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Abstract

The calibration transfer problem examined by this thesis is that of attempting
to exploit the knowledge of an initial instrument calibration model so as to obtain
a second similar model. having acceptable accuracy. with less data than thatr used
to obtain the initial model. Specifically. this thesis considers instruments whose cal-
ibration model is based on a feedforward neural network. FFNN. The recalibration
of FFNN based instruments has raised concerns regarding the significant quantity of
data needed to perform their recalibration. Calibration transfer methods provide an
alternative to recalibration which can reduce the data needed for a recalibration while
maintaining acceptable levels of calibration accuracy.

Currently no reported methods of calibration transfer exist for the FFNN based
instrument. This thesis develops and introduces a number of calibration transfer
methods based on novel concepts and techniques to allow a recalibration using less
data than that needed in a recalibration employing conventional backpropagation
learning. Using the concept of a similarity map introduced in this thesis. a simple
non-learning method of calibration transfer for an FFNN based instrument is intro-
duced. A new calibration transfer method is also developed which is based on using
a supervised learning algorithm emploving a measure to learn the nth order partial
derivatives of the desired calibration model evaluated at the coordinates given by
the calibration data. Finally. a simple. but previously unreported idea of initialising
the weights of an FFNN so as to begin learning from a point on the error surface
that provides the approximation of a previously obtained calibration model is also
described.

Using computer simulations. the calibration error associated with using these cal-
ibration transfer methods is compared to the error obtained from a standard re-
calibration using conventional backpropagation learning. The simulations included.
changing the numbers of neurons. the number of calibration points. and the similar-
ity between calibration models. The desired calibration models were selected from
the classes of 8th order polynomials and bandlimited normal random processes. The
simulations indicated that no one method of calibration transfer provides the least
calibration error but it is possible to achieve a 2 to 1000 fold decrease in the median
calibration error relative to that of the standard recalibration while also reducing the
data by a factor of two. The simulation and subsequent analysis also revealed that it
is difficult to predict whether a specific set of calibration conditions will achieve this
reduction in calibration error.

In conclusion. this thesis introduces. develops. and evaluates a number of previ-
ously unavailable methods of calibration transfer for FFNN based instruments. It
shows through computer simulations that these methods can achieve lower levels of
calibration errors than that achievable from the standard recalibration method em-
ploving backpropagation learning.
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The initial calibration errors. as measured by ¢,. in approximating all
/lp € Hp are shown as a function of the number of hidden neurons.
V. for cach of the learning algorithms.

The initial calibration errors. as measured by ¢,. in approximating all
llm € Hpy are shown as a function of the number of hidden neurons.
V... for each of the learning algorithms.

The calibration errors. as measured by ¢,. in performing a calibration

transfer from h, = hp to hy = hp_ are shown as a function of the
number of calibration data points. \;. for each of the transfer meth-
ods. The calibration model consists of a FENN having .\, = 3 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing hy, € Hp,,

The calibration errors. as measured by ¢,. in performing a calibration

transfer from hy = hp to h; = hp, are shown as a function of the
number of calibration data points. N, for each of the transfer meth-
ods. The calibration model consists of a FENN having .V,, = 5 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing . € Hp,,

The calibration errors. as measured by €,. in performing a calibration

transfer from hy = hp. to hy = hp, are shown as a funcrion of the
number of calibration data points. \j. for each of the transfer meth-
ods. The calibration model consists of a FENN having .\, = 5 hidden
neurons that. excluding the PICX BP method. are initialised to values
providing hy € Hp,,..

The calibration errors. as measured by €,. in performing a calibration

transfer from hk hp. to h, = /1pH are shown as a function of the
number of calibration data points. \\,. for each of the transfer meth-
ods. The calibration model consists of a FFNN having .\, = 5 hidden
neurons that. excluding the PICNX BP method. are initialised to values

providing hy € Hp,,.

