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Abstract 
 

Stemphylium blight of lentil caused by Stemphylium botryosum Wallr., is a 

serious problem in Bangladesh, northeast India and Nepal causing more than 60 % 

yield losses under epidemic conditions. The pathogen started to appear on lentil in 

Saskatchewan in recent years and is widely distributed throughout western Canada but 

it is not well understood. An investigation of inheritance of resistance to stemphylium 

blight was done in the lentil cross Barimasur-4 × CDC Milestone. In order to develop a 

reliable indoor screening technique for this inheritance study, a suitable isolate of 

Stemphylium botryosum, a suitable culture medium for inoculum production and an 

appropriate plant age for indoor inoculation were identified. The maximum differential 

of disease severity was observed when lentil genotypes were inoculated at 14 days after 

planting (DAP). At 14 DAP, lentil plants rapidly defoliated but were capable of 

regrowth which caused variability in scoring for disease reaction. Inoculation at 42 

DAP, close to the flowering stage, was found to be better for consistently scoring 

disease reaction. V8P medium was most suitable for inducing conidia production.  

Based on ability to sporulate, the isolate SB-19 from Saskatchewan was identified as 

suitable for conducting genetic studies of resistance to stemphylium blight. It was 

compared to isolate SB-BAN from Bangladesh for aggressiveness on two lentil 

cultivars.  The SB-BAN isolate was found to be more aggressive. A preliminary 

screening of local and exotic germplasm done with the two isolates revealed 

considerable variability for disease resistance. Resistance to S. botryosum appeared to 

be quantitatively inherited in the cross Barimasur-4 × CDC Milestone according to 

both field and indoor screenings. The results of this study also confirmed that Precoz, 

one of the parents of Barimasur-4, was resistant to S. botryosum. 
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1. Introduction 

Lentil (Lens culinaris Medik.) is one of the oldest cultivated crops and has been 

a major food source of many civilizations for more than 8000 years. It is an important 

pulse crop rich in protein and carbohydrate, and crop residues are used as animal feed. 

In the developing world it is often referred to as “poor man’s meat” because of its high 

protein content and easy accessibility by the lower economic class. Like many other 

pulses, it is rich in cholesterol-lowering soluble fibre and high in folate, a valuable 

functional food in the human diet.  

World lentil production in 2005-2006 was 4.17 million metric tonnes with a 

forecasted decline of 17 % in 2006-2007 (AAFC, 2006). Today, Canada is the largest 

lentil exporter in the world. In Canada, production of lentil has increased many folds 

since 1969 when commercial cultivation of lentil first started. The total lentil 

production of Saskatchewan in 2006 declined to 0.69 million tonnes compared to 1.26 

million tonnes in 2005 and 0.95 million tonnes in 2004 (SAF, 2005a, 2007). The 

marketing of lentil is mainly based on seed coat and cotyledon colour (yellow versus 

red), with further subclasses based on seed diameter referred to as large, medium and 

small seed. Canada has been a major contributor to the global green lentil exports and 

has the potential to further increase area and production to increase its share in the red 

lentil market.  

Lentil has a wide range of variability in its gene pool for various qualitative and 

quantitative traits, including resistance to biotic and abiotic stresses. In Canada, the 

main lentil diseases are ascochyta blight caused by Ascochyta lentis, Vassiljevski, 

anthracnose caused by Colletotrichum truncatum, Schwein., botrytis grey mold caused 

by Botrytis cinerea, Pers. and sclerotinia stem and pod rot caused by Sclerotinia 

sclerotiorum, Lib. Stemphylium blight caused by Stemphylium botryosum, Wallr. 

(Holzgang and Pearse, 2001) and powdery mildew caused by Erysiphe spp. (Banniza et 

al., 2004) have appeared in recent years and may be potential threats to future lentil 

production in Saskatchewan.  
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Stemphylium species are pathogenic to plants, humans and animals and are 

distributed throughout the world. In plants, Stemphylium spp. have a wide range of 

hosts including leguminous and non-leguminous crops. Stemphylium spp. are also 

pathogenic on many horticultural cash crops and cause losses up to 100% yield loss in 

cotton in Brazil (Mehta, 1998). The fungus survives on many different hosts in the 

eastern and midwestern USA and in Canada.  

Stemphylium blight of lentil is a foliar fungal disease and attacks the crop in the 

early pod setting stage. The infected leaves are shed, leaving only the terminal leaves 

on the stems, thereby severely affecting the assimilation of photosynthates, decreasing 

crop yield and reducing the quality of seed. The disease is of particular importance to 

the lentil crop in Bangladesh, northeast India and Nepal. It is widely distributed in 

Saskatchewan, where it is considered to be minor but not well understood. 

Stemphylium blight may become a more serious problem in the future and there is little 

or no understanding of the host resistance against the disease and potential 

management practices for its control (Pearse, 2005). Under severe conditions it causes 

yield losses of up to 62% (Bakr, 1991). With the breeding efforts of the International 

Center for Agricultural Research in Dry Areas (ICARDA), the stemphylium blight 

resistant lentil cultivar ‘Barimasur-4’ was released in Bangladesh in 1995 (Erskine and 

Sarker, 1997). Barimasur-4 was significantly higher yielding than Uthfala, a 

susceptible local check.  

In order to develop effective disease management practices, it is necessary to 

understand the epidemiology of the fungus, the racial structure of the population, the 

interactions with different hosts and the factors affecting disease development. 

Investigation of differences among isolates for their virulence on lentil is essential to 

assess their potential to cause economic losses. A detailed understanding of spatial 

diversity and population structure of the pathogen is important for producing source 

material for resistance breeding. Selection of a virulent S. botryosum isolate for use in 

indoor screening for resistance breeding in lentil, is part of this study.  

There are many challenges when a pathogen has not been studied in a host. The 

environment is a dynamic factor with multiple interactions of temperature, light, 

humidity etc. that greatly affect the development of disease. It is also not possible to 
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study and compare isolates from different geographical regions without a standard 

technique. One of the problems with S. botryosum is that it does not sporulate well on 

ordinary synthetic media (Hashemi et al., 2004). Sporulation ability of S. botryosum 

isolates from lentil was tested on wheat straw substrate (Chowdhury et al., 1996), but 

this medium was not suitable for mass scale culture of conidia. The large-scale conidia 

production system of S. botryosum isolates of lentil has not been optimized to allow 

large pathogenicity studies.  

No published reports exist of appropriate methods for inoculation of lentil 

plants with S. botryosum in controlled environments. To begin the process of 

understanding the host-pathogen system, it is necessary to determine the optimal stage 

of lentil plant development to allow the maximum differential in genetic resistance 

studies. 

Genetic resistance is a cost effective and ecosystem friendly approach to 

disease management. Therefore, exploring sources of resistance from the available 

cultivated gene pool is often a first step before exploring secondary or tertiary gene 

pool. Only a few reports of resistance to stemphylium blight in lentil are available and 

these are limited to screening of cultivated germplasm from several parts of the world, 

including the Crop Development Centre (CDC) at the University of Saskatchewan 

(Beare, 2002). Resistance to S. vesicarium in onion was reported to be under dominant 

gene control (Pathak et al., 2001), but there is no information available on the mode of 

inheritance of stemphylium blight resistance in lentil. Information about inheritance of 

resistance and possibly finding linkages with other morphological and molecular 

markers may lead to development of reliable and cost effective breeding tools.  

 

Keeping the above-mentioned problems in view, the following were the main 

objectives of this study: 

 

1. To compare S. botryosum isolates and identify a suitable culture medium to be used 

for producing inoculum for indoor screening for stemphylium blight resistance. 

2. To develop a robust method for stemphylium blight screening in lentil. 
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3. To characterize genotypes and parents of available recombinant inbred lines (RILs) 

for their reaction to stemphylium blight. 

4. To determine the inheritance pattern for resistance from the RILs developed from 

the cross Barimasur-4 × CDC Milestone. 
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2. Review of Literature 

2.1 Origin, Taxonomy and Distribution of Lentil 

Lentil (Lens culinaris Medik.) is a short, slender, bushy annual plant of the 

family Leguminosae with a fairly erect growth habit (Webb and Hawtin, 1981) and 

originally from Turkey (Ladizinsky, 1979). The Latin name of the species, Lens 

culinaris, was first published by Medikus in 1787 (Anonymous, 1981). Lens culinaris 

is believed to originate from Lens orientalis (Ladizinsky, 1979). The genus Lens Miller 

comprises five annual species (L. culinaris, L. odemensis, L. nigricans, L. ervoides and 

L. lamottei). Lens culinaris is the only cultivated species and is comprised of the sub-

species L. culinaris subsp. culinaris, L. culinaris subsp. orientalis. However, a recent 

study on the genus proposed that L. odemensis and L. tomentosus are also sub-species 

of L. culinaris, on the basis of crossability and similarity of isozymes and RAPD 

markers (Ferguson et al., 2000). 

Lentil originated from the Mediterranean region and is well adapted to the cool 

seasons there. It can be grown in other parts of world with a similar climate 

(Anonymous, 1981). The crop spread to other regions of the world such as central 

Asia, where it is grown in temperate summers and to south Asia, where it is grown in 

winter during the dry season after the monsoon rise in the northern part of the sub-

continent.  

Current world production averages about three million metric tonnes each year 

(SAF, 2005). Lentil is mostly consumed as dhal or soup, mainly in India, Bangladesh, 

Nepal, Pakistan, Sri Lanka, Turkey and Egypt. India was the largest producer of lentil, 

but Canada surpassed their production in 2005 (FAO, 2005). India is the largest 

consumer of lentil while Canada is now the largest exporter in the world (FAO, 2005). 

The cultivated area of lentil has increased more than ten-fold in the last 20 years in 

Saskatchewan (Anonymous, 2003). Saskatchewan grows more than 95% of the 

Canadian lentil crop, valued at about $ 150 million at the farm gate (SPG, 2005). 

Canadian domestic consumption has increased significantly and has reached 175,000 
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metric tonnes in 2004 (SPG, 2005). Australia, Turkey, Syria, Nepal, the USA, 

Bangladesh and Morocco are other major producers of lentil (FAO, 2005). 

 

2.2 Diseases of Lentil 

Lentil is infected by a wide range of pathogens throughout its geographic 

distribution.  It is mainly affected by alternaria blight (Alternaria spp.), ascochyta 

blight (Ascochyta lentis), anthracnose (Colletotrichum truncatum), botrytis stem and 

pod rot (Botrytis cinerea), rust (Uromyces fabae), sclerotinia stem and pod rot 

(Sclerotinia sclerotiorum), stemphylium blight (Stemphylium botryosum), wilts 

(Pythium spp., Rhizoctonia spp., Fusarium oxysporum), and downy mildew 

(Peronospora lentis) (Khare, 1981). Ascochyta blight, anthracnose, botrytis grey 

mould and sclerotinia stem and pod rot are major problems in Canada (Chongo et al., 

2002). Stemphylium blight has started to appear in fields in Saskatchewan in recent 

years (Holzgang and Pearse, 2001). Recently, powdery mildew has also been reported 

on lentil in Saskatchewan (Banniza et al., 2004). 

 

2.3 Distribution and Losses Caused by Stemphylium spp. in Lentil and Other 

Hosts 

The distribution of, and economic loss in lentil due to, S. botryosum are 

geographically limited. Stemphylium botryosum of lentil was first identified in 1987 in 

Bangladesh (Bakr and Zahid, 1987). Occurrence of the disease in lentil has also been 

reported in north-east India (Sinha and Singh, 1991). Disease intensity as high as 83% 

was observed on an unsprayed local susceptible lentil cultivar in Bihar state of India, 

causing more than 90% yield loss (Sinha and Singh, 1993). As the cultivated area of 

lentil increases in western Canada, stemphylium blight may become a potential threat 

to lentil production, particularly if higher levels of resistance are achieved for other 

major foliar diseases like ascochyta blight and anthracnose (Hashemi et al., 2005a).  

Many species of Stemphylium are pathogenic on plants, humans and other 

animals. In humans these may cause allergic reactions and lung infection (Wu et al., 

2004). Stemphylium spp. are pathogenic on many crops throughout the world and cause 
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varying degrees of losses on different crops (Polfliet, 2002).  On plants, the symptoms 

of stemphylium blights are usually reported as leaf spots and leaf blights. 

