordination model for P2P systems.

• Evaluation

How does the model influence the application and the host machine?

The rest of this thesis is organized as follows: Chapter 2 provides an overview of

P2P networks and existing P2P computing systems; Chapter 3 reviews the concepts and

works of coordination; Chapter 4 presents the design and the .NET implementation of

P2P-Manifold model; Chapter 5 provides the experimental setting and methodology;

4

Chapter 6 presents the experiments with data analysis; and the thesis finishes with a

summary and a discussion on future work.

5

CHAPTER 2

P2P COMPUTING

 “Peer-to-Peer (P2P) refers to a class of systems and/or applications that use

distributed resources in a decentralized and autonomous manner to achieve a goal e.g.

perform a computation” [1]. The members (called peers) of a P2P network are always in

total control of their local resources and can therefore choose to impose or change

policies regarding their use. Rather than having static and predefined roles for the

participants like in the client-server model, P2P networks rely on emerging and dynamic

roles as a result of an ongoing self-organization.

The functionalities and application domains of P2P networks lead to four main

P2P categories [1]:

• File sharing

File sharing seems to be the most successful application for P2P networks. The basic

idea of file sharing is to use the idle disk space for storage and the available network

bandwidth for search and download. BitTorrent [2], Gnutella [3], Freenet [4] and

FastTrack [7] are just a few of this fastest growing segment of P2P technology.

• Collaboration systems

Collaboration systems allow application-level collaboration among users. These

include real-time exchange of message (Project Jabber [8]) and online

game/gambling (Zoogi [9]).

• P2P platforms

P2P platforms like JXTA [10] support the developers of P2P applications by

offering a wide range of libraries and services (e.g. request routing, peer discovery

and peer communication).

6

• Distributed computing

Distributed computing applications harvest unused processing cycles of computers

in the network to delegate and migrate tasks. The SETI@Home project [5], which

uses the idle resources of participating peers for its search of extraterrestrial

intelligence, is an example of a successful distributed computing application.

2.1 P2P Characteristics

A P2P network is characterized by decentralization, dynamism and

heterogeneity. These factors impact the performance and deployment of P2P systems.

2.1.1 Decentralization

Pure

Hybrid

Figure 2-1 High-Level Views of P2P Network

P2P computing provides an alternative to the centralized client/server (C/S)

model of computing. A P2P model can be either pure or hybrid (Figure 2-1). In pure

P2P models, such as Gnutella [3] and Freenet [4], all participants (peers) play the same

role of both client (service consumer) and server (service provider). In hybrid models,

such as BitTorrent [2] and Groove [11], peers first approach a server in order to obtain

meta-information, for example: the identity of the destination peer, which offers a

required service (data, computation, etc). After this, the P2P communication is

performed. The direct service exchange liberates peers from the traditional dependence

on central servers. The self-organized peers have a higher degree of autonomy and

control over the services they utilize [12].

The decentralization provides the opportunity to make use of unused bandwidth,

storage and processing power at the edge of the network. It reduces the cost of system

7

ownership and maintenance and also improves the scalability. The impact of a peer’s

entering/leaving will be limited to the directly connected peers instead of damaging the

whole network. The P2P model distributes the workload of a server in C/S model and

eliminates the single-failure bottleneck of the centralized C/S model.

2.1.2 Dynamism

In a C/S system, the participating components (servers and clients) are

predefined and relatively stable during the service period. The P2P computing

environment is dynamic, resources, such as compute nodes, will be joining and leaving

the system frequently [1]. When an application is intended to support a highly dynamic

environment, the P2P approach is a natural fit. For example the Instant Messaging ICQ

[13] uses so-called “buddy lists” to inform users when chat friends become available or

unavailable. Without this support, a “poll” of chat partners is needed to send periodic

status change message [1]. However, the dynamism reduces the Quality-of-Service and

increases the complexity, such as dynamic mapping, migration and synchronization.

2.1.3 Heterogeneity

All participating peers are heterogeneous in terms of their compute and storage

capacity, and how well they are connected to the other peers. The availability varies

widely as some hosts appear and disappear from the network on a regular basis, while

others are almost continuously connected. A P2P system has to leverage the

heterogeneity to improve robustness and performance.

2.2 Case Studies

Utilizing idle resources is not a new idea. Over time, many different approaches

have been developed. In this section, five approaches will be discussed: the Condor

system, which is one of the earliest systems to harvest the unused resources; the Avaki

system as an example of the currently emerging grid-oriented approaches; the

SETI@Home application; the new Java P2P platform JXTA; and the language-

independent .NET platform.

8

2.2.1 Condor

Figure 2-2 The Layers of Condor [14]

Work on Condor started in 1988 at the Computer Sciences Department, at the

University of Wisconsin-Madison [14]. Condor aims to offer a general-purpose

framework that would allow the use of idle CPU cycles for research purposes. The

platform-independent framework provides a basic job queuing mechanism, scheduling

policies, priority schemas and resource monitoring and management for distributing

“jobs” (tasks) over a pool of machines (peers). It is built on the principle of distributing

batch jobs around a loosely coupled cluster of computers to enable a High Throughput

Computing (HTC) system. The workflow of a Condor application is as follows (Figure

2-2):

1. Users submit their sets of serial or parallel tasks to Condor in the form of jobs.

2. The Condor matchmaker places jobs into a queue and chooses when and where to

run them based on job needs, machine capabilities and usage policies.

3. Condor monitors the progress of jobs and informs the user upon the completion of

their jobs.

Condor uses various concepts to ensure fast and safe execution of jobs. To

protect the host, all jobs are executed in a restrictive sandbox that prevents/intercepts

invoking any system calls. Only “remote” system calls are permitted since they will be

executed on the host of the job’s owner. In addition to this, Condor supports strong

9

authentication, encryption, integrity assurance and authorization. To ensure the fast

execution of jobs, Condor uses the following techniques [14]:

• Classified Ads (ClassAd)

Ads are used for job/machine mapping, which ensures that the requirements of the

jobs fit the capabilities and policy of the machine. A centralized matchmaker

performs this mapping. All machines in a Condor pool advertise their attributes,

such as available RAM memory, CPU type and speed, virtual memory size, current

load average, the conditions under which it will agree to execute a Condor job and

the preferred type of job.

• Queuing mechanism with priority settings

Each user has a Condor queue for all the jobs he/she submitted. The job priority is a

means for users to identify the relative importance of individual jobs within a

submitted set of jobs. Condor also uses a user priority ranking to determine the

amount of pool resources given to the jobs. The higher the priority of the user, the

more resources are assigned to his/her jobs.

• “Flocking” technique

Condor supports the linking of independent Condor resource pools. In a linked

environment, a Condor pool may transfer a submitted job to another pool that

accepts “foreign” jobs.

• “Up-down” algorithm for scheduling

The longer a process runs, the lower its priority becomes. This policy is meant to

ensure that users avoid long-lived jobs and the job queues are kept short.

• Checkpointing

Checkpointing is used to compensate for unexpected failures of a host or a job.

Condor requires that each job is capable of saving its state in certain time intervals in

the form of an image and offers a library to implement this functionality. A

checkpoint image contains the process's data and stack segments, as well as

information about open files, pending signals, and CPU states. When the job is

restarted, the state contained in the checkpoint file is restored. The process resumes

the computation at the point where the checkpoint was generated.

10

According to Condor’s usage statistics [15], on a typical day Condor delivers

more than 650 CPU days (1 CPU day = 1 CPU×24 hours) to the researchers at the

University of Wisconsin-Madison.

2.2.2 Avaki

Application Services Job Scheduling, Distributed Distributed File System

Monitoring, Load Balancing Policy management System Management
Services Metering, Accounting Failover + Recovery

Identity, Authentication, Encryption, Access Control
Scalable Naming and Binding Grid Protocol
Communication Protocol Adapter

Protocol Adapter TCP/IP RPC JXTA .NET

Figure 2-3 The Layers of Avaki [17]

Andrew Grimshaw at the University of Virginia initiated the Avaki project [16]

in 1993, and re-launched it as Avaki Corporation in 2001. Avaki is a grid middleware

that enables sharing of data, applications and computing resources targeting the

enterprise-wide computing area.

The Avaki grid environment can consist of desktops, workstations, servers and

clusters. Each machine in the grid is autonomous and consequently the system

management is distributed. Avaki is able to interoperate with queuing systems, load

management systems, and/or scheduling systems. Avaki is composed of three services

layers (Figure 2-3):

• The grid protocol layer, which provides protocol adapters, security, naming and

binding.

• The system management services layer, which provides interfaces for implementing

and managing distributed solutions.

• The application services layer, which provides high-level services.

11

Each resource made available to the Avaki grid has a unique logical identifier.

Avaki manages grid resources and applications via:

• Access controls - A user or application may or may not have access to a specific

service or host computer.

• Matching - Avaki matches application requirements and host characteristics.

• Prioritizing - Avaki evaluates the grid and its application based on polices and load

conditions.

To ensure the safe and secure execution of the code, Avaki uses the following

approaches:

• Checkpointing

Avaki uses checkpointing to minimize the loss of information in the event of a host

or network failure. Hosts, jobs and queues automatically back up their current states.

• Redundancy

Avaki networks are designed to allow the use of redundancy as an additional means

for coping with failures. Avaki migrates running applications to another host, based

on predefined deployment policies and resource requirements.

• Authentication

The Avaki authentication reduces the need for additional software-based security

control, substantially reducing the overhead of sharing resources. Avaki’s

authentication is based on the resource identity and it uses the Public Key

Infrastructure (PKI) technique [17]. It allows the local administrator to control the

access to their resources. It also includes user access authorization and resource

access authorization.

2.2.3 SETI@Home

SETI@Home was envisioned in 1996 by computer scientist David Gedye, along

with Craig Kasnoff and astronomer Woody Sullivan [5]. SETI (the Search for

ExtraTerrestrial Intelligence) is a collection of research projects aimed at discovering

alien civilizations using radio telescopes. Since the analysis of the extensive radio

12

telescope data (about 35 GB per day) requires significant computing resources, a P2P

approach for distributed computing was chosen. SETI@Home engages Internet users

around the world in the effort of signal analysis.

Figure 2-4 SETI@Home Architecture [1]

As shown in Figure 2-4, a central SETI@Home server divides the data into

chunks (work-unit) designed for an average desktop computer. Participating peers

contact the server and download a chunk of data. After downloading the data, the peer

starts processing the data in its idle time (i.e. when the screen-saver is active). The result

of the analysis is sent back to the central server and a new cycle of requesting data,

processing data and reporting results begins.

The tasks in SETI@Home are independent and can be executed without the need

of any network connection. Network connectivity is only needed for receiving data and

sending results. The peer data - including the number of work units completed, time of

last connection, and team membership - is reported on Web sites allowing users to

compete for the biggest CPU contributions. SETI@Home uses a check-pointing

mechanism to recover from faults. It saves the dataset and the progress in analyzing it to

the hard drive every 10 minutes. To ensure that the hardware and software is working

properly, SETI@Home also injects "test signals" into the system. "Suspicious"

responses to a work unit or the lack of reported results is recorded and used in

evaluating the level of trust assigned to the peer, e.g. preventing the peer from future

participation.

The major contribution of SETI@Home is the demonstration of how to apply

distributed computing challenges in a P2P network. SETI@Home has managed to

13

attract several hundred thousand active participants, which hope to be the “one” to

discover extraterrestrial. Due to the large number of freely available computing

resources, no efforts for optimizing the execution of tasks are necessary.

2.2.4 JXTA

Figure 2-5 JXTA Architecture [18]

JXTA [25] was started at Sun Microsystems in 2001. It is an open-source project

(www.jxta.org) and was initiated by Bill Joy to standardize a set of protocols for

building P2P applications. JXTA aims at providing a general framework that is software

and hardware platform independent. It defines six protocols: Endpoint Routing (ERP),

Rendezvous Protocol (RVP), Peer Revolver Protocol (PRP), Peer Discovery Protocol

(PDP), Peer Information Protocol (PIP), and Pipe Binding Protocol (PBP). Currently

Java and C implementations of the JXTA protocols are available and a .Net version of

JXTA is under development.

JXTA has several platform-independent features that make it useful for current

P2P application designers (e.g. the Anthill project [19]):

• Unique IDs for entities and advertisements

Each entity (peer, peer group, pipes, advertisement, etc) is assigned and identified by

a unique ID. Similar to Condor, all resources in the JXTA network are represented

by advertisements but the ads in JXTA are XML formatted, making them platform

independent and extendable. Peers cache, publish and exchange ads to discover and

find available resources. The advertisement mechanism makes all available network

resources visible to peers.

14

• Concept of peer groups

Peers in the JXTA network are linked to at least one peer group, which is a dynamic

set of peers that share interests and have agreed upon a common set of policies and

services. Each peer group is a virtual network space consisting of a subset of all

devices accessible via an overlay network. The JXTA overlay network is a

middleware messaging system designed to allow for end-to-end connectivity

between devices across sub-networks.

• Transparent communication via pipes

JXTA uses asynchronous communications channels, called pipes, for sending and

receiving messages. It offers two modes of communication: point-to-point and

propagation. Pipes allow for a simple and transparent form of communication.

• Rendezvous peers

JXTA provides a resolver service based on rendezvous peers. Rendezvous peers are

well-known peers that have agreed to cache a large number of advertisements for

exchanging and trading information.

• Peer-monitoring

Peer-monitoring is a core mechanism of JXTA. It enables control of the behavior

and activity of peers in a peer group and can be used to implement task management

functions for fault detection and recovery.

• Entry-level trust model

Project JXTA provides an entry-level trust model, Poblano [20], which permits peers

to either have their own certificate authorities or rely on others.

JXTA provides a general-purpose P2P network programming and computing

infrastructure and consequently it supports basic security and communication features.

However the support for different computing models is left to the developer of the

application.

15

2.2.5 .NET

Microsoft’s .NET (DotNet) [22] was officially launched in June 2000. It

provides a platform for developing web services – both P2P and client/server in nature.

From .NET’s point of view, every computer on the Internet is capable of delivery its

own web services.

The design of .NET is focused around decentralization of distributed services. It

consists of:

• .NET framework and .NET compact framework

Cross-platform frameworks of classes designed for building and running

applications and web services - components that facilitate integration by sharing data

and functionality over a network through standard, platform-independent protocols.

• Developer tools

Developer tools provide an integrated development environment (IDE) for

maximizing developer productivity with the .NET Framework.

• Servers & client software

They help developers to integrate, run, operate, and manage web services and web-

based applications.