The calibration errors. as measured by ¢,. in performing a calibration

transfer from hy = hp. to by = th are shown as a function of the
number of calibration data points. V. for cach of the transfer meth-
ods. The calibration model consists of a FENN having .\, = 5 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing h, € Hp,, -

The calibration errors. as measured by ¢,. in performing a calibration

transfer from hy = hp to h, = th are shown as a function of the
number of calibration data points. \\;. for each of the transfer meth-
ods. The calibration model consists of a FFNN having .V,, = 5 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing hy € Hp,,. -
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The calibration errors. as measured by ¢,. in performing a calibration

transfer from /zA /zp_ to h, hp_ are shown as a function of the
number of calibration data points. \;. for each of the transfer meth-
ods. The calibration model consists of a FENN having .V, = 8 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing hy € Hp, -

The calibration errors. as measured by ¢,. in performing a calibration
transfer from hy = hp. to h; = hp_ are shown as a function of the
number of calibration data points. \j. for each of the transfer meth-
ods. The calibration model consists of a FFNN having .\, = 8 hidden
neurons that. excluding the PICN BP method. are initialised to values

providing iy € Hp,,.

The calibration errors. as measured by é,. in performing a calibration
transfer from hy = hp. to hy = hp_ are shown as a function of the
number of calibration data points. Nj. for each of the transfer meth-
ods. The calibration model consists of a FFNN having .\, = 8 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing h; € Hp,, .

The calibrarion errors. as measured by ¢,. in performing a calibration

transfer from A, = hp. to hy = th are shown as a function of the
number of calibration data points. \j. for each of the transfer meth-
ods. The calibration model consists of a FFNN having .V, = 8 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing hy € Hp,, .

The calibration errors. as measured by €,. in performing a calibration

transfer from hk hp. to h, = hp“ are shown as a function of the
number of calibration data points. .\\j. for each of the transfer meth-
ods. The calibration model consists of a FFNN having \,, = 8 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing hy € Hp.,.

The calibration errors. as measured by é,. in performing a calibration

transfer from Ay = /zp. to h; = hp~ are shown as a function of the
number of calibration data points. \V;. for each of the transfer methods.
The calibration model consists of a FFNN having \,, = 10 hidden

neurons that. excluding the PICX BP method. are initialised to values

providing k. € Hp,,, .

The calibration errors. as measured by é,. in performing a calibration

transfer from lu = hp. to hy = hpi are shown as a function of the
number of calibration data points. \;. for each of the transfer methods.
The calibration model consists of a FFNN having \,, = 10 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing h, € Hp,,-
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7 The calibration errors. as measured by ¢,. in performing a calibration

transfer from h, = hp. t hy = hp are shown as a function of the
number of calibration data points. \\;. for each of the trransfer methods.
The calibration model consists of a FFNN having \\V,, = 10 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing hy € Hp,,, -

The calibration errors. as measured by (4. in performing a calibration

transfer from Ay = hp. to hy = hp,, are shown as a function of the
number of calibration data points. ;. for each of the transfer methods.
The calibration model consists of a FFNN having N, = 10 hidden
neurons that. excluding the PICNX BP method. are initialised to values
providing hy € Hp,, .

The calibration errors. as measured by ¢,. in performing a calibration

transfer from h; = hm to h, = hR. are shown as a function of the
number of calibration data points. V. for each of the transfer meth-
ods. The calibration model consists of a FFNYN havi ing .\, = 5 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing hy € Hpg,, .

The calibration errors. as measured by ¢,. in performing a calibration

transfer from h,\ th to lz, = hR, are shown as a function of the
number of calibration data points. \;. for each of the transfer meth-
ods. The calibration model consists of a FFXN having Vv, = 5 hidden
neurons that. excluding the PICX BP method. are initialised to values
providing h; € Hpg.,.

