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Abstract

According to current cosmological theory, the rate of expansion of the universe depends on the aver-

age energy densities of matter, radiation, and a possible vacuum energy described by a cosmological

constant, Λ, in the Einstein equation. Observations of galaxies and radiation, along with an as-

sumption that we hold no special place in the universe, imply an isotropic and homogeneous energy

distribution, for which the universal rate of expansion for most of the history of the universe may

be constructed to depend only on present values of the dimensionless matter and vacuum energy

density parameters, ΩM and ΩΛ, respectively, and the present rate of expansion of the universe,

H0. Over the past decade, much progress has been made in determining the values of the three

density parameters using a variety of independent methods. In particular, observations of type Ia

supernovae in the late 1990s provided the first evidence that Λ �= 0 and that universal expansion is

accelerating. This study has determined values for ΩM and ΩΛ using the brightest quasars in the

Sloan Digital Sky Survey Data Release 5, which are located at a range of distances – equivalently,

a range of lookback times – that have not been accessible through any other observations. After

fitting the apparent magnitudes of the brightest quasars at various redshifts to the distance modu-

lus equation with a luminosity evolution term, values for the density parameters were determined

to be ΩM = 0.07 and ΩΛ = 1.13.
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Chapter 1

Introduction

One of the main objectives in astronomy is to find new methods of determining the cosmological

parameters which describe the expansion rate of our universe (see Figure 1.1). According to current

cosmological theory, our universe can be described by a spacetime metric whose spatial component

is multiplied by a time dependent scale factor. Furthermore, observations of distant galaxies over

the past eighty years imply that the spatial component of the metric must be either a spherical,

flat, or hyperbolic three-dimensional geometry. With these metrics, known as Robertson-Walker

metrics, Einstein’s field equation leads to a description of the large scale evolution of our universe

which may depend on four independent parameters: the Hubble parameter, which describes the

−

Figure 1.1: Different scenarios for the rate of expansion and final fate of the
universe depending on ΩM and ΩΛ. The confidence regions shown in blue have
been obtained by the Supernova Cosmology Project (Knop et al., 2003).
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expansion rate of the universe, and three cosmological density parameters, whose values depend

upon the energy densities of matter, radiation, and a constant vacuum pressure, Λ. Determination

of these parameters from various methods has given insight into the nature of the expansion of our

universe. The universe is expanding at the present time, but there are many different possibilities

for its future which depend on the values of the current matter and vacuum cosmological density

parameters, ΩM and ΩΛ respectively, as displayed in Figure 1.1.

The most reliable observations available at present are consistent with an approximately flat

universe (ΩM + ΩΛ ≈ 1), which is accelerating in its expansion (Astier et al., 2006; Riess et al.,

2007; Spergel et al., 2003; Spergel et al., 2007). The purpose of this thesis is to use existing data

from quasar observations to develop a statistical method for determining the values of these two

parameters. The quasars used in this analysis are located at distances which are not observable

through any other observations, and should therefore provide new perspective to the theory of

the universal expansion rate. The catalogue of quasars used in this analysis was compiled by

Schneider et al. (2007) from the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) and may

be downloaded directly from the SDSS website (www.sdss.org).
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Chapter 2

Friedmann-Robertson-Walker Cosmological

Models

Currently, the best descriptions of our universe are thought to be given by Fiedmann-Robertson-

Walker (FRW) cosmologies. In this Chapter, the basic premises of FRW models will be used to

derive the equations that describe our universe which depend only on observable parameters.

2.1 Robertson-Walker Metrics

From observations of galaxies and the cosmic microwave background (CMB) we have seen that

our universe appears isotropic on the largest scales, while maps of galaxies out to large distances

have shown the universe to be nearly homogeneous with only a slight radial density gradient (Cole

et al., 2005; Colless et al., 2001; Maddox et al., 1990). For years, this radial density gradient was

assumed to be negligible by proponents of the steady state cosmology so that the universe could

be assumed to be homogeneous at all physical distances. Even with modern techniques, the radial

density gradient, which has been observed by Cole et al. (2005) for galaxies in our near vicinity,

may not be reliable due to effects of galaxy luminosity evolution and hierarchical merging history.

However, given the expanding universe model of standard big bang cosmology, if the matter in the

universe is actually homogeneously distributed we would expect to see this radial density gradient

when observing increasingly distant objects because the finite speed of light implies that as we

look deeper into space we are looking further back in time. Now, because the density gradient is

uniform and isotropic, it is reasonable to make the assumption that the universe would appear this

way from any galaxy, i.e. the universe is also homogeneous. This assumption is called Einstein’s

cosmological principle and it is a requirement of big bang cosmology (Peebles, 1993).

A homogeneous, isotropic, expanding cosmological geometry is described by comoving coordi-

nates – time-independent coordinates multiplied by a time-dependent scaling. The simplest de-

scription of this type of geometry is given by the spatially flat Robertson-Walker metric,

ds2 = −c2dt2 + a2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (2.1)

where a(t) is the scale factor. However, this metric only describes a spacetime geometry with
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three-dimensional Euclidean space and is therefore only a special case of a homogeneous, isotropic

cosmological spacetime geometry. In the mid 1930’s, Robertson and Walker independently demon-

strated that the full set of metrics which satisfy the cosmological principle can be written

ds2 = −c2dt2 + a2(t)
[

dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]
(2.2)

(Robertson, 1935; Walker, 1935). Here, k = 1, 0,−1 correspond to spherical, flat, and hyperbolic

spacetimes, respectively. The spherical metric is obtained from the analysis of the surface of the unit

three-sphere and the hyperbolic metric is obtained by considering a Lorentz hyperboloid, which is

the analog of the spherical geometry derived by embedding a three-surface in flat four-dimensional

spacetime (Hartle, 2003). Traditionally, the spherical and hyperbolic spacetime geometries have

been referred to as closed and open because of their asymptotic natures in a Λ = 0 universe (see

Figure 1.1). However, in light of the strong evidence for a non-zero cosmological constant over the

last decade (see, e.g., Knop et al., 2003; Astier et al., 2006; Riess et al., 2007; Spergel et al., 2007;

Tonry et al., 2003) these terms have lost their meaning and should be dropped.

2.2 Cosmological Redshift and Hubble’s Constant

When Albert Einstein published his General Theory of Relativity (Einstein, 1915a,b,c), relating

the geometry of spacetime to energy density, astronomers believed that our universe consisted only

of the (static) Milky Way Galaxy. However, in 1917, Willem de Sitter made the first attempt at

deriving a theoretical model for an evolving universe when he published a solution to Einstein’s field

equations which allowed for an expanding universe (de Sitter, 1917). Redshift observations of spiral

nebulae conducted by Vesto M. Slipher at Lowell Observatory in the early part of the twentieth

century supplied evidence that the universe was indeed expanding. Subsequently, Hubble (1926)

offered conclusive evidence based on observations of Cepheid variable stars that the galaxy, Messier

33 – one of the few blueshifted spiral nebulae – was too far away to be a part of our Galaxy.

By 1929, Hubble had determined distances to eighteen spiral nebulae through further Cepheid

variable observations and with the use of Slipher’s redshift measurements, came to an astonishing

conclusion: there is a linear relationship between the redshift and distance of galaxies,

v = cz = H0d, (2.3)

which is now known as Hubble’s Law (Hubble, 1929). The Robertson-Walker metric can be used

to determine the cosmological redshift, z, and Hubble’s constant, H0, in terms of a. Such relations

may then be incorporated into the development of our cosmology so that we have a model based

on observable physical parameters.

We begin this analysis by noting that the radial null curve of a photon directed toward us which
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has been emitted by a nearby galaxy is given by

ds2 = 0 = −c2dt2 + a2(t)
dr2

1 − kr2
≡ −c2dt2 + a2(t)dχ2. (2.4)

Now if we consider a series of photons being emitted from this galaxy at a frequency ωe = 2π/δte

they will arrive here at a frequency ω0 = 2π/δt0. If the series of photons began to leave the galaxy

at time te and they first arrived here at t0 we obtain

χ =
∫ t0

te

cdt

a(t)
=
∫ t0+δt0

te+δte

cdt

a(t)
. (2.5)

For small δte and δt0 the second integral differs from the first in that it will contain a small extension

cδt0/a(t0) in the upper limit and a small contraction cδte/a(te) in the lower limit. These changes

must equal one another to preserve equality of the two integrals. Thus, for the ratio of the frequency

of an observed photon to the frequency at which it was emitted we obtain

ω0

ωe
=

a(te)
a(t0)

. (2.6)

This relation can be used to determine the cosmological redshift

1 + z ≡ λ0

λe
=

ωe

ω0
=

a(t0)
a(te)

. (2.7)

Now consider a photon emitted from a galaxy a short distance

d = a(t0)χ (2.8)

away from us, so that χ is small at the time of reception. The time it takes the photon to reach us

can be found from

(c∆t)2 = a2(t0)χ2 + O(χ3) ≈ d2. (2.9)

Therefore, te = t0 − d/c and we can evaluate

cz ≡ ∆λ

λ
=
[
ȧ(t0)
a(t0)

]
d (d small). (2.10)

Comparing this result with (2.3), we find the connection between Hubble’s constant and the geom-

etry of spacetime:

H0 ≡ ȧ(t0)
a(t0)

. (2.11)

Current data suggest that the value of Hubble’s constant is somewhere near 73 (km/s)/Mpc (Spergel

et al., 2007). This value will be used for illustrative purposes in some future calculations.

Although H0 has been measured by many different observations, its value is still not known with

great precision; therefore, cosmologists prefer to write equations in terms of the Hubble parameter

h ≡ H0

100(km/s)/Mpc
. (2.12)
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Although H0 is no longer determined by plotting redshifts of galaxies against their distances, it

is still quoted for historical reasons with units of (km/s)/Mpc. By including the conversion from

kilometers to megaparsecs, it is clear that Hubble’s constant actually has the dimensions of an

inverse time. The inverse of H0, known as the Hubble time, is a useful result in that it gives the

age of the universe if it were to have a constant rate of expansion:

tH =
1

H0
= 9.78h−1 Gyr. (2.13)

Thus, for h = 0.73 we have the result tH = 13.4 Gyr.

We will see later on that FRW cosmologies do not allow for a constant rate of spatial expansion

as Hubble initially determined through observations of relatively close galaxies. This is due to the

variability in time dependence of the energy densities of the various components of our universe,

which we will see in §2.4. Hubble’s constant is therefore only the current expansion rate of the

universe; however, we will see in §2.5 that we can parameterize the equations used to describe the

geometry of our universe so that Hubble’s constant remains a very meaningful parameter.

2.3 The Friedmann and Acceleration Equations

At this point, we would like to derive an equation for the scale factor, a(t), in the Robertson-Walker

metric. This may be accomplished with the use of general relativity if we know something about

the stress-energy of the universe. However, even before we begin to make any hypotheses about the

energy content of the universe, we may derive two independent equations relating a(t) to general

terms for the pressure and energy density of the universe by inserting the Robertson-Walker metric

into the Einstein equation of general relativity,

Rµν − 1
2
gµνR = κ (Tµν − Λgµν) . (2.14)

Here, Rµν and R are the Ricci tensor and Ricci scalar, respectively, gµν is the spacetime metric, Tµν

is the stress-energy tensor, Λ is a (possibly non-zero) constant, known as the cosmological constant,

and the proportionality constant

κ =
8πG

c4
=

�

m2
Plc

3
= 2.076 × 10−43 N−1, (2.15)

is determined by the Newtonian limit of the Einstein equation. Thus (2.14) describes gravity as a

curvature of spacetime due to the energy and momentum it contains, where spacetime curvature

enters into the Einstein equation through the Einstein tensor,

Gµν ≡ Rµν − 1
2
gµνR, (2.16)

where the definition of the Ricci tensor comes from the Riemann tensor; i.e.

