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ABSTRACT 

Sanderling (Calidris alba) are a long distance migratory shorebird species found across a 

large range of coastal winter sites throughout North, Central and South America. As with many 

of the long distance migrant shorebirds, Sanderling have experienced significant population 

declines during the past 30 years, possibly due to pollution and other anthropogenic threats at 

wintering and migratory stopover sites. Sanderlings annually fly from their winter grounds to 

Arctic nesting grounds in Canada, migrating in an elliptical pattern, with significant numbers 

using the Central flyway in spring. This study aims to identify the population structure and 

wintering origins of Sanderlings that migrate northward along the Central flyway and stop in 

large numbers at Chaplin Lake, Saskatchewan, Canada. Despite the lack of research, this site is 

recognized for its hemispheric importance for shorebirds, particularly Sanderling (WHRSN 

Category 1). It also aims to identify the extent shorebirds are exposed to dioxins and dioxin-like 

compounds (DLCs), at selected stopovers across their range in North and South America to 

ultimately link the migratory patterns and potential risks of exposure to these contaminants.  

Over 400 Sanderling were captured, measured and banded in Chaplin Lake, 

Saskatchewan on spring migration from 2012-2015. A total of 29 Sanderlings banded in Chaplin 

Lake were resighted, mostly during autumn migration following the elliptical migratory pathway 

along the east coast of North America, indicating band resightings alone were insufficient to 

determine wintering origin. A primary (P5) covert feather was sampled from 283 birds for stable 

isotope (δ
15

N, δ
13

C and δ
2
H) analysis to infer the population structure and possible differences in 

winter origin. Additionally, feathers from 73 Sanderlings from Padre Island, Texas were 

similarly analyzed because birds from Texas Gulf coast were hypothesized to use the same 

migratory pathway as the Chaplin Lake population. Through a combination of isotopes, 3 
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distinct clusters of Sanderling were identified within the Chaplin Lake population, suggesting 

birds at this stopover winter over a broad geographic area. Clusters 1, 2, and 3 represented 28, 

50, and 22% of Chaplin Lake population, respectively. The probability of the Texas Sanderling 

samples belonging to one of the three previously determined clusters was also estimated. The 

percentage of Padre Island, Texas birds assigned to clusters 1, 2, and 3 was 19, 25, and 56% 

respectively, implying strong overlap between populations. Using a combination of feather 

isotopic values, body morphometrics, known distributions and previously reported isotope data 

suggested possible origins of cluster 1, 2, and 3 as southern South America (e.g. Chile or 

Argentina), northwestern South America (e.g. Peru), and the Gulf of Mexico (e.g. Texas), 

respectively. 

In order to assess the extent shorebirds are exposed to DLCs and conduct a preliminary 

hazard assessment, sediment samples were obtained from a set of wintering and stopover sites in 

North and South America to ultimately characterize potential toxicity risks. Sediment samples 

from migratory stopover or wintering sites in Canada, The United States, Colombia, Ecuador, 

Uruguay and Brazil were collected in partnership with local shorebird researchers. Following 

extraction, a novel application of the in vitro Luciferase bioassay method was used to assess the 

potency of the sediment extracts to activate the aryl hydrocarbon receptor (AhR) in the H4IIE-

Luc cell line. Toxic induction of sediments ranged from 11.11 in Aracaju, Brazil to 20.43 pM 

2,3,7,8-tetrachlorodibenzo-p-dioxin equivalent (TCDD-EQ) in Padre Island, Texas. Although 5 

out of 8 sites showed TCDD-EQ values significantly above controls, all samples analyzed had 

concentrations of TCDD in sediment below published USEPA regulatory limits. Calculated 

TCDD exposure from the most contaminated site, Padre Island, was estimated to range from 

0.0009 ng TCDD-EQ /day for a larger Willet (Catoptrophorus semipalmatus) to 0.0203 ng 
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TCDD-EQ /day in a small Semipalmated sandpiper (Calidris pusilla), which is below published 

toxicity hazard thresholds for birds. However, these results should be interpreted with caution, 

since sediment ingestion was the only route of exposure considered, whereas contaminants in the 

invertebrate diet may be more important.  

The information collected about Sanderling migration ecology and connectivity has 

revealed new insight into the population structure and potential wintering origins at a key 

stopover site in the Central flyway. It is also an important step to determine the potential 

contaminant threats that shorebirds face during the annual cycle, specifically from DLCs caused 

by industrial pollution across their migratory range. This provides a basis to guide future work to 

determine the health and specific contaminant levels of this migratory shorebird population in 

the Central flyway which spends part of its annual cycle in diverse coastal areas of North, 

Central and South America.  
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PREFACE  

Chapter 1 of this thesis is a general introduction and Chapters 2 and 3 are written in manuscript 

style for future publication in scientific journals. Thus, there is some repetition of introductions, 

materials, and methods between chapters. Chapter 4 is a conclusion to both studies, with 

recommendations for future research.  
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CHAPTER 1 

General introduction and research rational 

 

1.1 Shorebird ecology 

1.1.1 Migration ecology and staging areas 

Approximately 215 species of shorebirds are distributed among 14 families in the order 

Charadriiformes, suborder Charadrii [1]. This diverse group occupies different habitats such as 

coastal, saline and freshwater wetlands, and arctic tundra [2]. They are adapted to feed on 

terrestrial or aquatic invertebrates. The most important prey are small crustaceans and bivalves. 

They also feed to a lesser extent on small polychaete worms and insects when available [3]. 

Many shorebirds are also known for their migratory habits. Species that breed in the northern 

latitudes often perform impressive long-distance flights [1]. Shorebird migration also includes 

some of the longest non-stop flights amongst birds [2]. For example, a marked Red knot 

(Calidris canutus) flew of 8,000 km in 6 days from Southern Brazil to the coast of North 

Carolina, U.S.A [4]. Evidences also suggested that bar-tailed Godwit (Limosa lapponica) would 

fly from Alaska to New Zealand for 11,000 km without stopping [5].  

Shorebirds have a global distribution and are mostly associated with open habitats [1]. In 

the Western hemisphere they can be found wintering in primarily coastal areas of the United 

States and Central and South America [6, 7]. Two sites on the east coast, Tierra del Fuego, 

Argentina and Lagoa dos Peixes, Brazil have been recognized as significant areas of shorebird 

agglomeration [7]. A large number of shorebirds are also known to winter further north on the 

Pacific coast of North America, Baja California, the Gulf of Mexico and on shorelines of the 

southeastern Atlantic states, with fewer numbers along the beaches of Central America [8]. 
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Many species demonstrate strong site fidelity, migrating annually from the Arctic breeding 

ground to the same wintering location [9, 10]. For example, Sanderlings are known to return to 

the same wintering sites and spend approximately 95% of their time within the same 5 km of 

beach. Movements between sites are rarely observed and performed typically by juveniles [10]. 

Some shorebirds have distinct breeding and wintering areas, using separate flyways [2, 

11]. The Red knot migratory flyway is distinct for each of the recognized subspecies. The Red 

knot subspecies Calidris canutus rufa, migrates from Tierra del Fuego, Argentina to north of 

Canada uses Delaware Bay as the major stopover along northern flyway to the Eastern Arctic [4, 

6]. However, newer tracking studies have revealed different migratory routes in birds of the same 

species, showing intra-specific variation [4, 12].  

Shorebirds must stop to replenish fat stores, to moult, or to rest during the migration 

journey. The limited number of traditional staging sites makes this group of birds particularly 

vulnerable to environmental damage [11, 13]. Stopover sites are often well known locations on 

the coast. In the Central flyway, it also occurs at inland saline and alkaline lakes and wetlands in 

the Prairies of The United States and Canada [7]. Birds which migrate northward though the 

central flyway are also known to stop in central Canada, mainly on the saline/alkaline lakes 

found on the Prairies in Saskatchewan before completing their journey to the Arctic [7, 14]. A 

survey conducted in 2013 across the Prairies recorded 65,629 shorebirds of 29 species. Among 

these, 20 species and 95% of the birds were migrants [15] .  

 

1.1.2 Shorebird population status 

The most recent State of Canada’s Bird Report [16] indicates that migratory shorebird 

populations have declined by almost half since 1970, experiencing some of the most substantial 
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declines of any guild. For example, Red knot (Calidris canutus rufa) estimates were up to a 

hundred thousand individuals 30 years ago, but the current population is about twenty-five 

thousand [4, 6]. Sanderling populations show similar trends. In 1972, the population was 

documented at 1.5 million, but the current population estimate is only three hundred thousand 

birds [7]. Similarly, Semipalmated sandpiper was classified as moderate concern because of their 

declining trend and common threats to their population [7, 17]. Endangered Piping plover 

(Charadrius melodus) populations breeding in the Canadian Prairies showed 32.4% decline since 

1991 [18]. 

Over the last few years, the steep shorebird population declines have raised interest and 

concern of many researchers and institutions responsible for the conservation of shorebirds. 

Therefore, shorebird conservation plans were developed with the purpose of identifying current 

threats and management needs. The most likely threats affecting shorebird survival are loss of 

habitat, decreased availability of food, disease, predation and pollution [6, 7]. These issues are 

confounded by the large number of wintering and staging areas and the lack of information about 

shorebird migration ecology and connectivity making it difficult to establish where and when 

problems are occurring.  

As shorebirds spend most of their annual cycle on the wintering grounds in Latin 

America or on migration, it is vital that they have adequate quantity and quality of winter and 

staging sites [6]. In Central and South America, winter habitats are rapidly disappearing due to 

the increased human development particularly in the coastal areas [4]. Additionally, industrial 

pollution such as leaching and inefficient waste disposal are an increasing concern. For example, 

oil and gas development has grown along with the number of accidental spills that may 

negatively affect migrating shorebird populations [6]. While there are many contaminants 
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capable of affecting shorebirds, dioxin-like compounds (DLCs) have largely been understudied 

despite their global distribution, toxicity, cumulative effects [19, 20], and the large annual 

quantities introduced into the environment [21, 22]. 

 

1.1.3 Study species and study sites 

Sanderlings (Calidris alba) were chosen as targeted species for this project for several 

reasons: 1) their strong association with the marine environment through much of their annual 

cycle placing them at higher risk; 2) anecdotal and published evidence of oiling and/or mortality 

in these species exists; 3) their populations are exhibiting rates of decline similar to many 

shorebird species; and 4) they locally abundant and therefore relatively easy to study.  

Sanderlings have a widespread distribution along coastal areas of North and South 

America during the temperate region’s winter. They occupy mainly the Pacific coasts of Peru 

and northern Chile, the Gulf of Mexico, and southeast Atlantic coast of Brazil [8]. Sanderling 

migration is not extensively studied, but in general, Sanderlings migrate in an elliptical pattern. 

In spring the northern migration occurs distinctly along Atlantic coast of United States (mostly 

Texas and Delaware Bay), the Canadian (mostly Saskatchewan) and U.S. Prairies, and the U.S. 

Pacific coast. Then most appear to fly south through the Eastern flyway, occurring in large 

aggregation in Delaware Bay during fall [7]. Spring migration occurs from March until June, but 

the timing of the peak passage of Sanderlings varies by latitude. Fall migration occurs between 

mid-July and late October, with adults departing early in the season, and juveniles typically 

following a month later [7]. Below are highlighted some of the most important sites identified for 

Sanderlings during migration and winter. 
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• Canadian Prairies: The region is characterized by several shallow alkaline/saline lakes in 

Saskatchewan, Canada. The most important lakes are Chaplin Lake, Old Wives Lake, Reed Lake 

[14] and Quill Lakes [13]. They are considered an important staging area for many shorebird 

species including Sanderlings which approximately 97% of its prairie population is in Chaplin 

Lake [15]. The prairies may also support about 50% of the Western Hemisphere population 

during spring migration [7]. Chaplin Lake and Old Wives Lake combined reported a peak of 

approximately 55,000 birds during spring of 1994 [14]. In 2013, survey identified over 46,000 

Sanderlings [15]. 

• Texas Gulf: Three main sites are located in Texas, United States. (1) Padre Island is located in 

South Texas, and consists of 70 miles of coastline. The peak number of Sanderlings at Padre 

Island National Shoreline (protected reserve portion of the Island) is over 5,000 birds during 

spring and fall migration [7]. It separates the Gulf of Mexico from the (2) Laguna Madre, a 

hypersaline lagoon important for over 100,000 shorebirds feeding and resting [23]. This is a 

large extension of land that goes from Port Mansfield, Texas to Tamaulipas, Mexico. Differently 

from the first two sites, the (3) Bolivar Flats Shorebirds Sanctuary is a human-made habitat. In 

the late 1800s in Galveston Bay, with the development of the North Jetty, the shore flow stopped 

resulting in accumulation of rich sediment and development of a complex invertebrate 

community into the mudflats. Consequently, this site became of huge importance for different 

species of animals, including birds. Over 100,000 shorebirds from 25 different species can be 

found stopping and wintering at Bolivar Flats [24]. 

• The Delta of the Iscuandé River: Located in Colombia, Naniño Department the area is 

constituted by sandy beaches, mangroves and muddy plains. The site holds approximately 
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30,000 shorebirds from 28 different species [25], including 1,000 to 2,500 Sanderlings according 

to 1980 survey [8]. 

• Salinas: Ecuasal company artificial lakes are located outside Salina city on the Province of 

Santa Elena, south west Ecuador. The salt plant created an artificial ecosystem that now supports 

a diverse macroinvertebrates community. As a result, this area attracts a variety of shorebirds 

including Sanderlings [26]. 

• Reserva Nacional de Paracas: located in Department of Ica, Peru approximately 200 km 

southeast of Lima, the area is winter ground for over 20,000 shorebirds. Sanderlings are among 

the predominant species with over 7,000 birds, approximately 8 % of the Pacific coast 

Sanderlings population [8, 27, 28]. 

• Bahía Lomas: located in the north coast of Tierra del Fuego, Chile the area is formatted by 

large sandy areas, and tidal or muddy plains. The local temperature during non migratory season 

(December to March) is around 6-12 °C [8, 29]. 

• Costa Atlántica de Tierra del Fuego: located in northeast strip of coastal area of Tierra del 

Fuego, Argentina approximately 100 km south of Bahía Lomas. The ecosystem is formatted 

mainly by sandy areas and muddy shoals, and is place for a large diversity of birds. Reports 

indicate that 135 species of birds can be found in this area, specially plovers and sandpipers, 

including Sanderlings [8, 30]. 

• Laguna de Rocha: Located in Department of Rocha, Uruguay is part of a 16,500 hectare of a 

complex wetland. The main lagoon is shallow and separated from the Atlantic Ocean by a 

relatively narrow sandbar. The lagoon complex is an important place for 24 species of 

shorebirds, including many species at risk. Sanderlings can be spotted from August to April in 

small groups [31]. 
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• Lagoa do Peixe: This coastal lagoon in south of Brazil is one of the most important wintering 

and staging sites of the Atlantic coast. Over 6,600 Sanderlings were reported, representing 71% 

of the Atlantic Coast total population. The bird density could reach up to 69 Sanderlings per km 

[8]. 

• Aracaju: Located at Sergipe state, Northeast coast of Brazil, it represents an important site to 

shorebirds, especially during south migration. This area is mainly represented by sandy beaches 

and mangrove habitats. Shorebirds from 19 species were reported in census from Jan 2003 and 

Apr 2005, including Sanderlings, which were spotted in this location year around [32]. 

 

1.2 Migration strategies and assessment tools 

The lack of information about established patterns of movement make it difficult to 

associate the migration movements to potential risks that animals face during the annual cycle. 

The study of animal migration ecology and connectivity is, therefore, vital for the effectiveness 

of proposed conservation plans [7, 33]. Different techniques have been applied to study the 

features of migratory movements of birds [4]. These methods can be classified as exogenous and 

endogenous. Exogenous methods involve external devices attached to the birds [34], ranging 

from a simple numbered band or coloured marker to complex devices such as satellite tags or 

geolocators. Resighting and recapture of birds with numbered bands and color leg markers have 

been the main method to determine stopover, breeding and winter locations [4]. But the utility of 

bands are limited to those species with a greater chance of recapture or resighting [34]. Radar 

tracking [35], geolocators and satellite-based technology have also been developed and applied 

to record individual or group pathways to better understand bird migration [4]. Radar tracking is 

a tool to identify local movements and sites of large groups of migrating birds. However, many 
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of these devices are prohibitively expensive compared to other techniques. Other downsides are 

the limited tracking distance, and the size of the tracker, which should be carefully chosen to 

adapt to birds size [35, 36]. Geolocators are a very impressive tool to track migration routes. 

They can continuously record the latitude and longitude of bird movement using intensity and 

timing of daylight, and they can collect and store data for a long period of time. The biggest issue 

with geolocators is that the scientist must recapture the bird to have access to the device to be 

able to download the storage data. This is particularly difficult for species of low recapture rate 

[4]. Endogenous methods to study migratory movements, including stable isotopes [34] and 

DNA markers [37], are not limited by the need for retrapping or following animals, since they do 

not need to be previously caught or marked.  

 

1.2.1 Stable Isotopes 

The use of stable isotopes as a marker of migration strategies improved the study of 

animal migration ecology and connectivity [33]. It has the advantage of being relatively 

inexpensive, can be applied to different species of animals and the combination of more than one 

isotope can improve results [38, 39]. Although most elements of the periodic Table have a stable 

isotope, just a few of them, such as carbon, hydrogen, nitrogen, oxygen and sulfur, are 

commonly used for wildlife studies. They have an abundant “light” isotope and a “heavier” but 

uncommon one and the ratio of the two relative to a standard are useful for inferring origin [38]. 

