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Abstract

It is well established that the temperature gradients in the interiors of internally-heated mantle

convection models are subadiabatic (e.g. Parmentier et al., 1994; Bunge et al., 1997, 2001). The

subadiabatic gradients have been explained to arise due to a balance between vertical advection

and internal heating, however, a detailed analysis of the energy balance in the subadiabatic regions

has not been undertaken. In this research, I examine in detail the energy balance in a suite of

two-dimensional convection calculations with mixed internal and basal heating, depth-dependent

viscosity and continents. I find that there are three causes of subadiabatic gradients. One is the

above-mentioned balance, which becomes significant when the ratio of internal heating to surface

heat flux is large. The second mechanism involves the growth of the overshoot (maximum and

minimum temperatures along a geotherm) of the geotherm near the lower boundary where the

dominant balance is between vertical and horizontal advection. The latter mechanism is significant

even in relatively weakly internally heated calculations. For time-dependent calculations, I find that

local secular cooling can be a dominant term in the energy equation and can lead to subadiabaticity.

However, it does not show its signature on the shape of the time-averaged geotherm. I also compare

the basal heat flux with parameterized calculations based on the temperature drop at the core-

mantle boundary, calculated both with and without taking the subadiabatic gradient into account

and I find a significantly improved fit with its inclusion.

I also explore a wide range of parameter space to investigate the dynamical interaction between

effects due to surface boundary conditions representing continental and oceanic lithosphere and the

endothermic phase boundary at 660 km-depth in two-dimensional Cartesian coordinate convection

calculations. I find that phase boundary induced mantle layering is strongly affected by the wave-

length of convective flows and mixed surface boundary conditions strongly increase the horizontal

wavelength of convection. My study shows that for mixed cases the effects of the surface boundary

conditions dominate the effects of the phase boundary. I show that the calculations with com-

plete continental coverage have the most significantly decoupled lower and upper mantle flows and

substantial thermal and mechanical layering. Unlike the free-slip case where the surface heat flux

decreases substantially with increasing magnitude of the Clapeyron slope, surface heat flux is shown

to be almost independent of the Clapeyron slope for mixed boundary condition cases. Although

very different when not layered, models with free and mixed surfaces have very similar planforms

with very large aspect ratio flows when run with large magnitudes of the Clapeyron slope. I also

calculate the critical boundary layer Rayleigh number as a measure of the thermal resistance of

the surface boundary layer. My results show that the thermal resistance in the oceanic and the

continental regions of the mixed cases are similar to fully free and no-slip cases, respectively. I find
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that, even for purely basally heated models, the mantle becomes significantly subadiabatic in the

presence of partial continental coverage. This is due to the significant horizontal advection of heat

that occurs with very large aspect ratio convection cells.
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Sandor Süle, Mike Hartley, Nadine Pearson and Simona Costin.

My special gratitude also goes to the secretaries Brenda Britton and Jane Ritz for helping me

with all the administrative paper work and also to Brian Reilkoff and Jennifer Hadley for solving

the serious computer troubles that I have faced during my work.

I would like to thank the members of my committee for their participation in my thesis, Drs.

Kevin Ansdell, Jim Merriam, Igor Morozov and the external examiner Dr. Julian Lowman.

I express my gratitude to my parents Dr. Sekhar Sinha and Manimala Sinha and my sister

Kathakali Sinha who gave me the inspiration and the moral support to pursue my objectives.

iv



Contents

Permission to Use i

Abstract ii

Acknowledgements iv

Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 On the Origin and Significance of Subadiabatic Temperature Gradients in the

Mantle 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Mechanisms Resulting in Subadiabatic Gradients . . . . . . . . . . . . . . . . . . . . 12
2.3 Derivations of the Governing Equations in 2D for Isoviscous and Variable Viscosity

Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Numerical Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Numerical Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 The Effects of Depth-dependent Viscosity . . . . . . . . . . . . . . . . . . . . 38
2.6.2 The Effects of Surface Boundary Conditions . . . . . . . . . . . . . . . . . . . 41
2.6.3 The Effects of Aspect Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.4 The Effects of Subadiabatic Temperature Gradients on Heat Flux at the

Core-Mantle Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Is there a difference Between the Effect of Secular Cooling and Internal Heat-

ing Rate in Unit Aspect Ratio Calculations? 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 The Combined Effects of Continents and the 660 km-depth Endothermic Phase

Boundary on the Thermal Regime in the Mantle 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Numerical Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Numerical Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Effects of Surface Boundary Conditions and Aspect Ratio on Layering . . . . 72
4.4.2 Effects of Different Continental Lengths and Internal Heating . . . . . . . . . 90
4.4.3 Effect of Continents on the Shape of the Geotherm . . . . . . . . . . . . . . . 93

4.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Conclusions 99

6 Future Considerations 102

v



A Derivations of Poisson’s Equations for mantle flow in 3D 119

B Derivations of the Dynamic Topography in 2D for Isoviscous and Variable

Viscosity Calculations 122

C Parameterized Model For Different Continental Coverage and Thicknesses

with a Phase-Change at 660 km-depth 124

vi



List of Tables

2.1 models, M ; aspect ratio, Ar; Rayleigh number, Ra; non-dimensional internal heating,
H ; total jump in viscosity, µj ; non-dimensional length and thickness of the conti-
nental lithosphere, L and hc, respectively; Tmin and Tmax are the minimum and
maximum internal horizontally-averaged temperatures, respectively; average tem-
perature, < T >; temperature drop due to subadiabaticity, Tsub and QCMB and Qs

are the core-mantle boundary and surface heat fluxes, respectively. † continent is
located in the middle ∗ models with partial or full conducting lid coverage . . . . . . 25

2.2 Models, M ; aspect ratio, Ar; Rayleigh number, Ra; non-dimensional internal heat-
ing, H ; total jump in viscosity, µj ; non-dimensional length and thickness of the
continental lithosphere, L and hc, respectively; energy balance between local sec-
ular cooling and the other terms, SC; VA-H, VA-HA and C-H are the energy bal-
ances between vertical advection-internal heating, vertical-horizontal advection and
conduction-internal heating, respectively; percentage of the points with positive ver-
tical temperature gradient, Asub. † continent is located in the middle ∗ models with
partial or full conducting lid coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 models, M ; Rayleigh number, Ra; non-dimensional internal heating rate, H ; Clapey-
ron slope, γ (×106 Pa/K); non-dimensional length and thickness of the continental
lithosphere, L and h, respectively; average temperature, < T >; non-dimensional
surface heat flux or the Nusselt number over the continent, Nuc and over the ocean,
Nuo; mass flux across the phase boundary, Mf (×10−5); thermal layering param-
eter, β; number of convection cells in the lower and upper mantle, Clm and Cum,
respectively. Only the results from aspect ratio 8 calculations have been listen here.
† computations were carried out using finite element method ‡ surface contains two
separate continents, located at the either end of the box covering 15% each ∗ models
with free-slip surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



List of Figures

1.1 Cross-section of the Earth showing the location of the mantle from ”The visual
dictionary of the earth” by Colin Rose and John Temperton (Dorling Kindersley,
1994). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Shape of adiabatic and subadiabatic temperature gradients in a model of the mantle. 4

1.3 Seismic tomographic sections of the Tonga-Kermadec trench showing the transition
zone in the mantle (Mussett and Khan, 2000). The subducting plate is revealed
as a zone of higher velocity (in dark green) caused by a lower temperature than the
surrounding mantle. In these three sections, the dashed lines indicate the boundaries
of the subducting slab. Section (a) and (b) clearly show slab deflection just above
the 660 km discontinuity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 The different terms in the energy equation used to calculate the dominant energy
balances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Average viscosity as a function of depth for a total viscosity jump µj = 1, 10 and 100. 20

2.3 A snapshot of the surface velocity from a 4 × 1 calculation with Ra = 106, H = 10,
L = 1.2 and hc = 0.04 or model Ra6H10v1L1.2a4 ∗ (see table 2.1). . . . . . . . . . . . 21

2.4 Numerical model setup showing the boundary conditions for vertical and horizontal
boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Results from calculation Ra5H10v1a1 with Ra = 105 and H = 10: The temperature
field together with velocity vector arrows a) and balance in the different terms of the
energy equation together with the positive part of the vertical temperature gradient
b) (Colorbar: 1 - local secular cooling and vertical advection, 2 - local secular cooling
and horizontal advection, 3 - local secular cooling and conduction, 4 - local secular
cooling and internal heating, 5 - vertical and horizontal advection or VA-HA, 6 -
vertical advection and conduction, 7 - vertical advection and internal heating or VA-
H, 8 - horizontal advection and conduction, 9 - horizontal advection and internal
heating, 10 - conduction and internal heating). Here 1, 2, 3 and 4 all together in the
colorbar is the balance mechanism SC and due to the steady state of the model, SC
is not present in this plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Results from the calculation Ra6H0v1a1 with Ra = 106 and H = 0: a) The temper-
ature field, b) the horizontally-averaged vertical temperature profile, c) the positive
part of the vertical temperature gradient and d) the vertical advection (solid line),
horizontal advection (dashed line) and diffusion term (dotted line) along the purple
line shown in c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Time-averaged geotherms from the calculations a) Ra5H0v1a1, Ra5H2.5v1a1, Ra5H5v1a1,
Ra5H7.5v1a1, and Ra5H10v1a1 with Ra = 105 and H = 0, 2.5, 5, 7.5 and 10, re-
spectively, in 1 × 1 boxes; b) Ra6H0v1a4, Ra6H3v1a4, Ra6H10v1a4, Ra6H18v1a4,
Ra6H27v1a4 and Ra6H36v1a4 with Ra = 106 and H = 0, 3, 10, 18, 27 and 36, re-
spectively, in 4 × 1 boxes; c) Ra7H0v1a1, Ra7H10v1a1, Ra7H20v1a1, Ra7H30v1a1,
Ra7H40v1a1, Ra7H50v1a1 and Ra7H60v1a1 with Ra = 107 and H = 0, 10, 20, 30,
40, 50 and 60, respectively, in 1 × 1 boxes. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Temperature field a) and corresponding energy balance plot overlain by the contour
lines of the positive part of the vertical temperature gradient b) for calculation
with Ra = 106 and H = 3 (Ra6H3v1a4); c) and d) are similar plots for H = 36
(Ra6H36v1a4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 Magnitude of the total subadiabatic temperature drop a) and area of domain with a
positive temperature gradient b) as a function of the Urey Ratio for Ra = 105 and
106 in a 4 × 1 box and Ra = 107 in a 1 × 1 box. . . . . . . . . . . . . . . . . . . . . . 37

viii



2.10 Geotherms from calculations Raeff6H0v100a1, Raeff6H0v10a1 and Ra6H0v1a1 with
no internal heating and viscosity jumps of µj = 1, 10 and 100, respectively, using the
same effective Rayleigh number, which was determined by matching the heat flux of
the layered viscosity model with the heat flux of a similar isoviscous calculation. . . 39

2.11 Geotherms from calculations Ra6H10v1a1, Raeff6H10v100a1 and Raeff6H10v10a1
with H = 10 and viscosity jumps of µj = 1, 10 and 100 with depth, respectively,
using the same effective Rayleigh number, which was determined by matching the
heat flux of the layered viscosity model with the heat flux of a similar isoviscous
calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.12 Geotherms from the calculations Ra6H10v1a1, Ra6H10v1L0.3a1∗, Ra6H10v1L0.4a1∗,
Ra6H10v1L1a1 and Ra6H10v1L1a1∗ with H = 10 and different surface boundary
conditions for Ra = 106 in square boxes. . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.13 Geotherms from the calculations Ra6H10v1a8, Ra6H10v1L2.4a8∗, Ra6H10v1L8a8
and Ra6H10v1L8a8∗ with H = 10 and different surface boundary conditions for
Ra = 106 in 8 × 1 boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.14 Geotherms calculated for simple Boussinesq calculations Ra5H10v1a1, Ra6H10v1a1,
Ra7H10v1a1 and Ra8H10v1a1 in 1 × 1 boxes with H = 10 and different thermal
Rayleigh numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.15 Measured surface heat flux vs predicted surface heat flux. ’+’ are calculated using
Tmax while the squares were calculated using < T >. . . . . . . . . . . . . . . . . . . 48

2.16 Measured basal heat flux vs predicted surface heat flux. ’+’s, and squares are calcu-
lated using Tmin, and < T > respectively. . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Average temperature as a function of time for calculation without internal heating
for Ra = 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Surface and CMB heat fluxes as a function of time for calculation without internal
heating for Ra = 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Average temperature as a function of time for calculation with internal heating H =
29.24 for Ra = 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Surface and CMB heat fluxes as a function of time for calculation with internal
heating H = 29.24 for Ra = 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Average temperature within a particular time window as a function of time for
calculations with and without internal heating for Ra = 107. . . . . . . . . . . . . . 58

3.6 Residuals after de-trending the average temperature data within a particular time
window as a function of time for calculation with and without internal heating for
Ra = 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Surface and CMB heat fluxes within a particular time window as a function of time
for calculation without internal heating for Ra = 107. . . . . . . . . . . . . . . . . . 60

3.8 Surface and CMB heat fluxes within a particular time window as a function of time
for calculation with internal heating for Ra = 107. . . . . . . . . . . . . . . . . . . . 61

3.9 Secular cooling as a function of time for calculation with and without internal heating
for Ra = 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Temperature fields overlain by the streamlines for calculations with Ra = 106 and
γ = 0MPaK−1 for (a) free-slip (Ra6H0p0∗), (b) conducting lid (Ra6H0p0L8) and
(c) mixed (Ra6H0p0L2.4) surface boundary conditions. The black horizontal line
represents the location of the phase boundary. . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Temperature fields overlain by the streamlines for calculations with Ra = 106 and
γ = −9MPaK−1 for (a) free-slip (Ra6H0p9∗), (b) conducting lid (Ra6H0p9L8) and
(c) mixed (Ra6H0p9L2.4) surface boundary conditions. The black horizontal line
represents the location of the phase boundary. . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Layering parameter, β, as a function of the Clapeyron slope of the endothermic phase
boundary for calculations in unit aspect ratio boxes with Ra = 106. . . . . . . . . . . 76

ix



4.4 Temperature field plots from calculations for Ra = 106 with different surface bound-
ary conditions and the endothermic phase boundary. Free-slip with (a) γ = −4MPaK−1

and (b) γ = −6MPaK−1; conducting lid with (c) γ = −4MPaK−1 and (d) γ =
−6MPaK−1 and mixed surface boundary conditions with (e) γ = −4MPaK−1 and
(f) γ = −6MPaK−1. The purple horizontal line represents the location of the phase
boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Nusselt number, Nu, as a function of the Clapeyron slope of the endothermic phase
boundary for calculations in unit aspect ratio boxes with Ra = 106. . . . . . . . . . . 78

4.6 Average mass flux, Mf , as a function of the Clapeyron slope of the endothermic
phase boundary for calculations in 1 × 1 boxes with Ra = 106 . . . . . . . . . . . . . 79

4.7 Layering parameter, β, as a function of the Clapeyron slope of the endothermic phase
boundary for calculations in 8 × 1 boxes with Ra = 106. . . . . . . . . . . . . . . . . 80

4.8 Average mass flux, Mf , as a function of the Clapeyron slope of the endothermic
phase boundary for calculations in 8 × 1 boxes with Ra = 106. . . . . . . . . . . . . 81

4.9 Nusselt number, Nu, as a function of the Clapeyron slope of the endothermic phase
boundary for calculations in 8 × 1 boxes with Ra = 106. . . . . . . . . . . . . . . . . 82

4.10 Nusselt number, Nu, as a function of the average mass flux across the phase boundary
for calculations in 8 × 1 boxes with Ra = 106. . . . . . . . . . . . . . . . . . . . . . . 85

4.11 Critical upper boundary layer Rayleigh number as a function of the average mass
flux across the phase boundary for calculations in 8 × 1 boxes with Ra = 106. . . . . 87

4.12 Number of convection cells in the upper (grey bars) and the lower (black bars)
mantle as a function of the Clapeyron slope of the endothermic phase boundary for
calculations with Ra = 106 and (a) free-slip, (b) conducting lid and (c) mixed surface
boundary conditions in 8 × 1 boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.13 Number of convection cells in the upper (grey bars) and the lower (black bars) mantle
as a function of the continental coverage for calculations with γ = −3MPaK−1 and
(a) Ra = 106 and (b) Ra = 107 in 8 × 1 boxes. . . . . . . . . . . . . . . . . . . . . . 91

4.14 Geotherms as a function of the continental coverage, L, for calculations with Ra =
107 and γ = −3MPaK−1 in 8 × 1 boxes. . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.15 Total temperature drop across the mantle due to subadiabaticity in the geotherm as
a function of the ratio of the temporally and spatially averaged horizontal to vertical
advection. This plot does not include the models with internal heating and two
continents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.16 The ratio of the temporally and spatially averaged horizontal to vertical advection
as a function of the number of convection cells in the lower mantle (Clm). This plot
does not include the models with internal heating and two continents. . . . . . . . . 96

A.1 Isosurface plot of the temperature from a calculation that was run in a 1× 1× 1 box
for Ra = 106 with a free-slip surface boundary condition. Colorbar is shown at the
top. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.1 Average temperature from numerical and parameterized models as a function of
different continental lithospheric thicknesses for Rayleigh numbers of 106 and 107

with total continental coverage and no internal heating. Numerical models were run
in 1 × 1 boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.2 Nusselt number from numerical and parameterized models as a function of different
Clapeyron slopes with a Rayleigh number of 106 and no internal heating. . . . . . . 128

x



Chapter 1

Introduction

The mantle is the 2890 km thick layer of rock below the crust of the Earth and it makes up

nearly 80% of our planet’s total volume. It is not quite molten, but it is less viscous (softer) than the

crust, and over very large time scales (millions of years), it behaves almost like a very high viscosity

fluid, with the tectonic plates ”floating” on top. The mantle is heated from within due to the

presence of radioactive elements and from below along the CMB (core-mantle boundary). Cooling

occurs along the surface and also with time the average temperature of the interior decreases, which

is known as secular cooling. In chapter 3, I discuss the difference between the secular cooling and

the radiogenic heat generation effects. Fig. 1.1 shows the location of the mantle in a cross-sectional

diagram of the Earth. The mantle, as shown in the figure, can be divided into two regions, upper

and lower. These will be described in detail later in this section.

The idea that flow in the Earth’s interior is a form of thermal convection, developed slowly.

Around 1797, Count Rumford became the first person to recognize the phenomenon of thermal

convection, but the term ”convection” was given by Prout (1834). Subcrustal convection in the

Earth was first suggested by W. Hopkins in 1839 and the use of geological observations to interpret

mantle convection was undertaken for the first time by Osmond Fisher in 1881. J. Thompson, in

1882, conducted the first set of experiments on convection in a fluid heated from below and cooled

from above, but the earliest quantitative experiments on the onset of convection were done by Henri

Bénard (1900,1901). Arthur Holmes (1931,1933) was the first to show quantitatively that thermal

convection is the primary reason for the flow in the ”solid” mantle and it also drives continental

drift, however, these ideas were not widely accepted at that time.

After the concept of mantle convection became accepted in late 1960’s, it provided a natural

explanation for the high thermal gradients near the Earth’s surface, which are interpreted to be

the thermal boundary layers associated with mantle convection. Within these layers conduction

dominates and elsewhere in the mantle the primary mechanism of heat transport is advection.

Thermal convection within the mantle is the driving mechanism for plate tectonics, which is the

process ultimately responsible for producing earthquakes, mountain ranges, and volcanoes. So, it is

very important to have a good understanding about mantle processes. A powerful way to achieve

this goal is by modeling convection within the mantle numerically. The results that are presented

1



Figure 1.1: Cross-section of the Earth showing the location of the mantle from
”The visual dictionary of the earth” by Colin Rose and John Temperton (Dorling
Kindersley, 1994).
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in this thesis are all derived from numerical modeling.

McKenzie et al. (1973) developed one of the earliest numerical models of mantle convection in

a unit aspect ratio (square shaped) box. Since then, many scientists (Hewitt et al., 1980; Jarvis,

1984; Schubert and Anderson, 1985; Olson, 1987; Christensen, 1989) became involved in this field of

research and built various models. Three dimensional numerical models of mantle convection in rect-

angular (Cserepes et al., 1988; Houseman, 1988; Travis et al., 1990a,b; Cserepes and Christensen,

1990; Christensen and Harder, 1991; Ogawa et al., 1991) and spherical geometry (Baumgardner,

1985, 1988; Machetel et al., 1986; Glatzmaier, 1988; Glatzmaier et al., 1990; Bercovici et al., 1989a,

b, c, 1991, 1992; Schubert et al., 1990) began to appear in the late 1980s and provided a more

realistic picture of the form of convection in the mantle. At present, three dimensional numerical

models of mantle convection are widely carried out and ever-increasing computational power per-

mits inclusion of increasingly realistic material properties and behavior into the models. However,

two-dimensional models are still very common due to the high efficiency that they afford and the

very good approximation of mantle processes that they provide. Some previous studies have been

carried out using various 2D and 3D models and have compared their behavior. Yuen et al. (1994)

studied the effect of the endothermic spinel to perovskite and magnesiowüstite phase transition

induced layering in 2D and 3D Cartesian geometry calculations. This study demonstrated that

greater mass flux occurs in 3D cases for smaller boxes (5 × 5 × 1), however, for wider aspect ratio

models (8 × 8 × 1) the degree of mechanical layering was somewhat stronger for 3D calculations.

Tackley (1993) showed that 3D spherical models with the endothermic phase transition are less

time-dependent than 2D models. I carried out many calculations in two-dimensional Cartesian

coordinates and these are presented in the chapters 2, 3 and 4. The heat fluxes and the the average

temperatures from my calculations without continents and the endothermic phase boundary were

also compared with the 3D results of Sotin and Labrosse (1999) and they were very similar.

