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Abstract 

Micronutrient concentration is an important component of crop quality.  Iron (Fe), zinc (Zn) 

and selenium (Se) are essential micronutrients for human health. Previous studies indicated 

substantial variation in micronutrient concentration in field pea (Pisum sativum L.).  The 

objective of the current research was to evaluate a diverse pea panel for Fe, Zn, and Se 

concentration, and to identify associated single nucleotide polymorphism (SNP) markers 

using genome wide association study (GWAS). One hundred and seventy seven diverse pea 

accessions were assessed for Fe, Zn, and Se concentration from five location-years (2013 

Saskatoon, 2014 Fargo, 2015 Saskatoon, 2016 Saskatoon and 2016 Rosthern) using atomic 

absorption spectroscopy. Accessions differed significantly for Fe and Zn in all location-years, 

but not for Se (P ≤ 0.05). Year and location effects were significant for all three 

micronutrients. Mean concentration in the five location-year combined analysis were 50.46, 

29.49, and 0.95, and the concentration (µg/g) ranged from 29.22 to 90.53, 12.83 to 51.47 and 

0.06 to 8.75 in the ground whole pea seeds for Fe, Zn, and Se, respectively. Concentration of 

Fe, Zn, and Se were significantly correlated (P ≤ 0.05) between each location with the 

exception of Se concentration between Fargo and Rosthern. Significant correlations were 

observed in all the location-years between Zn and Fe concentration (P ≤ 0.05). Se 

significantly correlated with Fe in all the location years, except 2016 Rosthern (P ≤ 0.05). 

The correlation between Se and Zn was only significant in 2014 Fargo and 2016 Saskatoon 

(P ≤ 0.05). Fe and Zn concentration showed significant positive correlations (P ≤ 0.05) with 

lodging and day to maturity (DTM), but not Se. In general, yield negatively correlated with 

Fe, Zn, and Se. The pea panel accessions clustered into nine major groups which could be 

considered consistent with the geographic origin of the accessions.  Genotypic data generated 

from genotyping-by-sequencing were used in genome wide association study (GWAS) to 

identify significant SNP markers associated with Fe, Zn, and Se concentration. After 

Bonferroni correction, three significant markers for Fe concentration and seven significant 

markers for Zn concentration (P ≤ 0.05, -log10 P value ≥ 5.46) were identified. Five markers 

for Fe, seven markers for Zn and four markers for Se (including few less significant markers) 

were validated on a pea recombinant inbred line population; PR-07 (Carrera × CDC Striker). 

The marker Sc1512_36017 co-localized with Sc11336_48840 on LGIIIb which was a 

flanking marker of quantitative trait loci (QTL) for seed Zn concentration. The markers 

identified from the present study can be used in marker assisted selection (MAS) in pea 

breeding to develop new varieties with high Fe, Zn, and Se concentration.  
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1. Introduction 

According to the World Health Organization (WHO), the micronutrients iron (Fe), zinc (Zn) 

and selenium (Se) are among the 20 essential nutrients which comprise the basis of all human 

nutrition. Even though micronutrients are required in trace concentration, they play a major 

role in many vital metabolic functions that are important for human growth and development 

(Bourre, 2006; Wakeel et al., 2018). A large proportion of the world's population suffers from 

mineral malnutrition, especially from Fe and Zn, as they are dependent on plant-based foods 

which often have a low mineral density (Waters & Grusak, 2008). Maternal and child 

undernutrition and micronutrient deficiencies have become a global burden and about 12% of 

deaths among under-5 children are related to deficiency of the four common micronutrients 

Fe, iodine, vitamin A, and Zn (Ahmed, 2012). Furthermore, micronutrient deficiencies, act as 

exacerbating factors in infectious and chronic diseases while greatly impacting morbidity, 

mortality, and quality of life (Tulchinsky, 2010). According to FAOSTAT, over 60% of the 

world's people are Fe deficient, 30% Zn deficient, and 15% are Se deficient (Thavarajah et 

al., 2011).  

Ensuring sufficient intake of micronutrients is a general expectation for food security. Thus, 

micronutrient malnutrition has received considerable attention in policy discussions on food 

security (Meenakshi et al., 2010). Increased food production, supplementation, and food 

fortification are the main food-based strategies to combat micronutrient malnutrition. 

Supplementation is the most widely practiced intervention, while fortification can also be a 

potential strategy to target a large population (Bhutta et al., 2013). In supplementation, 

micronutrients are taken along with the major diet as pills or the powder.  In fortification, 

cereals or the pulses are processed by blending with micronutrients (White, 2011). In addition 

to supplementation and fortification, biofortification is a balanced and economical approach 

and could aid in reducing micronutrient deficiencies globally (Bouis, 2002; 2011; 2017). 

Biofortification is an approach of improving the nutritional quality of food crops through 

agronomic practices, conventional plant breeding, or modern biotechnology (WHO, n.d.) 

According to Bouis (2011), there are a few major concerns to make the biofortication process 

a success. First, for the successful breeding of biofortified varieties, high nutrient density 

must be combined with other parameters such as high yield. Also, the efficacy of the 

biofortified crop must be demonstrated. Moreover, when the biofortified varieties are 
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developed by breeders, they have to be adopted by farmers and consumed by a significant 

proportion of the target population (Meenakshi et al., 2010; Bouis, 2011). 

Field pea (Pisum sativum L.) is one of the major pulse crops in the world with production of 

approximately 14 million tonnes per year (FAOSTAT, 2016).  Canada is the world‟s leading 

producer of field pea, followed by China and India (FAOSTAT, 2016). Previous studies at 

the University of Saskatchewan indicated substantial variation in micronutrient concentration 

in pulse crop varieties (Warkentin et al., 1996; Ray et al., 2014; Diapari et al., 2014; 2015). 

Pulses including field pea contain significant proportions of the recommended daily 

allowance (RDA) of micronutrients (Ray et al., 2014). Diapari et al. (2015) identified SNP 

markers associated with Fe and Zn concentration that can be applied in marker assisted 

selection. Considering the production of pea and the variation in micronutrient concentration 

in pea germplasm, pea has great potential for biofortification as an approach to address 

micronutrient malnutrition. 

Evaluation of diverse pea accessions is required to select those with a high micronutrient 

concentration that could be utilized in a pea breeding program. Genome Wide Association 

Study (GWAS) is an experimental design used to identify the associations between genetic 

variants and traits in plants and animal. GWAS can identify single nucleotide polymorphism 

(SNP) markers for marker-assisted selection. GWAS is a powerful tool to discover the 

underlying genetics for a trait, however, biological factors including effect size, sample size, 

genetic heterogeneity, linkage disequilibrium and statistical tools are important factors to be 

considered (Korte & Farlow, 2013). The markers identified from GWAS can be incorporated 

in pea breeding programs to facilitate the selection for varieties with high micronutrient 

concentration that could assist in the biofortification of this crop.  

The hypotheses tested in this research were that a substantial variation in Fe, Zn and Se 

concentration will be observed in a pea GWAS panel, and the SNPs associated with Fe, Zn 

and Se concentration in pea can be identified by GWAS.  The objectives of this research were 

to evaluate the GWAS panel of 177 pea accessions grown in Saskatoon, SK, Rosthern, SK 

and Fargo, ND for Fe, Zn, and Se concentration, and to perform GWAS to identify SNPs 

associated with Fe, Zn, and Se concentration.  
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2. Literature Review 

2.1. Field pea  

Pea (Pisum sativum L.) is a cool season pulse crop which is classified under the Fabaceae 

(Leguminosae) family along with lentil, faba bean, grass pea, and chickpea. It is one of the 

oldest crops domesticated about 10,000 years ago. The center of pea genetic diversity is near 

the Tigris and Euphrates rivers which is a wide area of the Fertile Crescent through present 

day Turkey, Syria, Iraq, Israel and Lebanon. Pea has been cultivated in Europe for several 

thousand years and spread over all climatic zones including high elevated areas in tropical 

regions (Smartt, 1984; Gupta, 2004; Smýkal et al., 2010).  

Pea as a legume has the ability to fix nitrogen (Phillips, 1980). This minimizes the external 

input of nitrogen to the cropping system which is an important ecological advantage (Smýkal 

et al., 2012). In Australia, North America, and Europe, field pea is usually grown in rotation 

with temperate cereals or oilseeds and in India it is rotated with rice (French, 2016). 

Field pea is primarily used for human consumption. Pea provides a variety of nutrients such 

as proteins, complex carbohydrates, vitamin, and minerals such as Fe and Zn which are 

important for human nutrition (Roy et al., 2010; Ray et al., 2014; Diapari et al., 2014; Jha et 

al., 2015).  Consumer acceptance for the pulses is influenced by the size, shape, colour and, 

chemical composition of the grain, by storage conditions and any pre-treatment before use. 

Moreover, the cooking time, texture, water absorption and dispersibility of solids are some 

other important qualities (Singh et al., 2000). Dry pea is typically consumed as dhal in Asian 

countries such as India and Bangladesh. In China, pea is fractionated into protein and starch 

fractions with the starch being used for production of vermicelli noodles, and the protein 

being sold in high value health food markets. Pea nutritional qualities such as moderate 

protein concentration, slowly digestible starch and high levels of soluble and insoluble fibre 

improve the potential for new food applications (Warkentin et al., 2015).  

Field pea is an excellent livestock feed with high levels of carbohydrates, low in fiber and 86-

87% total digestible nutrients. Field pea contains only 5-20% of the concentration of trypsin 

inhibitors compared to soybean which enables it to be directly fed to livestock without the 

requirement for the extrusion heating process (McKay et al., 2003).  
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2.2. Field pea production 

Dry pea is the second most produced pulse crop in the world with a production of 14.4 

million tonnes where the dry bean ranked as the first (FAOSTAT, 2016).  By 2016, Canadian 

dry pea production was 4.6 million tonnes, followed by the Russian Federation, China, and 

India. Out of the 7.6 million ha of the pea harvesting area all over the world, Canada 

accounted for 1.7 million ha (FAOSTAT, 2016).  

From the 1960s to 1980s, Eastern Europe had the greatest amount of the world pea 

production, then Western Europe led in the 1990s. With the opening of the European feed pea 

market in 1985, demand for peas more significantly increased.  Since 1990s, North America, 

basically Canada became the largest producer (Warkentin et al., 2015). In the past two 

decades, field pea production in Canada, USA, and the Russian Federation has increased 

while the reverse trend was observed in Europe due to economic, biological, social, physical 

and technical factors (Smýkal et al., 2012). Field pea production in Western Canada has been 

continuously increasing since 1977 both in food and feed markets. In Canada, field pea 

production area was 74,400 ha in 1985 and 1,715,400 ha by 2017 (Statistics Canada, 2017).  

Field pea is currently grown in Saskatchewan, Alberta, and Manitoba, collectively referred as 

Western Canada. Due to soil, climate, and the development of innovation networks, such as 

the Crop Development Centre at the University of Saskatchewan, the prairie provinces have 

the greatest pulse cultivation in Canada (Statistics Canada, 2011).  Canada‟s top three pea 

export markets are India, China, and Bangladesh. In 2016, Canada‟s exports of pulses, 

including dry peas, to India were worth over $1.1 billion and accounted for 27.5% of 

Canada's global pulse exports. However, at the end of 2017, India announced a 50% tariff on 

dry pea imports from all countries and efforts have been made with the Government of India 

to provide stable, sustainable access for Canadian pulse exports to India (AAFC, 2017).  In 

contrast, Canadian pea exports to China have risen substantially in recent years.  

2.3. Micronutrients  

2.3.1. Role of micronutrients in the human body  

Micronutrients including iron (Fe), cobalt (Co), chromium (Cr), copper (Cu), iodine (I), 

manganese (Mn), selenium (Se), and zinc (Zn) are the chemical elements required in 

minuscule amounts for the normal growth and development of living organisms. Biochemical 

studies on micronutrients over the past 50 years have identified their necessity and role in the 

human diet. Severe deficiency of micronutrients causes characteristic disease states where 
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supplementation of the appropriate amount of micronutrient is required to overcome the 

disease. Highly complex and coordinated systems of redistribution of micronutrients have 

been observed in many diseases which provide evidence of the importance of micronutrients 

to the human body (Shenkin, 2005).  

Fe, Zn, and Se are among the twenty essential nutrients in human nutrition (WHO, n.d.). Fe is 

vital for several metabolic functions in the human body. Fe in hemoglobin serves as a carrier 

of oxygen from the lungs to the tissues. Fe is required for important enzyme systems such as 

iron catalase, peroxidase, and cytochrome. These enzymes act as electron carriers and their 

role in oxidative metabolism is to transfer energy within the cell (Abbaspour et al., 2014).  

Zn contributes to membrane signaling systems in cell growth and proliferation, hence, 

enhances the wound healing process (Prasad, 1996; MacDonald et al., 2000). Zn has an 

antioxidant role in protecting cells against free radical-induced oxidative damage (Bray & 

Bettger, 1990; Rostan et al., 2002; Prasad et al., 2004). Furthermore, Zn decreases the relative 

risk of prostate, hepatocellular and pancreatic cancers (Costello & Franklin, 2017). 

Se protects the body tissues against oxidative stress (Tinggi, 2008) and has been implicated in 

maintenance of defense against infection, and modulation of growth and development. Se 

also has a protective effect on progression of carcinogenesis (Rayman, 2005; Zeng et al., 

2008).  

2.3.2. Micronutrient malnutrition  

More than half of the world‟s population is suffering from micronutrient malnutrition. It is 

also known as „hidden hunger‟, especially in Asia, Africa, and Latin America, where most 

diets are cereal-based and do not meet the recommended dietary allowances for key minerals. 

Deficiencies of essential minerals can lead to serious implications for children and pregnant 

women unless the problem is addressed carefully. The recommended daily allowance (RDA) 

for each mineral differs according to age and gender. According to the National Institute of 

Health (NIH), on average, the RDA for Zn is 11 mg/day for adult males and 8 mg/day for 

adult females. Recommendation for Se is similar for both males and females at 55 μg/day. 

The RDA of Fe for a female with pre- and post-menstruation and for an adult male is 8 

mg/day. It would be 15-18 mg/day for women with menstruation.  

Fe, iodine, folate, vitamin A, and Zn deficiencies are the most widespread nutrient 

deficiencies in the world, and they contribute to poor growth, intellectual impairments, 
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perinatal complications, and increased risk of morbidity and mortality (Bailey et al., 2015). 

Fe deficiency is the most common and widespread nutritional disorder in the world. Fe 

deficiency at critical times of growth and development can result in premature births, low 

birth weight babies, delayed growth and development, delayed normal infant activity, and 

poor cognitive skills (Allen, 2000; Lozoff et al., 2008; Bailey et al., 2015). Se deficiency is an 

important factor in the etiology of Keshan disease, Kashin-Beck disease, and myxedematous 

cretinism (Coppinger et al., 2001). Zn deficiency affects pregnant women significantly as it 

performs a major role in cell division. Inadequate Zn intake may result in loss of appetite, 

poor sense of smell and taste, pale skin, frequent infections, low fertility, stunted growth, 

mental problems, poor wound healing and a poor immune system (Roohani et al., 2013).  

2.4. Plant uptake and biofortification  

2.4.1. Micronutrient uptake by plants 

As there is a close relationship between human malnutrition and micronutrient concentration 

in the edible crop plant parts, thus understanding the factors that govern plant micronutrient 

uptake is crucial. Plants require 17 essential nutrients for optimal growth and development to 

complete their life cycle.  These nutrients are carbon (C), hydrogen (H), oxygen (O), nitrogen 

(N), phosphorus (P), potassium (K),  calcium (Ca), magnesium (Mg), sulfur (S), zinc (Zn), 

copper (Cu), iron (Fe), manganese (Mn), boron (B), molybdenum (Mo), chlorine (Cl), and 

nickel (Ni). The role of the macronutrients in plants is producing the bulk of the 

carbohydrates, proteins, and lipids of plant cells, whereas micronutrients mostly participate in 

the enzyme activation processes of the plant. The nutrient availability of soils is affected by 

climate, soil, and plant factors and their interactions (Fargaria, 2016). 

Plant characteristics such as tissue stoichiometry, biomass cycling rates, above and below 

ground allocation, root distribution, and maximum rooting depth are important to 

demonstrate the nutrient profiles of plants. Therefore, understanding the vertical distribution 

of soil nutrients is useful in agriculture (Jobbágy & Jackson, 2001).  The root system in plants 

has evolved in order to access the maximum amount of nutrients from the soil. Root system 

architecture is the spatial arrangement of root tissue within the soil which is crucial for the 

uptake of water and nutrients. Water and nutrients are distributed heterogeneously throughout 

the soil profile that eventually affects plant fitness, crop performance, and grain yield (Gei & 

Powers, 2015; Rogers & Benfey, 2015).   
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Most mineral nutrients are absorbed by the plant through the rhizosphere. Rhizospheric 

bacteria participate in the geochemical cycling of nutrients, especially nitrogen, phosphorus, 

and micronutrients including Fe, Mn, Zn, and Cu, which eventually enhance the availability 

of nutrients in the soil (Dotaniya & Meena, 2015). The pulses have a mutualistic symbiotic 

association with Rhizobium bacteria (Rhizobium leguminosarum) which can fix free nitrogen 

from the air. Furthermore, soil organic matter is able to retain water and nutrients, provide a 

habitat for soil biota and improve soil structure; hence, it is important for sustainable yields in 

crops (Agegnehu et al., 2015).  

Iron uptake by crop plants exceeds uptake of all other essential micronutrients except 

chlorine. Fe
3+

 (ferric ion) is the common form present in the soil and only the gramineous 

monocots such as wheat, oat, and barley have the ability to chelate, solubilize and uptake the 

soil Fe
3+

 by secreting mugineic acid family phytosiderophores into the rhizosphere (Kawai et 

al., 1988; Schenkeveld et al., 2014). However for other plants, Fe
3+

 has to be reduced to Fe
2+

 

to facilitate uptake. Due to that necessity, iron uptake by these plants mainly depends on the 

soil redox potential and pH other than the plant's ability to secrete protons (H
+
) to the 

rhizosphere and reduce soil Fe
3+

 to Fe
2+

. When the pH decreases, Fe
3+

 tends to reduce to 

soluble Fe
2+

 and becomes more available for plant uptake (Morrissey & Guerinot, 2009; 

Fargaria, 2016; Selby-Pham, 2017).  

Soil moisture conditions and soil chemical factors influence Zn uptake, however, the process 

of Zn uptake can be complex even among closely related genotypes because it is governed by 

plant-soil interactions (Ma et al., 2016). Zn is taken up mainly as Zn
2+

 by plant roots and in 

some cases, as organic ligand-Zn complexes. Based on the ligand secreted by plant roots, 

there are two possible physiological mechanisms, i.e., efflux of reductants, organic acids and 

H
+ 

ions, or efflux of phytosiderophores (Gupta et al., 2016). 

As reviewed by Gupta and Gupta (2017), selenium exists as two forms: inorganic forms, i.e., 

selenate (SeO
2−4

), selenite (SeO
2−3

), selenide (Se
2−

), elemental Se, and the organic form. 

Depending on the plant species, phases of development and concentration of Se in the soil, 

salinity, soil pH, activity of membrane transporters and the translocation mechanisms of the 

plant, the process of Se uptake and translocation may vary (Gupta & Gupta, 2017).  

2.4.2. Supplementation, fortification, and biofortification 

According to WHO, "Fortification is the practice of deliberately increasing the content of an 

essential micronutrient, i.e., vitamins and minerals in a food, so as to improve the nutritional 
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quality of the food supply and provide a public health benefit with minimal risk to health". 

Supplementation, food fortification, and dietary diversification are current methods for 

combating micronutrient malnutrition.  

When the diet alone fails to meet the nutrient requirements due to dietary restrictions or 

intolerances, micronutrient supplements, i.e. multivitamin with iron or other minerals, 

folate/folic acid, Fe and Zn are beneficial especially for the risk groups such as children and 

pregnant women (Wiltgren et al., 2015). Micronutrient supplements can be used along with 

the major diet, however, the feasibility and sustainability of supplementation as a mode of 

delivery in resource-poor settings are in question (FAO, 2010). 

Partially pre-cooked and milled cereals, soybeans, common beans, or other pulses blended 

with micronutrients are called fortified foods which are used in food assistance programs by 

the World Food Program (WFP) to prevent and address nutritional deficiencies. Moreover, 

safe delivery systems, stable political policies, appropriate social infrastructure, and 

continued investment are required for dietary diversification (White, 2011).  

According to WHO, "Biofortification is the process by which the nutritional quality of food 

crops is improved through agronomic practices, conventional plant breeding, or modern 

biotechnology". Thus, biofortification is a suitable approach and an upcoming strategy to 

improve micronutrients in diets (FAO, 2010). Through plant breeding, biofortification can 

improve the nutritional content of commonly eaten foods providing a comparatively 

inexpensive, cost-effective, sustainable, long-term means of delivering more micronutrients 

to the poor (Bouis, 2011).  

The HarvestPlus Challenge Program is an initiative of the Consultative Group on 

International Agricultural Research (CGIAR), where over 100 scientists in approximately 50 

research institutions and implementing agencies around the world are making collaborative 

efforts to breed and disseminate crops for better nutrition. The program was focused on six 

targeted staple foods: rice, wheat, maize, cassava, common beans and sweet potato (Pfeiffer 

& McClafferty, 2007). As reviewed by Bouis and Saltzman (2017), at this point, biofortified 

crops are grown and consumed by more than 20 million people in developing countries. To 

reach one billion people by 2030, increasing the consumer demand, implementing new 

policies and mainstreaming biofortified traits into public and private breeding programs are 

important. 
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2.4.3. Potential of field pea biofortification  

Pulses are an important source of dietary proteins and slowly digestible starch, dietary fiber 

(Patterson et al., 2009; Roy, 2010), carotenoids (Ashokkumar et al., 2015), folates (Jha et al., 

2015) and minerals (Bueckert et al., 2011; Thavarajah 2012). According to Ray et al. (2014), 

Saskatchewan-grown pulses are excellent sources of micronutrients, and in a single serving 

provide 50 to 100% of the RDA for potassium, magnesium, iron, manganese, selenium, and 

25 to 35% for zinc. Agronomic interventions, breeding approaches, genetic modification and 

microbiological approaches are potential ways to enrich pulse crops (Singh et al., 2015).  In 

addition, significant genetic variation was observed for the concentration of most minerals in 

Saskatchewan grown field pea (Ray et al., 2014), and therefore, field pea can be considered 

as a good candidate for crop biofortification.  

2.5. Field pea breeding  

2.5.1. Conventional breeding  

Pea breeding has achieved many successes since Mendel's experiments in the mid-1800s. 

Varieties with high yield, lodging resistance, improved resistance to root rot diseases and 

pathogens have been introduced by pea breeding programs worldwide (Tayeh et al., 2015; 

Warkentin et al., 2015). For decades, controlled hybridization and selection has been 

performed on field pea in order to improve agronomic traits. In general, bulk population, 

pedigree selection and a combination of these two procedures are widely applicable in pea 

breeding around the world.  Pea breeding programs in the USA, Australia, Europe, and India 

employ the pedigree breeding method. The F2-derived family method is used at the 

University of Saskatchewan where approximately 300 new crosses are generated each year 

during the course of three crossing cycles (Warkentin et al., 2015). 

Several limitations can be identified in conventional plant breeding. It is time-consuming and 

laborious, requiring many crosses and several generations of selfing.  There is a possibility of 

transferring undesirable traits along with the traits of interest. The issues that are associated 

with conventional breeding can be addressed to some extent by incorporating molecular 

marker technology (Zargar et al., 2015). Marker-assisted selection (MAS) makes selection 

independent of the phenotypic expression of the traits. Marker systems differ based on factors 

including the crop species, heritability of the trait, and availability of the germplasm to 

exploit the variability. MAS may not immediately gain the interest of conventional breeders 

due to the requirement of highly skilled persons, specific infrastructure facilities, high cost, 
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and in some cases lack of reproducibility. Therefore, user-friendly and cost-effective MAS 

systems are required to achieve success (Kumar et al., 2011). 

2.5.2. Marker-assisted selection  

The pea genome size is 4.3 GB which is more than ten times larger than that of the model 

legume species Medicago truncatula, and approximately 85% of the pea genome consists of 

repetitive sequences. These challenges have contributed to a delay in the development and 

availability of genomic tools in pea, however, taking advantage of rapidly improving 

genotyping technologies, pea genome sequencing is currently in progress (Tayeh et al., 2015, 

Boutet et al., 2016).  

A DNA marker is a fragment of DNA, which can be used to detect polymorphism between 

different genotypes or alleles. DNA markers such as restriction fragment length 

polymorphism (RFLP), random amplified polymorphic DNA (RAPD), simple sequence 

repeat (SSR) and amplified fragment length polymorphism (AFLP) have been applied in pea 

(Collard et al., 2005; Gupta et al., 2008). In recent studies, single nucleotide polymorphisms 

(SNPs) are widely applied due to their abundant and uniformly distributed nature in the 

genome (Gupta et al., 2008; Leonforte et al., 2013; Boutet et al., 2016).  

