A SMALL-SIGNAL HIGH FREOUENCY

EQUIVALENT CIRCUIT FOR THE

FIELDMEFFECT TRANSISTOR

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of Master of Science
\section*{In the Department of Electrical Engineering University of Saskatchewan}

> by

Bhaskara Reddy

Saskatoon, Saskatchewan

$$
\text { May, } 1965
$$

ACKNOWLEDGEMENYIS

The author is grateful to Dr. F.N. Trofimenkoff for his guidance and supervision during the course of this work. Sincere thanks are extended to Dr. K.A. Zischica of the Department of Mathematics for his valuable assistance in solving the differential equation. The author also thanks Professors R.S.C. Cobbold, A.G. Wacker and Mr. A.E. Krause for thoir suggestions and helpful criticisms.

Financial assistanoe to the author under N.R.C. Grant \#A-1818 is gratefully acknowledged.

ABSTRACT

The field effect transistor is considered as an active, distributed non-uniform transmission line and a differential equation for the small-signal a.c. case is derived. The short-circuit admittance parameters of the device are determined from the solution of the differential equation. A high Frequency equivalent circuit for the intrinsic device is then obtained from the first-order approximation of the analysis and the expressions for the elements of this circuit are derived for both the saturated and the non-saturated conditions. The nompalized values of these elements are computed as functions of the gate and drain bias voltages and the results of these computations are presented graphically.

TABLE OF CONIEATIS

Chapter Page

1. INTRODUCTION 1
1.1 General 1
1.2 Review 0f The IIterature 1
1.3 An Outline Of The Soope of This Work 8
2. THE DIFFERENTIAL EQJATION AND ITS SOLUTION 10
2.1 Introduction 10
2.2 Tho Difforential Equation 10
2.3 Solution Of The Differential Equation 14
3. EXPRESSIONS FOR ADMITTANCE PARAMETTERS 19
3.1 Introduction 19
3.2 Evaluation $01 C_{0}$ And C_{1} For The Short- Circuited Output Case 19
3.3 Expression For Channel Gumpent 23
3.4 The D.C. Gase 25
3.5 Expression For \triangle 26
3.6 Expression For 321 27
3.7 Expression For J11 29
3.8 Evaluation of C_{0} And C_{1} For The Short- Circuited Input Case 32
3.9 Expression For 722 35
3.10 Expresuion For 712 36

TABLE OF CONTENTS (CONTID)

Chapter Page
4. THE EQUIVALEMTT CIRCUIT 39
4.1 Introduction 39
4.2 Assumed Circuit Model 40
4.3 Expressions For J_{1}, C_{1} and R_{1} 41
4.4 Expressions For $\mathrm{J}_{2}, \mathrm{C}_{2}$ And R_{2} 44
4.5 Expressions For y_{0}, R_{0} And L_{0} 46
4.6 Erpression For Transadmittance $\mathbf{y m}_{m}$ 49
4.7 The Equivalent Circuit 49
5. CONCLUSIONS 57
6. REFFRENTCES 60
7. APPMNDIX 62

ITST OF FIGURES

Figure Page
1.1 Schematic diagram of an F.E.T. 2
I. 2 Common source drain voltage-current characteristic of the F.E.T. 2
1.3 Small-signal low irequency equivalent circuit of the F.E.T. 5
1.4 General form of the F.E.T. equivalont circuit 7
1.5 An equivalent circuit for the P.E.T. (suggested by Texas Instruments Inc.) 7
2.6 Silverthorn's equivalent circuit for the F.E.T. 7
2.1 Current flow in a section $d x$ of the device 11
3.1 Currents flowing in the device 31
4.1 Assumed form of the F.E.T. equivalent circuit 40
4.2 The derived equivalent circuit for the device 50
4.3 Normalized values of R_{1} and C_{1} versus normalized gate bias with normalized drain bias as the parameter 52
4 Nommalized values of R_{7} and C_{1} versus nommalized gate bias with normalized drain blas as the parameter 53
4.5 Normalized values of R_{2} and C_{2} versus normalized gate bias with normalised drain bias as the parameter 54

IIST OF FIGURES (CONT'D)
Figure Page
4.6 Nommalized values of R_{2} and C_{2} versusnormalized gate bias with normalizeddrain bias as the parameter.554.7 Normalized value of $\left(\tau_{1}+\tau_{2}-\delta \cdot \tau_{8}\right)$versus nommalized gate bias with norm-alized drain bias as the parameter.56

LIST OF PRIMCIPAL SYMBOLS

$2 a=$ the distance between the two gates
$\mathbf{2 b}=$ the channel height
$E_{X}=x$-component of electric field in the channel
$\mathrm{g}_{\mathrm{m}}=$ the transconductance of the F.E.T.
$g_{m o}=$ d.c. or low frequency value of gm
$80=$ output conductance of the F.E.T.
$I_{d}^{\prime}=$ total value of channel current
$I_{d}=$ d.c. value of channol current
$1=$ a.c. value of channel current
$\mathrm{L}=$ longth of the channel
$q=$ electronic charge
$V_{g}=$ d.c. potential of the gate referred to the source
$V_{d}=d . c \cdot$ potential of the drain referred to the source $\nabla=$ a.c. value of the ohannel bias
$\nabla_{g}=$ a.c. potential of the gate reforred to the source
$\nabla_{d}=$ a.c. potential of the drain referred to the source
$W=$ the d.c. value of the channel blas
$W^{\prime}=$ the total channel bias
$W_{p}=$ the value of channel blas at pinch-orf
$y=$ the ratio (b/a)
$J_{s}=$ the value of y at the source ond of the chamel
Ya $=$ the value of y at the drain ond of the channel
J1,2,0 $=$ the admittances of the equivalent airouit
$Y_{m}=$ the transadmittance of the F.E.T.

Z $=$ the width of the F.E.T.
$\epsilon=$ permittivity of the material of the F.E.T.
$\mu=$ mobility of the current carriers
$\rho_{0}=$ charge density of the space-charge regions
$\rho_{g}=$ charge density of the gate regions
$\sigma_{c}=$ conductivity of the channel
$\mathcal{F}=$ equilibrium barrier potential of the p-n junction The subscripts s; g, and d refer to the source, gate and drain respectively.

1. INTRODUCTION

1.1 General

Recent advances in the construction techniques of fieldeffect transistors have enabled devices of greatly improved high frequency performance to be produced. Application of such devices in an optimal fashion to the design of high frequency circuits is facilitated by the use of an equivalent oircuit. This thesis is concerned with the theoretical deriVation of a high frequency equivalent circuit for the fieldeffect transistor from a consideration of the basic physical principles involved in the operation of the device.

1. 2 Review of the Literature

The field-effect transistor (F.E.T.) is a semiconductor device in which the conductance of the current path is modulated by the application of a transverse electric field. It was first described by shockley ${ }^{1}$ who presented the basic theory of the device. This theory assumed an abrupt p-n junction and a uniformly graded channel along which the potential varied in a gradual way. A brief account of his analysis is given below.

Consider an F.E.T. with an n-type channel and two p-type gates as shown in Fig. 1.1. Suppose that the two gates are shorted to the source and a positive potential V_{d} is applied to the drain. A current I_{d} will N10w between the source and

Fig. 1.2 Schematic diagram of an F.E.T.

Fig. 1. 2 Common source drain voltage current characteristic of the F.E.T.
the drain causing a voltage drop along the channel. since the drain is more positive than the source which is directly connected to the gates, the p-n junctions are reverse biased. This reverse bias increases in the positive x direction along the channel and, hence, the space-charge regions will be wider near the drain. As the drain to source voltage is increased the channel becomes namrower until, at a value of channel bias equal to W_{p}, the two spacemcharge regions from the opposite gates meot at the drain end. This is called the 'pinch-off' condition and W_{p} is called the 'pinch-off potential'. The drain current remains essentially saturated for bias voltages higher than W_{p} as most of the inareased voltage appears across the space-charge regions near the drain.

If a negative potential $V_{i g}$ is applied between the gate and the source, the magnitude of the drain voltage V_{d} required to cut off the channel will be reduced by the amount of gate bias. The drain current will therefore saturate at lower values of drain voltage and current. Thus the common source characteristic (I_{d} versus V_{d}) with gate voltage as a parameter is of the form shown in Fig. 1.2.

If W is the potential of the gate with respect to the channel, then according to Shockley, 1

$$
\begin{equation*}
W=W_{p}\left(I-\frac{b}{a}\right)^{2} \tag{1.1}
\end{equation*}
$$

where $W_{p}=$ pinch off potential
$2 \mathrm{~b}=$ channel thickness (Fig. 1)
$2 a=d i s t a n c e ~ b o t w e e n ~ t h e ~ t w o ~ g a t e s ~$
The value of W at the source is given by

$$
W=W_{8}=V_{g}+\mathscr{y}
$$

and at the drain

$$
W=W_{d}=\left(V_{g}-V_{d}\right)+\psi
$$

V_{g} and V_{d} are the gate and drain voltages referred to the source, respectively. In the above equation, 4 is the equilibrim barrier potential and is a negative quantity for an F.E.T. with an n-type channel.

The x-component of the electric field, Ex, at a distance x from the source along the channel is

$$
\begin{equation*}
E_{X}=\frac{d W}{d x} \tag{1.2}
\end{equation*}
$$

Hence, the channel current is given by

$$
\begin{align*}
I_{d} & =-2 Z \sigma b \cdot E_{x} \\
& =-2 Z \sigma a\left(\frac{b}{a}\right) \frac{d W}{d x} \tag{1.3}
\end{align*}
$$

where $\sigma=$ conductivity of the channel

$$
\mathrm{Z}=\text { width of the channel. }
$$

Shockley has shown that the channel current is given by
where L is the length of the device. The trans conductance, smog of the device is therefore given by

$$
\begin{equation*}
g_{m o}=\left.\frac{a I_{d}}{\partial v_{g}}\right|_{v_{d}=\text { cons }}=\frac{2 Z a \sigma_{c}}{L}\left[\left(\frac{W_{d}}{W_{p}}\right)^{\frac{1}{2}}-\left(\frac{W_{s}}{W_{p}}\right)^{\frac{1}{2}}\right] \tag{1.5}
\end{equation*}
$$

The output conductance, $\frac{1}{R_{0}}$, of the device becomes

$$
\begin{equation*}
\frac{1}{H_{0}}=\left.\frac{a T_{d}}{d V_{d}}\right|_{V_{f}=\text { cons }}=\frac{2 Z a \sigma_{c}}{I}\left[1-\left(\frac{W_{d}}{W_{p}}\right)^{\frac{1}{2}}\right] \tag{1.6}
\end{equation*}
$$

The equivalent circuit of the F.E.T. for the low froguency case takes the form shown in Fig. 1.3.

Pig. 1.3 Smail-aignal low frequency equivalent circuit of the F.B.I•

Shockley's theory has been extended ${ }^{2-6}$ to include the effects of changes in the mobility of the carriers with the electric field and non-uniform channel doping.

A number of high frequency equivalent circuits have peen proposed7,8,9,10,11,12 for the F.E.T. In general, these take the form shown in Fig. 1.4. Note that the equivalent oircuit of Fig. 1.3 is of this form ($\mathrm{J}_{1}, \mathrm{~J}_{2}=0, \mathrm{y}_{\mathrm{m}}=\mathrm{g}_{\mathrm{mo}}$ and $\mathrm{J}_{0}=\frac{1}{\mathrm{R}_{0}}$)。 An improverent over the equivalent circuit of Fig. 1.3 has been made by van der Ziel 7 and others ${ }^{8}$ by considering charge storage in the space-charge regions of the p-n junction of the device. Analyses of this type lead to the conclusion that II consists of a capacitance C_{1} and Y_{2} consists of a capacitance C_{2} and expressions for C_{1} and C_{2} as functions of the blas voltages have been presented. Olsen 9 has suggested that Jo consists of $\frac{l}{R_{0}}$ in parallel with a capacitance C_{0}.

The solld-state devices group at Texas Instruments Inc. 10 has suggested the equivalent circuit shown in Fig. 1.5. This circuit is based on a qualitative analysis of the field-effect transistor operation. The resistors R_{3} and R_{4} are the d.c. leakage resistances of the reverse blased p-n junctions while R_{5} and R_{6} are parasitic resistances associated with the souroe and drain contacts.

Silverthorn's ${ }^{11,12}$ equivalent circuit (Fig. 1.6) is a simplification of the Texas Instruments Inc. equivalent cipcuit valid for the frequency range in which R_{3} and R_{4} can be

Fig. 2.4 General form of the F.E.T. equivalent circuit.

Fig. 1.5 An equivalent circuit for the F.E.T. (suggested by Texas Instruments Inc.)

Fig. 1.6 Silverthorn's equivalent circuit for the F.E.T.
neglected. He has shown that R_{5} and R_{6} can be absorbed into R_{1} and R_{2} over a wide frequency range and has presented a method for obtaining the equivalent circuit elements from measurements of the short-circuit admittance parameters.