Physical and chemical process can result in different light and heavy isotopes ratios within 

distinct biomes and can be used as a marker that the animal carries with them [40, 41]. 

Stable isotopes in animal tissues reflect the isotopic signal of a local diet where the tissue 

is produced. Since their patterns vary spatially, it is possible to study where animals came from 
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using their isotopic profiles in select tissues [34]. It is possible to measure isotopes non-lethally 

in tissues such as blood; however the results will be representative of short-term dietary sources 

of assimilated foods [42]. In feathers, isotopes are assimilated during the period of moult and, 

because this tissue is metabolically inert after complete growth, it records past dietary 

information from the environment in which it was grown [38]. However, to be used as intrinsic 

markers of dietary and spatial origin some fundamental conditions must be respected: (1) birds 

need to migrate between places with different isotopic valuevalues and (2) they must retain one 

or more isotopes in the tissue of interest [41]. 

Previous studies have suggested that it is possible to use stable isotope values to assess 

wintering grounds of a long-distance migratory shorebird. In Red knots (Calidris canutus), 

isotope ratios of carbon and nitrogen in primary covert feathers could identify three distinct 

wintering locations [11]. The feather δ
2
H, δ

13
C and δ

15
N in Mountain plovers (Charadrius 

montanus) also varied with geographic location [43]. Significant differences were documented in 

δ
2
H, δ

13
C and δ

15
N in feathers of American Golden plover (Pluvialis dominica) and Pacific 

Golden plover (P. fulva) grown during summer and winter sites [44]. Information provided by 

isotope technique when correlated with evidence of environmental contamination could be used 

as powerful tool to understand dioxin and dioxin-like compounds exposure patterns in 

shorebirds. 

 

1.3 Pollutants of concern: dioxin and dioxin-like compounds 

1.3.1 Structure, properties and sources 

Dioxins and “dioxin-like” compounds (DLCs) including the polychlorinated dibenzo-p-

dioxins (PCDDs) and dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and polycyclic 
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aromatic hydrocarbons (PAHs) are a broad class of compounds that have similar chemical 

structure and similar physical-chemical properties. Dioxin is a term often used to refer to a group 

of chemicals composed by 135 congeners of polychlorinated dibenzo-furans (PCDF) and 75 

congeners of polychlorinated dibenzo-dioxins (PCDD) [45, 46]. PCDDs and PCDFs are stable 

nonpolar hydrophobic aromatic compounds [47]. They are commonly present in the 

environment, occurring naturally or through anthropogenic activities as unwanted by-products of 

combustion during industrial processes, such as chlorine bleaching of paper pulp, manufacturing 

of some herbicides and pesticides, fuel burning for agricultural purposes and waste incinerators; 

and non-industrial process such as backyard burning of waste, automobile fuel burning, and 

home heating [46-48]. High temperatures, alkaline media, and existence of UV-light can increase 

the formation of dioxins during the industrial processes [48]. PCDDs and PCDFs are globally 

distributed environmental contaminants of high toxic potency. They tend to accumulate in the 

body due to their high affinity for adipose tissues; consequently they are likely to accumulate in 

the food chain. Therefore, animals at the top of the food chain have a propensity to accumulate 

dioxin in their body [46]. The most studied dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD), also considered the most toxic congener. Therefore, the results of most of the studies 

involving other dioxins and dioxin-like compounds are represented as toxic equivalence relative 

to TCDD [46, 49]. 

Polychlorinated biphenyls (PCBs) refer to a group of 209 isomers and congeners with 

different numbers of chlorine atoms substituted in biphenyl rings some of which are considered 

dioxin-like compounds. PCBs can be divided into two groups, coplanar and non-coplanar. 

Coplanar PCBs have the phenyl rings at the same plan resulting in a rigid structure and activate 

the AhR, similar to PCDDs. Noncoplanar PCBs, in the other hand are not AhR agonists and are 
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not considered dioxin-like compounds [50, 51]. PCBs are man-made compounds globally 

produced and used in the past with large amounts found in the environment. They were created 

and marketed as mixtures of congeners. Monsanto Chemical Company was the only producer in 

the United States and they commercialized PCBs under the name Aroclor followed by four 

numbers (e.g. Aroclor 1254) where the first two numbers represent the 12 carbon atoms in the 

phenyl skeleton, and the other two represent the percentage of chlorine content by weight. For 

example, Aroclor 1254 has 54% chlorine by weight [52, 53]. Even though PCB manufacturing is 

no longer allowed in North America since 1979 under the Stockholm Convention on Persistent 

Organic Pollutants, their release into the environment still occurs from the disposal of large scale 

electrical equipment and waste (WHO 2010). 

Polycyclic aromatic hydrocarbons (PAHs), also referred to as polynuclear aromatic 

hydrocarbons or polyaromatic hydrocarbons, are organic compounds with two or more fused six-

carbon rings (benzene) that have hydrogen bonded to each carbon [54, 55]. This group includes 

about 100 compounds [56]. PAHs are formed during incomplete combustion [56] and can 

originate from natural sources such as forest fires, volcanoes, and from human activities such as 

oil production and release [57], combustion of fossil fuels and waste incineration [55, 58]. The 

physical and chemical properties vary with molecular weight and structure. Usually, high 

molecular weight compounds (four or more rings) are less water-soluble, less volatile and more 

lipophilic than lower molecular weight PAHs (two or three rings) [56, 59]. Most PAH 

compounds are persistent, toxic and widely distributed in the environment [19] with 

concentrations increasing significantly over the last century [59]. Analysis of the ice core from 

Greenland reported that the current level of PAHs is approximately 50 times higher than in pre-
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industrial period. Interestingly, the same trend is found in the historical record of world 

petroleum production [60]. 

Ongoing demand for oil by industrialized societies increases the occurrence of oil spills 

and seeps, since it requires more oil exploitation, refining, and transporting activities [6, 7, 61]. 

The potential for oil contamination exists throughout shorebird migratory ranges. Large oil spills 

have caused significant ecological damage in the Gulf of Mexico [62], Argentina [63] and 

Alaska (U.S.) [64]. A single oil accident at a key stopover site might result in an enormous 

damage to fishes and water birds, including shorebird since they aggregate at key locations 

during the year [62, 65-68]. Also alarming, the presumed recovery of marine oil spill is estimated 

in up to 15% [62]. Despite the large proportion of accidents with oil spills, during the past 

decade, the number of those large disasters has decreased due to more rigorous regulation [69]. 

Thus, most marine environmental contamination is likely due to small-scale events from the 

daily transport and refining activities, offshore production [57], industrial and municipal 

discharges, disposal of waste oil and diesel (e.g., contaminated ballast from oil tankers), rivers 

discharge and urban runoff [66]. However, the accumulated volume of contaminants introduced 

in the marine environment by small spills can be frighteningly large. Between 1997 and 2010, 

381 spills with less than < 7.95m
3 

occurred in Newfoundland, Canada at offshore production 

platforms [68]. Additionally, recent development of tar sands exploration represents another 

inland source of contaminant exposure to birds during migration [70, 71] [72]. 
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1.3.2 DLC effects in birds 

In humans and vertebrate wildlife, the major concern associated with DLC exposure is 

carcinogenicity [73-75]. However health risks in wildlife are associated with a range of toxic 

non-carcinogenic effects that differ according to the species sensitivity and exposure period [65, 

76, 77]. Sublethal effects of DLCs exposure may include carcinogenesis, mutagenesis [75], 

altered endocrine function [70, 78] immunosuppression [79, 80], liver damage [77, 81] and 

hemolytic anemia [82]. 

During the pre-migratory period, it is possible to observe some physiological and 

behavioral changes including moult and an increase in body mass due to hyperphagia and 

increased deposition of fat [83]. This period is induced by variations in photoperiod [84]. In 

response to the change in photoperiod, endocrine mediated mechanisms such as thyroid 

hormones [85, 86], glucocorticoids [87] and leptin [88] are stimulated, and play an important 

role in the regulation of pre-migratory body changes. Thyroid hormones are indicated as 

important regulators of body weight, initiation of moult, lipid metabolism, thermoregulation, 

growth and reproduction in birds [70, 89, 90], but may also be playing a role in control of 

migration. Studies have demonstrated that exposure to PCBs may result in variation of thyroid 

hormones level [87, 91, 92]. European starling (Sturnus vulgaris) exposure to high level of 

Aroclor 1254 resulted in more disorientated migratory behavior, which may result in decreased 

migration performance [92]. PCBs may also be related to abnormal parental behaviour [93], 

lower growth rates [94] and immunotoxicity in birds [95]. 

Similar to PCBs, some evidence suggests that PAH may alter circulating blood 

concentrations of T3 and T4. Plasma levels of T4 were assessed in nestling Black guillemot 

(Cepphus grylle) and Herring gull (Larus argentutus), and adult Leach’s petrel (Oceunodromu 
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leucorhou), after oral dose of crude oil. In these three species, concentrations of circulating 

thyroxine (T4) were greater than those of controls [87]. These results are supported by a study 

developed with nestling Tree swallows (Tachycineta bicolour) from the Athabasca oil sands. 

Concentrations of T3 in plasma were elevated in birds from contaminated areas compared to 

those from the reference sites [70]. The consequences of altered levels of T3 and T4 in migratory 

birds have not been elucidated, but there are indications that in ring doves with elevated thyroid 

hormones, courtship and breeding behavior changed [96]. 

As shorebirds feed mainly on invertebrates to gain energy for moult and flight [7, 97], 

they are particular vulnerable to DLCs contamination through food chain biomagnification as 

invertebrate predators in marine ecosystems [20, 66, 77]. Many marine invertebrates also lack 

AhR mediated detoxification systems that cause bioaccumulation of DLCs that are then 

consumed by shorebirds [98-101]. This is of concern particularly in areas of high industrial 

activity, density populated, and in areas susceptible to petroleum contamination, especially 

coastal habitats [20, 66, 77]. Furthermore, there is a lack of information on where shorebirds are 

exposed to DLCs throughout their migratory cycle in the Americas. This is particularly relevant 

to shorebird conservation since many migratory shorebird species have been declining at an 

alarming rate. 

 

1.4 Thesis objectives 

Among the many species that use Chaplin Lake as a breeding or stopover site, here I am 

focussed on Sanderlings because of their declining population trends and lack of knowledge 

about winter origins of this large Central flyway population. This is especially important for 

understanding the possible threats they are exposed to during winter and migration. Among 
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these, little is known about the exposure to sublethal dioxin-like contaminants across their range; 

which is of concern due to global distribution, high avian toxicity, cumulative effects, 

environmental persistence, and large quantities introduced into the environment annually.  

This study had two main objectives. The first one (chapter 2) was to assess variation and 

population structure of the large migratory population of Sanderlings on their northward 

migration while staging at Chaplin Lake (Saskatchewan, Canada) to identify potential wintering 

origins. I hypothesized that 1) the Chaplin Lake Sanderling population consists of different 

wintering groups since this unique stopover site can host up to 50% of the America Sanderling 

population; 2) Sanderling feather isotopes δ
15

N, δ
13

C and δ
2
H can be used to discriminate  these 

groups since feathers are grown during late migration and early winter and site variation in 

longitude, precipitation, temperature, soil and plant characteristics among other information are 

known to reflect isotope values in bird feathers; 3) Sanderling of Padre Island, south Texas, 

United States would represent one group of the Chaplin population given the strong connectivity 

through the Central Flyway; and 4) morphological measurements and arrival timing of 

Sanderlings will differ among groups that are related to flight distance and climate of the 

wintering grounds. 

The second objective of this study (chapter 3) was to assess environmental contamination 

from dioxin-like compounds at a subset of key stopover and wintering locations of shorebirds. 

Therefore, I hypothesized that 1) sediment collections and bioassays will reveal spatial patterns 

of environmental contamination among wintering and stopover sites important to shorebirds; and 

2) dioxin and dioxin-like chemical exposure and hazard from sediment will vary among 

shorebird species due to feeding habits and size differences among species. 
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This work is an important step to identify key wintering locations and potential risks that 

shorebirds face at multiple stopovers during migration and winter. Additionally, the provided 

information could guide future studies and action plans regarding shorebirds conservation.  
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CHAPTER 2 

Population structure of Sanderlings (Calidris alba) at a major stopover site in Chaplin 

Lake, Saskatchewan 

 

2.1 Introduction 

Many North American shorebirds are long distance migrants and are exposed to a large 

number of threats from their breeding grounds in northern Canada and the United States to their 

winter grounds throughout North, Central, and South America, as well as stopovers along their 

annual migration movements [1, 2, 6, 7, 26]. Due to the widespread geographic range of stopover 

and winter areas, threats such as loss of habitat, decreased availability of food, disease, predation 

and pollution are difficult to assess [6, 7]. Shorebirds, among other long-distance migrants 

currently under conservation concern are facing more threats than non-migratory birds [102]. 

Additionally, the lack of information about migration ecology and connectivity make it difficult 

to associate the migratory movements to potential risks that shorebirds face during the annual 

cycle. 

Most shorebird species are associated with coastal water and inland habitats such as 

marine areas, estuarine and salt lakes, which are frequently disturbed and degraded [1, 6, 7, 103, 

104]. Additionally, winter habitats in Central and South America are rapidly disappearing due to 

the increased human land development activity [6]. During migration, shorebirds must stop to 

replenish fat stores, to moult, or to rest during the migration journey. The limited number of 

traditional staging sites makes this group of birds particularly vulnerable to environmental 

changes [11, 13]. Furthermore, as shorebirds spend most of their annual cycle on the wintering 
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grounds in Latin America or on migration, it is vital that they have adequate quantity and quality 

of winter and staging sites [6].  

The Canadian Arctic is the breeding ground of estimated 21 shorebird species. An 

alarming rate shows that more than 60% of those species are experiencing different rates of 

population declines [16, 103]. Among these, Sanderling (Calidris alba) are a long distance 

migratory shorebird breeding in the High Arctic tundra and found along coastal areas of North 

and South America during the winter. Sanderlings have experienced significant population 

declines during the past 30 years, possibly due to pollution and other anthropogenic threats at 

wintering and migratory stopover sites. In 1972, the population was documented at 1.5 million, 

but the current population estimate is only three hundred thousand birds [7]. 

In general, Sanderlings are known to migrate in an elliptical pattern but show large 

variation in routes often crossing between distinct flyways [9]. Spring migration occurs from 

March until June primarily through the central flyway (mostly Texas and the Canadian Prairies), 

with smaller numbers moving northward along the U.S. Pacific and Atlantic (i.e. Delaware Bay) 

coasts [9]. The Central Prairies may support up to 20-50% of the Western Hemisphere 

population during spring migration [7]. A unique stopover site in the Central flyway is Chaplin 

Lake, Saskatchewan, where approximately 97% of spring Prairie Sanderling populations has 

been reported [15] and is believed to support a large proportion of the hemispheric population [7, 

9]. Despite its recognized importance as a Western Hemispheric Shorebird Reserve Network 

(WHSRN) site, Chaplin Lake is an understudied site and the Sanderling population structure and 

winter origins remain unknown [9, 105].  

Based on mark-resight banding studies conducted in the 1980s and 1990s, wintering 

Sanderlings occupy mainly the Pacific coasts of Peru and Chile, the Gulf of Mexico, and 
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southeast Atlantic coast of Brazil and Argentina [8, 9, 105] but modern techniques have evolved 

to study migration strategies and winter origins of birds. In particular, stable isotopes have been 

extensively used because of their relatively inexpensive cost and the potential to be applied in 

different species of birds without the need for recapture [38, 39]. Stable isotopes in animal 

tissues reflect the isotopic signal of a local diet where the tissue is produced. Since their patterns 

vary spatially, it is possible to study where animals came from using their isotopic profiles in 

select tissues [34]. In feathers, isotopes are assimilated during the period of moulting, and, 

because this tissue is metabolically inert after complete growth, it records past dietary 

information from the environment in which it was grown [38]. Previous studies have suggested 

that it is possible to use stable isotopes to assess wintering grounds of long-distance migratory 

shorebirds. For example, Red knot (Calidris canutus) winter locations were identified by carbon 

and nitrogen isotopes in flight covert feathers [11]. Use of 3 isotopes can provide greater spatial 

resolution where δ
2
H, δ

13
C and δ

15
N in feathers of mountain Plovers (Charadrius montanus) 

varied with geographic location [43]. Significant isotopic differences of δ
2
H, δ

13
C and δ

15
N were 

documented for feathers grown during summer and winter of american golden Plovers (Pluvialis 

dominica) and pacific golden Plovers (P. fulva) [44]. 

Sanderling fall migration can occur for an extended period of time compared to spring 

migration [7], with moult into pre-basic plumage occurring at stopovers sites or on the wintering 

grounds. Moulting normally starts with feathers from the head, breast, and body, with flight 

feathers being the last ones to be replaced [106, 107]. The primaries are replaced in order, 

starting with P1 and other researchers have successfully used primary coverts (i.e. P5) to 

distinguish wintering origin as this is one of the last feathers to be grown [106, 107] . This study 

aims to (1) identify the feather isotopic variation and possible groups of wintering origins of a 
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large migratory population of Sanderlings on their northward migration through Chaplin Lake, 

Saskatchewan; (2) test whether morphological measurements differ among identified groups; and 

(3) apply statistical methods to estimate the probability of known Gulf Coast wintering origin 

Sanderlings belonging to one of the Chaplin Lake population groups. 