Figure 2-6 Generic Web Service Architecture [21]

The concept of web services is built around web standards and standard

protocols, such as HTTP [23], XML [24], SOAP [25], WSDL [26] and UDDI [27]. The

web service architecture is divided into four logical layers (Figure 2-6):

• Data layer

It stores information required by the web service.

16

• Data access layer

It presents a logical view of the physical data to the business layer. It isolates the

business logic from changes to the underlying data stores and ensures the integrity of

the data.

• Business layer

It implements the business logic of the web service and is often subdivided into two

parts: the business facade and the business logic. The business facade provides a

simple interface, which maps directly to operations exposed by the web service. The

business facade uses services provided by the business logic layer.

• Listener layer

It is responsible for receiving incoming messages containing requests for service,

parsing the messages, and dispatching the request to the appropriate method on the

business facade. If the service returns a response, the listener is also responsible for

packaging the response from the business facade into a message and sending it back

to the client. The listener also handles requests for contracts and other documents

about the web service.

The .NET web services model is implemented in the .NET Remoting Framework

(Appendix A). The .NET Remoting Framework provides an extensible framework for

objects existing in different application domains (processes) and in different machines to

communicate with each other seamlessly. It also offers a programming model and

runtime support for making these interactions transparent.

2.2.6 Summary

The previously mentioned systems show a great diversity of approaches. Table

2-1 summarizes the comparison of case studies in system characteristics:

• Condor is a cluster project with a central manager where participating host are

known and stable. Each Condor task is independent - no concurrent communication

is required.

17

• Avaki is one of the grid computing platforms. It handles some degree of

heterogeneity and dynamism.

• SETI@Home is an application designed for computing independent tasks. It relies

on an always-on central server to assign tasks to available voluntary hosts and

harvest the results. Therefore the SETI@Home network is heterogeneous and semi-

dynamic.

• JXTA standardizes a set of protocols for building P2P applications. All of the

protocols concentrate on the network topology and message (advertisement) format.

But it leaves the implementation details to the developer. It doesn’t mention

coordination-oriented issues and the application developers need to design and

handle these issues.

• The .NET Framework is a general purpose distributed computing framework. It

provides APIs for developing application and treats the coordination supports as a

part of application.

Table 2-1 Comparisons of Case Studies

System Characteristics Case Model Decentralization Dynamism Heterogeneity
Condor Academic &

Open-Source
Cluster with
central server

Predictable
participant

Low

Avaki Product & Open-
Source

Grid High High

SETI@Home Academic Central server Moderate High
JXTA Proprietary

extensions
Rendezvous peer
Peer group

High High

.NET Proprietary N/A N/A N/A

As an extension of traditional distributing computing, all of the above P2P

computing cases miss one essential issue, coordination. Condor and SETI@Home deal

with independent tasks avoiding coordination. Avaki may have considered some

coordination issues, though few documents about the design or detailed inner

architecture have been released. JXTA and .NET are general-purpose frameworks with

protocols and generic APIs. They leave coordination as one of the implementation detail

to the developer. Since coordination is essential when cooperating and interacting

18

among concurrent and distributed components, it is important for a P2P middleware to

provide coordination support to the developers.

19

CHAPTER 3

COORDINATION MODELS AND LANGUAGES

Coordination is a central issue in the design of distributed and parallel systems,

which consist of several concurrent, cooperating processes. Carriero and Gelernter first

stated the term Coordination by advocating the following slogan [28]:

programming = computation + coordination

Programming a distributed or parallel system can be seen as the combination of

two distinct activities: the actual computing part consisting of a number of processes

involved in manipulating data, and a coordination part responsible for the

communication and cooperation between the processes. Thus, the separation of

coordination (communication) and computational concerns allows the separate

development and the eventual amalgamation of these two phases.

A coordination model is an abstract framework for the composition and

interaction of active entities [29]. It encompasses concepts and methodologies for

dynamic process creation and destruction, communication mechanism, multiple

communication flows and activity spaces. A general coordination model contains the

following elements [30]:

• Coordinated entities

Coordinated entities are the active entities (processes) running concurrently. They

are the direct subjects of coordination and therefore the building blocks of the

coordination architecture.

• Coordinating media

The medium allows the coordination of all participating entities and serves to

assemble entities into a configuration. In a shared dataspace model, it is the actual

space where coordination takes place.

20

• Coordination rules

Rules are the specifications of the semantics framework of the model and the

definitions of how the entities are coordinated using the coordinating media.

A coordination language is the materialization or the “linguistic embodiment of

a coordination model” [6]. It offers facilities for controlling synchronization,

communication, creation and termination of computational components [28]. A

coordination language is not a general purpose programming language. It is orthogonal

to a computation language in the sense that it is only concerned with handling the

interactions among concurrent activities. Based on a model, a coordination language

provides means to compose and control software architectures consisting of concurrent

components [30].

Table 3-1 Taxonomy of Coordination Models and Languages [29]

Several dimensions can be used to classify the numerous coordination models

and languages, for example: the kind of entities that are being coordinated, the

underlying architectures assumed by the models, the semantics a model adheres to, etc.

The most common classification distinguishes between data-driven and control-driven

(process-oriented) coordination models [6]. There are also hybrid models [29], which

merge the two families, by explicitly confronting and integrating elements from one

family in the other. Table 3-1 summarizes the taxonomy of some models and languages.

21

3.1 Data-driven Models and Languages

Coordination models belonging to this category are based on the principle of a

shared dataspace (a.k.a. tuple space). A shared dataspace [31] refers to the general class

of models and languages in which the principal means of communication is a common,

content-addressable data structure. Usually there is a (set of) global dataspace(s) shared

among components, where components communicate with each other indirectly by

posting, reading or withdrawing information to/from it.

Linda, developed in the middle 80’s, is one of the first genuine coordination

languages in history [6]. It introduced a new paradigm: generative coordination. If two

processes want to exchange data, the provider generates a new tuple (message unit of

data without address information) for that data and inserts it into the tuple space from

which the consumer can retrieve the tuple. The communication among processes is

anonymous - no provider knows the identity of a receiver. Besides passive data tuples,

there are active tuples that represent processes. Linda provides a set of simple

coordination primitives:

• out(t) - puts a new passive tuple in the dataspace;

• eval(t) - puts an active tuple (process) in the dataspace;

• in(t) - retrieves a passive tuple from the dataspace;

• rd(t) – creates and retrieves a copy of a passive tuple in the dataspace;

• inp(t), rdp(t) - non-blocking variants of in(t) and rd(t).

Figure 3-1 Shared Dataspace Principle [31]

Linda has inspired the creation of many other similar languages, such as Bonita,

Objective Linda, GAMMA, etc [6]. JavaSpaces [32] is a Java-based Linda-like model

introduced by Sun Microsystems and used in the JINI framework [33].

22

The concept of data-driven coordination is simple to understand and implement.

But data-driven models have two significant disadvantages. One is the network

overhead due to tuple searching and data duplication. Therefore it is not suitable for

large systems with many active processes. Another problem is the lack of a clear

separation between the coordination functionality and the purely computation

functionality of a process. This means that programmers may have to mix coordination

and computation code within the process definition, which decreases the components’

reusability and portability.

3.2 Process-oriented Models and Languages

Within process-oriented (or event-driven, control-driven) coordination models,

“the state of the computation at any moment in time is defined in terms of only the

coordinated patterns that the processes involved in some computation adhere to” [30].

Processes send out control messages or events to their environment (i.e. other interested

processes). These messages/events are used to notify others of their state or to inform

them of any state changes. The main goal of the process-oriented model is to separate

computation and coordination so as to increase reusability. The components being

coordinated are considered as black boxes that produce and consume data via well-

defined interfaces to the external world. Data is transported by connections between

provider and consumer components.

3.2.1 Manifold

Manifold [34] is an event-driven coordination language based on state

transitions. The concept model behind Manifold is the IWIM (Ideal Worker Ideal

Manager) model.

IWIM model

The IWIM (Ideal Worker Ideal Manager) communication model completely

separates the computational aspects of a process from its communication aspects, thus

23

encourages a weak coupling between worker processes in the coordination environment.

The basic concepts in the IWIM model are processes, events, ports and channels.

Figure 3-2 IWIM Process Model [34]

A process is a black box with well-defined ports of connection through which it

exchanges units of information with its environment. There are two different types of

processes: managers (or coordinators) and workers. A manager is responsible for

setting up and managing the communication needs of a group of workers it controls. A

worker is unaware of other processes in the communication channels (i.e. where data is

sent to/received from). Worker processes can themselves be managers of subgroups of

other processes. More than one manager can coordinate a worker’s activities as a

member of different subgroups.

Events are raised by their source and can be consumed by interested processes in

the same environment. Events are used for sending process state information to other

processes. Events are non-parameterized and are used only for triggering state

transitions, causing the evolution of the coordinated apparatus. Every process in an

environment may capture events occurrence and react to them.

Ports are named openings of processes through which data is exchanged. Each

port is used for the exchange of data in only one direction. Channels are directed

interconnections between ports.

Manifold language

Manifold is a coordination language based on the IWIM model [18]. Every basic

IWIM abstraction represents a Manifold language construct. In particular, a stream in

Manifold corresponds to the asynchronous communication channels in the IWIM model.

24

A process (also called a manifold) is an independent, autonomous, activity entity

that executes a procedure. Processes are unaware of the environment and influenced by

other processes through their ports and events. There are two types of manifold, atomic

processes that are programs written in a programming language other than Manifold,

and regular manifolds that are written in the Manifold language. Atomic processes and

regular manifolds in Manifold correspond to the workers and managers in the IWIM

model. A regular manifold consists of several states, which are composed of a label and

a body. The label is a condition for the state transition and the body is a set of actions.

At any moment, a Manifold process must be in one and only one state. From this

perspective, the Manifold coordination topology is event-driven and based on state

transitions. A state is preempted if the occurrence of an event that matches the label and

another state can cause a state transition during its execution.

An event is an asynchronous, non-decomposable (atomic) message, broadcasted

by a process in its environment or posted internally within the process. The environment

of a process includes all running processes in the same application. Events are identified

by their names and source processes. An observer process is responsible for consuming

interesting events in its environment and deciding how to react to that event.

Occurrences of events that are of interest to a process can be ignored, saved (remains in

the event memory to be handle at a later time) or be used for a state transition.

A port is a means by which information produced by the process is exchanged

with other processes. A port is uni-directional and can be either input or output. All

process instances in Manifold have three default ports input, output and error. A stream

connects one source port and one sink port. But one port can bind any number of

streams. Manifold supports KB (Keep-Break), BB (Break-Break), KK (Keep-Keep), and

BK (Break-Keep) streams with infinite FIFO (First-In-First-Out) queues. Only KB and

BK streams can be re-connected. “Keep” and “Break” attributes represent the

connection types of ports. “Keep” means that one end of the stream does not disconnect,

even if the stream realizes that the connection at its opposite end is broken. “Break”

means that the stream is disconnected once the opposite end of the stream is broken.

25

export manifold Sorter()
{
 event filled, flushed, finished.
 process atomsort is AtomicSorter(filled).
 stream reconnect KB input->*.
 priority filled<finished.
 begin:
 (
 activate(atomsort), input->atomsort,
 guard(input,a_everdisconnected!empty,finished)
).
 finished:
 {
 ignore filled.
 begin: atomsort->output
 }.
 filled:
 {
 process merge<a,b|output> is AtomicIntMerger.
 stream KK *->(merge.a,merge.b).
 stream KK merge->output.
 begin:
 (
 activate(merge), input->Sorter->merge.a,
 atomsort->merge.b,
 merge->output
).
 end | finished:.
 }.
 end:
 {
 begin:
 (
 guard(output,a_disconnected,flushed),
 terminated(void)
).
 flushed: halt.
 }.
}
manifold Main
{
 auto process read is ReadFile(“unsorted”).
 auto process sort is Sorter.
 auto process print is printunits.
 begin: read->sort->print.
}

Figure 3-3 A Manifold Example [28]

Figure 3-3 is a Manifold example of merge sort. Sorter activates the actual

sorting. AtomicSorter and AtomicIntMerger are responsible for sorting and merging the

output of sorting respectively.

26

3.2.2 Darwin

Darwin is a configuration language that enables the specification of systems as a

collection of components and their interconnections (services) [35] and is based on its

predecessor, the Conic configuration language [36]. Darwin encourages a component-

based approach to program structuring in which the unit of structure (component) hides

its behavior (services it provides and requires) behind a well-defined interface.

Composite components are constructed by combining (in parallel) more elementary

components. The general form of a Darwin program is therefore the tree (Figure 3-4) in

which the root and all intermediate nodes are composite components; the leaves are

primitive components encapsulating behavioral as opposed to structural aspects [37].

Figure 3-4 Darwin Tree Constructor View [37]

Components and Services

Components in Darwin are black boxes with the interactive interfaces of services

they provide to other components and services they require from other components. The

names of services are local to the component type specification, which avoids

knowledge of the external world. The context-independent property not only reduces the

components' implicit dependencies on their environment but also increases component’s

re-use and replacement abilities.

Services are identified by their owners (providers), service names and service

types (provide or require). Darwin supports service names with wild characters (*),

which allows one-to-many, many-to-one and many-to-many interactions (service

binding) beyond the basic one-to-one communication.

27

Composite Components

Composite components (Figure 3-5) are constructed from both computational

components and other composite components. The overall system is a hierarchy of

structured composite components with a collection of concurrently and distributed

(primitive) components. Services that one component provides are visible to the

composite component that contains it. Besides the basic component declarations,

composite components instantiate components they contain as well as bind the services

between these components and themselves. The binding is only made between required

and provided services with comparable type.

Figure 3-5 Composite Component [37]

3.3 Hybrid Models and Languages

Hybrid models merge functionalities of shared dataspace and process-oriented

models by explicitly confronting and integrating elements from one family in the other.

3.3.1 STL

STL (Simple Thread Language) is a hybrid coordination language. It is based on

the coordination model ECM (Encapsulation Coordination Model). STL aims to provide

a framework for distributed MAS (Multi-Agent System [38]), which is made up of

autonomous interactive agents.

ECM Model

ECM is a model to coordinate distributed application components and

concentrates only on coordination issues. It integrates shared dataspace functionalities in

a process-oriented view [29]. ECM uses an encapsulation mechanism as its primary

28

abstraction (blops). The mechanism offers structured and separate namespaces that can

be hierarchically organized. Within these blops, active entities communicate

anonymously through connections. The connections are established by the matching of

the entities’ communication interfaces (ports) [39].

Figure 3-6 The ECM Coordination Model [39]

Figure 3-6 is an overview of the programming metaphor used in ECM. ECM

includes five building abstractions:

• Blops

Blops are groups of processes and ports.

