
USING COOPERATION TO IMPROVE THE EXPERIENCE OF WEB SERVICES

CONSUMERS

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon

By

YUTING LUO

 Copyright Yuting Luo, August, 2009. All rights reserved.

i

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from

the University of Saskatchewan, I agree that the Libraries of this University may make it freely

available for inspection. I further agree that permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professor or professors who

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the

College in which my thesis work was done. It is understood that any copying or publication or

use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the University

of Saskatchewan in any scholarly use which may be made of any material in my thesis.

 Requests for permission to copy or to make other use of material in this thesis in whole or

part should be addressed to:

 Head of the Department of Computer Science

 University of Saskatchewan

 Saskatoon, Saskatchewan, S7N 5C9

ii

ABSTRACT

Web Services (WS) are one of the most promising approaches for building loosely coupled

systems. However, due to the heterogeneous and dynamic nature of the WS environment,

ensuring good QoS is still non-trivial. While WS tend to scale better than tightly coupled

systems, they introduce a larger communication overhead and are more susceptible to

server/resource latency. Traditionally this problem has been addressed by relying on negotiated

Service Level Agreement to ensure the required QoS, or the development of elaborate

compensation handlers to minimize the impact of undesirable latency.

This research focuses on the use of cooperation between consumers and providers as an

effective means of optimizing resource utilization and consumer experiences. It introduces a

novel cooperative approach to implement the cooperation between consumers and providers.

iii

ACKNOWLEDGMENTS

I would like to sincerely thank my supervisor Dr. Ralph Deters for his continuous support and

encouragement during my study. Dr. Deters guided me all through these two years and provided

me with inspiration and direction for my research.

I would like to thank my committee members: Dr. John Cooke, Dr. Julita Vassileva, and Dr.

Anh Dinh for their valuable feedback and suggestions on my thesis.

Special thanks to Ms. Rajitha Bakthula for her cooperation in the IPod experiments. It was

such a pleasant experience working with her.

I would also like to thank Ms. Jan Thompson, Graduate Correspondent at the department of

Computer Science, who has been very helpful throughout my study here and very considerate.

Additionally, I would like to thank all other professors, staff, and students for their support.

Finally, I would like to thank my family for their love and support all the time.

iv

TABLE OF CONTENTS

page

PERMISSION TO USE ... i

ABSTRACT .. ii

ACKNOWLEDGMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS ... x

INTRODUCTION .. 1

PROBLEM DEFINITION .. 7

Challenges in QoS Support for Service Interaction .. 7
The Cooperative Behaviors ... 11

Closed Consumer-Provider Cooperation ... 11
Open & Centralized Consumer-Provider Cooperation .. 12

Open & Decentralized Consumer-Provider Cooperation .. 12

LITERATURE REVIEW ... 15

QoS in WS .. 15
Performance Aspect of QoS in WS .. 16

SOAP/XML Messaging ... 17

Caching .. 18

Prefetching ... 19
Admission Control ... 20

Locking ... 21

Workflows ... 22
Summary ... 25

THE COOPERATIVE APPROACH .. 28

Architecture ... 29
A Simple Prediction Model for Prefetching ... 31
A Reservation Based Resource Locking Protocol .. 35

Pre-requests .. 35

Locking Protocol Basics .. 36

Lock Overriding and Compensations... 38
Re-negotiation ... 40

Re-negotiation in the Closed Consumer-Provider Cooperation... 41

Re-negotiation in the Open Consumer-Provider Cooperation ... 41

EXPERIMENTS ... 43

Phase 1 Experiments ... 43
Experimental Setup .. 43

v

Single-Client Workloads .. 44

Multi-Client Workloads ... 48
Phase 2 Experiments ... 50

Experimental Setup .. 50

Overheads and Gains.. 52
Impact of Caching on Performance.. 55
Impact of Prediction on Performance .. 56

Conclusion .. 58

EVALUATION WITH MOBILE DEVICES ... 60

Experimental Setup ... 60
Experiments on the Caching and Prediction ... 61

Overheads and Gains.. 61

Impact of Caching .. 64
Impact of Prediction ... 66

Impact of Message Size on Performance .. 69
Performance of Read Operations ... 70
Performance of Write Operations .. 73

Impact of Network Delay on Performance .. 76
Conclusions ... 78

CONCLUSIONS AND FUTURE WORK ... 80

Conclusions ... 80

Future Work .. 82

LIST OF REFERENCES .. 83

vi

LIST OF TABLES

Table page

Table 3-1. Summary of performance improvement techniques...26

Table 4-1. Lock compatibility among different locks ...37

Table 4-2. Lock overriding policy ...39

Table 5-1. Some parameters in both approaches ...49

Table 5-2. Service Operations..51

Table 5-3. Proportion of reads and writes in TPC-W workloads [39]52

vii

LIST OF FIGURES

Figure page

Figure 1-1. The Service-Oriented Architecture ..2

Figure 1-2. An example of SOAP Request and Response messages2

Figure 1-3. WSDL 1.1 specification in a nutshell [19] ...3

Figure 2-1. Service behavior under various loads [41] ...8

Figure 2-2. A scenario of resource conflict in service consumption10

Figure 3-1. An example of a FlowMark workflow ...23

Figure 3-2. An example of a BPEL workflow [36] ..24

Figure 3-3. An example of a state machine workflow [38] ..25

Figure 4-1. Techniques used in the cooperative approach ...28

Figure 4-2. Basic architecture of the cooperative approach ...29

Figure 4-3. Choice structure in a workflow ..32

Figure 4-4. Node structures...33

Figure 4-5. The prediction algorithm ..34

Figure 5-1. Setup of the experiment system ...44

Figure 5-2. Overheads of the cooperative approach in the worst situation45

Figure 5-3. Gains from only prediction when caching is worst ..46

Figure 5-4. Gains from only caching when prediction is worst ..47

Figure 5-5. Gains from the cooperative approach in the best situation47

Figure 5-6. Average response time of service clients ...49

Figure 5-7. Average response time with different settings in the browsing scenario53

viii

Figure 5-8. Average response time with different settings in shopping scenario54

Figure 5-9. Average response time with different settings in ordering scenario54

Figure 5-10. Impact of caching on performance in the single-client scenario..................55

Figure 5-11. Impact of caching on performance in the multi-client scenario56

Figure 5-12. Impact of prediction on performance in the single-client scenario57

Figure 5-13. Impact of prediction on performance in the multi-client scenario57

Figure 6-1. The experiment setup ...61

Figure 6-2. Overheads and gains in browsing ..62

Figure 6-3. Overheads and gains in shopping ...63

Figure 6-4. Overheads and gains in ordering ..63

Figure 6-5. Impact of caching on read operations (IPod) ...64

Figure 6-6. Impact of caching on write operations (IPod) ..64

Figure 6-7. Impact of caching on read operations (G1 Phone) ...65

Figure 6-8. Impact of caching on write operations (G1 Phone)66

Figure 6-9. Impact of prediction on read operations (IPod) ...67

Figure 6-10. Impact of prediction on write operations (IPod) ..67

Figure 6-11. Impact of prediction on read operations (G1 Phone)68

Figure 6-12. Impact of prediction on write operations (G1 Phone)69

Figure 6-13. Performance with no network delay and no processing time70

Figure 6-14. Performance with no network delay and varying processing time71

Figure 6-15. Performance with no network delay and constant processing time72

Figure 6-16. Performance with network delay and varying processing time72

Figure 6-17. Performance with network delay and constant processing time73

Figure 6-18. Performance with no network delay and no processing time73

Figure 6-19. Performance with no network delay and varying processing time74

ix

Figure 6-20. Performance with no network delay and constant processing time75

Figure 6-21. Performance with network delay and varying processing time75

Figure 6-22. Performance with network delay and constant processing time76

Figure 6-23. Impact of network delay on performance for read operations77

Figure 6-24. Impact of network delay on performance for write operations77

x

LIST OF ABBREVIATIONS

BPEL Business Process Execution Language

CORBA Common Object Request Broker Architecture

CVS Comma-Separated Values

EC2 Amazon Elastic Compute Cloud

HTTP Hypertext Transfer Protocol

IT Information Technology

JSON JavaScript Object Notation

LRU Lease Recently Used

OS Operating System

PDA Personal Digital Assistant

QoS Quality of Service

REST Representational State Transfer

SLA Service Level Agreement

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOC Service-Oriented Computing

TPC-W Transaction Processing Performance Council – Web

TTL Time-to-Live

UDDI Universal Description, Discovery, and Integration

URL Uniform Resource Locator

W3C World Wide Web Consortium

WS Web Services

WSDL Web Services Definition Language

WSFL Web Services Flow Language

XLANG XML-based extension of Web Services Description Language

XML Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

The emergence of Web Services (WS) has helped promote Service-Oriented Computing

(SOC), and it is now seen as the most promising technology for building loosely coupled systems

[1]. WS based on SOAP or REST have begun to replace other forms of middleware (e.g.

CORBA) as a means of exposing legacy applications. Key to the growth of WS are

standardization, interoperability, and reusability, which together enable WS to be used as

building blocks of services that can span organizations and computing platforms.

WS are considered as one of the most successful technologies to realize the Service-

Oriented Architecture (SOA), which, first introduced by Gartner in 1996, is now the premier

design principle for business applications. As defined by Papazoglou et al. [6], from a

technology perspective, SOA is a logical way of designing a software system to provide services

to either end-user applications or to other services distributed in a network via published and

discoverable interfaces. In the SOC paradigm, a service is usually a business function

implemented in software, wrapped with a formal documented interface that is well known to the

targets [6].

In a typical SOA scenario, three kinds of participants are defined shown in Figure1-1.

 The Service Provider: software agents that provide and publish the services

 The Service Registry: an agency that makes available services from various providers

discoverable by service clients

 The Service Client: software agents that can find and consume services

2

Figure 1-1. The Service-Oriented Architecture [25]

According to the concepts of SOA, the WS framework provides three mechanisms to

help implement the SOA activities including publishing, discovering, and binding. The three

mechanisms are the communication protocol, service description, and service discovery.

Figure 1-2. An example of SOAP Request and Response messages

SOAP Request

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header/>

 <S:Body>

 <ns2:simpleReadA xmlns:ns2="http://calserverproxy/"/>

 </S:Body>

</S:Envelope>

SOAP Response

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <ns2:simpleReadAResponse xmlns:ns2="http://calserverproxy/">

 <return>3</return>

 </ns2:simpleReadAResponse>

 </S:Body>

</S:Envelope>

Service Client Service Provider

PUBLISHLO
O

KUP

Response SOAP message

Request SOAP message

Service Registry

3

The Simple Object Access Protocol (SOAP), initially created by Microsoft, is a

lightweight XML based protocol for the exchange of information in a distributed environment.

Standard WS often use SOAP as the communication protocol between the service provider and

the service clients. Figure 1-2 shows an example of a SOAP request message and a SOAP

response message. Rather than defining a new transport protocol, SOAP works on existing

protocols such as HTTP.

Figure 1-3. WSDL 1.1 specification in a nutshell [19]

For service description, WS employ the Web Services Description Language (WSDL) to

describe the interfaces. The WSDL is an XML based format developed by IBM and Microsoft. A

WSDL document is provided by the service provider. All the necessary information needed by

the service client to bind to the service is included in the WSDL document. A complete service

description provides two pieces of information: an application-level service interface description

(abstract definition), and protocol biding details that service clients must follow to access the

service at concrete service end points [16]. Figure 1-3 demonstrates the specification of a WSDL

 <definitions>: Root WSDL Element

<message>: What messages will be transmitted?

<types>: What data types will be transmitted?

<service>: Where is the service located?

<portType>: What operations will be transmitted?

<binding>: How will messages be transmitted?

4

document. The types, message, and portType elements are used for the abstract service interface

description; the binding and service elements are used to describe the concrete binding

information.

The Universal Description, Discovery, and Integration (UDDI) interface, which provides

information regarding service categorization, service contact details, and technical data [16], is

used by the Service Registry to list the available WS. The UDDI specifications offer users a

unified and systematic way to find service providers through a centralized registry of services

that is roughly equivalent to an automated online ―phone directory‖ of WS [16].

More recently, RESTful WS began gaining popularity. For example, the Facebook API

only uses the REST style interface. The acronym REST stands for Representational State

Transfer, which is an architecture style for distributed systems introduced by Roy Fielding [17].

The central emphasis of REST is a unified interface for resources. In the REST style, services are

viewed as resources that are identified by URIs and realized as representations. Clients consume

services by accessing resources using standard HTTP commands such as GET, POST, PUT, and

DELETE. As a result, read and write operations can be easily identified in REST and services

using the Get command can be marked cacheable. The most popular formats used for a server

response in REST are XML, JavaScript Object Notation (JSON), and comma-separated values

(CVS). Compared to SOAP, REST is light weighted and simple. A request to access a REST

service is just as easy as a HTTP command. While REST only uses four ―verbs‖ to deliver all the

services, SOAP based WS have much richer semantics in the operations.

The debate on SOAP and REST has not ended. Pautasso et al. [49] compared RESTful

WS with SOAP based WS and concluded that REST is well suited for basic, ad hoc integration

scenarios, SOAP is more flexible and addresses advanced Quality of Service (QoS). Whichever

5

style WS are using, they should all be published, found, and consumed through the web. As there

are more and more services emerging and many of them are expected to deliver similar

functionalities, the service providers compete for network and system resources such as

bandwidth, as well as competing for service clients to achieve high business profits. Apart from

the functional properties that most WS can deliver to service clients, non-functional aspects such

as quality become important and are often a major concern for both the service providers and the

service clients. QoS for WS is considered a key concept in distinguishing between competing

WS [45]. QoS of Services for WS defines various quality requirements including performance,

reliability, scalability, capacity, robustness, exception handling, accuracy, integrity, accessibility,

availability, interoperability, security, and network-related QoS requirements [8]. However, how

to provide a service with guaranteed QoS support remains an open question.

