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ABSTRACT 
 

With the advent of time and growing world population, the demand of energy is rising everyday 

exponentially. Developing renewable sources is important in fulfilling a part of our present energy 

demands. However, at present, a very significant part of energy is derived from the fossil fuels. 

Using fossil fuels as the main source of energy has some serious drawbacks. 

Fossil fuels are present in the earth’s crust in a limited amount and will be exhausted at some point 

of time. Also, burning fossil fuels to produce energy is responsible for the rising levels of carbon 

dioxide in the earth’s atmosphere. This has led to environmental issues such as the global warming.  

Hydrogen is a potential alternative to fossil fuels due to its high calorific value and cleaner 

combustion. The major issue in using hydrogen as a fuel is its storage. Amongst different materials, 

magnesium is the most suitable candidate for storing hydrogen due to its high theoretical hydrogen 

storage estimated value (7.5wt%) and economical cost. 

Magnesium however has slow reaction kinetics therefore various methods have been investigated 

to improve its hydrogen storage capacity and reaction kinetics. 

In this thesis the effect of different parameters (ball milling time, nickel percentage, hydrogen 

charging pressure and hydrogen charging temperature) in the production of Magnesium-Nickel 

powders for the storage of hydrogen were studied. The phase distribution, particle size and 

morphology were also determined by using scanning electron microscopy, energy dispersive 

spectroscopy and X-ray diffraction. It was established that Mg-10%Ni ball milled for 10hours, 

charged at a hydrogen pressure and temperature of 20 bar and at 300 °C respectively was the best 

sample in terms of the amount of hydrogen stored (≈ 5.6 weight percent) and the hydrogen 

discharge rate. Cross-sectional SEM and EDS scans revealed that upon ball milling for 10 hours 

the internal structure of the particles became layered, hosting numerous potential sites for the 

hydrogen atom residence. It was also clear that the distribution of nickel over magnesium particles 

was uniform when ball milled for 10 hours. 
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CHAPTER 1 

1 INTRODUCTION 
 

1.1 Why do we need hydrogen as a fuel? 

There have been significant concerns about the rising levels of CO2 due to the continuously 

increasing energy demands of the growing population. Increasing CO2 levels have caused serious 

environmental issues such as global warming. The energy demand in 1973 was reported to be 6128 

Mtoe (million tonnes of oil equivalent) which doubled over three decades to 11435 Mtoe in 2015. 

If this situation persists, the energy demand is expected to reach 17100 Mtoe by 2030 [1]. Due to 

limited amount of fossil fuels present in the earth’s crust and the rising environmental concerns 

related to its usage, it is inevitable to find an alternative clean and sustainable source of energy. 

Hydrogen can be used for power generation either by burning in an internal combustion engine or 

electrochemically used in a fuel cell. Either ways, the hydrogen reacts with oxygen to form water 

with a very minimal amount of NOx (when reaction is carried out at very high temperatures).  

 
Figure 1.1 Comparison of specific energy and energy density for different fuels based on lower 

heating values [2]



2 
 

 

Hydrogen also has about three times higher calorific value (120 MJ/Kg) as compared to petrol 

(43MJ/Kg). However, it can be seen clearly from Figure 1.1 that based on volumetric density, 

gasoline has a density of 32 MJ/L whereas liquid hydrogen has a density of only 8 MJ/L based on 

the lower heating values. 

Therefore, it can be understood that hydrogen is a significantly cleaner source of energy when 

compared to the fossil fuels.  

 

1.2 Challenges in Storing hydrogen 

Even though hydrogen is a proven clean source of energy with great potential to replace the fossil 

fuels, it still cannot replace gasoline currently due to the major problem of its storage.  

 

 
Figure 1.2 Different types of hydrogen storage methods and media [2]. 

 

Hydrogen storage can be categorized into two different forms: Physical based (hydrogen storage 

in gaseous and liquid form in high pressure cylinders) and material based (storage of hydrogen 

when physisorbed or chemisorbed by a material). 

The material based storage of hydrogen is the most promising and mature technology. Material 
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based storage of hydrogen is a better alternative to physical based for numerous reasons. 

The problems faced in storing hydrogen are described below: 

 

1.2.1 Hydrogen storage in gaseous phase 

This is the most common method of storing compressed hydrogen in cylindrical tanks. Presently, 

a working pressure of at most 700 bar can also be achieved using composite cylinders. Composite 

cylinders are lighter in weight than metal and comprise of an inner liner (made of Aluminum, steel 

or polymer) wound by carbon fibers and sealed in a polymer resin. At the maximum working 

pressure of 700 bar the gravimetric capacity was observed to be 4.5 wt%. However, the volumetric 

capacity was only 0.025 KgH2l-1 [3]. Higher pressures will definitely improve the volumetric 

capacity but the energy needed for the compression at pressures more than 700 bar is 15% of the 

L.H.V. (lower heating value) of the stored hydrogen. Moreover, the cylindrical shape of the storage 

tanks is not the best shape when used in mobile applications since, it consumes a lot of space. There 

is also a significant safety concern related to this type of storage since there could be a leakage as 

the hydrogen stored is at very high pressures. Therefore, storing hydrogen in gaseous compressed 

form is not the most practical method of storing hydrogen especially in mobile applications. 

 

1.2.2 Hydrogen storage in liquid phase 

To store the hydrogen in a liquid phase, very low temperatures are needed to be maintained. 

