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ABSTRACT!
!
! X-ray absorption is not only element specific, but atom specific: two atoms of the 
same element in different states or in different neighbourhoods will have slightly 
different absorption characteristics.  These energy dependent atomic form factors are 
carried over to the diffraction intensities.  The atomic form factors are sensitive not only 
to the the energy of the X-ray but also the diffraction criteria; providing individual local 
physical data at different ratios in various diffractions.  This process is referred to as site 
selectivity, it is unique to Diffraction Spectroscopy, and is achieved only when the 
sample is in crystal form.  Through this work, a technique has been devised to site-
separate two atoms of iron from within a protein, that builds on prior small unit cell 
Diffraction Anomalous Fine Structure experiments and harnesses the collection and 

processing software commonly used in large unit cell crystallography.  A technique (dev 

+ PCA) has been developed to retrieve the small signals from individual atom-labels out 
of the large and noisy background of real diffraction taken across a spectrum.  The 
intensity of the diffractions are calculated by integrating over multiple images, profiling 
spots, merging datasets, and scaling across the whole spectrum.  This thesis explores 
how Diffraction Spectroscopy can be used effectively on large unit cells, namely those 
of proteins.  Site-selective absorption experiments were conducted on large unit cell 
crystals at a 3rd generation synchrotron beamline, exclusively using existing equipment.  
The spectra generated were limited in scope but are an adequate proof of concept.!
!
!
!
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Remember, kids, the only difference between  

screwing around and science 

is writing it down. 

                                                               -Adam Savage 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!

CHAPTER 1!
!

INTRODUCTION!

!
1.1! Motivation!
!
! Due to their wavelength, X-rays have been used since 1912 [1] to determine the 
nature and arrangement of systems at the atomic scale.  The absorption wavelength of 
elements within some of the most interesting systems, molybdenum cofactors in nitrate 
reductase or the iron-sulphur clusters of thioredoxin-like ferredoxins for example, 
coincides with the wavelength of X-rays that diffract at experimentally useful angles.  
This energy-coincidence phenomena between diffraction and absorption has been 
adopted for what is called Multi-wavelength Anomalous Dispersion (MAD) phasing [2] of 
macromolecular crystals.  Newer macromolecular crystallography (MX) beamlines 
designed and built to exploit this phenomenon.  !
!
! The Protein Data Bank (PDB) was formed as a warehouse of the 3-dimensional 
structures of large macromolecules.  In 1995, there were only 15 synchrotron beamlines 
dedicated to MX worldwide, and since then an average of 6 beamlines per year have 
been built and commissioned [3] to service the ever-growing structural biology 
community.  Approximately 120 synchrotron MX beamlines exist at this time and 
account for 88% of the total structures deposited in the PDB.  A few of these beamlines 
have already been decommissioned while many more are under construction.  MAD 
phasing in crystallography monitors the change of intensity of the diffracted light at 
specific energies.  The intensity of diffracted X-rays is half of the information supplying 
unit cell electron density maps; the other half is the phase.  The diffraction intensity can 
be evaluated and used to help phase structures by tuning the energy of the X-rays to 
favourable absorption frequencies of target atoms within the cell.  This causes well-
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characterized intensity changes, which can be used to lock in the phase that is lost 
when the intensity is recorded.  MAD-phasing typically only records the intensity at 3 
energies.  Diffraction Spectroscopy [4, 5] (DS), in contrast, follows the modulations of 
intensity over a wide range of energies, giving a spectrum.  Since 1983, DS has only 
been conducted on very small molecules, well-ordered solids with small unit cells or 
highly symmetric systems [4] and always on a handful of carefully chosen diffraction 
spots [5].  The purpose of this thesis is to demonstrate that DS can be applied to much 
larger molecular systems using a standard MAD-capable beamline.  A discussion of a 
mathematical framework for extracting DS results from such a complex system and its 
implications going forward is also included.  Beyond the theoretical framework that has 
been developed, proof of single and multi-iron containing protein experiments are 
conducted. The results obtained in these simple and complex systems indicate that the 
techniques developed herein could help answer many interesting questions in 
biochemistry and biology.!
!
1.2! Metalloproteins!
!
 It has been estimated that transition metal ions are in approximately 11% of all 

proteins.  Two basic roles are fulfilled by these essential transition metals: (1) transfer, 
such as in nitrate reductase; and (2) catalytic, such as in metalloenzymes.  
Metalloenzymes are enzymes which contain a metal as an integral part of their active 
sites.  These metals are responsible either directly or indirectly for a considerable 
portion of the interesting chemistry.  Metalloenzymes catalyze a wide range of 
biochemical reactions.  Cytochrome oxidase, the ultimate consumer of the O2 that we 
breathe, contains a binuclear Cu-Fe active site.  Photosystem II has a photosynthetic O2 
evolving complex, with a Mn4Ca cluster at its active site.  Nitrogenase, a key enzyme in 
the global nitrogen cycle contains a complex molybdenum-iron-sulfur cluster.  These 
examples of metalloenzymes are remarkable not only for their chemistry or structure but 
also in their unmatched efficiency; the mechanisms of these processes are complex and 
need detailed study.  An accurate understanding of the transition metals physical and 
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electronic structures is essential for understanding the metal complex’s role within the 
larger protein structures.  !
!
! The ultimate goal of focus of this research is to gain a better understanding of 
these structures and to apply DS to that end.  An essential prerequisite for this is to 
develop the technique of DS so that it can be applied to complex systems, and for that 
purpose two-iron plant ferredoxin was selected.  Ferredoxin is a much studied 
metalloprotein, the structure and biochemistry of which are well documented in the 
literature [7, 8]. Functionally, ferredoxin is a one electron capacitor: retaining a charge, 
and when appropriate, transferring that charge.  !
!
! The two techniques involved in DS are X-ray Macromolecular Crystallography 
and X-ray Absorption Spectroscopy.  The former provides a crystallographic atomic 
resolution model of a protein (beta sheets, alpha helices, locations of the metal 
complexes) and serves to explain the structure-function relationship of a macromolecule 
[9].  However, sometimes understanding the shape is just a starting point; X-ray 
Absorption Spectroscopy is employed to gain greater understanding of an active-sites’ 
interatomic distances [10] if there is a metal present.  XAS is usually performed 
separately from X-ray Macromolecular Crystallography, under different conditions, on a 
different beamline, and usually with a non-crystalline sample.  XAS gives an order of 
magnitude improvement, than macromolecular crystallography, in bond length 
determination in the immediate cluster surrounding the target atom, and is comparable 
to small molecule crystallography.  XAS is limited in that it sees all of a particular metal 
in a sample where DS is able to hone in on a single absorber (target atom).  By 
combining the two techniques, Diffraction Spectroscopy can supply complementary 
information to crystallography by elucidating, spectroscopically, details of the an 
individual metal sites' environment. !
!
!
!
!
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1.3! X-ray Absorption Spectroscopy (XAS)!
!
! XAS has a relatively short history, with its first appearing in 1971 in a landmark 
paper by Sayers, Stern and Lytle [11] concerning amorphous and crystalline 
Germanium.  Lytle et. al. showed using Fourier analysis of the oscillations on the high 
end of absorption can be represented as a sum of normalized Gaussians and that the 
Gaussians could model the radial distribution of the absorber’s nearest neighbours.  
Lytle’s XAS is a probe that gives very accurate information of the target atom 
coordination and its environment.  XAS is also not constrained by crystallinity and can 
be collected in a variety of modalities such as absorption, fluorescence and electron 
yield.  XAS can give the number of neighbours, the neighbouring atom types (to a lesser 
degree) as well as very accurate bond distances.  The technique has been further 
developed to exploit the polarized synchrotron beam [12] by aligning the polarized beam 
with molecule orientation.   It has also been refined to highlight magnetic effects as well 
as ligand field splitting [13].!
!
! XAS can normally measured by transmission on a dilute sample or fluorescence 
[14] on a concentrated (even solid) sample or a combination of both.  It may also be 
used in imaging elemental distributions throughout a much larger (cm x cm) sample 
[15].  As X-rays pass through the sample, they are absorbed in very specific amounts at 
different energies depending on the element of the target atom and its environment.  
One of the drawbacks of XAS is that it excites all atoms of a given element in the 
sample, whether or not they are the target atom.  As well as keeping the experiment 
free from contaminating elements of the same type, if there are more than one of the 
same element of interest in the sample itself the complexity increases in the 
interpretation of the data.  Modern XAS analysis places the target atom's orientation, 
neighbouring atoms and location within a sample and anchors it to its surroundings 
using inference from chemistry, density functional theory or by visual inspection of the 
crystallographic structure.  A more detailed discussion of XAS is presented in Chapter 2.!
!
!
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1.4! Macromolecular Crystallography (MX)!
!
! The use of X-ray crystallography in the elucidation of the three-dimensional 
structure of molecules has a history going back almost 100 years when Bragg [16] 
discovered the structure of sodium chloride.  Physical chemists and biologists make 
common use of X-ray crystallography because the information gained is profoundly 
important to the understanding of molecules and macromolecules and in the design of 
future experiments.  It is not an understatement to say that MX was a revolution to 
biology by throwing previously surmised atomic arrangements into sharp relief.!
!
! Almost all biological structures are now discovered using crystallography 
beamlines at synchrotrons.  And newer, so called, ‘third generation’ synchrotron MX 
beamlines operate in the 5 - 18 KeV (2.47 - 0.67Å) range.  Within this energy range lie 
the K‐edge absorption edges, which are good for phasing, of elements from vanadium 
to zirconium as well as many L3 edges of elements such as tungsten or tantalum.  
Biologically relevant elements that fall within this spectrum include Fe, Mn, Se, Zn, and 
Cu.  While a powerful technique, solving the three-dimensional structure of a 
macromolecule comes at a cost.  For the protein’s three-dimensional structure to be 
calculated, it must first be crystallized.  This is the predominant rate-limiting step in X-
ray crystallography.  Crystals, and consequently their structures of challenging 
macromolecules can be decades in their discovery [17]; however crystallography has 
been successfully used to determine more than 85,500 structures [18].!
!
! The experimental data in X-ray crystallography are measurements of electron 
density of the macromolecule; atomic positions are located at the centres of the areas of 
highest density.  A firm knowledge of the amino acid sequence and chemically realistic 
configurations allow the crystallographer to assign the correct atoms into the electron 
density map.  The Fourier transform of the unit cell’s density in real space is a set of 
structure factors (F) in reciprocal space.  Diffraction occurs every time a reciprocal 
lattice point passes through the Ewald sphere [19].  Diffraction is then satisfied by 
rotating a (uniform single) crystal and selecting an appropriate sphere radius.  The 
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location of a reciprocal lattice point is due to crystal symmetry.  The intensity of a 
diffraction spot is from the contents of the unit cell, and the Ewald sphere’s radius is 
inversely proportional to the X-ray’s wavelength.!
!
1.5! Diffraction Spectroscopy (DS)!
!
! The potential absorption of X-rays by a target atom, by causality [21], effects the 
diffraction in a well understood way.  Atoms with different locations within the unit cell 
contribute at different levels to each diffraction by its energy dependent atomic form 
factor.  DS can provide metal-ion local physical data and also distinguish between 
metals of the same element within the same sample.  This process is referred to as site 
selectivity, is unique to DS, and is achieved only when the sample is in its crystal form.  
The unique signature from each target atom of the same element (with a different 
coordination or surrounding environments) allows diffractions that prefer that atom to be 
mined for its signature anomalous dispersion spectrum.  The location of a diffracted X-
ray is by dint of the crystal form, but the intensity of the diffracted spot depends on the 
contents of the unit cell.  !
!
! This thesis explores how DS can be used effectively on much larger unit cells, 
namely those of proteins.  Presented is a technique for extracting XAS-style data from 
elementally identical but not site-equivalent heavy (metal) atoms within a protein crystal.  
This is appropriate for metalloprotein crystals with transition metal elements at different 
locations or with different electronic configurations within the same macromolecule.!
!
1.6! The Experiment!
!
! One of the driving forces behind these experiments is to discover whether DS 
can be done on very large macromolecules.  Theoretically, absorption information is 
being utilized by MAD-phasing, but at the outset of this study it was unknown whether a 
beamline and macromolecular crystals could provide sufficient quality data for extraction 
of XAS-style spectra.  An equally intriguing facet of the research is whether it could be 
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performed with existing equipment on a standard third generation beamline, allowing all 
beamlines of this and future generations the capacity to perform this experiment where 
and when necessary.  The data collection strategy is straight forward.  The beamline is 
tuned to an energy slightly below the absorption edge of the target element; diffractions 
are collected over a thin wedge of approximately 10° in 1° rotations.  This is similar to a 
normal data collection except over a thinner wedge; during normal data collection it is 
not unusual to collect 60°-360° in 1° rotations.  The beamline energy is then stepped up, 
and the exact same 10° are collected again.  This is repeated at 50-70 energy points 
across the absorption edge of the target atom and, if the crystal is hardy, the whole 
experiment can be repeated again for better statistics.  This collection method produces 
a few thousand diffractions over the range that the target atoms experience the 
absorption edge. When the diffraction intensity is combined with a high resolution 
structure from the same crystal, the diffractions can be categorized and analyzed for the 
anomalous dispersion spectra of the target atoms.  Chapters 6, 7 and 8 discuss the 
experiments.!
!
1.7 ! Analysis!
!
! Through this work, a technique has been devised to site-separate the atoms of 
interest that builds on small molecule DS utilizing collection and processing software 
commonly used in large unit cell crystallography.  The intensity of the diffractions are 
calculated by integrating over multiple images, profiling spots, merging datasets, and 
scaling across the whole spectrum.!
!
! Diffraction theory describes that the very small signals from the individual target 
atoms will mix within a single diffracted spot at different ratios depending on the Miller 
indices of the diffraction and the locations of the atoms within the unit cell.  The target 
atoms would normally be dwarfed by all the other atoms; however, there is an 
observable variation in intensity across the absorption spectrum of the element.  DS 
theory allows for identification of which diffractions contribute most strongly from each of 
the separate target atoms in a solved crystal and for interpretation of the resulting 
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spectra.  Two advances were made in this work in analyzing the data.  First, the ability 
was realized to rationally assign the target atoms to mutually exclusive sets of 
diffractions and mining the data more effectively.  Second, removing outliers and 
applying a Principle Component Analysis (PCA) subroutine to each set allows for 
extraction of eigenvectors and eigenvalues directly related to the anomalous signal.  
Working to separate signal from noise consumes much of the analysis and is the reason 
that PCA was implemented instead of simply observing a separate spectrum from each 
diffraction.  The large unit cells and area detectors contribute to noise but they also 
provide the opportunity to observe many thousands of diffractions, occurring under the 
same laboratory environment, simultaneously.  Utilizing the number of diffractions 
instead of the quality of any individual diffraction, it is possible to take advantage of the 
advances in computing to mine for faint signals in noisy data.  New computing is also 
used for calculating the theoretical values of each diffraction, which is crucial to 
separating the diffraction into those favourable to one atom over the other.  A detailed 
discussion of analysis of the data and a mathematical framework for biasing diffractions 
is given in Chapter 5.!
!
1.8! Ways and Means!
!
! This work combines two well-established areas of applied physics as they relate 
to biological systems, XAS and MX.  The systems that are included below have large 
unit cells, ideal simulated diffraction, non-ideal real diffraction from real crystals and 
mixed redox target atoms.  The methodology applied to disentangle these systems has 
benefits and drawbacks.  Dissecting the diffractions that bias one atom, in particular, 
over another and the implementation of PCA is broad insofar as what is swept up into 
the analysis.  This broad scope obscures some attributes, and in complexity lies detail: 
Chapter 9 discusses the inclusion of a more nuanced approach and the benefits/
drawbacks of riding roughshod over aspects of diffraction and absorption.!
!
! Colours assigned to elements in thesis are consistent throughout and are 
identical to the colours used by molecular graphics program PyMol [76] except in one 
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important instance: for the outer iron of ferredoxin, it does not use the normal ‘sorbus 
orange’ colour, it has the colour assignment of ‘dodger blue’, usually associated with 
uranium.  The images contained in this thesis are 600dpi and can be increased to 
approximately 400% without loss of quality. 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!
!

CHAPTER 2!
!

X-RAY ABSORPTION SPECTROSCOPY THEORY!

!
! An atom's absorption spectrum is directly related to its electronic configuration, 
which in turn depends on its local atomic neighbourhood.  The location, structure and 
function of these absorbers is the goal of this research and the absorption spectrum has 
a direct relationship with the diffracted spectrum via the energy dependent correction to 

the atomic form factor, f1(E)+if2(E), where absorption and f2 are intimately dependent.  

In order to calculate diffraction intensities at a variety of energies it is essential to be 
familiar with the origins of absorption.!

!
2.1! Classical!
!
! As light passes through a material, a portion is absorbed while the rest is 
transmitted.  The thicker the material, the more absorption occurs.  If the incident 

intensity of the light is I0, then the attenuated intensity, I, of the transmitted light is given 

by Beer-Lambert's Law [21, 22]:!

�                                                     (2.1)!

Where t is the thickness of the material and µ is the absorption coefficient.  Values for µ 

can be measured in the lab using a variety of techniques.  It is instructional to 
understand how each type of atom behaves when it interacts with light, and the sum of 

all the interactions is given by µ.  When the energy of the light is in the vicinity of the 

energy required to promote an electron to a higher energy state of a given atom, the 
material becomes dramatically more opaque as the photon is absorbed.  As the energy 

of the light, E, is increased the absorption occurs suddenly, has a step-like function  

(Figure 2-1) and is referred to as the ‘absorption edge’.  The portion of the spectrum 

I = I0e
−µt
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near to the absorption edge is complex and has transitions to bound states 
superimposed upon absorption due to excitation to the continuum.  The absorption 
bands that occur in the spectrum have locations that are highly specific to each 
element.  The precise positions and shapes are shifted and redrawn by the oxidation 
state of the atom and the neighbourhood in which it is located [12].  This chemical 
specificity is utilized by noting that across a limited spectrum of an edge, the other 
elements in the system have a uniform absorption coefficient (Figure 4-3).  These bulk 

atom absorption profiles are not linear, but the change is smooth (approximately E-3).!

!
2.2! Quantum!
!
! Closely related to the absorption coefficient is the absorption cross section [24], 

σ,  µ=σρ, where ρ is the density.  This classical absorption cross section, σ, is described 

quantum mechanically as the transition rate, Ti→f, multiplied by the energy absorbed per 

transition, ℏ⍵, divided by the flux [25], 𝜉c, where 𝜉 is the energy density (Equation 2.4) 

and c, is the speed of light.!

�                                                       
(2.2)!

! In this thesis it is assumed that the target atom, after absorption, has enough 
time to relax before another photon is incident: no one target atom sees two photons 

within a few femtoseconds of each other.  The transition rate, Ti→f, is the probability of 

absorption per unit time and the angular frequency, ω, is associated with the incident 

photon.  This simplified expression will be revisited once it has been considered in parts 

[25].  The standard normalized wavefunction, A, for monochromatic plane waves is a 

sum of the annihilation (denoted with an apostrophe, *) and creation vectors also known 
as ladder operators [25, 26]:!

�
                                  (2.3)!

 
σ =

Ti→ f

ξc
⋅!ω

A(r,t) = 1
V

Aêei(k⋅r−ω t ) + A*ê*e− i(k⋅r−ω t )( )
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Where t, is time, k is the wavevector and r is the direction of travel.  The amplitude of A,  

is knowable and normalizable; however, just like the volume term, V, it cancels out in 

the end.  The denominator of 2.2, energy density, is calculated using [25]:!

�
                                                   (2.4)!

Giving the flux:!

�                                                 (2.5)!

The numerator in 2.2 is dominated by the probability of a transition of the system from 
the initial state to some final state [28].  The initial state is one photon and an unexcited 
atom whereas the final state is one excited atom alone.  The prior statement is 
important, it defines absorption as a single photon and a single atom, then at a later 
time only a single atom: the photon has been annihilated  .!1

!
! The Hamiltonian (H) describing the whole space is composed of those describing 

the photons (radiation)(Hrad), the target atom (Hatom)and the interaction of photons with 

the target atom (Hint):!

�                                                (2.6)  !

�
                                      (2.7)!

Where m is the mass of the absorbing electron and p is the momentum operator.  Only 

the interaction Hamiltonian is valid for absorption and how it evolves in time.  Strictly 
speaking, the interaction Hamiltonian is the sum of all interactions; however, it is 
assumed that only one photon and one electron are involved in the period of this event.  
This construction will also ignore the proton and spin magnetic moment as their 
contributions are orders of magnitude smaller [28].  By expanding the brackets in 

Equation 2.7 while allowing A and p to commute and note that the momentum operator 

squared term goes to zero:!

ξ =
1
4π

1
c
∂A
∂t avg

2

ξc =ω 2 A 2 2πcV

H = Hrad +Hatom +Hint

H = Hrad +Hatom +
1
2m

p − e
c
A⎡

⎣⎢
⎤
⎦⎥

2
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�
                                 (2.8)!

For absorption, the first term must also be eliminated as second order in A requires one 

of the following to occur: two annihilations, two creations, or an annihilation and 
creation.  None of these combinations is possible for a single photon absorption.  

However, second order in A will be revived when considering scattering in the next 

chapter:!

�
                                               (2.9)!

The interaction Hamiltonian acts on the wavefunction, 𝛹(t), which evolves in time by the 

recursive expression for time dependent perturbation [21] and can be extended by 

repeatedly inserting 𝛹(t) into 𝛹(t’):!

�
                        (2.10)!

For absorption it is sufficient to consider only the first order perturbation and then allow 

𝛹(t)=𝛹(0), taking the time dependence out of the wavefunction explicitly.  This is 

achieved using separation of variables, 𝛹(t,x)=g(t)f(x) [26], and the time dependent 

Schrödinger equation, a solution of which is:!

�                                             (2.11)!

Once the time dependence is used once, for the first perturbation everything is set back 
and the time independent Hamiltonian interaction (denoted with an apostrophe) is:!

�
                                         (2.12)!

The probability function is calculated in the usual manner.  For first order perturbation 
for only a single absorber:!

�
          (2.13)!

Hint =
1
2m

e
c
A(r,t)⎛

⎝⎜
⎞
⎠⎟
2

− 2 e
c
A(r,t) ⋅p

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Hint =
−e
mc

A(r,t) ⋅p[ ]

Ψ(t);k,α = Ψ(0);k,α + 1
i!

Hint ( ′t ) Ψ( ′t );k,α d ′t
0

t

∫

Ψ x,t( ) = e− iE0t ! Ψ 0( )

′Hint =
−e
mc

A
V
êα ⋅ p̂eik⋅r⎡⎣ ⎤⎦

Ψ f (t);k,α Ψ i (t); ′k , ′α = 1
i!

−e
mc

A
V

f êα ⋅ p̂eik⋅r i ei E f −Ei−!ω( ) ′t ! d ′t
0

t

∫
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using [24]:!

�
                                           (2.14)!

where 𝛿(⍵) is a Dirac delta function:!

�
    (2.15)!

By inspection, this compares with Fermi’s Golden Rule for transition rates [29, 30] such 
that:!

�
                                          (2.16)!

The matrix element, for first order perturbation for a single final state is then:!

�
                                        (2.17)!

By inserting (2.17) into (2.16) and utilizing (2.5) so that the scattering cross section from 
(2.2) for a single target atom is summed over all possible final states, the familiar 
equation for plane wave absorption [32] is revealed:!

�
                          (2.18)!

In the X-ray region for target atoms that are transition metals, Eq. 2.18 is a core hole 
effect, so it is element specific. The total absorption for a material is the sum of the 
individual absorptions given by Eq 2.18. In the experiments conducted here the vast 
majority of atoms will have a small featureless contribution.  However, the target atoms 
will have an abrupt step-like contribution (Figure 2-1) in the same region with detailed 
features that betray its local environment (Figure 4-1).  This absorption profile directly 
influences the diffraction profile across the same spectral region, the intimate 
relationship between the two is unveiled in the following chapter. 

lim
t→∞

eiω ′t

2π
d ′t = δ ω( )

0

t

∫

 
Ψ f (t);k,α Ψ i (t); ′k , ′α =

2π
!

−1
i

⎛
⎝⎜

⎞
⎠⎟

e
mc

A
V

⎛
⎝⎜

⎞
⎠⎟
f êα ⋅ p̂eik⋅r i δ Ef − Ei − !ω( )

Ti→ f =
d
dt
Pi→ f =

2π
!
M fi

2
δ Efi( )

M1 =
e
mc

A
V

f êα ⋅ p̂eik⋅r i

 
σ =

4π 2e2

ωm2c
f êα ⋅ p̂eik⋅r i

2

f
∑ δ Ef − Ei − !ω( )
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!
Figure 2-1!!