EMo and van der Riel 13 have presented an improved amaliasignal high-frequency analysis of the F.E.T. In this theory, the device is considered to be an active, distributed, nonuniform transmission line and the wave equation for this structure has been solved by an approximate method. The expressions for the short-circuit admittance parameters have been derived for the saturation (pinch-off) case. Expressions for C_{1} and R_{1} have been obtained and it has been demonstrated that the value of C_{1} so computed is in agreement with that obtained from a charge storage analysis. These computations show that $72=0$ for the pinch-off case in agreement with the previous computations showing that $\mathrm{C}_{2}=0$ at pinch-off.

1.3 An Outline of the Scope of This Work

The purpose of this work is to derive an intininsic:hish frequency equivalent circuit of the F.E.T. A differential equation for the ac. case is derived from a knowledge of the physics of the device and a series solution to this equation is obtained. The expressions for short-circuit admittance parameters of the device are derived from the solution. A hybrid-ri-network of a general form is assumed to represent the equivalent circuit and the expressions for the circuit
elements are determined by comparing the admittance parameters of the hybrid -T -circuit with the derived expressions.

According to van der Riel's terminology, the dec. theory of the device, given in Section 1.2, is called the izero-order approximation', which means that this theory is for the case of ($j \omega$) approaching zero. The resulting equivalent circuit, shown in Fig. 1.3, has therefore no reactive elements. The 'first-order approximation', then, is taken to mean that only the doc. and ($j \omega$) terms are retained in the theory and the higher order terms in ($j \omega$) are neglected. The equivalent cire cult for this case will have one reactive element in each branch. In this thesis, the equivalent circuit is derived from the 'first-order approximation' of the theory of the device.

The analysis presented in this work is of a more general nature than van der Riel's analysis because the expressions for the short-circuit admittance parameters and the circuit elements derived here are applicable to both the saturated and the non-saturated conditions.
2. THE DIFFERENTIAL EQUATION AND ITS SOLUTION

2.1. Introduction

The F.E.T. is considered as an active, distributed and non-uniform transmission line and a differential equation o this structure is derived for the small-signal case. It is assumed that the channel is uniformly doped and that the phan junctions are of the abrupt type. A solution of the diffefential equation is obtained in the form of a power series which gives the channel current in terms of the channel thickness.
2.2. The Differential Equation

In the small aignal case, the d.c. values of channel wias and current have superimposed upon them small sinusoidal a.c. Voltage and current variations; hence the expressions for the total channel bias and current can be written as follows:

$$
\begin{align*}
& W^{\prime}=W+\nabla e^{j \omega t} \tag{2.1}\\
& I_{d}^{\prime}=I_{d}+i e^{j \omega t} \tag{2.2}
\end{align*}
$$

where v and 1 are the a.c. components of channel bias and current, respectively.

The statement: of Ohm's law as given by equation (1:3) must be augmented by the charge continuity equation in order to derive the differential equation.

> Fig. 2.1 Current flow in a section x of the device.

Consider ̀ a volume element of width Δx at a distance x from the source of an F.E.T. with an n-type channel. Under operating conditions, the channel current will flow as shown in Fig. 2.1. The volume of this element is $2 a Z \Delta x$ and the net charge ΔQ contained in it is given by

$$
\Delta Q=2\left(1-\frac{b^{\prime}}{a}\right)_{a Z} \rho_{0} \Delta x
$$

where $2 b^{\prime}$ is the instantaneous value of the channel height and ρ_{0} is the charge density of the space charge regions. From equation (1.1) one obtains

$$
1-\frac{b}{a}=1-y=\left(\frac{W}{W_{p}}\right)^{\frac{1}{2}}
$$

where $y=\frac{b}{a}$. Similarly, for the ac. case,

$$
\begin{equation*}
1-\frac{b^{\prime}}{a}=1-{y^{\prime}}^{\prime}=\left(\frac{W^{\prime}}{W_{p}}\right)^{\frac{7}{2}} \tag{2.4}
\end{equation*}
$$

where y^{\prime} is the instantaneous value of J. Therefore the expression for ΔQ becomes

$$
\Delta Q=2 a Z \rho_{0}\left(\frac{W^{\prime}}{W_{p}}\right)^{\frac{2}{2}} \Delta x
$$

Considerations of charge continuity for this element require that

$$
I_{d}^{\prime}-\left(I_{d}^{\prime}+\frac{\partial I_{d}^{\prime}}{\partial x} \Delta x\right)=-\frac{\partial}{\partial t}(\Delta Q)
$$

or

$$
\frac{\partial I_{\mathrm{d}}^{\prime}}{\partial \mathrm{x}}=\frac{\partial}{\partial t}\left[2 a Z \rho_{0}\left(\frac{W^{\prime}}{W}\right)^{\frac{1}{2}}\right]
$$

where t is the time.
Since $\frac{\partial I a}{\partial x}=0$, use of equations (2.1) and (2.2) yields

$$
\frac{\partial i}{\partial x} e^{j \omega t}=2 a Z \rho_{0} \cdot \frac{\partial}{\partial t}\left[\left(\frac{W}{W p}\right)^{\frac{1}{3}}\left(1+\frac{\nabla}{W} e^{j \omega t}\right)^{\frac{1}{8}}\right] .
$$

For the small signal case ($\frac{V}{W}$) is a small quantity and hence the second and higher order terms in ($\left(\frac{V}{W}\right)$ can be neglected. Thus the above equation reduces to

$$
\frac{\partial i}{\delta x} e^{j \omega t}=2 a Z \rho_{0}\left[\left(\frac{W}{W_{p}}\right)^{\frac{I}{2}}: \frac{\lambda}{2} \frac{\nabla}{W} j \omega e^{j \omega t}\right]
$$

With the aid of (2.3), this can be written as

$$
\frac{\partial 1}{\partial x}=\frac{a Z \rho_{0}}{W_{p}(1-\bar{y})} j \omega v
$$

Equation (1.3) can be written for the ac. case as follows:

$$
\begin{equation*}
I_{d}^{\prime}=-A \cdot y^{\prime} \cdot \frac{d W^{\prime}}{d x} \tag{2.7}
\end{equation*}
$$

where $A=2 Z_{a} \sigma_{0}$

Use of equations (2.1), (2.2), and (2.4) in (2.7) yields

$$
\begin{aligned}
I_{d}+1 e^{j \omega t} & =-A\left[1-\left(\frac{W^{\prime}}{W_{p}^{\prime}}\right)^{\frac{1}{2}}\right]\left(\frac{d W}{d x}+\frac{d v}{d x} e^{j \omega t}\right) \\
& =-A\left[1-\left(\frac{W}{W_{p}}\right)^{\frac{1}{2}}\left(1+\frac{V}{W} e^{j \omega t}\right)^{\frac{1}{2}}\right]\left(\frac{d W}{d x}+\frac{d V}{d x} e^{j \omega t}\right)
\end{aligned}
$$

On neglecting the second and higher order terms in $\left(\frac{V}{W}\right)$, the ns reduces, with the aid of (2.3), to

$$
I_{d}+1 e^{j \omega t}=-A \cdot J \cdot \frac{d W}{d X}+\frac{A}{2}(I-J) \frac{V}{W} \frac{d W}{d x} e^{j \omega t}-A \cdot J \cdot \frac{d V}{d x} e^{j \omega t}
$$

The time-independent part of (2.8) along with (2.3) gives

$$
\begin{equation*}
\frac{d y}{d x}=\frac{I_{d} / I_{0}}{a(1-y) y} \tag{2.9}
\end{equation*}
$$

where $I_{0}=4 Z \sigma_{c} W_{p}$.
Equations (2.3), (2.9), and the time-dependent part of (2.8) can be manipulated to yield

$$
\begin{equation*}
\frac{d v}{d y}=-\frac{i(I-y)_{a}}{2 Z \sigma_{c^{a}}\left(I_{d} / I_{0}\right)}-\frac{v}{\bar{y}} \tag{2.10}
\end{equation*}
$$

Dividing (2.6) by (2.9), one obtains

$$
\begin{equation*}
\frac{d i}{d y}=\frac{a^{2} Z \rho_{0}}{W_{p}} \cdot \frac{j \omega V Y}{\left(\frac{I_{d}}{I_{0}}\right)} \tag{2.11}
\end{equation*}
$$

The pinch-off potential Wp is given by ${ }^{6}$

$$
\begin{align*}
W_{p} & =-\frac{a^{2}}{2 \epsilon} \rho_{0}\left[1-\frac{\rho_{0}}{\rho_{g}}\right] \tag{2.72}\\
& =-\frac{a^{2}}{2 \epsilon} \rho_{0} \cdot D
\end{align*}
$$

where \in is the permittivity of the channel meterial and is the charge density of the gate regions. Use of (2.12) in (2.11) gives

$$
\begin{equation*}
\frac{d i}{d y}=-\frac{2 Z \epsilon_{j \omega} \omega V}{\left(I_{d} / I_{0}\right)_{\bullet} D} \tag{2.13}
\end{equation*}
$$

Equations (2.10) and (2.13) can be combined to yield

$$
\begin{equation*}
\frac{d^{2} i}{d y^{2}}+2 k^{2} y(1-y) i=0 \tag{2.214}
\end{equation*}
$$

where

$$
k^{2}=-j \omega \frac{\epsilon}{2 \sigma\left(\frac{I_{d}}{I_{0}}\right)^{2}}
$$

and

$$
\begin{equation*}
\sigma=\sigma_{c} \cdot D=\sigma_{c}\left(1-\frac{\rho_{0}}{\rho_{g}}\right) \tag{2.25b}
\end{equation*}
$$

Equation (2.14) is the required differential equation which expresses the channel current in terms of the variable parameter y for the a.c. case.
2.3 Solution of the Differential Equation

The differential equation (2.14) is assumed to have a series solution of the following type.

$$
i(y)=\sum_{\partial=0}^{\infty} c_{7} z^{7}
$$

Hence

$$
\begin{aligned}
i^{\prime \prime}(y) & =\sum_{\nu=2}^{\infty} \nu(i-1) c_{y} y^{\lambda-2} \\
& =2 c_{2}+6 c_{3 y}+\sum_{\nu=4}^{\infty} \nu(\nu-1) c_{\nu} y^{-i-2}
\end{aligned}
$$

and

$$
\begin{aligned}
2 x^{2} y(1-y) \sum_{\nu=0}^{\infty} c_{i} y^{\nu}= & 2 k^{2} c_{0 y}-2 k^{2} c_{0} J^{2}+2 k^{2} c_{1} J^{2} \\
& -2 k^{2} c_{1} J^{3}+2 k^{2} c_{2} y^{3} \ldots \\
= & \left.2 k^{2} c_{o y}+\sum_{\lambda=2}^{\infty} 2 k^{2}\left(c_{7}-1-c_{2}\right)-2\right) y^{\lambda}
\end{aligned}
$$

so that the equation (2.14) becomes

$$
\begin{aligned}
2 c_{2}+6 c_{3 y} & +\sum_{\nu=4}^{\infty} \nu(\nu-1) c_{i} y^{2}-2+2 x^{2} c_{0} y \\
& +\sum_{i=2}^{\infty} 2 x^{2}\left(c_{y}-1-c_{i}-2 y^{\gamma}=0\right.
\end{aligned}
$$

This can be written as

$$
\begin{align*}
2 c_{2}+6 c_{3 y}+ & 2 k^{2} c_{0 y}+\sum_{\nu=4}^{\infty} \nu(i-1) c_{\nu} y^{\gamma}-2 \\
& \left.+\sum_{\nu=4}^{\infty} 2 k^{2}\left(c_{i}-3-c_{i}\right)-4\right) y^{\gamma-2}=0 \tag{2.17}
\end{align*}
$$

It is clear that the coefficient of each term should be genaratels equal to zero.

$$
\begin{aligned}
2 c_{2}=0 & \text { or } & c_{2}=0 \\
6 c_{3}+2 k^{2} c_{0}=0 & \text { or } & c_{3}=-\frac{k^{2}}{3} c_{0}
\end{aligned}
$$

The last two terms of the equation (2.17) give the recursion formula

$$
\begin{equation*}
c_{\nu}=\frac{2 k^{2}\left(c_{\nu}-4_{1}-c_{j}-3\right)}{\nu(\nu-1)} \text { for } \nu \geqslant 4 . \tag{2.18}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& c_{4}=\frac{k^{2}}{6}\left(c_{0}-c_{1}\right) \\
& c_{5}=\frac{k^{2}}{10}\left(c_{1}-c_{2}\right)=\frac{k^{2}}{10} c_{1} \text { and so on. }
\end{aligned}
$$

It is therefore obvious that C_{2} can be expressed as follows:

$$
\begin{equation*}
c_{\gamma}=\alpha_{\nu} c_{0}+\beta_{7} c_{1}, \quad 0 \leq \nu \leq \infty \tag{2.19}
\end{equation*}
$$

where C_{0} and C_{1} are arbitrary quantities which can be determined by means of boundary conditions.