Stemphylium blight of onion (Allium cepa) was reported in India by Gupta and 

Srivastava (1988).  Stemphylium vesicarium was isolated from diseased plants and 

pathogenicity was confirmed in garlic (Allium sativum)  in 1989-91 in South Africa 

(Aveling and Naude, 1992).  An outbreak of stemphylium leaf spot caused by S. 

vesicarium in garlic was reported in 1992 in Spain (Basallote et al., 1993).  Cho and 

Hun (1998) reported S. vesicarium on garlic and other Allium spp. in Korea.  Suheri 

and Price (2000a; 2000b) reported stemphylium leaf blight of garlic caused by S. 

vesicarium in Australia. Asparagus (Asparagus officinalis) is also infected by S. 

vesicarium and the disease was described as purple spot in the USA (Lacy, 1982; 

Johnson, 1987). 

Stemphylium solani has been reported primarily on cotton (Gossypium 

hirsutum) and tomato (Lycopersicon esculentum).  Epidemics caused by S. solani on 

cotton were reported from Parana state of Brazil during 1994 and 1995, and caused up 

to 100% yield losses in a local susceptible cotton cultivar in India (Mehta, 1998). Grey 

leaf spot on tomato plants (S. lycopersici) was first observed in Korea in 1994 (Min et 

al., 1995).  

Legumes are reportedly infected by S. sarciniforme and S. botryosum. 

Stemphylium leaf spot, caused by S. sarciniforme occurs on red clover at high severity 

levels in the northeastern USA and Canada during most seasons (Berg and Leath, 

1996). Stemphylium botryosum has been reported on alfalfa (Medicago sativa) 

(Cowling and Gilchrist, 1982; Rokaibah, 1996). Stemphylium botryosum infection is 

not specific to legumes since it has also been reported to cause a leaf spot on spinach 

(Spinacia oleracea L.) in the USA (Koike et al., 2001; Everts and Armentrout, 2001), 

and a stem spot and needle blight on asparagus, first observed in Greece (Elana, 1996). 

In 1996, leaf spot of Drummond phlox (Phlox drummondii) caused by S. botryosum 

was observed in Japan (Takeuchi and Horie, 1997).  

Four new species of Stemphylium were recently described in China as S. 

gossypii., S. lactuci, S. momordi and S. alli-cepae affecting cotton, lettuce (Lactuca 

sativa), bitter gourd (Momordica charantia) and onion (Zhang et al., 2003). 
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2.4 Biology of Stemphylium spp. 

Since almost no published work is available for Stemphylium botryosum in 

lentil, the epidemiology of Stemphylium spp. in other hosts has been reviewed to 

characterize the pathogen. 

 

2.4.1 Taxonomy and Nomenclature  

Stemphylium is the anamorph of genus Pleospora, which belongs to the 

kingdom Fungi, phylum Ascomycota, class Ascomycetes, order Pleosporales, family 

Pleosporaceae (Anonymous, 2004), but the pathogen is commonly referred to as 

Stemphylium, its asexual stage or anamorph (Bayaa and Erskine, 1998). More than 20 

species are known (Anonymous, 2005) and four more were recently described (Zhang 

et al., 2003).  

Molecular based discrimination has been used in the taxonomy of Stemphylium. 

Results of a phylogenetic study of the relationship among the species and isolates of 

the genus Stemphylium supported a monophyletic origin (Camara et al., 2002). 

Chaisrisook et al., 1995 cited by Camara et al., 2002 noted at least five genetically 

distinct species of Stemphylium, those can cause leaf spot of alfalfa. Results from 

another phylogenetic study revealed that Embellisia and Nimbya species clustered 

within a large monophyletic Alternaria-Nimbya-Embellisia-Ulocladium clade with 

Stemphylium as the sister taxon (Pryor and Bigelow, 2003).  

Morphological and developmental characters such as size and shape of the 

conidia, conidiophores and ascospores and the size and time of maturation of 

pseudothecia were useful for diagnosing species variation (Camara et al., 2002). 

However, other morphological characters such as septum development and small 

variations in conidial wall ornamentation were not reliable.  

The phylogenetic relationships of 43 isolates representing 16 species of 

Stemphylium were inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase 

(gpd) gene sequence data (Marcos et al., 2002). The results generally agreed with 

current morphological species concepts. Species that were primarily pathogenic to 
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alfalfa were resolved into two separate groups. Stemphylium botryosum and two 

isolates with morphological characters similar to S. globuliferum had identical 

sequences at both loci. These two loci in S. vesicarium, S. alfalfae and S. herbarum 

were nearly identical but differed from S. botryosum. Stemphylium lycopersici and S. 

xanthosomatis had identical ITS sequences and a single nucleotide difference in the 

gpd region.  

The mating system in Stemphylium spp. was recently studied by Inderbitzin et 

al. (2005). MAT loci, which regulate sexual reproduction in Stemphylium spp. were 

demonstrated to have a single gene, either MAT1-1 or MAT1-2 in some species, 

whereas others contained a unique fusion of the MAT1-1 and MAT1-2. Species with 

fused MAT regions were able to self. 

 

2.4.2 Morphology and Microscopic Structure 

The asexual stage of the lentil pathogen is Stemphylium botryosum while the 

sexual stage is known as Pleospora herbarum (Bayaa and Erskine, 1998). 

Conidiophores are short, aseptate, swollen at the apex, and may be single or in a group. 

Conidiophores proliferate further after a conidium is produced, producing new cells 

and new conidia. 

Conidia are olive brown, oblong or muriform in shape with three constricted 

transverse septa (Bayaa and Erskine, 1998; Raid and Kucharek, 2005). The size of 

conidia varies from 13×8 to 78×24 µm, whereas the size of conidiophores varies from 

25×2 to 285×6 µm in different species of Stemphylium (Camara et al., 2002). Perithecia 

are globuse, membranous and black and sometimes have a slender neck (Bayaa and 

Erskine, 1998). Asci are oblong with outer and inner walls measuring 183-267× 27-37 

µm with elongate to ovate and yellowish to brown ascospores measuring 32-48× 12-21 

µm (Bayaa and Erskine, 1998). 

 

2.4.3 Disease Symptoms 

The symptoms of stemphylium blight in lentil appear as small brown to tan 

colored spots which later spread and cover the whole leaf leading to complete leaf 

shedding (Bakr, 1991). In alfalfa, S. botryosum causes leaf spot followed by chlorosis 
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and leaf defoliation (Lucas et al., 1973). In spinach, symptoms start with round to oval, 

2-5 mm leaf spots which later coalesce and form a necrotic leaf tissue (Koike et al., 

2001). Similar disease symptoms were caused by S. vesicarium on garlic leaves 8 to 10 

days after inoculation in a greenhouse (Boiteux et al., 1994) and on onion and leek 

(Allium ampeloprasum L.) in field conditions with natural inoculum (Cho and Hun, 

1998). Stemphylium blight usually affect different crops from the flowering stage 

onwards. Defoliation of lower branches is very common in many host species (Polfliet, 

2002). Massive defoliation and stem bending was observed in leaf blight of lentil 

caused by S. botryosum (Bayaa and Erskine, 1998). 

 

2.4.4 Infection Process 

 The pathogen survives on debris of plants. Pseudothecia of Pleospora, the 

teleomorph of Stemphylium, were observed on debris of overwintered garlic leaves 

affected by leaf spots caused by S. botryosum (Basallote et al., 1993). 

Airborne conidia of S. botryosum land on host tissue and germinate when 

conditions are favorable. Generally penetration occurs through stomata but 

Stemphylium spp. also produce the toxin stemphol that may aid host infection 

(Solfrizzo et al., 1994). Penetration of leaves may occur directly through the epidermis, 

but the frequency of stomatal penetration by S. vesicarium exceeds that of epidermal 

penetration under favorable environment conditions (Suheri and Price, 2000a). 

Penetration through stomata is also affected by host resistance but is governed by 

environmental factors as reported for S. botryosum by Cowling and Gilchrist (1982). 

The hyphae of the fungus enter the cell and spread inside, deriving water and nutrients 

from the surrounding cells. Eventually these cells die causing tissue to turn brown and 

appear blighted. Small tan colored necrotic spots gradually enlarge in size and 

eventually cover the whole leaf.  

 

2.4.5 Factors Affecting Disease Development 

Infection of the host plant is a very complex process that is influenced by 

environmental interactions. The availability of moisture is critical during the time of 

conidial germination. Under moist conditions, disease incidence increases rapidly. 
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Excessive vegetative growth in combination with high humidity favours disease 

development.  

Stemphylium vesicarium required wet conditions for growth on garlic (Aveling 

and Naude, 1992). Severe foliar damage with subsequent yield losses occurred when 

leaf wetness periods exceeded 24 continuous hours. Warm, humid conditions were 

conducive to the development of severe epidemics (Aveling and Naude, 1992). In S. 

vesicarium on garlic, a strong correlation was observed between the amount of rainfall 

and the aerial concentration of ascospores and conidia (Basallote et al., 1993). The role 

of relative humidity was critical in cases of low precipitation. Field observations during 

a survey indicated that outbreaks of garlic leaf spot were favoured by foggy and rainy 

weather in spring, followed by dry warm days (Basallote et al., 1993). Modeling of 

environmental conditions played a dynamic role in forecasting incidence of S. 

vesicarium in pear (Boshuizen et al., 2003). In lentil, one of the important factors 

determining the appearance, development and spread of S. botryosum was the number 

of cloudy and foggy days during the November-February cropping season in the Indian 

sub-continent (Sinha and Singh, 1991). 

Temperature is another important factor in disease development. A study in 

onion showed that conidia of S. vesicarium germinated within 2 h when incubated at 

4°C (Suheri and Price, 2000a). Terminal and intercalary appressoria were produced at 

higher frequency after 24 h at 25°C. In another study, using S. vesicarium, a positive 

relationship was reported between conidium concentration in the air and the number of 

hours with temperatures in the range of 12-21°C (Prados-Ligero et al., 2003) 

High temperature favoured the germination of conidia of S. botryosum and 

under controlled conditions the optimum temperature for conidial germination was 

between 25°C and 30°C (Mwakutuya et al., 2004). In Bangladesh, S. botryosum 

initiated infection on lentil when the night temperature remained above 8°C with 

average day temperature above 22°C and the relative humidity in the plant canopy 

exceeded 95% (Bakr, 1991; Erskine and Sarker, 1997). In northeastern India, infection 

occurred when the average temperature reached around 18°C, relative humidity was 

above 50% and the daily mean sunshine was 7.7 hours or less due to cloudy and foggy 

weather (Sinha and Singh, 1993). In a recent study on the biology of S. botryosum in 
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lentil, the minimum latent period was 48 h and was observed at the ideal temperature 

of 25-30°C under controlled conditions. It increased with decreases in temperature and 

wetness period (Mwakutuya, 2006). The pathogen continued to develop despite 

interruptive dry periods. Infection level increased after 2 h of incubation at a 

temperature above 10°C and continued to increase with the expanding wetting period 

up to 48 h and temperature up to 30°C. Optimal conditions for infection were 

temperatures of more than 25°C combined with minimum 8 h of wetness.  

 

2.4.6 Sources of Inoculum 

Stemphylium botryosum is reported to spread by airborne conidia. It 

overwinters on seed and as mycelium on dead stems and leaves in many cropping 

systems. Limited information is available on whether the pathogen is seed-borne in 

nature on lentil (Bayaa and Erskine, 1998). In alfalfa, S. botryosum is spread by 

airborne and waterborne conidia (conidia and ascospores) and by sowing infected seed 

(Malvick, 1998).  

Infection of Stemphylium vesicarium on pear increases every year as the 

inoculum accumulates in plant debris (Polfliet, 2002). This may be an indication that 

this genus may be influenced by changes in cropping practices like minimum tillage. 

Weedy infected asparagus seedlings during the harvest season of spinach in 

Washington State may act as a bridge to carry inoculum of S. vesicarium from one 

season to another. Ascospores and conidia of Pleospora herbarum on debris from the 

previous year's fern growth serve as primary inoculum for asparagus (Johnson, 1990).  

 

2.4.7 Racial Structure 

The racial structure of Stemphylium spp. is not clear in many hosts. The 

existence of variation in virulence and different races of S. solani and S. vesicarium 

were reported in tomato (Hernandez, 1985) and alfalfa (Irwin and Bray, 1991), 

respectively. In other studies with alfalfa, no race structure was described, but biotypes 

of S. botryosum were reported on the basis of adaptation to cool (18-20°C) or warm 

weather (23-27°C) (Cowling and Gilchrist, 1982). Differences in relative virulence of 

S. botryosum isolates were correlated with the frequency of stomatal penetration in 
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alfalfa. Isolates with high relative virulence produced a higher proportion of effective 

stomatal penetrations compared to isolates with low virulence (Cowling and Gilchrist, 

1982).  