K-edge Absorption Spectra of Various Heavy Elements!

!
Six lines are given for various elements within the spectrum available within energies of 6000eV to 
14500eV.  Manganese, Iron, Copper, Zinc and Selenium K1 edge and Mercury L2 and L3 edges.  The 
edges are based on theoretical calculations by Cromer and Liberman [32, 33, 34].  These calculations do 
not include Near Edge effects, Atomic scattering factors or Extended X-ray Absorption Fine Structure. 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!
!

CHAPTER 3!
!

DIFFRACTION THEORY!

!
! There are two main parts to diffraction theory covered in this chapter, one that 
relates to the phenomena of diffraction itself and one that encapsulates how the energy 
dependence affects the atomic form factor.  This second, energy dependent, part is an 
extension of the quantum mechanical treatment used in the previous chapter, and 
where the derivation of the relationship between absorption and diffraction originates.  
These formulations can be found scattered throughout many texts and a desire to have 
a self-consistent treatment for both (absorption and diffraction) in one place was the 
motivation for discussing them here.!

!
3.1! Scattering Light - Classical!
!
! When an electromagnetic wave impinges on a crystal and is scattered from a 

location centred at ρj the position of the scatterer within a single unit cell of the crystal at 

that location is described as a vector in two parts: one vector to the unit cell origin ρmnp 

by the three integers   mnp of the primitive vectors of the crystal lattice and a second 1

vector from the unit cell origin to the scattering centre, ρj(xyz).  Both vectors use the 

primitive vectors of the crystal lattice, abc:!

�                                                      (3.1)!

�                                   (3.2)!

Using the standard equation for a wave propagating in a direction r with amplitude E0:!

�                                                (3.3)!

ρ = ρmnp + ρj

ρ = ma + nb + pc( ) + x ja + yjb + z jc( )

E(r) = E0e
i k⋅r−ω t( )
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The resulting scattered wave has the form [35, 36]:!

�
                                            (3.4)!

By grouping the spatial terms, using R=r+ρ, where R is from the crystal origin to the 

detector and r is from the scattering centre to the detector.  If the detector is at a 

sufficiently large distance, the scatterer k´ and R are in the same direction.  The 

resulting scattered wave is then the same as the equation for a single wave, a 1/r term 

that conserves energy, a constant of proportionality, C, and a phase factor that depends 

on the change in direction of the incoming and outgoing wave vectors (k´-k):!

�                                             (3.5)!

The total scattering will be a sum over all the unit cells, mnp, multiplied by the scattering 

centres, j, within a single unit cell.  By employing Equation 3.1 and defining the change 

in wave vector as  Δk=k´-k, the total scattering amplitude is given by SΔk:!

�
                                          (3.6)!

3.2! Laue Equations!
!
! Diffraction occurs in highly localized directions due to the first part of the 
scattering amplitude and Figure 3-1:!

�
                             (3.7)!

As can be seen in Figure 3-1 the sum is only non-zero when ɸ is an integer multiple of 

2π; hkl are the integers:!

�
                                                     (3.8)!

Which are the Laue equations of diffraction.  Note mnp and hkl are all integers which 

force the exponent in (3.7) to be 1 and reduces the sum for a parallelepiped of length M, 

to: 

Esc =
C
r
E0e

ik⋅ρei ′k ⋅r− ′ω t( )

Esc = CE(R) r( )e− iρ⋅ ′k −k( )

SΔk ≡def e− iρmnp ⋅Δk
mnp
∑ ⋅ e− iρj ⋅Δk

j
∑

e− iρmnp ⋅Δk
mnp
∑ = e− im a⋅Δk( )

m
∑ e− in b⋅Δk( )

n
∑ e− ip c⋅Δk( )

p
∑

a ⋅ Δk = 2πh
b ⋅ Δk = 2πk
c ⋅ Δk = 2πl
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Figure 3-1!
!

Diffraction Condition/Direction as Integer Multiples of 2 π!
!
Six lines are given for various primes up to and including N=31 because it is visually instructive.  As N 

becomes larger, the closer it represents a delta function anchored at integer multiples of 2π.  When N is in 

the range of 5,000 to 50,000, as in a real crystal, then diffraction would only occur in these directions and 

be negligible everywhere else.!

Figure 3-1 shows the equation:!

 �                      !

which is a sum of the geometric series:!

�  !

for which the intensity of diffraction is the squared modulus.  For large N, as in a crystal, N≃N+1 such that:!

 � !

�  

sin2 Nφ 2( )
sin2 N 2( )

e− im a⋅Δk( )

m
∑ = rm =

1− rN +1

1− rm=0

N

∑

1− rN +1

1− r

2

=
sin2 Nφ 2( )
sin2 N 2( )

r = e− iφ ; φ = Δk ⋅a
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�
                                     (3.9) !

which is just another scale factor.  The definition of the total scattering amplitude can 

further be reduced as a, b and c are fundamental vectors of the reciprocal lattice with a 

2π normalization factor:!

�                            (3.10)

                             !

The subscript Δk for SΔk can be described as the reciprocal lattice vector h=(hkl) for 

which the Laue equations hold true (are non zero).  Without any loss in generality the 

sum, j, can be expanded, representing a single scattering event located at xyz within the 

unit cell with the scattering centred at j of an atom with atomic form factor, fj  [37] 

(Appendix II).  This form factor can differ not only between the elements, but also 
amongst atoms of the same elemental type but in different configurations.  The form 
factor is dimensionless, but frequently given values in electrons or electrons per atom.  

The sum over the form factors for a particular reciprocal lattice vector, hkl, is called the 

structure factor, F(hkl), and the intensity of its diffraction, I(hkl), is proportional to the 

squared modulus:!

�
                                             (3.11)!

�                                             (3.12)!

3.3! Intensity of a Diffracted Spot!
!
! In the full kinematic version the atomic form factor is an integral of the electron 
concentration function [35] and in practice is calculated using tabulated values by 

e− iρmnp ⋅Δk
mnp
∑ = e− i2π mh+nk+ pl( )

mnp
∑ = M 3

SΔk = M
3 e− i x ja+ yjb+ z jc( )⋅ hA+ kB+ lC( )

j
∑

= M 3 e− i2π hx j + kyj + lz j( )
j
∑

= M 3 e− i2π h⋅rj( )
j
∑ = M 3 e− iΔk⋅rj

j
∑

F hkl( ) = f je
− iΔk⋅rj

j
∑

I hkl( )∝ F hkl( ) 2
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Cromer-Mann.  There is a lot hidden in the proportionality symbol of equation 3.12, 
diffraction using X-rays on a real crystal has many factors.  In order to use the equality 
symbol the temperature, occupancy, Lorentz factor, polarization, self absorption, 
detector efficiency and handful of constants [28, 31, 38, 39, 56] must be included:!

�      (3.13)!

For convenience the substitution of Δk for hkl is made.  In the next Chapter and for the 

rest of this thesis, the energy dependence is sought and therefore E will be shown 

explicitly here  .!1

!
3.3.1! Temperature Factor and Occupancy!
!
! There are four parameters given for every atom in the Protein Data Bank (PDB), 
the world’s largest repository of protein structures: the position, the element, its 
occupancy and temperature factor.  The temperature factor (B-factor)   and the 2

Occupancy (O) are subsumed into the structure factor sum as they are atom specific:!

�                              (3.14)!

The B-factor is important to diffraction as it is a measure of the uncertainty in the 
position of the atom and has the effect of decreasing the intensity.  The most common 
implementation for proteins is the B-factor, a single number related to the mean squared 
displacement of the atom that is often used as a short hand to describe a structure’s 
orderliness.  If the B-factor is given isotropically [40]:!

�                                               (3.15)!

Where d is the distance between scattering planes and is a function of Δk.!

!
! Atoms within a structure are constrained by bonding and as such are more likely 
to move in some directions than others.  If this level of detail is available then 

I Δk,E( ) = a1 L Δk,E( ) ⋅P Δk( ) ⋅A Δk,E,t( ) ⋅D E( ) ⋅ F Δk,E( ) 2⎡
⎣

⎤
⎦ + a2 + a3E

F Δk,E( ) = f je
− iΔk⋅rj ⋅DWFj ⋅Oj

j
∑

DWFj = e
−
Bj
4

1
d

⎛
⎝⎜

⎞
⎠⎟
2
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anisotropic temperature factors can also be used and employ a tensor form of the more 
general B-factor.!
! Occupancy is how often an atom appears to occupy a position; it usually has a 
value of 1, however sometimes an ion will only be bound to a few molecules or a large 
ligand may be found in a few different conformations.  Therefore it is not uncommon to 
see values of 1, 0.5.  Values of 0.6 and 0.4 are also prevalent in order to discern 
between two distinct configuration in a single PDB file.!
!
3.3.2! Lorentz Factor!
!
! Also known as the kinematical factor, the Lorentz factor “is proportional to the 
time of reflection permitted to each reflection, or inversely proportional to the velocity 
with which the plane passes through the condition of reflection” [40].  It is most often 
described as being a scale factor, however it is energy dependent and for DS should be 

calculated as such [41, 42].  𝛳B is the Bragg angle of the diffraction:!

�                                               (3.16)!

!
3.3.3! Polarization!
!
! Polarization comes in two forms, both phenomena originate from research 
conducted by Leonid Azaroff at the Illinois Institute of Technology [43, 44].  The first form 
is the relationship between the direction of the impinging E-vector and the diffraction 
plane, herein called, ‘normal polarization’.  The second form is the relationship between 
the impinging E-vector and the directions of the bonds of the target atom, herein called, 
‘bond polarization’.!
!
! The intensity of the diffracted ray is dependent on the polarization of the incident 
beam and the directions it scatters.  A small adjustment for use of a double crystal 

L Δk,E( ) = 1
E

⎛
⎝⎜

⎞
⎠⎟
3 1
sinθB Δk( )
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monochromator must also be made when applying Kahn’s equations [45 46]  .  The 1

normal polarization is then:!

�      (3.17)!

Where E´´2 is equal to the intensity after passing the monochromator and the crystal, 𝛳B 

is the Bragg angle, ɸ is the polar angle on the face of the detector and 𝛼=cos22𝛳mono 

where 𝛳mono is the monochromator Bragg angle.  The 𝜅 and 𝜅´ contain in all the factors 

that are independent of the angle of reflection [43].  At a synchrotron source where the 

light is almost 100% plane (π) polarized the second part of 3.17 dominates.!

!
! Bond polarization effects are due to the angle of the E-vector with respect to the 
bond.  When the impinging E-vector is parallel to a bond it is strongest and when it is 
perpendicular it is diminished [44].  Templeton and Templeton [47, 48, 49] formalized the 
mathematics with a tensor description of the structure factor whilst maintaining the 

polarization indexes, π and σ, from the normal polarization calculations.  In the following 

chapter the relationship between absorption and anomalous signal in a diffracted ray is 
shown to be related and hence polarization can be considered when calculating 
diffracted intensities.  A treatment of the effect of polarization on XAS with regards to 
dipole and quadruple allowed transitions in a crystal of cupric chloride dihydrate is given 
by Pickering and George [50].!
!
3.3.4! Self-Absorption!
!
! Self-absorption is the process where the intensity of the diffraction is attenuated 
by regular absorption as it passes through the crystal and is a function of the thickness 
of the sample and the absorption coefficient, see equation 2.1.  This effect is expected 
to be small, but also very difficult to calculate as the exact dimensions of each crystal 
are different and slowly rotating.  It is difficult to assign crystal thickness versus angle 
and also calculate the likelihood that self-absorption will take place in the direction of the 

′′E 2 =κ 4 ′κ 2 Eσ
2α cos2φ ⋅cos2 2θB + sin

2φ( )+ Eπ
2 sin2φ ⋅cos2 2θB + cos

2φ( )⎡⎣ ⎤⎦
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diffracted ray.  The buffer and cryoprotectant, in the crystal loop, will also have an effect 
on the self-absorption.  Protein crystals have a very low density of target atoms, there 
are typically 2-40 per unit cell which can contain tens of thousands of bulk atoms.  
There is the complication that at some diffraction angles the escape route from the 
crystal for a diffraction may coincide with dense rows of absorbers, empty rows or a 
plum pudding distribution.  Self absorption will have detrimental effects on analysis of 
the spectrum of diffracted rays as self-absorption will come from all the types of target 
atoms within the crystal (buffer/cryo-protectant) and not only from the target atom we 
are attempting to separate.  Self-absorption of the diffraction ray could add unwanted 
structural changes in the spectrum and cause confusion. !
 !
3.3.5! Detector!
!
! Many types of detectors are used to record the intensity and position of a 
diffracted ray.  There is no one equation to be calculated for detector variations.  Each 
detector has its own sensitivities: irregularities in the phosphor, lens or tapered fibres, 
temperature variations amongst others   are compensated for by using dark images, 1

flood fields and noting dead or bright pixels [51].  Synchrotron beamlines for MX 
regularly account for variations in detector sensitivity as well as calculating detector 
efficiency.  It is the vast improvements of area detectors and  charge coupled devices 
(CCD) that have made large scale collections of diffractions routine.  The sensitivity and 
speed of collection is closing in on parity,  one count on the  detector for each photon, 
these improvements are one of the main catalysts for this research project.!
!
3.4! Approach to Calculating Intensities!
!
! The driving force behind the work presented in this thesis is an attempt to 
separate the anomalous dispersion spectra from two target atoms in different oxidation 
states and in different conformations within a very large unit cell in which the target 
atoms are vastly outnumbered by bulk atoms.  The competing (or concurrent) desire to 
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fully understand all the mechanisms that effect the spectra is ever present however due 
the underlying complexity these experimentalists have returned to a more holistic 
approach.  The method chosen here of investigating the spectra originates in the 
techniques first applied to absorption spectroscopy.  Before the advent of good 
theoretical absorption software such as FEFF [52] model compounds and a library of 
previous experimental spectra were relied upon to confer information about spectra that 
were being measured for the first time.  As these are the first experiments to be 
conducted with this new methodology it is important to extract the spectra whilst also 
looking for underlying explanations.  Occupancy and isotropic temperature factors are 
included in the simulated diffractions calculated in this work.  Detector variations, 
Lorentz factor and normal Polarization are handled by the internals of the detector and 
the processing software, XDS [53].  The detector, Lorentz and normal polarization are 
accounted for in laboratory data collection on the beamline but are not accounted for in 
the theoretical or simulated diffractions as they do not effect the size of a target atoms 
contribution to the intensity with respect to the overall intensity.  Up to this point 
polarization has been avoided in DS by limiting diffraction to those perpendicular to the 
polarization of the impinging E-vector.  The crystals were orientated so that the 
diffraction occurred in this orientation.  This is impossible with an area detector however  
normal polarization diminishes only the scale of the anomalous phenomena but not its 
shape so it can be largely ignored.  The more complex bond polarization effect from 
bond directions as they relate to the E-vector has the attribute of increasing or 
decreasing parts of the phenomena and it should be regarded with more care.  DS as 
applied to large macromolecular crystals could well avoid these effects if the total 
oscillation angle taken is wide and the orientations of the target atoms do not lie in too 
high a symmetry.  Which is to say that this effect needs more research as it could 
accentuate or depress parts of the anomalous dispersion spectrum either for good or ill.  
In complexity lies greater detail and we look forward to accounting for this effect in 
future experiments.  Self-absorption is expected to be small and near-impossible to 
compensate for, or in this experimentalists view so ungainly that it deserves an entire 
dissertation all of its own.!
!
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3.5! Hamiltonian of Diffraction!
!
! In the vicinity of the absorption edge the atomic form factor, fj, becomes complex 

[54]; this ‘anomalous dispersion’ contribution stems from the finite period of time in 
which the photon might have been absorbed by the atom, yet continued down the 
diffraction path.  This period is governed by Heisenberg's Uncertainty Principle, within 
which the newly created photo-electron can be promoted to a higher state or probe its 
surrounding environment before reabsorbing and returning the electron to its original 
state  .  Therefore, this more subtle form factor, Equation 3.18, is sensitive not only to 1

the scattering vector, Δk, but the energy, E, of the photons and the intermediate states of 

the photo-electron wavefunction, � . These wavefunctions govern an atom’s 

susceptibly to absorption and the nature of the intervening period:!

�                                   (3.18)!

! For this more complete description of scattering, non-relativistic quantum 
mechanical effects must be included.  Photon-atom interactions were given in Chapter 2 
for absorption at different energies by a single photon and atom.  In order to 
demonstrate the scattering process the same form of the interaction Hamiltonian is 
used.  However, only instances where there is single annihilation and a single creation 
of the wavevector is considered.  This is accomplished by using both parts of the 
interaction Hamiltonian from Equation 2.8, given again here:!

�
                                (3.19)!

This interaction Hamiltonian is combined with the time dependent perturbation theory 

and evaluated separately for the A2 term to first order and the momentum (Ap) term to 

second order, see Figure 3-3.  Restricting the calculation to one absorbing atom and 

ignoring the spin and magnetic moments,  the first order in A2 is as follows:!

�
        (3.20)       !

c
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Separating out the constants while using the classical radius of an electron, � , 

the integral is evaluated and then divided by the flux (Equation 2.5).  The ingoing and 

outgoing photons must be set to the same wavelength, ⍵=⍵', which defines elastic 

scattering, but allows for a change in direction, k≠k´, which allows for diffraction:!

�
           (3.21)!

This is the fundamental, f0, non-anomalous contribution to the diffraction, Δk, from a 

scatterer located at rj=(xja+yjb+zjc):!

�
                                         (3.22)!

Summing over all the atomic form factors within a unit cell returns the definition of the 
structure factor to quantum form:!

�
                              (3.23)!

To calculate the anomalous dispersion correction, the energy dependent parts (real and 
imaginary) of the interaction Hamiltonian must be evaluated.  The second order 
contributions from the momentum operator are:!

�   
(3.24)!

The matrix element must be summed over all possible intermediate states, c, of the 

target atom.  This is a similar situation to absorption, Figure 3-3.  The final state of 

annihilation, � , for absorption, is replaced with the annihilation/creation of intermediate 

states, � , and the final state is similar to the initial state as this is diffraction:!

�  

(3.25)!
The electromagnetic wave has its usual factors, evaluation of each integral brings down 

a ℏ/𝑖:!
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�   (3.26)!

The stipulation is that the system returns to its original configuration.  By dividing 
through by the ingoing and outgoing flux, the second order contribution is evaluated in 

the forward scattering limit: ⍵=⍵´, k=k´ and e=ê´=ê.  The dependence of the anomalous 

dispersion has been removed from the direction of scatter by equating k and k´.  

Although, the angular dependence has been shown to be either small or non-existent 
‘More work is needed’ [24].  One way to view this assumption is by noting that most 
diffraction is a glancing blow to the electron cloud whereas absorption is a core-electron 
effect:!

�
   (3.27)!

The total amplitude for scattering is then the addition of the two matrix elements, 

summed over all atoms, j, within the unit cell as well as summing all intermediate states, 

c, for susceptible target atoms.  A phenomenological damping term, iη, is also included 

that prevents the denominator going to zero:!

�   (3.28)!

All that is left is to equate this with Equation 3.18 by separating the anomalous 
contribution into its complex form using:!

�
                                         (3.29)!

Where P is the Cauchy Principle Value:!

!
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�

(3.30)!
Comparing this to Equation 3.18:!

�

                       (3.31)!

Where f0, elastic scattering, is independent of energy and equates with the kinematic 

diffraction.  And f1(E) + 𝑖f2(E) = Δf(E) is the energy dependent anomalous contribution in 

the forward scattering limit where the real and imaginary components are related to 
each other by the Kramers-Kronig dispersion relation:!

�

                                   (3.32)!

f1 is a positive cusp shaped symmetric function in phase with the elastic scattering and 

f2 is a positive antisymmetric step function 90° out of phase: the so called imaginary 

contribution (Figure 3-2).!
!
3.5.1! Sign Convention!
!
! There are historical and convenient forms in which the the sum of f0, f1  and f2 are 

given the signs that precede them and show how their Kramers-Kronig transforms relate 
to each other.  Many of them are misleading.  These sign conventions extend 
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throughout the diffraction and absorption literature with the exception of one: clarity was 

brought to the topic by J. O. Cross’s thesis [31].  The Thomson scattering, f0, is 

negative, which does not matter when it is being squared for intensities, however, 

authors were forced to surreptitiously assign negative values to f1 in MAD 

crystallography, DAFS and DANES (DS) as the effect was in the opposing direction 

when the anomalous dispersion was included; by swapping ⍵' for ⍵ in the denominator 

of the Kramers-Kronig transform.  It is uncomfortable to consider structure factors, f0, 

with a negative value and f1 as positive however this is how it must be unless we 

change the sign of Beer-Lambert’s attenuation coefficient (Equation 2.1), which is highly 
unlikely. !
!
3.6! Comparison with Absorption!
!
! There is a simple relationship between the imaginary part of diffraction and 

absorption by equating f2 from Equation. 3.31 with σ in Equation 2.18:!

�
                                            (3.33)!

It is here that the two different experimental methods (absorption and diffraction) are 
fused, each betraying he other.  By experimentally determining an atom’s absorption 

profile, σ(E), it is possible to calculate its anomalous contribution to diffraction [5, 24, 26, 

31, 55]   using the Kramer-Kronig dispersion relation.  The imaginary part of the complex 1

structure factor, f2, is proportional to the product or the energy, E, and the absorption, σ, 

of the same atom.  Long before the energy of a photon is capable of promoting a core 
electron the diffraction signal is increasingly effected due to the dispersion relation in 

which f2 is related to f1.  The effect on the real part can be over twice as large as that of 

the imaginary part (See Figure 3-2). 

f2 E( ) = ω
4πcre

σ E( )
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Figure 3-2!
!

Kramers-Kronig Anomalous Dispersion Relation!

Six lines are given for various elements: Manganese, Iron, Copper, Zinc and Selenium K edge and 

Mercury L-II and L-III edges and their Kramers-Kronig transform.  f1 has a positive cusp and f2 a positive 

step.  The edges are based on theoretical numbers by Cromer and  Liberman [32, 33]. 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Figue 3-3!
Feynman Diagrams for the Interaction Hamiltonian !

Absorption vs. Diffraction!
!
!

!!!!
Comparison of Feynman diagrams for absorption and diffraction.  Absorption requires annihilation where 

as diffraction needs second order in A and pA: one annihilation and one creation.  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Figure 3-4!
Feynman Diagrams vs Atomic Form Factor!

!!!
!

!!!!
The decomposition of the Feynman diagrams into its contribution to the atomic form factor.  f0 is energy 

independent and governed by the Z number.  Anomalous dispersion (f1, f2) are related to bare-atom 

absorption and the hash marks are for the fine structure.  All numbers are approximate. 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!
!

CHAPTER 4!
!

DIFFRACTION SPECTROSCOPY THEORY!

!
4.1! Atomic Specificity!
!
! Absorption is not only element specific, but atom specific: two atoms of the same 
element in different states or in different neighbourhoods will have slightly different 
absorption profiles (Figure 4-1).  These profiles are carried over to the diffraction 
intensities by the arguments given above.  In real experiments, the absorption profiles of 

f2 are measured from an experiment, then its Kramers-Kronig mate, f1, is calculated, and 

the two are then used to predict anomalous dispersion effects  .  In order to investigate 1

the spectra of diffraction, appropriate absorption spectra are required.!
!
! The spectra featured in Figure 4-1 is a combination of empirical and theoretical 
observations.  The absorption profiles of each of the two irons are constructed using 
near-edge data from a real experiment on reduced and oxidized iron-sulphur clusters.  
The Extended X-ray Absorption Fine Structure (EXAFS) oscillations are generated from 
software package FEFF using real atomic positions from a ferredoxin crystal taken at 
very high resolution (Appendix II). These two absorption spectra were spliced together 
and scaled to fit the theoretical iron absorption K-edge from Cromer and Liberman.  The 

theoretical edges were adjusted to coincide with the observed edge.  The f1 spectra 

were then generated using software that was written specifically for this task, fftkk.py 
(Appendix III).  The software utilizes a technique developed by Templeton and 
Templeton [60] and the subroutines were transliterated from a FORTRAN program 
written by Graham George and Ingrid Pickering: fftkk.f.  These types of similar-but 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Figure 4-1!
!