To ensure QoS, especially the performance aspect, various techniques have been studied

such as caching and admission control. A key problem in current SOA research is that it assumes

that service negotiation and service consumption are performed separately, which means the

service provider and the service clients negotiate the QoS contract first and after that they start

the service interaction. This is fine when penalties agreed in the QoS contract and compensations

can fully handle the issues of QoS violation. However, this still results in the loss of time and

resources which have already been spent on the unsatisfied or failed service interaction.

Furthermore, consequences of the QoS violation in one node can spread to the chain of services

as in the WS environment many business services are integrated [50]. Last but not least, this

mechanism still cannot give a cure for unpredictable QoS problems that happen at run time.

This research investigates a new concept of cooperation in WS. Previous research on

cooperation such as [55] mainly focuses on dynamic service selection for WS composition. In

6

this research, the cooperation is between the service provider and the service clients. It is mainly

achieved by cooperative resource reservation, which is beneficial to both the service provider

and the service clients in resource utilization. In order to achieve mutual understanding for better

cooperation during the service interaction process, this research utilizes caching, prefetching and

locking techniques to support cooperation between the service provider and the service clients.

Experimental results are collected to evaluate the proposed cooperative approach.

The rest of this thesis is organized as follows: chapter two states the problem definition.

Chapter three gives a literature review on QoS issues for WS, workflows, and locking. Chapter

four presents the idea of the proposed cooperative approach and the design. Chapter five shows

results of the experiments on basic performance parameters. Chapter six presents the evaluation

with mobile devices. Chapter seven concludes this research and outlines promising future work.

7

CHAPTER 2

PROBLEM DEFINITION

The ―experience‖ of service consumers has become an important factor in e-business, as

well as in WS, in which the experience refers to the client’s perception of service performance,

service availability, etc. Improving the experience of WS consumers is of great importance to the

service providers. Due to the heterogeneous and dynamic nature of the WS environment, to

ensure good quality of services is non-trivial. While WS tend to scale better than tightly coupled

systems, they introduce a larger communication overhead and are more susceptible to

server/resource latency. Current approaches promote QoS support for WS.

In QoS enabled WS, the service provider publishes the QoS statement together with its

service description document, indicating that it can provide service clients with services that

have a quality as good as specified in the QoS statement. The service client then looks up

services with QoS support that matches what it requires. If the lookup process is successful, a

QoS negotiation process is thus completed, which means that both the service client and the

service provider have agreed upon a QoS contract- Service Level Agreement (SLA). After that,

both parties will only be responsible for either service provisioning or service consumption; very

limited conversations on quality improvement between the service client and the service provider

continue.

Challenges in QoS Support for Service Interaction

Although a QoS contract has been agreed on before the service interaction, the service

clients do not know the actual quality of service (the service clients may know the average

quality of service as stated in the contract) until they consume it at runtime. Moreover, both the

service client and the service provider barely have enough knowledge of each other at runtime.

As a matter of fact, the runtime environment is highly dynamic. It is usual for the service clients

8

to encounter a long period of time to wait for the responses. An even worse situation arises when

the clients get no responses at all from the server. If no communication between the two parties

takes place to solve problems caused by the unexpected changes, the client-perceived quality of

service usually degrades.

One challenge in QoS support for WS is that costs are increased for both the providers

and the clients to maintain high quality of service in the dynamic environment. The typical

behavior of services under different loads is shown in Figure 2-1. As load increases, the

performance of the server decreases. In order to keep competitive performance of the services,

the service providers usually tend to increase the computing power to serve the peak load. For

example, Google has tremendous computing power to serve its clients. However, the load is

below the peak most of the time. Thus the computing power is underutilized and the costs

increase. From the client’s perspective, this is also the case since clients tend to pay more money

to prepare for the worst situation, which consequently causes high costs.

Figure 2-1. Service behavior under various loads [41]

Fortunately, cloud computing brings a solution to these problems. Cloud computing is the

latest paradigm emerging to deliver IT services as computing utilities. It dynamically provisions

9

computing resources and services on demand as a personalized resource collection through

virtualization technologies [54]. Companies can now rent computing infrastructure as well as

software services at a good price. High fixed cost of hardware purchasing and maintaining, and

software developing now can be avoided. Amazon Elastic Compute Cloud (EC2) provides

resizable compute capacity with low prices based on hours. For example, the current rate for the

most basic instance type is set at $0.10 per instance hour. Companies can easily expand their

computing power to handle periodic traffic spikes by just purchasing more compute capacity

from Amazon [53]. A prerequisite for this model to work efficiently is that the companies should

know when their traffic spikes occur so that they can prepare ahead of time. Furthermore, if the

companies can predict the time they need for the computing so that they can reserve necessary

resources from the provider in advance, and the provider can coordinate the resources well

before service interaction, thus both parties can benefit from this cooperation. The benefits

include reduced costs, improved performance, and enhanced consumer experience.

Apart from those unexpected causes such as hardware failures, another factor that

contributes to the dynamic is real time resource conflicts. Consider the following example as

shown in Figure 2-2:

Client A sends a request to the service provider to access resource X. A plans to do a read

operation on X for about 30 seconds. Almost at the same time, client B sends a request to the

service provider to do a write operation on resource X. Then the conflict happens. Traditionally,

B either needs to wait for 30 seconds to continue its request, or it has to cancel the request if it

cannot afford to wait for such a long period. This approach to deal with the conflict is fair.

However, more adaptable resolutions could be discovered for different scenarios.

10

Scenario 1: Client A and client B are unfamiliar with each other, thus they are opponents

to each other; they compete for the resource in any case.

Scenario 2: Client A and client B are business partners, thus they are partial opponents to

each other; they compete for the resource but results may be negotiable.

Scenario 3: Client A and client B belong to the same organization or entity, thus they

work for the same purpose and goal; they should not compete for the resource.

Figure 2-2. A scenario of resource conflict in service consumption

Here is an interesting and not-so-abstract example of scenario 3: a human user is driving

a car with an automatic navigation device which gets services from a road traffic provider. The

user also has a mobile device. While the car is navigated by the navigation device, the user is

playing with the mobile device consuming services from the same road traffic provider. Now

conflicts can happen. Since bandwidth is limited and the wireless network is not so stable, the

human user of course should give the automatic navigation device the first priority to consume

the services.

11

The Cooperative Behaviors

This research focuses on improving the experience of service consumers at runtime by

introducing cooperation among service participants during the service interaction process in

terms of service availability and responsiveness.

Generally, cooperation refers to working cooperatively to achieve the goal of a win-win

situation. In this context, the concept of cooperation is made more concrete by using two tasks.

One is exchanging information among service participants (this includes cooperation between

the service consumers and the service provider as well as among service consumers); the other is

re-negotiating at runtime. Cooperation between provider(s) and consumer(s) requires the ability

for both to communicate and exchange messages. Depending on the scope of the cooperation

(e.g. how many consumers and providers can cooperate), different cooperation scenarios are

possible. Below are listed the three basic cooperative behaviors that have been the focus of this

research.

Closed Consumer-Provider Cooperation

This is the basic cooperation scenario. The word ―closed‖ in this situation means that the

service clients and their information are not exposed to each other. In this scenario the provider

engages N service clients but each client is not aware of the other service clients. The server

provides a locking/reservation table and the client provides an augmented workflow. Since the

clients are unaware of other clients, they are constrained to booking/reserving services and

providing compensations in case of unexpected loss of service/resource. So in this scenario, the

cooperation is only between the provider and the clients.

12

Open & Centralized Consumer-Provider Cooperation

This scenario extends the previous one by making service clients aware of the certain

actions of some service clients. An augmented workflow and a friend list should be provided by

the service client in order to complete the cooperation. A friend list is a list of business friends or

partners of a client. It is used for cooperation among service clients. The provider offers access

to the locks in form of a table. However, the clients can be informed of current owners of certain

locks if conflicts happen. In this scenario potential lock conflicts can be solved by allowing lock

swapping within a friend group. To determine if such a swap is permissible, each client is

requested to rank the importance of its request and the server then determines the winner. This

scenario is particularly interesting when multiple wireless devices (e.g. PDAs and mobile

phones) compete for resources on behalf of a human user. Using friend lists and ranking requests

is an approach for avoiding competition or even deadlocks among the devices of a single user.

Open & Decentralized Consumer-Provider Cooperation

By using the previous scenario but moving the locus of decision making from the

provider towards the service clients is a more decentralized approach. Rather than relying on the

server to determine the outcome of request competitions, the clients themselves evaluate not only

how important their own requests are but also evaluate their opponents’ requests. The

evaluations are sent back to the server which averages them and selects the winner. So in this

scenario, the cooperation is among all the participants of the service consumption process.

Since cooperation needs at least two parties to be involved, two proxies that represent the

two parties are needed for the implementation of cooperation. One proxy named the Client-Proxy

(CP) and the other named the Server-Proxy (SP). These two proxies are responsible for the

communication between service clients and service providers at service consumption.

13

The Client-Proxy helps the service client to inform the service provider of its future

requests. Prefetching is a technique that can be used for this purpose. Before the service client

actually sends a request, the Client-Proxy should prefetch the client’s next request(s) according

to its prediction and then send the relevant information of the request(s) to the service provider.

The client provides its workflow, which contains information about the flow of operations, to the

Client-Proxy for prefetching. As a result, a client workflow model is needed for the prefetching.

Additionally, caching techniques can be applied together with prefetching since it can improve

the performance of the WS.

The Server-Proxy helps the service provider to inform the service clients of its status such

as resource availability. Since the service provider may need to serve hundreds or even

thousands of clients who request server resources for a certain period, it is necessary to have a

computing component, which can coordinate the resources and have the global knowledge of the

status of each resource, in order to inform the service clients correctly. This job can be completed

by the Server-Proxy. Ideally, the Server-Proxy should have the ability to coordinate resources

associated with time periods since service clients may request resources at different times. In this

research a reservation based locking protocol for the resource coordination is proposed. The

Server-Proxy should also have the ability to initiate a re-negotiation with the Client-Proxies in

case of changes such as resource unavailable at runtime. Policies of different negotiation

strategies can be defined.

In conclusion, the key point of the success of cooperation is to share enough information

with each other. As long as there is enough information, conflicts can be easily dealt with. This

leads to the following research questions:

 What information is needed to be shared?

 When to share the information?

14

 To whom the information is open?

 How to use the information?

This research will explore those questions as well as investigate the costs and benefits of

different cooperation approaches to support QoS requirements for WS.

15

CHAPTER 3

LITERATURE REVIEW

This chapter reviews QoS in WS, approaches to improve the performance aspect of QoS in

WS, Locking, and Workflows.

QoS in WS

Quality of service (QoS) is a general term for a set of technologies and mechanisms

which allow applications to consume services in a guaranteed manner [2]. Due to the

heterogeneous and dynamic nature of WS, they pose many new challenges introduced by

increased latency and trust issues as services can span multiple organization or systems [43]. To

overcome the new challenges, current research focuses on providing QoS support, since

guaranteed QoS brings competitive advantages for service providers and supports a good

―experience” for the service consumers. QoS is being studied and deployed in many ways, such

as defining and modeling new QoS metrics, integrating policies, and introducing middleware [5]

[43] [52] for non-functional aspects. As stated in the World Wide Web Consortium (W3C)

standards [8], a variety of QoS requirements have been identified, such as performance,

reliability, availability, and security, etc. Some of the major quality aspects are explained as

follows.

 Performance: The performance of WS represents how fast a service request can be completed

in terms of throughput, response time, latency etc. The service is considered well performing

when it has a high throughput, low latency, and short response time.

 Integrity: Integrity is the quality aspect of how WS maintain the correctness of the interaction

in respect to the source. Proper execution of WS transactions will provide the correctness of

interaction.

 Reliability: Reliability represents the ability of WS to perform and maintain the agreed

service quality.

 Availability: Availability is the quality aspect of whether the services are present or ready for

immediate use.

16

 Security: Security for WS means providing authentication, authorization, confidentiality,

traceability/audit- ability, data encryption, and non-repudiation.

 Price: the cost of WS usage with associated quality.

The above attributes mentioned are only a few among many possible QoS factors. Some

researchers are focusing on indentifying more QoS attributes for selecting good WS. Maximilien

et al. proposed a reputation and endorsement approach to select WS providers [21]. They

modeled reputation in terms of sub attributes reflecting a user’s experiences with a given service.

Kalepu et al. proposed verity as another attribute in the QoS metric [20]. The verity of a service

is measured by external components and is defined as the ability to maintain the lowest

difference between the projected and achieved levels of service metrics.

For the standardization of QoS specification for WS, IBM proposed the Web Service

Level Agreement (WSLA) framework in 2002 [22]. This framework aims at translating an SLA

into configuration information for the individual service provider components and third party

services to perform the measurement and supervision activities. The WSLA language

specification is thus proposed for a detailed definition of the QoS parameters including how

basic metrics are to be measured in systems and how they are aggregated into composite metrics.

Performance Aspect of QoS in WS

Among various aspects of QoS, the key factors that have a direct impact on the

experience of service consumption are service availability and service performance such as

responsiveness, as Erradi, Verma, and Olshefski discussed in their works [2][3][4]. This is

because these two aspects are what the service consumers can perceive directly through service

consumption. Monaco et al. [51] named them ―the user-perceivable quality of service‖. Hence

these two aspects are the most studied in QoS to ensure and support the success of WS.