Rµν = Rρ
µρν = ∂ρΓρ

µν − ∂νΓρ
µρ + Γρ

λρΓ
λ
µν − Γρ

λνΓλ
µρ, (2.17)
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and the Ricci scalar is the trace of the Ricci tensor,

R = Rµ
µ = gµνRµν . (2.18)

The Christoffel symbols, Γλ
µν , are defined by

Γλ
µν =

1
2
gλρ (∂νgρµ + ∂µgρν − ∂ρgµν) , (2.19)

where ∂α ≡ ∂/∂xα and summation over repeated up-down indices is implied.

The Einstein tensor is the unique combination of curvature tensors which is linear in second

order derivatives of the metric and satisfies

∇µGµν = ∂µGµν + Γµ
µρG

ρν + Γν
µρG

µρ ≡ 0, (2.20)

which is required by local conservation of energy-momentum,

∇µTµν = 0, (2.21)

so that no additional higher-order constraints are placed on the metric (Einstein, 1915a).

Note that ∇µgµν ≡ 0, so that any constant multiple of the metric may be included in the Einstein

equation. This is what initially led Einstein to include the cosmological constant in (2.14) in an

attempt to account for a static universe. The subsequent discovery by Hubble that the universe is

expanding led Einstein to state that the cosmological constant was his “greatest blunder.” However,

observations of type Ia supernovae (SNe Ia) in the late 1990s resurrected the use of Λ in cosmology,

when it was discovered that the universe’s expansion is actually accelerating.

Now, using the above equations from general relativity we may derive expressions for the time

dependence of the scale factor. By inserting the Robertson-Walker metric (2.2) into the Einstein

tensor, we have the result,

G00 = 3
ȧ2 + k

a2
, (2.22)

G0j = Gi0 = 0, (2.23)

Gij = −
(

2
ä

a
+

ȧ2 + k

a2

)
gij , (2.24)

where for simplicity the units in (2.22) − (2.24) and the remainder of this section have been set so

that c = 1.

The Einstein equation (2.14) therefore implies that the spatially averaged form of the stress-

energy tensor of the universe has the form of a perfect fluid,

T00 = ρ(t), (2.25)

T0j = Tj0 = 0, (2.26)

Tij = p(t)gij . (2.27)

7



Thus, we obtain two equations for the time dependence of the scale factor, which depend on the

energy density and pressure of the universe:

ȧ2 + k

a2
=

κ

3
(ρ + Λ), (2.28)

2
ä

a
+

ȧ2 + k

a2
= κ(Λ − p). (2.29)

The first of these equations is known as the Friedmann equation and the second is generally referred

to as the acceleration equation. Models that use the Friedmann equation to determine the scale

factor in the Robertson-Walker metric are known as Friedmann-Robertson-Walker (FRW) models

(Hartle, 2003).

By requiring compatibility of (2.28) and (2.29), a third equation can be obtained, which is nicer

to deal with than (2.29):

ρ̇ = −3(ρ + p)
ȧ

a
⇔ d(ρa3) = −pd

(
a3
)
. (2.30)

These equations leave us with three degrees of freedom – a(t), ρ(t), and p(t) – for the large-scale

evolution of the universe. Thus, to completely determine this system a third independent equation,

an equation of state, must be used:

p = p(ρ). (2.31)

2.4 Energy Density Dependence on the Scale Factor

Current FRW cosmologies assume that the cosmological fluid consists of three components – matter,

radiation, and vacuum – which have had only negligible interactions since the very early universe.

Thus, these three components can be analyzed separately to determine the evolution of the universe.

The matter contained in the universe can be well approximated by a pressureless gas; i.e.

pM = 0, which is denoted as dust in cosmology. Integration of (2.30) therefore yields the matter

energy density of the universe:

ρM (t) = ρM (t0)
[
a(t0)
a(t)

]3
≡ ρM (t0)

(a0

a

)3
, (2.32)

where t0 is the present time. Hereafter, the present and time dependent scale factors will be denoted

a(t0) ≡ a0 and a(t) ≡ a, respectively.

For a gas of particles with temperature T 	 mc2

kB
, the pressure is given by

pR =
1
3
ρR. (2.33)

Therefore, the radiation component to the energy density – which includes neutrinos, as well as

photons – will have this type of pressure. Integration of (2.30) yields

ρR(t) = ρR(t0)
(a0

a

)4
. (2.34)
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In the very early universe, when a was very small, the radiation density must have been larger than

the matter density. During this epoch the universe was radiation dominated. However, this did not

last long and for most of its history the universe has been matter dominated.

Finally, we must consider the energy density of the vacuum. Recent observations indicate that

this vacuum energy should be a positive constant in spacetime (Astier et al., 2006; Riess et al.,

2007; Spergel et al., 2007). Thus, the vacuum energy density may be denoted

ρΛ = Λ. (2.35)

(c.f. (2.28): if the vacuum energy density were zero, the cosmological constant would not appear in

this equation.) The vacuum energy equation of state

pΛ = wρΛ (2.36)

must therefore be written with w = −1. If Λ �= 0, the vacuum energy eventually dominates the

matter and radiation densities and the universe becomes vacuum dominated.

In fact, if we substitute the literature values from Spergel et al. (2007) for the current matter and

vacuum energy densities, ρM,0/ρΛ ≈ 0.24/0.76, into (2.32), along with the condition ρM (t) ≤ ρΛ,

we find that the universe has been vacuum dominated since the scale factor was roughly 68% its

current value, or since z = 0.47. If we incorrectly assume a constant rate of expansion for the

universe, we can estimate the lookback time to an object located at such a redshift from

tγ =
∫ t0

te

dt =
∫ a0

ae

da

ȧ
=

z

H0(1 + z)
≈ 4.3 Gyr. (2.37)

This calculation must be an underestimate because if the assumed values for matter and vac-

uum energy density are indeed correct the universe would have been accelerating in its expansion

throughout the era of vacuum domination (see 2.46). Therefore, photons from an object at this

redshift would have had to travel longer through space which was initially not expanding as rapidly

to be redshifted to this value. Later on, we will see how to accurately calculate lookback times

(§2.5) and distances (§3.2) using redshifts.

2.5 Parameters of a FRW Cosmological Model

An important result, known as the critical energy density, is obtained by evaluating the Friedmann

equation with k = 0 at the present time. In doing so, we determine

ρc ≡ 3
κc2

H2
0 . (2.38)

Here, the cosmological constant has been included in ρc as the vacuum density portion of the critical

density so that ρc contains the total energy density required for spacetime to be flat in our present

universe.
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Upon substitution of (2.12) and (2.15), we find

ρc ≡ 3c2

8πG
H2

0 = 5.64 × 10−18h2 J m−3, (2.39)

which corresponds to a critical mass density of 1.88 × 10−26h2 kg m−3.

Using ρc, we can define three new parameters; the cosmological density parameters. We will

see that the three density parameters, along with Hubble’s constant, can be used to determine the

large scale structure and evolution of the universe. The cosmological density parameters are defined

as the ratios of the current matter, radiation, and vacuum energy densities to the critical density:

ΩM ≡ ρM (t0)
ρc

, ΩR ≡ ρR(t0)
ρc

, ΩΛ ≡ ρΛ(t0)
ρc

. (2.40)

With these definitions we can write the total energy density as a function of the scale factor, a

ρ(a) = ρc

[
ΩM

(a0

a

)3
+ ΩR

(a0

a

)4
+ ΩΛ

]
. (2.41)

The Friedmann equation (2.28) then yields

ȧ = a0H0

√
ΩM

a0

a
+ ΩR

a2
0

a2
+ ΩΛ

a2

a2
0

− k

a2
0H

2
0

= a0H0

√
ΩM

(a0

a
− 1
)

+ ΩR

(
a2
0

a2
− 1
)

+ ΩΛ

(
a2

a2
0

− 1
)

+ 1, (2.42)

where in the second line the factor kc2

a2
0H2

0
has been replaced by the evaluation of (2.28) at the present

time, i.e.
kc2

a2
0H

2
0

= ΩM + ΩR + ΩΛ − 1. (2.43)

We see that (2.42) is solvable if we know the values of the four parameters H0, ΩM , ΩR, and ΩΛ.

Therefore, a complete solution to a FRW cosmological model – which seems to provide a good

description of our universe – can be obtained from the determination of the four FRW cosmological

parameters.

Observations of SNe Ia indicate that the universe is at least very near to being flat, with

ΩM ≈ 0.3 and ΩΛ ≈ 0.7 (Astier et al., 2006; Knop et al., 2003; Riess et al., 2007; Tonry et al., 2003).

Observations of the cosmic microwave background (CMB) are strongly in favor of a flat cosmology

with photon density Ωγ = 4.6 × 10−5 (Mather et al., 1999; Spergel et al., 2007). Measurements

using the Wilkinson Microwave Anisotropy Probe (WMAP) have provided upper bounds for the

sum of the masses,
∑

mν < 0.7 eV, and cosmological energy density of effectively stable neutrinos,

Ων < 0.0072/h2 ≈ 0.01 (Spergel et al., 2007). However, the value of the upper bound on
∑

mν has

dropped three orders of magnitude in the past forty years and continues to drop at a consistent

rate as measurement techniques improve (see Yao et al., 2006). In light of this, we will neglect

the neutrino’s contribution to the radiation energy density in the rest of our analysis, adopting

ΩR = Ωγ = 4.6 × 10−5. Thus, (2.34) and (2.32) imply that at z = 5 (roughly the current
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observation limit for quasars), ρR/ρM ≈ 10−3 for ΩM = 0.24. Therefore, a good description of

the universe can be derived by neglecting radiation density when compared to dust and vacuum

densities. Figure 1.1 in Chapter 1 shows the possible fates of our universe for various values of

ΩM and ΩΛ, as described by (2.42). The confidence regions for these values, determined from

observations of SNe Ia by the Supernova Cosmology Project (SCP), are illustrated with the blue

ellipses on the left side of Figure 1.1. The SCP data suggest that our universe is accelerating in its

expansion. If this is true, the universe should continue to accelerate forever.

In §2.4 we calculated an underestimate for the lookback time to when the universe first became

vacuum dominated. Now we are able to solve (2.42) with h = 0.73, ΩM = 0.24, ΩΛ = 0.76, and

ΩR = 4.6 × 10−5 for a/a0 = 0.68:

tL(z = 0.47) = t0 − t(ρM = ρΛ)

=
∫ a0

0.754a0

da

a0H0

√
ΩM

(
a0
a − 1

)
+ ΩR

(
a2
0

a2 − 1
)

+ ΩΛ

(
a2

a2
0
− 1
)

+ 1

= 4.7 Gyr. (2.44)

Now if we evaluate (2.32) and (2.34) with these same values for the density parameters, we find

that ρR ≥ ρM when z ≈ 5000, approximately 13.73 billion years ago. Evaluating lima→0 tL, we

find that this transition occurred a mere 28000 years after the big bang.

Another important result is the redshift at which the universe began accelerating, zaccel. This

value may be estimated from (2.42) by setting ä = 0 and neglecting the term containing ΩR

compared to the matter and vacuum density terms:

äaccel ≡ 0 ≈ a2
0H

2
0

2

(
− a0

a2
accel

ΩM + 2
aaccel

a2
0

ΩΛ

)
,

⇒ aaccel

a0
≈
(

ΩM

2ΩΛ

)1/3

. (2.45)

Using (2.10), we find the result,

zaccel =
a0

aaccel
− 1 ≈ 0.85. (2.46)

Let us go a step further with this analysis so that we may fully appreciate the importance of

determining these cosmological parameters to great precision. I have already mentioned the present

cosmic background radiation (CBR), the CMB, which was left over as a result of the big bang. In

the standard hot big bang model, this radiation is predicted as an explanation for observed energies

and chemical abundances in the universe. To see what the CBR should look like, we start by noting

that the mean number of photons per mode at temperature T is given by the Planck function

〈N〉 =
1

ehc/kBTλ − 1
(2.47)
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ρΛ = ρM ρΛ = ρM

t0; ΩM=0.3, ΩΛ=0.7 ΩM=0.3, ΩΛ=0.7
t0; ΩM=0.5, ΩΛ=0 ΩM=0.5, ΩΛ=0
t0; ΩM=1.0, ΩΛ=0 ΩM=1.0, ΩΛ=0
t0; ΩM=1.5, ΩΛ=0 ΩM=1.5, ΩΛ=0

a
/a

0

a
/a

0

t(Gyr) t/t0

(a) (b)

Figure 2.1: Evolution of the scale factor calculated from (2.42) for different values
of the FRW cosmological parameters. All curves were calculated with ΩR = 4.6 ×
10−5. In (a), the present age of the universe is indicated as a point on each curve.
The values of t0 for the spherical, flat, and hyperbolic Λ = 0 models, and the Λ �= 0
model, are 8.30, 9.05, 10.23, and 13.09 Gyr, respectively. In (b), the time axis has
been divided by the present age of the universe for each of the curves’ respective
value of t0 so as to illustrate the possible history and evolutionary paths of a(t) as
seen from our perspective.