The most general solution of the equation (2.14) is therefore given by

$$
\begin{equation*}
i(y)=c_{0} \sum_{i=0}^{\infty} \alpha_{\nu} y^{\lambda}+c_{i} \sum_{\nu=0}^{\infty} \beta_{\nu} y^{\lambda} \tag{2.20}
\end{equation*}
$$

where α_{ν} and $\beta_{\mathcal{j}}$ can be determined by the use of the relations (2.28) and (2.19).

Equations (2.18) and (2.19) yield the following values for the coefficients α 's and β is.

$$
\begin{array}{ll}
\alpha_{0}=1 & \beta_{0}=0 \\
\alpha_{1}=0 & \beta_{1}=1 \\
\alpha_{2}=0 & \beta_{2}=0 \\
\alpha_{3}=-\frac{k^{2}}{3} & \beta_{3}=0 \\
\alpha_{4}=\frac{k^{2}}{6} & \beta_{4}=-\frac{k^{2}}{6}
\end{array}
$$

$$
\begin{array}{ll}
\alpha_{5}=0 & \beta_{5}=\frac{k^{2}}{10} \\
\alpha_{6}=\frac{k^{4}}{45} & \beta_{6}=0 \\
\alpha_{7}=-\frac{k 4}{42} & \beta_{7}=\frac{k^{4}}{126} \\
\alpha_{8}=\frac{k^{4}}{168} & \beta_{8}=\frac{k^{4}}{105} \\
\alpha_{9}=\frac{k^{6}}{1620} & \beta_{9}=\frac{k^{4}}{360} \\
\alpha_{10}=\frac{29}{28350} k^{6} & \vdots \\
\alpha_{11}=\frac{k^{6}}{1848} & \vdots \\
\alpha_{12}=\frac{149}{124740} k^{6} &
\end{array}
$$

$$
\bullet
$$

It will be useful to recall the definition of k^{2} as given by the relation (2.15)

$$
k^{2}=-j \omega\left[\frac{\epsilon}{2 \sigma\left(I_{d} / I_{0}\right)^{2}}\right]
$$

It was mentioned in section 1.3 that only the first-ofder approximation of the theory was going to be used in deriving the equivalent circuit. After carrying out the calculations, it was found that the second order terms in ($j \omega$) had to be retained in the numerator of the expression for the channel current as they give rise to an additional ($j \omega$) term. This
fact will become clear in chapter 4. Therefore, those values of the coefficients α and β which give rise to $(j \omega)^{2}$ terms will also be retained in the expression for the channel current. Higher order terms in ($j \omega$) will be neglected.

When the above values of the coefficients are substituted, equation (2.20) becomes

$$
\begin{equation*}
i(y)=C_{0} \bullet T(y)+C_{y} \cdot R(y) \tag{2.21}
\end{equation*}
$$

where

$$
\begin{align*}
T(y)= & 1-\frac{1}{3} x^{2} y^{3}+\frac{1}{6} x^{2} y^{4}+\frac{1}{45} x^{4}+y^{6}-\frac{1}{42^{2}} k^{4} 47+\frac{1}{168} x^{4} 4 y^{8} \\
& -\frac{1}{1620} x^{6} y^{9}+\frac{29}{28350} x^{6} y^{10}-\frac{1}{1848} x^{6} y^{11}+\frac{149}{124740} x^{6} y^{12} \tag{2.22}
\end{align*}
$$

$$
\begin{equation*}
R(y)=y-\frac{1}{6} x^{2} y^{4}+\frac{1}{10} x^{2} y^{5}+\frac{1}{126} x^{4} 4 y-\frac{1}{105} x^{4}+y^{8}+\frac{1}{360} x^{4} 49 \tag{2.23}
\end{equation*}
$$

Equation (2.21) is the second-order approximation of the general solution (2.20).
3. EXPRRESSIONS FOR ADMITTANCE PARAMETERS
3.1 Introduction

The short-circuit admittance paramoters of the F.E.T. are determined in this chapter from the expression for the channel current which was obtained in the previous section. The coefficients C_{0} and C_{1} contained in that expression are evaluated by means of the boundary conditions in both the short-circuited output and the short-circuited input cases.
3.2 Evaluation of C_{0} and C_{1} for the Short-dircuited Output Case

The channel current is given by equation (2.21)

$$
I(y)=C_{0} T(y)+C_{1} R(y)
$$

Hence

$$
\frac{d i}{d y}=C_{0} \cdot T^{\prime}(y)+C_{1} R^{\prime}(y)
$$

This expression is substituted in equation (2.13) to give

$$
\begin{equation*}
v=-\frac{\left(I_{d} / I_{0}\right)}{(j \omega) 2 Z E}\left[C_{0} \frac{T^{\prime}(V)}{J}+C_{1} \frac{R^{\prime}(V)}{J}\right] \tag{3.1}
\end{equation*}
$$

In order to determine the input admittance of the device, the output has to be short-circuited. Therefore, the drain is a. c. short-circuited to the source and this boundary condition gives

$$
\left.\begin{array}{l}
y=y_{s} \\
v=v_{g}
\end{array}\right\} \quad \text { at the source }
$$

where $\nabla_{g}=$ ac. potential of the gate with respect to the source.

When the values (3.2a) are substituted, equation (3.1) becomes (at the source)

$$
\begin{equation*}
-\frac{\forall g}{B}=C_{0}\left[\frac{T^{\prime}\left(y_{S}\right)}{Y_{s}}\right]+c_{I}\left[\frac{R^{\prime}\left(y_{s}\right)}{Y_{s}}\right] \tag{3.3}
\end{equation*}
$$

where $B=\frac{I_{d} / I_{0}}{(J \omega) 2 Z \epsilon,}$

$$
\begin{aligned}
\frac{T^{\prime}\left(y_{s}\right)}{y_{s}}= & -k^{2}\left[y_{s}-\frac{2}{3} y_{s}^{2}-\frac{2}{15} k^{2} y_{s} 4+\frac{1}{6} k^{2} y_{s} 5-\frac{1}{21} x^{2} y_{s} 6\right. \\
& \left.+\frac{1}{18} k^{4} y_{y_{s}} 7-\frac{29}{2835} k^{4} y_{s}{ }^{8}+\frac{1}{168 x^{4} y_{s}} 9-\frac{149}{124740^{\prime}}{ }^{10}\right] \\
= & -k^{2} \cdot x_{s 1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& =Y_{s 2}
\end{aligned}
$$

Equation (3.3) can therefore be written as

$$
\begin{equation*}
-\frac{\nabla_{g}}{B}=-C_{0} k^{2} \cdot y_{s I}+C_{I} \cdot Y_{s 2} \tag{3.4}
\end{equation*}
$$

Similarly, use of relations (3.2b) in equation (3.1) gives (at the drain)

$$
-\frac{V_{g}}{B}=-c_{0} k^{2} Y_{d 1}+C_{1} \cdot Y_{d 2}
$$

where $Y_{d I}=\frac{T^{\prime}\left(y_{d}\right)}{k^{2} \cdot y_{d}}$
and $\quad Y_{d 2}=\frac{R^{\prime}\left(Y_{d}\right)}{Y_{d}}$

Equations (3.4) and (3.5) yield

$$
\begin{align*}
-\frac{V_{g}}{B} \cdot Y_{d 2} & =-C_{o} k^{2} \cdot Y_{s 1} \cdot Y_{d 2}+C_{1} \cdot Y_{s 2} \cdot Y_{d 2} \tag{3.6a}\\
-\frac{V_{g}}{B} \cdot Y_{s 2} & =-C_{o} k^{2} \cdot Y_{d 1} \cdot Y_{s 2}+C_{1} \cdot Y_{d 2} \cdot Y_{s 2}
\end{align*}
$$

(3.6b)
C_{0} is given by subtracting equation (3.6b) from (3.6a).

$$
c_{0}=\frac{{ }_{B}^{\nabla_{g}}\left(Y_{s 2}-Y_{d 2}\right)}{k^{2}\left(Y_{d 1} \cdot Y_{s 2}-Y_{B 2} \cdot Y_{d 2}\right)}
$$

As explained in section 2.3, $(j \omega)^{2}$ terms are retained in the numerator of the expression for current, whereas in the denominator they will be neglected as they are not necessary for the first-order approximation of the theory. After simplification, C_{0} reduces to

$$
\begin{equation*}
C_{0}=\frac{\bar{V}_{g} Y_{1}}{k^{2}, \Delta} \tag{3.7}
\end{equation*}
$$

where

$$
\begin{align*}
& Y_{I}=\frac{1}{J_{s} Y_{d}}(u-1)-k^{2} Y_{s}\left\{\frac{2}{3}\left(1-u^{2}\right)-\frac{1}{3} Y_{s}\left(1-u^{3}\right)\right\} \\
& +u^{4} 7_{8} 4\left\{\frac{1}{10}\left(1-u^{5}\right)-\frac{8}{105^{5}}\left(1-u^{6}\right)+\frac{1}{40} 8_{8}^{2}\left(1-u^{7}\right)\right\} \\
& \Delta=\frac{2}{3} \frac{1}{u}\left(1-u^{3}\right)-\frac{1}{y_{d}}\left(1-u^{2}\right)-\frac{2}{3} x^{2} y_{s}{ }^{2} u\left\{1-u-\frac{3}{4} y_{8}\left(1-u^{2}\right)\right. \\
& +\frac{1}{8 y_{s}}{ }^{2} u(1-u)-\frac{1}{5} \frac{1}{u^{2}}\left(1-u^{5}\right)+\frac{1}{4} \frac{1}{8} \frac{1}{u^{2}}\left(1-u^{6}\right) \\
& \left.-\frac{1}{14} \cdot 8^{2} \frac{1}{u}\left(1-u^{7}\right)\right\} \tag{3.8}
\end{align*}
$$

and

$$
\begin{equation*}
u=\frac{\bar{y}_{d}}{\bar{y}_{s}} \tag{3.9}
\end{equation*}
$$

The coefficient C_{1} is determined in the same way. Equaltions (3.4) and (3.5) can be written as

$$
\begin{aligned}
& -\frac{V_{g}}{B} \cdot Y_{d I}=-C_{o} k^{2} \cdot Y_{s 1} \cdot Y_{d 1}+C_{1} \cdot Y_{s 2} \cdot Y_{d 1} \\
& -\frac{\nabla_{g}}{B} \cdot Y_{s 1}=-C_{0} k^{2} \cdot Y_{d I} \cdot Y_{s 1}+C_{1} \cdot Y_{d 2} \cdot Y_{s 1}
\end{aligned}
$$

These two relations axe solved for C_{1}.

$$
c_{1}=\frac{{ }_{B}=\left(Y_{s 1}-Y_{d 1}\right)}{Y_{s 2} \cdot Y_{d 1}-Y_{d 2} \cdot Y_{s 1}}
$$

The terms containing k^{4} and k^{6} are again neglected in the denominator. The expression for C_{1} is then simplified and rearranged to give

$$
\begin{equation*}
C_{1}=\frac{\stackrel{V}{g}_{B}^{B} \cdot Y_{2}}{\Delta} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{aligned}
Y_{2}= & 1-u-\frac{2}{3} y_{s}\left(1-u^{2}\right)-\frac{2}{15} k^{2} y_{s}^{3}\left(1-u^{4}\right)+\frac{1}{6} k^{2} y_{s} 4\left(1-u^{5}\right) \\
& -\frac{1}{21} k^{2} y s^{5}\left(1-u^{6}\right)+\frac{1}{180^{4} x^{4} y_{s}}{ }^{6}\left(1-u^{7}\right)-\frac{29}{2835^{4} x_{s}}{ }^{7}\left(1-u^{8}\right) \\
& +\frac{1}{168^{1} x^{4} y_{s}}{ }^{8}\left(1-u^{9}\right)-\frac{149}{124740^{4} k^{4} y_{s}}{ }^{9}\left(1-u^{10}\right)
\end{aligned}
$$

Δ and u are given by the equations (3.8) and (3.9), reapedtively.
3.3 Expression For Channel Current According to equation (2.15),

$$
\frac{-j \omega \xi}{2 \sigma\left(\frac{I_{d}}{I_{0}}\right)^{2}}=k^{2}
$$

or

$$
\frac{j \omega \epsilon}{2 \sigma\left(\frac{I_{d}}{I_{0}}\right)^{2}} \cdot 4 Z \sigma\left(\frac{I_{d}}{I_{0}}\right)=-k^{2} \cdot 4 Z \sigma\left(\frac{I_{d}}{I_{0}}\right)
$$

Therefore,

$$
\begin{align*}
& \frac{\rho \omega_{0} \cdot 2 Z E}{\frac{I_{d}}{I_{0}}}=-k^{2} \cdot 4 Z \sigma \frac{I_{d}}{I_{0}} \\
& \text { or } \frac{I}{B}=-x^{2} \cdot 4 Z \sigma_{0} \frac{I_{d}}{I_{0}} \tag{3.21}
\end{align*}
$$

Equations (3.7), (3.10) and (3.11) are used in (2.25) to got the general expression for the channel current.