17

The performance of WS is measured in terms of throughput, latency, and execution time.

Throughput represents the number of WS requests served in a given time period. Latency is the

round-trip time between sending a request and receiving the response. It can also be called the

client-perceived response time, which is considered the most important performance parameter

from the client’s perspective. Execution time is the time taken by the WS to process a sequence

of activities. Higher throughput, lower latency, and shorter execution time represent well

performing WS. To improve responsiveness, many techniques have been studied. SOAP

messaging is one area that attracts researchers on the messaging layer. Caching and prefetching

are two other techniques that are widely used to reduce latency. Admission control has been

broadly studied to balance load on servers as well as to maintain peak throughput.

SOAP/XML Messaging

 The overall performance of the WS depends on application logic, network, and most

importantly on underlying messaging and transport protocols such as the SOAP and HTTP it

uses [23]. ―The SOAP request begins with the business logic of the application learning the

method and parameter to call from a WSDL document. This whole process is time consuming; it

requires various levels of XML parsing and XML validation and hence hits the performance of

the Web service‖, Sumra et al. explained in [23].

Mani and Nagarajan [24] pointed out that SOAP is the de facto wire protocol for WS.

SOAP performance is often degraded due to the following:

 Extracting the SOAP envelope from the SOAP packet is time-expensive.

 Parsing the contained XML information in the SOAP envelope using a XML parser is time-

expensive.

 Limited possibility of optimization with the XML data.

 SOAP encoding rules make it mandatory to include typing information in all the SOAP

messages sent and received.

18

 Encoding binary data in a form acceptable to XML results in overhead of additional bytes

added as a result of the encoding as well as processor overhead performing the

encoding/decoding.

 The XML processor must be loaded, instantiated, and fed with the XML data. Then the

method call argument information must be discovered. This involves a lot of overhead as

XML processors grow to support more XML features.

As a result, many researchers focus on the message delivery part of the WS provision and

consumption process and try to optimize the XML processing to reduce service latency since

SOAP messages require extensive processing due to their representation. Abu-Ghazaleh [9] and

Suzumura [10] proposed approaches for optimization of serialization of SOAP messages on the

sender-side and deserialization on the receiver-side respectively to improve the performance of

QoS in WS, since they consider the serialization and deserialization are costly processes.

Serialization is a process of converting application objects passed from application logic to XML

messages; and deserialization is the process of converting XML messages to application objects

passed to application logic. Similarly, some research is dedicated to work on SOAP messages

themselves for high performance, such as Chiu in his work [12] recommended SOAP extensions

and a multiprotocol approach that uses SOAP to negotiate faster binary protocols between

messaging participants. In Werner’s work [13], differential encoding is introduced for SOAP

message compression for higher application performance. Rosu proposed A-SOAP [44], which

combines the optimization of SOAP message composition, message parsing, and message

compression to reduce the SOAP related processing and communication overheads for WS.

Caching

Caching technologies are an effective way to reduce latency, as well as network traffic

[25]. In WS, caching is applied broadly for the improvement of performance.

As the SOAP protocol is a bottleneck of the WS performance, Devaram et al. [18]

proposed a client-side caching strategy to optimize the client SOAP requests. The experimental

19

results in their research demonstrate that the performance with respect to round-trip response

time increases around 800%. Liu et al. [26] proposed a dual caching approach for mobile devices

to achieve better service performance and service availability by caching both SOAP requests

and responses on both the client side and the provider side using two proxies.

Friedman [27] proposed to cache WS in mobile wireless ad-hoc networks as a way of

making such services more accessible to mobile devices. He mentioned that caching of WS

should be organized as a service itself. Moreover, the caching service must be able to cache both

the data and code that manipulates the data in order to be generic. Yin et al. presented a

cooperative caching approach in ad-hoc networks in [47]. This cooperative caching approach

involves mobile nodes to cooperate with each other by providing cached data and paths.

Takase et al. [28] described a response cache mechanism for WS client. They proposed

three optimization methods to investigate the improvement of the performance of the proposed

response cache. The first optimization is caching the post-parsing representation instead of the

XML message itself. The second is caching application objects. The third optimization is for

read-only objects. These methods reduce the overhead of XML processing or object copying.

They showed through experimental results that these methods have large differences in their

performance and various limitations; it is important to combine these methods properly in order

to develop a high performance cache.

Prefetching

Although caching is an efficient way to improve web performance, it still has limitations.

Wang [29] pointed out that regardless of the caching schemes in use, over half of the documents

cannot be found in the cache due to the fact that the maximum cache hit ratio is usually no more

than 40 to 50 percent; and one way to further enhance the performance of caching is to anticipate

20

future documents requests and prefetch these documents in a local cache. Wang categorized

three patterns for prefetching in the web context:

 Between browser clients and Web servers.

 Between proxies and Web servers.

 Between browser clients and proxies.

Since prefetching relies on the anticipation of future requests, the efficiency of this

technique is determined by the prediction algorithms [46]. Most of the existing web prefetching

uses the dependency graph which presents the probability of future accesses according to the

history access logs. Pallis et al. [42] proposed a clustering-based prefetching scheme for web

prefetching. Their prediction algorithm is again based on the access log file; but the difference is

that they cluster web pages for different clients according to the domains. Liu et al. [26] utilized

a workflow based prefetching technique to enhance caching performance for mobile devices to

consume WS. In their approach, two prefetching components are introduced. One component on

the client side prefetches the client’s requests based on a BPEL workflow file; the other

component on the server side is responsible to prefetch service response messages. The two

prefetching components follow the second and third prefetching patterns according to Wang’s

[29] categorization.

Admission Control

Admission control is another way of reducing latency. Admission control of requests is

used to prevent systems from being overloaded and by enabling QoS guarantees in terms of

response time and service availability [14]. Conventional works use a tail-dropping strategy to

admit requests. This only works well in steady workload situations. More recent research on

admission control shows other approaches to deal with dynamic situations. Elnikety’s approach

[14] controls admission of service requests based on estimates of request execution time and

21

server capacity. Requests that do not exceed the capacity will be admitted for processing;

otherwise it will be deferred to execute later. Elnikety’s work also proposes an aging

mechanism, where an upper bound that a request is delayed in the waiting queue is defined, to

prevent long jobs from starving in request scheduling. Although short jobs may have privileges

to be serviced first, they can only be promoted to the front of a waiting queue if the promotion

does not cause any pending request to be delayed more than its upper bound. Verma and Ghosal

[15] presented a short term prediction based admission control that accepts requests which can

yield maximum profits for service providers.

Locking

Locking is widely used in database systems to control data concurrency. The basic idea

is, as C.J. Date noted [30], when a transaction needs an assurance on some object (e.g. a database

tuple) it is interested in, it acquires a lock on that object so that other transactions will not disturb

its execution. Basically a database system supports two kinds of locks, exclusive locks (X locks)

and shared locks (S locks). X and S locks are also called write locks and read locks, respectively.

The fundamental rules of locking are defined as follows:

 If transaction A holds an exclusive (X) lock on a lockable object (a tuple t for example), then

a request from some distinct transaction B for a lock of either type on t will be denied.

 If transaction A holds a shared (S) lock on tuple t, then:

 A request from some distinct transaction B for an X lock on t will be denied.

 A request from some distinct transaction B for an S lock on t will be granted.

The Intent locking protocol is introduced to deal with the dilemma of finer locking

granularity for grater concurrency and the cost of locking. Three types of intent locks are

proposed: Intent shared locks (IS), intent exclusive (IX) locks, and shared intent exclusive (SIX)

locks. The basic idea of intent locking protocol is that before a transaction can acquire a lock of

22

any kind on some object, it must first acquire an appropriate intent lock on the ―parent‖ of that

object.

Locking has been mostly discussed and implemented in databases for transactions. Until

recently, the concept of locking has been applied to broader areas, such as the application level.

Mock et al. [31] proposed a cooperative locking approach for cooperation in a distributed

environment. Besides the basic S and X locks, they introduced a new type of lock named

cooperative locks. Actions that hold cooperative locks on the same object are allowed to proceed

but only in a hierarchical manner in which a later action is considered the sub-action of a

previous one. Other actions without cooperative locks are denied to access the object. Zhao et al.

[32] proposed a two-step reservation-based coordination protocol for WS transactions. The first

step is an exclusive blocking reservation for a resource, and the next step is confirmation or

cancellation of the reservation. In this protocol, the application has full control over the

reservation activity. This means, differently from what conventional approaches did, the locking

of a resource is no longer internal to the database system but controlled in the application level.

For example, the application can decide how long the resources should be locked. However

Alonoso et al. [48] pointed out that a central transaction coordinator who controls the locking of

resources is needed to be redesigned to work in a fully distributed fashion and must be extended

to allow more flexibility in terms of locking resources.

Workflows

A workflow is the automation of a business process, in whole or part, during which

documents, information or tasks are passed from one participant to another for action, according

to a set of procedural rules [34]. Workflows are designed for concealing the implementation

details of the application, and for better understanding of the business logic [35]. A process

definition should be provided to describe the business process. Typically, the process definition

23

contains details about the business process, such as the sequences of activities, rules for

navigating between activities, conditions for starting and completion, participants to complete

activities, and other related data.

To represent a workflow model, many languages and specifications have been proposed.

The FlowMark model was introduced in 1994 by IBM to describe business processes. It defines

several elements that are included in a workflow model [33].

 Process: a description of the sequence of steps to be completed. It consists of activities and

relevant data. And it can be nested.

 Activity: each step within a process. It has a name, a type, pre- and post-conditions. Each

activity has an input data container and an output data container.

 Flow of Control: the order in which activities are executed.

 Input Container: a set of typed variables and structures which are used as input to the invoked

application.

 Output Container: a set of typed variables and structures in which the output of the invoked

application is stored.

 Flow of Data: a series of mapping between output data containers and input data containers

to allow activities to exchange information.

 Conditions: specify the circumstances under which certain events will happen.

Figure 3-1. An example of a FlowMark workflow

AND

Receive Itinerary

Book hotels Book flights Book cars

Send Confirmation

24

Figure 3-1 shows an example of a reservation workflow represented by the FlowMark

model.

The Business process execution language (BPEL) is a language that is proposed to

integrate loosely coupled services into a business process workflow. It converges two early

workflow languages: the Web Services Flow Language (WSFL) and the XML-based extension

of Web Services Description Language (XLANG) [36]. Thus it combines both approaches and

provides a rich vocabulary for description of business processes. Figure 3-2 shows an example of

a BPEL process.

Figure 3-2. An example of a BPEL workflow [36]

The state machine has been in use since the advent of computing for a wide range of

purposes. Recently, Microsoft introduced state machine style workflows in Windows Workflow

25

Foundation [37]. The reason that they employ a state machine to model workflows is that the

state machine can provide an event-driven process execution with high flexibility. Figure 3-3

shows an example of a state machine workflow.

Figure 3-3. An example of a state machine workflow [38]

Summary

Previous work in QoS for WS provides a foundation for research on ensuring quality of

WS with respect to performance which is an important issue in WS, especially from the client’s

perspective. Researchers working on SOAP messaging assume that SOAP is the de facto wire

protocol for WS [24] thus software should comply with the SOAP standard. Caching and

prefetching can efficiently improve performance by eliminating the transmission time under the

assumption that read operations dominate. Admission control is conducted on two basic

assumptions: the load that a particular job will generate is known and the capacity of the system

is known [14]. Although research in this area has contributed a lot to improve performance for

consuming WS, the runtime dynamic in the unpredictable environment remains an obstacle that

restricts the progress. Moreover, very limited research focuses on dealing with runtime dynamics

to improve performance of WS. Therefore, one of the goals in this research is to identify if the

26

proposed cooperative approach can be used to deal with runtime dynamics with respect to

resource conflicts on the server side. Another limitation that lies in the previous approaches is

that the service client is only considered as a pure service receiver and the server is the locus of

control. This neglects the service client’s capability of being cooperative, wasting the service

client’s potential in the effort of ensuring QoS in WS consumption. Hence, this research involves

service clients as active participants in the process of service provisioning and consumption,

aiming to enhance the service client’s experience of service consumption in terms of various

QoS aspects. Workflow based prefetching technique is employed for the implementation of

client side cooperation. Table 3-1 gives a short summary of performance improvement

techniques discussed in this chapter.

Table 3-1. Summary of performance improvement techniques

Locking is a traditional technique used in databases for data concurrency control;

however, it has seldom been applied to runtime resource coordination in WS. In most cases,

locking is completed at the database level; the application has little control over it. The open

question is if locking can be used at the application level for resource coordination in the

Techniques Relevant works in this area Common limitations

SOAP\XML

Messaging
- Parsing of SOAP messages
- SOAP messages compression

- Server (provider) is always the

locus of control
- Lack of runtime

communication between

clients and the provider
- Clients are neglected for any

contribution
- Cooperation is seldom used

Caching - Cache SOAP requests in client side
- Cache both SOAP requests and responses

using proxies
- Cache Web services (the data and code)
- Cooperative Cache

Prefetching - analyzing access log files for prediction
- Workflow based prefetching using BPEL file

Admission

Control
- Admit requests based on estimation of server

capacity and execution time
- Admit requests that can yield maximum

profits

27

unpredictable environment where WS are running. This research aims to identify the possibility

of applying locking as a way to coordinate resources at runtime.

The workflow technology is often used internally for the automation of business

processes in order to improve the business efficiency. In this research, a workflow file is also

considered as a piece of cooperative information which is shared among the service clients and

the service providers. The service clients can now use the workflow files to express what they

need for service consumption.