Hydrogen has a critical temperature of 33K above which it acts as a non-condensable gas. At a 

pressure of 1 atm, hydrogen has a boiling point of 20K, which gives a liquid density of 0.0708 Kgl-

1 and a volumetric capacity of 2.35 Kwhl-1. It is crucial to maintain the temperature of the storage 

vessel below 20K to minimize any boil-off. However, boil-off can only be minimized and not 

eliminated completely due to heat conduction through cables and fixtures and convection through 

the environment. This type of system is highly undesirable for mobile applications as the system 

needs constant cooling and also there are safety issues if the vehicle is parked at a closed space for 

a longer time due to the hydrogen boil-off.  
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1.2.3 Material based hydrogen storage / Solid state hydrogen storage 

The storage of hydrogen when bound to a solid material (through physisorption or chemisorption) 

is referred to as solid state hydrogen storage. Solid state hydrogen storage technology is the most 

promising method to store hydrogen efficiently. It is also low cost and robust [4]. This method of 

storing hydrogen theoretically stores more hydrogen per unit volume than the other methods [5]. 

Of all the different materials used for storing hydrogen, magnesium is by far the best from the 

standpoint of its hydrogen storage capacity per unit mass (7.6wt% theoretical). However, there are 

some drawbacks of using magnesium as a hydrogen storage material. Magnesium has slow reaction 

kinetics and requires high temperature and pressures for storing hydrogen. The United States, 

Department of Energy (D.O.E.) has set tough targets for the development of hydrogen vehicles. 

The D.O.E. targets for 2020 and ultimate targets are mentioned in the table below: 

 

Table 1.1 Projected performance and Cost of Materials-Based Automotive Hydrogen storage 

2020 and ultimate targets set by D.O.E. [2] 

Storage system 

Targets 

Gravimetric 

Density (Kwh/Kg 

system) 

Volumetric Density 

(Kwh/L system) 

Cost ($/Kwh) 

2020 1.8 1.3 10 

ultimate 2.5 2.3 8 

 

Therefore, while developing an efficient hydrogen storage system the D.O.E. targets should always 

be kept in consideration.  

A detailed description on solid state hydrogen storage has been provided in the next chapter. 

 

1.3 Hypothesis of the research 

Inspired by the studies above, the following idea came out. It is possible to develop an efficient 

Magnesium based hydrogen storage system by adding a catalyst (Nickel) and ball milling the 

magnesium particles to obtain better hydrogen storage characteristics. 
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1.4 Objectives of the thesis 

The general objective of my research is to obtain the most suitable (highest and fastest hydrogen 

storage) parameters for the storage of hydrogen in the Magnesium-Nickel system. Therefore, the 

specific objectives are as follows: 

 

Objective 1: To determine the most suitable composition of nickel (in weight %) with magnesium 

to achieve the highest hydrogen yield with fastest reaction kinetics. 

 

Objective 2: To determine the milling time of magnesium-nickel powder to achieve the highest 

hydrogen yield with fastest reaction kinetics. 

 

 

Objective 3: To propose the hydrogen charging pressure and temperature to achieve the highest 

hydrogen yield with fastest reaction kinetics. 

 

 

Characterization of the samples was done to obtain phase distribution and morphology using X-

ray diffractometry, scanning electron microscopy and energy dispersive spectroscopy for the 

analysis of elements. 
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CHAPTER 2 

2 LITERATURE REVIEW  
  

2.1 Introduction 

Hydrogen can be bonded and stored in solid materials by numerous ways. Physisorbed hydrogen 

can be stored in Metal Organic Framework-5 (MOF-5), graphene and other carbonaceous 

materials. Hydrogen can also be stored in liquid organic form in compounds such as BN-methyl 

cyclopentane. Interstitial hydride and complex hydride such as LaNi5H6 and NaAlH4 respectively 

can also be used to store hydrogen by the process of chemisorption. Chemisorption is a process 

where; the hydrogen atoms are chemically bonded with the host metal. This involves an electron 

transfer and higher bonding energy between the hydrogen atom and the host metal. Although there 

are several ways to store hydrogen in materials, there are some serious drawbacks associated to it 

such as cost, reaction kinetics etc. This chapter provides a detailed description of hydrogen storage 

in materials and the different effective methods to tackle the aforementioned drawbacks. 

 

2.2 Physically bound hydrogen 

Physisorption is a surface phenomenon where, hydrogen is bound at the surface of the materials by 

weak van der Waals interactions with an enthalpy of adsorption lying between (4 – 10 KJmol-1). 

Due to this low enthalpy of adsorption very low temperatures (77 – 80K) are required for the 

adsorption process, so that the hydrogen molecules do not have too much thermal energy to 

overcome the weak interactions. Materials used for physisorption are those with high surface area. 

One method to increase the surface area is by increasing the porosity of the material. Important 

observations have been made in different porous materials such as high surface area carbon, Carbon 

Nano-tubes (CNTs), zeolites, Metal organic frameworks (MOFs) and polymers of intrinsic 

microporosity (PIMs). The Table 2.1 shows characteristics and properties of typical porous 

materials used for hydrogen storage.
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Table 2.1 Characteristics and properties of typical porous hydrogen storage materials 

[6][7][8][9][10]. 

Material Surface Area 

(m2g-1) 

Porosity 

(cm3g-1) 

Hydrogen storage capacity at 77K 

and 20 bar (wt %) 

Porous carbon 3150 1.95 6.9 

CNTs 1160 - 3.8a 

Zeolites 670 - 2.2 

MOFs 2200 0.89 6.1 

PIMs 1050 0.40 2.7b 
aMeasured at 1 bar hydrogen. 
bMeasured at 15 bar hydrogen. 