$$
\begin{aligned}
& I(y)=C_{0} \cdot T(y)+C_{1} \cdot R(y) \\
&=\frac{B_{g} \cdot Y_{1}}{k^{2} \cdot \Delta} \cdot T(y)+\frac{V_{g}}{\Delta} \cdot Y_{2} \\
& \Delta \\
& R(y) \\
&=-k^{2}\left(4 Z_{\sigma} I_{d}\right) \frac{V_{g}}{\Delta}\left\{\frac{Y_{1}}{k^{2}} \cdot T(y)+Y_{2} \cdot R(y)\right\}
\end{aligned}
$$

Third and higher order terms in ($j \omega$) are again neglected. It can be shown that when simplified and rearranged, the expression for current reduces to

$$
\begin{align*}
& f(y)=\frac{4 Z \sigma I_{0} \cdot v s}{\Delta}\left[\frac{1}{Y_{s} Y_{d}}(1-u)+k^{2} y_{s}\left\{\frac{2}{3}\left(1-u^{2}\right)-\frac{2}{B y s}\left(1-u^{3}\right)\right.\right. \\
& \left.-\frac{1}{3} \frac{y^{3}}{y_{s}^{2} y_{d}}(1-u)+\frac{1}{6} \frac{y^{4}}{y_{s}^{2} y_{d}}(1-u)-\frac{7}{y_{s}}(1-u)+\frac{2}{3} y\left(1-u^{2}\right)\right\} \\
& +k^{4} \Psi_{s} 4\left\{-\frac{1}{18}\left(1-u^{5}\right)+\frac{8}{105} y_{s}\left(1-u^{6}\right)-\frac{1}{40} y_{8}^{2}\left(1-u^{7}\right)\right. \\
& -\frac{2}{9} \frac{y^{3}}{y_{s}^{3}}\left(1-u^{2}\right)+\frac{1}{6} \frac{y^{3}}{y s^{2}}\left(1-u^{3}\right)+\frac{1}{9} \frac{y^{4}}{y_{s}^{3}}\left(1-u^{2}\right) \\
& -\frac{1}{12} \frac{y^{4}}{y_{s}^{2}}\left(1-u^{3}\right)+\frac{1}{45} \frac{y^{6}}{y_{s} 5 y_{d}}(1-u)-\frac{1}{42} \frac{y^{7}}{y_{8} 5 y_{d}}(1-u) \\
& +\frac{1}{168} \frac{y^{8}}{y_{8} 5 y d}(1-u)+\frac{2}{15} \frac{y}{y_{8}}\left(1-u^{4}\right)-\frac{7}{6 y}\left(1-u^{5}\right)+\frac{1}{21 y s y}\left(1-u^{6}\right) \\
& \left.\left.+\frac{1}{6} \frac{y^{4}}{y_{8}^{4}}(1-u)-\frac{1}{9} \frac{y^{4}}{y_{s}^{3}}\left(1-u^{2}\right)-\frac{1}{10} \frac{y^{5}}{y_{8}^{4}}(1-u)+\frac{7}{15} \frac{y^{5}}{y_{8}^{3}}\left(1-u^{2}\right)\right]\right] \tag{3.72}
\end{align*}
$$

This is the expression for current at any point along the channel for the case when the drain is ac. short-cirouited to the source.
3.4 The D.C. Case

It is of interest to see what the expression (3.12) for the channel current yields in the dec. case. Before consider ing this case, it is necessary to determine $\frac{I_{d}}{I_{0}}$ in terms of y. Equation (2.8) gives

$$
\frac{I}{a} \frac{I_{d}}{I_{0}} d x=y(I \sim y) d y
$$

which becomes, on integration

$$
\int_{0}^{L} \frac{1}{a} \frac{I_{d}}{I_{0}} d x=\int_{y}^{y / a} y(I-y) d y
$$

or,

$$
\frac{I_{d}}{I_{0}}\left(\frac{L}{2}\right)=\frac{\overline{y d}^{2}}{2}-\frac{\overline{y d}^{3}}{3}-\frac{y_{s}^{2}}{2}+\frac{y_{8}^{3}}{3}
$$

$$
=-\frac{1}{2}\left(y_{s}^{2}-y_{d}^{2}\right)+\frac{1}{3}\left(\bar{y}_{s}^{3}-J_{d}{ }^{3}\right)
$$

$$
=-\frac{\mathbf{y}_{s}^{2}}{2}\left\{1-u^{2}-\frac{2}{3} y_{s}\left(1-u^{3}\right)\right\}
$$

Hence

$$
\begin{equation*}
\frac{I_{d}}{I_{0}}=-\frac{a}{2 L} \cdot J_{s} 2\left\{1-u^{2}-\frac{2}{3} y_{s}\left(1-u^{3}\right)\right\} \tag{3.13a}
\end{equation*}
$$

As $\omega \rightarrow 0$ (dec. case) equation (3.12) reduces to

$$
\begin{aligned}
\frac{i_{d}}{\overline{V_{g}}} & =\frac{1\left(y_{d}\right)}{\nabla_{g}}=\frac{42 \sigma_{0} \cdot \frac{I_{d}}{I_{0}} \cdot \frac{1}{\bar{y}_{s} y_{d}}(1-u)}{\frac{2}{3} \frac{1}{u}\left(1-u^{3}\right)-\frac{1}{\bar{y}_{d}}\left(1-u^{2}\right)} \\
& =\frac{-420 \frac{I_{d}}{I_{0}} \frac{1}{\bar{y}_{s}}(1-u)\left(-\frac{1}{\bar{y}_{d}}\right)}{\left\{1-u^{2}-\frac{2}{3} y_{s}\left(1-u^{3}\right)\right\}\left(-\frac{1}{y_{d}}\right)}
\end{aligned}
$$

On substituting the value of ($\frac{I_{d}}{I_{0}}$) from equation (3.13), this expression becomes

$$
\begin{align*}
\frac{1 d}{\nabla_{g}} & =-4 Z \sigma \frac{1}{J_{s}}(1-u)\left(-\frac{a}{2 L} y_{s}^{2}\right) \\
& =\frac{2 Z \sigma a}{L}\left(y_{s}-y_{d}\right)=g_{m 0} . \tag{3.73b}
\end{align*}
$$

$0 r$

$$
\begin{aligned}
\frac{i_{d}}{\nabla_{g}}=g_{m o} & =\frac{2 \sigma_{\sigma}}{L}\left\{\left(1-y_{d}\right)-\left(1-J_{s}\right)\right\} \\
& =\frac{2 \sigma_{\sigma}}{L}\left\{\left(\frac{W_{d}}{W_{p}}\right)^{\frac{1}{2}}-\left(\frac{W_{s}}{W_{p}}\right)^{\frac{1}{2}}\right\}
\end{aligned}
$$

which agrees with the equation (1.5)
3.5 Expression for Δ

It will be useful to reduce the expression for Δ to convenient forme Equation (3.8) can be written as

$$
\Delta=\frac{2}{3 u}\left(1-u^{3}\right)-\frac{1}{Y_{d}}\left(1-u^{2}\right)-\frac{2}{3} k^{2} y_{3}{ }^{2} u\left(Y_{3}\right)
$$

where

$$
\begin{aligned}
Y_{3}= & 1-u-\frac{3}{4} y_{8}\left(1-u^{2}\right)+\frac{1}{d y_{s}}{ }^{2} u(1-u)-\frac{1}{5 u^{2}}\left(1-u^{5}\right) \\
& +\frac{1}{4 u^{2}} y_{s}\left(1-u^{6}\right)-\frac{1}{14 u^{2}} y_{s}^{2}\left(1-u^{7}\right)
\end{aligned}
$$

and $u=\frac{\bar{y}_{\alpha}}{\bar{y}_{s}}$

Hence

$$
\begin{aligned}
\Delta & =\left[\frac{2}{3 u}\left(1-u^{3}\right)-\frac{1}{Y d}\left(1-u^{2}\right)\right]\left\{1-\frac{\frac{2}{3} u^{2} y_{s}{ }^{2} u \cdot Y_{3}}{\frac{2}{3 u}\left(1-u^{3}\right)-\frac{1}{Y_{d}}\left(1-u^{2}\right)}\right\} \\
& =\left[\frac{2}{3 u}\left(1-u^{3}\right)-\frac{1}{\overline{Y d}}\left(1-u^{2}\right)\right]\left\{1+j \omega \frac{E}{2 \sigma\left(\frac{I}{I_{0}}\right)^{2}} \frac{\frac{2}{3} y_{s}{ }^{2} u^{2}, Y_{3}}{\left(-\frac{1}{Y_{s}}\right)\left[1-u^{2}-\frac{2}{3} y_{s}\left(I-u^{3}\right)\right]}\right.
\end{aligned}
$$

It can be shown that this expression reduces, "with the aid of (3.13a), to

$$
\Delta=\left[\frac{2}{3} u\left(1-u^{3}\right)-\frac{1}{\bar{J}}\left(1-u^{2}\right)\right]\left\{1+j \omega \tau_{I}\right\}
$$

(3.24a)
where $\tau_{1}=\frac{4 E L L^{2}}{15 \sigma a^{2}}, \frac{1}{Y_{S}} \frac{Y_{4}}{Y_{0}{ }^{3}}$

$$
\begin{equation*}
Y_{0}=1-u^{2}-\frac{2}{3} Y_{3}\left(1-u^{3}\right) \tag{3.+46}
\end{equation*}
$$

and $\quad y_{4}=1-5 u^{2}+5 u^{3}-u^{5}-\frac{5}{4} y_{3}\left(1-3 u^{2}+3 u^{4}-u^{6}\right)$

$$
+\frac{5}{14} y_{s}^{2\left(1-7 u^{3}+7 u^{4}-u^{7}\right)}
$$

3.6 Expression for 721

When $y=y d$, equation (3.12) yields

$$
\begin{aligned}
& \frac{i_{d}}{\nabla_{g}}=\frac{i\left(y_{d}\right)}{\nabla_{g}} \\
& =\frac{4 Z \sigma I_{0}}{\Delta}\left[\frac{1}{I_{s} J_{d}}(1-u)+k^{2} y_{s}\left\{\frac{2}{3}\left(1-u^{2}\right)-\frac{1}{2} y_{s}\left(1-u^{3}\right)-\frac{1}{3} u^{2}(1-u)\right.\right. \\
& \left.+\frac{1}{6 y_{s}} u^{3}(1-u)-u(1-u)+\frac{2}{3} y_{s} u\left(1-u^{2}\right)\right\}+k^{\frac{4}{4}} s^{4}\left\{-\frac{1}{18}\left(1-u^{5}\right)\right. \\
& +\frac{8}{105^{y} s}\left(1-u^{6}\right)-\frac{1}{40} s^{2}\left(1-u^{7}\right)-\frac{2}{9} u^{3}\left(1-u^{2}\right)+\frac{1}{6} \sqrt{5} u^{3}\left(1-u^{3}\right) \\
& :+\frac{1}{9} y^{s^{4}}\left(1-u^{2}\right)-\frac{1}{12^{y}} s^{2} u^{4}\left(1-u^{3}\right)+\frac{1}{45} u^{5}(1-u) \\
& -\frac{1}{42} y s^{6}(1-u)+\frac{1}{168^{y s}} s^{2} u^{7}(1-u)+\frac{2}{15^{2}} u\left(1-u^{4}\right)-\frac{1}{6} y s u\left(1-u^{5}\right) \\
& +\frac{1}{21} y s^{2} u\left(1-u^{6}\right)+\frac{1}{6} u^{4}(1-u)-\frac{1}{9} y s u^{4}\left(1-u^{2}\right)-\frac{1}{10^{y s} u^{5}(1-u)} \\
& +\frac{1}{\left.\left.15^{y} s^{2} u^{5}\left(1-u^{2}\right)\right\}\right] \text {. } . ~ . ~ . ~}
\end{aligned}
$$

which becomes, on simplification,

$$
\begin{aligned}
\frac{i d}{v_{g}}= & \frac{4 Z \sigma \frac{I_{d}}{I_{0}}(1-u)}{\Delta y_{s} y_{d}}\left[1+\frac{2}{3} k^{2} y_{s}{ }^{2} J_{d}\left\{1-\frac{1}{2} u-\frac{1}{8} u^{2}-\frac{3}{4} y_{s}\left(1-\frac{1}{3} u-\frac{1}{3} u 2\right.\right.\right. \\
& \left.\left.-\frac{1}{3} u^{3}\right)\right\}-\frac{1}{18^{2}} k^{4} y_{s} y_{d}\left\{1-\frac{7}{5} u-\frac{7}{5} u^{2}+\frac{13}{5} u^{3}-\frac{2}{5} u^{4}\right. \\
& -\frac{2}{5} u^{5}-\frac{48}{35} y_{s}\left(1-\frac{19}{16} u-\frac{19}{16} u^{2}+u^{3}+u^{4}-\frac{5}{16} u^{5}-\frac{5}{16} u^{6}\right) \\
& \left.\left.+\frac{9}{20} y_{s}^{2}\left(1-\frac{19}{21} u-\frac{19}{21} u^{2}-\frac{19}{21} u^{3}+\frac{51}{21} u^{4}-\frac{5}{21} u^{5}-\frac{5}{21^{4}} u^{6}-\frac{5}{21} u^{7}\right)\right\}\right]
\end{aligned}
$$