Temperature gradients in a convecting mantle, interior to the thermal boundary layers, are

usually assumed to be adiabatic. An adiabatic expansion is when a volume of material is ex-

panded suddenly inside a perfectly sealed and insulated container, with no exchange of mass or

heat beyond the walls of the container. Because pressure decreases rapidly with height and heat

advection is much faster than thermal diffusion, mantle upwellings behave as if they were being

expanded adiabatically. However, numerical models incorporating the effects of internal heating

(e.g. Matyska and Yuen, 2000; Bunge et al., 2001) have shown the presence of positive potential

temperature gradients in the mantle or in other words, subadiabatic geotherms (horizontally aver-

aged vertical temperature profiles). A potential temperature in this case is defined as the acquired

temperature of a parcel of mantle material that is brought up adiabatically to the surface. In an

incompressible system (see chapter 2) the modeled mantle temperature can be considered to be

an approximation for the potential temperature in a compressible system (Jarvis and McKenzie,
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1980). As an example, fig. 1.2 shows the shapes of an adiabatic and a subadiabatic geotherm

in models with an incompressible fluid. The solid geotherm in this case is adiabatic and has no

internal heating, whereas the dashed geotherm from an internally heated model is an example of

subadiabaticity shown by the positive slope interior to the boundaries. Previously Jeanloz and Mor-

ris (1987) argued that the balance between internal heating and vertical advection combined with

the asymmetry between upwellings and downwellings causes subadiabatic geotherms in internally

heated models. In chapter 2, I present a detailed energy balance study to investigate the reasons

for subadiabatic temperature gradients from both internally and basally heated models considering

an incompressible system and demonstrate that the energy balance between vertical advection and

internal heating is not the only possible energy balance in regions where temperature increases

with height. The presence of a subadiabatic temperature gradient results in an increased estimated

CMB heat flux affecting the energy budget for the Earth and hence, can be of significant importance.
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Figure 1.2: Shape of adiabatic and subadiabatic temperature gradients in a model
of the mantle.
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Elastic propagation of seismic waves indicates that the mantle is solid, however, the presence

of plate-tectonics indicates that the underlying mantle deforms in a viscoelastic manner. This

combination of rheological behavior can be compared with the ice in glaciers. Using a simple

model for materials that can act as elastic solids on short timescales but fluids on long time-scale,

Schubert et al. (2001) showed that the viscoelastic relaxation time for Earth’s mantle is 450yr

indicating that on time-scales longer than this, the mantle behaves like a fluid. In my calculations

I consider Newtonian fluid everywhere, where the stress is proportional to the strain rate, however,

the mantle may be non-Newtonian in regions of high stress as in subduction zones (e.g. Hall et al.,

2003, Gurnis et al., 2004, Billen and Hirth, 2005) or in areas with reduced grain size (e.g. Hirth

and Kohlstedt, 2003).

The temperature in the mantle is close to its melting temperatures and hence, the crystalline

solids exhibit fluid-like deformation over a long time period. Gordon (1967) proposed the two

principle deformation mechanisms associated with mantle convection, viz. 1) diffusion creep, where

atoms migrate by the movement of adjacent vacancies and 2) dislocation creep, which is the result

of the movements due to the imperfections in the crystalline lattice. Diffusion creep results in a

Newtonian flow and is strongly dependent on the grain size, however, dislocation creep is considered

to follow a nonlinear viscous rheology and is insensitive to grain size changes.

The viscosity structure of the mantle is an important material property, which strongly affects

the convective flow pattern, further affecting plate velocities (e.g. Gait et al., 2008; Gait and Low-

man, 2007), deep-earthquake source mechanisms (e.g. Katagi et al., 2008), the stress distribution in

subduction zones (e.g. C̆́ız̆ková et al., 2007) and estimates of geochemical mixing time-scales (e.g.

Forte and Mitrovica, 2000). There are various approaches to estimate the radial viscosity structure

of the Earth’s mantle. The most common procedures include: 1) the inversion of post-glacial re-

bound data (e.g. Haskel, 1935, 1936; Daly, 1934; O’Connell, 1971; Mitrovica and Peltier, 1991a, b),

2) modeling the geoid and dynamic topography (I derive an expression for dynamic topography in

appendix B) of the surface and CMB using the pattern of density anomalies inferred from seismic

tomography (e.g. Forte and Peltier, 1991; Hager and Richards, 1989; Hager and Clayton, 1985;

King and Masters, 1992; Ricard and Wuming, 1991; Ricard et al., 1984; Ricard et al., 1989) and

3) studying the physical deformation properties of mantle minerals in the laboratory (e.g. Ashby

and Verrall, 1978; Kirby, 1983; Ranalli, 1991; Stocker and Ashby, 1973; Weertman, 1970). The

laboratory experiments show that the rheology of mantle minerals is significantly affected by tem-

perature and deviatoric stress. Poirier (1993) demonstrated the dependence of mantle viscosity on

temperature and pressure. Karato (1989) showed that due to the effect of pressure, the viscosity

within the mantle should increase with depth. Some of my models that are presented in chapter 2

were run with depth-dependent viscosity.

Based on seismological evidence, the mantle is divided into different sections viz., the upper
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mantle (30 to 410km depth), the transition zone (410 to 660km depth) and the lower mantle (660

to 2890 km depth). The seismic discontinuity near 660 km contains the sharpest changes in seismic

properties within the mantle. The results of Ito and Takahashi (1989), Richards and Wicks (1990),

Niu and Kawakatsu (1995) Vidale and Benz (1992) and Castle and Creager (1997) offer compelling

evidence that the 660km boundary marks the transformation of γ-spinel to magnesium-perovskite

and magnesiowüstite in the olivine system, where the reaction is endothermic and has a negative

Clapeyron slope dP/dT' −2.6 ± 0.2MPaK−1 (Akaogi et al., 2007). Fig. 1.3 gives an example of

the evidence of the transition zone in three different tomographic sections of the Tonga-Kermadec

trench as demonstrated by Mussett and Khan (2000).

Figure 1.3: Seismic tomographic sections of the Tonga-Kermadec trench showing
the transition zone in the mantle (Mussett and Khan, 2000). The subducting plate
is revealed as a zone of higher velocity (in dark green) caused by a lower temperature
than the surrounding mantle. In these three sections, the dashed lines indicate the
boundaries of the subducting slab. Section (a) and (b) clearly show slab deflection
just above the 660km discontinuity.
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It has long been recognized that the transition zone in the mantle holds the key to understanding

the dynamical behavior of the mantle and its thermal evolution (Verhoogen, 1965), yet the issue of

the degree of convective layering at 660km-depth remains unresolved. The seismicity distribution

in subduction zones and the shapes of subducting slabs at that depth, observed from seismic

tomography, give evidence about the mantle transport dynamics at 660km-depth (e.g. van der

Hilst, 1991, 1995; Fukao et al., 1992; Kennett and Gorbatov, 2004; Ritsema et al., 2004; Zhao, 2004).

The images from seismic tomography show (e.g. fig. 1.3a and 1.3b) distinct slab flattening along

the boundary in some locations (Fukao et. al., 2001) and penetration (Kito et. al., 2008) across

the endothermic phase boundary in others, which means that the mantle is probably incompletely

layered.

In a review paper, Christensen (1995) commented on the possible incomplete layering of the

Earth’s mantle based on different numerical and seismic tomographic studies. The 660km endother-

mic phase transition boundary deflection impedes and the latent heat induced thermal buoyancy

drives convection. Christensen (1995) determined that the value of the current Clapeyron slope for

the post-spinel transition is marginal to cause a complete layering of the mantle. Similar effects

in the layering can be observed in the models that are shown in chapter 4. Various studies using

numerical models (Christensen and Yuen, 1985; Zhao et al., 1992; Honda and Yuen, 1994; Solheim

and Peltier, 1994a, b; Yuen et al., 1994; Butler and Peltier, 2000), which looked at the effects of the

phase boundary on mantle flow and parameterized models (McKenzie and Richter, 1981; Honda,

1995; Butler and Peltier, 2002), which looked at the effects of layering on thermal evolution, have

been done in order to understand the problem. I constructed a parameterized model and compared

it with some of my numerical model results in appendix C.

An early study by Christensen and Yuen (1985) demonstrated that the endothermic phase

transition could produce layering in the mantle, provided the Clapeyron slope of the reaction is

sufficiently steep. They also showed a significant increase in the degree of layering with increasing

Rayleigh number. In their 1 × 1 aspect ratio calculations they observed a sudden increase in the

degree of layering between Clapeyron slope values of −5MPaK−1 and −6MPaK−1. In chapter 4, I

will show a similar jump in the results of unit aspect ratio calculations and also that the degree of

layering is strongly affected by the aspect ratio of convection. Models of isoviscous convection at

higher Rayleigh numbers (Machetel and Weber, 1991; Peltier and Solheim, 1992; Zhao et al., 1992;

Solheim and Peltier, 1993, 1994a, b; Tackley et al., 1993; Weinstein, 1993) show basically the same

tendency toward layering in the presence of the endothermic phase change as the Rayleigh number

of the convection increases, but the magnitude of the Clapeyron slope is smaller and convection is

less layered.

The distinct heterogeneity in the surface boundary condition produced by the presence of the

continental lithosphere affects mantle convection. Continental rocks, which are less dense and
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therefore more buoyant than mantle rocks, do not subduct. Previously numerical studies have

shown a number of ways to model tectonic plates. Some of the methods are listed here. Imposing

a temperature-dependent viscosity (e.g. Christensen, 1984; Jaupart and Parsons, 1985) or surface

velocity (e.g. Lux et al., 1979; Jarvis and Peltier, 1981; Houseman, 1983; Davies, 1984) have

been popular in modeling plates. Davies (1988) has used both temperature-dependent viscosity

and imposed horizontal surface velocity together in order to mimic the effects of tectonic plates,

whereas, Grigné et al. (2007a, b) have incorporated continents in their model by placing a lid

of finite thickness and conductivity at the surface together with a shear-stress free mechanical

boundary condition. A combination of high viscosity (almost 1000 times greater) contrast and the

force balance method to compute the plate velocity has also been used to model cold lithosphere

(e.g. Gable et al., 1991; King et al., 1992; Lowman et al., 2003; Lowman et al., 2004; Gait and

Lowman, 2007b; Lowman et al., 2008; Monnereau and Quéré, 2001).

Various studies have been done numerically and experimentally in order to investigate the effects

of continents on mantle convection. Numerical and laboratory models of the Wilson cycle explain

this phenomenon in terms of floating continental crust and lithosphere interacting dynamically with

mantle convection (Gurnis, 1988; Zhong and Gurnis, 1993; Guillou and Jaupart, 1995; Lowman

and Jarvis, 1995, 1996). Numerical calculations (e.g. Grigné et al., 2007a) have demonstrated

that hot upwellings tend to form underneath the continents producing extensional stress, further

resulting in continental break-up. This phenomenon is also observed in models with continents

in chapter 4. Two-dimensional Cartesian and cylindrical mantle convection models (Lowman and

Jarvis, 1993; Ghias and Jarvis, 2007) have shown that upon the break-up of the supercontinent, the

continental blocks disperse. At this point separate upwellings form beneath the continental blocks

leading them back together once again as a supercontinent and this whole process repeats itself.

They have defined this as a flow reversal, which also resembles a Wilson cycle. The presence of hot

upwellings under the continents and flow reversal phenomenon were also observed in some other

studies (Gurnis, 1988; Bobrov and Trubitsyn, 1995; Trubitsyn and Rykov, 1995). Accumulations

of continental crust material can affect mantle convection in a number of other ways as brought

out in a series of papers by Lenardic and Kaula (1995, 1996), Lenardic (1997, 1998) and Moresi

and Lenardic (1997).

Lenardic (1998), using a model where the viscosity within the mantle is considered to be a

function of temperature, showed that heat loss through the oceans increases relative to the heat

loss through the continents as the convection becomes more vigorous, i.e. as the effective Rayleigh

number, which indicates the presence and strength of convection within a fluid body, increases.

This provides an explanation of the so-called Archean paradox, which comes about because of the

fact that the continental geotherm in the Archean period were similar to those at present (e.g. Boyd

et al., 1985) even though the Earth must have been hotter and the overall heat flow must have been
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larger. Both of these suppositions are reconcilable if the heat flow through the oceans was a larger

fraction of the Earth’s total heat flow in the Archean compared to the present days. Lenardic and

Moresi (2001,2003) investigated the variation of surface heat flow as a function of the thickness and

the lateral extent of the thermally coupled continents. Their numerical and parameterized models

show a good agreement at higher Rayleigh numbers. They also showed that the surface heat flow

varies only weakly with the thickness of a continent provided that the continental thickness is much

less than the depth of the mantle (Lenardic et al., 2005). The effects of continental crustal material

on mantle convection have been explored by Moresi and Lenardic (1997) in a three dimensional

Cartesian model similar to the two dimensional models discussed before.

Doin et al. (1997) used a two-dimensional numerical model to study how convective processes

control the thickness of the continental and oceanic lithosphere and suggested that long-term preser-

vation of a thick continental root requires both chemical buoyancy and enhanced viscosity of the

root material. The increased viscosity of the continental lithosphere must have a non-thermal ori-

gin. Continents suppress the intensity of mantle convection (Trubitsyn and Fradkov, 1985). Studies

were also done to see the effects of an overriding moving or stationary continent on downwelling

flows (Trubitsyn et al., 1998). They reveal that moving continents produce an inclined subduction

zone along its boundary and if it is not moving then the downwelling becomes vertical. Trubitsyn

et al. (1991) also studied the effects of continents on mantle convection using a model in which

a constant temperature gradient was applied at the upper boundary and showed that convection

cells get stretched in the presence of continents.

Christensen (1983) investigated mantle heat flow beneath continents, dynamic topography and

the free air anomaly at the surface, using a model consisting of two boxes, which were thermally and

mechanically coupled at their interface. Similar studies of how continent-ocean differences influence

mantle convection have been carried out by Rabinowicz et al. (1980), Mimouni and Rabinowicz

(1988) and Walzer and Hendel (1997). All of these studies indicate that convection cells beneath

continents can transfer heat laterally from the subcontinental mantle to adjacent oceanic regions,

which is in agreement with Lenardic et al. (2005). I show in chapter 4 that the average oceanic

heat flux increases when the continental coverage is 90% for isoviscous models. To understand these

effects using laboratory experiments, Guillou and Jaupart (1995) placed thermo-conductive plates

at the top of an experimental tank and showed that large-scale convection cells exist in conditions

which, in the absence of continents, would lead to a chaotic convection pattern dominated by

plumes.

Lowman and Jarvis (1993, 1995) carried out an investigation related to the influences of conti-

nental width, diffusivity, thickness and internal heating on continental collision and breakup. They

used a two-layer model setup where the top layer represents continent, which is mechanically cou-

pled by a mutual boundary condition with the lower layer representing mantle. The rigid upper
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layer attained the velocity based on the viscous lower layer. They showed that the flow reversal

phenomenon occurs even when the continental diffusivity is 4 times more than the mantle diffusivity.

My project involves two-dimensional numerical modeling of mantle convection in unit and wider

aspect ratio boxes with the main objectives being 1) the study of the origin and significance of

subadiabatic mantle temperature gradients, 2) observing any obvious difference between secular

cooling and the effects of internal heating and 3) the study of the combined effects of continents and

the 660 km-depth endothermic phase boundary on the thermal regime in the mantle. In chapter 2,

I present a set of calculations demonstrating the different energy balance mechanisms in the mantle

responsible for positive vertical temperature gradients. Some of the models include depth-dependent

viscosity and different surface boundary conditions in order to observe their effect on the shape of the

geotherm. This chapter was published in the Journal of Geophysical Research (Sinha and Butler,

2007). Chapter 3 contains a short study that was carried out to determine whether differences exist

between the effects of secular cooling and radioactive heat generation in numerical models of the

mantle. Another set of calculations are presented in chapter 4 showing the combined thermal effects

of the endothermic phase boundary across 660 km-depth and different surface boundary conditions

representing continental and oceanic lithosphere on the convection planform and subadiabaticity in

the mantle. This chapter was published in the Physics of the Earth and Planetary Interiors (Sinha

and Butler, 2009). I ran simulations in different aspect ratio boxes in order to investigate these

effects as well. Chapter 5 summarizes all of the observed interesting results from the previous three

chapters. In this chapter, I also discuss the significance of my new findings. In the appendices I

include some useful mathematical derivations and unpublished studies.
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Chapter 2

On the Origin and Significance of Subadiabatic

Temperature Gradients in the Mantle

2.1 Introduction

It is often assumed that the temperature profile in the Earth’s mantle outside of thermal boundary

layers is close to adiabatic due to the dominance of advective heat transfer (e.g. Schubert et al.,

2001). However, numerical simulations of convection scaled to the Earth’s mantle have shown that

in the presence of internal heating, which models the effects of radioactive decay, the temperature

increases with depth more slowly than would be predicted assuming adiabaticity (e.g. McKenzie et

al., 1974; Sotin and Labrosse, 1999; Matyska and Yuen, 2000; Bunge et al., 2001). Sleep (2003) and

Bunge (2005) have estimated that the temperature increase from the base of the surface thermal

boundary layer to the top of the basal thermal boundary layer is less, by roughly 400K, than would

be predicted if the mantle temperature profile were purely adiabatic. However, Zhong (2006) argues

for only 180K. This has significant consequences for estimates of the composition of the mantle

(Mattern et al., 2005) as well as for mantle transport properties (Monnereau and Yuen, 2002). The

presence of a subadiabatic thermal gradient in the mantle would also lead to a greater temperature

drop across the core-mantle boundary, that would increase estimates of the heat flow in this region

(Bunge, 2005). An increase in the estimated heat flow at the core-mantle boundary would, in turn,

be of significance in determining the energy budgets for the mantle and core and would imply a

young inner core (e.g. Butler et al., 2005; Davies, 2007).

Jeanloz and Morris (1987) presented a physical argument for the existence of a subadiabatic

gradient in the interior of purely internally heated convecting systems. They assumed that sub-

adiabatic gradients arise due to the balance between internal heating and vertical advection, and

because of the asymmetry between upwellings and downwellings in internally heated flows. This

argument, and similar ones (Sleep, 2003; Bunge, 2005) have been used to explain the existence of

the subadiabatic gradient observed in internally heated convection models. It is also well known

that an overshoot is often seen above the lower and below the upper thermal boundary layers in

the horizontally-averaged internal temperature in convection models (e.g. McKenzie et al., 1974;

11



Blackenbach et al., 1989), which occurs because vertical flows are forced to turn horizontally at the

top and bottom boundaries. The regions interior to these overshoots also correspond to regions of

subadiabatic gradients. I will show that the basal overshoot becomes more pronounced as internal

heating is increased, making a significant contribution to the total subadiabatic gradient.

Another mechanism causing regions of subadiabaticity is only present when convection is time-

dependent. Every transient plume has super and subadiabatic regions (Matyska and Yuen, 2002).

Although this mechanism is significant, its effects on a time-averaged geotherm are very similar

to those of the other two mechanisms. In section 2.2 I present in greater detail how these mecha-

nisms can result in subadiabatic temperature gradients and in section 2.6 I examine in detail the

energy balance in regions of subadiabaticity in order to determine the relative importance of each

mechanism.

Depth-dependent viscosity (e.g. Gurnis and Davies, 1986; Cserepes, 1993; Bunge et. al., 1996)

and the thermal effects of continents (e.g. Guillou et. al., 1995; Lenardic et. al., 2005) are significant

factors affecting convective heat transport in the mantle. In sections 2.6.1 and 2.6.2, I analyze the

effects of depth-dependent viscosity and different surface boundary conditions, representing the

effects of continents, on mantle subadiabaticity.

Sotin and Labrosse (1999) presented a series of calculations with mixed basal and internal

heating and were able to achieve excellent agreement with a parameterized model for the average

temperature and surface heat flux. The core-mantle boundary heat flux could not be calculated in

their parameterized model based on the interior temperature, however, and these authors argued

that the subadiabatic gradient in the lower mantle would need to be taken into account in order to

achieve such an agreement. In section 2.6.4, I demonstrate that an improved fit is achieved when

the subadiabatic gradient is considered.

2.2 Mechanisms Resulting in Subadiabatic Gradients

In order to achieve the greatest possible simplicity, I consider an incompressible Boussinesq system.

The temperature, T , in the energy equation can then be considered as an approximation for the

potential temperature in a compressible system (Jarvis and McKenzie, 1980), where I have ne-

glected the terms due to thermal conduction along the adiabat as well as viscous dissipation, which

are generally small. Using this approximation, when the temperature is constant with height, I

will consider the system to be adiabatic. When temperature increases or decreases with height,

the system is then said to be subadiabatic or superadiabatic, respectively. The non-dimensional

equation governing the temperature, T , is then

−
∂T

∂t
− u

∂T

∂x
− v

∂T

∂z
+ ∇2T +H = 0 (2.1)
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where t, u, v and H are time, horizontal and vertical velocity and internal heating parameter,

respectively. The terms in the equation (from left to right) represent the addition of heat to an

infinitesimal volume by local secular cooling, horizontal advection, vertical advection, diffusion and

internal heating, respectively. The equation has been non-dimensionalized using scales for distance,

d, time, d2/κ, and temperature change, ∆T , where d, κ and ∆T are the depth, thermal diffusivity

and the total temperature drop across the mantle, respectively. The resulting non-dimensional

internal heating parameter, H , is then (χd2ρ)/(∆Tk) where χ, ρ and k are the internal heating

rate per unit mass, density and thermal conductivity of mantle material, respectively. In all of

my calculations, I have run the models to a steady state, or statistically steady state, so that the

volume-averaged local secular cooling term is small. A statistical steady state is achieved when

the mean value within a moving-window of the spatially-averaged temperature or the heat flux is

constant. In most calculations, this was done visually and was found to be adequate. This term

could also be combined with H to give an effective internal heating rate. However, I will show that

in time-dependent calculations, the local secular cooling term is often locally a dominant term in

the energy balance even when its volume-average is minimal.

Jeanloz and Morris (1987) presented a physical argument for the existence of a subadiabatic

temperature gradient in purely internally heated convective systems. They assumed that the dif-

fusion and the horizontal contributions to advection are negligible everywhere except within the

boundary layers. This leaves a balance between vertical advection and internal heating,

v
∂T

∂z
= H. (2.2)

Since H is always positive in regions of upwelling (v > 0) the temperature gradient will be subadia-

batic (∂T/∂z > 0), while in regions of downwelling the temperature gradient will be superadiabatic.

Physically, heat is added by internal heating to both hot-rising and cold-sinking parcels of fluid,

leading to sub and superadiabatic temperature variations. Note that the deviation from a state

where ∂T/∂z = 0 decreases with the magnitude of the vertical velocity for a given value of H . For

this reason, in fast moving slabs and plumes, the temperature gradient predicted by this model

is close to adiabatic. In internally heated convection, the effects of subadiabatic upwellings and

superadiabatic downwellings will not cancel out when the temperature is averaged horizontally due

to the asymmetry between upwellings and downwellings in internally heated convection. In the

presence of strong internal heating, downwelling occurs in narrow, high-velocity regions while up-

wellings travel at a much lower speed and occur over a much wider horizontal distance (e.g. Jarvis

and Peltier, 1982 in their basally heated models). As a result of the greater area that the up-

wellings cover and because they are strongly subadiabatic, while the downwellings are only weakly

superadiabatic, the mean temperature variation with depth will be subadiabatic.

In order to quantify the magnitude of this effect for the Earth, I can consider the potential

temperature in a rising parcel of fluid where the energy balance is given by equation 2.2. For the
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Earth, the total surface heat flow is roughly 44TW (Pollack et al., 1993), of which roughly 8TW

comes from radioactivity in the continental crust (Hart and Zindler, 1986) resulting in roughly

36TW of energy coming from convection in the mantle. If all of this is attributed to the combined

effects of internal heating and secular cooling within the mantle (i.e. there is no flux of heat from the

core), I can calculate an upper bound for Heff = (χtotd
2ρ)/(M∆Tk) = 30.5. Here I have combined

secular cooling and internal heating to give an effective internal heating, Heff , and χtot = 36TW

and M are the total internal heating rate and total mass of the mantle (4×1024 kg) and I have used

typical mantle values for ρ = 4500kg/m3, ∆T = 3700K and k = 3 W/mK (Schubert et al., 2001).