 

It can be clearly seen from the table 2.1 that most of the typical porous materials already meet the 

D.O.E. targets or are close to it. Porous materials have excellent cyclability as they do not undergo 

any changes during adsorption and desorption [4]. However, these materials do need cryogenic 

storage tanks for liquid hydrogen at 77K which is better than direct liquid state storage of hydrogen 

in tanks at (20K). Therefore, storing physisorbed hydrogen in porous materials has boil-off issues 

and since the physisorption process is exothermic, thermal management issues also arise during 

the adsorption process. All these reasons make physisorbed hydrogen unsuitable for mobile 

applications. 

The problems associated with the physisorbed hydrogen can be overcome if the hydrogen is 

bounded to the material with a higher enthalpy for room temperature storage. This type of bonding 

can be achieved when the hydrogen is bonded to a metal which will be discussed later in this 

chapter. 

 

 

 

 

 



8 
 

 

2.3  Hydrogen storage in metal hydrides. 
 
Metals have the capability of storing large amounts of hydrogen gas reversibly. The absorption of 

hydrogen in a metal hydride is a multi-step process described by the long-range attractive/short-

range repulsive Lennard-Jones potential [11].  

 

 

 

 
 

Figure 2.1 Potential energy curve for the Lennard-Jones potential for hydrogen binding to a metal 

indicating: (i) physisorption; (ii) dissociation and surface chemisorption; (iii) surface penetration 

and chemisorption on substrate sites; and (iv) diffusion [12]. 

 

As the molecular hydrogen approaches the metal surface successive minima of the potential is 

observed from the figure 2.1.  Molecular hydrogen is first physisorbed on the surface of the metal 

by weak van der Waals forces. If pressure and temperature are increased the physisorbed hydrogen 

is then dissociated into the metal and becomes chemisorbed. In chemisorption, a chemical bond is 

developed between hydrogen and the corresponding metal with a decent binding energy (above 

50KJ mol-1) [11]. After the chemisorption, the hydrogen molecules move to the subsurface sites 

and diffuse through the material. This state is referred to as the α-phase.  
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Figure 2.2 Formation of the β-phase from α-phase in a metal hydride [11]. 

 

As the hydrogen molecule concentration increases in the α-phase, hydrogen-hydrogen interactions 

become more prominent and a more stable phase forms known as the β-phase as shown in the 

Figure 2.2. This formation of the β-phase causes the crystalline structure of the metal to change, 

volume to expand and creates a nucleation energy barrier.  

Metal hydrogen bond is a strong bond and provides with a high density of hydrogen molecules 

trapped in the host metal at a moderate pressure. 

The Figure 2.3 shows the volumetric and gravimetric capacity of different hydrogen storage media. 

 
Figure 2.3 Hydrogen storage capacities for a range of storage media [4]. 
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The volumetric capacity of most of the materials is superior to that of liquid hydrogen. Most of the 

materials shown in the Figure 2.3 clearly do not meet the D.O.E. targets and the ones that do meet 

the targets require high dehydrogenation enthalpy. Destabilization can help lower the 

dehydrogenation temperature since T = ΔH/ΔS therefore, lower temperature could be obtained by 

increasing the entropy. To destabilize a hydride, destabilizing agent (catalyst) is added. 

 

2.4  Magnesium as a hydrogen storage medium. 

Magnesium has been the material of most interests among scientists due to its high reactivity, low 

cost, low density and a high theoretical hydrogen storage capacity of 7.6 wt%. 

Upon hydrogenation, the hydrogen atoms are introduced into the hexagonally close-packed (HCP) 

magnesium metal lattice. The hydrogen atoms first occupy the tetrahedral interstitial sites forming 

the α-phase with up to 9at% concentrations of hydrogen at 650°C [13]. Further addition of 

hydrogen leads to the formation of the β-phase which has a tetragonal lattice structure with lattice 

parameters a = 0.452nm and c = 0.302nm and density = 1.42 × 103 kgm-3 [14]. However, pure 

magnesium is prone to oxidation and has slow hydriding and dehydriding rates and high hydrogen 

dissociation temperatures (above 290°C) at 1 bar [15].  

To improve the hydrogen storage characteristics different techniques have been used: the most 

common techniques are ball milling and adding a catalyst. 

 

2.4.1 Ball milling to improve the hydrogen storage characteristics. 

Ball-milling is one of the most common approach to improve the hydrogen storage characteristics 

of metal hydrides. Ball mills are of different types ranging from vibratory to planetary-style mill. 

Different styles of ball milling have different energies and temperatures subjected to the material 

being milled. A planetary ball-mill can reach at temperatures above 500K [16][17].  
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Figure 2.4 Schematic view of motion of the ball and powder mixture in a ball mill [18]. 

 

In a ball mill, the material placed in the ball milling container is subjected to high energy collisions 

from the balls. The ball milling system has one turn disc on which ball milling containers are 

placed. The milling containers and the turn disc rotate in opposite direction creating a movement 

of the balls as shown in figure 2.4.  