Using equations (2.15a), (3.13à), (3.14a) and (3.13b) it can be show that this expression takes the form

$$
\begin{equation*}
\frac{I_{\mathrm{d}}}{\nabla_{g}}=J_{21}=\frac{g_{m o}}{\left(1+j \omega \tau_{1}\right)}\left[1-j \omega \tau_{2}\left(1+j \omega \tau_{3}\right)\right] \tag{3.15}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tau_{2}=\frac{4 E L^{2}}{30 a^{2}} \cdot \frac{1}{Y_{s}} \cdot \frac{1}{Y_{0}^{2}} \cdot u \cdot Y_{5} \\
& \tau_{3}=\frac{E L^{2}}{60 a^{2}} \cdot \frac{1}{Y_{s}} \cdot \frac{1}{Y_{0}^{2}} \cdot \frac{Y_{6}}{Y_{5}}
\end{aligned}
$$

and $\quad Y_{5}=1-\frac{1}{8} u-\frac{1}{3} u^{2}-\frac{3}{4} y_{8}\left(1-\frac{1}{3} u-\frac{1}{3} u^{2}-\frac{1}{3} u^{3}\right)$

$$
\begin{aligned}
Y_{6}= & 1-\frac{7}{5} u-\frac{7}{5} u^{2}+\frac{13}{5} u^{3}-\frac{2}{5} u^{4}-\frac{2}{5} u^{5} \\
& -\frac{48}{35} y s\left(1-\frac{19}{16} u-\frac{19}{16} u^{2}+u^{3}+u 4-\frac{5}{16} u^{5}-\frac{5}{16} u^{6}\right) \\
& +\frac{9}{20^{y} s^{2}\left(1-\frac{19}{21} u-\frac{19}{21} u^{2}-\frac{19}{21} u^{3}+\frac{51}{21} u^{4}-\frac{5}{21} u^{5}-\frac{5}{21} u^{6}-\frac{5}{21} u^{7}\right)}
\end{aligned}
$$

3.7 Expression for 711

When $y=y_{s}$ equation (3.12) becomes

$$
\begin{aligned}
& \frac{1\left(Y_{s}\right)}{V_{g}}=\frac{4 Z 0 \frac{I_{d}}{I_{0}}}{\Delta}\left[\frac{I}{Y_{s} Y_{d}}(1-u)+k^{2} y_{s}\left\{\frac{2}{3}\left(1-u^{2}\right)-\frac{1}{3 y_{s}}\left(1-u^{3}\right)-\frac{1}{3 u}(1-4)\right.\right. \\
& \left.+\frac{1}{6 u} y_{s}(1-u)-(1-u)+\frac{2}{3} y_{s}\left(1-u^{2}\right)\right\}+24 y_{8} 4\left\{-\frac{1}{18}\left(1-u{ }^{5}\right)\right. \\
& +\frac{8}{105^{\prime} s}\left(1-u^{6}\right)-\frac{1}{40} s^{2}\left(1-u^{7}\right)-\frac{2}{9}\left(1-u^{2}\right)+\frac{1}{6} y_{8}\left(1-u^{3}\right) \\
& +\frac{1}{9} y_{s}\left(1-u^{2}\right)-\frac{1}{12} J_{s}^{2}\left(1-u^{3}\right)+\frac{1}{45} \frac{1}{u}(1-u)-\frac{1}{42} \frac{1}{u^{y}}(1-u) \\
& +\frac{1}{168} \frac{1}{u^{y}} s^{2}(1-u)+\frac{2}{15}\left(1-u^{4}\right)-\frac{1}{6 y s}\left(1-u^{5}\right)+\frac{1}{21 y s^{2}}\left(1-u^{6}\right) \\
& \left.\left.+\frac{1}{6}(1-u)-\frac{1}{9} y_{s}\left(1-u^{2}\right)-\frac{1}{10^{y}}(1-u)+\frac{1}{15^{8}} s^{2}\left(1-u^{2}\right)\right\}\right]
\end{aligned}
$$

This is simplified and rearranged to give

$$
\begin{aligned}
& \frac{1\left(y_{s}\right)}{V_{g}}=\frac{4 z \sigma_{I_{0}}^{I_{0}}(I-u)}{\Delta \cdot J_{s} Y_{d}}\left[1-\frac{1}{3} z^{2} y_{s}{ }^{2} y_{d}\left\{\frac{1}{u}+1-2 u-\frac{1}{2} y_{s}\left(\frac{1}{u}+1+u-3 u^{2}\right)\right\}\right. \\
& +2^{4} y_{s}{ }^{5} y_{a}\left\{\frac{7}{45}\left(\frac{1}{4}+1-\frac{13}{2} u+\frac{7}{2} u^{2}+\frac{7}{2} a^{3}-\frac{5}{2} u^{4} 4\right)\right. \\
& -\frac{1}{42} y_{s}\left(\frac{1}{u}+1-\frac{16}{5} u-\frac{16}{5} u^{2}+\frac{19}{5} u^{3}+\frac{12}{5} u 4-\frac{16}{5} u^{5}\right) \\
& \left.\left.+\frac{1}{168^{4}}{ }_{s}^{2}\left(\frac{1}{u}+1+u-\frac{51}{5} u^{2}+\frac{12}{5} u^{3} 3+\frac{19}{5} u^{4}+\frac{12}{5} u^{5}-\frac{21}{5} u^{6}\right)\right\}\right]
\end{aligned}
$$

Use of equations (2.15a), (3.13a), (3.14a) and (3.13b) as in the previous case yields

$$
\begin{equation*}
\frac{I\left(\overline{y s}_{s}\right)}{\nabla_{g}}=\frac{g_{m o}}{\left(1+j \omega \tau_{1}\right)}\left[1+j \omega \tau_{4}\left(1+j \omega \tau_{5}\right)\right] \tag{3.16}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tau_{4}=\frac{2 \epsilon L^{2}}{3 \sigma \mathrm{a}^{2}} \cdot \frac{1}{Y_{s}} \cdot \frac{Y_{7}}{Y_{0}^{2}} \\
& \tau_{5}=\frac{2 \epsilon \mathrm{~L}^{2}}{15 \sigma \Omega^{2}} \cdot \frac{1}{Y_{s}} \frac{Y_{8}}{Y_{0}{ }^{2} Y_{7}}
\end{aligned}
$$

- and

$$
\begin{aligned}
Y_{7}= & 1+u-2 u^{2}-\frac{1}{3} y_{s}\left(1+u+u^{2}-3 u^{3}\right) \\
Y_{8}= & 1+u-\frac{13}{2} u^{2}+\frac{7}{2} u^{3}+\frac{7}{2} u 4-\frac{5}{2} u^{5}-\frac{15}{14} y_{s}\left\{1+u-\frac{16}{5} u^{2}\right. \\
& \left.-\frac{16}{5} u^{3}+\frac{12}{5} u 4+\frac{12}{5} u^{5}-\frac{16}{5} u^{6}\right\}+\frac{15}{56} y_{s} 2\{1+u \\
& \left.+u^{2}-\frac{51}{5} u^{3}+\frac{19}{5} u^{4}+\frac{12}{5} u^{5}+\frac{19}{5} u^{6}-\frac{21}{5} u^{7}\right\} \\
Y_{0}= & 1-u^{2}-\frac{2}{3} y_{s}\left(1-u^{3}\right)
\end{aligned}
$$

Since the net charge in the depletion regions is zero
one obtains

$$
1_{d}+1_{g}+1_{g}=0
$$

Fig. 3.1 Currents flowing in the device.

The directions of these currents are shown in Fig. 3.1 .
Hence

$$
\begin{aligned}
& \frac{i_{g}}{\nabla_{g}}=\frac{-i_{s}}{\nabla_{g}}-\frac{i_{d}}{\nabla_{g}} \\
& =\frac{i\left(y_{s}\right)}{\nabla_{g}}-\frac{i_{d}}{\nabla_{g}} \quad \text { (since } i\left(y_{s}\right)=-i_{s} \text {) } \\
& =\frac{g_{m 0}}{\left(1+j \omega \tau_{1}\right)}\left[1+j \omega \tau_{4}\left(1+j \omega \tau_{5}\right)-1+j \omega \tau_{2}\left(1+j \omega \tau_{3}\right)\right] \\
& =\frac{g_{m 0}}{\left(1+j \omega \tau_{i}\right)}\left[j \omega\left(\tau_{4}+\tau_{i}\right)+(j \omega)^{2}\left(\tau_{4} \tau_{5} \tau_{2} \tau_{3}\right)\right]
\end{aligned}
$$

which can be written as

$$
\begin{equation*}
\frac{1_{g}}{\nabla_{g}}=J_{11}=\frac{g_{\text {mo }}}{\left(1+j \omega \tau_{l}\right)} j \omega \tau_{6}\left(1+j \omega_{t 7}\right) \tag{3.17}
\end{equation*}
$$

where

$$
\tau_{6}=\frac{26 L^{2}}{30 r^{2}} \cdot \frac{1}{J_{s}} \cdot \frac{Y_{2}}{Y_{0} 2}
$$

$$
\tau_{7}=\frac{2 \epsilon L^{2}}{150 a^{2}} \cdot \frac{I}{Y_{s}} \cdot \frac{I}{Y_{0}^{2}} \cdot \frac{Y_{10}}{Y_{9}}
$$

and

$$
\begin{aligned}
Y_{9}= & 1+3 u-3 u^{2}-u^{3}-\frac{2}{2} y_{8}\left(1+4 u-4 u^{3}-u^{4}\right) \\
Y_{10}= & 1+\frac{7}{2} u-10 u^{2}+10 u^{4}-\frac{7}{2} u^{5}-u^{6} \\
& -\frac{15}{14} y_{s}\left(1+\frac{21}{5} u-7 u^{2}-7 u^{3}+7 u^{4}+7 u^{5}-\frac{21}{5} u^{6}-u^{7}\right) \\
& +\frac{15}{56} y_{s}^{2}\left(1+\frac{26}{5} u-\frac{14}{5} u^{2}-14 u^{3}+14 u^{5}+\frac{14}{5} u^{6}-\frac{26}{5} u^{7}-u^{8}\right)
\end{aligned}
$$

The input admittance 711 of the device is therefore a complex quantity.
3.8 Evaluation of C_{0} and C_{1} for the Short-Circuited Input Case The remaining part of this chapter deals with the derivetion of expressions for the short-circuit output admittance (Y22) and the reverse transfer admittance (J12) of the device. In order to determine the output admittance, the input is ac. short-circuited and, for this case, the boundary conditions are

$$
\left.\begin{array}{rl}
\bar{y} & =J_{s} \\
\nabla & =\nabla_{g}=0
\end{array}\right\} \quad \text { at the source }
$$

These relations are substituted in equation (3.1) to give

$$
0=-C_{o k}{ }^{2} \cdot Y_{s 1}+C_{1} Y_{s 2} \quad \text { (at the source) }
$$

and

$$
\frac{V_{d}}{B}=-C_{o k^{2}} \cdot Y_{d 1}+C_{I} \cdot Y_{d 2} \quad \text { (at the drain) }
$$

B, $Y_{s 1}, Y_{s 2}, Y_{d 1}$ and $Y_{d 2}$ have been defined in section (3.2). The coefficients C_{0} and C_{I} are evaluated for this case by using the equations (3.19) and (3.20). Equations (3.19) and (3.20) yield

$$
\begin{align*}
0 & =-C_{0} k^{2} \cdot Y_{s 1} \cdot Y_{d 2}+C_{1} Y_{s 2} \cdot Y_{d 2} \tag{3.22}\\
\frac{V_{d}}{B} \cdot Y_{s 2} & =-C_{o} k^{2} \cdot Y_{d 1} \cdot Y_{s 2}+C_{1} Y_{d 2} \cdot Y_{s 2} \tag{3.22}
\end{align*}
$$

C_{0} is determined by subtracting (3.22) from (3.21).

$$
c_{0}=\frac{-\frac{\nabla d}{B} \cdot Y_{s 2}}{k^{2}\left[Y_{d I} \cdot Y_{s 2}-Y_{s 1} \cdot Y_{d 2}\right]}
$$

This can be reamanged and simplified to give

$$
\begin{equation*}
C_{0}=\frac{-\frac{\nabla d}{B} \cdot Y_{11}}{k^{2} \cdot \Delta} \tag{3.23}
\end{equation*}
$$

where $X_{11}=\frac{1}{y_{s}^{2}}-\frac{2}{3} x^{2} y_{s}+\frac{1}{2} x^{2} y_{s}{ }^{2}+\frac{1}{18^{2}} x^{2} y_{s}{ }^{4}-\frac{8}{105^{2}} x^{4} y_{s}^{5}+\frac{1}{40} d^{2}+y_{s} a^{6}$
and Δ is given by equation (3.214a).
In order to determine C_{1}, equations (3.19) and (3.20) are written in the following form.