(Peebles, 1993). The hot big bang model predicts that shortly after the big bang the temperature

of the CBR must have been high enough for the fusion of hydrogen into helium. During this time,

radiation and matter would have been coupled in a plasma. Because the universe has always been

expanding in the big bang model, there must have been a point in time when the temperature

dropped below that needed to maintain the plasma. After this time, known as the decoupling era,

these photons would have been released from matter, able to travel unimpeded for the rest of time.

From (2.47) and (2.7) we find that after decoupling, while the mean number of photons per mode

has remained constant the temperature has changed inversely proportional to the scale factor:

T ∝ 1/a(t). (2.48)

If we further assume that all anisotropies in the present universe are due to gravitational inter-

actions, so that at the time of decoupling the CBR would have been in thermal equilibrium and

hence, the same for all modes, we find that the temperature of the radiation is given by

T (t) = T0
a0

a(t)
= T0(1 + z), (2.49)

where T0 is the temperature of the CMB.
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Gamow (1948) and Alpher and Herman (1948) estimated that to account for the abundance of

helium in the universe (∼ 24% by mass) the present temperature of the CBR should be ∼ 5 K.

The discovery of the 3.5±1.0 K CMB by Penzias and Wilson (1965), who were working at the Bell

Telephone Laboratories in Holmdel, New Jersey, was the observational evidence needed to bring

wide acceptance to the big bang theory. Today, the CMB has a measured value of T0 = 2.275±0.001

K (Mather et al., 1999).

From the above example, we find that when ρM overcame ρR the temperature of the radiation

was ∼ 1400 K. From the results of Peebles (1993), but with current observational values for T0 and

the baryon density ΩB = 0.0224 ± 0.0009 we find that the redshift corresponding to decoupling is

z ≈ 2000. This redshift corresponds to roughly 150 000 years after the big bang.

Obviously it is of great interest to determine the values of the FRW cosmological parameters

with great precision because they determine the ultimate fate of our universe; whether it will expand

forever, or eventually recollapse in a big crunch. The evolution of the scale factor for different values

of the cosmological parameters is illustrated in Figure 2.1. If the universe expands forever, all of

the gas that is used as fuel for stars will eventually be exhausted and the universe will become

dark. Dead stars and planets will lose energy and spiral into supermassive black holes in galactic

cores. Eventually, all of the energy in these supermassive black holes will be lost through Hawking

radiation and the universe will be completely barren. On the other hand, if the universe recollapses

in a big crunch every form of matter we know of will cease to exist when the universe returns to a

singularity. However, in this scenario there is a chance that a new big bang may happen.
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Chapter 3

Determination of Cosmological Parameters

from Observations of Quasars: Background

Information and Theoretical Framework

In the previous section we derived the necessary theory to understand the evolutionary history

and the geometry of the universe in a FRW cosmology. In the end, the theory contained four

parameters which must be determined experimentally. In this chapter, we will see how apparent

brightnesses of quasars can be linked to the FRW cosmological parameters, so that in Chapter 4 we

may develop the analytical framework necessary to determine these parameters using a statistical

approach. However, some background information is necessary before we may develop this model.

3.1 Quasars

Quasars are some of the most peculiar objects observable in the universe. They are small, starlike

objects, with peculiar spectra, and traditionally have been observed very close to galaxies (Carroll

and Ostlie, 2007). We know that quasars are small because observations of their luminosities have

shown that they change in brightness over very short time scales. For an object to change in

brightness over the course of a few years, as is the case with quasars, the maximum size of the

object can be calculated by assuming the object uniformly changes its brightness in an instant.

The maximum diameter of a quasar that changes from maximum to minimum brightness in an

observed time, T is then c T . For quasars, this implies that their maximum diameters can only be

about a few lightyears. Over the decades since their discovery many theories have been constructed

which try to explain what a quasar is.

The name quasar has been derived from quasi-stellar object (QSO); the name originally given

to these objects because they appear in the sky as stars, but their spectra are very different from

stars. The first quasar discovery was made when Matthews and Sandage (1963) were searching

for an optical counterpart to an observed radio source, 3C 48. At the centre of the radio source

they observed a 16th magnitude starlike object with broad emission lines (stellar spectra generally

contain absorption lines) and a redshift that was eventually measured to be z = 0.367 (Greenstein
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Figure 3.1: A sketch of the cross section of an active galactic nucleus. The relative
observation positions for various types of AGN are shown along with the different
components making up AGN. Image courtesy of Carroll and Ostlie (2007).

and Matthews, 1963). Hubble’s Law indicates that this object should have a distance of roughly

5 × 109 ly, and a luminosity of 1.5 × 1012 L� = 5.6 × 1038 W.

Quasars have been subsequently linked to active galactic nuclei (AGN), which eject huge

amounts of gas in two jets that extend in opposite directions away from their home galaxy. AGN

are created when a large amount of gas forms an accretion disk around a supermassive black hole.

Accretion disk particles eventually form two jets, directed perpendicular to the accretion disk,

which are ejected through interactions with the central supermassive black hole. More specifically,

these particles are thought to be accelerated along the magnetic field lines created in the interaction

between the accretion disk and the rotating black hole, which, in the near vicinity of the black hole,

are directed towards and away from its south and north magnetic poles, respectively (Carroll and

Ostlie, 2007). Because the electrons and positrons in these energetic jets are accelerated to speeds

near c, this mechanism is capable of generating very bright synchrotron radiation. Thus, quasars

with large accretion disks fueling these jets would be extremely luminous. Nearby AGN, however,

usually contain a relatively small accretion disk with low luminosity jets. This is likely due to the

depletion of accretion disk fuel for AGN over the history of the universe. We observe many different

types of AGN, depending on their orientation relative to us (see Figure 3.1).

Quasars are thought to be the precursors of blazars and Seyfert 1 galaxies; AGN whose jets
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are directed almost exactly in our direction. In the early universe, galaxies would have contained

an abundance of fuel, which has since been diminished through processes in stars and AGN. With

large amounts of fuel, AGN would have been extremely bright. As it turns out, these objects were

so bright that we can see them at distance scales as large as the observable universe. The finite

speed of light, therefore, implies that we can use quasars to gain understanding of the evolutionary

history of the universe from a time when the first structures were being formed.

This model for quasars is widely accepted because it explains all of the observed phenomena.

Black holes – even supermassive black holes – take up a very small area in space. The spacetime

geometry outside a spherically symmetric mass is given by the Schwarzschild geometry,

ds2 = −
(

1 − 2GM

c2r

)
(cdt)2 +

(
1 − 2GM

c2r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (3.1)

From this geometry, the radius of the event horizon of a Schwarzschild black hole, inside which

light can only move radially inward, is

RS =
2GM

c2
. (3.2)

For even the most massive black holes this radius is nowhere near the maximum radii we calculate

from quasar light curves. Furthermore, according to AGN theory these objects should be so bright

that even the large distances we infer from their redshifts are not unreasonable. Finally, the large

distances to quasars gives the resolution to why quasars should be located mainly near galaxies.

Even though quasars are very bright, we still would not see as many of them as we do if not for a

process known as gravitational lensing. If a massive object, such as a galaxy or a cluster of galax-

ies, is situated between us and a more distant, luminous object, the light from the more distant

object will be bent around the massive object by the curvature of space. This process actually

helps to brighten the quasar as we see it and, in fact, can sometimes produce multiple images of

the same quasar around the massive object. If quasars were not very far from us, they would not

be able to be gravitationally lensed by intermediate galaxies. Thus, observations of gravitational

lensing have served two purposes: they support the distances we infer through Hubble’s Law and

they provide a reason for the observed preference of quasars to be near galaxies and galaxy clusters.

3.2 Calculating Cosmological Distances

The first element needed in the analysis of any astronomical data is the luminosity distance; a

distance measure which has the advantage of being directly inferred from the measured flux of an

object. From the Robertson-Walker metric we can calculate the circumference of a circle of radius

r at time t as ∫ 2π

0

dφ
√

gφφ = 2πa(t)r (3.3)
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and the area of a sphere with radius r as∫ π

0

dϑ

∫ 2π

0

dφ
√

gϑϑgφφ =
∫ π

0

dϑ

∫ 2π

0

dφa2(t)r2 sin(ϑ) = 4πa2(t)r2. (3.4)

We denote the distance

dA = a0r (3.5)

as the current angular diameter distance. However, for curved spacetimes this distance is not the

actual physical distance. We calculate the physical distance from our location at r = 0 to an object

a radial distance r from us as

d =
∫ r

0

dr
√

grr = a(t)
∫ r

0

dχ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(t) ln(r +
√

1 + r2) k = −1

a(t)r k = 0

a(t) arcsin(r) k = 1

. (3.6)

The angular length coordinate r can thus be calculated as a function of the radial length coordinate

χ:

r =
1√
k

sin
(√

kχ
)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sinh(χ) k = −1

χ k = 0

sin(χ) k = 1

. (3.7)

However, a more useful distance in cosmology because it can be measured through observations

of objects of known luminosities is the luminosity distance

dL ≡
√

L

4πf
. (3.8)

The photons we receive from an object today are distributed over an area 4πa2
0r

2. Their energy

will have decreased by a factor (1 + z)−1 and they will be thinned out in the longitudinal direction

by a factor (1 + z)−1. The flux we receive from an object with luminosity L should then be given

by

f =
L

4πa2
0r

2(1 + z)2
. (3.9)

The luminosity distance is then

dL = (1 + z)dA = (1 + z)
a0√
k

sin
(√

kχ
)

= (1 + z)
a0√
k

sin
(√

k
d

a0

)
. (3.10)

Now let us suppose we observe a quasar at comoving coordinates {r, ϑ, φ}. From the Robertson-

Walker metric we obtain

χ̇(t) ≡ ṙ(t)√
1 − kr2

= − 1
a(t)

(3.11)

for the radial length coordinate. Thus, we obtain the present physical distance to the quasar’s

position when the light was emitted

d = a0χ = a0

∫ χ

0

dχ = a0

∫ te

t0

dtχ̇(t) = a0

∫ t0

te

dt

a(t)
= a0

∫ a0

ae

da

aȧ

= −
∫ 1

a0/ae

a

ȧ
d
(a0

a

)
= a0

∫ 1+z

1

du

uȧ
. (3.12)
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We can now use (2.42) to find d in terms of the redshift

d(z) =
1

H0

∫ 1+z

1

du√
ΩRu4 + ΩMu3 + (1 − ΩM − ΩR − ΩΛ)u2 + ΩΛ

. (3.13)

This formula can be simplified by recognizing that the current radiation density, ΩR � ΩM � ΩΛ, is

negligible compared to the matter and vacuum densities. Thus, we obtain the current cosmological

physical distance

d(z) =
1

H0

∫ 1+z

1

du√
ΩMu3 + (1 − ΩM − ΩΛ)u2 + ΩΛ

(3.14)

and the luminosity distance

dL(z) = (1 + z)
a0√
k

sin
(√

k
d

a0

)

=
1 + z

H0

√
ΩM + ΩΛ − 1

sin

(∫ 1+z

1

du

√
ΩM + ΩΛ − 1√

ΩMu3 + (1 − ΩM − ΩΛ)u2 + ΩΛ

)
, (3.15)

where in the second line (2.43) has been used to eliminate the factor of a0/
√

k.