Magnesium ball milled with 35wt% of amorphous transition metal alloys, where a 3.4wt% 

hydrogen release was observed at 300°C in 30 mins compared to pure magnesium with no ball 

milling released the same hydrogen in 75 mins [19]. This is because upon ball milling the particle 

size of the material is reduced and surface roughness is increased. Also, during ball milling defects 

are introduced in the material, nucleation sites are increased and the diffusion path length for 

hydrogen leaving the hydride is reduced. It was also seen that ball milling reduced the desorption 

time of pure magnesium to 10 mins at 623K from 70 mins at the same temperature [20]. 

 

2.4.2 Addition of catalyst to improve the hydrogen storage characteristics. 

Addition of a catalyst that reacts with the magnesium to form an intermediate state is helpful in 

reducing the heat of formation. An example of this is Mg doped with 5% Silicon, resulting in the 

reduction of the enthalpy of formation to 40 kJ/mol [21]. Catalysts can also help improve the 

resistance to contaminants by allowing a reduced activation barrier route through an oxide layer 

[4]. 
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Figure 2.5 Different ways of reducing the enthalpy of formation by the addition of a catalyst [11]. 

 

As seen in figure 2.5 the enthalpy of formation in a hydriding process can be reduced by the 

introduction of a catalyst in different ways:  

(a) The heat release between the initial and final product is given by ΔH. 

(b) The compound A when added forms a metastable state with the host metal thereby, reducing 

the enthalpy to ΔH’. 

(c) In this case the addition of the catalyst creates a destabilized hydrogenated state and hence the 

enthalpy of formation is reduced. 

 

The hydrogen absorption and desorption characteristics can be significantly improved by 

combining ball milling and catalyst addition through a technique known as spillover in which the 

hydrogen molecules dissociate on the catalyst surface [22]. Lesser quantity of catalyst is needed 

when used along with the ball milling process as it gets dispersed at the nano-scale throughout. By 

adding upto 1 wt% of Palladium to MgH2 and ball milling, dispersed nanoparticles of Pd were 

observed over the magnesium hydride surface [23][24][25][26][27]. The sample absorbed 6wt% 

of hydrogen and both hydrogen absorption and desorption rates were improved from 120 mins (for 

the same particle size with no Pd) to 40 mins [25]. Addition of other transition metals such as 

Cobalt [28], Titanium [29], Iron [28], Vanadium [29][30][20][31] and Nickel [28] have been 

studied. Mg ball milled with 10 wt% of CeO2 was reported to absorb 3.43 wt% of hydrogen at 

300°C and 20bars of hydrogen pressure in only 5 minutes [32]. Mg-10wt%Fe2O3 ball milled was 

observed to absorb upto 5.5 wt% of hydrogen at 320°C and 12 bar of hydrogen pressure. However, 

the desorption was significantly slow (60 minutes) [33]. A desorption time of 33 minutes was 
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reported with MgH2-5wt%V ball milled and hydrided at 200°C and 10 bar of pressure with a 

hydrogen storage capacity of 5.8 wt% of hydrogen stored [31]. Nickel has been reported to 

significantly improve the catalytic activity in the hydriding and dehydriding process [34]. 

Moreover, nickel is also cheap when compared to most of the transition metals. Ball milled Mg2Ni 

hydrided at 7 bar of hydrogen pressure absorbed 3.4 wt% of hydrogen with a half reaction time of 

just 1 minute [35]. Mg2Ni is stable only at temperatures above 250°C and upon cooling becomes a 

low temperature Mg2Ni phase [36]. When heated to a temperature above 250°C Mg2NiH4 is formed 

with a cubic symmetry and a = 0.6490nm [37]. When mixed with 1 wt% Pd and ball milled, MgH2 

was reported to absorb 2.5 wt% of hydrogen at 200°C and15 bar of pressure in 27 minutes [36]. 

One major drawback is that Mg2Ni has a theoretical maximum hydrogen capacity of 3.6 wt% only. 

Hence, it is desirable to reduce the nickel concentration to the minimum to obtain the desired 

results. There are numerous publications on the enhancement of the hydrogen storage properties 

by using ball milling and adding a transition metal. Many experiments have reported: Mg2Ni ball 

milled and hydrided at 300°C at a hydrogen pressure (1-29 bar) stored 3.2-4.1 wt% of hydrogen 

[38][39][36][40][41][42]. It is clearly understood that even though Magnesium and various 

transition metal systems have been thoroughly studied, not much research has been done on Mg-

Ni system alone by varying the parameters such as hydriding/dehydriding pressure and 

temperature, ball milling time etc. 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

CHAPTER 3 

3 MATERIALS AND METHODOLOGY 
 

This chapter provides a detailed summary of the materials and the experimental techniques used to 

achieve the desired objectives. It also covers certain problems that were faced during these 

experiments.  

 

3.1  Materials  

The materials used in this project were: 

Mg powder 98% purity, reagent grade (MFCD00085308) 20-230 mesh by Sigma Aldrich. 

Nickel powder 99.95% purity (MFCD00011137) APS 2.2-3.0 micron by Alfa Aesar. 

Stearic Acid 97% purity (AC17449-0010) by Fischer Scientific. 

 

3.2  Methodology 

The different experimental/analyses techniques used in this research work are described below.  

 

3.2.1 Ball milling  

Mg powder, Nickel powder and 3 wt% of Stearic acid were ball milled in a planetary ball milling 

machine (Torrey Hills- ND2L) with stainless steel cups (285ml) and balls (28 balls of 16mm and 

6 of 18mm diameter) in an Argon atmosphere. Ball to powder ratio was 30:1 and milling speed 

was maintained at 400 RPM. Stearic acid was added in this process to avoid the cold welding of 

the magnesium powder and was kept to a minimum quantity.  