2.5 Disease Rating for Stemphylium Blight 

A descriptive scale from 1-5 was used for scoring leaf spot caused by S. 

botryosum in alfalfa (Salter and Leath, 1991). Koike et al. (1991) used a sign scale (- = 

no disease; + = small leaf spot <5mm; + + = medium leaf spot) to score leaf spot 

disease of spinach caused by S. botryosum. A 0-5 visual scale (0= no disease; 1= 

minute pinhead size spots, < 5% diseased leaf area; 2 = 5-25% diseased; 3= 26-50% 

diseased; 4= 51-75% diseased; 5= coalescing lesions with > 76% diseased area) was 

used to score cotton leaf spot disease caused by S. solani. A qualitative scale (HR, R, 

MR, S and HS) and a semi-quantitative scale of 1-5 (1= no symptoms; 2= < 5% 

infection; 3=6-25% infection; 4=26-50% infection and 5= >50% infection) was used to 

score stemphylium blight caused by S. vesicarium in onion and garlic (Anonymous, 

1998). 

 Various methods have been described for disease assessment. Area under the 

disease progress curve (AUDPC) has proven to be a reliable index of disease progress 

over time, showing a positive correlation with single plant evaluation for ascochyta 

blight in lentil (Ahmed and Morrall, 1996). Differences in screening and disease 

assessment techniques also produce variable results. One example of an extreme 

difference in interpretation is with ascochyta blight (Ascochyta rabiei) reaction in 

chickpea (Cicer arietinum), where a dominant gene for resistance reported in one study 

was found to be recessive in another (Tekeoglu et al., 2000). 

 

2.6 Control Measures for Stemphylium spp.  

Fungicide treatments applied as sprays after disease appearance effectively 

controlled stemphylium blight caused by S. vesicarium in onion (Gupta and Srivastava, 

1988). During 1982-85, four fungicides (copper oxychloride, mancozeb, carbendazim 

and thiram) applied as a spray, one month after transplanting, prevented disease 
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development. The cost-benefit ratio revealed that a preventive spray of 25% mancozeb 

gave the highest net financial return.  

Similarly, the fungicide Pristine 38WG (propiconazole) and Tanos 50DF (25 % 

famoxadon) were effective in limiting the development of purple spot caused by S. 

vesicarium in asparagus. Pristine 38WG alternated with Bravo WeatherStik 

(chlorothalonil) was the only treatment to significantly reduce stemphylium leaf blight 

when compared to the untreated control (Hausbeck and Bousds, 2005). Incorporation 

of debris into the soil in late autumn and in late winter provided effective cultural 

control for stemphylium blight in asparagus cultivation (Johnson, 1990). 

Tebuconazole, procymidone and fosetyl sprays applied prior to artificial 

inoculation significantly reduced leaf spot in garlic caused by S. vesicarium (Basallote 

et al., 1998). A significant increase in garlic yield was observed in experiments 

conducted under environmental conditions conducive to disease development 

(Basallote et al., 1998). Few research reports are available covering control methods 

for stemphylium blight in legumes. In lentil, stemphylium leaf blight caused by S. 

botryosum was controlled most effectively by a foliar spray of Rovral 80WP 

(iprodione) at 0.2% (Bakr and Ahmed, 1992). Treated plots yielded 35% more than the 

controls. 

 

2.7 Genetic Studies of Disease Resistance for Stemphylium spp. 

Host resistance is a cost-effective method for controlling disease and it requires 

little alteration in existing cultural practices. Transfer of available resistance in a 

cultivated background is especially important for farmers lacking resources to control 

the disease. Little is known about genetic defense mechanisms against Stemphylium 

spp. in crop plants.  

Significant cultivar differences were observed for lesion size and severity 

scores for stemphylium leaf spot caused by S. sarciniformae in red clover (Berg and 

Leath, 1996).  

A thick plant canopy also plays an important role by providing a microclimate 

conducive to disease development. French asparagus cultivars produce relatively short, 
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compact fern growth, thereby providing an ideal plant canopy for disease development 

(Broadhurst, 1996).  

Regarding the possible mechanism of resistance, the role of a novel PR-5 gene 

coding for a secreted protein (AoPRT-L), which is also responsive to salicylic acid, 

was confirmed in monocots against S. vesicarium (Darby et al., 2000). Resistance to S. 

vesicarium has been reported to be under single dominant gene control in onion 

(Pathak et al., 2001).  

A resistance gene (Sm) originating from the wild tomato (Lycopersicon 

pimpinellifolium), was reported and used to improve resistance in tomato to S. solani 

for subtropical and tropical disease conditions (Behare et al., 1991; Laterrot, 1998).  

A narrow-leafed lupin (Lupinus angustifolius) germplasm accession SNLL87 

was reported to have resistance to S. solani (Miller et al., 1988). The narrow-leafed 

lupin cultivar Wandoo is known to have resistance against S. vesicarium, but appears to 

carry a gene different from gl1, discovered in a spontaneous mutant of a bitter 

commercial cultivar of Australian origin. The second gene of resistance gl2 was 

identified in a wild Portuguese accession PI 168530 in the cultivar Chittick 

(Gladstones, 1986).  

The inheritance of resistance to S. solani was investigated in three different 

crosses in cotton. Genetic analysis showed significant additive genetic variation for 

resistance with a F3 family ratio of 1:2:1 for a single non-dominant gene segregation in 

two crosses and for the third one, a segregation pattern including two genes and 

epistasis (9:6:1) was reported (Mehta and Arias, 2001). 

Differences in relative host resistance in alfalfa were expressed through 

hypersensitive response to effective stomatal penetration for S. botryosum (Cowling 

and Gilchrist, 1982). Resistance to S. botryosum in lettuce proved to be controlled by 

two genes, Sm1 and sm2, which are dominant and recessive, respectively (Netzer et al., 

1985).  

Studies on defense structural factors such as epidermal hairs, thickness of 

epidermis and cortical layers revealed considerable variation for resistance to S. 

botryosum in lentil (Chowdhury et al., 1997). These phenotypic variations could be 

used in developing resistant cultivars. The genetic basis of resistance to stemphylium 
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blight of lentil has not been reported. Most of the reports are limited to screening of 

germplasm. The lentil cultivar Barimasur-4, released in Bangladesh, was reported to be 

resistant to S. botrysum (Erskine and Sarker, 1997). The lentil cultivar Precoz, also 

reported as ILL 4605, developed in Argentina (Riva, 1975), had also been reported to 

have resistance to S. botryosum (Erskine and Manners, 1996).  
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3. Material and Methods 

3.1 Pathological Study 

 
3.1.1 Identification of a Suitable Isolate of Stemphylium botryosum to be Used in 

Indoor Screening for Stemphylium Blight Resistance 

Three isolates of Stemphylium botryosum, (SB-16, SB-17 and SB-19) from 

Saskatchewan were selected for testing to find a suitable isolate for use in indoor 

screening using conidial suspensions. They were selected based on their superior 

ability to sporulate, evident from a preliminary study by Hashemi et al. (2004).  

A fourth isolate, SB-BAN was collected from a farmer’s field near Ishurdi, 

Bangladesh during a visit to the stemphylium blight screening nursery in January 2005.  

This nursery is managed by the Pulses Research Centre of the Bangladesh Agricultural 

Research Institute (BARI) and was used in this study as a reliable screening site for 

resistance to stemphylium blight in lentil.  

All four isolates were tested for sporulation ability in an experiment in a RCBD 

with sub-sampling and six replications, where each plate was considered an 

experimental unit. Plugs of each isolate, obtained from single conidium cultures, were 

grown on V8 medium in 90×15-mm sterile Petri dishes. An optimal temperature of 

27°C for mycelial growth had been determined in preliminary experiments. Cultures 

were placed in an incubator for 15 days with an alternating period of two days dark and 

one-day light following 7 days of continuous fluorescent light. After incubation for two 

weeks, the plates were washed using 5 ml sterile distilled water and the conidia were 

dislodged using a soft brush. Using a hemacytometer, the number of conidia was 

estimated from two sub-samples taken from two different pipettings from the conidial 

suspension in each plate.  
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3.1.2 Identification of a Suitable Culture Medium 

Seven different media: 25% Potato Dextrose Agar (PDA), Water Lentil Seed 

Agar (LSA), 25% Ground Lentil Stem and Leaf Agar (SLA), 25% Ground Lentil Stem, 

Leaf and Seed Agar (SLSA), 25% Ground Wheat Straw Agar (GWSA), V8 Juice Agar 

(V8), V8 Juice with PDA (V8P) had been tested for sporulation ability with 23 

Stemphylium isolates collected from Saskatchewan in preliminary experiments 

(Hashemi et al., 2004). It became apparent that S. botryosum does not sporulate readily 

in common culture media, which creates challenges for artificial inoculation. 

Therefore, finding an appropriate medium to achieve required conidia concentrations 

for inoculation was important. 

The isolate SB-19 was chosen from the preliminary experiments and further 

tested on four V8-based media. Tamarind pulp is a natural source of vitamins (thiamin, 

niacin and ascorbic acid), minerals (potassium, calcium, iron and phosphorous) and 

tartaric acid (Mathur, 2004). Tartaric acid has been successfully used in slight 

adjustment of pH in wine making (Collings, 2002). Hypothesizing that a slight increase 

in acidity of the media by tartaric acid might facilitate release of conidia from mycelia, 

V8, V8P, V8PTD1 (V8P + 2% tamarind juice) and V8PTD2 (V8P + 4% tamarind 

juice) media were tested in a RCBD with 6 replications.  

 

3.1.2.1 Preparation of V8, V8P, V8PTD1 and V8PTD2 Media 

 V8 juice agar was prepared using 112.5 ml V8 Original Blend Vegetable 

Cocktail (Campbell Co., Canada), 11.3 g of DifcoTM Agar, Granulated (Becton 

Dickinson and Co., Sparks, MD, USA), 1.13 g CaCO3 (EMD Chemicals Inc., 

Darmstadt, Germany) and 637.5 ml distilled water. To prepare V8P medium, 112.5 ml 

V8 juice, 7.5 g of DifcoTM Agar, Granulated, 7.5 g of DifcoTM Potato Dextrose Agar 

(Becton Dickinson and Co., Sparks, MD, USA), 2.25 g CaCO3 and 637.5 ml distilled 

water were combined. After shaking well, the media were sterilized in an isothermal 

autoclave for 25 min on liquid cycle. Media were later cooled in a water bath (54ºC) 

before pouring into 90×15mm sterile Petri dishes.  

 The V8-based media were modified as V8PTD1 and V8PTD2 by adding 10 ml 

of 2% and 4% (w/v) tamarind juice, respectively made from tamarind concentrate 
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(Aeroplane brand manufactured by ADF Foods Ltd. Gujarat, India ) available at a local 

supermarket. Other ingredients in the tamarind media were the same as in the V8P 

medium. The isolates were cultured on all four media as per the procedure described in 

section 3.1.1. and the number of conidia produced from each Petri dish was recorded. 

 

3.1.3 Determination of Appropriate Age of Plant for Inoculation 

In order to determine the optimum age of lentil plants for inoculation with 

conidia of S. botryosum, two different experiments with Eston and CDC Milestone 

cultivars in each experiment, were conducted in the greenhouse using 4 different plant 

growth stages: 14 days after planting (DAP) (seedling), 28 DAP (vegetative), 42 DAP 

(flowering) and 56 DAP (pod filling). Eston was used as a resistant line in the 

experiment because it was found to be moderately resistant in preliminary screening. 

At the time this experiment was conducted, a limited amount of seed was available for 

Barimasur-4, an unadapted lentil cultivar with reported resistance to stemphylium 

blight (Erskine and Sarker, 1997), thus it was not included in this study.  

 

3.1.3.1 Plant Material and Establishment 

Lentil seeds were planted in 5” plastic pots filled with soilless medium (Redi-

Earth® No. 43, W.R. Grace & Co. of Canada Ltd., Ajax, ON). The seeds were nicked 

with forceps before sowing to ensure imbibition. The plants were thinned to four per 

pot after emergence. Plants were fertilized one week after sowing using a solution of 

20:20:20 fertilizer at 3 g L-1. The pots were placed on a greenhouse bench in a 

randomized complete block design. Individual pots were wrapped with transparent 

polythene sheets to increase the humidity around the plants.  