This analysis has been done in units where c = 1. Inserting c in its proper place, we find

dL(z) =
c(1 + z)

H0

√
ΩM + ΩΛ − 1

sin

(∫ 1+z

1

du

√
ΩM + ΩΛ − 1√

ΩMu3 + (1 − ΩM − ΩΛ)u2 + ΩΛ

)
, (3.16)

from which we make use of limx→0 sin αx/x = α and sin(ix) = i sinh(x) to explicitly write the cases

ΩM + ΩΛ = 1 and ΩM + ΩΛ < 1.

3.3 Apparent Magnitudes from Quasar Observations: the

K-correction

The term apparent magnitude was introduced in §3.1 as a unit of brightness. In this section I will

provide a brief description of the magnitude scale en route to the final element needed for a useful

interpretation of high redshift data; the K-correction.

In the second century B.C., Hipparchus invented the magnitude scale to describe the apparent

brightness of stars in the sky. The brightest stars were given a magnitude value of m = 1, while

the dimmest stars were given a magnitude of m = 6. The modern definition of the magnitude

scale is that a difference of 5 magnitudes corresponds to a difference in brightness of 100 (Carroll

and Ostlie, 2007). The standard reference point for the magnitude scale is the magnitude of Vega

measured over all wavelengths (its bolometric magnitude), which is set to mbol = 0. With this

definition, we find that two stars with magnitudes m1 and m2 will have a flux ratio of

f2

f1
= 100(m1−m2)/5. (3.17)

This definition helps when comparing magnitudes of objects as seen from earth; however, it does

not help us describe the geometry of the universe because insertion of (3.8) into (3.17) for two

18



objects leaves too many unknowns. To aid us in a description of our universe we need a way of

comparing the apparent magnitude of an object to its intrinsic brightness. This is accomplished

with the definition of absolute magnitude, M ; the apparent magnitude of an object if it were located

at a distance of 10 parsecs (pc). Using this definition, we combine (3.8) and (3.17) to obtain the

relationship between luminosity distance, apparent magnitude, and absolute magnitude:

m − M = 5 log10

(
dL

d0

)
, (3.18)

where d0 ≡ 10 pc. The left hand side of (3.18) is normally called the object’s distance modulus and

(3.18) is known as the distance modulus equation.

Now we have a very nice equation relating apparent and absolute magnitudes of an object to

its luminosity distance; and thus, due to (3.15), to the FRW parameters. Therefore, (3.18) implies

that if we are able to measure the apparent bolometric magnitudes of a set of standard candles

(objects with known absolute bolometric magnitudes) we should be able to determine values for

the cosmological parameters.

Unfortunately we still live in a world where most astronomical observations have to be made

with ground based telescopes. Because of Earth’s atmosphere, astronomers prefer to make their

observations with optical filters (see Figure 3.2). The primary reason for this is that filters can be

Figure 3.2: Transmission function Sj(λ) for the bandpasses of the griz system
taken from Schneider et al. (1983). The SDSS uses a similar system whose griz
transmission functions are slightly different due to their different instrumentation.
As well, they have added a u filter to their observations which has a peak trans-
mission wavelength of 3541 Å (Schneider et al., 2002). For reasons stated in §4.1,
we will be primarily interested in i band measurements in the analysis of the SDSS
DR3 data, thus future discussion will focus only on the i band.
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Figure 3.3: (a) An idealized i band transmission function defined by the half-

ellipse Si(λ) = 0.8
√

1 − (λ−746 nm)2

(100 nm)2 . (b) Planck’s radiation law, I(λ, 106 K) =
2hc2

λ5
1

ehc/(λkB106 K)−1
in the region of the i band for redshifts z = 0, 1, and 1.5. (c)

The product Si(λ) · I(λ, 106 K) whose integration leads to the determination of the
apparent magnitude.

used to avoid detection of strong atmospheric spectral lines. However, a problem arises when we

make observations of high redshift objects with filters; the data which are being observed have been

redshifted into the wavelength band of the filter (see Figure 3.3). Thus, highly redshifted quasars

will appear much brighter in a given wavelength band because they emit most of their light as γ-

and X-rays and most ground based astronomy is accomplished through observations of visual and

infrared light. This problem is the source of the previously mentioned K-correction.

Following the notation of Schneider et al. (1983), the transmission function for each filter j as

a function of frequency ν is defined to be Sj(ν). If we define Nν(1+z) to be the number of photons

emitted from our source at a redshifted frequency ν(1 + z), then the number of incident photons

with frequency ν per unit time and area is given by

nν =
Nν(1+z)(1 + z)2

4πd2
L

, (3.19)

from which the apparent magnitude is defined to be

mj = Cj − 2.5 log10

(∫ ∞

0

dν
Nν(1+z)(1 + z)2Sj(ν)

4πd2
L

)
, (3.20)

where Cj is a constant to be “found from photometric standards” (Schneider et al., 1983). Inserting

the definition of absolute magnitude into (3.20), we obtain

Mj = Cj − 2.5 log10

(∫ ∞

0

dν
NνSj(ν)

4πd2
0

)
. (3.21)

Finally, the K-corrected distance modulus equation for redshifted objects is given by the subtraction

of (3.21) from (3.20):

mj − Mj = 5 log10

(
dL

d0

)
+ 2.5 log10

(
1

(1 + z)2

∫∞
0

dνNνSj(ν)∫∞
0

dνNν(1+z)Sj(ν)

)
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= 5 log10

(
dL

d0

)
+ 2.5 log10

(
1

1 + z

∫∞
0

dν(fν/ν)Sj(ν)∫∞
0

dν(fν(1+z)/ν)Sj(ν)

)
. (3.22)

For quasars, this equation can be simplified by noting that for certain redshift ranges their

spectra can be well approximated by a power law:

fν ∝ να (3.23)

(Vanden Berk et al., 2001). Substituting this expression into (3.22) yields

mj − Mj = 5 log10

(
dL

d0

)
− 2.5(1 + α) log10(1 + z) (3.24)

for each filter j. Tests using SDSS quasars indicate that at emission wavelengths below 5000 Å

(our eventual region of interest) this power law frequency continuum index has a value of α ≈ −0.5

(Vanden Berk et al., 2001).
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Chapter 4

Analytical Framework for Tests Involving

Large Catalogues of Quasars

The most reliable tests that have directly measured both ΩM and ΩΛ have used observations of

SNe Ia as standard candles. A SN Ia is the dramatic explosion of a white dwarf star as it accretes

enough mass from a binary companion to exceed the 1.4 M� Chandrasekhar limit and explosively

ignite carbon fusion. Because of the exact nature of these explosions they have very distinct light

curves and are thus very accurate standard candles. Indeed, recent observations designed to test

contaminants to SNe Ia data such as luminosity evolution, gray intergalactic dust, gravitational

lensing, and selection bias indicate that SNe Ia act as very reliable standard candles (Tonry et al.,

2003; Foley et al., 2007).

Because SNe Ia light curves are in fact presumed to be universal, observations of these objects

have provided the only reliable, independent means of measuring ΩΛ. Indeed, as Tonry et al.

(2003) note, CMB observations imply a total energy density, Ω0 = 1.00 ± 0.02 and galaxy cluster

measurements imply ΩM ≈ 0.3 (see Spergel et al., 2003; Colless et al., 2001); thus, according to

the Λ CDM big bang model, any reliable observation which directly measures ΩΛ should result in

a value of ∼ 0.7.

Recent measurements of the CMB anisotropy signature by WMAP have strengthened the esti-

mates provided by SNe Ia and other sources. However, the WMAP results are not independent,

due to the use of Bayesian statistical analysis, and are thus subject to the limitations of hypotheses

which are based on prior measurements. A detailed description of the original parameter estimation

methodology used by the WMAP team may be found in Verde et al. (2003). Only minor changes to

these methodologies have been implemented during the analysis of the three-year results (Spergel

et al., 2007).

One issue that is encountered with observations of SNe Ia is that their peak brightness is dimmer

than Mbol = −20, so they have only been detected in great numbers out to redshifts slightly greater

than z ≈ 1, corresponding to a lookback time of 7.6 Gyr (Astier et al., 2006; Riess et al., 2007).

Conversely, the brightest quasars have absolute bolometric magnitudes of roughly Mbol = −30 (104

times brighter than a SN Ia – allowing for quasar observations out to z > 6) less than 1Gyr after
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the big bang. We have seen previously that for an ΩM = 0.24, ΩΛ = 0.76 geometry, the universe

began to accelerate at zaccel = 0.85 (see (2.46)), which corresponds to a lookback time of ∼ 7 Gyr.

Therefore, the majority of observed SNe Ia occurred during the acceleration era and so, provide

little direct evidence for the rate of expansion of the universe during the matter dominated era.

In the present analysis, quasars will be used to perform an independent test to determine ΩM

and ΩΛ. Quasars are bright enough that they have been observed in appreciable numbers out to

z ≈ 5, so they may be used to directly analyze the state of the universe at times well within the

matter dominated era. The final data set used in this analysis will contain quasars with redshifts

in the range 3 ≤ z ≤ 5; thus we will be analyzing data only from the alleged decelerating, matter

dominated era.

Unfortunately, this analysis is also not free of assumptions. Thus far, we have employed three

assumptions in the design of our physical model: (i) we have assumed a dark energy equation of

state, pΛ = wρΛ, with w = −1, which is consistent with a time-independent Λ and the recent

WMAP and SNe Ia results (Astier et al., 2006; Riess et al., 2007; Spergel et al., 2003; Spergel et al.,

2007), (ii) we have opted to neglect ΩR, based on arguments involving the COBE results (Mather

et al., 1999), and (iii) we have assumed that quasar spectra obey a power law frequency distribution

given by (3.23), which is standard in quasar analyses (Vanden Berk et al., 2001; Schneider et al.,

2007). The first two assumptions are the basic components of the Λ CDM model, which has become

the standard model in cosmology over the past decade. This model is known as the Λ CDM model

because it incorporates the cosmological constant and cold dark matter (CDM) as the primary

energy density components in the universe. In §§4.2 and 4.3, two final assumptions, specific to the

analysis of quasars in this project, will be described.

4.1 The SDSS Quasar Catalogue

The data used in this thesis will be the quasars from the SDSS DR5 value added catalogue (here-

after, the Catalogue) (Schneider et al., 2007). The SDSS quasars have all been discovered using a

dedicated 2.5 m f/5 modified Ritchey-Chretien altitude-azimuth telescope located at Apache Point

Observatory, in south east New Mexico. This telescope has a 1.08 m secondary mirror and two

corrector lenses, which result in a 3◦ distortion-free field of view (York et al., 2000). After making

numerous algorithmic cuts to the DR5 data to remove possible stars, galaxies, etc., the spectra

of the objects in the Catalogue were examined individually so that out of the ≈ 106 objects in

DR5, the Catalogue boasts 77 429 objects identified as quasars to a high degree of confidence (see

Figure 4.1).

For the remainder of this analysis, we will be using i band apparent magnitudes. Normally,

absolute magnitudes are calculated using B filter measurements. The SDSS quasar point-spread

23



1 20

22

18

21

19

20

17

43 5

15

16

i

z

Figure 4.1: All quasars in the Catalogue plotted in the i − z plane. Noticeable
features of this plot, such as the sharp cutoff in quasars at low redshifts, the less
dramatic cutoffs in number density at i ≈ 19.1 when z � 3 and i ≈ 20.2 when z � 3,
as well as at z ≈ 2.7 and z ≈ 3.5 will be discussed in § 4.3. The minimum apparent
magnitude allowed in the selection algorithms used by Schneider et al. (2007) was
15.

function (PSF) magnitudes are derived from observations using u, g, r, i, and z filters, which

have effective bandpass wavelengths of 3541, 4653, 6147, 7461, and 8904 Å, respectively (Schneider

et al., 2007). For the compilation of the SDSS quasar catalogues, the i band was selected to be the

luminosity indicator. This is because in highly redshifted spectra, the Lyα emission line may be

redshifted past many filters, resulting in unreliable measurements due to the absorption produced

by the Lyα forest and Lyman limit systems. Thus, the i filter is appropriate to use in quasar

analysis because the Lyα line only reaches its centre at z ≈ 5 (Schneider et al., 2002).