• Processes

Processes are black-box style components which perform specific activities but only

interact via specified interfaces. They are almost the same as Manifold processes.

• Ports

Ports are endpoints of processes/blops to establish connections to the external world.

Ports belong to same level of abstraction but different objects, are matched by their

signatures (names and a set of features).

• Connections

Connections are established among matched ports. There are three generic types:

Point-to-Point stream, Group and Blackboard.

• Events

Events are attached to conditions on ports. They are triggered by check conditions

attached to port states and handled by event handlers inside the blops.

29

STL Specialties

STL is a realization of the ECM model applied to a multi-threaded application

on a LAN of UNIX workstations. The implementation of STL resides on the top of the

PT-PVM [40]. Blops are implemented as heavyweight UNIX processes, and processes

are implemented as lightweight processes (threads).

A blop is defined as a process with a name and body, in which ports and inner

entities are defined. A blop object, which is an instance of a named blop process, can be

placed onto any specific physical working unit. Blops can also be nested (Figure 3-6).

STL processes can be activated within the coordination language (through the

instantiation of a process object inside a blop) or in the computation language. A process

terminates implicitly once it is computed.

STL allows two kinds of ports, static ports as interfaces of entities and dynamic

ports that are defined ahead and created at runtime. A port type is identified by its

attributes (communication, orientation, capacity, etc). STL provides only asynchronous

communication between ports.

An event’s condition check is executed by the system every time data flows

through the bound port or a process accessed the bound port. Each installed event

handling routine is unloaded by the blop after handling the corresponding event. The

handler must be reinstalled for dealing with same event again.

3.4 Comparison and Discussion

3.4.1 Data-driven vs. process-oriented coordination models

The main difference between data-driven and process-oriented models is the

degree of separation of computation from coordination. The process-oriented models

completely separate computation and coordination modules. This kind of model is only

responsible for the coordinated patterns in which they are involved. The actual values of

the data being manipulated by the processes are almost never involved. Processes using

data-driven model manage both the values of the data being transferred and the actual

configuration of the coordinated components. In other words, processes are responsible

30

for “both examining and manipulating data as well as for coordinating either itself

and/or other processes by invoking the coordination mechanism each language

provides” [6].

Another difference is the coordination unit. The data-driven models tend to

coordinate data whereas the control-driven models tend to coordinate entities

(processes). In the former model, a programmer has more control over the manipulated

data. Therefore the data-driven model is suitable for coordination problems in parallel

computing and process-oriented model serves primarily for modeling systems [6].

3.4.2 STL, Darwin vs. Manifold

STL, Darwin and Manifold are all used in different application domains. STL is

designed for an autonomous agents system. It is an extended process-driven

coordination language with shared space concepts, such as blackboard communication.

Darwin, a high-level configuration language, focuses more on component instantiation,

and Manifold is a purely control-driven language for scientific computing. It fully

separates the coordination and computation so as to increase the reusability of code. The

summarized comparison of these three models is listed in Table 3-2.

3.4.3 Coordination in P2P computing

All the mentioned models and languages focus on traditional distributed

computing domain in which the participating machines are relative stable. Since a P2P

environment is dynamic. Heterogeneous and decentralized, it requires additional

coordination oriented features:

• Autonomous reconfiguration

The instability of participants causes frequent component migration. The effect of

the unexpected migrations to all interactive components should be minimized. The

migration should be transparent to the developer.

• Platform-independent communication

The participating peers are heterogeneous, e.g. offer different system resources and

security policies.

31

• Decentralized coordination management

Every peer in the P2P network is volatile. This requires the decentralized

management so that to avoid single-point failure.

• Programmability

It should be possible to easily integrate the coordination model into existing

applications.

The separation of worker and manager of the process-driven coordination

models, especially Manifold, will be more suitable in P2P computing than a data-driven

model. It provides the abilities of easy reconfiguration and decentralization the

coordination work to several peers. It has therefore been chosen as the basis of a P2P

coordination model.

32

Table 3-2 Comparisons of STL, Darwin and Manifold

Coordination
language

STL Darwin Manifold

Model ECM Conic configuration
language

IWIM

Encapsulation Blop Composite components Nested process
Entity Signature: name and

ports
Two kinds of entities:
process and blop

Signature: Name and
services
Two kinds of entities:
component and
composite component

Signature: name, ports
and events
Two kinds of entities:
Manifold and Process

Interface Port is the interface of
process and blop
Port identified by name
and features (Point-to-
point, group &
blackboard)

Services provided and
required

Port at the boundary of
process
Port is either input or
output
Port has name and
connectivity type: *,
break and keep

Connection
(Stream)

Stream connects
matched ports
Asynchronous
communication

Stream connects
between provided
service and required
service

Stream connects
between ports
Stream can be
reconnectable
Stream is reliable,
directed and buffered
flow

Event Attached to condition
on ports
Handled inside blop

N/A Asynchronous and
atomic message
Raised or posted by
process
Identified by event
name and their source
Handled by observer
process

Application
Domain

Autonomous agents
system

Distributed system’s
architectural
configuration

Scientific computing
and S/W architecture

Implementation Multi-threaded base on
PT-PVM
UNIX

C++ oriented
Unix based

C implementation
Multi-platform

Decoupling Separate language Separate fully fledged
coordination
component

Separate language

33

CHAPTER 4

P2P-MANIFOLD

P2P-Manifold is an extension of the Manifold coordination model, designed to

meet the requirement of the P2P environment: the transparent and seamless component

migration. Manifold was selected due to the following features: the full separation of

computation and management and the black-box components mechanism. These

features are ideal for developing distributed applications in the dynamic and

heterogeneous environment of a P2P network.

P2P-Manifold is developed as an embedded layer for an existing middleware. It

provides a transparent environment for P2P programming (i.e. it is programmable

without additional knowledge of the underlying coordination model and is easy to

migrate existing distributed applications into the P2P environment), and supports

seamless component migration so that the instability of a participating peer won’t affect

the execution.

4.1 Components

The P2P-Manifold model contains two kinds of components, coordinator and

computation components. Each component has a unique name, a unique URL address

and provides services. A component’s name is kept unchanged once created, while the

URL changes after migration. The communications among all components are through

web services. The workgroup for an assignment is organized as an m-ary tree (Figure 4-

1). One component is managed by one and only one coordinator, while one coordinator

can manage more than one component. A component only communicates with its

managing coordinator and is unaware of the rest of the environment. When a component

34

moves, it alone is responsible for sending a migration message to its managing

coordinator and managed components (if it is a coordinator).

Figure 4-1 P2P-Manifold Architecture

Coordinator

A coordinator works as a redirection manager and a service registry server to its

managed components. Coordinators keep track of managed components’ unique name,

location and status. The status contains two types: suspend and ready, which indicates

the communicable status of a responding component/service.

When a managed provider changes, the coordinator is responsible for updating

the provider registration record and informing the associated consumers of the change.

The associated consumers comprise all real and logical consumers, which called the

service before. The consumer/provider interaction relationship is recorded by the

coordinator when a consumer asks it to search for a service.

When a consumer migrates (i.e. changes the status to “suspend”), the managing

coordinator creates a temporary buffer for a suspended consumer and caches all

messages to that consumer. The cached messages are sent to the consumer once it

resumes.

35

Figure 4-2 Cross-Coordinator Service Example

A coordinator registers the services provided by the managed providers as well

as the cross-coordinator services where the current coordinator was in the route between

a consumer and a provider. For cross-coordinator service invocation, each midway

coordinator is recorded as a logical consumer to the previous coordinator. Figure 4-2 is

an example of a cross-coordinator service. Coordinator2 is a logical consumer to

Coordinator1 while Coordinator1 is a logical provider to Coordinator2. When the

Provider moves, a migration message is sent from the Provider to Coordinator4.

Coordinator4 updates its registry table. Since Coordinator3 is recorded as a logical

consumer for a service Provider published, it sends Coordinator3 a service update

message. Every midway coordinator forwards a service update message until it reaches

the Consumer.

Computation Component

Computation components perform the computation assignments in a black-box

style. Each computation component registers to one coordinator at startup. In the P2P-

Manifold model, computation components are divided into service providers and

consumers in terms of their functionality. Service providers publish services and register

the services with the managing coordinator (Figure 4-3). Consumers obtain the location

of a service from the coordinators prior to the first invocation and cache the location of

called services locally. Further provider changes are pushed automatically from the

36

managing coordinators to it. The push methodology effectively reduces the network

overhead caused by busy checking (i.e. client pulling).

Figure 4-3 P2P-Manifold Interactions

*: Happens only if the provider migrates;
†: Happens once when new provider comes or first service call made

4.2 Services

In terms of the functionalities, the P2P-Manifold model includes two kinds of

services: computation services and coordination services.

Computation Services

Computation services are the web services offered by a service provider. A

consumer invokes a computation service in two steps: service searching and service

invoking. The search for a service is the search for the provider’s resource location. It

starts from the consumer’s local cache, which contains the location of already invoked

services. If no local record is found, the consumer contacts its coordinator to extend the

search. The coordinator first searches locally, then forwards the query to all managed

coordinators and its managing coordinator if the service is not found locally.

37

Coordination Services

Each component in the model provides a set of coordination services for

coordination communication:

• Migration services

Migration services allow the new replacement to clone state data from a leaving

component.

• Update services

Except for the root coordinator, all other components provide an update interface for

the managing coordinator. Consumers have additional interfaces for service updates,

which are called by the managing coordinator when service provider moves.

A coordinator also provides services for managed components registration when

component startup and service for update after component migration. In addition, it

provides services to consumer and other coordinators for service search.

4.3 Migration

There are two types of migrations in P2P-Mnaifold model: coordinator migration

and computation component migration. The migration occurs when a peer will no longer

contribute and a new replacement has been found. Basically, the migration of a

component contains three steps:

• Notifying the suspension of a current component. A computation component needs

only to notify its coordinator while the migration of a coordinator consists of

notifying all connected components. The connected components vary from

coordinator to coordinator and might include managing coordinator, managed

coordinators and managed computation components.

• Cloning the component onto the new host to maintain the same state for continuity.

• Notifying the resume of the component to all connected components.

38

4.4 .NET Implementation

A .NET Framework implementation of the P2P-Manifold model was developed

as a set of dynamically linked libraries (DLL) using the C# programming language.

With .NET’s cross-language support, the library can be integrated to all the .NET

Framework supported program languages (e.g. C++, VB, Fortran, Java Language, etc

[38]). Figure 5-4 is the architecture of this implementation and the information of the

completed libraries can be found in Appendix B.

Each remote communication mechanism among components is an XML web

service. The open XML web services architecture allows programs written in different

languages on different platforms to communicate with each other in a standards-based

way.

Coordinator

Except for the root coordinator, each coordinator registers with a managing

coordinator. A coordinator contains two local registry tables:

• Service registry table

The service registry table maintains the services provided by the managed providers

and any traced cross-coordinator services. The service record contains the service

object’s name and URL. It is the local index table for later service searching.

• Interaction registry table

The interaction registry table maintains the consumer-service relationships. The

information is traced by the coordinator when a (logical) consumer asks it for a

service. The table is used for later pushing provider update message to consumers.

Local Proxy

The local proxy is a local routing server for consumer application(s) with a

predefined web-services-style interface. It is responsible for communicating with

managing coordinators and caching the provider’s information in its local registry table.

The migration of a local proxy includes the cloning of the registry table and the

managing coordinator’s information.

39

Figure 4-4 Architecture of .NET P2P-Manifold Implementation

Consumer

The consumer is a normal web services application that consumes the

computation services. Instead of making the service calls to the real service provider, all

calls are made to the local proxy. The local proxy searches the request service and

returns the associated provider’s location. The redirection of the service call is made by

the underlying custom sink bound to the consumer’s channel for outgoing service.

Provider

The provider is a normal web service application with additional responsibility

for registering/registering all its services to the managing coordinator when startup or

after migration. The registration is via a pre-implemented service assistant class. Service

objects in a P2P-Manifold workgroup must have unique names since the name is used to

identify the service object.

40

CHAPTER 5

EXPERIMENTAL SETUP AND METHODOLOGY

5.1 Data Collecting

Figure 5-1 Data Collecting Model

The P2P-Manifold model is evaluated by a series of experiments, which collect

three types of data (Figure 5-1):

• The response time of service invocation and component update

This kind of experiment is used to measure the latency of service calls and the

system throughput. Since all services in the P2P-Manifold model are synchronized,

the response time is traced in the original sender side. A throughput counter is

deployed on the consumer side to count the total completed calls within a given time

unit.

41

• The system performance data

The application’s performance data is used to measure the system overhead caused

by the model. The data includes CPU and memory load. An external performance

monitor is developed to measure the performance of applications with and without

the P2P-Manifold model. The comparison of the above two situations measures the

system overhead caused by the model.

• The size of the coordination messages

The message size is used to measure the network overhead. A communication

between connected components is composed of a service request and a response. A

message tracer is developed and connected to the channels of the coordinator. It

intercepts the message and records the message to log file after receiving and before

returning.

5.2 Performance Metric

The performance of the P2P-Manifold model is measured by the following

metrics:

• System overhead

The overhead here is composed of the system overhead caused by the model and the

network overhead of coordination communications. The model should be

lightweight with minimized system and network overhead.

• System latency & throughput

The system latency refers to the latency of computational service invocations and

the throughput refers to the count of computational services completed within a unit

of time. An efficient system should minimize the service latency and increase the

throughput.

• Programmability

The programmability is measured by two factors: development difficulty and

execution transparency. The model should minimize the efforts to migrate

distributed computing applications into the P2P environment.

42

• Component Availability

The availability here refers to the availability of the computational services provided

in the workgroup of an assignment. The more available the service is, the higher the

performance of the system will be.

5.3 Theoretical Analysis

This section analyzes the network overhead and the network latency from the

perspective of one isolated service invocation.

5.3.1 Network overhead

In the P2P-Manifold model, there are two kinds of service invocations: non-

cross-coordinator and cross-coordinator invocation. The network overhead of a non-

cross-coordinator service invocation is:

Oservice = (n-1)*Olocal-fetch + Oremote-fetch + Oprovider-register + 3/2*p*Oprovider-update
± +

Oconsumer-register + 2*q*Oconsumer-update + 2*r*2*Ocoordinator-update (1)

 where:

Olocal-fetch is the network overhead caused by the searching of the local routing

table (“n” is the number of service calls).
Oremote-fetch is the network overhead caused by a remote (coordinator) service

search.

Oprovider-register is the network overhead caused by provider registration.

Oprovider-update is the network overhead caused by provider migration (“p” is the

migration time). The messages are sent from the provider to the coordinator and

the coordinator forwards them to the consumer. The average of a context-

independent service is p. The average of a context-dependent service is 2*p

where one migration operation includes two messages, one for “suspend”

message and other for “resume” message.