 

2.2 Methods 

2.2.1 Study area and Sanderling trapping 

Sanderling were trapped during spring northward migration at Chaplin Lake (CL), 

Saskatchewan, Canada (50.441731°N 106.669028°W), a saline inland Prairie lake designated as 

Hemispheric Importance for shorebirds due to the large proportion of the western Sanderling 

population occurring here at one time (WHSRN). From 2012-2015, mist nets were set along the 

man-made dykes from dusk to dawn to capture the shorebirds, specifically Sanderlings. Nets 

were continuously monitored every 20-30 minutes and birds were extracted and processed 

immediately. In case of a large capture, birds were extracted from the nets and placed in 

cardboard boxes to allow movement and social contact until processing. A total of 405 

Sanderlings were captured (see Table 2.1 for more details). Trapping was conducted throughout 

the peak spring migratory period from mid May to early June to capture arriving birds ideally 

from diverse origins.  

Sanderlings were also captured on Padre Island (PI), Texas, United States (26.905842°N 

97.370356°W). During late winter (February) of 2013 and 2015, a canon net was used to trap a 

total of 57 Sanderlings along the beach at Padre Island National Seashore (see Table 2.1). In 

2013, an additional 28 Sanderlings were opportunistically collected at the same location after 

being killed by a beach vehicle and were also sampled for feathers. The cannon net was placed 
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on the ground, close to the shoreline, where birds routinely feed. Only when birds were in a safe 

position relative to the apparatus, the cannon was fired. The number of possible catches was 

considered before firing and based on the number of handlers available to safely and quickly 

retrieve birds. All birds captured were quickly removed from the net and held in keeping cages 

that permit free movements and social contacts. After banding and measurement they were 

immediately released at the capture site. 

 

Figure 2.1. Map of study area and Sanderling trapping sites. Red stars represent the sites Chaplin 

Lake, Saskatchewan in Canada, and Padre Island, Texas in the U.S. The smaller maps beside 

each site show the area in more details. 
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2.2.2 Banding and morphological measurements 

Sanderlings captured in 2012-2014 were banded with unique numbered Canadian 

Wildlife Service metal band, a plain white flag (signalling country of banding is Canada based 

on the Pan American Shorebird Program, PASP [108]) and a cohort colour band combination. 

The combination of colours is unique to birds for this site. The final bird identification was a 

light blue coloured band under a white flag on the upper right leg; an orange colour band on the 

lower right leg; a metal band on the upper left leg; and an orange coloured band on the lower left 

leg. In 2015, Sanderling were banded instead with a coded white flag with an alphanumeric code 

on the upper right, a CWS numbered metal band upper left and a single orange band on the lower 

left to permit individual identification. Right maximum flattened wing chord (mm), bill length 

(mm), right tarsus length (mm), body mass (g), and furcular fat score (score of 0-5 [109]) were 

measured in all captured Sanderlings. Sex cannot be determined in the hand for this species on 

migration and almost all Sanderling were aged as adults (After-second-year or ASY). 

 

2.2.3 Feather stable isotope analysis 

The fifth primary (P5) covert feather was cut with scissors from each bird. The P5 feather 

has been previously shown to be one of the final moulted primary feathers in migratory Calidris 

species and should therefore be grown on or near the wintering grounds [3, 106]. The covert 

feather was stored in plastic bags, and transported to the laboratory and stored until analysis. Of 

the 405 feather samples collected from Chaplin Lake and 85 from Padre Island over the 4 years, 

we randomly analyzed 283 and 71 samples from each location. Table 2.1 shows the number of 

feathers collected and analysed by year and site of sampling. 
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Table 2.1. Overview of number of Sanderlings captured and total number of covert feathers from 

Chaplin Lake and Padre Island analysed from 2012-2015. 
 Chaplin Lake Padre Island 

 2012 2013 2014 2015 Total 2013 2015 Total 

Sanderlings captured 30 118 176 81 405 29 28 57 

Feathers analyzed 12 113 79 79 283 26 26 71* 

* Additional 19 feathers were recovered from carcass of Sanderlings possibly killed by a beach 

vehicle. 

 

To remove potential surface impurities, feathers were washed with 2:1 

chloroform:methanol solution, rinsed with deionized water and air dried in a fume hood 

overnight [110]. For δ
15

N and δ
13

C analyses, feathers were cut, homogenized, and approximately 

1.0 mg samples were weighed into tin capsules. For δ
2
H analyzes, approximately 0.35 mg of 

feather homogenates were weighed into silver capsules. The sealed samples were placed in 96-

well microplates and sent for analysis through isotope-ratio mass spectrometry (IRMS).  

The analysis of δ
13

C and δ
15

N was completed at the Stable Isotope Facility, UC Davis, 

California using a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-

20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK). Samples were combusted at 

1000 °C and resulting oxides were removed in a reduction reactor. Carbosieve GC column 

(65°C, 65 mL/min) were used to separate N2 and CO2 before entering the IRMS. During 

analysis, glutamic acid (G-9) was used for elemental totals and size corrections; nylon (G-18) 

was used for drift correction; and isotope values were normalized to Nylon (G-18) and USGS-41 

Glutamic Acid (G-17).  Bovine liver (NIST 1577; G-13) was used as a check reference. All 

laboratory reference materials were calibrated to National Institute of Standards and Technology 

(NIST) Standard Reference Material. The final δvalue were presented relative to international 

standards (Vienna Peedee belemite for C; and Nitrogen air for N).  
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The analysis of δ
2
H was completed at the Stable Isotope Hydrology and Ecology 

Laboratory of Environment Canada in Saskatoon, Canada using continuous-flow isotope-ratio 

mass spectrometry (CFIRMS: Isoprime, Manchester, UK). Samples were loaded into blank 

autosampler under He flow and combusted at 1350 °C in a Hekatek furnace coupled with a 

Eurovector (Milan, Italy) elemental analyser. Nonexchangeable δ
2
H value of feathers was 

determined using calibrated keratin hydrogen isotope reference materials (CBS: -197‰; KHS: -

54.1‰; SPK: -121.6‰) [111]. During analysis, keratin laboratory standards were used and 

calibrated against National Institute of Standards and Technology (NIST) Standard Reference 

Material. The final δvalue were presented relative to international standards (Vienna Standard 

Mean Ocean Water–Standard Light Antarctic Precipitation (VSMOW–SLAP) standard scale).  

All stable isotopes values are presented in parts per thousand (‰) according to the 

equation 2.1 [112]: 

 
δ

j/i
x = (

j
x / 

i
x)sample -1 

  (
j
x / 

i
x)standard  

 

(2.1) 

 

Where 
j
x = heavier isotope, and 

i
x = lighter isotope.  

 

2.3.4 Data analysis  

Principal component analyse of the three stable isotopes indicated that none of the 

studied components could be excluded from the analysis without losing a significant amount of 

information. Additionally, all stable isotopes were found to be independent of each other. 

Therefore, all data analysis included a combination of δ
2
H, δ

13
C, and δ

15
N. Isotope values were 

tested for normality using the Shapiro-Wilk W test. 
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Thirty different indices were tested in order to define the optimal clustering scheme to 

represent isotopically distinct Sanderling groups using multiple combinations of the number of 

clusters, distance measures, and clustering methods. Most techniques split the population into 2, 

3, or 16 unique clusters. In order to identify the optimal number of unique cluster, five 

techniques were applied: K-means, partitioning around medoids (PAM), hierarchical cluster 

analysis using Ward method (HCA-W), hierarchical cluster analysis using complete linkage 

method, (HCA-C) and Normal Mixture Modeling for Model-Based Clustering. The PAM 

method with 3 clusters was selected because the results presented the most distinct set of clusters 

among the five applied techniques.  

Feather isotope values of δ
2
H outside the normal range of less than -100 ‰ or greater 

than 110 ‰ were excluded from the analyses (n = 12 samples from Chaplin Lake and 8 from 

Padre Island) as they were considered measurement errors or possibly bird moulting on the 

breeding grounds [33, 34, 40]. 

A log10 transformation was applied to improve normality of morphometric measures 

based on Shapiro-Wilk test. Analysis of variance (ANOVA) and post-hoc Turkey´s tests were 

used to compare Sanderling body measurements (mass, wing chord, tarsus, bill) among clusters, 

and a chi-square test to look for differences in fat score among clusters. A t-test was used to 

assess differences in body measurements between Sanderlings from Chaplin Lake and Padre 

Island. 

A model to estimate the probability of a new bird (i.e., of known wintering origin in 

Padre Island, Texas) belonging to one of the determined Chaplin Lake group clusters was 

developed. The proposed method is based on the Kernel punctual intensity estimation method. 

This analysis aims to characterize the spatial distribution pattern of isotope ratios as “events”. As 
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a result, we can determine whether those events have a higher probability of occurring in the 

determined isotopic space. Therefore, we can estimate the probability of known and unknown 

(new) Sanderlings to belong to a given Chaplin Lake cluster (see Appendix A for details on the 

derivation of the models. 

 

2.3 Results 

2.3.1 Sanderling banding and resightings 

During the 4 years of project, 415 Sanderlings were banded at Chaplin Lake and Padre 

Island. From the 382 Sanderlings banded in Chaplin Lake, 25, 113, 163, and 81 birds were 

banded in 2012, 2013, 2014, and 2015 respectively. In Padre Island, 33 Sanderlings were banded 

in 2015.  

A total of 29 resightings were recorded. During the fall migration, 22 resightings of 

Sanderling banded at Chaplin Lake occurred throughout eastern Canada and the United States 

(Table 2.2). Other 8 sightings in late winter (January to April) were concentrated in the Gulf of 

Mexico (Florida, Texas) and New Jersey, Mexico, Panama, and El Salvador (see Table 2.2). It 

was not possible to identify in which year the resighted Sanderlings were banded, since we used 

the same colour combination for the project as a cohort during 2012-2014. From 2015, we used 

engraved (coded) flags with unique identifiers. A total of 114 Sanderlings were banded in 2015 

with coded flags and 7 were later resighted. 
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Table 2.2. Resightings of Sanderlings banded in Chaplin Lake, Saskatchewan during May and 

June 2012-2015. 

Resight year Resight Date State/Province Country Marker type 

2013 August 13 Indiana United States FW 

2014 July 30 Nova Scotia Canada FW 

2014 August 7 New Jersey United States FW 

2014 August 30 New Jersey United States FW 

2014 September 22 New York United States FW 

2014 October 2 Florida United States FW 

2014 October 3 North Carolina United States FW 

2015 January 27 Florida United States FW 

2015 February 2 Panama El Salvador FW 

2015 February 11 Florida United States FW 

2015 March 15 Texas United States FW 

2015 August 3 New Jersey United States FW 

2015 August 5 Texas United States FEW 

2015 August 7 Texas United States FW 

2015 August 11 Quebec Canada FEW 

2015 August 15 New York United States FW 

2015 August 21 New Jersey United States FW 

2015 August 27 Florida United States FEW 

2015 September 9 New Jersey United States FW 

2015 18 March to 29 April Sonora Mexico FW 

2015 September 18 Florida United States FEW 
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2015 September 18 Florida United States FEW 

2015 December 10 Florida United States FW 

2015 December 1 Texas United States FW 

2015 August 9 Florida United States FEW 

2015 October 18 Florida United States FW 

2015 December 12 Florida United States FW 

2016 April 4 Sonora Mexico FEW 

2016 April 28 Texas United States FW 

FW = plain white flag (cohort band); FEW = coded white flag (individual identification). 

 

2.3.2 Population Structure 

Feather samples of δ
2
H, δ

13
C and δ

15
N of Sanderlings from Chaplin Lake were inspected for 

dispersion and broad patterns (Figure 2.1; Table 2.3). The feather δ
2
H presented the widest range 

of values from -98.2 to 9.7 ‰ (mean = -45.1, n = 271). The remaining isotopes had a smaller but 

similar ranges from -25.3 to -8.0 ‰ for δ
13

C (mean = -16.4, n = 271), and 7.4 to 24.5‰ for δ
15

N 

(mean = 16.0, n = 271). Across the isotopic space using all 3 isotopes of δ
2
H, δ

13
C and δ

15
N, 

most of the individual Sanderlings were clustered in the center of the cloud (note 12 strong 

outliers of δ
2
H were removed prior to analysis –see methods).  

 

 

δ13Cδ2H δ15N
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Figure 2.2. (A) Histograms and (B) 3D scatterplot of Sanderling captured in Chaplin Lake, 

Saskatchewan where each point is an individual’s isotopic space based on feather δ
2
H, δ

13
C, and 

δ
15

N values (‰). 

 

Table 2.3. Mean ± standard error (S.E.), minimum and maximum values of δ
2
H, δ

13
C, δ

15
N (‰) 

in feathers from Sanderlings captured at Chaplin Lake, Saskatchewan during 2012-2015. 
 δ

2
H δ

13
C δ

15
N n 

 
mean ± S.E. 

(min | max) 

mean ± S.E. 

(min | max) 

mean ± S.E. 

(min | max) 

 

Cluster 1 -68.1 ± 1.2 

(-98.2 | -55.0) 

-17. 3 ± 0.2 

(-25.3 | -10.8) 

16. 75 ± 0.4 

(7.4 | 23.5) 

77 

Cluster 2 -43.8 ± 0.5 

(-54.6 | -32.1) 

-16.2 ± 0.1 

(-19.9 | -9. 7) 

16.1 ± 0.3 

(8.2 | 23.4) 

135 

Cluster 3 -18.1 ± 1.3 

(-31. 6 | 9.7) 

-15.7 ± 0.4 

(-19.9 | -8.0) 

15.0 ± 0.5 

(7.7 | 24.5) 

59 

 

Using the cluster technique, PAM, the best clusterization for this set of data included 3 

cluster groups. The Chaplin Lake Sanderling population could be comprised of at least 3 broad 

δ13C

δ2H

δ15N

A 

B 
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groups of birds. The percentage of birds in clusters 1, 2, and 3 was 28.4, 49.8, and 21.8 % 

respectively. The dispersion of those clusters is represented in Figure 2.4. All three groups 

showed the greatest separation along the δ
2
H value range, likely consistent with latitude of origin 

(Figure 2.2, Table 2.3).  

 

Figure 2.3. 3D Scatterplot of Sanderling feather stable isotope values from individuals captured 

in Chaplin Lake.  Clusterization of δ
2
H, δ

13
C, and δ

15
N isotope values (‰) in feathers was 

determined using the PAM technique: Cluster 1 = black, 2 = red, and 3 = green. 

 

2.3.3 Comparison of morphometric measurements among clusters 

ANOVA and post-hoc Turkey´s procedure were used to assess whether Sanderling’s 

body measurements differed among clusters which may improve the interpretation and 

significance of the cluster grouping. Mean wing measurements of cluster 1 (127.3 ± 0.4 mm) and 

cluster 2 (126.5 ± 0.3 mm) were similar, but differed for cluster 3 (124.5 ± 0.5 mm). Sanderlings 

from cluster 3 had significantly smaller wing sizes (F2,263=9.48, p<0.001). Tarsus measurement 

also differed between Sanderling clusters (F2,263=6.87, p<0.01). Cluster 1 Sanderlings had longer 

tarsus (28.0 ± 0.2 mm) than cluster 2 (27.1 ± 0.2 mm) and cluster 3 (27.0 ± 0.2 mm). No 

δ2H

δ1
5 N

δ2H

δ2H δ2H

δ1
5 N

δ1
5 N

δ1
5 N
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difference in bill measurements (F2,264=1.95, p=0.14) or body mass (F2,269=1.70, p=0.18) were 

observed between the clusters.  

 

Figure 2.4. Mean ± SE of a) wing (mm), b) bill (mm),c) tarsus (mm), and d) body mass of 

clusters 1, 2, and 3 of Chaplin Lake Sanderling population measured in May and June 2012-

2015. Stars represent significance of the measurement among clusters (Turkey, p<0.05).  

 

Table 2.4. Mean ± SE of wing (mm), bill (mm), tarsus (mm), body mass, and fat score of 

clusters 1, 2, and 3 of Chaplin Lake Sanderling population measured in May and June 2012-

2015.  
 Wing (mm) Bill (mm) Tarsus (mm) Body mass (g) Fat score 

Cluster 1 127.6 ± 0.4 25.7 ± 0.2 27.9 ± 0.2 62.5 ± 0.9 3.2 ± 0.1 

Cluster 2 126.5 ± 0.3 25.7 ± 0.1 27.1 ± 0.2 61.7 ± 0.6 3.3 ± 0.1 

Cluster 3 124.5 ± 0.5 25.2 ± 0.2 26.9 ± 0.2 60.2 ± 1.1 3.2 ± 0.1 

 

The mean fat score of all birds was 3.3 ± 1.0 (Table 2.4). However, the distribution of the 

scores were different among clusters (χ
2

(2, 259) = 0.03, p < 0.01) (Figure 2.4). Cluster 1 and 2 had 

more heavy birds (fat scores of 5, respectively 18.8 % and 12.9 %) and relatively few thin birds 
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(fat scores 1, respectively 3.1 % and 3.2 %). Cluster 3 had a significant more lean Sanderlings 

with fat score of 1 (7.8 %) with few fat individuals with fat score of 5 (3.9 %). 

 

Figure 2.5. Percentage of Sanderlings in each fat score category for Chaplin Lake population 

clusters 1, 2, and 3. 