The use of DNA markers in plant breeding is called marker-assisted selection (MAS) which 

is a component of the new discipline of "molecular breeding". There is great potential to 

increase the efficiency and precision of conventional plant breeding by using molecular 

markers (Collard et al., 2005). MAS is based on pre-existing DNA sequences (DNA markers) 

located near a gene of interest, enabling the prediction of the presence of the particular gene 

in an individual progeny (McPhee, 2003). Due to the rapid improvement in genotyping 

procedures and statistical approaches, MAS strategy is now attracting many plant breeders 

towards its application in their breeding programs (Smýkal et al., 2016).  

2.6. Genetic mapping  

Many agricultural traits are quantitative in nature being influenced by many genes, the 

environment, and the genotype-by-environment interaction. To understand these quantitative 

traits, two broad classes of genetic mapping techniques are used, i.e., linkage mapping and 

association mapping. Both methods are based on the linkage disequilibrium (LD) between 

molecular markers and loci of interest. LD can be defined as the non-random association of 

alleles at different loci (Stich & Melchinger, 2010). The fundamental difference between the 

two mapping techniques is the mapping populations from where the LD is derived, which 
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directly determines the mapping resolution and power (Stich & Melchinger, 2010; Xu et al., 

2017).  

2.6.1. Linkage mapping  

LD in linkage mapping is generated by the mating design and therefore, it can be defined as a 

family-based method. Linkage mapping is a useful tool to identify regions of the genome 

called quantitative trait loci (QTL) that co-segregate with a given trait either in F2 populations 

or recombinant inbred line (RIL) families (Korte & Farlow, 2013).  However, relatively low 

mapping resolution, low allele richness, and low speed are the major limitations in the 

linkage mapping (Xu et al., 2017). The limit on the mapping resolution is due to the amount 

of recombination that has occurred during the establishment of the RIL population. The 

allelic diversity that segregates between the parents of the particular F2 cross or within the 

RIL population can only be evaluated in QTL mapping. Intercrossing multiple genetically 

diverse accessions before establishing the RILs and several generations of intercrossing when 

establishing the RIL population can address the above limitations to a certain extent, 

however, low speed could stand as a limitation (Korte & Farlow, 2013).  

Although pea has lagged behind the major crops such as rice, wheat, and maize, with regard 

to the availability of genomic resources, early genetic maps were developed based on 

phenotypic and physiological characteristics (Blixt, 1974), isozymes, and early DNA-based 

markers such as RFLP, RAPD, ISSR, STS, CAP, and AFLP (Ellis et al., 1992; Weeden et al., 

1996).  Subsequently, SNP markers were used to construct pea linkage maps to identify 

QTLs.  

To date, several pea linkage maps have been constructed to identify regions associated with 

agronomic traits, biotic and abiotic stress tolerances, and quality traits (Leonforte et al., 2013; 

Sudheesh et al., 2015; Ferrari et al., 2016; Timmerman-Vaughan et al., 2016). Tar‟an et al. 

(2003) identified two QTLs for lodging resistance, three QTLs each for plant height and 

resistance to mycosphaerella blight, which accounted for 58%,  65% and 36% of the total 

phenotypic variation, respectively, from an evaluation of pea RILs from a cross between 

Carneval and MP1401 across western  Canada. Moreover, from the same RIL population, 

four QTL each for grain yield and days to maturity, and three QTL for seed protein 

concentration were also identified and these genomic regions accounted for 39%, 45% and 

35% of the total phenotypic variation, respectively (Tar‟an et al., 2004). Jha et al. (2016; 

2017) reported nine QTLs for ascochyta blight resistance, which individually explained 7.5 - 
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28% of the total phenotypic variation and two of them were fine mapped. Nine QTLs 

controlling yellow seed lightness, 3 for yellow seed greenness, 15 for seed shape, and 9 for 

seed dimpling were detected by Ubayasena et al. (2011) in two pea RIL population (derived 

from Alfetta × CDC Bronco and Orb × CDC Striker). Overall, 375 QTLs were identified for 

important traits such as days to flowering, days to maturity, lodging resistance, 

mycosphaerella blight resistance, seed weight, and grain yield based on three mapping 

populations, i.e.,  PR-02 (Orb x CDC Striker), PR-07 (Carerra x CDC Striker), and PR-15 (1–

2347-144 x CDC Meadow) (Gali et al., 2018).  

In a recent study, 21 QTLs (3 each on LG1, LGII, and LGVII; 6 QTLs on LGIV; 4 QTLs on 

LGV; and 2 QTLs on LGVI) were identified for Fe concentration in lentil by Aldemir et al. 

(2017). Ma et al. (2017) reported 46 seed mineral concentration (µg/g) QTLs and 37 seed 

mineral content (µg/ seed) QTLs using a linkage map constructed based on SNP markers for 

pea. The QTLs explained from 2.4% to 43.3% of the phenotypic variance (Ma et al., 2017). 

2.6.2. Association mapping  

In association mapping, ancestral recombination events and natural genetic diversity within a 

population are exploited for quantitative traits (Diapari et al., 2015). Advantages of 

association mapping over linkage mapping are higher resolution and greater allele numbers 

which have resulted from historic recombination events accumulated over hundreds of 

generations (Xu et al., 2017). Due to the advances in high-throughput genomic technologies, 

interest in identifying novel and superior alleles, and improvements in statistical methods, 

association mapping is indicating a continuous improvement (Mao et al., 2015). LD-based 

association mapping started with the model plant Arabidopsis and has now been extended to 

major crops (Kwon et al., 2012). Two major approaches are used in association mapping, i.e., 

genome-wide approach and candidate-gene approach. Polymorphisms in selected candidate 

genes that have identified roles in controlling phenotypic variation for specific traits are taken 

into consideration in candidate-gene association mapping (Abdurakhmonov & Abdukarimov, 

2008). The candidate genes are selected based on the biochemical pathways, mutational 

analysis or linkage analysis. In contrast, genome-wide association mapping observes genetic 

variation in the whole genome to find signals of association for various complex traits where 

the prior knowledge of candidate genes is not required (Zhu et al., 2008).  

The frequency of the variants in the sample and the difference of the effect size (phenotypic 

effect) are major dependant factors for the success of a GWAS. Therefore, both rare variants 
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and traits with small effect sizes hinder the ability of GWAS in providing insights into the 

genetic background of the trait.  To mitigate each other‟s limitations, QTL mapping and 

GWAS could both be performed to address a particular segregating trait (Korte & Farlow, 

2013). 

2.7. Genotyping 

2.7.1. SNP genotyping 

SNP genotyping technology is rapidly advancing with the emergence of novel and cost-

efficient methods. TaqMan, single-base extension-based assays, matrix-assisted laser 

desorption/ionization – time of flight (MALDI-TOF), mass spectrometry-based systems, the 

Invader assay, Pyrosequencing, capillary electrophoresis, microfluid-based chips, oligo 

nucleotide arrays are some of the previously used genotyping methods (He, 2014; Kim et al., 

2016). SNP genotyping can be obtained either from a uniplex or multiplex genotyping 

platform.  

Illumina GoldenGate is one of the multiplex genotyping assays that has been developed for 

application on a microarray platform which aims to minimizes the time, reagent volumes, and 

material requirements by allowing a high degree of loci multiplexing (1536-plex) during the 

extension and amplification steps (Illumina, Inc., 2006). In the last decade, Illumina 

GoldenGate assay has been used in many SNP genotyping projects on crop plants such as 

wheat (Akhunov et al., 2009; Trebbi et al., 2011), maize (Yan et al., 2010; Mammadov et al., 

2010), pea (Deulvot et al., 2010; Diapari et al., 2015) and chickpea (Deokar et al., 2014; 

Diapari et al., 2014). 

As sequencing costs have declined, sequence-based genotyping has gained prominence over 

array-based approaches. Genotyping by sequencing, or next-generation genotyping (GBS), is 

a genetic screening method for genotyping studies. GBS uses restriction enzymes (RE) for 

targeted complexity reduction and it generates high-quality polymorphism data by multiplex 

genotyping; major steps being DNA extraction, choosing RE, adaptor designing, library 

preparation, and sequencing, followed by sequence alignment and mapping (Elshire et al., 

2011; Poland et al., 2012).GBS can be recognized for its important qualities of versatility, 

efficiency, reduction in per sample cost and high reproducibility of SNP discovery and 

genotyping  (Sonah et al., 2013). GBS enables breeders to conduct genomic selection on a 

species without developing any prior molecular tools, and to determine population structure 

without prior knowledge of the genome or the diversity of the species. Hence, is an important 



 

14 

 

tool used in association studies even when the complete genome sequence is not available as 

the reference genome (Elshire et al., 2011). At present, GBS is widely being applied for SNP 

genotyping, generation of high-density linkage maps, and fine mapping of QTLs for various 

crops such as pea (Boutet et al., 2016; Annicchiarico et al., 2017; Gali et al., 2018), chickpea 

(Kujur et al., 2015; Singh et al., 2016) and lentil (Wong et al., 2015; Ates et al., 2016). 

2.7.2. Kompetitive Allele Specific PCR (KASP) genotyping 

The multiplex genotyping platforms such as GoldenGate assay and GBS are useful for large-

scale genotyping studies. Despite the advantages of those methods, they are not cost effective 

and efficient for small-scale crop improvement applications. In such cases, KASP genotyping 

is a uniplex genotyping platform (Semagn et al., 2014). The method has been developed by 

KBioscience (Middlesex, UK) which is based on competitive allele-specific PCR. Bi-allelic 

scoring can be performed for SNP and insertions and deletions (Indels) at specific loci by 

using fluorescence detection (www.lgcgroup.com). KASP genotyping is widely applied in 

crop research for DNA polymorphism validation as an endpoint step for DNA marker 

discoveries (Graves et al., 2016; Chandra et al., 2017; Jha et al., 2017). 

2.8. Phenotyping seed samples for micronutrient concentration 

2.8.1. Phenotyping techniques 

Use of high-quality phenotypic data is essential for successful association mapping for a 

particular trait. Transitioning from a candidate-gene to a genome-wide approach is also 

possible if robust phenotypic data were collected (Zhu et al., 2008). To detect the mineral 

concentrations in plant material, spectroscopic methods are widely applicable, such as atomic 

absorption spectroscopy (Thavarajah et al., 2007; Bueckert et al., 2011), near infrared 

reflectance spectroscopy (Stuth et al., 2003; Cozzolino et al., 2004), X-ray spectroscopy 

(MacLaren et al., 2012; Paltridge et al., 2012), and mass spectroscopic methods, such as 

inductively coupled plasma mass spectrometry (ICP-MS) (Retka et al., 2010; Enamorado et 

al., 2013). In the present study, atomic absorption spectroscopy was used based on previously 

developed protocols for pulse crops, and feasibility to access a suitable instrument.  

2.8.2. Atomic absorption spectrophotometry  

Atomic absorption spectrometry (AAS) is an analytical technique that measures the 

concentration of elements in a solution. Atomization converts the sample into free atoms 

irrespective of its initial state. Therefore, the chemical form of the element is not necessarily 

considered while preparing the samples. AAS is a spectro-analytical procedure for the 
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quantitative determination of chemical elements. According to the Royal Society of 

Chemistry, atoms of different elements absorb characteristic wavelengths of light (optical 

radiation) and the amount of light absorbed is proportional to the number of atoms in the 

sample. By evaluating several samples with known concentration of particular elements, 

calibration curves are constructed and the concentration of unknown samples is calculated 

based on the calibration curve.  

Flame AAS is used for determination of comparatively high concentrations (tenths to tens 

μg/ml) of minerals such as Fe, Zn, Cu, Mg and K. The solution which contains the minerals 

is sucked up to the nebulizer and at the tip of the capillary, the solution is broken into small 

droplets and only about 1% of the sample is nebulized. Ethyne/air which produces a flame 

with a temperature of 2200–2400ºC, or ethyne/dinitrogen oxide, which produces a flame with 

a temperature of 2600-2800 ºC, are the commonly used flames to provide thermal energy to 

dry the sample droplets and to excite the atoms from the ground state. Hydride AAS is two-

three times more sensitive than the flame AAS. Hydride AAS is applicable for minerals such 

as As and Se that are located in the region of wavelength < 200 nm with trace concentrations. 

The compound of the analyte is subjected to a reducing reaction with NaBH4 (sodium 

borohydride). Gaseous hydride of the analyte is formed in a hydride generator and gaseous 

products are delivered to the atomizer (Elwell et al., 2013). 

2.9. Genome Wide Association Study (GWAS) 

Over the last two decades, genome-wide association studies (GWAS) have evolved into a 

powerful tool starting from the first human sequence draft publication in 2001. As a global 

collaborative project, the high-density haplotype map of the human genome was constructed 

based on a large number of SNPs (Huang & Han, 2014). Since then, investigating the genetic 

architecture of human diseases such as cancer (Easton et al., 2007; Amos et al., 2008), 

Parkinson's disease (Nalls et al., 2014; Chang et al., 2017), and diabetes (Teumer et al., 2015; 

Cooper et al., 2017) has been conducted using GWAS. 

Interestingly, GWAS has achieved greater success in plants than in humans. The cost for 

GWAS in crops is less than GWAS in human as it is not necessary to increase the population 

size and the number of markers continuously in order to overcome the missing heritability 

problem (Huang & Han, 2014). However, it is difficult to identify marker-trait associations 

with a small population, even in plants, if the functional locus has a very large effect and 

tested markers are in high LD with this locus (Zhu et al., 2008). The extent of LD determines 
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the required number of SNP markers and the mapping resolution in GWAS.  In a 

homozygous genetic background, the recombination events are ineffective to cause LD 

decay. Therefore, self-fertilizing plants generally show less LD decay while the out-crossing 

crop species, such as maize show LD decay at short distance (Vos et al., 2017).  

2.9.1. Population Structure 

Geographical origin, local adaptation, and breeding history of assembled genotypes in an 

association mapping panel may cause false positive associations unless the population 

structure is taken into account (Zhu et al., 2008; Diapari et al., 2015). Some markers may 

appear to be significantly associated with the trait of interest when in reality, their frequency 

distribution is correlated with the population structure. However, if there is an average trait 

difference among the group of individuals, this frequency distribution may suggest the 

significance of markers (Sukumaran & Yu, 2013). To estimate the population structure and 

the familial relationship, SNPs are more appropriate than other molecular markers because of 

the low mutation rate and high-density availability of SNPs (Stich & Melchinger, 2010). 

When a quantitative trait locus (QTL), that is influencing a trait, is in linkage disequilibrium 

with the marker locus, the strength of marker-trait association can be inferred using statistical 

methods such as structured association, genomic control and mixed model approach (Zhu et 

al., 2008; George & Cavanagh, 2015).  

The loci being correlated with the phenotype can be due to the true genetic variation or due to 

the false association patterns caused by the population structure of the germplasm. Population 

structure correction is applied in GWAS to avoid false genotype-to-phenotype associations 

using statistical models by distinguishing and isolating the true associations (Atwell et al., 

2010; Rakitsch et al., 2012).  However, in some cases, population structure correction is a 

stringent penalization, which can also mask the real associations. Therefore, it would be of 

great interest to develop novel, more powerful association methods that simultaneously 

correct for both population stratification and pedigree structure (Wu et al., 2011). Therefore, 

recently, statistical advancements have been initiated such as Quantitative Trait Cluster 

Association Test (QTCAT) enabling simultaneous multi-marker associations while 

considering correlations between markers (Klasen et al., 2016).  

2.9.2. Statistical analysis in GWAS 

Two statistical models are widely applied in associating molecular markers with a trait, i.e., 

General linear model (GLM) and Mixed linear model (MLM). In GLM, only the markers are 
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considered as fixed effects. In MLM in addition to markers, the principal component matrix 

(PCA) is also considered as a fixed factor. Furthermore, the random effects are taken into 

account by including the kinship matrix into the association (Diapari et al., 2014; 2015; 

Khazaei et al., 2017).  

To reduce the chances of obtaining false-positive results (Type I errors) when multiple 

pairwise tests are performed on a single set of data, different correction methods are applied. 

The Bonferroni correction sets the significance cutoff at α/n where α is the significance level 

and n is the number of hypotheses, i.e., the number of markers in the case of association 

mapping. This is called the Bonferroni threshold level, which increases the probability of 

observing at least one strong significant result. Although the Bonferroni correction has 

become a popular correction method, its assumption that all tests are independent is not 

practical in many cases. In such situations, the Bonferroni correction could be extremely 

conservative and stringent, leading to a high rate of false negatives (Armstrong, 2014). Due 

to the controversy over Bonferroni correction, scientists are now testing other correction 

methods such as the false discovery rate (FDR). 

2.9.3. GWAS application in crop plants 

The first crop in which GWAS was used was maize (Zea mays).  The maize genome 

experiences a rapid LD decay and in that case GWAS facilitated the genetic dissection of 

several complex traits, including kernel β-carotene and oil content (Cook et al., 2012; Li et 

al., 2013), flowering time (Brown et al., 2011; Li et al., 2016), drought tolerance (Mao et al., 

2015; Wang et al., 2016), and disease resistance (Gowda et al., 2015; Olukolu et al., 2016). 

GWAS is more effective in rice (Oryza sativa) than many other crops due to its evolution and 

domestication history.  The properties of rice germplasm such as the unique combinations of 

locally adapted allele complexes, extended LD within some subpopulations, rapid LD decay 

within other subpopulations, and the abundance of well-partitioned genetic variation among 

subpopulations along with small genome size (380 Mb) provide ideal characteristics for 

GWAS. GWAS has been widely applied to the study of grain quality, flowering time, disease 

resistance and abiotic stress tolerance in rice (McCouch et al., 2016).  

When considering the pulse crops, important traits have been studied using GWAS such as 

disease resistance in pea and common bean (Desgroux et al., 2016; Perseguini et al., 2016) 

and abiotic stress tolerance in chickpea (Thudi et al., 2014).  Pulses are amenable to 

biofortification as they are among the major staple crops in the world. It can be recognized 
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that the attempts at identifying the underlying genetic structure of micronutrient 

concentration using GWAS have currently gained the interest of plant breeders and 

succeeded, especially in chickpea, lentil and field pea.   

Chickpea is a pulse crop with a genome size of ~740 Mbp and the genomes of two chickpea 

cultivars (one desi and one kabuli) have been sequenced (Jain et al., 2013; Varshney et al., 

2013). Substantial variability in chickpea germplasm has been indicated for seed Fe and Zn 

concentrations and 8 SNP loci associated with Fe and/or Zn concentration in chickpea seeds 

were identified by Diapari et al. (2014) using GWAS which was based on 1536 SNP markers. 

In a recent study, the association mapping approach (FDR cut-off ≤ 0.05) reported 16 

genomic loci significantly associated (P ≤ 10
−7

) with seed Fe and Zn concentrations in 

chickpea (Upadhyaya et al., 2016). 

DellaValle et al., (2013) demonstrated a significant biofortification potential and 

bioavailability of Fe in lentil. The lentil germplasm tested by Khazaei et al. (2017) exhibited 

a wide range of variation for seed Fe and Zn concentration with the detection of two SNP 

markers  for seed Fe and one SNP for Zn concentration (-log10 P ≥ 4.36) in the marker-trait 

association study. 

To date, there is only one GWAS study on field pea micronutrients which was conducted by 

Diapari et al. (2015), in which 94 diverse pea accessions were genotyped using 1,233 SNPs in 

an Illumina GoldenGate array. Nine SNPs (−log10 P value ≥ 4.2) were significantly 

associated with iron concentration in seeds, two SNPs with Zn concentration, but no SNPs 

were associated with Se concentration. SNP loci PsC22912p327 (LGI) and PsC9886p84 

(LGIV) explained the highest phenotypic variation, 10.7 %, followed by PsC16473p224 

(unmapped) that explained 9.8 %. PsC5316p234 (LGV) explained 9.6 %; PsC7893p98 

(LGIII) and PsC8677p415 (LGIII) and PsC13009p652 (LGIV) explained 9.3 %; 

PsC25762p728 (unmapped) explained 8.5 % of phenotypic variation, suggesting that markers 

responsible for phenotypic variation of iron were well distributed over the genome. Two zinc-

associated SNPs PsC7872p386 and PsC3195p368 (LGIII) explained 11.5 and 9.2 % of the 

genetic variation, respectively. To build on the research of Diapari et al. (2015) the current 

study evaluates marker-trait assocaitions in a larger pea germplasm collection, i.e., 177 

accessions instead of 94 accessions, and uses 14,391 SNP markers instead of 1,233.  

Evaluating marker-trait assocaitions for micronutrient concentration in a large pea germplasm 

collection using next-generation sequencing techniques is beneficial and effective to more 
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precisely identify markers which can facilitate pea breeding. Furthermore, validation of 

markers in an unrelated population adds more reliability to the markers for future use in 

MAS.  
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3. Materials and Methods 

3.1. Evaluation of diverse pea accessions for the concentration of Fe, Zn, and Se  

3.1.1. Plant material 

A genome wide association study (GWAS) panel of 177 pea accessions developed at the 

Crop Development Centre (CDC), University of Saskatchewan consisting of cultivars and 

landraces from North America, western and eastern Europe, and Australia were evaluated for 

Fe, Zn, and Se concentration (Appendix A). A total of 1770 seed samples derived from field 

trials conducted at Saskatoon and Rosthern locations in Saskatchewan and at Fargo, North 

Dakota were used (Table 3.1). 

Table 3.1: Seed samples derived over five location-years 

Year Fargo, ND Saskatoon,SK Rosthern,SK Sample number 

2013 - 2 replicates - 177 x 2 = 354 

 2014 2 replicates - - 177 x 2 = 354 

 2015 - 2 replicates - 177 x 2 = 354 

 2016 - 2 replicates 2 replicates 177 x 4 = 708 
  

3.1.2. Seed grinding 

Based on a preliminary study, 60 seeds of each harvested sample were utilized (Appendix B).  

The 60 seeds were randomly sampled from a sub-sample of the mechanically harvested bulk 

seeds in each accession. The whole seed samples were ground into fine powder using a 

cyclone sample mill (UDY Corporation, Fort Collins, Colorado-USA) and the ground 

samples were stored at room temperature and ambient humidity until digestion.  

3.1.3. Standard protocol for nitric acid digest for seeds 

Finely ground seed samples were digested according to the methods of Thavarajah et al. 

(2007) in a Vulcan-84 digester and processed according to the methods described in Diapari 

et al. (2015).  For each location, two replicates were digested separately and both replicates 

were analyzed at the same time with the atomic absorption spectrophotometer (nova 300, 

Analytic Jena AG, Germany). 

A total of 0.3 g of the powdered sample was weighed into a digestion tube.  Two digestion 

blocks (2 × 42 digestion tubes) were placed in the Vulcan-84 digester at a time. One set of 84 

digestion tubes consisted of 4 blanks, 8 internal standard seed samples (ground CDC Meadow 

field pea) and 72 seed samples. 
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The digestion blocks with the digestion tubes were warmed to 86ºC. A volume of 6 ml HNO3 

(ACS grade) was added to each tube and they were kept in the block for 45 minutes. The 

tubes were swirled or shaken to allow the gas to escape and not to leave residue on the side of 

the tube. After 45 minutes, 3 ml of 30% H2O2 was added to the digest while they are still in 

the digestion block. After that, another 2 ml of 30% H2O2 was added. The reaction mixture 

was allowed to digest for another 65 minutes.  Then, 3 ml of 6 M HCl was added and allowed 

to digest for another 5 minutes. The digestion tubes were taken off of the block digester and 

volume was topped up to 25 ml with distilled water. Samples were stored in plastic vials at 

room temperature for AAS analysis.  

3.1.4. Obtaining atomic absorption spectroscopy (AAS) data 

The “blank solution” was prepared by conducting the total nitric acid digestion for seeds in 

clean empty digestion tubes. The standard solutions were prepared by diluting 1000 mg/L 

stock solutions of Fe and Zn with the blank solution. The standards for Fe were 0 mg/L, 0.5 

mg/L, 1.0 mg/L, 3.0 mg/L, and 4.0 mg/L and for Zn are 0 mg/L, 0.2 mg/L, 0.4 mg/L, 1.2 

mg/L, and 1.6 mg/L. The Fe and Zn standards were combined when diluting so that the 4.0 

mg/L Fe and the 1.6 mg/L Zn are in the same solution and so forth.   

Five ml of each digested solution of the seed samples was transferred into 16 ml vials. For Fe 

analysis, internal standards were prepared in the same manner, additionally added 0.2 ml of 

25 mg/L Fe standard solutions. The concentration of Fe was calculated based on the internal 

standard. For Zn analysis, internal standards were necessary. The digested solutions and the 

Fe internal standards were run through the AA air/acetylene flame for analysis. 