Oconsumer-register is the network overhead caused by consumer registration.

43

Oconsumer-update is the network overhead caused by consumer migration (“q” is the

number of migrations). One migration operation includes two messages, one for

“suspend” message and another for the “resume” message.

Ocoordinator-update is the network overhead caused by coordinator migration (“r” is

the times). The migration affects both the provider and the consumer. One

migration operation includes two messages, one for “suspend” message and

other for “resume” message.

The message size is one of the main factors affecting the message transport

speed and the network overhead. Each coordination message uses the same format and

the size of message is almost the same. There are two types of communication

overheads in the system: local (local provider fetch) or remote (all the others). From

formula (1), the overall overhead can be expressed as:

Oservice = (n + 3/2*p + 2*q + 4*r +2)*Omessage +

(3/2*p + 2*q + 4*r +3)*Otransport (2)

Cross-coordinator service invocation requires additional communication among

coordinators. The cross-coordinator service request is forwarded between coordinators

until it is found. Each coordinator keeps track of each required cross-coordinator service.

Therefore, the worst case of the cross-coordinator search is h (i.e. reaching all

coordinators in the workgroup) and the average is (1+h)/2.

Extending formula (1), the average network overhead of both non-cross-

coordinator and cross-coordinator service invocation is:

Oservice = (n-1)*Olocal-fetch + (1+h)/2*Oremote-fetch + Oprovider-register +

3/2* p*Oprovider-update + Oconsumer-register + 2*q*Oconsumer-update +

2*[r1 + r2 + … + rm]*2*Ocoordinator-update (3)

where:

n: the amount of service calls between consumer and provider.

h: the number of coordinators in the workgroup for an assignment.

44

m: the number of coordinators in the search chain, including direct manager

coordinators of consumer and provider.

r1...rm: the migration time of midway coordinators (“r1” represents the

migration time of a direct manager coordinator of a consumer and “rm” is for

direct manager coordinator of provider).

p: the migration times of provider.

q: the migration times of consumer.

Similar to the simplification from formula (1) to formula (2), formula (3) can be

simplified to be:

Oservice = [n + 1 + (1+h)/2 + 3/2*p + 2*q + 4*(r1+…+rm)]*Omessage +

[2 + (1+h)/2 + 3/2*p + 2*q + 4*(r1+…+rm)]*Otransport (4)

5.3.2 Network Latency

One service call contains two steps: searching the provider’s location and

making the service call. Providers and consumers need to register their service objects

or local proxies when they startup or migrate. Excluding the one-time or random

communications, the response time of each service call is:

Tservice = Tlocal-fetch + α * Tremote-fetch + Tinvocation (5)

 where:

Tlocal-fetch is the time for searching a provider’s URL locally.

Tremote-fetch is the time for searching a provider’s URL from all coordinators of the

workgroup (“α” represents the percentage of participating coordinators in the

workgroup for the search). It equals 0 for later service calls where the provider

info can be obtained locally.

Tinvocation is the time of real service invocation.

The response time of each web service is:

 Tweb-service = Trequest + Texecution + Tresponse (6)

 where:

45

Trequest is the response time for a request message encoding/decoding and

transport,

Texecution is the response time of the service execution in server side, and

Tresponse is the response time of the response message encoding/decoding and

transport.

46

CHAPTER 6

EXPERIMENTS

Three sets of experiments have been conducted to evaluate the model in different

aspects:

• Throughput and response time experiments

These experiments evaluate the impact of the P2P-Manifold model on the response

time of service calls and the service throughput.

• System performance experiments

Performance experiments monitor the system performance of the local proxy and the

coordinator. The performance data includes CPU time and memory load.

• Coordination message experiments

In this set of experiments, the coordination messages are analyzed to calculate the

network overhead caused by the model.

6.1 Throughput and Response Time Experiments

System throughput and latency are important when measuring the system

efficiency. These experiments measure the throughput and service latency of

applications developed with the P2P-Manifold model. The throughput and latency are

affected by three factors: the status of components (i.e. stable or mobile), the

organization of workgroups and the number of participating components. Therefore,

several different test situations are designed to measure the impact of these three factors.

The data is collected by the built-in monitor of the consumer application and

recorded in log files. For each experiment, two kinds of context-independent services

are tested: simple services and complex services (in terms of the completion time of

service). Each mobile component migrates in a predefined time interval, while

coordinators migrate less frequently than the computation components.

47

The throughput is measured over a period of five minutes. Due to the delay in

simultaneously starting all components, components may start with up to five seconds

delay. Therefore, there may be a 1.7% error when counting the throughput of a five-

minute period. In all tests, the consumer continuously calls services provided by the

provider. Each experiment has run twice on pool machines in MADMUC lab [41].

Since the two tests were run on same machines and the results of them are

similar, only one set of test data is presented. The first 50 service calls of each test are

used to analyze the response time. For better representation, the Y-axis data points in all

the figures of the section that presenting the service response time (Figure 6-2, 6-4, 6-7,

6-9 and 6-12) has been calculated using the following formulas:

• Simple Service: y = log 10 (y - 1000)

• Complex Service: y = log 10 (y - 5000)

A consequence of this scale is that the separation between the smaller values is

greatly exaggerated, while the larger values appear much closer on the graph.

6.1.1 One Provider and One Consumer and One Coordinator

Table 6-1 1:1:1Experiment Settings

Migration Test
Case Times Interval Component

Comment

Normal Normal web service application without P2P-
Manfold model

NoMig 0 ∞ N/A Basic P2P-Manifold application where all three
components are stable

Fprov 13 ~20sec Provider P2P-Manifold application with a frequently mobile
provider

Mprov 9 ~40sec Provider P2P-Manifold application with a mobile provider
Fcons 10 ~20sec Consumer P2P-Manifold application with a frequently mobile

consumer
Mcons 6 ~40sec Consumer P2P-Manifold application with a mobile provider
Fcoord 12 ~20sec Coordinator P2P-Manifold application with a frequently mobile

coordinator
Mcoord 6 ~40sec Coordinator P2P-Manifold application with a mobile provider

This situation represents the simplest P2P-Manifold application. Seven sets of

experiments are performed to address the impact of the model and the status of each

48

component. The details of each set are listed in Table 6-1. In each experiment, no more

than one component is mobile. The “Normal” test is the base case for measuring the

impact of the P2P-Manifold model in different situations and the “NoMig” case is the

base case for measuring the impact of the status of components.

286 289 290 289 263 275 289 290

0

50

100

150

200

250

300 Normal
NoMig
FProv
MProv
FCons
MCons
FCoord
MCoord

a. Simple Service

59 58 58 58 56 57 58 58

0

20

40

60 Normal

NoMig

FProv

MProv

FCons

MCons

FCoord

MCoord
b. Complex Service

Figure 6-1 1:1:1Service Calls in 5 Minutes

Table 6-2 1:1:1 Average Service Response Times (in millisecond, first 50 calls)

Test
Case

Normal NoMig Fprov Mprov Fcons Mcons Fcoord Mcoord

Simple 1029.97
(100%)

1030.08
(100.01
%)

1033.29
(100.32
%)

1030.08
(100.01
%)

1090.77
(105.90
%)

1051.31
(102.07
%)

1033.29
(100.32
%)

1030.88
(100.09
%)

Complex 5037.24
(100%)

5036.44
(99.98
%)

5057.87
(100.41
%)

5058.87
(100.43
%)

5263.57
(104.49
%)

5174.24
(102.72
%)

5040.85
(100.07
%)

5037.24
(100.00
%)

Figure 6-1 presents the throughput data of five minutes, Figure 6-2 presents the

service response time of the first 50 calls and Table 6-2 summarizes the average

response time of these calls. The collected data indicates:

• The P2P-Manifold model has no effect on the response time and the service

throughput (comparing the test cases “Normal” and “NoMig”).

49

• The migration of provider and coordinator has little effect on the response time and

the service throughput. This is due to the caching of the local proxy, which caches

the information of every-called service.

• The migration of the consumer does influence the throughput and the service

response time. Compared to the “NoMig” case, the throughput of simple services

decreases to 91% ±1.7% (“FCons”) and 95% ±1.7% (“MCons”). This is due to the

delay of first-time service calls after consumer migration. The delay is caused by the

setup of the underlying channel after consumer migration while later calls benefit

from the setup. Table 6-1 shows that there are 10 consumer moves in the “FCons”

case and 6 moves in the “MCons” case. This suggests that the consumer should be

located on a relative stable peer to increase the system performance.

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50
Call Number

M
ill

ise
co

nd
s

y
=

lo
g

10
 (y

 -
10

00
)

Normal

NoMig

FProv

MProv

FCons

MCons

FCoord

MCoord

a. Simple Service

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50
Call Number

M
ill

ise
co

nd
s

y
=

lo
g

10
 (y

 -
50

00
)

Normal

NoMig

FProv

MProv

FCons

MCons

FCoord

MCoord

b. Complex Service

Figure 6-2 1:1:1 Service Response Time (first 50 calls)

50

6.1.2 One Provider and One Consumer and One Coordinator (Advanced)

This set of experiments moves the application in §6.1.1 into a P2P environment

where the situation is totally dynamic and all three components are mobile. These

experiments are used to address the impact of the model in a real P2P network and to

evaluate the impact of the frequency of component migration. The experiment settings

are listed in Table 6-3, which includes the migration rate of each component and the

actual migrated time during the test period (i.e. five minutes).

Table 6-3 1:1:1 (Advanced) Experiment Settings

Migration Interval (sec)
provider:consumer:coordinator

Actual Migrated Times
provider:consumer:coordinator

20:30:90 13:8:3
40:30:90 7:8:3
40:60:90 7:4:3
40:60:180 7:4:1

260 262 277 275

0

50

100

150

200

250

20:30:90
40:30:90
40:60:90
40:60:180

a. Simple Service

52 53 56 56

0

10

20

30

40

50

20:30:90
40:30:90
40:60:90
40:60:180

b. Complex Service

Figure 6-3 1:1:1 (Advanced) Service Calls in 5 Minutes

Table 6-4 1:1:1 (Advanced) Average Service Response Time (in milliseconds, first 50 calls)

Test Case 20:30:90 40:30:90 40:60:90 40:60:180
Simple 1078.35

(100%)
1068.74
(99.11%)

1035.49
(96.03%)

1037.29
(96.19%)

Complex 5275.79
(100%)

5301.62
(100.49%)

5191.87
(98.41%)

5196.47
(98.50%)

Figure 6-3 presents the throughput of service calls in the test period. Figure 6-4

presents the response time of the first 50 calls and Table 6-4 summarizes the average

response time of these calls. The collected data indicates:

51

• The dynamic environment reduces the throughput and increases the service latency.

Compared with the result of the stable situation (“NoMig” in Figure 6-1 and Table

6-2), the throughput in this set of experiments is reduced by 4.15%±1.7%-

10.03%±1.7% for simple service calls and 3.45%±1.7%-10.34%±1.7% for complex

services calls.

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50
Call number

M
ill

is
ec

on
ds

y

=
lo

g 1
0 (

y
- 1

00
0) 20:30:90

40:30:90
40:60:90
40:60:180

a. Simple Service

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50
Call Number

M
ill

is
ec

on
ds

y

=
lo

g
10

 (y
 -

50
00

) 20:30:90
40:30:90
40:60:90
40:60:180

b. Complex Service

Figure 6-4 1:1:1 (Advanced) Service Response Time (first 50 calls)

• The migration of consumers reduces both the throughput and the service response

time. From the tests in this set, it can be concluded that the consumer migration rate

determines the reduction of the throughput. For example Figure 6-4.b shows that the

peaks of the service response time in the test cases with same consumer migration

rate (i.e. “20:30:90” and “40:30:90”, “40:60:90” and “40:60:180”) almost overlap

52

each other and the throughput of those tests are similar. However, with different

consumer migration rates, the throughput reduces and the service response time

increases with the increase of consumer migration even if the migration rates of the

other two components are kept unchanged. For example the average service

response time of simple service in test case “40:30:90” (Table 6-4) is

103.21%±1.7% as that in test case “40:60:90”.

6.1.3 Two Providers and Two Consumers and One Coordinator

Figure 6-5 2:2:1Architecture

Table 6-5 2:2:1 Experiment Settings

Migration Test
Case Times Interval Component

Comment

Normal Normal web-service application
NoMig 0 ∞ N/A P2P-Manifold application
SProv 7(Consumer1)

6(Consumer2)
40sec Provider P2P-Manifold application with two

mobile providers who migrate
simultaneously

DProv 7(Provider1)
4(Provider2)

40sec
60sec

Provider P2P-Manifold application with two
mobile providers who migrate
asynchronously

SCons 6(Consumer1)
6(Consumer2)

40sec Consumer P2P-Manifold application with two
mobile consumers who migrate
simultaneously

DCons 6(Consumer1)
4(Consumer2)

40sec
60sec

Consumer P2P-Manifold application with two
mobile consumers who migrate
asynchronously

MCoord 3 90sec Coordinator P2P-Manifold application with the
coordinator migrates every interval
time

This set of experiments focuses on the impact of the P2P-Manifold model with

multiple consumers and providers. The test application includes two identical consumers

that consume the services provided by the two providers in turns. The services provided

53

by the providers execute the same computation but have different names. Figure 6-5

presents the architecture of the experiment and Table 6-5 lists the settings of the

experiments. In each experiment, only one type of component is mobile. If there are two

components of the same type (e.g. two consumers), the components are tested with

various migration rates.

288 288 276 280 269 264 286

287 286 280 280 264 271 284

100

200

300

400

500

Normal NoMig SProv DProv SCons DCons MCoord

Consumer2
Consumer1

a. Simple Service

57 57 57 56 55 53 56

58 58 56 56 55 55 55

0

30

60

90

Normal NoMig SProv DProv SCons DCons MCoord

Consumer2
Consumer1

b. Complex Service

Figure 6-6 2:2:1 Service Calls in 5 Minutes

Figure 6-6 presents the throughput of the test period. Figure 6-7 presents the

average response time of the first 50 calls (i.e. the average of the service response time

of both consumers in order) and Table 6-6 summarizes the average response time of the

calls. The collected data indicates:

• The P2P-Manifold model has no impact on the service throughput and response time

in the multiple consumers and providers situation, comparing the result of this set of

experiments with those of the single consumer and provider situation (§6.1.1).

• The migration of provider and coordinator has little impact in this situation. The

frequency of provider migration doesn’t have impact on the throughput and the

service response time. The coordinator migration influences the throughput and the

response time of complex services but has no effect on the simple service.