Anomalous Dispersion of Similar Irons!

Partially simulated iron dispersion spectra, reduced (dodger blue) and oxidized (sorbus orange).  The 

piecewise continuously differentiable absorption function (bottom) was created from three subsections:  

the pre-edge and scale from Cromer-Liberman, the near edge from a reduced and oxidized rubredoxin 

experiment (ps-rd), and the XAS oscillations using FEFF.  The FEFF calculations were generated from a 

high resolution crystal (1CZP.pdb) structure of Ferredoxin [61].  The corresponding real part (top), f1, was 

generated using a computer subroutine: fftkk.py (Appendix III). 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different spectra are what DS is trying to deconvolute from experiments.  When the two 
spectra are combined within a single diffraction, great care must be taken in choosing 
just the right set of diffractions that preferentially express one over the other !
!
4.2! Structure Factor Calculations!
!
! DS theory relies on the energy dependence of individual diffractions.  This can be 

labeled more clearly by substituting 2πh for Δk in the structure factor equation, where h 

is the vector normal to the diffraction plane and indicates the Miller indices hkl.  The 

structure factor, F, and the atomic form factor, fj, can then be neatly represented in a 

compact form:!

�
                                         (4.1)!

! In order to investigate the contributions that every atom supplies to an individual 
diffraction, it is useful to consider a real example.  The protein that we are using for this 
example will be the ferredoxin from our experiments.  This protein was solved during a 

solution run and the locations (r) of the atoms within the unit cell will be used to 

calculate the phase part of each atomic form factor.  The underlying energy independent 

Thomson scattering, f0, is calculated using Cromer-Mann coefficients and the d-spacing 

of the diffraction plane, which is a function of h.  Anomalous dispersion was calculated 

using Cromer-Liberman values for the so-called ‘bulk’ atoms (C, N, O, S, Zn) at 7117eV 
and the semi-empirical values shown in Figure 4-1 for the reduced and oxidized target 

atoms of iron.  This example will analyze a single diffraction: h = hkl = (-9, 11, 12).  In the 

unit cell of this ferredoxin there are 4040 Carbons, 1080 Nitrogens, 1524 Oxygens, 88 
Sulphurs, 8 Zincs and 16 Irons.  There are only 2 irons per protein, but there are 8 
proteins in each unit cell.  The analysis is conducted for a single diffraction over the 
absorption K-edge of iron and therefore no significant energy dependent anomalous 
dispersion contributions from any of the bulk atoms is expected (Figure 4.2).  The 
variation is so small across this spectrum that the anomalous dispersion from each of 

F h,E( ) = f j h,E( )e− i2π h⋅rj( )
j
∑
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Figure 4-2!
Ferredoxin Unit Cell!

!

!
The ferredoxin unit cell has 4 asymmetric sub-units (ASU), each ASU has two ferredoxin proteins and 

each protein 2 irons.  The eight 2Fe2S molecule are shown in ball-an-stick and the rest of the protein as a 

cartoon. 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Figure 4-3!
Anomalous Dispersion of Elements within Ferredoxin!!

!

!
The real and imaginary contributions of f1 and f2  (top and bottom respectively) in the spectral region of the 

Iron K-edge.  Contributions from the bulk atoms are small and smooth  The iron contribution shown here 

is that of a lone iron calculated using Cromer-Liberman, broadened by convolution with a Voigt function. 

!37



the bulk atoms can be considered not a function of energy.  For instance: Zinc, which 
has the largest atomic form factor and anomalous contribution of the bulk atoms has a 
change of less than 0.5%, with all other bulk atoms being an order of magnitude 
smaller. !
!
4.3! The Example!
!
! It will be shown that our example is highly biased toward one of the two irons in 
the protein: this will neatly demonstrate the site-selectivity of DS.  By using equation 4.1 
it is possible to separate the contributions that come from atoms that have an energy 
dependence in iron K-edge region from those that do not.  In order to visualize this 
better, the calculation is broken into to a sum of sums from a sum over all atoms in the 
unit cell, where each sum is dedicated to a particular element:!
!

�            (4.2)!

With the structure factor broken up into its atomic constituents, one will notice that a 
very large part of the sum is not a function of energy and will have the same value 
across the entire spectrum:!

�
         (4.3)!

These element specific sub-factors can be further simplified.  The progression of this 
sum of sums can be seen in Figure 4.3 where the thousands of individual elements that 
are not a function of energy are first soaked up into element specific vectors and then 

represented by a single black vector, FZ-Fe(h):!

�
                                      (4.4) 

F h,E( ) = fC h( )e− i2π h⋅rC( )

C

4040

∑ + fN h( )e− i2π h⋅rN( )

N

1080

∑ + fO h( )e− i2π h⋅rO( )

O

1524

∑ +!

!+ fS h( )e− i2π h⋅rS( )

S

88

∑ + fZn h( )e− i2π h⋅rZn( )

Zn

8

∑ + fFe h,E( )e− i2π h⋅rFe( )

Fe

16

∑

F h,E( ) = FC h( ) + FN h( ) + FO h( ) + FS h( ) + FZn h( ) + fFe h,E( )e− i2π h⋅rFe( )

Fe

16

∑

F h,E( ) = FZ −Fe h( ) + fFe h,E( )e− i2π h⋅rFe( )

Fe

16

∑
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Figure 4-4!
Argand Diagram of Every Atom within Ferredoxin!

!

The sum of the structure factors from a ferredoxin unit cell with total structure factor for each element for 

h=(-9, 11, 12).  The solid black line is the total structure factor from the bulk atoms- it extends from the 

origin to the start of the two iron structure factors.  The individual atoms can also be made out along with 

their sub-total structure factors, colour coded thus: green near origin(C), dark blue(N), light red(O), 

yellow(S), lavender(Zn), orange(Fe1) and blue(Fe2) (see Figure 4.2). 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FZ-Fe(h) could just as well be labeled ‘bulk’ in the equation (or have no label at all) as the 

lack of energy in the parentheses infers its position within the sum.  Figure 4.3 
demonstrates that the highly complex contributions from within a crystal can quickly be 
simplified.!
!
4.3.1! Expansion of the Target Atoms!
!
! There are two target atoms: Fe1 and Fe2, one of each in the protein and eight of 

each in a unit cell.  Their individual totals for this hkl are very different, which is why this 

particular diffraction, h=(-9, 11, 12), was chosen.  An examination of Figure 4-4 reveals 

that Fe1 (orange sorbus) looks like a very flat rhombus.  In fact it is two rhombi on top of 
each other, each side of the rhombus is an atom-vector.  What this effectively means is 
that the sum of the eight atoms of Fe1 do not go very far.  Put another way, Fe1 does 
not significantly contribute to the total structure factor.  The eight atoms of Fe2 (dodger 
blue) make a significant contribution to the location of the end of this vector sum  .  This 1

is illuminated in the sum by separating the two iron labels into sub-factors of their own:!

�
              (4.5)!

And substitute in the energy dependent structure factor from Equation 3.18:!

�             
(4.6)!

Figure 4.4 illustrates how small the total contribution of Fe1 is to the structure factor as 

well as how large the three components (f0, f1 and f2) of each of the Fe2 atoms are.  

Further simplification can be made by noting that the Thomson, f0, scattering for all 16 

iron atoms is identical and energy independent:!

�                                                 (4.7) 

F h,E( ) = FZ −Fe h( ) + fFe1 h,E( )e− i2π h⋅rFe1( )

Fe1

8

∑ + fFe2 h,E( )e− i2π h⋅rFe2( )

Fe2

8

∑

F h,E( ) = FZ−Fe h( )+ f0,Fe1 h( )+ f1,Fe1 E( )+ if2,Fe1 E( )⎡⎣ ⎤⎦e
− i2π h⋅rFe1( )

Fe1

8

∑ +!

!+ f0,Fe2 h( )+ f1,Fe2 E( )+ if2,Fe2 E( )⎡⎣ ⎤⎦e
− i2π h⋅rFe2( )

Fe2

8

∑

f0,Fe1 h( ) ≡ f0,Fe2 h( )
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Figure 4-5!
!

Argand Diagram of the Complex Contribution from a Single Iron!

!
A close up of the total bulk structure factor (long black line), the total Fe1 structure factor (orange), and a 
breakout of the 8 individual contributions from each Fe2 atom in the unit cell for h=(-9, 11, 12) with their 
anomalous contributions. f0 Thomson (thin black arrow), f1 with opposite phase to Thomson (blue) and f2  
perpendicular to Thomson and f1, (blue dashed).  The subtotals of fFe2 = f0 + f1 + if2 are the thick blue lines 
seen in Figure 4-4. 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! Allowing the bulk atoms structure factor, FZ-Fe(h), to also absorb the Thomson 

scattering of the irons to become the feature-free or background structure factor, FZ, as 

it contains all the atom types but none of the absorption edges and is energy 
independent in the range of this spectrum:!

�
(4.8)!

It is important to grasp the step between equation 4.6 and 4.8.  The structure factor has 
become a sum in three parts: all the energy independent Thompson scattering, the 
energy dependent part of atoms labeled Fe1, and atoms labeled Fe2.  This would be 

represented in Figure 4-5 by adding each individual f0 (smaller black arrows of Fe2) to 

the large bulk atom arrow (long black arrow).!
!
The sum of the energy dependent part of Fe1 is tiny for this diffraction (the orange dot).  
By consolidating that part of the structure factor as well as separating the sum of the 
real and imaginary parts   of Fe2, leads to:!1

�

(4.9)!

�              (4.10)!

�                        (4.11)!

This equation is represented in Figure 4-6 by the solid line for FZ(h): the minuscule 

contribution by the energy dependent part of the Fe1 is barely visible in between the 
black background structure factor and the ‘real’ part of the blue Fe2 anomalous 
contribution.  As a point of interest, one may also stare at the eight atoms that constitute 
Fe2 in Figure 4-5 and note the two-fold symmetry from the two asymmetric sub-units, 
each sub-unit having four atoms apiece. 

F h,E( ) = FZ h( ) + f1,Fe1 E( ) + if2,Fe1 E( )⎡⎣ ⎤⎦e
− i2π h⋅rFe1( )

Fe1

8

∑ + f1,Fe2 E( ) + if2,Fe2 E( )⎡⎣ ⎤⎦e
− i2π h⋅rFe2( )

Fe2

8

∑

F h,E( ) = FZ h( ) + f1,Fe1 E( )e− i2π h⋅rFe1( )

Fe1

8

∑ + i f2,Fe1 E( )e− i2π h⋅rFe1( )

Fe1

8

∑⎡
⎣⎢

⎤
⎦⎥
+ f1,Fe2 E( )e− i2π h⋅rFe2( )

Fe2

8

∑ + i f2,Fe2 E( )e− i2π h⋅rFe2( )

Fe2

8

∑⎡
⎣⎢

⎤
⎦⎥

F h,E( ) = FZ h( ) + F1,Fe1 E( ) + iF2,Fe1 E( )⎡⎣ ⎤⎦ + F1,Fe2 E( ) + iF2,Fe2 E( )⎡⎣ ⎤⎦

F h,E( ) = FZ h( ) + ΔFe1 E( ) + F1,Fe2 E( ) + iF2,Fe2 E( )⎡⎣ ⎤⎦
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�  The Greek capital delta (Δ) is used instead of the lowercase delta (δ) because different diffractions will 1

have larger or smaller values.



Figure 4-6!
!

Total Structure Factor with Single Iron Anomalous Contribution!

The total structure factor for the all atoms in the unit cell (brown vector) as a sum of the feature-free 

structure factor (Thomson, black vector) and the total real and imaginary parts of Fe2’s 8 atoms (blue).  

The transparent circle inscribed by the total structure factor indicates the size of the intensity (when 

multiplied by π). 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4.3.2! Variation in Intensity!
!
! The intensity of a diffraction is proportional to the squared modulus of the 
structure factor as pointed out in Equation 3.12, adapted for the change in notation 
here:!

�                                               (4.12)!

This is analogous to the area of a circle inscribed by vector F(h,E) with a scale factor of 

π (light brown shaded area of Figure 4-6).  This is how anomalous signal looks for a 

particular diffraction at a particular energy; the variation in intensity of the diffracted spot 

is identical to the variation of the area of the circle (divided by π).  Through this whole 

example, only a single energy point has been considered: 7117eV.  At this energy, there 
is a large anomalous contribution to both irons (see Table 4-1).  Figure 4-6 shows that 
the anomalous contribution from Fe2 to the area of the circle will not be purely real or 
purely imaginary, but some mixture of both, by noting that the angle of the blue Fe2 

vectors are oblique with respect to FZ(h).!

Table 4-1!
Anomalous Contributions by Atom-label!

!
! When analysis is performed on diffractions from a complex unit cell like that of a 
macromolecule, it is easy to realize that, with so many thousands of atoms and so many 
thousand of diffractions, two different target atoms can have an almost smooth set of 

I h,E( )∝ F h,E( ) 2

Element Δf at 7117eV

C -0.02 + 0.01i

N -0.04 + 0.02i

O -0.06 + 0.04i

S -0.37 + 0.70i

Zn +1.14 + 0.85i

Fe1 +9.07 + 4.19i

Fe2 +8.71 + 4.54i
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contributions by ratio: Fe1 from some maxima to minima and correspondingly Fe2 from 
minima to maxima.  The intensity between diffractions from a macromolecule crystal 
vary by orders of magnitude and the contribution from just a handful of atoms is 
relatively small.  In the proceeding chapter we formulate how to standardize the bias 

between two target atoms.  The example given for h=(-9, 11, 12) demonstrates that a 

single diffraction can have a significant contribution from the anomalous dispersion of a 
single atom type in a large macromolecular unit cell while suppressing an atom of a very 
similar absorption profile.!
!
4.3.3! Opposite bias!
!
! To demonstrate some of the variation available, Figure 4-8 shows the example 

above with h1=(-9, 11, 12), but also with h2=(10, 26, 0).  In the case of h2 the first iron, Fe1 

(orange), is strung out and the second iron (blue) is all wrapped up on itself.  This is 
opposite to the previous example.  What is probably most remarkable about h2 is that 
the phase of the real part of the anomalous signal is almost parallel with the phase of 
the background structure factor (the black vector and long orange vector are almost 
collinear).  This means that any variation in intensity of this diffraction across the 

absorption spectrum of iron will be almost one hundred percent real, f1, in nature.  The 

imaginary f2 part from atom-label Fe1 is ninety degrees out of phase with f1, and 

therefore its projection, at a tangent to the circle, will effect the overall phase of the 
structure factor but have very little bearing on the resulting intensity (area of the circle).!
!
4.3.4! Realism!
!
! DS can be used to calculate and analyze individual diffractions.  The focus of this 
project, however was to see if it was possible to extract spectroscopic data from protein 
crystals at a normal third generation MX beamline.  In order to do that, it was necessary 
to ignore individual diffractions and take a more holistic approach to recovering the 
information.  The above 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Figure 4-7!
Total Structure Factor for two Diffractions with Opposite Iron Emphasis!

!

!
An argand diagram of two total structure factors h1=(-9, 11, 12) and h2=(10, 26, 0).  The total structure 

factors (brown lines) are composed of individual factors from each atom (light grey).  Black is the total 

feature-free scattering from all elements and attached to those are the major anomalous contributions f1 

and f2.  For h1=(-9, 11, 12) the only significant anomalous contribution is Fe2 (blue) and for h2=(10, 26, 0)  

its Fe1 (orange). 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examples are idealized: it assumes that the exact position in space of every element is 
known with only empty space in between and free from all errors.  As one can imagine, 
this is hardly the case with a real crystal.  Due to the size of the iron’s diffraction signal, 
there is a high confidence level on where the iron’s are in space with respect to the unit 
cell.  The phase of the anomalous signal with respect to the background structure factor 
could be very different, and noise will always obfuscate the underlying information.  If 
there is a lot of noise in the signal, it can be two or three times the size of the signal of 
the anomalous dispersion.  In light of these drawbacks, there is one big advantage of 
collecting large unit cell diffraction: thousands of diffractions all collected at the same 
time and under identical laboratory environmental conditions.!
!
4.4! Cylinder Projection!
!
! A good visual interpretation of the anomalous dispersion, introduced here, is 
currently called the ‘cylinder projection’.  The Kramers-Kronig transform demonstrates 
that the real and imaginary parts of dispersion are actually two views of the same 
phenomena.  It is an identical situation to the sine and cosine function being two 
perpendicular projections of a single helix.  It is useful to remember that the contribution 
from anomalous dispersion to the intensity of a diffraction is a projection of a cylinder 
toward the origin.  The cylinder is generated from the real and imaginary parts of the 
anomalous dispersion, and the phase of the cylinder is governed by the phases of the 
individual structure factors (from that atom-label).  With two atom-labels, the effect on 
the total structure factor is the sum of the two cylinder projections, one cylinder for each 
atom-label. 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Figure 4-8!

!
Cylinder Projection of Anomalous Dispersion for Two Different Irons!

!
The cylinder projection of two different iron atoms: oxidized ferric iron (orange) and reduced ferrous iron 

(blue).  When the cylinder is projected onto two perpendicular surfaces (bottom and left vertical), the 

Kramers-Kronig dispersion relation can be seen quite clearly.  The rear right vertical wall is the Argand 

projection (occasionally seen in the literature [57]).!

!
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!
!

CHAPTER 5!
!

ANALYSIS OF DIFFRACTION SPECTROSCOPY!

!
5.1! Data Extraction!
!
! A technique has been developed to retrieve the small signals from individual 
atom-labels out of the large and noisy background of real diffraction.  In previous 
sections, the theoretical production of a diffraction intensity and how it varies with 
energy was explained.  The act of observing the diffraction intensity with a detector 
obscures the phase information.  The absorption profile of the atom-labels of interest  
are mixed in a variety quantities in different diffraction spots, each with a different 
phase.  It is instructive to understand how intensity variations are extracted from a real 
dataset in light that the phase part is absent.!
!
! The first step is to take a solution dataset of the crystal so that the locations of 
the atoms in the relevant unit cell can be used instead of a similar or hypothetical 
structure.  The solution set is also used for unit cell parameters and crystal orientation in 
the DS experiment.  This allows the crystal processing software to lock in the orientation 

and force the Miller indices (hkl) to be the same at subsequent energies.  Quantity is 

almost as important as quality for the method chosen, so selecting a rotation wedge in 
which large numbers of reflections occur can also be done at this stage.  The 
fundamental methodology of a DS run at a beamline is to shoot a 10° wedge in 1° 
rotations starting with the X-ray energy well below the core hole absorption of the 
element of interest and then step the energy across the edge.  Repeating the wedge at 
50-70 energy steps (a wedge for each energy) over the iron absorption edge will 
produce a narrow spectrum of 400-500eV.  The spectrum may be narrow, but it is 
sufficiently detailed across the edge by executing larger energy steps at the beginning 
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and end of the spectrum and gradually tapering the step size to 1eV steps across the 
edge section.  This is similar to energy steps taken while measuring a standard X-ray 
absorption spectrum in fluorescence; the energy step file is sometimes called a region 
file by absorption spectroscopists.  The crystal is then translated so that a fresh section 
can be exposed an identical DS run is collected.  By laterally translating the crystal, its 
orientation with respect to diffraction is unchanged and, therefore, another solution set 
is not required at this point.  The crystal is translated two times, giving three DS 
datasets, assuming the crystal is large enough and/or the beam is small enough.  These 
thin 10° wedges are processed using crystallography software [53] incorporating prior 
knowledge of the crystal orientation and cell parameters taken during the solution set.  

The end product of processing supplies a list of hkls and their intensities at the 

associated energy.  If the crystal can be translated, the three wedges from the same 
energy point can be scaled and merged for better statistics.  Each wedge contains 
approximately 4000-9000 reflections depending on unit cell size, crystal orientation, 
crystal quality, symmetry, detector size and X-ray energy.  The result of the processed 

data is a 2D matrix of the intensities of each diffraction spot (labelled h1 to hn) as a 

function of energy from lowest to highest (labelled Elo to Ehi), Equation 5.1. In this matrix, 

each line represents a discrete diffraction spot.  This is a semi-sparse matrix and, 
depending on crystal parameters, energy and processing software, only 60-80% of 
reflections will be successfully recorded at every energy.  Reflections that are not 
recorded at every energy, for whatever reason, are rejected.  The habit of automatically 
rejecting diffractions that do not reflect at every energy prevents partial diffractions from 
inconsistently weighting the results and discourages hole-filling, by the experimentalist, 
in the matrix which would artificially reduce noise:!

�

                                               (5.1)!

The full/dense matrix of reflections is called M and may contain somewhere in the 

region of 200,000 - 400,000 individual reflections.  A number of operations on M are 

 

M =

Ih1 ,Elo ! Ih1 ,Ehi
" # "

Ihn ,Elo ! Ihn ,Ehi

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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conducted, such as feature scaling, outlier rejection, low intensity rejection and overall 
scaling, so that each diffraction, which can vary by orders of magnitude between 
reflections, is part of a consistent set.!
!
5.1.1! Outlier Rejection, Modified Dixon Q-test and Feature Scaling!
!
! When real data is collected (as opposed to simulated data) there are two criteria 
for which the data can be rejected.   Failure to meet the criteria does not reject an 

individual intensity, because M must be full, a judgement is made to outright reject all 

intensities for that hkl at every energy.  The first outlier rejection criteria uses a mean 

subtracted diffraction and reject the hkl if one of its values falls outside of an interval.  

For the myoglobin an interval of [0.5, 1.5] was used and for ferredoxin a slightly more 
inclusive interval of [0, 2] was applied.  The second condition of rejection applied here is 
a modified Dixon’s Q-test [58] in which the data has not been rearranged in order of 
increasing value (which occurs in the normal Dixon Q-tests).  Diffractions are rejected if 
they have values greater that 0.6 for myoglobin and 0.7 for ferredoxin.  This test acts as 
a discontinuity discriminator and, at a very broad level, it allows for lots of noise in the 

signal but removes egregious diffractions.  Once hkls have survived the rejection criteria 

they are feature scaled.  Feature scaling is a process in which a diffraction is 
standardized across the spectrum:!

�                                                         (5.2)!

The list of reflections that survive are recorded and the feature scaled data of those 
reflection moves onto overall scaling.!
!
! Overall scaling is the value associated with a1 in Equation 3.13.  The overall 

mean of matrix M is scaled with the overall mean of the simulated matrix generated by 

software DeskTools.py (Appendix V).  DeskTools was written in house and has 
subroutines for theoretical diffraction that include B-factors and occupation.  Lorentz 
factors, normal polarization and detector variations are adjusted for in the data 

Iscaled =
I − Imin
Imax − Imin
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processing software.  Bond-polarization and self-absorption are not calculated as their 

values are expected to small and demonstrably time consuming.  Values for a2 and a3 

are also not accounted for as the simulated data generated is still so dissimilar on 
average from values collected on real crystals, the noise levels of which are so high that 

to apply values to a2 and a3  would be disingenuous.!

!
These prior steps are required before analysis can start; reduced the experiment down 
to a single matrix of information, one must slice the matrix up into three parts before 

continuing to do any analysis. The three sections are hkls favouring the Fe1 atom, hkls 

favouring the Fe2 atom and the rest of the reflections.  In order to trisect the matrix M in 

this way, a method to discriminate reflections based on contributions from the target 

atoms has been developed: called dev.!

!
5.2! Calculating Deviation (dev)!

!
! Within the narrow spectrum, the sum over all atoms j can be broken up into 

atoms that do not have dependence on energy and those that do, bulk atoms and target 
atoms respectively.  The method of deviation calculations that follows can be extended 
for more than two targets without loss in generality  .  The total structure factor for each 1

diffraction at each energy can be symbolized as follows, from Equation 3.11:!

�                                       (5.3)!

and, by extension, the intensity:!

�
                                   (5.4)!

Ranking intensity it is a simple matter of calculating each diffraction with:!
1) No anomalous contribution (i.e., no energy dependence):!

�                                                  (5.5)
!

2) Contributions from the non-anomalous atoms and all the Fe1 atoms:!

F[ ]h,E = FZ + ΔFe1 + ΔFe2[ ]h,E

Ih,E = FZ + ΔFe1 + ΔFe2[ ]h,E
2

I 0h = FZ[ ]h
2
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�
                                             (5.6)!

3) Contributions from non-anomalous and all the Fe2 atoms:!

�
                                             (5.7)!

Note that these intensities are used only to calculate the effect that each anomalous 
scatterer has on a diffraction and are not used in calculating actual expected intensities.  
To determine each target atom’s contribution to the intensity, sample standard deviation 

is used [59], summing across the spectrum, where the energy steps go from E1=Elo to 

EN=Ehi:!