28

CHAPTER 4

THE COOPERATIVE APPROACH

The cooperative approach aims to provide service clients with a good ―experience” in

consuming WS in terms of performance and service availability. Cooperation in this research

refers to information exchange and re-negotiation between service clients and service providers

at runtime. In this cooperative scenario, service clients are no more silent service recipients, but

active information providers who express to the WS provider what services they need in the

coming future, thus giving the WS provider enough time to get prepared for the future services.

Accordingly, the WS provider should offer service clients easy access to resources, as well as to

inform them about any change of services, thus leading to a re-negotiation process rather than

only sending an error message or arbitrarily shutting down the services. A hypothesis of this

research is: with enough information shared and exchanged, service performance can be

improved under certain situations. Experimental results will be presented in the next chapter to

test the hypothesis.

As stated above, the main idea is information sharing and exchange, but how to use the

information and what exactly is the information?

Figure 4-1. Techniques used in the cooperative approach

29

The cooperative approach mainly uses the three techniques shown in Figure 4-1. They are

workflow analysis, locking, and re-negotiation. The intersection of the three techniques is the

key to cooperation, since the cooperative approach combines the three techniques to implement

the information exchange and sharing. The clients’ workflow files will be shared and analyzed.

So the service provider can coordinate resources using the locking technique and information

retrieved from the workflow files. In case of resource conflicts, a re-negotiation process will be

initiated by the service provider.

Architecture

In the cooperative approach, two proxies are introduced to implement the cooperation.

One proxy works on behalf of the service provider, called Server-Proxy; the other represents the

client, called Client-Proxy. Both of the two proxies appear transparent to service clients. The

two-proxy architecture is enlightened by Liu’s research on dual caching [25]. Figure 4-2 below

shows the architecture.

Figure 4-2. Basic architecture of the cooperative approach

Client-Proxy

Prediction
Component

Workflow

Core component Cache

Client

The

Internet

Server-Proxy

Service

Core

component

Resource time-lock tables Friend Lists

Lock overriding policy

Compensation policy

30

The Client-Proxy is a small computing component that is hosted in the client’s

application. It communicates directly with the client and receives WS requests from the client,

while at the same time it hides itself by providing the same service interface as the actual WS

provider does. As a result, the service client is interacting with the Client-Proxy as it were

interacting with the actual WS.

More importantly, the Client-Proxy is responsible for the implementation of the client’s

cooperation with the WS provider. This cooperation involves sharing part of the client’s

workflow with the WS provider, informing the WS provider what services it might consume and

when to consume them. When the client’s application starts, the Client-Proxy will prefetch the

next WS request predicted by a simple prediction model (described in the next section) according

to the workflow file provided by the client. Once a WS request is predicted, the Client-Proxy will

inform the server of this request so that the server can arrange necessary resources for the call.

Another function the Client-Proxy provides is caching. Since the results of read

operations can be easily cached, the Client-Proxy caches the response content of read operations.

As a result, the next time the client invokes the WS call, it can enjoy better responsiveness. An

invalidation thread will check the validity of cached items by sending requests to the service

provider at a fixed time period or according to the TTL parameter.

The Server-Proxy is a component that releases the actual WS server from heavy resource

coordination. It manages all the incoming WS requests and conducts resource coordination. The

resource coordination utilizes a reservation based locking mechanism (see details in the locking

section) for reserving resources. This resource coordination process is conducted prior to the

actual service interaction. Both the Server-Proxy and the Client-Proxy are involved to complete

this process. Once conflicts are detected in resource coordination, the Server-Proxy will initiate a

31

runtime negotiation process with the service clients to make a decision for resolving the

conflicts. After a resource is successfully booked, the Server-Proxy will forward WS requests to

the actual WS server for processing. The Server-Proxy can be implemented in different ways,

from a simplest object living in the server application to an independent server either local or

distributed.

A Simple Prediction Model for Prefetching

The workflow based prefetching technique can not only be used for web page

prefetching, but also in WS [26]. Since every participant has its own business logic, a workflow

can best represent the business process. And thus it can easily be integrated to the prefetching

technique. In the cooperative approach, the service client will share part of its workflow with the

service provider as a part of the cooperation. The Client-Proxy analyzes the workflow file to

predict the service client’s future interaction with the provider. And necessary resources are then

prefetched from the Server-Proxy.

The prediction takes place when the client just finishes a service request; in other words,

it happens at the time when the client just reaches a certain state. In the simple prediction model,

the next service request is predicted based on both the current state and previous actions that the

client has taken. This is because different sequences of previous states may result in different

next states. Here, for simplicity the length of the sequence is two. As a result, three basic sets are

defined:

Sp: the previous states the client visited;

Sc: the current states the client is visiting;

Sn: the next states the client will visit.

States are obtained from the workflow file. Particularly, some states have different

identities at different times. For example, a state can be the next state when it will be visited

32

soon; it can also be the current state when the client is visiting it; it can be the previous state as

well if it’s just visited. To better organize the states and make use of them, they are gathered into

groups according to the workflow. Every instantly related three sets of states: Sp, Sc, and Sn will

be considered as in one group. Each group is called a path. Consequently, there are many

possible paths. All of the paths should be derived directly from the workflow file so that they are

all related. A full path that begins from the initial state and ends at the final state thus can be

constituted by the atom paths.

A path can be represented by a tuple. In addition to the three sets which were talked

above, a fourth set in the path tuple is introduced. It is the number of the path visits, denoted by

V.

Path: (Sp, Sc, Sn, V)

The attribute V is used to predict the next operation when there is a choice in the

workflow. Figure 4-3 gives an example of this situation. When the client’s workflow enters state

A1, it then has two ways to continue. If condition C1 is satisfied, B1 will be the next state.

Otherwise B2 will be the next state. According to our model, this example can be interpreted by

two paths: Path ({A0}, {A1}, {B1}, {V1}) and Path ({A0}, {A1}, {B2}, {V2}). Simply, the path

with the largest value of V among all the possible paths will be chosen as the prediction result.

Figure 4-3. Choice Structure in a workflow

A1

B2

B1 C1

C2

A0

33

Other structures can also be described using this simple model. Figure 4-4 gives the

details of the description.

Figure 4-4. Node structures

The prediction algorithm is straightforward. Initially, all paths are obtained from the

client’s workflow and rewritten into an XML file. The Client-Proxy records the previous state

and current state of the client, and looks for the right path(s) that match(es) the previous states

and the current states. If more than one path is matched, the Client-Proxy selects the path with

the largest V value; then the next operation is thus predicted as indicated in the path. Initially,

every V attribute is set at 0. Once the client’s application starts, the Client-Proxy also starts to

work. Every time the client invokes an operation, the Client-Proxy will be notified of the event

and 1 will be added to the attribute of V that belongs to the path where the client is walking

through. And the next operation is prefetched by the Client-Proxy from the paths file as

predicted. Then the server will be notified of the operation. Figure 4-5 shows the algorithm.

A0

A1

A2

AND

A1

B1 B2 B3

A0

OR

A1

B1 B2 B3

A0

AND

A1

B1 B2 B3

A0

Regular

Path ({A0}, {A1}, {A2}, {V})

Merge

Path ({B1}, {A0}, {A1}, {V})

Path ({B2}, {A0}, {A1}, {V})

Path ({B3}, {A0}, {A1}, {V})

Fork

Path ({A0}, {A1}, {B1, B2, B3}, {V})

Join

Path ({B1, B2, B3}, {A0}, {A1}, {V})

34

Obtain Previous

States

Start

Obtain Current

States

Match paths with

Previous States

and Current Sates

Select the path

with the largest

visits Count as

prediction result.

Visits Count+1

Change states

Client

sends the

actual

request

Check if

prediction is

correct

Check if Current State is the final

state

No

Yes

Yes

No

End

Figure 4-5. The prediction algorithm

35

A Reservation Based Resource Locking Protocol

As indicated above, after the client performs an operation, the Client-Proxy, representing

the client, will inform the server of the next operation that the client might perform. And the

service provider can use the information from the Client-Proxy to coordinate resources for the

future operation as a response to the client’s cooperation. To inform the provider, pre-requests

are used; and for the coordination of resources on the provider side, a reservation style resource

locking protocol is proposed.

Pre-requests

Pre-requests are requests generated by the Client-Proxy prior to the actual WS requests,

and right after the Client-Proxy’s prediction of the next operation. They are used for informing

the WS provider about the client’s possible service consumption. Additionally, they are used for

reserving server resources (e.g. a token, a lock) for the client’s actual WS requests. As a result, a

pre-request should contain information about both the client and the operation. The following

parameters can be defined in a pre-request:

prerequest (client,priority,service,time,dur,lock,token)

client: the client ID (should be unique)

priority: the client’s priority

service: the name of the service

time: start time of the service

dur: duration of the service

lock: the operation lock required for consuming the service (described in the next section)

token: the token already held for booking the lock (described in the next section)

36

The Server-Proxy is responsible for handling pre-requests from the Client-Proxy. When

the Server-Proxy receives a pre-request, it will check the availability of the required lock on the

resource specified using the information contained in the pre-request. According to the results

from checking, the Server-Proxy will send the Client-Proxy a response which contains either a

token if successful or negotiation information if unsuccessful.

Locking Protocol Basics

 The client’s WS requests can be simply categorized into two groups, read operations and

write operations. Thus a reservation based resource locking protocol is proposed for resource

coordination on the provider side. In order to support the locking, the following elements are

defined.

Locks. A lock on a resource gives the owner of the lock access to the resource. Four

types of locks are defined in the proposed locking protocol.

S: Read lock

X: Write lock

IS: Intent Read lock

IX: Intent Write lock

Besides the X (exclusive locks) and S (shared locks) locks which are commonly used for

write and read operations respectively, the IS and IX locks are also introduced in the locking

protocol. For simplicity, the X and S locks are called execution locks; and IS, IX locks are called

intent locks. Intent locks are used for tentative reservation and clients should hold intent locks

before they can obtain execution locks. Unlike the intent locks in databases systems where they

work at a coarser data granularity than the related S or X locks, the intent locks in our proposed

locking protocol are used for the same resource or object which the related execution locks are

for. And the purpose of the intent locks is just an indication of the reservation. To be more

37

specific, IS locks are given to those who intent to read; and IX locks are given to those who

intent to write. The reason for introducing intent locks in the approach is that there is still

uncertainty in a client’s behavior. Thus rather than giving stronger X or S locks to clients

directly; introducing light weight intent locks for intent reservation will reduce the cost of the

cancellation of X or S locks.

Lock compatibility. Since four types of locks are defined, the lock compatibility rules

should also be defined to guide the use of locks. Here the lock compatibility describes what locks

can be issued when other locks already exist on the requested resources. Therefore, the

compatibility table, as shown in Table 4-1, is not symmetric. According to the first row, an IS

lock on a resource can be issued when there are already other IS locks, S locks, or IX locks

existing; however, it cannot be issued when there is an X lock on the resource. IX locks are

compatible with IS and IX locks, but not S or X locks; the same rule applies to X locks. S locks

are compatible with IS locks, IX locks, and other S locks on the same resource except for X

locks.

Table 4-1. Lock compatibility among different locks

√ = compatible, × = incompatible

Resource time-lock table. For each resource, a time-lock table is assigned. A resource

time-lock table presents information about the locking status of the resource at different time

periods. Thus there are three basic elements in a resource time-lock table. They are: the resource,

 IS IX S X

IS √ √ √ ×

IX √ √ × ×

S √ √ √ ×

X √ √ × ×

New Lock

38

lock-objects, and time periods. For each time period (a time unit), there is a lock-object

associated with it. A lock-object controls how locks on this resource can be assigned within this

time unit. In other words, every lock-object functions as a lock manager that manages all locks

for this resource but only at the associated time unit. Since a time unit is indivisible, it is

reasonable to assume that a client can only book either S or X lock, IS or IX lock for the same

time unit. As for the actual value of a time unit, it depends on what kind of services the service

provider provides, since different services require different precision of time for operation. For

example, in a simple weather report service, the data required by the service client may not be

large, thus the time unit value could be defined in the level of seconds; however, in a service

which requires large amount of data to be operated, the value for the time unit could be several

minutes.

Locks are obtained through pre-requesting. The Client-Proxy composes pre-requests

which contain information such as resource name, lock type, time period, etc. If a client plans to

do a read operation, it needs two locks: an IS lock and an S lock. The Client-Proxy first requests

for an IS lock indicating that the service client intends to request for a read service. Later on,

when confirmed of the read operation from the client, the Client-Proxy then sends another pre-

request to obtain an actual execution lock, the S lock. And the S lock can only be given when an

IS lock is already been held. So does it apply to write operations which require IX and X locks.

The proof of having a lock hold is a token. When the Client-Proxy sends a pre-request booking

for an IS lock, if applicable, a unique token will be assigned. Then, the Client-Proxy can use the

token to book an S lock and get another token for the actual WS request.

Lock Overriding and Compensations

Since locks are associated with time units, there are conflicts in lock reservations. For

example, Client A comes to book an S lock for the time period of T2. Unfortunately, an X lock at

39

the same time period T2 has already been assigned to Client B. Could Client A get the lock? And

under what condition might it get the lock? These are the questions to be investigated in this

section.

Before moving on to the answers, it is necessary to review the cooperative behavior.