The Se analysis was conducted using hydride analysis. For Se, the standards were made from 

0-10 µg/L in the digested solution.  The digested solutions were prepared by diluting it six 

times with 0.75 M HCl to a volume of 12 ml and then run on the hydride system. Internal 

standards were prepared for several samples by adding 0.1 ml of 1 mg/L Se standard solution 

to the digested solutions. The prepared solutions were run through the hydride system. For all 

Fe, Zn, and Se samples, two AAS readings were taken and the average was calculated in 

solid (µg/g).  

3.1.5. Phenotypic data analysis 

Analysis of variance (ANOVA) was performed for Fe, Zn, and Se concentration, the 

dependent variables, using the mixed model in SAS 9.4 (SAS Institute Inc., Cary, North 

Carolina, USA). The effect of genotype, genotype-by-location, genotype-by-year and 
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genotype-by-year-by-location interactions were analyzed for all the location-years. Genotype, 

location and year were considered as fixed effects, while replicates were taken into 

consideration as random effects. Five location-years were considered as five environments 

and the combined analysis of variance was also performed. Broad sense heritability and the 

percentage total sums of squares were calculated. The Pearson‟s correlation coefficients 

between each  micronutrient, between each different location, between the agronomic traits 

(days to flowering, lodging, days to maturity and yield) and the micronutrient concentration 

were also calculated using the SAS 9.4 (SAS Institute Inc., Cary, North Carolina, USA).  

3.2. GWAS to identify SNPs associated with Fe, Zn, and Se concentration 

3.2.1. Genotyping 

The GWAS panel accessions were genotyped using genotyping-by-sequencing (GBS; Elshire 

et al., 2011) to assess the level of genetic diversity based on SNP variation. The number of 

raw sequencing reads per accession was obtained for the GWAS panel. The tagged reads 

were aligned to the pea genome sequence (Source: International Pea Genome Sequencing 

Consortium) and the SNPs identified across the panel accessions were used for the diversity 

analysis (Gali et al, in prep).  

3.2.2. Population structure and diversity analysis 

Population structure for GWAS panel was assessed with genotyping data (SNP), the 

population structure matrix (Q) was obtained and kinship matrix (K) was generated using the 

fastSTRUCTURE (Stanford, CA, USA). The GWAS accessions were grouped into major 

clusters based on the distribution of SNPs (Gali et al, in prep). 

3.2.3. Association study 

Population structure was set as a fixed effect and the kinship among individuals was 

incorporated as the variance-covariance structure of the random effect for the individuals 

(Diapari et al., 2015). Trait Analysis by Association, Evolution, and Linkage (TASSEL, New 

York, USA) software was used to test the association between SNP markers against each of 

Fe, Zn, and Se concentration for location-years individually. Mixed linear model (MLM) was 

used for the association study (Bradbury et al., 2007). Manhattan plots were generated to 

show the distribution of the P values for the SNP markers. Bonferroni corrected threshold (P 

value/number of SNP markers) at P ≤ 0.05 (P = 3.47E-06, -log10 P value ≥ 5.46) was used to 

declare the association of the markers with the trait. Significant SNPs, if any, associated with 

Fe, Zn, and Se concentration were identified. To observe the presence of the identified 
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significant markers across multiple location-years, the threshold was lowered (P = 6.95E-04, 

-log10 P value ≥ 3.16). 

3.3. Validation of the identified SNP markers  

3.3.1. Plant material 

PR-07 recombinant inbred lines (RILs) population was used to validate the SNP markers 

identified in the pea GWAS panel of 177 accessions. The PR-07 population was developed 

by crossing the two parents CDC Striker and Carrera at the Crop Development Centre 

(CDC), University of Saskatchewan. Previously, 94 lines of PR-07 were evaluated for Fe, Zn, 

and Se concentration from the seeds obtained from field trials in six location-years (2010 

Rosthern, 2010 SPG, 2011 Rosthern, 2011 SPG, 2012 Rosthern, and 2012 SPG with two 

biological replicates).  The same RILs were genotyped using genotyping-by-sequencing 

(GBS) and used for identification of quantitative trait loci (QTLs) for Fe, Zn, and Se (Gali et 

al., 2018). 

3.3.2. Kompetitive allele-specific PCR (KASP) genotyping 

Out of the significant markers identified in the GWAS panel, sixteen potential markers were 

selected. When there were two or more significant SNP markers from the same scaffold, only 

one of them was selected. Also, the presence of the markers at multiple location-years was 

considered.  Primers were designed for the selected markers for KASP genotyping using a 

primer picker software (KBiosciences, Middlesex, UK) based on the 50 nucleotide sequence 

flanking each side of the SNP. Two allele-specific oligonucleotides of about 40 nucleotides in 

length (forward primer for allele 1 and forward primer for allele 2) and 1 common 

oligonucleotide of about 20 nucleotides in length (common reverse primer) were designed. 

The KASP assay mixture was prepared by mixing 12 µl each of 100 µM allele-specific 

primer 1 and allele-specific primer 2, 30 µl of the common primer, and 46 µl H2O. The 384-

well microlitre plates were used for the KASP assay. A total reaction volume was produced 

by adding 3 µl of template DNA (5 ng/ml), 3 µl of 2 × KASP reaction mix and 0.083 µl of 

KASP assay mixture. The plates were sealed with an optically clear seal. Thermal cycling 

consisted of:  21ºC of 2 min, 95ºC of 15 min, 9 cycles of 94ºC, 20 s and 65ºC, 30 s, 32 cycles 

of 94ºC, 30s and 57ºC, 1 min and then 12 cycles of 94ºC, 20s and 57ºC, 1 min (including 

21ºC, 2 min followed by each 3 cycle) was perfomed in the C1000™ Thermal Cycler 

(CFX384™ Real-Time System, Bio-Rad Laboratories, Inc., USA) (Appendix C). Genotypic 

data were analyzed using fluorescence resonance energy transfer (FRET) readers and 
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fluorescence signals were viewed graphically as a scattered plot using the software 

SNPViewer (KBioscience, Middlesex, UK). 

First, all the primers were genotyped with parental DNA to check whether the SNP locus is 

polymorphic for the parents of the population. Sc1512_36017 was the only marker 

polymorphic between CDC Striker and Carrera and used to genotype the 94 RILs of PR-07 

according to the protocol mentioned earlier. 

3.3.3. Validation of the SNP markers on PR-07 RILs 

Based on the presence of allele 1 and allele 2, the KASP data were divided into two groups 

and “two groups mean t-test” was performed for individual location-years and the combined 

location-years of the PR-07 Zn concentration using SAS 9.4 (SAS Institute Inc., Cary, North 

Carolina, USA).  

Genotypic data of Sc1512_36017 along with 3389 SNP markers used earlier for the linkage 

map of PR-07 (Gali et al., 2018) were used to construct a linkage map using MstMap. The 

parameters used for linkage map construction were, LOD of 10, no mapping distance 

threshold of 15 cM and no mapping missing threshold of 15%. The KASP marker data were 

added to the existing genotyping information and a linkage map was created to check whether 

each SNP marker is co-located with the QTL for a given micronutrient. 

 

 

 

 

 

 



 

25 

 

4. Results 

4.1. Phenotypic data analysis 

4.1.1. Descriptive statistics 

Mean Fe concentration across the five location-years was 50.46 µg/g and the coefficient of 

variation (CV) was 15.1%. Highest standard deviation (SD) and highest coefficient of 

variation (CV) was observed in 2014 Fargo. The rest of the location-years had similar SD and 

CV % values. Lowest Fe concentration was reported in 2016 Saskatoon and highest Fe 

concentration was in 2014 Fargo; 29.22 µg/g and 90.53 µg/g, respectively (Table 4.1). 

Table 4.1: Summary of the descriptive statistics of Fe concentration in seeds of pea GWAS 

panel over five location-years.  

Year Location Mean ± SD (µg/g) CV% Range (µg/g) 

2013 Saskatoon 45.95 ± 6.46 14.1 31.41 - 68.96 

2014 Fargo 52.95 ± 8.97 17.0 36.72 - 90.53 

2015 Saskatoon 48.80 ± 6.16 12.6 37.4 - 74.21 

2016 Saskatoon 50.81 ± 6.68 13.2 29.22 - 74.76 

2016 Rosthern 53.81 ± 6.66 12.4 39.73 - 74.52 

2016 Ros /Sas 52.31 ± 6.83 13.1 29.22 - 74.76 

2013/2015/2016 Saskatoon 48.51 ± 6.74 13.9 29.22 - 74.76 

All All 50.46 ± 7.61 15.1 29.22 - 90.53 

CV – Coefficient of variation; SD – Standard deviation 

Mean Zn concentration for the five location-years was 29.49 µg/g with a SD of 5.71 µg/g. 

The concentrations ranged from 12.83 µg/g to 51.47 µg/g: highest being 2014 Fargo and 

lowest being 2016 Rosthern. Same as Fe, Zn concentration across the genotypes in 2014 

Fargo had the greatest CV% of 20.1% (Table 4.2). 
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Table 4.2: Summary of the descriptive statistics of Zn concentration in seeds of pea GWAS 

panel over five location-years. 

Year Location Mean ± SD (µg/g) CV% Range (µg/g) 

2013 Saskatoon 28.34 ± 3.98 14.0 16.78 - 39.89 

2014 Fargo 23.22 ± 4.66 20.1 12.83 - 43.46 

2015 Saskatoon 29.62 ± 3.66 12.3 16.64 - 44.08 

2016 Saskatoon 32.79 ± 4.49 13.7 19.75 - 44.33 

2016 Rosthern 33.55 ± 4.92 14.7 21.97 - 51.47 

2016 Ros /Sas 33.17 ± 4.72 14.2 19.75 - 51.47 

2013/2015/2016 Saskatoon 30.26 ± 4.46 14.8 16.64 - 44.33 

All All 29.49 ± 5.71 19.4 12.83 - 51.47 

CV – Coefficient of variation; SD – Standard deviation 

Se concentration had a substantially different pattern compared with Fe and Zn. 

Concentration across the five location-years ranged from 0.06 µg/g to 8.75 µg/g with a CV of 

75.6%. The lowest CV% was observed at 2014 Fargo (Table 4.3). 

Table 4.3: Summary of the descriptive statistics of Se concentration in seeds of pea GWAS 

panel over five location-years. 

Year Location Mean ± SD (µg/g) CV% Range (µg/g) 

2013 Saskatoon 1.09 ± 0.85 78.3 0.25 - 6.12 

2014 Fargo 0.41 ± 0.09 22.6 0.22 - 0.88 

2015 Saskatoon 1.73 ± 0.76 44.2 0.27 - 8.75 

2016 Saskatoon 0.96 ± 0.37 39 0.33 - 3.28 

2016 Rosthern 0.58 ± 0.3 51.8 0.06 - 1.9 

2016 Ros/Sas 0.77 ± 0.39 50.5 0.06 - 3.28 

2013/2015/2016 Saskatoon 1.26 ± 0.77 61.2 0.25 - 8.75 

All All 0.95 ± 0.72 75.6 0.06 - 8.75 

CV – Coefficient of variation; SD – Standard deviation 

4.1.2. Analysis of Variance (ANOVA) 

The ANOVA for Fe and Zn concentration showed similar effects of year, location, genotype, 

and their interactions. The genotypes differed significantly in all the location-years. 

Combined analysis for Saskatoon and Rosthern in 2016 also showed a significant genotype 

effect and a significant location effect. Both the year and genotype effects were significant 
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for Saskatoon in 2013, 2015, and 2016. The interactions of the genotype-by-year or 

genotype-by-location were not significant (Table 4.4, Table 4.5). 

Table 4.4: Analysis of variance (ANOVA) of Fe concentration in seeds of pea GWAS panel 

over five location-years. 

Year Location  F value   

  Y L G G×Y G×L 

2013 Saskatoon . . 4.74*** . . 

2014 Fargo . . 5.03*** . . 

2015 Saskatoon . . 2.07*** . . 

2016 Saskatoon . . 1.88*** . . 

2016 Rosthern . . 3.4*** . . 

2016 Ros/Sas . 67.69*** 3.95*** . 0.93ns 

2013/2015/2016 Saskatoon 87.24*** . 4.89*** 1.04ns . 

Y –Year; L – Location; G – Genotype; *** P ≤ 0.001; ** P ≤ 0.01; * P ≤ 0.05; ns- not 

significant 

Table 4.5: Analysis of variance (ANOVA) of Zn concentration in seeds of pea GWAS panel 

over five location-years. 

Year Location  F value   

  Y L G G×Y G×L 

2013 Saskatoon . . 4.1*** . . 

2014 Fargo . . 3.24*** . . 

2015 Saskatoon . . 2.53*** . . 

2016 Saskatoon . . 4.28*** . . 

2016 Rosthern . . 5.16*** . . 

2016 Ros +Sas . 10.58*** 6.55*** . 1.03ns 

2013/2015/2016 Saskatoon 209.27*** . 5.72*** 1.28ns . 

Y –Year; L – Location; G – Genotype; *** P ≤ 0.001; ** P ≤ 0.01; * P ≤ 0.05; ns- not 

significant 

For Se concentration, the genotype effect was not significant except at 2014 Fargo. Year and 

location significantly affected the Se concentration in both the combined analysis for 2016 

and for Saskatoon. Genotype-by-year or genotype-by-location did not have a significant 

effect on Se concentration (Table 4.6). 



 

28 

 

Table 4.6: Analysis of variance (ANOVA) of Se concentration in seeds of pea GWAS panel 

over five location-years. 

Year Location  F value   

  Y L G G×Y G×L 

2013 Saskatoon . . 1.06ns . . 

2014 Fargo . . 1.99*** . . 

2015 Saskatoon . . 1.04ns . . 

2016 Saskatoon . . 0.98ns . . 

2016 Rosthern . . 0.86ns . . 

2016 Ros/Sas . 282.61*** 0.99ns . 0.85ns 

2013/2015/2016 Saskatoon 185.41*** . 1.01ns 0.92ns . 

Y –Year; L – Location; G – Genotype; *** P ≤ 0.001; ** P ≤ 0.01; * P ≤ 0.05; ns- not 

significant 

Combined analysis of variance for all the five location-years was performed considering the 

location-years as five different environments. Genotype, environment, and the genotype-by-

environment interaction had significant effects on Fe and Zn concentration. Same as the 

individual location-year analysis, the genotype effect was not significant for Se 

concentration. The environment significantly affected the Se concentration (Table 4.7).  

Table 4.7: Analysis of variance (ANOVA) for the five location-years (five environments) in 

seeds of  pea GWAS panel. 

  F values  

Micronutrient E G G×E 

Se 319.77*** 1.1ns 0.91ns 

Zn 677.56*** 10.52*** 1.44*** 

Fe 149.68*** 9.78*** 1.4*** 

E – Environment; G – Genotype; *** P ≤ 0.001; ** P ≤ 0.01; * P ≤ 0.05; ns- not significant 

Broad sense heritability is considerably high for Zn and Fe concentration, 86.4% and 85.7% 

respectively, however, it is quite low for Se concentration (8.1%) (Table 4.8). 
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Table 4.8: Variance estimates and the broad sense heritability for Fe, Zn, and Se in seeds of 

pea GWAS panel over five location-years. 

 Variance estimates (σ
2
 ) 

Source Se Zn Fe 

E 0.2597 16.9822 10.0811 

G 0.002592 8.1356 20.1224 

G×E 0 1.8983 3.9481 

Residual 0.2916 9.0168 25.6193 

H
2
 8.1% 86.4% 85.7% 

E – Environment; G – Genotype; H
2 
– Broad sense heritability 

Based on the sum of squares calculated by the combined analysis, the percentage total sums 

of squares (Semipartial eta squares; ɳ
2
) were obtained. Out of the total variation in Fe, 

contribution of the genotype was 40.5%, followed by genotype-by-environment (23.1%), the 

residual error (22.2%) and environment (14.1%). For Zn, 28.6% of the total variation can be 

explained by genotype, 41.9 % by environment, 15.7% by genotype-by-environment, and 

13.8% by residual error. Genotype explained 6.3% of the total variation in Se whereas 

environment contributed 41.6%, the genotype-by-environment 20.9%, and the residual error 

20.9% of the total variation (Table 4.9). 

Table 4.9: Percentage total sums of squares (Semipartial eta squares; ɳ
2
) for the five location-

years (five environments) in seeds of the pea GWAS panel. 

Source Fe   Zn   Se   

  Type III SS ɳ
2
  % Type III SS ɳ

2
  % Type III SS ɳ

2
 % 

G 41178.95 40.5 16467.08 28.6 55.68 6.3 

E 14316.15 14.1 24090.53 41.9 368.84 41.6 

G×E 23537.79 23.1 9022.23 15.7 185.69 20.9 

Error 22587.78 22.2 7935.86 13.8 276.8 31.2 

Total 101719.4 99.9 57480.93 100.1 887.32 100 

E – Environment; G - Genotype  
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4.1.3. Correlation analysis 

4.1.3.1. Correlation between the micronutrient concentrations 

Significant correlations were observed in all the location-years between Fe and Zn 

concentration. Fe concentration was significantly correlated with Se in all the location-years, 

except 2016 Rosthern.  The correlation between Zn and Se was only significant in 2014 

Fargo and 2016 Saskatoon. All the correlations were positive except the correlation between 

Zn and Se in 2016 Rosthern (Table 4.10). 

Table 2: Pearson‟s correlation coefficient (r) between the Fe, Zn, and Se in seeds of field pea 

over five location-years. 

Statistics              Pearson's correlation coefficient   

  2013S 2014F 2015S 2016R 2016S 

Fe and Zn 0.63*** 0.70*** 0.48*** 0.53*** 0.41*** 

Fe and Se 0.21*** 0.47*** 0.12* 0.05ns 0.18*** 

Zn and Se 0.09ns 0.40*** 0.10ns -0.07ns 0.27*** 

2013S - 2013 Saskatoon, 2014F - 2014 Fargo, 2015S - 2015 Saskatoon, 2016R - 2016 

Rosthern, 2016S - 2016 Saskatoon. *** P ≤ 0.001; ** P ≤ 0.01; * P ≤ 0.05; ns- not 

significant 

4.1.3.2. Correlation between the locations 

Three different locations were included in the five location-years of the study: Saskatoon, 

Rosthern, and Fargo. For Fe and Zn concentration, the correlation was significant between 

each of these locations. Se concentration in Saskatoon correlated significantly with both 

Rosthern and Fargo, however, Fargo and Rosthern did not correlate significantly (Table 

4.11). 

Table 4.11: Pearson‟s correlation coefficient (r) for Fe, Zn, and Se between the locations over 

five location-years. 

Statistics Pearson‟s correlation coefficient (r) 

  Fe Zn Se 

Rosthern and Saskatoon 0.73*** 0.62*** 0.19* 

Fargo and Rosthern 0.58*** 0.53*** 0.07ns 

Fargo and Saskatoon 0.63*** 0.77*** 0.26*** 

*** P ≤ 0.001; ** P ≤ 0.01; * P ≤ 0.05; ns - not significant 
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4.1.3.3. Correlation between micronutrient concentrations and agronomic data 

Lodging and DTM were significantly correlated with Fe concentration in all the location-

years.  The correlation between DTF and Fe concentration was positive in three out of five 

location-years. Yield showed a significant negative correlation with Fe in three out of five 

location-years: 2014 Fargo, 2015 Saskatoon, and 2016 Saskatoon (Table 4.12). 

Table 4.12: Pearson‟s correlation coefficient (r) between the Fe concentration and agronomic 

traits over five location-years. 

Location-

Year 

Pearson's correlation coefficient (r) 

DTF Lodging DTM Yield 

2013S 0.18*** 0.43*** 0.58*** -0.07ns 

2014F 0.42*** 0.28*** 0.55*** -0.48*** 

2015S -0.11* 0.38*** 0.12* -0.29*** 

2016S 0.05ns 0.35*** 0.26*** -0.11* 

2016R 0.11* 0.37*** 0.30*** 0.07ns 

DTF - Dates to flowering, DTM - Dates to maturity, 2013S - 2013 Saskatoon, 2014 F - 2014 

Fargo, 2015S - 2015 Saskatoon, 2016R - 2016 Rosthern, 2016S - 2016 Saskatoon.*** P ≤ 

0.001; ** P ≤ 0.01; * P ≤ 0.05; ns - not significant 

Significant correlations were observed between DTF and Zn concentration in three out of five 

location-years: 2013 Saskatoon, 2014 Fargo, and 2015 Saskatoon. Lodging was significantly 

correlated with Zn in all the location-years. Correlation between DTM and Zn concentration 

was significant in all the location-years except in 2015 Saskatoon. In general, correlation 

between yield and Zn concentration was negative except in 2016 Rosthern and the negative 

correlations were significant in 2013 Saskatoon, 2014 Rosthern, and 2015 Saskatoon (Table 

4.13) 

Both DTF and lodging score were significantly correlated with Se concentration in 2014 

Fargo but not in the other location-years. Correlation between DTM and Se concentration 

was significant in two location-years: 2013 Saskatoon and 2014 Fargo. Grain yield was 

significantly correlated with Se concentration in three out of five location-years, where the 

correlation in the two 2016 location-years were not significant. Three location-years showed 

a negative correlation with the Se concentration (Table 4.14). 
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Table 4.13: Pearson‟s correlation coefficient (r) between the Zn concentration and agronomic 

traits over five location-years. 

Location-

Year 

Pearson's correlation coefficient (r) 

DTF Lodging DTM Yield 

2013S -0.12* 0.43*** 0.23*** -0.19*** 

2014F 0.34*** 0.33*** 0.39*** -0.53*** 

2015S -0.27*** 0.19*** -0.10ns -0.45*** 

2016S 0.03ns 0.27*** 0.25*** -0.01ns 

2016R 0.08ns 0.33*** 0.18*** 0.01ns 

DTF - Dates to flowering, DTM - Dates to maturity,  2013S - 2013 Saskatoon, 2014 F - 2014 

Fargo, 2015S - 2015 Saskatoon, 2016R - 2016 Rosthern, 2016S - 2016 Saskatoon. *** P ≤ 

0.001; ** P ≤ 0.01; * P ≤ 0.05; ns - not significant 

Table 4.14: Pearson‟s correlation coefficient (r) between the Se concentration and agronomic 

traits across Rosthern, SK, Saskatoon, SK and Fargo, ND in 2013, 2014, 2015, and 2016  

Location-

Year 

Pearson's correlation coefficient (r) 

DTF Lodging DTM Yield 

2013S 0.07ns 0.08ns 0.16** 0.15** 

2014F 0.30*** 0.16** 0.33*** -0.44*** 

2015S -0.05ns 0.03ns -0.02ns -0.18*** 

2016S -0.05ns 0.09ns 0.01ns -0.05ns 

2016R 0.10ns 0.04ns 0.10ns 0.05ns 

DTF - Dates to flowering, DTM - Dates to maturity, 2013S - 2013 Saskatoon, 2014 F - 2014 

Fargo, 2015S - 2015 Saskatoon, 2016R - 2016 Rosthern, 2016S - 2016 Saskatoon. *** P ≤ 

0.001; ** P ≤ 0.01; * P ≤ 0.05; ns - not significant 
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4.2. Genotypic data analysis 

The GWAS panel accessions were genotyped using genotyping-by-sequencing (Gali et al., in 

prep) to assess the level of genetic diversity based on SNP variation. The number of raw 

sequencing reads obtained was 3.6 to 12.9 million reads per accession with an average of 

7.47 million tagged reads per accession. Of the tagged reads of individual accessions, 47-75% 

were aligned to the pea genome sequence (Source: International Pea Genome Sequencing 

Consortium).  This resulted in the identification of 1632 to 5209 SNPs per accession, 

indicating the genetic diversity of the panel accessions. A total of 14,391 SNPs identified 

across the panel accessions were used for the diversity analysis. The GWAS accessions were 

grouped into nine major clusters based on the distribution of 14,391 SNPs (Gali et al., in 

prep) (Appendix D). 

The grouping of accessions was generally consistent with geographic origin. Both the 

accessions in cluster 1 originated from Russia. The majority of the accessions originated from 

France were in cluster 3. Cluster 5 mostly consisted of Canadian accessions which were 

developed by the CDC, University of Saskatchewan. Cluster 4 and 7 mainly consisted of 

Australian origin accessions. All of the accessions originated from UK were in cluster 8 and 

9. Almost all the accessions from Netherlands were in cluster 9.  The majority of the 

accessions which had a high micronutrient concentration were in cluster 3, whereas the 

majority of the accessions which had a low micronutrient concentration were grouped in 

cluster 9 (Gali et al., in prep) (Appendix E). 

4.3. Genome wide association study 

In genome wide association study, several SNP markers were significantly associated with 

Fe, Zn, and Se concentration after Bonferroni correction (-log10 P value ≥ 5.46). None of 

these markers were significant in more than one location-year, therefore the threshold limit 

was reduced (log10 P value ≥ 3.16) to identify the presence of the significant markers at 

multiple location-years.  