$$
\begin{align*}
0 & =-C_{0} k^{2} \cdot Y_{s 1} \cdot Y_{d 1}+C_{1} \cdot Y_{s 2} \cdot Y_{d 1} \tag{4}\\
\frac{V_{d}}{B} \cdot Y_{s 1} & =-C_{0} k^{2} \cdot Y_{d 1} \cdot Y_{s 1}+C_{1} \cdot Y_{d 2} \cdot Y_{s 1} \tag{3.25}
\end{align*}
$$

Equations (3.24) and (3.25) are solved for C_{1}.

$$
C_{1}=\frac{-\frac{\nabla_{d}}{B} \cdot Y_{s I}}{Y_{s 2} \cdot Y_{d I}-Y_{d 2} \cdot Y_{8 I}}
$$

It can be shown that this expression reduces to

$$
\begin{equation*}
C_{1}=\frac{-\frac{V_{d}}{B} \cdot Y_{12}}{\Delta} \tag{3.26}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
X_{12}= & 1-\frac{2}{3} y s-k^{2}\left(\frac{2}{15^{y}} s^{3}-\frac{1}{6} y_{s} 4+\frac{1}{21} y_{s} 5\right) \\
& +k^{4}\left(\frac{1}{180} y_{s}^{6}-\frac{29}{2835^{4}} 7+\frac{1}{168} y_{s}{ }^{8}-\frac{149}{124740^{4} y_{s}} 9\right)
\end{aligned}
$$

Substitution of equations (3.23) and (3.26) in (2.21) gives the expression for channel current in this case.

$$
\begin{aligned}
1(y) & =C_{0} T(y)+C_{1} R(y) \\
& =-\frac{\nabla_{d}}{B_{0} \Delta}\left[\frac{Y_{11}}{k^{2}} \cdot T(y)+Y_{12} \cdot R(y)\right]
\end{aligned}
$$

Use of equations (3.11), (2.22) and (2.23) yields, after neglecting third and higher order terms in ($j \omega$);

$$
\begin{align*}
& I(y)=\frac{4 Z \sigma v_{d}}{\Delta} \frac{I_{d}}{I_{0}}\left\{\frac{I}{y_{s}^{2}}-k^{2} y_{s}\left[\frac{2}{3}-\frac{1}{s} y_{s}+\frac{1}{3} \frac{y^{3}}{y_{s} 3}-\frac{1}{6} \frac{y^{4}}{y_{s}{ }^{3}}\right.\right. \\
& \left.-\frac{y}{y_{s}}\left(1-\frac{2}{3} y_{s}\right)\right]+k^{4} y_{s} 4\left[\frac{1}{18}-\frac{8}{105^{2}} y_{s}+\frac{1}{40 y_{s}}{ }^{2}+\frac{2}{9} \frac{y^{3}}{y_{s}{ }^{3}}\right. \\
& -\frac{1}{6} \frac{y^{3}}{y_{s}{ }^{2}}-\frac{1}{9} \frac{y^{4}}{y_{s}{ }^{3}}+\frac{1}{12} \frac{y^{4}}{y_{s}{ }^{2}}+\frac{1}{45} \frac{y^{6}}{y_{s}{ }^{6}}-\frac{1}{42} \frac{y^{7}}{y_{s} 6} \\
& +\frac{1}{168} \frac{y^{8}}{y_{s} 6}-\frac{2}{15} \frac{y}{y_{s}}+\frac{1}{6} y-\frac{1}{21} y_{s}-\frac{1}{6} \frac{y^{4}}{y_{s}{ }^{4}}+\frac{1}{9} \frac{y^{4}}{y_{s}{ }^{3}} \\
& \left.\left.+\frac{1}{10} \frac{y^{5}}{\mathrm{ys}^{4}}-\frac{1}{15} \frac{\mathrm{y}^{5}}{\mathrm{ys}^{3}}\right]\right\} \tag{3.27}
\end{align*}
$$

This is the expression for the channel current when the input is ac. short-circuited.
3.9 Expression for J_{22}

When $y=y d$, equation (3.27) becomes

$$
\begin{aligned}
& \frac{i_{d}}{\nabla_{d}}=\frac{i\left(y_{d}\right)}{\nabla_{d}} \\
& =\frac{4 Z_{\sigma}}{\Delta} \frac{I_{d}}{I_{0}}\left\{\frac{1}{y_{s}^{2}}-\frac{2}{3} x^{2} y_{s}\left[1-\frac{3}{4^{y_{s}}}+\frac{2}{2} u^{3}-\frac{2}{4} y_{s} u^{4}-\frac{3}{2} u+y_{s} u\right]\right. \\
& +\frac{7}{18^{2}}{ }^{4} y_{s} s^{4}\left[1-\frac{48}{35} y_{s}+\frac{9}{20_{s}}{ }^{2}+4 u^{3}-3 y_{s} u^{3}+\frac{3}{2} y_{s}{ }^{2} u^{4}\right. \\
& +\frac{2}{5} u^{6}-\frac{3}{7} y_{8} u^{7}+\frac{3}{28^{9}}{ }^{2} u^{8}-\frac{12}{5} u+3 y_{8} u \\
& \left.\left.-\frac{6}{7} y_{s}^{2} u-3 u^{4}+\frac{9}{5} y_{s} u^{5}-\frac{6}{5} y_{s}^{2} u^{5}\right]\right\}
\end{aligned}
$$

Equations (2.15) and (3.13) are substituted in this expression to give

$$
\begin{aligned}
\frac{I_{d}}{V_{d}}= & \frac{4 Z \sigma}{\Delta} \frac{I_{d}}{I_{0}} \frac{1}{y_{s}^{2}}\left\{1+j \omega\left[\frac { 4 \in L ^ { 2 } } { 3 \sigma a ^ { 2 } } \cdot \frac { 1 } { y _ { s } } \cdot \frac { 1 } { y _ { 0 } { } ^ { 2 } } \left\{1-\frac{3}{2^{2}}+\frac{1}{2} u^{3}-\frac{3}{4^{y_{s}}}\right.\right.\right. \\
& \left.\left.\left(1-\frac{4}{3} u+\frac{1}{3} u^{4}\right)\right\}\right]+(j \omega)^{2}\left[\frac { 2 } { 9 } \frac { \epsilon ^ { 2 } I ^ { 2 } } { \sigma ^ { 2 } a ^ { 4 } } \cdot \frac { 1 } { y _ { s } ^ { 2 } } \cdot \frac { 1 } { Y _ { 0 } 4 } \left\{1-\frac{12}{5} u+4 a^{3}\right.\right. \\
& -3 u^{4}+\frac{2}{5} u^{6}-\frac{4.8}{35} y_{s}\left(1-\frac{35}{16} u+\frac{35}{16} u^{3}-\frac{21}{16} u^{5}+\frac{5}{16} u^{7}\right) \\
& \left.\left.\left.+\frac{9}{20^{\prime} y_{s}}{ }^{2}\left(1-\frac{40}{21} u+\frac{10}{3} u^{4}-\frac{8}{3} u^{5}+\frac{5}{21} u^{8}\right)\right\}\right]\right\}
\end{aligned}
$$

which can be written in the form

$$
\begin{equation*}
\frac{i_{d}}{\nabla_{d}}=y_{22}=\frac{g_{m o}}{\left(1+j \omega \tau_{1}\right)}\left[\frac{u}{(1-u)}\left\{1+j \omega \tau_{8}\left(1+j \omega \tau_{g}\right)\right]\right. \tag{3.28}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tau_{8}=\frac{4 \varepsilon_{L} 2}{3 \sigma_{a}^{2}} \cdot \frac{1}{Y_{s}} \cdot \frac{Y_{13}}{Y_{0}^{2}} \\
& \tau_{9}=\frac{\varepsilon_{L}^{2}}{6 \sigma a} \cdot \frac{1}{Y_{s}} \cdot \frac{I}{Y_{0}{ }^{2}} \cdot \frac{Y_{14}}{113}
\end{aligned}
$$

- and

$$
\begin{aligned}
Y_{13}= & 1-\frac{3}{2} u+\frac{1}{2} u^{3}-\frac{3}{4} y_{s}\left(1-\frac{4}{3} u+\frac{1}{3} u 4\right) \\
Y_{14}= & 1-\frac{12}{5} u+4 u^{3}-3 u^{4}+\frac{2}{5} u^{6} \\
& -\frac{48}{35} y_{s}\left(1-\frac{35}{16} u+\frac{35}{16} u^{3}-\frac{21}{16} u^{5}+\frac{5}{16} u^{7}\right) \\
& +\frac{9}{20^{2}} y_{s}^{2}\left(1-\frac{40}{21} u+\frac{10}{3} u^{4}-\frac{8}{3} u^{5}+\frac{5}{21} u^{8}\right)
\end{aligned}
$$

3.10 Expression for y_{12}

When $y=Y s$, equation (3.27) becomes

$$
\begin{aligned}
\frac{1\left(y_{s}\right)}{\nabla d}= & \frac{4 Z \sigma}{\Delta} \cdot \frac{I_{d}}{I_{0}}\left\{\frac{1}{y_{s}{ }^{2}}-\frac{2}{3} x^{2} y_{s}\left(I-\frac{3}{4 y_{s}}+\frac{1}{2}-\frac{1}{4 y_{s}}-\frac{3}{2}+y_{s}\right)\right. \\
& +\frac{1}{18} K^{4} y_{s} 4\left(1-\frac{48}{35} y_{s}+\frac{9}{20_{s} y_{s}}{ }^{2}+4-3 y_{s}+\frac{3}{2} y_{s}{ }^{2}+\frac{2}{5}\right. \\
& \left.\left.-\frac{3}{7} y_{s}+\frac{3}{28} y_{s}^{2}-\frac{12}{5}+3 y_{s}-\frac{6}{7} y_{s}^{2}-3+\frac{9}{5} y_{s}-\frac{6}{5} y_{s} 2\right)\right\}
\end{aligned}
$$

which reduces, with the aid of (2.15a), (3.13a), (3.23b) and (3.14a), to

$$
\begin{equation*}
\frac{i\left(y_{s}\right)}{v_{d}}=\frac{g_{m_{0}}}{\left(1+j \omega_{\tau_{1}}\right)} \frac{u}{(1-u)} \tag{3.29}
\end{equation*}
$$

Since the net charge in the depletion regions is zero,

$$
i_{\mathrm{d}}+i_{s}+i_{\mathrm{g}}=0
$$

Hence

$$
\begin{aligned}
1_{g} & =-1_{s}-i_{d} \\
& =1\left(y_{s}\right)-1_{d}
\end{aligned}
$$

The expression for J12 is found by using the relations (3.28) and (3.29).

$$
\begin{align*}
J_{12} & =\frac{i_{g}}{\nabla_{d}} \\
& =\frac{i\left(y_{s}\right)}{\nabla_{d}}-\frac{i_{d}}{\nabla_{d}} \\
\text { or } J_{12} & =-\frac{g_{m o}}{\left(I+j \omega \tau_{1}\right)} \frac{u}{(I-u)} j \omega r_{8}\left(1+j \omega \tau_{g}\right) \tag{3.30}
\end{align*}
$$

The short-circuit adrofttance parameters of the F.E.T. can therefore be summarized as follows:

$$
\begin{aligned}
& \nabla_{I I}=\left.\frac{I_{g}}{\nabla_{g}}\right|_{\nabla_{d}=0}=\frac{g_{m o}}{\left(1+j \omega \tau_{I}\right)} j \omega \tau_{6}\left(1+j \omega \tau_{\eta}\right) \\
& y_{12}=\left.\frac{1_{g}}{v_{d}}\right|_{v_{g}=0}=\frac{-g_{m 0}}{\left(1+j \omega \tau_{1}\right)} \frac{u}{1-u} j \omega \tau_{8}\left(1+j \omega \tau_{9}\right) \\
& y_{21}=\left.\frac{i_{d}}{\nabla_{g}}\right|_{\nabla d=0}=\frac{g_{m o}}{\left(1+j \omega \tau_{I}\right)}\left[I-j \omega \tau_{2}\left(1+j \omega \tau_{3}\right)\right] . \\
& y_{22}=\left.\frac{1_{d}}{v_{d}}\right|_{v_{g}=0}=\frac{g_{m 0}}{\left(1+j \omega \tau_{1}\right)} \frac{u}{(1-u)}\left[1+j \omega \tau_{8}\left(1+j \omega \tau_{g}\right)\right]
\end{aligned}
$$

Under saturated (pinch-off) conditions, $y_{d}=0$ and so $u=0$. Hence

$$
\begin{aligned}
y_{12} & =0 \\
\text { and } y_{22} & =0
\end{aligned}
$$

Also, from equation (3.15), $\tau_{2}=0$. Therefore, J_{22} becomes

$$
J_{21}=\frac{g_{m o}}{\left(1+j \omega \tau_{I}\right)}
$$

4.1 Introduction

In this chapter, an equivalent oircuit of the fieldeffect transistor is formalated by using the expressions for the short-circuit admittance parameters derived in the previous chapter. The elements of the circuit are determined and graphs are drawn to show how their valnes vary with the drain gate and soureo voltages.