 

3.1.3.2 Inoculation, Incubation and Disease Scoring 

An inoculation suspension was produced from SB-19 grown on V8P medium 

using the procedure described in section 3.1.1. The conidial concentration was adjusted 

to 2×105 conidia ml-1. Two drops of Tween® 20 were added to facilitate conidium-plant 

tissue contact by reducing the surface tension of water. Plants of four different growth 
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stages, 14 DAP, 28 DAP, 42 DAP and 56 DAP, were inoculated using an air-brush to 

evenly apply the conidial suspension. Plants were incubated for 48 hours in a mist 

chamber at 95% humidity and 20°C following inoculation. Pots were then transferred 

to mist benches in the greenhouse and the plants were kept there for 3 weeks to 

promote disease development.  

Disease levels were first recorded three days after inoculation (DAI) when the 

first symptoms of stemphylium blight appeared. Disease scores were recorded at three 

day intervals and a total of four ratings were used to determine the rate of disease 

development. In this experiment in the greenhouse, the disease was scored using the 

Horsfall-Barratt scale (Horsfall and Barratt, 1945) of twelve grades between 0 and 11. 

The scale was originally developed for powdery mildew of pea (Pisum sativum).  

The grade number was converted into % disease severity according to the scale 

system, which was further used to calculate a value for Area Under the Disease 

Progress Curve (AUDPC) using the following formula.  

 

AUDPC = ∑i=1
n-1 [(yi + yi+1)/2 (ti+1 – ti)]      (i) 

y = score assigned; t = days after inoculation; n = number of scores 

 

 
3.1.4 Testing of Isolates SB-19 and SB-BAN in the Growth Chamber 

Two isolates of S. botryosum, SB-19 and SB-BAN, were tested for their 

aggressiveness on the lentil cultivar Barimasur-4 (resistant) and CDC Milestone 

(susceptible). The experiment was conducted as a RCBD with 8 replications in a 

controlled environment growth chamber in the University of Saskatchewan phytotron 

when lentil plants were 42 DAP. The experiment was conducted and repeated a second 

time using the procedure described below. 

 

3.1.4.1 Plant Material and Establishment 

Lentil seeds of Barimasur-4 and CDC Milestone were planted in 5” plastic pots 

filled with soilless medium (Redi-Earth® No. 43). The seeds were nicked with forceps 

before sowing to ensure imbibition. The plants of each cultivar were thinned to four per 
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pot after emergence and were fertilized two weeks after sowing using 20:20:20 

fertilizer at 3 g L-1. The pots were wrapped with transparent polythene before 

inoculation to increase humidity. The treatment combinations of cultivar × isolate were 

randomized and placed in a controlled environment growth chamber in a RCBD.  

 

3.1.4.2 Inoculation, Incubation and Disease Scoring 

Conidial suspensions of both SB-19 and SB-BAN were produced as described 

in section 3.1.1. The treatment combinations of cultivar × isolate were sorted for one 

isolate kind and inoculated separately from the other isolate as per the procedure 

described in section 3.1.3.2. The treatment combinations of cultivar × isolate were 

placed back in the controlled environment growth chamber in previously randomized 

order after inoculation. Growth room benches equipped with intermittent flood 

irrigation were covered with boxes made of Plexiglas sheets. A fine water droplet 

humidifier (model 7075M manufactured by Herrmidifier, Sanford, NC, USA) was 

placed inside the box to achieve 95% and higher RH. Day and night temperatures were 

maintained at 20°C and 15°C, respectively, and monitored using a Hobo data logger 

(Onset Computer Corporation, MA, USA). Daylength was set for 16 hours with a night 

period set to 8 hours. Plants were placed inside the boxes and incubated for 12 days. 

 The Horsfall-Barratt scale is a logarithmic scale with unequal intervals between 

scores  that  makes it  unsuitable  for  quantitative  genetic  analysis.  To overcome this 

problem, a 0-10 linear semi-quantitative scale (Hashemi et al., 2005b) (Table 1) was 

used. The scale was tailored to follow the disease development pattern that consisted of 

appearance of chlorotic spots followed by gradual defoliation of plants.  

 

Table 1. Rating scale for stemphylium blight of lentil. 

Grade Symptoms 
0 Healthy plant; free of disease 
1 Dull leaves or a few tiny tan spots 
2 A few small to large chlorotic spots 
3 Expanding lesions on leaves and leaf drop starting 
4 1/5th / 20% nodes on main stem showing chlorotic / necrotic symptoms and 

/ or  leaf drop 
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5 2/5th / 40% nodes on main stem showing chlorotic / necrotic symptoms and 
/or leaf drop 

6 3/5th / 60% nodes on main stem showing chlorotic / necrotic symptoms and 
/ or  leaf drop 

7 4/5th / 80% nodes on main and lateral stems showing chlorotic / necrotic 
symptoms and leaf drop 

8 100% leaves dried up/ defoliated but small green tip recovering 
9 100% leaves dried up/ defoliated including tip but stem still green 
10 Whole plant dried up and completely dead 

(Hashemi et al., 2005b) 

The first disease scoring date (DSD1) was 3 DAI when symptoms of 

stemphylium blight first appeared. Disease scores were recorded four times at three day 

intervals and a value for AUDPC was calculated from the formula given in section 

3.1.3.4.  

 

3.2 Genetic Study 

 
3.2.1 Preliminary Screening of Parental Lines 

 
3.2.1.1 Plant Material and Establishment 

Lentil cultivars ‘CDC Robin’, ‘CDC Milestone’, ‘Eston’, ‘CDC Glamis’, ‘CDC 

Redcap’, ‘CDC Blaze’, ‘CDC Vantage’, ‘Barimasur-4’ and the parents involved in 

crosses developed by ICARDA, including ILL 5888-2, ILL 8007, ILL 8010, Ranjan, 

Precoz (ILL 4605-2), Asha, Subroto, ILL 8008 and ILL 8009 were screened for 

resistance to S. botryosum under greenhouse conditions. Lentil seeds of each cultivar 

were planted in 5” plastic pots filled with soilless medium (Redi-Earth® No. 43). The 

seeds were nicked with forceps before sowing to ensure imbibition. The pots were 

placed on greenhouse benches, equipped with intermittent flood irrigation. The plants 

of each cultivar were thinned to four per pot after emergence and were fertilized one 

week after sowing using a solution of 20:20:20 fertilizer at 3 g L-1. The pots were 

wrapped with transparent polythene before inoculation. The ICARDA crosses 

(Appendix 26) were developed by Dr. A. Sarker, lentil breeder at ICARDA, Tel 

Hadya, Syria. 
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3.2.1.2 Inoculation, Incubation and Disease Scoring 

Conidial suspensions were produced using the procedure outlined in section 

3.1.1 and the conidial concentration was adjusted to 2×105 conidia ml-1. Two drops of 

Tween® 20 were added to facilitate conidium-plant tissue contact. Plants were 

inoculated 14 DAP (5 nodes or 3 leaf stage) by evenly spraying the plants with the 

conidial suspension using an air-brush. Plants were incubated in a mist chamber at 95% 

RH and 20°C for 48 hours in the dark following inoculation. Plants were then 

transferred to mist benches in the greenhouse.  

Disease scores were first recorded at 3 DAI when the first symptoms of blight 

appeared. Disease scores were recorded at intervals of three days and four ratings were 

performed to determine the rate of disease development. In preliminary screening in 

the greenhouse, the disease was scored using the 0-11 Horsfall-Barratt scale. The grade 

number was converted to % disease severity according to the scale system, which was 

further used to determine AUDPC using the formula given in section 3.1.3.4.  

 

3.2.2 Screening of Lentil Genotypes and RILs in Growth Chamber  

3.2.2.1 Plant Material and Establishment 

A set of 20 lentil genotypes consisting of CDC Robin, CDC Rouleau, Precoz, 

ILL 8008, Eston, Crimson, CDC Viceroy, CDC Blaze, CDC Redberry, 1308M-7, 

1254S-16, 1227S-28, 1207D-13, 1205M-5, 1296D-5, 1775S-12, Barimasur-4 (resistant 

check) and CDC Milestone (susceptible check) were grown in 38-cell seeding trays in 

a growth chamber. The trays were 21" long, 10" wide and 5" tall and filled with 

soilless medium (Redi-Earth® No. 43). Two seeds of each lentil genotype were seeded 

and one plant per cell was maintained after thinning. The randomized entries of lentil 

genotypes were planted with two plots of each resistant (Barimasur-4) and susceptible 

check (CDC Milestone) included after two randomized entries in RCBD with 6 

replications. 

A set of 150 F6:7 RILS derived from the cross Barimasur-4 × CDC Milestone 

was grown in the field in the summer of 2004. The amount of seed per RIL was 

variable so seeds were hand planted in furrows prepared at the Preston Avenue plot 
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area in Saskatoon. Each RIL was harvested separately at maturity, then dried and 

threshed. All 150 lines were subsequently used in growth chamber experiments. 

Sufficient seed was available from 82 of the RILs to allow for planting of a field 

nursery in Bangladesh.  

In the growth chamber, the 150 RILs were seeded in 38-cell trays with 4 

replications. One resistant (Barimasur-4)  and one susceptible (CDC Milestone)  check 

were seeded after each randomized RIL plot in the trays to control spatial variability. A 

randomized complete block design was used. Seeds were nicked with forceps, sown at 

two seeds per cell and thinned to one plant per cell after emergence. Plants were 

fertilized 14 DAP using a solution of 20:20:20 fertilizer at 3 g L-1.  

 

3.2.2.2 Inoculation, Incubation and Disease Scoring 

The set of 20 lentil genotypes was inoculated with the SB-19 and SB-BAN 

isolates in separate experiments at 14 DAP and 28 DAP. An inoculation suspension 

was produced following the procedure given in section 3.1.1 and plants were 

inoculated and incubated according to the procedure described in section 3.1.3.2.  

The first disease scoring date (DSD1) was 3 DAI at the appearance of first 

symptoms of the disease. Disease scores were recorded 4 times using the scale 

described in section 3.1.4.2 at intervals of 3 days and AUDPC was calculated as 

described before. 

 

3.2.3 Screening of Lentil Genotypes and F6:7 RILs of Barimasur-4 ×××× CDC 

Milestone under Field Conditions in Bangladesh 

Through ICARDA’s international support program and in collaboration with 

ICARDA’s lentil breeder, Dr. Ashutosh Sarker, and the Bangladesh Agricultural 

Research Institute’s (BARI) Director of Research, Dr. M. M. Rahman, arrangements 

were made to establish a stemphylium blight nursery at the Pulses Research Centre 

(PRC), Ishurdi, Bangladesh. The Pulses Research Centre had the required facility and 

technical help for setting up the nursery. Dr. Mohamed Harunor Rashid, Plant 

Pathologist at PRC supervised establishment of the lentil nursery and periodic 

assessment of severity of stemphylium blight.  
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Ishurdi is situated in the flat deltaic coastal region of Bangladesh. It has a 

tropical climate with a mild winter (October to March), a hot, humid summer (March 

to June) and a humid and warm monsoon season (June to October).  January tends to 

be the coolest month with mean temperature of 16.6°C (maximum and minimum 

temperature of 23.7°C and 12.0°C, respectively) with mean RH of 78.2%. In February, 

the average temperature rises above 21°C with maximum and minimum temperature of 

28.4 and 16.0°C, respectively. Lentil is grown in the cool, dry winter period from 

November to the end of February. During this period, conditions are favourable for 

stemphylium blight development in lentil. 

The set of 20 lentil genotypes listed in the sections 3.2.1.1 and 3.2.2.1, plus 82 

F6:7 RILs of Barimasur-4 × CDC Milestone, including resistant and susceptible parents 

were screened for stemphylium blight resistance with natural inoculum. Utfala, a 

susceptible local check was repeatedly included after every two rows to promote 

uniform infection in the entire experiment. A single 2 m row of each genotype was 

grown in each of 3 replications arranged as a randomized complete block design. The 

date of seeding was 11 November 2004. Individual rows were scored on first incidence 

of the disease using a 0-10 scale as described in Table 1. All genotypes were scored 3 

times at 15 day intervals and AUDPC was calculated (i) to assess the disease severity.  

3.3 Statistical Analysis 

All the data were checked for normality (Shapiro-Wilk test) and homogeneity 

of variance (Levene’s test) using SAS version 9.1 (SAS Institute Inc., Cary, N.C., 

USA) before subjecting them to analysis of variance. Very slight differences from 

normality and homogeneity of variance were ignored and it was assured that data met 

at least one condition of the ANOVA. 

In experiment 3.1.1, comparing the four isolates, and in experiment 3.1.2, 

comparing the four media, numbers of conidia were recorded and analyzed using 

PROC GLM in SAS and means were compared using Least Significant Difference 

(LSD) at the 0.05 % significance level.  