�                              (5.8)!

These deviations need to be normalized in order to rank whether a diffraction, hkl, 

should be assigned to the Fe1 subset for analysis, the Fe2 subset or whether it should 

be rejected.  This is done by defining the anomalous deviation or dev:!

�
                   (5.9)!

It is important to note that each dev has a range from 0 to 1 and, more importantly, that 

dev(Fe1)h+dev(Fe2)h=1, allowing reflections to be ranked by their relative contributions.  It 

is also pertinent to mention that all manner of calculus may go into ranking diffractions: 
signal versus intensity, signal versus angle (resolution), X-ray E-vector versus crystal 
orientation, or a combination of all and: each of which could include background noise.  
The method devised above is not the obvious calculation for assigning how much a 
single atom contributes to a single diffraction.  It is however a perfect little tool for 
assigning intensities to the group in that if it does have a contribution it will be from that 

particular atom.  As seen in the example provided in chapter 4, h=(-9, 11, 12), if the 

Lorentz factor, B-factor, normal polarization and self-absorption are included for every 
atom in the crystal, Fe2 would still dominate over Fe1 for that reflection.  On the 

I Fe1h,E = FZ + ΔFe1[ ]h,E
2

I Fe2h,E = FZ + ΔFe2[ ]h,E
2

σ h
Fe1 =

Ih,E
Fe1 − Ih

0( )2
E=1

N

∑
N −1

σ h
Fe2 =

Ih,E
Fe2 − Ih

0( )2
E=1

N

∑
N −1

dev Fe1( )h ≡
def σ h

Fe1

σ h
Fe1 +σ h

Fe2

⎛
⎝⎜

⎞
⎠⎟

dev Fe2( )h ≡
def σ h

Fe2

σ h
Fe1 +σ h

Fe2

⎛
⎝⎜

⎞
⎠⎟
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downside, the method does not include bond-polarization which could diminish Fe2’s 
overall effect.!
!
5.3! Extracting Signal!
!
5.3.1! Separating the sets!
!
! Each of the two sets of 8 irons in the unit cell has a phase that is a product of the 

atomic positions and the reflection, hkl, in the exponent.  The anomalous contribution 

from each iron has two parts: f1 is parallel and in phase with the Thompson scattering, 

and f2 is perpendicular.  The overall effect of one iron type (atom-label) on the intensity 

is the sum of the 8 symmetry-equivalent irons coinciding to make a large contribution 
and how the magnitude and direction of those irons relate to the feature-free structure 
factor.  Principal Component Analysis (PCA) was chosen to analyze the data at it relies 

on f1 and f2 being orthogonal to each other.  The aforementioned definition of dev is used 

to determine each reflection’s propensity toward one iron over the other and place them 

in the matrix M:!

�              (5.10)!

Applied to M is a threshold on the dev columns and only reflections with deviations that 

overcome this value are kept; the M matrix is sliced into three parts: favourable to Fe1, 

favourable to Fe2, and the rejected middle.  For example, in the simulated diffraction 
experiment in the next chapter, a threshold of 0.95 was chosen.  This means that 

reflections, that have a dev of 0.95 or greater from Fe1 are put into one matrix and those 

with a dev over 0.95 from Fe2 are put in the other.  These are mutually exclusive sets of 

data (anything with a dev of 0.95 in Fe1 has a dev of 0.05 in Fe2, and vice versa): all 

other reflections are discarded.  The final two matrices are only diffraction intensities: 

reflections (h) down one axis and energy (E) along the other:!

 

M =
h1
!
hn

Ih1 ,Elo " Ih1 ,Ehi
! # !

Ihn ,Elo " Ihn ,Ehi

dev(Fe1)h1
!

dev(Fe1)hn

dev(Fe2)h1
!

dev(Fe2)hn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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�

       (5.11)!

In laboratory experiments, the entries in the matrix are processed intensities using XDS 
software on real crystal diffraction.  For the simulated experiments, they are generated 
by DeskTools.  These subset matrices greatly favour one of the irons over the other, and 

it is simply a matter of listing the reflections from each dev matrix and extracting those 

from the dataset of the real data.!
!
5.3.2! Principal Component Analysis!
!
! Principal component analysis attempts to find patterns in data by calculating 
eigenvectors and eigenvalues for a multi-dimensional covariant matrix [62].  For one of 

the matrices M above an entry in the covariant matrix, C, would be:!

�                                    (5.12)!

where the bar denotes the average and covariance is closely related to variance which 
is a more general form of sample standard deviation:!

�                                      (5.13)!

The python subroutine [63] does all the heavy lifting by calculating the eigenvectors and 

-values V and D of the covariance matrix:!

�                                                    (5.14)!
During the testing phase of the PCA module, a randomly rotated helix projected onto 
two orthogonal planes was used with various random levels of offsets and noise.  The 
results were so convincing that the tests were repeated using a raw anomalous 

 

Mdev Fe1:0.95( ) =
Ihi ,Elo ! Ihi ,Ehi
" # "

Ihn ,Elo ! Ihn ,Ehi

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
Mdev Fe2:0.95( ) =

Ih j ,Elo ! Ih j ,Ehi
" # "

Ihn ,Elo ! Ihn ,Ehi

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cov hi ,h j( ) = hi,n − hi( ) h j ,n − hi( )
n −1( )n=Elo

Ehi

∑

C =
cov h1,h1( ) ! cov h1,hn( )
! " !

cov h1,hn( ) ! cov hn ,hn( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

V −1CV = D
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dispersion spectrum.  With 250 exceptionally noisy input data, the software was able to 
pull out two orthogonal spectra that are very similar in shape and structure to the inputs, 
(Figure 5-1).  It is clear that combined with scaling and a slight rotation that the original 
data could be retrieved using this technique, if the signal to noise was not too extreme.  
PCA with a rotation is also known as abstract factor analysis [62].  Three drawbacks of 
PCA are: 1) the scale of the results can only be approximated by multiplying by the 
square-root of the eigenvalue; 2) the offset with regards to the baseline is lost; and 3) 
the sign of the calculated spectra is, for all intents and purposes, assigned randomly 
every time.  Despite these drawbacks, the inclusiveness of this method is appropriate 
for the large-scale noisy data that is created when diffracting from a large 
macromolecule unit cell crystal which only has a handful of small signals embedded in 
it.  The underlying spectra can be regarded either as mixtures of the two Kramers-
Kronig dispersions, each taking a sine and a cosine of the phase, or as a single cylinder 
projected toward the origin with the PCA results also being paired off and forced into a 
counterclockwise cylinder (see Figure 6-4).  It is advantageous to the input and output 
cylinders to release them of their coordinate systems and compare features.  In near 
edge and fine structure , it is not uncommon to scale and fit splines as well as unmoor 
the exact position of absorption.  PCA is an excellent tool for supplying the underlying 
shape of a signal, but it is impossible to assign values to that shape in a meaningful way 
unless it is scaled to a known spectra.  The act of changing signs, shifting and scaling 
as well as combining perpendicular components with an assumed handedness should 
give pause for thought  In the following chapters, a discussion on how to scale with 
regards to real data is given along with a look at the benefits of a slight rotation if the 
quality of results is high. 

!56



Figure 5-1!
!

Testing the Principal Component Analysis Module!
!

!!
a) A pair of Kramers-Kronig dispersion relations used as the input spectra. b) The pair are joined rotated 

and projected 250 times with a random noise multiplier as well as an offset. d) A closer look at single 

projection with and without noise. c) the results of the PCA python module working on the 250 noisy 

spectra/data.  The two top components with the highest scores are shown.  No fitting algorithm applied to 

the results however they have been scaled by one over the square root of their score. 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!
!

CHAPTER 6!
!

SIMULATED DIFFRACTION!

!
6.1! Raw Ingredients to Simulated Diffraction!
!
! Chapters 7 and 8 cover two laboratory experiments.  In chapter 7 a single iron 
containing macromolecule diffraction spectrum from myoglobin is compared to its 
fluorescence spectrum; and in chapter 8, the site separated diffraction spectra from two 
inequivalent irons in a 2Fe-2S cluster from the large macromolecule ferredoxin is given.  
These two experiments require a detailed knowledge of the atomic positions as well as 
insight into which diffractions collected during the experiment are valuable for analysis.  
The software DeskTools was written to evaluate the results of the one- and two-metal 

proteins.  In order to evaluate the dev of relevant hkl intensities, DeskTools was written 

to simulate diffraction from a PDB file.  With these new programs it became possible to 
calculate and analyze an ideal simulated dataset.  !
!
! Prior to experiments on actual crystals, simulations were conducted whereby a 

small sphere of reciprocal lattice vectors (hkl), publicly available structures from the 

PDB as well as arbitrary spectra were applied to the two different target atoms.  Initially 
a crude 5 point spectrum was used, then a real absorption spectrum was used to 

simulate the anomalous dispersion.  DeskTools takes these inputs and generates I(h,E) 

for diffractions of the reciprocal lattice points at energies on the spectrum.  These 
simulations were successful and proved invaluable with ferredoxin in particular, 
demonstrating the strength of the technique which will be discussed in detail below.!
!
! Simulated diffraction was created in DeskTools using atomic positions, energy 

data points, a list of diffractions (hkl) and the B-factors; from an experiment on a real 
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crystal I2.  The atomic form factor Thomson scattering values, f0,j, were calculated using 

Cromer-Mann coefficients.  The dispersion values for f1 and f2 of non-target bulk atoms 

are taken from Cromer-Liberman.  The anomalous dispersion values for target atoms 
uses the partially simulated spectra from Figure 4-1 at energy points from the region file  
that cover iron K-edge absorption.  !
!
! dev was created to deconvolute diffractions by contributions from site separate 

atoms.  Simulated diffraction was created to simulate diffraction but not necessarily to 
simulate reality.  As described in Section 3.3 in order to simulate real diffraction many 
factors need to be included.  B-factors and occupancy do not significantly effect any of 

the calculations with regards to calculating dev.  In order to calculate an atom's 

contribution to dev, temperature is not included, however when simulated diffractions are 

generated, temperature and occupancy are included.  Simulated diffraction intensities 
are calculated using the squared modulus of the following structure factor:!

�                                            (6.1)!

Where rj is the location of the atom j, Bj is the temperature factor, Oj is the occupancy 

and dh is the d-spacing for the reflection which can be solved using Bragg’s Law [17] 

where n=1:!

�                                                         (6.2)!

! The simulated diffraction is not a perfect simulation of real data as it does not 
include radiation damage, air scatter, noise, self-absorption, bond polarization, or 
systematic errors.  Nothing obscures the shape of the anomalous scattering factors (in 
simulated diffraction) associated with each iron, except the intrinsic complication of 

diffraction itself (and temperature).  Therefore dev is only attempting to deconvolute and 

site separate atoms from the complications associated with the loss of phase from 
diffraction.!
!
! A simulated run of both the myoglobin single iron and the ferredoxin two-iron was 
conducted, however, no report has been made on the single iron because the output 

F h,E( ) = f j h,E( )e− i2π h⋅rj( )e−Bj 4dh
2

Oj
j
∑

2dh sinθ = nλ
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spectral results were indistinguishable from the input.  With the multi-iron ferredoxin 
experiment, the nature of crystallography and lack of phase information starts to 
interfere with the separation of the two iron signals in the diffraction and its analysis.  
Extensive use of experimentally acquired initial values are exploited and then 
extrapolated using the equation for intensity, Equation 5.4.  The initial simulated 
experiments were successful in site separating anomalous dispersion signals and once 
real structures and data had been acquired, the experiments were repeated using 
simulations to probe the limits of the technique.  Repeating the simulated experiments 

using the reciprocal lattice vectors (hkl) obtained in a laboratory DS run with atomic 

positions from a solution derived at the the same time demonstrated the strength of 
PCA in separating and retrieving the underlying spectra from simulated data.  The  
results described below clearly show the ultimate goal of DS: decoupling the site 
specific spectra.    !
!

!
6.2! Simulated Ferredoxin!
!
! The two irons of ferredoxin are in different oxidation states as the surface iron 
interacts with molecules outside of the protein, it has been experimentally determined 
[9, 61, 62] to be the reduced iron.  The FEFF suite of programs was used to calculate 
the EXAFS spectrum of the surface iron and to compare it with that of the iron deeper in 
the body of the protein.  All high resolution (<2Å) 2Fe-2S cluster containing ferredoxins 
in the PDB are included in a detailed analysis of FEFF spectra from PDB structures in 
Appendix II.  The Cyanobacterium Anabaena PCC7119 ferredoxin (1CZP.pdb) was used 
as the model for the EXAFS oscillations in this chapter as the structure has very high 
resolution (1.17Å) models for both oxidized and reduced states [61].  The EXAFS 

oscillations were calculated to k=6 with a maximum of 4 multiple scattering legs.  Each 

iron is tetrahedrally bound to 4 sulphurs, sharing 2 bridging  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Figure 6-1!
!

Iron-Sulphur Active Site of Ferredoxin 1CZP!!!
!

!!!
The 2Fe-2S active site of Ferredoxin.  The two tetrahedrally bonded irons are coloured orange and blue.  

The orange, Fe3+, ferric iron, Fe2, is deeper in the protein with a stable oxidation state, it is anchored by 

cysteine 9 and 22.  The blue, reduced, ferrous Fe2+, surface iron Fe1, is believed to be the operative part 

of the ‘active site’.  It is anchored by cysteine 55 and 59.!!
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sulphurs, and all atoms within 5Å of the the target atom were included in the 
calculations, see Figure 6-1.  The EXAFS oscillations were then combined with near 
edge spectra from an unrelated absorption experiments of both an oxidized and 
reduced iron in order to have theoretical spectra that cover the region of interest, 
6910eV - 7345eV.  These semi-theoretical oxidized and reduced iron absorption spectra 

were then put through the fftkk.py software to calculate the imaginary, f2, part of the 

anomalous signal.  The original spectra can be seen in Figure 3-1, the FEFF 
calculations are documented in Appendix II and the Kramers-Kronig Fourier transform 
software is available in Appendix III.!
!
! Initial values for a list of intensities is generated by DeskTools.  Each atom in the 

unit cell is designated with an element Z, a position rj=(x, y, z), and a temperature B-

factor, from the PDB file and DeskTools calculates all the symmetry related atoms within 
the unit cell.  The list of reflections were taken from experiments   with crystal I2.  The 1

Thomson scattering uses the d-spacing of the reflection plane which is calculated using 

the unit cell dimensions (a, b, c, α, β, Ɣ) also from the PDB file.  Different oxidation states 

were then assigned to the two irons by giving each one the anomalous spectra 
theorized above and a the list of intensities is recalculated for every energy in the 
spectrum. This is the simulated data which no longer contains any phase information as 
the absolute value of the total structure factor has been squared, see Equation 5.4.!
!
6.3! Results of Simulated experiment!
!
! With the list of reflections that dev calculated for this matrix of intensities, the 

intensity is free from external noise as the data is simulated.  A very high threshold can 
be used to separate the matrix into its three parts: favouring the first iron, Fe1, the 
second, Fe2, and rejecting all the reflections whose mixture does not favour one over 
the other.  A threshold of 0.95 was chosen and by doing so reduced the 5428 reflections 
into two sub-matrices with 179 reflections favouring Fe1 and 141 favouring Fe2. 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Figure 6-2!
!

HKL-Space of Reflections!

A plot of the 5428 reflections in hkl-space.  Reflections favouring the Fe2, oxidized (orange), reflections 

favouring Fe1 are reduced (blue) are shown for a threshold of 0.95.  The discarded reflections are white.  

The blank section through the middle is associated with the rotation axis 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!

�  ( 6 . 3 ) !
! Each intensity contains all elements in the unit cell, however, one matrix has 
been calculated where all the Fe2 structure factors are wrapped up so their total 
contribution is low and the other where Fe1 is equally low. The contribution from the 

atom-label of interest is the sum of two perpendicular vectors, f1 and f2, from the 

dispersion relation and can vary in magnitude from near zero to close to 8 times the the 
anomalous dispersion  .  Because all phase information is lost with intensities two 1

signals are mixed in at unknown levels in each reflection.  There are 179 and 141 
reflections in each  of the Fe1 and Fe2 matrices, respectively.  The small, but significant 

0.05 dev from the opposing atom-label will act like noise in the signal.  To each of these 

matrices the PCA module is applied, which uses eigenvalue decomposition to separate 
linearly uncorrelated variances.  The anomalous signals in the reflections are related 
through the Kramers-Kronig transformation, but this is opaque to PCA which only 
attempts to maximize variance in successive dimensions.  However Kramers-Kronig 
pairs are orthogonal to each other as are the resulting dimensions from PCA.  In theory 

only n+1 channels are required to decompose n variables; with channels numbering 179 

and 141 the results presented are sufficient, but not perfect.  The small amount of the 
other atom’s signal in the opposing matrix is strongly correlated: the two cylinders are 
very similar, and therefore disruptive to isolating one from the other.!
!
! PCA returns as many components as the number of reflections and each has an 
associated eigenvalue, also referred to as, ‘the score’.  The results require two signals 
from each matrix, however, it is useful to look at the top three as the third component  

 

Mdev Fe1:0.95( ) =
Ih1 ,E6910 ! Ih1 ,E7345
" # "

Ih173 ,E6910 ! Ih173 ,E7345

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
Mdev Fe2:0.95( ) =

Ih1 ,E6910 ! Ih1 ,E7345
" # "

Ih140 ,E6910 ! Ih140 ,E7345

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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�  There are 8 of each type of iron; as structure factors are a sum, eight times the anomalous dispersion 1

contribution is the limit for this crystal.



Figure 6-3!
!

Results of Principle Component Analysis on Simulated Diffraction!

The top three dimensions (components) from a PCA are shown for two separate matrices of diffraction 

from a simulated DS run conducted on two-iron ferredoxin along with their scores.  One matrix favouring 

the reduced iron (blue) and the other favouring the oxidized (orange) iron. 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gives an accurate illustration for how quickly the score drops off.  PCA does not return 
experimental values for the ordinate as the input values are mean-subtracted before 
undergoing decomposition, however, they are an indication of the size of the variance.  

Figure 6-3 shows the top three results of PCA from the two matrices; dev(Fe1:0.95) and 

dev(Fe2:0.95) are blue and orange respectively.  !

!
6.4! DeskTools!
!
! It takes approximately twenty minutes to run each of the two time intensive parts 
of a simulated run on a standard desktop computer.  The first part strips the hkls from 
the processed XDS reflection files and generates a matching simulated reflection file 
using Equation 6.1.  The second part takes the hkls from the simulated reflection files 
and generates a dense matrix and then calculates the deviation values which returns 
the list of reflections that are to be used by the PCA module.  For this simulated run the 
dense matrix of 5428 reflections has a resolution range of 35Å - 1.77Å.  The period of 
time it took to evaluate the PCA slows exponentially depending on the size of the 

Mdev(atom-label:threshold) matrix due to the exponential nature of calculating the covariance 

matrix.  For lists under 200 reflections, as in this experiment, it takes about one minute.  
DeskTools saves each step in a binary file so when adjustments are made to 
parameters it may utilize those parts that have previously been calculated, but are not 
effected.  The output dimensions/spectra are displayed in Figure 6-3. !
!
! Atom-label Fe1 in 1CZP.pdb is assigned with the reduced iron spectrum and Fe2 
with the oxidized before diffraction is simulated and these spectra are returned by using 

dev and the PCA module.  The easiest feature to recognize is the triple peaked crown of 

the oxidized iron f1: compare the orange line of dimension 1 in Figure 6-3 to oxidized 

iron in Figure 3-1.  Four features are immediately clear that differentiate the results from 
the input spectra: 1) The lack of a perfectly flat baseline in dimension 2 before the 
inflection. 2) The main inflection point in dimension 2 is almost shared. 3) The score size 
of dimension 1 vs dimension 2 of the orange result is opposite to that of the blue. 4) All 
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three peaks of orange dimension 1 are level, whereas in the input spectra they are 
ascending in value.!
!
! The next step, when the results are returned, is to compare the input spectra with 
the PCA results as the values from PCA are free floating unsigned lines.  In Section 
5.3.2, it is noted that PCA is a subsection of Abstract Factor Analysis (AFA) which 

includes a rotation.  Therefore, in order to properly scale input spectra to the results f1,  

f2, dimension 1 and dimension 2 are normalized so their lowest and peak values are in 

the range of -1 to +1 (feature scaling).  Next, the cylinder forms are projected and the 
PCA results are rotated around the mutual origin/axis at (E, 0, 0) until there is a least 
residual fit with the input spectra.  It is possible to then reverse the normalization factor 
of the input spectra and apply it to the newly rotated projections of the PCA and 
compare them (Figure 6-6 and 6-7).  Dimensions 1 and 2 for Fe1 are rotated -0.6° and 
Fe2 is rotated -1.7°; when the cylinder is reprojected they are rescaled by normalization 

factors of 4.6 and 4.0 for f1 and f2 respectively, plus a shift to bring their centroids into 

alignment.!
!
6.5! Simulated Ferredoxin Summary!
!
! In summary, the 8 atoms labeled Fe1 are associated with an oxidized iron 
spectra, the 8 atoms labeled Fe2 are associated with a reduced iron spectra.  When 
their simulated intensities are calculated, collated and separated by a deviation 
threshold they return the spectra assigned to them when operated on by AFA.  The 
results in Figure 6-4 and 6-5 are so closely matched to the input with almost all major 
features transferred.  One feature that persists throughout all attempts of getting the 
output and the input as sensibly rotated and scaled as possible is the slight misaligned 
inflection point of the Fe1 output.  It is shifted down in energy by a fraction, but it is 
toward Fe2; making their inflection points almost identical.  It is possible that Dimension 
3 has the residual information in it (Figure 6-3), but there is no clear way to apply it 
without bias on the part of the experimentalist.  Future development of this fitting 
technique may yield better results.  It is possible to automate the handedness of the 
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cylinder, pick a centroid axis (based on end points  ) about which to rotate and write a 1

least squares algorithm for the best fit.  Part of the error occurring from PCA is that each 
dimension is orthogonal by maximum variance, which is not the same as the three 

dimensions used by the input (E, f1, f2).  This is not unexpected, but it makes the 

arguments that these are spectra, or spectral equivalents, less intuitive and it is unclear 
how to rotate (through a fourth dimension) to include the signal left out in dimension 3.  
These are small errors, Figures 6-6 and 6-7 clearly demonstrate the validity of this 
technique.  Simulated experiments such as these will continue to be performed 
alongside real crystallographic experiments to track results and expectations.!
!
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�  Ideally, it would be very distant points generated by a spline.1



Figure 6-4!
!

Cylinder Projection of the PCA Module Working on dev(Fe1:0.95) and dev(Fe2:0.95) 
for Simulated Ferredoxin!!

!

!!!!
The results of PCA module working on the separated matrices of simulated ferredoxin.  The cylinder 
projection of Dimensions 1 and 2.  Those associated with the reduced iron (blue) and the oxidized iron 
(orange).  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Figure 6-5!
!

Cylinder Projection of the Rotated and Scaled PCA for Simulated Ferredoxin!!!
!

!!!!
The results of PCA module working on the separated matrices of simulated ferredoxin.  The cylinder 
projection of Dimensions 1 and 2.  Those associated with the reduced iron (blue) and the oxidized iron 
(orange).  The cylinder has been rotated and scaled to the value to fit the values of the input spectra. 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Figure 6-6!
!

Reduced Iron Spectrum vs Rotated and Scaled from PCA of dev(Fe1)

� !!
The comparison of the input spectra for the reduced iron and the simulated diffraction results.  This is a 
subset of the simulated diffractions that favour atom Fe1 outer iron that is associated with this spectrum.  
The real and imaginary parts of the anomalous dispersion are combined into a cylinder, feature scaled 
and then dimensions 1 and 2 are also combined, scaled and rotated until a minimum residual is returned.  
The resulting projections were then scaled back to the original values of the dispersion relation.!!!
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Figure 6-7!
!

Oxidized Iron Spectrum vs Rotated and Scaled from PCA of dev(Fe2)

� !!
The comparison of the input spectra for the oxidized iron and the simulated diffraction results.  This is a 
subset of the simulated diffractions that favour atom Fe2 outer iron that is associated with this spectrum.  
The real and imaginary parts of the anomalous dispersion are combined into a cylinder, feature scaled 
and then dimensions 1 and 2 are also combined, scaled and rotated until a minimum residual is returned.  
The resulting projections were then scaled back to the original values of the dispersion relation.!!