The calibration errors. as measured by é,. in performing a calibration

transfer from hy = hR, to h, = hR._. are shown as a function of the
number of calibration data points. V. for each of the transfer meth-
ods. The calibration model consists of a FFNN having .V,, = 5 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing hy € Hp,, .

The calibration errors. as measured by €,. in performing a calibration

transfer from Ay = hRl to by = hm are shown as a function of the
number of calibration data points. \\j. for each of the transfer meth-
ods. The calibration model consists of a FENXN having .V, = 3 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing /i, € H gs, -

The calibration errors. as measured by ¢,. in performing a calibration

transfer from hy = /zR to h, = IzR_A are shown as a function of the
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6.1

The calibration errors. as measured by ¢,. in performing a calibration
transfer from h,\ = 11,.I to h, = h ,,\ are shown as a function of the
number of calibration data points. \;. for each of the transfer meth-
ods. The calibration model consists ofa FFNNXN having .\, = 3 hidden
neurons that. excluding the PICX BP method. are inirialised to values
providing i, € Hp.. .

The calibration errors. as measured by ¢,. in performing a calibration

transfer from hk = hR to by = hR, are shown as a function of the
number of calibration data points. \j. for each of the transfer meth-
ods. The calibration model consists of a FFNN having .\, = 8 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing iy € Hg,, -
The calibration errors. as measured by ¢,. in performing a calibration

transfer from hk hR, to /z, = hp are shown as a function of the
number of calibration data points. \j. for each of the transfer meth-
ods. The calibration model consists of a FFNN having .V, = 8 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing h; € Hp,, -
The calibration errors. as measured by ¢,. in performing a calibration

transfer from hy = hm to hy = /zR__ are shown as a function of the
number of calibration data points. \\;. for each of the transfer meth-
ods. The calibration model consists of a FFNXN having .\, = 8 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing ;. € Hg., -

The calibration errors. as measured by é4. in performing a calibration
transfer from hy = hg, to h; = hm are shown as a function of the
number of calibration data points. V. for each of the transfer meth-

ods. The calibration model consists of a FFNN having .V,, = 8 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing hy. € Hr.,-
The calibration errors. as measured by ¢,. in performing a calibration

transfer from Ay = hm o h = hR,‘ are shown as a function of the
number of calibration data points. .\\N;. for each of the transfer meth-
ods. The calibration model consists of a FFNN having .\, = 8 hidden
neurons that. excluding the PICX BP method. are initialised to values

providing hy € Hrp...

The calibration errors in performing a calibration transfer from hy =
hR. to by = lzp, as a function of \} for each of the transfer methods
using a FFNN having .\, = 5 hidden neurons initialised to values

associated with hy € Hpg,, .
The calibration errors. measured by €,. in performing an ideal calibra-

tion transfer from Ay to hy using hy = hg, to Iy = hp, as a function of
2V for the iDACX Spline and iDACX linear methods.
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BP

DS
D"-iDACX
FFNN
GSS
GSSE
tDACY
LIVR
MARS
NIR
AYAY
PDS
PCA
PCR
PICX
PLS
PPR
RMSECYV
RMSEP
SEP
SSE
Std. Cal.

List of Abbreviations

Acronyms and Nomenclature

Backpropagation.

Direct standarisation.

D™ Indirect additive calibration transfer.
Feedforward neural network.
Generalised Shannon Sampling.
Generalised sum squared error.

Indirect additive calibration transfer.
Local weighted regression.

Multivariate adaptive regression splines.
Near-infrared.

Neural network.

Piecewise direct standarisation.
Principal component analysis.

Principal component regression.

Prior initialisation calibration transfer.
Partial least squares.

Projection pursuit regression.

Root mean standard error of cross validation.
Root mean standard error of prediction.
Standard error of prediction.

Sum squared error.

Standard Calibration.
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Symbols

a; ith input to a neuron.

e True calibration error.

é Estimation of true calibration error.

€q Approximation error.

€D Error in data values.

€. Estimation error.