The Catalogue also contains galactic extinction values for each object. Because the quasars we

are using in this analysis were observed in different areas of the sky, the amount of light scattered

due to intermediate dust particles will be different for each quasar. The u band galactic extinction

coefficients Au were determined by the SDSS from the maps of Schlegel et al. (1998). The i band

extinction coefficients are simply calculated using Ai = 0.405Au (Schneider et al., 2007). The

galactic extinction corrected i band apparent magnitude (hereafter, the “apparent magnitude”) is
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defined here as

mi ≡ i − Ai, (4.1)

where i is the measured apparent magnitude in the i band.

Figure 4.1 contains all the quasars in the Catalogue plotted in the i − z plane. By visual

inspection, we see that quasars cannot be used as standard candles in the same way as SNe Ia

because at every redshift there is a continuum of magnitudes that is apparently only cut off on the

high end by the magnitude limits of the study. Furthermore, luminosity evolution of the various

subspecies of quasars must also be considered. For these reasons, we will use only the brightest

quasars within small redshift bins and incorporate a parameter for luminosity evolution into our

model.1

To this end, we determine the optimal size to use for the redshift bin width by minimizing the

function

Σ(∆z) ≡ 1
N(∆z) − 1

N(∆z)∑
j=2..N(∆z)

∣∣∣mi,min(Zj) − mi,min(Zj−1)
∣∣∣ , (4.2)

where N is the total number of redshift bins with width ∆z, Zj is the jth redshift bin, and mi,min
is its minimum apparent magnitude. The width ∆zopt which minimizes this summation will provide

us with the optimum statistical distribution of quasars within each bin by ensuring two things:

i. The bins must be wide enough that the apparent magnitude minima are not too scattered

due to small sample sizes, and

ii. The bins must be narrow enough that the effects of luminosity evolution and observational

bias (apparent magnitudes of closer quasars will be brighter due to the inverse square law for

light) are negligible at the scale of the bin width.

Evaluations of Σ(∆z) for discrete bin widths have been plotted in Figure 4.2. This calculation

implies the optimal bin width is ∆zopt = 0.09 when using quasars with z ≥ 2.

Choosing the optimal bin width in this manner provides our data set with two important

properties which will be utilized in the upcoming analysis:

i. The redshifts of the minimum apparent magnitudes will be uniformly distributed about the

midpoints zj of their respective bins Zj , allowing us to use the midpoints of each bin as z

values in a curve fitting analysis, and

ii. The redshifts of all the quasars in any bin will be approximately uniformly distributed; thus,

the apparent magnitude values in each bin should all be drawn from the same distribution.

1Note that at redshifts below z ≈ 2, the brightest quasars in the population may have been cut off by the mi ≥ 15
minimum magnitude limit of the study, which has been imposed to avoid confusion with stars. For this reason, we
will begin this analysis using only quasars with z ≥ 2.
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Figure 4.2: Σ(∆z) from all quasars in the Catalogue with z ≥ 2 calculated for
redshift widths in the range 0.01 ≤ ∆z ≤ 0.5 with a resolution of 10−3. The optimal
bin width ∆zopt = 0.09 determined by this calculation was used in a qualitative
analysis of the luminosities of the apparent magnitude minima in order to determine
a more appropriate redshift minimum for this analysis.

4.2 Quasar Luminosity Evolution

In this section, we will modify the distance modulus equation by adding a luminosity evolution

term so that we may eventually determine values for the cosmological parameters by fitting to the

brightest quasars in the Catalogue.

According to galaxy evolution theories, quasars would have begun to form at roughly the same

time as galaxies. The luminosity of the brightest quasars would have increased statistically as the

total number of quasars increased, as well as systematically as the sizes of their supermassive black

hole engines began to increase following their first formation. To further complicate issues, the

mixing of gas during galaxy mergers is also thought to be linked to quasar formation. However, as

galaxies have moved further apart and quasars have used up significant amounts of their fuel, the

numbers and average luminosities of quasars have decreased.

This paints a very complex picture for luminosity evolution, which we will attempt to simplify

with the choice of an appropriate redshift range. In particular, we will try to capture the rise of

the quasar luminosity shortly following first formation.

To begin with, we use a qualitative assessment to determine a more precise lower limit to the

redshift range, based on whether or not the quasar luminosities may be modeled with a simple
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Figure 4.3: Luminosities of brightest quasars with z ≥ 2 in bins of width ∆z =
0.09. Data in the range 2 ≤ z ≤ 2.6 appear much too scattered and have been
removed from further analysis.

function. Figure 4.3 is a plot of the luminosities2 of all the brightest quasars with z ≥ 2 from

redshift bins of width ∆z = 0.09. From this plot, it appears that in the range 2.0 ≤ z ≤ 2.6 the

luminosities of the brightest quasars did not follow the same trend, as values began to fall off the

strictly increasing path. Quasars in this range would not be useful in our analysis because these

magnitude values are likely the result of an overall drop in the availability of fuel to quasars, with

an occasional bright value due to mixing from processes such as galactic mergers. The overall effect

is that the apparent magnitude minima in this redshift range are too scattered and their influence

should thus be removed from the determination of ∆zopt. Therefore, the values of Σ(∆z) have been

recalculated using only quasars with z ≥ 2.6 (see Figure 4.4). The result is that the optimal bin

width to use in our analysis is ∆zopt = 0.096.

At this point we have minimum apparent magnitude and redshift values for redshift bins of an

appropriate width and we may now use these data to aid in determining an appropriate luminosity

evolution equation. The most computationally simplistic luminosity evolution we can use is

L(z) = L0(1 + z)β , (4.3)

where L0 ≡ L(z = 0), because the constant parameter β is completely degenerate with α in the

2The luminosity values plotted in this image have been calculated using the current literature parameter values
H0 = 73 (km/s)/Mpc, ΩM = 0.24, ΩΛ = 0.76, and α = −0.5 (Spergel et al., 2007; Vanden Berk et al., 2001). These
values will be used in the remainder of the luminosity calculations in this section.
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Figure 4.4: Σ(∆z) from all quasars in the Catalogue with z ≥ 2.6 calculated for
redshift widths in the range 0.01 ≤ ∆z ≤ 0.5 with a resolution of 10−3. The optimal
bin width which will be used in the remainder of the analysis is ∆zopt = 0.096.

K-correction described in § 3.3. To see this degeneracy, we note that (3.17) can be expressed as

M2 = M1 − 2.5 log10

(
L2

L1

)
(4.4)

for two arbitrary luminous objects. Therefore, if we substitute (4.3) into (4.4) we find that the

absolute magnitude of an object with continuous luminosity evolution described by (4.3) should

evolve according to

M(z) = M0 − 2.5β log10(1 + z), (4.5)

where M0 ≡ M(z = 0). Thus, once we have found an appropriate redshift range for which we

can model the luminosity evolution of quasars using (4.3), we may modify the distance modulus

equation (3.24) for i band magnitudes to

mi − Mi,0 = 5 log10

(
dL

d0

)
− 2.5(1 + α + β) log10(1 + z). (4.6)

Unfortunately, establishing a degeneracy between the k-correction and a possible form of lumi-

nosity evolution is not justification enough for using such an equation. However, we do not want

to include too many parameters in our curve fit which may be strongly covariant. Therefore, for

this project we will content ourselves with showing that (4.3) should be general enough to model

the apparent magnitude minima in some redshift range. Figure 4.5 is a plot of the luminosities

of the brightest quasars with z ≥ 2.6 from redshift bins of width ∆z = 0.096, together with (4.3)
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Figure 4.5: Luminosities of brightest quasars with z ≥ 2.6 in bins of width ∆z =
0.096. The best fit luminosity evolution curve, with β = −3.13, shown in red was
calculated using only the data in the range 3 ≤ z ≤ 5.

evaluated for the parameter values which best fit the luminosities in the range 3 ≤ z ≤ 5.3 This

plot shows that (4.3) fits these data fairly well. Therefore, we may conclude that not only should

this function be appropriate to use – at least as a preliminary guess – in this analysis, but if we wish

to keep the power law frequency continuum index, α, as a free parameter in our model we should

not use any other luminosity evolution parameter because it would inevitably be highly covariant

with α, introducing a large degree of uncertainty in the final fitted parameters.

Therefore, the assumption that the luminosity of early quasars evolved according to (4.3) appears

to lead to the simplest model we can use in our analysis while keeping all the Λ CDM parameters

free, which should lead to the best results providing β is not strongly covariant with the density

parameters we are hoping to determine.

Another argument in favour of using (4.3) is that it has been argued in the literature that the

luminosity evolution of any particular species of galaxies in which only internal processes (i.e. stellar

evolution, with no significant merging) are responsible for increases in luminosity with increasing

redshift may be modeled this way (Jackson and Dodgson, 2002). Although in this analysis, we are

looking at high redshift quasars with luminosities that decrease with increasing redshift, we may

still assume that during the early stages of galaxy formation the luminosity of the brightest quasars

3This range was used in determining the parameter values used when plotting (4.3) because in the final analysis
a χ2 minimization of (4.6) to the data in 3 ≤ z ≤ 5 has the lowest reduced χ2 value of any redshift range within
2.6 ≤ z ≤ 5.5.
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grew at a fairly smooth rate, according to increasing supermassive black hole mass. We have already

argued in this section that at redshifts below z ≈ 2.6 the fuel for quasars must have begun to deplete

because the luminosities of the brightest quasars at these redshifts become more scattered, likely

only reaching their maximum potential during mergers when large amounts of gas and dust would

enter the vicinities of the largest supermassive black holes. Therefore, the luminosity evolution of

these brightest quasars may be similar in effect to that of low redshift galaxies, which have dimmed

at a fairly uniform rate due to stellar evolution.

4.3 Error Bars for the Most Luminous Quasars

Eventually, we would like to fit (4.6) to the most luminous quasars in the Catalogue by performing

a χ2 minimization. That is, we would like to determine the parameters A which minimize the

quantity

χ2(A) =
N∑

j=1

[
mi,min,j − mi(zj ;A)

σj

]2
, (4.7)

where σj is the error associated with the data point mi,min,j with redshift zj . In the previous section,

we determined a statistical sample of the brightest SDSS DR5 quasars; however, we still have a

few tasks to perform before we may find the parameter values which minimize (4.7). Specifically,

we must determine the errors associated with the use of the minimal apparent magnitudes from

each redshift bin in this analysis, then we will formulate the luminosity distance (3.15) in terms of

normal elliptic integrals so that values of (4.7) and its derivative with respect to A may be evaluated

efficiently for varying parameter values, and finally, we will determine degeneracies between some

of the constant parameters in our luminosity evolving distance modulus equation (4.6), which will

leave four independent parameters for χ2 minimization.

In this section, we will determine errors associated with the assumption that we actually do

have the brightest quasars that could have existed at each redshift. These errors will come from

fitting the minimal generalized extreme value distribution (GEVD)

F (x;κ, λ, δ) =

⎧⎨
⎩ 1 − exp

{
− [1 + κ

(
x−λ

δ

)]1/κ
}

, 1 + κ
(

x−λ
δ

) ≥ 0, if κ �= 0

1 − exp
[− exp

(
x−λ

δ

)]
, −∞ < x < ∞, if κ = 0

(4.8)

to the apparent magnitudes of all the quasars in each bin separately, and then evaluating the

cumulative distribution function (CDF) at the apparent magnitude minimum; thus, determining

the probability of the existence of a brighter quasar, as indicated by all quasars in each bin.

Therefore, we must ensure that we have a statistical sample – i.e. a representative sample of the

mi − z distribution – of quasars in each bin before we may work out errors.