!
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!
!

CHAPTER 7!
!

MYOGLOBIN!

!
! Myoglobin contains a single iron and as such will have a single simple absorption 

spectrum.  The absorption will translate into the diffraction via the anomalous dispersion 

correction.  The correction factor is a complex number characterized by  f1, the real part, 

and f2, the imaginary part, where f2 is closely related to the absorption by Equation 3.33 

and is visually similar.  With myoglobin the objective is to separate these two orthogonal 
signals by applying component analysis (PCA) to all the diffractions whilst excluding 
diffractions that are excessively noisy and do not meet inclusion criteria based on a 
modified Dixon-Q test.!

!
7.1! The Protein!
!
! Myoglobin (Mb) is a small red-tinged, iron-rich protein that is an important part of 
the respiratory cycle.  Myoglobin was selected because it is an easily acquired, iron-
containing single metal protein.  Sperm whale myoglobin is very easily obtained from 
Sigma-Aldrich chemical company.  There was relatively little legwork involved in 
securing crystals of very good quality as they come already crystallized in a granular 
form not too dissimilar to pink sugar.  Recombinant P6 Mb solution from Sigma 
(M-7527) was concentrated to 20 mg/ml and used without further purification. Crystals 
of Mb were grown at 295K using the hanging-drop vapour-diffusion method [77].  PDB 
entry 1jw8 [69], it crystallizes with one protein per asymmetric sub unit, six proteins per 
unit cell with P6 symmetry, therefore within the unit cell there are only six irons out of 
nearly ten thousand bulk atoms.  !
!

!
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Figure 7-1!
!

Myoglobin Active Site6!
!

Active site of met-myoglobin is tucked into a hydrophobic pocket within the protein and has CO on the 

upper half of the porphyrin ring and a histidine below.  The Iron atom is Fe3+ oxidation state. !

!
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�          7.1!

These are met-myoglobin proteins and are all in the same ferric state where each iron is 
a stable Fe3+.  The immediate surroundings of the iron are quite spectacular.  The iron 
sits in the centre of a porphyrin ring, two of the iron's d-orbitals are within the plane of 
the ring and the remaining is perpendicular.  The CO binds above the plane of the ring, 
below the plane the iron binds with histidine 94.!
!
7.2! The Experiment!
!
! The experiments detailed in this thesis were conducted remotely [72] at Stanford 
Synchrotron Radiation Light source using beamline 9-2 and the Canadian Light Source 
CMCF2.  9-2 is a wiggler beamline with a Rhodium coated flat mirror, a toroidal focusing 
mirror, a Si-111 double crystal monochromator and a Mar325 detector.  To all intents 
and purpose they are spectroscopic beamlines and some, such as CMCF2 at the CLS, 
have been built with spectroscopy in mind.  Developments in the efficiency of area 
detector sensitivity means that modern detectors are almost photon counters.  The 
Mar325 has a Detector Quantum Efficiency (DQE) of 0.8 between 8-12KeV, which is to 
say that they average 10 counts on the CCD for every 12 photons, approximately.!
!
! This myoglobin proof-of-principle experiment for a single metal crystal deviates 
from the simulated (Chapter 6) and ferredoxin (Chapter 8) experiments insomuch as 
there is only one anomalous atom per protein (the iron).  All reflections, excluding 

outliers, are included in the analysis, therefore the use of dev is not required.  This 

allows for the inclusion of many more reflections as all diffractions are in some way 
biased toward a single iron.  The matrix of intensities for this atom still contains two 

different signals (f1 and f2), both from the same iron.  Due to the phases of each atom 

changing with each reflection, the f1 and f2 signals have multitudinous orientations with 

F h,E( ) = fC h( )e− i2π h⋅rC( )

C

5118

∑ + fN h( )e− i2π h⋅rN( )

N

1374

∑ + fO h( )e− i2π h⋅rO( )

O

3018

∑ +!

!+ fS h( )e− i2π h⋅rS( )

S

36

∑ + fFe h,E( )e− i2π h⋅rFe( )

Fe

6

∑
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respect to the bulk atom structure factor.  The data is normalized by feature scaling the 
intensities and then applying abstract factor analysis to recover the shape of the 
anomalous dispersion part  of the atomic scattering factor.!
!
! The crystal has a unit cell of just over 320,000�  with dimensions 90.38Å, 
90.38Å, 45.34Å and angles 90°, 90°, 120°.  A total of 9552 atoms, not including 
Hydrogens.  Data were taken at 59 energies from 6910eV to 7300eV.  The myoglobin 
crystals diffracted well, the crystal orientation was easy to obtain and maps were easily 
generated.  For the DS run, eight 1.5° oscillations were collected using a specialized 
script written by Jinhu Song and Aina Cohen   at SSRL that took advantage of blu-ice/1

DCSS scripting engine [70, 71].  At the time of the experiment the ability to easily 
process the data took a much more important role than the total intensity of each 
reflection, which does not take into account the signal-to-noise ratio that would later 
consume much of the analysis.  The average wedge generated 9030 reflections, 
however very high-resolution spots do not survive across the entire spectrum.  There 
were a total of 10865 recorded reflections across the entire spectrum and 7890 of them 
were rejected for either falling out of range over the spectrum or from not having values 
assigned to them across all energies by the processing software.!
!
! Only 2975 reflections were contiguous over the spectrum with resolutions from 
39Å to 2.13Å, despite the data collecting successfully out to 1.6Å.  Of the 2975 
reflections, 175 were rejected for having a Dixon Q-test value greater than 0.6 and 
another 1412 were rejected as outliers.  Outliers, in this instance, were determined as 
reflections with values outside the interval [0.5, 1.5] of their mean subtracted intensity.  

This left 1388 reflections that proceeded to the PCA module.  The matrix M of 1388 

reflections were processed with the PCA module.  Although this number is quite large, 
the results from the analysis shows relatively high levels of noise, which is the  
consequence of not doing multiple runs.!
!

Å3
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Figure 7-2!
!

Screen Output from DeskTools running Myoglobin!!
DS One Target Atom Run

UC Vol from PDB: 320749

[90.38, 90.38, 45.34, 90.0, 90.0, 120.0] 

[[ 0.011064  0.006388  0.      ]

 [ 0.        0.012776  0.      ]

 [ 0.        0.        0.022056]]

Symmetry recovered from REMARKS 290 of 1jw8.pdb

6 symmetry operations

['X', 'Y', 'Z']

['-Y', 'X-Y', 'Z']

['-X+Y', '-X', 'Z']

['-X', '-Y', 'Z']

['Y', '-X+Y', 'Z']

['X-Y', 'X', 'Z']

ASU from a PDB file: 1jw8.pdb

[853, 1, 229, 503, 6] 1592 

['C', 'N', 'O', 'S', 'Fe'] 

[853, 229, 503, 6, 1]

Target Atom Positions

[[ 23.921   9.18   -5.724]

 [ 26.626  30.565  -2.691]

 [ 31.178  18.341  28.294]

 [ 31.807  16.869   0.967]

 [ 32.956  13.049  22.584]

 [ 45.19   26.09   -0.627]]

[[ 34.783   4.14   10.249]]

5

[[ 8169. -4084.     0.]

 [-4084.  8169.     0.]

 [    0.     0.  2056.]]

Calculated Unit Cell Volume 320742

Spectrum

|      |      |      |      |      |      |  |  |  |  |  |  |||||||||||||||||||||||||||||||||||||  |  |  |   |      |      |       |          |          |

59 Total:  6910.0 ---> 7300.0

Retrieving pickle file data_dictionary: mb_1-data-dict.pickle 

bibliography/ownwork/2013_paper_data/Myoglobin/1b/

Resolution Range 39 --> 1.6

Number of HKLs is 10865

Number of hkls in data_dict                    		 : 10865

DATA hkls rejected for outside bracket 0.5 1.5 	 : 1412

DATA hkls rejected for dixonQ too high is 0.6  	 : 175

DATA hkls kept                                 	 	 : 1388

Calculating and creating the Priniple Componants file

Myoglobin/1b/ pca1_0.6_0.5_1.5.pickle
!
This is the verbose output from DeskTools.py running a myoglobin DS simulated experiment, wherein a 
number of checks are conducted.  The output shown here is for the successful run discussed in this 
chapter. 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7.3! Collection History!
!
! Over the period of a year, a dozen DS runs were conducted on myoglobin.  The 
myoglobin experiments started in mid-2010 at SSRL in Stanford, they were the first 
datasets taken and at the time multiple runs on separate sections of the crystals were 
not being conducted.  The prevailing theory at the time was that using multi-crystal runs 
would yield more reflection and better quality data.  A broader oscillation of 1.5Å was 
also used, as was an inferior region file for the energies. !
!
! The concept of applying PCA had yet to enter the experimentalists' lexicon and 
an equal amount of pre-edge spectra was taken as post edge.  Edge position was also 
considered the most valuable part of the experiment  and as such the post-edge 
oscillations barely cover classic Near-Edge (XANES) spectral regions.  Though multiple 
florescence spectra were taken, multiples of a single position were not conducted, 
EXAFS was also not conducted.  Six complete datasets were viable for processing, 
some were taken prior to the introduction of ‘top-off’ injection into the synchrotron ring 
and were rejected for having massive discontinuities due to data collection over a ‘fill 
cycle'.  A few collections failed due to software glitches, filename mishandling, and 
normal errors such as pin slipping.  These common beamline problems were expertly 
addressed and handled by the collaborator at SSRL (Aina Cohen).  By late 2011, data 
was successfully collected using the original regime where multiple runs on the same 
wedge were not conducted.  !
!
! A reliable method of processing the data was developed to handle each of the 59 
energies in an identical manner.  Online backup was located at beamline 4.2.2 at the 
Advanced Light Source in Berkeley California.  This space allowed for the production of 
scripts to automate the processing software, d*TREK [65].  The results for the 
myoglobin stem from early scripts in which the data was processed by holding the 
crystal orientation and allowing the detector distance to vary.  This simulates the energy 
change, an adaptation of processing that has its origins in Multi-wavelength Anomalous 
Dispersion (MAD) crystallography. !
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!
7.4! The Dimension 1 Anomaly!
!
! When PCA is performed on matrix M in the manner addressed in Chapter 5, the 

largest component by far is a smooth inflection of the first dimension shown in Figure 
7-3 (top).  Dimension 1 was considered a major contribution to the anomalous 
dispersion.  However, this high scoring contribution was identical and pervasive 
throughout all data collection, independent of all other factors.  It occurs across all 

subsets of matrix M including subsets that have low affinity to the heavy atoms. This led 

to the conclusion that dimension 1 is independent of the dispersion.  Due to the 
absence of signs in PCA and the lack of a theoretical framework, the component was 
arbitrarily biased with a negative sign (since this phenomena is independent of heavy 
atoms, a detrimental effect is more probable). Figure 7-3 plots dimension 1 against 
energy (top) as well as linearly in time (bottom).  Plotting the effect negatively and 
against the number of exposures (time equivalent), it appears that the crystal holds itself 
together before being overcome by the effect.  As their is no correct ordinate value, it is 
impossible to tell how steeply this effects the diffraction.  It is supposed that dimension 1 
is recording the decay of the crystal's ability to diffract through radiation damage or 
another process such as an increase in overall temperature buildup.  Experiments on 
crystals without heavy atoms and at differently spaced timing may well shed light on this 
mystery, however time was not afforded to this.  It will need to be fully characterized in 
the future if DS is going to be used regularly by third party experimenters, however at 
this point it is a known unknown and analysis moved to discovering the anomalous 
dispersion features of PCA components from matrices that maximize that part of the 
signal.  It is also worthy to note that dimension 1 does not appear to be susceptible to 
the effects of the anomalous dispersion, which means that the PCA module is able to 
separate variances stemming from different effects. !

!
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Figure 7-3!
!

The Dimension 1 Anomaly vs Energy and Time!

The first dimension output from PCA of diffractions from myoglobin.  (Top) A plot of the component vs the 

energy at which it was collected.  (Bottom) Plot of the same component given against the collection 

number (time equivalent). 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Figure 7-4!
!

PCA Results of Myoglobin!

The top three principle components from a myoglobin DS run.  Dimension 1 is plotted linearly with time of 

exposure and dimension 2 and 3 is plotted against energy.  Each has been normalized to the to have a 

maximum value of 1 and a minimum of 0.  Dimension 1 is given a negative slope to indicate a decline in 

diffraction strength, Dimension 2 is a positive cusp and Dimension 3 is a positive step to reflect the real 

and imaginary parts of the anomalous dispersion. 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!
7.5! Results of Myoglobin PCA.!
!
! The myoglobin DS experiments are the first that have been conducted as far as 
the literature on the subject goes.  The dimension 1 anomaly demonstrates that this is 
uncharted territory.  You can see from Figure 7-4 that the next two components detected 
by the PCA module have a striking similarity to a cusp and step in shape.  This is highly 
reminiscent of the dispersion relation.  The 2:1 ratio of their relative scores is as 

expected from the size of the anomalous dispersion relation where the real part, f1 has 

values approximately double those of f2.  The noise in dimension 2 is also visibly less 

than that of dimension 3, and even though the successive dimensions have only slightly 
lower scores, they rapidly devolve into shapeless noise.  With a mixed two-iron or multi-
iron protein, the successive dimension after dimension 3 may include signal from other 
absorbers in the iron region, however this is not the case with myoglobin.  PCA looks to 
maximize variance in the covariance matrix and the intensities for reflections has been 
feature scaled, which introduces a skewing of the signal giving the appearance of a 

much steeper background function.  Absorption spectra, that are related to f2 by 

Equation 3.33, require background subtraction to flatten the pre- and post-edge due to 

the approximate E-2 decrease in absorption, this slight decrease over this region should 

be dramatically enhanced by feature scaling, which is done here.  It is hypothesized that 
the feature scaling is what gives dimension 3 more of a symmetric triangle wave 
background rather than an antisymmetric square-wave, step-like function.  !
!
! The object of retrieving the absorption profile form the anomalous signal of 
diffraction leads naturally to comparing dimension 3 with an absorption spectra from the 
same sample.  No direct absorption spectroscopy was performed on myoglobin at the 
time of these experiments, nor are they available for this paper through other means.  
Fluorescence spectra were taken at the time of the experiment, these are much cruder 
than those that are taken is a normal XAS experiment. Although not ideal, they are an 
excellent indication of the absorption profile.  Figure 7-5 shows the comparison of 
dimension 3 with the fluorescence spectra.  The fluorescence, in black, has a nice clear 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Figure 7-5!
!

Fluorescence Spectra vs Dimension 3 !

The comparison of a single fluorescence spectra (black) and dimension 3 (orange) from PCA in the DS 

regime performed on the same myoglobin crystal.  The fluorescence spectra is simply the raw counts 

from the fluorescence spectra scaled to the signal counts in the beamline.   Dimension 3 has been scaled 

for comparison.!

!
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step-like behaviour, which dimension 3 (orange) does not.  Ignoring the high level of 
noise in both, the lack of structure is evident in the pre-edge and there is a strong jump 
in both values in the near-edge.  The exact position of the edge is shifted in dimension 3 
from the diffraction.  These sorts of dissimilarities suggest that dimension 2 could be a 
better contender for characterizing the anomalous dispersion.!
!
7.6! Fourier Transforming of Dimension 2!
!
! Although the comparison of dimension 3 gives a close approximation to the 
absorption spectra, a more rigorous estimation should come from the Kramers-Kronig 

transform of dimension 2 because it originates from f1 which should have approximately 

twice the signal size as f2.  The dimension 2 component has a higher score and visibly 

less noise.  In order to calculate the Kramer-Kronig transform of dimension 2 the fftkk.py 
module from Appendix III was executed.  Theoretical Cromer-Liberman values (black) 
are generated using a FORTRAN subroutine written by Prof. Graham George, these 
were convolved with a Voigt function which simulates broadening (magenta) in the 
energy due to the Darwin width of the monochromator crystal and lifetime broadening of 

the X-rays.  The input values for f1 is the scaled PCA component from dimension 2.  The 

resulting output, the f2 approximation, is much less noisy than the first approximation 

above using dimension 3.!
!
! Figure 7-7 shows the final results of the myoglobin DS experiment.   PCA applied 
to a subset of diffracted x-rays from a large myoglobin macromolecule crystal, 
repeatedly exposed over the spectral range of an iron absorption edge, can detect the 
small variations.  Although collection techniques have improved since the first year of 
these types of experiments, it is enlightening to see that the small, anomalous 
dispersion signal buried deep under noisy reflections is retrieved despite the phase of 
the anomalous dispersion taking a myriad of values. 

!84



Figure 7-6!
!

Kramers-Kronig of Dimension 2 of Myoglobin DS!

The underlying Kramers-Kronig relationship is seen by plotting the Cromer-Mann values along with the 

results of conducting a Fast Fourier Transform (FFT) on input spectra.  Dimension 2 of the myoglobin 

PCA is scaled and fitted to the f1 and the calculated f2 after using the fftkk.py module (Appendix III). 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Figure 7-7!
!

Fluorescence Spectra vs Kramers-Kronig of Dimension 2!

The comparison of a single fluorescence spectra (black) and the Kramers-Kronig of dimension 2 (orange) 

from PCA in the DS regime, both performed on the same myoglobin crystal.  The fluorescence spectra is 

simply the raw counts from the fluorescence spectra scaled to the signal counts in the beamline.  The KK 

of dimension 2 has been scaled for comparison. 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7.7! Myoglobin Conclusion!
!
! This is a vastly improved result over the comparison with dimension 3 (Figure 
7-5) with respect to edge position and step-likeness.  As fluorescence is a better 
understood area of science, the features of its spectrum are also better understood.  
The combination of Diffraction, PCA and Kramers-Kronig returns something very akin to 
absorption.  The spectra share enough traits to be compared to one another and are 
different enough to warrant skepticism.  The single iron myoglobin DS experiment brings 
the research one step closer to its ultimate goal: retrieving separate anomalous 
dispersion spectra from a multi-metal macromolecular crystal.  !
!
! The myoglobin experiments were not conducted with an ideal methodology. 
Currently there is no ideal collection strategy, however myoglobin does demonstrate 
that the PCA of noisy diffraction can return lower-noise signals that are directly related 
to the absorption properties of the target atoms within the crystal.  This prior collection 
strategy, with the  lack of a well characterized absorption profile, do not detract from the 
affirmation of the underlying theory: that DS can be performed on a 3rd generation MX 
beamline with a few software tools (to run the experiment, automate the processing, 
analyze the data, and perform a transform). 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!
!

CHAPTER 8!
!

FERREDOXIN!
!

! The objective with the ferredoxin is similar to that of myoglobin; extract the 
absorption-like spectra from diffraction.  However, ferredoxin contains two irons that are 
in different electronic and physical conformations which will manifest as marginally 
different profiles in the spectral region under which the experiment is performed.  The 
goal is to identify diffractions that prefer one iron over the other (and vice versa) and 
treat each of these subsets of diffractions separately for analysis.  In analysing a set of 
diffractions that bias a single irons atomic location an attempt is made to identify its 
oxidation state by comparison to model spectra for irons known to be in a similar 
configuration.!
!
! Ferredoxin was investigated in two ways in this paper to demonstrate that these 
experiments can be conducted at modern beamlines.  First, an entirely simulated 
experiment was conducted in which the oxidation states and neighbourhood 
conformations for each iron were calculated using energy dependent atomic form 
factors.  The resulting diffractions were analyzed to see whether under perfect 

conditions; dev and PCA could deconvolute and, therefore, separate the anomalous 

dispersion for those selected atoms.  Secondly, an identical experiment with a (similar) 
real crystal and resulting diffraction was conducted and is presented here.  The 
experiment in this chapter gives evidence in the form of more detailed absorption 
profiles from site separated atoms in large unit cells, demonstrating that DS can be 
executed on many other structures.  The additional goal of this thesis is to supply a new 
tool to crystallographers that relies on years of experience and experiments previously 
conducted by absorption spectroscopists. !
!
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Figure 8-1!
!

Images of Ferredoxin Crystal I2 Collection Experiment!

!
A screen shot of a single diffraction image and a photograph of the ferredoxin crystal I2 with the in-line 
microscope at beamline 9-2.!!
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8.1! The Protein!
!
! The ferredoxin protein [73], PDB entry 1m2a, is more complicated than the 
myoglobin inasmuch as it contains two target atoms in different oxidation states, 
conformations and locations.  Many types of ferredoxin have been solved in the PDB, 
and an investigation of them shows similarities in the conformations of the inner and 
outer irons (see Appendix II).  In this section, the diffraction spectra are separated by 
atom-label; the inner, ferric Fe1 from outer, ferrous, Fe2.  The two irons, bridged by two 
sulphurs (see Figure 6-1), are 2.7Å from each other; each iron has 4 sulphurs 
coordinated with it.  The crystal has a unit cell of just over 175,000Å3 with dimensions 
67.40Å, 59.02Å, 46.61Å and angles 90°, 110°, 90°.  A total of 6756 atoms, not including 
Hydrogens.  Data were taken at 67 energies from 6910eV to 7300eV in 1° oscillations.!
!
! From earlier experiments on myoglobin, it became clear that the signal to noise 
would need to be improved because the PCA module was still finding the energy-
dependent signal from individual diffractions exceptionally noisy.  By comparing the 
simulated ferredoxin data quality (less than two hundred spectra) with that of the 
myoglobin (over one thousand), it was decided that multiple runs on the same wedge 
would be needed.  Simply exposing the crystal the same wedge for longer periods of 
time is limited by the dynamic range of the detector, lower resolution diffractions 
become overloaded and interfere with processing the crystal.  Additionally, repeating the 
same wedge at the same energy also increased deterioration of the diffraction as 
wedge is already being exposed 67 times (once at each energy).  The crystals were 
grown by Eva-Maria Roth under the supervision of Dr. Thomas Spatzal  .  This is when 1

crystal translation and multiple runs became the new collection regime.  As can be seen 
in Figure 8-1 (bottom), the crystals grew as long needles which greatly simplified 
translating and re-exposing the crystal at a fresh location.  A reduction of the oscillation 
angle from 1.5° to 1.0° also helped the software lock in the locations of the reflections 
with respect to each other.  This is important as the crystal orientation stays the same 
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as the diffractions move slightly, in the images, due to the change in energy.  ‘Fine-phi 
slicing’ (taking sub 1° oscillations) would continue to improve processing, profile fitting 
and signal to noise; however, the experiment is time consuming so a decision was 
made to stop at 1°.!
!
8.2! The Comparison Spectra!
!
! In the simulated ferredoxin experiment, the anomalous dispersion was generated 
using FEFF for the absorption spectra of one crystal with the near-edge stitched on from 
an unrelated iron absorption experiment.  With the real ferredoxin, absorption spectra 
had already been measured by the George/Pickering group on an oxidized and reduced 
Aneabaena, and the analysis of the spectra created in this experiment will be compared 
to that.  Absorption spectra are taken on the sample as a whole, therefore, the ‘reduced‘ 
aneabaena start as 50/50 mix of reduced and oxidized iron.  In order to separate the 
reduced irons half of Fe3+ is subtracted from the mixed spectra to generate a Fe2+ 
spectra.  This new spectra for Fe2+ was determined this way using the EXAFSPAK [66] 
backsub module.  The quality of the Fe2+ spectra suffers a little from this, but it is still an 
improvement over creating the spectra from PDB files (Appendix II).  These absorption 

spectra are also used in creating theoretical spectra utilized by dev to see which sets of 

intensities bias each iron.!
!
! In order to calculate the structure factors for these irons, the absorption spectra 

were processed with the fftkk.py software so that the real, f1, part of the anomalous 

dispersion can be calculated.  The results for the Kramers-Kronig are given in Figures 
8.-2 and 8-3.  A comparison of the two anomalous dispersions, using the cylinder 
projection, are in Figure 8.4.  The dispersion relations can be used as the energy 

dependent part of the structure factors for simulated diffraction calculations in dev as 

well as comparing them to the site separated spectra principle components from the DS 
experiment. 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Figure 8-2!
!

Kramers-Kronig Transform of Ferredoxin Reduced Iron From Absorption 
Experiment!

Green: Cromer-Liberman (CL) values for reduced Iron shifted to coincide with the inflection point of the 

absorption.  Magenta:  CL values convoluted with a Voigt to approximate X-ray lifetime broadening and 

monochromator Darwin width.  (Top)  Kramers-Kronig of the absorption spectrum from ferredoxin reduced 

iron.: f1. (Middle)  The absorption spectrum: f2.  (Bottom) The difference between CL-Voigt and f1 or f2. 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Figure 8-3!
!