Two markers significantly associated with Fe concentration: Sc_219_42293 and 

Sc_219_42326 (at -log10 P value ≥ 5.46) in 2013 Saskatoon and those two markers appeared 

in 2014 Fargo and 2016 Rosthern at -log10 P value ≥ 3.16.  Sc_6182_63782 was uniquely 

identified in 2015 Saskatoon (Table 4.15).  
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For Zn concentration, 7 SNP markers were identified at -log10 P value ≥ 5.46. All of these 

significant SNP markers were identified in the same location-year (2016 Rosthern). In 

addition, they were also significant in at least two other location-years, except 

Sc_1340_418746 which was only detected in 2016 Rosthern at -log10 P value ≥ 3.16 (Table 

4.16).  

For Se, 44 significant markers were detected at -log10 P value ≥ 5.46. Even though markers 

were significant in 2013 Saskatoon (2 markers) and 2015 Saskatoon (42 markers), Repeated 

occurrence across the location-years was not observed for any of those markers (Appendix 

F). 

The locations of the markers in the pea genome by chromosomes are unknown at this time 

(source: International Pea Genome Sequencing Consortium), but this will be pursued in 

future research.  The associated markers that were present in two or more location-years can 

be considered as having the potential to be developed and incorporated in marker assisted 

selection.  

Table 4.15: SNP markers associated with Fe concentration in seeds of pea GWAS panel over 

five location-years. 

Location-

year 
Marker 

Marker 

R
2 

% 
P value -log10 

Other location-years that 

the marker is present (-

log10 P value ≥ 3.16) 

2013S Sc_219_42293 15.5 5.57E-07 6.25** 2014F, 2016R 

2013S Sc_219_42326 15.5 5.57E-07 6.25** 2014F, 2016R 

2015S Sc_6182_63782 16.2 2.15E-06 5.67* none 

2013S - 2013 Saskatoon, 2014F - 2014 Fargo, 2015S - 2015 Saskatoon, 2016R - 2016 

Rosthern, 2016S - 2016 Saskatoon. ** P ≤ 0.01 (-log10 P value ≥ 6.16); * P ≤ 0.05 (-log10 P 

value ≥ 5.46) 
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Table 4.16: SNP markers associated with Zn concentration in seeds of the pea GWAS panel 

over five location-years. 

Location-

year 
Marker 

Marker 

R
2 

% 
P value -log10 

Other location-years that 

the marker is present (-

log10 P value ≥ 3.16) 

2016R Sc_8032_15394 17.3 1.44E-07 6.84** 2013S, 2014F 

2016R Sc_8032_15457 17.3 1.44E-07 6.84** 2013S, 2014F 

2016R Sc_8032_15361 17.4 8.58E-07 6.07* 2014F, 2016S 

2016R Sc_1512_36017 18.6 1.57E-06 5.80* 2014F 

2016R Sc_1512_35793 14.2 1.62E-06 5.79* 2014F, 2016S 

2016R Sc_1512_36043 17.8 2.75E-06 5.56* 2014F 

2016R Sc_1340_418746 19.3 3.28E-06 5.48* none 

2013S - 2013 Saskatoon, 2014F - 2014 Fargo, 2015S - 2015 Saskatoon, 2016R - 2016 

Rosthern, 2016S - 2016 Saskatoon. ** P ≤ 0.01 (-log10 P value ≥ 6.16), * P ≤ 0.05 (-log10 P 

value ≥ 5.46) 

Manhattan plots were developed for all five location-years for Fe, Zn, and Se (Figure 4.1, 4.2 

and 4.3).  
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Figure 4.1: Manhattan plots of –log10 P values of the GWAS for Fe concentration using 

MLM; a) 2013 Saskatoon, b) 2014 Fargo, c) 2015 Saskatoon, d) 2016 Rosthern, and e) 2016 

Saskatoon. The straight lines indicate the threshold of -log10 P value ≥ 1.30 and the dotted 

lines indicate Bonferroni corrected threshold of -log10 P value ≥ 5.46 at 0.05 level of 

significance, Y axis: –log10 P values, X axis: base pair numbers. 

  

  

 

Figure 4.2: Manhattan plots of –log10 P values of the GWAS for Zn concentration using 

MLM; a) 2013 Saskatoon, b) 2014 Fargo, c) 2015 Saskatoon, d) 2016 Rosthern, and e) 2016 

Saskatoon. The straight lines indicate the threshold of -log10 P value ≥ 1.30 and the dotted 

lines indicate Bonferroni corrected threshold of -log10 P value ≥ 5.46 at 0.05 level of 

significance. Y axis: –log10 P values, X axis: base pair numbers 
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Figure 4.3: Manhattan plots of –log10 P values of the GWAS for Se concentration using 

MLM;a) 2013 Saskatoon, b) 2014 Fargo, c) 2015 Saskatoon, d) 2016 Rosthern, and e) 2016 

Saskatoon. The straight lines indicate the threshold of -log10 P value ≥ 1.30 and the dotted 

lines indicate Bonferroni corrected threshold of -log10 P value ≥ 5.46 at 0.05 level of 

significance. Y axis: –log10 P values, X axis: base pair numbers 
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4.4. Validation of the identified SNP markers  

Based on association studies in GWAS panel (Tables 15,16 and Appendix E), 16 SNP 

markers for Fe, Zn, and Se were selected for validation in an unrelated pea population, PR-07 

(derived from a cross between Carrera and CDC Striker) using KASP assays. (Table 4.17). 

Table 4.17: The list of promising markers resulted from the pea GWAS panel 

No Micronutrient SNP marker 

1 Fe Sc_219_42326 

2 Fe Sc_6182_63782 

3 Fe Sc_890_604394 

4 Fe Sc_4420_108326 

5 Fe Sc_3584_82073 

6 Zn Sc_8032_15394 

7 Zn Sc_1512_36017 

8 Zn Sc_1340_418746 

9 Zn Sc_2113_215664 

10 Zn Sc_858_268917 

11 Zn Sc_433_404350 

12 Zn Sc_2859_396829 

13 Se Sc_1139_105036 

14 Se Sc_3049_27354 

15 Se Sc_5765_134167 

16 Se Sc_6064_83250 

These 16 SNP markers were used to design primers to conduct validation of the markers. 

Thirteen markers succeeded from the quality control step where the other 3 which had extra 

degenerate nucleotides were not effective for primer designing (Table 4.18).  
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Table 4.18: List of allele specific primers designed for the 13 SNP markers (two forward 

primers and one common primer for each SNP locus). 

No Primer Sequence (5' to 3') 

1 Sc219_42326_ALT GAAGGTGACCAAGTTCATGCTCCAGAGAACAACAACCCTGTCT 

 

Sc219_42326_ALC GAAGGTCGGAGTCAACGGATTCCAGAGAACAACAACCCTGTCC 

 

Sc219_42326_C1 GACTATGTTGACATGAACTCAGGGAATTT 

   2 Sc6182_63782_ALT GAAGGTGACCAAGTTCATGCTCATGAAGTGGTGCCCCTTTATCAA 

 

Sc6182_63782_ALA GAAGGTCGGAGTCAACGGATTCATGAAGTGGTGCCCCTTTATCAT 

 

Sc6182_63782_C1 CMTGGGGTGCTGTTTGGAA 

   3 Sc890_604394_ALG GAAGGTGACCAAGTTCATGCTTTWCTTTTGCTATTTTTTTAATCATAAATTTG 

 

Sc890_604394_ALT GAAGGTCGGAGTCAACGGATTTWCTTTTGCTATTTTTTTAATCATAAATTTT 

 

Sc890_604394_C2 ACATTTGATCARATTTCGTGTATATA 

   4 Sc4420_108326_ALG GAAGGTGACCAAGTTCATGCTCATCAAAAGACCAAGGGAACAATGTC 

 

Sc4420_108326_ALT GAAGGTCGGAGTCAACGGATTACATCAAAAGACCAAGGGAACAATGTA 

 

Sc4420_108326_C1 GATAGAATAGTTTTTGACAATGAGATTCTT 

   5 Sc3584_82073_ALT GAAGGTGACCAAGTTCATGCTATTCTGAAGCTTCAAAGAACAACACCT 

 

Sc3584_82073_ALA GAAGGTCGGAGTCAACGGATTCTGAAGCTTCAAAGAACAACACCA 

 

Sc3584_82073_C1 GTAGAAACTGCAAATATGTGCCYGGTT 

   6 Sc8032_15394_ALA GAAGGTGACCAAGTTCATGCTGAACTGGGATACAAYCACCA 

 

Sc8032_15394_ALG GAAGGTCGGAGTCAACGGATTGAACTGGGATACAAYCACCG 

 

Sc8032_15394_C1 TACWAGTAGCAAGTCAAT 

   7 Sc1512_36017_ALC GAAGGTGACCAAGTTCATGCTTCTTCACAAAACGAAGATGGTACTG 

 

Sc1512_36017_ALG GAAGGTCGGAGTCAACGGATTCTTCACAAAACGAAGATGGTACTC 

 

Sc1512_36017_C1 TTCATCATTCTGAACACTGACATCATCYTT 

   8 Sc2113_215664_ALA GAAGGTGACCAAGTTCATGCTAAATCTCAAGCTGATGTTGATCAGGTT 

 

Sc2113_215664_ALG GAAGGTCGGAGTCAACGGATTATCTCAAGCTGATGTTGATCAGGTC 

 

Sc2113_215664_C1 TAATTGATTATCAGWAACATTAA 

   9 Sc858_268917_ALT GAAGGTGACCAAGTTCATGCTGCTAGCTCTATTGCATGTGATYTA 

 

Sc858_268917_ALC GAAGGTCGGAGTCAACGGATTGCTAGCTCTATTGCATGTGATYTG 

 

Sc858_268917_C2 AAAGATTCYAAATACATTAAATA 

   10 Sc433_404350_ALT GAAGGTGACCAAGTTCATGCTAATGAATCAAAAGATTAAACARCAAACAATGAA 

 

Sc433_404350_ALC GAAGGTCGGAGTCAACGGATTATGAATCAAAAGATTAAACARCAAACAATGAG 

 

Sc433_404350_C1 AGCGAGAAATCAACAACAATCAATACSATT 

   11 Sc2859_396829_ALT GAAGGTGACCAAGTTCATGCTCCGACATGTGTCTGTGTCAATGT 

 

Sc2859_396829_ALC GAAGGTCGGAGTCAACGGATTCCGACATGTGTCTGTGTCAATGC 

 

Sc2859_396829_C1 GATATAATACAACACTGACACGGACACTA 

   12 Sc1139_105036_ALC GAAGGTGACCAAGTTCATGCTGTCTAGAAGGCCGGATTAGKTATG 

 

Sc1139_105036_ALA GAAGGTCGGAGTCAACGGATTAGTCTAGAAGGCCGGATTAGKTATT 

 

Sc1139_105036_C1 CYGAGATAATTGCGAAATAAAAAATGAATA 
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13 Sc6064_83250_ALC GAAGGTGACCAAGTTCATGCTAAGCCACACCAACATGTTRCTGG 

 

Sc6064_83250_ALT GAAGGTCGGAGTCAACGGATTGAAGCCACACCAACATGTTRCTGA 

  Sc6064_83250_C1 ATATCTAACTGCAGAATCTCCACTYAACTA 

One SNP locus Sc_1512_36017 which was identified for Zn was polymorphic for the parents 

(CDC Striker and Carrera) of population PR07. For the rest of the twelve markers, the alleles 

of the particular SNP locus were either distributed across the plot or not closely grouped, thus 

were considered as not polymorphic for the parents. Therefore, those markers were not able 

to be cross validated with PR-07.  The polymorphic marker Sc_1512_36017 was genotyped 

with the PR-07 RILs and significant allele discrimination could be observed (Figure 4.4). Out 

of 94 lines of PR-07 tested, 49 lines had allele C and 41 lines had allele G, while three were 

heterozygotes and one was undetermined. Five out of six location-years of the PR-07 RIL 

population showed a significant difference (P ≤ 0.001) between the two allele groups in terms 

of Zn concentration. The highest group mean and standard deviation were observed in 2010 

SPG, 4.5 µg/g and 3.1 µg/g, respectively, in the two allele groups. Combined analysis also 

showed a significant difference between the two allelic groups (P ≤ 0.001) (Table 4.19).  

 

Figure 4.4: Allele discrimination plot of the KASP genotyping for the SNP locus 

Sc1512_36017 with the PR-07 RIL populationP1 – Carrera; P2 – CDC Striker; - Allele 1; 

- Heterozygotes; - Allele 2; - Blanks; - Undetermined, RFU; VIC; FAM). 

 

 



 

41 

 

Table 4.19: Descriptive statistics of the two allele groups for Zn concentration in PR-07 RIL 

population based on the presence of the alleles C and G in the SNP locus Sc1512_36017 over 

six location-years. 

Location-

year 
Allele N 

Mean 

(µg/g) 
SD 

Minimum 

(µg/g) 

Maximum 

(µg/g) 

t-value 

 

2010 C 49 32.8 1.8 28.0 36.6  

Rosthern G 41 28.9 2.8 25.1 37.6 8.1*** 

2010 C 49 36.9 2.7 27.2 41.0  

SPG G 41 32.5 3.5 26.6 40.6 6.8*** 

2011 C 49 31.4 2.1 26.9 37.5  

Rosthern G 41 28.9 2.6 23.9 38.7 5.0*** 

2011 C 49 27.6 2.5 20.9 32.8  

SPG G 41 25.5 2.7 17.4 33.1 3.8*** 

2012 C 49 33.2 2.8 26.6 39.3  

Rosthern G 41 30.9 3.3 26.9 38.7 3.6*** 

2012 C 49 28.3 2.4 23.3 33.7  

SPG G 41 29.1 3.0 24.2 36.7 1.4ns 

Combined C 49 31.7 1.4 27.6 35.0  

 

G 41 29.3 2.0 26.3 35.2 6.7*** 

N – Number of RILs; SD – Standard deviation; *** P ≤ 0.001; ** P ≤ 0.01; * P ≤ 0.05; ns - 

not significant 

The Linkage map was re-constructed for PR-07 incorporating Sc1512_36017 and it provided 

the same order of markers, and clustering of sub-linkage groups as reported by Gali et al. 

(2018) (Appendix H). The marker Sc1512_36017 co-located with Sc11336_48840 on LGIIIb 

in PR-07 (Figure 4.5).  Sc11336_48840 was the flanking marker of a QTL for seed Zn 

concentration in four of the six location-years in PR-07, and it explained 50.1% of total 

phenotypic variation (Gali et al. 2018). 
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Figure 4.5: LGIIIb of PR-07.The markers in green represent the QTL interval (87.7-91.0cM) 

for the trait, Zn concentration, whereas the marker in red is co-localized marker 

Sc1512_36017 with Sc11336_48840 

 

 

LGIIIb
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5. Discussion 

Micronutrient concentration in pea seeds is a quantitative trait which is an important quality 

trait of the crop. Phenotyping of a diverse collection of pea varieties for micronutrient 

concentration using atomic absorption spectroscopy and their association with genotypic data 

using genome-wide association study (GWAS) was useful to identify single nucleotide 

polymorphism (SNP) markers that could assist in the biofortification of this crop. 

5.1. Inferences on phenotypic data 

In the present study, mean concentration for the combined analysis of the five location-years 

were 50.46, 29.49, and 0.95 and the concentration (µg/g) ranged from 29.22 to 90.53, 12.83 

to 51.47 and 0.06 to 8.75 in the pea seed flour for Fe, Zn, and Se, respectively.  In a similar 

study of 94 accessions of pea in Rosthern and Saskatoon in 2011 and 2012, mean 

concentrations (µg/g) were reported as 45.32, 33.74, and 0.88, and the concentration (µg/g) 

ranged from 25.71–93.68, 14.39–92.51, and 0.08–5.53, respectively for Fe, Zn, and Se 

(Diapari et al., 2015). Ray et al. (2014) reported the mean concentration (mg/ kg) as 53.6, 

30.5, and 4.7 and the concentrations ranged from 47.7 to 58.1 for Fe, from 27.4 to 34.0 for 

Zn, and from 0.4 to 5.5 for Se in mg/ kg in a study using 17 pea cultivars grown at six 

locations in Saskatchewan in 2005 and 2006. The range of the Fe, Zn, and Se are noticeably 

higher in our study compared with Ray et al. (2014), which may be due to the diversity of the 

177 GWAS accessions in our study. 

In the present study, the mean Fe concentration in pea seeds harvested at Rosthern (53.81 ± 

6.66 µg/g) was higher than those harvested at Saskatoon in the average of all three location-

years (48.51 ± 6.74 µg/g). The same pattern occurred in Zn concentration: 33.55 ± 4.92 at 

Rosthern compared with 30.26 ± 4.46 at Saskatoon. A similar trend was reported for pea by 

Diapari et al. (2015) for Fe, 47.96 ± 5.95 and 42.65 ± 6.35, and for Zn, 35.77 ± 5.53 and 

31.17 ± 5.95 for Rosthern and Saskatoon, respectively. 

The CV% did not vary greatly among individual location-years for Fe and Zn, except for 

Fargo, which was somewhat greater than the others.  However, for Se, the CV% differed 

considerably across the location-years. The lowest CV among the location-years was 

observed at Fargo. The CV% for the combined dataset were 15.1, 19.4, and 75.6, for Fe, Zn 

and Se, respectively. Similar CVs were reported by Diapari et al. (2015) for Fe, Zn, and Se 

(14.7%, 18.5%, and 91.5%).  
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The GWAS genotypes differed significantly (P ≤ 0.001) for Fe and Zn concentration at all 

location-years. However, for Se, genotypes only differed significantly at Fargo. Year and 

location effects were significant for all three micronutrients, however, genotype-by-year and 

genotype-by-location effects were not significant (P ≤ 0.001) for any of the location-years. 

Diapari et al. (2015) reported a similar result with significant genotype effect in pea (P ≤ 

0.001) for Fe and Zn, but not for Se, with significant year and location effects of all the three 

micronutrients. Thavarajah et al. (2010) also did not observe significant genotypic differences 

in total Se concentration among 17 field pea cultivars grown at six locations for two years in 

Saskatchewan. Significant genotype effects of Fe and Zn were observed in other pulse crops 

as well, such as lentil (Khazaei et al., 2017; Vandemark et al., 2018.), chickpea (Diapari et 

al., 2014; Vandemark et al., 2018) and soybean (King et al. 2013). 

The variation in Fe and Zn concentration in seeds was mainly due to the genetic factor. From 

the broad sense heritability test, considerable genetic variation between individual accessions 

in the GWAS panel could be observed in Zn and Fe (86.4% and 85.7%, respectively) but not 

in Se (8.1%). In lentil, Khazaei et al. (2017) reported that the broad-sense heritability was 

higher for seed concentration of Fe (78% and 90%) compared with that of Zn (44% and 68%) 

in both years (2013 and 2014, respectively). When considering the cereal crops, sorghum 

showed 98% heritability for both Fe and Zn content (Badigannavar et al., 2016).  

In terms of the percentage total sums of squares (Semipartial eta squares; ɳ
2
), the genotype 

explained 40.5%, 28.6%, and 6.3% for Fe, Zn, and Se respectively. Diapari et al. (2015) 

observed a similar result that Se concentration showed a very low genotypic contribution 

compared with Fe and Zn (60.3 %, 66.5%, and 2.7% for Fe, Zn, and Se respectively). In 

contrast, the genotypic contribution for Fe and Zn variation in the present study is less than 

the values reported by Diapari et al. (2015). Any difference between the ɳ
2 
compared with 

this previous study may be due to location and year effects. For example, in our study, Se 

concentration in Fargo, was differed substantially from the locations in Saskatchewan. Se 

concentration was less in North Dakota (0.33 μg/g) than Saskatchewan (0.73 μg/g) in 

chickpea as well (Vandemark et al., 2018).  

Significant correlations were observed in all the location-years between Fe and Zn 

concentration (P ≤ 0.05).  Se concentration was significantly correlated with Fe in all the 

location-years, except 2016 Rosthern (P ≤ 0.05).  The correlation between Se and Zn was 

only significant in 2014 Fargo and 2016 Saskatoon (P ≤ 0.05).  When considering the 20 
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accessions with the greatest and the least concentration of Fe, Zn, and Se for the combined 

analysis across all the location-years, many of them were common between Fe and Zn. 

Within the 20 accessions with the greatest concentration, the accession „Serpette D'auvergne‟ 

which was originated from France appeared in all three micronutrients (Appendix E). Similar 

correlations between Fe, Zn, and Se were observed by Diapari et al. (2015) and Ma et al. 

(2017).  A positive correlation between Fe and Zn was also reported in lentil (Khazaei et al., 

2017), chickpea (Diapari et al., 2014), maize (Akinwale & Adewopo, 2016) and durum wheat 

(Magallanes-López et al., 2017). The reason could be the same QTL controls Fe and Zn 

concentration, or linked QTLs control the two traits. Several studies have identified QTLs 

associated with grain Zn and Fe concentration that have been mapped in the same 

chromosomal region in wheat (Tiwari et al., 2009, Crespo-Herrera et al., 2017).   

Concentration of Fe, Zn, and Se were significantly correlated (P ≤ 0.05) between each 

location with the exception of Se concentration between Fargo and Rosthern. Diapari et al. 

(2015) also reported a strong correlation between Fe and Zn across locations, but weak to no 

correlation in the case of Se. In the present study, it is not a surprise to see the exception in Se 

when considering the range and CV% of the Se concentration in Fargo and Rosthern. Soil 

factors, precipitation, and temperature may have played a role for this exception. According 

to Environment Canada weather data, mean temperatures in Rosthern and Saskatoon for 

2013, 2015 and 2016 were similar (~16 ºC). However, 2016 was a wetter year than other 

growing years of the study (184.1, 143.5, 220.1, and 240.3 in mm for 2013 Saskatoon, 2015 

Saskatoon, 2016 Saskatoon and 2016 Rosthern, respectively). 2014 was considered as above 

average for precipitation and below average for temperature in North Dakota (National 

Climate Report, USA, 2014).  

It is important to consider the effect of the environmental factors as well on the seed 

micronutrient concentration, especially the soil in the crop field. A concurrent study of soil in 

Rosthern and Saskatoon for the GWAS accessions showed that the CV was higher in 

Rosthern than Saskatoon for the Fe, Zn, and Se concentration in soil (Appendix I). The pea 

accessions grown in the same fields showed the same pattern for the Fe, Zn, and Se 

concentration in seeds. However, when considering the correlation between soil and seed 

concentration, noticeable relationship could not be demonstrated. Rosthern soil texture was 

mostly silt loam in 0-15 cm and 15-30 cm depths and silty clay loam in the 30-60 cm depth, 

while at Saskatoon the three depths are more similar with the texture, which is a mixture of 

silt, loam, and clay. Other than the concentration of the micronutrients in the soil, various 
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different factors such as nutrient interactions in soil, microbial activity, redox potential and 

aeration also regulate the availability of the micronutrients for the plants (Kumar et al., 2016).  

Generally, Fe and Zn concentration showed a significant positive correlation with lodging 

and days to maturity in all the location-years but correlation was not significant for Se 

concentration. In the majority of the location-years for all three micronutrients, grain yield 

was negatively correlated with concentration (Appendix G). Accessions with high lodging 

scores, i.e., with weak stems, tended to be low yielding and with greater Fe and Zn 

concentration.  Ma et al. (2017) demonstrated negative correlations between seed weight and 

all the mineral nutrient concentrations they studied including Fe and Zn in pea.  Yield showed 

a significant positive correlation with Fe but significant negative correlation with Zn in lentil 

and chickpea (Vandemark et al., 2018). Fe and Zn concentration showed significant negative 

correlations with grain yield in wheat (Morgounov et al., 2007), and soybean (Oliveira et al., 

2016).  It has been hypothesized that when the yield increases, the concentrations of mineral 

elements in produce decreases because of a “dilution effect” caused by plant growth rates 

exceeding the ability of plants to acquire these elements; both environmental and genetic 

factors affect this phenomenon (Jarrell and Beverly, 1981; Davis et al. 2004; White et al., 

2009). 

In the present study, Fe showed significant positive correlation with days to flowering in 

many of the location-years, but the correlations were either negative or not significant for Zn 

and Se. A similar result was demonstrated in lentil and chickpea by Vandemark et al. (2018). 

5.2. Potential SNP markers for micronutrient concentration 

GWAS panel accessions were grouped into 9 clusters in the diversity analysis.  The majority 

of the clusters included accessions with the same origin (Gali et al., in prep.). Diapari et al. 

(2015) reported that the grouping of 96 pea accessions was consistent with their geographic 

origin. 