Using equation 2.2 I can derive an expression for the total subadiabatic temperature drop for a

fluid parcel rising at a constant speed, v0, with an energy addition given at a rate controlled by H

and inverting this for v0 gives, v0 = H/∆Tsub. In order to have a subadiabatic temperature drop

that is at least 10% of the total temperature drop across the mantle, I require a non-dimensional

mean vertical velocity of no more than v0 = 305 or 0.18 cm/yr after dimensionalizing. This value is

roughly less by a factor of 20 than the mean plate velocity of 4 cm/yr. As a result, the slow upward

return flow must be significantly slower than the flows in mantle plumes or descending slabs for

this mechanism to be significant. I will show it is only large in calculations with large values of

H and I will refer to this mechanism hereafter as VA-H. Also, using my numerical results, I will

demonstrate that the balance given in equation 2.2 is not the only mechanism that causes mantle

subadiabaticity.

Another situation where regions of subadiabatic temperature gradients are observed, occur

even in purely basally heated convection. Temperature overshoots often occur just inside the top

and bottom thermal boundary layers where subadiabatic gradients occur on the interior of these

overshoots. They occur because vertical flows are forced to turn due to the presence of the top and

bottom boundaries. In the subadiabatic portions of the overshoot the dominant energy balance is

between the vertical and horizontal contributions to advection (Jarvis and Peltier, 1982). McKenzie

et al. (1974) showed examples of increased overshoot at the bottom boundary and decreased

overshoot at the top boundary when internal heating was increased. In their study of convection

with mixed internal and basal heating, Sotin and Labrosse (1999) observed that a small degree of

internal heating resulted in the disappearance of the overshoot at the upper thermal boundary layer.

I further investigate the increasing asymmetry between the top and bottom overshoots and their

cause in section 2.6. This overshoot-forming mechanism will be referred to hereafter as VA-HA.

When the calculation is time-dependent, the balance between local secular cooling and the other

terms in the energy equation, becomes significant. This mechanism remains significant in the energy

balance at a given location, even after the model is run to a statistical steady state. However, it

does not make large changes to the time-averaged geotherm. This mechanism only replaces VA-H

and VA-HA and as a result the geotherm is not significantly affected by it. As an example, if the
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subadiabatic gradient due to the overshoot is displaced up or down by transient flow, the local

secular cooling will be one of the dominant terms in the energy equation. From now on I will refer

to this mechanism as SC. In fig. 2.1, I show the terms in the energy equation that have been used

to calculate the different energy balances discussed above.

Figure 2.1: The different terms in the energy equation used to calculate the
dominant energy balances.

2.3 Derivations of the Governing Equations in 2D for Iso-

viscous and Variable Viscosity Calculations

The classical hydrodynamic field equations (Chandrasekhar, 1961) in tensor notation for the con-

servation of mass, momentum and energy can be written as

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (2.3)

ρ

(

∂ui

∂t
+ uj

∂ui

∂xj

)

= −gρδi3 +
∂τij
∂xj

(2.4)

and

ρ

(

∂E

∂t
+ uj

∂E

∂xj

)

=
∂

∂xj

(

k
∂T

∂xj

)

+H − p
∂uk

∂xk
+ Φ (2.5)

where the stress term is

τij = −pδij + η

(

∂ui

∂xj
+
∂uj

∂xi
−

2

3

∂uk

∂xk
δij

)

(2.6)
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and the viscous dissipation term is

Φ =
η

2

(

∂ui

∂xj
+
∂uj

∂xi

)2

−
2

3
η

(

∂uk

∂xk

)2

. (2.7)

These equations can be used as the generalized forms for both 2D and 3D systems. Here, ρ

is the density, ui are the velocities, δij is the Kronecker delta, E is the internal energy per unit

mass (=cpT , where cp is the specific heat), T , t and k are the temperature, time and the thermal

conductivity, respectively, H is the internal heating rate within the mantle per unit mass, η and p

are the dynamic viscosity and the pressure term.

In the mantle, an adequate equation of state assumes a linear dependence of density on tem-

perature

ρ = ρr[1 − α(T − Tr)] (2.8)

where Tr is a reference temperature, ρr is the density at that temperature and α is the thermal

expansion coefficient.

My model is Boussinesq-incompressible (both spatial and temporal derivatives of density are

zero except in the buoyancy term) and I consider a Newtonian fluid (stress is proportional to strain

rate) with infinite Prandtl number (fluid loses momentum much faster than heat). Now, after

taking into account all three assumptions, equations (2.3), (2.4) and (2.5) can be written in vector

notation as, respectively,

∇ · u′ = 0 (2.9)

T ′k̂ −∇ · τ = 0 (2.10)

∂T ′

∂t′
+ u′ · ∇T ′ =

1

Ra
∇2T ′ +H (2.11)

where all the parameters are non-dimensional and they have been non-dimensionalized using the

following relations,

(x, z) = d(x′, z′); t =
d2

κRa
t′; u =

κRa

d
u′; T = ∆TT ′. (2.12)

Here, κ, d and Ra are the thermal diffusivity, the depth of the mantle and the Rayleigh number,

respectively. The expression for the Rayleigh number is

Ra =
ρ gα∆Td3

ηκ
. (2.13)
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From now on all the equations are non-dimensional unless stated otherwise. If η is considered

as a constant within the system, then the momentum equation can be written as

T k̂ −∇p+ ∇2u = 0. (2.14)

Because I use a stream-function-vorticity (ψ-ω) formulation, the momentum equation needs to

be converted to a pair of Poisson’s equations for two-dimensional calculations. Vorticity can be

mathematically written as

ω = ĵ · ∇ × u. (2.15)

Now if I take ∇× of (2.14) and use (2.15)

−
∂T

∂x
+ ∇2ω = 0. (2.16)

or

∇2ω =
∂T

∂x
. (2.17)

If ux and uz are the velocities along x (horizontal) and z (vertical) directions and ψ is the

stream function, the velocities can be written as

ux =
∂ψ

∂z
, uz = −

∂ψ

∂x
. (2.18)

Substituting this into (2.15)

ω =
∂ux

∂z
−
∂uz

∂x
=
∂2ψ

∂2z
+
∂2ψ

∂2x
= ∇2ψ. (2.19)

At the end the two governing Poisson’s Equations for my isoviscous 2D calculations can be written

as

∇2ψ = ω (2.20)

and

∇2ω =
∂T

∂x
. (2.21)

Next I will derive a similar expression for calculations where η is variable in space. The horizontal

(x) and the vertical (z) components of the momentum equation in (2.10) can separately be written

as
∂τxx

∂x
+
∂τxz

∂z
= 0 (2.22)

and

T +
∂τzx

∂x
+
∂τzz

∂z
= 0. (2.23)
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The normal stress terms are expressed as

τxx = −p+ 2η
∂ux

∂x
(2.24)

and

τzz = −p+ 2η
∂uz

∂z
. (2.25)

Using the variable ω, the tangential stress terms can be written as

τxz = η

(

2
∂uz

∂x
+ ω

)

(2.26)

and

τzx = η

(

2
∂ux

∂z
− ω

)

. (2.27)

Substituting the expressions for the normal and the tangential stress terms in equations (2.22)

and (2.23) I get
∂

∂x

(

−p+ 2η
∂ux

∂x

)

+
∂

∂z

[

η

(

2
∂uz

∂x
+ ω

)]

= 0 (2.28)

and

T +
∂

∂x

[

η

(

2
∂ux

∂z
− ω

)]

+
∂

∂z

(

−p+ 2η
∂uz

∂z

)

= 0. (2.29)

After differentiating (2.28) w.r.t. z and (2.29) w.r.t. x, subtracting one from the other and

simplifying using the continuity equation ∇ · u = 0, the equation to solve for ω can be written as

∇2(Ω) =
∂T

∂x
+ 2

∂2η

∂x2

∂ux

∂z
− 2

∂2η

∂z2

∂uz

∂x
− 4

∂2η

∂x∂z

∂ux

∂x
(2.30)

where Ω = ηω.

The equation to solve for ψ can be written as

∇2ψ =
Ω

η
. (2.31)

The equations for the generalized 3D problem can be found in appendix A.
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2.4 Numerical Model Description

I solve equation 2.1 (or 2.11) and the infinite Prandtl number Navier-Stokes equations converted

to stream-function-vorticity formulation as shown in the previous section using finite-difference

method on 289× 289, 1153× 289 and 2305× 289 grids in 1× 1, 4× 1 and 8× 1 boxes, respectively.

The calculations for Ra = 108 were carried out with a resolution of 1153× 1153.

Some of my models included the effect of a jump in viscosity at a non-dimensional height of 0.77,

which is appropriate to 660 km depth in the mantle. I have plotted the vertical viscosity profile

with depth in fig. 2.2. I use the following equation to describe the vertical variation in viscosity, µ,

µ(z) =

(

µj − 1

2

)

tanh(λ(z660 − z)) +

(

µj + 1

2

)

(2.32)

where µj is the total jump in the viscosity and λ is a dimensionless width parameter which controls

the smoothness in the viscosity jump and I take it to have a value of 50. In stratified viscosity cal-

culations the Rayleigh number is based on the viscosity in the upper mantle. The stream-function-

vorticity pair of Poisson’s equations both for isoviscous (2.20 and 2.21) and variable viscosity (2.30

and 2.31) calculations were solved using MUDPACK (Adams, 1991).

In models that include the effects of continental lithosphere, an insulating layer of thickness hc

is placed on the top of the solution domain. Emplacement of the conducting lid changes both the

thermal and mechanical boundary conditions. Throughout this thesis the terms ”conducting lid”

and ”continental lithosphere” have equivalent meaning and are used interchangeably. The thermal

condition is achieved by assuming the heat flux at the base of the continental lithosphere is the

same as the heat flux at the surface and the mechanism of heat transport in the continent is purely

conductive. If I take the mantle and the continental thermal conductivities to be equal,

ke
Ts − Tb

hc
=
∂T

∂z
|z=1 (2.33)

where Ts and Tb are the temperatures at the surface and the base of the continental lithosphere

and I evaluate ∂T/∂z at the base of the continent. The parameter ke is the effective conductivity,

which is defined as the ratio between the conductivities of the continent and the underlying mantle.

I assume ke = 1 in all calculations. I solve for Tb(x) at each time-step and at each horizontal

position beneath the continent as it serves as the top boundary temperature for that part of the

mantle that is covered by a continent. Oceanic and continental regions are modeled as free-slip

and no-slip mechanical boundary conditions, respectively. In order to implement mixed surface

dynamical boundary conditions, I iterate the solution using the following expression for the surface

vorticity,

ωn+1 = {0.5(tanh(a(x − x1)) + tanh(a(x2 − x)))}(ωn − b un), (2.34)

where n is an iteration index, a describes the thickness of the transition between the free-slip and

the no-slip region, x1 and x2 define the horizontal extent of the continent, b is empirically chosen
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Figure 2.2: Average viscosity as a function of depth for a total viscosity jump
µj = 1, 10 and 100.
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so as to give rapid convergence and un is the surface velocity as of the nth iteration step. I use a

similar method to incorporate the effects of continent also in chapter 4. Fig. 2.3 shows a plot of

the surface velocity that was calculated using the expression.
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Figure 2.3: A snapshot of the surface velocity from a 4× 1 calculation with Ra =
106, H = 10, L = 1.2 and hc = 0.04 or model Ra6H10v1L1.2a4 ∗ (see table 2.1).

All of the boundaries have zero mass flux, while the side walls are reflecting and free-slip. The

bottom boundary (core-mantle boundary) is also free slip and kept isothermal with a constant non-

dimensional temperature T = 1 and except for the models with a conducting lid, the isothermal

top surface is kept at a non-dimensional temperature of T = 0. Fig. 2.4 shows a diagram of my

numerical model setup for the calculations that were carried out in this chapter. In this figure L is

continental length.

For Ra = 105 calculations, I used a conduction profile of temperature as an initial condition.

However, final temperature profiles from previous low Ra calculations were used to initialize models

with higher Ra (≥ 106).
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Figure 2.4: Numerical model setup showing the boundary conditions for vertical
and horizontal boundaries.
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2.5 Diagnostics

For each calculation I list the minimum and maximum temperatures along the geotherm outside the

thermal boundary layers, Tmin and Tmax, average temperature, < T >, and the surface and core-

mantle boundary heat fluxes, Qs and QCMB (table 2.1). The difference between Tmax and Tmin

gives the magnitude of the subadiabatic temperature drop, Tsub (table 2.1). I look for the terms in

the energy equation (see fig. 2.1) with the highest positive and lowest negative values in order to

determine the dominant balance at a point (table 2.2). I only consider the points where the vertical

temperature gradient is positive. The value of SC indicates the percentage of the total subadiabatic

temperature variation arising from volumes where local secular cooling is one of the dominant terms

in the energy balance. The remaining columns VA-H, VA-HA and C-H indicate the percentage of

the total subadiabatic temperature change arising from volumes where there is a dominant balance

between vertical advection and internal heating, vertical and horizontal advection, and conduction

and internal heating, respectively. I only list the most important energy balances in table 2.2, so the

numbers do not sum to 100%. The quantity Asub indicates the area of the domain with a positive

temperature gradient. These terms are time-averaged when the solutions are time-dependent.

In the following section I analyze a number of simple calculations to determine where subadia-

batic temperature gradients occur and the exact balance in the energy equation where they do. In

subsequent sections I look at the effects of depth-dependent viscosity, surface boundary conditions

and aspect ratio on subadiabatic temperature gradients. I then consider the effects of subadia-

baticity on the core-mantle boundary heat flux and in the final section I discuss my results in the

context of thermal convection in the Earth’s mantle.
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2.6 Numerical Model Results

M Ar Ra H µj L hc Tmin < T > Tmax Tsub Qs QCMB

Ra6H0v100a1 1 106 0 100 0 0 0.26 0.32 0.31 0.05 7.6 7.5

Raeff6H0v100a1 1 2.5 × 107 0 100 0 0 0.26 0.30 0.33 0.07 21.6 20.9

Ra6H0v10a1 1 106 0 10 0 0 0.34 0.38 0.41 0.07 14.3 14.2

Raeff6H0v10a1 1 3.5 × 106 0 10 0 0 0.34 0.38 0.41 0.07 21.2 21.3

Ra5H0v1a1 1 105 0 1 0 0 0.46 0.50 0.54 0.08 10.6 10.6

Ra5H0v1a4 4 105 0 1 0 0 0.45 0.50 0.55 0.1 8.06 8.06

Ra5H2.5v1a1 1 105 2.5 1 0 0 0.55 0.60 0.63 0.08 11.3 8.8

Ra5H2.5v1a4 4 105 2.5 1 0 0 0.55 0.60 0.65 0.1 9.5 7.0

Ra5H5v1a1 1 105 5 1 0 0 0.64 0.69 0.75 0.11 11.8 6.7

Ra5H5v1a4 4 105 5 1 0 0 0.65 0.67 0.75 0.1 9.9 4.7

Ra5H7.5v1a1 1 105 7.5 1 0 0 0.73 0.79 0.87 0.14 12.3 4.8

Ra5H7.5v1a4 4 105 7.5 1 0 0 0.75 0.77 0.87 0.12 10.9 3.4

Ra5H10v1a1 1 105 10 1 0 0 0.83 0.90 0.99 0.16 13 2.9

Ra5H10v1a4 4 105 10 1 0 0 0.84 0.89 0.99 0.15 13 2.9

Ra6H0v1a1 1 106 0 1 0 0 0.46 0.50 0.54 0.08 22.1 22.1

Ra6H0v1a4 4 106 0 1 0 0 0.46 0.50 0.54 0.08 15.8 16.0

Ra6H3v1a1 1 106 3 1 0 0 0.51 0.57 0.59 0.08 19.5 16.6

Ra6H3v1a4 4 106 3 1 0 0 0.51 0.57 0.6 0.09 19.3 16.2

Ra6H3v1a8 8 106 3 1 0 0 0.52 0.57 0.6 0.08 19.2 16.2

Ra6H4.5v1a1 1 106 4.5 1 0 0 0.53 0.59 0.62 0.09 20.0 15.4

Ra6H4.5v1a4 4 106 4.5 1 0 0 0.55 0.6 0.63 0.13 19.7 15.0

Ra6H10v1a1 1 106 10 1 0 0 0.61 0.65 0.67 0.06 23.6 13.6

Ra6H10v1a4 4 106 10 1 0 0 0.63 0.68 0.72 0.09 21.8 11.7

Ra6H10v1a8 8 106 10 1 0 0 0.63 0.68 0.71 0.08 21.7 11.8

Ra6H10v100a1 1 106 10 100 0 0 0.57 0.66 0.74 0.17 14.8 4.6

Raeff6H10v100a1 1 2 × 107 10 100 0 0 0.38 0.42 0.45 0.07 26.6 15.1

Ra6H10v10a1 1 106 10 10 0 0 0.63 0.73 0.8 0.17 16.9 6.8

Raeff6H10v10a1 1 6.2 × 106 10 10 0 0 0.47 0.54 0.55 0.08 26.6 17.6

Ra6H10v1L0.3a1∗ 1 106 10 1 0.3 0.04 0.71 0.74 0.76 0.05 19.4 8.2

Ra6H10v1L1.2a4∗ 4 106 10 1 1.2 0.04 0.72 0.76 0.82 0.1 17.8 7.9

Ra6H10v1L2.4a8∗ 8 106 10 1 2.4 0.04 0.72 0.77 0.83 0.11 17.4 7.5

Ra6H10v1L0.4a1∗ 1 106 10 1 0.4 0.04 0.68 0.75 0.78 0.1 20.8 10.6

Ra6H10v1L1.6a4∗ 4 106 10 1 1.6 0.04 0.72 0.77 0.82 0.1 17.8 7.8

Ra6H10v1L3.2a8∗ 8 106 10 1 3.2 0.04 0.72 0.76 0.82 0.1 17.8 7.8

Ra6H10v1L1a1 1 106 10 1 1 0 0.88 0.89 0.94 0.06 13.7 3.7

Ra6H10v1L4a4 4 106 10 1 4 0 0.84 0.84 0.88 0.04 14.4 4.4

Ra6H10v1L8a8 8 106 10 1 8 0 0.83 0.83 0.88 0.05 14.4 4.4

Ra6H10v1L1a1∗ 1 106 10 1 1 0.04 1 1.02 1.05 0.05 11.2 -1.0

Ra6H10v1L4a4∗ 4 106 10 1 4 0.04 0.99 0.99 1.02 0.03 10.1 0.1

Ra6H10v1L8a8∗ 8 106 10 1 8 0.04 0.99 0.99 1.02 0.03 10.0 0.0

Ra6H18v1a1 1 106 18 1 0 0 0.78 0.85 0.9 0.12 25.3 7.3
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Ra6H18v1a4 4 106 18 1 0 0 0.75 0.8 0.84 0.09 25.7 7.8

Ra6H18v1a8 8 106 18 1 0 0 0.75 0.8 0.84 0.09 25.7 7.7

Ra6H27v1a1 1 106 27 1 0 0 0.82 0.84 0.88 0.06 31.9 4.9

Ra6H27v1a4 4 106 27 1 0 0 0.87 0.92 0.98 0.11 30.8 3.5

Ra6H36v1a1 1 106 36 1 0 0 0.95 0.99 1.06 0.11 37.4 1.0

Ra6H36v1a4 4 106 36 1 0 0 0.98 1.05 1.13 0.15 36.2 0.1

Ra6H36v1a8 8 106 36 1 0 0 0.98 1.05 1.12 0.14 36.3 0.2

Ra7H0v1a1 1 107 0 1 0 0 0.48 0.50 0.52 0.04 38.0 38.0

Ra7H10v1a1 1 107 10 1 0 0 0.58 0.61 0.64 0.06 40.4 29.1

Ra7H20v1a1 1 107 20 1 0 0 0.62 0.67 0.68 0.06 45.0 25.0

Ra7H30v1a1 1 107 30 1 0 0 0.68 0.73 0.76 0.08 50.0 20.0

Ra7H40v1a1 1 107 40 1 0 0 0.75 0.80 0.83 0.08 55.0 15.0

Ra7H50v1a1 1 107 50 1 0 0 0.80 0.87 0.90 0.1 60.0 10.0

Ra7H60v1a1 1 107 60 1 0 0 0.87 0.94 0.98 0.11 67.0 7.0

Ra8H0v1a1 1 108 0 1 0 0 0.49 0.50 0.52 0.03 68.0 68.0

Ra8H10v1a1 1 108 10 1 0 0 0.52 0.56 0.57 0.05 76.0 66.0

Table 2.1: models, M ; aspect ratio, Ar; Rayleigh number, Ra; non-dimensional internal

heating, H; total jump in viscosity, µj ; non-dimensional length and thickness of the continental

lithosphere, L and hc, respectively; Tmin and Tmax are the minimum and maximum internal

horizontally-averaged temperatures, respectively; average temperature, < T >; temperature drop

due to subadiabaticity, Tsub and QCMB and Qs are the core-mantle boundary and surface heat

fluxes, respectively.