 

Sanderlings that were captured later in the season exhibited higher fat scores than those 

caught earlier in the season. This was demonstrated in all three clusters. At the beginning of May 

(Day 133-140), birds from all the clusters presented average fat scores of 1.5 ± 0.7. At the end of 

the spring migration (Day 151-158), Sanderlings typically had a fat score of 4.1 ±0.7 out of 

maximum of 5 indicating increasing fuelling status during the migratory stopover. 

The annual peak of the Sanderlings migration occurred at the end of May (day 148) 

(Figure 2.5). The peak capture date was the same for all 3 clusters whereas the mean capture date 

was 147.9 ± 0.4 for cluster 1, 148.1 ± 0.3 for cluster 2 and 147.9 ± 0.4 for cluster 3 (F2,260=0.05, 
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p=0.95). ANOVA was used to access whether there was any difference in capture date by 

clusters, but no difference was observed (F2,270=0.31, p=0.73). 

 

Figure 2.6. Percentage of Sanderlings captured by Julian date during spring migratory season 

(May to June) in Chaplin Lake (2012-2015).  

 

2.3.4 Comparison of known wintering origin Sanderlings from Padre Island, Texas to Chaplin 

Lake population 

Stable isotope profiles of Sanderlings from Padre Island were similar in comparison with 

birds from Chaplin Lake. Sanderling feather samples from Padre Island were distributed among 

all 3 clusters without any visual outliers that would indicate a missing cluster.  
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Figure 2.7. 3D Scatterplot of sanderling feather stable isotope values from individuals captured 

in Chaplin Lake during migration and Padre Island, Texas, United States during late winter. 

Clusterization of δ
2
H, δ

13
C, and δ

15
N isotope values (‰) in feathers was determined using the 

PAM technique: Chaplin Lake Cluster 1 = black, 2 = red, and 3 = green. Padre Island, Texas 

sanderlings = blue. Texas sanderlings overlapped with all 3 of the pre-determined Chaplin Lake 

population groups. 

 

Using the previous cluster group separation, I could use the model to determine the 

probability of these “new” sanderlings from known winter origin in Padre Island, Texas as 

belonging to clusters 1, 2, and 3 (Table 2.5). Of the 63 Texas sanderlings studied, 12 (19%) were 

classified to cluster 1, 16 (25%) to cluster 2, and 35 (56%) to cluster 3 showing significant 

overlap across the groups. 

Table 2.5. Probability of Sanderlings captured in Padre Island, Texas belonging to the previously 

determined cluster groupings of migrant Chaplin Lake population.  

Chaplin 

Lake 

clusters 

Number 

Assigned 

birds 

% Assigned to each 

Cluster 

Proportional probabilities for Texas birds to 

belong in Chaplin Lake clusters 

 

Cluster 1 Cluster 2 Cluster 3 

Cluster 1 12 19 % 0.93 ± 0.14 0.06 ± 0.1 0.00 ± 0.00 

Cluster 2 16 25 % 0.07 ± 0.11 0.84 ± 0.13 0.07 ± 0.13 

Cluster 3 35 56% 0.00 ± 0.00 0.05 ± 0.10 0.94 ± 0.10 
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Mean wing measurements of Sanderling in cluster 1 from Chaplin Lake and Padre Island 

were similar (F1,87=0.66, p=0.42). However, birds from Chaplin Lake had shorter wings than 

Padre Island, which was statistically different in cluster 2 (F1,143=7.05, p<0.01) and in cluster 3 

(F1,77=7.37, p<0.01) (Table 2.7). Mean tarsus lengths of Sanderlings from Chaplin Lake and 

Padre Island clusters were statistically similar for all three clusters (Cluster 1: F1,94<0.001, 

p=0.05;cluster 2: (F1,138<0.001, p=0.92); and Cluster 3: F1,58<0.001, p=0.61). Bill length was not 

collected from Padre Island Sanderlings. 

Table 2.6. Comparison of mean ± standard error (S.E.), minimum and maximum values of wing 

length (mm) and tarsus length (mm) of Sanderlings from cluster 1, 2, and 3 in Chaplin Lake, 

Saskatchewan (CL) and Padre Island, Texas (PI). Note: Bill length was not collected from Padre 

Island birds. 

Cluster Location 

Wing (mm)  Tarsus (mm) 

n 
Mean ± S.E. 

(min | max) 
Signif.  n 

Mean ± S.E. 

(min | max) 
Signif. 

1 CL 76 

127.2 ± 0.4 

(119 | 134) 

A  76 

27.9 ± 0.2 

(24.9 | 31.8) 

A 

 PI 12 

128.1 ± 1.0 

(122 | 134) 

A  19 

27.1 ± 0.3 

(24.2 | 28.9) 

A 

2 CL 132 

126.5 ± 0.3 

(119 | 137) 

A  132 

27.1 ± 0.2 

21.5 | 32.1) 

A 

 PI 12 

129.5 ± 0.5 

(126 | 132) 

B  7 

26.9 ± 0.4 

(25.3 | 28.9) 

A 

3 CL 56 

124.5 ± 0.5 

(118 | 137) 

A  56 

26.9 ± 0.2 

(24.3 | 30.8) 

A 

 PI 22 

126.9 ± 0.5 

(123 | 133) 

B  3 

26.5 ± 0.8 

(25.1 | 27.8) 

A 

Means with different letters indicate significant difference between birds from different sites 

(Chaplin Lake vs. Padre Island) within each cluster (t test, p<0.01).  
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2.4 Discussion 

2.4.1 Determining winter origin of Chaplin Lake Sanderling population 

We attempted to determine the wintering origin of Chaplin Lake Sanderlings using a 

combination of band resightings and stable isotope values in order to better understand the 

migratory connectivity for this species and the importance of Chaplin Lake as a stopover site 

during northward migration. Over the years, the most widely used tool to determine migration 

and winter locations have been the recovery or resighting of bands and coloured leg markers [4]. 

However, its utility is limited by the need to band large numbers of birds and by the chance of 

recapture or resighting [4, 34]. Among the 415 Sanderlings banded in this project, 29 (give 6.9 

%) were resighted and no Sanderling was recaptured. The resightings of Sanderlings during fall 

migration along the east coast of Canada and The United States is consistent with a previously 

described elliptical pattern of migration [3, 7, 9]. In spring, the Central northern migration occurs 

from March until June [7]. The peak passage of Sanderlings varies by latitude, with Chaplin 

Lake arrivals peaking at the end of May [14] as was also observed in this study. Most 

Sanderlings appear to fly south through the Eastern flyway [7, 9]. The number of birds migrating 

south through Chaplin Lake is considerably smaller compared to the spring migration [14]. Most 

birds banded in Chaplin Lake during spring migration were resighted along the East Coast of the 

United States. Sanderlings are likely migrating further south than our band resightings suggest. 

Banded Sanderlings in Chile and Peru have been resighted throughout the Central flyway [10]. 

But the lack of winter resights precludes our ability to identify more precise winter locations.  

Chaplin Lake Sanderlings could be separated into 3 isotopically distinct groups.  

Hydrogen isotopes provided the greatest resolution with Cluster 1 (most negative) < Cluster 2 < 

Cluster 3 (least negative). However, the exact winter location of these Sanderlings cannot be 
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determined by stable isotope alone, since no birds were previously banded. However, feather 

isotopes values of other shorebird species such as the Red knot or white-rumped Sandpiper 

(Calidris fuscicollis) sampled on the wintering grounds have been previously published in the 

literature (Table 2.7). This information was compared to our Sanderling values to help interpret 

the isotopic wintering origins of the Chaplin Lake population. As observed in Table 2.7, very 

negative δ
2
H can be found in feather of shorebirds wintering in southern South America.  

Table 2.7. Sample of published data of feather isotopic values (‰), date of sampling and 

location of winter origin of multiple shorebirds species for comparison to the existing dataset. 
Shorebird Location Date δ2H δ13C δ15N author 

Red Knot 

(Calidris canutus) 

Argentina 

Rio Grande (TdF) 
Nov 2012 

−60.4 ± 1.28 

n=6 

−9.9 ± 0.30 

n=14 

18.1 ± 0.13 

n=14 

Atkinson et al., 

2005 [11] 
Red Knot 

(Calidris canutus) 

Chile  

Bahia Lomas (TdF) 
Feb 2003 

-84.78 ± 5.04 

n=4 

−14.1 ± 0.13 

n=11 

16.4 ± 0.22 

n=11 

Atkinson et al., 

2005 [11] 
White-Rumped Sandpiper 

(Calidris fuscicollis) 

Argentina  

Rio Grande (TdF) 
Jan2001  

-8.85 ± 0.07 

n=2 

19.8 ± 0.14 

n=2 

Farmer et al., 

2003 [107] 

White-Rumped Sandpiper 
(Calidris fuscicollis) 

Argentina  
Laguna Mar Chiquita 

Jan2001  
-17.25 ± 3.97 
n=7 

10.95 ± 1.88 
n=7 

Farmer et al., 
2003 [107] 

White-Rumped Sandpiper 

(Calidris fuscicollis) 

Argentina  

Laguna Dom Tomas 
Jan2001  

-20.5 

n=1 

11.00 

n=1 

Farmer et al., 

2003 [107] 
Pectoral sandpiper 

(Calidris melanotos) 

Argentina  

Laguna Dom Tomas 
Jan2001  

-19.35 ± 3.60 

n=2 

9.30 

n=2 

Farmer et al., 

2003 [107] 

Greater Yellowlegs 
(Tringa melanoleuca) 

Argentina  
Laguna Dom Tomas 

Jan2001  
-28.7 
n=1 

7.8 
n=1 

Farmer et al., 
2003 [107] 

Least Sandpiper    

(Calidris minutilla) 

Quivira National 

Wildlife Refuge 
Kansas 

Jul to Sep 2006 

and 2007 

-38 ± 17 

n=51 
  

Franks et al., 

2009 [106] 

Sanderling cluster 1 

(Calidris alba) 

Chaplin Lake  

Saskatchewan  

May/Jun 2012-

2015 

-68.09 ± 1.18  

n=77 

-17.29 ± 0.21 

n=77 

16.65 ± 0.36 

n=77 
This study 

Sanderling cluster 2 

(Calidris alba) 

Chaplin Lake  

Saskatchewan 

May/Jun 2012-

2015 

-43.81 ± 0.51 

n=135 

-16.24 ± 0.14 

n=135 

16.09 ± 0.28 

n=135 
This study 

Sanderling cluster 3 
(Calidris alba) 

Chaplin Lake  
Saskatchewan 

May/Jun 2012-
2015 

-18.05 ± 1.31 
n=59 

-15.70 ± 0.37 
n=59 

15.03 ± 0.52 
n=59 

This study 

Sanderling cluster 1 

(Calidris alba) 

Padre Island 

Texas 

Feb 2013 and 

2015 

-64.76 ± 2.06 

n=12 

-16.59 ± 0.44 

n=12 

15.88 ± 0.82 

n=12 
This study 

Sanderling cluster 2 

(Calidris alba) 

Padre Island 

Texas 

Feb 2013 and 

2015 

-45.04 ± 1.25 

n=16 

-16.28 ± 0.30 

n=16 

14.63 ± 0.74 

n=16 
This study 

Sanderling cluster 3 
(Calidris alba) 

Padre Island 
Texas 

Feb 2013 and 
2015 

-21.17 ± 1.82 
n=35 

-12.64 ± 0.57 
n=35 

11.45 ± 0.54 
n=35 

This study 

TdF = Tierra del Fuego 

 

Isotopic values of δ
13

C, and δ
15

N were very similar among all of the clusters so more data 

would be needed to compare these with known origin Sanderlings. These data must be 

interpreted with caution as there are many factors that affect isotopic values. Coastal areas are 

often difficult to determine isotopically. Published isomaps of South America are also more 

difficult to interpret latitudinal effects especially when compared to birds wintering in the Gulf of 
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Mexico [34, 39]. We also do not have good information of whether isomaps of hydrogen in 

precipitation or in the marine oceans are suitable for use with shorebird feathers. During the 

absorption process, isotopes can also undergo isotopic discrimination, which can create different 

isotopic values for each tissue [113]. 

The Sanderling population of Chaplin Lake could be identified in at least 3 broad but 

distinguishable groups using the combination of δ
2
H, δ

13
C, and δ

15
N with most birds belonging 

to cluster 2 (49.8 %), followed by cluster 3 (21.8 %) and cluster 1 (28.4 %). Despite the fact that 

none of the stable isotopes could be excluded from the analysis without losing a significant 

amount of information, the δ
2
H was visually the most important isotope to separate the different 

groups of Sanderlings. This might be due to the large range of values presented by δ
2
H (-98.24 to 

9.65 ‰). Or perhaps it is because δ
2
H is a good stable isotope to distinguish latitudinal 

separation, acknowledging that Sanderling winter ranges extend from along the southern coasts 

of the United States all the way to Argentina [3, 7, 9].  

 

2.4.2 Population structure revealed through Sanderling body measurement.  

Sanderlings have a strong inter- and intra- winter ground fidelity [10], which could result 

in geographic variation of body measurements [114, 115]. Differences in body size have been 

observed in other shorebird species in relation to migration distance [4, 115, 116]. Sanderling 

clusters from Chaplin Lake did not differ in bill length or body mass. However, variation in wing 

and tarsus size indicates that the body size of cluster 1 > cluster 2 > cluster 3. Study on wintering 

Sanderling populations reported subtle differences in wing length with the largest wings in birds 

wintering furthest south in Mehuin, Chile (December to February) [105]. Geographic 

differentiation in wing length may be an adaptation to improve aerodynamics for longer 
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migration flight distances [114, 115]. Larger body size may also be caused by environmental 

factors, such as diet quality [117, 118], and temperature [114]. The larger size of Sanderlings 

wintering in higher latitudes (e.g. Chile) was justified as an adaptation to colder weather. Larger 

birds would have a proportionally smaller body surface for heat loss compared to smaller birds 

[114].  

Average body mass, and fat score values were similar among the three Sanderlings 

cluster from Chaplin Lake, however the percentage of Sanderlings from each fat score was 

different among the clusters. In all three groups the predominance of birds presented a fat score 

of 3 and 4 but differences were observed in the proportion of lightest and heaviest birds. Cluster 

1 birds which isotopically were the most negative δ
2
H and the larger body size also had a greater 

proportion of fat individuals. Cluster 3 birds which were the most isotopically enriched in δ
2
H 

with the smallest body size also had a greater proportion of thin birds. The variation observed 

could be due to conditions at their wintering origin or due to the date of capture and random 

weather responses such as fat reserves affected after peaks of cold weather and storms [119, 

120]. Most of the birds were captured at the peak or end of the season, when they should be 

preparing to continue the migration to their breeding ground [7, 14]. Therefore, they should have 

acquired a larger reserve of fat to accomplish the long fly to the Arctic [84, 109, 121, 122]. We 

observed fat scores increasing during the migration season, demonstrating that capture date has a 

considerable influence on fat scores [123]. 

Regarding migration period, the number of Sanderlings captured was proportional to their 

abundance in Chaplin Lake [7, 14]. All three clusters had the highest capture rate around May 28 

(Day 148), consistent with the season peak [7, 14]. The migration period for birds wintering in 

different latitudes along North, Central and South America is different. Birds wintering in 
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southern locations should start migrating earlier [6, 7] but we did not find any difference in 

capture date by cluster. Although, this assumes capture date is related to arrival date which may 

or may not be a correct assumption. 

 

2.4.3 Probability prediction and implication for future work.  

Based on the distribution probability of δ
2
H, δ

13
C, and δ

15
N of Sanderlings feather 

captured in Chaplin Lake (CL), a model was created to estimate the probability of a new 

Sanderling belonging to one of the three previous determined clusters. Below are considerations 

for the use of this model: (1) the reported probability will be distributed among the clusters must 

total 1 (i.e. Cluster 1, 2, and 3 would have 0.1, 0.1, and 0.8, respectively); (2) if the new isotopic 

values are vastly different from the CL ones, the creation of a fourth cluster should be 

considered, meaning that the new bird (s) may not belong to any of the CL clusters; (3) the 

probability cut-off should be determined by the researcher; (4) the formula could be applied to a 

single Sanderling or to an entire population; (5) future researchers sampling a large number of 

Sanderlings also captured from CL, may consider adding the new birds to the initial model, as 

they will increase the power of the analysis; and (6) the model is very versatile and can easily be 

re-written and adapted to a new population of interest, including other species of birds and other 

animals.  

When the model was applied to a new but known winter population of Sanderlings from 

Padre Island, the results revealed over half of the birds (56%) were from Chaplin Lake cluster 3 

with smaller numbers belonging to each of the other 2 groups. Padre Island is considered both 

winter ground and stopover [3, 7]. The results from this study are consistent with this 

information that Sanderlings from, or stopping at, Padre Island were considered to migrate North 
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through the Central flyway [3, 7, 9]. Based on this information, and the isotopic values, the Padre 

Island birds might be made up of a mixture of mostly winter resident Sanderlings and a smaller 

number that are moulted further south and then migrated through Padre Island en route to 

Chaplin Lake. 

Wing and tarsus measurements of Padre Island Sanderlings were evaluated for the 

similarity to Sanderlings from Chaplin Lake where we expected that if the new assignments were 

correct, there should be large overlap in morphometrics. Tarsus lengths, presented the same 

measurements among clusters from both locations, indicating possibly correct assignment of 

origin. Wing length of birds from cluster 1 were similar; however Sanderlings from cluster 2 and 

3 of Padre Island had longer wings compared to Chaplin Lake suggesting some uncertainty.  