Association study resulted 3 SNP markers for Fe, 7 SNP markers for Zn, and 44 SNP markers 

for Se, which are significant (-log P value ≥ 5.46) for the concentration.  All the three 

markers that were significant for Fe were identified from the location Saskatoon. Two out of 

the three markers identified for Fe were in the same scaffold Sc_219 and closely positioned 

in the sequence. When observing under the lower threshold (-log P value ≥ 3.16), 

Sc_219_42293 and Sc_219_42326 were appeared in three location-years out of five. Each of 

https://journals.ashs.org/hortsci/view/journals/hortsci/44/1/article-p6.xml#B40
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these two markers accounted for 15.5% of the total phenotypic variation. Considering the 

facts, any of those two markers has a great potential to be used in MAS.  

The seven markers identified significant for Zn concentration were distributed among three 

scaffolds, Sc_8032, Sc_1512, and Sc_1340. All the markers appeared common in at least two 

location-years, except Sc_1340_418746 which only appeared in 2016 Rosthern (at -log P 

value ≥ 3.16).  

Even though, 44 SNP markers could be identified for the Se concentration, there are few facts 

that have to be considered. Se showed a high coefficient of variation in all the location-years, 

78.3%, 22.6%, 44.2%, 39%, and 51.8% in 2013 Saskatoon. 2014 Fargo, 2015 Saskatoon, 

2016 Saskatoon, and 2016 Rosthern, respectively. Also, the CVs are not in a similar range 

across the location-years compared with the other two micronutrients: Fe and Zn, which 

suggest that the Se concentration largely depends upon the location and the year. Further, Se 

shows a low broad sense heritability (8.1%). Moreover, ANOVA results provide evidence 

that genotypic effect is insignificant for the Se concentration (P ≤ 0.05) in many of the cases. 

Therefore, the possibility of the markers identified for the Se concentration to be used in 

MAS is less compared with the markers identified for Fe and Zn concentration.  

In a marker-trait association study conducted by Diapari et al. (2015) reports a total of nine 

SNPs (-log 10 P value ≥ 4.2) for Fe and two SNPs for Zn which were significantly associated 

with the concentration. However, none of the SNP markers were associated with the pea seed 

Se concentration after discarding the markers considering the high CV and the high location 

effect for Se (Diapari et al., 2015). In contrast, the current study succeeded to discover seven 

strongly associated markers for Zn at a higher threshold limit of -log P value ≥ 5.46 

compared to a threshold limit of -log 10 P value ≥ 4.2 reported by Diapari et al. (2015) . In 

lentil, Khazaei et al. (2017) used a threshold of -log 10 P value ≥ 4.36 to detect strong 

associations and lower thresholds of -log 10 P value ≥ 3.36 and 3.06 to observe the common 

markers across the sites. Diapari et al. (2014) reported significant markers for chickpea at -

log 10 P value ≥ 3.1.  At a lower threshold of -log P value ≥ 3.16, we could observe more 

SNP markers associated with Fe and Zn for pea, however, the strongest markers were 

selected to be validated in an unrelated population as described in section 5.3. 

5.3. QTLs for micronutrient concentration 

For the validation, significant markers were identified based on the P value (-log P value ≥ 

5.46). When a multiple marker appeared in the same scaffold closely positioned (100-150 
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base pair distance), one of the markers was chosen for the validation. Also, the markers 

which are non-significant for Bonferroni threshold, but the -log P value is greater than 3.16 

were ranked in a descending order. Few noteworthy markers with higher -log P value at 

multiple location-years were also selected. A number of 16 markers were resulted to be 

validated. Due to the extra degenerate nucleotides beside the particular SNP, 3 out of 16 

markers failed from the quality control and therefore, only 13 markers were validated with 

PR-07. Twelve out of the 13 markers were not polymorphic for the PR-07 parents: Carrera 

and CDC Striker at their particular SNP locus. The marker which was polymorphic 

(Sc1512_36017 with 18.6% contribution to the phynotypic variation) was genotyped with the 

PR-07 RILs and distinct allele discrimination could be observed. 

QTL regions can be determined by linkage mapping the markers with the existing genotyping 

information to make inferences on strong applicability of the markers in MAS. The marker 

Sc1512_36017 was co-localized with Sc11336_48840 on LGIIIb in PR-07. Sc11336_48840 

has identified by Gali et al. (2018) to be the flanking marker of QTL for seed Zn 

concentration in four of the six field trials.  Diapari et al. (2015) mapped two Zn-associated 

SNPs on LGIII where PsC7872p386 and PsC3195p368 explained 11.5% and 9.2 % of the 

genetic variation, respectively. In Gali et al. (2018), the marker PsC3195p368 was also 

reported as flanking marker with Sc11336_48840 in the QTL interval of 87.9-91.1cM and the 

marker PsC7872p386 was closely positioned to the Sc11336_48840. The Sc11336_48840 

that was strongly associated with seed Zn concentration had LOD 17.3 and it explained 

50.1% of phenotypic variance. Ma et al. (2017) reported QTL, [Zn]-Ps3.1 for seed Zn 

concentration in a mapping population of pea (Aragorn × Kiflica) on LGIII, whereas Gali et 

al. (2018) reported another QTL for Zn concentration on LGIIIb in PR-02 RIL population of 

pea (Orb×CDC Striker). These literature support that the validated marker Sc1512_36017 has 

a great possibility to be used in marker assisted selection for Zn concentration in field pea.  

 To date, there is only one study which reported pea association mapping for micronutrients 

which used 94 pea accessions, genotyped by Illumina GoldenGate assay with 1233 SNP 

markers (Diapari et al., 2015).  The current study is the first in which a large number of 

accessions were used (177), sequenced with next generation sequencing: GBS with 14,391 

SNP markers. Also, we used data from three different locations covering Saskatchewan and 

North Dakota in four years: 2013, 2014, 2015, and 2016. In contrast, Diapari et al. (2015) 

used data from two locations in Saskatchewan in two years: 2011 and 2012. Moreover, the 

present study is the first pea association mapping study where the identified markers were 
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crossed checked and validated on an unrelated population. To date, the present study is the 

most robust marker-trait association study in pea for micronutrients. 

5.4. Conclusion and future research 

In this research, 3 significant markers were detected for Fe concentration and 7 significant 

markers for Zn concentration (-log10 P value ≥ 5.46). Five markers for Fe, 7 markers for Zn, 

and 4 markers for Se were validated in pea recombinant inbred line population PR-07 

(derived from Carrera × CDC Striker). The marker Sc1512_36017 was identified to co-

localize with Sc11336_48840 on LGIIIb which was earlier reported to be the flanking marker 

of a quantitative trait loci (QTL) for seed Zn concentration. To improve the efficiency and 

precision of conventional plant breeding, this marker has good potential to be used in marker 

assisted selection in pea breeding.   

In future research, the identified markers can be tested in other parental population as well 

where the parents are polymorphic for the particular SNP locus. When the pea genome 

sequence is available, the SNP markers identified for micronutrients can be used for gene 

annotation which will allow identification of the coding and non-coding regions of the gene, 

gene locations and functions. 
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Appendix 

Appendix A: Pea genome wide association study (GWAS) panel from University 

of Saskatchewan pea breeding program 

Entry Accession name Seed source Country of origin 

1 PS05ND0232 NDSU, Fargo, ND USA 

2 PS07ND0164 NDSU, Fargo, ND USA 

3 PS07ND0190 NDSU, Fargo, ND USA 

4 NDP080111 NDSU, Fargo, ND USA 

5 NDP080138 NDSU, Fargo, ND USA 

6 Bohatyr NDSU, Fargo, ND Czech Republic 

7 Shawnee NDSU, Fargo, ND USA 

8 PS05ND327 NDSU, Fargo, ND USA 

9 PS05ND330 NDSU, Fargo, ND USA 

10 PS05ND0434 NDSU, Fargo, ND USA 

11 Audit Limagrain, Netherlands Netherlands 

12 Avantgarde Limagrain, Netherlands Netherlands 

13 Lasso Limagrain, Netherlands Netherlands 

14 Quadril Limagrain, Netherlands Netherlands 

15 Rebel Limagrain, Netherlands Netherlands 

16 Satelit Limagrain, Netherlands Netherlands 

17 Nette Limagrain, Netherlands Netherlands 

18 Emerald Limagrain, Netherlands Netherlands 

19 Evergreen Limagrain, Netherlands Netherlands 

20 Abarth Limagrain, Netherlands Netherlands 

21 Sorento Limagrain, Netherlands Netherlands 

22 Neon Limagrain, Netherlands Netherlands 

23 Strada Limagrain, Netherlands Netherlands 

24 Prophet Limagrain, Netherlands Netherlands 

25 Garde Limagrain, Netherlands Netherlands 

26 Camry Limagrain, Netherlands Netherlands 

27 Matrix Limagrain, Netherlands Netherlands 

28 CEB-Montech 4152 Limagrain, Netherlands Netherlands 

29 Spider Limagrain, Netherlands Netherlands 

30 Aukland Limagrain, Netherlands Netherlands 

31 Lifter USDA, Pullman, WA USA 

32 Serge USDA, Pullman, WA USA 

33 Medora USDA, Pullman, WA USA 

34 Melrose USDA, Pullman, WA USA 

35 Dove HR USDA, Pullman, WA USA 

36 GRAY'S USDA, Pullman, WA USA 

37 No. 9292 USDA, Pullman, WA USA 

38 G 9173 USDA, Pullman, WA USA 

39 No. 8120 USDA, Pullman, WA USA 

40 

AMPLISSIMO 

ZAZERSKIJ USDA, Pullman, WA Russia 

41 PLP 105A USDA, Pullman, WA India 
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42 22778 USDA, Pullman, WA Ethiopia 

43 22791 USDA, Pullman, WA Ethiopia 

44 Klatovsky zeleny Palacký University, Czech Republic Czech Republic 

45 Milion zeleny Palacký University, Czech Republic Czech Republic 

46 Slovensky expres Palacký University, Czech Republic Czech Republic 

47 
Moravsky Hrotovicky 
krajovy Palacký University, Czech Republic Czech Republic 

48 Dalibor Palacký University, Czech Republic Czech Republic 

49 Dick Trom Palacký University, Czech Republic Czech Republic 

50 Prebohatyr Palacký University, Czech Republic Czech Republic 

51 Odeon Palacký University, Czech Republic Czech Republic 

52 Kamelot Palacký University, Czech Republic Czech Republic 

53 B 99/108 Palacký University, Czech Republic Czech Republic 

54 Sponsor Palacký University, Czech Republic Czech Republic 

55 Terno Palacký University, Czech Republic Czech Republic 

56 Moravska krajova Palacký University, Czech Republic Czech Republic 

57 Purpurviolett Schottige Nero Palacký University, Czech Republic Czech Republic 

58 Stupicka jarni Palacký University, Czech Republic Czech Republic 

59 Kapucin Palacký University, Czech Republic Czech Republic 

60 Carouby de Maussane INRA, Dijon, France France 

61 Champagne INRA, Dijon, France France 

62 Chemin Long INRA, Dijon, France France 

63 Cote D'or INRA, Dijon, France France 

64 Fin de la Bievre INRA, Dijon, France France 

65 Gloire de Correze INRA, Dijon, France France 

66 Merveille D'etampes INRA, Dijon, France France 

67 Normand INRA, Dijon, France France 

68 Picar INRA, Dijon, France France 

69 Piver INRA, Dijon, France France 

70 Serpette D'auvergne INRA, Dijon, France France 

71 Morgan DPI, Horsham, Australia Australia 

72 EXCELL DPI, Horsham, Australia Australia 

73 KASPA DPI, Horsham, Australia Australia 

74 OZP0805 DPI, Horsham, Australia Australia 

75 OZP0819 DPI, Horsham, Australia Australia 

76 OZP0902 DPI, Horsham, Australia Australia 

77 OZP0903 DPI, Horsham, Australia Australia 

78 OZP1001 DPI, Horsham, Australia Australia 

79 OZP1002 DPI, Horsham, Australia Australia 

80 OZP1101 DPI, Horsham, Australia Australia 

81 OZP1004 DPI, Horsham, Australia Australia 

82 OZP1103 DPI, Horsham, Australia Australia 

83 OZP1104 DPI, Horsham, Australia Australia 

84 OZP1102 DPI, Horsham, Australia Australia 

85 PARAFIELD DPI, Horsham, Australia Australia 

86 PBA GUNYAH DPI, Horsham, Australia Australia 



 

66 

 

87 PBA OURA DPI, Horsham, Australia Australia 

88 PBA PERCY DPI, Horsham, Australia Australia 

89 PBA TWILIGHT DPI, Horsham, Australia Australia 

90 STURT DPI, Horsham, Australia Australia 

91 BK12 John Innes Centre, Norwich, UK UK 

92 BK72 John Innes Centre, Norwich, UK UK 

93 BK83 John Innes Centre, Norwich, UK UK 

94 BK88 John Innes Centre, Norwich, UK UK 

95 KB115 John Innes Centre, Norwich, UK UK 

96 KB117 John Innes Centre, Norwich, UK UK 

97 KB121 John Innes Centre, Norwich, UK UK 

98 KB124 John Innes Centre, Norwich, UK UK 

99 KB138 John Innes Centre, Norwich, UK UK 

100 KB139 John Innes Centre, Norwich, UK UK 

101 KB144 John Innes Centre, Norwich, UK UK 

102 KB151 John Innes Centre, Norwich, UK UK 

103 KB168 John Innes Centre, Norwich, UK UK 

104 BE15 John Innes Centre, Norwich, UK UK 

105 BE47 John Innes Centre, Norwich, UK UK 

106 BE99 John Innes Centre, Norwich, UK UK 

107 EB125 John Innes Centre, Norwich, UK UK 

108 EB157 John Innes Centre, Norwich, UK UK 

109 EB173 John Innes Centre, Norwich, UK UK 

110 EB188 John Innes Centre, Norwich, UK UK 

111 EB192 John Innes Centre, Norwich, UK UK 

112 EB193 John Innes Centre, Norwich, UK UK 

113 EB208 John Innes Centre, Norwich, UK UK 

114 BE218 John Innes Centre, Norwich, UK UK 

115 BE220 John Innes Centre, Norwich, UK UK 

116 EK3 John Innes Centre, Norwich, UK UK 

117 EK9 John Innes Centre, Norwich, UK UK 

118 EK11 John Innes Centre, Norwich, UK UK 

119 EK25 John Innes Centre, Norwich, UK UK 

120 EK34 John Innes Centre, Norwich, UK UK 

121 EK69 John Innes Centre, Norwich, UK UK 

122 EK73 John Innes Centre, Norwich, UK UK 

123 EK80 John Innes Centre, Norwich, UK UK 

124 KE106 John Innes Centre, Norwich, UK UK 

125 KE109 John Innes Centre, Norwich, UK UK 

126 KE134 John Innes Centre, Norwich, UK UK 

127 KE160 John Innes Centre, Norwich, UK UK 

128 KE206 John Innes Centre, Norwich, UK UK 

129 Kahuna-PGRO John Innes Centre, Norwich, UK UK 

130 Enigma-PGRO John Innes Centre, Norwich, UK UK 

131 EB181 John Innes Centre, Norwich, UK UK 

132 Brutus John Innes Centre, Norwich, UK UK 
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133 Kahuna-NIAB John Innes Centre, Norwich, UK UK 

134 Enigma-NIAB John Innes Centre, Norwich, UK UK 

135 Cameor INRA, Dijon, France France 

136 TMP 15116 CDC, University of Saskatchewan Ukraine 

137 TMP 15133 CDC, University of Saskatchewan Lithuania 

138 TMP 15159 CDC, University of Saskatchewan Russia 

139 TMP 15202 CDC, University of Saskatchewan Russia 

140 TMP 15206 CDC, University of Saskatchewan Russia 

141 MPG87 CDC, University of Saskatchewan Canada 

142 TMP 15213 CDC, University of Saskatchewan Belarus 

143 Cutlass CDC, University of Saskatchewan Canada 

144 CDC Bronco CDC, University of Saskatchewan Canada 

145 CDC Centennial CDC, University of Saskatchewan Canada 

146 CDC Golden CDC, University of Saskatchewan Canada 

147 CDC Meadow CDC, University of Saskatchewan Canada 

148 DS Admiral CDC, University of Saskatchewan Denmark 

149 Eclipse CDC, University of Saskatchewan Netherlands 

150 CDC Striker CDC, University of Saskatchewan Canada 

151 Cooper CDC, University of Saskatchewan Netherlands 

152 Nitouche CDC, University of Saskatchewan Denmark 

153 Matar CDC, University of Saskatchewan India 

154 Carneval CDC, University of Saskatchewan Sweden 

155 MP1401 CDC, University of Saskatchewan Canada 

156 Orb CDC, University of Saskatchewan UK 

157 Alfetta CDC, University of Saskatchewan Netherlands 

158 CDC Sage CDC, University of Saskatchewan Canada 

159 Espace CDC, University of Saskatchewan Netherlands 

160 Terese CDC, University of Saskatchewan France 

161 Torsdag CDC, University of Saskatchewan Russia 

162 Delta CDC, University of Saskatchewan Netherlands 

163 CDC Acer CDC, University of Saskatchewan Canada 

164 Naparnyk CDC, University of Saskatchewan Russia 

165 Trapper CDC, University of Saskatchewan Canada 

166 Radley CDC, University of Saskatchewan UK 

167 CDC Vienna CDC, University of Saskatchewan Canada 

168 Highlight CDC, University of Saskatchewan Sweden 

169 CDC 1-150-81 CDC, University of Saskatchewan Canada 

170 CDC 1-2347-144 CDC, University of Saskatchewan Canada 

171 Agassiz CDC, University of Saskatchewan Canada 

172 Hardy CDC, University of Saskatchewan France 

173 Cartouche CDC, University of Saskatchewan France 

174 Superscout CDC, University of Saskatchewan USA 

175 Lido CDC, University of Saskatchewan Denmark 

176 Aragorn CDC, University of Saskatchewan USA 

177 CDC Dakota CDC, University of Saskatchewan Canada 
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Appendix B: Preliminary study to determine appropriate sample size for AAS 

evaluations 

Methodology: 

In order to determine the appropriate sample size for AAS evaluations, seed samples of three 

selected cultivars, i.e., CDC Striker, CDC Dakota, and CDC Meadow, obtained from two 

locations in 2016, Rosthern and Saskatoon, with two biological replicates per location were 

analyzed in three sample sizes of 10 seeds, 60 seeds, and 120 seeds following the 

methodology described in Chapter 3. Factorial analysis of variance was performed for 

obtained concentration using a general linear model in SAS 9.3. 

Results: 

Table B.1: Fe, Zn, and Se concentration (µg/g) in solid material for all the samples analyzed 

in the preliminary study 

No Accession Location Replicat

e 

sample 

size 

Technical 

replicate 

Se (µg/g)      

in solid 

material 

Zn (µg/g) 

in solid 

material 

Fe (µg/g) 

in solid 

material 

1  CDC Striker Rosthern R1 10 T1 0.761 32.49 47.48 

2  CDC Striker Rosthern R1 10 T2 0.711 33.87 47.86 

3  CDC Striker Rosthern R1 10 T3 0.717 33.02 44.16 

4  CDC Striker Rosthern R1 60 T1 0.549 31.96 46.23 

5  CDC Striker Rosthern R1 60 T2 0.537 32.04 46.51 

6  CDC Striker Rosthern R1 60 T3 0.535 32.17 46.27 

7  CDC Striker Rosthern R1 120 T1 0.569 33.89 52.42 

8  CDC Striker Rosthern R1 120 T2 0.510 33.45 54.31 

9  CDC Striker Rosthern R1 120 T3 0.545 32.98 48.58 

10  CDC Striker Rosthern R2 10 T1 0.645 29.10 45.23 

11  CDC Striker Rosthern R2 10 T2 0.657 29.41 44.79 

12  CDC Striker Rosthern R2 10 T3 0.650 30.17 46.50 

13  CDC Striker Rosthern R2 60 T1 0.752 28.98 45.93 

14  CDC Striker Rosthern R2 60 T2 0.780 29.11 48.03 

15  CDC Striker Rosthern R2 60 T3 0.765 29.66 49.43 

16  CDC Striker Rosthern R2 120 T1 0.754 30.79 51.40 

17  CDC Striker Rosthern R2 120 T2 0.710 29.71 46.78 

18  CDC Striker Rosthern R2 120 T3 0.748 30.29 47.19 

19  CDC Striker Saskatoon R1 10 T1 0.585 30.43 43.68 

20  CDC Striker Saskatoon R1 10 T2 0.577 30.42 44.73 

21  CDC Striker Saskatoon R1 10 T3 0.581 29.85 43.33 

22  CDC Striker Saskatoon R1 60 T1 0.609 27.74 42.48 

23  CDC Striker Saskatoon R1 60 T2 0.643 28.18 49.05 

24  CDC Striker Saskatoon R1 60 T3 0.622 27.90 46.68 

25  CDC Striker Saskatoon R1 120 T1 0.657 30.29 46.12 
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26  CDC Striker Saskatoon R1 120 T2 0.649 30.78 53.53 

27  CDC Striker Saskatoon R1 120 T3 0.657 30.67 45.72 

28  CDC Striker Saskatoon R2 10 T1 0.685 27.40 47.44 

29  CDC Striker Saskatoon R2 10 T2 0.704 27.89 49.69 

30  CDC Striker Saskatoon R2 10 T3 0.782 27.58 48.94 

31  CDC Striker Saskatoon R2 60 T1 0.823 26.85 41.44 

32  CDC Striker Saskatoon R2 60 T2 0.742 26.04 47.03 

33  CDC Striker Saskatoon R2 60 T3 0.761 27.28 45.97 

34  CDC Striker Saskatoon R2 120 T1 0.770 29.06 46.80 

35  CDC Striker Saskatoon R2 120 T2 0.747 28.14 46.85 

36  CDC Striker Saskatoon R2 120 T3 0.761 28.74 48.08 

37  CDC Dakota Rosthern R1 10 T1 0.416 29.54 50.59 

38  CDC Dakota Rosthern R1 10 T2 0.397 28.24 46.16 

39  CDC Dakota Rosthern R1 10 T3 0.403 28.99 49.93 

40  CDC Dakota Rosthern R1 60 T1 0.386 33.43 51.88 

41  CDC Dakota Rosthern R1 60 T2 0.360 34.71 52.12 

42  CDC Dakota Rosthern R1 60 T3 0.365 33.93 54.68 

43  CDC Dakota Rosthern R1 120 T1 0.452 35.23 56.77 

44  CDC Dakota Rosthern R1 120 T2 0.441 32.60 51.80 

45  CDC Dakota Rosthern R1 120 T3 0.453 33.06 53.94 

46  CDC Dakota Rosthern R2 10 T1 0.140 32.23 48.68 

47  CDC Dakota Rosthern R2 10 T2 0.144 34.24 49.89 

48  CDC Dakota Rosthern R2 10 T3 0.141 34.07 53.11 

49  CDC Dakota Rosthern R2 60 T1 0.251 29.18 46.79 

50  CDC Dakota Rosthern R2 60 T2 0.290 30.02 46.27 

51  CDC Dakota Rosthern R2 60 T3 0.263 30.16 50.10 

52  CDC Dakota Rosthern R2 120 T1 0.254 31.78 48.25 

53  CDC Dakota Rosthern R2 120 T2 0.270 32.50 48.49 

54  CDC Dakota Rosthern R2 120 T3 0.248 32.48 48.61 

55  CDC Dakota Saskatoon R1 10 T1 3.475 26.82 49.74 

56  CDC Dakota Saskatoon R1 10 T2 3.523 26.16 45.78 

57  CDC Dakota Saskatoon R1 10 T3 3.610 25.31 46.26 

58  CDC Dakota Saskatoon R1 60 T1 3.615 28.91 50.72 

59  CDC Dakota Saskatoon R1 60 T2 2.791 26.68 54.16 

60  CDC Dakota Saskatoon R1 60 T3 2.835 28.21 51.90 

61  CDC Dakota Saskatoon R1 120 T1 2.815 25.83 49.57 

62  CDC Dakota Saskatoon R1 120 T2 3.081 26.06 39.27 

63  CDC Dakota Saskatoon R1 120 T3 2.951 28.00 56.63 

64  CDC Dakota Saskatoon R2 10 T1 0.870 27.47 50.25 

65  CDC Dakota Saskatoon R2 10 T2 0.860 27.20 49.21 

66  CDC Dakota Saskatoon R2 10 T3 0.870 26.83 52.31 

67  CDC Dakota Saskatoon R2 60 T1 1.043 26.52 49.00 

68  CDC Dakota Saskatoon R2 60 T2 1.042 26.58 46.32 

69  CDC Dakota Saskatoon R2 60 T3 1.054 26.92 49.22 

70  CDC Dakota Saskatoon R2 120 T1 1.073 26.47 51.98 

71  CDC Dakota Saskatoon R2 120 T2 1.017 26.01 38.60 
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72  CDC Dakota Saskatoon R2 120 T3 1.033 25.91 38.67 

73  CDC Meadow Rosthern R1 10 T1 0.839 33.66 51.11 

74  CDC Meadow Rosthern R1 10 T2 0.814 33.16 49.05 

75  CDC Meadow Rosthern R1 10 T3 0.826 33.13 51.59 

76  CDC Meadow Rosthern R1 60 T1 0.796 32.99 53.94 

77  CDC Meadow Rosthern R1 60 T2 0.792 33.19 49.99 

78  CDC Meadow Rosthern R1 60 T3 0.778 31.19 51.60 

79  CDC Meadow Rosthern R1 120 T1 0.815 33.64 51.97 

80  CDC Meadow Rosthern R1 120 T2 0.814 32.54 50.40 

81  CDC Meadow Rosthern R1 120 T3 0.810 32.52 52.92 

82  CDC Meadow Rosthern R2 10 T1 1.900 27.13 60.53 

83  CDC Meadow Rosthern R2 10 T2 1.800 27.16 57.90 

84  CDC Meadow Rosthern R2 10 T3 1.797 27.12 58.46 

85  CDC Meadow Rosthern R2 60 T1 1.919 23.37 52.04 

86  CDC Meadow Rosthern R2 60 T2 1.925 22.70 48.95 

87  CDC Meadow Rosthern R2 60 T3 1.991 25.18 51.19 

88  CDC Meadow Rosthern R2 120 T1 1.768 25.86 56.98 

89  CDC Meadow Rosthern R2 120 T2 1.761 25.20 57.89 

90  CDC Meadow Rosthern R2 120 T3 1.723 25.72 54.75 

91  CDC Meadow Saskatoon R1 10 T1 0.494 26.01 43.06 

92  CDC Meadow Saskatoon R1 10 T2 0.490 25.90 44.37 

93  CDC Meadow Saskatoon R1 10 T3 0.503 25.77 43.02 

94  CDC Meadow Saskatoon R1 60 T1 0.498 26.82 48.71 

95  CDC Meadow Saskatoon R1 60 T2 0.499 27.45 43.21 

96  CDC Meadow Saskatoon R1 60 T3 0.491 26.64 47.68 

97  CDC Meadow Saskatoon R1 120 T1 0.455 27.64 46.68 

98  CDC Meadow Saskatoon R1 120 T2 0.494 28.41 51.37 

99  CDC Meadow Saskatoon R1 120 T3 0.525 28.85 42.28 

100  CDC Meadow Saskatoon R2 10 T1 1.128 29.00 44.87 

101  CDC Meadow Saskatoon R2 10 T2 1.117 29.79 46.84 

102  CDC Meadow Saskatoon R2 10 T3 1.147 30.13 50.03 

103  CDC Meadow Saskatoon R2 60 T1 1.311 30.81 51.22 

104  CDC Meadow Saskatoon R2 60 T2 1.321 31.29 54.03 

105  CDC Meadow Saskatoon R2 60 T3 1.306 31.11 50.26 

106  CDC Meadow Saskatoon R2 120 T1 1.213 30.28 48.46 

107  CDC Meadow Saskatoon R2 120 T2 1.216 30.22 48.99 

108  CDC Meadow Saskatoon R2 120 T3 1.224 30.50 59.41 
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Table B.2:  Least square means in µg/g (LSM), analysis of variance (ANOVA), mean, and 

coefficient of variation from the factorial analysis of Fe, Zn and Se concentrations for three 

sample sizes (10 seeds, 60 seeds, 120 seeds) in cultivars of CDC Striker, CDC Dakota and 

CDC Meadow obtained from two locations of Rosthern and Saskatoon with two biological 

replicates per location in 2016. 