† continent is located in the middle

∗ models with partial or full conducting lid coverage

25



M Ar Ra H µj L hc VA-H(%) VA-HA(%) SC(%) C-H(%) Asub(%)

Ra6H0v100a1 1 106 0 100 0 0 0 58.26 0.4 0 48.57

Raeff6H0v100a1 1 2.5 × 107 0 100 0 0 0.04 41.48 43.96 0.03 54.62

Ra6H0v10a1 1 106 0 10 0 0 0 76.75 0.02 0 47.75

Raeff6H0v10a1 1 3.5 × 106 0 10 0 0 0 78.37 0.06 0 51.51

Ra5H0v1a1 1 105 0 1 0 0 0 71.34 0.02 0 47.41

Ra5H0v1a4 4 105 0 1 0 0 0 70.63 0.18 0 53.34

Ra5H2.5v1a1 1 105 2.5 1 0 0 0.41 77.03 0 1.4 48.22

Ra5H2.5v1a4 4 105 2.5 1 0 0 0.82 25.59 64.18 0.91 51.49

Ra5H5v1a1 1 105 5 1 0 0 4.88 74.55 0 2.68 48.59

Ra5H5v1a4 4 105 5 1 0 0 2.29 17.24 71.03 1.27 46.55

Ra5H7.5v1a1 1 105 7.5 1 0 0 25.03 58.16 0 3.83 51.55

Ra5H7.5v1a4 4 105 7.5 1 0 0 7.24 15.84 67.13 1.75 47.98

Ra5H10v1a1 1 105 10 1 0 0 40.6 44.41 0 4.65 55.08

Ra5H10v1a4 4 105 10 1 0 0 17.07 15.31 58.22 2.26 52.43

Ra6H0v1a1 1 106 0 1 0 0 0 72 0.41 0 50.56

Ra6H0v1a4 4 106 0 1 0 0 0 43.03 49.24 0 49.11

Ra6H3v1a1 1 106 3 1 0 0 0.07 29.85 65.54 0.08 54.33

Ra6H3v1a4 4 106 3 1 0 0 0.16 35.15 60.16 0.09 52.88

Ra6H3v1a8 8 106 3 1 0 0 0.09 27.05 69.37 0.04 51.80

Ra6H4.5v1a1 1 106 4.5 1 0 0 0.4 31.68 63.03 0.2 54.46

Ra6H4.5v1a4 4 106 4.5 1 0 0 0.21 27.08 69.07 0.08 52.53

Ra6H10v1a1 1 106 10 1 0 0 3.93 62.48 0 5.32 60.80

Ra6H10v1a4 4 106 10 1 0 0 1.7 29.50 63.39 0.52 55.20

Ra6H10v1a8 8 106 10 1 0 0 0.95 26.73 67.70 0.38 53.96

Ra6H10v100a1 1 106 10 100 0 0 3.93 62.48 0 5.32 60.8

Raeff6H10v100a1 1 2 × 107 10 100 0 0 0.93 24.72 64.16 0.29 52.55

Ra6H10v10a1 1 106 10 10 0 0 21.29 48.68 9.34 6.73 49.36

Raeff6H10v10a1 1 6.2 × 106 10 10 0 0 1.04 31.12 61.88 0.19 54.05

Ra6H10v1L0.3a1∗ 1 106 10 1 0.3 0.04 6.54 47.98 31.69 2.18 58.48

Ra6H10v1L1.2a4∗ 4 106 10 1 1.2 0.04 1.52 21.19 73.43 0.33 55.38

Ra6H10v1L2.4a8∗ 8 106 10 1 2.4 0.04 2.00 19.93 74.23 0.34 57.14

†Ra6H10v1L0.4a1∗ 1 106 10 1 0.4 0.04 5.95 71.55 0 3.76 60.98

†Ra6H10v1L1.6a4∗ 4 106 10 1 1.6 0.04 2.22 28.83 63.90 0.51 55.07

†Ra6H10v1L3.2a8∗ 8 106 10 1 3.2 0.04 1.43 21.44 73.29 0.32 55.08

Ra6H10v1L1a1 1 106 10 1 1 0 38.04 42.51 0.5 6.16 58.63

Ra6H10v1L4a4 4 106 10 1 4 0 5.88 23.02 62.47 1.60 52.71

Ra6H10v1L8a8 8 106 10 1 8 0 4.56 20.73 67.43 1.34 52.06

Ra6H10v1L1a1∗ 1 106 10 1 1 0.04 36.04 1.86 0.9 38.79 62.51

Ra6H10v1L4a4∗ 4 106 10 1 4 0.04 17.48 13.21 54.72 6.70 61.44

Ra6H10v1L8a8∗ 8 106 10 1 8 0.04 16.93 13.22 55.44 6.90 61.57

Ra6H18v1a1 1 106 18 1 0 0 18.32 31.64 37.94 3.20 63.72

Ra6H18v1a4 4 106 18 1 0 0 4.46 28.34 61.14 1.08 55.93

Ra6H18v1a8 8 106 18 1 0 0 4.29 28.72 61.21 1.02 55.59

Ra6H27v1a1 1 106 27 1 0 0 34.27 24.46 0.48 11.91 62.15
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Ra6H27v1a4 4 106 27 1 0 0 10.69 24.29 58.40 1.65 59.33

Ra6H36v1a1 1 106 36 1 0 0 25.93 20.21 35.53 6.52 65.53

Ra6H36v1a4 4 106 36 1 0 0 16.17 19.88 54.64 4.19 68.65

Ra6H36v1a8 8 106 36 1 0 0 14.54 20.89 56.37 3.62 68.09

Ra7H0v1a1 1 107 0 1 0 0 0.45 36.68 61.54 0.01 49.37

Ra7H10v1a1 1 107 10 1 0 0 0.16 22.31 75.02 0.05 55.45

Ra7H20v1a1 1 107 20 1 0 0 0.07 28.96 68.4 0.01 52.14

Ra7H30v1a1 1 107 30 1 0 0 0.12 18.2 76.81 0.08 50.52

Ra7H40v1a1 1 107 40 1 0 0 0.31 22.16 72.44 0.15 56.28

Ra7H50v1a1 1 107 50 1 0 0 1.38 29.46 62.35 0.11 58.94

Ra7H60v1a1 1 107 60 1 0 0 0.77 15.35 78.92 0.07 68.31

Ra8H0v1a1 1 108 0 1 0 0 1.1 4.9 93.71 0.01 50.6

Ra8H10v1a1 1 108 10 1 0 0 1.28 4.44 85.04 2.26 70.1

Table 2.2: Models, M ; aspect ratio, Ar; Rayleigh number, Ra; non-dimensional internal

heating, H; total jump in viscosity, µj ; non-dimensional length and thickness of the continental

lithosphere, L and hc, respectively; energy balance between local secular cooling and the other

terms, SC; VA-H, VA-HA and C-H are the energy balances between vertical advection-internal

heating, vertical-horizontal advection and conduction-internal heating, respectively; percentage of

the points with positive vertical temperature gradient, Asub.

† continent is located in the middle

∗ models with partial or full conducting lid coverage
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In fig. 2.5 I show results of calculation Ra5H10v1a1, run with Ra = 105 and H = 10, where the

ratio of internal heating to total heat flux (Urey ratio) is 0.77 . I first consider this calculation with

a relatively low Rayleigh number and unit aspect ratio because of the clarity afforded by displaying

results that consist of only one convective roll in the absence of boundary layer instabilities. Fig.

2.5a displays the steady-state temperature field, while in fig. 2.5b I display a filled color contour plot

indicating the dominant balance between different terms of the energy equation at each point within

the box. The method of calculating the dominant balance at a point has previously been discussed

in section 2.5. The filled contours are overlain by a vertical temperature gradient line contour plot

where only the positive contours (places where ∂T/∂z > 0) have been shown. I only plot the positive

part of the vertical temperature gradient since the large superadiabatic temperature variation in

the boundary layers overwhelms the small signal from the positive temperature gradient. Every

integer value in the balance plot indicates a particular dominant balance between two different terms

in the energy equation (described in the figure caption). In order to maintain a consistent color

scheme I use the same colorbar for all plots of this type. As can be seen, and as is characteristic of

strongly internally heated convection, the flow field is strongly asymmetric with a narrow region of

rapid downwelling on the left-hand side of the box and slow upward flow (shown by the overlaying

arrow plot) occurring over the rest of the domain. The geotherm for this calculation can be seen

in fig. 2.7a. The broad bottom overshoot in the geotherm is caused by the large area of positive

vertical temperature gradient associated with the dominant balance between vertical and horizontal

advection, VA-HA (shown as green in fig. 2.5b). In models without internal heating, symmetric

overshoots are seen adjacent to the top and bottom thermal boundary layers.

Matyska and Yuen (2002) reported similar subadiabaticity above regions where cold, avalanche

material had ponded at the base of a simulation with phase transitions and temperature-dependent

viscosity. In calculation Ra5H10v1a1 the upwelling at the top boundary is very broad and the

ambient temperature is essentially the same as the temperature in the upwelling, resulting in very

little horizontal advection of heat and hence no overshoot.

The cross-like pattern (shown in brown) in fig. 2.5b, that can be seen in the regions where

conduction and internal heating are balancing one another, occurs at the center of the convection

roll, where vertical and horizontal velocities are 0. Within much of the slow upward return flow

the dominant balance in the energy equation is between internal heating and vertical advection

(VA-H), that leads to the broad area of low amplitude positive thermal gradient (shown as orange

in fig. 2.5b). Although the positive gradient associated with the overshoot at the base of this

calculations appears to make a larger contribution to the subadiabatic gradient, the data in table

2.2 indicate that mechanisms VA-H and VA-HA make similar contributions to the total subadiabatic

temperature variation.
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Figure 2.5: Results from calculation Ra5H10v1a1 with Ra = 105 and H = 10:
The temperature field together with velocity vector arrows a) and balance in the
different terms of the energy equation together with the positive part of the vertical
temperature gradient b) (Colorbar: 1 - local secular cooling and vertical advection,
2 - local secular cooling and horizontal advection, 3 - local secular cooling and
conduction, 4 - local secular cooling and internal heating, 5 - vertical and horizontal
advection or VA-HA, 6 - vertical advection and conduction, 7 - vertical advection
and internal heating or VA-H, 8 - horizontal advection and conduction, 9 - horizontal
advection and internal heating, 10 - conduction and internal heating). Here 1, 2,
3 and 4 all together in the colorbar is the balance mechanism SC and due to the
steady state of the model, SC is not present in this plot.

29



In order to elucidate the origin of the symmetric temperature overshoots in a purely basally

heated model, I examine fig. 2.6, where fig. 2.6a and 2.6b are the temperature field and the

geotherm for a calculation with Ra = 106 and H = 0 (model Ra6H0v1a1 in table 2.1). The filled

contour plot in fig. 2.6c shows the area with positive vertical temperature gradient (similar to fig.

2.5b) with an overlain arrow plot of the velocity field. The overshoots in the geotherm (fig. 2.5b)

are associated with the regions of strong positive vertical temperature gradient that occur in long

thin, almost horizontal strips (fig. 2.5c) just above the lower and below the upper thermal boundary

layers and adjacent to the rising and sinking plumes (fig. 2.5a). In fig. 2.6d, I plot the terms in the

energy equation for vertical advection, −v∂T/∂z, horizontal advection, −u∂T/∂x, and diffusion,

∇2T along a line, which is shown in purple in fig. 2.6c. It can be seen that in the overshoot regions

the dominant balance in the energy equation is between vertical and horizontal advection as was

previously explained by Jarvis and Peltier (1982). The data in table 2.2 also show that regions

where the two different advection terms are balancing each other (VA-HA), account for 72% of the

subadiabatic gradient.
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Figure 2.6: Results from the calculation Ra6H0v1a1 with Ra = 106 and H = 0: a)
The temperature field, b) the horizontally-averaged vertical temperature profile, c)
the positive part of the vertical temperature gradient and d) the vertical advection
(solid line), horizontal advection (dashed line) and diffusion term (dotted line) along
the purple line shown in c.
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In fig. 2.7a, 2.7b and 2.7c, I show time-averaged geotherms calculated from simulations with

Ra = 105 (Ra5H0v1a1, Ra5H2.5v1a1, Ra5H5v1a1, Ra5H7.5v1a1 and Ra5H10v1a1) and 107 (Ra7H0v1a1,

Ra7H10v1a1, Ra7H20v1a1, Ra7H30v1a1, Ra7H40v1a1, Ra7H50v1a1 and Ra7H60v1a1) in 1 × 1

boxes and Ra = 106 (Ra6H0v1a4, Ra6H3v1a4, Ra6H10v1a4, Ra6H18v1a4, Ra6H27v1a4 and

Ra6H36v1a4) in 4 × 1 boxes, respectively, with different degrees of internal heating. The time-

averaged geotherms for Ra = 105 with different H in 4× 1 boxes looked very similar to the ones in

1 × 1 boxes. Due to the mechanism described in the previous paragraph, as the degree of internal

heating is increased, the surface overshoot decreases in magnitude and then disappears as the lower

overshoot increases. It can also be seen that at Ra = 107 the geotherm, interior to the overshoot

and top thermal boundary, is close to adiabatic for values of H up to roughly 20 whereupon VA-H

and SC mechanisms start to cause significantly subadiabatic interior gradients. This phenomenon

can be observed for calculations with values of H = 10 and higher when Ra = 106. VA-HA makes

up a decreasing fraction of the subadiabatic gradient in the models as internal heating is increased.

This phenomenon can be seen in table 2.2 for the set of calculations with Ra = 105 and increasing

H (Ra5H0v1a1, Ra5H2.5v1a1, Ra5H5v1a1, Ra5H7.5v1a1 and Ra5H10v1a1), where the value for

VA-HA decreases from 71% to 44% and VA-H increases from 0 to 40% as the amount of internal

heating is increased. Also, the scaled value of Tsub increases from 296K to 592K, assuming a tem-

perature drop ∆T = 3700K (Boehler, 2000). The models with Ra = 106 show time-dependence,

indicated by the higher values of SC, but overall, the percentage of the total subadiabatic gradient

due to mechanism VA-HA decreases with increasing H while VA-H increases. All of the models for

Ra = 107 (Ra7H0v1a1, Ra7H10v1a1, Ra7H20v1a1, Ra7H30v1a1, Ra7H40v1a1, Ra7H50v1a1 and

Ra7H60v1a1) are strongly time-dependent and as a result, the most significant energy balance is

due to mechanism SC. Mechanisms VA-H and VA-HA show similar trends as those seen for lower

Rayleigh number calculations, but these are not as clear due to the dominance of SC. For higher

Rayleigh numbers or when the calculation is time-dependent, SC acts very much like VA-H and

VA-HA, concealing their effects.
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Figure 2.7: Time-averaged geotherms from the calculations a) Ra5H0v1a1,
Ra5H2.5v1a1, Ra5H5v1a1, Ra5H7.5v1a1, and Ra5H10v1a1 with Ra = 105 and
H = 0, 2.5, 5, 7.5 and 10, respectively, in 1 × 1 boxes; b) Ra6H0v1a4, Ra6H3v1a4,
Ra6H10v1a4, Ra6H18v1a4, Ra6H27v1a4 and Ra6H36v1a4 with Ra = 106 and
H = 0, 3, 10, 18, 27 and 36, respectively, in 4×1 boxes; c) Ra7H0v1a1, Ra7H10v1a1,
Ra7H20v1a1, Ra7H30v1a1, Ra7H40v1a1, Ra7H50v1a1 and Ra7H60v1a1 with Ra =
107 and H = 0, 10, 20, 30, 40, 50 and 60, respectively, in 1 × 1 boxes.
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Fig. 2.8a and 2.8b show the temperature snapshot and the energy balance plot corresponding

to the same time instant, for a Rayleigh number of 106 and H = 3 (Ra6H3v1a4). Similar plots

can be seen in fig. 2.8c and d for H = 36 (Ra6H36v1a4). The blue color in the balance plots

indicates time dependence (SC). In table 2.2, the time-averaged value for mechanism SC shows

that it is responsible for 60% and 55% of the subadiabatic gradient for calculations Ra6H3v1a4

and Ra6H36v1a4, while VA-HA accounts for 35% and 20%, and corresponds to the green color

near the core-mantle boundary, in the regions of high subadiabaticity. Mechanism VA-HA can also

be seen just below the top thermal boundary layer, but as the effective internal heating rate is

reasonably high, it is much weaker than that at the bottom and does not produce a top overshoot

in the geotherm (see fig. 2.7b). VA-H (shown as orange in the balance plots) is almost insignificant

in Ra6H3v1a4 because of the low internal heating, but it accounts for 16% of the subadiabatic

gradient in model Ra6H36v1a4, which is almost entirely internally heated. As can be seen in the

figure, VA-H is most prevalent in the regions of broad upwelling. I have not shown similar plots

for calculations with Ra = 107 or 108 because the complex, short wavelength patterns make these

plots very difficult to interpret visually.
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H = 36 (Ra6H36v1a4).
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Fig. 2.9a and 2.9b show the magnitude of the subadiabatic temperature drop, Tsub, and the area

of the domain with positive temperature gradient, Asub, with increasing Urey ratio (ratio of the

internal heating to the surface heat flux) for calculations with Ra = 105 (Ra5H0v1a4, Ra5H2.5v1a4,

Ra5H5v1a4, Ra5H7.5v1a4 and Ra5H10v1a4) and 106 (Ra6H0v1a4, Ra6H3v1a4, Ra6H4.5v1a4,

Ra6H10v1a4, Ra6H18v1a4, Ra6H27v1a4 and Ra6H36v1a4) in 4 × 1 boxes, and 107 (Ra7H0v1a1,

Ra7H10v1a1, Ra7H20v1a1, Ra7H30v1a1, Ra7H40v1a1, Ra7H50v1a1 and Ra7H60v1a1) in 1 × 1

boxes. Tsub clearly increases with increasing Urey ratio and decreases as the Rayleigh number is

increased, however, no scaling could be found. As can be seen in fig. 2.9, models with Ra = 105,

106 and 107 have values of Asub close to 50% up to a Urey ratio of roughly 60% whereupon Asub

increases suddenly.
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Figure 2.9: Magnitude of the total subadiabatic temperature drop a) and area of
domain with a positive temperature gradient b) as a function of the Urey Ratio for
Ra = 105 and 106 in a 4 × 1 box and Ra = 107 in a 1 × 1 box.
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2.6.1 The Effects of Depth-dependent Viscosity

I ran simulations with a surface Rayleigh number of Ra = 106 with H = 0 and 10 and speci-

fied total increases of µj = 10 and 100 in viscosity (Ra6H0v100a1, Ra6H0v10a1, Ra6H10v100a1

and Ra6H10v10a1). Due to the very low convective vigor when I use µj = 100 and H = 0

(Ra6H0v100a1) the interior of the geotherm was subadiabatic (not shown). Jarvis and Peltier

(1982) showed in their basally-heated constant-viscosity calculations that the geotherm is subadi-

abatic for Rayleigh numbers between 5 to almost 100 times the critical value. My analysis shows

that the subadiabaticity in these cases is caused by mechanism VA-HA. I ran another set of models

with increased surface Rayleigh numbers such that the surface heat flux was close to the same for

the models with depth-dependent and constant viscosity in order to be able to compare models

with the same effective Rayleigh number.

Fig. 2.10 shows the time-averaged geotherms from models with different viscosity jumps and the

same effective Rayleigh numbers forH = 0 (Raeff6H0v100a1, Raeff6H0v10a1 and Ra6H0v1a1). The

average temperature decreases as I increase the total viscosity jump, because a larger temperature

drop is required at the core-mantle boundary to balance the surface heat flux when the basal

thermal boundary layer becomes thicker due to the increased viscosity (Butler and Peltier, 2000).

The magnitudes of the top and bottom overshoots do not change, however, the surface overshoot

becomes narrower while the bottom overshoot becomes broader because of the difference in mobility

of the mantle material as the total jump in viscosity is increased. The interior of the geotherms is

adiabatic in all cases.
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Figure 2.10: Geotherms from calculations Raeff6H0v100a1, Raeff6H0v10a1 and
Ra6H0v1a1 with no internal heating and viscosity jumps of µj = 1, 10 and 100,
respectively, using the same effective Rayleigh number, which was determined by
matching the heat flux of the layered viscosity model with the heat flux of a similar
isoviscous calculation.
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In fig. 2.11, I plot the time-averaged geotherms from calculations with almost identical ef-

fective Rayleigh numbers, H = 10 and viscosity increases of µj = 1, 10 and 100 (Ra6H10v1a1,

Raeff6H10v100a1 and Raeff6H10v10a1). Note that as the viscosity jump increases, the surface

overshoot reappears and becomes more pronounced while the lower overshoot becomes broader.

The reappearance of the surface overshoot in the presence of internal heating is caused by the

lower average temperature in the case of depth-dependent viscosity and the greater mobility near

the surface. Both of these factors enhance the horizontal advection of heat leading to a surface

overshoot due to the mechanism VA-HA. However, if the effective Rayleigh number is kept the

same, depth-dependent viscosity does not lead to a significant change in the total subadiabaticity.
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Figure 2.11: Geotherms from calculations Ra6H10v1a1, Raeff6H10v100a1 and
Raeff6H10v10a1 with H = 10 and viscosity jumps of µj = 1, 10 and 100 with depth,
respectively, using the same effective Rayleigh number, which was determined by
matching the heat flux of the layered viscosity model with the heat flux of a similar
isoviscous calculation.
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2.6.2 The Effects of Surface Boundary Conditions

Fig. 2.12 shows the geotherms from models with a Rayleigh number of 106 and H = 10 calculated

with different surface boundary conditions including free-slip, no-slip, no-slip with a conducting

lid of thickness 0.04 (dimensionally 116 km), as well as models with mixed surface boundary con-

ditions in 1 × 1 boxes (Ra6H10v1a1, Ra6H10v1L0.3a1∗, Ra6H10v1L0.4a1∗, Ra6H10v1L1a1 and

Ra6H10v1L1a1∗). I also conducted similar calculations with the same absolute continent sizes

where continents cover the same percentage of the surface area in higher aspect ratio (4 and 8)

boxes and the time-averaged geotherms looked almost identical (discussed in the next section). The

model with a stagnant-lid on top (e.g. no-slip or no-slip with a conducting lid) may be especially

applicable to Venus and Mars (e.g. Reese et al., 1998; Solomatov and Moresi, 1996; Stevenson,

2003). In models where the continental length is 0.4 (Ra6H10v1L0.4a1∗), the continent is in the

middle and for models with continental length 0.3 (Ra6H10v1L0.3a1∗), it is at the left of the box for

unit aspect ratio calculations. In the case when the surface is entirely covered by a conducting lid

the mantle transports heat into the core because of its very high internal temperature in a square

box, otherwise, all the geotherms show subadiabaticity with an overshoot at the bottom. Note that

putting the conducting lid on the left or in the middle of the box does not make much difference

as shown by the geotherm plots in fig. 2.12. The values in table 2.2 show that when the surface

is changed to no-slip from free-slip in unit aspect ratio models, the subadiabatic contribution due

to VA-HA decreases from 62% to 42% and further decreases to only 2% when the entire surface

is covered by a conducting lid. On the other hand the total contribution due to the mechanism

VA-H increases from 4% to 36% indicating that mechanism VA-H becomes more important when

a stagnant lid is in place. Similar trends can also be seen in higher aspect ratio calculations. Al-

though the mechanism causing the subadiabaticity changes, the data in table 2.1 shows that the

total magnitude of the subadiabatic temperature drop, Tsub, is not significantly affected by the

surface boundary condition. In the following section, I discuss the effects due to larger aspect ratio

boxes.
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Figure 2.12: Geotherms from the calculations Ra6H10v1a1, Ra6H10v1L0.3a1∗,
Ra6H10v1L0.4a1∗, Ra6H10v1L1a1 and Ra6H10v1L1a1∗ with H = 10 and different
surface boundary conditions for Ra = 106 in square boxes.
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2.6.3 The Effects of Aspect Ratio

In larger aspect ratio boxes, solutions become more time-dependent and as a result, SC becomes

increasingly important as a mechanism causing subadiabaticity as can be seen in the results listed

in table 2.2. The data in table 2.1 show that in almost all of the models with a free or mixed

surface boundary, Tsub stays the same or increases slightly as the aspect ratio of the box is in-

creased. When complete or partial free-slip surface boundary conditions are used, wider boxes

result in longer wavelength convection cells and enhanced horizontal advection of heat near the

lower boundary. Consequently, VA-HA becomes more important causing a greater bottom over-

shoot and hence, increased subadiabaticity. As an example, I have plotted the geotherms from

aspect ratio 8 calculations in fig. 2.13 for different surface boundary conditions. Having a conti-

nent in the middle (Ra6H10v1L1.6a4∗ and Ra6H10v1L3.2a8∗) made absolutely no difference in the

geotherm and hence, I have shown only the geotherm from model where the continent is located

on the left side of the box.

