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ABSTRACT 

 

Understanding and modeling runoff generation over seasonally-frozen hillslopes is a major 

challenge in hydrology. On the Canadian Prairies, snowmelt drives up to 80% of annual runoff, 

but the hydrological regime is vulnerable to changing precipitation states, snowpack persistence, 

snowmelt timing and rates, and frozen ground states. Our ability to understand and predict water 

partitioning and availability is being challenged by a lack of hillslope-scale climate-runoff 

observations, the presence of multiple interacting controls, and occurrence of spatial and temporal 

nonlinearity in runoff responses. I undertook long-term analyses of a 52-year dataset (1962-2013) 

of climate, snow cover, soil water content, and runoff from three 5 ha hillslopes in Saskatchewan. 

The aim was to determine how recent changes in climate have impacted upon hillslope rainfall- 

and snowmelt-runoff, and to unscramble the hierarchy of controls on hillslope snowmelt-runoff 

generation. These analyses then provided a multi-decadal contextual backdrop to an intensive field 

campaign that I led during the 2014 snowmelt season. I measured the spatial patterns of controls 

on runoff to assess the mechanisms behind connectivity and threshold delivery of snowmelt over 

frozen ground. There are three main conclusions from this research. First, differences between 

frozen and unfrozen soil infiltrabilities caused contrasting long-term snowmelt- and rainfall-runoff 

trends: no statistically significant changes were observed for rainfall-runoff amounts, but 

snowmelt-runoff showed statistically significant decreases over the 52-year record. Second, 

snowmelt-runoff was driven by hierarchical and condition-dependent controls related to snowfall, 

snow cover, antecedent soil moisture, and melt season dynamics. Third, for an individual melt 

season, filling and spilling of micro- and meso-depressions by snowmelt over frozen ground was 

the driver of hillslope connectivity and runoff delivery. Through a coupled analysis of trends, 

hierarchies and patterns, this research has advanced our understanding of runoff generation over 

seasonally-frozen ground. The long-term decrease in spring soil water recharge and snowmelt-

runoff is a threat to dryland crop production and economic prosperity in farming. These findings 

have implications for modeling these threats by guiding new empirical frameworks for lumped 

hillslope runoff based on what we found in our long terms analysis and identifying what micro- 

and meso-scale features are important to now include in our process-based distributed snowmelt 

models. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

The economic prosperity of the Canadian Prairies, at the northern limit of the Great Plains of North 

America, is heavily dependent on water (Pomeroy et al., 2009). The Prairies have a cold, semi-

arid climate (300-400 mm of precipitation each year, approximately one-third of which falls as 

snow), with seasonally-frozen ground, and low-angled, undulating topography (Pomeroy et al., 

2010). Agriculture is a key land use of the region. The majority of the region sees continuous snow 

cover and frozen soils during the four to five months of winter. Approximately 90% of the South 

Saskatchewan River’s (the region’s main watercourse) streamflow is generated remotely, in the 

Rocky Mountains (Martz et al., 2007). Snowmelt accounts for approximately 80% of the local 

runoff generation. 

 

The hydrology of the Canadian Prairies is vulnerable to changing precipitation states, snowpack 

persistence, snowmelt rates, and frozen ground states (Fang and Pomeroy, 2007; Tetzlaff et al., 

2013). Projected warming and wetting over the coming decades in this region (Barrow, 2009) have 

the potential to yield cascading influences on hillslope hydrological regimes, runoff generation, 

soil water availability, agricultural productivity, and downstream water resources.  

 

However, climate impacts on the hydrology of prairie hillslopes are poorly understood. Hillslopes 

are key landscape units because they are the scale at which we observe runoff generation processes 

that deliver water to soil water recharge, groundwater recharge, and streamflow. The hydrology of 

hillslopes at the sub-catchment scale is most important for agriculture. For example, runoff from 

these hillslopes delivers water to dugouts (small excavated storage reservoirs), which are important 

sources of water for livestock and farm household use. At the larger scale, runoff from hillslopes 

provides water to streams and glacially-formed topographic depressions (i.e. prairie potholes or 

wetlands), which are important sources of water for wildlife habitat and ecosystem functioning. 

Hillslope surface runoff also effects downstream flooding and water quality. The relevance of 
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runoff is highly variable across the Prairies. Minimising runoff and maximising infiltration is often 

desirable both for alleviating flood risks and for promoting soil water recharge for crop 

productivity. Therefore, hillslope-scale hydrology and runoff generation mechanisms are highly 

important for the region’s surface and near-surface water availability. Yet, it is very difficult to 

relate existing catchment-scale observations of climate effects on hydrology (e.g. Dumanski et al., 

2015) back to the hillslope scale due to the influence of sloughs (water-filled depressions), riparian 

zones, and groundwater on catchment-scale streamflow signals. We have therefore little 

knowledge of how runoff generation processes or hillslope-scale water budgets have responded to 

recent decadal changes in temperature or precipitation, making it difficult to extrapolate to the 

potential effects of these future climatic changes. 

 

The dominance of snowmelt for generating runoff in the region is due to the rapid release of water 

from snowpacks over frozen ground, which typically reduces the infiltration capacity of the soil 

and encourages surface runoff (Granger et al., 1984; Fang et al., 2007). Infiltration into frozen soil 

is therefore an important flux on the Prairies, which is difficult to predict due to the complex effects 

of coupled heat and mass transfer with phase changes (Kane and Stein, 1983; Zhao and Gray, 

1999). The activation of hillslope runoff is spatially and temporally unstable. There are multiple 

interacting factors – including snow accumulation, distributed melt inputs, seasonally-frozen 

ground, ice lenses, land cover, topography, and variable pre-melt soil moistures – which combine 

to drive runoff responses that are non-uniquely related to precipitation (Fang et al., 2007; DeBeer 

and Pomeroy, 2010; Ireson et al., 2013). We do not fully understand how the multiple controls on 

runoff interact to drive the nonlinear relationship between snowfall and runoff. This is largely 

because our cold regions process understanding is based mostly upon short-term experiments and 

single-season runoff events, where nonlinearities and interactions between the various process 

controls are not observable. We need much longer records and associated analysis in order to 

witness hierarchies, combinations, and interactions of process factors, to reflect the differing states 

of catchment response, and to provide context in the form of event, seasonal, or annual variability. 

 

Further, in striving to understand critical thresholds and feedbacks in runoff generation, connecting 

point-scale runoff generation across hillslopes is now seen as fundamental to field and modeling 
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campaigns (Bracken and Croke, 2007; Bracken et al., 2013). Nonlinear, threshold-like runoff 

responses occur when continuous flow fields are generated across a plot, hillslope, or catchment. 

These responses can be directly linked to specific geomorphic processes and controls (Phillips, 

2003). Therefore, studies that have measured key features and processes at dense spatial 

resolutions have led to deeper mechanistic understanding of connectivity and water delivery (e.g. 

Tromp-van Meerveld and McDonnell, 2006). New concepts, such as the fill and spill mechanism, 

have emerged that describe nonlinearities, thresholds, and storage-mediation in internal catchment 

response to precipitation inputs (Spence, 2010; Ali et al., 2012; McDonnell, 2013). These provide 

opportunities to enhance predictability, improve interpretation of historical evidence, and inform 

modelling and experimental designs (Phillips, 2003). We do not know how the spatial patterns of 

geomorphic features and processes drive runoff connectivity over frozen ground, and how these 

might be similar or different to mechanisms of connectivity in other environments, such as fill and 

spill. The next phase to improve our understanding of threshold runoff generation must integrate 

the leading edge of process- and field-based understanding (i.e. spatial patterns, connectivity, etc.), 

with the use and development of associated long-term datasets to test and quantify change under 

variable hydro-meteorology.  

 

1.2 Research goals and thesis outline 

The overall objective of my research was to mechanistically assess hillslope runoff on the 

Canadian Prairies within the context of long-term change. I developed and performed my work at 

a long-term research site at the Swift Current Research and Development Centre, in Swift Current, 

managed by Agriculture and Agri-food Canada. Specifically, the site is a set of three adjacent 

agriculturally-managed hillslopes, each around 5 ha in area, instrumented and researched since 

1962. I organized my research into three sections – the three research chapters presented in this 

thesis – each of which sought to address one outstanding question with regards to hillslope runoff 

generation on the northern Great Plains: 

1. How have recent changes in climate impacted upon hillslope rainfall- and snowmelt-runoff 

on the northern Great Plains? 

2. What is the hierarchy of controls on hillslope snowmelt-runoff generation over frozen 

ground? 
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3. What controls connectivity and resultant threshold delivery of snowmelt over frozen 

ground? 

 

I began with comprehensive analyses of a previously unpublished 52-year (1962-2013) hillslope-

scale dataset of climate, soil water content, snow pack, and runoff data from the Swift Current 

hillslopes (Chapters 2 and 3). These analyses provided a multi-decadal contextual backdrop to an 

intensive field campaign measuring the spatial patterns of controls on runoff during the 2014 

snowmelt season at the Swift Current hillslopes (Chapter 4). 

 

Specifically, in Chapter 2, my main objective was to determine the multi-decadal trends in 

precipitation (both rainfall and snowfall) and the resultant runoff events. Many long-term climate 

records from the northern Great Plains show climate trends over the last 50-100 years over the 

region (Akinremi et al., 1999; Cutforth et al., 1999; Mekis and Vincent, 2011; Shook and Pomeroy, 

2012). However, combined long-term climate-runoff records from the region are much less 

common, and there have been relatively few analyses of such datasets (Dumanski et al., 2015; 

Ehsanzadeh et al., 2016). For example, Dumanski et al. (2015) showed much more amplified 

streamflow trends than the corresponding precipitation trends over a 40 year period, for a 

catchment highly impacted by land use changes. But as noted above, it is very difficult to scale 

down understanding from the catchment-scale to the hillslope-scale. Therefore, for understanding 

how long-term changes in precipitation have affected hillslope runoff generation and water 

availability, we need hillslope-scale climate-runoff data, which are rare.  

 

In Chapter 2 I first sought to leverage the rich 52-year dataset collected at the Swift Current 

hillslopes to determine how hillslope-scale runoff has responded to changes in precipitation 

quantity, timing, and phase. Second, I sought to elucidate any seasonal (snowmelt- vs. rainfall-

runoff) differences in runoff response to long-term trends in precipitation. Finally, I explored how 

(if at all) the hillslope-scale responses differed to already-published catchment-scale responses. 

This research rested upon time series analysis of the climatological and hydrological variables, 

and referred to existing knowledge on prairie hydrological processes to explain the differences 
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observed across seasons and geographic scales. I concluded this research with an outlook for the 

future, considering the importance of snowmelt soil water recharge and growing season 

precipitation for agricultural productivity in this region. This study was submitted in August 2016 

for potential publication in Journal of Hydrology and is currently under peer review. [Coles, A.E., 

McConkey, B.G., and McDonnell, J.J. (2017) Climate change impacts on hillslope runoff on the 

northern Great Plains, 1962-2013, Journal of Hydrology, in review]. 

 

In Chapter 3, I aimed to determine the key controls on snowmelt-driven runoff generation over the 

same 52-year data record at the Swift Current hillslopes. Current snowmelt-runoff process 

understanding is based typically on short-term experiments, single-season runoff events, or point-

scale experiments. Infiltration into frozen soil, and factors affecting it, are known to be important 

(Fang et al., 2007; Ireson et al., 2013), and the research presented in Chapter 2 supported this with 

results of its long-term analysis. However, we still do not understand the hierarchies, interactions, 

and feedbacks between these controls, and their condition-dependent behaviour. Hierarchical 

understanding has been shown to be important for model development (Uchida et al., 2005), spatial 

extrapolation (Cammeraat, 2002), and runoff classification schemes (Barthold and Woods, 2015). 

Such understanding would be hugely beneficial on the Canadian Prairies, where the highly 

nonlinear runoff response to snowfall and snowmelt makes it notoriously difficult to model (Gupta 

and Sorooshian, 1997; Pomeroy et al., 2007).  

 

In Chapter 3 I used decision tree learning (De’ath and Fabricius, 2000), a data mining approach, 

to extract information from the long-term dataset on the interactions between controls (e.g. 

topography, vegetation, land use, soil characteristics, and precipitation dynamics), their 

hierarchical order, and their condition-dependent importance. I compared the resultant decision 

tree model for the prediction of snowmelt-runoff ratio to an existing, widely-used model for 

infiltration into frozen ground. This study was submitted in October 2016 for potential publication 

in Hydrology and Earth System Sciences and is currently under peer review. It has been published 

in Hydrology and Earth System Sciences Discussions. [Coles, A.E., Appels, W.M., McConkey, 

B.G., and McDonnell, J.J. (2016) The hierarchy of controls on snowmelt-runoff generation over 
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seasonally-frozen hillslopes, Hydrology and Earth System Sciences Discussions, doi: 

10.5194/hess-2016-564]. 

 

Finally, in Chapter 4, I aimed to determine how the spatial patterns of the controls and processes 

identified in the long-term analyses (Chapters 2 and 3) interact to drive hillslope-wide connectivity 

and threshold-like runoff over frozen ground. Connectivity studies in other regions (e.g. Darboux 

et al., 2002; Tromp-van Meerveld and McDonnell, 2006; Detty and McGuire, 2010) and at larger 

wetland-dominated scales (e.g. Leibowitz and Vining, 2003; Shaw et al., 2012) have unveiled 

deeper process understanding and helped develop new, potentially-unifying concepts such as the 

fill and spill mechanism (e.g. Spence and Woo, 2003; Tromp-van Meerveld and McDonnell, 2006; 

McDonnell, 2013). However, runoff connectivity is still poorly understood on prairie hillslopes, 

where long periods of snow-covered frozen ground with very shallow slopes mask spatial patterns.  

 

In Chapter 4, I sought to establish, for the 2014 snowmelt season, the spatial patterns that affect 

connectivity over frozen ground, and whether or not these are consistent with the fill and spill 

mechanism. I undertook digital topographic analysis of Hillslope 2 of the Swift Current hillslopes 

to develop a working hypothesis of flowpath locations and the extent of downslope impedance of 

runoff. In the field, I measured soil water content, thawed layer depth, snow cover, and snow water 

equivalent at a high resolution over Hillslope 2, through the melt season. I combined these 

measurements with measurements of snow, soil water, ponded water, and hillslope runoff stable 

isotope composition. I evaluated the importance of soil moisture, topography, and the fill and spill 

mechanism for runoff connectivity over frozen prairie hillslopes. This study is due for submission 

for potential publication in Hydrological Processes. [Coles, A.E. and McDonnell, J.J. (2017) Fill 

and spill drives runoff connectivity over frozen ground, Hydrological Processes, for submission]. 

 

This thesis adopts a ‘dissertation by manuscript’ style. Following this introductory chapter, 

Chapters 2, 3, and 4 are structured into three manuscripts. Finally, Chapter 5 sets out the 

conclusions of my research, discusses some linkages between the three manuscript chapters, and 

suggests avenues for future research. 
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2.1 Abstract 

On the Great Plains of North America, water resources are being threatened by climatic shifts. 

However, a lack of hillslope-scale climate-runoff observations is limiting our ability to understand 

these impacts. Here, we present a 52-year (1962-2013) dataset (precipitation, temperature, snow 

cover, soil water content, and runoff) from three 5 ha hillslopes on the seasonally-frozen northern 

Great Plains. In this region, snowmelt-runoff drives c. 80% of annual runoff and is potentially 

vulnerable to warming temperatures and changes in precipitation amount and phase. We assessed 

trends in these climatological and hydrological variables using time series analysis. We found that 

spring snowmelt-runoff has decreased in response to a reduction in winter snowfall, but that 

rainfall-runoff has shown no response to increases in rainfall or shifts to more multi-day rain 

events. In summer, unfrozen, deep, high-infiltrability soils act as a kind of sponge to rainfall, 

buffering the long-term runoff response to rainfall. Meanwhile, during winter and spring freshet, 

frozen ground limits infiltration and results in runoff responses that more closely mirror the 

snowfall and snowmelt trends. These findings are counter to climate-runoff relationships observed 

at the catchment scale on the northern Great Plains where land drainage alterations dominate. At 

the hillslope scale, decreasing snowfall and spring soil water content is causing agricultural 

productivity to be increasingly dependent on growing season precipitation, and will likely 

accentuate the impact of meteorological droughts.  
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2.2 Introduction 

Climate impacts on the hydrology of the Great Plains of North America are poorly understood. 

Any such impact may have enormous consequences for agriculture on the Great Plains, where 

80% of the region is under agricultural management, has a crop market value of approximately 

$92 billion USD (Hatfield et al., 2014), and accounts for about half of the world’s wheat 

production (Wishart, 2004). On the northern Great Plains, the focus of this study, water regimes 

are being threatened by warming temperatures and changes in precipitation amount and phase. For 

future sustainable agricultural production, it is crucial to understand the long-term climate-induced 

shifts in water availability. To do this, we need long-term records of climate and runoff. 

 

While many long-term climate records exist on the Great Plains, there are relatively few sites with 

long-term combined climate-runoff records for this region (Figure 2.1). Most of these are in the 

southern Great Plains (Garbrecht, 2008; Harmel et al., 2006; Heppner and Loague, 2008; Wine 

and Zou, 2012). The only published analyses of long-term climate-runoff records pertaining to the 

seasonally-frozen northern Great Plains are 40-year datasets from agriculture- and wetland-

dominated catchments on the Prairies of Canada (Dumanski et al., 2015; Ehsanzadeh et al., 2016). 

All are catchment-scale streamflow observations. On the southern Great Plains, Harmel et al. 

(2006) and Wine and Zou (2012) found statistically significant trends in precipitation, but no 

resultant shifts in streamflow. Meanwhile, Garbrecht (2008) showed nonlinearly greater 

streamflow trends compared to the precipitation trends. On the northern Great Plains, Ehsanzadeh 

et al. (2016) showed little significant annual climate-runoff changes, with some slight wet and dry 

regime changes, while Dumanski et al. (2015) found, for the Smith Creek Research Basin in 

southeast Saskatchewan, much more amplified seasonal streamflow trends than the corresponding 

precipitation trends. (Dumanski et al. (2015) analysed snowmelt- and rainfall-driven events 

separately, while Ehsanzadeh et al. (2016) conducted an annual precipitation and streamflow 

analysis.) Most of the catchment-scale studies on the Great Plains, like many catchment-scale 

studies in other regions (Woo et al., 2006), demonstrate that catchments can act as nonlinear filters 

of climatic signals to either possibly damp or enhance the resultant runoff signal. 
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The hydrology of the uplands at the sub-catchment-scale is most important for agriculture. For 

instance, dugouts (small excavated storage reservoirs), which collect water from adjacent 

hillslopes, are an important source of water for livestock watering and farm household use on the 

Canadian Prairies. These dugouts are purposefully not located on or within significant 

watercourses, so all inflow is determined from local hillslope hydrology. The hillslope scale is also 

the scale at which we observe runoff generation processes that ultimately deliver water to soil 

water recharge, groundwater recharge, and streamflow. To date, there have been no published 

long-term climate-runoff observations at the hillslope scale on the Great Plains. Further, it is very 

difficult to relate catchment-scale observations back to hillslope-scale water trends and resources 

when sloughs (water-filled depressions), riparian zones with possible groundwater contribution, 

and other geomorphic zones in the landscape influence the catchment-scale integrated streamflow 

 

Figure 2.1 The Great Plains of North America, indicating the locations of study sites with existing climate-runoff 
datasets. 1: A 69-year dataset from the USDA-ARS Grassland Soil and Water Research Laboratory experimental 
watershed in the Texas Blacklands Prairies near Riesel, Texas, USA (Harmel et al., 2006). 2: A 65-year dataset 
from crop- and pasture-land of the Fort Cobb Reservoir watershed in central Oklahoma, USA (Garbrecht, 2008). 
3: An 8-year dataset from the R-5 rangeland catchment in the USDA-ARS Washita River Experimental Watershed 
in central Oklahoma, USA (Heppner and Loague, 2008). 4: A c. 54-year dataset from Council Creek watershed in 
the tallgrass prairie of north-central Oklahoma, USA (Wine and Zou, 2012). 5: A 40-year dataset from an 
agriculture- and wetland-dominated catchment, Smith Creek Research Basin, on the prairies of Canada (Dumanski 
et al., 2015). 6: This paper’s study site, the Swift Current hillslopes, at South Farm, Swift Current, SK, Canada 
with a 52-year dataset. 
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signal (McGuire and McDonnell, 2010). As a result, we do not know how, if at all, runoff 

generation processes and hillslope-scale water availability have responded to changes in, for 

example, temperature and precipitation, and whether or not hillslope-scale runoff generation is 

coupled or decoupled from climate variations. Therefore, for understanding water availability for 

dryland agriculture in this region, we need observations of hillslope-scale runoff.  

 

In the seasonally-frozen northern Great Plains, snowmelt in the spring freshet drives c. 80% of the 

annual runoff and thus dictates much of the surface water and soil water availability (Fang et al., 

2007). Snowmelt-runoff is generated typically as infiltration-excess overland flow (Granger et al., 

1984) when rapid release of water from the snowpacks, usually in a short, one to three week long 

snowmelt season, occurs over frozen ground of limited infiltration capacity on low relief slopes. 

However, as cold regions lose their cold, snowpack persistence, frozen ground, and snowmelt rates 

(important controls on the amount of spring runoff) are particularly vulnerable to warming and 

shifts in precipitation phase (Tetzlaff et al., 2013).  

 

Decreased winter snowfall has been observed on the northern Great Plains (e.g. Akinremi et al., 

1999; Cutforth et al., 1999; Mekis and Vincent, 2011), as has increased spring and fall rainfall 

fractions (e.g. Mekis and Vincent, 2011; Shook and Pomeroy, 2012). One might hypothesize that 

climate-related changes will yield cascading effects on hydrological regimes, runoff generation, 

and ultimately water resources available for agriculture and other uses. In the summer months, 

hillslope-runoff occurs occasionally during intense, one-day convective rainstorms that may 

generate infiltration-excess overland flow. But recent observations show decreasing one-day rain 

events, and an increase in less-intense, multi-day frontal rain events with greater overall magnitude 

(Shook and Pomeroy, 2012). As yet, for both snowmelt- and rainfall-driven runoff events, the 

effects of these precipitation trends on hillslope-scale runoff generation and water availability are 

unknown.  

 

Here, we use a 52-year hillslope-scale dataset of climate and runoff data from three 5 ha 

agricultural hillslopes on the northern Great Plains to quantify changes in precipitation and identify 
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if/how they relate to changes in runoff and water availability. Specifically, we ask the following 

questions: 

i) How have hillslope-scale snowmelt- and rainfall-runoff events responded to changes in 

precipitation quantity, timing, and phase? 

ii) Do hillslope-scale snowmelt- and rainfall-runoff responses differ in their response to long-

term trends in precipitation?  

The dataset we present here offers a unique and unprecedented ability to answer these questions, 

in order to understand if and why runoff responses and hillslope-scale water availability are 

shifting in response to changes in precipitation amount, phase, and timing.  