 

Se Zn Fe 

LSM_10 1.0 29.4 48.5 

LSM_60 1.0 29.1 48.9 

LSM_120 1.0 29.9 49.8 

Mean 1.0 29.4 49.1 

ANOVA (F value) 1.18 
ns

 1.21
ns

 1.32
ns

 

Sample_size 0.01
ns

 0.91
ns

 0.97
ns

 

CV% 76.3 9.1 8.1 

(ns - not significant) 

Discussion: 

No significant differences were detected for each of Se, Zn and Fe concentration for all the 

factors considered (genotype, location, and sample size) at the 5 % level of significance 

(Table B.2).  Thus, the sample size did not significantly affect the concentration of the 

particular minerals, and 10, 60 or 120 seeds could be used as the standard sample size.  

Of the three sample sizes, using 120 seeds for the main study was considered an unnecessary 

use of resources and time. Using 10 seeds would be a suitable sample size, as fewer resources 

are needed and it would be efficient in terms of counting seeds and grinding. However, in 

order to reduce any practical errors and to increase accuracy, it was decided to use 60 seeds 

for the main study. Also, 60 seeds allowed for reserve ground sample for further use if 

required.  
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Appendix C: Thermal cycling protocol in KASP genotyping  

 

1. 21.0 C for 2:00 

 2. 95.0 C for 15:00 

 3. 94.0 C for 0:20 

 4. 65.0 C for 0:30 

     Decrement temperature by -0.8 C per 

cycle 

5. GOTO 3, 9 more times 

6. 94.0 C for 0:30 

 7. 57.0 C for 1:00 

 8. GOTO 6, 32 more times 

9. 21.0 C for 2:00 

     + Plate Read 

 10. 94.0 C for 0:20 

 11. 57.0 C for 1:00 

 12. GOTO 10, 3 more times 

13. 21.0 C for 2:00 

     + Plate Read 

 14. 94.0 C for 0:20 

 15. 57.0 C for 1:00 

 16. GOTO 14, 3 more times 

17. 21.0 C for 2:00 

     + Plate Read 

 18. 94.0 C for 0:20 

 19. 57.0 C for 1:00 

 20. GOTO 18, 3 more times 

21. 21.0 C for 2:00 

     + Plate Read 

 22. 94.0 C for 0:20 

 23. 57.0 C for 1:00 

 24. GOTO 22, 3 more times 

25. 21.0 C for 2:00 

     + Plate Read 

     END 
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Appendix D: Phylogenetic clustering of the GWAS panel (MAF at 0.05) 

Source: Gali et al. (in prep) 
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Appendix E: Accession origin and Fe, Zn, and Se concentration based on the 

different clusters 

Cluster Name Entry Country of origin Fe Zn Se 

1 TMP 15206 140 Russia 50.55 31.03 1.02 

1 Naparnyk 164 Russia 47.70 30.98 0.90 

2 TMP 15159 138 Russia 57.10 34.89 0.98 

2 Trapper 165 Canada 58.49 34.12 1.02 

2 MPG87 141 Canada 63.66 34.43 1.02 

2 TMP 15202 139 Russia 50.57 28.14 0.74 

3 OZP0902 76 Australia 60.83 31.59 1.15 

3 Torsdag 161 Russia 48.62 31.47 0.90 

3 22778 42 Ethiopia 57.34 31.37 1.41 

3 TMP 15116 136 Ukraine 55.23 27.83 0.78 

3 Moravska krajova 56 Czech Republic 62.66 29.78 1.10 

3 Prebohaty 50 Czech Republic 53.80 32.04 0.97 

3 
AMPLISSIMO 

ZAZERSKIJ 
40 Russia 63.69 36.92 0.93 

3 Matar 153 India 62.94 33.34 0.80 

3 Cameor 135 France 50.37 26.63 0.71 

3 Fin de la Bievre 64 France 50.55 31.85 0.78 

3 No. 9292 37 USA 57.39 29.64 1.07 

3 Chemin Long 62 France 50.63 29.30 0.91 

3 Gloire de Correze 65 France 50.73 33.12 0.94 

3 Odeon 51 Czech Republic 58.97 33.23 0.95 

3 STURT 90 Australia 54.27 29.21 1.11 

3 Champagne 61 France 61.51 36.46 0.99 

3 TMP 15133 137 Lithuania 57.27 32.46 1.32 

3 No. 8120 39 USA 57.83 34.86 0.89 

3 GRAY'S 36 USA 52.87 30.17 0.65 

3 G 9173 38 USA 48.63 29.47 0.72 

3 Klatovsky zeleny 44 Czech Republic 52.14 34.31 1.07 

3 Cote D'or 63 France 63.13 34.61 0.89 

3 Picar 68 France 59.39 35.12 0.97 

3 Melrose 34 USA 60.56 34.88 1.12 

3 Slovensky expres 46 Czech Republic 53.27 31.53 1.36 

3 Serpette D'auvergne 70 France 58.77 34.78 1.72 

3 Merveille D'etampes 66 France 56.56 31.00 1.13 

3 
Purpurviolett Schottige 

Nero 
57 Czech Republic 57.07 30.71 1.56 

3 CDC Vienna 167 Canada 53.32 28.30 1.47 

3 PARAFIELD 85 Australia 56.78 30.75 1.41 

3 Piver 69 France 56.69 32.02 0.90 

3 PLP 105A 41 India 67.03 32.01 1.20 

3 
Moravsky Hrotovicky 

krajovy 
47 Czech Republic 57.33 32.39 1.26 

3 22791 43 Ethiopia 52.66 27.93 1.15 

3 PBA PERCY 88 Australia 48.96 28.29 0.98 
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3 Milion zeleny 45 Czech Republic 50.37 27.41 1.02 

3 Morgan 71 Australia 54.87 32.22 0.93 

3 Carouby de Maussane 60 France 59.54 36.41 1.05 

4 PBA GUNYAH 86 Australia 48.87 31.44 0.85 

4 Bohatyr 6 Czech Republic 49.85 29.22 0.75 

4 Serge 32 USA 49.21 30.59 0.86 

4 EXCELL 72 Australia 43.90 32.40 0.81 

4 KASPA 73 Australia 54.99 32.58 1.07 

4 OZP1102 84 Australia 49.83 29.26 0.78 

4 Superscout 174 USA 49.38 30.58 0.93 

4 OZP1002 79 Australia 43.46 27.54 0.89 

4 B 99/108 53 Czech Republic 51.90 29.02 0.88 

4 OZP1101 80 Australia 47.79 30.02 0.79 

4 OZP1004 81 Australia 47.27 29.24 0.73 

4 PBA TWILIGHT 89 Australia 51.89 32.95 0.96 

4 OZP1104 83 Australia 44.61 27.74 0.79 

4 Lifter 31 USA 48.65 29.85 1.16 

4 Shawnee 7 USA 47.19 31.32 0.80 

4 OZP0805 74 Australia 48.02 31.02 1.05 

5 CDC 1-2347-144 170 Canada 46.75 26.89 1.01 

5 CDC Bronco 144 Canada 43.36 24.39 0.80 

5 Normand 67 France 55.59 32.02 0.98 

5 DS Admiral 148 Denmark 42.43 25.29 1.05 

5 CDC Acer 163 Canada 49.39 30.45 0.99 

5 Cutlass 143 Canada 46.41 25.54 0.93 

5 CDC Golden 146 Canada 47.46 28.30 0.88 

5 Stupicka jarni 58 Czech Republic 59.31 35.62 0.78 

5 Highlight 168 Sweden 44.51 26.83 0.95 

5 CDC Dakota 177 Canada 44.27 25.76 0.89 

5 CDC Meadow 147 Canada 46.90 26.87 0.72 

5 TMP 15213 142 Belarus 48.81 24.69 0.64 

5 MP1401 155 Canada 48.18 30.13 0.87 

5 CDC Centennial 145 Canada 48.96 28.25 1.01 

5 CDC 1-150-81 169 Canada 45.05 26.68 1.13 

6 Radley 166 UK 56.47 31.00 0.99 

6 Dove HR 35 USA 56.01 30.45 0.78 

6 Cartouche 173 France 47.33 27.78 0.94 

7 PS07ND0164 2 USA 48.92 31.24 0.99 

7 OZP1001 78 Australia 47.18 28.79 0.88 

7 PBA OURA 87 Australia 53.33 32.22 0.75 

7 OZP0903 77 Australia 44.51 27.87 1.09 

7 OZP0819 75 Australia 51.26 28.33 0.86 

8 Kapucin 59 Czech Republic 53.35 36.95 0.97 

8 Kahuna-NIAB 133 UK 53.59 34.30 1.23 

8 KE109 125 UK 50.48 29.62 1.07 

8 BK12 91 UK 49.24 30.48 0.97 

8 EK34 120 UK 49.92 31.32 0.83 
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8 Strada 23 Netherlands 51.61 32.87 0.78 

8 KE160 127 UK 49.89 31.94 0.84 

8 EK25 119 UK 47.80 30.59 0.82 

8 KB151 102 UK 51.41 33.82 0.87 

8 EK73 122 UK 53.09 35.43 0.93 

8 KE106 124 UK 50.91 31.66 0.88 

8 KB121 97 UK 51.33 35.32 0.79 

8 KB139 100 UK 48.89 28.35 1.23 

8 BK83 93 UK 51.29 32.40 0.76 

8 BK72 92 UK 48.35 28.73 1.04 

8 EK9 117 UK 49.10 27.19 0.78 

8 KE206 128 UK 51.21 30.85 1.03 

8 KB138 99 UK 52.46 30.49 1.10 

8 BE218 114 UK 54.34 31.73 1.01 

8 EK80 123 UK 54.69 31.05 0.91 

8 BK88 94 UK 50.45 30.81 0.91 

8 Neon 22 Netherlands 53.24 32.73 1.00 

8 EK3 116 UK 46.39 27.99 0.91 

8 KB144 101 UK 50.55 28.38 0.82 

8 KB115 95 UK 50.42 31.31 1.17 

8 EK11 118 UK 52.84 31.56 1.02 

8 KB124 98 UK 45.92 30.95 0.82 

8 KE134 126 UK 54.97 33.08 0.76 

8 EK69 121 UK 47.37 31.42 1.00 

9 Garde 25 Netherlands 44.61 26.06 0.82 

9 CEB-Montech 4152 28 Netherlands 50.39 30.91 1.27 

9 EB125 107 UK 47.59 25.94 1.02 

9 CDC Striker 150 Canada 46.12 26.93 0.90 

9 Hardy 172 France 44.76 28.06 0.85 

9 Agassiz 171 Canada 44.99 26.23 0.84 

9 Alfetta 157 Netherlands 44.71 28.60 0.91 

9 Dalibor 48 Czech Republic 46.67 25.98 0.72 

9 Satelit 16 Netherlands 48.28 26.96 1.11 

9 Nette 17 Netherlands 44.01 23.15 1.07 

9 KB168 103 UK 47.66 27.61 0.78 

9 BE15 104 UK 47.68 29.39 1.01 

9 Soreno 21 Netherlands 47.54 29.10 0.80 

9 EB208 113 UK 47.05 27.08 1.00 

9 Aukland 30 Netherlands 44.95 25.17 0.85 

9 BE99 106 UK 44.07 25.94 0.88 

9 Audit 11 Netherlands 52.16 25.98 0.79 

9 Aragorn 176 USA 47.92 29.34 1.12 

9 Enigma-PGRO 130 UK 44.26 24.19 0.87 

9 NDP080138 5 USA 48.69 25.48 1.22 

9 PS05ND327 8 USA 54.38 27.97 1.21 

9 KB117 96 UK 48.19 30.34 1.01 

9 EB188 110 UK 48.86 27.47 0.65 
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9 Rebel 15 Netherlands 47.66 27.63 0.88 

9 Abarth 20 Netherlands 47.35 25.20 0.83 

9 Terno 55 Czech Republic 51.49 26.07 0.80 

9 EB192 111 UK 48.70 29.09 0.94 

9 Dick Trom 49 Czech Republic 47.80 29.66 1.12 

9 Kamelot 52 Czech Republic 45.94 26.55 0.73 

9 Terese 160 France 48.99 30.13 0.72 

9 EB157 108 UK 48.86 27.46 1.01 

9 EB173 109 UK 49.15 26.14 0.71 

9 EB193 112 UK 47.36 26.24 0.97 

9 Orb 156 UK 46.49 27.80 0.75 

9 Enigma-NIAB 134 UK 45.52 25.39 0.76 

9 Eclipse 149 Netherlands 49.71 29.34 0.72 

9 Nitouche 152 Denmark 47.40 28.23 0.86 

9 Avantgarde 12 Netherlands 46.55 25.22 0.78 

9 BE220 115 UK 47.86 27.13 0.80 

9 Sponsor 54 Czech Republic 47.40 26.42 1.12 

9 OZP1103 82 Australia 49.43 31.79 1.10 

9 Carneval 154 Sweden 44.30 26.00 0.92 

9 Brutus 132 UK 46.58 25.94 0.88 

9 Spider 29 Netherlands 47.33 27.07 0.90 

9 Kahuna-PGRO 129 UK 55.00 36.56 1.06 

9 Matrix 27 Netherlands 48.06 30.21 0.90 

9 Medora 33 USA 48.56 26.11 1.13 

9 Emerald 18 Netherlands 45.59 26.91 1.25 

9 PS05ND0434 10 USA 45.99 24.59 0.81 

9 CDC Sage 158 Canada 43.87 26.65 0.70 

9 Cooper 151 Netherlands 44.14 28.81 0.76 

9 PS05ND0232 1 USA 47.99 26.64 0.90 

9 Evergreen 19 Netherlands 48.29 23.28 0.86 

9 Prophet 24 Netherlands 46.66 25.91 1.04 

9 NDP080111 4 USA 45.70 24.18 1.11 

9 Quadril 14 Netherlands 50.31 26.41 1.09 

9 Camry 26 Netherlands 46.36 29.31 0.76 

9 PS07ND0190 3 USA 48.32 27.11 1.12 

9 PS05ND330 9 USA 51.30 29.46 1.12 

9 Espace 159 Netherlands 48.03 25.79 1.08 

9 Lido 175 Denmark 43.22 27.25 1.23 

9 EB181 131 UK 48.43 26.59 0.85 

9 BE47 105 UK 47.43 25.84 0.76 

9 Delta 162 Netherlands 48.89 26.83 0.93 

9 Lasso 13 Netherlands 49.63 27.63 0.94 
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Appendix F: SNP markers associated with Se concentration in seeds of the pea 

GWAS panel over five location-years. 

Location-

year  
Marker Scaffold P value -log10 

Other location-years 

that the marker is 

present (-log10 P value ≥ 

3.16) 

2013S Sc_1139_105036 1139 1.03E-06 5.98* none 

2013S Sc_3049_27354 5765 2.43E-06 5.61* none 

2015S Sc_5765_134167 6064 8.22E-09 8.09*** none 

2015S Sc_6064_83250 6064 6.77E-08 7.17*** none 

2015S Sc_6064_83570 6064 6.77E-08 7.17*** none 

2015S Sc_6064_83588 6064 6.77E-08 7.17*** none 

2015S Sc_6064_83592 6064 6.77E-08 7.17*** none 

2015S Sc_3542_172841 3542 1.25E-07 6.90** none 

2015S Sc_6393_64958 6393 1.51E-07 6.82** none 

2015S Sc_6393_64973 6393 1.51E-07 6.82** none 

2015S Sc_4211_152482 4211 3.35E-07 6.47** none 

2015S Sc_5765_134136 5765 3.82E-07 6.42** none 

2015S Sc_5765_134139 5765 3.82E-07 6.42** none 

2015S Sc_5765_134315 5765 3.90E-07 6.41** none 

2015S Sc_1_37135 1 4.87E-07 6.31** none 

2015S Sc_4643_173162 4643 5.09E-07 6.29** none 

2015S Sc_2158_60008 2158 5.75E-07 6.24** none 

2015S Sc_2158_60179 2158 5.75E-07 6.24** none 

2015S Sc_6086_72254 6086 6.05E-07 6.22** none 

2015S Sc_393_898089 393 6.11E-07 6.21** none 

2015S Sc_5247_82400 5247 6.17E-07 6.21** none 

2015S Sc_2997_81595 2997 6.17E-07 6.21** none 

2015S Sc_5765_134168 5765 6.22E-07 6.21** none 

2015S Sc_1512_627644 1512 6.26E-07 6.20** none 

2015S Sc_2783_213981 2783 6.79E-07 6.17** none 

2015S Sc_4407_37120 4407 9.17E-07 6.04* none 

2015S Sc_1622_628173 1622 1.03E-06 5.99* none 

2015S Sc_2552_354124 2552 1.26E-06 5.90* none 
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2015S Sc_266_87261 266 1.46E-06 5.84* none 

2015S Sc_5765_134154 5765 1.60E-06 5.80* none 

2015S Sc_3685_291242 3685 1.66E-06 5.78* none 

2015S Sc_1417_25038 1417 2.01E-06 5.70* none 

2015S Sc_2158_60010 2158 2.11E-06 5.68* none 

2015S Sc_6830_59544 6830 2.24E-06 5.65* none 

2015S Sc_788_50361 788 2.26E-06 5.65* none 

2015S Sc_2252_490227 2252 2.45E-06 5.61* none 

2015S Sc_3984_38749 3984 2.54E-06 5.60* none 

2015S Sc_3878_244774 3878 2.54E-06 5.60* none 

2015S Sc_3984_39060 3984 2.63E-06 5.58* none 

2015S Sc_3984_39069 3984 2.63E-06 5.58* none 

2015S Sc_3984_38833 3984 2.64E-06 5.58* none 

2015S Sc_449_149728 449 2.64E-06 5.58* none 

2015S Sc_5765_134095 5765 2.65E-06 5.58* none 

2015S Sc_2084_228433 2084 3.42E-06 5.47* none 

2013S - 2013 Saskatoon, 2014F - 2014 Fargo, 2015S - 2015 Saskatoon, 2016R - 2016 

Rosthern, 2016S - 2016 Saskatoon. *** P ≤ 0.001 (-log10 P value ≥  7.16), ** P ≤ 0.01 (-log10 

P value ≥ 6.16), * P ≤ 0.05 (-log10 P value ≥ 5.46) 
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Appendix G: Average yield with Se, Zn, and Fe concentration  

Entry Name Yield 
kg/ha 

Se Zn Fe 

µg/g g/ha µg/g g/ha µg/g g/ha 

1 PS05ND0232 2622.04 0.90 2.37 26.64 69.86 47.99 125.83 

2 PS07ND0164 2924.79 0.99 2.89 31.24 91.36 48.92 143.07 

3 PS07ND0190 2575.59 1.12 2.88 27.11 69.83 48.32 124.44 

4 NDP080111 3051.95 1.11 3.39 24.18 73.78 45.70 139.45 

5 NDP080138 2807.90 1.22 3.42 25.48 71.56 48.69 136.71 

6 Bohatyr 2053.20 0.75 1.54 29.22 59.99 49.85 102.35 

7 Shawnee 2553.56 0.80 2.06 31.32 79.99 47.19 120.49 

8 PS05ND327 2326.21 1.21 2.81 27.97 65.05 54.38 126.48 

9 PS05ND330 2727.03 1.12 3.07 29.46 80.33 51.30 139.89 

10 PS05ND0434 2766.96 0.81 2.24 24.59 68.05 45.99 127.24 

11 Audit 2722.75 0.79 2.15 25.98 70.75 52.16 142.02 

12 Avantgarde 2545.96 0.78 1.99 25.22 64.22 46.55 118.50 

13 Lasso 2959.16 0.94 2.79 27.63 81.76 49.63 146.86 

14 Quadril 2903.32 1.09 3.16 26.41 76.68 50.31 146.07 

15 Rebel 2564.70 0.88 2.26 27.63 70.86 47.66 122.22 

16 Satelit 2469.18 1.11 2.74 26.96 66.57 48.28 119.20 

17 Nette 2635.57 1.07 2.83 23.15 61.02 44.01 115.99 

18 Emerald 2189.00 1.25 2.75 26.91 58.91 45.59 99.78 

19 Evergreen 2509.36 0.86 2.16 23.28 58.42 48.29 121.16 

20 Abarth 2849.76 0.83 2.38 25.20 71.81 47.35 134.94 

21 Soreno 2633.80 0.80 2.11 29.10 76.65 47.54 125.21 

22 Neon 2478.12 1.00 2.47 32.73 81.12 53.24 131.92 

23 Strada 2520.60 0.78 1.98 32.87 82.86 51.61 130.09 

24 Prophet 2421.63 1.04 2.52 25.91 62.75 46.66 112.99 

25 Garde 2612.81 0.82 2.15 26.06 68.10 44.61 116.56 

26 Camry 2580.82 0.76 1.97 29.31 75.64 46.36 119.63 

27 Matrix 2388.68 0.90 2.16 30.21 72.16 48.06 114.79 

28 CEB-Montech 4152 2921.53 1.27 3.72 30.91 90.29 50.39 147.21 

29 Spider 2688.37 0.90 2.43 27.07 72.78 47.33 127.22 

30 Aukland 2291.56 0.85 1.96 25.17 57.68 44.95 102.99 

31 Lifter 2809.91 1.16 3.27 29.85 83.89 48.65 136.69 

32 Serge 1873.32 0.86 1.61 30.59 57.30 49.21 92.17 

33 Medora 2668.56 1.13 3.02 26.11 69.68 48.56 129.57 

34 Melrose 2039.43 1.12 2.29 34.88 71.13 60.56 123.50 

35 Dove HR 2636.56 0.78 2.06 30.45 80.29 56.01 147.66 

36 GRAY'S 2709.90 0.65 1.76 30.17 81.75 52.87 143.26 

37 No. 9292 2604.20 1.07 2.80 29.64 77.18 57.39 149.46 

38 G 9173 2307.32 0.72 1.68 29.47 67.99 48.63 112.21 

39 No. 8120 2015.86 0.89 1.79 34.86 70.28 57.83 116.57 

40 
AMPLISSIMO 
ZAZERSKIJ 2177.77 0.93 2.03 36.92 80.41 63.69 138.70 

41 PLP 105A 2218.68 1.20 2.67 32.01 71.03 67.03 148.70 

42 22778 2216.54 1.41 3.13 31.37 69.54 57.34 127.09 
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43 22791 2600.25 1.15 3.00 27.93 72.61 52.66 136.92 