If the surface is no-slip or is completely covered by continental lithosphere, the wavelength of

the convection cells decreases when the aspect ratio of the box is increased. With this boundary

condition, more downwellings occur and they are caused by closely-spaced surface thermal bound-

ary layer instabilities. Because of the shorter wavelength, VA-HA is less significant and hence the

total subadiabaticity is decreased. The results from 4 × 1 and 8 × 1 boxes were essentially iden-

tical, indicating that an aspect ratio of 4 is sufficient to analyze the energy balances causing the

subadiabaticity.
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Figure 2.13: Geotherms from the calculations Ra6H10v1a8, Ra6H10v1L2.4a8∗,
Ra6H10v1L8a8 and Ra6H10v1L8a8∗ with H = 10 and different surface boundary
conditions for Ra = 106 in 8 × 1 boxes.
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2.6.4 The Effects of Subadiabatic Temperature Gradients on Heat Flux

at the Core-Mantle Boundary

In fig. 2.14, I present the time-averaged geotherms for calculations carried out with the Rayleigh

numbers indicated on the figure and with an internal heating rate of H = 10 (Ra5H10v1a1,

Ra6H10v1a1, Ra7H10v1a1 and Ra8H10v1a1). As has been pointed out by Sotin and Labrosse

(1999) and Butler and Peltier (2000) in calculations with mixed basal and internal heating, the

mean internal temperature is a decreasing function of the thermal Rayleigh number for a fixed

internal heating rate. Sotin and Labrosse (1999) presented scaling results for the average tem-

perature and for the surface heat flow based on their three-dimensional numerical results and my

two-dimensional results are in excellent agreement with their scaling. Of interest is that as the

thermal Rayleigh number increases, the surface boundary layer thickness, δs, decreases as roughly

Ra−1/3 while the internal temperature and hence the temperature drop across the surface thermal

boundary layer, ∆Ts, decreases. The surface heat flow can be calculated from Q = ∆Ts/δs. As

a result, the effects offset one another, but the boundary layer thickness decreases more rapidly

leading to an increase in the surface heat flow with increasing thermal Rayleigh number, but the

increase is much slower than in the purely basally heated case. At the base of the convecting system,

however, the decrease in the average internal temperature increases the temperature drop, ∆Tc,

and the basal boundary layer thickness, δc, decreases as roughly Ra−1/3 so that both effects should

lead to an increase in the basal heat flow. In an equilibrium state, however, the heat flow at the

base is linked to the heat flow at the surface by Qc = Qs −H where Qc and Qs represent the total

heat flows at the core-mantle boundary and surface, respectively. The effect of the subadiabatic

gradient is to increase the temperature drop at the core-mantle boundary and it decreases with

increasing thermal Rayleigh number for fixed H as can be seen from the results in table 2.1. As

I will show, the decrease in the subadiabaticity allows for the energy balance at the core-mantle

boundary.
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Figure 2.14: Geotherms calculated for simple Boussinesq calculations
Ra5H10v1a1, Ra6H10v1a1, Ra7H10v1a1 and Ra8H10v1a1 in 1 × 1 boxes with
H = 10 and different thermal Rayleigh numbers.
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That the subadiabatic gradient is important can be easily verified by considering the run with

Ra = 105 and H = 10 (Ra5H10v1a1) for which there would be practically no temperature drop

at the core-mantle boundary in the absence of a subadiabatic gradient while in this case the core-

mantle boundary heat flux accounts for roughly 23% of the surface heat flux. The scaling results for

the surface heat flux of Sotin and Labrosse (1999) used the average internal temperature, < T >, in

order to calculate the temperature drop at the surface and this was related to the heat flux at the

surface by a relationship roughly of the form Qs = (Ra/Racrit)
1/3 < T >4/3, as would be expected

from boundary layer theory where Racrit is the critical boundary layer Rayleigh number and can

be defined as a parameter which quantifies the heat transport efficiency across the boundary layer

(e.g. Butler and Peltier, 2000). In fig. 2.15, I present the surface heat flux Qsmeas = (∂T/∂z)|z=1,

calculated from numerical models run with Ra ≥ 106, H > 0, constant viscosity and free-slip

boundaries, plotted vs Qspred = (Ra/Racrit)
1/3 T 4/3 for T = Tmax (’+’ signs) and T =< T >,

(squares). For both T = Tmax and T =< T >, I have chosen Racrit in order to give the smallest

least-squares misfit between the predicted and measured value of Qs. The values obtained for

Racrit in this way were 23.8 and 28.2, respectively. I have plotted a straight line with a slope of

1 so that the quality of the fit can be easily discerned. It can be seen from the graph that the

fit is not qualitatively improved by using Tmax rather than < T > and quantitatively the average

misfit between Qsmeas and Qspred is 2.0 for both calculations, again indicating that the difference

between < T > and Tmax is not important when parameterizing the heat flux at the surface.
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Figure 2.15: Measured surface heat flux vs predicted surface heat flux. ’+’ are
calculated using Tmax while the squares were calculated using < T >.
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In fig. 2.16, I present a similar calculation for the basal heat flux, where Qcmeas and Qcpred

are the basal heat fluxes calculated by the numerical model and from a parameterized model using

temperature from the numerical model. In this case I have calculated the temperature drop at

the base using 1 − T where T is calculated using < T > (squares) and Tmin, (’+’s). It can be

seen that the fit is now qualitatively improved by using Tmin, which is the minimum horizontally

averaged internal temperature. The average misfits between Qcmeas and Qcpred are 1.1 and 2.1

when Tmin and < T > are used to calculate the temperature drop at the basal thermal boundary

layer, respectively. This indicates that using Tmin is important in parameterizing the basal heat

flux and that the effects of the subadiabatic gradient are important and act to increase the heat

flux at the base of a convecting system with mixed basal and internal heating.

Although the degree of subadiabaticity clearly increases withH and decreases with Ra, as shown

in fig. 2.9, no simple scaling relationship for the subadiabatic gradient could be found based on

the results of my study. As a result, the best way to calculate thermal evolution in parameterized

models, taking the mantle subadiabatic gradient into account, might be to calculate the surface heat

flux, internal temperature and secular cooling first and then calculate the core-mantle boundary

heat flux based on the energy balance as proposed by Sotin and Labrosse (1999).
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Figure 2.16: Measured basal heat flux vs predicted surface heat flux. ’+’s, and
squares are calculated using Tmin, and < T > respectively.
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2.7 Conclusion

I have presented a detailed study of the energy balance in regions of subadiabatic gradient for

calculations with mixed basal and internal heating. Until now the subadiabatic gradient in an in-

ternally heated calculation was thought to be caused by the balance between vertical advection and

internal heating. However, my study shows that there are three different mechanisms responsible

for the subadiabaticity. I find that VA-HA (balance between horizontal and vertical advection) is

significant for calculations with lower degrees of internal heating, whereas VA-H (balance between

vertical advection and internal heating) becomes increasingly important with increasing internal

heating. Mechanism SC (balance between local secular cooling and the other terms in the energy

equation) can play the role of either VA-H or VA-HA in a temporally averaged geotherm. When

the model is not time-dependent, VA-H is mostly responsible for the subadiabaticity within the

bulk of the mantle, whereas VA-HA mostly produces the bottom geotherm overshoot. My results

suggest that the bottom overshoot makes the largest contribution to the subadiabaticity for values

of H smaller than roughly Qs0, where Qs0 is the surface heat flux from calculations using the same

Rayleigh numbers in the absence of internal heating. The total subadiabaticity and the area with

a subadiabatic gradient increase with increasing Urey ratio.

The present entirely basally heated models with depth-dependent viscosity show that when a

constant effective Rayleigh number (determined by matching the heat flux of the layered viscosity

model with the heat flux of a similar isoviscous calculation) is used, the surface overshoot becomes

narrower while the bottom overshoot becomes broader with an increased jump in viscosity. In

the case of mixed heating models, the surface overshoot reappears as I increase the total jump in

viscosity. The surface overshoot may be responsible for the presence of the seismic low velocity

zone (Dziewonski and Anderson, 1981).

In the case of mixed surface boundary conditions, the shape of the geotherm does not depend

on the position of the continent, however, the presence of a rigid conducting lid increases the sub-

adiabatic gradient in the bulk, implying that Mars and Venus may have significantly subadiabatic

interiors.

If I consider an Earth-like surface heat flux, then calculations Ra6H18v1a1 to Ra6H27v1a4 are

most comparable to our planet, and have Urey ratios of 72% to 87%. This suggests that the mantle

subadiabaticity may be as large as 450K and 55% to 60% of the volume of the mantle may have

a subadiabatic temperature gradient. Here I am taking the effective internal heating rate for the

Earth to be the sum of the secular cooling and actual internal heating. In these calculations all

three balance mechanisms are active.

I have shown that the effects of subadiabaticity are important for parameterizing the core-mantle

boundary heat flux. As an example, if I consider Ra6H10v1L2.4a8∗, as Earth-like, this suggests a

50



mantle subadiabaticity of Tsub = 407K. This would change the total core-mantle boundary heat

flux by 3.8TW, if I assume a core-mantle boundary layer thickness equal to the average thickness of

the D” layer, which is 260km (Kendall and Shearer, 1994) and a thermal conductivity of 16W/mK

(Brown, 1986).

I have identified and quantified the various effects by which subadiabaticity is produced in simple

models of internally heated infinite Prandtl number convection. In future work, it will be interesting

to explore the effects of compressibility, temperature-dependent viscosity, sphericity (e.g. Bunge

et al., 1997) and a better representation of surface plates and how these affect the mechanisms,

that I have identified here, responsible for the subadiabatic gradients. In chapter 6, I discuss the

inadequacies of the model presented here.
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Chapter 3

Is there a difference Between the Effect of

Secular Cooling and Internal Heating Rate in

Unit Aspect Ratio Calculations?

3.1 Introduction

The non-dimensional equation for the conservation of energy (similar to 2.11) can be written as

∂T

∂t
+ U · ∇T =

1

Ra
∇2T +H, (3.1)

where the temporal rate of change of temperature or the first term on the left hand side of the

equation is called the secular cooling term and H is the internal heating rate. The other variables

have been defined previously. The secular cooling term can also be stated as the decrease in

temperature in the mantle with time. As a result, both −∂T/∂t and H are often assumed to

have similar effects (e.g. Krishnamurti, 1968a, b; DeLandro-Clarke and Jarvis, 1997). However,

the secular cooling term varies in space but H is usually a prescribed constant. The large spatial

variation of the secular cooling term, which is associated with the SC mechanism, has been shown

and discussed widely in chapter 2. This fundamental difference in physical property combined with

the assumption of their possible similar effects is interesting and I investigate it here. DeLandro-

Clarke and Jarvis (1997) applied varying horizontal thermal boundary conditions in order to induce

secular cooling as is commonly done in analogue experiments (e.g. Krishnamurti 1968b) and they

found that the secular cooling and the internal heating have very similar effects. I use fixed surface

and CMB temperatures but start with an average temperature that is significantly higher than the

statistical equilibrium value.

3.2 Results

In order to perform the test, I ran two models, one with and one without internal heating. The

calculations were performed in unit aspect ratio two-dimensional boxes with Ra = 107. The square

box had reflecting vertical and free-slip horizontal boundaries. For the run without the internal
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heating effect I chose a temperature profile, which was previously run with some amount of inter-

nal heating and was hotter than the equilibrium value of a model run with H = 0, as the initial

condition. Due to this, when running the model without internal heating, the average temperature

was decreasing with time and hence, the secular cooling effect was large and positive. In terms of

dimensional time, I ran this model for almost 5G.y.. The time-series for the average temperature

and the surface and the CMB heat fluxes are shown in fig. 3.1 and 3.2. I picked a point (800M.y.

in this case) on the average temperature time-series where the model was cooling down relatively

fast and calculated the total amount of secular cooling at that point.
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Figure 3.1: Average temperature as a function of time for calculation without
internal heating for Ra = 107.
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Figure 3.2: Surface and CMB heat fluxes as a function of time for calculation
without internal heating for Ra = 107.
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This calculated value of 29.24 for the secular cooling was used as H for the model which in-

cluded the effect of internal heating. In this case, a convecting temperature profile was chosen from

another calculation that was previously run with an amount of internal heating close to H = 29 in

order to reach an equilibrium state quickly. The model was run for almost 32G.y. of dimensional

time. A set of similar plots for the average temperature and the heat fluxes for the calculation are

shown in fig. 3.3 and 3.4.
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Figure 3.3: Average temperature as a function of time for calculation with internal
heating H = 29.24 for Ra = 107.
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Figure 3.4: Surface and CMB heat fluxes as a function of time for calculation
with internal heating H = 29.24 for Ra = 107.
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For visual comparison of the results, I picked a time window of 800M.y. between 800M.y. and

1.6G.y.. I chose that window because the average temperature as a function of time plot in fig.

3.1 shows a steep slope indicating a strong secular cooling effect in the model with H = 0. I have

plotted the time-averaged temperatures and heat fluxes in fig. 3.5, 3.7 and 3.8 from the two calcu-

lations with the only difference from the previous figures being that they are focused in the areas

within the chosen time window. All figures have been scaled to the same horizontal and vertical

resolutions for easy visual comparison. If the overall decrease in temperature for the purely basally

heated case in fig. 3.5 is ignored, the short temporal fluctuations are very similar to the result from

mixed internally heated case, with periods of roughly 300 M.y. and an amplitude of approximately

0.03. In order to demonstrate this in a better visual representation, I have plotted the residuals

from fig. 3.5 in fig. 3.6. The residuals were calculated by taking the difference between the actual

curve and a linear fit of the curve for two calculations. This plot shows slightly larger period and

amplitude in the presence of internal heating. However, it is not significantly different than the

basally heated model. Similarity in the temporal variation is also seen in the heat fluxes, shown by

the plots in fig. 3.7 and 3.8.
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Figure 3.5: Average temperature within a particular time window as a function
of time for calculations with and without internal heating for Ra = 107.
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Figure 3.6: Residuals after de-trending the average temperature data within a par-
ticular time window as a function of time for calculation with and without internal
heating for Ra = 107.
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Figure 3.7: Surface and CMB heat fluxes within a particular time window as a
function of time for calculation without internal heating for Ra = 107.
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Figure 3.8: Surface and CMB heat fluxes within a particular time window as a
function of time for calculation with internal heating for Ra = 107.
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I have also plotted the temporal variation of the total secular cooling term for the two models in

fig. 3.9 within the same time window and the observed pattern is again very similar. I multiply the

the non-dimensional value of secular cooling by Ra in order to scale the equivalent non-dimensional

internal heating rate. Note that the time-averaged secular cooling is close to zero in the case of

internally heated model, whereas, it is not zero for the calculation without internal heating since

the model is cooling.
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Figure 3.9: Secular cooling as a function of time for calculation with and without
internal heating for Ra = 107.
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3.3 Conclusion

It can be said that after visually comparing these results, there is no obvious statistical difference

between the calculations with and without internal heating. The spatial evolution of the secular

cooling term (not shown here) was not significantly different either. This lead me to stop any

further investigation and indicated that for a two-dimensional, unit aspect ratio box with reflecting

vertical and horizontal boundaries, the effects from spatially and temporally varying secular cooling

and constant internal heating rates are very similar.
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Chapter 4

The Combined Effects of Continents and the

660 km-depth Endothermic Phase Boundary on the

Thermal Regime in the Mantle

4.1 Introduction

Although both the effects of layering, caused by the spinel to perovskite and magnesiowüstite phase

change at 660km-depth, and continents have been widely studied separately, their combined effects

on mantle dynamics have not been investigated previously. Many length scales are involved when

modeling thermal convection within the mantle when incorporating continents and the endothermic

phase boundary at 660km-depth. These include the lateral extents (Lenardic and Moresi, 2003)

and thicknesses (Lenardic and Moresi, 2001) of the continental lithosphere. In the case of a layered

mantle, the depth to the phase boundary can play an important role in the flow dynamics by

partially separating the mantle into two different convective regimes and decreasing the surface

heat flux. The depth of the mantle is always important and the chosen aspect ratio of the box used

for modeling can introduce further length scales.

In a laboratory tank experiment, Guillou and Jaupart (1995) showed that when the surface has

variable thermal boundary conditions representing oceanic and continental lithospheric areas, the

upwelling tends to be beneath the continent and the convection cells become elongated. Grigné et

al. (2007b) investigated how the presence of a region with a lid of finite conductivity affects the

wavelength of mantle convection and forces the zone of upwelling under the continent while the

cold downwellings form at a distance from the continent. Their study also found that the presence

of a partial lid produces longer wavelength convection cells with increasing Rayleigh numbers in

contrast with Guillou and Jaupart (1995) who showed no effect of cell size with different values of

the Rayleigh numbers. This difference is likely due to the difference in the mechanical boundary

conditions.

Being less dense and therefore, more buoyant than the mantle, continents do not participate in

mantle overturn. Both numerical and laboratory based models have been created to investigate the
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dynamic interaction between the continental lithosphere and the mantle (Gurnis, 1988; Zhong and

Gurnis, 1993; Guillou and Jaupart, 1995; Lowman and Jarvis, 1995, 1996, Lenardic and Kaula,

1995, 1996; Lenardic, 1997, 1998; Lenardic et al., 2005; Moresi and Lenardic, 1997; Grigné and

Labrosse, 2001; Grigné et al., 2005, 2007a, b).

Lenardic and Moresi (2001,2003) investigated the variation of the surface heat flux as a function

of the thickness and the lateral extent of the thermally coupled continents, and derived a param-

eterized model based on their numerical model results. They also showed that surface heat flux

varies only weakly with the thickness of a continent provided it is much less than the depth of the

mantle (Lenardic and Moresi, 2001). In their parameterized model, Grigné and Labrosse (2001)

showed that the thermal blanketing effect of continents significantly affects the mantle cooling rate

(Guillou and Jaupart, 1995; Lenardic and Moresi, 2001). However, Lenardic et al. (2005) showed

that, in the presence of temperature-dependent viscosity, cooling could actually be enhanced by

continents.

The seismic reflector at 660km-depth is caused by the endothermic phase transition that con-

verts spinel to magnesiowüstite and perovskite (Akaogi et al., 2007). The reaction has a negative

Clapeyron slope and as a result, cold downwellings need higher and hot upwellings need lower pres-

sure to be in equilibrium. There is a resulting buoyancy force caused by the displacement of the

phase boundary since the lower phase is denser, which, for the endothermic phase transition, oppose

the thermally driven flow (Schubert et. al, 2001). Increasing the magnitude of the Clapeyron slope

increases the degree of phase boundary deflection and generally the degree of layering. However,

when the Clapeyron slope is sufficiently low, the upwellings become hotter and the downwellings

become colder due to the effect of latent heating as they penetrate the 660km-depth endothermic

phase boundary (Schubert et al., 1995). This heat source coupled with the thermal expansivity of

mantle materials provides additional buoyancy enhancing mantle flow (Schubert et al., 1975).

Tomographic studies, mainly from the circum Pacific region (van der Hilst et al., 1997; Fukao

et al., 2001; Chen and Brudzinski, 2003; Kennett and Gorbatov, 2004; Ritsema et al., 2004; Zhao,

2004), showed that some subducting slabs flatten out and appear to be blocked, while others

penetrate the boundary at a depth of 660 km, indicating that the mantle is incompletely layered

by the phase boundary.

When comparing models with and without the phase boundary, the percentage decrease in mass

flux increases as the Rayleigh number increases (Machetel and Weber, 1991; Peltier and Solheim,

1992; Zhao et al., 1992; Solheim and Peltier, 1993, 1994a, b; Tackley et al., 1993; Weinstein, 1993).

This indicates that if the mantle circulation is weakened by the viscous drag and the insulating

effects of continents, which decrease the effective Rayleigh number, the degree of layering might be

expected to be less than in comparable models without continents.

Tackley (1995) showed that long-wavelength flows and broad upwellings and downwellings are
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more likely to penetrate the phase boundary. Butler and Peltier (1997) studied the linear stability

of an internal thermal boundary layer and showed that the most unstable mode that penetrates the

phase boundary has a long-wavelength. Tackley (1995) showed that the critical phase buoyancy

parameter necessary to induce layering increases with the flow wavelength. Since the presence of

a partial lid causes longer wavelength convection cells (Grigné et al., 2007b), one might expect

layering to be decreased in the presence of partial continental coverage.

Layering, induced by the endothermic phase boundary, affects the mantle flow in a number of

different ways. The absolute mass flux across 660km-depth, Mf , gives an estimate of the mechanical

layering and is reduced as the layering increases. The reduced mass flux also reduces the heat

advected across 660km-depth leading to the formation of an internal thermal boundary layer. I

parameterize this thermal measure of layering by considering the ratio, β, of the conductive to the

total heat flux across the phase boundary (Butler and Peltier, 2000). I also consider the difference

in the number of convection rolls in the upper and the lower mantle as a measure of the degree of

layering-induced convective decoupling. Finally, the surface heat flux, which is parameterized by

the Nusselt number, Nu, is also reduced by layering because of the reduction in heat flux from the

lower to the upper mantle. I will demonstrate that the effect of layering on Nu is greatly reduced

when using mixed surface boundary conditions, while the effect on Mf is reduced somewhat less.

Previously, numerical simulations of convection scaled to the Earth’s mantle have shown that

in the presence of internal heating, which models the effects of radioactive decay, the temperature

increases with depth more slowly than would be predicted assuming adiabaticity (McKenzie et al.,

1974; Sotin and Labrosse, 1999; Matyska and Yuen, 2000; Bunge et al., 2001). In other words, the

mantle geotherm becomes subadiabatic. The heat flux at the CMB can be estimated based on the

temperature drop at the CMB (Buffett, 2002). A subadiabatic mantle geotherm will result in larger

estimates for the temperature drop at the CMB leading to higher estimated heat flux from the core.

Sinha and Butler (2007) showed that horizontal advection, which becomes increasingly significant

in large aspect ratio convection cells, can also play an important role in producing a subadiabatic

geothermal gradient. The models with a partial lid or with very strong layering in a wide box tend

to produce long-wavelength convection cells and hence, stronger horizontal advection. As I will

demonstrate, this causes the geothermal gradient to be subadiabatic despite the absence of internal

heating in these cases.

In the following section I describe my numerical models and subsequently I define the model di-

agnostics. My calculations and their control parameters and calculated diagnostics have been listed

in Table 4.1. I discuss the effects of the endothermic phase boundary in the presence of different

surface boundary conditions in section 4.4.1. The effects of different lengths of the continent and

internal heating on layering will be presented in section 4.4.2. Finally, in section 4.4.3 I demonstrate

that the mantle geotherm is substantially subadiabatic in the presence of mixed surface boundary
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conditions. The final section summarizes the results and findings.