54

Table 6-6 2:2:1 Average Service Response Time (in milliseconds, first 50 calls)

Test
Case

Normal NoMig SProv DProv SCons DCons MCoord

Simple 1082.96
(100%)

1047.11
(96.69%)

1039.59
(96.00%)

1040.1
(96.04%)

1124.32
(103.82%)

1079.75
(99.70%)

1048.51
(96.82%)

Complex 5044.15
(100%)

5038.24
(99.88%)

5075.1
(100.61%)

5078.9
(100.69
%)

5295.41
(104.98%)

5198.37
(103.06
%)

5130.68
(101.72
%)

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50
Call Number

M
ill

is
ec

on
ds

y

=
lo

g
10

 (y
 -

10
00

) Normal
NoMig
SProv
DProv
SCons
DCons
MCoord

a. Simple Service

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50
Call Number

M
ill

is
ec

on
ds

y

=
lo

g
10

 (y
 -

50
00

) Normal
NoMig
SProv
DProv
SCons
DCons
MCoord

b. Complex Service

Figure 6-7 2:2:1 Average Service Response Time
(first 50 calls, the average of consumer 1 and consumer2)

• The migration of consumers influences the throughput and the service response time.

For example, it reduces the throughput of complex services to 96%±1.7% (“SCons”)

and 84%%±1.7% (“DCons”) when compared with the “NoMig” case.

55

• The migration speed of consumers influences the throughput. In the test case

“Dcons”, the infrequent mobile consumer produced additional 2.65%±1.7% simple

services and 3.78%±1.7% complex services.

• The deduction caused by consumer migration in this experiment is higher that in the

single consumer and provider experiment (§6.1.1). For example, the average

throughput in the test case “SCons” of this experiment is 3.09%±1.7% less than that

in the test case “MCons” in §6.1.1, though the consumer(s) migrated in the same

time interval. Since all communications in the model are synchronized, the extra

deduction of the throughput may be the result of the waiting when two consumers

ask for the same service simultaneously.

6.1.4 Two Providers and Two Consumers and One Coordinator (Advanced)

This set of experiments moves the application in §6.1.3 to a P2P environment

where all components are mobile during the test period. The experiments address the

impact of the P2P-Manifold model on multiple components applications in a P2P

network and the impact of component migration. Table 6-7 presents the experiment

settings and lists the migration rates of components. Four tests were designed to

measure the impact of the frequency of each component migration on throughput and

the service response time.

Table 6-7 2:2:1 (Advanced) Experiment Settings

 Migration Coordinator Consumer 1 Consumer2 Provider1 Provider2
Interval (sec) 90 40 40 30 30

Test1 Times 3 6 6 9 8
Interval (sec) 90 40 60 30 30

Test2 Times 3 6 4 9 8
Interval (sec) 90 40 60 30 50

Test3 Times 3 6 4 9 5
Interval (sec) 180 40 60 30 50

Test4 Times 1 6 4 9 5

56

264 265 267 267

261 271 269 265

0

100

200

300

400

500

Test1 Test2 Test3 Test4

Consumer2
Consumer1

a. Simple Service

55 54 53 53

52 55 55 56

0

20

40

60

80

100

Test1 Test2 Test3 Test4

Consumer2
Consumer1

b. Complex Service

Figure 6-8 2:2:1 Service Calls in 5 Minutes

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50

Call Number

M
ill

is
ec

on
ds

y

=
lo

g
10

 (y
 -

10
00

) Test1
Test2
Test3
Test4

a. Simple Service

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50

Call number

M
ill

is
ec

on
ds

y

=
lo

g
10

 (y
 -

50
00

)

Test1
Test2
Test3
Test4

b. Complex Service

Figure 6-9 2:2:1 Average Service Response Time
 (first 50 calls, the average of consumer1 and consumer2)

57

Table 6-8 2:2:1 Average Service Response Time (in milliseconds, first 50 calls)

Test Case Test1 Test2 Test3 Test4
Simple 1095.78 (100%) 1061.73 (96.89%) 1069.14 (97.57%) 1069.94 (97.64%)
Complex 5294.91 (100%) 5229.72 (98.77%) 5210.19 (98.40%) 5215.8 (98.51%)

Figure 6-8 presents the service throughput in the test period, Figure 6-9 presents

the average service response time of the first 50 calls of both c`onsumers and Table 6-8

summarizes the average of the response times of the calls. The collected data indicates:

• The migration of components in this situation reduces the service throughput (Table

6-9, comparing to the stable “noMig” case in §6.1.3). The reductions in this set of

experiments are in the same range as the reduction caused by the consumer

migration in test cases “SCons” and “DCons”. Hence it can be concluded that the

migration of consumers is the most influential factor to the reduction in this situation.

Table 6-9 Reduction of Service Throughput (base case: “NoMig” in §6.1.3, error: ±1.7%)

Test Case Test1 Test2 Test3 Test4 SCons DCons
Simple 8.54% 6.62% 6.62% 7.32% 7.14% 6.79%
Complex 6.96% 5.22% 6.09% 5.22% 4.35% 6.09%

• The frequency of the consumer migration also influences the system performance.

For simple service calls, the infrequent consumer migration case (“Test2”) has 2%

higher throughput than the frequent migration case (“Test1”).

6.1.5 Organization Experiments

This set of experiments tests the impact of the organization in a complex

situation with multiple computation components and multiple coordinators. These

experiments present the impact of difference organizations for the same application as in

§6.1.4 (i.e. with two consumers and two providers). The results of the experiments are

useful for application optimization. This set of experiments includes four test cases: one

single-coordinator situation (Figure 6-5) and three multiple-coordinator situations

(Figure 6-10). Table 6-10 lists the migration settings of each component where one kind

of components migrates simultaneously every predefined interval time.

58

Case 2

Case 3

c. Case 4

Figure 6-10 Organization Test Architectures

59

Table 6-10 Organization Experiment settings

Migration Coordinator 1-3 Consumer 1 Consumer2 Provider1 Provider2
Interval (sec.) 90 40 40 30 30

Times 3 6 6 9 9

Table 6-11 Organization Experiment Service Average Response Time (in milliseconds, first 50 calls)

 Case1 Case2 Case3 Case4
Consumer 1 2 1 2 1 2 1 2
Simple 1114.2 1078.75 1133.83 1103.39 1123.22 1118.01 1098.58 1104.39
Complex 5243.74 5343.68 5253.95 5296.62 5320.45 5344.69 5350.89 5274.78

264 261 264 266

261 260 258 255

0

100

200

300

400

500

Case1 Case2 Case3 Case4

Consumer2
Consumer1

a. Simple Service

54 51 54 52

52 50 50 51

0

20

40

60

80

100

Case1 Case2 Case3 Case4

Consumer2
Consumer1

b. Complex Service
Figure 6-11 Organization Experiment Service Calls in 5 Minutes

Figure 6-11 presents the throughput of services in the test period, Figure 6-12

presents the service response time of the first 50 calls and Table 6-11 summarizes the

average response time of the calls. The collected data indicates:

• The smaller the number of coordinators is, the more efficient the system is. The

single-coordinator mode (case1) is most efficient and completed at least

0.77%±1.7% more simple calls and 4.95%±1.7% more complex calls than other

three cases.

• The number of participating coordinators in cross-coordinator services affects the

overall performance. Case2 and case3 are same in terms of the amount of

participating mid-coordinators for cross-coordinator services. The cross-coordinator

chain between Provider1 and Consumer1 in case4 needs one more participating

coordinator than the other two cases and it had a bit lower throughput.

60

0
0.5

1
1.5

2
2.5

3
3.5

0 10 20 30 40 50
Call Number

M
ill

is
ec

on
d

y

=
lo

g
10

 (y
 -

10
00

)

Case1
Case2
Case3
Case4

a.1 Simple Service (Consumer1)

0
0.5

1
1.5

2
2.5

3
3.5

0 10 20 30 40 50
Call Number

M
ill

is
ec

on
d

y

=
lo

g
10

 (y
 -

10
00

) Case1
Case2
Case3
Case4

a.2 Simple Service (Consumer2)

0
0.5

1
1.5

2
2.5

3
3.5

0 10 20 30 40 50
Call Number

M
ill

is
ec

on
d

 y
 =

 lo
g

10
 (y

 -
50

00
) Case1

Case2
Case3
Case4

b.1 Complex Service (Consumer1)

0
0.5

1
1.5

2
2.5

3
3.5

0 10 20 30 40 50
Call Number

M
ill

is
ec

on
d

 y
 =

 lo
g

10
 (y

 -
50

00
) Case1

Case2
Case3
Case4

b.2 Complex Service (Consumer2)

Figure 6-12 Organization Experiment Service Response Time (first 50 calls)

61

6.1.6 Conclusion

From the above sets of experiments, it can be concluded that:

• The migration of service providers does not influence the system efficiency.

• The migration of consumers is the most significant factor to influence the system

throughput and the service response time. The more frequent consumers move, the

lower performance the system has.

• The migration of a coordinator has little effect on the system efficiency. The number

of participating coordinators influences the system performance as a result of the

migration of midway coordinator for cross-coordinator service update.

• The organization of a workgroup influences its performance only with the amount of

the participating coordinators and regardless to how the coordinators organize.

• The P2P-Manifold model itself has little effect on the system efficiency of the

application while the migration of the components caused by the dynamic P2P

network influence the efficiency.

6.2 System Usage Experiments

The system overhead is an important metric when measuring the system

performance. Especially for P2P applications, the impact of the execution to the peer

should be minimized. The following experiments monitor the system usage of weighted

components of the P2P-Manifold model (i.e. local proxy and coordinator). The system

usage here refers to the CPU time and the memory load.

In addition, a resource-monitoring program is developed for the Windows

platforms (using DotNet). This monitor is used to measure the degree of underutilization

of machines. While it is fairly common knowledge that many of the deployed computers

(e.g. desktops, workstations, etc) are underutilized, it is difficult to obtain exact numbers.

Organizations and individuals tend to be reluctant to publish the data due to fear of

negative consequences such as unauthorized monitoring of network traffic. The

resource-monitor records running processes and the usage of memory, processor and

network in 10-second intervals over a period of several days.

62

6.2.1 System Usage Experiment

There are three kinds of components in P2P-Manifold model: coordinator,

consumer and provider. A service provider is responsible for service registration and

updates when performing a startup or after move. A consumer includes the consumer

application(s) and a local proxy. A consumer application (without a local proxy)

performs an extra service search via the custom sink to the local proxy only if it requires

a service. The overhead of the provider and consumer application is minimal and can be

ignored. Hence only the extra entities of the P2P-Manifold model, the local proxy and

coordinator, are measured for the system usage in the experiment. For each entity, the

system usage (CPU and memory) for the creation and the usage of an instance are

measured.

Each test runs on two different machines five times to get the average value.

Table 6-12 presents the performance data of the two test machines. In order to ignore

the network traffic, all components run on the same machine.

Table 6-12 System Usage Experiment Machine Performance

Machine CPU RAM O/S Framework
Fast Intel Pentium 4 1.8GHz 1.0GB WindowsXP .Net Framework 1.0
Slow Intel Celeron 900Hz 256KB Windows2000 .Net Framework 1.0

For each experiment, the following system data has been recorded (every 5

seconds) to measure the CPU and memory usage of each entity:

• Peak working set size (the maximum amount of physical memory that the associated

component process has required all at once)

• Maximum/Minimum working set size (the maximum/minimum allowable working

set size for the associated component process)

• Peak virtual memory size (the maximum amount of virtual memory that the

associated component process has requested)

• Virtual memory size (the amount of virtual memory that the associated component

process has requested)

• User processor time (the amount of time that the component process has spent

running code inside the application portion of the process)

63

• Privileged process time (the amount of time that the component process has spent

running code inside the operating system core)

Table 6-13 System Usage of a New Local Proxy

Working set size (MB) Virtual memory (MB) CPU time (sec.) Machine
Peak Max. Min. Peak Total User Privileged

Fast 10.1 1.35 0.2 151.78 151.59 0.9 0.2
Slow 9.18 1.35 0.2 141.27 140.82 1.1 0.1

Table 6-14 System Usage of a Busy Local Proxy (in 20 seconds)

Working set size (MB) Virtual memory (MB) CPU time (sec.) Machine Test
Case Peak Max. Min. Peak Total User Privileged
1 14.00 1.35 0.2 153.99 153.81 0.92 0.22
2 13.38 1.35 0.2 153.1 153.1 0.92 0.16

Fast

3 13.36 1.35 0.2 154.11 153.85 0.92 0.16
1 14.31 1.35 0.2 154.31 154.13 3.04 0.28
2 13.82 1.35 0.2 152.25 152.06 3.01 0.25

Slow

3 14.22 1.35 0.2 153.58 153.43 3.1 0.26

Table 6-13 and Table 6-14 present the system usage of creating a new local

proxy and running a local proxy respectively. Three sets of tests have been performed

with a proxy to measure the impact of the workload upon the system performance: 1)

with one consumer application; 2) with two consumer applications; 3) with five

consumer applications. In each case, the working local proxy was tested for 20 seconds

and all consumer applications are identical (searching for one of 20 services randomly

every half-second). The collected data indicates:

• For setting up a new local proxy, the “fast” machine needs more memory than the

“slow” machine. The total CPU time is the same for both machines.

• There is no obvious memory difference between two machines for running a busy

local proxy but the “fast” machine requires less total CPU time than the “slow”

machine.

• The number of associated consumer applications has no impact on either the CPU

time or the memory usage.

64

Table 6-15 System Usage of a New Coordinator

Working set size (MB) Virtual memory (MB) CPU time (sec.) Machine
Peak Max. Min. Peak Total User Privileged

Fast 10.8 1.35 0.2 146.57 146.57 0.16 0.12
Slow 11.82 1.35 0.2 145.04 145.04 1.12 0.2

Table 6-15 presents the system usage of setting up a new coordinator. The

system usage of an actual working coordinator are measured by two cases: 1) one

coordinator, one mobile consumer and one mobile provider; 2) two coordinators (a

stable root coordinator and a mobile sub-coordinator), two consumers and two providers

(Figure6-10.a). Each case ran for one minute and the system usage of the root

coordinator is presented in Table 6-16. The collected data indicates:

• The memory usage for setting up a new coordinator is the same in both machines but

the “slow” machine requires more CPU time than the “fast” one.

• The peak physical memory usage, the peak virtual memory usage and the total

virtual memory usage increase with the increase of a coordinator’s workload while

the maximum/minimum working set size and the virtual memory usage are constant.