44 Klatovsky zeleny 2477.91 1.07 2.66 34.31 85.02 52.14 129.19 

45 Milion zeleny 2285.25 1.02 2.33 27.41 62.64 50.37 115.09 

46 Slovensky expres 2139.69 1.36 2.91 31.53 67.46 53.27 113.96 

47 
Moravsky Hrotovicky 
krajovy 2318.52 1.26 2.92 32.39 75.09 57.33 132.92 

48 Dalibor 2624.32 0.72 1.89 25.98 68.18 46.67 122.47 

49 Dick Trom 1768.59 1.12 1.98 29.66 52.45 47.8 84.54 

50 Prebohaty 2027.84 0.97 1.98 32.04 64.97 53.8 109.09 

51 Odeon 2542.76 0.95 2.41 33.23 84.49 58.97 149.93 

52 Kamelot 2948.50 0.73 2.16 26.55 78.28 45.94 135.44 

53 B 99/108 1934.03 0.88 1.71 29.02 56.13 51.9 100.37 

54 Sponsor 2418.96 1.12 2.71 26.42 63.91 47.4 114.64 

55 Terno 2306.79 0.80 1.86 26.07 60.13 51.49 118.76 

56 Moravska krajova 2443.39 1.10 2.69 29.78 72.75 62.66 153.09 

57 Purpurviolett Schottige Nero 2087.54 1.56 3.27 30.71 64.11 57.07 119.14 

58 Stupicka jarni 2458.17 0.78 1.93 35.62 87.55 59.31 145.78 

59 Kapucin 2033.41 0.97 1.98 36.95 75.14 53.35 108.48 

60 Carouby de Maussane 1989.31 1.05 2.10 36.41 72.42 59.54 118.44 

61 Champagne 1895.40 0.99 1.89 36.46 69.10 61.51 116.57 

62 Chemin Long 2417.43 0.91 2.20 29.3 70.84 50.63 122.39 

63 Cote D'or 2158.66 0.89 1.92 34.61 74.72 63.13 136.28 

64 Fin de la Bievre 2115.64 0.78 1.65 31.85 67.39 50.55 106.93 

65 Gloire de Correze 1940.08 0.94 1.82 33.12 64.26 50.73 98.41 

66 Merveille D'etampes 1458.35 1.13 1.65 31.00 45.20 56.56 82.48 

67 Normand 2294.19 0.98 2.26 32.02 73.47 55.59 127.52 

68 Picar 2285.61 0.97 2.21 35.12 80.27 59.39 135.73 

69 Piver 2076.69 0.90 1.88 32.02 66.49 56.69 117.72 

70 Serpette D'auvergne 1895.17 1.72 3.26 34.78 65.92 58.77 111.37 

71 Morgan 2489.39 0.93 2.31 32.22 80.21 54.87 136.59 

72 EXCELL 2633.45 0.81 2.15 32.4 85.32 43.9 115.60 

73 KASPA 2725.72 1.07 2.92 32.58 88.79 54.99 149.88 

74 OZP0805 2488.75 1.05 2.62 31.02 77.19 48.02 119.49 

75 OZP0819 2594.61 0.86 2.24 28.33 73.49 51.26 133.00 

76 OZP0902 1913.92 1.15 2.20 31.59 60.47 60.83 116.42 

77 OZP0903 2830.10 1.09 3.09 27.87 78.87 44.51 125.96 

78 OZP1001 3102.49 0.88 2.74 28.79 89.33 47.18 146.37 

79 OZP1002 2918.29 0.89 2.61 27.54 80.38 43.46 126.81 

80 OZP1101 2598.63 0.79 2.05 30.02 78.00 47.79 124.18 

81 OZP1004 2807.86 0.73 2.06 29.24 82.11 47.27 132.73 

82 OZP1103 2504.74 1.10 2.77 31.79 79.63 49.43 123.80 

83 OZP1104 2807.07 0.79 2.23 27.74 77.86 44.61 125.21 

84 OZP1102 2764.14 0.78 2.17 29.26 80.87 49.83 137.73 

85 PARAFIELD 2342.09 1.41 3.30 30.75 72.01 56.78 132.97 

86 PBA GUNYAH 3042.40 0.85 2.58 31.44 95.64 48.87 148.69 

87 PBA OURA 2810.63 0.75 2.12 32.22 90.56 53.33 149.90 

88 PBA PERCY 2765.45 0.98 2.72 28.29 78.22 48.96 135.39 
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89 PBA TWILIGHT 2837.57 0.96 2.72 32.95 93.49 51.89 147.22 

90 STURT 2963.81 1.11 3.31 29.21 86.58 54.27 160.83 

91 BK12 2609.29 0.97 2.54 30.48 79.52 49.24 128.48 

92 BK72 3086.66 1.04 3.20 28.73 88.68 48.35 149.23 

93 BK83 2388.33 0.76 1.81 32.4 77.39 51.29 122.50 

94 BK88 2578.01 0.91 2.35 30.81 79.44 50.45 130.05 

95 KB115 2746.21 1.17 3.21 31.31 85.99 50.42 138.47 

96 KB117 2841.24 1.01 2.88 30.34 86.20 48.19 136.92 

97 KB121 2722.93 0.79 2.17 35.32 96.17 51.33 139.76 

98 KB124 2582.57 0.82 2.12 30.95 79.92 45.92 118.58 

99 KB138 2382.10 1.10 2.62 30.49 72.64 52.46 124.96 

100 KB139 2954.81 1.23 3.65 28.35 83.76 48.89 144.46 

101 KB144 2879.82 0.82 2.37 28.38 81.73 50.55 145.56 

102 KB151 2420.00 0.87 2.10 33.82 81.84 51.41 124.40 

103 KB168 3058.74 0.78 2.38 27.61 84.45 47.66 145.79 

104 BE15 2315.37 1.01 2.34 29.39 68.04 47.68 110.38 

105 BE47 3059.52 0.76 2.33 25.84 79.05 47.43 145.11 

106 BE99 2823.54 0.88 2.50 25.94 73.24 44.07 124.43 

107 EB125 2627.43 1.02 2.84 25.94 68.14 47.59 125.04 

108 EB157 2693.21 1.01 2.73 27.46 73.96 48.86 131.58 

109 EB173 2693.00 0.71 1.91 26.14 70.41 49.15 132.34 

110 EB188 2833.26 0.65 1.84 27.47 77.83 48.86 138.42 

111 EB192 2773.65 0.94 2.61 29.09 80.69 48.7 135.08 

112 EB193 2757.12 0.97 2.69 26.24 72.34 47.36 130.57 

113 EB208 2727.73 1.00 2.75 27.08 73.88 47.05 128.33 

114 BE218 2756.63 1.01 2.79 31.73 87.46 54.34 149.77 

115 BE220 2685.13 0.80 2.15 27.13 72.85 47.86 128.50 

116 EK3 2920.82 0.91 2.68 27.99 81.75 46.39 135.48 

117 EK9 3165.96 0.78 2.48 27.19 86.08 49.10 155.44 

118 EK11 2566.27 1.02 2.61 31.56 81.00 52.84 135.59 

119 EK25 2661.11 0.82 2.19 30.59 81.40 47.80 127.18 

120 EK34 2775.45 0.83 2.31 31.32 86.94 49.92 138.53 

121 EK69 2738.16 1.00 2.75 31.42 86.02 47.37 129.71 

122 EK73 2710.39 0.93 2.52 35.43 96.02 53.09 143.88 

123 EK80 2869.61 0.91 2.63 31.05 89.11 54.69 156.92 

124 KE106 2809.39 0.88 2.47 31.66 88.93 50.91 143.01 

125 KE109 2977.74 1.07 3.20 29.62 88.21 50.48 150.30 

126 KE134 3121.29 0.76 2.38 33.08 103.25 54.97 171.56 

127 KE160 2625.26 0.84 2.21 31.94 83.86 49.89 130.96 

128 KE206 2644.50 1.03 2.72 30.85 81.58 51.21 135.42 

129 Kahuna-PGRO 2820.18 1.06 3.10 36.56 103.12 55.00 155.11 

130 Enigma-PGRO 3059.09 0.87 2.65 24.19 74.01 44.26 135.41 

131 EB181 2475.13 0.85 2.10 26.59 65.81 48.43 119.86 

132 Brutus 3074.99 0.88 2.72 25.94 79.78 46.58 143.22 

133 Kahuna-NIAB 2732.21 1.23 3.37 34.3 93.70 53.59 146.41 

134 Enigma-NIAB 2764.62 0.76 2.12 25.39 70.20 45.52 125.85 
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135 Cameor 1927.40 0.71 1.38 26.63 51.33 50.37 97.09 

136 TMP 15116 2595.59 0.78 2.03 27.83 72.23 55.23 143.34 

137 TMP 15133 2634.58 1.32 3.49 32.46 85.51 57.27 150.88 

138 TMP 15159 2462.79 0.98 2.42 34.89 85.92 57.10 140.63 

139 TMP 15202 2455.01 0.74 1.81 28.14 69.07 50.57 124.15 

140 TMP 15206 2444.58 1.02 2.51 31.03 75.86 50.55 123.58 

141 MPG87 2005.79 1.02 2.04 34.43 69.06 63.66 127.68 

142 TMP 15213 3224.66 0.64 2.08 24.69 79.63 48.81 157.38 

143 Cutlass 2768.67 0.93 2.57 25.54 70.71 46.41 128.49 

144 CDC Bronco 3666.52 0.80 2.93 24.39 89.41 43.36 158.98 

145 CDC Centennial 3071.26 1.01 3.10 28.25 86.78 48.96 150.37 

146 CDC Golden 3269.86 0.88 2.89 28.3 92.53 47.46 155.17 

147 CDC Meadow 3247.00 0.72 2.35 26.87 87.25 46.9 152.26 

148 DS Admiral 2715.09 1.05 2.85 25.29 68.66 42.43 115.20 

149 Eclipse 3249.71 0.72 2.35 29.34 95.35 49.71 161.55 

150 CDC Striker 2609.80 0.90 2.34 26.93 70.29 46.12 120.37 

151 Cooper 3009.37 0.76 2.31 28.81 86.69 44.14 132.84 

152 Nitouche 2786.94 0.86 2.39 28.23 78.69 47.4 132.10 

153 Matar 2337.50 0.80 1.87 33.34 77.94 62.94 147.13 

154 Carneval 2861.28 0.92 2.63 26.00 74.40 44.30 126.74 

155 MP1401 2492.91 0.87 2.16 30.13 75.12 48.18 120.09 

156 Orb 2494.59 0.75 1.88 27.80 69.34 46.49 115.96 

157 Alfetta 2566.27 0.91 2.35 28.60 73.41 44.71 114.73 

158 CDC Sage 2635.23 0.70 1.84 26.65 70.23 43.87 115.59 

159 Espace 2710.53 1.08 2.93 25.79 69.90 48.03 130.17 

160 Terese 2339.52 0.72 1.68 30.13 70.49 48.99 114.62 

161 Torsdag 2407.84 0.90 2.17 31.47 75.77 48.62 117.07 

162 Delta 2523.17 0.93 2.35 26.83 67.70 48.89 123.36 

163 CDC Acer 3267.69 0.99 3.24 30.45 99.49 49.39 161.36 

164 Naparnyk 2441.32 0.90 2.20 30.98 75.63 47.70 116.46 

165 Trapper 2498.90 1.02 2.56 34.12 85.26 58.49 146.16 

166 Radley 2474.18 0.99 2.45 31.00 76.70 56.47 139.70 

167 CDC Vienna 2785.60 1.47 4.11 28.30 78.84 53.32 148.52 

168 Highlight 2967.60 0.95 2.84 26.83 79.62 44.51 132.07 

169 CDC 1-150-81 2812.97 1.13 3.18 26.68 75.06 45.05 126.73 

170 CDC 1-2347-144 2918.10 1.01 2.96 26.89 78.48 46.75 136.40 

171 Agassiz 2949.98 0.84 2.47 26.23 77.39 44.99 132.71 

172 Hardy 2581.56 0.85 2.19 28.06 72.44 44.76 115.56 

173 Cartouche 2737.33 0.94 2.57 27.78 76.05 47.33 129.55 

174 Superscout 1917.01 0.93 1.78 30.58 58.63 49.38 94.65 

175 Lido 2852.59 1.23 3.52 27.25 77.74 43.22 123.28 

176 Aragorn 2681.47 1.12 3.01 29.34 78.67 47.92 128.49 

177 CDC Dakota 3246.58 0.89 2.90 25.76 83.63 44.27 143.70 
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Appendix H: Linkage map of PR-07 with the SNP marker Sc_1512_36017 

Sc1316_98199
Sc1316_97901
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PsC8516p155
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Sc4088_111362
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PsC8865p668
PsC11215p241
PsC13024p195
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PsC6867p203
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PsC2159p286
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PsC8521p283
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PsC5029p497
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Sc9850_31201
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Sc2176_202568
PsC10902p94
PsC20834p134
PsC15474p86
Sc22110_2677
Sc22110_3013
PsC20147p80
Sc5691_331806
PsC3653p280
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PsC9190p697
PsC9531p143
PsC6664p321

LG1a

PsC8676p214
PsC5243p280
PsC8859p248
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Sc13303_74577
PsC4306p91
PsC26900p157
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Sc2134_82417
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PsC13109p598
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PsC3880p181
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LG1b
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Sc15818_33540
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LG2a

PsC8833p423
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PsC21302p253
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PsC1764p537
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Sc11086_52088
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PsC17726p224
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PsC6630p189
PsC20574p205
Sc2762_66855
Sc2012_183693
Sc4334_282032
Sc14484_68354
Sc2130_74901
Sc2851_178963
Sc2814_74649
PsC16662p271
Sc3425_98450
Sc3412_245522
Sc10556_43405
PsC16972p253
PsC2169p461
PsC4982p83
Sc10439_79412
Sc10439_79065
Sc2640_482974
Sc2448_34378
PsC14928p105
PsC12878p242

LG2b

PsC7190p130
PsC23580p84
Sc2585_216053
Sc12574_55026
Sc7302_95459
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PsC14645p416
PsC18618p78
Sc5874_30982
PsC20302p95
PsC14587p248
Sc7822_25183
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Sc7822_25159
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PsC6844p132
Sc21950_4777
PsC19344p128

LG3a

Sc9618_162688
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Sc16085_30438
PsC1846p336
PsC2870p236
PsC5707p183
Sc4813_167440
Sc5317_256613
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PsC2346p125
PsC16184p408
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PsC17668p601
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Sc511_434604
PsC21425p211
PsC12912p371
Sc16621_26846
Sc3030_71736
Sc8865_149928
PsC7000p195
Sc11909_106766
Sc7388_112888
Sc3120_148299
Sc3132_175238
PsC18899p425
Sc3132_175237
PsC17710p220
Sc760_198502
Sc10190_11329
Sc2404_224246
PsC15489p75
Sc2655_152859
PsC1055p147
Sc7171_17480
Sc7171_14359
Sc3260_148260
Sc3260_148582
Sc1615_201693
PsC7872p386
Sc11336_48840
Sc11336_48797
Sc12583_123864
PsC17538p106
PsC3195p368
Sc7419_17372

PsC7922p456
PsC14508p459
Sc5403_7955
Sc5403_8092
Sc5403_8572
PsC11929p181
Sc1333_169488
Sc1333_166281
PsC17621p214
Sc1340_28780
PsC7396p78

LG3b

PsC4787p76
PsC9305p133
Sc5569_56329
Sc7572_10662
Sc3396_127815
Sc335_78315
Sc3749_108190
Sc2879_25806
Sc2879_47373
Sc2879_47145
Sc2879_47168
PsC14740p177
PsC9674p419
Sc18786_24067
Sc15898_5876
Sc7592_10748
PsC6804p417
PsC3395p104
Sc7506_85661
Sc5634_248952
Sc3846_98653
Sc5712_35907
Sc1034_397114
Sc5236_240350
Sc3767_327643
Sc1635_110767
PsC4605p220
Sc3776_72623
Sc12064_23045
Sc20199_5973
PsC17990p348
Sc2811_45046
Sc5017_53556
PsC4368p275
Sc5017_107595
Sc4948_119953
Sc4948_120317
PsC5352p274
PsC11649p203
Sc1907_276817
Sc1907_277011

LG3c

Sc3276_320660
Sc6366_25016
Sc6366_25019
PsC25231p381
Sc804_435011
Sc8606_56596
Sc8606_56618
Sc14252_54211
Sc14773_9078
Sc7561_134615
PsC9619p120
Sc8927_64905
PsC1957p341
PsC8649p435
PsC8027p461
Sc921_36348
Sc2726_263005
Sc6366_24865
Sc16646_31278
Sc3487_43854
PsC13132p622
Sc4397_76777
Sc3487_9244
Sc1183_5243
Sc2436_393429
Sc1778_643839
Sc5295_108038
Sc11957_111590
PsC3577p93
PsC17119p75
PsC10328p564
PsC2962p250
PsC29043p181
PsC7073p356
Sc29_745213
PsC9418p240
PsC14728p116
Sc4155_80474
Sc64_996501
Sc8247_62139
PsC8424p461
Sc5394_57098
PsC19484p188
PsC14408p398
Sc1309_68620
Sc8516_107345
PsC12344p68
PsC7981p97
Sc16645_31859
Sc5458_9253
Sc2216_305768
Sc16937_64085
PsC8606p327
Sc13643_109377
Sc3118_133217
Sc3215_157874
Sc3215_157478
PsC3839p347
Sc33_607339
Sc2158_504344
Sc3900_173749
Sc6758_108549
PsC11200p246
Sc1362_60551
Sc8082_115509
Sc15127_41344
PsC6805p316
Sc2203_124399
Sc10534_12146
PsC14933p313
Sc16088_18082
Sc3214_33760
Sc3214_34208
Sc6392_26104
PsC27107p115
Sc3003_259668
Sc8630_43255
Sc7472_17713
Sc1179_5772
PsC11764p85
Sc10872_22977
Sc2654_205979
PsC12700p315
Sc8499_18132
Sc6511_81720
Sc4925_37727
PsC5648p575
Sc14535_27663
Sc978_512275
Sc13687_61551
Sc4411_5289
PsC6387p181
Sc4558_88762
Sc3252_255422
Sc10124_24989
Sc2048_229752
Sc5298_152191
Sc5743_327359
Sc6294_161938
Sc8750_99141
PsC4914p436
Sc1058_54517
Sc11122_33687
Sc11122_33887
Sc7703_4060
PsC3456p133
PsC3085p802
Sc11207_89502
Sc1136_367986
Sc6765_113296
Sc2978_155562
Sc6771_255527
Sc17297_57164
Sc19034_23899
PsC4871p476
Sc5990_284834
PsC6101p313
PsC6989p290
PsC22477p202
PsC7117p145
Sc9038_2500
PsC1904p532
Sc2974_172052
Sc6492_28513
Sc7139_121322
Sc11695_69547
PsC647p102
PsC9490p82

LG4

Sc8473_10944
PsC22556p240
PsC26750p187
PsC12889p283
Sc3988_47191
Sc4585_388711
PsC26393p87
PsC23878p158
Sc7955_101825
Sc12770_29028
Sc1483_491000
Sc1815_265987
Sc1815_266013
Sc12770_28686
Sc13863_5156
PsC18120p93
Sc10335_245196
Sc10335_244927
Sc10335_245111
PsC11254p236
PsC19553p118
Sc2367_69050
Sc1247_33883
Sc14884_23947
Sc6162_128562
Sc8300_108095
PsC21264p114
Sc4184_219529
PsC22198p122
PsC6023p434
Sc7945_15111
Sc5040_148143
Sc8569_113559
Sc8569_113678

LG5a

Sc7829_44837
Sc7829_44812
Sc7829_44814
Sc20333_25641
Sc8648_7153
PsC25202p299
PsC5316p234
PsC5994p794
Sc2567_36332
Sc9503_57466
Sc17914_14865
Sc15670_44157
Sc15670_44160
Sc19803_9223
Sc19803_9214
Sc19803_11059
PsC15521p171
Sc7800_106821
Sc1844_355862
Sc1781_351800
Sc14001_46353
PsC4359p494
Sc2280_255408
Sc9297_117105
Sc4448_351161
Sc836_42879
PsC12474p404
PsC13749p178
PsC12754p283
Sc3833_31370
Sc7434_234085
Sc4869_25255
Sc12841_29090
Sc12841_29142
PsC14181p251

LG5b

Sc5865_47992
Sc18434_39548
Sc5804_68119
Sc7841_269977
Sc5804_68771
Sc5804_68745
PsC11723p627
Sc4280_149725

LG5c

Sc6959_123993
Sc6959_123727
Sc3794_59219
Sc8405_66599
Sc5363_401452
Sc5363_401896
Sc7850_118969
PsC1405p153
PsC19853p376
PsC10309p393
PsC16710p469
PsC16439p299
PsC9187p121
Sc15567_7204
Sc15948_45379
Sc10403_46376
PsC1446p690
PsC18872p123
Sc10203_59102
Sc7629_170163
Sc10306_73180
Sc3063_31162
Sc2559_47919
Sc3791_152956
Sc3069_69509
Sc9294_369257
Sc9294_368430
Sc4799_168522
Sc16502_4089
PsC10745p88
PsC6187p183
Sc3674_6937
Sc3674_6818
Sc5866_142582
Sc1308_111705
Sc7489_78449
PsC16518p121
PsC6669p472
PsC10763p64
PsC15520p148
Sc12188_21882
Sc7189_36060
Sc10078_43273
Sc10078_43406
PsC6423p69
PsC4675p73
Sc11311_30803
Sc11311_30842
Sc11311_30806
Sc8614_69028
Sc2470_5560
Sc14210_22245
Sc5631_70420
Sc5631_70415
Sc1600_213699
Sc8777_117149
PsC10868p107
PsC10352p254
Sc4454_70319
Sc4454_70320
Sc15395_13349
PsC11091p970
Sc15395_13420
Sc207_623905
Sc56_590684
Sc16086_12742
Sc834_380292
Sc5560_48085
Sc17064_35886
PsC18612p67
PsC682p120
PsC17032p91
PsC27596p426
PsC8791p257
Sc6134_400858
Sc5637_275649
Sc2177_568477
Sc18917_11788
Sc2500_201045
Sc15305_16317
Sc7795_137789
Sc7795_137886
Sc7795_137551
Sc7795_137794
PsC13143p353
PsC25597p337
Sc3067_13865
Sc61_379768
Sc4016_115691
Sc10413_115004
PsC10018p253
Sc9264_79257
Sc2180_179090
PsC22752p338
PsC11455p308
PsC21695p164
Sc2857_244130
Sc2857_244142
Sc1114_83128
Sc4907_215734
Sc2180_178835
Sc207_316346
PsC11465p483
PsC11475p173
Sc6743_393683
Sc8199_70719
Sc6731_30489
Sc6731_30491
Sc6731_30493

LG6

Sc634_50791
PsC14542p181
PsC21074p390
Sc5630_137578
Sc9049_101804
Sc5048_78539
Sc17001_32535
Sc15199_10587
Sc13836_25493
PsC17565p62
PsC894p666
PsC6197p84
PsC13063p113
Sc275_150744
Sc7612_53830
Sc1295_349656
PsC4872p244
PsC3679p72
PsC8033p314
PsC1492p548
Sc3544_82453
Sc5607_100908
Sc1889_232604
Sc5607_100934
PsC4676p597
Sc17386_8007
Sc18622_41612
PsC8268p528
Sc18622_41385
PsC5078p112
PsC2967p278
PsC7748p178
Sc14669_18711
Sc5459_112382
Sc5459_112375
Sc16433_30339
Sc15857_74942
PsC4165p372