 

2.3 Study site 

The study site (South Farm, Swift Current Research and Development Centre, Agriculture and 

Agri-Food Canada, Swift Current, Saskatchewan, Canada; 50°15'53"N 107°43'53"W; hereafter 

referred to as the Swift Current hillslopes) is situated in the Brown Soil Zone on the northern Great 

Plains of North America (Figure 2.1). The northern Great Plains hillslopes are characterized 

generally by low relief and deep, well-drained soils of high unfrozen infiltration capacity (Elliott 

and Efetha, 1999). The northern Great Plains’ greatest source of water for agriculture comes from 

surface and near-surface sources. In the South Saskatchewan River Basin of the northern Great 

Plains, agriculture dominates the share of surface water extraction (86.5%), and it is also reliant 

on shallow soil water storage (Pomeroy et al., 2009). This is in contrast to the southern Great 

Plains, where groundwater is the primary source of water (Barnett et al., 2005). 

 

Specifically, the Swift Current hillslopes are a set of three adjacent 5 ha agricultural hillslopes with 

undulating topography and 1-4% north-facing slopes. Grassed berms around the perimeters of the 

hillslopes prevent runoff from transferring between hillslopes. The soil is a Swinton silt loam 

(Cessna et al., 2013). The groundwater table is several meters below the soil surface (Maathuis 

and Simpson, 2007) and is not thought to contribute to runoff from the hillslopes. Coles and 

McDonnell (2017) (Chapter 4 of this thesis) used stable water isotope analysis to show that there 

is very little contribution of ‘old’ soil water to runoff from these hillslopes. The hillslopes are under 
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an annual rotation of wheat (Triticum aestivum) and fallow, with some interspersions of grass 

(Agropyron cristatum) and pulses (lentils and peas; Lens culinaris and Pisum sativum, 

respectively). In addition, a nearby (c. 700 m to the south-southeast) Environment and Climate 

Change Canada standard meteorological station has recorded precipitation and temperature daily 

from 1886 to present and hourly from 1995 to present, as well as daily snow depth and wind speed 

(at 2 m and 10 m above the ground surface) from 1960 to present. During the 4-6 month winter 

season, the soils of the northern Great Plains are frozen from the soil surface to a depth of typically 

>1 m (Ireson et al., 2013). At the Swift Current hillslopes, the ground freezes typically in late 

October, and begins to thaw in March during the snowmelt freshet, shown by soil temperature data 

from the meteorological station and observations on the hillslopes. 

 

2.4 Dataset and methods 

We use daily precipitation amounts and phase (rainfall or snowfall, where snow is given as snow 

water equivalent – SWE) from 1962-2013, measured at the Environment and Climate Change 

Canada meteorological station using a Belfort weighing gauge, where snowfall and rainfall were 

distinguished using air temperature data (measured inside a Stevenson Screen). From these data, 

we determined annual and seasonal totals of rainfall, as well as annual and seasonal occurrences, 

durations, and sizes of one-day and multi-day rain events. Each season was defined as follows: 

winter (December, January, February), spring (March, April, May), summer (June, July, August), 

and fall (September, October, November). These seasonal demarcations were used so that we 

could assess any changes in rainfall and rainfall-runoff regimes at different times of year (e.g. 

shortly after spring snowmelt vs. later in the year after the growing season). One-day rain events 

are defined as days with rainfall that are preceded and followed by days with no rainfall, while 

multi-day rain events are defined as two or more continuous rain days. 

 

Snow cover for each hillslope was measured by manual snow surveys each year from 1965-2013. 

Snow depth and density were measured, and SWE calculated, at nine points on each hillslope, and 

means of each were calculated to give three hillslope-averages. These snow surveys were repeated 

several times from January to March, including one snow survey that was intended to capture the 

maximum snowpack before the onset of spring snowmelt. To explore the transformation of 
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seasonal snowfall amounts into the amount of snow cover accumulated on the ground before the 

onset of spring snowmelt, we used temperature data and 10 m wind speed data (daily maximum, 

minimum and mean). From these data, we determined the occurrence of above-freezing winter 

days, and the likely occurrence of over-winter melt events and blowing snow ablation or 

sublimation. 

 

Gravimetric soil water content (water fraction by volume of soil) was measured twice per year 

from 1971-2013 on each hillslope. In October (prior to freeze-up) and April (following spring 

snowmelt) each year, the gravimetric soil water content was measured for five depth intervals in 

the soil profile (0-15 cm, 15-30 cm, 30-60 cm, 60-90 cm, and 90-120 cm, where the soil water 

content was measured from a subsample of the entire mixed interval and reported for the mid-point 

of the interval: 7.5, 22.5, 45, 75, and 105 cm, respectively) on a permanent nine-point grid on each 

hillslope. These were converted to volumetric soil water contents using bulk density data. The bulk 

density of each depth interval in the soil profile was observed to be 1.22, 1.25, 1.36, 1.39, and 1.63 

g cm-3, respectively. The porosity of the soil at each depth interval in the soil profile was calculated 

to be 54.1%, 53.0%, 48.9% 47.7%, and 38.7%, respectively. Hillslope-averaged soil water content 

at each depth was calculated from the point-scale data. Both hillslope-averaged and point-scale 

data were recorded from 1980-2013. From 1971-1979 only hillslope-averaged data were recorded. 

 

Runoff was measured from 1962-2013 using a Stevens water level chart recorder in the stilling 

well of a heated H-flume at the surface outflow of each hillslope. Rating curves for each flume 

were used to calculate daily runoff depths (mm d-1). No runoff was measured during 1970. Flow 

rates exceeded the flume capacity during heavy rainfall on June 14 1964, and runoff during that 

event was estimated by McConkey et al. (1997). Rainfall-runoff events were identified as 

occurring when rainfall and runoff occurred on the same day. We calculated the runoff amounts 

derived from snowmelt and rainfall, distinguishing between one-day and multi-day rainfall-runoff 

amounts. No rain-on-snow runoff events were observed. 
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For all annual calculations and analyses, we used the hydrological year, October 1 – September 

30. This demarcation is consistent with the hydrological regime of the region which sees snowfall 

and snow accumulation from October onwards, followed by snowmelt-runoff in the spring and 

rainfall through the summer. For all variables of interest, we used the Mann-Kendall test, a 

common statistical test used for the analysis of trends in climatological and hydrological time 

series (Burn and Hag Elnur, 2002). To assess the significance of these trends, we computed the 𝑝𝑝-

value. We determined a trend to be significant if the 𝑝𝑝-value was below a significance level of 

0.05. We used linear regression to determine the direction, gradient, and percentage change over 

time, of the trend. 

 

2.5 Results 

2.5.1 Precipitation 

The long-term (1962-2013) average annual precipitation was 360 mm, of which 76% fell as rain 

and 24% as snow (Figure 2.2). Runoff is not continuous from these hillslopes: it occurs 

intermittently through the hydrological year, and is event-based (Figure 2.2). Over this long-term 

period, total annual precipitation increased by 90 mm (a 28% increase) (Figure 2.3a); total annual 

rainfall increased by 112 mm (a 53% increase) (Figure 2.3b); and total annual snowfall decreased 

 

 

Figure 2.2 Daily precipitation and runoff at the Swift Current hillslopes, 1961-2013. Daily snowfall as SWE 
(blues) and rainfall (reds) at the site, with colour shade corresponding to daily volumes. Occurrences of snowmelt- 
and rainfall-runoff from the three hillslopes (combined) are indicated by black rectangles. 
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by 22 mm (an 18% decrease) (Figure 2.3c). These latter two trends are due to shifts in precipitation 

phase and timing: more precipitation fell as rain and less as snow in winter and spring (no similar 

trend for fall) over the study period. For non-winter months over the period 1962-2013, we 

observed significant shifts in the delivery of rainfall from multi-day rain events (Figure 2.4a). The 

number of multi-day rain events, volume of rain that fell during each event, and proportion of 

 

 
Figure 2.3 Annual (hydrological year) precipitation and runoff at the Swift Current hillslopes, 1961-2013. A) 
Total precipitation depths (rainfall and snowfall combined), with trendline. B) Rainfall depths, with trendline. C) 
Snowfall depths as SWE (blue circles), with trendline. Also shown is snow cover depth (as SWE) on the 
hillslopes. The boxes indicate the maximum, median and minimum hillslope snow cover SWE, with the mean 
seasonal snow cover amount indicated with black squares. Trendlines for snow cover depth under different land 
cover types are given. D) Annual snowmelt-runoff amounts (blue) and rainfall-runoff amounts (red). The boxes 
indicate the maximum, median and minimum runoff amounts. Trendlines for snowmelt-runoff amount under 
different land cover types are given. 
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summer rainfall delivered by each event (as opposed to one-day storms), all increased (𝑝𝑝<0.05). 

There were no equivalent trends in the delivery of rainfall from one-day rain events (Figure 2.5a). 

 

2.5.2 Snow accumulation and melt 

The SWE of the snow cover before spring snowmelt was, on average, 43 ± 31% of total snowfall 

(where ± here and throughout denotes the standard deviation) (Figure 2.3c; Figure 2.6). This 

suggests that, on average, 57 ± 31% of snowfall ablated through the winter via a combination of 

evaporation, sublimation, wind redistribution, and mid-winter melt and infiltration. Like snowfall, 

there was also a trend over the 1962-2013 period towards less snow cover (SWE; measured prior 

to spring snowmelt) retained on the hillslopes (Figure 2.3c). In years where the hillslopes were left 

fallow, snow cover SWE decreased by 88% over the 1962-2013 period (Figure 2.3c). The decrease 

in snow cover was over four times greater than the decrease in snowfall (a 21% decrease). No 

significant trends in snow cover were found over the same period when the fields were covered in 

stubble (Figure 2.3c). 

 

 

 

Figure 2.4 A) Total rainfall from multi-day rain events for spring (blue), summer (green), and autumn (yellow). 
Trendlines indicated for spring (dashed line), summer (dotted line), and autumn (solid line). B) Total runoff from 
those multi-day rain events, following the same seasonal colour scheme. No significant trends in runoff from 
multi-day rain events. 
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2.5.3 Soil water content 

Over the period 1971-2013, mean volumetric soil water content measured in the spring was 0.22 

at the surface (wettest depth) and 0.18 at 105 cm depth (driest and deepest measuring depth). The 

hillslopes were typically drier in the fall, when mean volumetric water content of the soil was 0.19 

at the surface, and 0.17 at 105 cm depth. Between 1971 and 2013, the hillslope-averaged spring 

soil water content decreased for all hillslopes and at all depths; however, this trend was only 

significant for the surface where soil water content decreased by between 8.7% (Hillslope 1) and 

9.5% (Hillslope 3) over the 43-year study period. There were no consistent trends in the equivalent, 

hillslope-averaged fall soil water content. Soil water content time series on Hillslope 3 (Figure 

2.7), which had a consistent wheat-fallow rotation, is perhaps most reliable for climate-runoff 

analysis since any changes do not reflect the effects of land management. On Hillslope 3, between 

1971 and 2013, hillslope-averaged spring soil water content showed a decreasing trend for all 

depths (although only significant at the soil surface), but there were no apparent changes in the 

fall. At the point scale, however, for which we have data from 1980-2013, there were significant 

trends at some points, depths, and hillslopes, for both spring and fall wetness conditions. Spring 

data showed decreasing soil water content at all depths, while fall data showed decreasing soil 

water content at the surface and increasing soil water content at the lowermost depths (75 cm and 

 

 

Figure 2.5 A) Total rainfall from one-day rain events for spring (blue), summer (green), and autumn (yellow). 
No significant trends in one-day rain events. B) Total runoff from those one-day rain events, following the same 
seasonal colour scheme. No significant trends in runoff from one-day rain events. 
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105 cm). We also examined the difference in soil water content from the fall to the spring (over 

winter and snowmelt), and from the spring to the following fall (over summer), for all hillslopes 

and at all depths over the period 1970-2011 (Figure 2.8). This showed a decreasing trend in the 

amount of soil water that was added to the soil profile over winter and during snowmelt, and an 

increasing trend in the amount of soil water that was added to the soil profile from rainfall in the 

summer. 

 

2.5.4 Runoff 

Over the period 1962-2013, mean snowmelt-derived spring runoff for each hillslope was 26 mm 

(Hillslope 1), 39 mm (Hillslope 2), and 22 mm (Hillslope 3). Over the same period, snowmelt-

runoff decreased on each hillslope by 68%, 59%, and 51%, respectively (Figure 2.3d), although 

the trend was only significant on Hillslope 1. Snowmelt-runoff ratios also decreased over the 

period 1962-2013 (Figure 2.9), regardless if calculated based on total snowfall data or snow cover 

data. This implies that progressively less SWE was translated into runoff from the hillslopes with 

more going to a combination of infiltration, sublimation, evaporation, and blowing snow. We 

found no relationship between fall or spring rainfall fraction and the amount of snowmelt-runoff. 

We observed a significant relationship between SWE and the volume of snowmelt-runoff 

generated during the spring freshet, with both decreasing over the study period. 

 

 

Figure 2.6 Total annual snowfall (mm) and snow cover water equivalent (mm) measured before the onset of 
spring snowmelt for each year and each hillslope over the period 1965-2013. 
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Rainfall-runoff events occurred in 28 years out of the 52-year study period. For those years in 

which rainfall-runoff events occurred, mean runoff generated was 5 mm (Figure 2.3d). The 

majority of runoff (60% of the total volume) was generated by one-day rain events, and the 

remainder by multi-day rain events. A single one-day rainfall-runoff event was on average 20% 

larger in volume than a single multi-day rainfall-runoff event. While multi-day rain events 

 

 

Figure 2.7 Seasonal soil water content (mm) measurements for Hillslope 3 for five depth layers (0-150 mm, 150-
300 mm, 300-600 mm, 600-900 mm, 900-1200 mm below the soil surface) for fall (grey) and the following spring 
(blue). Grey circles and dashed line indicates the hillslope-averaged fall soil water content, while blue circles and 
solid line indicates the equivalent for spring. These data are the mean of point-scale soil water content 
measurements (9 points on each hillslope, 27 points total), for which the data were only archived from 1988 
onwards. The solid grey and blue lines (data only available from 1988) indicate those point-scale soil water 
content measurements for spring and fall, respectively. Trendlines are indicated for the hillslope-averaged fall 
and spring soil water content data; no hillslope-averaged trendlines are significant. 
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increased in occurrence over the period 1962-2013 (Figure 2.4a), there was no corresponding 

increase in occurrence of runoff events generated by those multi-day rain events (Figure 2.4b). 

Instead, there were shifts in rainfall-runoff timing and type: prior to 1976 and after 1996, rare 

runoff events were triggered predominantly by one-day rainfall events in March or April (Figure 

2.5b), while in the intervening years runoff events were triggered predominantly by multi-day rain 

events throughout the summer months (Figure 2.4b). 

 

 

 

Figure 2.8 Change in hillslope-averaged seasonal soil water content (mm) for Hillslope 3 for five depth layers 
(0-150 mm, 150-300 mm, 300-600 mm, 600-900 mm, 900-1200 mm below the soil surface) for fall to spring 
(over winter and snowmelt; blue) and spring to the following fall (over summer; grey). Trendlines are indicated. 
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2.6 Discussion 

These 52 years of data on hillslope precipitation and runoff amounts from a research site on the 

northern Great Plains are the first such published data of their kind. For predicting and managing 

hillslope-scale water resources and sustainable agricultural production, it is essential to understand 

whether changing temperature and precipitation trends have induced changes in runoff and water 

availability at the hillslope scale. The observed climate trends over these 52 years are consistent 

with observations from elsewhere on the northern Great Plains (DeBeer et al., 2015; Dumanski et 

al., 2015; Mekis and Vincent, 2011; Shook and Pomeroy, 2012; Vincent et al., 2007; Vincent and 

Mekis, 2006; Zhang et al., 2000) and show: increased total precipitation, increased rainfall, 

increased winter and spring rainfall fraction, decreased snowfall and snow cover, and more multi-

day rainfall events. However, our observed runoff trends are much less clear and in many cases 

not related to climate trends as we discuss in further detail in the following sub-sections.  

 

2.6.1 More rainfall, but not more rainfall-runoff at the hillslope scale 

Our findings show that the marked increase in rainfall has not yielded any increase in rainfall-

runoff events at the hillslope scale. Further, despite the increase in multi-day rainfall events as 

compared to one-day rainfall events, there has been no similar change in the proportion of 

hillslope-scale rainfall-runoff events generated by those types of rainfall events. 

 

 

 

Figure 2.9 Snowmelt-runoff ratio for each hillslope, where runoff ratio is calculated as snowmelt-runoff divided 
by total snowfall. Trendlines are indicated. 
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High unfrozen infiltration capacities are a feature of hillslopes on the northern Great Plains (Elliott 

and Efetha, 1999). At the Swift Current hillslopes, measured unfrozen surface infiltration 

capacities range from 0.4 to 63.5 mm hr-1, with a median of 13.9 mm hr-1 (field observations on 

Hillslope 2 in July-August 2013; reported in Seifert, 2014). Their spatial distribution, however, 

means that any runoff generated on limited patches of low infiltration is likely to run-on to areas 

of higher infiltration and infiltrate, especially since the downslope portion of Hillslope 2 has the 

greatest infiltration capacities (Seifert, 2014). This is consistent with the partial area concept of 

Betson (1964), who found that because of the spatial variability of soil properties, infiltration 

capacities and precipitation inputs, infiltration-excess runoff does not necessarily occur over an 

entire catchment or hillslope, but instead over small portion(s), during a rainfall- or snowmelt-

runoff event (Tarboton, 2003). 

 

Rare rainfall-runoff events at the hillslope scale are triggered by high intensity rains that exceed 

the soil’s infiltration capacity along the full length of the flowpath, via infiltration-excess overland 

flow. Rainfall events that have triggered runoff on the hillslopes since 1995 (from when we have 

rainfall data at an hourly timescale) had peak rainfall intensities ranging from 0.6-14.8 mm hr-1. 

Since multi-day rain events tend to be frontal and of lower intensity than one-day convective 

rainstorms, an exceptional frontal system would be needed to generate rainfall intensities that can 

exceed the infiltration capacity of the soil on the Swift Current hillslopes. Consequently, although 

the nature and total amount of rainfall has changed, the frequency of high-intensity rainfall has 

remained similar, at least since 1995. We hypothesize that, over the full 52 years of study, the 

number of rain storms of sufficient magnitude to create rainfall-runoff has not changed, so the 

occurrence of rainfall-runoff has not responded to the increase in rainfall. 

 

Furthermore, we suggest that saturation-excess overland flow has not become a feature of these 

hillslope’s surface runoff regime in recent years, despite increasing rainfall volumes. The soil 

remains unsaturated over the summer because the soil moisture at the start of summer has been 

steadily declining over the long-term, thus the ‘starting’ point for summer soil moisture is ever 

reduced, and because potential evapotranspiration over the summer still exceeds rainfall inputs. 
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2.6.2 Less snowfall, and also less snowmelt-runoff at the hillslope scale 

While summer rainfall-runoff events have shown no response to changing rainfall, snowmelt-

runoff has decreased nonlinearly in response to decreasing snowfall (snowmelt-runoff decreased 

by 59%, while snowfall decreased by 18%). We hypothesize that these seasonal differences are a 

result of the frozen and reduced infiltrability of the soil profile in the winter. A third of the annual 

precipitation melts onto the soil within a short, 1-2 week time period, generating large meltwater 

volumes at relatively fast rates that readily exceed the infiltrability of the soil. In the summer, the 

deep soils, with their high infiltrabilities and high evapotranspiration losses mean runoff is seldom 

generated despite increasing rainfall, and therefore the long-term runoff response to rainfall inputs 

is muted. But, this feature disappears for the winter season and spring freshet when the ground is 

frozen. The long-term decreasing snowmelt-runoff is not occurring because of any increase in 

infiltration due to thawed spring soils, since, for the years where we have soil temperature data, 

the snowmelt-runoff period occurred always over ground that was still frozen at the soil surface 

(data not shown). Indeed, total volume of infiltrated water appears to have actually decreased, as 

shown by the long-term decreasing trend in the amount of soil water added to the soil profile over 

winter and during snowmelt. Interestingly, there was little change in the general soil water content 

profiles over the winter months, from fall to the following spring, post-melt (Figure 2.10a): at 

greater depths, wet fall soil profiles remained wet in the following spring, and dry fall soil profiles 

tended to remain dry. This indicates that the infiltrated snowmelt-water is restricted to the surface 

layers, at least immediately following the snowmelt season, and that there is minor deep 

percolation of over-winter precipitation or spring snowmelt water into the deepest parts of the 

observed soil profile, consistent with the measured data shown in Figure 2.8. 

 

By comparison, there is no distinction in fall soil water content profiles based on the previous 

spring’s soil water content (Figure 2.10b). Therefore, the non-winter months exhibit vertical 

redistribution of soil water of over-summer precipitation and evapotranspiration. At the onset of 

spring snowmelt, the soil is still frozen and its infiltration capacity is greatly reduced: measured 

frozen surface infiltration capacities range from 0.09 to 2.57 mm hr-1, with a median of 0.33 mm 

hr-1. (These data were obtained from snowmelt-runoff laboratory experiments using intact soil 

cores, of different soil water contents, extracted from the Swift Current hillslopes (Appels et al., 
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2017). The soil cores were frozen in a walk-in freezer and ‘snowmelt’ water was applied directly 

to the soil surface over four days, at delivery rates that simulated observed snowmelt rates at the 

Swift Current hillslopes.) When frozen, the soil lacks the summer sponge-like function so 

snowmelt-runoff at and over the soil surface is driven by and significantly related to the 

precipitation input. Of course, runoff amounts are always smaller than the corresponding snowmelt 

input amounts largely because there is some infiltration into frozen soil, as shown in these long-

term results and in Coles et al. (2016) (Chapter 3), and also because of other factors acting at the 

surface, such as micro-surface depression storage, evaporation, and sublimation. 

 

2.6.3 Hillslope-scale runoff response counter to that of catchment-scale 

Overall, our observed changes in hillslope-scale runoff were highly equivocal and largely at odds 

with existing nearby catchment-scale observations (that have been subject to increasing wetland 

drainage) on the northern Great Plains (Dumanski et al., 2015). Our decreasing snowmelt-runoff 

trends at the hillslope scale in response to decreasing snowfall are counter to Dumanski et al.’s 

(2015) catchment-scale findings at Smith Creek Research Basin, with a gross drainage area of 393 

 

 

Figure 2.10 Hillslope-averaged volumetric soil water content measurements for five depth intervals in the soil 
profile for spring (A) and fall (B). The profiles are distinguished by whether, in the antecedent season, all 
measurement depths were drier (red, dashed line with square markers) or wetter (blue, solid line with triangle 
markers) than the long-term (1971-2013) mean. For example, in (A) the dry (red) antecedent soil moisture 
occurrences are predominantly on the left side (dry end) of the figure, which indicates that drier soil in fall 
remained drier than average come the following spring. 
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km2 and annual precipitation of 442 mm, which saw a fivefold increase in snowmelt-runoff since 

1975 (increase from 2600 dam3 in 1975 to 17880 dam3 in 2014), despite decreasing snowfall 

(decrease by 0.5 mm year-1). Further, the lack of a clear change in rainfall-runoff events at the 

hillslope scale, despite increasing rainfall, is inconsistent with catchment-scale findings, which 

show a 150-fold increase in rainfall-runoff since 1975 (increase from 80 dam3 in 1975 to 13350 

dam3 in 2014), in response to increasing rainfall (increase by 0.9 mm year-1) (Dumanski et al., 

2015). It should be noted that surface runoff is expected to be more prevalent at Smith Creek 

(Dumanski et al., 2015) than at Swift Current (this study) simply due to the different climatic and 

soil zones in which they are located. Smith Creek (Black Soil Zone) has higher annual precipitation 

and lower potential evapotranspiration, while Swift Current (Brown Soil Zone) sees lower annual 

precipitation and higher potential evapotranspiration (SAMA, 2015). Yet, this does not account 

for the differences in the observed trends. 