Samples were produced in two different batches by varying the milling time and the nickel content. 

The following samples were produced
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Table 3.1 Samples prepared for the experiments 

Sample 

Number 

Nickel 

(wt%) 

Milling time (hours) Pressure 

(bar) 

Temperature 

(Celsius) 

1 0 10 20 300 

2 1 10 20 300 

3 5 10 20 300 

4 7 10 20 300 

5 10 10 20 300 

6 15 10 20 300 

7 10 5 20 300 

8 10 7 20 300 

9 10 15 20 300 

10 10 20 20 300 

11 10 10 5 300 

12 10 10 15 300 

13 10 10 25 300 

14 10 10 20 250 

15 10 10 20 350 
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Since, there were too many samples and parameters to analyze the entire research work was divided 

into a series of steps. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1. Chart showing the entire research work in a series of steps. 
 

 

 

 

 

 

Hydrogen charging by varying Nickel content (%) 

Hydrogen charging by varying the milling duration 

Hydrogen charging by varying the absorption 
pressure 

Hydrogen charging by varying the absorption 
temperature 

Selecting the most suitable sample 

Selecting the most suitable sample 

Selecting the most suitable sample 
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3.2.2 Hydrogen charging and discharging  

The hydrogen charging and discharging processes were carried out in a laboratory made apparatus. 

 

 
Figure 3.1. Laboratory-made apparatus for the hydrogen charging process [43]. 

 

As seen from the Figure 3.1, the hydrogen apparatus is mainly equipped with a hydrogen cylinder 

(HY 5.0UH-T, Ultra high purity grade 99.999%, Praxair), a pressure regulator 

(KPP1RSH422P2A030, Swagelok), a sample vessel (250 ml, 453HC-316-0719842151, Parr 

instrument), a rupture disc (Parr instrument), a heater (854HC, Parr instrument), a temperature 

controller (50°C to 1200°C, 210/TIMER-K model, J-KEM Scientific) with a ceramic insulated 

thermocouple (870°C, XC-20-K-24, Omega), a filter (pore size of 0.5 µm, SS-4FW-VCR-2), a 

pressure transducer (TE Connectivity measurements specialities M3021-000005-01KPG, 

operating pressure of 1000 PSI, maximum pressure of 2000 PSI, accuracy of ±1% and operating 

temperature of -20°C ~ 85°C) and a temperature sensor board (Phidgets 1048_0, ambient 

temperature max error of ±0.5°C, thermocouple max error of ±2°C and thermocouple temperature 

resolution of 0.04°C). The pressure transducer and temperature sensor board are connected to a 

computer running a program made in LabVIEW. All tubes (SS-T2-S-028-20), valves (SG-4UG-

V51-VS), connectors and fitings (gasket, 457HC2) are purchased from Swagelok. Due to the high 
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operating pressure and risk of corrosion, all reactors, valves, connectors and fitting are made of 

316 stainless steel. All valves are bellow sealed with maximum working temperature of 350°C and 

240 bar, respectively. 

Each discharging process was carried out in the homemade apparatus at atmospheric pressure and 

a temperature of 350°C. The amount of hydrogen discharged was measured in ml/min using a 

flowmeter (Agilent Technologies ADM 2000) connected to the vent. Hydrogen in the reaction 

system was assumed to behave as an ideal gas and the weight percentage of hydrogen was 

calculated using the ideal gas equation. 

𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑛𝑛                                                                                                                                  (3.1) 

Where, P = absolute pressure (atmospheric pressure in this case) 

V = volume of the sample vessel (mL) 

T = absolute temperature (K) 

n = number of moles of hydrogen 

R = universal gas constant (8.3145 J/mol K) 

An overall accuracy in the hydrogen mass changes was ±5.4%.   Leakage test on the apparatus was 

done at room temperature and 100 bar pressure for 12 hours. Before every charging process, 

degassing was done (3-4 times) to remove any unwanted gas or contaminants from the apparatus. 

 

 

3.2.3 X-ray Analyses of powders  

Microstructures of the powder samples was characterized by a Bruker D8 Discovery X-ray 

diffractometer with a chromium target.  

Kα2 stripping was done using the Rachinger method [44], considering Kα1 = 2.289760 and Kα2 = 

2.293663. It was assumed that the Kα1 and Kα2 line profiles are identical in shape and not 

necessarily symmetrical, and the α2 peak is half the intensity of the α1 peak, and is shifted from it 

towards larger angles by 

∆2𝜃𝜃 = 2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(∆𝜆𝜆 ∕ 𝜆𝜆)                                                                                                       (3.2) 

Where, Δλ is the dispersion separation λ(α2) - λ(α1) in angstroms. 