In experiment 3.1.4 in which the aggressiveness of the two S. botryosum 

isolates SB-19 and SB-BAN was compared, data from both the repeats were pooled 
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(equal variances) and subjected to analysis of variance using the GLM procedure in 

SAS and means were compared using LSD at the 0.05% level of significance. 

In preliminary screening of lentil genotypes for disease resistance (Experiment 

3.2.1), the H-B scale was used to score disease severity and AUDPC was calculated 

using the procedure mentioned in section 3.1.3.2. An AUDPC value below 500 was 

considered a resistant reaction and above 500 was considered susceptible. 

For data from the RILs grown in the phytotron and under field conditions, 

analysis of variance was done for disease severity scores of each date (DSD1 through 

DSD4) using PROC GLM of SAS, and means were compared using LSD at the 5% 

level of significance. In the field screening of the RILs in Bangladesh, disease scoring 

was done 3 times at an interval of 15 days. Scores for each date were plotted and 

assessed for segregation based on the phenotype of resistant and susceptible checks and 

parental lines. On the 0-10 scale, a score equal to or below 5 was considered resistant 

based on the scores given to Barimasur-4 (resistant parent) and a score above 5 was 

considered susceptible based on the reaction of CDC Milestone (susceptible parent). 

The frequency of RIL scores was plotted in graphs and observed for possible pattern of 

segregation based on one and two gene models. Correlation coefficients between the 

scores of different dates of field (DSD1 to DSD3) and indoor screening (DSD1 to 

DSD4) were calculated and tested for significance (r ≠ 0) using a t-test at the 5 % level 

of significance and n-2 degrees of freedom by the following formula.  

 

t = [ r N – 2) ] / 1 – r2  (df = (N – 2))       (ii) 

Where t = t-test for significance of correlation coefficient; r = Pearson  

Correlation Coefficient and N = # of pairs of genotypes 
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4. Results  

4.1 Identification of a Suitable Isolate of Stemphylium botryosum to be Used in 

Indoor Screening for Stemphylium Blight Resistance 

Preliminary screening revealed considerable variability in sporulation level 

among many Saskatchewan isolates of S. botryosum (Hashemi et al., 2004). Isolates 

SB-16, SB-17, SB-19 from Saskatchewan and SB-BAN from Bangladesh, were 

selected for further screening, based on their superior ability to produce conidia in 

preliminary experiments. The results of further testing of the four isolates revealed 

significant differences in conidia production (P < 0.0001) (Appendix 1). SB-19 (mean 

= 77.2 ± 6.2 × 104 conidia ml-1) and SB-BAN (mean = 79.9 ± 4.7 × 104 conidia ml-1) 

produced significantly more conidia compared to SB-16 (mean = 8.0 ± 2.8 × 104 

conidia ml-1) and SB-17 (mean = 11.6 ± 3.2 × 104 conidia ml-1). 
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Fig. 1. Sporulation of four isolates of Stemphylium botryosum on V8P medium 
15 days after inoculation. (LSD0.05 = 12.3). 
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No visible morphological differences were observed in the structure of the conidia of 

the four isolates. SB-19 from Saskatchewan and SB-BAN from Ishurdi, Bangladesh 

were not significantly different in their levels of conidia production (Fig. 1). 

4.2 Identification of a Suitable Culture Medium 

After several media were tested in preliminary screening (Hashemi et al., 

2004), V8 Juice Agar (V8), V8 Juice with PDA (V8P) and two modified V8P media, 

V8PTD1 and V8PTD2, respectively, were tested for their suitability for increasing 

conidia production by isolate SB-19. 

 All the media used allowed the fungus to grow to sporulate profusely. The 

ANOVA revealed significant differences among media (P = 0.001) (Appendix 2). 
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Fig. 2. Conidia production of isolate SB-19 of Stemphylium botryosum on four 
different media 15 days after inoculation (LSD0.05 = 19.5).  
 
 
The fungus produced the highest number of conidia (84.7 ± 6.0 × 104 conidia ml-1) on 

V8P medium followed by V8 (78.5 ± 6.0 × 104 conidia ml-1), V8PTD1 (69.5 ± 4.2 × 

104 conidia ml-1) and V8PTD2 (41.5 ± 6.1 × 104 conidia ml-1).  
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 The LSD comparison of mean conidia concentration showed that V8P, V8 and 

V8PTD1 were not different from each other (P< 0.05) but all three media resulted in 

significantly higher sporulation of S. botryosum than V8PTD2 (Fig. 2). 

4.3 Determination of the Appropriate Age of Plant for Inoculation 

The lentil cultivars Eston and CDC Milestone were inoculated at 14, 28, 42 and 

56 DAP in order to determine the appropriate age of plant for inoculation with S. 

botryosum isolate SB-19. The data from both repetitions of the experiment were pooled 

(equal variances) and subjected to ANOVA. 

Highly significant effects due to plant age at the time of inoculation were 

observed for both Eston (P = 0.0001) and CDC Milestone (P = 0.0001). The ANOVA 

for DAP at the time of inoculation indicated no effect of repetitions on the model for 

both Eston (P = 0.12; Appendix 3) and CDC Milestone (P = 0.87; Appendix 4). Non-

significant interactions between replication and DAP at the time of inoculation were 

observed for both Eston (P = 0.44) and CDC Milestone (P = 0.99).  

Non-inoculated plants showed no symptoms of the disease. CDC Milestone 

consistently developed more disease than Eston at all inoculations.  Comparison of 

disease scores in relation to time of inoculation using LSD comparison revealed 

differences for Eston (LSD0.05 = 105.6) and CDC Milestone (LSD0.05 = 33.5) (Appendix 

4.1). CDC Milestone showed significant differences in disease severity (AUDPC) 

when inoculated at 14, 28 and 42 DAP but the severity of disease for 42 and 56 DAP 

was not significantly different (Fig. 3). Disease severity ratings for Eston were 

generally more variable and showed a progression towards more severity with 

increasing age at which plants were inoculated (Fig. 3).  

Although there were differences between Eston and CDC Milestone in levels of 

disease severity for all four inoculation dates in two experiments, an experiment 

consisting both resistant and susceptible genotypes will reveal the maximum 

differential between cultivars (Fig. 3). The first disease scores were recorded 17 DAP 

(3 DAI) on 2-week-old plants.  However, rapid regrowth after defoliation at juvenile 

growth stages complicated the disease scoring. In order to deal with this problem, 42 
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DAP was chosen for further screening to avoid the complexity of scoring and 

subjectivity. 
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Fig. 3. Stemphylium blight severity in Eston and CDC Milestone lentil inoculated  
at 14, 28, 42 and 56 days after planting under greenhouse conditions.  
 

4.4 Comparison of the Aggressiveness of Saskatchewan and Bangladesh Isolates 

of Stemphylium botryosum 

CDC Milestone (susceptible) and Barimasur-4 (resistant) were used to 

characterize the aggressiveness of two isolates of S. botryosum: SB-19 and SB-BAN. 

SB-BAN was found to be more aggressive than the local isolate SB-19, but both 

reacted similarly on the differential cultivars. Significant differences in aggressiveness 

between isolates were evident from the ANOVA (P <0.001; Appendix 5). The 

interaction between isolate and cultivar was not significant (P = 0.23; Appendix 5). 

Disease severity was higher on both CDC Milestone (mean = 73.6 ± 1.8) and 

Barimasur-4 (mean = 54.5 ± 1.9) when inoculated with SB-BAN, than when inoculated 

with SB-19 (63.0 ± 1.8 and 41.4 ± 1.8, respectively) (Fig. 4). 
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Fig. 4. Aggressiveness of isolates SB-19 and SB-BAN of Stemphylium botryosum  
on CDC Milestone and Barimasur-4 lentil inoculated 42 days after planting under 
phytotron conditions. Y-bars are the standard errors of means. 

4.5 Screening of Lentil Germplasm for Sources of Resistance 

Selected Canadian cultivars and the parents of several RIL populations 

developed by ICARDA were inoculated 14 DAP and evaluated for their level of 

resistance to S. botryosum isolate SB-19. Preliminary screening showed that lentil 

germplasm could be classified into resistant and susceptible groups (Fig. 5). Eston and 

CDC Blaze showed less disease severity compared to Barimasur-4. CDC Robin, CDC 

Glamis, CDC Milestone, CDC Redcap and Crimson were susceptible Canadian 

cultivars. Exotic germplasm with South Asian or Mediterranean adaptation also 

showed a wide variation and could easily be separated into resistant and susceptible 

groups. Precoz and ILL 8008 showed resistant reactions, whereas, ILL 5888-2, ILL 

8007, ILL 8010, Ranjan, Asha, Subroto and ILL 8009 were susceptible. Barimasur-4 is 

adapted to Bangladesh and the relative difference in AUDPC between this cultivar and 
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Fig. 5. AUDPC values for lentil genotypes inoculated with Stemphylium botryosum 
isolate SB-19 14 days after planting under greenhouse conditions. Y-bars are the 
standard errors of the means 
 

the other Bangladesh cultivars Ranjan, Asha and Subroto is similar to that observed 

between AUDPC for Eston and susceptible Canadian cultivars. 

A set of 20 lentil genotypes including a few advanced breeding lines was 

screened for resistance following the preliminary screening. Screening in the field in 

Bangladesh and in the growth cabinet with SB-BAN showed consistent reaction to the 

disease (Table 2).  
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Table 2: Response of lentil genotypes to Stemphylium botryosum inoculation when 
screened under three different environments. 
 
Genotypes 

Natural 
inoculation under 
field conditions in 

Bangladesh 

Preliminary 
screening with 

isolate SB-19 in 
greenhouse 

 
Phytotron with 

SB-BAN 

CDC Milestone S† S S 
CDC Robin S S† S† 
CDC Rouleau S × S 
Crimson S S S 
CDC Viceroy S × S 
CDC Blaze S S S 
Barimasur-4 R* R R* 
Precoz S R* R* 
ILL 8008 S R S 
Eston S R S 
† Most susceptible genotype in the given screening condition 
* Most resistant genotype in the given screening condition 
× Not included in the screening 
 

Barimasur-4 was consistently resistant in all environments, whereas CDC 

Milestone was consistently susceptible (Figs. 5, 6). Precoz was resistant in the 

controlled environments but shifted towards susceptibility in the field.  CDC Blaze and 

Precoz were resistant in the controlled environments but shifted towards susceptibility 

in the field. CDC Blaze, CDC Viceroy, 1308M-7, 1227S-28, 1207D-13, 1205M-5, 

1196D-5 and 1175S-12 were susceptible in all environments.  For Precoz in the growth 

chamber and for 5 highly susceptible lines under field conditions in Bangladesh, 

ratings were identical for all replications, therefore no standard error bar was presented 

(Fig. 6). 
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Fig. 6. Screening of lentil genotypes for resistance to Stemphylium botryosum under 
field conditions in Bangladesh with natural inoculum and in the growth chamber when 
inoculated with Isolate SB-19 42 days after planting. Y-bars are the standard errors of 
the means. 
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4.6 Screening of RILs under Field and Indoor Conditions 

The RIL population developed from the cross CDC Milestone × Barimasur-4 

showed variation in disease severity level under all screening conditions except in the 

growth chamber when the population was inoculated with SB-BAN isolate at 14 DAP. 

All the RILs plus checks died before DSD1 at 3 DAI when inoculated with SB-BAN 

isolate at 14 DAP in the growth chamber. Distribution of stemphylium blight severity 

of the RILs was compared for four different regimes (Fig. 7) and all the conditions 

showed differential reaction of resistant and susceptible parents except when the 

population was inoculated by SB-19 isolate at 14 DAP in the growth chamber (Fig. 7).   
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Fig. 7. Distribution of stemphylium blight severity mean disease scores for the RILs 
developed from the cross CDC Milestone × Barimasur-4 when scored in four different 
screening environments. Scores are from disease scoring date 1 (3 days after 
inoculation) in growth chamber experiments and 68 days after planting at the first 
incidence of the disease in the field under natural inoculum. a) Field at Ishurdi, 
Bangladesh; b) In the growth chamber inoculated with isolate SB-BAN at 42 days after 
planting; c) In the growth chamber inoculated with isolate SB-19 at 14 days after 
planting and d) In the growth chamber inoculated with isolate SB-19 at 42 days after 
planting. 
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The RIL population exhibited near normal distribution of frequency of mean 

disease scores under field conditions in Bangladesh for the DSD2 and DSD3 (Figs. 8a, 

9a). A normal distribution of frequency of mean disease scores was also observed for 

DSD2, DSD3 and DSD4 when plants were inoculated with SB-BAN in the growth 

cabinet at 42 DAP (Figs. 8b, 9b, 10a). 
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Fig. 8. Distribution of mean stemphylium blight severity scores for the RILs developed 
from the cross CDC Milestone × Barimasur-4 when screened in four different 
environments. Scores are from disease scoring date 2, 6 days after inoculation in 
growth chamber experiments and 83 days after planting at the first incidence of the 
disease in the field with natural inoculum. a) Field at Ishurdi, Bangladesh; b) In the 
growth chamber inoculated with isolate SB-BAN at 42 days after planting; c) In the 
growth chamber inoculated with isolate SB-19 at 14 days after planting and d) In the 
growth chamber inoculated with isolate SB-19 at 42 days after planting. 
 