Kramers-Kronig Transform of Ferredoxin Oxidized Iron From Absorption 
Experiment!

Green: Cromer-Liberman (CL) values for oxidized Iron shifted to coincide with the inflection point of the 

absorption.  Magenta:  CL values convoluted with a Voigt to approximate X-ray lifetime broadening and 

monochromator Darwin width.  (Top)  Kramers-Kronig of the absorption spectrum from ferredoxin reduced 

iron.: f1. (Middle)  The absorption spectrum: f1.  (Bottom) The difference between CL-Voigt and f1 or f2. 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Figure 8-4!
!

Cylinder Spectra of the Dispersion Relation from EXAFS Absorption Experiment: 
Spectra of Reduced and Oxidized Ferredoxin Irons.!

!

!!
(Centre) Cylinder spectra from Figure 8-2 and Figure 8-3.  Reduced (blue) and Oxidized (red).  (Ground) 

Absorption: f2.  (Back Left) Kramers-Kronig of the absorption: f1.  (Back Right) Argand projection.!

!
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8.3! The Data!
!
8.3.1! Collection!
!
! There were only a handful of crystals that were viable.  Due to the low quality of 
the diffraction from these crystals; three sweeps   were performed on different sections 1

along the crystal.  This was achieved by laterally translating the crystal (parallel to the 
rotation axis) to expose a fresh section  The newer collection methodology improved the 
results dramatically despite the quality with which these crystals diffracted.  The 
ferredoxin data used in the final study comes from crystal I2, and it diffracted   to 1.95Å.  2

The beam was a 50x170μm2 rectangle, and dose mode was switched off.  Data were 
taken in 1° oscillations, and 13° wedges at 67 energy points: a total of 871 (13*67) 
images per sweep.  Each image was exposed for 1 second; a total time of 93 minutes 
elapsed to collect all three sweeps. Within each 31-minute sweep, the crystal was 
exposed for 14.5 minutes, which is a 17% improvement in time over myoglobin.  The 
gain in speed of collection is attributed to streamlining software at SSRL: resetting the 
goniometer concurrently while image read-out was being performed.  These incremental 
improvements add up, saving beamtime for other uses, making more experiments of the 
same type possible as well as making these experiments more attractive to third parties.!
!
8.3.2! Processing!
!
! A total 201 (3*67) wedges were processed, 67 wedges per sweep.  A python 
module was written (process-w-xds.py) to automatically process each wedge at each 
energy using the crystal orientation from the solution dataset that was solved for the 
protein structure.  A ‘master’ processing file (xds.inp) was created by processing the 
crystal at a variety of energies across the spectra using the solution orientation and unit 
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cell dimension from the solved structure run (see Figure 8-5 for the master file).  The 
program also assigned the number of processing cores to be used in parallel as well as 
setting the correct wavelength and filenames.  It took approximately 2 hours to process 
each sweep on a 2.4Ghz Intel Core i5 MacBook Pro (2010).  Two keywords options 
were used that differ from normal processing: 1) FRIEDEL’S_LAW=FALSE was set so no 
compensation for anomalous signal was performed, and 2) SPACE_GROUP_NUMBER=1 was 
set to force all data to be processed in P1 symmetry so that no compensation was 
made for symmetry-related diffractions.  !
!
! Another program (multiple_xscale.py) was written to automate the scaling 
between the 3 datasets at the same energy.  This program created the XSCALE.inp 
filethat is run by the XDS software (Figure 8-6) to merge the three datasets at each 
energy and also used the FRIEDEL’S_LAW=FALSE keyword option.!
!
! The result of collecting, processing and scaling was 67 hkl files, one for each 

energy.  Each hkl file contains a list of hkls, their observed intensities and sigma values, 

which are an estimate of the standard deviation of the profile fitting.  Once the 

processed data were merged and scaled by XSCALE.inp, the resulting hkl files were 

ready for analysis by the DeskTools program.  A large amount of information is supplied 
to the investigator as the DeskTools performs its operations (Figure 8-7).  The readout 
from the program gives a number of useful pieces of information: the name of the 
solved crystal, which atoms it is using for target atoms and their assigned oxidation 
states, the number and types of bulk atoms, the resolution, the Cromer-Mann 
coefficients, unit cell volume according to the PDB file versus the one calculated, and, 

lastly, the component scores and quantity of hkls that the threshold produces.!
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Figure 8-5!
!

Master_XDS.inp File for Ferredoxin I2!
!-------------------xds.inp------------------!
JOB= ALL !
MAXIMUM_NUMBER_OF_PROCESSORS= 3!
MAXIMUM_NUMBER_OF_JOBS= 2!
!-------------------Dataset parameters-------- !
X-RAY_WAVELENGTH= 1.77!
DETECTOR_DISTANCE= 124.40!
STARTING_ANGLE=0.0!
OSCILLATION_RANGE= 1.0000!
SPACE_GROUP_NUMBER=1!
UNIT_CELL_CONSTANTS=67.200 59.800 47.200 90.00 110.30 90.00!
UNIT_CELL_A-AXIS=     8.932   -62.806    22.513!
UNIT_CELL_B-AXIS=    11.441   -18.064   -54.883!
UNIT_CELL_C-AXIS=    40.519    22.889     0.944!
NAME_TEMPLATE_OF_DATA_FRAMES=/Volumes/DATA/SSRL/data/Jan14_2012/I2/
I2_fero_DAFS_1_6.9100_?????.mccd!
!NAME_TEMPLATE_OF_DATA_FRAMES=/Volumes/DATA/SSRL/data/Jan14_2012/I2/
I2_fero_DAFS_1_6.9100_?????.mccd DIRECT TIFF!
DATA_RANGE= 1 13!
SPOT_RANGE= 1 13!
!-------------------Beamline parameters-------  !
NX=4096    NY=4096  !
QX= 0.079346 QY= 0.079346!
ORGX= 2048.0 ORGY= 2048.0!
    DETECTOR=MARCCD !
    MINIMUM_VALID_PIXEL_VALUE=1!
    !STRONG_PIXEL=3.0!
    OVERLOAD=65535!
    !MINIMUM_ZETA=0.05!
    TRUSTED_REGION=0.00 1.05!
    !TEST_RESOLUTION_RANGE=10.0 3.0!
    !TOTAL_SPINDLE_ROTATION_RANGES=10 180 10!
    !STARTING_ANGLES_OF_SPINDLE_ROTATION=0 180 5!
    !VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS=6000 30000!
    INCLUDE_RESOLUTION_RANGE=40 0!
    ROTATION_AXIS=1.0 0.0 0.0!
    INCIDENT_BEAM_DIRECTION=0.0 0.0 1.0!
    FRACTION_OF_POLARIZATION=0.9!
    POLARIZATION_PLANE_NORMAL=0.0 1.0 0.0!
    DIRECTION_OF_DETECTOR_X-AXIS=1.000 0.000 0.000!
    DIRECTION_OF_DETECTOR_Y-AXIS=0.000 1.000 0.000!
    !MINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT=6 !
    FRIEDEL’S_LAW=FALSE!!
The master input file for automatic processing for this ferredoxin.  Most of the master file is kept between 
energies.  Filename, X-ray wavelength, and the number of jobs and processors are the only variables that 
change in successive processing. 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Figure 8-6!
!

XSCALE.inp File for Ferredoxin I2 (abbreviated)!
!
OUTPUT_FILE=6.9100_XDS_ascii.hkl!
   INPUT_FILE=../I2_fero_DAFS_1/6.9100_XDS_ASCII.HKL!
   INPUT_FILE=../I2_fero_DAFS_2/6.9100_XDS_ASCII.HKL!
   INPUT_FILE=../I2_fero_DAFS_3/6.9100_XDS_ASCII.HKL!
   MERGE=TRUE!
   FRIEDEL'S_LAW=FALSE!!
OUTPUT_FILE=6.9300_XDS_ascii.hkl!
   INPUT_FILE=../I2_fero_DAFS_1/6.9300_XDS_ASCII.HKL!
   INPUT_FILE=../I2_fero_DAFS_2/6.9300_XDS_ASCII.HKL!
   INPUT_FILE=../I2_fero_DAFS_3/6.9300_XDS_ASCII.HKL!
   MERGE=TRUE!
   FRIEDEL'S_LAW=FALSE!!
OUTPUT_FILE=6.9500_XDS_ascii.hkl!
   INPUT_FILE=../I2_fero_DAFS_1/6.9500_XDS_ASCII.HKL!
   INPUT_FILE=../I2_fero_DAFS_2/6.9500_XDS_ASCII.HKL!
   INPUT_FILE=../I2_fero_DAFS_3/6.9500_XDS_ASCII.HKL!
   MERGE=TRUE!
   FRIEDEL'S_LAW=FALSE!!
OUTPUT_FILE=6.9700_XDS_ascii.hkl!
   INPUT_FILE=../I2_fero_DAFS_1/6.9700_XDS_ASCII.HKL!
   INPUT_FILE=../I2_fero_DAFS_2/6.9700_XDS_ASCII.HKL!
   INPUT_FILE=../I2_fero_DAFS_3/6.9700_XDS_ASCII.HKL!
   MERGE=TRUE!
   FRIEDEL'S_LAW=FALSE!!
OUTPUT_FILE=6.9900_XDS_ascii.hkl!
   INPUT_FILE=../I2_fero_DAFS_1/6.9900_XDS_ASCII.HKL!
   INPUT_FILE=../I2_fero_DAFS_2/6.9900_XDS_ASCII.HKL!
   INPUT_FILE=../I2_fero_DAFS_3/6.9900_XDS_ASCII.HKL!
   MERGE=TRUE!
   FRIEDEL'S_LAW=FALSE!!
OUTPUT_FILE=7.0000_XDS_ascii.hkl!
   INPUT_FILE=../I2_fero_DAFS_1/7.0000_XDS_ASCII.HKL!
   INPUT_FILE=../I2_fero_DAFS_2/7.0000_XDS_ASCII.HKL!
   INPUT_FILE=../I2_fero_DAFS_3/7.0000_XDS_ASCII.HKL!
   MERGE=TRUE!
   FRIEDEL’S_LAW=FALSE!
            etc etc (for 67 sets of data)!!
The first six energies of the ferredoxin’s three sweeps are shown.  There are 67 in the full XSCALE.inp 
file.  Three ASCII.HKL files per energy are merged and scaled using this file.  The resulting output files 
use the lowercase ascii.hkl suffix. 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8.4! Results !
!
! The average of the 3 sweeps produced 6690 hkls in the lowest energy (6910eV) 

wedge and 8011 hkls in the last (7345eV); 5428 hkls were contiguous over the 67 

energy points and 3 sweeps.   Merging and scaling this data greatly improved the 
signal-to-noise ratio of the diffractions; 1874 diffractions were rejected as outliers or 
having too large a Dixon Q-test value.  Fully 3554 diffractions were retained which is a 

greater percentage than when a single sweep was collected.  A dev threshold of 0.80 

was chosen as having a high degree of preference for one iron over the other, while 
maintaining the maximum number of reflections for PCA.  There were 427 reflections 
retained for atom-label Fe1 and 352 for Fe2.  The atom-labels for this ferredoxin, Fe1 
and Fe2, are reversed as compared with 1CZP ferredoxin in the simulated chapter.  To 
recap: Fe1 is the inner iron (previously assigned as the oxidized Fe3+ ferric iron), and 
Fe2 is the outer iron (previously assigned as the reduced Fe2+ ferrous iron). ! T h e 
diffractions were then feature-scaled and put through the PCA module, the scores for 
which are in the legends of Figure 8-8.  As with the myoglobin data, the first component 
from analysis of both datasets has a near-linear decline with respect to collection time, 
this ‘dimension 1 anomaly’ is discussed in Section 7.4.  The scores for dimension 2 are 
both approximately twice as large as those for dimension 3, as expected.  Dimension 
2’s pre-edge region is much less noisy that myoglobin.!
!
! As shown in Figure 8-8, the scores for the inner iron (orange) are all higher than 
those of the outer iron (blue); the ratio is 90% in agreement with the ratio of the number 
of reflections collected:!

                                                                    (8.1)!
!
! The effect on the inner iron, by radiation damage, should be less with respect to 
reduction and have a more consistent spectra than the outer iron (Appendix II); that is 
evidenced with the PCA scores and by visual inspection.  Both results share a 
maximum value at 7120eV in dimension 2 and a corresponding inflection at the same 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Figure 8-7!
!

Screen Output From DeskTools (abbreviated)!
xtal_info for pdb file!
UC Vol: 174595!
[67.4, 59.02, 46.61, 90.0, 109.67, 90.0] !
[[ 0.014837  0.        0.005303]!
 [ 0.        0.016943  0.      ]!
 [ 0.        0.        0.022784]]!
PDB - Symmetry recovered from SYM directory file c2.sym!
4 symmetry operations!
['X', ' Y', ' Z']!
['-X', ' Y', ' -Z']!
['X+1./2.', ' Y+1./2.', ' Z']!
['-X+1./2.', ' Y+1./2.', ' -Z']!
ASU from a PDB file: Ferrodoxin_I2middle5_JN.pdb!
HETATM 1593 FE1  FES A 201      54.182  15.302  55.348  1.00 17.73         FE!
HETATM 1594 FE2  FES A 201      53.600  15.593  52.740  1.00 43.67         FE!
HETATM 1602 FE1  FES B 202      74.292  15.381  56.164  1.00 14.14         FE!
HETATM 1603 FE2  FES B 202      74.904  15.777  59.042  1.00 36.20         FE!
[1010, 2, 2, 270, 381, 22, 2] 1689 !
['C', 'FE1', 'FE2', 'N', 'O', 'S', 'ZN']!
Fe1 ->! Fe3+!
Fe2 ->! Fe2+!
 [1010, 270, 381, 22, 2, 2, 2]!
['C', 'N', 'O', 'S', 'Zn', 'Fe3+', ‘Fe2+']!
['C', 'N', 'O', 'S', 'Zn', 'Fe1', ‘Fe2’]!
[[ 4543.     0. -1057.]!
 [    0.  3483.     0.]!
 [-1057.     0.  2172.]]!
Unit Cell Volume 174592!
[‘6.9100_XDS_scaled.hkl’…'7.3450_XDS_scaled.hkl']!
Spectrum!
67 Total:  6910.0 ---> 7345.0!
Creating pickle file data_dictionary: I2-FeroMerge123-data-dict.pickle!
Resolution Range 35 --> 1.77!
Number of HKLs is 5428!
Cromer-Mann!
{'Fe2+': 'Reduced_Hybrid.out', 'Fe3+': 'Oxidized_Hybrid.out'}!
Example of anomalous dictionary entry at energy: 7119.0!
Zn ! +1.14 +0.85j!
Fe2+ !+7.26 +2.52j!
C ! -0.02 +0.01j!
O ! -0.06 +0.04j!
Fe3+ !+7.28 +2.00j!
S ! -0.37 +0.70j!
N ! -0.04 +0.02j!
Creating pickle file theo_dict: I2-FeroMerge123-theo-dict.pickle!
Creating pickle file theo_dict: 0_I2-FeroMerge123-theo-dict.pickle!
Creating pickle file theo_dict: 1_I2-FeroMerge123-theo-dict.pickle!
Creating pickle file theo_dict: 2_I2-FeroMerge123-theo-dict.pickle!
Number of hkls in data_dict: 5428!
Usable HKL list is 3554 long!
Calculating and creating the Priniple Componants file!
evals1: [ 6.97846047  2.68154944  1.29617549  0.54269905  0.51239883]!
evals2: [ 5.24699352  2.11381552  1.06442259  0.50942268  0.44623708]!
Threshold 0.8:! 427 352!!
An edited version of the screen-out from running DeskTools on ferredoxin crystal I2 used in this section.  !!

!100



Figure 8-8!
!

Results of the PCA Module Working on Ferredoxin!

The top three components (dimensions) from PCA module working on the separated matrices of 

diffractions from a DS run on ferredoxin, feature scaled, with scores.  Atom-label Fe1, the inner iron, 

associated with oxidized iron (orange) and Fe2, the surface reduced iron (blue)  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point in dimension 3.  Ideally, the two inflection points of dimension 3 would be slightly 
separated with the outer iron shifted to lower energy, as we expect this to be the 
reduced iron.  The components are less noisy than myoglobin and also contain non-
negligible differences.  The dimension 1 anomaly persists with the ferredoxin crystal and 
if the designation of dimension 1 as negative (a detrimental effect) is correct, it indicates 

that the hkls associated with the outer iron succumb to the effect more quickly than the 

oxidized iron.  Similarly, dimension 2 of the outer iron started to be effected at lower 
energies more than than the inner iron.  The components of dimension 3 were the 
noisiest, as expected, but also had significant overall difference in shape.!
!
8.5! BacksubRot.py Fitting Algorithm!
!
! After the components are calculated from the separate atom-labels, a fitting 
algorithm is applied to compare them to the Kramers-Kronig from XAS spectra (Figures 
8-2 and 8-3).  The method implemented by BacksubRot feature-scaled both the 
components and the comparison spectra so that they both have maxima and minima 
values of 1 and 0, respectively.  A linear (with respect to energy) background is 
calculated by rotating a line about the mid-point on the energy spectrum and the 
ordinate value.  The background is then subtracted from the component, and a least-
squares sum is calculated between the result and the comparison spectrum.  The 
Backsub, which produces the lowest number from least squares, is ultimately 
subtracted from the component.  The results of the Backsub algorithm (Figures 8-9 and 
8-10) were then ready to be acted upon by the rotating portion (Rot) of the program.  
The resulting component pair from Backsub was projected into the cylinder form and 

then rotated through the range ϕ=[0,1] using:!

!
                                     (8.2)!

!
! Just as with the background subtraction operation, the least-squares are 
calculated using the new dimensions 2 and 3 and the comparison spectra.  When a 
minima is found, the new dimensions are retained.  The background-subtracted and 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Figure 8-9!
!

Background Subtraction of the Fe2 PCA Components 2 and 3!

Mid way through the background subtraction module of BacksubRot.py program.  Components 2 and 3 

(orange) from the inner iron are compared to the feature-scaled Kramers-Kronig pair from XAS spectrum 

Fe2+ (black).  The calculated minimum backgrounds are also shown (yellow). 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Figure 8-10!
!

Background Subtraction of the Fe1 PCA Components 2 and 3!

Mid way through the background subtraction module of BacksubRot.py program.  Components 2 and 3 

(blue) from the outer iron are compared to the feature-scaled Kramers-Kronig pair from XAS spectrum 

Fe3+ (black).  The calculated minimum backgrounds are also shown (yellow). 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Figure 8-11!
!

Final Comparison of DS PCA Rotated and Scaled Ferredoxin Inner Iron with Fe3+ 
XAS Spectra!

Orange: the scaled and rotated 2nd and 3rd principle components of a subset of diffraction from ferredoxin 

that are biased toward atom-label Fe1 and suppressed in regards to Fe2.  Black: the absorption spectrum 

(bottom) of reduced iron from ferredoxin and its Kramers-Kronig mate (top) 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Figure 8-12!
!

Final Comparison of DS PCA Rotated and Scaled Ferredoxin Outer Iron with Fe2+ 
XAS Spectra!

Blue: the scaled and rotated 2nd and 3rd principle components of a subset of diffraction from ferredoxin 

that are biased toward atom-label Fe2 and suppressed in regard to Fe1.  Black: the absorption spectrum 

(bottom) of oxidized iron from ferredoxin and its Kramers-Kronig mate (top) 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rotated dimension 2 and dimension 3 are then scaled so that they can be compared to 
the original XAS spectra.  This process is conducted on each set of components, from 
the outer iron and the inner iron.!
!
8.6! Analysis of the Components of the Diffraction after Fitting!
!
! The initial conjecture that site separated absorption profiles from subsets of 
diffractions can be attained is clearly seen here and proved by the simulated diffraction.  
That each profile is biased toward one atomic position has also been confirmed 
however the proof that these profiles are of sufficient quality to make a definitive 
statement about each atom’s environment is an over-stretch.  The inner iron has 
excellent agreement and stands out as the best data taken to date, the outer iron has a 
more complicated interpretation.  Separate spectra from iron atoms in the 2Fe-2S of 
ferredoxin has never been achieved so it is not obvious that our spectrum is the 
spectrum we seek.  The data is too limited and noisy for EXAFS analysis and a 
threshold of 0.8 is not as definitive as the threshold of 0.95 used in simulated diffraction.  
The objective of the experiment was to deconvolute the spectra from each atom which 
has been achieved.  This holistic method is reminiscent of the early years of absorption 
where there was a need for a library of prior examples from which to compare.  As these 
are the first of this type of spectra there exists no such library, though running Kramers-
Kronig on absorption spectra seems to be a very close second.  FEFF does have the 
ability to calculate DANES spectra but calculating the Near-Edge part of the spectrum 
has still not been perfected either for normal absorption or for DANES.!
!
! Discussing the spectrum of the real part, f1, of anomalous dispersion from 

diffractions is novel in and of itself but with improved data having both pairs of spectra 

from f1 and f2 could be used as a self consistent check and a way to tackle noise.  

Currently dimension 3 is so noisy that when combined and rotated with dimension 2 that 
it increases noise in dimension 2 significantly: which further complicates analysis.!
!
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! The results of the background subtracted, rotated and scaled components of the 
PCAs are shown in Figures 8-11 and 8-12.  There are three features that the 
component-spectra contain that are possible significant indicators.  !
!
1) The overall cusp of the outer iron is shifted down in energy when compared to the 

inner iron even as it shares a maxima.  This can best be seen with a smoothing 
function in Figure 8-13 (top).  The method of collecting these spectra starts on the 
low energy side so this effect is less damaged by radiation.!

!
2) The peaks right after the inflection are slightly muted similar to that of the reduced 

spectrum from absorption.  Figure 8.13 (bottom).!
!
3) The oscillations after the edge of the outer iron are significantly different from those 

of the inner iron.  They are not different from the oxidized absorption spectrum and 
similar to the reduced … just different (Figure 8-12).!

!
Figure 8-13 shows a comparison of the components after a Savitzky-Golay fitting 
function has been executed which helps visualize the spectra with less noise however 
as the spacings in energy are not even the fitting function smooths out the details in the 
oscillations above the absorption edge.!
!
!
8.7! Conclusion!
!
! With noisy diffractions numbering in the low hundreds and over this limited 
spectrum there is good agreement between the more stable inner iron and the Kramers-
Kronig pair of XAS Fe3+ spectra associated with it.  The the XAS of Fe2+ originates from 
a mixed Fe2+/Fe3+ solution.  The outer iron diffraction spectra is also less clear.  It has 
definitely suffered from not having as many diffractions to process and shares many 
traits with the inner iron.  This was expected in that this iron would be less stably bound.  
The outer iron has neighbours in a broader range of configurations and is a candidate 
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for a mixed redox potential.  Crystals are also exposed for relatively long periods of time 
(2-4 times longer than a ‘normal’ solution set) so there is a high expectation of radiation 
damage, the effects of which are unclear.  All of these make this spectra more 
complicated to interpret.  !
!
! Site-selective absorption experiments have now been conducted on large unit 
cell crystals at a third generation beamline, exclusively using existing equipment.  The 
result supports prior evidence of the surface iron of ferredoxin being the reducing iron 
though it is not fully conclusive, the spectra generated are limited and noisy but are an 
excellent proof of concept for the methodology chosen.  Improvements in crystal quality, 
collection strategy and analysis will elucidate more details over time. 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Figure 8-13!
!

Savitzky-Golay Fitting of Ferredoxin DS PCA!

!!! !
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!
!

CHAPTER 9!
!

DISCUSSION!
!