To this end, let us turn our attention back to Figure 4.1, the plot of all quasars in the Catalogue

in the i − z plane. The mi − z distribution is only slightly altered at the macroscopic level, so
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Figure 4.1 will serve our purposes here. In the caption of this image, three non-statistical features

of this distribution are mentioned:

i. There is a sharp cutoff curve which is noticeable at z � 1,

ii. There are two drops in number density around z ≈ 2.7 and z ≈ 3.5, and

iii. There are also two drops in number density at mi ≈ 19.1 for z � 3 and at mi ≈ 20.2 for

z � 3.

These features all result from the selection algorithms used by Schneider et al. (2007).

The first feature results from the requirement of a maximum absolute magnitude, Mi = −22,

in the quasar selection algorithms used by Schneider et al. (2007), which was calculated using the

k-corrected distance modulus equation with H0 = 70(km/s)/Mpc, ΩM = 0.3, ΩΛ = 0.7, and α =

−0.5. This cutoff appears only to affect the distribution of quasars out to z � 1, at which point

the flux limit of the SDSS instrumentation becomes the limiting factor.

The decreases in number density at z ≈ 2.7 and z ≈ 3.5 are due to the fact that at these

redshifts the SDSS colours are similar to those of stars, so many of the possible quasar candidates

at these redshifts were taken out of the data set by selection algorithms. At the time of writing,

there is no known method for completely removing this feature from the distribution. However, a

forthcoming paper detailing the construction of a statistical quasar sample has been promised on

the SDSS website (www.sdss.org). Therefore, at present we must accept the possibility that error

may be incurred in our analysis due to these features. Note, however, that this density gradient

is in the z-direction and therefore, because our method of determining an appropriate redshift bin

width should have resulted in the most statistically valid apparent magnitude distributions in each

bin, this gradient should not have too detrimental an effect on the mi distributions.

Lastly, the drops in number density at mi ≈ 19.1 and mi ≈ 20.2 for quasars with z � 3 and

z � 3, respectively, result from the flux limits of the low- and high-z quasar selection algorithms –

the two primary algorithms used by Schneider et al. (2007) in selecting quasars from the DR5 data.

The distribution therefore becomes non-statistical here, and all dimmer quasars must be subtracted

from the data set (see Figure 4.6) before the GEVD may be fit to the data, leaving us with only

the bright tail of the quasar distribution. This fact turns out to be beneficial because the CDFs of

the most common distributions all converge to that of the GEVD in their tails (see Castillo et al.

(2005), and references therein). Therefore, if we assume that our distribution is close enough to

the tail of the actual quasar distribution we may fit the truncated minimal GEVD,

FX|X≤x0(x;κ, λ, δ) =

⎧⎨
⎩ FX(x;κ, λ, δ)/FX(x0;κ, λ, δ), if x < x0,

1, if x ≥ x0,
(4.9)

to the apparent magnitudes of all quasars within each bin to determine the errors of our minimal

apparent magnitudes without loss of generality.
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Figure 4.6: mi−z distribution of quasars with z ≥ 2.6, which satisfy the minimum
flux requirements of the quasar low- and high-z selection algorithms.

This analysis is simplified by individually considering the three distributions which make up

the GEVD: the Weibull (κ > 0), the Reversed Gumbel (κ = 0), and the Reversed Fréchet (κ < 0)

distributions. Also, by noting that the Reversed Gumbel distribution may be approximated by

either the Reversed Fréchet or Weibull distributions by taking κ → 0, we find that it is sufficient

to fit only these two distributions to the apparent magnitudes. The Weibull distribution is found

by substituting κ → 1/β, λ → λ + δ, and δ → δ/β for the parameters in (4.8):

FW (x;β, λ, δ) =

⎧⎨
⎩ 0, if x < λ,

1 − exp
[
− (x−λ

δ

)β]
, otherwise.

(4.10)

Similarly, the substitution of κ → −1/β, λ → λ − δ, and δ → δ/β in (4.8) leads us to the common

formulation of the Reversed Fréchet distribution:

FF (x;β, δ, λ) =

⎧⎪⎨
⎪⎩

1 − exp
[
−
(

δ
λ−x

)β
]

, if x ≤ λ,

1, otherwise
(4.11)

(Castillo et al., 2005).

Therefore, both the most likely set of parameters for these distributions, and the distribution

from which the apparent magnitudes in each bin were most likely drawn may be determined by

maximizing either the likelihood function

L(β, δ, λ) =
N∏

j=1

f(mi,j ;β, δ, λ)
δmi,j

, (4.12)
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or the log likelihood function

ln(L(β, δ, λ)) =
N∑

j=1

ln
(

f(mi,j ;β, δ, λ)
δmi,j

)
, (4.13)

where f ≡ ∂F/∂x has been written for the probability density function (PDF) of either the Weibull

or the Fréchet distribution, the weights 1/δmi,j come from the apparent magnitude measurement

errors given in the Catalogue, and N is the number of quasars. Once this has been done, it is a

simple matter to evaluate either (4.10) or (4.11) with the best fit parameters to determine statistical

errors for the minimal apparent magnitudes.

These values will, however, not entirely account for the errors we require because there is

some error associated with the determination of the parameters. A Monte Carlo analysis will

be performed to estimate the errors in these parameters. Specifically, we will use the bootstrap

method, in which N apparent magnitude values are drawn from the best fit CDF and substituted

with replacement into the original set of apparent magnitudes. This is done as many times as

necessary and subsequent maximum likelihood analyses are used to determine new values for the

parameters (Press et al., 1994). The errors in the estimation of the original parameters (β0, δ0, λ0)

are then estimated from the standard deviations of the bootstrapped parameter values; e.g.

δβ =

√√√√ 1
nb

nb∑
i=1

(β0 − βi)2, (4.14)

where nb is the number of bootstrap iterations, and the error in the CDF evaluation is then

calculated from

δF (mi,min;β0, δ0, λ0) =

√(
∂F

∂β
δβ

)2

+
(

∂F

∂δ
δδ

)2

+
(

∂F

∂λ
δλ

)2
∣∣∣∣∣∣
(mi,min;β0,δ0,λ0)

. (4.15)

The errors for the apparent magnitude minima which will be used as weights in the χ2 mini-

mization will therefore be calculated as

δmi,min = F (mi,min;β0, δ0, λ0) + δF (mi,min;β0, δ0, λ0) (4.16)

for whichever distribution, Weibull or Fréchet, is determined to best fit the true quasar apparent

magnitude distribution.

4.4 Calculation of Curve Fitting Formulae

The need for an efficient method of calculating luminosity distances from (3.16) for various values

of A and z was mentioned in §4.3. The analysis for this project will be performed using Maple 10

because of its invaluable nonlinear curve fitting routines. However, the cost of using these routines

effectively is that they must be supplied with functions which are easily evaluated because Maple’s
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numerical integration procedures tend to be extremely slow. For Maple to efficiently calculate

the apparent magnitude values and their derivatives with respect to the parameters, which are

essential for an accurate χ2 minimization, we must therefore convert (3.16) to an easily solvable

form containing elliptic functions.

We begin this discussion by rewriting the luminosity distance neglecting radiation density (3.16),

dL,s(z) =
c(1 + z)

H0

√
ΩM + ΩΛ − 1

sin

(∫ 1+z

1

du

√
ΩM + ΩΛ − 1√

ΩMu3 + (1 − ΩM − ΩΛ)u2 + ΩΛ

)
, (4.17)

where the subscript s implies that the evaluation of (4.17) is only relatively straightforward for the

spherical geometry, where ΩM + ΩΛ > 1. For calculational purposes it is therefore convenient to

also write this equation for the two cases ΩM + ΩΛ = 1 and ΩM + ΩΛ < 1 – respectively, the flat

and hyperbolic geometries – separately.

By noting sin iu = i sinhu, we find the luminosity distance in a hyperbolic universe,

dL,h(z) =
c(1 + z)

H0

√
1 − ΩM − ΩΛ

sinh

(∫ 1+z

1

du

√
1 − ΩM − ΩΛ√

ΩMu3 + (1 − ΩM − ΩΛ)u2 + ΩΛ

)
. (4.18)

For the luminosity distance in a flat universe, we evaluate (4.17) in the limit as ΩM + ΩΛ → 1,

which yields the result,

dL,f (z) =
c(1 + z)

H0

∫ 1+z

1

du√
ΩMu3 + ΩΛ

. (4.19)

Thus, in the end (4.6) must be defined by the piecewise combination of (4.17) − (4.19):

mi − Mi,0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5 log10

(
dL,c

d0

)
− 2.5(1 + α + β) log10(1 + z), if k = −1,

5 log10

(
dL,f

d0

)
− 2.5(1 + α + β) log10(1 + z), if k = 0,

5 log10

(
dL,o

d0

)
− 2.5(1 + α + β) log10(1 + z), if k = 1.

(4.20)

All that remains is the determination of the elliptic function representations of (4.17) – (4.19). For

the spherical and hyperbolic geometries, the elliptic integrals to be evaluated are the same. The

evaluation of these integrals is fairly complicated and will be left for the moment. We will start with

finding the elliptic function representation for the easier case; the flat geometry. By substituting

u = −(ΩΛ/ΩM )1/3t in (4.19) we find

dL,f =
c(1 + z)

H0

1

Ω1/6
Λ Ω1/3

M

∫ −
(

ΩM
ΩΛ

)1/3

−
(

ΩM
ΩΛ

)1/3
(1+z)

dt√
1 − t3

, (4.21)

which may be evaluated using the results of Byrd and Friedman (1971); i.e. we have∫ y

−∞

dt√
1 − t3

=
1

31/4
F (φ, k), (4.22)

where F (φ, k) is the normal elliptic integral of the first kind, defined by

F (φ, k) =
∫ φ

0

dθ√
1 − k2 sin2 θ

(4.23)
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and the argument φ and modulus k for this specific integral are given by

φ = arccos

(
1 −√

3 − y

1 +
√

3 − y

)
(4.24)

and

k2 =
2 +

√
3

4
= sin2

(
5π

12

)
, (4.25)

which is valid when y ≤ 1, i.e. as long as ΩΛ ≥ −ΩM , which is implicit in this evaluation. Thus,

we find the luminosity distance in flat spacetime,

dL,f =
c(1 + z)

H0

1

Ω1/6
Λ Ω1/3

M

⎛
⎝∫ −

(
ΩM
ΩΛ

)1/3

−∞

dt√
1 − t3

−
∫ −

(
ΩM
ΩΛ

)1/3
(1+z)

−∞

dt√
1 − t3

⎞
⎠

=
c(1 + z)

H0

1

Ω1/6
Λ Ω1/3

M

1
31/4

[F (φ1,f , k) − F (φ2,f , k)] , (4.26)

where

φ1,f = arccos

(
(1 −√

3)Ω1/3
Λ + Ω1/3

M

(1 +
√

3)Ω1/3
Λ + Ω1/3

M

)
, (4.27)

φ2,f = arccos

(
(1 −√

3)Ω1/3
Λ + Ω1/3

M (1 + z)

(1 +
√

3)Ω1/3
Λ + Ω1/3

M (1 + z)

)
, (4.28)

and

k = sin
(

5π

12

)
. (4.29)

The elliptic integral involved in the calculation of the luminosity distance for the curved geome-

tries can be written as ∫ 1+z

1

du√
f(u)

, (4.30)

where

f(u) = u3 +
(1 − ΩM − ΩΛ)

ΩM
u2 +

ΩΛ

ΩM
. (4.31)

We would again like to evaluate this using a table of integrals. From Byrd and Friedman (1971)

we have ∫ ∞

y

du√
(u − a)[(u − b1)2 + a2

1]
=

1√
A

F (φ, k), (4.32)

where if a ≤ y < ∞, a ε R, and b ε C, so that b1 = �b = b+b
2 , a2

1 = (�b)2 = − (b−b)2

4 , we have

A2 ≡ (b1 − a)2 + a2
1, (4.33)

k2 =
A + b1 − a

2A
, (4.34)

and

φ = arccos
(

y − a − A

y − a + A

)
. (4.35)

We will see shortly that a < 0 for all physical values of ΩM and ΩΛ so that we must have a ≤ y < ∞
for finite values of z.
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Rather than explicitly writing f(u) in the form given in (4.32) we write it in a similar, but

computationally more simplistic form,

f(u) = u3 +
(1 − ΩM − ΩΛ)