There are two possible approackes to obtaining equivalent circuits for active devices. The 'circuit or black-box approach' is usually employed when only the terminal characteristics of the device are known. In such cases it is not necessary to know the internal physics of the device. The second method, called the 'device approach', is adopted when the physics of the device is sufficiently well understood. Starting from a lmowledge of the physical principles involved, the expressions which adequately describe the operation of the device are derived. Then, an equivaient circuit which satisfies these expressions is found. The advantage of this approach is that it enables each component of the equivalent circuit to be expressed in terms of the fundamental device parameters. The device approach is used here to obtain the equivelent circuit. .
4.2 Assumed Gircuit Model

To start with, a bybrid- π network of a general type is assumed to represent the equivalent circuit of the device and the admittance parameters of this circuit model are determined. By comparing these parameters with those derived in the previous chapter, expressions for the different elements of the circuit are derived.

Fig. 4.1 Assumed form of the F.E.T.
equivalent oircuit.

Fig. 4.1 shows the assumed circuit model of an F.E.T. which is treated as a four terminal device. In this circuit,
 current generator; in and i_{2} are the input and output currents, respectively. If ∇_{g} and ∇_{d} are the input and output voltages for this comon-source connection, Kirchoff's cumeent relations
for the two nodes G and D can be written as follows:

$$
\begin{aligned}
& 1_{1}=\left(y_{1}+y_{2}\right) \nabla_{g}-J_{2} \nabla_{d} \\
& 1_{2}=-\left(y_{2}-y_{m}\right) \nabla_{g}+\left(y_{2}+y_{0}\right) \nabla_{d}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& J_{11}=J_{1}+J_{2} \\
& J_{12}=-y_{2} \\
& J_{21}=-J_{2}+y_{m} \\
& J_{22}=J_{2}+y_{0}
\end{aligned}
$$

These relations are solved for $\mathrm{Y}_{1}, \mathrm{~J}_{2}$: Y_{0} and Y_{m} -

$$
\begin{aligned}
& Z_{1}=Z_{11}+Z_{12} \\
& Z_{2}=-Z_{12} \\
& Z_{0}=Z_{22}+Z_{12} \\
& J_{m}=Z_{21}-Z_{12}
\end{aligned}
$$

The values of JII, 712, Y21 and 722, derived in chapter 3, are now used to determine J1, y2, JO and gmo 4.3 Expressions for $71, C_{1}$ and R_{1}

By using equations (4.1), (3.17) and (3.30), II is determined.

$$
\begin{align*}
J_{1} & =J_{11}+J_{12} \\
& =\frac{g_{m 0}}{\left(1+j \omega \tau_{1}\right)}\left[j \omega \tau_{6}\left(1+j \omega \tau_{7}\right)-\delta_{0} j \omega \tau_{8}\left(1+j \omega \tau_{q}\right)\right] \\
& =\frac{g_{m o}}{\left(1+j \omega \tau_{1}\right)}\left[\frac{j \omega \tau_{6}}{\left(1-j \omega \tau_{7}\right)}-\frac{6 \cdot j \omega \tau_{8}}{\left(1-j \omega \tau_{q}\right)}\right] \\
& =\frac{g_{m o}}{\left(1+j \omega \tau_{2}\right)}\left[\frac{j \omega\left(\tau_{6}-6 \tau_{8}\right)-(j \omega)^{2}\left(\tau_{6} \tau_{9}-6 \tau_{8} \tau_{7}\right)}{\left(1-j \omega \tau_{7}\right)\left(1-j \omega \tau_{q}\right)}\right] \tag{4.5}
\end{align*}
$$

where $\quad \delta=\frac{u}{1-u}$
As in the previous cases the second order terms in (jew) are neglected in the denominator. It can then be shown that the above expression reduces to

$$
\begin{equation*}
J_{1}=\frac{g_{m 0} \cdot j \omega\left(\tau_{6}-\delta \tau_{8}\right)}{1+j \omega\left\{\tau_{1}+\frac{\tau 6 \tau^{-\delta} \tau_{8 \tau}}{\tau_{6}-\delta \tau_{8}}-\tau_{7}-\tau_{9}\right\}} \tag{4,6}
\end{equation*}
$$

which can be written in the form

$$
\begin{equation*}
J_{1}=\frac{j \omega C_{1}}{1+j \omega C_{1} R_{1}} \tag{4.7}
\end{equation*}
$$

whore

$$
\begin{equation*}
c_{2}=g_{m 0}\left(\tau_{6}-\delta \tau_{8}\right) \tag{4,8}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}=\frac{\tau_{1}+\frac{\tau_{6} \tau_{9}-\delta \tau_{8} \tau_{7}}{\tau_{6}-\delta \tau_{8}}-\tau_{7}-\tau_{9}}{g_{m 0}\left(\tau_{6}-\delta \tau_{8}\right)} \tag{4.9}
\end{equation*}
$$

- The validity of this approximation will be discussed in Chapter 5.

Equation (4.7.) indicates that gl can be conveniently expressed as the admittance of a resistance R_{1} in series with a capacitance C_{1}. As the expressions for $g_{m o}$ and $\boldsymbol{c}^{\prime \prime}$ a are known, the values of R_{2} and C_{1} can be determined.

The capacitance C_{I} is given by equation (4.8).

$$
c_{1}=g_{m 0}\left(T_{6}-\delta T_{8}\right)
$$

The values of T_{6} and 78 are given by (3.17) and (3.28), respectively, and 6 is given by (4.5)

$$
\left(I_{6}-\delta I_{8}\right)=\frac{2 \epsilon I^{2}}{3 \sigma a^{2}} \cdot \frac{1}{y_{8}} \cdot \frac{1}{Y_{0}^{2}} \frac{1}{(1-u)}\left[1-3 u^{2}+2 u^{3}-\frac{1}{2 y_{8}}\left(1-4 u^{3}+3 u^{4}\right)\right]
$$

Finally, use of equations (3.13b) and (3.14b) yields

$$
C_{1}=\frac{4 Z \in L}{3 a}\left\{\frac{1-3 u^{2}+2 u^{3}-\frac{2}{3} y_{8}\left(2-4 u^{3}+3 u^{4}\right)}{\left[1-u^{2}-\frac{2}{3} J_{s}\left(1-u^{3}\right)\right]^{2}}\right\}
$$

where $u=\frac{y_{d}}{y_{s}}$
C_{I} is the gate-to-source capacitance and it can be shown that (4,10) agrees with van der Kiel's ${ }^{8}$ expression for C_{I} In the saturation (pinch-off) case, $\overline{J d}=0$ or $u=0$, so that (4.10) becomes

$$
c_{1}=c_{1 S}=\frac{4 Z \in L}{3 a}\left[\frac{1-\frac{1}{3} y_{s}}{\left(1-\frac{2}{3} V_{s}\right)^{2}}\right]
$$

The resistance R_{I} is given by equation (4.9). When the values of T's are substituted in (4.9), it becomes too long and cumbersome to write. Therefore, an expression for R_{1} in the saturation case is derived.

In the saturation case ya $=0$ and $\delta=0$, so that equalLion (4.9) becomes

$$
R_{1}=R_{1 S}=\frac{T_{1}-T_{7}}{8 m 0 \cdot T_{6}}
$$

This can be simplified to give

$$
\begin{equation*}
R_{1 s}=\frac{L}{10 \sigma \Omega Z}\left\{\frac{1}{\bar{y}_{s}} \frac{1-\frac{37}{21} y_{s}+\frac{55}{56} y_{s}^{2}-\frac{5}{28} y_{s}{ }^{3}}{1-\frac{2}{3} y_{s}+\frac{11}{12} y_{s}{ }^{2}-\frac{1}{6} y_{s}^{3}}\right\} \tag{4.12}
\end{equation*}
$$

Since, for the saturation case,

$$
g_{m o}=\frac{2 Z \sigma a}{L} y_{s}
$$

$\mathrm{R}_{2 \mathrm{~S}}$ can also be written as

$$
\mathrm{R}_{I S}=\frac{1}{5 g_{m 0}}\left\{\frac{1-\frac{37}{21} \mathrm{ys}_{s}+\frac{55}{56} \mathrm{ys}_{\mathrm{s}}{ }^{2}-\frac{5}{28} \mathrm{ys}_{\mathrm{s}}{ }^{3}}{1-\frac{5}{3} \mathrm{ys}_{s}+\frac{11}{12} \mathrm{ys}^{2}-\frac{1}{6} \mathrm{ys}_{s}{ }^{3}}\right\}
$$

4.4 Expressions For $\mathrm{J}_{2}, \mathrm{C}_{2}$ and R_{2}

Equations (4.2) and (3.30) yield

$$
J_{2}=-J_{12}
$$

$$
\begin{aligned}
7_{2} & =\frac{g_{m 0}}{\left(1+j \omega \tau_{1}\right)} \frac{u}{(1-u)} j \omega \tau_{8}\left(1+j \omega \tau_{9}\right) \\
& \approx \frac{g_{m 0}}{\left(1+j \omega \tau_{1}\right)} \frac{u}{(1-u)} \frac{j \omega \tau_{8}}{\left(1-j \omega \tau_{g}\right)}
\end{aligned}
$$

When the second order terms in ($j \omega$) are neglected, this becomes

$$
J_{2}=\frac{g_{m 0}\left(\frac{u}{I-u}\right) j \omega \tau_{8}}{1+j \omega\left(\tau_{I}-\tau_{9}\right)}
$$

which can be written in the form.

$$
y_{2}=\frac{j \omega C_{2}}{1+j \omega C_{2} R_{2}}
$$

where

$$
c_{2}=g_{m 0} \frac{u}{1-u} \tau_{8}
$$

and

$$
\begin{equation*}
R_{2}=\frac{\tau_{1}-\tau_{9}}{8_{m 0}\left(\frac{u_{1}}{I-u}\right)^{\tau}} \tag{4.126}
\end{equation*}
$$

Equation (4.24) indicates that IV can be considered as the admittance of a resistance R_{2} and a capacity C_{2} in series. Substitution of equations (3.23b) and (3.28) in (4.25)
yields

$$
c_{2}=\frac{8 Z \in I}{3 a}\left\{\frac{u\left[1-\frac{3}{2} u+\frac{1}{2} u^{3}-\frac{3}{4} y_{s}\left(2-\frac{4}{3} u+\frac{1}{3} u 4\right)\right]}{\left[1-u^{2}-\frac{2}{3} y_{s}\left(1-u^{3}\right)\right]^{2}}\right\}(4 \cdot 17)
$$

C_{2} is the gate-to-drain capacitance. It can be shown that (4.17) agrees with van der Kiel's 8 expression for C_{2} In the saturation case $u=0$ so that

$$
C_{2}=C_{2 S}=0
$$

After substituting for T 's and $g_{\text {mo }}$, (4.16) becomes

$$
\begin{equation*}
R_{2}=\frac{L}{10 \sigma a Z} \cdot \frac{1}{Y_{d}}\left[\frac{1}{Y_{0} \cdot Y_{13}}\right]\left[Y_{4}-\frac{5}{8} \frac{Y_{0}}{Y_{13}} \cdot Y_{14}\right] \tag{4.18}
\end{equation*}
$$

Y_{0} and Y_{4} are defined in section 3.5 , and Y_{13} and $Y_{I_{4}}$ are defined in section 3.5.

Under saturated conditions, $y d=0$ and so (4.18) gives

$$
R_{2}=R_{2 S}=\infty
$$

4.5 Expressions for J_{0}, R_{0} and I_{0}

Use of equations (4.3), (3.28) and (3.30) yields the expression for Yo.

$$
\begin{aligned}
y_{0} & =y_{22}+y_{12} \\
& =\frac{g_{m o}}{\left(1+j \omega I_{1}\right)} \frac{u}{(1-u)}\left[1+j \omega \tau_{8}\left(1+j \omega \tau_{9}\right)\right] \\
& =\frac{g_{m o}}{\left(1+j \omega \cdot \tau_{1}\right)} \frac{u}{(1-u)} j \omega r_{8}\left(1+j \omega \tau_{9}\right) \\
& =\frac{g_{m o} \cdot \delta}{\left(1+j \omega x_{1}\right)}
\end{aligned}
$$

where $\delta=\frac{u}{I-u}$.
Equation (4.19) can be expressed in the form

$$
J_{0}=\frac{g_{0}}{1+j \omega g_{0} L_{0}}
$$

where

$$
g_{0}=g_{m 0} \cdot \delta
$$

and

$$
I_{0}=\frac{\tau_{1}}{g_{m o} \cdot \delta}
$$

Equation (4.20) shows that the admittance J_{0} consists of a conductance go in series with an inductance L_{0} whose values are given by the relations (4.21) and (4.22$\}$ respectively.