Three styles of behavior are proposed. In the last two cooperative behaviors, clients can

contribute their effort directly to the resolution of the conflicts, since they are e aware of their

friends’ behaviors when conflicts happen by the use of friend lists. However, in the first one, the

Closed Consumer-Provider Cooperation, clients are unaware of each other. Conflicts are solved

by only the provider. Thus, compensations should be provided to those clients who unexpectedly

but cannot avoid to lose their service/resource. So, this section will discuss the conflicts

resolution for clients in the first cooperation scenario.

Table 4-2. Lock overriding policy

Priority Pn Pn-1 Pn-2 Pn-3

Pn × Level1 Level2 Level2
Pn-1 × × Level1 Level2
Pn-2 × × × Level1
Pn-3 × × × ×

Level1 = Level 1 overriding available
Level2 = Level 2 overriding available
× = overriding unavailable

If a conflict for a lock happens, there will be two kinds of results. Result one: the lock

still belongs to the one who first owned it; the one who came later cannot get the lock. Result

two: the lock goes to the one who came later; the first owner gets compensations for losing the

lock. As clients can be grouped by their priorities, a priority-based two level lock overriding

policy is proposed to deal with conflicts. Level 1 overriding means intent locks can be

40

overridden; Level 2 overriding means both intent locks and execution locks can be overridden.

Suppose there are n different priorities, listed as P1, P2…, Pn (n ≥2). P1 is the lowest, and Pn is

the highest. Thus, Pk clients can override intent locks that belong to Pk-1 or lower priority clients.

And Pk clients can override both types of locks that belong to Pk-2 or lower priority clients.

Please see Table 4-2 for a detailed listing.

According to the proposed priority-based two level lock overriding policy, lower priority

clients are the most unfortunate since they always lose locks when they have lock conflicts with

higher priority clients. This is reasonable since lower priority clients pay less than higher priority

clients for the services. But in order to maintain good service consuming experiences,

compensation policies are needed to prevent low priority clients from continually losing locks.

Accordingly, a two level compensation policy is proposed. Clients who lose an intent

lock will be guaranteed no loss of a lock in case of the next conflict. However, things will return

to normal when the given guarantee is consumed. Similarly, clients who lose an execution lock

will also be guaranteed the possession of locks. The difference from level 1 compensation is that

this guarantee can be used for the next two conflicts.

Re-negotiation

Negotiations take place during the WS contract stage. WS consumers and WS providers

negotiate a service contract which includes various aspects of service quality, price, etc. In the

proposed cooperative approach, a re-negotiation also happens during service consumption. This

will create more communication opportunities for both clients and providers, leading to

enhanced experiences of service consumption.

As there are different cooperation scenarios, the negotiation protocol may vary. In this

section, the negotiation protocols for the first two cooperation scenarios are discussed. The third

scenario will be the future work.

41

Re-negotiation in the Closed Consumer-Provider Cooperation

A lock overriding policy is introduced to deal with lock conflicts. However, it can only

solve the problems when a high priority client comes after a low priority client. Let’s still take a

look at the example used in the last section. Client A comes to book an S lock for the time period

T2. Unfortunately, an X lock at the same time period T2 has already been assigned to Client B.

This time, Client A’s priority is lower than Client B’s, and then the lock overriding policy cannot

help. So what will happen to Client A? Will the client get an error message indicating that

services are unavailable? Or will it get no response at all? The cooperative approach dedicates to

providing WS clients more options for services and high availability of WS rather than an error

message without any help. The re-negotiation focuses on the time change. As Client A cannot

override Client B’s lock, the Server-proxy will suggest Client A the next available time period

for its request. Then the Client-Proxy will notify Client A about the event of time change. The

client will decide if it agrees with the suggestion or would like to continue the negotiation.

Re-negotiation in the Open Consumer-Provider Cooperation

When service consumers are in an open cooperation scenario, they can contribute more

efforts to the negotiation. As a client has provided its friend list to the service provider, it can be

notified if a conflict happens between itself and one of its friends. Now the re-negotiation

begins. After being informed of each other’s request, both the client and its friend will evaluate

how important their own requests are. Rankings of their requests then are sent to the provider to

make the decision of who wins the lock by comparing the two rankings. In order to avoid

cheating or dishonest rankings, penalties should also be proposed in the re-negotiation. However,

in this research, the penalty is not implemented. A more decentralized way for re-negotiation is

to let service clients negotiate themselves. This requires the ability of clients to exchange

messages at runtime.

42

If communication between clients is enabled, more interesting approaches are possible.

One example is to let the clients bid for resources in case of conflicts. This will involve the

clients to actively participate in the re-negotiation and it can solve problems such as lower

priority clients denying the conflict solutions provided by the provider.

The cooperative approach requires service participants to exchange and share information

at runtime. This information includes the clients’ workflows, the state of the resource utilization

of the service provider, and etc. All these are sensitive data which are not supposed to be

released to third parties. Furthermore, a trust mechanism is necessary to ensure the cooperation

in the Open & Decentralized scenario, in which service clients are aware of each others’ actions

when resources conflicts happen and are required to rank their own requests as well as those of

their components’. As a result, trust management and ensuring data security and privacy

protection are important issues in the cooperative approach. However, this research is just a

beginning on exploring cooperation in WS and thus currently only focusing on basic ideas.

Whether this proposed approach can improve the experience of WS consumers in terms of

performance is the main goal at present. Therefore, security and trust are not discussed in this

scope.

43

CHAPTER 5

EXPERIMENTS

This chapter evaluates the proposed cooperative approach with experiments on stationary

machines. The main goal of the experiments is to study the impact of using cooperation for

service consumption with respect to performance and service availability. The evaluation is

divided into two phases:

Phase 1: evaluating the Closed Consumer-Provider cooperative behavior. In this phase the

cooperative approach is evaluated using basic services.

Phase 2: evaluating the Open & Decentralized Consumer-Provider cooperative behavior. In

this phase, the cooperative approach is evaluated within E-Commerce scenarios.

The client-perceived response time is used as the parameter measuring performance. It is

measured in milliseconds from the time the service client actually sends a request to the point

when it successfully receives the response from the service provider. The response time includes

the server execution time, the transmission time, and the waiting time for processing. And

service availability is measured by the ratio of successful operations.

The first section presents the experiments in phase 1using an abstract service. Section two

presents experimental results of phase 2 using an E-Commerce style of service.

Phase 1 Experiments

In Phase 1 experiments, the cooperative approach is evaluated within the first cooperation

scenario.

Experimental Setup

 A stationary machine as the server: It is a HP xw6400 Workstation, which has the following

hardware and software configuration: Intel(R) Xeon(R) CPU, 5140@ 2.33GHz, 1.98 GHz,

2GB RAM; the operating system is Windows XP, and the server is the Netbeans built-in

application server Glassfish V2.

44

 Lab machines as clients: Two Intel(R) Core(TM)2 6600@2.40GHz CPU; 2GB RAM.

Software configuration: the operating system is Linux 2.6.24.7; Java 6 is installed. The client

machines and the server machine are connected to the same network.

Figure 5-1. Setup of the experiment system

A test bed was built in Java 6. For simplicity, the SOAP based service is atomic. It provides

three functions; two read operation (readA, readB) and a write operation (writeA). The resources

on the services are two integer variables: variable A, and variable B.

 In the test bed, the Server-Proxy is implemented as a component residing on the server side.

The Client-Proxy object resides in the service client’s application so that every time the client’s

application starts, a client-proxy will be instantiated. The Client-Proxy uses SOAP messages to

communicate with the Server-Proxy. For proxy-transparency, the Client-Proxy, the Server-

Proxy, and the Read-Write WS all have the same functional interface. In the implementation of

the locking protocol, the time unit is set at 1 second. The replacement algorithm used for the

cache in the Client-Proxy is LRU.

Single-Client Workloads

This experiment aims to investigate the overheads caused by the cooperative approach and the

gains in term of performance.

In this experiment, a set of 100 identical reads and a set of 100 identical writes were

conducted using both the cooperative approach and the conventional approach, in which the

45

service clients have direct communication with the service provider. The think time, which is the

time interval between two requests in both approaches, is one second. And the time out value is 1

second, which means that if the server resource is not available immediately at the time the

request arrives, the client will wait for the server resource to be available for 1 second. The

measurement in the experiments is the average client-perceived response time.

In order to determine the overheads, how the overheads are distributed, and how much can be

gained from using prediction and cache respectively, the prediction accuracy and the caching

percentage are adjusted for the experiments. The caching percentage means the percentage of the

results that are available in the cache. The prediction accuracy rate refers to the ratio of the

requests (in a workflow) which are correctly predicted by the prediction model.

Figure 5-2. Overheads of the cooperative approach in the worst situation

Figure 5-2 presents the overheads caused by the cooperative approach in term of average

client-perceived response times (in milliseconds) of repeated read operations and write

operations. In the cooperative approach, the prediction accuracy is set at 0. And the percentage of

46

the cached data in the workloads is set at 0% in order to get the overheads caused by the

cooperative approach in the worst situation. As Figure 5-2 shows, the overheads of both read and

write operations are relatively large compared to the conventional approach, 65ms and 67ms

respectively.

Figure 5-3. Gains from only prediction when caching is worst

Figure 5-3 shows the average client-perceived response times of 100 read operations and 100

write operations in both approaches. In the cooperative approach, the prediction accuracy is set at

1 and the caching percentage remains 0% in order to find out the gains from only the prediction

component, as well as the overheads mainly caused by cache. It is reasonable to measure the

cache overheads in this way, because when the prediction accuracy rate is 1, all the pre-

requesting is completed prior to actual requests; thus the pre-requesting time is not included in

the client-perceived response times. As indicated by Figure 5-3, the average response times of

both read and write operations in two approaches are similarly small. This reflects that when

fully functioned, the prediction component cuts most of the overheads from the worst situation.

47

From another angle, it can be concluded that the cache causes only a minor overhead, around

0.2ms for both operations.

Figure 5-4. Gains from only caching when prediction is worst

Figure 5-5. Gains from the cooperative approach in the best situation

When looking at Figure 5-4, the result is quite different from the previous experiment. In this

experiment, the caching percentage is 100% and the prediction accuracy is 0. This zero

48

prediction accuracy implies that the Client-Proxy has to do pre-requesting at the time the client

actually sends a request. As a result, the pre-requesting time is included in the client-perceived

response times. From the figure, response time of read operations in the cooperative approach is

half of the one in the worst situation, whereas the response time of write operations has no

improvement. This result shows that the pre-requesting is time costly. When prediction is the

worst, cache cannot help much with respect to response times.

Figure 5-5 shows the gains from the cooperative approach in the best situation, where both the

prediction accuracy and the caching percentage are 1 and 100% respectively. As indicated by the

figure, the result is much better. When both prediction and cache function perfectly, the average

response time of read operations is 0.66ms, close to 0. This is because both the costly pre-

requesting and the sending of SOAP messages are avoided. As for the write operations, the

average response time finally comes close to the one in the conventional approach.

Multi-Client Workloads

This experiment aims to investigate the performance of the cooperative approach when

resource conflicts exist.

Ten clients with different priorities for the cooperative approach are used. Of the 10 clients, 3

clients have the highest priority, 2 have the lowest, and the others have the medium priority. 10

clients are built for the conventional approach; and these 10 clients are of equal type with no

priorities specified. All the clients have the same workflow which consists of 10 operations, 7

reads and 3 writes. The think time between each operation in the workflow is 2.5 seconds. The

timeout value for the WS call is 1 second. The arrival rate of the clients is 1/2 per second, which

means the time interval between each client to start is 2 seconds. In both approaches, every

request (including both read operations and write operations) will require the resource to be held

49

for 1 second. The prediction accuracy and the caching percentage in the cooperative approach

are set at 1 and 100% respectively.

Figure 5-6 shows the average response time per request of each client in both approaches. As

can be seen in the figure, the response time is greatly reduced by using the cooperative approach.

Figure 5-6. Average response time of service clients

Table 5-1 shows some other parameters in both approaches.

Table 5-1. Some parameters in both approaches

Parameters Conventional approach Cooperative approach

ServiceAvailablity (percentage) 79% 100%

NegotiationRate (percentage) N/A 28%

AvgResponseTime of reads (ms) 382.1 4.7

AvgResponseTime of writes (ms) 272.4 9.9

ServiceAvailability refers to the percentage of the operations that consume the services

successfully. In the conventional approach, the Availability is only 79%, which means 21% of

50

requests encounter service unavailability. In contrast, the service Availability in the cooperative

approach is 100%.

NegotiationRate refers to the percentage of the operations that encounters a re-negotiation

with the service provider about the change of the operation time. This is only applicable to the

cooperative approach since there is no re-negotiation process in the conventional approach. The

NegotiationRate is relatively high, with a value of 28%. This could explain why the

ServiceAvailability is 100% in this situation; it is because when there is a conflict of the server

resource, the Server-Proxy can initiate a negotiation with the Client-Proxy about the change of

the operation time.

The other parameters are regarding the average response time. As shown in the table, the

cooperative approach provides great improvement in the response time of either type of

operations, and at the same time it maintains high service availability.

Phase 2 Experiments

In this phase of experiments, the goal is to investigate the performance of the proposed

cooperative approach using the second cooperation scenario: Open & Decentralized Cooperation

Scenario.

Experimental Setup

The hardware and software configurations are almost the same as Phase 1 experiments except

for the end service. Instead of evaluating the proposed cooperative approach using the abstract

service as used in previous section, an E-Commerce service was built to simulate a more realistic

scenario: the on-line shopping scenario. This E-Commerce service was built using the REST

style as it does not require much effort in developing an application. Moreover, I also like to see

if the results are consistent with previous ones using different style of WS.