The frequency distributions (Figs. 7-10) of mean disease scores of the RILs 

were continuous. A bimodal distribution with two phenotypic classes would be 

expected if a single gene was controlling resistance. Differences among RILs for mean 
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disease scores and AUDPC were highly significant (P <0.05) for all disease scoring 

dates (DSD1 to DSD4) (Appendices 6-24).  

The isolate SB-BAN provided clear separation of reaction for resistant and 

susceptible checks at all dates of disease scoring under field and growth chamber 

conditions (Figs. 7-9). In contrast, inoculation with SB-19 did not provide wide 

separation of these checks in the growth chamber test, though it initially provided good 

separation in preliminary screening of genotypes under similar conditions.  
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Fig. 9. Distribution of mean stemphylium blight severity scores for the RILs developed 
from the cross CDC Milestone × Barimasur-4 when screened in four different 
environments. Scores are from disease scoring date 3, 9 days after inoculation in 
growth chamber experiments and 98 days after planting at the first incidence of the 
disease in the field with natural inoculum. a) Field at Ishurdi, Bangladesh; b) In the 
growth chamber inoculated with isolate SB-BAN at 42 days after planting; c) In the 
growth chamber inoculated with isolate SB-19 at 14 days after planting and d) In the 
growth chamber inoculated with isolate SB-19 at 42 days after planting. 
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 Disease scores of some RILs were higher and lower than those of the resistant 

and susceptible parents, indicating transgressive segregation for resistance and 

susceptibility. For DSD2, three lines were observed with the score of 3 compared to a 

score of 5 for the resistant parent under field conditions (Fig. 8a).  

 Seven genotypes were observed with the mean disease severity score of 7 when 

the susceptible parent was rated as 5 in the phytotron after inoculation with the isolate 

SB-BAN at DSD2 (Fig 8b). Two highly resistant lines with the score of 1 were 

observed when the same population  was inoculated with SB-19 under growth chamber  
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Fig. 10. Distribution of mean stemphylium blight severity scores for the RILs 
developed from the cross CDC Milestone × Barimasur-4 when screened in three 
different environments. Scores are from disease scoring date 4, 12 days after 
inoculation in growth chamber experiments. There was no disease scoring date 4 in the 
field. a) In the growth chamber inoculated with isolate SB-BAN at 42 days after 
planting; b) In the growth chamber inoculated with isolate SB-19 at 14 days after 
planting and c) In the growth chamber inoculated with isolate SB-19 at 42 days after 
planting. 
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conditions at DSD2, although no separation of the resistant and susceptible parents was 

observed (Fig 8d). 

At DSD4, the whole  RIL  population,  including  the  parents,  shifted  towards 

susceptibility under all testing conditions (Fig. 10). 

There was no 4th scoring date in the field because the population reached 

maturity less than 2 weeks after DSD3. This rapid onset of maturity is typical of the 

lentil cropping system in Bangladesh where a rapid rise in temperature occurs in March. 

Parental disease scores at DSD3 were similar when inoculated with isolate SB-19 in the 

growth chamber conditions regardless of the age of plants at the time of inoculation. 

Based on the plotted distribution of the frequency plots of the RIL mean disease 

severity scores, resistance to stemphylium blight appeared to be quantitatively inherited. 

Therefore, the data were not tested for the phenotypic segregation ratio of 1:1 as 

originally hypothesized based on the report of a single dominant gene controlling the 

resistance to S. vesicarium in onion (Pathak et al., 2001). 

The correlation between individual mean disease severity scores for the RILs of 

different scoring dates (DSD1 to DSD4) of indoor and field screenings ranged from -

0.16 to 0.12 (Appendix 25). The results of t-tests revealed non-significant correlations 

(P > 0.05) between mean disease severity scores of all the scoring dates of all 

environmental conditions. 
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5. Discussion 

Crop diversification efforts have led to increased area and production of pulse 

crops in western Canada. Appearance of new diseases may cause instability of 

production and eventual exclusion of lentil from crop rotations. Cultivars that are 

resistant to ascochyta blight and anthracnose may become a less desirable option for 

farmers if they are susceptible to stemphylium blight. It is possible that changes in 

cultural practices may favour foliar diseases. Zero or minimum tillage certainly would 

increase the potential severity of infection for diseases like stemphylium blight which 

overwinters on plant debris. 

Research on genetic resistance to fungal pathogens of crop plants requires the 

availability of reliable and robust indoor screening techniques. Sporulation potential 

could be a parameter used to test the suitability of fungal isolates for use in indoor 

screening techniques. The development of resistant cultivars requires a good 

understanding of pathogen variability and sources of resistance. The pathogenic 

variability, racial structure and sporulation potential of S. botryosum has not been 

previously reported in lentil. In a study by Choudhury et al. (1997), isolates of S. 

botryosum of lentil from only a small region in Bangladesh were studied for their 

sporulation on different media, but the results were not fully comparable as the author 

did not quantify the amount of sporulation and used a four category relative scale to 

assess amount of conidia production. The current study considered 3 out of 23 isolates 

previously studied (Hashemi et al., 2004) from different regions of Saskatchewan and 

one isolate from Bangladesh. Conidia concentration was quantified to assess suitability 

of these isolates for use in indoor screening of disease resistance in lentil.  

Isolate SB-19 from Saskatchewan sporulated abundantly compared to others and 

was not significantly different from the isolate SB-BAN from Bangladesh. Therefore 

both isolates could be considered for use in screening for resistance.  Although results 

from this experiment suggested that there are differences in sporulation of the isolates 

from different regions, a single isolate from Bangladesh cannot truly represent the 

pathogen population prevalent in the region. More isolates from Bangladesh could also 
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be evaluated for use in indoor screening. Testing their aggressiveness may also reveal 

their usefulness in screening for resistance. Although the results of in vitro experiments 

may not be the same as in situ, a comparative study under indoor conditions and in the 

field under natural inoculum was helpful to assess the reliability of the indoor screening 

technique.  

Cultural conditions including temperature, light, and pH of the media cause 

variation in sporulation of fungal cultures (Mussi and Kurozawa, 1996; Kim and Xiao, 

2005). Alternation of light and dark period should be studied more precisely to 

determine if these conditions have complementary or inhibitory effects on sporulation of 

S. botryosum. It was observed in this study that S. botryosum isolates changed their 

ability to sporulate after storage and subculturing. Further studies are needed to compare 

different S. botryosum isolates for their aggressiveness on the lentil host and their ability 

to remain aggressive if subjected to repeated subculturing. Molecular analysis may 

better reveal the genetic diversity and relatedness of S. botryosum populations from 

different parts of the world. A representative collection of isolates from different regions 

could be tested to determine if races or pathotypes exist. This would be possible through 

development of an international consortium that might collect and maintain a diverse 

isolate inventory of S. botryosum. 

Many semi-synthetic media used to culture S. botryosum isolates from lentil in 

previous studies were not effective for inducing conidia production with the exception 

of wheat straw agar (Choudhury et al., 1996). Wheat straw agar tested in preliminary 

experiments with many Saskatchewan isolates resulted in little or no conidia production 

(Hashemi et al., 2004). In a disease resistance study in alfalfa, conidia of S. botryosum 

were harvested from V8-juice agar cultures and the concentration of conidial suspension 

(7×104 conidia ml-1) was optimized by filtering the suspension through several layers of 

cheese cloth (Borges et al., 1976). Salter and Leath (1991) also used V8-juice agar and 

achieved 1×104 to 5×104 conidia ml-1. In our preliminary testing, low levels of conidia 

production were observed for all media treatments, but all showed increased conidia 

production compared to wheat straw agar. Significantly higher sporulation was later 

achieved with V8 and V8P media. The isolate SB-BAN had higher conidia production 

than SB-19 on both V8 and V8P media.  
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Washing conidia from hundreds of Petri dishes is cumbersome and time 

consuming. Therefore, other fungal culture protocols for mass scale culture are needed 

to overcome the limitation for inoculation of large experiments. Inoculation using 

mycelia (w/v), instead of conidia was found to be effective (Hashemi et al., 2005a).  

Use of toxins from culture filtrates may also show promise as a simpler method 

for screening large numbers of lentil genotypes. Stemphylium spp. produce stemphol 

(Solfrizzo et al., 1994), a toxin that facilitates infection of the host. Developing a 

bioassay to screen for resistance may be possible using culture filtrates of S. botryosum. 

Culture filtrates of S. vesicarium isolates were successfully used in screening for brown 

spot resistance in pear (Singh et al., 1999).  

The current study provided a protocol by standardizing culture media and 

identifying suitable isolates. A previous study on S. botryosum (Chowdhury et al., 1996) 

in lentil was limited to culture method and tests of sporulation did not lead to an 

artificial inoculation technique. The technique developed in this series of experiments 

may be useful when natural disease pressure is ineffective or unreliable. In this situation 

it was possible to explore the variation available for resistance to S. botryosum in lentil 

germplasm using local lentil cultivars and unadapted germplasm accessions. Although 

the results of the disease scorings were not consistent, a basis for rapid screening of lines 

is now available. Once phenotyping methods become more consistent and reliable, 

marker assisted selection may eventually be introduced into breeding programs. More 

intense screening of larger collection of genotypes including wild germplasm should be 

done in order to determine if complete resistance can be identified. It would also be 

useful to use RIL populations derived from parents of similar adaptation as a mean of 

reducing phenotypic error in scoring disease resistance. 

In determining the appropriate age of plants for inoculation with S. botryosum, 

higher disease severity was observed when inoculation was performed 42 or 56 DAP. 

This suggests that susceptibility of plants to stemphylium leaf blight increases as the 

plants reach the reproductive phase. This is possibly due to the influence of a dense 

canopy on disease severity at the late vegetative growth stage. Plant age at the time of 

inoculation had less of an effect on the development of disease on CDC Milestone 

(susceptible) compared to Eston (resistant). This may indicate that CDC Milestone 



 

 43 

neither exhibited any kind of juvenile resistance nor any defense response at the later 

stage of development. It was evident from the experiment that a maximum separation of 

resistant and susceptible genotypes could be achieved when lentil plants were inoculated 

at 14 DAP (seedling stage) and 28 DAP (vegetative stage). This may be due to higher 

expression of resistance genes at these times. Chongo and Gossen (2001) also reported 

similar findings for ascochyta blight severity in western Canadian chickpea cultivars.  

The first disease scores were recorded 17 DAP (3 DAI).  In subsequent scoring 

of these plants, regrowth after defoliation complicated the disease scoring procedure. In 

order to deal with this problem, 6 week old plants were chosen for further screening of 

disease reactions to avoid the complexity of scoring due to regrowth. The increased 

variation in disease severity level observed between replications in Eston at 42 DAP 

may be due to variation within the cultivar. More genotypes from resistant and 

susceptible groups should be screened to determine and to confirm the optimum time for 

inoculation.  

Comparing disease severity data from field studies and correlating the data with 

those recorded under controlled conditions may provide some idea of optimum plant age 

for inoculation. The wide range of adaptation of genotypes included in the current study 

revealed phenological differences for plants of similar age. Ignoring the actual plant age 

and classifying lentil genotypes based on their phenological stages at inoculation or 

grouping genotypes on the basis of phenology prior to inoculation could help to improve 

precision. 

 In order to make logical associations between indoor and field screening 

techniques for characterizing resistance to S. botryosum, a comparison was made 

between the aggressiveness of isolates SB-19 from Saskatchewan and SB-BAN from 

Bangladesh. Results showed that SB-19 was less aggressive than SB-BAN. 

Stemphylium blight is the major disease of lentil in Bangladesh, and it is very likely that 

more aggressive isolates exist in that environment. The isolates collected from different 

regions of Saskatchewan in the year 2003 might also have declined in aggressiveness 

due to repeated sub-culturing. Although no adverse effect of continual sub-culturing on 

production of stemphol has been reported for Stemphylium spp., changes in the 
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secondary metabolite profile of Fusarium oxysporum isolates were observed in response 

to continual sub-culturing (Ryan et al., 2003).  