 

At the catchment scale, streamflow generation on the northern Great Plains is strongly related to 

depressional storage (Shaw et al., 2012; Shook et al., 2015). When depressional storage is 

satisfied, the hydrological connectivity and contributing area of the catchment increases, resulting 

in much higher streamflow (Fang et al., 2010; Shook and Pomeroy, 2012). In Dumanski et al. 

(2015), alterations of the landscape affected the catchment results. Drainage channel length 

increased 8-fold and the surface area of sloughs decreased by one-half. The loss of sloughs and 

the drainage into lower sloughs would decrease the depressional storage in the catchment and 

enhance flows by the mechanism described above. In fact, Dumanski et al. (2015) noted that some 

of the largest runoff events were from rainfall falling shortly after the snowmelt season, when 

sloughs were still relatively full and catchment conditions wet. Although unsatisfied depressional 

storage will also decrease runoff, increasing artificial drainage minimized this effect over time. 

Our hillslope scale lacks either the enhancement or damping effect of depressional storage (other 

than the micro- and meso-topographic, 0-1 m relief in the soil surface). Of the 17 Prairie 

catchments that Ehsanzadeh et al. (2016) analysed for climate-runoff changes, only Smith Creek 

showed significant changes in streamflow trends beyond that of the climate trends, with they too 

attributed to wetland drainage. Other changes to the Smith Creek landscape made it difficult to 

discern the climate signal in runoff in the study of Dumanski et al. (2015). The area of unimproved 

land decreased from 46% to 27% of the catchment. The amount of tillage on the cropland 
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decreased and the proportion of land in summer fallow also decreased dramatically. In contrast, in 

our hillslope study we were able to relate any hydrologic change to climatic change. Overall, these 

counteracting findings demonstrate that we cannot linearly scale our hillslope observations up to 

catchment-scale predictions. 

 

2.6.4 Decrease in snowmelt-runoff ratios 

Our results showed that snowmelt-runoff ratio has decreased over time. In other words, the 

transformation of snowfall into snowmelt-runoff, hampered by processes such as snow 

redistribution, mid-winter ablation, snowmelt, and frozen soil infiltration (Shook et al., 2015), has 

become less efficient. A part of this transformation is the nonlinear relationship that we observed 

between a decreasing trend in the amount of snowfall and a more amplified decreasing trend in the 

amount of snow cover at the onset of spring snowmelt. This snowfall-snow cover transformation 

was described by Shook et al. (2015) as occurring via snow redistribution and mid-winter ablation. 

Here, we see that this transformation becomes less efficient – gradually smaller proportions of 

snowfall are being retained as snow cover. We attribute this to two aspects. The first aspect is the 

effects of long-term land management changes in the region surrounding the Swift Current 

hillslopes on reducing the potential for blowing snow deposition on the hillslopes. These small 

Swift Current hillslopes have been managed differently than the larger surrounding region, which, 

over the last couple of decades, have seen reduced occurrences of fallow, more continuous 

cropping, increased chemical fallowing, and reduced tillage (McConkey et al., 2012). All of these 

have likely enhanced snow-trapping and reduced blowing snow redistribution in the region, thus 

driving less snow delivery to, and deposition on, the hillslopes. 

 

The second aspect is the effects of snow depth on processes that cause over-winter snow ablation. 

Any over-winter melting period would be more likely to expose the soil surface, and energy 

advected from these snow-free areas of lower albedo cause accelerated melting of the surrounding 

snowpack (O’Neill and Gray, 1973; Colbeck, 1988). There were neither trends in the mean, 

minimum, or maximum winter temperatures over the time period of study, nor in the number of 

winter days where temperatures rose above freezing (0°C). There was, however, a trend towards 

longer periods of cumulative above-freezing days: there were more frequent occurrences of five 
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or more consecutive above-freezing days. There is therefore a feedback effect between reduced 

snowfall creating smaller snowpacks, which are then nonlinearly smaller because of the enhanced 

processes of over-winter snowpack melt for small snowpacks. 

 

Also a contributor in the reduction of snowmelt-runoff ratio over time is the nonlinear relationship 

we observed between a decreasing trend in the amount of snow cover at the onset of snowmelt and 

the decreasing trend in snowmelt-runoff. In other words, runoff ratios have decreased over time 

even when we use the SWE of snow cover retained on the hillslopes (rather than the seasonal 

snowfall total) as the input parameter in the runoff ratio calculation. This is unusual since one 

might expect that over-winter ablation events (that increased significantly through the record), 

would create a lower-permeability ice lens at the soil-snow interface or within the snowpack (Gray 

et al., 2001), and thus also increase runoff ratios. The decrease in runoff ratios does not seem to 

be due to increased infiltration of spring snowmelt (equivalent to Shook et al.’s (2015) second 

transformation, of snowmelt to runoff, via infiltration processes), since soil water content change 

between fall and spring has decreased over the long-term. Increased sublimation and evaporation 

of the snowpack and snowmelt water during the spring snowmelt are potential reasons for 

decreased runoff ratios. 

 

2.6.5 Relationships between vegetation cover and snowmelt-runoff 

Vegetation cover was important for snow accumulation, runoff ratio, and runoff signal in response 

to the 52-year precipitation signal. Fallow hillslopes showed reduced snow accumulation, 

compared to the years when the hillslopes had stubble residue on the hillslopes over winter. On 

average, instances of stubble on the Swift Current hillslopes exhibited 1.6 times as much snow 

accumulation as instances of fallow. This enhanced accumulation over stubble is supported by 

previous studies that found that, on the Canadian Prairies, wheat stubble fields had much smaller 

losses to blowing snow than did fallow fields due to variations that vegetation cover induces in 

wind speed near the snow surface (Cutforth and McConkey, 1997; Fang and Pomeroy, 2009; 

Pomeroy et al., 1990; Pomeroy and Gray, 1995). Fang et al. (2007) found that, on prairie sites, 

snow accumulation in stubble fields is approximately 1.1 – 2.1 times greater than snow 

accumulation in fallow fields.  
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In the previous section, we described the nonlinear relationship between a decreasing trend in the 

amount of snowfall and a more amplified decreasing trend in the amount of snow cover at the 

onset of spring snowmelt. We observed that this long-term trend towards decreasing snow 

accumulation was strongest for fallow years. Again, this can be explained by reduced blowing 

snow across the general region, due to changing land management practices, thereby depositing 

less redistributed snow on the hillslopes. A further explanation is the typically smaller snowpacks 

that form during fallow conditions, compared to the snow-trapping stubble conditions, and the 

positive feedback effect that a small snow cover has on over-winter ablation processes. For 

instances of standing stubble, a strong positive relationship existed between mean temperature of 

above-freezing winter days and the proportion of SWE that was ablated during that season. For 

instances of fallow, mean wind speed was strongly correlated with the proportion of ablated SWE 

during individual seasons, on days where mean wind speed exceeded 7.5 m s-1 (the wind speed 

threshold for transport of fresh snow blowing snow; Li and Pomeroy, 1997). Land covers therefore 

have different main drivers of ablation; standing wheat stubble reduces surface wind speed 

(Cutforth and McConkey, 1997) so ablation is more dependent on energy input as indicated by air 

temperature, compared to fallow, for which wind transport of mass and energy is relatively more 

important. 

 

For all hillslopes, runoff ratio was greater, but absolute runoff was smaller, under fallow conditions 

compared to vegetated conditions. Reduced infiltration under fallow conditions would explain 

these greater runoff ratios. Fang et al. (2007) found that the type of vegetation cover affects the 

soil water content at the time of freeze-up, with fallow fields generally being wetter than stubble 

fields due to less soil water extraction in the preceding growing season. Our data show higher 

runoff ratios under fallow conditions, which can be explained by these vegetation cover effects on 

soil water content. Fallow conditions also exhibited the strongest trend towards decreasing runoff 

ratios and decreasing runoff over time. Overall, the relative contributions of snowmelt-runoff from 

vegetated or fallow hillslopes was a combination (and sometimes trade-off) between the snow 

trapping qualities of stubble fields, and the typically higher soil water contents (albeit with some 
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minor over-winter modifications; De Jong and Kachanoski, 1987; Gray et al., 1985) of fallow 

fields compared to cropped and/or stubble fields. 

 

2.6.6 Crop type effects on soil water 

Not only did the occurrence of fallow have a noticeable effect on soil water storage, but the crop 

type in non-fallow years also did. The crop type influenced the fall, and often following spring, 

soil water contents. Pea and lentil crops use less soil water than wheat (Angadi et al., 2008) and 

so soil water contents following summers when Hillslope 2 was cropped with pulses were greater 

than soil water contents following summers when wheat was the crop. This is true for soil water 

contents in both the fall (on average 30% higher) and the following spring (on average 4% higher), 

for all depths (data not shown). The increased stored soil water in spring following pulse crops 

compared with wheat is an important benefit of including pulse crops in crop rotations in this semi-

arid climate (Gan et al., 2003). Similarly, soil water contents following summers when Hillslope 

1 was cropped along with green manure were higher than soil water contents following summers 

when wheat was the crop: fall soil water contents were on average 32% higher, while spring soil 

water contents were on average 20% higher (data not shown). This is due to water stored in soil 

after green manure growth termination in early July. At Swift Current, while soil water is typically 

high following legume green manure management, and higher than other crops, fallow conditions 

still are most efficient at storing soil water owing to the use of precipitation during the green 

manure crop growing period (Zentner et al., 2004).  

 

2.6.7 Outlook for the future of the northern Great Plains 

Few studies (Fang and Pomeroy, 2007; Pomeroy et al., 2009) have addressed the effects of future 

climate change on the hydrology, runoff generation processes, and agricultural productivity of the 

northern Great Plains. Climate change scenarios for the region project warming by between 0.5 

and 3°C for the 2020s, and between 2 and 6.5°C for the 2080s, above baseline (1961-1999) 

temperatures (Barrow, 2009). The largest range of temperatures (and also the biggest rise in 

temperatures) are expected in the winter months (Barrow, 2009). Precipitation changes are 

uncertain: decreases by as much as 30% are projected by some scenarios into the 2080s, while 
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increases are more likely to occur (Barrow, 2009). Further warming, therefore, will inevitably 

lower the influence of snow on hydrological systems, with cascading impacts on the streamflow 

regime and the magnitude and timing of runoff (Tetzlaff et al., 2013). 

 

Our 52-year analysis shows that the partitioning between surface, near-surface and deeper water 

sources is shifting. Over the last half-century, decreases in snowfall and snowpack depth have 

driven decreases in spring soil water content and spring snowmelt-runoff. These decreases seem 

to be damped if the previous growing season was cropped with wheat and had vegetation residue 

(stubble) on the fields over winter. Whether trends will continue in the same direction and to the 

same magnitude as those observed here is unclear, and depends upon the balance between runoff-

enhancing and runoff-damping factors (e.g. less snowfall vs. more fall rainfall and wetter soils).  

 

The amount of stored soil water is an important determinant of crop yield in this semi-arid climate 

where growing season moisture deficit is a certainty. Stored soil water is as important as growing 

season precipitation for crop yield (Campbell et al., 1997) and the yield of crops grown on stubble 

is particularly sensitive to the amount of stored soil water (Kröbel et al., 2014). Therefore, the 

reduction in soil water in the spring makes crop production, especially that grown on stubble, 

increasingly dependent on growing season precipitation. The trends towards increasing rainfall 

and increasing multi-day rain events are beneficial for crop production. However, in the semi-arid 

climate, drought is a continual risk. Multi-year droughts, such as that in 2000-2002, where multi-

day rain events are in short supply, are a likely feature of future climate change in this region 

(Masud et al., 2016). Such events result typically in poor crop yields, such as was seen in 2001 

(Masud et al., 2016). Decreasing soil water reserves in the spring will accentuate the impact of 

droughts. Minimum tillage to promote infiltration into frozen soils through macropores, and 

continuous cropping systems to reduce blowing snow sublimation may help promote higher post-

melt soil water contents (Elliot et al., 2001). These might ameliorate the detrimental effects on 

agriculture from low rainfall in the growing season, and earlier spring runoff with greater 

evaporation losses before the growing season (Cutforth et al., 1999). 
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The reduction in spring freshet volumes has important ramifications for on-farm water supplies. 

Investments for additional water collection and storage and/or for transporting water will be 

needed to meet water demands at farmsteads. Such investments may not be warranted for pastures, 

so some pastures may have to be left ungrazed when there is insufficient volumes of water in 

dugouts to meet the needs of livestock. As a result, lower runoff increases the costs of agriculture.  

 

2.7 Conclusions 

Our analysis of a 52-year, hillslope-scale, climate-runoff record from the northern Great Plains 

shows that snowmelt-runoff and spring soil water amounts have decreased in response to winter 

snowfall decreases, but that rainfall-runoff has shown no response to increases in rainfall or shifts 

to more multi-day rain events. We attribute these seasonal differences to soil infiltrability, soil 

storage modulation, and differences in evapotranspiration between the summer and winter months. 

In the summer, thawed, deep, high-infiltrability soils with high evapotranspiration demands act to 

buffer the long-term runoff response to rainfall. In the winter and spring freshet, frozen ground 

limits infiltration and means runoff responses more closely mirror the snowfall and snowmelt 

trends (albeit with some nonlinear trend relationships between snowfall and runoff, which could 

be explained in part by enhanced over-winter ablation of smaller snowpacks). These findings are 

different from climate-runoff relationships observed at the catchment scale on the northern Great 

Plains. This is likely due to the confounding effect of landscape alteration, especially drainage. 

These long-term findings have clear implications for agriculture on the northern Great Plains. The 

hydrology of hillslopes is important for dryland crop production and for on-farm water supplies. 

Meeting water needs in a situation of declining runoff, declining spring soil water, and resultant 

accentuation of summer drought impacts will increase costs to agriculture. 

 

2.8 Transition statement 

Chapter 2 has established the general trends and factors in precipitation-runoff responses over the 

52-year period. However, there was significant year-to-year variation in these runoff trends and a 

nonlinear decrease in snowmelt-runoff ratio over time. The year-to-year variation and 

nonlinearities were likely driven by nuances, interactions, and feedbacks between controls. These 
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were disentangled using data mining, which is the subject of Chapter 3. Data mining also was an 

ideal tool with which to analyze in greater detail the effects of factors that arose in the discussion 

of Chapter 2, such as crop type and land cover, tillage, and over-winter ablation via melt or blowing 

snow. Overall, the insights and conclusions drawn from Chapter 2 on climate-runoff trends are a 

useful backdrop to the work in Chapter 3, which sought to understand the factors behind the 

variations in these trends. 
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CHAPTER 3 

THE HIERARCHY OF CONTROLS ON SNOWMELT-RUNOFF 

GENERATION OVER SEASONALLY-FROZEN HILLSLOPES 

 

Citation: Coles, A.E., Appels, W.M., McConkey, B.G., and McDonnell, J.J. (2016) The 

hierarchy of controls on snowmelt-runoff generation over seasonally-frozen hillslopes, 

Hydrology and Earth System Sciences Discussions, doi: 10.5194/hess-2016-564. 

 

3.1 Abstract 

Understanding and modeling snowmelt-runoff generation in seasonally-frozen regions is a major 

challenge in hydrology. Partly, this is because the controls on hillslope-scale snowmelt-runoff 

generation are potentially extensive and their hierarchy is poorly understood. Understanding the 

relative importance of controls (e.g. topography, vegetation, land use, soil characteristics, and 

precipitation dynamics) on runoff response is necessary for model development, spatial 

extrapolation, and runoff classification schemes. Multiple interacting process controls, the 

nonlinearities between them, and the resultant threshold-like activation of runoff, typically are not 

observable in short-term experiments or single-season field studies. Therefore, long-term datasets 

and analyses are needed. Here, we use a 52-year dataset of runoff, precipitation, soil water content, 

snow cover, and meteorological data from three monitored c.5 ha hillslopes on the Canadian 

Prairies to determine the controls on snowmelt-runoff, their time-varying hierarchy, and the 

interactions between the controls. We use decision tree learning to extract information from the 

dataset on the controls on runoff ratio. Our analysis shows that there was a variable relationship 

between total spring runoff amount and either winter snowfall amount or snow cover water 

equivalent. Other factors came into play to control the fraction of precipitated water that infiltrated 

into the frozen ground. In descending order of importance, these were: total snowfall, snow cover, 

fall soil surface water content, melt rate, melt season length, and fall soil profile water content. 

While mid-winter warm periods in some years likely increased soil water content and/or led to 

development of impermeable ice lenses that affected the runoff response, hillslope memory of fall 

soil moisture conditions played a strong role in the spring runoff response. The hierarchy of these 
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controls was condition-dependent, with the biggest differences between high and low snow cover 

seasons, and wet and dry fall soil moisture conditions. For example, when snow cover was high, 

the top three controls on runoff ratio matched the overall hierarchy of controls, with fall soil surface 

water content being the most important of these. By comparison, when snow cover was low, fall 

soil surface content was relatively unimportant and superseded by four other controls. Existing 

empirical methods for predicting infiltration into frozen ground failed to adequately predict runoff 

response at our site. Our analysis of the hierarchy of controls on meltwater runoff will aid in 

focusing new model approaches and understanding what to focus future measurement campaigns 

on in snowmelt-dominated, seasonally-frozen regions. 

 

3.2 Introduction 

Understanding the hierarchies and the condition-dependent relative importance of controls (e.g. 

topography, vegetation, land use, soil characteristics, and precipitation dynamics) on runoff 

response is a major challenge in hydrology (Jencso and McGlynn, 2011). Formulating a hierarchy 

of controls for runoff is necessary for model development (Uchida et al., 2005), a key component 

of spatial extrapolation (Cammeraat, 2002), and a necessary building block for runoff 

classification schemes (Barthold and Woods, 2015). 

 

On the Canadian Prairies, spring snowmelt is the dominant runoff-producing event of the year, 

driving typically 80% or more of annual runoff (Granger et al., 1984). While some summer runoff 

is generated by intense rain storms where high rainfall intensities drive infiltration-excess overland 

flow over localized areas (Shook and Pomeroy, 2012), the controls on these types of events are 

few in number: rainfall intensity, rainfall magnitude, and antecedent soil moisture conditions 

(Shook and Pomeroy, 2012). By comparison, the hydrologically more important snowmelt events 

are much more complicated and affected by multiple interacting factors including snow 

accumulation, distributed melt inputs, seasonally-frozen ground, ice lenses, and variable pre-melt 

soil moistures, which combine to produce highly nonlinear runoff responses (Fang et al., 2007; 

DeBeer and Pomeroy, 2010; Ireson et al., 2013). Consequently, understanding and modeling 

snowmelt-runoff generation remains problematic throughout many areas of North America and 

northern Eurasia where snowmelt-influenced, seasonally-frozen ground dominates runoff 
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generation. Nevertheless, in these areas, there is a need to understand snowmelt-runoff generation 

as it is a critical source of water for human activities and aquatic ecosystems, and snowmelt can 

cause serious flooding. 

 

In western Canada, snowmelt-runoff has been the subject of many experimental and modeling 

studies aimed at understanding individual controls: the effects of snow accumulation and 

redistribution (e.g. Pomeroy and Gray, 1995; Fang and Pomeroy, 2009), snowmelt processes (e.g. 

Gray and Landine, 1988), land use and land cover effects (e.g. Elliot and Efetha, 1999; Van der 

Kamp et al., 2003), topography (e.g. Shaw et al., 2012), and seasonally-frozen soil (e.g. Granger 

et al., 1984; Gray et al., 2001). However, these studies, and our resultant understanding, are based 

upon mostly short-term experiments and single-season runoff events. Temporally- and spatially-

unstable activation of runoff is the product of nonlinearities and interactions between the various 

process controls that are not observable in short-term field studies. Much longer records are needed 

to witness these combinations and interactions of process factors. However, such datasets are rare. 

 

Recently, Coles et al. (2017) (Chapter 2 of this thesis) presented a 52-year dataset of snowmelt-

runoff from three adjacent monitored hillslopes in southern Saskatchewan, Canada. That work 

showed that long-term snowmelt-runoff and spring soil water content have decreased in response 

to winter snowfall decreases, while rainfall-runoff has shown no response to changes in rainfall 

regimes (Coles et al., 2017; Chapter 2). They attributed this to the seasonal differences in soil 

infiltrability, indicating that the controls on infiltration are likely to be most important for 

snowmelt-runoff amount, as others have shown (Fang et al., 2007; Ireson et al., 2013). However, 

we still do not know about the hierarchies, interactions, and feedbacks between these controls, and 

any condition-dependent differences in their behaviour. Here, we use the same 52-year dataset to 

explore these aspects, and contribute for the first time new understanding of the hierarchical 

importance of runoff controls. And, over a multi-decadal time period, if and how such controls on 

meltwater runoff interact. 
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We use decision tree learning (De’ath and Fabricius, 2000) as an investigative tool to extract 

information from the long-term dataset about the hierarchical controls on runoff generation. 

Decision tree learning (including classification or regression trees) is an established data mining 

tool in ecological studies (e.g. Spear et al., 1994; Rejwan et al., 1999; De’ath and Fabricius, 2000). 

It has more recently been incorporated into hydrological studies to leverage process understanding 

from long-term datasets in temperate regions (e.g. Iorgulescu and Beven, 2004; Tighe et al. 2012; 

Scholefield et al., 2013; Galelli and Castelletti, 2013). To our knowledge, no studies have used 

decision trees to explore snowmelt-runoff generation. Decision tree learning is fast, conceptually 

simple, data-based, nonlinear, and non-parametric. Importantly, it allows insights into 

complexities, nonlinearities, equifinalities, interactions, and feedbacks in the data, which are 

illustrated clearly in resultant tree-like diagrams (Rejwan et al., 1999; Iorgulescu and Beven, 2004; 

Michaelides et al., 2009). Here we use the decision tree approach to determine the hierarchies of 

controls on snowmelt-runoff generation in a seasonally-frozen, snowmelt-dominated region, and 

any interactions and feedbacks between those controls. Specifically, we focus on the following 

research questions: 

i) What is the relationship between annual snow input and snowmelt-runoff output over the 

52 years of data? 

ii) What is the hierarchy of controls on snowmelt-runoff amount? 

iii) Does the hierarchy vary under different conditions? 

iv) What are the interactions and feedbacks between the hierarchical process controls? 

 

3.3 Study site and dataset 

The study site, known as the Swift Current hillslopes, at South Farm of Swift Current Research 

and Development Centre of Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, 

Canada (50°15'53"N 107°43'53"W) on the Canadian Prairies is a set of three adjacent agricultural 

hillslopes between 4.25 and 4.86 ha in size (Figure 3.1). Coles et al. (2017) (Chapter 2) provided 

a brief description of the study site, which has undulating topography and shallow north-facing 

slopes with gradients of 1-4%. Grassed berms around the perimeters of all three hillslopes prevent 

runoff from moving between the hillslopes or entering from adjacent land. The only outlet from 

each hillslope is through a 0.61 m H-flume at the northwest corner of each hillslope. The soil is a 
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Swinton silt loam and classified as an Orthic Brown Chernozem (Cessna et al., 2013). The 

hillslopes typically are under an annual rotation of wheat (Triticum aestivum L.) and fallow. 