51

Table 5-2. Service Operations

Operation Name HTTP Command Semantics

ProductDetails GET Get the details of one product

ProductsDetails GET Get a list of products

Bestsellers GET Get a list of products that sell best

CreateOrder POST Create a new order for one product

ViewOrder GET Get the details of an order

The WS have several service operations as shown in Table 5-2. Resources on the provider

side are products and orders. In the experiments, only ProductDetails and CreateOrder operations

are used to simulate read and write operations. The RESTful WS use HTTP as the

communication protocol, as well as the application protocol. This is because the service

semantics are along with the HTTP commands. For example, a GET command for the

productDetails operation means to retrieve the detailed information of a product from the service

provider. A POST command for the CreateOrder operation refers to creating a new order for a

product. Data are stored in the Netbeans built-in Apache Derby database. The product table

contains 629 records. Both the WS and the database server stay on the same machine.

The Client-Proxy resides on the client’s side and provides the same interfaces as the RESTful

WS. In this set of experiments, the Client-Proxy is simple. One assumption is that the Client-

Proxy has the client’s workflow information. The replacement algorithm used for the cache in

the Client-Proxy is LRU.

The Server-Proxy stays on the provider side. In this experiment the Server-Proxy functions as

the resource coordinator which processes pre-requests from client-proxies. The Server-Proxy

also keeps all the clients’ friends lists for re-negotiation.

As TPC-W (Transaction Processing Performance Council – Web) E-Commerce benchmark

[39] defines, there are three types of web workloads: browsing, shopping, and ordering. The

three workloads are composed of different proportions of read and write operations. Table 5-3

52

shows the detailed the distribution of read and write operations in the three workloads proposed

in TPC-W.

Table 5-3. Proportion of reads and writes in TPC-W workloads [39]

Workload Percentage of Reads Percentage of Writes

Browsing 95% 5%

Shopping 80% 20%

Ordering 50% 50%

Experiments are conducted with single client and multiple clients. Below are several

assumptions and settings:

 All the clients simulated in the following experiments have exactly the same workflow for

each type of the workloads (browsing, shopping, and ordering).

 For each type of the workloads, there are 50 requests.

 The time interval between two requests in all the workflows is 1 second.

 The TTL parameter is set 120 seconds for the cache in the Client-Proxy. As a result, no

invalidation happens since all the requests will be finished within 60 seconds.

 For multiple-client experiments, there are 5 clients simulated. Each client starts right after

each other and the time interval between two clients to start is less than 3 seconds.

 All the resources in the server are small and have the same size, around 600 bytes.

Overheads and Gains

This set of experiments aims to find out the basic overheads and gains of the cooperative

approach. A single client was simulated with different settings and different workloads. The

average response time was taken as the measure of the performance.

Figure 5-7 shows the overheads of the cooperative approach compared to the conventional

approach in terms of the average response time per request. As shown in the figure, the

overheads of the write operations in the cooperative approach are quite large in all of the

53

settings. This is as expected since every write operation has to route through the Client-Proxy

and then the Server-Proxy to reach the server; neither the caching nor the prediction can help

much when no resource conflicts exist. For the read operations, the performance varies according

to the settings. In the worst situation where both caching and the prediction have the worst

performance, the overhead is large. However, with the help of perfect caching, all the overhead

is cut off and the response time is even smaller than that in the conventional approach. The

prediction performs slightly worse than the cache. This also means that the prediction causes

more overheads than the cache. And this also applies to the write operations. In the best

situation, the cooperative approach has a huge gain of performance for the read operations. These

results are similar to the one in the phase one experiments.

Figure 5-7. Average response time with different settings in the browsing scenario

Figure 5-8 and Figure 5-9 show the overheads and gains in the shopping and ordering

scenarios. The results are similar to that in the browsing scenario.

54

Figure 5-8. Average response time with different settings in shopping scenario

Figure 5-9. Average response time with different settings in ordering scenario

55

Impact of Caching on Performance

These experiments aim to investigate the impact of caching on performance. To control the

caching percentage, a portion of the results were pre-cached in the cache. The prediction

accuracy rate is set at 1 so that it can cause as little overhead as possible. The experiments were

conducted using a single-client scenario and a multi-client scenario. In the multi-client scenario,

5 clients were simulated. In order to avoid overloading for the server, the ordering scenario was

not simulated for the multi-client experiments.

Figure 5-10. Impact of caching on performance in the single-client scenario

Figure 5-10 shows the results of the single-client experiment. The data of the 0% and 100%

caching from the previous experiments are also added to the graph. As is shown, the average

response time increases as the percentage of caching increases. Among the three workloads,

browsing has the best performance in all the settings. The ordering workload comes at the last

place. Compared to the conventional approach, the cooperative approach performs better only

when the caching percentage is above 50%.

56

Figure 5-11. Impact of caching on performance in the multi-client scenario

Figure 5-11 shows the result of the multi-client scenario. The result is a little different from

that in the single-client experiment. The conventional approach performs worse when the

percentage of cached results is above 20%.

Impact of Prediction on Performance

In this section, the impact of prediction on performance is evaluated. The caching is 100%.

The experiments were conducted using a single-client scenario and a multi-client scenario.

Figure 5-12 shows the average response time of the single-client experiment with different

prediction accuracy rates. The result is similar to the one in the experiment on caching. Again, as

the prediction accuracy rate increases the performance increases. Compared to the conventional

approach, the cooperative approach is better when the prediction accuracy rate is above 0.5 in all

the three workloads

57

Figure 5-12. Impact of prediction on performance in the single-client scenario

Figure 5-13 shows the result of the multi-client experiment. Again, the cooperative approach

outperforms the conventional one when the prediction accuracy rate is above 0.2.

.

Figure 5-13. Impact of prediction on performance in the multi-client scenario

58

Conclusion

Experiments in this chapter evaluated the cooperative approach using two cooperation

scenarios: the Closed & Centralized Consumer-Provider cooperation and the Open & Centralized

Consumer-Provider cooperation. In both scenarios, the caching and the prediction perform

consistently. Caching works better for read operations and prediction is crucial to write

operations. The improvement in performance in the cooperative approach is more obvious when

there are many clients competing for the resources on the server.

Performance is usually a factor that service clients care most about during service

consumption. The simple prediction model and caching in the cooperative approach can help

improve WS performance by reducing response time. By using the simple prediction model, the

Client-Proxy can inform the service provider of the client’s next request so that the server can

prepare ahead of time for the client’s requests.

Availability is another important QoS attribute for service clients since they expect the

services to be always there for serving requests. To assure service availability, the cooperative

approach employs a reservation-based locking protocol for resource coordination and a re-

negotiation strategy. By resource locking, every service client will get those server resources

promised when it goes to the server at the agreed time for processing. And it will not be

interrupted by other clients’ requests since the resources are already reserved for its own use. Re-

negotiation further enhances the availability of services. For example, if a specific time required

by the client is not available on the server due to locked resources, the service provider will

initiate a negotiation process with the client by suggesting another available time to the client.

And in the second cooperation scenario, negotiation between friends is possible. They can

negotiate themselves to solve the conflicts on resources by ranking requests and the service

provider even does not need to provide solutions all by itself. This allows clients to have more

59

choices consuming services rather than just sending an error message to clients indicating that

requests cannot be accepted.

Reliability refers to how well the service provider can provide correct WS. In the cooperative

approach, every request that has been pre-processed will get a unique token prior to service

consumption. So the request and its response are correlated by this unique token. This ensures a

guaranteed message delivery.

60

CHAPTER 6

EVALUATION WITH MOBILE DEVICES

Mobile and nomadic devices such as cell phones and PDAs have evolved in recent years from

resource constrained appliances to highly connected and increasingly powerful devices. This in

turn has led to the development of standardized platforms such as java micro edition, Android

and the IPhone OS which enable third party developers to build applications fairly easy.

However, standalone applications for the mobile/nomadic device have been shown to be of

limited use to users. Instead, users are more interested in using such devices to seamlessly access

the IT resources through the internet. Thanks to the widespread acceptance of Web Services, it is

fairly easy to access resources/services from a mobile/nomadic device. However, by relying on

external resources and services, the QoS is of the upmost importance. Especially if a

mobile/nomadic device is engaged in the execution of a workflow, it is vital to keep service

latencies at a minimum. Thus how the cooperative approach performs on mobile devices is a

very interesting question in this research. This chapter presents the basic evaluation of the

proposed cooperative approach used on mobile devices.

Experimental Setup

In these experiments, four different machines are used. The detail of the hardware and

software configuration is as the following.

 The server: These experiments use the same RESTful service in the previous experiments. It

is hosted on an iMac which has Intel Core 2 Duo 2.66 GHz, 4 GB RAM. This machine is

connected to the network via 100 Mbps Ethernet. The HTTP server is Glassfish V2.

 The Server-Proxy is on a HP xw6400 Workstation which has Intel(R) Xeon(R) 5140@2.33

GHz, 2 GB RAM. The OS is Windows XP. This machine is connected to the network via

100 Mbps Ethernet.

 The Client-Proxy resides on a MacBook which has 2.4 GHz Intel Core Duo, 2 GB RAM.

This machine is connected to the network via 100 Mbps Ethernet.

61

 The clients are two smart mobile devices. One is an IPod Touch. The other is a G1 Google

smart phone with Android software stack. Both of these two devices are connected to the

network via WiFi wireless network.

The experimental setup is shown in Figure 6-1. Rajitha Bakthula developed the client

application for the IPod Touch experiments.

HTTP HTTPRMI

Figure 6-1. The experimental setup

Experiments on the Caching and Prediction

In this part, the previous experiments were repeated on two smart mobile devices. One is the

G1 Phone and the other is the IPod Touch. Again, the TPC workloads are used. For each type of

workflow, there are still 50 requests in total. The time interval between each two requests is

1second. The TTL parameter for the cache is still set at 120 seconds and the replacement

algorithm used is LRU.

Overheads and Gains

These experiments aim to investigate the overheads and gains of the cooperative approach on

the two smart devices. In order to see how the smart mobile devices handle read and write

operations respectively, performance of read and write operations is measured separately.

Figure 6-2 presents the overheads and gains for read and write operations in the browsing

scenario. For write operations, the overheads of the cooperative approach are relatively large

compared to the conventional approach using both devices, no matter how the prediction and the

62

cache perform. This is as expected because in the conventional approach the client

communicates with the REST service directly, while in the cooperative approach the client has to

route to the Client-Proxy and the Server-Proxy first, and then reaches the end service. This of

course will increase the transmission time. But still, the figure shows that the prediction can

reduce almost half of the overhead while caching provides no help at all. For read operations, the

overheads are still obvious. In the situation that prediction and caching both have the worst

performance, the response time of the cooperative approach doubles in the IPod experiments.

And in the G1 phone experiments, the response time increases by one third. This is also due to

the routing of the requests. However, the prediction and cache perform differently this time.

From the figure, cache reduces more overheads than prediction for read operations.

Figure 6-2. Overheads and gains in browsing

Figure 6-3 and Figure 6-4 show the overheads and gains in shopping and ordering scenarios

respectively. They have the same pattern as those in the browsing scenario.

63

Figure 6-3. Overheads and gains in shopping

Figure 6-4. Overheads and gains in ordering

64

Impact of Caching

These experiments aim to investigate the impact of caching on the performance. The caching

percentage is adjusted for each run. The prediction accuracy rate in these experiments is set at 1.

Figure 6-5. Impact of caching on read operations (IPod)

Figure 6-6. Impact of caching on write operations (IPod)

65

Figure 6-5 shows the average response time of read operations with different caching

percentages. The response time in all three workloads shows the same pattern, it decreases as the

percentage of cached data increases. And the decrease is almost linear. Among the three

workloads, browsing has the best performance in most cases, but the difference is quite small.

Comparing to the conventional approach, when the caching percentage is less than 80%, the

performance is worse.

Results are quite different for the write operations shown in Figure 6-6. As expected, the

cache does not have any impact on the performance of write operations.

Figure 6-7. Impact of caching on read operations (G1 Phone)

From Figure 6-7, the response times in all three workloads using the G1 phone have similar

pattern to those in the IPod experiments. Among the three workloads, ordering has the worst

performance. And when comparing the cooperative approach to the conventional approach, the

first one outperforms the latter one only when the caching percentage reaches 80%. This is

similar to results in the IPod Touch experiments.

66

Figure 6-8. Impact of caching on write operations (G1 Phone)

As expected, the cache does not have any impact on the performance of write operations as

Figure 6-8 shows. However, an interesting result is that the average response time of write

operations is less than that of read operations in the ordering scenario, in which half of the

requests are write operations, using both the conventional and the cooperative approaches. This

is partially due to the setting in this experiment. The prediction accuracy rate is 1, which

contributes a great deal to reducing the latency for write operations. This explains why the write

operations perform well. That the read operations perform relatively worse might be due to the

implementation of the HTTP mechanism of the G1phone, as well as the low level data

serialization and de-serialization processes.

Impact of Prediction

These experiments aim to investigate the impact of prediction accuracy rate on performance.

The caching percentage is set at 100%.

Figure 6-9 presents the impact of prediction accuracy rate on read operations using the IPod.

As the rate increases, the performance increases as well. This applies in all the browsing,

67

shopping, and ordering scenarios, which have almost the same performance in different

prediction settings. With the help of perfect caching, when the prediction accuracy rate is greater

than 0.5, the cooperative approach beats the conventional approach.

Figure 6-9. Impact of prediction on read operations (IPod)

Figure 6-10. Impact of prediction on write operations (IPod)

68

When looking at the results for write operations, the performance varies in three workloads.

As shown in Figure 6-10, the ordering scenario has the best performance among the three

workloads in all different prediction settings. Then comes shopping, and finally browsing.