To convert the powder diffraction pattern into a simpler profile, Pseudo-Voigt profile fitting was 

performed using the software EVA V2. This software was used to determine the different phases 

of magnesium, nickel and hydrogen present in the samples. 
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3.2.4 Scanning electron microscopy/Energy dispersive spectroscopy  

Morphology of the samples and the elemental distribution chart was studied using a Hitachi 

SU6600 Scanning electron microscope. AZTEC 2.0 data acquisition software was used to acquire 

the electron diffraction patterns. EDS makes use of the X-ray spectrum emitted by a solid sample 

bombarded with a focused beam of electrons to obtain a localized chemical analysis. All elements 

from atomic number 4 (Be) to 92 (U) can be detected in principle, though not all instruments are 

equipped for 'light' elements (Z < 10). Qualitative analysis involves the identification of the lines 

in the spectrum and is straightforward owing to the simplicity of X-ray spectra. Quantitative 

analysis (determination of the concentrations of the elements present) entails measuring line 

intensities for each element in the sample and for the same elements in calibration Standards of 

known composition. By scanning the beam in a television-like raster and displaying the intensity 

of a selected X-ray line, element distribution images or 'maps' can be produced. Also, images 

produced by electrons collected from the sample reveal surface topography or mean atomic number 

differences according to the mode selected. The scanning electron microscope (SEM), which is 

closely related to the electron probe, is designed primarily for producing electron images, but can 

also be used for element mapping, and even point analysis, if an X-ray spectrometer is added. There 

is thus a considerable overlap in the functions of these instruments [45]. The raw EDS data was 

analyzed using Oxford Instruments Channel 5 processing software. The average particle size was 

calculated using the SEM image and the software ImageJ. 
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CHAPTER 4 

4 RESULTS AND DISCUSSION 

 

This chapter gives a detailed description of the results obtained and the conclusions drawn from 

them. Since, there were too many samples and parameters to analyze the entire research work was 

divided into a series of steps. 
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4.1  Effect of varying Nickel composition on the hydrogen storage characteristics of 

magnesium-nickel alloy. 

A batch of samples having different compositions of nickel were prepared as discussed in the 

chapter 3. These samples were charged with hydrogen at a constant hydrogen pressure of 20 bar at 

300°C for an hour. 

 

Figure 4.2. Effect of varying Nickel content on the hydrogen storage capacity of ball milled 

Magnesium-Nickel alloy. 

 

Figure 4.2 shows the effect of changing the nickel content in the various ball milled samples. All 

the samples were ball milled for 10 hours and the nickel content was varied (1wt%, 5wt%, 7wt%, 

10wt% and 15 wt%). It can be clearly seen that pure magnesium even after ball milling has very 

slow reaction kinetics when compared to the other samples containing nickel. It can also be seen 
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that Mg10wt%Ni shows the highest hydrogen storage capacity (≈ 5.6wt%) with the fastest kinetics. 

Further or lesser amount of nickel addition in the sample has resulted in a lower hydrogen storage 

capacity. This is because nickel is a catalyst and the main metal for absorbing hydrogen is 

magnesium. Adding more wt% of Ni reduces the overall content of Mg and adding lesser wt% of 

nickel makes the catalyzing process ineffective. 

Therefore, it is essential to keep the nickel quantity to the minimum without compromising to its 

benefits [34]. 

 

 

 
 

Figure 4.3. SEM image of Mg-1wt%Ni ball milled for 10 hours. 

 

 

  

 
 

100µm 
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Figure 4.4. SEM image of Mg-5wt%Ni ball milled for 10 hours. 
 

 
 
 

Figure 4.5. SEM image of Mg-7wt%Ni ball milled for 10 hours. 
 
 
 

100µm 

100µm 
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Figure 4.6. SEM image of Mg-10wt%Ni ball milled for 10 hours. 
 

 
 
 

Figure 4.7. SEM image of Mg-15wt%Ni ball milled for 10 hours. 
 
 

100µm 

100µm 
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Figure 4.3, 4.4, 4.5, 4.6 and 4.7 show the SEM images of magnesium ball milled for 10 hours with 

1%, 5%, 7%, 10% and 15% Nickel respectively. 

The SEM images reveal that the samples milled with different compositions of nickel for 10 hours 

have a laminated structure with layers of flattened magnesium and nickel particles. Mg-1wt%Ni 

has the least number of layers amongst all the samples. This could be due to the lesser quantity of 

nickel present in Mg-1wt%Ni. Mg-Mg particles are much easily cold welded when compared to 

Mg-Ni particles. Therefore, the Mg-1wt%Ni particles are also observed to have the most 

homogenous and refined structure when compared to the other samples with different quantity of 

nickel present. 

As the amount of nickel present in the sample is increased, a more laminated and layered structure 

is observed, facilitating more effective surface area for the hydrogen atoms to bond.  

 

 
Figure 4.8. Variation of average particle size by changing the nickel composition. 

 
The particle size was observed to decrease with the addition of nickel to the magnesium powder. 

The ball milling process comprises of two different sub processes: Fracturing and cold welding, 
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which occur simultaneously. From the observed results, it can be said that with the increase in the 

amount of nickel, the cold welding is reduced or the fracturing is increased.  

 
 

4.2  Effect of varying ball milling time on the hydrogen storage characteristics of magnesium-

nickel alloy. 

Since Mg-10wt%Ni was selected as the best sample when varying different nickel compositions, 

another batch of samples was produced by ball milling the Mg-10wt%Ni for different durations (5, 

7, 10, 15 and 20 hours). These samples were again charged at a hydrogen pressure of 20 bar and a 

temperature of 300°C. Discharging was done at 350°C and atmospheric pressure using a flowmeter. 

 

 
Figure 4.9. Effect of varying ball milling time on the hydrogen storage capacity of Magnesium-

10wt%Nickel. 
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It can be clearly seen that there is a very minimal difference between the storage capacities of the 

sample milled for 7 hours (≈5.7wt%) and 10 hours (≈5.6wt%). However, the discharging rate of 

the sample milled for 10 hours is substantially higher as compared to the sample milled for 7 hours. 

A higher duration of ball milling (15 and 20 hours) resulted in a reduced hydrogen storage capacity.  