Substituting for $g_{m o}$ and δ, equation (4.21) gives

$$
g_{0}=\frac{2 Z \sigma a}{L} \cdot y_{s}(1-u) \cdot \frac{u}{(1-u)}
$$

Since $u=\frac{Y_{d}}{\bar{J}_{8}}, g_{0}$ becomes

$$
\begin{equation*}
g_{0}=\frac{2 Z_{\sigma} a}{L} \cdot J a \tag{4.23}
\end{equation*}
$$

So is the output conductance of the device. Recalling that

$$
w_{d}=w_{p}\left(1-y_{d}\right)^{2}
$$

equation (4.23) can be written as

$$
g_{0}=\frac{2 Z_{\sigma} \&}{L}\left[1-\left(\frac{W_{d}}{W_{p}}\right)^{\frac{1}{2}}\right]
$$

which agrees with the expression (1.6) for output conductance given by the d. 0. theory.

An expression for L_{0} can be derived by the use of equaltrons (4.22) and (3.14a).

$$
\begin{align*}
I_{0} & =\frac{L}{2 Z \sigma a} \cdot \frac{1}{Y_{d}} \cdot \frac{4 \epsilon L^{2}}{15 \sigma a^{2}} \cdot \frac{1}{Y_{a}} \cdot \frac{Y_{4}}{Y_{0}^{3}} \\
& =\frac{2}{15} \frac{\epsilon I^{3}}{Z \sigma^{2} a^{3}} \cdot \frac{1}{Y_{d} y_{s}} \cdot \frac{Y_{4}}{Y_{0}{ }^{3}} \tag{4}
\end{align*}
$$

whore

$$
\begin{aligned}
y_{4}= & -5 u^{2}+5 u^{3}-u^{5}-\frac{5}{4} y_{8}\left(1-3 u^{2}+3 u^{4}-u^{6}\right) \\
& +\frac{5}{14} J_{8}^{2}\left(i-7 u^{3}+7 u^{4}-u^{7}\right)
\end{aligned}
$$

and

$$
y_{0}=1-u^{2}-\frac{2}{3} y_{0}\left(1-u^{3}\right)
$$

Under saturated conditions ($\overline{\mathrm{a}}=0$) equation (4023) gives

$$
g_{0}=g_{0 s}=0
$$

or, the output resistance R_{0} is

$$
R_{0}=R_{08}=\frac{1}{g_{08}}=\infty
$$

and the inductance I_{0} becomes

$$
I_{0}=I_{0 s}=\infty
$$

4.6 Expression for transadmittance y_{m}

The transadmittance ' Jm ' of the device is determined by using equations (4.4), (3.15) and (3.30).

$$
\begin{align*}
y_{m} & =J_{21}-J_{12} \\
& =\frac{g_{m o}}{\left(1+j \omega \tau_{1}\right)}\left\{1-j \omega_{2}\left(1+j \omega \tau_{3}\right)\right\}+\frac{g_{m 0}}{1+j \tau_{1}} \cdot \delta \cdot j \omega \tau_{8}\left(1+j \omega \tau_{9}\right) \\
& =\frac{g_{m 0}}{\left(1+j \tau_{\tau_{1}}\right)}\left\{1-j \omega\left(\tau_{2}-\delta \tau_{8}\right)+(j \omega)^{2}\left(-\tau_{2} \tau_{3}+\delta \tau_{8} \tau_{9}\right)\right\} \tag{4.25}
\end{align*}
$$

At saturation $\delta=0$ and $\tau_{2}=0$, so that

$$
J_{m}=\frac{g_{m o}}{\left(I+j \omega \tau_{I S}\right)}
$$

where $\tau_{I S}$ is the value of τ_{1} at saturation. (see Appendix A)

$$
\tau_{I S}=\frac{4 \in I^{2}}{15 \sigma a^{2}} \cdot \frac{1}{y_{s}}\left\{\frac{1-\frac{5}{4} y_{s}+\frac{5}{I_{4} y_{s}}{ }^{2}}{\left(1-\frac{2}{3} Z_{s}\right)^{3}}\right\}
$$

4.7 The Equivalent Circuit

Having determined all the elements of the assumed circult model, the equivalent circuit for the F.E.T. can be written as shown in Fig. 4.2.

Fig. $4 \cdot 2$ The derived equivalent circuit for the device.

S, D and G are the source, drain and gate terminals, respectively of the device and $\boldsymbol{J m}_{\mathrm{m}} \nabla_{g}$ is the current generator; V_{g} being the ac. gate voltage referred to the source. The expressions for $R_{1}, R_{2}, C_{1}, C_{2}$ and I_{0} indicate that the values of these elements vary in a nonlinear manner with the drain and gate voltages.

Normalized values of R_{1} and C_{1} as given by equations 4.9 and 4.10 have been computed theoretically and are plotted against W_{s} / W_{p} for different values of W_{d} / W_{p} in Figs. 403 and 4.4. It is apparent that when $W_{g}=W_{p,} R_{1}$ goes to infinity
for all values of W_{d} and C_{1} goes to zero for all values of W_{d} except when $W_{d}=W_{p}$ (saturation).

It has been shown in the previous section that under saturated conditions R_{2} goes to infinity and C_{2} reduces to zero. In Figs. 4.5 and 4.6 , normalized values of R_{2} and C_{2} under non-saturated conditions are plotted against W_{g} / W_{p}. As W_{d} / W_{p} decreases, the value of R_{2} reduces and that of C_{2} increases.

According to (4.23) and (4.24), both R_{0} and I_{0} increase with the drain-tomsource voltage and at saturation both go to infinity. It is show in Chapter 5 that the value of I_{0} is very small and that it can usually be neglected except at very high frequencies.

5. CONCLUSIONS

Considering the field effeot transistor as an active, distributed and non-uniform transmission line, a differential equation for the a.c. oase was derived from the physical principles involved in the operation of the device. As these considerations were based on Shockley's basic theory of tho device, the analysis presented here is applicable only to those devices for which the assumptions in that theory are valid. In other words, the theory presented in this work is valid for F.E.T.'s with abrupt $p \rightarrow n$ junctions and uniformy doped channels. Furthemmore, since Shockley's theory also assumes a gradual variation of potential along the chamel of the device, this analysis is valid as long as the condition $J_{s} \geqslant J_{d}$ (i.e. $\quad W_{d} \geqslant W_{s}$) is satisfied.

The differential equation was solved and the solution was used to derive the expressions for the short-circuit admittance parameters of the device. An equivalent circuit in the form of a bybrid-T network was then obtained from the first order approximation of the theory. The mathematical approximation made in sections 403 and 4.4 , while deriving the expressions for the elements of the equivalent circuit, is valid as long as the condition.

$$
\omega \tau \ll 1
$$

is satisfied. The quantity $\frac{\epsilon L^{2}}{\sigma a^{2}}$ which determines the order
of magnitude of all τ 's, depends upon the material, doping and the physical dimensions of the device. For example, it has been shown ${ }^{14}$ that for the F.E.T. $2 N 2498$ (manufactured Texas Instruments Inc.) the value of $\frac{E L 2}{\sigma a^{2}} \leqslant 400 \times 10^{-9}$. Hence, the approximation is valid up to a frequency of several megacycles.

The Q of the Jo branch can be determined by using this value of $\epsilon L^{2} / a^{2} \sigma_{0}$. It is given by

$$
Q=\frac{\omega I_{0}}{R_{0}}
$$

Use of $(4,23)$ and (4.24) yields

$$
\frac{L_{0}}{I_{0}}=\frac{4}{15} \frac{\epsilon L^{2}}{\sigma a^{2}} \cdot \frac{1}{Y_{s}} \cdot \frac{Y_{L_{4}}}{Y_{0}^{3}}
$$

Let $y_{s}=0.5$ (i.0., $\frac{W_{8}}{W_{p}}=0.25$). Then

$$
\frac{L_{0}}{R_{0}} \approx 2.4 \times 10^{-9}
$$

Therefore the Q of the J_{0} branch at a frequency of 5 mc is approximately equal to 0.075 which is a very small quantity The inductance L_{0} can therefore be neglected except at very high frequencies. When it is omitted, the equivalent circuit of Fig. 4.2 will have the same configuration as Silverthomis circuit.

Equation (4.26) shows that the transadmittance Z_{m} decreases with frequency. Since the order of magnitude of τ_{1} is 10^{-9}
seconds, the variation of y_{m} with frequency should be vexy small until a value of about ten megacycles is reached. Measurements made by Silverthorn ${ }^{1 l}$ show this to be correct.

The analysis presented here takes into consideration only the intrinsic device and hence the equivalent circuit obtained is not complete. In an actual F.E.T. structure, there will be some parasitic resistance in series with the source and drain leads, and it has been shown 11,12 that these parasitic resistances can be absorbed into the equivalent circuit of Fig. 4.2 to yield a circuit having the same configuration. Furthermore, the actual capacitances in a practical dovice will differ somewhat from the values computed in this idealized model because of the non-ideal conditions at the source and drain ends of the channol dae to depletion region "end offects".

1. Shockley, W., A unipolar field-effect transistor, Proc. IRE, vol 40, NOV 1952, pp 1365-1376.
2. Dacey, G.C., I.M. Ross, Unipolar field-effect transiston, Proc. IRE, vol 41, Aug 1953, pp 970.
3. Dacey, G.C., I.M. Ross, The field-effect transistox, Bell Sys. Tech. Joum., vol 34, Nov 1955, pp 1149-1189.
4. Richer, I., and R.D. Middlebrook, Power-1aw nature of field-offect transistor experimental characteristios, Proc. IEEF (correspondence), vol 51, Aug 1963, pp 1145-1146.
5. Cobbold, R.S.C., and F.N. Mrofimenleoff, Theory and application of the field-effect transistor: I theory and d.c. characteristics, Proc. IEE, vol 111, Dec 1964, pp 1981-1992.
6. Bockemuehl, R.R., Analysis of field-effect transistors unth arbitrary charge distribution, IEEF Thans. on Electron Devices, vol ED-10, Jan 1963, pp 31-34.
7. Van der Ziel, A., Gate noise in field-effect transistorg at moderately high frequencies, Proc. IEEE, VOl \$1, Mar 1963, pp 461-467.
8. Richer, I., Input capacitance of field-effect transistors, Proc. IEEE, vol 51, Sept 1963, pp 1249-1250.
9. Olsen, D.R., Equivalent circuit for a fleld-offect transise tor, Proc. IEEX (correspondence), vol 51, Jan 1963, p 254.
10. Texas Instruments Inc., Field-effect transistor: theory and applioations.
11. Silverthom, R.D., Field-effect transistor equivalent oifm cuit studies, M.Sc. Thesis, University of Saskatchowan, Nov 1963.
12. Trofimenkoff, F.N., R.D. Silverthom, and R.S.C. Cobbolg, Theory and application of the field-eifect transistor: 2 high frequenoy properties of the field-effect transistor, Proc. IFW, vol 212, Apr 1965, pp 681-688.
13. van der Ziel, A., and J.W. Ero, Small-signal high frequency theory of field-effect transistors, IEFF Trans. on Electron Devices, vol ED-11, April 1964, pp 128-135.
14. Trofimenkoff, F.N., Fioldeeffect transistor transient analysis, Journal of Electronics and Control, (to bo published).
15. Trofimenkoff, F.N., and B. Reddy, An F.E.T. oquivalent circuit, Proc. IEEE (correspondence), $V 0153$, April 1965, p 419.

APPENDIX A
 are given below.

$$
\begin{aligned}
& \tau_{1}=\frac{4 \in I 2}{15 \sigma a^{2}} \cdot \frac{1}{\bar{y}_{s}}\left\{\frac{1-\frac{5}{4} y_{s}+\frac{5}{I_{4}} y_{s}^{2}}{\left(1-\frac{2}{3} y_{s}\right)^{3}}\right\} \\
& \tau_{2}=0 \\
& \tau_{3}=\tau_{9}=\frac{\epsilon L^{2}}{6 \sigma a^{2}} \cdot \frac{1}{\bar{y}_{s}} \cdot\left\{\frac{1-\frac{48}{35} y_{s}+\frac{9}{20} y_{8}^{2}}{\left(1-\frac{2}{3} y_{s}\right)^{2}\left(1-\frac{3}{4} y_{s}\right)}\right\} \\
& \tau_{4}=\tau_{6}=\frac{2}{3} \frac{\epsilon I^{2}}{\sigma_{a}^{2}} \cdot \frac{1}{\nabla_{s}}\left\{\frac{1-\frac{1}{2} \bar{s}_{s}}{\left(1-\frac{2}{3} \bar{y}_{s}\right)^{2}}\right\} \\
& \tau_{5}=\tau_{7}=\frac{2 \epsilon L^{2}}{15 \sigma a^{2}} \cdot \frac{1}{\bar{J}_{s}}\left\{\frac{1-\frac{15}{I_{4}} \Psi_{s}+\frac{15}{56} \mathrm{Js}_{s}^{2}}{\left(1-\frac{2}{3} \overline{y s}_{s}\right)^{2}\left(1-\frac{1}{2} J_{s}\right)}\right\} \\
& \tau_{8}=\frac{4 \in I^{2}}{3 \sigma_{2}^{2}} \cdot \frac{1}{\bar{y}_{3}}\left\{\frac{\left(1-\frac{3}{4} y_{8}\right)}{\left(1-\frac{2}{3} y_{s}\right)^{2}}\right\}
\end{aligned}
$$