• The privileged CPU time required by the coordinator increases a little after setup

(for example, on “Fast” machine, the privileged CPU time is increased only 8.3%

for test 1 and 50% for test 2, Table 6-15 and Table 6-16) while user CPU time

increases with the increase of workload.

Table 6-16 System Usage of Root Coordinator (in 1 minute)

Working set size (MB) Virtual memory (MB) CPU time (sec.) Machine Test
Case Peak Max. Min. Peak Total User Privileged
1 13.83 1.35 0.2 155.64 154.96 0.53 0.13 Fast
2 14.61 1.35 0.2 155.81 154.76 0.46 0.18
1 14.09 1.35 0.2 152.58 151.71 2.16 0.22 Slow
2 15.03 1.35 0.2 154.01 152.35 2.2 0.22

In order to measure the costs of each entity, a simple “hello-world” application

(the application does nothing except printing a welcome message) is used and run on the

“slow” machine. Table 6-17 presents the comparison of the system usage for local proxy,

coordinator and that of the “hello-world” application. The comparison indicates that

both of the entities are lightweight:

65

• The maximum/minimum working set size are unchanged while the peaking working

set size is not more than 226% of that of the “hello-world” application.

• The virtual memory usage is no more than 125% of that of the “hello-world”

application.

• The required CPU time of both entities is a bit higher than that of the “hello-world”

application but is still reasonable.

Table 6-17 Comparison of System Usages

Working set size (MB) Virtual memory (MB) CPU time (sec.) Case
Peak Max. Min. Peak Total User Privileged

Hello-world 6.45
(100%) 1.35 0.20

122.34
(100%)

122.34
(100%)

0.60
(100%)

0.10
(100%)

New local proxy 9.18
(142%) 1.35 0.20

141.27
(115%)

140.82
(115%)

1.1
(183%)

0.10
(100%)

Busy local proxy 14.12
(219%) 1.35 0.20

153.38
(125%)

153.21
(125%)

3.05
(508%)

0.26
(260%)

New coordinator 11.82
(183%) 1.35 0.20

145.04
(119%)

145.04
(119%)

1.12
(187%)

0.20
(200%)

Root coordinator 14.56
(226%) 1.35 0.20

153.30
(125%)

152.03
(118%)

2.18
(363%)

0.22
(220%)

6.2.2 Potential of P2P Computing

The system usage monitor runs as a non-invasive system-tray process and writes

the system usage data into a local log file. This experiment was performed using some

of the desktop machines in the Lab for Mobile and Ubiquitous Computing (MADMUC

[41]) at the University of Saskatchewan. A total of 13 machines were involved

consisting of four pool machines that are shared by all researchers, seven machines

assigned to individual graduate students and two machines used by faculty members.

The tests were conducted over a period of seven days (February 25th – March 4th, 2002)

and a period of two days (March 26th – March 27th, 2002). The results of both tests were

very similar in terms of the resource usage. Due to space limitations only the results of

the first test are discussed.

The used data set is 69MB large and consists of approximately 1,572,480

records. The data set analysis indicated:

66

• The daily resource usage of available resources is in average below 12% (Table 6-

18). In particular, the network usage is relatively low about 7%.

Table 6-18 MADMUC Lab Daily Resources Usage

Resource CPU Memory Network
Average Usage 10.07% 11.32% 3.61%
Peak Usage 15.14% 12.64% 6.61%

• The usage of overall resources is medium with little fluctuations (Figure 6-13). The

peak usage of resources of individual computers varies significantly per day (Figure

6-14).

0

5

10

15

02/25 02/26 02/27 02/28 03/01 03/02 03/03 03/04
Day

U
sa

ge
 (%

)

CPU
Memory
Network

Figure 6-13 MADMUC Lab Weekly Resource Usage (%)

0
20
40
60
80

100

02/25 02/26 02/27 02/28 03/01 03/02 03/03 03/04
Day

U
sa

ge
 (%

)

CPU
Memory
Network

Figure 6-14 Peak Usage (%) for Individual Computer

• The daily resource usage varies from resource to resource (Figure 6-15). Below is

the data for a Thursday (workday) and Saturday (free).

The above data analysis indicates that there is enough CPU, memory and most

importantly network capacity available to support compute-intensive P2P applications

without impacting the normal use of the machines.

67

 Thursday 2/ 27/02

0

5

10

15

0 4 8 12 16 20
Hour

U
sa

ge
(%

) CPU
Memory
Network

Saturday 03/01/02

0
5

10
15
20
25

0 4 8 12 16 20
Hour

U
sa

ge
(%

) CPU
Memory
Network

Figure 6-15 Daily Average Usage (%)

6.3 Coordination Communication Experiments

The network overhead of the P2P-Manifold model is caused by the coordination

messages. This experiment collects all coordination messages in the experiment and

calculates the size of these messages to measure the network overhead. All of these

recorded messages travel between managed component and coordinator and between

coordinators (the local communication between consumer application and local proxy is

omitted). Therefore, a coordinator-side message tracer is developed to interrupt the

messages before sending out them and after receiving them.

In addition, since all messages in the experiment are in SOAP format and sent

via HTTP, an extra experiment is performed to measure the speed of the SOAP/HTTP

message sending. This experiment addresses the system capability and the system delay

according to the message size.

6.3.1 Coordination Messages

Each communication in the model is synchronized. The coordination messages

involved in the P2P-Manifold model include three types:

• Registration message

A component (except for root coordinator) sends a registration message to its

managing coordinator for registration after startup or migration. The managing

coordinator sends registration messages to managed components after its migration.

There are four kinds of registration messages: consumer registration, provider

68

registration, sub-coordinator registration and managing coordinator registration. The

length of each registration message is fixed regardless of the difference of the

component’s URL value. In the throughout experiments in §6.1, the length of the

request message is between 1000 bytes and 1300 bytes. The length of the response

message is between 900 bytes and 1100 bytes. Figure 6-16 is an example consumer

registration message.

• Service searching message

A consumer sends search messages to its managing coordinator when it invokes

services for the first time. The message size is fixed regardless of the difference in

the service name and the provider’s URL. In the experiments in §6.1, the length of

search message is between 1250 bytes and 1300 bytes. However the total transferred

bytes of one service search is flexible in the result of cross-coordinator service

searches. The length of one cross-coordinator service search message between two

coordinators is between 1250bytes to 1300bytes. Therefore using formula 2, the

average total transmitted bytes of one service search requirement is:

Bservice-search = 1275 + 1275*n (7)

where:

 n is the amount of cross-coordinator searches.

• Migration message

The transmitted messages of a component migration include the migration message

that is used to keep the connection and the update message that is used to inform

about the changes of the current component. In the multi-coordinator test case

(Figure 6-10.a), the size of transmitted message when a root coordinator moves is:

Broot = Bmigration + 3*Bsuspend + 3*Bresume

 = 9683 + 3* 1316 + 3*1316 = 17579bytes (8)

 where:

 Bmigration is the size of migration message.

 Bsuspend and Bresume are the sizes of manager suspend/resume update messages that

are sent before/after the migration.

69

Request Message (Length: 1269Bytes)
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header>
<h4:__MethodSignature xsi:type="SOAP-ENC:methodSignature"
xmlns:h4="http://schemas.microsoft.com/clr/soap/messageProperties" SOAP-ENC:root="1"
xmlns:a1="http://schemas.microsoft.com/clr/nsassem/Coordination/ICoordinatoion%2C%20Version
%3D1.0.1638.33583%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
a1:COMPONENT xsd:string</h4:__MethodSignature>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<i5:Register id="ref-1"
xmlns:i5="http://schemas.microsoft.com/clr/nsassem/Coordination.Icoordinator/ICoordinatoion">
<c xsi:type="a1:COMPONENT" xmlns:a1="http://schemas.microsoft.com/clr/nsassem/Coordination
/ICoordinatoion%2C%20Version%3D1.0.1638.33583%2C%20Culture%3Dneutral%2C%20
PublicKeyToken%3Dnull">
CONSUMER</c>
<url id="ref-6">http://128.233.16.211:5123/8b5ed815_f36f_47e7_9ea4_7a7266a90f3e/
jCkmmb_vaE6_crfX8P7U6psA_2.rem</url>
</i5:Register>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Response Message (Length: 1002bytes)
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header>
<h4:__MethodSignature xsi:type="SOAP-ENC:methodSignature"
xmlns:h4="http://schemas.microsoft.com/clr/soap/messageProperties" SOAP-ENC:root="1"
xmlns:a1="http://schemas.microsoft.com/clr/nsassem/Coordination/ICoordinatoion%2C%20
Version%3D1.0.1638.40173%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
a1:COMPONENT xsd:string</h4:__MethodSignature>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<i5:RegisterResponse id="ref-1"
xmlns:i5="http://schemas.microsoft.com/clr/nsassem/Coordination.ICoordinator/ICoordinatoion">
<return id="ref-6">ROOTC1</return>
</i5:RegisterResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 6-16 An Example Consumer Registration Message

70

6.3.2 SOAP/HTTP Message Sending

This experiment tests the speed of sending SOAP/HTTP messages. The system

delay of the message call is addressed by analyzing the relationship between the speed

of message sending and the size of message. The test application is developed as a web

service application with one provider and one consumer. Three kinds of web services

are defined and tested to represent different service types:

• void Test1(byte[] bytes)

• byte[] Test3()

• byte[] Test2(byte[] bytes).

0

0.5

1

1.5

2

2.5

3

3.5

10.5 330.5 650.5 970.5 1290.5 1610.5 1930.5 2250.5 2570.5
KB

M
ill

is
ec

on
ds

(B
as

e
10

 L
og

ar
ith

m
s)

Test1
Test2
Test3

Figure 6-17 Local SOAP Message Sending Test

0

1

2

3

4

5

10.5 610.5 1210.5 1810.5 2410.5 3010.5

KB

M
ill

iS
ec

on
ds

 (B
as

e
10

 L
og

ar
ith

m
s)

Local

Remote

Figure 6-18 Comparison of Local Test and Remote Test (test service: Test1)

71

Two situations have been tested: one is local test that both components located

on same machine to eliminate the network delay and one is remote test that the

components were distributed. In the tests, the consumer made the service calls

continuously and the size of the parameter and/or result increased by 1KB after every

call. The start value of parameters and result is 1KB.

Each experiment has run five times. Figure 6-17 and Figure 6-18 presents the

average of the tests. Since the data set is very large to present, the present data set is the

average of every 20 calls and only the calls less than 5700KB are considered. The

collected data indicates:

• The service response time linearly increases with the increase of the message size.

The response time of the tests (Figure 6-18) can be summarized as follows:

ResponseTimelocal (millisecond) ≈ 0.66 * Message size (KB)

ResponseTimeremote (millisecond) ≈ 10.48 * Message size (KB).

• In the local tests (Figure 6-17), the service response time of Test1 and Test2 are

almost same while the response time of Test3 equals nearly the sum of Test1 and

Test2. It indicates that in the .NET Framework the speed of message passing

depends mostly on the message size. Disregarding the service computation time, the

service response time is irrelative to the service signature. The SOAP-format

communication can be measured by the transmitted bytes and ignoring the parsing

delays.

• The maximum acceptable size of a SOAP message is between 5459KB and 5460KB.

The maximum size of one message collected from experiments in §6.1 is less than

10KB and it is far below to the maximum acceptable size. Therefore though SOAP

is heavier than the binary format, it is still acceptable.

6.4 Summary

The above three sets of experiments measure the P2P-Manifold model in several

aspects: the system throughput, the system overhead and the network overhead. The

system throughput is measured in several different situations to address the impact of

72

the model and the component migration. The system overhead of the model is measured

by the cost of the extra components and how it influences the working peer. The

network overhead is measured by analyzing the size and the sending speed of the

coordination messages. From the analysis, it can be concluded that:

• The P2P-Manifold model has little impact on the efficiency of application. The

migration of components due to the dynamic P2P network influences the

throughput.

• The organization of the workgroup influences the system throughput where the

number of participating coordinators is much more affective than the organization of

these coordinators.

• The P2P-Manifold model is lightweight in terms of the system overhead caused by

the model. Through the potential of P2P computing experiment, there are plenty of

unutilized system resources (e.g. CPU, memory and network bandwidth) to support

compute-intensive P2P applications without impacting the normal use of the

machines.

• The network overhead caused by the model is reasonable and won’t cause network

traffic. Coordinator migration is costly in terms of the network traffic.

• The platform-independent SOAP message format won’t cause capability problems.

73

CHAPTER 7

SUMMARY & CONTRIBUTIONS

7.1 Summary

P2P networks are a recent addition to the already large number of distributed

system models. Unlike other forms of computing, P2P still lacks of research especially

in the area of coordination. On the other hand, coordination has been one important

issue in the area of distributed computing for a long time and a number of models and

languages have been developed.

This research focuses on applying an existing coordination model to meet the

requirements of the P2P computing environment. The proposed P2P-Manifold model is

an extension of the existing event-driven Manifold coordination model and implements

the transparency of the component migration. This thesis presents the design and

implementation of this model and its evaluation.

The P2P-Manifold model uses m-ary trees to organize two kinds of components:

coordinator and computation components. A coordinator is a component dealing with

the connections between computation components and computation components are

designed as back-box and deal only with the computational services.

The model is evaluated for: system overhead, throughput, programmability and

component availability. The P2P-Manifold model is suitable for developing P2P

computing applications:

• Availability - all services in a workgroup are highly available during the lifetime of

the execution.

• Efficiency - the P2P-Manifold model has little impact to the throughput and service

response time of application.

• Lightweight - the system usage (CPU and memory) of the extra coordination-

oriented components of the model (i.e. local proxy and coordinator) is low.

74

• Economy - the network overhead caused by the coordination message is affordable

and won’t result in network traffic.

• Flexibility - the model is platform-independent and language-independent due to the

usage of standard protocols (e.g. SOAP).

• Transparency - the model hides the migration of component in the result P2P

applications. Using this model, P2P application are developed and viewed as normal

distributed computing applications.

• Programmability - embedding the model into existing middleware frees the

developers from the complicated coordination concepts.

7.2 Contributions

By designing, implementing and evaluating the P2P-Manifold model, this thesis

provides the following contributions:

• Introduction of the coordination issues of P2P computing, in particular the

importance of the transparent component migration – increasing the flexibility and

programmability of P2P systems.

• Design and implementation of a new P2P coordination model, P2P-Manifold. The

model provides a transparent P2P environment by wrapping the component

migration and hiding the complicated coordination efforts from application

developing.

• Evaluation of the P2P-Mainfold model with three essential factors: system

throughput, system overhead and network overhead. Through the experiments, the

model is proven to be productive and feasible for P2P application development.