 

 
Figure 4.10. Effect of varying ball milling time on the full width at half maxima. 

 

 

This reduction in the hydrogen storage capacity is attributed to the excess strain in the nanocrystals 

and the induced disorder reducing the total number of binding sites for the hydrogen [11] which 

can be clearly seen form the Fig 4.10.  Lesser ball milling time of 5 hours has also shown a 

reduction in the hydrogen storage capacity. 
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Figure 4.11. SEM image of Mg-10wt%Ni ball milled for 5 hours. 
 

 
 
 
 

Figure 4.12. SEM image of Mg-10wt%Ni ball milled for 7 hours. 
 

100µm 

100µm 
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Figure 4.13. SEM image of Mg-10wt%Ni ball milled for 10 hours. 

 

 
 

 
Figure 4.14. SEM image of Mg-10wt%Ni ball milled for 15 hours. 

100µm 

100µm 
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Figure 4.15. SEM image of Mg-10wt%Ni ball milled for 20 hours. 
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Figure 4.16. Cross-sectional SEM image of Mg-10wt%Ni ball milled for 5, 10, 15 and 20 hours. 

 

The particles, after milling for 5 hours are formed by the cold welding of a few flattened particles 

producing a laminated structure with many layers. The microstructure of the particles milled for 7 

hours is similar to that of the 4 hours milled sample, with more layers. 

The sample milled for 10 hours has the most layers amongst all the samples. However, it is 

observed to be more homogenous and refined due to increasing cold welding. 

After milling the magnesium-nickel powder for 15 hours and beyond a reduction in the particle 

size is observed with a significant amount of refinement. At this stage, the particles have very less 

layers and due to the influence of cold welding a much more homogenous structure of the particles 

is observed. 

 

 

 

 

 

1 2 

4 3 
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SEM images of the samples milled for different ball milling times reveal that as the milling time 

increases the average particle size reduces as shown in Fig 4.15. 

 

 
Figure 4.17. Variation of average particle size by changing the duration of milling. 

 
 
A substantial reduction in the average particle size is observed from 0 – 10 hours of milling. After 

10 hours of milling, particle size still reduces but the change is minimal. This can justify the fact 

that Mg-10wt%Ni ball milled for 10 hours stores more hydrogen when compared to the one which 

has been milled for only 5 hours as there would be lesser number of cracks induced in a bigger 

particle. Also, because of the observed layered structure the effective surface area of the particles 

would be the highest in Mg-10wt%Ni, facilitating more reaction sites for the hydrogen atoms. 

When milled for 15 and 20 hours, the particle size gets smaller but the hydrogen capacity reduces 

because after a certain extent further particle size reduction leads to lesser hydrogen storage in the 

β-phase[11].  
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Figure 4.18. EDS scan of Mg-10wt%Ni ball milled for 5 hours. 

 

 

 
Figure 4.19. EDS scan of Mg-10wt%Ni ball milled for 7 hours. 
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Figure 4.20. EDS scan of Mg-10wt%Ni ball milled for 10 hours. 

 

 
Figure 4.21. EDS scan of Mg-10wt%Ni ball milled for 15 hours. 
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Figure 4.22. EDS scan of Mg-10wt%Ni ball milled for 20 hours. 

 

EDS scans clearly show that as the ball milling duration is increased, more uniformly distributed 

and smaller particles of nickel are observed on the large chunk of magnesium powder. Figure 4.20 

shows the most uniform distribution of nickel particles when ball milled for 20 hours. 
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Figure 4.23. XRD scan of unhydrided Mg-10wt%Ni ball milled for different hours. 

 

 
Figure 4.24. XRD scan of hydrided Mg-10wt%Ni ball milled for different hours. 
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Figure 4.21 and 4.22 show the X-ray diffraction scans for the unhydrided and the hydrided samples. 

It can be clearly seen that upon charging the samples with hydrogen at 20 bar and 300°C, the only 

phases existing were: Mg, Ni, MgH2. Absence of Mg2NIH4 enhances the hydrogen storage capacity 

of the samples, as Mg2NIH4 has a hydrogen storage capacity of 3.6 wt% only. 
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4.3  Effect of varying absorption pressure on the hydrogen storage characteristics of 

magnesium-nickel alloy. 

From the above two sections, it is evident that the most suitable sample was Mg-10wt%Ni ball 

milled for 10 hours. For see the effect of absorption pressure, Mg-10wt%Ni was charged with 

hydrogen at 300°C and different pressures: 5, 10, 15, 20 and 25 bar. 

 

Again, results were obtained using a flowmeter and a desorption temperature of 350°C and 

atmospheric pressure. 

 

 
Figure 4.25. Effect of varying absorption pressure on the hydrogen storage capacity of 

Magnesium-10wt%Nickel milled for 10 hours. 

 
Samples charged at different hydrogen pressures were discharged at 350°C. A substantial 

difference in the hydrogen storage capacity of the samples charged at 5 bar and 10 bar can be seen 

clearly from Fig 4.23. The hydrogen storage capacity is observed to increase substantially with 
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increase in the hydrogen charging pressure. However, a minimal difference (≈0.1wt%) in the 

hydrogen discharge is observed between the samples charged for 20 bar and 25 bar. The sample 

charged at a hydrogen pressure of 20 bar has faster reaction rates as compared to the sample charged 

at 25 bar. Therefore, Mg-10wt%Ni charged at 20 bar of pressure is the best suited sample. 