 

2.5 Conclusion 

The population of Sanderlings migrating north through Chaplin Lake appears to have 

originated from at least three different winter locations. Information collected in Chaplin Lake on 

feather isotopic values, body morphometrics, and reported data on migration strategy and isotope 

values were useful in providing evidence of potential wintering areas. Interestingly, the H 

isotope data, was able to distinguish different groups that are largely separated based on latitudes 

and suggests birds using Chaplin Lake as a stopover vary widely in their migration distance and 

winter origin.  

The combination of δ
2
H isomap [41], published data in shorebirds, and distribution and 

abundance of Sanderlings [3, 7, 8] suggests there are 3 different groups of birds migrating 

through Chaplin Lake with possible origins of cluster 1 in the southern portion of South America 

(e.g. Chile/Argentina), cluster 2 in northwestern part of South America (e.g. Peru), and cluster 3 
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in Gulf of Mexico (e.g. Padre Island). Evidence from the isotopes, large body size, and higher 

fuelling levels also support the notion that at least one of the Sanderling groups identified 

(Cluster 1) may have originated from a much further south – possibly southern Chile. By 

contrast, the opposite cluster 3 group had a smaller body size but lower body fat and likely 

wintered in the Gulf of Mexico region. This may suggest that this group is experiencing reduced 

fueling ability or later migration. In Texas, Sanderling foraging times were significantly greater 

and birds took longer to satisfy energetic requirements at this location during the non-breeding 

season [114]. Additionally, the isotope work confirms the assumption that Sanderlings found in 

late winter in the Texas Gulf are common to the Chaplin population but with significant overlap 

across all 3 clusters. Texas Sanderlings that were sampled were mostly winter residents but may 

also have included a mixture of migrants from further south. Alternatively, moult in Sanderling 

could be quite variable with some birds growing feathers further north than previously assumed. 

We had a small number of birds (n=16) with extremely negative δ
2
H values that we excluded 

from analysis on the assumption that they moulted on the breeding grounds in the Arctic which is 

contrary to expectation. 

The newly generated predictive isotope model proved to be useful for understanding 

origin and staging of migrating Sanderlings which could be an excellent tool for future studies in 

animal migration. Additionally, this study has demonstrated the importance of Chaplin Lake to 

shorebird migration, specifically to Sanderlings. This unique stopover contains a large 

accumulation of Sanderlings over a brief period that appear to originate from a large winter 

range in North and South America, demonstrating its conservation importance and value to birds 

using the Central flyway. 
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APPENDIX A 

The proposed estimated probability of a new observed sanderlings     
  belong to a 

given cluster b defined by: 

 
               

   
         

  

         
              

     
  
    

              

(A.1) 

Where          
              

     
   are the standardized kernels estimative of 

cluster 1,...,btotal for a new event observed     
 . 

The described method was applied to the Sanderling population of Chaplin Lake and its 3 

clusters: The intensity distribution of each one of the 3 clusters was presented in Figure A.1. The 

variable B (cluster) was defined as b=1, 2, 3. 

 

Figure A.1. Estimation of kernel intensity for each of the three pre-determined clusters of 

Sanderling from Chaplin Lake. 

 

The resulting histogram of the kernel intensity distribution was presented in Figure A.2. 

Cluster 3 presented less concentrated values when compared to the other 2 clusters. 

Consequently, the odds of a new Sanderling belonging to cluster 3 would be underestimated. 

Therefore, the estimation of intensity needed to be standardized. The estimated intensity may 

δ13C

δ2H

δ15N

Cluster 1 Cluster 2 Cluster 3
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assume values from 0 to 1, thus all the values were divided by the maximum value of their 

respective cluster. 

 

Figure A.2. Histogram of the estimation of kernel intensity of the three clusters of Sanderling 

from Chaplin Lake. The intensities were presented in different scales due to the large difference 

in values.  

 

The probability of a new Sanderlings (BNEW) belonging to the clusters 1, 2, and 3 of the 

Sanderling population of Chaplin Lake was demonstrated in equation A.2.  
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   are the kernels estimative of the cluster 1, 

2, and 3. 
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CHAPTER 3 

Hazard assessment of industrial contamination at key stopover and wintering sites across 

the migratory range of shorebirds 

 

3.1 Introduction  

Shorebirds are known for their migratory habits, which includes some of the longest non-

stop flights amongst birds [2].They are widely distributed in the world and are mostly associated 

with open habitats [1]. In the Western hemisphere they can be found wintering at a large variety 

of sites, mostly in coastal areas of the United States and Central and South America [6, 7]. In 

recent years, many shorebird populations have rapidly declined for reasons not well understood 

[3, 6, 7, 16]. Surveys of South America showed that the Red knot (Calidris canutus rufa) winter 

population in Tierra del Fuego, Argentina dramatically dropped from 67,500 in 1985 to 31,500 

in 2004, and to 17,200 in 2006 [4] [124]. In Lagoa do Peixe, Brazil the peak count of Red knot 

during spring migration was just 9% of 10,000 animals counted in 1995 [124]. More recently 

survey indicated population of 4,000 Red knots [125]. In Delaware Bay, United States on of the 

most important stopovers for Red knots, the peak count in 1989 was 94,500 birds while in 2010 

the peak was just 14,000 [124]. Following the same trend, Sanderling (Calidris alba) populations 

has also been reported to be declining. The population documented in 1972 was 1.5 million, but 

the current population is estimated at 300 thousand birds [7]. Similarly, other species such as 

Semipalmated sandpiper (Calidris pusilla) have been classified as moderate concern because of 

their similar declines and potential threats to their population [7, 17]. 

Several potential threats have been identified to affect shorebirds such as the loss of 

winter habitat, decreased availability of food, disease, higher predation rates, and pollution [6, 7]. 
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Among all these possible threats, metal contamination in shorebirds has been demonstrated along 

the winter, stopover and breeding grounds [126-129]. Levels of mercury and lead were 

negatively correlated to shorebirds reproductive success [127] in Artic breeding populations. 

Blood mercury concentrations in Avocets (Recurvirostra americana) and Black-necked Stilts 

(Himantopus mexicanus) from San Francisco Bay, California showed that part of the population 

was within the range known to cause toxic effects [126]. Selenium levels in feathers of Red 

knots (Calidris canutus), Sanderlings and Semipalmated sandpipers from Delaware Bay, United 

States showed potential risk of selenium toxicity [128]. However, relatively little work has been 

done to evaluate organic pollutant exposure to shorebirds.  

While there are many organic contaminants capable of affecting shorebirds, industrial 

pollution including dioxins and “dioxin-like” chemicals (DLCs) such as dioxins and furans, 

polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) found in 

petroleum based products have largely been overlooked despite their global distribution, 

persistence, toxicity, cumulative effects [19, 20], environmental persistency [130], and large 

quantities introduced into the environment annually [21, 22]. Shorebirds are likely to be exposed 

to these compounds through ingestion of sediment and in their diet which is largely comprised of 

sediment dwelling invertebrates [129, 131]. 

The effects DLCs have been widely reported to affect birds including altered endocrine 

function [70, 78] such as variation of thyroid hormone levels [87, 91], disorientated migratory 

behavior [92], abnormal parental behaviour [93], lower growth rates [94], carcinogenesis and 

mutagenesis [75], immunosuppression [79, 80], liver damage [20, 67, 81]; and hemolytic anemia 

[82]. Studies have also alluded to impacts on fatty acid metabolism and fattening rates associated 
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with low level ingestion of petroleum based compounds [65] and increased metabolic rates 

[132]. 

Despite there are many ways to assess environment contamination exposure in birds, 

such as measurement of chemicals directly in the bird, there are ethical reasons that encourage 

the use of other less invasive techniques to do the assessment. Another common way to assess 

contamination exposure is through the foodweb. This technique is non-invasive, there is no need 

to catch the birds, and also would account for bioaccumulation. However, in the case of 

shorebirds it is difficult to collect a significant and representative sample of their diets. 

Shorebirds feed in a large variety of invertebrates, therefore account for a correct proportion of 

each invertebrate in the diet and also account for seasonal and local (winter vs. stopover) 

variation could decrease the results certainty. Additionally, the transportation and preservation 

could be an issue considering the multinational effort to assess shorebirds contamination 

exposure. The assessment of contamination in sediment on the other hand could be especially 

important for shorebirds. Sediment are easy to collect, transport, and preserve. The same 

sampling technique can be easily applied throughout all shorebirds winter and stopover sites with 

collaborators help. It also important for this group of birds considering the proportionally large 

amount of sediments they ingest during preying.  

To assess possible environmental contamination in sediments of the vast range of 

shorebird wintering and stopover areas, a novel use of H4IIE-luciferase (H4IIE-luc) bioassay 

was applied. The H4IIE-luc bioassay has been widely used in ecological risk assessment studies 

to assess contamination of marine and freshwater habitats [133-137]. The method has been well 

validated in a variety of samples [138-140], including sediment [136, 137, 141, 142]. The H4IIE-

luc bioassay is a bioanalytical tool based on genetically modified rat hepatoma cells containing 
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an inserted luciferase reporter gene into the genome [136, 143]. The modified cells produce 

fluorescent light by the luciferase enzyme when the aryl hydrocarbon receptor (AhR) is 

activated. AhR is a ligand-dependent transcription factor that can be activated by AhR agonists 

such as dioxins coplanar PCBs and some PAHs. The strongest AhR ligand is 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD), therefore results of this bioassay are presented as TCDD 

equivalents (TCDD-EQ). The amount of light produced by the bioassay is directly proportional 

to the amount of AhR-active chemicals in the sample, namely dioxin-like compounds [144]. 

H4IIE-luc is a powerful tool as it measures the total potency of a sample to mediate AhR 

response, thus is can be used to study toxic exposure to complex matrices, such as contamination 

found in sediments [136, 141, 142, 145, 146]. 

 The objective of this study is to (1) assess environmental contamination at a selection of 

key stopover and wintering locations for shorebirds across their migratory range in North and 

South America and (2) to identify potential DLC exposure risks that shorebirds face at certain 

stopovers during migration and the winter season. 

 

3.2 Methods 

3.2.1 Study sites  

Sediment samples were collected from locations where shorebirds are known to stage or 

overwinter in order to monitor their exposure to regional sources of contamination. General 

information about each site can be found in Table 3.1. A total of 8 sites were investigated. Six 

out of 8 sites were sampled once in 2014. For the other 2 sites, Chaplin Lake and Padre Island, 

sampling occurred in consecutive years, 2012/2013 and 2013/2014 respectively. 
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 In Canada, samples were taken at Chaplin Lake (CL), Saskatchewan in 2012 and 2013, 

and at Nelson River (NR), Manitoba in 2014. Samples were also taken from a major stopover 

and wintering site at Padre Island (PI), Texas (United States) in 2013 and 2014. Other collection 

sites in 2014 included Lagoa do Peixe (LP), Rio Grande do Sul and Aracaju (AR), Sergipe, south 

and northeast of Brazil respectively; at Iscuandé River (IR), Naniño (Colombia) in 2014; at 

Salinas (SA), Province of Santa Elena (Ecuador); and at Laguna de Rocha (LR), Rocha 

(Uruguay). See Table 3.1 for more details.  

 

Figure 3.1. Map of the Americas representing the sediment sample sites (red stars). 
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3.2.2 Sampling  

In each location, different areas were sampled except by PI in 2014 which is composed 

by only one sampling. Sediment samples were collected from up to 15 areas where shorebirds 

are known to feed and congregate (see Table 3.1 for detailed information). A polycarbonate tube 

was used to collect sediment from three random surface cores, from 2-5 cm in depth, along a 

transect line perpendicular to the water shore, at sites where there was no viable disturbance of 

the sediment. Three transects approximately 100 meters apart were sampled. All three cores of 

each transect, 9 cores in total, were preserved in air tight bags, then preserved in ice and kept out 

of light until transported to the local laboratory where it was frozen until shipment to University 

of Saskatchewan for preparation and analysis. 

Table 3.1. Overview of location, GPS coordinates, year of sampling, and number of areas 

sampled for sediments at each site locations. 

Site Province/State, Country 

Central GPS 

coordinates* 

Year Sample ID 

Total areas 

sampled 

within site 

Chaplin Lake Saskatchewan, Canada 50.441731°N 

106.669028°W 

2012 CL12 10 

  50.441731°N 

106.669028°W 

2013 CL13 10 

Nelson River Manitoba, Canada 57.12663°N 

91.65765°W 

2014 NR14 10 

Padre Island Texas, The United States 26.905842°N 

97.370356°W 

2013 PI13 11 

  27.605689°N 

97.207709°W 

2014 PI14 1 

Iscuandé River Department of Nariño, Colombia 02.62680°S 2014 IR14 5 



 

51 

 

78.057430°W 

Salinas Province of Santa Elena, Ecuador 02.03160°S 

80.44117°W 

2014 SA14 15 

Laguna de Rocha Department of Rocha, Uruguay 34.40358°S 

54.17025°W 

2014 LR14 11 

Aracaju Sergipe, Brazil 10.993788°S 

37.052491°W 

2014 AR14 9 

Lagoa do Peixe Rio Grande do Sul, Brazil 31.275431°S 

50.937624°W 

2014 LP14 12 

*For detailed sampling information see Appendix B 

 

3.2.3 Sample preparation  

Sediment samples were homogenized and lyophilized. The same quantity of dried 

sediment from all the areas sampled in one single location was added together, creating one 

pooled sample to represent each location. Each sample was extracted in triplicate. For each 

pooled sample, 10g of freeze-dried sediment was extracted overnight using 350 ml 

Dichloromethane (DCM) / n-hexane 1:1 volume in a soxhlet extractor. The obtained extracts 

were evaporated using rotavapor. The dried extract was rinsed out from the round bottom flask 

with approximately 7 ml n-hexane and transferred to amber glass tubes. The extracts were then 

evaporated using a gentle stream of nitrogen. After drying, 1 ml of DCM was added to each tube. 

Activated copper was added to the samples to remove possible elemental sulfur and then filtered 

using 0.2 µm nylon filters. The extract was divided into two portions. The solvent in one of the 

portions was evaporated and replaced with dimethyl sulfoxide (DMSO) for the bioassay and the 

other portion was reserved for future chemical analysis. The final concentration of the extract 

was 20 g of sediment dry weight (DW) per ml of DMSO. 
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3.2.4 Quality control 

Field blanks were assessed to investigate potential contamination during sampling and 

collection equipment. Plastic bags containing 10g of sodium phosphate were used as a field 

blank and were opened at each sampling site, without adding samples to it. Travel blanks were 

used to assess contamination during transportation. As a travel blank, bags designated to keep 

samples were randomly chosen, never opened and exposed to the same transportation conditions. 

Up to five blanks were assessed in each location. Lab blanks (sodium phosphate) were used to 

assess equipment contamination. Chemical blanks were used to identify contamination from the 

solvents used in the extraction. As a chemical blank, 350 ml Dichloromethane (DCM) / n-hexane 

1:1 volume was added to the soxhlet without any sodium phosphate. For each individual blank, 

1g of sample was extracted by soxhlet method as described previously. Results from the H4IIE-

luc test suggested that all blank samples were comparable to the control DMSO, except one field 

blank from Iscuandé River (Appendix C). 

Recovery blanks were used to assess extraction efficiency. Control sand (SAND Sea 

Washed, Fisher Scientific, The United States) was spiked with known concentrations of 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) kindly donated by Sean Kennedy’s lab. Samples were 

extracted by soxhlet method as described previously. Results from the H4IIE-luc test present the 

concentration in the final extraction as mean relative luminescence (TCDD-EQ) as a function of 

the TCDD standard curve (0.61, 1.85, 5.55, 16.66, 50, 150 pM TCDD). The extraction efficiency 

of soxhlet was 95.35% for TCDD, as the concentration expected was 200 pM and the 

concentration detected was 190.7 ± 36.56 pM. 
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3.2.5 In vitro bioassay  

The three separate sediment extractions of each sediment pool were analysed 

individually. The H4IIE-luc bioassay was performed by a method modified from [133]. 

Trypsinized cells from a culture plate were diluted to a concentration of approximately 15 x 10
5
 

cells ml
-1

 and seeded into 54 interior wells of a 96 well plate by adding 100 µl per well. Plates 

were incubated for 24 hours, the medium was changed and cells were dosed with DMSO, 

sediment sample extract, or TCDD (control) at a final concentration of 0.1% DMSO solvent 

(0.1% dose), which we validated previously to be non-cytotoxic. For dose-response 

characterization, sediment extracts were prepared at 2 concentrations, 100 and 50%. For TCDD 

dose response characterization, samples were prepared at six concentrations by 3-fold serial 

dilution (100, 33.0, 11.0, 3.3, 1.1, and 0.3%); the highest dose was 150 pM. All samples were 

tested in triplicate in the same plate. Luciferase assays were conducted after 24 h of exposure 

using a POLARstar OPTIMA microplate reading luminometer (BMG LABTECH, Ortenberg, 

Germany). Luminescence values were not blank corrected. See Appendix D for detailed 

protocol.  

Cell viability and overall cytotoxicity were determined by the use of the Cell 

Proliferation Reagent WST-1 assay according to the product description (Roche Diagnostic 

GmbH, Mannheim, Germany). Reported mean response for the WST-1 cytotoxicity test 

presented no pattern of cytotoxicity between treatment and control DMSO (Appendix E). 