The present results do not provide an in-depth assessment of the range of 

aggressiveness of S. botryosum because they included the effect of only two isolates on 

two differential parents. A differential set of genotypes should be used in conjunction 

with a larger number of isolates from different regions to determine possible interaction. 

A change in ranking of genotypes may also reveal racial structure in the pathogen 

population. Close monitoring of the disease in the field, combined with the analysis of a 

collection of isolates from different regions, should be performed to evaluate the 

aggressiveness of the pathogen over the years. It would be useful to include more 

isolates from Bangladesh to determine the relatedness among populations from different 

regions. In Bangladesh, the pathogen population has co-existed and evolved with the 

host for a relatively long period compared to Saskatchewan where lentil has been grown 

only since the early 1970s.  

Based on observations in the field in Bangladesh in 2007, S. botryosum is now 

beginning to appear in Barimasur-4 while Barimasur-5, a newly released cultivar, 

remains unaffected by the pathogen (A. Vandenberg, pers. com.). In Saskatchewan, cool 

and moist weather at later stages of crop growth and development may lead to rapid 

development of foliar diseases. The main concern is whether the appearance of S. 

botryosum is due to conducive weather conditions in a particular year or if the pathogen 

has become a part of the agro-ecosystem.  

Other research initiated at the CDC at the University of Saskatchewan on the 

biology of S. botryosum should reveal the population structure of the pathogen. This 

information could provide a basis for assessment of the potential economic damage 

caused by S. botryosum and could also help determine strategies for the prevention of 

the disease by chemical and cultural control. 

Screening of lentil germplasm from around the world enables breeders to 

identify specific geographical sources of germplasm with improved disease resistance. 

This approach has proven successful in Saskatchewan for improving the resistance of 

lentil cultivars to both ascochyta blight and anthracnose (Tullu et al., 2006). Assessment 

of advanced breeding lines helps breeders prepare for future threats. In this project, 
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screening of some of the available advanced lentil germplasm provided some indication 

of the range of resistance to S. botryosum in the CDC breeding program.  

Testing of lines under natural pathogen populations, possibly in Bangladesh, 

could be used to screen for sources of resistance to stemphylium blight for Canadian 

lentil germplasm provided that altered phenology in the short day environment does not 

present a biological barrier to effective screening. This method was used to identify 

lentil lines with stemphylium blight resistance in Bangladesh, leading to release of 

Barimasur-4 as a resistant cultivar (Sarker et al., 1999).  

It was apparent from screening in all three environments that most lentil 

genotypes showed consistent reactions to stemphylium blight infection. The questions 

arise as to whether or not races prevail in the pathogen population. This could be a 

source of variability in genotypic reaction. CDC Milestone, CDC Robin, Crimson and 

CDC Viceroy were consistently susceptible in all environments. Precoz was resistant 

under growth cabinet conditions but showed susceptibility in the field. Precoz is a 

cultivar from Argentina (Riva, 1975) and the inconsistent reaction may simply be due to 

poor adaptation of the line in Bangladesh. Precoz is not winter hardy and has plant 

height ranging from 11-21 cm. It is a green seeded, yellow cotyledon variety with test 

weight of 4.5 g/100 seeds (Kahraman et al., 2004). It was also registered with ICARDA 

as ILL 4605 and was used as one of the parents of Barimasur-4 (Sarker et al., 1999). 

Slightly late maturity and retention of green tissue for a longer period might possibly 

explain the susceptibility of the line in the field in Bangladesh. On the other hand, the 

pathogen population in Bangladesh may have become more aggressive. Precoz showed 

a higher level of resistance with both SB-19 and SB-BAN under the growth cabinet 

conditions. Several RILs developed from crosses with Precoz will become available 

within two years. These additional RILs may be useful for further investigation of 

inheritance of resistance to stemphylium blight.  

Eston was moderately resistant when screened with isolate SB-19, but proved to 

be susceptible in field and under the growth cabinet conditions with isolate SB-BAN. 

Additional screening of germplasm including wild species could be used to find 

additional sources of resistance, a similar method to that used to discover genetic 
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resistance to anthracnose Race Ct0 in Lens ervoides, L. lamottei and L. nigricans (Tullu 

et al., 2006). 

The results of the first genetic investigation into the inheritance of stemphylium 

blight resistance in lentil were obtained by screening the RILs developed from the cross 

CDC Milestone × Barimasur-4. In general, at the initiation of disease at DSD1 (3 DAI), 

most RILs were scored as resistant, but as the disease progressed, the population shifted 

towards susceptibility (Figs. 7-10). Screening under natural inoculation conditions in 

Bangladesh and using the SB-BAN isolate under indoor conditions provided wide 

separation of disease scores for resistant and susceptible parents. Inoculation with the 

Saskatchewan isolate SB-19 did not result in differential reactions in the parents. This 

could be due to experimental error or lack of appropriate environmental conditions or 

they simply may not differ in their reaction to isolate SB-19. In all environments, 

resistance in this cross seemed to be quantitatively inherited, possibly involving many 

genes with minor effects. Further investigation will be required to determine the 

inheritance in other genetic backgrounds. The possibility exists that disease reactions 

were affected by phenological differences because Barimasur-4 is adapted to a sub-

tropical short day environment and CDC Milestone is adapted to a temperate long day 

environment. 

No correlation between mean disease severity scores from RILs for each scoring 

date could be established when experiments were compared. It was difficult to interpret 

and compare the results of indoor screening versus the field, possibly due to the 

interaction of the many other potential factors involved. Subjectivity of scoring as well 

as single plant scoring under indoor conditions vs. whole plot scoring in the field may 

also lead to inconsistent results. The field environment had entirely different conditions 

including differences in day length and temperature. Another factor is the presence of 

other major diseases like rust, caused by Uromyces fabae. Although Bangladesh is an 

endemic location for stemphylium blight, the disease appeared relatively late in the 

cropping season of 2004-2005. Screening of RIL populations could also be conducted at 

other locations such as at Dholi, India to cover the risk of poor or late disease 

development in Bangladesh. 
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Higher doses of single isolates may result in the detection of major gene 

resistance, but mixtures of races and pathotypes should be used to identify partial 

resistance. Use of lower doses of inoculum on differential genotypes may provide better 

results. In the current study, 2-week-old RILs and checks inoculated with the aggressive 

isolate SB-BAN died at DSD1 and were subsequently dropped from scoring. This result 

might provide a key for indoor screening if reduced conidial concentrations were 

applied at 14 DAP. Inoculation with half the concentration of conidial suspension of the 

isolate SB-BAN used in the experiment may provide better separation of resistant and 

susceptible groups of genotypes. The cost of screening would certainly be reduced if 

lentil genotypes could be screened for resistance at 14 DAP. 

Determining the level of resistance to S. botryosum in new lentil cultivars will 

allow breeders to respond more quickly when the disease appears in more severe form. 

Screening of the RIL population developed from the cross Barimasur-4 × CDC 

Milestone in different environments, revealed resistance to be quantitatively inherited. A 

single dominant gene (Sm) was reported for resistance to leaf spot in tomato caused by 

S. solani (Behare et al., 1991; Laterrot, 1998). Resistance to stemphylium blight of 

onion caused by S. vesicarium has been reported to be under single dominant gene 

control (Pathak et al., 2001). In lettuce, resistance to S. botryosum proved to be 

controlled by two genes, a dominant gene Sm1 and a recessive gene sm2 (Netzer et al., 

1985). The inheritance of resistance to S. solani in cotton was reported to be controlled 

by two genes with epistasis (Mehta and Arias, 2001).  

The frequency distribution of mean disease severity scores for RILs of the lentil 

cross Barimasur-4 × CDC Milestone used in this study did not indicate involvement of a 

major gene for resistance. A significant correlation between indoor and field disease 

severity scores could not be established possibly due to subjectivity of disease scoring. 

The results from this study also indicated that Saskatchewan isolate SB-19 did not 

provide a differential response in the RIL population despite providing good separation 

in the disease severity scores of resistant and susceptible parents in the initial screening. 

A reason for this could be the loss in aggressiveness of the isolate due to repeated sub-

culturing.  
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The current study considered the cross of Barimasur-4 (resistant) and CDC 

Milestone (susceptible) which had shown wide separation in the preliminary study. This 

was the only RIL population available with the seed in an advanced generation at the 

time of study. Additional crosses will soon become available for studying the genetics of 

stemphylium blight. These populations may have more distinct disease reactions for 

parents in terms of their level of resistance based on preliminary screening (appendix 

26; Fig. 5 & 6). It was clearly evident from the results of preliminary screening (Fig. 5) 

that the crosses Precoz × ILL 8010, Precoz × Subroto, Precoz × ILL 8007, Precoz × ILL 

5888-2 involve more diverse parents and may produce clearer segregation patterns 

based on a single gene hypothesis. Therefore use of populations derived from these 

crosses in further genetic investigations may be very useful. 

Prevalence of phenological differences between the parents and among the RILs 

was a major challenge in this study. These phenological differences in lentil germplasm 

are primarily due to adaptation to photoperiod regimes. Significant differences from 

emergence to maturity were observed between Canadian and exotic lentil cultivars. 

Since the individual genotypes were not specifically characterized for their phenology it 

was difficult to synchronize the growth stages at the time of inoculation. The Canadian 

germplasm screened in Bangladesh did not show symptoms of senescence even at the 

onset of higher temperature in March, while the local Bangladesh cultivars matured 

quickly. The lentil germplasm adapted to Saskatchewan produced more biomass 

compared to the unadapted Bangladeshi germplasm. Adaptability itself is controlled by 

multiple genes and may possibly interact with the gene(s) for stemphylium blight 

resistance. Future inheritance studies using RIL populations of adapted × adapted 

crosses might reveal a major gene controlling resistance to stemphylium blight. An F6:8 

RIL population developed from cross ILL8008 × ILL 8009 is available immediately for 

further genetic study in short daylength environments. 

The findings of this study provided a basis for developing a more robust indoor 

screening technique for breeders wishing to screen lentil germplasm for stemphylium 

blight resistances. The inoculation technique developed proved to be useful for small 

scale inoculation limited to small experiments. At the moment, field screening in 

Bangladesh or India appears to be a possible option for lentil breeders until a good 
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correlation between indoor and field screening technique is obtained. However, field 

screening techniques may require modifications to adjust for phenological variation. It 

may also be possible and ultimately more desirable to develop a marker-assisted method 

if accurate phenotyping of additional RILs segregating for stemphylium can be used to 

demonstrate qualitative inheritance or the existence of major QTLs for stemphylium 

resistance in lentil. 
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6. Summary and Conclusions 

This was the first investigation of the inheritance of resistance to S. botryosum in 

lentil. The study required preliminary optimization of conidia production and 

inoculation protocols to meet the requirements of indoor screening as there was almost 

no published literature on the pathogen in lentil. Studies conducted on other host species 

were used as the basis for experiments. The following are the general conclusions of the 

current study. 

 

1. Based on ability to sporulate, the isolate SB-19 was chosen for use in indoor 

screening. It was selected from a group of available isolates collected from 

Saskatchewan. The Bangladesh isolate SB-BAN was equal to SB-19 in 

sporulating ability. The SB-BAN produced more disease on lentil under indoor 

screening conditions. 

2. V8P proved to be the best medium for sporulation of S. botryosum under 

appropriate incubation conditions. Modification of V8P medium with tamarind 

paste, a natural source of tartaric acid, did not facilitate release of conidia from 

the mycelium. 

3. Maximum separation of partially resistant (Eston) and susceptible (CDC 

Milestone) cultivars could be achieved at 14 DAP using the SB-19, but results 

were not same with the parents in the RIL population. But when 2 weeks old 

plants were inoculated with Bangladesh isolate SB-BAN using the same conidia 

concentration (2 × 105 conidia ml-1), all RILs studied and the checks died by the 

first date of scoring. This restricted the comparison with other screening 

methods. Therefore 42 DAP was considered the most appropriate for inoculation 

under indoor conditions in order to compare experiments. However, the study 

should be repeated with more differential genotypes using the isolate SB- BAN 

and reduced conidial concentration. 

4. Resistance to S. botryosum appeared to be quantitatively inherited in the cross 

Barimasur-4 × CDC Milestone in both field and indoor screening. Refining the 
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pathological techniques and minimizing experimental error could provide better 

correlation between indoor and field screening. 