Exceptions to this are: a period (1977-1980) of grass (Psathyrostachys juncea (Fisch.) Nevski) and 

a period (1982-1985) of annual wheat on Hillslopes 1 and 2; an annual rotation (1994-2010) of 

wheat and legume green manure (Lathyrus sativus L.) on Hillslope 1; and an annual rotation (2004-

2011) of wheat and pulses (lentils and peas; Lens culinaris L. and Pisum sativum L., respectively) 

on Hillslope 2. Hillslope 3 is the only hillslope that has a consistent two-crop rotation and 

consistent tillage management throughout the 52 years. The hillslopes have largely been under 

conventional tillage practice, with the exception of the period 1993-2011 when Hillslope 2 was 

switched to zero tillage practice. During the period 1993-2004 on Hillslope 2, when the wheat-

fallow rotation coincided with the zero tillage period, there was constant standing stubble or 

standing crop. 

 

From 1962-2013, runoff, snow cover, and soil water content were monitored on the hillslopes. 

This rich dataset is coupled with long-term meteorological data recorded at a nearby (c. 700 m to 

the south-southeast) Environment and Climate Change Canada standard meteorological station. 

Data have been used primarily for studies on the effects of agricultural land management practices 

 

 

Figure 3.1 Aerial photograph (facing south) of the Swift Current hillslopes (from right to left: Hillslope 1, 
Hillslope 2, Hillslope 3), taken in a year when wheat was grown. The three small heated huts at the northwest 
corners of the hillslopes, which house the runoff-monitoring equipment, are visible. Photograph reproduced, with 
permission, from Cessna et al. (2013). 
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on runoff water quality, chemical transport, and soil erodibility (Nicholaichuk and Read, 1978; 

McConkey et al., 1997; Cessna et al., 2013). More recently, data were used to study the effects of 

changing precipitation form and amounts on rainfall- and snowmelt-runoff generation (Coles et 

al., 2017; Chapter 2). Over the 52 years of record, runoff in 22 years was generated exclusively 

during snowmelt on all three hillslopes (i.e. no rainfall-driven contribution to annual runoff on any 

hillslope), and runoff in 27 years was generated by both snowmelt and rainfall on one or more 

hillslopes (with an average of 75% annual runoff from snowmelt). The long-term mean annual 

snowmelt-runoff depth is 29 mm (Coles et al., 2017; Chapter 2). Snowmelt-runoff at this site, and 

on the Prairies as a whole, is generated as infiltration-excess overland flow when a rapid release 

of relatively large volumes of water from the snow cover (usually in a short, one to three week 

long snowmelt season) occurs over frozen ground of limited infiltration capacity (Granger et al., 

1984; Coles et al., 2017; Chapter 2).  

 

3.3.1 Meteorological data 

Daily (1962-1995) and hourly (1995-present) meteorological data are available from the 

Environment and Climate Change Canada meteorological station. The data used here include: 

precipitation (measured using a Belfort weighing gauge), air temperature (daily maximum, 

minimum, and mean measured inside a Stevenson Screen, and then hourly data measured using a 

Campbell Scientific HMP35C Temperature and Relative Humidity Probe), wind speed (measured 

at 2 m and 10 m above ground surface using an RM Young Anemometer Model 05103), and soil 

temperature (measured at 5, 10, 20, 50, 100, 150 and 300 cm depths using 107B Campbell 

Scientific Temperature Probes). 

 

3.3.2 Runoff data 

Runoff was measured from 1962-2013 with a heated H-flume, stilling well, and a Stevens water 

level chart recorder at the outflow of each hillslope (Figure 3.1). Rating curves for each 

flume/hillslope were used to determine runoff depths (mm) from the stilling well water levels. 

Runoff depths on hourly, daily, and seasonal timescales (mm) were calculated using a rating curve 

for the flumes (following Cessna et al., 2013). 
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3.3.3 Soil water content data 

Gravimetric soil water content was measured twice per year from 1971-2013 on each hillslope. In 

October (prior to freeze-up) and April (following spring snowmelt) each year, gravimetric soil 

water content was measured at five increments over the soil profile (0-15, 15-30, 30-60, 60-90, 

and 90-120 cm). This was done on a nine-point grid on each hillslope, with each of the nine points 

being in approximately the same location as in previous years (within c. 10 m). Hillslope-averaged 

soil water content at each depth was calculated from the point-scale data. Both hillslope-averaged 

and point-scale data were recorded from 1980-2013, and from 1971-1979 only hillslope-averaged 

data were recorded. We converted all soil water content data from gravimetric to volumetric (vwc) 

using bulk density data for each depth interval (which ranges from 1.22 g cm-3 at the soil surface 

to 1.51g cm-3 at a depth of 100 cm). 

 

3.3.4 Snow cover data 

Snow cover depth and density were measured, and SWE calculated (hereafter referred to as ScWE 

for snow cover SWE), for each hillslope during manual snow surveys each year from 1965-2013 

on the same nine-point grid as that used for soil water measurements. The means of the nine points 

were calculated to give three hillslope averages. These were repeated several times from January 

to March. Measurements from the most recent snow survey before snowmelt were used to predict 

the ScWE on each hillslope at the onset of spring snowmelt. The timing of the most recent snow 

survey before snowmelt would have been difficult, and the snow cover might have changed 

significantly before snowmelt started. The ScWE calculated from this snow survey therefore might 

not be an accurate representation of the actual ScWE at the onset of melt. This is indicated by the 

fact that, for many years, the runoff ratios from the hillslopes (where, here, runoff ratio is the total 

seasonal runoff (mm) divided by the ScWE (mm)) exceed 1. 

 

3.3.5 Quality control 

The data were checked and corrected for missing or unrealistic data. During the snowmelt seasons 

of 1982 and 1985, researchers observed high volumes of snowmelt overwhelming the raised berms 
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causing flow onto Hillslope 2 and Hillslopes 1 and 2, respectively, from adjacent land to the south. 

For these three occurrences, the total seasonal runoff depth from the hillslope exceeded the depth 

of total winter snowfall (i.e. the runoff ratio exceeded 1). These runoff data were omitted from our 

analysis and instead given a missing data notation. 

 

3.4 Methods 

Decision trees determine a set of ‘if-then’ conditions between the response and predictor variables 

and split the dataset according to the largest deviance produced (Rejwan et al., 1999; Michaelides 

et al., 2009). The result is illustrated in a simple tree-like diagram, with branches, nodes, and 

leaves. Each final partition (branch) is associated with a certain set of conditions. Branches are 

composed of nodes. At each node, the dataset is split according to agreement with a single rule 

(e.g. total seasonal precipitation > 50 mm). Splitting continues until the dataset is divided as much 

as possible. Branches end in a terminal node (leaf), which represents the final partitioning of the 

data, and the predicted response given the set of conditions dictated by the nodes of the branch. 

Finally, the tree can be pruned, which removes leaves and nodes with little predictive power, 

reduces overfitting, and therefore improves predictive accuracy. 

 

To construct the decision trees, we used the ‘classregtree’ CART algorithm of MATLAB 

(MathWorks, Inc.). We calculated the runoff ratio, defined as total runoff divided by total seasonal 

snowfall (in SWE; hereafter referred to as SfWE for snowfall SWE) measured from the start of 

the hydrological year to the end of snowmelt-runoff, for each hillslope and for each snowmelt 

season. This resulted in 140 runoff ratios ranging from 0 to 1. We classified the runoff ratios into 

five equally-sized classes, separated at the 20th, 40th, 60th and 80th percentiles of the runoff ratios. 

These runoff ratio classes then formed the response (Y) variables for the CART function (Table 

3.1). We decided upon five classes so that one class could represent the median runoff ratio (40th 

– 40th percentile class), two could represent the extreme high and the extreme low runoff ratios, 

and two could represent the medium-high and the medium-low runoff ratios, thereby covering a 

reasonable spread of the observations. Further, five classes allowed for 28 observations per class, 

which was an acceptable number of observations for the classification method of CART. We used 

the classification method of CART so that the predicted outcome is the class to which the data 
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belongs (one of the five runoff ratio classes), instead of the regression method, which is when the 

predicted outcome is considered to be a real number. The predictor (X) variables for each hillslope 

and each season were derived from the long-term dataset (Table 3.2). We used SfWE, rather than 

ScWE, to calculate the runoff ratios used in the response variables and also to calculate the 

predictor variable ‘melt rate’. This was to avoid introducing additional error due to the 

uncertainties associated with the snow cover data. 

 

An advantageous feature of decision tree construction is that variables can consist of both 

numerical and categorical data (e.g. “fallow” or “wheat” crop types). After the algorithm had 

divided the dataset as much as possible, we then pruned the tree to a tree size that maximised 

predictive accuracy and ensured that all leaves were left with response variable datasets of size 

N>1. The runoff ratio class at each leaf was the mode of the classes predicted by that branch of the 

tree.  

 

We first constructed one decision tree (the ‘primary’ decision tree) using the entire dataset. The 

controls on runoff ratio were the variables that the decision tree used in its construction. In a second 

round of decision tree construction, we then took each of those variables and used them to divide 

the dataset into two evenly sized halves of the dataset, split by the median of that variable. We 

constructed two decision trees using these two halves of the dataset. This approach was to explore 

directly the reasons for why high or low runoff and runoff ratios might be found under opposite 

conditions (e.g. under both high snowfall and low snowfall conditions). It was also useful for 

determining the condition-dependent hierarchy of controls.  

 

 

Table 3.1 Response (Y) variable classes, dependent on runoff ratio. 
 

Response (Y) variable 
(runoff ratio class) 

Runoff ratio (RR) 

1 0 < RR ≤ 0.032 
2 0.032 < RR ≤ 0.12 
3 0.12 < RR ≤ 0.28 
4 0.28 < RR ≤ 0.48 
5 0.46 < RR ≤ 1 
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Table 3.2 Predictor (X) variables, their descriptions including how they were derived from the long-term dataset, and 
their minimum, mean, and maximum values. 
 

Predictor (X) 
variable name Units Description Mean (Min-

Max) 

Surface 
depression 
storage 

mm Calculated using a 2-meter resolution digital elevation model (DEM) 
of each hillslope. Hillslope 1 = 2.60 mm; Hillslope 2 = 0.70 mm; 
Hillslope 3 = 1 mm 

1.43 
(0.70-2.60) 

Topographic 
wetness index 
(TWI) 

- Mean hillslope TWI calculated using a 2-meter DEM of each hillslope, 
following Beven and Kirkby (1979). Hillslope 1 = 5.54; Hillslope 2 = 
5.70; Hillslope 3 = 6.03 

5.76 
(5.54-6.03) 

Land cover - Classified as fallow and grass (1) or wheat (2) for the previous 
summer’s crop.  

1.49 (1-2) 

Fall soil surface 
water content 

(fraction) Mean volumetric hillslope soil water content (𝜃𝜃𝑣𝑣) in October at the 
surface (0-15 cm). 

0.154 
(0.0713-0.222) 

Fall soil profile 
water content 

(fraction) Mean volumetric hillslope soil water content (𝜃𝜃𝑣𝑣) in October for the 
soil profile (0-120 cm). 

0.123 
(0.069- 0.178) 

Total seasonal 
snowfall 

mm SfWE Total snowfall depth from Oct 1st to the end of the runoff period in the 
following spring, measured at the meteorological station. 

80.5 
(37.0-152) 

Number of 
warm winter 
days 

- Number of days each year between Oct 1st and the season’s last snow 
survey that had snow cover (at the meteorological station) and mean 
air temperature > 0 °C. 

4.53 
(0-12.0) 

Mean 
temperature on 
warm winter 
days 

°C Mean air temperature for days between Oct 1st and the season’s last 
snow survey that had snow cover (at the meteorological station) and 
mean air temperature > 0 °C. 

2.49 
(1.05-5.08) 

Mean daily 
wind speed 
above blowing 
snow threshold 

m s-1 Mean daily wind speed for days when mean wind speed > 7.5 m s-1 
(minimum threshold for blowing snow redistribution of fresh dry 
snow on northern prairies; Li and Pomeroy, 1997). 

8.85 
(8.25-9.59) 

Snow cover mm ScWE Mean snow cover water equivalent (SWEC) on each hillslope in the 
last snow survey before the start of the snowmelt season. 

33.1 
(0-121) 

Spring 
temperature 
gradient 

°C Temperature gradient over the seven days prior to the date of peak 
runoff on Hillslope 2. 

1.66 
(-0.0655-5.12) 

Melt season 
length 

days Number of days after the season’s last snow survey that had snow 
cover (at the meteorological station) and mean temperature > 0 °C. 

3.80 (1-8) 

Melt rate mm d-1 Calculated as: total seasonal snowfall / melt season length. 26.4 
(9.45-111) 

Date of peak 
runoff 

- The date when maximum runoff depth occurred, for each hillslope. Mar 14 
(Jan 10-Apr 24) 

Thawed layer 
depth 

cm The depth between the soil surface and the top of the frozen layer, at 
4pm on the date of maximum runoff, determined using soil 
temperature data at the meteorological station. 

4.62 
(0-147) 
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We quantified the predictive accuracy (or amount of variance successfully explained) of the trees 

at each leaf using the resubstitution method (Spear et al., 1994). For this, we calculated the 

percentage of the runoff ratio class predicted correctly at that leaf. The overall predictive accuracy 

of the tree was the mean of the predictive accuracies at each leaf. While cross-validation is 

generally the preferred method of estimating accuracy, our dataset was too small to use this 

method. We quantified the hierarchy of controls by ranking the controls’ positions in each decision 

tree and weighting that rank by the number of nodes in the tree. If a variable appeared more than 

once in the tree, we summed the ranking position of each of the nodes at which it occurred, prior 

to weighting. 

 

3.5 Results 

3.5.1 The hierarchy of controls on snowmelt-runoff 

Figure 3.2 shows that there was no unique relationship between precipitation input and total 

seasonal runoff output, where inputs were the SfWE (Figure 3.2a), and ScWE (Figure 3.2b). Six 

predictor variables were identified by the primary decision tree (Figure 3.3, Table 3.3) to explain 

runoff response: total snowfall (SfWE), snow cover (ScWE), fall soil surface water content (0-15 

cm), melt rate, melt season length, and fall soil profile water content (0-120 cm) (Table 3.4). 

Therefore, 13 decision trees were constructed in total (the primary decision tree using the entire 

 

 

Figure 3.2 Spring snowmelt-runoff events on the Swift Current hillslopes, showing A) the relationship between 
total seasonal snowfall (mm SfWE) and total seasonal snowmelt-runoff (mm); and B) the relationship between 
snow cover (mm ScWE) and total seasonal snowmelt-runoff (mm). 
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dataset, and six pairs of smaller decision trees). The primary decision tree (Figure 3.3; Table 3.3) 

contained 10 nodes with six predictor variables and 11 leaves. The primary decision tree explained 

70% of the variance of the runoff ratio classes (Figure 3.4). The 12 secondary decision trees, 

constructed by splitting the dataset at the medians of each of those variables, identified fewer 

predictor variables and had fewer nodes and leaves. Their identified controls and hierarchies are 

given in Table 3.5. Eight of those decision trees explained more of the variance of the runoff ratio 

classes than the primary decision tree (Table 3.6). The decision trees using datasets characterised 

by high total snowfall, high snow cover, high soil surface water content, and high soil profile water 

content all were better at predicting high runoff ratios (class 4-5) than their low counterparts, and 

vice versa for low runoff ratios (class 1-2).  

 

Of the (15) predictor variables in Table 3.2, 12 appeared at least once in any of the decision trees. 

Snow cover, total snowfall, and fall soil surface water content appeared in the most trees (10, eight, 

 

 

Figure 3.3 Primary decision tree for predicting runoff ratios. The tree shows the variables used to explain runoff 
ratio, located at the nodes (N1, N2, etc.; white boxes) and the resultant predicted runoff ratio class at the leaves 
at the ends of each branch (L1, L2, etc.; coloured boxes). Table 3.3 gives the runoff ratio class data at each node 
and leaf, and the predictive accuracy at each leaf. The leaf colours are in reference to Figure 3.5. 
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and eight trees, respectively), often with multiple occurrences in any one tree. This confirms that 

they were important controls on snowmelt-runoff ratio. Surface depression storage, date of peak 

runoff, and mean daily wind speed appeared in four trees each. Melt rate, melt season length, and 

fall soil profile water content appeared in three trees each. Lastly, TWI, spring temperature 

gradient, and land cover appeared in one tree each. 

 

We performed a second iteration of the decision tree construction during which we removed snow 

cover ScWE as a possible predictor variable. We hypothesized that this would force the inclusion 

of any variables that influenced the loss or accumulation of ScWE on the hillslopes over winter 

and also after the last snow survey from which ScWE was calculated (i.e. those variables that 

controlled the transformation of total snowfall to snow cover). Two variables that were neglected 

 

Table 3.3 Runoff ratio class data at each node and leaf (underlined), and the predictive accuracy at each leaf, for the 
primary decision tree. 
 

Node 
number 

Parent 
node 

Sample size Predicted 
RR class 

Predictive 
accuracy RR class 1 RR class 2 RR class 3 RR class 4 RR class 5 Total 

N1 - 28 28 28 28 28 140 - - 
N2 N1 18 18 12 5 4 57 - - 
N3 N1 10 10 16 23 24 83 - - 
N4 N2 11 6 2 0 2 21 - - 
L1 N2 0 6 4 1 1 12 2 50 
N5 N3 6 6 4 2 2 20 - - 
N6 N3 1 3 11 17 21 53 - - 
L2 N4 9 3 1 0 0 13 1 69 
L3 N4 0 3 1 0 1 5 2 60 
N7 N5 6 6 3 0 0 15 - - 
L4 N5 0 0 1 2 2 5 4 40 
N8 N6 0 2 8 15 14 39 - - 
L5 N6 0 0 0 0 5 5 5 100 
L6 N7 3 6 3 0 0 12 2 50 
L7 N7 3 0 0 0 0 3 1 100 
N9 N8 0 0 3 13 2 18 - - 

N10 N8 0 2 5 2 12 21 - - 
L8 N9 0 0 2 0 0 2 3 100 
L9 N9 0 0 1 13 2 16 4 81 

L10 N10 0 2 1 1 0 4 2 50 
L11 N10 0 0 4 1 12 17 5 71 
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in the original decision trees then became important: number of warm winter days, and mean 

temperature on warm winter days. One variable, thawed layer depth, did not appear in any version 

of the decision trees, which suggested that either it was not an important control on snowmelt-

runoff ratio or it covaried with other variables, such as snow cover. 

 

3.5.2 Condition-dependent hierarchy of controls 

The primary decision tree showed that the overall hierarchy of controls was (in descending order 

of importance): total snowfall, snow cover, fall soil surface water content, melt rate, melt season 

length, and fall soil profile water content (Table 3.4). The secondary decision trees showed that 

the selection of controls and their hierarchy vary when the dataset is split into high or low 

expressions of those six key variables (Table 3.5). 

 

For high and low snow cover years, the hierarchies of controls differed significantly from one 

another. When snow cover was low, the controls on runoff ratios were largely spring-related (melt 

season length, date of peak runoff, melt rate, and spring temperature gradient). By comparison, 

when snow cover was high, the top three controls on runoff ratio matched the overall hierarchy of 

controls, albeit with differing orders of importance. Further, under high snow cover conditions, 

fall soil surface water content played the most important role in controlling runoff ratios; whereas 

 

Table 3.4 Hierarchy of controls (ranked 1-6) on snowmelt-runoff generation, for the primary decision tree. 
 

Hierarchy Control 

1 Total seasonal snowfall 

2 Snow cover 

3 Fall soil surface water content 

4 Melt rate 

5 Melt season length 

6 Fall soil profile water content 
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under low snow cover conditions, fall soil surface water content was superseded by four other 

variables in controlling runoff ratios. The hierarchies of controls for high and low instances of total 

snowfall were relatively similar and retained three of the original six controls from the primary 

decision tree. They both had snow cover and fall soil surface water content as the top controls, and 

introduced surface depression storage as a main control. 

 

For instances of low fall soil surface water content, the controls on runoff ratio were quite 

dissimilar from those in the overall hierarchy of controls. Snow cover, usually an important 

control, was not important here. Meanwhile, mean daily wind speed did exert a large influence on 

the prediction of runoff ratios. Further, neither total snowfall nor snow cover controlled runoff 

ratios under instances of low fall soil profile water content. This indicated that when soil water 

content was low throughout the soil profile, runoff ratio was not at all predictable based on 

precipitation amounts. On the other hand, the controls on runoff ratio for instances of high fall soil 

 

Figure 3.4 Time series of observed runoff ratio classes (response variable) and predicted runoff ratio classes 
(predicted by the primary decision tree) for A) Hillslope 1, B) Hillslope 2, and C) Hillslope 3. 
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surface water content and high fall soil profile water content were similar to one another and to 

those in the overall hierarchy of controls: total snowfall and snow cover were the top two. This 

indicated that when the ground was wetter than average at the surface and/or throughout the entire 

soil profile, then the runoff ratio was controlled by precipitation inputs. 

 

When only high melt rate events were analysed, the identified controls on runoff ratio were both 

precipitation-related (total snowfall and snow cover). Even if a high melt rate was observed, low 

runoff ratios were still possible if total snowfall or snow cover were low. The highest runoff ratios 

 

Table 3.5 Condition-dependent hierarchy of controls (ranked 1-6) on snowmelt-runoff generation, for all 
secondary decision trees. 
 

Total seasonal snowfall Fall soil surface water content Melt rate 
High Low High Low High Low 
1. Snow cover 
2. Fall soil 

surface 
water 
content 

3. Melt rate 
4. Surface 

depression 
storage 

1. Snow cover 
2. Fall soil 

surface water 
content 

3. Total 
seasonal 
snowfall 

4. Date of peak 
runoff 
& 
Surface 
depression 
storage 

1. Snow cover 
2. Total 

seasonal 
snowfall 

3. Fall soil 
surface 
water 
content 

1. Total 
seasonal 
snowfall 

2. Mean daily 
wind speed 
& 
Date of peak 
runoff 

4. Surface 
depression 
storage 

1. Total 
seasonal 
snowfall 

2. Snow cover 

1. Melt season 
length 

2. Mean daily 
wind speed 

3. Fall soil 
surface 
water 
content 

4. Total 
seasonal 
snowfall 

Snow cover Fall soil profile water content Melt season length 
High Low High Low High Low 
1. Fall soil 

surface 
water 
content 

2. Total 
seasonal 
snowfall 
& 
Snow cover 

4. TWI 

1. Melt season 
length 

2. Date of peak 
runoff 

3. Snow cover 
4. Melt rate 
5. Fall soil 

surface water 
content 

6. Spring 
temperature 
gradient 

1. Snow cover 
2. Total 

seasonal 
snowfall 

3. Land cover 

1. Mean daily 
wind speed 

2. Fall soil 
profile water 
content 

1. Fall soil 
profile water 
content 

2. Fall soil 
surface 
water 
content 

3. Snow cover 
4. Surface 

depression 
storage 

5. Date of peak 
runoff 

1. Snow cover 
2. Mean daily 

wind speed 
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occurred when there was a high snow cover and a high melt rate. By comparison, the predicted 

runoff ratios under instances of low melt rates were determined by a combination of different 

controls, with total snowfall at the bottom of the hierarchy. Even given low melt rates, high runoff 

ratios could still occur when there was a long melt period and high fall soil surface water content. 