€, Generalisation error.

€1r Error in slope values.

er Error in using rth hint.

f. Similarity map on the space of sensor outputs.

f, Similarity map on the space of instrument responses.

f. Similarity map on the space of input measurements.

g Ideal sensor svstem.

h Ideal calibration model.

h Approximation of the ideal calibration model.

h Approximation of the ideal calibration model using AH.

h* Approximation of the ideal calibration model having the least ¢,.
h~ An approximation of the ideal calibration model that may not

have the least ¢,.

my Number of neurons in laver .

m, Slope tuning parameter.

0, Output from the jth neuron.

S Ideal similarity function.

§ Approximation of ideal similarity function.

Ujk Ath tvpe of net input to the jth neuron.

wfl Weight connecting the output of the ith neuron in laver £ — 1
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to the input of the jth neuron in laver k.
Cost or objective function used in FENN supervised learning

or the error surface used by FEFNN supervised learning algorithm.

L]

Value of global minima of C'.

Finite calibration data set. for / > 0.
Complete infinite calibration dara set.
I[dentity function r = I(r).
Information content of object a.
Improvement Factor.

Number of layers in a fullv connected FFNN.
Number of points in a data set.

Test or validation data set.

True complete calibration data set.
Projected sensor output space.

FENXN weight space.

Sensor output space.

Instrument response space.

Measurement space.

Descent direction in W and on C at the nth descent step.

FENN weight vector at the nth epoch of learning. w =

FFXNXN weights vector providing h°.
FEXN weight vector providing h~.
Sensor output.

Instrument output.

Input measurement.

Hessian matrix of C with respect to w.

Identity matrix.
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Al Inverse of matrix A.

A~ Generalised inverse or pseudoinverse of matrix A.
g Gradient vector of C' with respect to w.

n Step size or learning rate parameter used in FENN supervised learning.
n* Optimum step size.

v, Activation state of the jth neuron.

o, Activation function of the jth neuron.

AG Similarity map on the space of sensor svstems.
AH Similarity map on the space of calibration models.
Aw Change in the FENN weight vector.

P, Output function of the jth neuron.

N The set of natural number {1.2.3.... . }.

R The real line.

v For all.

3 There exists.

€ Element of.

— Approaches.

N Intersection.

U Union.

C Subset.

? Empty set.

L:) Cardinality of a set D. that is the number of unique elements in a set.
{-} Set of elements.

] Closed interval or row vector or an array.

(m x n) Dimensions of a matrix having m rows and n columns.
Oisnvny A mrow by n column matrix of elements having a value of zero.

1invn) A m row by n column matrix of elements having a value of one.
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Typographic meaning of symbols

Boldface lowercase svmbols are column vectors.

Boldface uppercase svmbols are arravs.

Uppercase svmbols are finite or infinite sets.

Lowercase symbols are functions or variables.

Calligraphic symbols are vector or normed vector spaces. or operators.

Operators

Distance function or distance metric.

Differentiation.
Inner or dot product.
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1. Introduction

1.1 Overview

1.1.1 Background

The recalibration of analvtical instruments is commonly viewed as an inevitable
task that is needed to ensure that the level of uncertainty in an instrument s readings
is within some set of bounds defined by an application. When the uncertainty in
the instrument readings is suspect or known to be outside of these bounds. due to
events such as component replacement or drifting of component characteristics. the
instrument is recalibrated. Tvpically. the recalibration of instruments does not raise
much of a concern until the cost. in terms of the time and resources needed to perform

a recalibration. becomes a significant burden on the application’s budget.

The cost burden due to calibration is influenced primarily by three factors as-
sociated with calibrating an instrument: the total number of calibration samples or
data needed for a calibration. the frequency of calibration. and the cost per calibra-
tion sample. The cost per calibration sample. in particular. may hide a number of
additional concerns that need to be considered such as the storage. transportation.
preparation. collection. and processing of the samples. Estimating a value for these
factors then provides a means of assessing both the total cost of calibration and the

sensitivity of the application’s budget to the cost of calibration.