ΩM
u2 +

ΩΛ

ΩM
= (u − a)(u2 + cu + ac), (4.36)

so that we may obtain the parameters we need from

b1 = − c

2
and a2

1 =
(4a − c)c

4
, (4.37)

and for completeness we may write

b± = b1 ± ia1 =
−c ±√

c2 − 4ac

2
. (4.38)

Now, (4.36) is satisfied iff

a3 +
1 − ΩM − ΩΛ

ΩM
a2 +

ΩΛ

ΩM
= 0. (4.39)

To find the solution to this cubic, we substitute

x = a +
1 − ΩM − ΩΛ

3ΩM
(4.40)

to obtain

x3 − (1 − ΩM − ΩΛ)2

3Ω2
M

x + 2
(1 − ΩM − ΩΛ)3

27Ω3
M

+
ΩΛ

ΩM
= 0. (4.41)

Now, we have transformed (4.39) to the form

x3 = 3px + 2q, (4.42)

for which the solution

x = (q − w)1/3 + (q + w)1/3 ≡ U + V, (4.43)

where

w = (q2 − p3)1/2, (4.44)

was first published by Gerolamo Cardano in 1545 (Penrose, 2005). There is only one real solution

for q2 ≥ p3. However, when q2 < p3 and w is imaginary there are three real solutions. The curve

q2 = p3 has been plotted in the ΩΛ − ΩM plane in Figure 4.7. The two regions where q2 < p3

are those labeled r2 and r5. Region r2 is particularly interesting because density parameters in

this region lead to complex values of ȧ in (2.42) for certain values of the scale factor; thus, density

parameters in this region cannot be allowed because they contradict the assumption of the big

bang. The curve between r5 and r1 is the border for which the universe would expand forever or

collapse eventually and the curve between r3 and r4 is of little importance because q2 ≥ p3 for

ΩΛ < 0. Note that the curves ΩΛ = 0 and ΩM = 0 have been plotted in Figure 4.7 because of the

implicit assumptions in (4.17) – (4.19) that these density parameters are nonzero.
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Figure 4.7: The curves p = q in the ΩΛ − ΩM plane, which display the valid
density parameter ranges in big bang cosmology. q2 ≥ p3 only in regions r1, r3,
and r4. r1 is of particular importance because there can have been no big bang for
parameter values here.

We find that x is purely real in region r1, which, according to the literature, should be our

region of interest. Thus, the single solution to (4.41) in this region may be written:

U = −
(

ΩΛ

2ΩM
+

(1 − ΩM − ΩΛ)3

27Ω3
M

− ΩΛ

2ΩM

√
1 − 4(1 − ΩM − ΩΛ)3

27ΩΛΩ2
M

)1/3

, (4.45)

V = −
(

ΩΛ

2ΩM
+

(1 − ΩM − ΩΛ)3

27Ω3
M

+
ΩΛ

2ΩM

√
1 − 4(1 − ΩM − ΩΛ)3

27ΩΛΩ2
M

)1/3

, (4.46)

from which we find the three parameters needed in solving (4.32):

a = U + V − 1 − ΩM − ΩΛ

3ΩM
, (4.47)

b1 = U + V +
2
3

1 − ΩM − ΩΛ

ΩM
, (4.48)

a2
1 = 3(U + V )2 − 4

3
(1 − ΩM − ΩΛ)2

Ω2
M

. (4.49)

With the constant a now defined, we are able to determine the density parameter values for

which we may use (4.32) to evaluate (4.30). Figure 4.8 is a plot of the curves for which a = 0. In

the central region of this figure, which covers a larger portion of the ΩΛ − ΩM plane than region
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Figure 4.8: The curves a = 0 are used to illustrate the region in the ΩΛ − ΩM

plane for which a < 0 so that (4.33) – (4.35) may be used to determine (4.30).
Region r1 from Figure 4.7 is a subset of the central region in this plot for which
a < 0.

r1 in Figure 4.7, the values of a are negative. Therefore, the limits of integration in (4.30) will be

greater than a for parameter values in r1, so we are justified in evaluating it using (4.33) – (4.35)

and (4.45) – (4.49).

We may now write the equations for the luminosity distance in curved spacetime:

dL,s(z) =
c(1 + z)

H0

√
ΩM + ΩΛ − 1

sin

(√
ΩM + ΩΛ − 1

ΩMA
[F (φ1, k) − F (φ2, k)]

)
, (4.50)

dL,h(z) =
c(1 + z)

H0

√
1 − ΩM − ΩΛ

sinh

(√
1 − ΩM − ΩΛ

ΩMA
[F (φ1, k) − F (φ2, k)]

)
, (4.51)

where φ1 and φ2 are given by (4.35) with y = 1 and y = 1 + z, respectively.

Upon substitution of (4.26), (4.50), and (4.51) into the distance modulus equation (4.20), we find

a degeneracy between the absolute magnitude Mi and Hubble’s constant H0. With the definition

Bs ≡ 1√
ΩM + ΩΛ − 1

sin

(√
ΩM + ΩΛ − 1

ΩMA
[F (φ1, k) − F (φ2, k)]

)
, (4.52)

this is illustrated in the spherical case as follows:

mi = Mi,0 + 5 log10

(
dL

d0

)
− 2.5(1 + α + β) log10(1 + z)

= Mi,0 + 5 log10

(
c

H0d0

)
+ 5 log10 Bs + 5 log10(1 + z) − 2.5(1 + α + β) log10(1 + z)
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= Mi,0 − 5 log10

(
H0d0

c

)
+ 5 log10 Bs + 2.5(1 − α − β) log10(1 + z). (4.53)

For curvefitting purposes, we must therefore combine Mi and H0 into one fit parameter,

A1 ≡ Mi,0 − 5 log10

(
H0d0

c

)
. (4.54)

The vector A from §4.3 is then defined as

A ≡ [A1,ΩM ,ΩΛ, α + β]. (4.55)

By defining

Bh =
1√

1 − ΩM − ΩΛ

sin

(√
1 − ΩM − ΩΛ

ΩMA
[F (φ1, k) − F (φ2, k)]

)
, (4.56)

Bf =
1

Ω1/6
Λ Ω1/3

M

1
31/4

[F (φ1,f , k) − F (φ2,f , k)] , (4.57)

we are now equipped with everything we need to write the piecewise apparent magnitude function

mi(z;A) = A1 + 5 log10 Bs,f,h(A2, A3) + 2.5(1 − A4) log10(1 + z), (4.58)

where

Bs,f,h(A2, A3) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Bs(A2, A3), if k = 1,

Bf (A2, A3), if k = 0,

Bh(A2, A3), if k = −1.

(4.59)

After formulating (4.58) in a step-by-step manner in Maple code, it is a simple matter to calcu-

late its derivatives with respect to the parameters so that the curve fitting routines can efficiently

determine the values of A for which the χ2 variable (4.7) is at a minimum.
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Chapter 5

Results

In Chapter 4, the stage was set for determining the values of the matter and vacuum cosmological

density parameters, ΩM and ΩΛ, from a χ2 minimization which uses a piecewise distance modulus

equation for luminosity evolving quasars and apparent magnitudes of the brightest known quasars

at varying redshifts with statistically determined errors. This analysis has been performed using

nonlinear curvefitting routines within the Statistics and Optimization packages of Maple 10. In the

following sections, the results of this analysis will be presented along with some specific procedural

steps which were required.

5.1 Results from m
i,min Error Analysis

In §4.2 we found that the sample of apparent magnitude minima which is most representative of

the luminosities of the brightest quasars at varying redshifts came from bins of width ∆z = 0.096,

beginning at z = 2.6. In §4.3, it was argued that the errors associated with the assumption that

these minimal apparent magnitudes are the minimum possible apparent magnitudes, according to

the distribution of all apparent magnitudes, could be calculated by fitting the minimal GEVD –

more specifically, the Weibull and minimal Fréchet distributions – to all the apparent magnitudes

in each bin.

Both the Weibull distribution

FW (x;β, λ, δ) =

⎧⎨
⎩ 0, if x < λ,

1 − exp
[
− (x−λ

δ

)β]
, otherwise,

(5.1)

and minimal Fréchet distribution,

FF (x;β, δ, λ) =

⎧⎪⎨
⎪⎩

1 − exp
[
−
(

δ
λ−x

)β
]

, if x ≤ λ,

1, otherwise,
(5.2)

which have been rewritten here for convenience, were initially considered in separate maximum

likelihood analyses. This was accomplished with the use of the NLPSolve routine in Maple 10’s

Optimization package, which was able to maximize the log likelihood function (4.13) of the apparent

magnitudes in each bin. Prior to calculating the log likelihood functions, both distributions were
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Figure 5.1: Quasar mi,min error plot on the range 2.6 ≤ z ≤ 5.4 from bins of
width ∆z = 0.096.

truncated by normalizing (5.1) and (5.2) so that FW,F (x;β, λ, δ) = 1 for x ≥ mi,max, where mi,max =

19.1 or mi,max = 20.2, for z < 3 or z > 3, respectively.

It should also be noted here that the bin with endpoints on either side of z = 3 was fit only

to the data on the side of z = 3 from which the minimal apparent magnitude came. However, the

redshift bin midpoint was still used for χ2 minimization. This choice was made so as to maintain

that the actual redshifts of the apparent magnitude minima were drawn from a uniform distribution

within their respective bins.

From the two separate analyses, it was determined that the maximum likelihood in all bins

was greater for the Fréchet distribution. Because we have apparent magnitude measurements for

only the brightest quasars, this analysis implies that the left tail of the quasar apparent magnitude

distribution is most likely drawn from the minimal Fréchet distribution.

The errors for the minimal apparent magnitudes δmi,min were subsequently calculated by

adding the evaluation of (5.2) for the best fit parameters and minimal apparent magnitude mi,min
from each bin with the error in this calculation due to the uncertainty in the maximum likelihood

analysis, which was determined from a Monte Carlo simulation. These data are displayed in Ta-

ble 5.1 and Figure 5.1 for all redshift bins on 2.6 ≤ z ≤ 5.4. Note that the furthest quasar in the

Catalogue, with z = 5.4135 was not included in our final data set because it was the only quasar

in its redshift bin; thus, no statistical analysis could be performed.
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z mi,min FF (mi,min) δFF (mi,min) δmi,min
2.648 16.286 0.075 0.138 0.213

2.744 15.828 0.095 0.143 0.238

2.840 16.544 0.104 0.154 0.258

2.936 16.483 0.078 0.148 0.225

3.032 16.322 0.009 0.099 0.108

3.128 16.346 0.114 0.125 0.239

3.224 16.160 0.100 0.122 0.222

3.320 16.619 0.120 0.127 0.247

3.416 17.026 0.119 0.132 0.251

3.512 17.132 0.122 0.141 0.264

3.608 17.546 0.119 0.153 0.272

3.704 17.043 0.077 0.130 0.206

3.800 17.149 0.103 0.142 0.245

3.896 17.421 0.092 0.143 0.235

3.992 17.593 0.102 0.150 0.252

4.088 17.324 0.091 0.141 0.232

4.184 17.289 0.093 0.141 0.234

4.280 17.828 0.120 0.155 0.275

4.376 18.250 0.094 0.158 0.252

4.472 18.430 0.147 0.165 0.312

4.568 17.605 0.131 0.143 0.274

4.664 18.163 0.135 0.164 0.299

4.760 18.248 0.109 0.161 0.270

4.856 18.495 0.141 0.172 0.313

4.952 18.183 0.230 0.116 0.346

5.048 19.050 0.145 0.197 0.343

5.144 19.214 0.140 0.204 0.343

5.240 19.158 0.185 0.220 0.404

5.336 19.232 0.130 0.210 0.340

Table 5.1: Quasar mi,min data on the range 2.6 ≤ z ≤ 5.4 from bins of width
∆z = 0.096. The z values used are the midpoints of the redshift bins. The total
error in apparent magnitude δmi,min comes from the addition of both FF (mi,min)
and δFF (mi,min).
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5.2 χ2 Minimization Results and Uncertainties

In § 4.2, we used a qualitative argument to determine that the minimum redshift which may be

modeled by our luminosity evolution equation is z ≈ 2.6. However, the determination of the actual

redshift range for which we may use our luminosity evolution model must come from a quantitative

analysis. This has been done by comparing reduced χ2 values, defined as χ2 divided by degrees

of freedom, χ2/ν, for various redshift ranges within the data set listed in Table 5.1. The redshift

range with the lowest reduced χ2 value was then determined to be the optimal range.