 

When we analysed those years which had short melt seasons, the runoff ratios were strongly 

controlled by snow cover. A short melt season coupled with high snow cover produced the highest 

runoff ratio. Otherwise, runoff ratio appears to have been controlled by mid-winter mean wind 

speeds. By comparison, the runoff ratios in those years with long melt seasons were controlled 

predominantly by soil water content (both profile and surface), followed by snow cover, surface 

depression storage and finally date of peak runoff. A long melt season coupled with either low soil 

water content or little snow cover typically led to very low runoff ratios.  

 

3.5.3 Interactions between controls on runoff response 

We have so far identified the controls, their hierarchy, and how that hierarchy varied under 

different conditions. This section outlines interactions between controls, i.e. whether one variable 

 

Table 3.6 Predictive accuracies for each runoff ratio (RR) class and for the overall tree, for the primary decision 
tree and each of the 12 secondary decision trees. 
 

Dataset type 
Predictive accuracies 

RR class 1 RR class 2 RR class 3 RR class 4 RR class 5 Overall 
Primary 84.6 52.5 100 60.6 85.3 70.1 
High total seasonal snowfall 60.0 - 63.0 82.0 95.0 77.0 
Low total seasonal snowfall 66.7 75.0 56.3 66.7 100 70.3 
High snow cover 83.3 75.0 80.0 87.5 90.6 83.6 
Low snow cover 67.5 83.3 62.5 65.0 - 72.2 
High fall soil surface water content 100 50.0 - 60.0 91.7 78.7 
Low fall soil surface water content 72.2 - 50.0 57.1 62.5 62.8 
High fall soil profile water content 100 52.6 - 63.6 70.8 71.6 
Low fall soil profile water content 77.8 75.0 100 - - 82.6 
High melt rate 40.0 45.8 - - 50.0 45.3 
Low melt rate 100 58.3 50.0 - 69.2 67.2 
High melt season length 100 66.7 50.0 58.3 87.5 70.1 
Low melt season length 66.7 46.2 - - 71.4 61.4 
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offset or promoted another variable in the determination of runoff response. While high fall soil 

water content was associated typically with high runoff ratios, and low soil water content was 

associated typically with low runoff ratios, these were sometimes mediated by other controls. For 

example, low runoff ratios could still occur with high fall soil water content if there was little snow 

cover on a hillslope with high surface depression storage. For winter-time variables, the amount 

of snowfall and snow cover both had clear effects on the runoff ratio result: typically, high amounts 

of SfWE or ScWE resulted in high runoff ratios, and low amounts of SfWE or ScWE resulted in 

low runoff ratios. However, these were mediated by other controls such that, in eight years, very 

low runoff ratios (runoff ratio class 1 and 2) resulted despite high snow cover. Finally, for spring-

time variables, high runoff ratios occurred when melt rates were fast, and when the melt period 

was prolonged and late in the spring. This was especially apparent for high snowfall amounts in 

the primary decision tree (Figure 3.3). 

 

For all decision trees, the lowest runoff ratios (class 1) occurred typically when there was either 

little snowfall or little snow cover on the hillslopes. In some rare occasions, these factors alone 

triggered low runoff ratios, despite competition from opposing factors that would typically 

promote high runoff ratios (e.g. high soil water content or high melt rate). In other instances, for 

low seasonal snowfall or snow cover to trigger low runoff ratios, they had to be associated with 

one or more factors that would also limit runoff ratios. These factors were: a) low fall soil surface 

water content; b) slow melt rates; or c) high surface depression storage. A very dry fall soil surface 

water content (< 0.11) was always associated with the lowest runoff ratio, regardless of other 

conditions. 

 

The highest runoff ratios (class 5) always occurred when there was high snowfall or large snow 

covers. Typically, wet antecedent soil surface water content was also required. If soil surface water 

contents were low, the highest runoff ratios could still be generated when high snowfall and large 

snow covers occurred either: on a hillslope with little surface depression storage; or if the entire 

soil profile (not just the surface) was wet; or if the peak runoff occurred late in the season. For 

years when winter snowfall amounts were less than the long-term average, the highest runoff ratios 

could still be generated if soil surface water contents were not low, if peak runoff occurred late (at 
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the end of March or into April), and, finally, if a large proportion of that SfWE was not retained 

in the snow cover during the winter (i.e. if a large proportion of SfWE was ablated over winter). 

This was echoed in a second iteration of the decision tree construction when snow cover was 

removed from the response variables, in which a condition for the highest runoff ratio to occur was 

when there were many mid-winter warm days. This indicated that the highest runoff ratios could 

only occur in low snowfall years when there were mid-winter melts that perhaps raised the soil 

surface water content or created an ice lens at the soil surface, thus reducing the infiltrability of 

the soil come spring melt. 

 

Finally, the removal of snow cover from the possible response variables also triggered the 

inclusion of the land cover variable as an important predictor of runoff ratios; in that case, the 

highest runoff ratio occurred if the hillslopes were in fallow in the previous growing season. We 

also analyzed the period of continuous standing stubble on Hillslope 2 (1993-2004) separate from 

the remainder of the dataset (not, however, using the decision tree approach due to there being 

only 12 data points of continuous standing stubble). The proportion of the season’s snowfall that 

was retained on the hillslope as snow cover (ScWE / SfWE) was significantly greater (𝑝𝑝 < 0.01) 

during the period of standing stubble on fallow (on average, a 0.65 retention) than not (on average, 

a 0.40 retention), likely due to the snow-trapping qualities of standing stubble. While the period 

of continuous standing stubble also was associated with, on average, wetter fall soil surface and 

soil profile water content and higher runoff ratios (0.391 compared to 0.254 for the non-standing 

stubble on fallow instances) there was no significant (𝑝𝑝 > 0.05) difference between the two groups 

of data. 

 

3.6 Discussion 

Our 52-year analysis of runoff, precipitation, soil water content, snow cover, and meteorological 

data showed little relationship between precipitation input and total seasonal runoff output. This 

highlights the extreme nonlinear relationship between precipitation inputs and runoff outputs on 

frozen ground at the hillslope scale. The additional factors that controlled runoff partitioning 

included total snowfall, snow cover, fall soil water content at the surface and through the soil 
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profile, melt rate, and melt season length. Together, these explained 70% of the runoff ratio 

variance (Figure 3.4). We used the combinations of these factors, as dictated by the decision tree 

results, to account for the scatter in the relationship between total seasonal snowfall (SfWE) and 

total seasonal runoff (originally shown in Figure 3.2a, and now updated with colour-coded 

partitioning in Figure 3.5). Further, these factors were hierarchical and condition-dependent. For 

example, in years when snow cover water equivalent (ScWE) was high, fall soil surface water 

content played the most important role in controlling runoff ratio. In years when snow cover was 

low, fall soil surface water content was relatively unimportant and was trumped by four other 

variables.  

 

3.6.1 Infiltration into frozen soil controls hillslope runoff ratio 

Three groups of variables controlled snowmelt-runoff ratio: precipitation amount (represented by 

total snowfall and snow cover), antecedent wetness condition (represented by fall soil surface 

water content and fall soil profile water content), and melt intensity (represented by melt rate and 

 

Figure 3.5 Partitioning of the relationship between total seasonal snowfall (mm SfWE) and total seasonal 
snowmelt-runoff (mm) (Figure 3.2a), showing typical characteristics of the snowmelt-runoff conditions in 
different parts of the plot. Different runoff ratios are colour-coded according to the leaf colours in Figure 3.3. 
Typical relative soil water contents for each partition are shown by the granular soil boxes (typically saturated or 
very wet in A, to very dry in D). Typical relative snow cover water equivalent (ScWE) are shown by the height 
of the overlying grey box (e.g. low ScWE in C, to high ScWE in A). A double-ended black arrow (↕) indicates 
that the ScWE depths were unimportant for that scenario (e.g. in D, runoff ratios are typically low regardless of 
the ScWE). Typical melt rates are shown by the height of the blue downward arrows (typically high melt rate in 
B, and typically low melt rate in C). 
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melt season length). Together, they determined collectively the balance between the fraction of 

precipitated water that infiltrated and the fraction that ran off and was delivered to the hillslope 

outlet. These six key variables controlled infiltration. While others have shown the importance of 

infiltration for snowmelt-runoff generation (Granger et al., 1984; Fang et al., 2007; Ireson et al., 

2013), our long-term analysis is the first to show the hierarchical importance of factors in 

controlling infiltration.  

 

Infiltration capacity is known to change through an event (Horton, 1933). During a water input 

event where soil is saturated from above, infiltration capacity typically is high at the beginning of 

the event, followed by a rapid decline and asymptotic reduction (over minutes, hours, or days) to 

a near-constant value and quasi-steady-state (Zhao and Gray, 1997; Dingman, 2008). The decline 

in infiltration capacity is due to sorptivity – the potential of the soil to absorb and transmit water 

through capillarity. This is higher for dry than for wet soil. For water input to frozen soil, an 

additional factor linked to infiltration capacity decline is the re-freezing of meltwater in soil pores 

causing blockages (Ireson et al., 2013). Nevertheless, the shape of frozen soil infiltration curves is 

similar to that of unfrozen soil (Kane and Stein, 1983). 

 

Figure 3.6 shows a conceptual model of how each control in turn influences runoff ratio via the 

process of infiltration, where a constant melt rate that exceeds the infiltration capacity of the soil 

is assumed. The greater the precipitation event amount (where the event is the melt season and the 

precipitation amount is the depth of snow cover or the total seasonal snowfall) or the longer the 

melt season, the more of the declining infiltration capacity curve is traversed with time (along the 

x-axis). Figure 3.6b shows a scenario where a large melt event generates greater amounts of runoff, 

and greater runoff ratios because of the relative volume of meltwater that infiltrates (the integral 

of the infiltration curve) versus that which does not. Similarly, melt rate determines how much 

precipitation, at any point in time, exceeds the infiltration rate of the soil (y-axis of the curve). 

Figure 3.6c shows that a higher melt intensity exceeds the infiltration rate for a longer period of 

time, and produces greater runoff ratios. Finally, antecedent soil water content (and other soil 

characteristics) control the shape of the infiltration rate curve. Figure 3.6d shows that wet 

antecedent soil conditions cause reduced initial infiltration rates, which are more readily exceeded 
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by melt rates and thus lead to higher runoff ratios. This importance of antecedent soil water content 

for frozen ground infiltration and snowmelt-runoff response further demonstrates, beyond the 

findings of Coles et al. (2017) (Chapter 2), that the runoff response is not just about whether the 

ground was frozen or unfrozen (i.e. the soil temperature), but also is strongly related to the soil 

 

Figure 3.6 Conceptual figure showing how the key controls on runoff ratio affect runoff ratio via infiltration. A) 
Features of a typical infiltration capacity curve; B) snowfall, snow cover, and melt season length control event 
duration (green), with all other factors being equal; C) melt rate (purple) controls the incoming water flux; and 
D) soil moisture affects the shape of the infiltration curve (orange). When just one of these is varied (and the 
other are held constant), the volume of water that infiltrates (brown) and the volume that is in infiltration-excess 
(blue) changes, and it is the balance between these two that dictates the runoff ratio. The curve-shift (*) is a 
conceptual illustration of the moving curve method for Horton’s infiltration model for instances where the volume 
of precipitation input is less than the infiltration volume.   
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moisture conditions when frozen or unfrozen. The simple conceptual model of infiltration explains 

why these six variables – snowfall, snow cover, melt season length, melt rate, fall soil water content 

at the surface and through the soil profile – exert the greatest control on runoff ratio. 

 

Varying snow cover and antecedent soil moisture conditions seemed particularly influential in 

causing shifts in the hierarchical ordering of controls. Under high snow cover conditions, fall soil 

surface water content played the most important role in controlling runoff ratios. By comparison, 

under low snow cover conditions, fall soil surface water content was superseded as a control on 

runoff ratio by four other, largely spring seasonally-related, variables. The infiltration rate curve 

helps explain why this might be the case (Figure 3.6). Given a decline in infiltration over time, for 

a small amount of snow cover, the infiltration curve is only traversed at the start (where infiltration 

rate changes quickly over time), so any change in melt rate exerts a large effect on the resultant 

runoff ratio. By comparison, for a large amount of snow cover, runoff ratios are less sensitive to 

changes in melt rate. This would explain why melt rate was identified as being a stronger control 

on runoff ratios under conditions of lower snow cover. 

 

Our results showed that when fall soil water contents were low, runoff ratios were not predictable 

based upon the usual controls on runoff ratio. For example, runoff ratios when the entire soil profile 

was dry were not predictable based on precipitation amounts. Runoff ratios when the soil surface 

was dry were not predictable based on snow cover or the actual soil surface water content. This 

further indicates that infiltration into frozen soil, already a difficult flux to predict, was especially 

variable when the soil was dry in the fall. Further, while soil water content was the most important 

control on runoff ratios under conditions of high snow cover, it was a relatively unimportant 

control under conditions of low snow cover. Low snow cover at the end of winter could imply 

either little seasonal snowfall or significant ablation over the winter. Ablation might have caused 

over-winter changes in soil water content, thus rendering the measurement of the fall soil water 

content an imprecise or misleading representation of the pre-melt water content. This would in 

turn lead to its reduced importance in the decision tree. The snow cover SWE on the hillslopes was 

typically significantly less than the total seasonal snowfall, illustrating the importance of mid-
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winter ablation events (e.g. by melt, sublimation, or snow redistribution by wind) and supporting 

the findings of Gray et al. (1983; 2001) and Pomeroy et al. (2007a).  

 

3.6.2 Soil moisture memory 

Notwithstanding these likely mid-winter changes to soil water content, soil moisture memory from 

fall freeze-up was important. We observed that fall soil surface water content, measured 

immediately prior to temperatures falling below freezing and before the onset of snowfall, was the 

third key control on spring (four to six months later) snowmelt-runoff response. This is consistent 

with observations from more humid regions, where soil moisture memory has been analysed and 

described in the context of the persistence in the soil of anomalous wet or dry conditions that have 

long since been forgotten by the atmosphere (e.g. Entin et al., 2000; Mahanama and Koster, 2003; 

Orth and Seneviratne, 2013). These studies, largely based on modeling approaches or long-term 

data analysis, have shown that memory in mid-latitude regions is strongest under extreme 

(particularly extreme dry) conditions (Wu and Dickinson, 2004). Memory timescales have been 

reported up to 2-3 months (Mahanama and Koster, 2003; Vinnikov et al., 1996; Entin et al., 2000). 

Also, soil and vegetation characteristics have been shown to be more important than the climate 

regime in determining the soil moisture memory strength (Orth and Seneviratne, 2013).  

 

That fall soil water content in cold, snow-dominated seasonally- or permanently-frozen ground 

locations was a key control on spring runoff is not new; a common assumption of hydrological 

modeling approaches is that the soil water content at the start of snowmelt (typically March-April) 

equals the soil water content at the time of freeze-up (October-November). In other words, the 

water content is believed to be ‘locked in’ through the winter and remain constant until spring 

thaw, and thus exhibits soil moisture memory. Of course, we know this to not be necessarily true 

due to the likelihood of mid-winter melt events having caused increases in soil water content. 

 

Further, vapor transfer across a soil-air or soil-snow interface, and mid-winter vertical 

redistribution of water within the soil towards the downward-advancing freezing front all 

challenge this memory assumption (Kane and Stein, 1983; Gray et al., 1985; Quinton and Hayashi, 



70 
 

2008; Nagare et al., 2012). Gray et al. (1985) suggested that in the absence of mid-winter melt 

events, soil water content in the 0-30 cm surface layer decreases over winter, with the greatest 

losses (only a 3-4% decrease, typically) seen for fallow (as opposed to stubble) lands. We 

hypothesize that this is due to further infiltration to deeper parts of the soil profile. We found that 

there was a strong positive relationship between the length of time during which the soil was frozen 

over winter and the runoff ratio in the following spring, with the relationship strongest for 50 cm 

and 100 cm depths (data not shown). This might indicate that a longer winter period of deep soil 

freezing prevented the soil surface water content from dissipating vertically, thus retaining the soil 

moisture at the surface, and driving a high runoff ratio come the spring. It might also indicate that 

faster infiltration rates and reduced runoff ratios – when the wetting front reached the thawed layer 

below the frozen layer (Watanabe et al., 2012) – were not reached because the wetting front did 

not reach thawed soil when the soil was frozen to greater depths. The longer the soil was frozen 

and the deeper it was frozen, the stronger the soil moisture memory was. If the fall soil water 

content was high, this then drove higher runoff ratios in the spring. 

 

Despite mid-winter melt events and land cover causing deviations between fall and pre-thaw soil 

water content, fall soil water content remained an important control on spring runoff ratios. This 

indicates long soil moisture memory in the system, which was heightened the longer the soil profile 

was frozen down to 100 cm. Soil moisture memory propagated through to runoff response. 

However, the soil moisture memory observed here, we believe, ought to be distinguished from 

existing descriptions of soil moisture memory from elsewhere (e.g. Entin et al., 2000; Mahanama 

and Koster, 2003; Orth and Seneviratne, 2013). This is because those could be thought of as 

‘active’ systems, while our observations are from a more ‘dormant’, frozen system. For this cold, 

seasonally-frozen region, soil moisture memory was less about the persistence of an anomaly, and 

more about dormancy. Hence, memory of the system was due to climatic conditions, more so than 

the soil and vegetation characteristics.  

 

3.6.3 Implications for modeling and future field campaigns 

Our findings have implications for existing approaches for predicting runoff responses to 

snowmelt events, especially regarding the ways existing models deal with infiltration and 
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regarding what (and when) experimentalists ought to focus their observations on in the field. We 

do not believe that the nonlinearity and condition-dependent nature of these controls defies our 

ability to model, since we have shown here that it can largely be explained in the context of 

infiltration. Several physically-based approaches exist for determining infiltration into frozen soil, 

including models that solve heat and water transfers through porous media such as GeoStudio 

(GeoSlope International, 2015), SUTRA (Voss and Provost, 2002), SHAW (Flerchinger and 

Saxton, 1989), SOIL (Stähli et al., 1999), and HYDRUS 1D (Hansson et al., 2004), and models 

that use the pore size distributions and other physical aspects of the soil such as capillary bundle 

models (Watanabe and Flury, 2008). These approaches require considerable data to drive the 

energy and meteorological inputs, and to model the soil domain; much of which is not available 

here.  

 

In hydrological studies on the Canadian Prairies, commonly implemented models include 

empirical equations for determining infiltration (𝐼𝐼𝐼𝐼𝐼𝐼), such as that of Granger et al. (1984): 

 

𝐼𝐼𝐼𝐼𝐼𝐼 =  5(1 – 𝜃𝜃𝑎𝑎) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0.584     (Equation 3.1) 

 

where 𝜃𝜃𝑎𝑎 is the pre-melt volumetric soil water content (-) in the 0-30 cm soil layer, and 𝐼𝐼𝐼𝐼𝐼𝐼 and 

snow cover water equivalent (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) are in millimeters. This equation drives the infiltration 

module of the Cold Regions Hydrological Model (CRHM; Pomeroy et al., 2007b), a widely 

implemented model for snow- and snowmelt-dominated regions (e.g. in Canada: Ellis et al., 2010; 

Quinton and Baltzer, 2013; Fang and Pomeroy, 2008; in China: Zhou et al., 2014; in Europe: 

Lopez-Moreno et al., 2014). If we test this equation with our data to calculate its efficacy for 

determining the component of the water balance that infiltrates into frozen soil we need to 

rearrange Equation 3.1 to calculate runoff ratio (𝑅𝑅𝑅𝑅) as we defined it in our analyses above, using 

the total seasonal snowfall (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆): 

 

𝑅𝑅𝑅𝑅 = 1 −  5(1 – 𝜃𝜃𝑎𝑎) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0.584

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
      (Equation 3.2) 
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According to Granger et al. (1984), two controls determine snowmelt-driven infiltration and runoff 

ratio: snow cover and soil water content. Our results support that these two variables are indeed 

key controls on runoff ratio (in our case, these controls were ranked second and third, respectively, 

in the hierarchy of controls). However, using Equation 3.2 to predict our observed runoff ratios 

over the 1971-2013 period explained only 13.6% of the variance of the runoff ratio classes (Figure 

3.7). It overestimated low runoff ratios, and underestimated high runoff ratios. 

 

Therefore, this frequently-used equation for infiltration into frozen soil is of limited use, despite 

the fact that our decision tree findings show that infiltration into frozen soil is the main control on 

hillslope runoff ratio. This is not surprising since, based on our results, the determinants of runoff 

ratio are more complex. While a more mechanistic model is certainly needed to bring in these 

elements, doing this in a deterministic way would be the basis for future work. The results of this 

paper’s decision tree learning – the key controls the decision tree has identified, the condition(s) 

under which each control are important, and the ways in which they interact and feedback between 

one another – could be a way to frame a model structure for snowmelt-runoff over seasonally-

frozen hillslopes. 

 

Figure 3.7 Observed and predicted runoff ratios over the 1971-2013 period. The predicted runoff ratios were 
calculated using Equation 3.2, based on Granger’s et al. (1984) empirical equation for infiltration into frozen 
ground. 
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In terms of what to measure to parameterize new models, we can use our hierarchy of controls to 

guide cost-effective and useful field measurements. While seemingly obvious, this study has 

reinforced the need for reliable snowfall and snow cover data. It also has emphasized the critical 

need for measuring pre-freeze soil water content in the fall: surface observations (0-15 cm) are 

most important, but total soil profile water content would also be beneficial. The influence that 

mid-winter melt events appeared to have on soil water content and ice lens creation means that 

pre-melt soil water content should also be measured, if possible. This measurement is most 

important when the soil is relatively dry in the fall, when mid-winter melt events occur, or when 

there is a large amount of snow cover. However, accurate measurement of unfrozen and frozen 

water content in frozen soils in field conditions remains a problem, with probes (for example, 

dielectric instruments or gamma probes) requiring significant and complex calibration (Ireson et 

al., 2013), and manual, sample-extraction methods proving very difficult given the frozen nature 

of the ground and the overlying snow. With any advances in instrumentation and methods for more 

reliable measuring of soil water content in frozen ground, these should be deployed to track 

antecedent moisture conditions through the winter and aid in the prediction of snowmelt-runoff 

response. While these fall-based and winter-based observations are most important for the 

prediction of runoff response, the spring conditions are of course also key to the response, 

especially when there is a small amount of snow cover. For predictive purposes, the melt rate and 

duration of the melt season need to be estimated in advance. For development, calibration, and/or 

validation purposes, these need to be documented.  

 

3.7 Conclusions 

We examined a 52-year dataset of runoff, precipitation, soil water content, snow cover, and 

meteorological data to determine the hierarchy of controls on snowmelt-runoff generation. Our 

decision tree analysis showed that the most important controls on snowmelt-runoff generation 

were, in descending hierarchical order of importance: total snowfall, snow cover amount, fall soil 

surface water content, melt rate, melt season length, and fall soil profile water content. Together, 

these were able to account for the scatter in the precipitation-runoff relationship. The hierarchy of 

these controls was controlled by actual conditions, with the biggest hierarchical differences 

between high and low snow cover seasons, and wet and dry antecedent conditions.  
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The key variables determining the runoff ratio collectively reflected the controls on the fraction of 

precipitated water that infiltrated. Despite the possibility of mid-winter changes in soil water 

content, the system tended to show significant memory in that the soil water content in the fall was 

a strong control on runoff in the spring. Here soil moisture memory was mostly determined by 

system dormancy and less so by the persistence of an anomaly. This distinguishes soil moisture 

memory in our system from that in more humid regions. An existing commonly-used two-

parameter method for predicting infiltration into frozen soil (Granger et al., 1984) predicted just 

13.6% of runoff ratio variance, compared to 70% predicted by the five-parameter decision tree 

approach here. This would suggest that there is potential for a new or amended empirical model 

with improved predictability. Our results showed field-based measurements for estimating 

snowmelt-runoff response must include pre-freeze soil water content (primarily at the surface but 

also through the entire soil profile, if possible), snowfall and snow cover water equivalents, pre-

melt soil water content to account for any over-winter changes in the soil water content, and, 

through the spring snowmelt season, melt rate and melt season duration.  