Figure 6-11 presents the impact of prediction accuracy rate on read operations. The result is

different from that in the IPod experiment. The thresholds of the prediction accuracy rate for the

cooperative approach to beat the conventional approach are different in the three scenarios.

Ordering has a relatively lower threshold with a value of 0.2; the overall performance in this

scenario is the worst, though.

Figure 6-11. Impact of prediction on read operations (G1 Phone)

Figure 6-12 shows the results of write operations. Once again, it’s similar to the IPod touch

experiments. When the prediction accuracy rate is close to 1, the average response time in the

ordering workload is pretty much the same as the one previously shown in Figure 6-8. An

interesting finding is that compared to the results of the IPod Touch experiments, the

performances of both read and write operations using the G1 phone are poorer with current

69

experimental setting. For example, the average response time of read operations in the IPod

experiments is around 100 milliseconds; however it is around 300 to 400 milliseconds in the G1

Google phone.

Figure 6-12. Impact of prediction on write operations (G1 Phone)

Impact of Message Size on Performance

In the previous experiments, the size of messages is quite small, around 600 bytes.

Experiments in this section aim to investigate the impact of message size on performance. Both

the conventional approach and the cooperative approach are used. The G1 Google Phone acts as

the client. In order to simulate the real world scenario, two parameters have been added to the

end server. They are the processing time and network delay. For the cooperative approach, the

prediction accuracy rate is 1, and the percentage of the cached items in the workload is 100%. As

a result, the extra server parameters do not have any impact on the cooperative approach for read

operations since all the results are directly from the cache.

70

The network delay is set at 200 milliseconds for settings which have a network delay. To

simulate the processing time, the calculation of Fibonacci numbers is used. For settings which

have constant processing time, the 37th Fibonacci number is calculated. And for the varying

processing time, the 35th Fibonacci number is calculated for the experiments with 50 kb request

messages; then the 36th number is used for 100kb experiments, and so forth.

Performance of Read Operations

In these experiments, the workflow is a sequence of 10 GET requests. The time interval is 1

second.

Figure 6-13 shows the experiments on the size of response message. The conventional

approach neither has any simulated processing time, nor the simulated network delay. As can be

seen from the graph, the average response times in both approaches increase almost linearly as

the size of the response message increases. The conventional approach performs slightly better

than the cooperative approach in most of the cases.

Figure 6-13. Performance with no network delay and no processing time

71

Figure 6-14 shows the results of the experiments in which the server has additional settings.

An extra varying processing time was added. From the graph, with the added extra processing

time, the conventional approach performs worse than the cooperative approach when the size of

the response message is larger than 150KB. And the response time is no more linearly

increasing.

Figure 6-14. Performance with no network delay and varying processing time

Figure 6-15 shows results of experiments with constant extra processing time. This time, the

cooperative approach outperforms the conventional approach in all cases.

As can be seen from Figure 6-16, the cooperative approach performs much better than the

conventional approach with two parameters added. As before, the response time is not linearly

increasing since the calculation of the Fibonacci numbers is not linear.

72

Figure 6-15. Performance with no network delay and constant processing time

Figure 6-16. Performance with network delay and varying processing time

Figure 6-17 shows the performance of the two approaches with 200 milliseconds delay and a

constant processing time. The result is very similar to that of the experiments with only constant

processing time. The simulated conventional approach has the same pattern of performance as

the one with no parameters added. As the file sizes increases, the average response times in all

these approaches increase almost linearly.

73

Figure 6-17. Performance with network delay and constant processing time

Performance of Write Operations

These experiments focus on the impact of file size on performance of POST requests. Each

experiment uses the same workflow – a sequence of 10 POST requests.

Figure 6-18. Performance with no network delay and no processing time

74

Figure 6-18 shows the average response times in both approaches. No network delay or

processing time is added. As can be seen, the response times in both approaches increase linearly

as the size of the request message increases. The cooperative approach performs worse than the

conventional approach.

Figure 6-19. Performance with no network delay and varying processing time

Figure 6-19 to Figure 6-22 show the comparison of the two approaches with the same server

setting. In all the experiments, the conventional approach outperforms the cooperative approach.

This is as expected. This is because when using the cooperative approach to do the POST

requests, the requests have to go through the Client-Proxy, then the Server-Proxy, and then

finally the server. This actually triples the time it takes to send and receive the data to and from

the wire. As a result, for this situation when no resource conflicts exist, the cooperative

approach brings no benefits at all.

75

Figure 6-20. Performance with no network delay and constant processing time

Figure 6-21. Performance with network delay and varying processing time

76

Figure 6-22. Performance with network delay and constant processing time

Impact of Network Delay on Performance

These experiments focus on the impact of network delay on the performance. The request and

response message size is 200kb. The network delay varies from 200 milliseconds to 6400

milliseconds. The processing time is constant, using the calculation of the 37th Fibonacci

number. The GET workflow consists of 10 consecutive GET requests, 1 second time interval.

The POST workflow consists of 10 POST requests, 1 second interval as well.

Figure 6-23 shows the average response times of GET requests in two approaches when

network delay increases. As can be seen, the conventional approach performs worse and worse

when the network delay increases. However, the performance of the cooperative approach is not

affected by the network delay in the Server since it gets results from the Client-Proxy which has

already cached the data.

Figure 6-24 shows the average response times of POST requests in two approaches. This

time, the network delay has impact on the cooperative approach since all the POST requests have

to reach the server. As a result, both approaches show the same pattern: as the simulated

77

network latency increases, the average response time increases. And the cooperative approach

performs slightly worse than the conventional approach.

Figure 6-23. Impact of network delay on performance for read operations

Figure 6-24. Impact of network delay on performance for write operations

78

Conclusions

The evaluation of the cooperative approach in the mobile experiments is based on the second

cooperative scenario: the Open & Centralized Consumer-Provider Cooperation. In this scenario,

the consumer (client) shares its workflow with the provider by communicating with the Client-

Proxy. The provider prepares locks for resources ahead of time. However, experiments in this

chapter aim to examine if the cooperative approach can be applied in mobile computing and how

the performance is. Thus the focus is on basic performance parameters and only a single client

was used for the tests and resources conflicts were not simulated.

The results of experiments in this chapter further prove the results from previous experiments.

For read operations, caching can reduce more overheads of the cooperative approach than the

prediction component. On the contrary, prediction can reduce part of the overhead of write

operations while caching cannot help at all. Results of the experiments on caching show that the

more data is available in the cache, the better the performance is for read operations. As for the

experiments on prediction accuracy rate, performance of both types of operations improves as

the prediction accuracy rate increases. When the size of request and response message increases,

the performance decreases. The cooperative approach has better performance for read operations

compared to the conventional approach when the processing time and network delay are added to

the end server. While considering the network delay, the cooperative approach show great

improvement on performance for read operations as the network delay increases. Performance

for write operations in both approaches has very similar pattern when the network delay

increases. But still, the conventional approach is slightly better.

In general, the performance for read operations using the cooperative approach is improved

compared to the conventional approach. However, results show that the performance for write

operations using the conventional approach is better. This is no surprise. In the mobile

79

experiments, only the single-client workload is simulated for the evaluation since this evaluation

only aims at the performance in basic scenarios. As for the single-client workload, there are no

resource conflicts happening at the server side since no other clients compete for the resources

with the only client simulated. Therefore, the pre-requesting and locking in the cooperative

approach are of little use and bring overheads rather than benefits to this single client. Due to the

un-cacheable nature of write operations, the overheads are much more obvious than those in read

operations.

However, performance will be greatly improved if multiple clients are consuming services

simultaneously. This has been proved by experimental results previously shown in last chapter.

As shown in Figure 5-6, Figure 5-11, and Figure 5-13, there is significant improvement in

performance using multi-client scenarios.

80

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Conclusions

Cooperation has been highly emphasized in various areas. However, cooperation among

service consumers and service providers has not yet been discussed in WS. This research

presents a cooperative approach to improve experiences of WS consumers. Two key aspects of

the experiences of consumers are: if the consumer can get the service; how fast can the consumer

get the service. As a result, the performance and service availability are two important factors in

the goals of the cooperation. Based on the extent of the cooperation, three scenarios are

proposed. The Closed Consumer-Provider cooperation presents the basic cooperation. In this

scenario, there is only one communication channel for a consumer to consume services; that is to

communicate and cooperate with the provider directly. The provider then makes all the decisions

about who gets what resources based on the information provided by all the consumers. The

second scenario extends the first one and grants permission to consumers to negotiate resources

themselves. However, this negotiation is indirect that the provider acts as the agent. The third

one - the Open & Decentralized Consumer-Provider cooperation creates an open environment for

the consumers to cooperate directly. The provider is no more the decision maker but the executor

who carries out the consumers’ decisions on the resources.

In this research, two proxies are introduced to implement the cooperation. The Server-Proxy

helps to release the server from heavy resource coordination. The Client-Proxy helps the service

consumers to cooperate with the service provider by sharing (part of) the consumer’s workflow

for pre-processing. A re-negotiation mechanism and a reservation-based locking protocol are

proposed to help consumers to adapt to changes at runtime. This further enhances the experience

of service consumers by providing them with choices and decisions rather than informing them

81

that services are unavailable. A caching component and a simple prediction model are proposed

to help improve the performance for the client.

The cooperative approach has been evaluated with experiments using the first and second

cooperation scenario. Results from those experiments show that:

 The overheads caused by the cooperative approach are relatively large compared to the

conventional approach. However, with proper caching percentage and prediction accuracy

rate, the improvement in performance using the cooperative approach is obvious.

 Caching helps a lot for the improvement in performance for read operations. Prediction can

bring benefits for both operations but the improvement is greater in the write operations than

in the read operations.

 The cooperative approach is designed for the situation in which consumers compete for

resources on the server. The experiments with multi-client workloads prove that when

consumers compete for the resources, the cooperative approach shows great improvement in

performance compared to the conventional approach. The thresholds for the prediction

accuracy rate and the caching percentage are also lower compared to those in experiments

with single-client workloads.

 Results from the same experiments with mobile devices support the above conclusions. Since

only the single-client workload was used in the mobile experiments, the performance of write

operations using the conventional approach outperforms that using the cooperative approach.

This has been explained in the conclusions of previous chapter.

 Performance can be affected by the size of the request and response messages. The larger the

size is, the greater the latency is. With simulated processing time and network latency, the

cooperative approach out-performs the conventional one for read operations. However, it’s

quite the contrary for write operations since only the single-client workload is used in the

experiments with mobile devices and no resource conflicts exist.

 Simulated network latency can greatly affect the performance of the conventional approach.

For read operations, the cooperative approach enables improvement in performance with the

help of the cache and prediction. This brings great benefits to service clients with poor or

unstable network connections, especially for mobile clients. For write operations, the

conventional approach is better.

The contributions of this research include the following:

 Introducing the idea of cooperation in WS to improve the experience of service consumers

 Proposing three possible cooperative scenarios for different business and network

environments

82

 Evaluating the proposed cooperative approach with experiments

 Finding out the situations when the cooperative approach has the most significant

improvement

Future Work

In the current implementation and experiments, only the first two cooperation scenarios have

been evaluated. The third cooperation scenario is the most interesting one and needs further

research. The future work will focus on the following aspects:

 The prediction model: The prediction model in the current implementation is a very basic

one. It all depends on the client’s workflow. It cannot handle requests that are not from the

pre-set workflows. So the next step is to build a more advanced and fault-tolerance prediction

model that can handle unexpected requests and provide compensations for wrong predictions.

The model will no longer totally rely on the client’s workflow since it’s very rare that a client

share all of its workflow with a second party. Therefore, the client’s behavior should be

accurately captured and analyzed.

 The re-negotiation

o The current re-negotiation is implemented mostly on the Server-Proxy. The next

step is to design a re-negotiation component on the Client-Proxy so that the

clients can communicate with each other. This will enable the third cooperation

scenario: the Open & Decentralized Cooperation.

o Penalties should be considered in case of dishonest rankings of requests.

o A more interesting approach for re-negotiation is to let the clients bid for

resources if conflicts happen in a situation where clients with lower priorities

really need the resource and they are willing to pay more.

 The pre-requesting and the locking: Currently, most of the overheads are caused by the pre-

requesting and the locking, especially when the prediction is incorrect. A further step is to

find out a more efficient locking policy and a terse pre-requesting protocol to lower the

overheads.

 Evaluations: Current evaluation with mobile devices all focuses on the single-client

workloads which cannot show the advantages of the cooperative approach designed to work

in a competitive environment. Future experiments should be more focused on multi-client

workloads. Service availability and some other parameters should also be investigated other

than just the average response time in the mobile experiments.

83

LIST OF REFERENCES

[1] Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. 2006. Service-Oriented

Computing Research Roadmap. Service Oriented Computing (SOC), number 05432 in

Dagstruhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer

Informatik, Schloss Dagstuhl, Germany 2006.

[2] Erradi, A., Padmanabhuni, S., and Varadharajan, N. 2006. Differential QoS support in Web

Services Management. In Proceedings of the IEEE international Conference on Web Services,

Washington, DC, September 18 - 22, 2006, pp781-788.

[3] Verma, A. and Ghosal, S. 2003. On admission control for profit maximization of networked

service providers. In Proceedings of the 12th international Conference on World Wide Web,

Budapest, Hungary, May 20 - 24, 2003, pp128-137.

[4] Olshefski, D. and Nieh, J. 2006. Understanding the management of client perceived response

time. SIGMETRICS Perform. Eval. Rev. 34, 1 (Jun. 2006), 240-251.