 

 

4.4 Effect of varying absorption temperature on the hydrogen storage characteristics of 

magnesium-nickel alloy. 

Mg-10wt%Ni ball milled for 10 hours was charged at 20 bar of hydrogen pressure and different 

temperatures: 250°C, 300°C, 350°C.  

Samples were again discharged at 350°C and the outflow of hydrogen was measured using a 

flowmeter. 

 

 
Figure 4.26. Effect of varying absorption temperature on the hydrogen storage capacity of 

Magnesium-10wt%Nickel milled for 10 hours. 
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The sample charged at a temperature of 300°C clearly shows to release the highest amount of 

hydrogen (≈5.6wt%). Increasing the charging temperature further to 350°C resulted in a 

degradation of the hydrogen storage capacity. Hydriding is suppressed at high temperatures and 

results in local consolidation of the hydride. Upon heating at high temperatures, the nanostructure 

and cyclability is highly degraded [11]. The sample charged at 350°C however, shows slightly 

faster discharging rate. 
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CHAPTER 5 

5 CONCLUSIONS AND FUTURE WORK 
 

 

5.1 Conclusion 

The effect of ball milling, nickel content, hydrogen charging pressure, charging and discharging 

temperature on the hydrogen storage characteristics of Mg was studied. The purpose of ball milling 

was to induce cracks into the Magnesium particles to facilitate the residence of hydrogen atoms. 

Hydrogen storage and the rate of reaction was considered the main criterion to evaluate the progress 

of the experiments. Finally, the particle morphology, size and the distribution of nickel in 

magnesium were studied. 

 

The first objective of this research was to obtain the desired composition of Nickel (in weight %) 

in the ball milled magnesium to achieve the best possible hydrogen storage characteristics. The 

results show that the particle size of magnesium reduced with the addition of nickel. The particle 

size reduced from 73.55µm (as-received) to 17.398µm (when 15wt% of Nickel was added). The 

particle size of the milled powder is of significant importance as it to a certain degree determines 

the available surface area of the particles for the reaction. SEM images revealed that all the samples 

had a laminated and layered structure formed by cold welding of flattened magnesium and nickel 

particles. These layers increased the effective surface area needed for the hydrogen to bond with 

the metal. The hydrogen storage tests revealed that the highest hydrogen storage amount (5.6wt%) 

does not correspond to the powder with the highest amount of nickel (Mg-15wt%Ni), but to the 

sample with 10wt% of hydrogen due to less amount of magnesium present in Mg-15wt%Ni.
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The second objective was to obtain the most suitable ball milling time to achieve the best possible 

hydrogen storage characteristics. The results show that the particles size of magnesium reduced 

significantly upon ball milling. The particle size of the as-received sample was 73.55 µm, which 

reduced to 15.14 µm after ball milling for 20 hours. However, the hydrogen measurement test 

revealed that the highest hydrogen storage rate does not correspond to the finest powder (20 hours), 

but to the powder which was milled for 10 hours. SEM and EDS scans revealed the uniform 

distribution of nickel particles over larger magnesium particles with increasing milling time. After 

milling for 10 hours the Mg-Ni powders had a laminated structure with layers. This laminated 

structure could be responsible for more hydrogen stored in the sample due to the increased effective 

area. X-ray diffraction scans confirmed the absence of Mg2NiH4 and the presence of only Mg, Ni 

and MgH2 after hydriding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

Table 5.1. Complete Summary of the results obtained 

 

 

 

 

Nickel 

(wt%) 

Milling 

time 

(hours) 

Pressure 

(bar) 

Temperature 

(Celsius) 

Hydrogen stored (wt%) Discharging 

time 

(minutes) 

0 10 20 300 1.9 >70 

1 10 20 300 2.6 55 

5 10 20 300 4.7 45 

7 10 20 300 5.2 43 

10 10 20 300 5.6 35 

15 10 20 300 5.3 50 

10 5 20 300 5 55 

10 7 20 300 5.6 60 

10 15 20 300 2.8 25 

10 20 20 300 2.6 28 

10 10 5 300 2.7 25 

10 10 15 300 5.2 50 

10 10 25 300 5.64 48 

10 10 20 250 4 43 

10 10 20 350 4.6 35 
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The final phase of this research was to obtain the desired hydrogen charging pressure and 

temperature to achieve the best hydrogen storage characteristics. The highest amount of hydrogen 

was stored by Mg10wt%Ni sample charged with hydrogen at 25bar. However, the most suitable 

sample was the one charged at a hydrogen pressure of 20 bars as the difference in the hydrogen 

storage capacity was very small (< 0.1wt%). 

Upon hydriding the samples at different temperatures and a constant pressure of 20 bar, the sample 

charged at 300°C stored the highest amount of hydrogen. 
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5.2 Future Works 

 

• The different phases of the samples at different parameters were observed before and after 

hydriding with the help of X ray diffractometer. However, the intermediate phases formed during 

the hydriding and dehydriding process were not identified. It would be of interest to see the in-situ 

X-ray diffraction scan which can reveal the intermediate phases formed during the reaction. 

 

• The EDS and SEM scans revealed the distribution of nickel particles on the magnesium surface. 

However, it would be of great interest to see the cross-sectional EDS and SEM scan of these 

samples, to better understand the internal structure of these particles. 

 

• A future work can consider testing other samples with the same methodology by adding a different 

catalyst. 

 

• A future work can consider testing other samples by reactive ball milling with hydrogen. 
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