 

3.2.6 Determination of risk 

Considering that sediment is a good part of shorebirds ingestion, contamination in 

sediment should be carefully considered when assessing the risk of feeding from a determined 
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area. To estimate shorebirds chronic daily dose of environmental contaminants due to accidental 

sediment ingestion, the follow equation was used: 

 

 Ingestion dosej = Cs x FIR
 
x PIs 

 BW 
 

(3.1) 

 

Where, 

Ingestion doses = the daily intake of a given compound j due to sediment ingestion (ng j / 

day) 

Cs = concentration of a given compound j in the sediment (ng j g
-1

 sediment dw) 

FIR = food ingestion rate (dry Wt) for non-passerine birds [147]. FI (g/day) = 0.648 

Wt
0.651 

(g). 

PIs = fraction of sediment in shorebird diet (value between 0-1, ie. from your Table 3.4 

below 0.03-0.30). 

BW = body weight (g) (indicate from select shorebird spp in Table 3.4) 

 

3.2.7 Data analysis and statistics 

Bioassay response units were presented as mean relative luminescence (TCDD-EQ) as a 

function of the TCDD standard curve (0.61, 1.85, 5.55, 16.66, 50, 150 pM TCDD). 

Luminescence values were transformed to a percentage of the maximum response (%-

TCDDmax) observed for a standard containing 150 pM of TCDD (= 100%-TCDDmax). The 

concentration of TCDD in the sediment was determined by converting the mean relative 

luminescence units from the bioassay to TCDD equivalency (TCDD-EQ) as a function of the 

TCDD standard curve (0.61, 1.85, 5.55, 16.66, 50, 150 pM TCDD). The values of TCDD-EQ 
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(pM) found in the H4IIE-luc bioassay were then transformed to absolute concentration (ng 

TCDD g
-1

 dw) of each location. In order to validate the assay, a TCDD dose-response curve was 

tested in addition to samples of extracts at full strength (100% extract) or half strength (50% 

extract). WST-1 test response units were compared between the control, blanks and samples to 

verify cell toxicity.  

The Canadian tissue residue guideline for polychlorinated dibenzo-p-dioxins (PCDDs) 

for the protection of wildlife consumers of aquatic biota, was used to calculate whether the 

concentrations of TCDD-EQ in the sediments of studied locations were safe for birds [148]. A 

tolerable daily intake of 4.47 ng TEQ/kg bw/d has been determined for birds (TDIbird) 

considering chronic effects of exposure to dioxins and differences in species sensitivity [148]. 

The values were expressed as toxic equivalency units (TEQs) of PCDD. However, the value was 

extrapolated to TCDD since toxic equivalency factor for 2,3,7,8-TCDD and PCDD for birds is 

known to be equal to 1 [149]. Therefore, this study considered 0.00447 ng TCDD-EQ/g bw/d as 

the TDIbird. 

Data are presented as mean ± standard error of the mean (S.E.M). Normality of the 

dataset was determined using Shapiro-Wilk test. A logarithmic transformation was applied when 

necessary to improve normality. An analysis of variance (ANOVA) followed by post hoc 

Dunnet’s tests was used to test for differences between samples and DMSO control. In all the 

tests above, one replicate of the Aracaju (AR) sample was removed from the analysis after being 

identified as an outlier. 
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3.3 Results  

The highest bioassay response was obtained from cells dosed with a standard containing 

150 pM of TCDD. Therefore, those were considered the maximum response (= 100%-TCDDmax) 

(table 3.2). DMSO presented a response of 0.50% of TCDDmax. Sediment sample responses 

varied from 0.66 to 12.17% of TCDDmax. Of the 20 samples analysed, 9 were below 1%-

TCDDmax, 6 were between 1-2%-TCDDmax, 3 were between 2-5%-TCDDmax, 1 sample was 

between 5-10%-TCDDmax, and just one sample was above the 10%-TCDDmax (Padre Island, 

Texas, 2013).  

Table 3.2. Mean and standard error of mean (S.E.M.) of H4IIE-luc bioassay results of sediment 

extractions from studied locations. 
Sample ID Dose (%) n %-TCDDmax 

a
 TCDD-EQ (pM) Log10 TCDD-EQ p-value

 b
 

 Mean S.E.M. Mean S.E.M. 

TCDD 150pM  8 100.00 167.83 11.22 2.22 0.03 <0.0001*** 

DMSO  8 0.50 0.84 0.09 -0.09 0.05 1.0000 

CL12 100 3 1.08 1.81 0.60 0.21 0.13 0.3387 

CL12 50 3 0.87 1.46 0.26 0.15 0.07 0.6750 

CL13 100 3 0.84 1.41 0.27 0.14 0.08 0.7654 

CL13 50 3 0.68 1.14 0.18 0.05 0.06 0.9964 

NR14 100 3 1.37 2.30 0.54 0.33 0.09 0.0390* 

NR14 50 3 1.17 1.98 0.62 0.25 0.12 0.1773 

PI13 100 3 12.17 20.43 11.85 1.13 0.30 <0.0001*** 

PI13 50 3 3.21 5.38 1.66 0.68 0.16 <0.0001*** 

PI14 100 3 0.78 1.31 0.13 0.11 0.04 0.8742 

PI14 50 3 0.73 1.23 0.12 0.08 0.04 0.9573 

IR14 100 3 2.83 4.75 1.38 0.64 0.12 <0.0001*** 

IR14 50 3 1.22 2.05 0.42 0.29 0.10 0.1011 

SA14 100 3 7.58 12.72 3.11 1.08 0.10 <0.0001*** 
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SA14 50 3 1.69 2.84 0.95 0.41 0.14 0.0094** 

LR14 100 3 2.49 4.18 1.70 0.55 0.18 0.0003*** 

LR14 50 3 0.93 1.57 0.42 0.16 0.12 0.6111 

AR14 100 2 0.72 1.22 0.46 0.05 0.17 0.9990 

AR14 50 2 0.66 1.11 0.08 0.04 0.03 0.9995 

LP14 100 3 1.05 1.76 0.43 0.22 0.10 0.3020 

LP14 50 3 0.79 1.32 0.33 0.10 0.10 0.9265 

a
 Maximum response observed for a standard containing 150 pM of TCDD (= 100%-

TCDDmax). 
b
 Significance of TCDD-EQ (pM) compared to DMSO control for log transformed numbers. 

*P ≤ 0.05, ** P ≤ 0.01, **P ≤ 0.001 

 

Values of TCDD-EQ in sediment varied by location, the mean concentration ranged from 

1.11 in Aracaju-2014 to 20.43 pM TCDD-EQ in Padre Island-2013 (Table 3.2; Figure 3.1). The 

control DMSO averaged of 1.25 ± 0.84 pM TCDD-EQ. Compared to DMSO controls, 5 out of 8 

sites showed TCDD-EQ values significantly above controls (F21,52 = 40.51, p < 0.001). Extracts 

from the highest concentrate (100% extract) differed from controls at Padre Island, Texas (2013) 

(20.43 ± 11.85 pM TCDD-EQ), Salinas, Ecuador (2014) (12.72 ± 3.11 pM TCDD-EQ), Iscuandé 

River, Colombia (2014) (4.75 ± 1.38 pM TCDD-EQ), Laguna de Rocha, Uruguay (2014) (4.18 ± 

1.70 pM TCDD-EQ), and Nelson River, Canada (2014) (2.30 ± 0.54 pM TCDD-EQ), thereby 

validating the response of the assay. 
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Figure 3.2. Mean dioxin equivalent concentrations (TCDD-EQ (pM)) in sediment extracts of 

important shorebird stopover and wintering grounds in North and South America compared to 

control samples. CL = Chaplin Lake, Canada; NR = Nelson River, Canada; PI = Padre Island, 

The United States; IR = Iscuandé River, Colombia; SA = Salinas, Ecuador; AR = Aracaju, north 
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of Brazil; LP = Lagoa do Peixe, south of Brazil; and LR = Laguna Rocha, Uruguay. Bars 

represent the highest dose extract (100%) relative to the controls (DMSO). Asterisks represent 

significance of TCDD-EQ (pM) compared to DMSO control for log transformed means of 

replicates. *P ≤ 0.05, ** P ≤ 0.01, **P ≤ 0.001. 

 

The contamination by TCDD-EQ of each location in comparison to the US EPA 

reference value of 0.41 ng/g TCDD in marine/estuarine sediment is shown in Figure 3.2. Those 

values are a transformation based on the results found on H4IIE-luc bioassay. Therefore, the 

observed trends were the same as the results previous described. All samples were below the 

threshold reference value. However, the highest contamination was found in Padre Island-2013, 

which presented 0.3288 ng TCDD g
-1

 dw. 

 

 

Figure 3.3. Concentration of TCDD-EQ (ng TCDD g
-1

 dw) in sediment collected in North and 

South America. Red line represents US EPA reference value of TCDD in marine/estuarine 

sediment (0.41 ng TCDD / g). CL12 = Chaplin Lake, Canada (2012); CL13 = Chaplin Lake, 

Canada (2013); NR14 = Nelson River, Canada (2014); PI13 = Padre Island, The United States 

(2013); PI14 = Padre Island, Texas (The United States) (2014); IR14 = Iscuandé River, 

US EPA 

reference value
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Colombia (2014); SA14 = Salinas, Ecuador (2014); LR14 = Laguna Rocha, Uruguay (2014); 

AR14 = Aracaju, north of Brazil (2014); LP14 = Lagoa do Peixe, south of Brazil (2014).  

 

The ingestion of sediments by shorebirds occurs incidentally while they feed on 

invertebrate prey mainly in sandy areas. The rates of sediment ingestion and body mass are 

highly variable among species which can have a strong effect on the ingested dose (table 3.3) 

[131, 150, 151]. Literature on the percentage of sediment in shorebirds diet was available for 

only 6 species - reported as 3 to 30%. Body masses also varied from 21 to 330 grams. Therefore, 

I estimated TCDD-EQ ingestion from Padre Island, Texas (2013) would vary from 0.0009 ng 

TCDD-EQ/day in a Willet (Catoptrophorus semipalmatus) to 0.0203 ng TCDD-EQ /day in a 

Semipalmated sandpiper. None of the species exceeded the recommended TCDD tolerable daily 

intake [148]. 

Table 3.3. Shorebirds daily sediment ingestion and calculated TCDD-EQ intake from sediment 

collected from Padre Island, Texas (2003). 

Shorebird 

species 

Scientific 

name 

Body 

mass (g)a 

Percentage 

of sediment 

in diet (%) 

Author 

TCDD-EQ 

Ingestion 

dose (ng d-1)b 

TDIbird
c 

(ng TCDD-EQ d-1) 

Black-bellied 

plover 

Pluvialis 

squatarola 

160-277 29 Hui and Beyer 1998 0.0094 0.9766 

Willet Catoptrophorus 

semipalmatus 

200-330 3 Hui and Beyer 1998 0.0009 1.1845 

Stilt sandpiper Micropalama 

himantopus 

50-70 17 Beyer et al 1994 0.0087 0.2682 

Semipalmated 

sandpiper 

Calidris pusilla 21-32 30 Beyer et al 1994 0.0204 0.1184 

Least sandpiper Calidris 

minutilla 

19-30 7.3 Beyer et al 1994 0.0051 0.1095 

Western sandpiper Calidris mauri 22-35 18 Beyer et al 1994 0.0119 0.1273 

a
The average body mass was used to calculate ingestion dose. 

b
Estimation was based on the ingestion dose formula. 

c
Tolerable daily intake for birds (TDIbird), 0.00447 ng TCDD/g bw/d [148]. 



 

61 

 

Figure 3.3 showed the estimated ingestion of DLC contamination by shorebirds for each 

one of the studied locations that had TCDD-EQ values significantly above controls. Contaminant 

intake was primarily determined by proportion of sediment in the diet. The best and worst case 

scenarios were demonstrated based on the sediment ingestion rates of 3 and 30%, respectively 

for 4 different body masses within the shorebird’s potential mass range. Higher body mass had 

an effect of lowering the contaminant intake through biodilution. Though, I did not account for 

larger birds adjusting their consumption rates. Among all the estimates, the highest hazard was 

identified for Padre Island (2013) in birds of 25 g and ingesting 30% of sediment in diet (0.0208 

ng TCDD-EQ / day). Even with 30% of sediment ingestion, the highest contamination intake of 

birds at larger masses of 75, 175 and 325 g was 0.0142, 0.0105, and 0.0085 ng TCDD-EQ / day 

respectively in Padre Island-2013. At 3% of sediment in diet, intake was below 0.0021 ng 

TCDD-EQ / day. None of the estimated intakes exceeded the guideline [148]. All DLC intake 

from sediment ingestion was less than 18.6% of the recommended TDI. 
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Figure 3.4. Daily contaminant intake (ng TCDD-EQ / day) by shorebirds estimated from the 

ingestion of sediment collected from important stopover and wintering grounds in North and 

South America. PI13 = Padre Island, United States (2013); SA = Salinas, Ecuador (2014); IR = 

Iscuandé River, Colombia (2014); LR = Laguna de Rocha, Uruguay (2014); and NR = Nelson 

River, Canada (2014). The TDI of birds mass 25, 75, 175, and 325 g was 0.1118, 0.3353, 0.7823, 

and 1.4528 ng TCDD / day respectively [148]. 
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3.4 Discussion  

3.4.1 Environmental contamination by DLCs  

The potential for DLC contamination exists across all shorebird migratory routes [63, 

64]. Most marine environmental contamination is likely due to small-scale events from the daily 

transportation of petroleum and refining activities, offshore production [57], industrial and 

municipal discharges, disposal of waste oil and diesel (e.g., contaminated ballast from oil 

tankers), rivers discharge, and urban runoff [66]. Additionally, development of tar sands 

exploration represents another inland source of contaminant exposure to birds during migration 

[70-72]. Thus, the sublethal exposure risk should be studied at large spatial scales. 

The bioassay H4IIE-luc was performed on sediment collected from important locations 

for shorebirds to determine toxic potency of those areas. This bioassay is able to detect 

concentrations as small as 0.8 pM of TCDD [152]. As environmental samples may contain 

complex mixtures of contaminants, the results of this test were presented relative to the strongest 

AhR ligand, TCDD [136, 144]. Different from the samples collected in 2013, Padre Island-2014 

did not show any toxic induction when compared to the control, possibly because this sample 

was collected in only one area, while Padre Island-2013 was a pool from 11 different areas (see 

Table 3.1). Compared to the US EPA reference value of TCDD in marine/estuarine sediment of 

0.41 ng TCDD / g, all sediment sample means fell below the guideline. However, the results of 

Padre Island-2013 should be viewed cautiously as there was large variation, and at least 1 

subsample exceeded the guideline value of 0.41 ng TCDD / g. Despite the fact that TCDD-EQ 

concentration in sediments collected from Iscuandé River-14, Laguna Rocha-14, and Nelson 

River-14 were below reference value, they were elevated above the control, which suggests 

DLCs are present in the environment from local or long range human and industrial activities.  
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Since 1951, Padre Island, Texas has been exploited for various petroleum activities, such 

as drilling for petroleum resources, and high traffic of oil transportation [153]. Consequently, soil 

contamination may have occurred due to those activities or accidental spills. Additionally, 

environmental contamination could be resulting from other activities like runoff from agriculture 

and industry [154]. Contaminated soil was reported in Padre Island National Seashore related to 

drilling and production of petroleum, yet the reported concentration represents negligible threats 

to human and environment in the short term, but the long term effects are unknown [153]. 

Residual exposure of animals to petroleum activities was demonstrated by analysis of PAHs in 

Peregrine falcons (Falco peregrinus tundrius) found along the Gulf Coast. The exposure could 

have occurred through direct contact with crude oil, or by ingesting avian prey that were in 

contact with oil after the 2010 Deepwater Horizon (DWH) oil spill. An increase of PAHs levels 

in the blood was found in falcons captured in 2010 compared to the levels found in 2011 [155]. 

In Salinas, province of Santa Elena, Ecuador, the manmade salt lakes were created in the 1960s 

for salt extraction by seawater evaporation [156]. Currently, the high salinity creates an ideal 

environment for the Brine shrimp (Artemia salina) community to grow, which attracts a large 

number of migratory birds [157, 158]. Many events are currently contributing to degradation of 

the salt lakes such as human disturbance, intensification of aquaculture, and contamination. The 

contamination may originate from surrounding human and industrial development and/or 

petroleum activities [157, 158]. Oil spills were previously observed in the municipality of 

Salinas [158]. Migratory birds, including shorebirds, were sighted with oil spots on their legs and 

wings [158]. However, only a small part of the oil contamination is estimated to be caused by 

spills; most of the environmental contamination is a result of extraction and transportation of 

petroleum [3, 6]. In the delta of the Iscuandé River, Colombia, the most important local threats 
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are the increase in agricultural lands and the growing urbanization further up the river. Along 

with the increase of sediment deposits in the low tide zone resulting from those activities, 

contamination from agricultural, and human waste are also a major concern [159, 160]. Laguna 

de Rocha, Uruguay is a coastal lagoon designated as Biosphere Reserve by UNESCO [161] and 

as a Nature Reserve by the Government of Uruguay [162]. As a preserved area, human and 

industrial activities are not present around the lagoon. However, many of those activities can be 

found associated within the main effluents of the lagoon, resulting in possible introduction of 

contaminants in the system [163]. The two northern stopover sites in Canada- Chaplin Lake and 

Nelson River, had low concentrations of TCDD-EQ in sediment. Nelson River, however, had 

samples above the controls, but sources of DLC contamination in this region remain unknown. 