LG7a

PsC20617p92
Sc900_117413
Sc4520_334574
PsC1725p227
PsC8294p190
Sc3819_111787
Sc198_88603
Sc2281_176004
Sc7530_86161
PsC28444p179
PsC20520p237
PsC4363p383
Sc4210_124150
Sc20361_14817
Sc10107_40668
Sc3324_313865
Sc2883_408534
Sc8355_105291
Sc7807_21445
Sc1444_141189
Sc1444_140988
Sc6941_122721
Sc9587_93347
PsC21196p91
PsC13373p333
Sc8238_23868
Sc5936_149807
PsC15812p89
Sc7687_83505
Sc8615_6507
Sc986_91465
Sc9718_66177
PsC21060p179
PsC3005p202
PsC11241p406
Sc3034_166625
Sc2686_28612
Sc10796_96829
Sc3843_195332
Sc1542_377410
Sc12534_85271
Sc14863_4532
Sc15110_62679
PsC17880p349
PsC27413p94
Sc3854_212814
Sc2033_33116
Sc9660_57830
Sc9660_57809
Sc10844_125001
Sc4909_53385
Sc4909_53328
Sc7106_92096
Sc17161_6592
Sc3024_57653
Sc1194_131823
PsC8385p344
PsC7787p272
PsC6994p243
PsC6313p125
PsC7308p194

LG7b

Sc13087_113482
Sc5304_150655
PsC17730p467
Sc3363_23511
PsC2722p226
PsC28549p226
Sc2754_13046
PsC2075p904
Sc12692_91654
Sc2754_12785
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Sc1316_98199
Sc1316_97901
Sc10442_197468
PsC8516p155
Sc11148_6660
Sc1316_97909
Sc5782_95080
Sc7994_73924
SC1440_78270
Sc4088_172179
Sc4088_111362
Sc517_350146
Sc517_350131
Sc3814_239080
Sc10619_168385
Sc9957_132352
PsC8865p668
PsC11215p241
PsC13024p195
Sc981_91426
PsC6867p203
PsC13216p577
Sc9458_27030
Sc11203_101515
SC1972_53389
PsC1159p286
Sc407_249942
PsC8521p283
Sc5789_62823
PsC15275p166
Sc8050_51810
Sc3947_412575
Sc10523_151742
PsC15084p116
Sc4526_511224
Sc3793_116287
Sc3793_116009
Sc3793_116237
Sc3793_116198
PsC5029p497
Sc5856_48596
Sc9850_31201
Sc6822_305523
SC1176_202568
PsC10902p94
PsC10834p134
PsC15474p86
SC12110_2677
SC12110_3013
PsC10147p80
Sc5691_331806
PsC3653p280
Sc567_327708
PsC9190p697
PsC9531p143
PsC6664p321

LG1a

PsC8676p214
PsC5243p280
PsC8859p248
Sc904_168934
Sc1656_239321
Sc13303_74577
PsC4306p91
PsC16900p157
SC1250_56479

SC1134_82417
Sc3310_113543
Sc3310_113531
Sc12030_61433
PsC13109p598
Sc5976_65908
PsC15776p227
PsC3880p181
Sc8030_182709

LG1b

Sc15818_33549

Sc15818_33540
Sc15818_33538
Sc15818_33552
Sc15818_33244
PsC5597p362
Sc11829_48348
Sc10974_36723
Sc10974_36721
Sc8358_176343
Sc8081_117276
Sc8081_116930
Sc8081_117229

LG2a

PsC8833p423
PsC18956p264

SC1716_81400
PsC11302p253
PsC12448p512
SC1716_81383
SC1716_81391
Sc14364_49974
SC1716_81384
Sc13566_22542
Sc14000_14598
PsC10582p78
Sc12708_28419
Sc12708_27992
PsC1764p537
PsC18442p336
Sc11086_52088
SC1195_219454
PsC17726p224
Sc963_175880

PsC6630p189
PsC10574p205
SC1762_66855
SC1012_183693
Sc4334_282032
Sc14484_68354
SC1130_74901
SC1851_178963
SC1814_74649
PsC16662p271
Sc3425_98450
Sc3412_245522
Sc10556_43405
PsC16972p253
PsC1169p461
PsC4982p83
Sc10439_79412
Sc10439_79065
SC1640_482974
SC1448_34378
PsC14928p105
PsC12878p242

LG2b

PsC7190p130
PsC13580p84
SC1585_216053
Sc12574_55026
Sc7302_95459
Sc7302_107920
PsC14645p416
PsC18618p78
Sc5874_30982
PsC10302p95
PsC14587p248
Sc7822_25183
Sc7822_25087
Sc7822_25159
Sc12022_13036
PsC6844p132
SC11950_4777
PsC19344p128

LG3a

Sc9618_162688
Sc12123_74766
Sc16085_30438
PsC1846p336
PsC1870p236
PsC5707p183
Sc4813_167440
Sc5317_256613
Sc14085_64972
SC109_431745
PsC1346p125
PsC16184p408
Sc3223_289333
PsC17668p601
Sc3223_327305
Sc1254_62314
Sc1254_62317
Sc1682_202818
Sc14128_14306
Sc1235_292593
Sc11535_29714
Sc511_434604
PsC11425p211
PsC12912p371
Sc16621_26846
Sc3030_71736

Sc8865_149928
PsC7000p195
Sc11909_106766
Sc7388_112888
Sc3120_148299
Sc3132_175238
PsC18899p425
Sc3132_175237
PsC17710p220
Sc760_198502
Sc10190_11329
SC1404_224246
PsC15489p75
SC1655_152859
PsC1055p147
Sc7171_17480
Sc7171_14359
Sc3260_148260
Sc3260_148582
Sc1615_201693
PsC7872p386
Sc11336_48840 Sc1512_36017
Sc11336_48797
Sc12583_123864
PsC17538p106
PsC3195p368
Sc7419_17372

PsC7922p456
PsC14508p459
Sc5403_7955
Sc5403_8092
Sc5403_8572
PsC11929p181
Sc1333_169488
Sc1333_166281
PsC17621p214
Sc1340_28780
PsC7396p78

LG3b

PsC4787p76
PsC9305p133
Sc5569_56329
Sc7572_10662
Sc3396_127815
Sc335_78315
Sc3749_108190
SC1879_25806
SC1879_47373
SC1879_47145
SC1879_47168
PsC14740p177
PsC9674p419
Sc18786_24067
Sc15898_5876
Sc7592_10748
PsC6804p417
PsC3395p104
Sc7506_85661
Sc5634_248952
Sc3846_98653
Sc5712_35907
Sc1034_397114
Sc5236_240350
Sc3767_327643
Sc1635_110767
PsC4605p220
Sc3776_72623
Sc12064_23045
SC10199_5973
PsC17990p348
SC1811_45046
Sc5017_53556
PsC4368p275
Sc5017_107595
Sc4948_119953
Sc4948_120317
PsC5352p274
PsC11649p203
Sc1907_276817
Sc1907_277011

LG3c

Sc3276_320660
Sc6366_25016
Sc6366_25019
PsC15231p381
Sc804_435011
Sc8606_56596
Sc8606_56618
Sc14252_54211
Sc14773_9078
Sc7561_134615
PsC9619p120
Sc8927_64905
PsC1957p341
PsC8649p435
PsC8027p461
Sc921_36348
SC1726_263005
Sc6366_24865
Sc16646_31278
Sc3487_43854
PsC13132p622
Sc4397_76777
Sc3487_9244
Sc1183_5243
SC1436_393429
Sc1778_643839
Sc5295_108038
Sc11957_111590
PsC3577p93
PsC17119p75
PsC10328p564
PsC1962p250
PsC19043p181
PsC7073p356
SC19_745213
PsC9418p240
PsC14728p116
Sc4155_80474
Sc64_996501
Sc8247_62139
PsC8424p461
Sc5394_57098
PsC19484p188
PsC14408p398
Sc1309_68620
Sc8516_107345
PsC12344p68
PsC7981p97
Sc16645_31859
Sc5458_9253
SC1216_305768
Sc16937_64085
PsC8606p327
Sc13643_109377
Sc3118_133217
Sc3215_157874
Sc3215_157478
PsC3839p347
Sc33_607339
SC1158_504344
Sc3900_173749
Sc6758_108549
PsC11200p246
Sc1362_60551
Sc8082_115509
Sc15127_41344
PsC6805p316
SC1203_124399
Sc10534_12146
PsC14933p313
Sc16088_18082
Sc3214_33760
Sc3214_34208
Sc6392_26104
PsC17107p115
Sc3003_259668
Sc8630_43255
Sc7472_17713
Sc1179_5772
PsC11764p85
Sc10872_22977
SC1654_205979
PsC12700p315
Sc8499_18132
Sc6511_81720
Sc4925_37727
PsC5648p575
Sc14535_27663
Sc978_512275
Sc13687_61551
Sc4411_5289
PsC6387p181
Sc4558_88762
Sc3252_255422
Sc10124_24989
SC1048_229752
Sc5298_152191
Sc5743_327359
Sc6294_161938
Sc8750_99141
PsC4914p436
Sc1058_54517
Sc11122_33687
Sc11122_33887
Sc7703_4060
PsC3456p133
PsC3085p802
Sc11207_89502
Sc1136_367986
Sc6765_113296
SC1978_155562
Sc6771_255527
Sc17297_57164
Sc19034_23899
PsC4871p476
Sc5990_284834
PsC6101p313
PsC6989p290
PsC12477p202
PsC7117p145
Sc9038_2500
PsC1904p532
SC1974_172052
Sc6492_28513
Sc7139_121322
Sc11695_69547
PsC647p102
PsC9490p82

LG4

Sc8473_10944
PsC12556p240
PsC16750p187
PsC12889p283
Sc3988_47191
Sc4585_388711
PsC16393p87
PsC13878p158
Sc7955_101825
Sc12770_29028
Sc1483_491000
Sc1815_265987
Sc1815_266013
Sc12770_28686
Sc13863_5156
PsC18120p93
Sc10335_245196
Sc10335_244927
Sc10335_245111
PsC11254p236
PsC19553p118
SC1367_69050
Sc1247_33883
Sc14884_23947
Sc6162_128562
Sc8300_108095
PsC11264p114
Sc4184_219529
PsC12198p122
PsC6023p434
Sc7945_15111
Sc5040_148143
Sc8569_113559
Sc8569_113678

LG5a

Sc7829_44837
Sc7829_44812
Sc7829_44814
SC10333_25641
Sc8648_7153
PsC15202p299
PsC5316p234
PsC5994p794
SC1567_36332
Sc9503_57466
Sc17914_14865
Sc15670_44157
Sc15670_44160
Sc19803_9223
Sc19803_9214
Sc19803_11059
PsC15521p171
Sc7800_106821
Sc1844_355862
Sc1781_351800
Sc14001_46353
PsC4359p494
SC1280_255408
Sc9297_117105
Sc4448_351161
Sc836_42879
PsC12474p404
PsC13749p178
PsC12754p283
Sc3833_31370
Sc7434_234085
Sc4869_25255
Sc12841_29090
Sc12841_29142
PsC14181p251

LG5b

Sc5865_47992
Sc18434_39548
Sc5804_68119
Sc7841_269977
Sc5804_68771
Sc5804_68745
PsC11723p627
Sc4280_149725

LG5c

Sc6959_123993
Sc6959_123727
Sc3794_59219
Sc8405_66599
Sc5363_401452
Sc5363_401896
Sc7850_118969
PsC1405p153
PsC19853p376
PsC10309p393
PsC16710p469
PsC16439p299
PsC9187p121
Sc15567_7204
Sc15948_45379
Sc10403_46376
PsC1446p690
PsC18872p123
Sc10203_59102
Sc7629_170163
Sc10306_73180
Sc3063_31162
SC1559_47919
Sc3791_152956
Sc3069_69509
Sc9294_369257
Sc9294_368430
Sc4799_168522
Sc16502_4089
PsC10745p88
PsC6187p183
Sc3674_6937
Sc3674_6818
Sc5866_142582
Sc1308_111705
Sc7489_78449
PsC16518p121
PsC6669p472
PsC10763p64
PsC15520p148
Sc12188_21882
Sc7189_36060
Sc10078_43273
Sc10078_43406
PsC6423p69
PsC4675p73
Sc11311_30803
Sc11311_30842
Sc11311_30806
Sc8614_69028
SC1470_5560
Sc14210_22245
Sc5631_70420
Sc5631_70415
Sc1600_213699
Sc8777_117149
PsC10868p107
PsC10352p254
Sc4454_70319
Sc4454_70320
Sc15395_13349
PsC11091p970
Sc15395_13420
SC107_623905
Sc56_590684
Sc16086_12742
Sc834_380292
Sc5560_48085
Sc17064_35886
PsC18612p67
PsC682p120
PsC17032p91
PsC17596p426
PsC8791p257
Sc6134_400858
Sc5637_275649
SC1177_568477
Sc18917_11788
SC1500_201045
Sc15305_16317
Sc7795_137789
Sc7795_137886
Sc7795_137551
Sc7795_137794
PsC13143p353
PsC15597p337
Sc3067_13865
Sc61_379768
Sc4016_115691
Sc10413_115004
PsC10018p253
Sc9264_79257
SC1180_179090
PsC12752p338
PsC11455p308
PsC11695p164
SC1857_244130
SC1857_244142
Sc1114_83128
Sc4907_215734
SC1180_178835
SC107_316346
PsC11465p483
PsC11475p173
Sc6743_393683
Sc8199_70719
Sc6731_30489
Sc6731_30491
Sc6731_30493

LG6

Sc634_50791
PsC14542p181
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Appendix I: Analysis of the relationship between soil and seed micronutrient 

concentration                                                

Background: 

When evaluating the GWAS panel accessions for Se, Zn and Fe concentration, in some cases, 

biological replications in the same location varied substantially, particularly for Se.  Soil 

analysis was conducted to evaluate the correlation between soil and seed micronutrient 

concentration.  Understanding this relationship could inform biofortification strategies.  

Objective: 

Observing the correlation of micronutrient concentration of soil with the particular 

micronutrient concentration of field pea seeds. 

Methodology: 

Ten varieties were selected randomly from the GWAS panel for this study (NDP080138, 

CAROUBY DE MAUSSANE, SERPETTE D'AUVERGNE, BK12, KB139, EB157, EK3, 

CDC EK25, TMP 15133, and CDC DAKOTA). Soil samples were collected from two 

locations, i.e., Saskatoon and Rosthern from two blocks in each location for three depths (0-

15cm, 15-30cm, 30-60cm) in the harvest year 2017. Collected soil samples were submitted to 

the ALS Company for chemical analysis (CRC ICPMS for Se, available micronutrient 

method for Fe and Zn, available nitrate for N, available phosphate for P and available K). The 

seed samples were extracted from the corresponding plots that were selected for the soil 

collection washed, dried, ground and analyzed using atomic absorption spectrometry 

according to Thavarajah et al. (2007). Statistical analysis of the obtained data was performed 

using SAS 9.4 software. 

Results:  

Table I.1: Pearson‟s correlation coefficient (r) between the micronutrient concentration of soil 

and seeds for the three depths in Rosthern and Saskatoon, 2017 

Depth Rosthern Saskatoon 

  Se Zn Fe Se Zn Fe 

0-15 cm -0.30 0.03 0.25 -0.07 0.50* 0.62** 

15-30 cm 0.36 0.43 0.26 -0.05 0.44 0.49* 

30-60 cm 0.57* -0.26 0.21 0.76*** -0.13 0.40 

Significance: * at 0.05, ** at 0.01, *** at 0.001  
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Table I.2: Pearson‟s correlation coefficient (r) between Se, Zn, and Fe concentration of seeds 

and each N, P, and K in the soil for the three depths in Rosthern and Saskatoon, 2017. 

 Depth   Rosthern Saskatoon 

    Se_seed Zn_seed Fe_seed Se_seed Zn_seed Fe_seed 

0-15 cm 

N -0.06 0.00 -0.04 0.27 -0.29 -0.11 

P -0.30 0.22 0.29 -0.10 0.12 0.02 

K -0.49* 0.16 0.27 -0.06 -0.05 -0.01 

15-30 cm 

N -0.39 0.44 0.47 0.67** 0.03 0.14 

P -0.46* 0.15 0.27 0.14 0.42 0.51* 

K -0.45* 0.14 0.21 -0.15 0.25 0.17 

30-60cm 

N -0.06 -0.16 -0.11 0.35 -0.37 -0.26 

P 0.40 0.21 0.26 0.00 0.07 0.16 

K -0.34 0.10 0.19 -0.05 0.01 0.03 

Significance: * at 0.05, ** at 0.01, *** at 0.001  

Table I.3: Descriptive statistics of Se, Zn, and Fe concentration (µg/g) of the seeds for two 

blocks in Saskatoon and Rosthern, 2017.  

Field Block Variable Minimum Maximum Mean SD CV% 

Rosthern Block 1 Se_seed 0.05 0.35 0.15 0.09 58.7 

  

Zn_seed 29.28 47.43 36.23 6.01 16.6 

  

Fe_seed 46.97 69.86 55.83 7.15 12.8 

 

Block 2 Se_seed 0.16 1.48 0.56 0.39 68.9 

  

Zn_seed 29.96 45.37 35.75 5.97 16.7 

  

Fe_seed 47.23 69.56 55.79 7.56 13.6 

Saskatoon Block 1 Se_seed 0.51 3.86 1.30 0.98 75.9 

  

Zn_seed 26.76 38.49 31.65 3.85 12.2 

  

Fe_seed 37.11 52.9 43.14 4.76 11.0 

 

Block 2 Se_seed 0.52 1.91 0.88 0.39 44.1 

  

Zn_seed 26.65 35.44 32.63 3.06 9.4 

  

Fe_seed 36.45 57.07 44.47 6.10 13.7 
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Table I.4: Descriptive statistics of Se, Zn, and Fe concentration (µg/g) of the seeds in 

Saskatoon and Rosthern, 2017 (regardless of the blocks).  

Field Variable Minimum Maximum Mean SD CV% 

Rosthern Se_seed 0.05 1.48 0.36 0.35 97.7 

 

Zn_seed 29.28 47.43 35.99 5.84 16.2 

 

Fe_seed 46.97 69.86 55.81 7.16 12.8 

Saskatoon Se_seed 0.51 3.86 1.09 0.76 69.5 

 

Zn_seed 26.65 38.49 32.14 3.42 10.6 

 

Fe_seed 36.45 57.07 43.80 5.37 12.3 

 

Table I.5: Descriptive statistics of Se, Zn, and Fe concentration (µg/g) of the soil for two 

blocks in Saskatoon and  Rosthern, 2017.  

Location Block Depth Variable Min Max Mean SD CV 

Rosthern Block 1 0-15 cm Se_soil 0.31 0.37 0.35 0.02 5.7 

   

Zn_soil 1.50 2.82 2.21 0.36 16.2 

  

  Fe_soil 90.60 289.00 195.83 71.76 36.6 

  

15-30 cm Se_soil 0.22 0.34 0.28 0.04 16.0 

   

Zn_soil 0.22 1.70 0.61 0.47 77.5 

  

  Fe_soil 23.30 167.00 98.10 52.74 53.8 

  

30-60 cm Se_soil 0.21 0.28 0.24 0.03 12.0 

   

Zn_soil 0.20 0.33 0.25 0.05 20.5 

 

    Fe_soil 15.90 91.40 47.52 23.51 49.5 

 

Block 2 0-15 cm Se_soil 0.32 0.38 0.35 0.02 7.0 

   

Zn_soil 0.94 2.40 1.48 0.43 28.8 

  

  Fe_soil 60.10 83.20 69.42 7.25 10.4 

  

15-30 cm Se_soil 0.22 0.85 0.39 0.19 49.8 

   

Zn_soil 0.21 0.30 0.25 0.03 12.9 

  

  Fe_soil 13.10 19.50 16.59 2.36 14.2 

  

30-60 cm Se_soil 0.21 0.58 0.36 0.14 37.8 

   

Zn_soil 0.20 0.61 0.31 0.17 54.60 

      Fe_soil 14.10 22.40 17.05 2.47 14.46 

Saskatoon Block 1 0-15 cm Se_soil 0.50 0.73 0.58 0.07 12.2 

   

Zn_soil 0.74 2.03 1.24 0.44 35.9 

  

  Fe_soil 32.90 65.30 48.45 10.43 21.5 

  

15-30 cm Se_soil 0.29 0.65 0.36 0.11 29.7 

   

Zn_soil 0.38 1.82 0.63 0.42 67.2 

  

  Fe_soil 12.40 70.90 23.61 17.21 72.9 

  

30-60 cm Se_soil 0.22 0.62 0.31 0.12 39.6 
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Zn_soil 0.22 0.42 0.33 0.06 18.4 

 

    Fe_soil 12.20 23.40 16.30 3.72 22.8 

 

Block 2 0-15 cm Se_soil 0.39 0.82 0.64 0.11 17.1 

   

Zn_soil 0.55 1.95 1.42 0.46 32.1 

  

  Fe_soil 30.20 73.70 56.18 13.67 24.3 

  

15-30 cm Se_soil 0.24 0.65 0.42 0.15 35.0 

   

Zn_soil 0.24 2.12 0.68 0.54 79.1 

  

  Fe_soil 14.30 68.70 28.45 16.21 57.0 

  

30-60 cm Se_soil 0.25 0.34 0.28 0.03 11.7 

   

Zn_soil 0.21 0.53 0.32 0.11 34.7 

      Fe_soil 10.10 36.80 20.69 8.21 39.7 

 

Table I.6: Descriptive statistics of Se, Zn, and Fe concentration (µg/g) of the soil for three 

depths in Saskatoon and Rosthern, 2017 (regardless of the blocks).  

Location  Depth Variable Min Max Mean SD CV 

Rosthern 0-15 cm Se_soil 0.31 0.38 0.35 0.02 6.2 

  

Zn_soil 0.94 2.82 1.84 0.54 29.2 

 
  Fe_soil 60.1 289 132.63 81.67 61.6 

 

15-30 cm Se_soil 0.22 0.85 0.33 0.15 43.9 

  

Zn_soil 0.21 1.7 0.47 0.41 85.4 

 

  Fe_soil 13.1 167 57.35 55.4 96.6 

 

30-60 cm Se_soil 0.21 0.58 0.3 0.11 37.8 

  

Zn_soil 0.2 0.61 0.28 0.12 42.3 

  

Fe_soil 14.1 91.4 32.29 22.56 69.9 

Saskatoon  0-15 cm Se_soil 0.39 0.82 0.61 0.09 15.4 

  

Zn_soil 0.55 2.03 1.33 0.45 33.7 

 

  Fe_soil 30.2 73.7 52.32 12.48 23.9 

 

15-30 cm Se_soil 0.24 0.65 0.39 0.13 32.9 

  
Zn_soil 0.24 2.12 0.66 0.47 72.0 

 

  Fe_soil 12.4 70.9 26.03 16.46 63.2 

 
30-60 cm Se_soil 0.22 0.62 0.3 0.09 31.5 

  

Zn_soil 0.21 0.53 0.32 0.09 26.4 

    Fe_soil 10.1 36.8 18.5 6.6 35.7 

 

Discussion: 

No significant correlation between soil-seed concentration could be observed for Fe and Zn 

in Rosthern for all the three depths. Fe correlated significantly in 0-15 cm and 15-30 cm 

depths in Saskatoon. Zn showed a significant correlation only in 0-15 cm depth in Saskatoon. 
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For Se, soil-seed concentration was significant only in the 30-60 cm depth in both locations 

(Table I.1).  

Fe_seed concentration significantly correlated with P in 15-30 cm but not in any other 

combination. Zn_seed concentration did not correlate significantly with N, P, and K in soil 

for all the three depths in both the locations. Se_seed showed significant correlations with N, 

P, and K in several combinations. No significant correlation could be observed in 30-60 cm 

depth between N, P, and K in soil and Se, Zn, and Fe in seeds (Table I.2). 

In terms of Zn and Fe concentration in seeds, the mean and CV% are more or less similar.  

Even if the CV%  of the Se concentration in Rosthern is higher than Saskatoon (97.7% > 

69.5%) (I.4), when considering the blocks, seeds grown in Saskatoon show a considerable 

difference between blocks (75.9% and 44.1% in block 1 and block 2, respectively) compared 

to Rosthern (Table I.3). 

Generally, the Fe and Zn concentration in the soil decreases from top to bottom depths. Se 

concentration in soil between the three depths is more similar in Rosthern but not in 

Saskatoon (Table I.5). 

However, in the soil, Zn and Fe showed much more variation across the plots than Se 

regardless of the block effect (Table I.6). Even if the block factor is considered as „random‟ 

factor in general, it seems like block factor has a significant effect on the particular fixed 

(treatment) factor, i.e., the micronutrient concentration.  However, there was not sufficient 

evidence to prove that fact and to identify any particular trend across blocks. Levene‟s test 

was significant for the two locations and therefore a combined analysis was not performed for 

the data.   In conclusion, this soil study did not suggest a strong relationship between the 

micronutrients in seeds and the micronutrients in the soil. 

 

 

 

 