 

3.8 Transition statement 

Chapter 3 built upon the long-term trends analysis of Chapter 2, and found that the controls on 

long-term runoff were hierarchical and condition-dependent. Both studies observed that factors 

affecting infiltration into frozen soil were key determinants of the long-term runoff response and 

condition-dependent variability. These hinted at the importance that patterns of infiltration-excess 

surface water might have for hillslope-scale connectivity dynamics within a single snowmelt 

season. Therefore, these findings provided a multi-decadal context to the intensive field campaign, 

the focus of Chapter 4, in which I measured the spatial patterns of the controls on runoff. This was 

to determine the mechanisms behind hillslope-scale connectivity.  
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CHAPTER 4 

FILL AND SPILL DRIVES RUNOFF CONNECTIVITY OVER FROZEN 

GROUND 

 

Status: For submission 

Citation: Coles, A.E. and McDonnell, J.J. (2017) Fill and spill drives runoff connectivity over 

frozen ground, Hydrological Processes, for submission. 

 

4.1 Abstract 

Snowmelt-runoff processes on frozen ground are poorly understood at the hillslope scale. This is 

especially true for hillslopes on the northern Great Plains of North America where long periods of 

snow covered frozen ground with very shallow slopes mask any spatial patterns and process 

controls on connectivity and hillslope runoff generation. Here, we examine a 5 ha hillslope on the 

northern Great Plains during the 2014 spring snowmelt season to explore runoff processes at the 

hillslope scale. Specifically we explore the spatial patterns of runoff production source areas and 

examine how patterns of soil water content and thawed layer depth affect melt water partitioning 

and lateral delivery to the hillslope base. We explore if the controls on connectivity – where 

‘connectivity’ is conceptualised as the generation of continuous flow fields across a hillslope – are 

consistent with the fill and spill mechanism found elsewhere in rain-dominated and unfrozen soil 

domains. We measured soil water content, thawed layer depth, snow cover, and snow water 

equivalent on a 10 m grid on our 5 ha hillslope. We also measured snow, soil water, ponded water, 

and hillslope runoff stable isotope composition during the spring snowmelt season. The contrast 

between the slow infiltration rates into frozen soil and the relatively fast rates of snowmelt delivery 

to the soil surface resulted in water accumulation in small depressions under the snowpack. 

Consequently, infiltration was minimal over the 12 day melt period. Instead nested filling of micro- 

and meso-depressions was followed by macro-scale spilling. This spilling occurred when large 

patches of ponded water exceeded the storage capacity behind downslope micro barriers in the 

surface topography, and flows from them coalesced to drive a threshold-like increase in runoff at 
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the hillslope outlet. These observations of ponded water and flowpaths followed mapable fill and 

spill locations based on 2 m resolution digital topographic analysis. Interestingly, while surface 

topography is relatively unimportant under unfrozen conditions at our site because of low relief 

and high infiltrability, surface topography shows episodically critical importance for connectivity 

and threshold-like runoff generation when the ground is frozen. 

 

4.2 Introduction 

Understanding snowmelt-runoff generation in cold, snowmelt-dominated regions is critical for 

predicting water delivery and water availability as the climate changes and these cold regions lose 

their cold. While point-scale (e.g. Granger et al., 1984; Zhao and Gray, 1999) and hillslope-scale 

(e.g. Kane et al., 1981; Quinton and Marsh, 1999; Carey and Woo, 2001; Quinton et al., 2004; 

Suzuki et al., 2005; Woo et al., 2008) melt and runoff processes have been well studied, we still 

do not fully understand process controls on hillslope snowmelt-runoff connectivity and threshold-

like runoff. Indeed, connecting point-scale runoff generation elements across hillslopes and 

catchments is now seen as a fundamental challenge for assessing the nonlinearities in runoff 

relations. Several studies have now shown how key nonlinearities like thresholds and feedbacks 

can produce emergent behaviour that is not explainable by traditional point-scale concepts 

(Grayson and Blöschl, 2001; Sivapalan, 2005; Bracken and Croke, 2007; James and Roulet, 2007; 

Troch et al., 2008; Ali and Roy, 2009; Bracken et al., 2013; McDonnell, 2013). In rainfall-runoff 

studies, pattern-based or spatially-distributed measurements have enhanced our understanding of 

hydrological connectivity and associated thresholds as linked to surface or bedrock topography 

(Darboux et al., 2002; Tromp-van Meerveld and McDonnell, 2006) and soil moisture (Western et 

al., 2001; Penna et al., 2011). 

 

Spatially-distributed approaches have led to or supported the concept of fill and spill (Spence and 

Woo, 2003; Tromp-van Meerveld and McDonnell, 2006) as a potential underlying mechanism for 

emergent threshold behaviour in runoff generation (McDonnell, 2013). The fill and spill 

mechanism posits that storage capacities (e.g. depressions) in subsurface or surface topography 

must fill up to a certain threshold (e.g. the downslope sill of the depression) before it can spill 

downslope. Fill and spill has now been used to account for: runoff from soil-filled valleys in which 
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valley physiography has created various segments of varying storage conditions (Spence and Woo, 

2003); along the bedrock of upland humid forested hillslopes (Tromp-van Meerveld and 

McDonnell, 2006; Hopp and McDonnell, 2009); and along an impeding layer of shallow humid 

forested hillslopes (Du et al., 2016; Jackson et al., 2016). In peat-dominated, permafrost 

environments, filling and spilling of spatially variable storage above a frost table has been shown 

to generate hillslope subsurface flow (Wright et al., 2009) and surface runoff connectivity 

(Williams et al., 2013). Catchment-scale overland flow generation analogous to fill and spill have 

been observed in lake- and wetland-dominated landscapes (Leibowitz and Vining, 2003; Shaw et 

al., 2012; Leibowitz et al., 2016). Surface overland flow studies at the hillslope scale have shown 

that runoff is modulated by micro-topography and surface roughness (Darboux et al., 2002; Appels 

et al., 2011; Chu et al., 2013). While not labelled sensu stricto as ‘fill and spill’, they too are 

examples of overland flow being driven by the filling and spilling of depressions at a partitioning 

surface with loss along the flowpath and threshold behaviour at the larger scale (Ameli et al., 

2015). 

 

The fill and spill mechanism fits within a storage-excess framework of water delivery (Spence, 

2010; McDonnell, 2013). Existing runoff concepts are somewhat limited in geographic relevance; 

for example, the variable source area theory (Hewlett and Hibbert, 1967) typically only explains 

runoff generation in humid, vegetated sites, while the partial area concept (Betson, 1964) is 

restricted to more arid, infiltration-excess overland flow systems (McDonnell, 2013). While fill 

and spill is not a theory per se, McDonnell (2013) suggested that it represents a framework that 

could guide field measurements that map and describe the storages, connectivity, and thresholds 

relationships for a given site, and lead to new theory linking the similarities of runoff processes – 

one that is related to storage, storage thresholds, and connectivity (Spence, 2010).  

 

While evidence now abounds linking storage exceedance and emergent threshold behaviour with 

the fill and spill mechanism, relatively few studies have observed such a mechanism in frozen 

environments (Spence and Woo, 2003; Wright et al., 2009; Williams et al., 2013). No studies that 

we are aware of have examined whether or not such a mechanism operates over seasonally-frozen 

ground on the well-drained, glacial deposits of the northern Great Plains of North America. Melt 
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onto frozen ground is notoriously difficult to model (Gupta and Sorooshian, 1997; Pomeroy et al., 

2007). On the northern Great Plains, the focus of this study, this is especially difficult due to 

minimal topographic slope and deep, permeable soils. Upscaling point-scale frozen ground runoff 

measurements (e.g. Granger et al., 1984; Zhao and Gray, 1999) to the hillslope scale has been 

difficult. For instance, Coles et al. (2016) (Chapter 3) tested the widely-used infiltration model of 

Granger et al. (1984) over 52 years of snowmelt-runoff recorded at the Swift Current hillslopes in 

Saskatchewan and found that the point-scale model was able to explain only 13.6% of the hillslope-

scale meltwater runoff ratio. 

 

Runoff in the melt season on the northern Great Plains is typically infiltration-excess overland 

flow over frozen ground (Fang et al., 2007). Natural drainage systems at the landscape scale in the 

region are poorly developed, disconnected and sparse, due to the aridity and exceptionally low 

angled topography (Fang et al., 2007). The snowmelt season sees, on average, a third of the annual 

precipitation melt within 1-2 weeks to generate c. 80% of the annual runoff. At the hillslope scale 

we might expect that these factors would encourage sheet-like overland flow across the soil 

surface. At larger basin scales in these regions, many non-contributing areas exist from which there 

is no water routing to a main drainage system even under extremely wet conditions (Stichling and 

Blackwell, 1957; Martin et al., 1983). At the hillslope scale, shallow slopes and a lack of defined 

drainage system can lead to a large non-contributing proportion of the hillslope. 

 

While undulations in the frozen soil surface could be enough for some spatial flowpath 

organization or generation of non-contributing areas, these need to be mapped and addressed. 

Critically too, the contrast between frozen ground infiltrability and snowmelt input rates dictate 

whether overland flow is generated or not – these are rarely mapped or reported. If the contrast is 

large enough it may enable widespread filling and spilling and whole-hillslope connectivity. If the 

contrast is too small (less than 101 as noted in modeling studies by Hopp and McDonnell (2009) 

and James et al. (2010)) then it would encourage infiltration, loss along a flowpath, and diminished 

or negated connectivity.  
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While frozen, a soil’s infiltrability is usually less than its unfrozen state (Granger et al., 1984), but 

these frozen infiltrabilities are varied and can sometimes still be significant (Burt and Williams, 

1976), especially if the soil had a low pre-melt water content. For example, Spence and Woo 

(2003) observed infiltration rates of 41 mm hr-1 on the subarctic Canadian shield regardless of 

whether the unsaturated soil was frozen or not. Fang et al. (2007) observed greater infiltration than 

runoff on frozen, agricultural fields in southern Saskatchewan due to dry soils from the previous 

year’s cropping. Zheng et al. (2001) measured cumulative infiltration over 90 minutes into thawed 

soil and soils frozen to various depths, and found that thawed soil infiltration (65.6 mm) was only 

19.1% greater than infiltration into shallow frozen soils (55.1 mm). Snowmelt rates, too, are highly 

variable. Spence and Woo (2003) noted that melt input intensity averaged 0.11 mm hr-1 and melt 

water readily infiltrated their relatively high infiltrability frozen soils. At the Swift Current 

hillslopes, Coles et al. (2016) (Chapter 3) found that season-averaged snowmelt rates over the last 

52 years of record have varied between 0.39 and 4.63 mm hr-1. 

 

Here we explore the factors controlling the patterns and mechanisms of hillslope meltwater runoff 

on seasonally-frozen ground of the northern Great Plains, specifically at the Swift Current 

hillslopes. We build upon long term analysis at this site (Coles et al, 2016, 2017; Chapters 2 and 

3) but focus on the 2014 melt season. We measure the spatial patterns of snow cover, snow water 

equivalent, soil water content, frozen ground, and topography to understand the primary controls 

and processes behind hillslope-scale runoff activation. We seek to understand the role of micro-, 

meso-, and macro-topography in controlling the snowmelt-runoff response and explore the 

similarities and differences in comparison to processes observed in warmer and/or more sloping 

regions (e.g. Darboux et al., 2002; Appels et al., 2011; Chu et al., 2013; Tromp-van Meerveld and 

McDonnell, 2006). We combine these hydrometric observations and mapping of spatial patterns 

with isotope analysis of snowmelt inputs and runoff outputs to quantify the ‘newness’ of 

snowmelt-runoff over frozen ground. Specifically, we address the questions: 

i) What are the spatial patterns and process controls on connectivity and hillslope runoff 

generation over frozen ground? 

ii) How do patterns of soil water content and thawed layer depth affect melt water partitioning 

and lateral delivery to the hillslope outlet? 



88 
 

iii) Are the controls on connectivity consistent with the fill and spill mechanism found 

elsewhere? 

 

4.3 Study site 

The Swift Current hillslopes are three adjacent agricultural hillslopes located at South Farm, Swift 

Current in southern Saskatchewan in the Canadian Prairie region of the northern Great Plains. The 

study site has been described previously in Coles et al. (2016, 2017) (Chapters 2 and 3), which 

undertook long-term analyses on all three hillslopes. Here, we focus our high resolution spatial 

analysis on Hillslope 2 (Figure 4.1), the central of the three hillslopes, with an area of 4.66 ha. A 

raised, grassed berm around the perimeter of the hillslope prevents flowing water from entering 

from adjacent land and ensures that the only outlet for runoff is an instrumented H-flume at the 

hillslope’s northwest corner. The hillslope is relatively concave in shape and has a gradient of 1% 

in the upper two-thirds of the hillslope and a gradient of 2.5% in the lower one-third, sloping 

towards the northwest. A digital elevation model (DEM), obtained using a Leica Viva GS15, is 

available for the hillslope at a 2 m horizontal resolution. At a finer scale than the 2 m resolution of 

 

Figure 4.1 Digital elevation model of the surface topography of Hillslope 2, with vertical exaggeration. Also 
shown: 10 x 10 m measurement grid (plus signs), locations of the four soil moisture and soil temperature profiles 
(red circles), and locations of the 11 snowmelt lysimeters (blue squares). 
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the DEM are micro-topographic features – ridges and furrows – from seeding in the growing 

season. If the ground is not tilled following harvest, these features remain through the winter and 

into the spring. This was the case in the spring of 2014, the season studied here. The hillslope was 

ploughed and seeded in early summer 2013 in a north-south direction, with wheat planted in the 

raised ridges (c. 5-15 cm in elevation above the neighbouring furrow, and the cross-section of one 

ridge and one furrow being approximately 30-50 cm wide). 

 

The soil is a Swinton silt loam and classified as an Orthic Brown Chernozem (Cessna et al., 2013). 

Archived data from a one-location soil profile investigation, with data for 15 cm intervals from the 

soil surface down to 180 cm, were provided by Agriculture and Agri-food Canada for the site. 

They show that silt content decreases with depth from 50.4% in the 0-15 cm surface layer to 27.9% 

at 150-165 cm, clay content increases with depth from 18.2% to 30.9%, and sand content fluctuates 

between 24.4% and 42.4% through the profile. There is a clay layer (48.4% clay) observed at a 

depth of 165-180 cm (which presumably prevented deeper investigations). Bulk density increases 

with depth, from 1.22 g cm-3 at 0-15 cm to 1.59 g cm-3 at 120-135 cm, below which it decreases 

slightly to 1.43 g cm-3. Observations also show that saturated hydraulic conductivity increases with 

depth: from 1.42 cm hr-1 at 0-15 cm to 5.76 cm hr-1 at 75-90 cm (no data deeper than 90 cm). 

 

Prior to the 2014 melt season (in July-August 2013), we characterized the spatial variability of soil 

depth and surface infiltration capacity. Soil probing with a dynamic cone penetrometer (also 

known as a knocking pole penetrometer; Shanley et al., 2003) at 17 random locations on the 

hillslope revealed the mean soil depth to be 265 cm (s = 45.3 cm). In general, resistance to 

penetration patterns remained relatively uniform in space for the upper 200 cm of the soil profile, 

but increased with depth below 200 cm until refusal. In most of the 17 profiles, resistance also 

increased sharply at approximately 15-20 cm depth, for a layer approximately 5-10 cm thick. 

Another layer of resistance (of varying thickness between 5-20 cm) was observed in most profiles 

between approximately 60-100 cm below the soil surface. A third, thin (c. 5-10 cm thick) layer of 

resistance exists in some of the profiles between 120 and 200 cm below the soil surface, which 

likely reflects the clay layer identified in the archived soil profile data. Infiltration capacity 

measurements have been undertaken with a constant head sprinkler infiltrometer at 62 random 
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locations on Hillslope 2 (Seifert, 2014). They show unfrozen infiltration capacities to range 

between 0.4 and 63.5 mm hr-1, with a mean of 13.9 mm hr-1 and standard deviation of 13.2 mm hr-

1 (Seifert, 2014). Snowmelt-runoff laboratory experiments with intact soil cores extracted from 

Hillslope 2 showed frozen surface infiltration capacities at this site are much lower: they range 

from 0.09 to 2.57 mm hr-1, with a median of 0.33 mm hr-1 (Coles et al., 2017; Chapter 2). 

 

Hillslope 2 is under agricultural management with typically an annual rotation of wheat (Triticum 

aestivum L.) and fallow, but with some instances in the last 52 years of grass (Psathyrostachys 

juncea (Fisch.) Nevski), lentils (Lens culinaris L.), and peas (Pisum sativum L.). Hillslope 2 has 

undergone both conventional tillage and zero tillage practices. In 2013, the year prior to our field 

campaign in spring 2014, Hillslope 2 was cropped with wheat and had been under zero tillage 

management. As a result, from September 2013 to May 2014 (encompassing the snowmelt period 

studied here) Hillslope 2 had standing wheat stubble residue of variable stubble height of 30-50 

cm. Precipitation data (measured using a Belfort weighing gauge) for the period of study were 

available from a nearby (c. 700 m to the south-southeast) Environment and Climate Change 

Canada standard meteorological station. 

 

4.4 Methods 

We used digital topographic analysis, specifically the calculation of two metrics (flow 

accumulation and downslope index), to develop a theoretical map of fill and spill locations across 

Hillslope 2. We then conducted high spatial and temporal resolution measurements of key 

hydrometric variables to explore the changing spatial patterns of runoff production source areas. 

We combined high-frequency monitoring of runoff rates at the hillslope outlet with stable water 

isotope analysis of the runoff, snowmelt, and soil water, and with the hydrometric spatial maps to 

understand the drivers of connectivity and threshold-like water delivery during the snowmelt 

season. We used the digital topographic analysis’ map of fill and spill locations to assess whether 

our field observations of the controls on connectivity were consistent with the fill and spill 

mechanism. These steps are outlined in greater detail in the following subsections.  
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4.4.1 Digital topographic analysis 

Following Hopp and McDonnell (2009), we calculated two metrics for each cell of the 2 m DEM 

cells. The first metric calculated was flow accumulation (FA), which indicated the upslope 

contributing area of each cell, calculated as the number of cells upslope that drained into each cell. 

This was determined using the D8 flow algorithm, a common tool to determine the weighting of 

flow from each cell into the eight adjacent cells (Jenson and Domingue, 1988). The FA also 

indicates local topographic highs (ridges or sills), which are assigned an FA of 0. 

 

The second metric calculated was the downslope index (DI), which indicated the downslope 

drainage efficiency of each cell. DI was expressed as DI = V/H, where H is the horizontal distance 

that must be traversed in the steepest downslope direction to descend to a point at a pre-defined 

vertical distance (V) from the elevation of the starting cell (Hjerdt et al., 2004). While the DI was 

initially used to capture near-surface groundwater levels and ‘backing-up’, it is thought to be a 

useful tool in different terrains where topographic curvature exerts a control on local drainage 

regimes (Hjerdt et al., 2004). For calculating DI, we used a V of 15 cm. This value was chosen 

because it is the maximum elevation change between a ridge and furrow – artefacts of mechanised 

seeding, where one ridge and one furrow has c. 5-15 cm in elevation difference and a cross-section 

that is approximately 30-50 cm wide. This ensures that any sporadic instances of a ridge or furrow 

being picked up in the 2 m horizontal resolution DEM are smoothed out from this topographic 

analysis. A cell with a small DI was caused by a long horizontal distance (H) and indicates that 

drainage from that cell was slow and inefficient (Tromp-van Meerveld and McDonnell, 2006; 

Hopp and McDonnell, 2009). 

 

We used the combination of FA and DI as an indicator of potential fill and spill locations across 

the hillslope (Hopp and McDonnell, 2009). Fill locations – areas where water can be collected and 

retained – were designated when cells had a large FA (> 10 m2) and small DI (< 0.015) (typically 

shallow, long slopes). Spill locations – areas where water can accumulate and then be efficiently 

drained – were designated when cells had a large FA (> 10 m2) and large DI (>0.015) (typically 

steep, short slopes). These threshold of FA (10 m2) and DI (0.015) are their median values. For 

DI, a value of 0.015 represents approximately the general hillslope gradient. 
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4.4.2 Hydrometric field measurements 

We measured volumetric soil water content at 0-6 cm depth on a 480-point grid (a 10 x 10 meter 

spatial resolution; Figure 4.1) during several daily field campaigns (19th July 2013, 2nd August 

2013, 9th August 2013, 3rd September 2013, 23rd September 2013, 24th October 2013, 28th March 

2014, 7th April 2014, 13th May 2014, and 19th June 2014) using a portable Stevens HydraProbe 

POGO. Snow cover and frozen ground prevented these measurements being taken over winter. 

Therefore, the last soil water content mapping prior to freeze-up (24th October 2013) was used to 

capture the spatial variability in soil water content at the onset of frozen conditions. Mapping 

resumed on 28th March 2014 once there was no longer snow cover and the soil was thawed 

sufficiently for the probe to be inserted. For each survey, we made further soil water content 

measurements at smaller spatial resolution, within random 10 x 10 m grid squares, for 

geostatistical analysis. Variogram analysis following the first soil water content survey (19th July 

2013) showed that the variance of the data stabilized at approximately an 80 m resolution, giving 

us confidence that the use of a 10 x 10 m spatial resolution was adequate to capture the variability 

and spatial patterns. 

 

We measured volumetric soil water content and temperature for five depth intervals (0-6, 6-15, 

15-30, 30-60, and 60-90 cm) at four locations using Stevens HydraProbes. Each location was 

representative of a key landscape unit on the hillslope – upland area (Profile 1), two surface 

depressions (Profiles 2 and 3), and a slope (Profile 4) (Figure 4.1). These measurements were 

logged continuously at 30 minute intervals for a period of 12 months (October 2013 to September 

2014). Only soil water content data for time intervals when the soil temperature was > 0°C is useful 

for our analysis. This is because the sensors determine soil water content via dielectric permittivity, 

which is not applicable to the quantification of water content in frozen, freezing, or thawing soils 

without considerable uncertainty (Williamson, 2016). We used the data to assess the change in soil 

water content from pre-freeze up to post-melt, with data used for these from 24th October 2013 and 

24th April 2014, respectively. 
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We measured snow depth, and calculated density and snow water equivalent (SWE), on a 225-

point grid (a 10 x 20 meter spatial resolution in the lower two-thirds of the hillslope, and a 10 x 40 

meter spatial resolution in the upper third of the hillslope) by manual snow surveys. These snow 

surveys were carried out several times through the winter and just prior to the onset of snowmelt, 

and then daily, every morning before any significant melt, through the snowmelt period (9th March 

– 20th March 2014). We calculated daily ablation at the 225 points, and the hillslope-average, using 

Equation 4.1: 

 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)  =  𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) – 𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥+1)   (Equation 4.1) 

 

We also used eight 2 meter long ablation lines on the hillslope (positioned in each of the four key 

landscape units) to measure snow depth, and calculate density, SWE and ablation, on a daily basis 

at 20 cm intervals. At a sub-daily scale, we measured snowmelt rate from the base of the snowpack 

manually using 18 snowmelt lysimeters at 11 locations (with 1-3 duplicates at some locations) at 

irregular time intervals (10-120 minutes) depending on melt rate (Figure 4.1). 