! Improvements in the understanding of the region between crystallography and 
anomalous dispersion can help discover the electro-chemical configurations of specific 
atoms within macromolecules.  An accurate knowledge of the transition metals physical 
and electronic structures is essential for understanding the metal complex’s role within 
the larger protein structures.  Macromolecules are by definition large and will crystallize 
with large unit cells.  The focus of this research is to differentiate between metals of the 
same element within these large crystals.  The challenges of unit cells containing vast 
biological samples with thousands or diffractions has been tackled in this research.  It is 
an escalation of the work done in the 1990’s on small, well-ordered crystals whose 
research arose because the ability to inspect individual spectra from elementally 
identical atoms is very difficult by any other method.  Producing XAS-like spectra for 
macromolecular crystallographers will help clarify the role of the metals in these much 
larger systems.  !
!
! The methodologies designed and demonstrated in this research are the residual 
of a number of failed choices: bad crystal choices, inferior collection strategies, 
mishandling of data processing and analysis.  The choices that returned the largest 
benefits occurred when the beamline and software strengths were utilized.  
Macromolecular beamlines work best for macromolecules; small molecules have a 
separate set of challenges all their own.  Collecting multiple runs as opposed to 
collecting multiple crystals.  Using processing software that was designed with auto 
processing in mind (XDS).  Employing the maxim “shoot first ask questions later” gave 
many more datasets to analyze which in turn honed the analysis.  Relentlessly testing 
different ways of discriminating diffractions (from data-sets) led to strictly dense 
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matrices, a modified Dixon-Q and broad outlier rejection.  Combined with principal 
component analysis the techniques and the instrumentation has demonstrated that 
macromolecular crystal can be interrogated for details about individual metal atoms.!
!
! The research should be considered a qualified success, the results are 
encouraging but not 100% unambiguous.  With every step of the process, the goal of 
sharply different spectra from site separated metals gets closer.  The process needs 
improvements, DS would benefit from moving away from using PCA as a tool, and 
directly detecting the small signals.  This should clarify results however it would require 
geometry, speed and sensitivity improvements in detectors.  Smaller, more sensitive 
pixels in the CCD, proximity to the diffracting crystal and an increase in the solid angle  
occluded would all help improve the signal to noise ratio. !
!
! In data collection strategies the rotation wedge at different energies collects a 

significantly different set of hkls leading to a sparse matrix.  This can be mitigated for in 

two ways: 1)  Rotating the crystal for a different wedge width at each energy, and 2) To 
have the same reflections at different energies recorded at the same positions of an X-
ray detector the detector should have been moved to appropriate distance for each 
energy, respectively.  This will produce a more-similar dataset at each energy (less 
sparse matrix) and reduce the amount of time the crystal is exposed.!
!
! When more data has been taken, with marginally better crystals, an improved 
scaling and outlier rejection protocol is needed.  This area of the research needs an 
investigation all its own.  A rigorous, systematic, rejection theory would include 
appropriate diffractions and exclude egregious ones; positively effecting outcomes of 
the analysis.  These experiments need to be performed on various elements and crystal 
forms to test for effectiveness.!
!
! Predicting the true intensity of a real diffracted spot may top the list of 
improvements that need attention.  There is great disparity between modelled intensity 
and what is recorded.  Inclusion of all the factors given in Chapter 3 as well as counting 
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statistics (repetition/exposure time), mosaicity (long range disorder) and anisotropic 
diffraction (crystal packing, unit cell vibration) might narrow the discrepancy to a more 
acceptable range.!
!
9.1! Short-Term Upgrades!
!
9.1.1! PCA Investigation!
!
! One simple upgrade stems from PCA randomly applying signs to each 
component.  The helix in the cylinder projection has definite handedness and results 
from PCA should be forced to reflect this.  Currently a considerable amount of time is 
wasted re-orientating results from PCA to fit expectations.  The handedness needs to be 
set automatically.  Also, the cause of the ‘dimension 1 anomaly’, Section 7.4, needs an 
investigation to determine the underlying physical origin, which should also betray the 
sign associated with its PCA component.!
!
9.1.2! Simultaneous XAS !
!
! The crystals are absorbing and fluorescing while they are being exposed for 
diffraction.  Data regarding absorption spectra should be collected simultaneously via 
fluorescence and transmission during the experiment.  Currently this source of relevant 
information is being wasted.  MX beamlines are equipped with a florescence detectors 
suitable for a crude XAS spectrum but most are not designed for this data to be 
recorded during diffraction.  At some beamlines this might be impossible due to physical 
restrictions but if it can be implemented this information can only go to improve the 
analysis.  Future beamline designs may include more sophisticated fluorescence 
detectors   without these physical restrictions.  Additional information in the form 1

transmission/absorption spectra could also be collected using ion chambers and/or a 
beamstop diode [74].!
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!
9.1.3! Continuous Collection!
!
! Newer detectors have become available for crystallography, amongst the most 
interesting are Pilates [67] and Taurus-1 [68].  They are able to collect data in an open-
shutter mode by reading data from the CCD continuously using CMOS technology.  
Improvements in this area eliminate the need for fine-phi slicing   which enhances spot 1

profiling and speeds up collection times.  Continued progress in CCD sensitivity reduces 
the exposure time required to achieve the same count rate on the detector.!
!
9.1.4! Multiple Target Atoms!
!
! Currently dev has only been used to separate two target atoms but it should be 

able to be expanded to include 3 or more atoms.  The number of diffractions collected 
would need to be increased and the complexity would increase but there is no reason 
why Equations 5.3. can not be generalized:!

�                                  (9.1)!

�                                                 (9.2)!

�
                                    (9.3)

!

�
                                        (9.4)!

�                                         (9.5)!
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⎜
⎜
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⎟
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�                                             (9.6)	



! Simulated data collection of multi-metal crystals could be investigated using the 
same techniques applied in Chapter 6.  Theoretical results from separating more than 
two target atoms could be calculated prior to actual experiments to judge the validity of 

the technique expanding in this way.  The maximum values for dev(Fex)h need to be 

calculated.  It is not clear under which circumstances (if any) that a single hkl would 

have a large bias toward a single atom over 2, or more others; making that hkl viable for 

further analysis.!
!
9.1.5! Data Mining the PDB!
!
! As this technique requires solved proteins   (successfully crystallized), it would be 1

foolish to apply it to only new proteins.  As mentioned in the introduction, the rate-
limiting step for protein structure determination is the crystallization step.  Therefore 
writing a script that scrapes the entire PDB archive looking for appropriate structures 
(past and current) for this experiment should be written.  Once this technique is more 
fully developed, the PDB or data processing software (XDS, d*TREK etc) could alert an 
investigator whether DS is an appropriate experiment for their structure.!
!
9.1.6! Temperature and Normal Polarization!
!
! The calculations for dev will be greatly improved if the simulated diffraction more 

closely simulates real diffraction; expansion of dev to include temperature, normal 

polarization and the Lorentz factors should be included.  Once crystal orientation as it 
relates to the orbit of the synchrotron ring (and the detector face) is factored in, it should 
also be possible to include anisotropic temperature factors.  Incremental steps for 
improving simulations should fractionally improve results.  As mentioned in the 

dev Fei( )h
i=1

M

∑ = 1
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introduction to this chapter, there is great disparity between simulated and real 
diffraction however incremental improvements should incrementally improve results.!
!
9.1.7! Cluster DS!
!
! ‘Cluster DS’ has been discussed as a possible expansion of DS whereby, dev 

biases diffractions by a volume element of the unit cell instead of an atom.  This would 
be beneficial to target atoms that are separated either by a good distance or possibly by 
clusters of target atoms.  For example in nitrate reductase (narGHI) there are four 
distinctly separate iron clusters that transport an electron over a very large distance.  
Cluster DS may be able to look at each cluster’s anomalous dispersion spectrum 
separately.  !
!
9.1.8! High Contrast Collection!
!
! Here the definition of ‘high contrast’ with regards to DS is given as diffractions 
that strongly bias one atom being in a region with other diffractions that favour the other 
atom of interest.  Once a solution dataset is taken and the crystal is solved it is possible 
to calculate the wedge with the highest density of high contrast diffractions.  The ability 

to orientate the crystal such that the thinnest wedge with greatest contrast of hkls that 

bias both atoms is calculable would reduce the exposure required.  Currently in order to 
assess the same quality of data, a wedge with a visibly high frequency of diffractors is 
chosen by the experimenter.!
!
9.1.9! Relationship to the Rees Method of Separation!
!
! As mentioned in the Introduction, another new method for site separation has 
been developed by Prof. Doug Rees at CalTech.  The method uses many more 
diffractions but a lot fewer energy points [9].  Atomic form factors of individual atoms are 
calculated by solving the whole crystal structure at a limited number of energies.  There 
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could be a good interstitial area between the two methods and this should be 
investigated.!
!
9.1.10!Software Upgrade!
!
! At every stage in the development of this research, new software was written to 
handle and manipulate data.  The new software is effective but it needs to be formalized   
and packaged for wider distribution as it may be impenetrable to an outside observer in 
its current state. !
!
9.2! Middle Distance Upgrades!
!
9.2.1! Limits!
!
! DS needs more mathematical and experimental rigour applied to it.  Experiments 
on smaller unit cells, possibly even starting over again with small molecules and 
progressing is advisable.  The ability to calculate the limitations of the process and the 
hardware due to physical constraints, such as detector distance and saturation needs to 
be explored.  These types of experiments and calculations along with increasing the 
number of target atoms should bound the method and allow a better understanding of 
the flaws of the technique, and consequently its strengths.!
!
9.2.2! Diffraction Anomalous Fine Structure!
!
! The methods presented in this thesis stem from research into the fine structure of 
diffraction from small molecule experiments in the 1990s.  A lot of interesting work has 
been done in this field [75] and a few novel techniques such as George and Pickering’s 
iterative Kramers-Kronig were employed [15].  Collecting fine structure should be 
possible with large macromolecules however the signal-to-noise and current detector’s 
limited dynamic range will be an obstruction.  Observing fine structure from site 
separated atoms within a large macromolecule still remains the goal.  The width of the 
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spectrum needs to extended to accommodate this.  Fine structure may be useful  with 
phasing especially if site-separate spectra are collected at the same time as a solution 
dataset.!
!
9.2.3! Bond Polarization!
!
! The direction of the impinging E-vector from the synchrotron is highly polarized  

and the orientation of that vector as it encounters an absorbing atom has an effect on 

the quantity of the absorption.  If the X-ray’s E-vector is parallel with an atom-bond there 

is a significant increase in absorption in the near edge related to transition to bound 
states.  For absorption these effects are averaged out in randomly orientated sample 
such as a powder [13] or aqueous solution .  This is not true for diffraction by crystals 
where the orientation of all the target atoms are fixed.  The target iron for the Myoglobin 
might be a great candidate for this effect if the protein crystallized in a favourable 
symmetry, such that the plane of the porphyrin rings from each protein aligned.  The 
absorption effects related to bonds of the porphyrin ring could be accentuated and those 
to the histidine and CO depressed (or vice versa) depending on orientation of the 
crystal.  There is a branch of XAS that utilizes this phenomena, Polarized X-ray 
Absorption Spectroscopy (PXAS).  The bond-polarization effect is expected in DS but is 
not yet compensated for.  In the two crystals that are investigated here,  symmetries 
mask the effect by having multiple orientations within a single unit cell or bonds are 
similar in a multitude of directions.  Care must be given to future experiments with 
regards to this.  It would be advantageous not only to calculate the expected size of the 
effect but in appropriate crystals one could see a way of utilizing the phenomena to 
collect more detail:  similar to a PXAS experiment .!
!
! 9.2.4! Phasing!
!
! MAD crystallography already utilizes the dispersion phenomena to help calculate 
phases, by investigation this region in detail more light could be shed and possibly help 
improve the phasing.!
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9.3! Long Term!
!
! Detectors are starting to do open-shutter collection, there is no longer a need to 
close the shutter, count the counts, reorient the crystal and repeat.  Speeding up the 
collection times at beamlines significantly.  DS runs currently have to stop and wait for 
an energy change before rotating through the same 10-12°, in light of this there are two 
possible future options:!
!
1) Though mathematically challenging, one could rotate the monochromator 

simultaneously with rotation of the crystal.  This would require using a detector that 
reads out at several thousand hertz.  In theory, if the crystal has been solved, then 
this effect is calculable.  This method would have the effect of fragmenting the 
spectrum across different diffractions that are only measured once, massively 

complicating not only processing diffractions and identifying which hkls are which 

but an individual spots intensity would change non-linearly across its own profile.  A 
complicated and inelegant approach.!

!
2) A number of early DAFS experiments [citeXX] used dispersive optics, in which the 

target crystal was not bathed in a single wavelength of light, but a full spectrum.  
Due to the nature of diffraction the position on the detector upon which a diffracted 
spot lands is related to the wavelength of the light (Bragg’s Law).  By using a full 
spectrum of wavelengths of a single diffraction a ‘spread’ of intensities can be 
collected simultaneously.  There are two immediate physical limitations that would 
need to be addressed to implement dispersive optics: a) synchrotron beamlines for 
crystallography are not designed for this at the present moment and b) a dispersed 
spot on the detector face takes up a lot of space.  In conjunction with large unit cell 
crystals that have closely spaced diffraction: a very large detector placed at a great 
distance would be needed to collect in this regime.  If budget wasn’t an issue then 
these technical difficulties could be overcome.!

!
!
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9.4! Outro!
!
! Experiments at the liminal space of two well researched areas of synchrotron 
science have been conducted.  The methodology and equipment employed in this 
research demonstrates that the dispersion spectra from two different target atoms can 
be separated in a large unit cell.  Old questions have been asked of new things.  This 
area of research has lain dormant for years and in its return, the power of new 
instruments and computing have been used effectively.  Initial goals have been tested 
and have returned encouraging results.  These new techniques and this area of 
research (though it needs more attention and focused experiments) is a good place to 
start.!

!
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!!
APPENDIX I!

!
SCATTERING THEORY!

!
! This section is a faithful reproduction of Charles Kittle’s Introduction to Solid 
State Physics, 5th edition [1971, John Wiley and Sons].  This material is reproduced with 
permission of John Wiley & Sons, Inc.  The construction in Kittle’s book is simple and 
clear, superior diagrams and the avoidance of Brillouin Zones are given here.  This 
clarifies the books introduction to scattering theory and the electron concentration 
function.!
!
! Elastic scattering implies that the magnitude of the wavevector, w=𝑐k,  scattered 

by the crystal satisfies:!

�                                           (AI.1)!

Where w´ and k´ are the diffracted wavevector and wavenumber respectively.  The 

electric field of a plane wave in free space has the form:!

�                                            (AI.2)!

Ignoring an angular offset and where E0 is the maximum amplitude.  The form of a 

single scattered wave in response to a scattering centred at ρ is:!

�                              (AI.3)!

C is a constant of proportionality and 1/r preserves the flow of scattered energy.  The 

point scatterer ρ is the sum of integer multiples of three basis vectors, if the direction of 

R is that of k´ then:!

�                                  (AI.4)!

′w = w; ′k = k.

 E(x ) = E0e
i(k ix −wt )

 
Esc = CE(ρ)

eikr

r
=
CE0e

− iwt

r
ei(k iρ+ kr )

 
Esc (r) =

CE0e
i(kR−wt )

R
e− iρmnp iΔk
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The total scattering from all lattice points is a sum over mnp.  The interesting part being 

the sum of phase contributions, which is called the scattering amplitude, A:!

�                                         (AI.5)!

If ρmnp=ma+nb+nc then maximum amplitude is when the three Laue equations are 

satisfied simultaneously:!

�                           (AI.6)!

Where hkl are integers.  These conditions are met by the reciprocal lattice vectors:!

�                                         (AI.7)!
such that:!

.� .                           (AI.8)!

�                                     (AI.9)!

gives the allowed diffractions due to the crystal symmetry however the variation of 
intensity of each diffracted spot is governed by the contents of the unit cell and the 
relative positions of the atoms and their electronic distribution.  If we consider the vector 

ρ as the sum of three vectors, ρmnp designating the unit cell, ρj the position of the nucleus 

of atom j and ρ' as the position of the electron relative the nucleus.!

�                                         (AI.10)!

The electron concentration function for each atom, j, is then!

�                                      (AI.11)  

 
Α ≡ e− iρmnp iΔk

mnp
∑

 
aiΔk = 2πh; b iΔk = 2πk; c iΔk = 2πl.

G ≡ Δk = hA + kB + lC

 Giρmnp = (hA + kB + lC)i(ma + nb + pc )

 Giρmnp = 2π (hm + kn + lp)

ρ = ρnmp + ρ j + ′ρ

cj (ρ − ρ j − ρmnp )
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For s number of atoms in a unit cell the total electron concentration of the crystal n(ρ) is 

a sum over all cells and all atoms within them.!

�                              (AI.12)!

The scattering amplitude is then not over a discrete set but over two sums and a 
continuous volume element relating the electronic distribution.!

�            (AI.13)!

�                   (AI.14)!

and defining the atomic form factor fj:!

�                                    (AI.15)!

�                             (AI.16)!

AΔk is non-zero when Δk satisfies the Laue equations:!

�                                             (AI.17)!

Introducing M3 (See Section 3.2) and the structure factor FG:!

�                                         (AI.18)!

which also satisfies the Laue equations:!

�     (AI.19)!

which gives us:!

�                     (AI.20)!

The intensity of diffracted X-rays by a crystal is proportional to the square of the 

scattering amplitude.  The hkl reflections are selected by the crystal lattice and their 

respective strength is due to the structure factor.  The structure factor is the sum of the 

n(ρ) = cj (ρ − ρ j − ρmnp )
j=1

s

∑
mnp
∑

 
ΑΔk = dVn(ρ)e− iρ iΔk∫ = dVcj (ρ − ρ j − ρmnp )e

− iρ iΔk∫
j
∑

mnp
∑

 
ΑΔk = dVcj ′ρ( )e− i ′ρ iΔk e− i(ρ j +ρmnp )iΔk∫

j
∑

mnp
∑

 
f j = dVcj ′ρ( )e− i ′ρ iΔk∫

 
ΑΔk = e− iρmnp iΔk

mnp
∑

⎛

⎝⎜
⎞

⎠⎟
f je

− iρ j iΔk

j
∑

⎛

⎝⎜
⎞

⎠⎟

ΑΔk = M
3FG

 
FG = f je

− iρ j iG

j
∑

 ρ j iG = (x ja + yjb + z jc )i hA + kB + lC( ) = 2π (x jh + yjk + z jl)

F(hkl) = f je
− i2π (x j h+ yj k+ z j l )

j
∑
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atomic form factor (the integral of the electronic distribution) and a phase term that 

relates the location of an atom to a particular diffraction hkl.  The diffraction is 

proportional to the squared modulus of the structure factor:!

�                          (AI.21)!

The atomic form factor is dependent on both the G and the energy of the incident beam, 

E.  The momentum transfer vector, G, is perpendicular to the scattering plane hkl. The 

basis vector in coordinates xyz can be re-written as a phase with respect to an origin.!

�                         (AI.22)!

!
The sum is now:!

�                                         (AI.23)!

The intensity of the diffraction is then a function of the scatter amplitude and a phase 
term related to its position.  If the incident photon is in the vicinity of absorption energy 

of atom j, the scattering factor is a product of the Thompson scattering and a resonant 

scattering correction term.  !

�                                 (AI.24)  

 
I ∝ FG

*FG
2
= f j (G,E)e

iρ j iG

j
∑

2

 Giρ j = 2π (hxj + kyj + lz j ) = 2πδ j

f j (G,E)e
i2πδ j

j
∑

f j (G,E) = f0, j (G) + Δf j (G,E)
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!
APPENDIX II!

!
SIMULATED FERREDOXIN XAS FROM PDB STRUCTURES!

!
A1.1! Analyzing PDB Structures!
!
! There were 43 Ferredoxin structures in the protein databank that contain a 
2Fe-2S cluster with a resolution less than 2Å and are solved using X-ray 
crystallography.  Each protein was systematically checked for errors and creative 
labelling.  One structure was rejected for having an unusual format and one for having 
physically and chemically unlikely bonds. 15 more were rejected for not having each 
iron coordinated with 4 sulphurs.  The irons in the 2Fe-2S cluster is either labeled FE1 
or FE2, each protein structure is labeled independently of the others (so these could be 
different), also with a PDB file there may be more than one protein in each asymmetric 
subunit.  Each PDB must be inspected to gauge which of the irons is closest to the 
surface, we applied a script for Pymol to make it easier: !
!
surface_check.pml!
cmd.hide("everything")!
cmd.select("het", "het")!
cmd.show("sticks", "het")!
cmd.show("cartoon") !
cmd.show("mesh")!
cmd.set("mesh_color", "grey")!!
Obviously if its FE1 inner then its FE2 outer however there is one PDB file (2y5c.pdb) 
that has subunit A with FE1 as the outer iron and subunit B with FE1 as the inner iron!  
Besides these niggling issues we were able to categorize almost one hundred irons as 
some PDB files have multiple subunits.  After the correct assignment of an iron’s 
position to the surface it was necessary to make individual input files for the the 
program FEFF.   In the process of writing the script pdb2FEFF.py (see Appendix IV) it 
became apparent that we could visualize all the pdb file radial distributions using the  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Figure A2.1!

� !
A Gaussian is shown for each atom radially from the innermost iron in a Ferredoxin iron-sulfur cluster.  

The standard deviation is calculated from 26 PDB structures.!

Figure A2.2!

� !
A Gaussian is shown for each atom radially from the outermost iron in a Ferredoxin iron-sulphur cluster.  

The standard deviation is calculated from 26 PDB structures.!
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FEFF input files.  Each atom was labeled by distance from the target atom and a 
Gaussian was placed there whose sigma value were created from the standard 
deviation of positions from all the viable ferredoxins. Just by inspection you can see that 
the inner iron has a lot less disorder that the outer iron, which is to be expected as the 
surface iron takes on many more morphologies for different proteins. This looks a lot like 
the Fourier transforms of the EXAFS oscillations.  They are closely related but this is 
just a crude version for visual inspection.  We toyed with it a little so that it would be 
more representative of FEFF was actually calculating.  We weighted each gaussian by 
the elements Z value and draped a summation line over it.   It would be more accurate 
to get the average positions and apply the average temperature factor however the 
objective was not to slowly rewrite FEFF but give an idea of the spread of possible 
spectra for all the various 2Fe-2S Ferredoxins.  Fig. A2.3 shows the spread in the radial 
distribution but Fig. A2.4 gives the detail of each FEFF calculation for all 92 Irons and 
the two chosen to represent the reduced and oxidized atoms in the rest of the thesis.  
An average of the lighter lines in A2.4 being an approximate Fourier transform of those 
in A2.3.  !
!
A2.2! The Case 1CZP (and 1QT9)!
!
! 1CZP and 1QT9 are the reduced and partially oxidized version of the same 
protein.  For a full description read the associated paper by Morales et al. [61].  Most of 
the Ferredoxins in the PDB are reduced.  1CZP, the partially oxidized version, is actually 
of mixed valence.  The oxidation states have a occupancy ratios 60:40 and 45:55 
depending on the sub unit.  There is characteristic difference in the morphology that 
Morales et al. believe is associated with the oxidized iron and that is a CYS46 oxygen 
‘flip’.  It goes from ‘CO out’ to ‘CO in’ depending on whether the FE1 (iron nearest 
surface) is reduced or not, “CO out” is the reduced, “CO in” is the oxidized.  As above 
this is the approximate radial distribution of electrons.  I used the same standard 
deviation for each Gaussian, not the temperature factors.  The XAS of 1CZP are good 
approximations for the lighter bands of the orange and blue of the meta-data from the all 
the other ferredoxins, Fig A2.4.  The two irons picked from this protein, in  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!
!

Figure A2.3!

� !
!

Figure A2.4!
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their oxidation states, are a good representation of all iron atoms throughout ferredoxins 
in the PDB.  The oxidized iron is more of an outlier but this protein is only one captured 
with a reported Fe3+ in this subset of proteins. 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!
APPENDIX III!

!
FAST FOURIER TRANSFORM OF KRAMERS KRONIG IN PYTHON!