[5] Choi, S. W. Her, J. S. and Kim, S. D. 2007. Modeling QoS Attributes and Metrics for

Evaluating Services in SOA Considering Consumers' Perspective as the First Class

Requirement. In Proceedings of the the 2nd IEEE Asia-Pacific Service Computing

Conference (December 11 - 14, 2007). APSCC. IEEE Computer Society, Washington, DC,

398-405.

[6] Papazoglou, M. P. 2003. Service -Oriented Computing: Concepts, Characteristics and

Directions. In Proceedings of the Fourth international Conference on Web information

Systems Engineering (December 10 - 12, 2003). WISE. IEEE Computer Society,

Washington, DC, 3.

[7] Gottschalk, K., Graham, S., Kreger, H., and Snell, J. 2002. Introduction to Web services

architecture. IBM Systems Journal 41, 2, (2002).

[8] Lee, K.C., Jeon, J. H., Lee, W.S., Jeong, S.H., and Park ,S.W., 2003. QoS for Web services:

Requirements and Possible Approaches. W3C Working Group Note 25 (Nov. 2003)

[9] Abu-Ghazaleh, N., Lewis, M. J., and Govindaraju, M. 2004. Differential Serialization for

Optimized SOAP Performance. In Proceedings of the 13th IEEE international Symposium on

High Pezzformance Distributed Computing (June 04 - 06, 2004). High Performance

Distributed Computing. IEEE Computer Society, Washington, DC, 55-64.

[10] Suzumura, T., Takase, T., and Tatsubori, M. 2005. Optimizing Web Services Performance by

Differential Deserialization. In Proceedings of the IEEE international Conference on Web

Services (July 11 - 15, 2005). ICWS. IEEE Computer Society, Washington, DC, 185-192.

[11] Abdelzaher, T. F., Shin, K. G., and Bhatti, N. 2002. Performance Guarantees for Web Server

End-Systems: A Control-Theoretical Approach. IEEE Trans. Parallel Distrib. Syst. 13, 1 (Jan.

2002), 80-96.

http://www.research.ibm.com/journal/sj/412/gottsaut.html#gottschalk
http://www.research.ibm.com/journal/sj/412/gottsaut.html#graham
http://www.research.ibm.com/journal/sj/412/gottsaut.html#kreger
http://www.research.ibm.com/journal/sj/412/gottsaut.html#snell

84

[12] Chiu, K., Govindaraju, M., and Bramley, R. 2002. Investigating the Limits of SOAP

Performance for Scientific Computing. In Proceedings of the 11th IEEE international

Symposium on High Performance Distributed Computing (July 24 - 26, 2002). High

Performance Distributed Computing. IEEE Computer Society, Washington, DC, 246.

[13] Werner, C., Buschmann, C., and Fischer, S. 2004. Compressing SOAP Messages by using

Differential Encoding. In Proceedings of the IEEE international Conference on Web Services

(June 06 - 09, 2004). ICWS. IEEE Computer Society, Washington, DC, 540.

[14] Elnikety, S., Nahum, E., Tracey, J., and Zwaenepoel, W. 2004. A method for transparent

admission control and request scheduling in e-commerce web sites. In Proceedings of the

13th international Conference on World Wide Web (New York, NY, USA, May 17 - 20,

2004). WWW '04. ACM, New York, NY, 276-286.

[15] Verma, A. and Ghosal, S. 2003. On admission control for profit maximization of networked

service providers. In Proceedings of the 12th international Conference on World Wide Web

(Budapest, Hungary, May 20 - 24, 2003). WWW '03. ACM, New York, NY, 128-137.

[16] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and Weerawarana, S. 2002.

Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI. IEEE

Internet Computing 6, 2 (Mar. 2002), 86-93.

[17] Fielding, R. T. 2000 Architectural Styles and the Design of Network-Based Software

Architectures. Doctoral Thesis. UMI Order Number: AAI9980887, University of California,

Irvine.

[18] Devaram, K. and Andresen, D. 2003. SOAP Optimization via Client-side Caching. In

Proceedings of the International Conference on Web Services (ICWS '03, Las Vegas, Nevada,

USA, June 23 - 26, 2003).

[19] Cerami C. 2002. Chapter 6: WSDL Essentials. In Web Services Essentials: Distributed

Applications with XML-RPC, SOAP, UDDI & WSDL. O'Reilly Media, (Feb. 2002).

[20] Kalepu, S., Krishnaswamy, S., and Loke, S.W. 2003. Verity: a QoS metric for selecting Web

services and providers. In proceedings of the Fourth International Conference on Web

Information Systems Engineering Workshops (WISEW’03,). pp. 131-139

[21] Maximilien, E.M. and Singh, M.P., 2002. Reputation and endorsement for web services.

ACM SIGEcom Exchanges, 3(1):24–31, ACM Special Interest Group on E-Commerce.

[22] Ludwig, H. Keller, A., Dan, A., King, R.P., and Franck, R. 2002. Web Service Level

Agreement (WSLA) Lnnguoge Specifcarion. IBM Corporation. November 2002.

[23] Rajesh, S. and Arulazi, D. Quality of Service for Web Services—Demystification,

Limitations, and Best Practices. http://www.developer.com/services/article.php/2027911

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(kalepu%20%20s.%3cIN%3eau)&valnm=Kalepu%2C+S.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20krishnaswamy%20%20s.%3cIN%3eau)&valnm=+Krishnaswamy%2C+S.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20loke%20%20s.%20w.%3cIN%3eau)&valnm=+Loke%2C+S.W.&reqloc%20=others&history=yes
http://www.developer.com/services/article.php/2027911

85

[24] Mani, A. and Naqarajan, A. 2002. Understanding quality of service for Web services.

http://www-128.ibm.com/developerworks/library/ws-quality.html

[25] Liu, X. 2007. Model-driven Dual Caching for Nomadic Service-Orientied Archtecture

Clients, University of Saskatchewan, Saskatoon, Saskatchewan, CA [Master Thesis].

[26] Liu, X. and Deters, R. 2007. An efficient dual caching strategy for web service-enabled

PDAs. In Proceedings of the 2007 ACM Symposium on Applied Computing (Seoul, Korea,

March 11 - 15, 2007). SAC '07. ACM, New York, NY, 788-794.

[27] Friedman, R. 2002. Caching web services in mobile ad-hoc networks: opportunities and

challenges. In Proceedings of the Second ACM international Workshop on Principles of

Mobile Computing (Toulouse, France, October 30 - 31, 2002). POMC '02. ACM, New York,

NY, 90-96.

[28] Takase, T. and Tatsubori, M. 2004. Efficient Web Services Response Caching by Selecting

Optimal Data Representation. In Proceedings of the 24th international Conference on

Distributed Computing Systems (Icdcs'04) (March 24 - 26, 2004). ICDCS. IEEE Computer

Society, Washington, DC, 188-197.

[29] Wang, J. 1999. A survey of web caching schemes for the Internet. SIGCOMM Comput.

Commun. Rev. 29, 5 (Oct. 1999), 36-46.

[30] Connolly, T. M., and Begg, C. E. 2002. Database Systems: A Practical Approach to Design,

Implementation, and Management. Third Edition, Pearson Education Limited, Harlow,

England.

[31] Mock, M., Gergeleit, M., and Nett, E. 1997. Cooperative Concurrency Control on the Web.

In Proceedings of the 6th IEEE Workshop on Future Trends of Distributed Computing

Systems (FTDCS '97) (October 29 - 31, 1997). FTDCS. IEEE Computer Society,

Washington, DC, 118.

[32] Zhao, W., Moser, L. E., and Melliar-Smith, P. M. 2005. A Reservation-Based Coordination

Protocol for Web Services. In Proceedings of the IEEE international Conference on Web

Services (July 11 - 15, 2005). ICWS. IEEE Computer Society, Washington, DC, 49-56.

[33] Alonso, G., Agrawal, D., Abbadi, A. E., Kamath, M., Günthör, R., and Mohan, C. 1996.

Advanced Transaction Models in Workflow Contexts. In Proceedings of the Twelfth

international Conference on Data Engineering (February 26 - March 01, 1996). S. Y. Su, Ed.

ICDE. IEEE Computer Society, Washington, DC, 574-581.

[34] Hollingsworth, D. 1994. Workflow Management Coalition The Workflow Reference Model.

Workflow Management Coalition, Document Number TC00-1003.

http://www-128.ibm.com/developerworks/library/ws-quality.html

86

[35] Huang, H. and Mason, R. A. 2006. Model Checking Technologies for Web Services. In

Proceedings of the the Fourth IEEE Workshop on Software Technologies For Future

Embedded and Ubiquitous Systems, and the Second international Workshop on

Collaborative Computing, integration, and Assurance (Seus-Wccia'06) - Volume 00 (April 27

- 28, 2006). SEUS-WCCIA. IEEE Computer Society, Washington, DC, 217-224.

[36] Havey, M. 2005. Essential Business Process Modelling. First Edition O'Reilly, 2005, pp.

350.

[37] Windows Workflow Foundation (WF). Micorsoft, http://msdn.microsoft.com/en-

us/netframework/aa663328.aspx.

[38] State Machine Workflows. MSDN library from microsoft. http://msdn.microsoft.com/en-

us/library/ms735945(VS.85).aspx.

[39] TPC-transaction processiong performance council. [Online]. 2007(06/21), Available:

http://www.tpc.org/.

[40] Karagiannis, T., Molle, M., Faloutsos M. and Broid, A. 2004. A nonstationary poisson view

of internet traffic . IEEE Infocom 2004-Confrence on Computer Communications - Twenty-

Third Annual Joint Conference of the IEEE Computer and Communications Societies, Hong

Kong, China, 2004, pp. 1558-1569.

[41] Dyachuk, D. and Deters, R. Improving performance of Composite Web Services. 2007. In

Proceedings of IEEE International Conference on Service-Oriented Computing and

Applications, pages 147 – 154, June 19-20, 2007

[42] Pallis, G., Vakali, A., and Pokorny, J. 2007, A Clustering-based Prefetching Scheme on a

Web Cache Environment, Comput Electr Eng (2007),

doi:10.1016/j.compeleceng.2007.04.002

[43] Erradi, A. and Maheshwari, P. 2005. wsBus: QoS-Aware Middleware for Reliable Web

Services Interactions. In Proceedings of the 2005 IEEE international Conference on E-

Technology, E-Commerce and E-Service (Eee'05) on E-Technology, E-Commerce and E-

Service (March 29 - April 01, 2005). EEE. IEEE Computer Society, Washington, DC, 634-

639. DOI= http://dx.doi.org/10.1109/EEE.2005.148

[44] Rosu, M.-C 2007. A-SOAP: Adaptive SOAP Messaage Proccesing and Compression. In

Proceedings of the IEEE International Conference on Web Services. ICWS 2007.

[45] Conti, M., Kumar, M., Das, S. K., and Shirazi, B. A. 2002. Quality of Service Issues in

Internet Web Services. IEEE Transactions on Computers, vol. 51, no. 6, pp. 593-594, June,

2002.

87

[46] Teng, W. and Chang, C. 2005. Integrating Web Caching and Web Prefetching in Client-Side

Proxies. IEEE Trans. Parallel Distrib. Syst. 16, 5 (May. 2005), 444-455. DOI=

http://dx.doi.org/10.1109/TPDS.2005.56

[47] Yin, L. and Cao, G. 2006. Supporting Cooperative Caching in Ad Hoc Networks. IEEE

Transactions on Mobile Computing 5, 1 (Jan. 2006), 77-89. DOI=

http://dx.doi.org/10.1109/TMC.2006.15

[48] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. Web Services. Springer Verlag, 2004

[49] Pautasso, C., Zimmermann, O., and Leymann, F. 2008. Restful web services vs. "big"' web

services: making the right architectural decision. In Proceeding of the 17th international

Conference on World Wide Web (Beijing, China, April 21 - 25, 2008). WWW '08. ACM,

New York, NY, 805-814. DOI= http://doi.acm.org/10.1145/1367497.1367606

[50] Schäfer, M., Dolog, P., and Nejdl, W. 2008. An environment for flexible advanced

compensations of Web service transactions. ACM Trans. Web 2, 2 (Apr. 2008), 1-36. DOI=

http://doi.acm.org/10.1145/1346237.1346242

[51] Monaco, F. J., Nery, M., and Peixoto, M. M. 2009. An orthogonal real-time scheduling

architecture for responsiveness QoS requirements in SOA environments. In Proceedings of

the 2009 ACM Symposium on Applied Computing (Honolulu, Hawaii). SAC '09. ACM,

New York, NY, 1990-1995. DOI= http://doi.acm.org/10.1145/1529282.1529724

[52] Diamadopoulou, V., Makris, C., Panagis, Y., and Sakkopoulos, E. 2008. Techniques to

support Web Service selection and consumption with QoS characteristics. J. Netw. Comput.

Appl. 31, 2 (Apr. 2008), 108-130.

[53] Weiss, A. 2007. Computing in the clouds. netWorker 11, 4 (Dec. 2007), 16-25. DOI=

http://doi.acm.org/10.1145/1327512.1327513

[54] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. 2009. Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th

utility. Future Gener. Comput. Syst. 25, 6 (Jun. 2009), 599-616.

[55] Liu, S., Wei, J., Ma, Y., and Liu, Y. 2004. Web Service Cooperation Ideology. In

Proceedings of the 2004 IEEE/WIC/ACM international Conference on Web intelligence

(September 20 - 24, 2004). Web Intelligence. IEEE Computer Society, Washington, DC,

537-540. DOI= http://dx.doi.org/10.1109/WI.2004.160 2009), 599-616.