4.2 Numerical Model Description

I employed two numerical models, one finite-difference and one finite-element. The finite-element

simulations employed the commercial software package COMSOL1. The finite-element solver was

found to be more stable for calculations with large Rayleigh numbers. A number of repeat calcu-

lations indicate that the results of the two methods are very similar. Finite-element models are

indicated with † in table 4.1. The infinite-Prandtl number Navier-Stokes equation for a Boussinesq

fluid and an energy equation incorporating the buoyancy and the thermal effects of an endother-

mic phase boundary were solved in two-dimensional 1 × 1, and 8 × 1 boxes using 289 × 289, and

2305× 289 grids, respectively, for the finite-difference calculations. The finite-element models were

calculated in 8×1 boxes with 37084 Lagrange-Quadratic elements and denser mesh was used along

the horizontal and the endothermic phase boundaries. All of my calculations were carried out in

an isoviscous fluid. The dimensionless governing equations are

T k̂ − Γ
∆ρ

ρα∆T
k̂ −∇p+ ∇2U = 0, (4.1)

∇ ·U = 0, (4.2)

and
[

1 + 2Γ(1 − Γ)
γlh

ρcpg

](

∂T

∂t
+ U · ∇T

)

=
1

Ra
∇2T − 2Γ(1 − Γ)

hld

cp ∆T
v +H. (4.3)

In the above equations T , U = [u, v], p and t are the temperature, velocity, pressure and time,

respectively, while Ra, H , g, ρ, α, ∆T , cp and d are the Rayleigh number, non-dimensional internal

heating rate, acceleration due to gravity, density of the mantle, thermal expansion coefficient, total

temperature difference across the mantle, specific heat capacity at constant pressure and the depth

of the whole mantle, respectively. Time and length are scaled with d2/(κRa) and d, where κ is

the thermal diffusivity. The symbols γ, l, ∆ρ and h are the Clapeyron slope of the endothermic

phase boundary, latent heat, density jump across the phase boundary and a thickness parameter,

respectively, and

Γ =
1

2
(1 + tanh θ), (4.4)

where

θ = hd

[

z660 −
γ∆T

ρgd
(T− < T >660) − z

]

. (4.5)

Here z is the height and < T >660 is the average temperature at 660 km-depth. The height at which

θ = 0 gives the height of the phase boundary, which I define as zp. The second term in equation 4.1

represents the buoyancy created by the deflection of the phase boundary. The first multiplier on

1web page: http://www.comsol.com/
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the left hand side and the second term on the right hand side of equation 4.3 represent the latent

heating effect associated with the temperature and pressure-induced phase change, respectively.

In my calculations I use g = 10ms−2, ρ = 4000kgm−3, α = 2.5 × 10−5 K−1, ∆T = 3700K,

cp = 1200JKg−1K−1, d = 2890km (Schubert et al., 2001), ∆ρ = 440kgm−3, z660 = 0.77 and

h = 3.5 × 10−5 m−1. I calculate l using the Clausius-Clapeyron relation.

In my finite-difference models, the Navier-Stokes equation was converted to the following stream-

function (ψ) vorticity (ω) pair of Poisson’s equations, which were solved using MUDPACK (Adams,

1991),

∇2ω =
∂T

∂x

[

1 + 2Γ(1 − Γ)
∆ρhγ

gαρ2

]

, (4.6)

∇2ψ = ω. (4.7)

In models that include the effects of continental lithosphere, an insulating layer of thickness

hc = 0.04d (approx. 115km) is placed on the top of the solution domain using the same technique

as in chapter 2. It is assumed that the heat flux across the base of the continental lithosphere is

the same as the heat flux at the surface and the mechanism of heat transport within the continent

is entirely vertical conduction. As such, the temperature profile in the continent is linear. If I take

the mantle and the continental thermal conductivities to be equal, the heat flux balance at the base

of the continental lithosphere can be written as

Ts − Tb

hc
=
∂T

∂z
|z=1, (4.8)

where Ts and Tb are the temperatures at the surface and the base of the continental lithosphere

and I evaluate ∂T/∂z at the top of the mantle. I solve for Tb at each time-step and at each

horizontal position beneath the continent as it serves as the top boundary temperature for the

subcontinental mantle. In this way the heat flux and the temperature are made continuous at the

mantle-continental lithosphere boundary. I define L as the length of the continent. Oceanic and

continental regions are modeled as free-slip and no-slip.

All boundaries in all models have zero mass flux, while the side walls are reflecting (see fig. 2.4).

The bottom boundary (core-mantle boundary) is free-slip and kept isothermal with a constant

non-dimensional temperature, T = 1, and the isothermal top surface is kept at a non-dimensional

temperature of 0 in regions with free-slip.

4.3 Diagnostics

To calculate β, the amount of heat carried across 660km-depth by conduction and advection are

required. If the conductive heat flux is Qcond and the advective heat flux is Qadv, then

β =
Qcond

Qcond +Qadv
, (4.9)
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where

Qcond = −

∫ l

0

∂T
∂z − ∂T

∂x
∂zp

∂x
√

1 +
(

∂zp

∂x

)2
dx, (4.10)

Qadv = −

∫ l

0

uT
∂zp

∂z − vT
√

1 +
(

∂zp

∂x

)2
dx. (4.11)

I define Mf as

Mf =

∫ l

0

|v − u
∂zp

∂x |
√

1 +
(

∂zp

∂x

)2
dx, (4.12)

where zp(x) is the location of the moving phase boundary and l is the length of the box. All of the

above quantities are evaluated at height zp(x) and are temporally averaged.

The Nusselt number is calculated by averaging the vertical gradient of the temperature along the

top boundary, while < T > gives the average temperature of the solution domain. The variables

Clm and Cum are the number of convection cells calculated by counting the zero-crossings of ψ

along the mid-depths of the lower (z = 0.385) and the upper mantle (z = 0.885). The total mass

flux is zero between two adjacent locations where ψ = 0 along one upwelling and one downwelling

indicating one complete convection cell. All models were run to a statistically steady state and

then the above-mentioned quantities were time-averaged. All these diagnostics for aspect ratio 8

models are listed in table 4.1.

I also calculate the critical thermal boundary layer Rayleigh number, Raδ, as a measure of the

thermal resistance of the boundary layer. From boundary layer theory (Schubert et al., 2001) it

can be shown that

Nu =

(

Ra

Raδ

)1/3

δT 4/3. (4.13)

From equation (4.13),

Raδ =
δT 4Ra

Nu3
, (4.14)

where Ra and Nu are the Rayleigh number and the Nusselt number and δT is the temperature

difference across the thermal boundary layer. When the surface is free-slip, Raδ values range

between 13.4 and 35.6, which is in agreement with previous studies (Honda, 1996; Sotin and

Labrosse, 1999; Butler and Peltier, 2000; Sinha and Butler, 2007).

69



M Ra H γ L h < T > Nuc Nuo Mf β Clm Cum

†Ra6H0p0∗ 106 0 0 0 0 0.50 - 19.0 33.0 0.00 6.0 6.0

Ra6H0p1∗ 106 0 -1 0 0 0.50 - 19.3 32.2 -0.01 6.4 6.4

Ra6H0p3∗ 106 0 -3 0 0 0.51 - 18.4 28.3 -0.04 6.6 6.9

Ra6H0p5∗ 106 0 -5 0 0 0.53 - 15.7 15.3 0.05 3.3 5.1

Ra6H0p7∗ 106 0 -7 0 0 0.55 - 14.2 8.9 0.16 3.6 8.9

Ra6H0p9∗ 106 0 -9 0 0 0.56 - 13.1 8.2 0.27 2.2 4.9

Ra6H0p0L8 106 0 0 8 0.04 0.72 6.9 - 13.6 -0.02 5.3 8.3

†Ra6H0p0L8 106 0 0 8 0.04 0.72 6.6 - 12.1 -0.02 5.1 6.6

Ra6H0p1L8 106 0 -1 8 0.04 0.74 7.2 - 13.9 -0.06 7.5 8.9

Ra6H0p3L8 106 0 -3 8 0.04 0.75 7.3 - 11.2 -0.08 8.1 11.2

Ra6H0p5L8 106 0 -5 8 0.04 0.74 7.1 - 5.2 0.16 6.0 16.0

Ra6H0p7L8 106 0 -7 8 0.04 0.74 6.3 - 2.5 0.39 3.0 14.6

Ra6H0p9L8 106 0 -9 8 0.04 0.74 5.7 - 1.8 0.56 3.0 17.4

Ra6H0p0L2.4 106 0 0 2.4 0.04 0.57 6.3 16.1 20.3 -0.01 2.7 3.1

†Ra6H0p0L2.4 106 0 0 2.4 0.04 0.57 6.1 14.7 17.8 -0.02 1.7 2.2

†Ra6H0p0L4 106 0 0 4 0.04 0.61 6.1 14.2 15.2 -0.01 1.4 3.1

†Ra6H0p0L5.6 106 0 0 5.6 0.04 0.65 6.2 14.6 14.2 -0.01 2.9 4.5

†Ra6H0p0L7.2 106 0 0 7.2 0.04 0.67 6.0 18.2 13.4 -0.01 2.1 4.1

Ra6H0p1L2.4 106 0 -1 2.4 0.04 0.58 6.3 17.2 21.7 -0.03 3.7 3.9

Ra6H0p3L2.4 106 0 -3 2.4 0.04 0.58 6.5 17.2 18.7 -0.03 3.2 3.6

†Ra6H0p3L2.4 106 0 -3 2.4 0.04 0.57 6.3 16.7 17.3 -0.01 2.5 2.9

Ra6H20p3L2.4 106 20 -3 2.4 0.04 0.93 11.2 29.3 16.6 0.01 2.1 4.8

‡Ra6H0p3L2.4 106 0 -3 2.4 0.04 0.59 6.6 16.4 16.6 -0.04 2.2 2.5

‡Ra6H20p3L2.4 106 20 -3 2.4 0.04 0.91 10.2 30.2 18.4 0.00 3.2 7.3

Ra6H0p3L4 106 0 -3 4 0.04 0.62 6.7 16.5 13.6 -0.02 1.5 2.3

Ra6H0p3L5.6 106 0 -3 5.6 0.04 0.67 7.0 17.3 12.4 -0.04 3.3 4.5

Ra6H0p3L7.2 106 0 -3 7.2 0.04 0.71 7.1 21.2 11.8 -0.06 5.5 7.8

Ra6H0p5L2.4 106 0 -5 2.4 0.04 0.58 6.5 16.4 11.6 0.06 2.1 3.9

Ra6H0p7L2.4 106 0 -7 2.4 0.04 0.60 6.6 15.1 9.0 0.14 1.8 4.0

Ra6H0p9L2.4 106 0 -9 2.4 0.04 0.61 6.5 14.8 8.0 0.20 1.0 2.4

†Ra7H0p0∗ 107 0 0 0 0 0.50 - 35.1 13.6 0.00 8.6 9.2

†‡Ra7H0p0L2.4 107 0 0 2.4 0.04 0.59 8.6 28.3 6.8 0.00 2.8 2.9

†Ra7H0p0L4 107 0 0 4 0.04 0.62 7.8 27.2 5.0 -0.01 1.7 2.7

‡Ra7H40p0L2.4 107 40 0 2.4 0.04 0.94 14.4 60.1 9.2 0.00 3.8 11.7

70



†‡Ra7H40p0L2.4 107 40 0 2.4 0.04 0.95 13.7 58.7 8.7 0.00 3.4 10.6

‡Ra7H0p3L2.4 107 0 -3 2.4 0.04 0.60 9.1 35.3 5.8 0.01 2.2 2.6

‡Ra7H40p3L2.4 107 40 -3 2.4 0.04 0.94 14.5 60.9 6.1 0.03 3.0 8.1

†Ra7H0p3∗ 107 0 -3 0 0 0.51 - 32.8 8.3 0.01 6.9 8.9

†Ra7H0p3L2.4 107 0 -3 2.4 0.04 0.57 8.3 32.3 5.2 0.01 2.6 4.1

†Ra7H0p3L4 107 0 -3 4 0.04 0.61 8.1 31.4 4.2 -0.01 1.5 1.9

†Ra7H0p3L5.6 107 0 -3 5.6 0.04 0.66 8.6 34.3 3.6 -0.01 1.9 2.4

†Ra7H0p3L7.2 107 0 -3 7.2 0.04 0.70 8.8 43.5 3.2 -0.01 2.5 4.3

†Ra7H0p3L8 107 0 -3 8 0.04 0.77 10.1 - 3.4 -0.01 9.0 14.1

Table 4.1: models, M ; Rayleigh number, Ra; non-dimensional internal heating

rate, H ; Clapeyron slope, γ (×106 Pa/K); non-dimensional length and thickness of

the continental lithosphere, L and h, respectively; average temperature, < T >;

non-dimensional surface heat flux or the Nusselt number over the continent, Nuc

and over the ocean, Nuo; mass flux across the phase boundary, Mf (×10−5);

thermal layering parameter, β; number of convection cells in the lower and upper

mantle, Clm and Cum, respectively. Only the results from aspect ratio 8 calculations

have been listen here.

† computations were carried out using finite element method

‡ surface contains two separate continents, located at the either end of the box

covering 15% each

∗ models with free-slip surface
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4.4 Numerical Model Results

4.4.1 Effects of Surface Boundary Conditions and Aspect Ratio on Lay-

ering

Fig. 4.1 shows temperature snapshots overlain by the stream function from models with free-slip

(4.1a), conducting lid (4.1b) and mixed (4.1c) surface boundary conditions. A Rayleigh number of

106 was used and the Clapeyron slope is 0 in these models (Ra6H0p0∗, Ra6H0p0L8, Ra6H0p0L2.4).

The black horizontal line indicates the fixed position of the endothermic phase boundary. When

the surface is free-slip, (fig. 4.1a) there are 6 distinct whole-mantle convection cells, while fig.

4.1c shows a very long-wavelength convection cell with an upwelling beneath the continent due to

the presence of a partial lid (Grigné et al., 2007b). Fig. 4.1b shows a warmer mantle due to the

blanketing effect of the full conducting lid and five rolls. Note, in fig. 4.1c the upwelling plumes

are advected laterally by the dominant long-wavelength flow more rapidly at their base than in

the interior due to higher horizontal velocity at the lower boundary. The downwellings also show

similar behavior in areas with free-slip along the surface.
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Figure 4.1: Temperature fields overlain by the streamlines for calculations with
Ra = 106 and γ = 0MPaK−1 for (a) free-slip (Ra6H0p0∗), (b) conducting lid
(Ra6H0p0L8) and (c) mixed (Ra6H0p0L2.4) surface boundary conditions. The
black horizontal line represents the location of the phase boundary.
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The measured value for the Clapeyron slope of the endothermic phase boundary is −2.6 ±

0.2MPaK−1 (Akaogi et al., 2007). However, in order to present an extreme end member model for

layering, I show fig. 4.2, where the Clapeyron slope is −9MPaK−1. The model with a complete

conducting lid (Ra6H0p9L8, fig. 4.2b) shows a very significant decoupling between the upper

and the lower mantle with very few streamlines crossing the phase boundary and also a large

temperature difference. The strong drag created by the long continental lithosphere in this case

significantly penalizes horizontal flow near the upper boundary producing multiple surface boundary

layer instabilities from the base of the lid resulting in a significantly larger number of convection

cells in the upper mantle. Regardless of the surface boundary condition, all calculations with large

magnitudes of the Clapeyron slope have very long convection wavelength in the lower mantle, shown

in fig. 4.2a, 4.2b and 4.2c, because the lower boundary is free-slip and there is some degree of mass

flux across the phase boundary. Although calculations with mixed (Ra6H0p9L2.4) and complete

free (Ra6H0p9∗) surfaces are very different in planform in the absence of strong layering (fig. 4.1a

and 4.1c), they become quite similar when strongly layered as can be seen by comparing fig. 4.2a

and 4.2c. Note the multiple weak cold downwellings in the upper mantle for free and mixed cases

due to very strongly layered mantle convection. These downwellings are weak because they are

unable to penetrate through the phase boundary and also they cause deflections but not zero-

crossings of the stream function. Carried by the dominant long-wavelength mantle flow, the weak

surface boundary layer instabilities migrate and accumulate together before penetrating through

the phase boundary into the lower mantle. The deflection of the phase boundary depends on the

temperature anomaly at the boundary only, however, the total thermal density anomaly depends on

the temperature above and below the phase boundary as well. As a result, anomalies of significant

vertical and horizontal extent are more likely to penetrate the phase boundary and the accumulation

of the boundary layer instabilities partially explains the tendency towards long-wavelength flows

seen when large magnitudes of the Clapeyron slope are used.
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Figure 4.2: Temperature fields overlain by the streamlines for calculations with
Ra = 106 and γ = −9MPaK−1 for (a) free-slip (Ra6H0p9∗), (b) conducting lid
(Ra6H0p9L8) and (c) mixed (Ra6H0p9L2.4) surface boundary conditions. The
black horizontal line represents the location of the phase boundary.
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In order to examine the thermal degree of layering, I plot β in fig. 4.3 as a function of the

Clapeyron slope in the presence of different surface boundary conditions for calculations with Ra =

106, performed in unit aspect ratio boxes. Mixed surface boundary models have 30% continental

coverage on one side of the box. All of the calculations in square boxes show a sudden change

from slightly negative β, caused by a positive temperature gradient at 660km-depth due to latent

heating, to almost 1, indicating that almost all of the heat transport across the phase boundary is

by conduction when the magnitude of the Clapeyron slope of the endothermic phase boundary is

greater than 6MPaK−1. This result is consistent with the free-slip results of Christensen and Yuen

(1985). Temperature snapshots in fig. 4.4 from unit aspect ratio models with different surface

boundary conditions show the sudden change from whole mantle to almost completely layered

convection. A plot of the Nusselt number for the same calculations can be seen in fig. 4.5 where

a similar but downward jump is present, which also occurs in the mass flux across 660km-depth

(fig. 4.6). At Ra = 107, a similar phenomenon was observed (not shown) with the jump occurring

between the Clapeyron slopes of −3MPaK−1 and −4MPaK−1 due to the increased degree of

layering with increased Rayleigh number (Christensen and Yuen, 1985).
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Figure 4.3: Layering parameter, β, as a function of the Clapeyron slope of the
endothermic phase boundary for calculations in unit aspect ratio boxes with Ra =
106.
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Figure 4.4: Temperature field plots from calculations for Ra = 106 with dif-
ferent surface boundary conditions and the endothermic phase boundary. Free-
slip with (a) γ = −4MPaK−1 and (b) γ = −6MPaK−1; conducting lid with (c)
γ = −4MPaK−1 and (d) γ = −6MPaK−1 and mixed surface boundary conditions
with (e) γ = −4MPaK−1 and (f) γ = −6MPaK−1. The purple horizontal line
represents the location of the phase boundary.
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Figure 4.5: Nusselt number, Nu, as a function of the Clapeyron slope of the
endothermic phase boundary for calculations in unit aspect ratio boxes with Ra =
106.
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Figure 4.6: Average mass flux, Mf , as a function of the Clapeyron slope of the
endothermic phase boundary for calculations in 1 × 1 boxes with Ra = 106

79



The layering diagnostics from calculations in 8×1 boxes are shown in fig. 4.7, 4.8 and 4.9. Here

also the mixed surface boundary models have 30% coverage with the continent located on one side

of the box (as shown in fig. 4.1c and 4.2c). For the 8 × 1 models, these plots show that for all of

the surface boundary conditions examined, the change in the degree of layering, with increasing

magnitude of the Clapeyron slope, is much more gradual than in the 1 × 1 cases. The thermal

layering (β) across 660 km-depth starts to increase when the magnitude of the Clapeyron slope is

more than 3 MPaK−1. However, at the largest magnitude of the Clapeyron slope β is less than

in the case of square boxes, indicating that most of the heat is still being carried by advection

across 660 km-depth and that the models are still only partially layered. This demonstrates that

the degree of layering is strongly dependent on the aspect ratio of the box, which, for the case of a

1 × 1 calculation, strongly influences the wavelength of the convective rolls. This is in agreement

with the results of Tackley (1995). In wider boxes the increased freedom allows for larger aspect

ratio convection cells, causing a decreased degree of thermal layering.
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Figure 4.7: Layering parameter, β, as a function of the Clapeyron slope of the
endothermic phase boundary for calculations in 8 × 1 boxes with Ra = 106.
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Figure 4.8: Average mass flux, Mf , as a function of the Clapeyron slope of the
endothermic phase boundary for calculations in 8 × 1 boxes with Ra = 106.
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Figure 4.9: Nusselt number, Nu, as a function of the Clapeyron slope of the
endothermic phase boundary for calculations in 8 × 1 boxes with Ra = 106.
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As can be seen in fig. 4.7, rigid-lid calculations have the largest thermal layering due to the

short-wavelength mantle flows despite the decreased convective vigor associated with the thermal

insulation and viscous drag of the continents. The fraction of heat carried by conduction, as

parameterized by β, is very similar for all degrees of layering for the models with free and mixed

surface boundaries, except for very large magnitudes of the Clapeyron slope (fig. 4.7). This

similarity is partly due to the fact that the total heat flux, as well as the total conduction of

heat across 660km-depth is less in the models with mixed surface boundary conditions. However,

the surface heat flux and the mass flux across 660 km-depth are almost identical only for strongly

layered models for these two types of calculations (fig. 4.8 and 4.9), despite the significant difference

in simulations with lesser Clapeyron slopes. The negative values of β in fig. 4.7 are due to the

inverted geotherms caused by the hotter upper mantle due to latent heat release.

Fig. 4.8 shows the variation in the average mass flux across the phase boundary as a function

of the Clapeyron slope. Enhancement in convection due to the latent heating effect causes a very

small increase in the mass flux for low magnitudes of the Clapeyron slope. At large magnitudes

of the Clapeyron slope, models with free-slip surfaces show the most significant drop in mass flux

due to layering. Both the continental region of the mixed cases and the models with total rigid lids

have similar mass flux values and they are much less than the values under oceanic regions due to

the drag at the surface. In the plot, mass flux for the mixed cases are the weighted average of the

mass flux under the continental and oceanic regions from the corresponding models.

In fig. 4.9, I plot the surface heat flux with different magnitudes of the Clapeyron slope. Here

also, I calculated continental and oceanic heat fluxes separately for models with mixed surface

boundary conditions. The initial slight increase in the surface heat flux that is seen in many

models for very low magnitudes of the Clapeyron slope is again due to the latent heating effect.

