Effects of Crop Rotation and Fertilization on Soil Carbon Sequestration in the Semiarid Region

C.A. Campbell², R.P. Zentner¹, V.O. Biederbeck¹, F. Selles¹, R. Lemke¹, and B.G. McConkey¹

¹Agriculture and Agri-Food Canada, Semiarid Prairie Agricultural Research Centre, Swift Current, SK ²Agriculture and Agri-Food Canada – Eastern Cereal and Oilseed Research Centre, Ottawa, ON

INTRODUCTION

- Quantifying changes in soil C is of considerable interest to society because it is a source and a sink for CO2, a major "greenhouse gas" which allegedly contributes to global warming.
- Soil organic C is readily influenced by crop management practices such as tillage, fertilization, crop rotations and frequent fallowing.
- Annual changes in soil C are very small but variability of measured values can be quite large, thus accurate assessment of trends is difficult and best determined after repeated samplings over many years.
- However, use of reliable simulation models to estimate C trends may provide answers in a shorter time frame.

OBJECTIVE

To develop and test a simple empirical model for its ability to estimate trends in soil C change under various long-term crop rotations in an Orthic Brown Chernozemic loam at Swift Current, Saskatchewan.

MATERIALS AND METHODS

- Twelve crop rotations (Table 1) were established in 1967 on 81, 0.04 ha plots in a randomized complete block design with 3 reps.
- Soil was sampled (0-15 cm depth) in 1976, 1981, 1984, 1990, 1990, 1993, 1996 and 1999.
- Carbon content was determined by dry combustion.
- Bulk density was measured only in 1967 and this used to calculate C mass.

Rotation		Fertilizer	Rotation	Average N and P applied $(\text{kg ha}^{-1} \text{ yr}^{-1})^{\text{y}}$		
No.	Rotation	criteria	phase			
			cropped	Ν	Р	
11	$F-(W)^{z}$	N and P applied	Fallow	13.6	9.6	
2	F-W-(W)	N and P applied	Fallow	13.6	9.6	
		N and T applied	Stubble	33.9	9.6	
1	F-W-(W)	P applied but no N	Fallow	48	96	
		applied except that in P	Stubble	6.4	9.6	
		tertilizer	F -11	10.7	0	
5	F-W-W	N applied, no P applied	Fallow	10.7	0	
			Fallow	23.7	0	
3	F-Flx-(W)	N and P applied	Stubble	29.5	7.9 9.6	
13	F-W-W-W-W- W ^x	N and P applied	Fallow	18.2	9.0	
			Stubble	31.0	9.4	
8	Cont (W)	N and P applied	Stubble	35.8	9.6	
		(fallow if less than 60 cm				
9	Cont (W) ^w	moist soil exists at	Stubblo	27.6	0.6	
		seeding time: N and P	Stubble	27.0	9.0	
		applied)				
		(fallow if grassy weeds	~		0.6	
10	Cont (W) ^w	become a problem: N and	Stubble	27.3	9.6	
		P applied)	T (*1	165	0.6	
19	(W)-Lent ^w Cont (W) ^u	N and P applied	Lentil	16.5	9.6	
		Donnlind but no N	wheat	29.0	9.0	
12		r applied out no N	Stubble	7.9	0.6	
		fertilizer			9.0	
Z Solooted plots indicated in generations, were some led for strong weight at 1t. Σ -f-11						

 Table 1. Crop rotations and amount of fertilizer applied to treatments (1967-1999)

Selected plots, indicated in parentheses, were sampled for straw weight at harvest. F=fallow; W=spring wheat; Flx=flax; Lent=grain lentil; Cont=continuous cropping.

- ^y Nitrogen and P were applied based on the prescribed treatment. The N was based on soil NO₃ tests, while the P fertilizer was applied to each crop based on the general recommendations of the soil testing laboratory, University of Saskatchewan.
- ^X This rotation was established in 1985 from Oat hay-Wheat-Wheat and Flax-Wheat-Wheat rotations that received N and P fertilizers at average rates of 27.9 and 9.3 kg ha⁻¹, respectively. Fertilizer rates are for the 1985-1999 period.
- ^W During the first 12 yr, the criteria necessary for summerfallowing in these two rotations were met on several occasions but the action was not implemented; fertilizer rates are for the 1967-1978 period. In 1979, these two rotations were changed to the spring wheat-lentil rotation with N and P applied (i.e. rot. 19); fertilizer rates are for the 1979-1999 period. IN 1990 and 1991 the lentil was erroneously not fertilized with N and P.
- ^u In 1980 and 1982, N was inadvertently applied to this system at rates of 70 and 40 kg N ha⁻¹, respectively.