 

3.4.2 Potential DLCs exposure hazard that shorebirds face throughout South and North America 

Shorebirds are known to ingest a large quantity of sediments while foraging [131, 150], 

and this trait can have a direct impact on the magnitude of contaminant exposure. As 

demonstrated, up to 20 % of the TCDD daily intake could be ingested from sediments alone. 

Despite the fact that TCDD daily intake in all assessed scenarios was below regulatory 

guidelines and estimated TDIs for shorebirds at the study locations, these results should be 

interpreted cautiously. This is a conservative estimate as it is taking into consideration only 

TCDD equivalents from sediment ingestion without considering other pathways of exposure. In 

particular, it does not consider contamination exposure through the shorebird’s diet and possible 

bioaccumulation within their prey. 

Within the Charadriformes shorebirds group, there is a large variety of species that differ 

by their migration strategies, choice of prey, and body size [3, 4, 6]. The assessment of 
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contamination, or exposure risk, of shorebirds as a large group has limitations, but an important 

first step toward furthering our understanding of site contamination, possible hotspots, and 

predicting risks to birds. However, these assumptions may underestimate risks to specific species 

whose life history traits makes them more vulnerable. For instance, birds of different body size 

will experience different contaminant intake and metabolic rates [147, 164, 165]. At a given 

location, all shorebirds would be exposed to the same level of environmental contamination; 

however, small species would have proportionally higher daily intake than larger species. 

Additionally, smaller species of shorebirds have lower TDI. Therefore, a higher contaminant 

intake per body mass, and a lower TDI put smaller shorebird species at a higher risk of 

exceeding the guidelines, and exhibiting toxic effects related to the DLC exposure. For this 

reason, body size [147, 165], percentage of sediment intake [131, 150, 166], type of prey [167, 

168], foraging strategies (surface feeder versus deep sediment) [169, 170], and seasonal 

differences where birds exhibit hyperphagia during fuelling [171, 172] among other unique 

characteristics of given species should be considered for a complete understanding and 

determination of exposure to contaminants. 

 

3.4.3 Use of the H4IIE-luc bioassay in conservation of migratory birds 

Shorebirds use a diversity of habitats and have an extensive geographic range during their 

annual cycle [3, 7]. The distinctiveness of their migratory strategies and low connectivity poses a 

difficulty to identify the risks, especially for species of concern. Therefore, the use of toxicology 

techniques such as H4IIE-luc bioassay is a useful means to assess DLC contamination. Several 

studies have successfully used this technique to identify the main areas and contaminants of 

concern [136, 137, 142, 173]. This tool can help with species conservation plans to evaluate 
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contamination risk without having to capture birds.  This is important preliminary information to 

determine the action plan for management and remediation of a given area. 

 

3.5 Conclusion  

All sediment samples analyzed presented a concentration of TCDD below the regulatory 

guidelines though most of the southern locations had some level of contamination. The ingestion 

of sediment from all study areas, despite their urban and industrial development, predicted no 

risk to shorebirds with respect to sediment contamination by DLCs. However, these results 

should be carefully interpreted, since it did not include other sources and exposure routes of 

contamination such as prey ingestion, which are likely to be equally or more important for 

exposure to organic contaminants. This method has potential to expand across a large network of 

stopover sites and prioritize sites of concern with follow up studies to determine the type and 

concentration of DLCs present. Due to the transboundary nature of shorebird contamination 

threats, it is critical to expand the multinational collaboration to include multiple key stopovers 

and winter sites in countries important to shorebird populations. Multinational efforts to assess 

contaminant risk across the range will improve our understanding of contaminant threats 

throughout the annual cycle, which will benefit the conservation of shorebirds. 
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APPENDIX B 

All detailed information regarding sediment sampling was presented in the Table below.  

Table B.1. GPS coordinate and date of sampling from all the sediments cores. 

Site Province/State, Country 

Sample 

number 

GPS coordinates Sampling data 

Chaplin Lake Saskatchewan, Canada 1 50.44838°N 106.70932°W 05 Jun 12 

  2 50.43745°N 106.64323°W 05 Jun 12 

  3 50.43809°N 106.66433°W 05 Jun 12 

  4 50.43801°N 106.66444°W 05 Jun 12 

  5 50.43398°N 106.67241°W 05 Jun 12 

  6 

50.403397°N 

106.67250°W 

05 Jun 12 

  7 50.43793°N 106.68412°W 05 Jun 12 

  8 50.43796°N 106.68430°W 05 Jun 12 

  9 50.44757°N 106.71008°W 05 Jun 12 

  10 

50.44762°N 

06.7101999°W 

05 Jun 12 

  1’ 50.44838°N 106.70932°W 27 May 13 

  2’ 50.43745°N 106.64323°W 27 May 13 

  3’ 50.43809°N 106.66433°W 30 May 13 

  4’ 50.43801°N 106.66444°W 30 May 13 

  5’ 50.43398°N 106.67241°W 30 May 13 

  6’ 50.40339°N 106.67250°W 30 May 13 

  7’ 50.43793°N 106.68412°W 29 May 13 

  8’ 50.43796°N 106.68430°W 29 May 13 

  9’ 50.44757°N 106.71008°W 27 May 13 

  10’ 50.44762°N 06.71019°W 27 May 13 

Nelson River Manitoba, Canada 1 57.11378°N 91.73368°W 04 Jun 14 
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  2 57.10674°N 91.75124°W 04 Jun 14 

  3 57.12057°N 91.71358°W 04 Jun 14 

  4 57.12337°N 91.69875°W 04 Jun 14 

  5 57.12821°N 91.65999°W 04 Jun 14 

  6 57.12825°N 91.67389°W 04 Jun 14 

  7 57.12663°N 91.65765°W 04 Jun 14 

  8 57.14735°N 91.58719°W 05 Jun 14 

  9 57.14208°N 91.60819°W 05 Jun 14 

  10 57.13542°N 91.62531°W 05 Jun 14 

Padre Island Texas, The United States 1 27.31438°N 97.33722°W Feb 13 

  2 27.20551°N 97.38966°W Feb 13 

  3 26.14358°N 97.17834°W Feb 13 

  4 26.24678°N 97.18144°W Feb 13 

  5 26.09409°N 97.16140°W Feb 13 

  6 26.12081°N 97.31647°W Feb 13 

  7 27.81998°N 97.06017°W Feb 13 

  8 27.84141°N 97.04215°W Feb 13 

  9 27.63313°N 97.21075°W Feb 13 

  10 27.64710°N 97.28074°W Feb 13 

  11 27.60517°N 97.20745°W Feb 13 

Padre Island Texas, The United States 1 27.60517°N 97.20745°W Feb 14 

Iscuandé River* Department of Nariño, Colombia 1 02.62256°S 78.04960°W 05 Feb 14 

  2 02.66252°S 78.05070°W 05 Feb 14 

  3 02.62680°S 78.05743°W 05 Feb 14 

  4 02.61719°S 78.05755°W 05 Feb 14 

  5 02.58770°S 78.04183°W 05 Feb 14 

Salinas Province of Santa Elena, Ecuador 1 02.16890°S 80.55027°W 27 Mar 14 

  2 02.17326°S 80.54699°W 27 Mar 14 
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  3 02.14579°S 80.57215°W 27 Mar 14 

  4 02.18266°S 80.54273°W 27 Mar 14 

  5 02.01112°S 80.44246°W 15 Apr 14 

  6 02.01684°S 80.44173°W 15 Apr 14 

  7 02.03160°S 80.44117°W 15 Apr 14 

  8 02.03875°S 80.44197°W 15 Apr 14 

  9 02.04798°S 80.44437°W 15 Apr 14 

  10 02.06730°S 80.45137°W 15 Apr 14 

  11 02.12130°S 80.52361°W 18 Aug 14 

  12 02.12532°S 80.53192°W 18 Aug 14 

  13 02.12824°S 80.53624°W 18 Aug 14 

  14 02.13055°S 80.56591°W 18 Aug 14 

  15 02.13212°S 80.55956°W 18 Aug 14 

Laguna de Rocha Department of Rocha, Uruguay 1 34.40258°S 54.15448°W 01 Feb 14 

  2 34.40461°S 54.16131°W 07 Feb 14 

  3 34.40542°S 54.14335°W 07 Feb 14 

  4 34.40567°S 54.16534°W 07 Feb 14 

  5 34.40358°S 54.17025°W 07 Feb 14 

  6 34.40186°S 54.16182°W 07 Feb 14 

  7 34.41071°S 54.16162°W 07 Feb 14 

  8 34.41190°S 54.17332°W 07 Feb 14 

Aracaju Sergipe, Brazil 1 10.96730°S 37.03490°W 15 Feb 14 

  2 10.98300°S 37.04302°W 15 Feb 14 

  3 10.99378°S 37.05249°W 15 Feb 14 

  4 11.01494°S 37.06944°W 15 Feb 14 

  5 11.13244°S 37.15543°W 15 Feb 14 

  6 11.12840°S 37.14528°W 15 Feb 14 

  7 11.12117°S 37.14001°W 15 Feb 14 
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  8 11.09089°S 37.12145°W 15 Feb 14 

  9 11.06853°S 37.10631°W 15 Feb 14 

Lagoa do Peixe Rio Grande do Sul, Brazil 1 32.52736°S 52.39093°W 31 Jan 14 

  2 32.38234°S 52.32001°W 31 Jan 14 

  3 32.29481°S 52.26341°W 31 Jan 14 

  4 32.18860°S 52.15384°W 31 Jan 14 

  5 31.68008°S 51.40999°W 02 Fev 14 

  6 31.36068°S 51.04123°W 02 Fev 14 

  7 31.44440°S 51.16318°W 02 Fev 14 

  8 31.38841°S 51.11294°W 02 Fev 14 

  9 32.14885°S 52.01171°W 03 Fev 14 

  10 32.13482°S 52.07953°W 03 Fev 14 

  11 32.14310°S 52.07690°W 03 Fev 14 

  12 32.13831°S 52.07274°W 03 Fev 14 

*The coordinate was presented from just one sampling area. The remaining GPS coordinates 

were estimated based on site description and distance from the informed coordinate. 
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APPENDIX C  

Sediment sample contamination from field sampling, sample transportation, laboratory 

technique and extraction chemicals were determined by the use of H4IIE-luc bioassay.  

Table C.1. Overview of H4IIE-luc test results of TCDD (150 pM), control DMSO and blanks.  

Sample ID n TCDD-EQ (pM) %-TCDD-EQ 

TCDD 150pM 8 167.83 100.00 

DMSO 8 0.84 0.50 

Chemical blank 100% 1 1.48 0.88 

Chemical blank 50% 1 1.04 0.62 

CL13 field blank 100% 1 0.98 0.58 

CL13 field blank 50% 1 0.57 0.34 

IR14 field blank 100% 1 8.81 5.25 

IR14 field blank 50% 1 2.04 1.22 

LAB blank 100% 1 0.91 0.54 

LAB blank 50% 1 0.98 0.59 

LP14 field blank 100% 1 1.16 0.69 

LP14 field blank 50% 1 0.90 0.54 

LP14 travel blank 100% 1 1.84 1.09 

LP14 travel blank 50% 1 1.13 0.68 

PI13 field blank 100% 1 0.77 0.46 

PI13 field blank 50% 1 0.70 0.42 

PI13 travel blank 100% 1 1.49 0.89 

PI13 travel blank 50% 1 1.19 0.71 
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PI14 field blank 100% 1 0.96 0.57 

PI14 field blank 50% 1 1.19 0.71 

SA14 field blank 100% 1 1.81 1.08 

SA14 field blank 50% 1 1.46 0.87 

SA14 travel blank 100% 1 1.47 0.87 

SA14 travel blank 50% 1 1.33 0.79 
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APPENDIX D  

 

Preparation of Medium 

1. Equipment, material and reagents: 

 Pump for filter  

 2x 500 ml autoclaved bottle 

 500 ml bottle top filter 

 1000 ml graduated cylinder 

 Stir bar 

 Stir plate 

 Dulbecco’s Modified Eagle’s Medium (DMEM), Sigma D2906 

 3.7 g sodium bicarbonate 

 Fetal Bovine Serum (FBS), 50 ml per each 500 ml of supplemented medium 

 Film hood 

2. Method 

a. Add approximately 900 ml of nanopure water into a 1000 ml graduated cylinder, and 

place it on the stir plate. 

b. Place the stir bar in the graduated cylinder, and turn the stir plate on. 

c.  As the water stirs, add the medium powder and the sodium bicarbonate. 

d. Wait until all the powder is dissolved and adjust the pH of the solution to 0.1 to 0.3 

below 7.4 which is the desired final pH. 

e. Bring the volume up to 1000 ml with nanopure water. 

f. Bring it to the film hood. Take the appropriated procedures to avoid contamination. 
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g. Filter the medium using the bottle top filter and the pump.  

h. Add FBS to one of the bottle and use it for the experiment. Add FBS to the other 

bottle just before using it. 

i. Label the bottle with: sterilized DMEM medium for H4IIE cell culture, pH 7.4, date 

and name. 

j. The medium can be storage up to 3 months at 2 – 8 °C. 

 

Starting cells from frozen stock 

1. Equipment, material and reagents: 

 Supplemented sterile medium 

 Culture plates 

 Pasteur pipette 

 Sterile PBS  

 Microscope 

 Incubator 

2. Method 

a. Warm the medium to approximately 36 °C in water bath. 

b. Remove the cell vial from liquid nitrogen storage. 

c. Using gloves thaw the vial using the warm of your hands. Do not hold the vial at one 

position for too long as it can damage your skin. 

d. In film hood, add 10 ml of medium to a culture plate and transfer the cell suspension to 

this plate. 

e. Place the plate in incubator at 37 °C and 5% CO2. 
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f. After 24, remove the place from the incubator and check for possible contamination and 

cell attachment on microscope. Do not open the lid! 

g. Rinse the attached cell with sterile PBS. Repeat this process 3X. 

h. Add 10-12 ml of medium. 

i. Check the place on microscope to see if there are still cells attached.  

j. Place the plate in incubator.  

*This process is vital to remove any DMSO commonly found in the frozen solution that can be 

an issue for cell culture; and also to remove any dead cells and debris that can facilitate 

contamination. 

k. At this stage the cells will need time to recover from freezing and to replicate. Therefore, 

it will take about 3 to 10 days for the next step. The length of this step will depend on the 

initial cell concentration.  

l. Check the plate daily for signs of contamination. Observe replication rates and 

attachment of the cells.  

m. The cells will be ready for the next step when cells cover 90-95 % of the plate. It is called 

a generation. 

 

Replicating culture 

1. Equipment, material and reagents: 

 Supplemented sterile medium 

 Culture plates 

 Sterile PBS  

 Trysin-EDTA 
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2. Method 

a. Rinse the dish with PBS. Repeat 2x. 

b. Add 0.5 to 1.5 ml of 1x sterile trysin-EDTA. Trypsin can be toxic for cells, so add as less 

as possible. 

c. Place the dish in incubator for approximately 5 minutes. Monitor the cells and stop the 

reaction when cells have detached from the plate. 

d. Stop the reaction by adding supplemented medium. Add 11.5 to 10.5 ml (bring the 

volume up to 12 ml). 

e. Add 2 ml of this suspended cell solution into a new plate. Add 10 ml of supplemented 

medium. 

f. Incubate for 24 h. 

g. After 24 hours, rinse the plate 3x with PBS and add 12 ml medium. 

h. Place the plate in incubator and monitor the cell coverage. The cells will be ready for 

another replication when cells cover 90-95 % of the plate. 

i.  The cells will be ready to be dosed after 3-4 generations. 

 

Dosing cells 

1. Equipment, material and reagents: 

 Supplemented sterile medium 

 Culture plates 

 Sterile PBS  

 Trysin-EDTA 

 Hematocytometer 
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 96 well plate (View-Plate
TM

) 

 Repeat pipette 

 Dosing solution 

2. Method 

a. Rinse the dish with PBS. Repeat 2x. 

b. Add 0.5 to 1.5 ml of 1x sterile trysin-EDTA for approximately 5 minutes.  

c. Stop the reaction by adding supplemented medium. Bring the volume up to 12 ml. 

d. Determine the number of cells/ml with a hematocytometer. 

e. Dilute cell solution to a concentration of 80,000 cells/ml. 

f. Add 100 µl of cell suspension to a 96 well plate with repeat pipette. See template at 

Figure 3.C1. 

g. Add 100 µl PBS to the other wells. 

h. Wait 24h for cell attachment. 

i. Remove the old medium and add 100 µl supplemented medium dosed with 0.1% of 

dosing solution (TCDD, DMSO or sample). 

j. Exposures continue for 24 h. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A             

B  
0.61 pM 

TCDD 

0.61 pM 

TCDD 

0.61 pM 

TCDD 
  DMSO  

Sol. A 

100% 

Sol. A 

100% 

Sol. A 

100% 
 

C  
1.85 pM 

TCDD 

1.85 pM 

TCDD 

1.85 pM 

TCDD 
  DMSO  

Sol. A 

50% 

Sol. A 

50% 

Sol. A 

50% 
 

D  
5.55 pM 

TCDD 

5.55 pM 

TCDD 

5.55 pM 

TCDD 
  DMSO  

Sol. B 

100% 

Sol. B 

100% 

Sol. B 

100% 
 

E  

16.66 

pM 
TCDD 

16.66 

pM 
TCDD 

16.66 

pM 
TCDD 

  Blank  
Sol. B 

50% 

Sol. B 

50% 

Sol. B 

50% 
 

F  
50 pM 

TCDD 

50 pM 

TCDD 

50 pM 

TCDD 
  Blank  

Sol. C 

100% 

Sol. C 

100% 

Sol. C 

100% 
 

G  
150 pM 
TCDD 

150 pM 
TCDD 

150 pM 
TCDD 

  Blank  
Sol. C 
50% 

Sol. C 
50% 

Sol. C 
50% 

 

H             

Figure D.1. A 96-well plate layout for H4IIE-luc bioassay. Each sample was analysed in 
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triplicates. In each plate, 3 different solutions were analysed. Solvent control is represented by 

DMSO. The empty columns are recommended to avoid cross-contamination, and they are filled 

with PBS. 