Models with free-slip surface boundaries undergo a surface heat flux reduction of more than 30% or

an absolute decrease of 5.9 with increased magnitudes of the Clapeyron slope. For total continental

coverage it is close to 20% or 1.2 in absolute terms, while for mixed surface boundary calculations

the absolute change is only 0.9 or 7%. I interpret this very small absolute change to arise because

the mixed surface boundary conditions have a more significant effect on convective planform than

the phase transition. As a result, the planform of convection is only weakly affected by the phase

transition. In contrast, the models with free-slip surfaces show a significant change in planform

with Clapeyron slope resulting in a large change in the surface heat flux. The heat flux over the

continental regions for mixed cases show no dependence on Clapeyron slope and over the oceanic

region the total decrease in heat flux is also very small. Since these models have no internal heating

and are run to a statistical steady state, the surface heat flux is the same as the core-mantle

boundary heat flux.
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In order to isolate the effects of reduced mass flux on heat flux for different surface boundary

conditions, I plot Nusselt number as a function of average mass flux across 660km-depth boundary

in fig. 4.10. Note that the oceanic and the continental parts of the mixed cases plot along similar

trends as the free-slip and the rigid-lid cases. However, the total variations in the surface heat

flux as well as the mass flux under the oceanic region for mixed cases are much less than that for

free-slip cases. Under the oceanic lithosphere the surface heat flux shows significant correlation

with the mass flux at 660km-depth. However, under the continental lithosphere, the average mass

flux is much smaller even without layering. In the rigid-lid case the slope of Nu vs. Mf is quite

shallow, indicating a large change in the mass flux results in only a moderate change in the heat

flux. Because of the dominance of the effects of the boundary condition on flow planform, the mass

flux in the oceanic region for the mixed case decreases significantly less than for the free-slip case,

resulting in a smaller decrease in surface heat flux.
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Figure 4.10: Nusselt number, Nu, as a function of the average mass flux across
the phase boundary for calculations in 8 × 1 boxes with Ra = 106.
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The critical upper boundary layer Rayleigh number (Raδ) for the same calculations that are

shown in fig. 4.10, is plotted against average mass flux in fig. 4.11. The Nusselt number, Nu, is

decreased by layering both because of the decrease in δT at the surface due to the temperature

drop caused by the internal thermal boundary layer at 660km-depth and the different convection

planform caused by the interruption of flow at that depth. The parameter Raδ isolates the effect

of planform and can be used as a measure of the thermal resistance across the upper boundary or

the decrease in the convective vigor in the upper mantle caused by layering. In the plot, Raδ is

much less for the oceanic than the continental regions because of the drag induced by the continent.

Models with free-slip surfaces show a decrease in Raδ with mass flux, indicating lesser heat transport

efficiency in the upper mantle for large magnitudes of the Clapeyron slope, which along with the

decrease in δT is responsible for the large change in the Nusselt number shown in fig. 4.9. The

oceanic part of the mixed surface calculations does not show any significant change in the thermal

resistance of the upper mantle flows indicating that there is no significant change in the planform.

Under complete lids, the critical upper boundary layer Rayleigh number surprisingly increases with

mass flux, which indicates that the upper boundary layer transports heat more efficiently in the

presence of stronger layering. When not layered, the convective planform is affected by the free-slip

lower boundary and the depth of the mantle, however, when layered, the upper mantle planform is

affected by the depth to the phase boundary and hence has a shorter wavelength. This planform

transports heat more efficiently under a rigid lid. This increased efficiency in continental regions

explains the slight change in the surface heat flux in the calculations with conducting lid surface

boundary condition. Models with mixed surface boundary conditions also show an increase in

the number of cold downwellings under the continent for large magnitudes of the Clapeyron slope

(compare fig. 4.1c and 4.2c) leading to a similar increase in the heat transport efficiency. The

Nusselt number for complete lid models increases with mass flux because δT increases as the flow

becomes less layered and the temperature drop at 660km-depth decreases, which, in this case is

more significant than the increase in the boundary layer efficiency. However, δT decreases with

Clapeyron slope much less for the continental part of the mixed cases due to the weaker thermal

layering. This, combined with the increased efficiency in the upper boundary layer, causes Nu to

be essentially independent of Mf (e.g. Ra6H0p0L2.4, Ra6H0p1L2.4, Ra6H0p3L2.4, Ra6H0p5L2.4,

Ra6H0p7L2.4 and Ra6H0p9L2.4).
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average mass flux across the phase boundary for calculations in 8 × 1 boxes with
Ra = 106.
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In fig. 4.12, the black and the grey bars correspond to the time-averaged number of convection

cells in the lower (Clm) and the upper mantle (Cum). Differences in the heights of the black and

grey bars at a particular Clapeyron slope indicate separate convective regimes in the upper and the

lower mantle, or decoupled mantle convection due to the endothermic phase boundary. I plot the

results for all three different boundary conditions. Decoupling is evident in all calculations with

large Clapeyron slopes.

In fig. 4.12b, results of calculations where the surface is completely covered by a conducting

lid are shown. A significant increase in the number of convection cells can be observed in the

upper mantle for strongly layered cases. This indicates the presence of several short-wavelength

convection cells driven by the surface boundary layer instabilities above the phase boundary. The

short-wavelength flows in the upper mantle are easily blocked by the phase boundary resulting in

a strong internal thermal boundary layer along the endothermic phase boundary producing large

values of β.

The models with free-slip and mixed surfaces (fig. 4.12a and 4.12c) show a lesser degree of

decoupling between the upper and the lower mantle than the rigid-lid models. Although there is

an increase in the upper mantle downwellings when strongly layered for the free-slip and the mixed

cases, they are not sufficiently strong to cause zero-crossings of the stream function and are laterally

swept by the dominant long-wavelength flows. The smallest number of convection cells, indicating

long-wavelength flows, are obtained for mixed cases, regardless of the value of the Clapeyron slope.

For all of the surface boundary conditions used, the convection wavelength in the lower mantle is

longest when large magnitudes of the Clapeyron slope are used because flow is driven by the long-

wavelength convection cells that penetrate the phase boundary. Models with mixed surfaces show

relatively little change in the number of rolls with Clapeyron slope, again indicating the dominance

of the effects of mixed surface boundary conditions.
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Figure 4.12: Number of convection cells in the upper (grey bars) and the lower
(black bars) mantle as a function of the Clapeyron slope of the endothermic phase
boundary for calculations with Ra = 106 and (a) free-slip, (b) conducting lid and
(c) mixed surface boundary conditions in 8 × 1 boxes.
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4.4.2 Effects of Different Continental Lengths and Internal Heating

A series of calculations were carried out to investigate the effect of different continental coverage

for Ra = 106 and Ra = 107 with γ = −3MPaK−1. I also ran similar simulations for Ra = 106 with

γ = 0 MPaK−1. All of the models demonstrate an increase in Nu under the oceanic region (see

Nuo in table 4.1) when the continent covers 80% of the surface. This is due to the high temperature

anomaly under the continent being swept laterally under ocean by the long-wavelength circulation

as seen by Lenardic et al. (2005).

I changed the length of the continent starting from no lid to total coverage for every series.

My results are shown as grouped bar plots in fig. 4.13 (similar to fig. 4.12). The most noticeable

feature in these plots is that the number of rolls decreases dramatically as the continental coverage

is increased from 0% to only 30%. As soon as the surface is changed to a total lid, the mantle is

dominated by short-wavelength flows resulting in a greater decoupling between the upper and the

lower mantle. Note that all models with partial coverage have similar planform, but the models

with 50% coverage produce the longest wavelength convection cells.

Comparing fig. 4.13a and 4.13b, it can be seen that the higher Rayleigh number causes a stronger

decoupling between the upper and the lower mantle in the absence of any continent and in the case

of a total lid, reflecting increased layering with increased Rayleigh number. This occurs because

of the narrower convective features seen in the higher Rayleigh number calculations. Guillou and

Jaupart (1995), in their tank experiment where all the horizontal and vertical boundaries were rigid,

showed no change in the flow wavelength with increasing Rayleigh number, however, when modeled

numerically in a box with all free-slip boundaries, Grigné et al. (2007b) observed a correlation

between the two variables and they demonstrated that the long convection cell wavelength varies

as Ra1/4 and produced a scaling theory arguing for this dependence. I also observe that fewer

rolls are produced in calculations with Ra = 107 than Ra = 106 even though the surface boundary

condition is partly rigid.
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Some of my models (Ra6H0p3L2.4, Ra6H20p3L2.4, Ra7H0p0L2.4, Ra7H40p0L2.4, †Ra7H40p0L2.4,

Ra7H0p3L2.4, Ra7H40p3L2.4) contain two separate continents covering 15% at the extreme left

and right sides of the box. My goal was to compare models with a single continent with a surface

area of 30% and two continents totalling a surface area of 30%. Two-continent models resulted

in two rolls with upwellings at either end of the box, however, as can be seen in Table 4.1, the

measured diagnostics are very similar. This is because the wavelengths are still sufficiently long as

to be only weakly affected by the phase boundary.

When internal heating was included in my models (Ra6H20p3L2.4, Ra6H20p3L2.4, Ra7H40p0L2.4,

†Ra7H40p0L2.4, Ra7H40p3L2.4), the average temperature and the surface heat flux increased as

expected. I also see a significant decrease in the flow wavelength mostly in the upper mantle. In

these models, much warmer mantle produces stronger cold downwellings from the surface due to

a larger thermal buoyancy contrast. These downwellings force the flow in the upper mantle to

contain a large number of short-wavelength convection cells. However, β is similar to that of purely

basally heated models. This is probably due to a larger total heat flux combined with a higher

heat conduction across 660km-depth in the presence of a stronger internal thermal boundary layer.

The average temperature in Cartesian geometry is higher than in spherical geometry (Vangelov

and Jarvis, 1994) and consequently, the presence of internal heating in Cartesian geometry results

in very high internal temperatures.
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4.4.3 Effect of Continents on the Shape of the Geotherm

The presence of a partial lid increases the convection wavelength, increasing the horizontal advec-

tion of heat. Sinha and Butler (2007) showed that subadiabaticity can occur in regions where the

dominant thermal balance is between the horizontal and the vertical advection of heat. Conse-

quently, the models with mixed surface boundary conditions, which have very large aspect ratio

flows and a large amount of horizontal advection of heat, show subadiabatic geotherms (vertical

profile of horizontally averaged temperature) even without the presence of internal heating. My

models are incompressible and the temperature can be considered to be an approximation of the

potential temperature in a compressible model (Jarvis and McKenzie, 1980). As a result, if the

geotherm, interior to the surface and the basal thermal boundaries, has a positive slope, the tem-

perature gradient is subadiabatic. In fig. 4.14, I plot the time-averaged geotherms from models

with different continental coverage, L, Ra = 107 and γ = −3MPaK−1. In the absence of a con-

tinent, the geotherm is almost adiabatic inside the top and bottom boundary layers, with small

overshoots resulting from the horizontal advection of heat near the boundaries (Jarvis and Peltier,

1982). Introducing a continent of 30% coverage results in a geotherm with positive slope, interior

to the boundary layers. Although I show only one set of calculations here, all models with par-

tial coverage show significant subadiabaticity, which can also be seen in fig. 4.1c and 4.2c, where

temperature increases with height in the lower mantle above the cold, laterally advecting material

near the core-mantle boundary. When I introduce full continental coverage, the interior of the

geotherm becomes adiabatic because the long-wavelength convection cells are no longer present.

The small bump at 660km-depth is due to the presence of the phase boundary. I also observed

subadiabaticity in the lower mantle geotherm for strongly layered models (not shown) caused by

the presence of long-wavelength flows induced by the phase boundary. The temperature drop at

the core-mantle boundary decreases with increasing continental coverage because of the increase in

the average mantle temperature. However, the models with mixed boundary conditions have larger

core-mantle boundary temperature drops than they would if they were adiabatic.
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In fig. 4.15, I plot the temperature drop due to the subadiabaticity in the geotherm as a

function of the ratio of the spatially and temporally averaged magnitudes of horizontal to vertical

advection for all of my calculations without internal heating. The models with two continents

are also not included in this figure. To calculate the temperature drop, I record the maximum

and the minimum temperatures along the temporally averaged geotherm in the upper and the

lower mantle, respectively, and take the difference. One can clearly see the increasing trend in the

subadiabaticity as the ratio increases which is consistent with my previous finding that horizontal

advection can cause subadiabaticity. Fig. 4.16 shows how the same ratio varies with the number of

convection cells in the lower mantle (Clm). The overall negative slope of the scatter plot indicates

that increased horizontal advection is associated with the models with longer wavelength convection

cells. This indicates that all calculations with mixed surface boundary conditions and also free-

slip calculations with large Clapeyron slopes, which have long-wavelength convection cells, will

have stronger horizontal advection and hence, are more likely to have significantly subadiabatic

geotherms.
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Figure 4.15: Total temperature drop across the mantle due to subadiabaticity in
the geotherm as a function of the ratio of the temporally and spatially averaged
horizontal to vertical advection. This plot does not include the models with internal
heating and two continents.
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4.5 Discussion and Conclusions

In this paper, the combined effects of different surface boundary conditions and the endothermic

phase boundary were studied in detail. I measure the degree of layering in terms of its effect on the

surface heat flux, mass flux, heat transport across 660 km-depth and the difference in the number

of convection rolls in the upper and the lower mantle.

My investigation shows a sudden increase in the degree of layering between Clapeyron slopes of

−5MPaK−1 and −6MPaK−1, as measured by the heat transport, mass flux and the surface heat

flux in a unit aspect ratio box with Ra = 106 for all the different surface boundary conditions.

However, a gradual increase in all of these measures of layering and a smaller maximum degree of

layering is seen in wide aspect ratio boxes, which indicates a strong dependence of layering on the

aspect ratio of the convection cell.

I have shown that the models with full continental coverage have the most strongly reduced

advection of heat across 660 km-depth and the largest degree of decoupling between the upper and

the lower mantle convection. This means that one-plate planets like Venus (Stevenson, 2003) might

have stronger thermal layering and significantly decoupled mantle convection compared to Earth.

Mixed surface boundary models, which are more Earth-like, show very little effect of change in

Clapeyron slope on the surface heat flux. This occurs because in oceanic regions the mass flux is

reduced to a lesser degree due to the dominance of the surface boundary condition and the efficiency

of the boundary layer does not change significantly with mechanical layering while in continental

regions the heat transport efficiency actually increases with layering. However, because of the

gradual slope of the Nu-Mf relationship, the mass flux across 660 km-depth can be somewhat

impeded and the flow in the upper and the lower mantle can also be weakly decoupled. This

indicates that even if mantle convection was more layered in the past due to higher Rayleigh

numbers, there may have been relatively little effect on the surface heat flux while mechanical

mixing between the upper and the lower mantle may have been reduced. This might affect the

mantle composition and could be of significant importance for geochemical studies of mantle mixing

(Kellogg et. al., 2008; Peltier, 1996).

Although in the presence of a complete conducting lid the surface heat flux is somewhat affected

by a decrease in the mass flux across 660km-depth, no such effect is observed over the continental

regions of the mixed boundary cases. The resistance to transport heat across the upper thermal

boundary layer, as measured by Raδ, increases with increasing mass flux across 660 km-depth for

cases where the surface is covered by rigid lid. This occurs because, in the presence of strong layering

the convection planform in the upper mantle is governed by the surface boundary condition and

the depth to the phase boundary and a shorter wavelength convective planform is chosen that is

more favorable for efficient heat exchange at the surface.
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The presence of a total lid results in significantly shorter wavelength mantle flows mostly in

the upper mantle because of the drag on the horizontal flows along the surface. Layering usually

increases with Ra as the flows have narrower features. However, with a rigid lid, even though the

effective Ra is decreased compared with the free-slip cases, the wavelength is also decreased leading

to stronger layering. The longest wavelength flows are seen in models with partial lids. Layering also

increases the flow wavelength in the lower mantle as these flows are capable of penetrating the phase

boundary. I have shown that increasing the width of the continent from 0 to 30% results in longer

wavelength convection cells and that the largest rolls form when the width is 50%. This indicates

that for approximately 30% continental coverage, we might expect long-wavelength convection in

the Earth’s mantle.

In my models, continents do not drift. However, in their study in 3D spherical geometry with

mobile continents Phillips and Bunge (2005) found that partial continental coverage induces long-

wavelength mantle flows. Zhong and Gurnis (1993) also used mobile continents in their cylindrical

geometry calculations and demonstrated the presence of long-wavelength thermal structure. Nu-

merical experiment by Lowman and Jarvis (1999) and laboratory tank experiment by Zhong and

Zhang (2005) investigated the situations where continents were free to move and demonstrated

periodic mantle flow behavior analogous to the Wilson cycle. All of these studies found upwellings

beneath continents.

I find that introducing partial continental coverage produces a subadiabatic thermal gradient

in the mantle, even without the presence of internal heating. This occurs because of the increased

importance of horizontal advection in the resulting long-wavelength flows. This results in a larger

temperature drop at the core-mantle boundary than would obtain for a purely adiabatic internal

gradient causing an increased estimate of the heat flux from the core into the lower mantle for a

given mean temperature (Bunge, 2005). This would affect energy budget calculations for the core

and the mantle and would indicate that the inner core is slightly younger than is typically estimated

(Costin and Butler, 2006). A subadiabatic geotherm would also require us to revise the estimates

of the composition of the mantle (Mattern et al., 2005) and its transport properties (Monnereau

and Yuen, 2002).

I have explored a wide range of parameter space and identified the combined effect of layering

and continents on mantle convection. I carried out all of my calculations with an isoviscous fluid

in two-dimensional Cartesian geometry. In future work, it will be interesting to investigate these

effects in spherical geometry. Incorporating temperature and depth-dependent viscosity and more

realistic surface plates might also be of interest and this has been discussed in chapter 6.
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Chapter 5

Conclusions

The main focus of this thesis was to investigate some of the important aspects related to thermal

convection in the Earth’s mantle. This study further added to our understandings of our planet’s

interior. The specific objectives were i) a detailed analysis of the energy balance in areas with a

positive vertical temperature gradient in the mantle and ii) the investigation of different convective

planforms in the presence of both continental lithosphere and the endothermic phase boundary

at 660km-depth. A large number of numerical calculations were performed in two-dimensional

Cartesian coordinates in order to achieve this goal.

In chapter 2, I have investigated the different energy balances that result in a subadiabatic

thermal gradient within the mantle and I have defined them as VA-H, VA-HA and SC. This study

showed that the balance between vertical advection and internal heating, VA-H, becomes increas-

ingly important in leading to the subadiabatic temperature gradient as the internal heating rate is

increased and it is mostly responsible for the bulk subadiabaticity within the geotherm. Previously

this balance mechanism was thought to be the only factor leading to a positive temperature gradi-

ent in calculations with internal heating. However, I found that the balance between the horizontal

and vertical advection, VA-HA, is important when the internal heating rate is less than roughly

the surface heat flux value in the absence of internal heating for the same model (table 2.2) and

it is responsible for the top and the bottom overshoot along the geotherm. In time-dependent

calculations, the balance between the local secular cooling and all the other terms in the energy

equation, SC, can also be responsible for the subadiabaticity and plays the role of either VA-H or

VA-HA in a temporally averaged geotherm. High Rayleigh number mantle convection models that

are representative of the Earth’s mantle are always time-dependent and hence, SC is a significant

contributor to the resulting positive slope in a time-averaged geotherm.

While studying the effects due to depth-dependent rheology, I found that an increased mobility

near the surface because of the less viscous fluid resulted in greater horizontal advection that caused

a significant increase in the importance of the VA-HA mechanism indicated by the narrow surface

overshoot. This narrow zone of low viscosity and higher temperature may be equivalent to the

observed seismic low-velocity zone (Dziewonski and Anderson, 1981) in tomographic studies. Cal-

culations were also carried out using different surface boundary conditions representing continental
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and oceanic lithosphere in the presence of internal heating. Due to the shorter wavelength convec-

tion cells and warmer mantle temperature, models with complete continental coverage showed an

increased VA-H leading to a stronger bulk subadiabaticity and decreased VA-HA. This might imply

that the single-continent planets like Venus (Stevenson, 2003) may have significantly subadiabatic

interiors. I ran simulations in 2D domains with aspect ratios of 1, 4 and 8 and observed that,

for energy balance calculations, square boxes produced slightly different results than wider boxes.

However, results from both 4 and 8 aspect ratio boxes were essentially identical indicating that an

aspect ratio of 4 is sufficient to analyze the balance mechanisms. The models that had Earth-like

surface heat flux showed that the total dimensional mantle subadiabaticity may be as large as 450K

and all of the three balance mechanisms are possibly active in the mantle. In order to study the

Earth’s heat budget, mantle composition and also to parameterize CMB heat flux, the effects of

subadiabatic temperature gradients are very important and must be considered.

In chapter 3, I studied the effects of temporally and spatially varying secular cooling and a

constant internal heating amount within the mantle in unit aspect ratio numerical models. The

results showed no obvious difference between these two effects.

Chapter 4 demonstrated the thermal effects of the endothermic phase boundary across 660km

depth on mantle convection in the presence of different surface boundary conditions. In order to

quantify the degree of layering induced by the endothermic phase boundary, I defined and calculated

different parameters. The thermal layering was defined as β, which gives the ratio of the conductive

to the total heat flux across 660km-depth. Average mass flux across that depth was used to measure

the mechanical degree of layering. I calculated the number of convection rolls in the upper and

lower mantle separately and this was used to observe the flow decoupling due to layering. The

change in surface heat flux, defined as the Nusselt number (Nu), was also used to demonstrate

the effects of different Clapeyron slopes of the phase boundary. All of the models that were run

in unit aspect ratio boxes with Ra = 106 showed a sudden increase in the thermal and mechanical

degree of layering as well as a decrease in the Nusselt number between the Clapeyron slopes of

−5MPaK−1 and −6MPaK−1. When large aspect ratio boxes were used, the degree of thermal

layering started gradually increasing for magnitudes of the Clapyron slope higher than 3MPaK−1.

This was also seen in the measure of mechanical layering, however, Nu for cases other than free-slip

were not significantly affected by the change in Clapeyron slope. This indicates that the effects due

to different Clapeyron slope values for the endothermic phase boundary are strongly dependent on

the aspect ratio of the convection cell.

Mixed surface boundary models have Earth-like plate tectonics and they showed little to no

response to the change in Clapeyron slope on the surface heat flux. The observations showed that

the effects due to the surface boundary condition dominate the effects of different Clapeyron slopes

for mixed surface boundary condition cases. Models that resembled single-continent planets like
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Venus with complete continental coverage demonstrated the strongest thermal layering and the

most significantly decoupled convection in the mantle for large magnitudes of the Clapeyron slope.