!
fftkk.py!
  1 import os!
  2 import numpy as np!
  3 import matplotlib.pyplot as plt!
  4 from scipy.interpolate import interp1d!
  5 from scipy.interpolate import UnivariateSpline!
  6 !
  7 def make_gauss(sig, mu):!
  8     return lambda x: 1 / (sig * (2*np.pi)**.5) * np.e ** (-(x-mu)**2/(2 * sig**2))!
  9 !
 10 def make_lrntz(gam, mu):!
 11     return lambda x: gam / (np.pi*((x-mu)**2 + gam**2))!
 12 !
 13 def make_voigt(sig, gam, mu, x):!
 14     # Homemade.  A convolution of a Gauss and Lorentz function!
 15     # interpolated back onto the original axis.!
 16     gauss = make_gauss(sig, mu)(x)!
 17     lrntz = make_lrntz(gam, mu)(x)!
 18     voigt = np.convolve(gauss, lrntz)!
 19     voigt /= abs(voigt.max())!
 20     r = np.linspace(x[0], x[-1], len(voigt))!
 21     voigt_intrp = interp1d(r, voigt, kind='linear')(x)!
 22     return voigt_intrp!
 23 !
 24 def get_file(fid):!
 25     print fid!
 26     energy, spectrum = [], []!
 27     f = open(fid, 'r')!
 28     for line in f.readlines():!
 29         entry = line.split()!
 30         energy.append(float(entry[0]))!
 31         spectrum.append(float(entry[1]))!
 32     return np.array(energy), np.array(spectrum)!
 33 !
 34 def get_xmu(fid):!
 35     print fid!
 36     omega, e, k, mu, mu0, chi = [],[],[],[],[],[]!
 37     f = open(fid, 'rU')!
 38     for line in f.readlines()[1:]:!
 39         if line.startswith('#'):!
 40             continue!
 41         entry = line.split()!
 42         omega.append(float(entry[0]))!
 43         e.append(float(entry[1]))!
 44         k.append(float(entry[2]))!
 45         mu.append(float(entry[3]))!
 46         mu0.append(float(entry[4]))!
 47         chi.append(float(entry[5]))!
 48     return np.array(omega), np.array(mu)!
 49 !
 50 def get_theo(element, grain, shift):!
 51     print 'Retreaving element file,', element + '.dat'!
 52     f = open('/Users/darrensherrell/Documents/das/EDGE/' + element + '.dat', 'r')!
 53     FA = np.array([[float(line.split()[0]), float(line.split()[1]), 
float(line.split()[2])] for line in f ])!
 54     v  = FA[:,0] + shift!
 55     f1 = FA[:,1]!
 56     f2 = FA[:,2]!
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 57     theo_energy = np.arange(v[0], v[-1], grain)!
 58     theo_fp = interp1d(v, f1, 'linear')(theo_energy)!
 59     theo_fpp = interp1d(v, f2, 'linear')(theo_energy)!
 60     return theo_energy, theo_fp, theo_fpp!
 61     !
 62 def fftkk(dF_in, E, switch, grain):!
 63     #Pad out the spectrum by 5000 points!
 64     k = 5000!
 65     E_dn = np.arange(E[0] - grain, E[0] - (k+1)*grain, -grain)!
 66     E_dn = np.fliplr(E_dn.reshape(1, E_dn.shape[0])).reshape(E_dn.shape[0],)!
 67     E_up = np.arange(E[-1] + grain, E[-1] + (k+1)*grain, grain)!
 68     _E_ = np.hstack((E_dn, E, E_up))!
 69     #Take edge of spectrum gently to zero using a quarter of a sine wave!
 70     range = np.linspace(-np.pi/2, np.pi/2, k)!
 71     dn = (np.sin(range) / 2) + 0.5!
 72     up = 1 - dn!
 73     dF_dn = dF_in[0] * dn!
 74     dF_up = dF_in[-1] * up !
 75     _dF_ = np.hstack((dF_dn, dF_in, dF_up))!
 76     #This is based on fftkk.f by Graham George which!
 77     #in turn is based on a paper.!
 78     npts = _E_.shape[0]!
 79     Hz = np.fft.fft(_dF_)!
 80     mn = Hz[0]!
 81     front = Hz[1:(len(Hz)/2)]!
 82     tmp = front.copy()!
 83     #I believe the next line is the magic.  Its the convolution with the signum or          !
 84     #how to bypass the difficult integration. !
 85     tmp.real, tmp.imag = front.imag, front.real!
 86     front = switch * tmp!
 87     back = Hz[(len(Hz)/2):]!
 88     tmp2 = back.copy()!
 89     tmp2.real, tmp2.imag = back.imag, back.real!
 90     back = -switch * tmp2!
 91     new_Hz = np.hstack((mn, front, back))!
 92     dF = np.fft.ifft(new_Hz).reshape((1, npts))!
 93     dF_out = np.fliplr(dF).reshape((npts,))!
 94     return dF_out[k:-k].real!
 95 !
 96 def main(fid, element, shift, vert, scale, grain, switch):!
 97     #Retrieve file energy and spectrum!
 98     if fid.endswith('raw'):!
 99         file_energy, file_spectrum = get_xmu(fid)!
100     if fid.endswith('edg'):!
101         file_energy, file_spectrum = get_file(fid)!
102 !
103     #The X-axis of energy that everything will be working from!
104     E = np.arange(file_energy[0], file_energy[-1], grain)!
105     !
106     #Scale and/or move spectrum vertically.  Interpolate to E!
107     file_spectrum = (scale * file_spectrum) + vert!
108     spectrum = interp1d(file_energy, file_spectrum, 'linear')(E)!
109 !
110     #Get theoretical values!
111     theo_energy, theo_fp, theo_fpp = get_theo(element, grain, shift)!
112     #Broaden theoretical values!
113     x = np.arange(-20.0, 20.0+grain, grain)!
114     sigma, gamma , mu= 2.0, 1.61, 0.0!
115     voigt = make_voigt(sigma, gamma, mu, x)!
116     theo_fp_cnv = np.convolve(voigt/voigt.sum(), theo_fp, 'same')!
117     theo_fpp_cnv = np.convolve(voigt/voigt.sum(), theo_fpp, 'same')!
118     #Chop theoretical values at incoming file values, because of pythons!
119     #list slicing its easier to add 1 to 'hi' at this stage!
120     lo = np.searchsorted(theo_energy, E[0])!
121     hi = np.searchsorted(theo_energy, E[-1]) + 1!
122     F1 = theo_fp_cnv[lo:hi]!
123     F2 = theo_fpp_cnv[lo:hi]!
124 !
125     #Start graph!
126     Figure1 = plt.Figure() !
127     Figure1.subplots_adjust(left   = 0.03,!
128                          bottom = 0.03,!
129                          right  = 0.97, !
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130                          top    = 0.97)!
131     ax = Figure1.add_subplot(111, axisbg='beige')!
132     plt.title('FFT Kramers-Kronig of %s' %fid)!
133     plt.xlabel('Energy')!
134     plt.ylabel('Electrons')!
135     !
136     #switch to Hz, butterfly, switch back.!
137     if switch == 'DAFS':!
138         delta_fp = spectrum - F1!
139         delta_fpp = fftkk(delta_fp, E, -1, grain)!
140         fpp = F2 + delta_fpp!
141         fp = F1 + delta_fp    #same as 'spectrum'!
142         ax.plot(E, fpp, 'b', label='Calculated fpp')!
143     if switch == 'XAFS':!
144         delta_fpp = spectrum - F2!
145         delta_fp = fftkk(delta_fpp, E, 1, grain)!
146         fp = F1 + delta_fp!
147         fpp = F2 + delta_fpp  #same as 'spectrum'!
148         ax.plot(E, fp, 'b', label='Calculated fp')!
149 !
150     ax.plot(theo_energy, theo_fp, 'y', label='Cromer fp')!
151     ax.plot(theo_energy, theo_fpp, 'y', label='Cromer fpp')!
152     ax.plot(theo_energy, theo_fp_cnv, 'r', label='Convolution fp')!
153     ax.plot(theo_energy, theo_fpp_cnv, 'r', label='Convolution fpp')!
154     ax.plot(E, spectrum, 'k', label=fid)!
155     ax.plot(E, delta_fp, 'c', label='delta fp')!
156     ax.plot(E, delta_fpp, 'm', label='delta fpp')!
157     !
158     plt.xlim(theo_energy[0], theo_energy[-1])!
159     plt.xlim(6950, 7300)!
160     #plt.ylim(-10, 5)!
161     plt.legend(loc='best')!
162 !
163     fine_fp = np.hstack((theo_fp_cnv[:lo], fp, theo_fp_cnv[hi:]))!
164     fine_fpp = np.hstack((theo_fpp_cnv[:lo], fpp, theo_fpp_cnv[hi:]))!
165     coarse_range = np.arange(theo_energy[0], theo_energy[-1], 1)!
166     print coarse_range!
167     output_fp = interp1d(theo_energy, fine_fp, 'linear')(coarse_range) !
168     output_fpp = interp1d(theo_energy, fine_fpp, 'linear')(coarse_range) !
169 !
170     #output_fid = fid[:5] + fid[14:18] + '_fftkk.out' !
171     output_fid = fid[:-4] + '_fftkk.out' !
172     g = open(output_fid, 'w')!
173     for a, b, c in zip(coarse_range, output_fp, output_fpp):!
174         l = '\t'.join([str(a), str(b), str(c)]) + '\n'!
175         g.write(l)!
176     g.close()!
177 !
178 if __name__ == '__main__':!
179     #####(fid,           element, shift, vert, scale, grain, switch)!
180     main('pf-rd-red.edg', 'Fe',    6.0,   0.5, 3.4,   0.05, 'XAFS')!
181     main('pf-rd-ox.edg',  'Fe',    6.0,   0.5, 3.4,   0.05, 'XAFS')!
182 plt.show() !!

!
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!
APPENDIX IV !

!
PDB FILE TO FEFF.INP !

!
pdb2FEFF.py!
  1 #!/usr/bin/python!
  2 import os!
  3 import re!
  4 import sys!
  5 import math!
  6 import glob!
  7 import datetime!
  8 import subprocess!
  9 import matplotlib.pyplot as plt!
 10 !
 11 per_tab_dict = {'Ru': 44, 'Re': 75, 'Rf': 104, 'Rg': 111, 'Ra': 88, 'Rb': 37, \!
 12 'Rn': 86, 'Rh': 45, 'Be': 4, 'Ba': 56, 'Bh': 107, 'Bi': 83, 'Bk': 97, \!
 13 'Br': 35, 'Uuh': 116, 'H': 1, 'P': 15, 'Os': 76, 'Es': 99, 'Hg': 80, 'Ge': 32, \!
 14 'Gd': 64, 'Ga': 31, 'Uub': 112, 'Pr': 59, 'Pt': 78, 'Pu': 94, 'C': 6, 'Pb': 82, \!
 15 'Pa': 91, 'Pd': 46, 'Cd': 48, 'Po': 84, 'Pm': 61, 'Hs': 108, 'Uuq': 114, 'Uup': \!
 16 115, 'Uuo': 118, 'Ho': 67, 'Hf': 72, 'K': 19, 'He': 2, 'Md': 101, 'Mg': 12, \!
 17 'Mo': 42, 'Mn': 25, 'O': 8, 'Mt': 109, 'S': 16, 'W': 74, 'Zn': 30, 'Eu': 63, \!
 18 'Zr': 40, 'Er': 68, 'Ni': 28, 'No': 102, 'Na': 11, 'Nb': 41, 'Nd': 60, 'Ne': 10, \!
 19 'Np': 93, 'Fr': 87, 'Fe': 26, 'Fm': 100, 'B': 5, 'F': 9, 'Sr': 38, 'N': 7, \!
 20 'Kr': 36, 'Si': 14, 'Sn': 50, 'Sm': 62, 'V': 23, 'Sc': 21, 'Sb': 51, 'Sg': 106, \!
 21 'Se': 34, 'Co': 27, 'Cm': 96, 'Cl': 17, 'Ca': 20, 'Cf': 98, 'Ce': 58, 'Xe': 54, \!
 22 'Lu': 71, 'Cs': 55, 'Cr': 24, 'Cu': 29, 'La': 57, 'Li': 3, 'Tl': 81, 'Tm': 69, \!
 23 'Lr': 103, 'Th': 90, 'Ti': 22, 'Te': 52, 'Tb': 65, 'Tc': 43, 'Ta': 73, 'Yb': 70, \!
 24 'Db': 105, 'Dy': 66, 'Ds': 110, 'I': 53, 'U': 92, 'Y': 39, 'Ac': 89, 'Ag': 47, \!
 25 'Uut': 113, 'Ir': 77, 'Am': 95, 'Al': 13, 'As': 33, 'Ar': 18, 'Au': 79, 'At': 85, 
\!
 26 'In': 49}!
 27 !
 28 def off_with_their(head_fids):!
 29     header_list = []!
 30     for fid in head_fids:!
 31         head = []!
 32         f = open(fid, 'r')!
 33         for line in f:!
 34             if line.startswith('TITLE') or line.startswith('#'):!
 35                 continue!
 36             if line.startswith('POTENTIALS'):!
 37                 break!
 38             else:!
 39                 head.append(line)!
 40         header_list.append(''.join(head))!
 41         f.close()!
 42     return header_list!
 43 !
 44 def get_xmu(fid):!
 45     omega, e, k, mu, mu0, chi = [],[],[],[],[],[]!
 46     f = open(fid, 'rU')!
 47     for line in f.readlines()[1:]:!
 48         if line.startswith('#'):!
 49             continue!
 50         entry = line.split()!
 51         omega.append(float(entry[0]))!
 52         e.append(float(entry[1]))!
 53         k.append(float(entry[2]))!
 54         mu.append(float(entry[3]))!
 55         mu0.append(float(entry[4]))!
 56         chi.append(float(entry[5]))!
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 57     return omega, e, k, mu, mu0, chi!
 58 !
 59 def ordered_set(seq): !
 60    # order preserving!
 61    checked = []!
 62    for e in seq:!
 63        if e not in checked:!
 64            checked.append(e)!
 65    return checked!
 66 !
 67 def ASU(xtal_fid, target_elem):!
 68     asu = []!
 69     tag_list = []!
 70     el_list = []!
 71     f = open(xtal_fid, 'rU')!
 72     for line in f:!
 73        if line.startswith('ATOM') or line.startswith('HETATM'):!
 74            sl = line.split()!
 75            tag = '-'.join([sl[2], sl[1], sl[5], sl[4]])!
 76            xyz_position, element = re.findall('([-]?\d+\.\d+)',line), \!
 77                                    re.findall(r'.*(\b\w+[+-]?)', line)!
 78            element[0] = element[0].title()!
 79            xyz_position.pop(-1)!
 80            if len(xyz_position) != 4: !
 81                continue!
 82            if element[0] == target_elem:!
 83                tag_list.append(tag)!
 84                asu.append([tag] + xyz_position + element)!
 85            else:!
 86                el_list.append(element[0])!
 87                asu.append([tag] + xyz_position + element)!
 88     f.close()!
 89     el_list = list(set(el_list))!
 90     return asu, tag_list, el_list!
 91 !
 92 def write_FEFF(xtal_fid, target_elem, radius, asu, central_atoms_list, \!
 93                head_fid, header):!
 94     FEFF_fids_list = []!
 95     for central_atom in central_atoms_list:!
 96         output_fid = '_'.join([xtal_fid[:-4], target_elem, head_fid[:-5], \!
 97                                                 central_atom, 'FEFF.inp'])!
 98         FEFF_atoms = []!
 99         [[X, Y, Z]] = [[float(atom[1]), float(atom[2]), float(atom[3])] \!
100                              for atom in asu if atom[0] == central_atom]!
101         for atom in asu:!
102             tag_name = atom[0]!
103             x, y, z = float(atom[1]), float(atom[2]), float(atom[3])!
104             occu = float(atom[4])!
105             elem = atom[5]!
106             dist = math.sqrt((X-x)**2 + (Y-y)**2 + (Z-z)**2)!
107             new_ver = [tag_name, elem, x, y, z, occu, dist]!
108             if 0 <= dist <= radius:!
109                 FEFF_atoms.append(new_ver)!
110         FEFF_atoms = sorted(FEFF_atoms, key=lambda a: a[6])!
111         !
112         elems = [x[1] for x in FEFF_atoms[1:]]!
113         elems = ordered_set(elems)!
114     !
115         g = open(output_fid, 'w')!
116         title0 = 'TITLE Date          : ' + str(datetime.date.today()) + '\n'!
117         title1 = 'TITLE Xtal PDB      : ' + xtal_fid + '\n'!
118         title2 = 'TITLE Target Element: ' + target_elem  + '\n'!
119         title3 = 'TITLE Central Atom  : ' + central_atom  + '\n'!
120         title4 = 'TITLE Radius        : ' + str(radius)  + '\n'!
121         title5 = 'TITLE Header File   : ' + head_fid + '\n'!
122         g.write(title0)!
123         g.write(title1)!
124         g.write(title2)!
125         g.write(title3)!
126         g.write(title4)!
127         g.write(title5)!
128         g.write(header)!
129         g.write('POTENTIALS\n')!
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130         ipot_line = '0 %i %s\n' %(per_tab_dict[target_elem], target_elem)!
131         g.write(ipot_line)!
132         !
133         ipot_dict = {}!
134         ipot_dict[target_elem] = 0!
135         for i, elem in enumerate(elems):!
136             ipot_dict[elem] = i+1!
137             ipot_line = '%i %i %s\n' %(i+1, per_tab_dict[elem], elem)!
138             g.write(ipot_line)!
139     !
140         g.write('ATOMS\n#   X       Y       Z    \tIpot Elem Occu  Dist  Tag\n')!
141         for tag_name, elem, x, y, z, occu, dist in FEFF_atoms:!
142             if tag_name == central_atom:!
143                 line = '    %1.3f  %1.3f  %1.3f\t0    %s\t  %1.3f %1.3f %s\n' \!
144                                        %(x, y, z, elem, occu, dist, tag_name)!
145                 g.write(line)!
146             else:!
147                 line = '    %1.3f  %1.3f  %1.3f\t%i    %s\t  %1.3f %1.3f %s\n' \!
148                         %(x, y, z, ipot_dict[elem], elem, occu, dist, tag_name)!
149                 g.write(line)!
150         g.write('END')!
151         g.close()!
152         FEFF_fids_list.append(output_fid)!
153     return FEFF_fids_list!
154 !
155 def plot(xtal_fid):!
156     Figure = plt.Figure()!
157     Figure.subplots_adjust(left   = 0.05,!
158                         bottom = 0.05,!
159                         right  = 0.95, !
160                         top    = 0.95,!
161                         wspace = 0.00, !
162                         hspace = 0.00)!
163     ax = Figure.add_subplot(111, axisbg='beige')!
164     prefix = xtal_fid[:4]!
165     fid_list = glob.glob('%s*xmu*' %prefix)!
166     for i, fid in enumerate(sorted(fid_list)):!
167         omega, e, k, mu, mu0, chi = get_xmu(fid)!
168         ax.plot(e, mu, lw=0.75, label=fid)!
169         #ax.plot(e, mu0, color=colors[i], lw=0.75)!
170         ax.plot(e, chi, lw=0.75)!
171     plt.xlim(min(e)-15, max(e)+15)!
172     #leg = plt.legend(loc='best', fancybox=True)!
173 !
174 def main(head_fids = None, \!
175          xtal_fids = None, \!
176          target_elems = None, \!
177          radius = None, \!
178          choices = None):!
179 !
180     #Head files!
181     heads_list = [x for x in os.listdir('.') if x.endswith('head')]!
182     head_dict = {}!
183     for i, fid in enumerate(heads_list):!
184         head_dict[i+1] = fid!
185         print i+1, fid!
186     if head_fids:!
187         print head_fids!
188     else:!
189         head_choice = raw_input('Choose header, headers separated by a space or 
"all": ').rstrip(' ')!
190         if 'all' in head_choice:!
191             head_fids = heads_list!
192         else:!
193             head_fids = [head_dict[int(x)] for x in head_choice.split(' ')] !
194     header_list = off_with_their(head_fids)!
195 !
196     #Files!
197     PDB_fids = [x for x in os.listdir('.') if x.endswith('PDB')]!
198     PDB_fids_dict = {}!
199     for i, PDB_fid in enumerate(PDB_fids):!
200         PDB_fids_dict[i+1] = PDB_fid!
201     for k, v in PDB_fids_dict.items(): !
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202         print k, v!
203     if xtal_fids:!
204         print '\n\nFile   ', xtal_fids[:-4]!
205     else:!
206         xtal_choice = raw_input('Choose file, files separated by a space or "all": 
').rstrip(' ')!
207         if 'all' in xtal_choice:!
208             xtal_fids = PDB_fids!
209         else:!
210             xtal_fids = [PDB_fids_dict[int(x)] for x in xtal_choice.split(' ')]!
211         print xtal_fids!
212 !
213     #Element!
214     print!
215     if target_elems:!
216         print 'Target(s) ', target_elems!
217     else:!
218         maybes = list(set([a.split()[-1] for a in \!
219                      open(xtal_fids[0], 'r').readlines() 
if a.startswith('HETATM')]))!
220         for fid in xtal_fids:!
221             listy = list(set([a.split()[-1] for a in \!
222                               open(fid, 'r').readlines() 
if a.startswith('HETATM')]))!
223             print fid, listy!
224             maybes = list(set(listy) & set(maybes))!
225         maybes = [x.title() for x in maybes]!
226         print 'Common elements', maybes!
227         target_elem = raw_input('\nType target element or elements separated by 
space: ').rstrip(' ')!
228         target_elems = [x.title() for x in target_elem.split(' ')]!
229     print 'Target(s) ', target_elems!
230 !
231 !
232     #Go get atoms from file, unique element list, individual tags for each atom!
233     asu_dict = {}!
234     cent_atms_dict = {} !
235     for xtal_fid in xtal_fids:!
236         for j, target_elem in enumerate(target_elems):!
237             print '\n---------------------->', xtal_fid, target_elem!
238             asu, tag_list, el_list = ASU(xtal_fid, target_elem)!
239 !
240             tag_dict = {}!
241             for i, tag in enumerate(tag_list):!
242                 tag_dict[i+1] = tag!
243 !
244             if choices:!
245                 if choices[j] == 'all':!
246                     central_atoms_list = tag_dict.values()!
247                 else:!
248                     central_atoms_list = [tag_dict[x] for x in choices[j]]!
249             else:!
250                 for k, v in tag_dict.items(): print k, v!
251                 choices = raw_input('Select the central atom or atoms separated by 
space or type "all": ').rstrip(' ')!
252                 if 'all' in choices:!
253                     central_atoms_list = tag_dict.values()!
254                     choices = None!
255                 else:!
256                     central_atoms_list = [tag_dict[int(x)] for x 
in choices.split(' ')]!
257                     choices = None!
258             asu_dict[xtal_fid] = asu!
259             cent_atms_dict[xtal_fid + target_elem] = central_atoms_list!
260 !
261     #Radius!
262     if radius:!
263        print 'Radius ', radius!
264     else:!
265         radius = float(raw_input('\nChoose radius from central atom (in 
Angstroms): '))!
266 !
267     verbose_fid = 'FEFFlog.data' !

!137



268     screen_out = open(verbose_fid, 'w')!
269 !
270     FEFF_choice = raw_input('\nWould you like to try and run FEFF8 on these atoms 
(y/n) ? ')!
271     if FEFF_choice == 'y':!
272         for xtal_fid in xtal_fids:!
273             asu = asu_dict[xtal_fid]!
274             for target_elem in target_elems:!
275                 central_atoms_list = cent_atms_dict[xtal_fid + target_elem]!
276                 for head_fid, header in zip(head_fids, header_list):!
277                     print '\n', head_fid!
278                     FEFF_fids_list = write_FEFF(xtal_fid, target_elem, radius, \!
279                                          asu, central_atoms_list, head_fid,header)!
280                     for FEFF_fid in FEFF_fids_list:!
281                         print '-', FEFF_fid!
282                         prefix =  FEFF_fid[:-8]!
283                         subprocess.call(['cp', FEFF_fid, 'FEFF.inp'])!
284                         retcode = subprocess.call(['FEFF8', 'FEFF.inp'], \!
285                                stdout=screen_out, stderr=subprocess.STDOUT)!
286                         subprocess.call(['mv','xmu.dat', prefix + 'xmu.data'])!
287                         del_list = glob.glob('*dat') + glob.glob('ldos*') + \!
288                glob.glob('FEFF.inp') + glob.glob('*.bin') + glob.glob('mod*')!
289                         for fid in del_list:!
290                             subprocess.call(['rm', fid])!
291         #Plot!
292         pq = raw_input('\nWould you like to plot? (y/n) ')!
293         if pq == 'y':!
294             plot(xtal_fid[:4])!
295         else:!
296             print 'Ok, thats cool too.'!
297 !
298     else:!
299         for xtal_fid in xtal_fids:!
300             asu = asu_dict[xtal_fid]!
301             for target_elem in target_elems:!
302                 central_atoms_list = cent_atms_dict[xtal_fid + target_elem]!
303                 for head_fid, header in zip(head_fids, header_list):!
304                     print '\n', head_fid!
305                     FEFF_fids_list = write_FEFF(xtal_fid, target_elem, radius, \!
306                                       asu, central_atoms_list, head_fid, header)!
307                     for FEFF_fid in FEFF_fids_list:!
308                         print '-', FEFF_fid!
309 !
310     print '\n', 60*'-', '\n\n'!
311 !
312 if  __name__ == '__main__':!
313     #Normal mode!
314     main()!! !
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