 

We measured surface thawed layer depth (depth to the top of the frozen ground) daily on a 60-

point grid (a 20 x 40 meter spatial resolution) by manually knocking in a length of 11 mm diameter 

rebar until frozen ground resistance was detected (this was always undertaken by the same 

researcher for consistency). This was also carried out at 2 hour intervals at three locations to 

capture sub-daily changes in frozen ground depths. 

 

Seven time-lapse standard-image cameras (Wingscapes) captured snow cover accumulation and 

ablation, and were used with personal observations to chronicle the snow covered area, and 

locations of water sources, flowpaths, and ponded water on the hillslope. Finally, runoff from the 

hillslope was logged at 15 minute intervals through the snowmelt period using a pressure 

transducer (HOBO U20 Water Level Data Logger) in the stilling well of an Agriculture and Agri-

food Canada H-flume at the outlet of the hillslope. 
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4.4.3 Isotope sample collection and analysis 

Stable isotope analysis of water is one more tool that we employed to understand the mechanism 

of hillslope-scale runoff generation during the melt season. We used it to determine the ratio of 

‘new’ snowmelt water to displaced ‘old’ soil water in hillslope-scale runoff. During the 2014 

snowmelt season, we collected 1422 water, soil, and snow samples. These samples consisted of: 

• 308 runoff samples from the flume at the outlet of Hillslope 2, collected using an ISCO 

3700 which automatically sampled water flowing through the flume at 30 minute intervals 

(15 minute intervals during peak flow). 

• 454 snowmelt samples from the base of the snowpack, manually extracted from each of 

the 18 snowmelt lysimeters, and taken at irregular intervals (10-120 minutes) depending 

on melt rate (i.e. the approximate length of time it took to obtain a full 25 ml sample vial 

of water). 

• 50 soil samples, collected prior to snowmelt on 20th February 2014 from two depths (0-6 

cm and 6-15 cm) at 32 locations on Hillslope 2 using a slide-hammer corer. These were 

taken to obtain pre-event soil water, which, along with the snowmelt water, is an important 

potential end-member in the runoff signature from the plots. 

• 217 snow core and incremental snow samples, collected bi-daily during the snow survey, 

melted down and bottled. 

• 63 ponded water (on the soil surface or snow surface) samples, collected several times per 

day from any areas of ponded water. 

 

All bottled water samples were sealed and stored in a non-refrigerated, cool and dry location. The 

soil samples were double-bagged and frozen until it was possible to extract the soil water from 

them. We extracted the soil water by high pressure mechanical squeezing (Orlowski et al., 2016). 

The isotopic compositions of the liquid water samples were then determined by analysis on a 

Liquid Water Isotope Analyzer (Los Gatos Research) and reported in parts per thousand (‰) 

relative to VSMOW (Vienna Standard Mean Ocean Water), a standard of known composition. 
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4.4.4 Spatial patterns mapping 

For all sets of data for each spatially-measured variable (surface soil water content, depth of thawed 

layer, and snow cover ablation), we interpolated the data points using kriging (Sarma, 2009) to 

provide gridded data for each variable at exactly the same points. We used ordinary point kriging 

with a linear variogram model to weight the surrounding measured values to derive a predicted 

value for an unmeasured location. We used the cross-validation method using all measured values 

to determine the quality of the gridded data. Maps were generated from the kriged datasets using 

the software Surfer® (Golden Software). 

 

4.5 Results 

4.5.1 Digital topographic analysis 

To understand the potential effects of topographic features (Figure 4.2a) on surface runoff from 

Hillslope 2, we assessed the flow accumulation (FA) metric as an indicator of flowpath 

organization. We then combined this metric with the downslope index (DI) as an indicator of 

potential fill and spill locations across the hillslope. FA exhibits a power law distribution, whereby 

a histogram of the data extends from 0 to 4000 m2 with the majority of the cells having a FA < 20 

m2 and a long tail of data from 20-4000 m2. We truncated the mapping of FA to < 100 m2. The FA 

map (Figure 4.2b) shows that individual flowpaths with higher FA are distributed across the whole 

hillslope, including in the upper reaches of the plot. There are five flowpath systems, all draining 

in a northwest direction towards the outlet of the hillslope. Two drain the lower third (2.5% slope) 

of the hillslope, and three drain the upper two-thirds (1% slope) of the hillslope. Flowpath system 

1 is connected to the outlet by a thin flowpath on the upper west (left) border of the hillslope. 

However, flowpath systems 2, 3, 4, and 5 do not appear to be connected directly to the outlet: all 

four are separated to some extent from the outlet by cells of lower (lighter) flow accumulation, and 

also by the flowpath systems downslope (flowpath system 5 drains through 3 and then 1; while 

flowpath system 4 drains through 2 and then 1). Any surface ponding or retention of water would 

occur at the mouths of these individual systems. We calculated the area and volume of depressions 

on the hillslopes using the “Fill” tool in ArcGIS. This highlighted five areas of ponding, in line 

with the above analysis, at the mouths of the individual drainage systems (Table 4.1).  
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The raised grass berms also influenced water ponding at the mouths of flowpath systems 2, 3, and 

5. The western raised grass border impedes flow in the north-westerly direction from flowpath 

systems 3 and 5, causing it to pond between the raised border and a natural topographic sill on the 

hillslope. Downslope of the mouths of flowpath systems 3 and 5, the western raised grass border 

acts as a funnel for runoff down the western side. Similarly, the northern raised grass border 

impedes flow in the northerly direction from flowpath system 2, and also acts as a conduit for flow 

towards the hillslope outlet along the northern edge of the hillslope. 

 

The DI map (Figure 4.2c) indicates that the majority of the hillslope, most notably the upper two-

thirds, has a low DI and therefore a low drainage efficiency. An area of high DIs and therefore 

high drainage efficiency exists in the lower third of the hillslope and reflects the valley-like surface 

topography (Figure 4.2a). Combining FA and DI indicates the balance of fill and spill across the 

hillslope (Figure 4.2d). 29.8% of the hillslope is designated as either a fill location or a spill 

location, according to the thresholds of FA and DI that we used. The majority (57.4%) of the 

designated cells are fill locations, with these concentrated in the upper two-thirds of the hillslope. 

The spill locations (42.6%) are primarily in the lower third of the hillslope, but there are a limited 

number of small spill locations in the upper third of the plot also. Fill locations appear to be 

relatively well connected to one another, especially in the central third of the hillslope, and are fed 

by the small numbers of spill locations further upslope. The fill locations are set back from the 

 

Figure 4.2 (previous page) Maps of (A) the DEM of the surface topography, as in Figure 4.1; (B) flow 
accumulation (FA), with five sub-hillslope flowpath systems identified (drainage systems 1-5); (C) downslope 
index (DI); and (D) fill and spill locations, where fill locations are defined as having FA>10 and DI<0.015, and 
spill locations are defined as having FA>10 and DI>0.015. 
 

 

Table 4.1 Area, depth (mean and maximum), and volume of depressions at the mouths of each flowpath system. 
 

Location of 
depression 

Area (m2) 
Depth (m) 

Volume (m3) 
Mean Maximum 

Mouth of System 1 18 0.0775 0.128 1.40 
Mouth of System 2 54 0.0328 0.0564 1.77 
Mouth of System 3 27 0.0716 0.113 1.93 
Mouth of System 4 45 0.0210 0.0499 0.943 
Mouth of System 5 324 0.0593 0.140 19.2 
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hillslope outlet, with a broad swath of spill locations in the intervening area. This suggests that 

once the fill locations – in the upper two-thirds – spill, due to water input exceeding the surface 

detention storage capacity, the released water can be efficiently routed through the spill locations 

– over the lower third – and to the hillslope outlet. Not captured by the DEM or topographic 

analysis are the micro-topographic features – ridges and furrows (with one ridge-and-furrow pair 

being c. 5-15 cm in elevation, and 30-50 cm wide) – from seeding in the previous growing season. 

 

4.5.2 Hydrometric analysis 

Snowmelt, snow cover, and runoff 

The 2014 melt season was characterized by high total winter snowfall (77.5 mm SWE, between 

1st October 2013 and 31st March 2014), and large snow cover (78 mm SWE), and a low-medium 

runoff amount (25 mm). The 78 mm SWE of the snow cover on Hillslope 2 melted over 12 days, 

between 9th March 2014 and 20th March 2014, with peak snowmelt on 16th March (Figure 4.3a). 

Runoff from the hillslope began on 12th March and finished on 20th March, with peak runoff 

occurring, like snowmelt, on 16th March (Figure 4.3a,b). The peak runoff rate on 16th March was 

11.6 times greater than the peak runoff rate on the previous day. The instantaneous, threshold 

increase in runoff after hillslope-wide connectivity was achieved at 15:00 on 16th March was 7.2 

times greater than just before connectivity was achieved (13:45 on 16th March). There were four 

stages (Figure 4.3) in the evolution of meltwater inputs to the soil surface and runoff outputs from 

the hillslope: Stage 1 (9th – 12th March): initial snowmelt, but no resulting hillslope runoff; Stage 

2 (13th – 15th March): continued snowmelt, with hillslope runoff generated; Stage 3 (16th March): 

high volumes of snowmelt and high runoff; Stage 4 (17th – 19th March): low snowmelt and small 

amounts of runoff. 

 

The spatial patterns of snow cover ablation (Figure 4.3c) indicate that snowmelt occurred unevenly 

over the hillslope, with concentrated patches of snowmelt that changed in location over time. Daily 

snow cover ablation ranged between 0-70 mm over the hillslope. Sub-daily measurements at 

various snowmelt lysimeters across the hillslope showed that, at its peak on the afternoon of 16th 

March,  snowmelt occurred at  1.17-8.21  mm hr-1.  We observed water ponding in the bottoms of  
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Figure 4.3 For the 2014 spring snowmelt season on Hillslope 2: (A) daily snowmelt and runoff volumes and (B) 
runoff rates, recorded at 15-minute intervals. Four stages (1-4) are identified in the snowmelt-runoff, referred to 
in the text. Maps relate to each of these stages: (C) snowmelt over the hillslope for each stage; and (D) ponded 
water locations during each stage overlaid on fill and spill locations and the flow accumulation map. 
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the micro-topographic furrows at the soil-snow interface, with flow along these features in the 

downslope direction. Maximum water movement was in the mid-afternoons, when some snowmelt 

lysimeters would become overwhelmed (and subsequently abandoned) by water flowing in from 

upslope. From 11th – 16th March, larger areas of ponded water gradually accumulated along the 

western edge of the hillslope (Figure 4.3d) (at the mouth of flowpath system 3 and 5), at the top of 

the valley-like system (at the mouth of flowpath system 4), and at the northern edge of the hillslope 

(at the mouth of flowpath system 2). Ponded water was at its maximum on 16th March, and 

decreased in extent in the following days. 

 

Figure 4.4 shows the snow cover ablation and development of ponded water on the western edge 

of the hillslope. Snow covered area remained high over the hillslopes throughout the majority of 

the melt season, falling gradually from 100% on 11th March to 90.7% on 15th March, to 75.8% on 

16th March (the day of peak melt and runoff), and then rapidly decreasing to 20.5% on 20th March. 

After the 20th March, a small amount of snow remained on the hillslope at the northern edge of the 

hillslope, which took another c. 6 days to clear.  

 

 

Figure 4.4 Time-lapse photographs from the west side of Hillslope 2, facing northeast, showing the snow cover 
ablation and development of ponded water at the mouth of flowpath system 5. 
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Thawed layer depth 

The ground was frozen at the soil surface (i.e. no thawed layer at the soil surface) homogenously 

across the hillslope, in the initial melt days, and during peak melt and peak runoff (16th March) 

(Figure 4.5a). Following peak runoff, the thawed layer deepened rapidly and unevenly (Figure 

4.5b). On 18th March (two days following peak melt and runoff), the ground had thawed to depths 

of 15-20 cm below the soil surface, but only in isolated patches across the hillslope: most notably, 

on the upland at the south end of the hillslope, and on a southwest-facing slope in the valley-like 

feature at the north end of the hillslope. The ground remained frozen to the soil surface where 

snow cover still remained. 

 

Soil water content 

The 2014 melt season was preceded by a dry fall in 2013. On average, the soil water content in the 

surface 0-6 cm layer of Hillslope 2 was 0.15 (from the 24th October 2013 survey). We found that 

surface soil water content on 24th October 2013 (Figure 4.6a) showed relatively limited spatial 

variability, which is typical of all soil water content surveys conducted (Figure 4.6b). We can 

therefore assume that the soil water content at the onset of snowmelt was relatively spatially 

homogeneous. Further, because of long soil moisture memory in this frozen, dormant system 

(Coles et al., 2016; Chapter 3), the pre-freeze up soil water content (Figure 4.6a) is likely 

representative of soil water content at the onset of the 2014 snowmelt season.  

 

Soil water content generally increased following snowmelt under all four main landscape units 

(Profiles 1-4) (Table 4.2). The soil water content change was highly spatially variable. The soil 

profile situated in the shallow sloping, upland region of the hillslope (Profile 1) had the smallest 

increase in soil water content, with a net increase of 8.67 mm added to the profile (with gains close 

to the soil surface, but losses at depth). This profile location is representative of the majority of the 

hillslope. By comparison, soil profiles situated in the depressions (Profile 2 and 3, at the mouths 

of flowpath systems 5 and 4, respectively) saw net increases of 80.3 mm and 121 mm, respectively. 

Finally, the soil profile on the slope (Figure 4.4), in the valley-like topography saw a net increase 
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of 148 mm of soil water. Weighting the soil profile’s water content change by their representative 

area suggests a hillslope-wide recharge of soil water (over the 0-90 cm depth profile) of 25 mm. 

 

 

Figure 4.5 (A) Spatial map of thawed layer depth on the day of peak snowmelt and peak runoff (16th March 
2014); and (B) frequency distributions of all thawed layer depth surveys conducted, with 16th March 2014 survey 
highlighted in red. Note that the colour scale of the spatial map (A) is the same extent as the x-axis of the 
frequency distributions in (B).  
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4.5.3 Isotope analysis 

Stable water isotope analysis shows that the 𝛿𝛿18O and 𝛿𝛿2H of runoff water was largely temporally-

constant (on average, runoff water 𝛿𝛿18O was -21.7 ± 0.742‰, and 𝛿𝛿2H was -169 ± 4.56‰), but 

 

Figure 4.6 (A) Spatial map of pre-freeze up soil surface water content (0-6 cm), measured on 24th October 2013; 
and (B) frequency distributions of all soil water content surveys conducted, with 24th October 2013 survey 
highlighted in red. Note that the colour scale of the spatial map (A) is the same extent as the x-axis of the 
frequency distributions in (B). 
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with gradual enrichment through the melt season (Figure 4.7). The isotope signatures of the 

snowmelt water (on average, snowmelt water 𝛿𝛿18O was -22.3 ± 2.10‰, and 𝛿𝛿2H was -171 ± 

15.4‰) bounded the runoff water, albeit with a high amount of variability. By comparison, the 

pre-event soil water was much more enriched than the runoff water (on average, soil water 𝛿𝛿18O 

was -14.6 ± 1.97‰, and 𝛿𝛿2H was -128 ± 11.0‰). Two-component hydrograph separation using 

the mean 𝛿𝛿18O or mean 𝛿𝛿2H soil water values for the pre-event end member, and the mean 𝛿𝛿18O or 

mean 𝛿𝛿2H snowmelt values from each lysimeter for the event end member, showed that the runoff 

water is primarily composed of ‘new’ snowmelt water, with very little mixing with the pre-event 

‘old’ soil water. Regardless of the isotope (𝛿𝛿18O or 𝛿𝛿2H) or which lysimeter we analyzed, the 

hydrograph separation showed that the runoff water was composed of 100% new snowmelt water 

in the initial stages of the snowmelt season. On the day of peak runoff (16th March), runoff water 

was composed of on average 93.9% event snowmelt water. Towards the end of the snowmelt and 

Table 4.2 Pre-freeze (24th October 2013) and post-melt (24th April 2014) soil water contents at five depths at four 
key landscape units. 
 

Soil profile 
Depth 

interval (cm) 

Pre-freeze soil water content Post-melt soil water content Change in water 
content (mm) vwc mm vwc mm 

1 (upland) 0-6 0.134 8.04 0.182 10.9 2.88 
 6-15 0.220 19.8 0.261 23.5 3.69 
 15-30 0.167 25.1 0.193 29.0 3.90 
 30-60 0.110 33.0 0.109 32.7 -0.300 
 60-90 0.166 49.8 0.161 48.3 -1.50 
2 (depression) 0-6 0.236 14.2 0.163 9.78 -4.38 
 6-15 0.242 21.8 0.310 27.9 6.12 
 15-30 0.224 33.6 0.316 47.4 13.8 
 30-60 0.143 42.9 0.268 80.4 37.5 
 60-90 0.144 43.2 0.235 70.5 27.3 
3 (depression) 0-6 0.199 11.9 0.209 12.5 0.600 
 6-15 0.207 18.6 0.316 28.4 9.81 
 15-30 0.177 26.6 0.387 58.1 31.5 
 30-60 0.150 45.0 0.319 95.7 50.7 
 60-90 0.184 55.2 0.279 83.7 28.5 
4 (slope) 0-6 0.196 11.8 0.266 16.0 4.20 

 6-15 0.229 20.6 0.316 28.4 7.83 
 15-30 0.158 23.7 0.339 50.9 27.2 
 30-60 0.063 18.9 0.293 87.9 69.0 
 60-90 0.070 21.0 0.202 60.6 39.6 
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runoff season, on 19th March, this value had declined to on average 67.6%. Through the entire 

season, runoff water was approximately 95.1% event snowmelt water and 4.9% pre-event soil 

water. 

 

4.6 Discussion 

Our results suggest that a mechanism analogous to fill and spill explains the generation of 

snowmelt-runoff over frozen ground at our site. Our stable isotope analysis of meltwater confirmed 

that runoff water was ‘event’ snowmelt water with limited mixing with pre-event soil water. Unlike 

on steep terrain (Eriksson et al., 2013), lateral flow through the flat-lying snowpack at our site was 

unimportant. The key factor generating fill and spill at our site is the large contrast between the 

low infiltration rates of the uniformly and fully frozen soil surface and the relatively fast rates of 

delivery of snowmelt water to the soil surface. This was enough to generate ribbons and ponds of 

water beneath the snow at the soil surface that accumulated in micro- and meso-topographic 

depressions, and then spilled downslope. Our observations of ponded water and flowpaths were 

consistent with mapped predictions of fill and spill activity from high resolution digital 

topographic analysis. We enunciate these features in the following sections. 

 

4.6.1 Micro-, meso-, and macro-scale topographic controls on fill and spill 

Thawed layer depth across the slope showed uniformly frozen soil (to the soil surface) in the days 

leading up to, and during peak runoff. Frozen ground infiltration capacities have been observed at 

 

Figure 4.7 Time series of stable isotopes (for 𝛿𝛿 2H) of runoff, snowmelt, and ponded water through the snowmelt 
season. Pre-event 𝛿𝛿 2H soil water values measured on 20/02/14 (not shown) range between -112‰ and -140‰. 
 



106 
 

this site to range between 0.09 – 2.57 mm hr-1, with a median of 0.33 mm hr-1 (reported in the long 

terms analysis of Coles et al., 2017; Chapter 2). Snowmelt rates during peak snowmelt in 2014 

were 1.17 – 8.21 mm hr-1. The relatively high rates of delivery of snowmelt water to the soil surface 

largely exceeded the infiltration capacity of the frozen soil by a magnitude greater than 101, which 

is the hypothetical minimum contrast between bedrock and soil permeabilities required to generate 

runoff via the fill and spill mechanism at the soil-bedrock interface in Hopp and McDonnell (2009). 

As such, we had an impeding layer contrast that was apparently sufficient for the retention and 

accumulation of water on the soil surface.  

 

The concavity in the monitored hillslope is a macro-topographic feature (>10,000 m2) of the site. 

The concavity appears to affect the balance of fill and spill: the relatively steeper 2.5% slope 

section in the lower third of the hillslope was a dominant spill location. The flatter 1% slope section 

in the upper two-thirds was a dominant fill location. Our terrain analysis indicated a balanced fill-

spill regime with 57.4% of the hillslope characterized by ‘fill’ locations, and 42.6% of the hillslope 

characterized by spill locations. At finer scales, the meso-topographic features (100 – 10,000 m2) 

revealed five flowpath systems in the flow accumulation (FA) mapping. Flowpath systems 1 and 

2 drained the lower third of the hillslope; flowpath systems 3, 4, and 5 drained the upper two-

thirds. These latter flowpath systems terminated at their downslope edges by slight barriers or 

‘lips’ in the surface topography. These lips were enough to create a backwater effect and to create 

a fill region. We observed that the lips must be overcome for the upper region of the hillslope to 

connect to the lower, spill region of the hillslope and thus the hillslope outlet. The FA, DI, and fill 

and spill maps (Figure 4.2), where these lips are visual, are useful tools to interpret the mechanisms 

behind ponding and threshold-delivery of water. Important, though, is that each cell of these maps 

is solely an indicator of the local topographic surface in the near-horizontal distance. Additional 

research could seek to incorporate a metric for the likelihood of flow pathways being disconnected 

by a fill location created by a sill. Possible approaches to this could be to experiment with increased 

values of V (DI=V/H), which would then integrate topography further downslope from the starting 

point, or to use a metric of flowpath distance to the hillslope outlet and the fill locations it must 

overcome. 
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Nested within these macro- and meso-scale topographic systems, the micro-topographic features 

(< 100 m2) also exhibited a flow control during meltwater runoff. These small undulations were 

observable within the 10 x 10 m measurement grid. Most notably, these were ridges and furrows 

left behind from tractor-based seeding in the previous summer. While these micro-scale features 

were not picked up by the 2 m DEM, they were an important localized feature in the initial routing 

and retention of melt water. Melt water pooled in the furrows and were gradually routed downslope 

in the micro-scale furrows within each of the five flowpath systems. In flowpath systems 1 and 2, 

fill and spill occurred mainly within the furrows. In flowpath systems 3, 4, and 5, however, the 

routing of water via these furrows and small undulations was overtopped by ponded water that 

developed and grew in volume upslope from the lips, after which these barriers were overcome 

and water could spill over and coalesce at the hillslope outlet. Overall, the hillslope exhibited 

nested filling and macro-spilling. 