In the presence of strong layering, the convection planform in the upper mantle is governed by

the surface boundary condition and the depth to the phase boundary. The strong drag created by

the no-slip surface mimicking continents penalizes horizontal mantle flow near the upper thermal

boundary layer and due to this a large number of narrower features form in the upper mantle. These

short wavelength convection cells were easily blocked by the phase boundary leading to stronger

layering. Unlike the situations where the surface was free-slip, heat transport efficiency in the upper

mantle surprisingly increased with the magnitudes of the Clapeyron slope in areas with continental

lithosphere. The dominance of the mixed surface boundary condition effects combined with the

increased heat transport efficiency under continents resulted in surface heat flux values being almost

independent of the Clapeyron slopes. Convection wavelengths were large in the presence of partial

continental coverage and as a result, the geotherms from these models showed subadiabaticity even

without the presence of internal heating. The dominant energy balance in the regions of positive

temperature gradient was between horizontal and vertical advection of heat (VA-HA).
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Chapter 6

Future Considerations

The results presented in this thesis were obtained from 2D numerical calculations and were

mostly isoviscous with the exception being the depth-dependence in viscosity in a few cases. The

next immediate step would be to consider temperature-dependent (even stress-dependent) rheol-

ogy and investigate the resulting behavior. It might also be interesting to observe the effects of

periodic vertical boundaries instead of reflecting. Periodic boundary condition might add some ex-

tra freedom to the system, however, in small aspect ratio calculations it forces shorter wavelength

flows compared to equivalent reflecting boundary condition models. A more physically realistic

model of continents might also be useful. The perfect way to model continental lithosphere is still

debatable. One of the better ways to incorporate the physical behavior of a continent would be

placing a high viscosity (e.g. Lowman and Gable, 1999) and more buoyant slab on the surface and

let it flow with the thermally driven convection in the mantle using the force balance method (e.g.

Gable et al., 1991; Monnereau and Quéré, 2001). This added freedom would result in flow reversal

(e.g. Lowman and Jarvis, 1993) phenomena and might increase the time-dependence of the model.

The temperature-dependence of viscosity would produce more vigorous flow in the hotter upper

mantle under the continents due to a higher effective Rayleigh number. A different numerical study

(Yoshida and Kageyama, 2006) on single-plate planets like Venus or Mars has shown the presence

of long-wavelength convection structures in 3D spherical geometry calculations with a very strong

temperature and moderate to strong depth-dependent viscosity. Observing this effect for Earth-like

plate tectonics would be useful. In reality, a significant concentration of radioactive materials can

be found in continents. This implies that one might consider adding internal heating within the

continental lithosphere in the model, which would affect the surface diagnostics and might have

an interesting effect on the hot upwellings underneath the continents. Further complications can

be added by carrying out the calculations in 3D Cartesian and spherical geometry, which require

extensive computation time and power, in the future to investigate a more Earth-like set up.

In chapter 2, I have used a constant internal heating rate within the mantle. The use of an

amount that is decreasing with time can also be taken into account. This might show a changing

subadiabatic temperature drop across the mantle with time. I have defined the balance between the

local secular cooling term and all the other terms in the energy equations as SC and showed this to
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be a significant contributor when the calculation is time-dependent. As Earth-like mantle convection

models always show strong time-dependence (Phillips and Bunge, 2005), it might be useful to

investigate the effects due to SC more closely. Exploring the effects of compressibility, sphericity

and the endothermic phase boundary on different energy balances resulting in subadiabaticity can

also be considered as a focus of future studies. In a compressible model, viscous dissipation of heat

can be significant in the deeper part of the mantle, which might cause a smaller CMB overshoot due

to the increased temperature of mantle materials as they sink. In this thesis, I have calculated the

dominant energy balances only for models without the 660km-depth phase boundary. However, it

will be useful to carry out similar calculations for layered models. The presence of strong layering

produces long wavelength lower mantle convection cells and hence V A−HA might be a significant

factor to the lower mantle subadiabaticity.

One might consider incorporating the weaker exothermic phase boundary across 410km-depth

while investigating the various effects due to the stronger endothermic phase boundary across

660km-depth in the Earth’s mantle as presented in chapter 4. The presence of a low viscosity zone

underneath the continental lithosphere can have some consequences in governing the convection

wavelength in the case of mixed surface boundary calculations. A parameterized model combining

the effects of continents and the endothermic phase boundary should be developed in order to

further understand the observed effects and to be able to make predictions of the more complete

numerical model.
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[52] Gable, C. W., Óconnell R. J. and Travis B. J., (1991), Convection in three dimensions with

surface plates: Generation of toroidal flow, J. Geophys. Res., 96, 8391 8405.

[53] Gait, A. D. and Lowman, J. P., (2007a), Effect of lower mantle viscosity on the time-dependence

of plate velocities in three-dimensional mantle convection models, Geophys. Res. Lett., 34, Article

No. L21304.

107



[54] Gait, A. D. and Lowman, J. P., (2007b), Time-dependence in mantle convection models fea-

turing dynamically evolving plates, Geophys. J. Int., 171, 467-477.

[55] Gait, A. D., Lowman, J. P. and Gable, C. W., (2008), Time dependence in 3-D mantle con-

vection models featuring evolving plates: Effect of lower mantle viscosity, J. Geophys. Res., 113,

Article No. B08409.

[56] Ghias, S. R. and Jarvis, G. T. (2007), Mantle flow reversals in cylindrical Earth models, Phys.

Earth Plan. Int., 165, 194-207.

[57] Glatzmaier, G. A., (1988), Numerical simulations of mantle convection: Time-dependent,

three-dimensional, compressible. spherical shell, Geophys. Astrophys. Fluid Dyn., 43, 223-264.

[58] Glatzmaier, G. A., Schubert, G. and Bercovici, D., (1990), Chaotic subduction-like downflows

in a spherical model of convection in the Earth’s mantle, Nature, 347, 274-277.

[59] Gordon, R. B., (1967), Thermally activated processes in the earth: creep and seismic attention,

Geophys. J., 14, 33-43.
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Appendix A

Derivations of Poisson’s Equations for mantle

flow in 3D

Two dimensional mantle convection modeling only involves the poloidal motion, which includes
mostly the upwellings and the downwellings within the mantle. However, in three dimensional
geometry one needs to also consider the strike-slip motion, which is known as the toroidal motion.
Mathematically, the poloidal and toroidal components of the velocity field can be written as

up = ∇×∇× (Φk̂) (A.1)

ut = ∇× (Ψk̂) (A.2)

(Chandrasekhar, 1961) where Ψ and Φ are different potentials, and velocity

u = îux + ĵuy + k̂uz = up + ut (A.3)

where up and ut are the poloidal and toroidal components of the motion.

If I take ∇× of equation (2.14) and use (2.15), the x, y and z components, respectively, can be
written as

0 =
∂T

∂y
+ ∇2ωx, (A.4)

0 = −
∂T

∂x
+ ∇2ωy (A.5)

and
0 = ∇2ωz. (A.6)

So

∇2ωx = −
∂T

∂y
, (A.7)

∇2ωy =
∂T

∂x
(A.8)

and
∇2ωz = 0. (A.9)

Note that equation (A.9) implies ωz = 0, if ωz = 0 on all boundaries (free-slip models), which I
will assume from now on.

The toroidal and the poloidal parts of the motion in terms of stream functions can also be
written as

ut = î
∂Ψ

∂y
− ĵ

∂Ψ

∂x
(A.10)

and

up = î
∂2Φ

∂x∂z
+ ĵ

∂2Φ

∂y∂z
+ k̂

[

−

(

∂2Φ

∂x2
+
∂2Φ

∂y2

)]

. (A.11)

and the vorticity terms can also be written as

ωx = î · ∇ × u =
∂uz

∂y
−
∂uy

∂z
, (A.12)
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ωy = ĵ · ∇ × u =
∂ux

∂z
−
∂uz

∂x
(A.13)

and

ωz = k̂ · ∇ × u =
∂uy

∂x
−
∂ux

∂y
. (A.14)

As I already have shown that ωz = 0; using (A.10),(A.11) and (A.14), it can also be shown that
Ψ=0, which implies ut = 0 if the boundary condition is free-slip without any lateral variation in
viscosity. So, from here on all the velocity terms will only be related to the poloidal component.

Now if

φx =
∂Φ

∂y
, φy =

∂Φ

∂x
(A.15)

using (A.11) and (A.12), ωx can be written as

ωx = −∇2φx (A.16)

and using (A.11) and (A.13), ωy can be written as

ωy = ∇2φy . (A.17)

Substituting (A.15) into (A.11),

up = î
∂φy

∂z
+ ĵ

∂φx

∂z
+ k̂

[

−

(

∂φy

∂x
+
∂φx

∂y

)]

. (A.18)

Now comparing (A.3) and (A.18)

ux =
∂φy

∂z
, uy =

∂φx

∂z
, uz = −

(

∂φy

∂x
+
∂φx

∂y

)

. (A.19)

Finally, the governing four Poisson’s Equations for isoviscous 3D mantle convection calculations
are

∇2φx = −ωx, (A.20)

∇2φy = ωy, (A.21)

∇2ωx = −
∂T

∂y
(A.22)

and

∇2ωy =
∂T

∂x
. (A.23)

As an example I show a temperature snapshot from a 3D Cartesian coordinate model in fig.
A.1. Here red indicates warmer temperatures. This model was run in a cube with Ra = 106 and
the surface is fully free-slip.
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Figure A.1: Isosurface plot of the temperature from a calculation that was run in
a 1× 1× 1 box for Ra = 106 with a free-slip surface boundary condition. Colorbar
is shown at the top.
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Appendix B

Derivations of the Dynamic Topography in 2D

for Isoviscous and Variable Viscosity Calcula-

tions

Dynamic topography can be defined as the topography generated by the dynamic forces in the
upper part of the mantle. This section provides the required mathematical derivations to calculate
dynamic topography numerically. In order to quantify this, I start with equation (2.22), which can
also be written as

−
∂p

∂x
+ η∇2ux = 0. (B.1)

Now non-dimensionalizing and substituting (2.13) into (B.1),

−
∂p

∂x
+ α∆T∇2ux = 0. (B.2)

Similarly the vertical normal stress term in its non-dimensional form can also be written as

τzz = −p+ 2α∆T
∂uz

∂z
. (B.3)

Integrating (B.1) over the length of the box

p = α∆T

[

∂2ψ

∂x∂z
(x) −

∂2ψ

∂x∂z
(0) +

∫ x

0

∂3ψ

∂z3
dx+ p0

]

. (B.4)

Substituting (B.4) into (B.3)

τzz = α∆T

[

−
∂2ψ

∂x∂z
(x) +

∂2ψ

∂x∂z
(0) −

∫ x

0

∂3ψ

∂z3
dx− p0 − 2

∂2ψ

∂x∂z

]

. (B.5)

Using the expression for vorticity, I can write

∫ x

0

∂ω

∂z
dx =

∂2ψ

∂x∂z
(x) −

∂2ψ

∂x∂z
(0) +

∫ x

0

∂3ψ

∂z3
dx. (B.6)

Substituting this into (B.5) and assuming p0 = 0

τzz = −α∆T

(
∫ x

0

∂ω

∂z
dx+ 2

∂2ψ

∂x∂z

)

. (B.7)

To express the non-dimensional vertical stress in a similar form for variable viscosity calculations,
I consider the x-component of the momentum equation (2.22). Substituting the stress terms and
non-dimensionalizing it I get,

∂p

∂x
= α∆T

[

2
∂η

∂x

∂ux

∂x
+ η

∂ω

∂z
+
∂η

∂z

(

2
∂uz

∂x
+ ω

)]

. (B.8)
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Here I use equation (2.26) to substitute for the tangential stress term.

Again integrating (B.8) along the length of the box, substituting the expression for pressure
into (B.3) and assuming p0 = 0,

τzz = −α∆T

[

2

∫ x

0

∂η

∂x

∂ux

∂x
dx+

∫ x

0

η
∂ω

∂z
dx+ 2

∫ x

0

∂η

∂z

∂ux

∂z
dx−

∫ x

0

ω
∂η

∂z
dx

]

+ 2α∆T
∂uz

∂z
. (B.9)

So, the final form of the non-dimensional vertical stress equation in terms for ψ-ω is

τzz = −α∆T

[

2

∫ x

0

∂η

∂x

∂2ψ

∂x∂z
dx+

∫ x

0

η
∂ω

∂z
dx+ 2

∫ x

0

∂η

∂z

∂2ψ

∂z2
dx −

∫ x

0

ω
∂η

∂z
dx+ 2

∂2ψ

∂x∂z

]

. (B.10)

Note that the direct integration of B.10 often leads to large numerical errors and may be better
carried out in the spectral domain (J. Lowman personal communication).

If the density of the mantle and the overlying water column are defined as ρm and ρw and the
dimensional topography is denoted as H , I can write

ρwgH = ρmgH + ρmgdτzz . (B.11)

I multiply the non-dimensional vertical stress term with ρmgd to convert it into the dimensional
form. At the end the dimensional dynamic topography is expressed as

H = −
ρmτzzd

(ρm − ρw)
. (B.12)

The gravity anomaly created due to the dynamic topography can be calculated using the ex-
pression given by McKenzie et. al. (1973), which is

gz =

[

∫ λ

0

εs(x)G(x0 , z0, x, 1)dx +

∫ λ

0

εcmb(x)G(x0, z0, x, 0)dx−

∫ 1

0

dz

∫ λ

0

T (x, z)G(x0, z0, x, z)dx

]

(B.13)
where

G(x0, z0, x, z) =
sinhπ(z−z0)

λ

[

cosπ(z−z0)
λ − cosπx

λ cos
πx0

λ

]

cosh2 π(z−z0)
λ − 2coshπ(z−z0)

λ cosπx
λ cos

πx0

λ + 1
2

(

cos 2πx
λ + cos 2πx0

λ

)
. (B.14)

The non-dimensional dynamic topography at the surface and at the CMB are εs and εcmb and λ is
the normalized width of the box.
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Appendix C

Parameterized Model For Different Continen-

tal Coverage and Thicknesses with a Phase-Change

at 660 km-depth

In this case the whole system is divided into two: the lower and the upper mantle with an
endothermic phase boundary between them. The governing equation for the heat-budget in the
lower convecting mantle is

cpl

∂Tml

∂t
= Qcmb −Qph +Qml

(C.1)

where cpl
and Tml

are the total specific heat and the average temperature in the lower mantle, t is
time, Qcmb and Qph are the heat fluxes across the CMB and the phase boundary at 660 km-depth
and Qml

is the internal heating rate per unit mass in the lower mantle.

As Qph includes both the conductive (Qcondph
) and advective (Qadvph

) heat fluxes across the
phase boundary, I can write

Qph = Qadvph
+Qcondph

= Qcondph
/β (C.2)

where,

β =
Qcondph

Qadvph
+Qcondph

. (C.3)

Substituting

Qcmb =
kcmbAcmb(Tcmb − Tml

)

δcmb
(C.4)

and

Qph =
kphAph(Tml

− Tmu
)

βδph
(C.5)

into (C.1) I get

kcmbAcmb(Tcmb − Tml
)

δcmb
−
kphAph(Tml

− Tmu
)

βδph
+Qml

= cpl

∂Tml

∂t
. (C.6)

Here kcmb and kph are the thermal conductivities, δcmb and δph are the boundary layer thicknesses
and Acmb and Aph are the total areas along the CMB and the phase boundary, and Tml

and Tmu

are the average temperatures in the lower and the upper mantle.

If the boundary layer Rayleigh numbers at the CMB and at the phase boundary are Raδcmb
and

Raδph
, then

Raδph
=
gα(Tml

− Tmu
)δ3ph

νκ
=> δph = a1(Tml

− Tmu
)−1/3 (C.7)

and

Raδcmb
=
gα(Tcmb − Tml

)δ3cmb

νκ
=> δcmb = a2(Tcmb − Tml

)−1/3. (C.8)

Here α is the thermal expansion coefficient, ν is the kinematic viscosity and κ is the thermal diffu-

sivity, a1 =
(

Raδcmb
νκ

gα

)1/3

and a2 =
(

Raδph
νκ

gα

)1/3

.
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I assume that Raδph
= ζRaδcmb

, which gives

δ3ph(Tml
− Tmu

) = ζδ3cmb(Tcmb − Tml
) => δph = φ δcmb(Tcmb − Tml

)1/3(Tml
− Tmu

)−1/3 (C.9)

where φ = ζ1/3. Substituting (C.9) into (C.6)

φβ(Tcmb − Tml
)4/3 − (Tml

− Tmu
)4/3 + ε1Qml

= ε1 cpl

∂Tml

∂t
(C.10)

where, a1 = φ a2 = a, kcmb = kph = kδ, Acmb = Aph = 1 and ε1 = φβ a/kδ.

Next I consider the upper mantle and derive a similar equation. The governing equation for the
heat-budget in the upper convecting mantle is

cpu

∂Tmu

∂t
= Qph −Ql −Qo +Qmu

(C.11)

where cpu
is the specific heat and Qmu

is the internal heating rate per unit mass within the upper
mantle.

Again Substituting

Qph =
kphAph(Tml

− Tmu
)

βδph
, (C.12)

Ql =
klAl(Tmu

− Tl)

δl
(C.13)

and

Qo =
koAo(Tmu

− Ts)

δo
(C.14)

into (C.11), I get

kphAph(Tml
− Tmu

)

βδph
−
klAl(Tmu

− Tl)

δl
−
koAo(Tmu

− Ts)

δo
+Qmu

= cpu

∂Tmu

∂t
. (C.15)

Here Ts is the surface temperature and in all cases Ts = 0, kl and ko are the thermal conductivities,
δl and δo are the boundary layer thicknesses and Al and Ao are the total areas at the base of the
conducting lid and the lid-free region, and Tl is the average temperature along the top of the box
under the continent.

If the boundary layer Rayleigh numbers at the base of the continent and in the lid-free region
are Raδl

and Raδo
, then

Raδl
=
gα(Tmu

− Tl)δ
3
l

νκ
=> δl = a3(Tmu

− Tl)
−1/3 (C.16)

and

Raδo
=
gα(Tmu

− Ts)δ
3
o

νκ
=> δo = a4(Tmu

− Ts)
−1/3 (C.17)

where, a3 =
(

Raδl
νκ

gα

)1/3

and a4 =
(

Raδoνκ
gα

)1/3

.

I already know

Raδph
=
gα(Tml

− Tmu
)δ3ph

νκ
=> δph = a2(Tml

− Tmu
)−1/3. (C.18)

Assuming Raδl
= ΨRaδo

and Raδph
= ζ Raδo

, (considering Raδcmb
= Raδo

) where ζ is a constant

δl = ψ δo(Tmu
− Ts)

1/3(Tmu
− Tl)

−1/3 (C.19)
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and
δph = φ δo(Tmu

− Ts)
1/3(Tml

− Tmu
)−1/3 (C.20)

where, ψ = Ψ1/3. Substituting these two equations into (C.15)

ψ(Tml
− Tmu

)4/3 − φβL(Tmu
− Tl)

4/3 −ψφβ(1−L)(Tmu
− Ts)

4/3 + ε2Qmu
= ε2 cpu

∂Tmu

∂t
(C.21)

where, L is the length of the continent, kph = kl = ko = kδ , Aph = 1 (for unit aspect ratio box),
Al = L, Ao = 1 − L (for unit aspect ratio box) and ε2 = a4φψβ/kδ .

If the internal heating rate per unit mass within the continent is Qc, the heat fluxes out of the
continent (Qs) and at the base of the continent (Ql) are related as

Qs = Ql +Qc (C.22)

which gives,

kc
Tl − Ts

dc
= kl

Tmu
− Tl

δl
+Qc => kc

Tl − Ts

dc
=
kl

a3
(Tmu

− Tl)
4/3 +Qc (C.23)

where kc is the thermal conductivity of the continent, Ts(=0) is the temperature along the surface
and dc is the thickness of the continent.

Solving (C.23) for Tmu
, I get

Tmu
= Tl +

[

a3 kc(Tl − Ts)

kldc
−
a3Qc

kl

]3/4

. (C.24)

Now substituting this in (C.21) and considering
[

a kc(Tl−Ts)
kldc

− a Qc

kl

]

= ∆ where a3 = a

ψ(Tml
− Tl∆

3/4)4/3 − φβL∆ − βψφ(1 − L)(Tl + ∆3/4 − Ts)
4/3 + ε2Qmu

= ε2 cpu

∂Tmu

∂t
(C.25)

or in terms of Tml
it can be written as

Tml
= Tl∆

3/4 +

[

φβL

ψ
∆ + βφ(1 − L)(Tl + ∆3/4 − Ts)

4/3 −
ε2
ψ
Qmu

+
ε2 cpu

ψ

∂Tmu

∂t

]3/4

. (C.26)

Now substituting (C.24) and (C.26) in (C.10)

ε1 cpl

∂Tml

∂t

= φβ

[

Tcmb − Tl∆
3/4 −

(

φβL

ψ
∆ + βφ(1 − L)

(

Tl + ∆3/4 − Ts

)4/3

−
ε2
ψ
Qmu

+
ε2 cpu

ψ

∂Tmu

∂t

)3/4
]4/3

−

[

φβL

ψ
∆ + βφ(1 − L)

(

Tl + ∆3/4 − Ts

)4/3

−
ε2
ψ
Qmu

+
ε2 cpu

ψ

∂Tmu

∂t

]

+ ε1Qml
(C.27)

In order to compare the parameterized model results with the numerical model results, it is

assumed that the system is in equilibrium or
∂Tml

∂t =
∂Tmu

∂t = 0. With this assumption, equation
(C.27) can be solved for Tl. Consequently using the calculated value of Tl, equation (C.26) and
(C.24) can be used to solve for Tml

and Tmu
.

As examples I have plotted two different figures here showing results from both the numerical
and the parameterized models. The numerical calculations were run in unit aspect ratio boxes.
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Fig. C.1 shows the non-dimensional average temperature values from numerical calculations with
full continental coverage for Ra = 106 and Ra = 107 as a function of different non-dimensional
continental thicknesses together with the parameterized model results for comparison. In order to
get the dimensional thickness they need to be multiplied by 2890km, which is the depth of the
whole mantle.
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Figure C.1: Average temperature from numerical and parameterized models as
a function of different continental lithospheric thicknesses for Rayleigh numbers of
106 and 107 with total continental coverage and no internal heating. Numerical
models were run in 1 × 1 boxes.

Another set of calculations with different magnitudes of the Clapeyron slope in unit aspect ratio
boxes for Ra = 106 with different surface boundary conditions (previously shown in fig. 4.5) is also
demonstrated here in fig. C.2, where I plot the Nusselt number as a function of the Clapeyron slope
from both numerical and parameterized models. Both of these plots show that the parameterized
model works well in predicting results for numerical models that are run in 1 × 1 boxes.
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Figure C.2: Nusselt number from numerical and parameterized models as a func-
tion of different Clapeyron slopes with a Rayleigh number of 106 and no internal
heating.

128



The three governing equations that can be used to create a thermal history of the Earth are

ε1 cpl

∂Tml

∂t
= φβ(Tcmb − Tml

)4/3 − (Tml
− Tmu

)4/3 + ε1Qml
(C.28)

ε2 cpu

∂Tmu

∂t
= ψ(Tml

− Tmu
)4/3 − φβL(Tmu

− Tl)
4/3 −ψφβ(1 −L)(Tmu

− Ts)
4/3 + ε2Qmu

(C.29)

cpcore

∂Tcore

∂t
= −Qcore +Qhc

(C.30)

where cpcore
, Tcore and Qhc

are the specific heat, temperature and internal heating rate per unit
mass in the core, respectively, Qcore is the heat flux across the CMB and all the other variables
have already been defined previously.
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