75

CHAPTER 8

FUTURE WORK

This research designs and implements the basic coordination model for P2P

computing. Therefore the future work will focus on:

• Context-dependent service support

A context-dependent service is useful when developing long-lived services with

state. The support requires complex provider migration instead of the simple one for

context-independent service. In order to keep consistency in the system, the

migration of context-independent service requires suspending the service. The

impact of the provider’s migration is an important aspect when evaluating the

model.

• Service duplication

In the P2P-Manifold model, one service is provided by only one provider. This

simplifies the service searching but is inefficient for busy services. Since the P2P

network is assumed with plenty of idle resources, it is possible to duplicate busy

services so as to share the workload and speed up the service response time.

• Service caching

The coordinator in the model is assumed relative stable, while the computation

component may move more often. The frequent migration of computation

components causes the loss of service results and the temporary loss of services.

This problem reduces the throughput of applications by increasing the amount of

invalid service invocation. A coordinator can cache the service result when one

consumer is moving and resend it after it resumes. In addition, the cached result can

serve other consumers if the same service is called.

76

• Others

This research is based on several assumptions such as plentiful resources and

autonomous peer selection (§1.2). However all of these assumptions may break. The

model needs to be extended to meet the situation when one or some assumptions are

untrue.

77

LIST OF REFERENCES

[1] Milojicic D., Kalogeraki V., Lukose R., Nagaraja K., Pruyne J., Richard B., Rollins
S., Xu Z., and HP Laboratories Palo Alto, “Peer-to-Peer Computing”. Technical
Report, 2002.

[2] “BitTorrent”. August 2004. http://bitconjurer.org/BitTorrent/
[3] Clip2, “The Gnutella Protocol Specification v0.4 (Document Revision 1.2)”. 2001.
[4] Clarke I., Sandberg O., Wiley B., and Tong T., “Freenet: A Distributed Anonymous

Information Storage and Retrieval System”. Designing Privacy Enhancing
Technologies, 2000, 2009: 46-66.

[5] “SETI@home”. August 2004. http://setiathome.ssl.berkeley.edu
[6] Papadopoulos G. and Arbab F., “Coordination Models and Languages”. Advances

in Computers (volume 46), Academic Press, 1998, pp. 329-400.
[7] “FastTrack”. August 2004. http://www.fasttrack.net
[8] “Jabber Software Foundation”. August 2004. http://www.jabber.org/
[9] “Zoogi”. August 2004. http://www.zoogi.com
[10] “Project JXTA”. August 2004. http://www.jxta.org
[11] “Groove Networks”. August 2004. http://www.groove.net/
[12] Barkai D., “An Introduction to Peer-to-Peer Computing”. Technical Paper, Intel

Developer Update Magazine, 2001.
[13] O'Reilly T., “ICQ as a P2P Pioneer”, Technical Paper, O'Reilly Network, 2001.
[14] Condor Team, “An Overview of the Condor System”. Technology Overview,

University of Wisconsin-Madison, Madison USA, 2004.
[15] “CondorView Pool Statistics”. 2004. http://pumori.cs.wisc.edu/condor-view-applet
[16] “Avaki”. August 2004. http://www.avaki.com
[17] Avaki Corporation, “Avaki Grid Software: Concepts and Architecture”, White

Paper, 2002.
[18] Sun Microsystems, Inc., “Project JXTA: An Open, Innovative Collaboration”.

Technical Paper, 2001.
[19] Anthill Team, “The Anthill Project”. Technical Report, Dept. of Computer Science,

University of Bologna, Bologna Italy, 2001.
[20] Matos G. and Purtilo J., “Reconfiguration of Hierarchical Tuple-spaces:

Experiments with Linda-polylith”. Technical report, University of Maryland,
Adelphi USA, 1993, UMIACS-TR-93-100.

[21] Kirtland M., “A Platform for Web Services”. Technical Paper, Microsoft Developer
Network, 2001.

[22] Microsoft .NET Framework Developer Center, “.NET Framework Technology
Overview”. Technology Overview, 2004.

[23] Kirtland M., “A Platform for Web Services”. Technical Paper, Microsoft Developer
Network, 2001.

78

[24] W3C, “Extensible Markup Language (XML) 1.0 (Third Edition)”.
Recommendation, August 2004. http://www.w3.org/TR/REC-xml

[25] W3C, “SOAP Version 1.2 Part 0: Primer”. Recommendation, 2003.
http://www.w3.org/TR/soap12-part0

[26] W3C, “Web Services Description Language (WSDL) 1.1”. Note, 2001.
http://www.w3.org/TR/wsdl

[27] “uddi”. August 2004. http://www.uddi.org/
[28] Carriero N. and Gelernter D., “Coordination Languages and Their Significance”.

Communications of the ACM, ACM Press, 1992, 35(2): 97-107.
[29] Schumacher M., “Designing and Implementing Objective Coordination in Multi-

Agent Systems”. Ph.D. Thesis, Dept. of Informatics, University of Fribourg, 2000.
[30] Arbab F., Ciancarini P., and Hankin C., “Coordination Languages for parallel

Programming”. Parallel Computing, Elsevier Science Publishers B. V., 1998, 24(7):
989-1004.

[31] Roman G. and Cunningham H., “Mixed Programming Metaphors in a Shared
Dataspace Model of Concurrency”. IEEE Transactions on Software Engineering,
IEEE Press, 1990, 16(12): 1361-1373.

[32] Sun Microsystems, Inc., “JavaSpaces™ Specification”. Specification, 1998.
[33] “JINI.org”. August 2004. http://www.jini.org/
[34] Arbab F., “Manifold Version 2.0”, User reference, CWI, The Netherlands, 1998.
[35] Magee J., Dulay N., and Kramer J., “Structuring Parallel and Distributed

Programs”. Software Engineering Journal, 1993, 8(2): 73-82.
[36] Dulay N. “A Configuration Language for Distributed Programming”, Ph.D. Thesis,

Dept. of Computing, Imperial College, London UK, 1990.
[37] Magee J., Dulay N., Eisenbach S., and Kramer J., “Specifying Distributed Software

Architectures”. Proceedings of the 5th European Software Engineering Conference,
London, UK, 1995, pp. 137-153.

[38] Vlassis N., “A concise Introduction to Multiagent Systems and Distributed AI”.
Informatics Institute, University of Amsterdam, Amsterdam, Netherlands, 2003.

[39] Krone O., Chantemargue F., Dagaeff T., and Schumacher M., “Coordinating
Autonomous Entities with STL”. ACM SIGAPP Applied Computing Review, ACM
Press, 1998, 6(2): 18-32.

[40] “The Darwin Language, Third Version”. User Reference, Dept. of Computing,
Imperial College of Science, Technology and Medicine, London UK, 1992.

[41] “MADMUC Lab”. August 2004. http://bistrica.usask.ca/madmuc
[42] Obermeyer P. and Hawkins J., “Microsoft .NET Remoting: A Technical Overview”.

Technical Paper, Microsoft Corporation, 2001.
[43] Srinivasan P., “An Introduction to Microsoft .NET Remoting Framework”.

Technical Paper, Microsoft Corporation, 2001.
[44] Foster I., “The Grid: A New Infrastructure for 21st Century Science”. Physics

Today, 2002, 55(2): 42-47.

79

APPENDIX A

.NET REMOTING

The Microsoft .NET Remoting Framework allows objects in different

applications and different machines to communicate with each other via XML messages.

The framework provides a number of services, including activation and lifetime support.

It also provides communication channels responsible for transporting messages to and

from remote applications [42].

A.1 Architecture

Figure A-1 .NET Remoting Architecture

The .NET Channel Services provides the underlying transport mechanism for

transport messages to and from remote objects. When a client calls a method of a remote

object, the parameters, as well as the call data, are transported through the channel chain

to the remote object. Any results from the call are returned back to the client in the same

way.

80

The .NET Remoting is a layered architecture (Figure A-1) and consists of six

core object types:

• Proxies

These objects masquerade as remote object and ensure that all calls made are

forwarded to the correct remote object instance. When a client activates a remote

object, the framework creates a local instance of the class TransparentProxy that

provides the same interface as the target object. Then, the proxy creates an instance

of the specified channel object and begins traversing its sink chain.

• Messages

Message objects contain the data to execute a remote method call. The .NET

Framework defines several special types of messages. A ConstructionCall message

is used during the instantiation of CAOs. A MethodCall message and its respective

return message represent the method call request and response.

• Channel sinks

The channel chain contains the sinks required for basic channel functionality. It

normally has at least two standard sinks that begin and end the chain: the formatter

sink and the transportation sink. In between the two, programmers can define as

many custom sinks as needed. These sink objects allow custom processing of

message during a remote invocation. Sinks read or write data to the stream and add

additional information to the headers where desired.

• Formatter

The formatter serializes/desterilizes the message into/from a transfer format. There

are two native formatters in the .NET runtime, namely Binary and SOAP. Other

implementations can use their own means to transform the channel message into the

stream.

• Transport channel

The transport channel is responsible for sending and retrieving message between the

client and the server. The .NET Framework supplies the HTTP and TCP channels

but third parties can write and plug in their own channels. The HTTP channel use

81

SOAP by default to communicate, whereas the TCP channel uses Binary payload by

default.

• Dispatcher

The dispatcher in the server side takes the decoded message and forwards the

method call to the real destination object for processing.

A.2 .NET Remoting Objects

The remote service (object) in .NET Remoting can be accessed in two ways. The

first technique is referred to as marshal-by-value (MBV). It makes a full copy of the

remote server on the local machine for accessing it locally.

The other possibility is known as marshal-by-reference (MBR). In the latter

approach, each server object has an interface for all exposed methods. Clients use this

interface to make a local transparent proxy, which make the remote call as if it is a local

call to the application. There are three types of objects that can serve as .NET remote

objects [40]:

• Single call

A server (service provider) creates a single call object every time when a service

request coming in. Single call objects cannot hold state information between method

calls. However, single call objects can be configured in a load-balanced fashion.

• Singleton objects

Only one instance of a singleton object can exist at any given time. Those objects

share data by storing state information between client invocations. Both single call

objects and singleton objects are Server-activated object (SAO).

• Client-activated objects (CAO)

Client-activated objects (CAO) are server-side objects that are activated upon

request from the client. When the client submits a construction request for a server

object, an activation request message is sent to the remote application. The server

creates an instance of the requested class and returns an object reference back to the

client application that invoked it. A proxy is then created on the client side using the

82

object reference. The client's method calls will be executed on the proxy. Each

activation invocation returns a proxy to an independent instance of the server type.

The object’s lifetime in .NET Remoting is managed by a time-to-live (TTL)

counter. For an object that has object references transported outside the application, a

lease is created. The lease-based concept assigns a TTL counter to each remote object

created at the server. As soon as the time counter reaches zero, the lease expires and the

object is marked as timed out and ready for garbage collection. The time is incremented

when method call placed on the remote object.

A.3 Configuration Files

To configure the .NET Remoting application, one can choose to either hard-code

all channels and objects or use the standard .NET Remoting configuration file. The

configuration files separate the configuration information from the client code. Future

changes can be made through configuration file changes without the need to recode or

recompile.

The .NET Remoting configuration files are XML documents. A typical

configuration file includes the following information [43]:

• Host application information

• Name of the objects

• URI of the objects

• Channels being registered

• Lease Time information for Server Objects

Figure A-2 is an example of a configuration file for server-side application. It

informs the .NET Remoting server application to publish a SAO object, whose full type

name (type, assembly) is “Foo, common”. The URI of the remote object is “Foo.soap”

and it is accessible through HTTP channel at port 9000.

83

<configuration>
 <system.runtime.remoting>
 <application>
 <service>
 <wellknown type="Foo, common" objectUri="Foo.soap" mode="Singleton" />
 </service>
 <channels>
 <channel ref="http" port="9000" />
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

Figure A-2 Server-Side Configuration File

A.4 Comparing With Other Distributed Object Paradigms

Before .NET Remoting, there were several underlying technologies of choice for

remote object communication. Most of these paradigms try to hide the location

difference of server and client and make the remote method invocation look like a local

call. Two of the most popular distributed object paradigms are [44]:

• JavaSoft’s RMI (Remote Method Invocation)

RMI relies on a protocol called the Java Remote Method Protocol (JRMP). Both the

RMI server object and the client object have to be written in Java. The server object

exposes the methods in an interface and is hold by the RMIRegistry that runs on the

Server machine. A client acquires an object reference to a server object by doing a

lookup.

• OMG’s CORBA (Common Object Request Broker Architecture)

Each server object in CORBA exposes their methods to the central object bus,

Object Request Broker (ORB). CORBA uses a protocol called IIOP (Internet Inter-

ORB Protocol) to communicate between different systems.

Transparent invocation is the core idea of .NET Remoting and the above

technologies. The transparency is realized by the client side stub/proxy. The stub/proxy

is created using the server object interface.

Compared to .NET Remoting, the above two architectures have some problems.

The main problem is that these protocols are non-semantic and hence incompatible. The

communication between heterogeneous components can only happen via a bridge.

84

Another problem is that these protocols are not firewall friendly. Most firewalls are

configured to allow access only through specific ports, the most popular being the

HTTP port 80. Those protocols use different ports and stick on the unitary message

format, mostly binary format, which are blocked by most corporate firewalls.

A.5 Benefits for Distributed Application Development

.NET Remoting framework is an integration of .NET Framework and web

services concepts. It harvests the benefits of both of them:

• Multi-language support and integration

.NET Framework supports many languages such as C#, C, VB, Fortran, etc. A

developer can choose any familiar or suitable language for application development.

• Security

Microsoft® .NET Passport is a core component of the Microsoft .NET initiative.

The online service (Passport) enables authentication of users. Once authenticated,

the user can roam across passport-participating Web sites.

• Semantic message

The standard protocols of web services, SOAP, UDDI and WSDL, are XML

protocols. The request and response messages of method calls are both machine

readable (using XML parser) and human legible. The metadata (tags) in XML

document helps the understanding of data’s purpose and use.

• Platform and language independence

Web services are internet-ready and are an open standard ratified by the W3C (The

World Wide Web Consortium). With SOAP and HTTP, it is possible to

communicate with heterogeneous program written in any programming language on

almost all the major computing platforms.

• Cross firewall

Web services can use HTTP transport protocol or other Internet-friendly protocols

(such as SMTP). Web services with XML data encoding and HTTP protocol is

firewall friendly.

85

APPENDIX B

.NET P2P-MANIFOLD IMPLEMENTATION

The .NET P2P-Manifold is implemented in C# on .NET Framework 1.1 as

linked libraries. Figure B-1 presents the class diagram of this implementation.