 

Our finding that topography dictates hillslope-scale connectivity and snowmelt-runoff generation 

over frozen ground is in contrast to Devito et al. (2005). They examined a boreal plain site with 

more surficial geology variation, but importantly with similar low relief and deep glaciated 

substrate as the Swift Current hillslopes. Devito et al. (2005) dismissed the importance of surface 

topography. The key difference, though, is that their evaluation was for a summer period when the 

ground was unfrozen and the deep, high-infiltrability, mineral soils promoted vertical flow 

infiltration. Indeed, an analysis of summer rainfall-runoff events at our site would support the 

suggestion that topography is unimportant, since all water infiltrates except in exceptional storms 

(only 28 years of the 52-year record have had summer storms generate runoff, as reported by Coles 

et al., 2017; Chapter 2). But critically, topography is episodically important during meltwater 

runoff on frozen ground as shown in our work. During melt onto frozen ground, topographic 

features acted as both a conduit for meltwater runoff (enabled flowpath formation and connectivity 

once threshold surface detention levels were exceeded) and a loss mechanism (enabled ponded 

water to form, and then heightened infiltration and soil water recharge under depressions when the 

ground started to thaw). 
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4.6.2 Fill and spill over shallow, frozen hillslopes in relation to other environments 

The hydrologic response on Hillslope 2 of the Swift Current hillslopes reflected the fill and spill 

mechanism already observed in many other environments (Spence and Woo, 2003; Leibowitz and 

Vining, 2003; Tromp-van Meerveld and McDonnell, 2006; Wright et al., 2009; Graham and 

McDonnell, 2010; Appels et al., 2011; Du et al., 2016; Jackson et al., 2016; Leibowitz et al., 

2016). The fill and spill mechanism was first introduced in a subarctic soil-filled valley with 

spatially-variable subsurface storage capacities, due to varying soil depths to bedrock, that had to 

fill up in order to enable surface runoff (Spence and Woo, 2003). The definition of the mechanism 

was further developed following analogous observations that showed depressions in subsurface or 

surface topography must fill up to a certain threshold (the downslope sill of the depression) before 

water can spill downslope (e.g. Tromp-van Meerveld and McDonnell, 2006; Leibowitz et al., 

2016). These fill and spill observations fall within a storage-excess framework of water delivery 

(Spence, 2010; Sayama et al., 2011; McDonnell, 2013). The observations presented in this paper 

are fundamentally the same as those observations of fill and spill of depressions across an impeding 

layer, and of a storage-excess delivery of runoff. 

 

The particular fill and spill mechanism described here is different to most previous observations, 

primarily because it is snowmelt over a frozen soil surface. This environment sees months of runoff 

inactivity with no whole-hillslope connectivity, and then 1-2 weeks where fill and spill over frozen 

ground delivers the large annual runoff pulse. This short, acute period of runoff occurs with the 

concurrent conditions of a frozen soil surface and high volumes of liquid water, as also described 

in Williams et al. (2013) for intermittent surface runoff connectivity over frozen peatland. This is 

unlike the humid, temperate regions where bedrock fill and spill is primed and relatively frequently 

produces subsurface stormflow (Tromp-van Meerveld and McDonnell, 2006; Graham and 

McDonnell, 2010; Du et al., 2016; Jackson et al., 2016). 

 

The scale at which we have observed the fill and spill mechanism is different to most previous 

studies. Observations of this mechanism have typically been at the plot or trench scale (e.g. Tromp-

van Meerveld and McDonnell, 2006; Wright et al., 2009; Graham and McDonnell, 2010; Du et 

al., 2016), at the small catchment-scale (Spence and Woo, 2003), and at the landscape scale (e.g. 
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the connected wetlands of Leibowitz et al., 2016). The nested filling and spilling across scales at 

our hillslope site is essentially the next scale down from the wetland filling and spilling described 

for the prairie pothole region of the northern Great Plains (Leibowitz and Vining, 2003; Shaw et 

al., 2012; Leibowitz et al., 2016). The hillslopes of the northern Great Plains deliver water to these 

wetlands, whose connectivity is in turn also dictated by fill and spill, albeit a fill and spill 

mechanism that is influenced and mediated by additional factors such as groundwater-surface 

water interactions (Brannen et al., 2015) and storage memory (Shook and Pomeroy, 2011). 

 

Our study site is a low gradient end member (slope 1-2.5%) in the fill and spill literature. Our 

analysis indicated a fairly balanced fill-spill regime with 57.4% of the hillslope characterized by 

‘fill’ locations, and 42.6% of the hillslope characterized by ‘spill’ locations. This is in contrast to 

previous studies with slightly steeper (yet still relatively shallow in the literature) slopes (a virtual 

7.2% slope in Hopp and McDonnell, 2009; and the measured 6-12% slopes in Du et al., 2016) that 

exhibited fill-dominated regimes, which was attributed to their ‘flatness’. As slope angle decreases, 

hillslopes appear to transition from a spill-dominated (on steep slopes) to a fill-spill balance (on 

medium slopes) and finally to a fill-dominated system (on shallow slopes) (Hopp and McDonnell, 

2009; Reaney et al., 2014). Our fill-spill balance is more typical of medium-angled slopes. We 

attribute the difference between our fill-spill balance and these other low-angle studies’ fill-

dominated regimes to the difference in overall hillslope form. While these other studies’ hillslopes 

were largely planar, ours is concave. The downslope barriers at the edge of the concave cross-

section created the surface depressions that retained water and dictated upslope fill locations. 

Downslope of these barriers, any runoff at a point was able to flow unimpeded to the outlet. 

 

Most prior fill and spill observations at the soil-bedrock or soil-argillic interface have reported 

connectivity as discrete flow networks – almost channel like in their flow architecture (Tromp-van 

Meerveld and McDonnell, 2006; Hopp and McDonnell, 2009; Graham and McDonnell, 2010; 

Williams et al, 2013). By contrast, our fill and spill connectivity across this frozen hillslope 

occurred as a set of more amorphous ponds that intermittently and individually connected to the 

hillslope outlet (analogous to wetland to wetland connectivity on the Prairies; Leibowitz and 

Vining, 2003). These areas of ponded water exhibited heightened infiltration and soil water 
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recharge beyond that exhibited by the general, gently-sloping hillslope area. This is akin to 

enhanced groundwater recharge observed under bedrock depressions at the soil-bedrock interface 

(Appels et al., 2015).   

 

Finally, an important difference between our findings and those at most other sites is the spatial 

variability of the precipitation input. The high spatial and temporal variability in snowmelt at our 

site is in contrast to rainfall over a similar small area, which would likely be relatively spatially 

constant and therefore its input distribution not important for rainfall-runoff connectivity 

modeling. The four distinct stages in the evolution of meltwater inputs to the soil surface and 

runoff outputs from the hillslope can be explained by the pattern, rates, and interaction of snowmelt 

on the frozen, reduced-infiltrability soil, and the pattern and layout of the micro-, meso-, and 

macro-topographic features: Stage 1 (9th – 12th March): the first amounts of snowmelt gradually 

accumulated in the furrows across the hillslope, with no resulting hillslope runoff. Stage 2 (13th – 

15th March): snowmelt was continuing to accumulate in the furrows and be routed through each of 

the five flowpath systems. In flowpath systems 1 and 2, snowmelt water was then able to flow 

uninterrupted to the outlet, which generated the first hillslope runoff and low hillslope runoff 

ratios. Meanwhile, ponded water was accumulating behind the downslope barriers at the mouths 

of flowpath systems 3, 4, and 5. Stage 3 (16th March): high volumes of snowmelt caused the water 

ponding at the mouths of flowpath systems 3, 4, and 5 to reach capacity and spill over their 

downslope barriers. This connected the upper region of the hillslope with the lower region, and 

created continuous flowpaths connecting all five flowpath systems to the hillslope outlet with a 

threshold-like increase in runoff and high runoff ratios. Melt rates were highest in the upper region 

of the hillslope, which ensured the downslope depressions were continually fed, their barriers 

exceeded, and hillslope-wide connectivity maintained for 3-4 hours. Following this, the ponded 

water fell below the downslope barriers and disconnected the upper two-thirds of the hillslope 

from the outlet. Stage 4 (17th March onwards): low runoff was from slower, prolonged snowmelt, 

routed via micro-topography to the hillslope outlet from the remaining snow cover in the sheltered 

coulees over the lower third of the hillslope. The ground rapidly began to thaw from 17th March, 

enabling the remaining ponded water in depressions to readily infiltrate and contribute to soil water 

recharge. Overall, these four stages exhibited a dynamic contributing area, which is a feature of 

connectivity and fill and spill (Martin et al., 1983; Shaw et al., 2011). The contributing area was 
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largely restricted to the lower third of the hillslope. It briefly extended to the entire hillslope on 

16th March when the ponded water was connected to the hillslope outlet, before contracting back 

again to the lower region of the hillslope.   

 

4.6.3 Soil moisture based metrics of connectivity perform poorly for frozen hillslopes 

Soil water content is critically important for soil infiltrability and hillslope runoff generally (e.g. 

Horton, 1933), and over frozen ground on the Prairies (Granger et al., 1984; Zhao and Gray, 1999) 

and at this site in particular (Coles et al., 2016; Chapter 3). Despite this, we suggest that, because 

the soil water content showed very little spatial variability, the spatial patterning of soil water 

content likely had little effect on the spatial variation in ponded water development and flowpath 

distribution. The measured mean fall surface soil water content for the hillslope was 0.15. If the 

soil was on average much drier at the time of freezing, we likely would have seen greater hillslope-

wide infiltration, more time for surface depressions to fill and then spill (if at all), and a delayed 

and damped threshold-delivery of water when connectivity was achieved. The opposite would 

have been true for a much wetter hillslope. Coles et al. (2016) (Chapter 3) saw some evidence of 

this in the 52-year dataset at the Swift Current hillslopes where runoff ratios were generally higher 

over wetter soils (likely a result of reduced infiltration). However, this was mediated by the volume 

of surface depression storage such that runoff ratios were typically lower when there was a high 

surface depression storage even when the soils were wet (Coles et al., 2016; Chapter 3). 

 

Metrics that use the spatial arrangement of hillslope or catchment soil moisture as indicators of 

connectivity – because of the way stores of water fill up to generate hydrological connections 

(Tetzlaff et al., 2011; Bracken et al., 2013) – are likely not helpful for these frozen soils where 

there is little spatial variation over the hillslope. We also observed that, for what little measured 

variability there was in soil water content, it was not related to topographic position. This could be 

attributed to the relatively low relief, and the influence of evapotranspiration in reducing the 

variability across the hillslope. At a similar prairie site, Peterson (2016) also observed that soil 

water content was not correlated with topographic relief. They also noted that soil water content 

variability was much higher under wetter conditions, yet still not related to topographic position 

(Peterson, 2016). Soil water content might have an effect on ponded water development and 
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flowpath formation if a more undulating site froze very soon after rainfall (where side slopes might 

freeze dry and swales might freeze wet). We have not observed such effects, however. Analyses 

that use terrain to infer soil moisture and by extension flowpaths and connectivity (e.g. Beven and 

Kirkby, 1979; Lane et al., 2009) may hold some promise in the determination of frozen ground 

flowpaths, but likely only due to structural routing of the water, rather than any topographically-

induced differences in soil moisture. For example, our testing of the topographic wetness index 

(TWI; Beven and Kirkby, 1979): 

 

TWI =  𝑙𝑙𝑙𝑙(𝑎𝑎/ 𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏)       (Equation 4.2) 

 

where 𝑎𝑎 is the flow accumulation area per unit of contour width, and 𝑏𝑏 is the local topographic 

gradient (Figure 4.8), unsurprisingly produced results very similar to the FA map (Figure 4.2b). 

The TWI metric does not incorporate any metric for downslope impedance, which we have shown 

here – with the use of the downslope index – to be an important component in the routing of flow 

and connectivity via fill and spill. 

 

Previous work at this site has shown that a lumped approach can indeed be fruitful for predicting 

the seasonal runoff response (e.g. the decision tree model of Coles et al., 2016; Chapter 3). We 

have shown here, though, that in order to understand and predict sub-seasonal time-scale (daily, 

hourly or weekly) runoff responses then distributed topographic data, distributed snowmelt data, 

frozen soil infiltration capacity data, and hillslope-average soil water content data are needed. 

Having determined that fill and spill is the mechanism that dictates hillslope runoff response for 

snowmelt over frozen ground, and given the underlying phenomenological similarities in fill and 

spill runoff generation processes at different partitioning surfaces (McDonnell, 2013; Ameli et al., 

2015), then we can also look to existing fill and spill modeling approaches, just as Ameli et al. 

(2015) used an overland flow model to predict hillslope-scale subsurface flow. Existing fill and 

spill-like approaches have the potential to greatly improve predictions of wetland recharge, 

flooding, and water availability, for the dominant runoff-producing event of the year on the 

northern Great Plains. Appels et al. (2011) and Chu et al. (2013) developed numerical models to 



113 
 

explore the effects of the spatial organization of meso- and micro-topographic features on flowpath 

convergence, connectivity, and runoff. Interestingly, these plot- and hillslope-scale ponding and 

redistribution models are numerically very similar (save for their treatments of infiltration) to a 

physically-based landscape-scale model devised by Shook et al. (2013) to simulate surface storage 

dynamics in prairie wetlands that have been shown to connect and disconnect via the fill and spill 

mechanism (Leibowitz and Vining, 2003; Shaw et al., 2012; Leibowitz et al., 2016). Such 

approaches might therefore be adopted for the modeling of hillslope runoff response for snowmelt 

over frozen ground. 

 

 

Figure 4.8 Spatial map of the topographic wetness index (TWI). 
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4.7 Conclusions 

We examined snowmelt-runoff processes for the 2014 snowmelt season at a 5 ha research hillslope 

site on the northern Great Plains. The fill and spill mechanism appears to explain the generation 

of snowmelt-runoff over frozen ground. Our main evidence for fill and spill is that: 1) the contrast 

between the slow infiltration rates of the uniformly frozen soil surface and the relatively fast rates 

of delivery of snowmelt water to the soil surface generated water beneath the snow at the soil 

surface that accumulated in surface depressions; 2) stable isotope analysis of water showed that 

runoff water was event snowmelt water with limited mixing with pre-event soil water; and 3) 

observations of ponded water and flowpaths matched our predictions of fill and spill activity from 

digital topographic analyses that combined flow accumulation and downslope indices. We 

observed nested filling at the micro- and meso-scale, followed by macro-scale spilling, where large 

patches of ponded water coalesced to drive a threshold-like increase in hillslope runoff. The 

identification of fill and spill as a mechanism to explain meltwater runoff from shallow, frozen 

hillslopes supports similar findings from peat-dominated permafrost sites in northern Canada 

where the frost table acts as an impeding layer, and has widespread implications for other areas of 

the northern Great Plains and similar low-angled, snowmelt-dominated, frozen regions. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

The basic research questions explored through my PhD have centred on achieving greater 

understanding of how runoff is generated over gently-sloping, seasonally-frozen hillslopes. The 

economic prosperity of the Canadian Prairies and northern Great Plains of North America is 

heavily dependent on water and its partitioning into different components of the landscape (e.g. 

soil water, streamflow, wetlands, and groundwater). In this region, snowmelt on frozen ground is 

the major runoff-producing event of the year. However, this process is unstable and still poorly 

understood. Changing climate impacts, multiple interacting controls, and nonlinear responses all 

challenge predictability. Therefore, there is a need to integrate advances in process and field-based 

understanding (e.g. connectivity and spatial patterns analysis) with the use of long-term datasets 

to test and quantify change under variable hydro-meteorology. 

 

Prior to my PhD research, there were no long-term climate-runoff analyses at the hillslope scale 

on the Great Plains, so the effects of observed precipitation trends on hillslope-scale runoff and 

water availability were unknown. I addressed this (Chapter 2, Coles et al., 2017, in review for 

Journal of Hydrology) by analyzing a 52-year hillslope-scale dataset from three 5 ha agricultural 

hillslopes to determine whether or not there have been any effects of recent (1962-2013) climatic 

changes on the hillslope-scale runoff regime. I found that hillslope-scale snowmelt-runoff and 

spring soil water amounts have indeed decreased in response to winter snowfall decreases. By 

comparison, interestingly, rainfall-runoff has shown no response to increases in rainfall or shifts 

to more multi-day rain events. 

 

I hypothesize that this seasonal difference in the runoff response is due to differences in soil 

infiltrability and soil storage modulation between winter and summer. In the summer, the ground 

is unfrozen and the soil has a high infiltrability, thereby buffering the runoff response to rainfall. 
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Although the nature and total amount of rainfall has changed over these 52 years, the frequency of 

high-intensity rainfall has remained similar. Consequently, the change in rainfall regime has not 

yet been enough to trigger a related change in the runoff regime. Conversely, during the spring 

freshet, frozen ground limits infiltration which means that runoff responses via overland flow more 

closely mirror the trends in snowfall and snowmelt. These findings are counter to climate-runoff 

relationships observed at the catchment scale on the northern Great Plains (Dumanski et al., 2015). 

This is likely a result of landscape alteration, most notably drainage, at that scale. This new 

hillslope-scale information is useful for future planning of water availability for dryland crop 

production on the northern Great Plains – where hillslope runoff trends are important for on-farm 

water supplies, and where declining runoff and declining spring soil water content can be related 

directly to economic costs for agriculture. 

 

Having established the general trends and factors in climate-runoff responses over the 52-year 

period, my data mining research (Chapter 3, Coles et al., 2016, Hydrology and Earth System 

Sciences Discussions) sought to unravel the multiple interacting process controls on snowmelt-

runoff, the nonlinearities and feedbacks between them, and their condition-dependent nature. This 

understanding is needed for model development, spatial extrapolation, and runoff classification 

schemes (Cammeraat, 2002; Uchida et al., 2005; Barthold and Woods, 2015). This is not possible 

through the standard short-term experiments or single-season studies where nonlinearities and 

interactions between various process controls typically are not observable. My data mining 

research made use of the 52-year dataset and revealed the hierarchical importance of different 

runoff controls. The nonlinear relationship between total seasonal snowfall and total seasonal 

runoff was largely controlled by six factors (in descending order of importance): total snowfall, 

snow cover amount, fall soil surface water content, melt rate, melt season length, and fall soil 

profile water content. Together these worked to control the fraction of water that infiltrated frozen 

and thawing ground, and explained overall 70% of the runoff ratio variance over the 52-year 

record. 

 

Chapter 3 showed that the hierarchy of controls was condition-dependent. When the soil in the 

previous fall had been dry, runoff ratios were not predictable based upon precipitation amounts or 
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snow cover water equivalent. Further, while soil water content was the most important control on 

runoff ratios under conditions of high snow cover, it was a relatively unimportant control under 

conditions of low snow cover. This might be due to mid-winter ablation events driving a change 

in soil water content. Despite these events, the system generally showed significant memory due 

to system dormancy over winter. A commonly-used method of predicting infiltration into frozen 

soil (Granger et al., 1984) explained only 14% of the variance in runoff ratio, which has 

implications for its inclusions in hydrological modelling. Finally, the hierarchy of controls could 

be used to guide cost-effective and useful field measurements. 

 

Chapters 2 and 3 used long-term, lumped-hillslope data to show the importance of infiltration in 

dictating climate-runoff trends and seasonal runoff response. However, high resolution spatial and 

temporal data that illuminate within-event thresholds and patterns were crucial for driving process 

understanding. I therefore embarked on a field-based assessment of the factors controlling the 

patterns and mechanisms of runoff connectivity over frozen ground (Chapter 4, Coles and 

McDonnell, 2017, for submission to Hydrological Processes). I measured the spatial patterns of 

snow cover, snow water equivalent, soil water content, frozen ground, and topography for the 2014 

melt season. I found that filling and spilling of micro- and meso-depressions across a 5 ha hillslope 

drives water delivery to the hillslope outlet. This was despite the low-angled, gently-sloping nature 

of the surface topography, as well as previous suggestions (e.g. Devito et al., 2005) of the 

unimportance of topography on a similarly low-angled site with deep glaciated substrate. 

 

The fill and spill mechanism observed here for driving runoff connectivity over frozen ground is 

fundamentally the same as the mechanism seen in many other environments (e.g. Darboux et al., 

2002; Spence and Woo, 2003; Tromp-van Meerveld and McDonnell, 2006; Wright et al., 2009; 

Du et al., 2016; Leibowitz et al., 2016). While the decision tree analysis in Chapter 3 showed that 

a lumped approach could indeed be fruitful for predicting the seasonal runoff response, this field-

based spatial analysis showed that, in order to understand and predict sub-seasonal timescale 

(daily, hourly, or weekly) runoff responses, then distributed topographic data and distributed 

snowmelt data are needed. Fill and spill-like modeling approaches have the potential to 

revolutionize snowmelt modeling over frozen hillslopes and improve predictions of wetland 
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recharge, flooding, and water availability, for the dominant runoff-producing event of the year on 

the northern Great Plains. 

 

The results of this PhD research have advanced our understanding of runoff generation over 

seasonally-frozen ground. Through a coupled analysis of trends, hierarchies, and patterns, I have 

demonstrated the seasonality of climate-runoff relationships, the effects of interactions and 

feedbacks between controls on snowmelt-runoff response, and the processes behind hillslope-

connectivity and emergent runoff behaviour. 

 

5.2 Future work 

My PhD findings have shown the importance of micro- and meso-topography for dictating runoff 

connectivity over seasonally-frozen prairie hillslopes. On the predominantly agriculturally-

managed northern Great Plains, differences in agricultural and cultivation practices, such as tillage 

or seeding, are likely to induce a major shift in the importance of micro-topography as a first step 

in nested filling and spilling and hillslope connectivity in any given snowmelt season. For example, 

following seeding, the resultant micro-topography is often channelized, in the form of furrows and 

ridges. Yet following tillage, these micro-depressions become isolated from each other (Moreno 

et al., 2008; Antoine et al., 2009). Numerical modeling in the form of virtual experiments should 

address how subtle differences in the micro- or meso-topography might shift the balance of fill 

and spill and flowpath development on shallow, frozen hillslopes. This could be accomplished 

with distributed models such as HydroGeoSphere (Brunner and Simmons, 2011) or the 

Connectivity of Runoff Model (Reaney et al., 2006), where different surface topographical 

realizations could be generated for the Swift Current (or fully virtual) hillslopes. Modeling could 

then feature and isolate the effects of different patterns of micro-topography, in conjunction with 

the patterns of state variables, on connectivity. 

 

There is also considerable scope for lab-based physical models of the processes examined at the 

Swift Current hillslopes, using the MOST facility at the University of Saskatchewan 

(mostfacility.usask.ca). Trailer-sized instrumented hillslopes with climate control are able to easily 
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observe and quantify input, output, and storage change and control boundary conditions. With 

these hillslopes, rainfall experiments under a rainfall simulator with unfrozen conditions could be 

used to examine the unexpected minor effect of changing rainfall that I observed in the climate-

runoff analysis. These would be invaluable in being able to dial in, under different antecedent 

conditions, on how intense rainfall really needs to be to generate significant runoff. Further 

snowmelt experiments under imposed freeze-thaw cycles with a tailor-made refrigerated system 

could be used to explore the effects of variable freezing depth, antecedent soil moisture conditions, 

and frozen soil infiltration rates on meltwater partitioning, storage-discharge relations, and 

hillslope connectivity. Finally, these controlled experiments would be useful to test and further 

develop existing fill and spill algorithms for distributed hillslope modeling of snowmelt over 

frozen ground. 

 

Finally, all three research chapters here have emphasized the importance of infiltration into frozen 

ground as the determining factor in hillslope-scale runoff responses. However, there is little known 

about the effects that future climate change will have on frozen ground depths, duration, and timing 

of thaw in relation to snowmelt. This is in part because it is not solely affected by air temperature, 

but also by snow cover and thermal properties of the soil (Ireson et al., 2013). Snow cover can 

have both a seasonal warming and cooling influence on the soil (Ireson et al., 2013). If the relative 

timing of snowpack melt and soil defrosting shifts (i.e. if soil defrosting occurs before snowpack 

melt) and the infiltration regime changes from frozen to thawed, this would have huge knock-on 

effects for hillslope water balance, water availability, and water resources. Further work is required 

to evaluate the potential for this and its implications. 
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