Quantifying Soil and Residue C Decomposition

- Disregarding erosion, net changes in soil C are a function of increases due to residue inputs and decreases due to humus decomposition.
- Quantitatively this can be represented as:

Soil Decomposition

$$SOC_{t} = C_{0}(q_{1}e^{-k_{1}t} + q_{2}e^{-k_{2}t}) +$$

$$\uparrow \qquad \uparrow$$

Active slow decomposition

$$\downarrow \qquad \downarrow$$

$$\sum_{n=0}^{t} \left[A_n \left(p_1 e^{-r_1(t-n)} + p_2 e^{-r_2(t-n)} \right) \right]$$

Residue decomposition

Where:

 SOC_t = amount of C/mass remaining in soil after t years (NB. 't' is measured to just before residue addition) C_0 = amount C/mass in soil initially at t=0 q = a proportion of soil C in this soil q₁=0.20, q₂=0.80 k = annual rate of soil C decomposition A_n = amount of plant residue C added in year n p = proportion of residue C (NB. P₁ + P₂ = 1) r = annual rate of residue decomposition Subscript 1 and 2 = differing susceptibility to decomposition with 1 = active pool and 2 = slower pool.

- Values for the active soil organic C pool (q₁ and k₁) and the passive pool (q₂ and k₂) can be obtained from the scientific literature.
- For our soils, we assumed LF plus biomass C (i.e., 20% of total C) was active the C fraction (q₁); thus q₂=80%
- We assumed 1/mrt of humin + humic acids of Chernozems (i.e., 0.00066 yr⁻¹) was k_2
- We estimated k₁ iteratively by matching equation 1 to average measured C trends (a) for fallow systems; (b) for continuous cropping
 - $k_1 = 0.02 \text{ yr}^{-1} \text{ for F-W};$

=
$$0.01 \text{ yr}^{-1}$$
 for F-W-W;
= 0.001 yr^{-1} for Cont W

RESULTS AND DISCUSSION

- We estimated trends in SOC using our two-component equation.
- For example, we show the relative impact of each component of the equation for fallowwheat and the wheat-lentil rotation (Fig. 1a and 1b).

Fig. 1a

W-Lent (N+P)

Fig. 1b

• In Fig. 2 we show the net C trends (0-15 cm depth) as estimated from equation 1, and the measured soil organic C on the sampling dates, together with standard errors (Sx) (Note: C lost by erosion was estimated with EPIC model and this added to the measured C because our model does not account for this type of loss).

<u>F-W-W (+N)</u>

Fig. 2c

$$F-Flx-W(N+P)$$

Fig. 2e

F-Rye-W(N+P)

Fig. 2f

Cont W (+P)

Cont W (N+P)

Fig. 2j

- Large variability in measured data makes estimating soil C changes very difficult.
- Increases in soil C were low in frequently fallowed systems, except where a fall-seeded crop (e.g., fall rye) was included.
- Cropping annually and fertilizing adequately had a positive impact on soil C.
- Above-average weather in 1990s (Fig. 3) increased the rate of soil C accumulation in all systems.

• Note: Our equation consistently underestimated measured values for wheat-lentil unless we assumed that initial SOC in these plots was about 1.5 Mg ha-1 greater than assumed for the other treatments (Fig. 2).

Fig. 3

- This suggests that considerable C may be sequestered due to an increase in cropping frequency (even without reducing tillage).
- We developed a relationship between change in soil C (D SOC/yr) and fallow frequency (Fig. 4)

Fig 4

• We used values for trends in fallow frequency over 1976-1998 period on Canadian prairies (Table 2) to estimate D SOC/yr for 1976 and 1998 from Fig. 4. Then estimated the average amount of C that may have been sequestered in the Brown and Dark Brown soil zones during these years due to more frequent cropping (Table 3).

		2							
Proportion of land in fallow									
Soil Zone	1976	1980	1985	1990	1995	1998			
Brown	0.47	0.47	0.44	0.43	0.44	0.38			
Dark Brown	0.42	0.40	0.32	0.31	0.25	0.20			
Black and Gray	0.26	0.28	0.17	0.17	0.13	0.09			
Data dariyad from analysis of Stats Canada data									

Table 2. Trends in fallow frequency on the Canadian prairies

Data derived from analysis of Stats Canada data

Table 3. Estimate of C sequestered in Brown and Dark Brown Soil Zones of the Canadian prairies (1976 vs 1998) due to changes in fallow frequency

	1 2	
Soil Zone and C sequestered	1976	1998
BROWN (million ha)	6.5	6.5
^y Mean rate of C sequestered (Mg ha ⁻¹ yr ⁻¹)	0.03	0.075
C sequestered per year (Mg)	195,000	487,500
DARK BROWN (million ha)	8.5	8.5
^y Mean rate of C sequestered (Mg ha ⁻¹ yr ⁻¹)	0.06	0.165
C sequestered per year (Mg)	510,000	1,402,500
VEallow fragment as from Table 2 was devith Fig. 2.	a actimate this welve	

^yFallow frequency from Table 2 used with Fig. 3, to estimate this value.

SUMMARY

- Soil organic C (SOC) is readily influenced by crop management practices. This was shown by results of this 33-yr crop rotation experiment at Swift Current.
- Cropping annually, proper fertilization, and including fall rye in rotations increased SOC, as did a decade of favourable weather which increased crop residues and thus C input.
- Measured SOC values were very variable. However, our empirical model effectively simulated trends in SOC.
- We present a useful relationship relating rate of SOC change to fallow frequency for "first-round" estimates.