B.1 Libraries

The P2P-Manifold implementation includes six linked libraries and an

application:

• MySink.dll

The MySink library defines the client sink, which must be included in any consumer

application to interrupt and redirect outgoing service. It includes two classes

ClientSink and ClientSinkProvider.

• IProxy.dll

The IProxy library is the shared library, which declares the web service interface of

local proxy object. It includes:

o IComponent interface that is the base interface and must be implemented by all

non-black-box component of the model (i.e. coordinator and local proxy);

o IProxy interface that declares the interface of local proxy object;

o IRepository interface that declares the basic methods of the cache table of local

proxy and HashtableRep class is an implementation of hashtable-style repository;

o ProxySuspendedException that is an exception class and defines the exception

rose when an operation is made to a suspended proxy.

o STATUS enumeration that lists out all possible statuses of a component.

• ICoordination.dll

The ICoordination library includes ICoordiator interface, which declares the web

service interface of a coordinator and supplement definitions: struct KeyElements

86

(state information), enumeration COMPONENT (all component types) and Manager

class (managing coordinator representative).

• Coodination.dll

The Coordination library includes the Coordinator class (the implementation of

coordinator entity) and the representatives of all managed components: Consumer

(for managed consumer), Provider (for managed provider), SubCoordinator (for

managed coordinator), PseudoConsumer (for logical consumer) and PseudoProvider

(for logical provider). All these components classes inherit from the base (abstract)

class Component and are contained in a ComponentDB instance.

• LocalProxy.dll

The LocalProxy library implements the required functions of a local proxy within

three entities: ILocalProxy interface defines the non-web-services methods, which

can be called by inter-object invocation; the Proxy class represents local proxy and

implements its functions; the LocalProxy class provides the functionality to create a

new local proxy.

• RegAssist.dll

The RegAssist library defines the help methods for setting up applications and

registering/updating services. It also defines the base (abstract) class Services, which

provides service update methods and must be inherited by all service classes of

provider.

• Coordinator.exe

It is the application to run a coordinator. A configure file is required to help set up

the coordinator.

87

Figure B-1 .NET P2P-Manifold Class Diagram

88

B.2 Classes

• ClientSink

Implements required functions for the custom channel sink, which is involved in the

channel of consumer application to interrupt and redirect outgoing service call.

Base Classes: BaseChannelSinkWithProperties

Implemented interfaces: IClientChannelSink

Type: class

• ClientSinkProvider

Creates the custom channel sink for the consumer-side channel through which

remoting messages flow.

Implemented interfaces: IClientChannelSinkProvider

Type: class

• Component

Provides required functions for component proxies, which will be stored in the

coordinator’s component database to represent the real remote component.

Type: abstract class

Attributes: Serializable

Properties:

o Name – a String instance stores component name

o Status – a STATUS instance stores component status. There are three statuses

defined: READY, SUSPEND, DONE.

o Url – a String instance stores component URL

Functions:

o GetUrl – virtual method, gets the URL of the represented component

o ResetManager – abstract method, resets the URL of the managing coordinator

o SetManagerStatus – abstract method, resets the status of the managing

coordinator

o SetStatus – virtual method, resets the status of the represented component

89

• CompomentDB

Implements a synchronized hashtable-style (key: component name) container for

coordinator to contain component proxies.

Type: class

Attributes: Serializable

• Consumer

Represents a remote consumer component.

Base Classes: Component

Type: class

Attributes: Serializable

Properties:

o buffer – a Hashtable instances that works as a temporary message cache when

the consumer suspends. The cache will be emptied by sending out all messages

when the consumer resumes.

Functions:

o ResetProvider – virtual method, updates the provider information.

• Coordinator

Provides functions and properties of a coordinator component.

Base Classes: MarshalByRefObject

Implemented interfaces: ICoordinator

Type: class

Properties:

o KeyElements – a KeyElements instance stores all state information, which needs

to be cloned to keep continuity when coordinator moves.

• HashtableRep

Implements a hashtable-style repository for local proxy to cache the information of

ever-used providers.

Implemented interfaces: IRepository

Type: class

90

Attributes: Serializable

• IComponent

Provides the syntax of required web-service functions of component instances (i.e.

provider, consumer and coordinator).

Type: interface

Functions:

o GetManagerInfo – gets the information (i.e. URL, status) of the managing

coordinator.

o ResetManager – resets the URL of the managing coordinator.

o SetManagerStatus –resets the status of the managing coordinator.

• IComponentDB

Provides the syntax of required functions and properties of a coordinator’s

component database instance.

Type: abstract class

Properties:

o Count – an Integer instance stores the count of stored components.

o data – a Hashtable instance keeps the component objects.

Functions:

o AddComponent – abstract method, adds a new component to the database.

o DeleteComponent – abstract method, deletes a component by the given name.

o GetComponent – abstract method, gets the component by the given name.

o GetEnumerator – returns an IEnumerator for the database.

o GetStatus – abstract method, gets the status of a stored component identified by

the given name.

o Resume – abstract method, resumes a stored component identified by the given

name.

o Suspend – abstract method, suspends a stored component identified by the given

name.

91

• ICoordinator

Provides the syntax of additional required web-service and non-web-service

functions of a coordinator instance.

Implemented interfaces: IComponent

Type: interface

Functions:

o GetCrossUrl – searches for a cross-coordinator service and returns the URL of

the provider.

o GetName – gets the name of current coordinator.

o GetUrl – searches for a service and returns the URL of the provider.

o Init – initializes a coordinator instance.

o Merge – clones state information from existing coordinator by the given URL.

o Migrate – migrates current coordinator to the calling replacement by cloning the

state information.

o Register – registers/re-registers a managed component.

o Reset – clears the settings and empties the databases.

o Resume – informs the resume of component identified by the component type

and name.

o Suspend – informs the suspension of component identified by the component

type and name.

• ILocalProxy

Provides the syntax of required non-web-service functions of a local proxy instance.

Type: interface

Functions:

o Move – clones an existing local proxy.

o Resume – resumes the current local proxy.

o Start – starts an instance of local proxy.

o Suspend – suspends the current local proxy.

• IProxy

Provides required web-services functions for a local proxy instance.

92

Implemented interfaces: IComponent

Type: interface

Functions:

o GetUrl – searches for a service and gets the URL of the service provider.

o ResetUrl – resets the URL of a service given by the service name.

o GetStatus – gets the status of current local proxy.

o Serialize – serializes current local proxy to the remote calling replacement by

returning the state information (i.e. proxy name, service repository and the URL

of managing coordinator).

• IRepository

Provides the syntax of required functions of a local proxy repository instance.

Type: interface

Functions:

o ContainsKey – determines whether the repository contains a specific key.

o ContainsValue – determines whether the repository contains a specific object.

o GetValue – gets the object by the specified key.

o Add – adds a new object with the specified key.

o Remove – removes an object by the specified key.

o Clear – removes all elements from the repository.

• KeyElements

Stores the state information of a coordinator, which is used to keep the continuity

after coordinator migration.

Type: struct

Attributes: Serializable

Properties:

o Parent – a Manager instance stores the information of the managing coordinator.

o Id – a String instance stores the id (name) of current coordinator.

o ConsumerIdCounter – an Integer instance uses to help generating unique name

for new registered managed consumer.

93

o CoordinatorIdCounter – an Integer instance uses to help generating unique

name for new registered managed coordinator.

o Providers – an IcomponentDB instance stores all managed and logical provider

proxies.

o Consumers – an IcomponentDB instance stores all managed and logical

consumer proxies.

o Coordinators – an IcomponentDB instance stores all managed coordinator

proxies.

• LocalProxy

Provides functions and properties to manage a local proxy.

Type: class

Functions:

o Run – starts a new local proxy or migrates a local proxy from a remote host.

o Suspend – suspends the current local proxy.

o Resume – resumes the current local proxy.

• Manager

Helps the coordinator to store the information of the managing coordinator.

Type: class

Atrributes: Serializable

Properties:

o Name – a String instance stores the name of the managing coordinator.

o Url – a String instance stores the URL of the managing coordinator.

o Status – a STATUS instance stores the status of the managing coordinator.

o services – an ArrayList instance stores the cross-coordinator services the

managing coordinator provided which were required by current coordinator.

• Provider

Represents a remote service provider instance.

Base Classes: Component

Implemented interfaces: ICoordinator

Type: class

94

Properties:

o KeyElements – a KeyElements instance stores all state information, which needs

to be cloned to keep continuity when coordinator moves.

• Proxy

Represents a remote provider component.

Base Classes: Component

Type: class

Attributes: Serializable

Properties:

o Consumers – an ArrayList instance stores the proxies of all ever-called

consumers.

• PseudoConsumer

Represents a logical consumer in cross-coordinator service invoking.

Base Classes: Consumer

Type: class

Attributes: Serializable

• PseudoProvider

Represents a logical provider in cross-coordinator service invoking.

Base Classes: Consumer

Type: class

Attributes: Serializable

• ServiceAssist

Provides help functions for service provider and help functions to get application

settings.

Type: class

Properties:

o CoordiatorName – a read-only String instance stores the name of published

coordinator object.

95

o ProxyName - a read-only String instance stores the name of published local

proxy object.

Functions:

o GetConfigValue – static method, gets configured value of an application

property specified by the specified name.

o RegisterEntry – static method, registers service to remote managing coordinator.

o Setup – starts the current service provider by registering all services to the

managing coordinator.

o SetManagerStatus – static method, resets the status of the managing coordinator

of current service provider.

o ResetManager – static method, resets the URL of the managing coordinator of

current service provider.

o GetManagerInfo – static method, gets managing coordinator information.

• Services

Implements web-service functions of a service provider.

Base Classes: MarshalByRefObject

Implemented interfaces: IComponent

Type: abstract class

Functions:

o Kill – kills current service provider after migration.

• SubCoordinator

Represents a remote managing coordinator instance.

Base Classes: Component

Implemented interfaces: ICoordinator

Type: class

Properties:

o services – an ArrayList instance that stores the cross-coordinator services of the

coordinator.

Function:

96

o AddServices – adds a pseudo consumer for logical services the coordinator

provided.

B.3 An Example

This example Fibonacci calculation gives a flavor of the P2P-Manifold model.

The application includes a service provider, which publishes a Fibonacci web service

and a consumer that consumes the service. This example uses standard web-service

application architecture and is built by three assemblies/applications:

• A shared assembly

IServices is a shared assembly, which contains interface IFibonacci (Figure B-2) and

declares the Fibonacci service method. The assembly must be included by both

provider and consumer application to unify the method interface. No effort is needed

in this assembly to integrate P2P-Manifold model.

using System;
namespace IService{
 public interface IFibonacci {
 long Calculate(int num);
 }
}

Figure B-2 IService Interface

• Provider

This application (Figure B-3) contains the server-side implementation of the

IFibonacci interface and publishes the Fibonacci Calculator service after startup.

The detail settings of service publication are defined in the configuration file

“Provider.exe.config” (Figure B-3). In order to integrate P2P-Manifold model, four

changes are made:

o Includes the P2P-Manifold helper library RegAssist.dll;

o Inherits abstract class Services when implementing the service class;

o Registers the services after startup;

o Configures the first location of managing coordinator for registration;

97

using System;
using IServices;
using System.Runtime.Remoting;
using Coordination; //include P2P-Manifold namespace
namespace Provider{
 class myFabonacci:Services, Ifibonacci{ //inherits Services abstract class
 public long Calculate(int num){
 …
 }
 }
 class Provider{
 [STAThread]
 static void Main(string[] args){
 RemotingConfiguration.Configure("Provider.exe.config");
 ServiceAssist.registerEntry(); //register services to managing coordinator
 Console.ReadLine();
 }
 }
}

Figure B-3 Provider Application

<configuration>
 <system.runtime.remoting>
 <application>
 <channels>
 <channel ref="http" port="1234" />
 </channels>
 <service>
 <wellknown mode="Singleton"
 type="Provider.myFibonacci, Provider"
 objectUri="FibonacciService" />
 </service>
 </application>
 </system.runtime.remoting>

 <appSettings>
 <!—P2P-Manifold setting, coordinator URL -->
 <add key="URL" value="http://localhost:4000"/>
 </appSettings>
</configuration>

Figure B-4 Provider Configure File

• Consumer

The consumer application (Figure B-5) contains a sample consumer that consumes

the Fibonacci service. It also uses configuration file (Figure B-6) to configure the

required custom sink as well as some P2P-Manifold settings.

98

using System;
using System.Runtime.Remoting;
using Coordination;
using IService;
using Coordination; //include P2P-Manifold namespace
public class Client{
 public static void Main(string[] args){
 proxy=new LocalProxy(); //start a local proxy
 RemotingConfiguration.Configure("Client.exe.config");
 string port = ServiceAssist.getConfigValue("PROXY_PORT");
 //always makes call to local proxy
 IFibonacci service =(IFibonacci) Activator.GetObject(typeof(IFibonacci),
 "http://localhost:" + port + "/FibonacciService");
 long result = service.Calculate(10);
 Console.WriteLine(“Fibonacci(10) = “ + result”);
 }
}

Figure B-5 Consumer Application

Five changes are made to integrate the P2P-Manifold model into the consumer

application:

o Include the P2P-Manifold helper library RegAssist.dll;

o Make all service calls to local proxy regardless of the provider’s location;

o Start a local proxy;

o Configure the local proxy port and the first location of coordinator for first

registration;

o Configure the service channel to include the custom sink;

99

<configuration>
 <system.runtime.remoting>
 <application>
 <channels>
 <channel ref ="http">
 <clientProviders>
 <formatter ref="soap" />
 <!-- P2P-Manifold setting, custom sink -->
 <provider type="Sink.ClientSinkProvider, mySink" />
 </clientProviders>
 </channel>
 </channels>
 </application>
 </system.runtime.remoting>
 <appSettings>
 <!-- P2P-Manifold setting, coordinator url, mandatory -->
 <add key="COORDINATOR_URL" value="http://localhost:4000"/>
 <!-- P2P-Manifold setting, local proxy bind port -->
 <add key="PROXY_PORT" value="4040"/>
 </appSettings>
</configuration>

Figure B-6 Consumer Configure File

Besides the changes applied to provider and consumer applications, a managing

coordinator starts up before running these applications. The coordinator is fully

implemented in the .NET P2P-Manifold implementation and is bound to the specified

port in the configuration file (Figure B-7).

<configuration>
 <system.runtime.remoting>
 <application>
 <channels>
 <channel ref="http" port="4000" / >
 </channels>
 <service>
 <wellknown mode="Singleton"
 type="Coordination.Coordinator, Coordination"
 objectUri="Coordinator" />
 </service>
 </application>
 </system.runtime.remoting>
</configuration>

Figure B-7 Coordinator Configure File