According to the framework described in Chapter 4, the χ2 minima for these various redshift

ranges have been determined by finding the parameters

A ≡
[
Mi − 5 log10

(
H0d0

c

)
,ΩM ,ΩΛ, α + β

]
, (5.3)

which minimize the χ2 variable (4.7),

χ2(A) =
N∑

j=1

[
mi,min,j − mi(zj ;A)

δmi,min,j

]2
, (5.4)

where the various data points [z,mi,min ± δmi,min]j are listed in Table 5.1 and mi(zj ;A) is given

by (4.58),

mi(z;A) = A1 + 5 log10 Bs,f,h(A2, A3) + 2.5(1 − A4) log10(1 + z). (5.5)

This minimization was performed with Maple 10’s LSSolve routine, which is part of the Statistics

package. A useful option in the LSSolve routine is that it admits nonlinear constraints on the

parameters; thus, the problem was specified so that only physical values of the density parameters

– i.e., values in the ΩΛ − ΩM plane which do not fall in region r2 of Figure 4.7 – could be used.

After considering various endpoint values, the redshift range with the lowest reduced χ2 value,

χ2/ν = 1.23, at the χ2 minimum was determined to be 2.984 ≤ z ≤ 5.000. The parameter values

corresponding to this minimum are

A = [7.39, 0.07, 1.13,−3.78]. (5.6)

The distance modulus equation (5.5) with these parameter values has been plotted in Figure 5.2,

along with the data in this range.

Confidence limits in the parameter values were estimated from the covariance matrix for this

fit,

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1830 −60.0 −150 1650

−60.0 2.12 5.07 −54.9

−150 5.07 12.5 −136

1650 −54.9 −136 1490

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5.7)
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Figure 5.2: The brightest quasars on the interval 3 ≤ z ≤ 5 and the apparent
magnitude curve (5.5) with the parameter values resulting in the χ2 minimum.

which was calculated by inverting the curvature matrix [α], defined by

αkl ≡ 1
2

∂2χ2

∂Ak∂Al
=

N∑
j=1

1
σ2

j

[
∂mi(zj ;A)

∂Ak

∂mi(zj ;A)
∂Al

− [mi, j − mi(zj ;A)]
∂2mi(zj ;A)

∂Ak∂Al

]
(5.8)

(Press et al., 1994). As long as the data are normally distributed about the actual physical curve

– a point which will be addressed shortly – the square roots of the diagonal elements of [C] are

the uncertainties in the individual parameters. Therefore, the best fit parameter values with their

uncertainties are

A = [7.39 ± 42.77, 0.07 ± 1.46, 1.13 ± 3.53,−3.78 ± 38.56]. (5.9)

In order to better understand these large uncertainties in ΩM and ΩΛ, a plot of the estimated

1-σ and 2-σ confidence regions in this plane has been constructed. This was done by plotting the

ellipses defined by

∆χ2 =
[

Ω′
M Ω′

Λ

]
[Cproj,MΛ]−1

⎡
⎣ Ω′

M

Ω′
Λ

⎤
⎦ , (5.10)

where the 1-σ and 2-σ quantiles are ∆χ2 = 2.30 and 6.17 for a chi-squared distribution with

two degrees of freedom and [Cproj,MΛ] is the 2 × 2 intersection of the second and third rows and

columns of [C] (see Figure 5.3). This plot indicates that there is room within the uncertainties of

this analysis for the literature values ΩM ≈ 0.3 and ΩΛ ≈ 0.7. However, the calculated ellipses
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Figure 5.3: Confidence limits for the estimated model parameters in the ΩM −ΩΛ

plane. The boundaries of the ellipses which define these 1-σ and 2-σ confidence
regions extend well into the non-physical regions – ΩM < 0 and q2 < p3 – of the Λ
CDM model.

are quite large and the majority of the confidence region determined through this method falls

outside the physical region, in the areas of the plane where there could have been no big bang,

or where ΩM < 0. Therefore, another approach to this type of plot may provide a more accurate

representation of the confidence limits.

It is becoming standard practice in this type of analysis to calculate confidence regions by

plotting constant boundaries of a likelihood function, which in this analysis would come from

the χ2 variable. A discussion of this type of analysis, which uses Markov Chain Monte Carlos

(MCMCs) to efficiently determine these boundaries by considering only parameter values near the

desired confidence level, is given in Verde et al. (2003). However, it was decided that the MCMC

approach was beyond the scope of the present analysis, which involves a nonstatistical data set and

an elementary luminosity evolution equation. This brings us to the assumption that the data are

normally distributed about the actual physical curve. This is a bold assumption to make and thus,

the MCMC method, which would determine uncertainties based on the χ2 landscape, is considered

to be more accurate.
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Chapter 6

Discussion

Although the final results of this analysis only agree loosely with the literature values, there

are many possible (and exciting) explanations for the outcome presented in the previous chapter.

Therefore, although this analysis is only in agreement with the literature values for ΩM and ΩΛ at

the 95% confidence level, this project was successful for a couple of reasons:

i. The main goal for this project was to construct a method for using the large catalogue of

SDSS quasars to determine values for ΩM and ΩΛ, which has been accomplished. There were

many points in the analysis where assumptions had to be made; any of which could have led

to errors in the results. Therefore, this study presents many possibilities for future work.

ii. A new method for statistically analyzing apparent magnitudes of the brightest quasars, or any

extreme values of a distribution for that matter, has been developed during this project. This

method has the possibility of seeing many applications and is perhaps the greatest success of

this thesis because it allowed for a statistical determination of cosmological parameters from

data located at a distance for which these values have not previously been determined.

The second point here has to do with the error bars calculated for the apparent magnitude

minima. Unfortunately, the success of this purely statistical method may not be determined con-

clusively, and may only be tested through repetition. With that said, the logic behind this approach

– that the probability of the existence of brighter quasars is a measure of the error in the value of

the observed extreme value – does make intuitive sense. In any case, this method is not likely a

large contributor to the error in this analysis because of the low degree to which the errors influence

the parameter values of the χ2 minimum. In fact, the most erroneous factor in this error analysis

was most likely that in the end there was no choice but to use a nonstatistical sample of quasars.

As mentioned in §4.3, this may be rectified upon release of a paper, which is to be written by the

SDSS collaboration, detailing the construction of a statistical sample from the quasar catalogue.

The most likely explanation for the discrepancy in the final results is that the analysis did not

exhaust all possible options. There were some significant assumptions made in the development of

this project, each of which presents some possibility for future work.
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First of all, the form of luminosity evolution of high redshift quasars was assumed to be well

approximated by a power law,

L(z) = L0(1 + z)β . (6.1)

It was argued that this function is capable of closely fitting the shape of the actual luminosity

evolution of quasars in some region, and therefore, if another luminosity evolution equation were to

be used instead, the frequency continuum index, α, could not be set as a free parameter due to its

degeneracy with β. However, α has been measured using independent methods (Vanden Berk et al.,

2001), and therefore its best estimated value could be used so that a more theoretical luminosity

evolution function could be modeled. For instance, the luminosity of the brightest quasars could

be determined by considering the Eddington limit of the maximum supermassive black hole mass

at varying redshifts.

One point to mention here is that the covariance matrix (5.7) presented in §5.2 displays little

covariance between either ΩM or ΩΛ and the α + β term. Therefore, this luminosity evolution

equation should not have had a large influence on the final values of the density parameters, with

the exception of a couple of possibilities: it may have affected the final results if either its shape was

not general enough to account for the actual luminosity evolution, or if it introduced a preference to

a specific redshift range for which the data were not normally distributed about the actual physical

curve (which would have been significant only if the error bars did not properly account for this

effect).

The luminosity evolution equation is, however, not the only possible source of error in this

analysis. As mentioned earlier, this project has used a data set located in a distance range which

has never before been used directly in the determination of cosmological parameters. Therefore,

previous analyses have not been complete and the values of cosmological parameters which they

have derived may be subject to observational bias. As such, certain assumptions of the Λ CDM

model should also be investigated.

For instance, we assumed a vacuum equation of state pΛ = wρΛ with w = −1 for constant Λ.

However, any time-dependent function, Λ(a), satisfying conservation of energy and momentum is

admitted by the Einstein equation. Therefore, values other than w = −1 should be considered for

completeness. Leaving w as a free parameter leads to a scale factor dependent energy density for

the vacuum,

ρΛ = ρΛ,0

(a0

a

)3(1+w)

, (6.2)

which modifies the rate of change of the scale factor to

ȧ = a0H0

√
ΩM

(a0

a
− 1
)

+ ΩR

(
a2
0

a2
− 1
)

+ ΩΛ

(
a1+3w
0

a1+3w
− 1
)

+ 1. (6.3)

Therefore, a future analysis could be performed in which w was treated as a free parameter for χ2

minimization.
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Another assumption that was made was that the neutrino energy density, with Ων < 0.01, is

negligible compared to ΩM and ΩΛ. However, if Tν 	 mνc2

kB
, so that pν = 1/3ρν and neutrinos

contribute to ΩR, the radiation energy density may not be negligible compared with the matter

and vacuum energy densities if Ων ∼ 10−2. This is especially true at high redshifts, because (6.3)

and (2.7) imply that we are actually comparing ΩR(1 + z)2 with ΩM (1 + z) and ΩΛ(1 + z)1+3w.

Therefore, it may not only be required that ΩR is included in this analysis, but this method may

actually be capable of determining bounds for ΩR. Then, because Ωγ has been well determined

from CMB measurements, we would have upper and lower bounds for Ων , and therefore
∑

mν ,

which would be a significant result for particle physics.
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Chapter 7

Conclusion

In this thesis, a new method has been developed for determining values of the cosmological

density parameters, ΩM and ΩΛ, using a catalogue of quasars from the Sloan Digital Sky Survey.

This was accomplished by selecting the brightest quasars within redshift bins and performing a

χ2 minimization involving the i band apparent magnitudes of these quasars and a luminosity

evolving distance modulus equation (4.58) to determine the optimal values for the parameters of

the luminosity distance, ΩM and ΩΛ. The errors used in this analysis were evaluated by fitting the

generalized extreme value distribution to the apparent magnitude distribution in each bin. The

bright tail of the quasar apparent magnitude distribution was found to be most likely drawn from the

Fréchet distribution (4.11); therefore, the evaluation of the CDF of the best fit Fréchet distribution

to the apparent magnitudes of the quasars in each bin was evaluated at the minimum apparent

magnitude. This value, which is interpreted as the probability of the existence of a brighter quasar,

was used as the uncertainty in the χ2 minimization.

The redshift range for which the luminosity evolution equation (4.3) was determined to best

fit the brightest apparent magnitude values was 3 ≤ z ≤ 5. The values of the density parameters

which minimize χ2 in this range are ΩM = 0.07 ± 1.46 and ΩΛ = 1.13 ± 3.53. These values have

large uncertainties, which could be the result of either the method in which they were determined

(the covariance matrix approach) or a problem in the theory. The fact that they are so different

from the literature values, ΩM ≈ 0.3 and ΩΛ ≈ 0.7, suggests the latter to be more likely. Therefore,

possible sources of error in the theory, such as an incorrect form of luminosity evolution, neglecting

radiation density for this high redshift analysis, and the assumption of an equation of state for dark

energy with w = −1 have been discussed in Chapter 6.

This project has led quite naturally to questions about the cosmological theory for the early

stages of the universe and future work will therefore be designed to address these questions. How-

ever, the main goal of this project, which was to take a large catalogue of quasars and develop a

method for determining values of the cosmological density parameters from these extremely distant

objects, has been accomplished.
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