 

Future Work 

1. More isolates of S. botryosum from Saskatchewan and Bangladesh should be 

tested for their aggressiveness and suitability for indoor screening of genetic 

resistance to stemphylium blight in lentil. Understanding the genetic diversity 

and population structure of the fungus will provide a basis for improved 

screening techniques. 

2. A mass-scale culture protocol for S. botryosum should be developed to facilitate 

large scale inoculation. A protocol for inoculation using a mycelial suspension of 

the fungus is being developed.  

3. In the current screening protocol, growing plants for 42 days is time consuming. 

The experiment should be repeated using 14-day-old plants inoculated with 

reduced conidial concentrations of the aggressive isolate SB-BAN. This may 

provide better separation between resistant and susceptible lentil genotypes. It 

might be possible to compare this technique with the possible alternative of 

developing a bioassay protocol using the fungal toxin stemphol. 

4. Barimasur-4 showed resistance to S. botryosum in all screening experiments. 

Genetic resistance to stemphylium blight was quantitatively inherited in progeny 

of the cross Barimasur-4 × CDC Milestone. Genetics of resistance should be 

determined in other genetic backgrounds with other sources of resistance to gain 

further insight into genetic resistance in Canadian germplasm.  

5. Breeders may consider screening for stemphylium blight resistance in a disease 

nursery in Bangladesh, where field screening produced reliable results. If 

resistance genes can be identified based on consistent phenotypic reactions, 

developing molecular markers and employing QTL marker assisted selection 

may be an alternative to field screening. 
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Appendix 

Appendix 1. ANOVA for conidia production (104 ml-1) of different isolates of S. 
botryosum. 
 
Sources of variation d.f. M.S.  F-value  P-value 

Isolates   3 18969.91 504.07         <0.0001 

Replications  5 47.23  1.26  0.038   
Isolate*Replications 15 37.63  7.69  0.74  
Error             24 4.89       
Corrected total            47 57827.87 
 
R2 = 0.98, CV = 6.90 % 
 
 
Appendix 2. ANOVA for conidia production (104 ml-1) of S. botryosum on different 

media. 

Sources of variation d.f. M.S.  F-value       P-value 

Replication  5 100.45  0.92       0.501 
Media   3 1457.66  13.41  0.001  
Error   15 108.66   
Corrected total  23  
  
R2 = 0.92, CV = 7.60 % 
 
 
Appendix 3. ANOVA for stemphylium blight severity (AUDPC) for Eston lentil 
inoculated with isolate SB-19 at 14, 28, 42 and 56 DAP. 
 
Sources of variation d.f. M.S.  F-value  P-value  

Repeat   1 133627.89 2.47  0.122 
Age   3 650665.64 48.73  0.0001 
Replication  5 6021.4 1 0.45  0.80 
Replication*Age 15 12265.86 0.92  0.44 
Error   23 13353.14    
Corrected total  47   
  
R2 = 0.82, CV = 32.98 % 
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Appendix 4. ANOVA for stemphylium blight severity (AUDPC) for CDC Milestone 
lentil inoculated with isolate SB-19 at 14, 28, 42 and 56 DAP.  
 
Sources of variation d.f. M.S.  F-value  P-value  

Repeat   1 49.61  0.03  0.87 
Age   3 107804.03 58.81            0.0001 
Replication  5 7611.78  4.15  0.005 
Replication*Age 15 28.23  0.02  0.99 
Error   23 1832.95     
Corrected total  47    
  
R2 = 0.84, CV = 6.18 % 
 
 
Appendix 4.1. Mean AUDPC for stemphylium blight on Eston and CDC Milestone 
lentil inoculated at four plant ages. 
 
Treatment  Eston   CDC Milestone 

14 DAP   97.3   597.9 

28 DAP   233.6   654.2 
42 DAP   443.9   697.3 
56 DAP   626.51   821.0 
LSD(0.05)  105.6   33.5 
 
 
Appendix 5. ANOVA for disease severity caused by two isolates of S. botryosum on  
Barimasur-4 and CDC Milestone (resistant and susceptible parents). 
 
Sources of variation d.f. M.S.  F-value  P-value 

Repeat   1 352.88  8.98  0.004 
Replication  7 56.17  1.43  0.214 
Isolate   1           5862.96             149.21            <0.0001 
Cultivar  1           1496.14              38.08            <0.0001 
Isolate*Cultivar  1 58.18  1.48  0.23 
Error   51 39.29   
Corrected total  63    

R2 = 0.80     CV = 11.31 
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Appendix 6. ANOVA for stemphylium blight at DSD1 on RILs inoculated with isolate 
SB-BAN at 42 DAP. 
Source df MS F-Value P-value 

Rep      
Entry 
Error 
Corrected Total 

3 
95 
284 
382 

9.96 
2.12 
1.91 

5.21 
1.11 

0.0016 
0.2495 

R2 = 0.30     CV = 58.78  

 
Appendix 7. ANOVA for stemphylium blight at DSD2 on RILs inoculated with isolate 
SB-BAN at 42 DAP. 
Source df Mean 

Square 
F-Value P-value  

Rep      
Entry 
Error 
Corrected Total 

3 
95 
284 
382 

17.18 
4.05 
3.05 

5.63 
1.33 

0.0009 
0.0396 

R2 = 0.34     CV = 37.61       
 
 
Appendix 8. ANOVA for stemphylium blight at DSD3 on RILs inoculated with isolate 
SB-BAN at 42 DAP. 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
95 
284 
382 

23.01 
5.16 
3.82 

6.05 
1.35 

0.0005 
0.0317 

R2 = 0.34     CV = 30.36       
 
 
Appendix 9. ANOVA for stemphylium blight at DSD4 on RILs inoculated with isolate 
SB-BAN at 42 DAP. 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
95 
284 
382 

21.17 
5.08 
3.47 

6.10 
1.46 

0.0005 
0.0090 

R2 = 0.36     CV = 24.77       
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Appendix 10. ANOVA for stemphylium blight severity (AUDPC) at DSD4 on RILs 
inoculated with isolate SB-BAN at 42 DAP under growth chamber conditions 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
95 
284 
382 

1466.58 
324.32 
246.12 

5.96 
1.32 

0.0006 
0.0437 

R2 = 0.33     CV = 32.73       
 
 
Appendix 11. ANOVA for stemphylium blight at DSD1 on RILs at 68 DAP under field 
condition in Bangladesh. 
 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

2 
81 
162 
245 

15.14 
3.71 
1.08 

14.01 
3.43 

<0.0001 
<0.0001 

R2 = 0.65   CV = 29.74       
 
 
Appendix 12. ANOVA for stemphylium blight at DSD2 on RILs at 83 DAP under field 
condition in Bangladesh. 
 
Source df Mean 

Square 
F-Value P-value 

Rep      
Entry 
Error 
Corrected Total 

2 
81 
162 
245 

47.92 
3.86 
2.06 

23.28 
1.87 

<0.0001 
0.0004 

R2 = 0.55     CV = 28.88       
 
 
Appendix 13. ANOVA for stemphylium blight at DSD3 on RILs at 98 DAP under field 
condition in Bangladesh. 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

2 
81 
162 
245 

57.12 
5.74 
2.99 

19.11 
1.92 

<0.0001 
0.0002 

R2 = 0.54     CV = 28.91     
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Appendix 14. ANOVA for stemphylium blight severity (AUDPC) at DSD3 on RILs at 
98 DAP under field condition in Bangladesh 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

2 
81 
162 
245 

47.92 
3.86 
1313.10 

24.45 
2.32 

<0.0001 
<0.0001 

R2 = 0.594     CV = 26.19       
 
 
Appendix 15. ANOVA for stemphylium blight at DSD1 on RILs inoculated with isolate 
SB-19 at 42 DAP under growth chamber conditions 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
151 
449 
603 

2.19 
2.24 
0.77 

2.85 
2.90 

0.0371 
<0.0001 

R2 = 0.50     CV = 53.92       
 
 
Appendix 16. ANOVA for stemphylium blight at DSD2 on RILs inoculated with isolate 
SB-19 at 42 DAP under growth chamber conditions 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
151 
449 
603 

6.88 
5.56 
1.52 

4.52 
3.65 

0.0039 
<0.0001 

R2 = 0.56    CV = 35.47       
 
 
Appendix 17. ANOVA for stemphylium blight at DSD3 on RILs inoculated with isolate 
SB-19 at 42 DAP under growth chamber conditions 
 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
151 
449 
603 

2.73 
7.78 
2.01 

1.36 
3.87 

0.2555 
<0.0001 

R2 = 0.57     CV = 30.00       
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Appendix 18. ANOVA for stemphylium blight at DSD4 on RILs inoculated with isolate 
SB-19 at 42 DAP under growth chamber conditions 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
151 
449 
603 

1.30 
8.77 
1.99 

0.65 
4.38 

0.5817 
<0.0001 

R2 = 0.60     CV = 24.51       
 
 
Appendix 19. ANOVA for stemphylium blight severity (AUDPC) at DSD4 on RILs 
inoculated with isolate SB-19 at 42 DAP under growth chamber conditions 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
151 
453 
607 

346.62 
484.96 
127.49 

2.72 
3.80 

0.0441 
<0.0001 

R2 = 0.56     CV = 31.83       
 
 
Appendix 20. ANOVA for stemphylium blight at DSD1 on RILs inoculated with isolate 
SB-19 at 14 DAP under growth chamber conditions 
  Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
149 
440 
592 

6.93 
1.40 
0.74 

9.33 
1.88 

<0.0001 
<0.0001 

R2 = 0.41     CV = 45.07       
                 
 
Appendix 21. ANOVA for stemphylium blight at DSD2 on RILs inoculated with isolate 
SB-19 at 14 DAP under growth chamber conditions 
 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
149 
440 
592 

46.89 
7.55 
2.72 

17.26 
2.78 

<0.0001 
<0.0001 

R2 = 0.52    CV = 37.65       
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Appendix 22. ANOVA for stemphylium blight at DSD3 on RILs inoculated with isolate 
SB-19 at 14 DAP under growth chamber conditions 
 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
149 
440 
592 

10.76 
8.06 
2.49 

4.32 
3.23 

 0.0051 
<0.0001 

R2 = 0.53     CV = 29.46       
 
 
Appendix 23. ANOVA for stemphylium blight at DSD4 on RILs inoculated with isolate 
SB-19 at 14 DAP under growth chamber conditions. 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
149 
440 
592 

6.05 
11.29 
3.01 

2.01 
3.75 

 0.1121 
<0.0001 

R2 = 0.56     CV = 27.56       
 
                      
Appendix 24. ANOVA for stemphylium blight severity (AUDPC) at DSD4 on RILs 
inoculated with isolate SB-19 at 14 DAP under growth chamber conditions. 
Source df Mean 

Square 
F-Value P-value 

 
Rep      
Entry 
Error 
Corrected Total 

3 
149 
447 
599 

3220.97     
1084.29      
383.97 

8.39 
2.82 

<0.0001 
<0.0001 

R2 = 0.50     CV = 33.60       
 
 
Appendix 25. Correlation of mean stemphylium blight severity scores of different dates 
of scorings (DSD1 to DSD4) under field and growth chamber conditions. 

 Indoor scoring dates 
Field scoring 

dates DSD1 DSD2 DSD3 DSD4 

DSD1 -0.16 (0.502) 
-0.10 

(0.898) -0.11(0.580)  
DSD2 -0.03 (0.243) 0.10 (0.871) 0.06 (0.521) 0.12 (0.077) 
DSD3 -0.06 (0.522) 0.04 (0.392) 0.01(0.064) 0.06 (0.525) 

P-values given in parentheses. No 4th disease scoring (DSD4) in field. 
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Appendix 26. Populations developed for genetic studies of stemphylium blight 
resistance in lentil by CDC and ICARDA. 
 
Population Pedegree # of seeds/ 

lines 
Stage 

2497s ILL8006-BM4 × CDC Milestone 157 F6:8 seed 
X2003S-71 Precoz × ILL 5888 99 F7    seed 
X2003S-73 Precoz × ILL 8007 129 F2     seed 
X2003S-73 Precoz × ILL 8007 165 F2     seed 
X2003S-74 Precoz × Subroto 145 F7     seed 
X2003S-75 Asha × Precoz 132 F2    seed 
X2003S-76 Ranjan × Precoz 160 F2    seed 
X2003S-86 ILL 8008 × ILL 8009 180 F7     seed 
X2003-96 Precoz × ILL 8010 128 F2    seed 
X2003-96 Precoz × ILL 8010 162 F2    seed 
 
 