 

Reading plate 

1. Equipment, material and reagents: 

 PBS supplemented with Ca
+2

 and Mg
+2

 

 Steadylite plus™ from PerkinElmer 

 POLARstar OPTIMA microplate reading luminometer (BMG LABTECH, Ortenberg, 

Germany) 

2. Method 

a. Remove the plate from incubator and check whether the cells are attached.  

b. Dump all the liquid in specific container for proper disposal. 

c. Rinse the plate with 75 µl of PBS with Ca
+2

 and Mg
+2

 per well.   

d. Dump all the liquid. 

e. Attach the white stick to the back of the plate. 

f. Add 75 µl of PBS with Ca
+2

 and Mg
+2

 per well in all wells. Include a column of not 

seeded wells to correct for the background. 

g. Make the steadylite plus™ reagent solution according to the product description. 

h. Add 75 µl of the reagent solution to each well previously filled with PBS.    

i. Let the reaction happen for 15 minutes in the dark. 

j. Read the plate in a microplate reading luminometer. 
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APPENDIX E  

Cell viability and overall cytotoxicity were determined by the use of the Cell 

Proliferation Reagent WST-1 assay according to the product description (Roche Diagnostic 

GmbH, Mannheim, Germany).  

A total of 5 plates were used to analyse all samples. Data was shown as mean ± standard 

deviation of the mean (S.D.). Normality of the dataset was determined using the Shapiro-Wilk 

test. Analyse of variance (ANOVA) followed by post hoc Dunnet’s tests was used to verify 

differences between samples and DMSO control. Nonparametric multiple comparison with 

control test was used for not normal distributed dataset.  

Table E.1. Analysis of variance (ANOVA) (F and P values) of WST-1 test reading. Results are 

presented as number of replicates (n), mean and standard error of the mean (S.E.M.) of test 

readings. 
Plate ID ANOVA Sample ID n Mean S.E.M. p-Value 

1 F10,11=7.38, p<0.01 DMSO 2 0.6057 0.1229 1.0000 

1 

 

CL13 100% 2 0.4723 0.0903 0.7284 

1 

 

CL13 50% 2 0.8219 0.0215 0.2696 

1 

 

PI14 100% 2 0.3999 0.0829 0.3129 

1 

 

PI14 50% 2 0.2937 0.0660 0.0601 

1 

 

TCDD 0.61 2 0.9358 0.0087 0.0446* 

1 

 

TCDD 1.85 2 0.6953 0.1060 0.9466 

1 

 

TCDD 150 2 0.4537 0.0172 0.6096 

1 

 

TCDD 16.6 2 0.5795 0.0803 1.0000 

1 

 

TCDD 5.55 2 0.6626 0.0203 0.9969 

1 

 

TCDD 50 2 0.4331 0.0411 0.4833 

2 F10,22=5.10, p<0.001 DMSO 3 0.7640 0.0711 1.0000 

2 

 

IR14 100% 3 1.1321 0.0655 0.0133* 

2 

 

IR14 50% 3 0.7900 0.0928 1.0000 
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2 

 

NR14 100% 3 0.8891 0.0689 0.8081 

2 

 

NR14 50% 3 1.2263 0.0881 0.0016** 

2 

 

TCDD 0.61 3 0.6448 0.0761 0.8418 

2 

 

TCDD 1.85 3 0.8325 0.0508 0.9932 

2 

 

TCDD 150 3 0.8253 0.0782 0.9970 

2 

 

TCDD 16.6 3 0.9638 0.0799 0.3403 

2 

 

TCDD 5.55 3 0.9207 0.0468 0.6016 

2 

 

TCDD 50 3 0.9509 0.0732 0.4103 

3 F10,22=3.53, p<0.01 DMSO 3 2.5831 0.2041 

 

3 

 

Chemical blank 100% 3 2.9559 0.3806 1.0000 

3 

 

Chemical blank 50% 3 3.1130 0.1407 0.4176 

3 

 

CL12  50% 3 3.0580 0.1154 0.4176 

3 

 

CL12 100% 3 2.6825 0.1221 1.0000 

3 

 

TCDD 0.61 3 2.2833 0.8235 0.9999 

3 

 

TCDD 1.85 3 3.2813 0.1278 0.4176 

3 

 

TCDD 150 3 0.7383 0.1189 0.4176 

3 

 

TCDD 16.6 3 2.6007 0.3036 0.9999 

3 

 

TCDD 5.55 3 2.7118 0.4023 1.0000 

3 

 

TCDD 50 3 2.5804 0.5034 0.9999 

4 F20,29=0.77, p=0.72 DMSO 2 0.4224 0.0924 NS 

4 

 

AR14 100% 2 0.3053 0.0832 NS 

4 

 

AR14 50% 2 0.4938 0.0798 NS 

4 

 

CL13 field blank 100% 2 0.3996 0.0322 NS 

4 

 

CL13 field blank 50% 2 0.4932 0.1061 NS 

4 

 

IR14 field blank 100% 2 0.4818 0.0344 NS 

4 

 

IR14 field blank 50% 2 0.4185 0.0548 NS 

4 

 

LAB blank 100% 2 0.5016 0.0988 NS 

4 

 

LAB blank 50% 2 0.5276 0.0192 NS 
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4 

 

LP14 100% 4 0.4673 0.1284 NS 

4 

 

LP14 50% 4 0.7084 0.2873 NS 

4 

 

LR14 100% 4 0.6955 0.1530 NS 

4 

 

LR14 50% 4 0.7054 0.1556 NS 

4 

 

PI13 field blank 100% 2 0.5660 0.1718 NS 

4 

 

PI13 field blank 50% 2 0.7655 0.1756 NS 

4 

 

TCDD 0.61 2 0.3386 0.0376 NS 

4 

 

TCDD 1.85 2 0.3591 0.0250 NS 

4 

 

TCDD 150 2 0.3233 0.0082 NS 

4 

 

TCDD 16.6 2 0.3786 0.0513 NS 

4 

 

TCDD 5.55 2 0.3626 0.0361 NS 

4 

 

TCDD 50 2 0.3209 0.0105 NS 

5 F36,41=3.76, p<0.001* DMSO 2 0.9297 0.1677 

 

5 

 

AR14 100% 2 0.5269 0.0864 0.9935 

5 

 

AR14 50% 2 1.2385 0.3845 2.0000 

5 

 

CL12 100% 2 0.4217 0.2122 0.9935 

5 

 

CL12 50% 2 0.2902 0.1249 0.9935 

5 

 

CL13 100% 2 0.4279 0.0676 0.9935 

5 

 

CL13 50% 2 0.4133 0.0793 0.9935 

5 

 

IR14 100% 2 0.2493 0.0332 0.9935 

5 

 

IR14 50% 2 0.2650 0.0334 0.9935 

5 

 

LP14 100% 2 0.5357 0.0757 0.9935 

5 

 

LP14 50% 2 0.8519 0.1050 2.0000 

5 

 

LP14 field blank 100% 2 0.3404 0.1420 0.9935 

5 

 

LP14 field blank 50% 2 0.7552 0.2404 2.0000 

5 

 

LR14 100% 2 0.3329 0.0062 0.9935 

5 

 

LR14 50% 2 0.9810 0.1946 2.0000 

5 

 

NR14 100% 2 0.1011 0.0336 0.9935 
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5 

 

NR14 50% 2 0.7484 0.2002 2.0000 

5 

 

PI13 100% 4 0.4750 0.0626 0.8142 

5 

 

PI13 50% 4 0.6938 0.3220 1.0000 

5 

 

PI14 100% 2 0.2673 0.0357 0.9935 

5 

 

PI14 50% 2 0.2815 0.0113 0.9935 

5 

 

PI14 field blank 100% 2 0.5086 0.1588 0.9935 

5 

 

PI14 field blank 50% 2 0.5024 0.1978 0.9935 

5 

 

SA14 field blank 100% 2 0.4236 0.1891 0.9935 

5 

 

SA14 field blank 50% 2 1.0710 0.2970 2.0000 

5 

 

SA14.1 100% 2 0.4586 0.0303 0.9935 

5 

 

SA14.1 50% 2 0.3819 0.0279 0.9935 

5 

 

SA14.2 100% 2 0.4032 0.0147 0.9935 

5 

 

SA14.2 50% 2 0.4826 0.0233 0.9935 

5 

 

TCDD 0.61 2 0.9701 0.2545 1.0000 

5 

 

TCDD 1.85 2 1.4045 0.0334 0.9935 

5 

 

TCDD 150 2 0.8106 0.1636 2.0000 

5 

 

TCDD 16.6 2 1.0700 0.0589 2.0000 

5 

 

TCDD 5.55 2 1.5534 0.2306 0.9935 

5 

 

TCDD 50 2 1.2804 0.0721 0.9935 

5 

 

TCDD standard solution 100% 2 0.3611 0.0753 0.9935 

5 

 

TCDD standard solution 50% 2 0.3930 0.0880 0.9935 

*Plate 1 and 2 presented normal distribution. Plate 2, 3, and 4 presented not normal distribution 

and log transformed data was used for the analyse. *P ≤ 0.05; **P ≤ 0.01; NS, not significant 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

 

4.1 Important findings about population structure of Sanderling from Chaplin Lake  

Over 46,000 Sanderlings have been observed migrating through Chaplin Lake in a single 

year [15]. Although band resightings had limited use in determining winter locations, stable 

isotope results indicated that the migratory population of birds winter over a broad and 

overlapping geographic area. Using a combination of δ
2
H isomap [41], published data in 

shorebirds, and distribution and abundance of Sanderlings [3, 7, 8] revealed 3 groups of 

Sanderlings with possible winter origins of cluster 1, 2, and 3 in southern South America (e.g. 

Chile or Argentina), northwestern South America (e.g. Peru), and the Gulf of Mexico (e.g. 

Texas), respectively. Body morphometrics among the clusters also lend support to this 

conclusion. Both wing and tarsus showed statistical difference among clusters. Sanderlings  from 

Cluster 1 were hypothesized to winter in southern South America also had the largest body size 

with longer wing lengths. Larger body sizes could be an adaptation to colder weather as the 

larger body exhibits a proportionally smaller heat loss [114]. The larger wing length is also 

possible aiding flight distance [174-176]. 

Findings from this project indicate that stable isotopes are a great tool to broadly classify 

winter origins of Sanderlings. The combination of δ
2
H, δ

13
C, and δ

15
N was the best approach to 

identify unique clusters. However, the hydrogen isotope had the greatest resolution and provided 

the best visual cluster separation. Additionally, it provides a good latitudinal categorization of 

values, which is appropriate for species that have a high latitudinal variation of winter grounds as 

found in migrant Sanderlings. 
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Despite the limited number of resightings, the information provided by them was useful 

to confirm that Sanderling migrating north through Saskatchewan tend to follow the elliptical 

pathway south. Resighting in the wintering grounds or wildlife tracking tools would be needed to 

address outstanding questions regarding specific winter ground locations and migration 

strategies. 

 

4.2 Application of isotope method for assignment of Sanderling wintering origin 

The statistical method of assignment probability was developed for Sanderling to 

facilitate future studies to determine wintering clusters of migrating birds. From this point 

forward, isotopic analyses from just one migrant Sanderling could be conducted to identify its 

winter origins. Inferences of origin and clusterization require analyzing a large quantity of 

animals to which I used 356 samples to originally develop the clusters. Additionally, Sanderlings 

collected from other wintering locations such as Argentina, Chile or Peru, could also be analyzed 

by this method to confirm the probability of this known origin bird belonging to one of the 

identified clusters. Although the Chaplin Lake assignment model is uniquely developed for this 

population, the formulae can be adopted to the study of any Sanderling across the flyway to 

determine if its isotopic value is bounded by the identified clusters. 

 

4.3 H4IIE-luc cells: a approach to identify and quantify environmental contamination for 

conservation of bird populations 

Ingestion is one of the main sources of contamination to shorebirds. As shorebirds feed, 

they incidentally ingest a large quantity of sediments, proportionally higher than other species. 

As described in chapter 3, the accidental sediment ingestion can have a significant impact on 
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shorebirds exposure to contaminants. Therefore, an intake of contaminants due to sediment 

ingestion is an important part of the dietary contamination intake. 

The H4IIE-luc bioassay has been widely used in ecological risk assessment studies to 

assess contamination of marine and freshwater habitats [133-137]. This project extended the use 

of this technique for assessing environmental contamination of shorebird habitats. This was the 

first time that H4IIE-luc bioassay has been applied for studies related to bird conservation. The 

results demonstrated that the bioassay works for delivering information regarding status of 

industrial contaminants in coastal sediments. This technique can be applied to study 

contamination issues over multiple locations across a large area. For shorebirds in particular, 

H4IIE-luc bioassay could be used to study the breeding, stopover and winter grounds of species 

of conservation concern through a networked approach. H4IIE-luc of sediments is ideal as a first 

screening of shorebird’s habitats due to their vast area used by migrants. More detailed studies 

could then be focused on areas found to have elevated levels (based on H4IIE-luc induction). 

Results from this study showed that most of the studied locations in the southern regions 

presented some degree of contamination. However, none of the samples exceeded the US EPA 

reference threshold value for sediments. 

 

4.4 Linking Sanderling migratory patterns and potential risks of exposure to dioxin-like 

compounds (DLCs). 

Sanderlings occupy habitats that are spread through a vast area, which makes it difficult 

to study possible threats they may face. As previously described in chapter 2, three clusters were 

identified in the Sanderling population of Chaplin Lake. These suggested winter origin of each 

cluster was South America (e.g. Chile and/or Argentina), the northwestern part of South America 
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(e.g. Peru), and Gulf of Mexico (e.g. Texas). Unfortunately, the sites analysed in chapter 3 did 

not include all the identified winter grounds, however none of the study sites exceeded 

contamination levels over the US EPA reference value. Padre Island, Texas contamination levels 

and calculated exposures were the highest among the studied locations. Although the mean value 

of Padre Island contamination was below the published sediment reference level, there are 

inherent errors and assumptions that indicate these should be considered preliminary. 

Additionally, contamination levels in bird’s diet are likely to be much higher [177-179]. 

Assessment of the total concentration of contaminants in the environment is a great 

screening tool, and it also allows for assessing the hazard of contamination at stopover and 

wintering sites. Estimates of contamination intake should include the proposed model for 

contamination through accidental sediment ingestion in addition to prey. In this project, only 

contamination from sediment was assessed – an approach that avoided confounding effects of 

different shorebird prey availability and diets or ethical and logistical constraints of sampling 

live birds. The results showed that sediment has significant impact on the daily intake of 

contaminants. Contamination through sediment ingestion should be considered conservative 

since this does not account for diet exposure and bioaccumulation through the food chain which 

are important part of the risk evaluation. 

Results of this project also demonstrated that despite shorebirds have a similar habit, diet, 

and potential exposure to the same contamination, the assessment of hazard and risk should be 

calculated for each species. Details such as body size [147, 165], percentage of sediment intake 

[131, 150, 166], and type of prey [167, 168] among other unique characteristics of given species 

are important in affecting exposure and contamination risk. 
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4.5 Implications for future research 

Future researchers should aim to confirm the suggested wintering origins by studying 

isotopic value of feathers from Sanderlings captured at the hypothesized winter locations in 

South America. Another possible technique is the use of radio transmitters, geolocators and other 

intrinsic (DNA) markers to track migratory origins. Additionally, the influence of sex on the 

population clustering and body size would be an interesting research topic to explore further. 

Regarding assessment of environmental contamination, future research should aim for 

studying additional wintering areas identified here, following up with areas of concern in more 

detail, and quantifying the chemicals and their source. Additionally, the assessment of 

contamination of the food supply would be of great importance for risk assessment and 

shorebirds conservation. Moreover, as the shorebirds use multiple habitats at different times of 

the year, an interesting study would be expanding the contamination assessment to a given area 

and do studies over time, thereby providing more information on risk during different phases of 

the life cycle. 

Currently, shorebird conservation plans for Canada and the United States identifies 

pollution as a potentially important threat for shorebirds but relatively little work has gone into 

research on the exposure and effects of organic contaminants. Among possible contaminants, oil 

pollution have been consistently mentioned due to the number of offshore petroleum exploration, 

the long-term sublethal effects, the consistent small and non-reported spills, the potential for 

disastrous effects to shorebirds habitats [6, 7]. Moreover, due to the transboundary nature of 

shorebird contamination threats, it is essential to do more multinational collaborations to include 

other countries important to the survival of shorebirds. Multinational efforts will improve the 

relevance of projects, as shorebirds spend most of their time on the wintering or staging areas 



 

89 

 

outside of Canada. Collaborative efforts as used here in addressing pollution issues will 

immensely benefit the hemispheric conservation of shorebirds.  
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