It becomes clear. given an indispensable instrument with a significant calibration
cost. that there is a strong desire to reduce any one or all of the factors that contribute
to this cost: the total number of calibration samples. the frequency of calibration.

or the cost per calibration sample. This desire has resulted in numerous approaches



that can potentially reduce the cost of calibration. Some of the more obvious ap-
proaches. for example in reducing the frequency of caiibration. include improving the
performance characteristic of the instrument with the use of more stable and accurate
components and imposing tighter control on the factors known to influence the instru-
ment response 1. To reduce the cost per calibration sample. the logistics involved

in sample handling represent another obvious approach.

There are also a number of approaches that can be used to reduce the number
of calibration samples. These approaches can be seen as methods that attempt to
solve the problem of excessive calibration data or alternativelv. as attempts to use
the data more efficiently. The premise used in applving these methods is that either
data exist which do not contribute appreciably to the accuracy of calibration or that
the data contain additional information that can be used to increase the accuracy of

the calibration.

These data reduction methods can also be placed in one of two contexts. The
first is rhe context of a single isolated calibration where it is desired to optimise the
data usage for that calibration. The second context is that of multiple calibrations.
either over time or across instruments or both. In this second context. the desire is to
optimise the data usage over multiple calibrations. Though not explicitly described in
this manner. much of the instrumentation literature concerning the problem referred
to as the calibration transfer problem {2.3] can be viewed as a problem in calibration

using a small number of samples within the context of multiple calibrations.

The nature of the calibration transfer problem that is the focus of this thesis is
that of multiple calibrations. specifically over two calibrations. In particular. the cali-
bration problem examined in this thesis can be characterised as using the assumption
that a first calibration results in an instrument having a relatively high degree of accu-
racy and whose calibration is obtained at great expense. This instrument calibration
also results in producing. what is referred to as. an instrument calibration model.

The calibration transfer problem examined by this thesis can then be described as

(AV]



the problem associated with the attempt to exploit the knowledge of the first calibra-
tion model so as to obtain a second calibration model which has acceptable accuracy
and which is obtained using less data than that used to obtain the first calibration

model.

Calibration transfer methods have only recently been introduced into the instru-
mentation field. Most of these methods are based on linear or piecewise linear tech-
niques where the instrument calibration model is also tyvpically linear. Even more
recent is the use of nonlinear multivariate calibration models. such as those provided
by the static artificial feedforward neural network. FFNN. Methods of calibration
transfer for these nonlinear models are clearly lacking in the literature. Therefore.
this thesis partially fills this void in the literature by proposing a number of methods
that can be used to perform a calibration transfer for the nonlinear FFNN calibration

model.

1.1.2 Purpose

The purpose of this thesis is to propose and evaluate a number of approaches
that can be used to reduce the data needed for the calibration. particularly the
recalibration. of instruments whose calibration model is based on the static artificial
FENXN. In the framework of the current instrumentation literature these proposed
approaches represent novel calibration transfer methods for instruments based on a

FENN.

1.1.3 Objectives

The specific objective of this thesis is to determine if anyv of proposed methods

of calibration transfer for instruments using a FFNN as their calibration model can

achieve.

for a given number of calibration samples. an improvement in the calibration

accuracy as compared to that achievable in a standard recalibration emploving



conventional backpropagation learning.

1.1.4 Contributions

This thesis provides the following contributions to the field of instrumentation

as 1t relates ro calibrarion.

1. Introduces the indirect additive calibration transfer. iDACN. and the prior ini-

tialisation calibration transfer. PICX. methods for the FENN based instrument.

(V]

Develops the D'"'-iDACNX calibration transfer methods for the FENN based

instrument. This work represents new development.

3. Introduces the concept of a similarity mapping. a unifving framework from

which to view calibration transfer problems.

1. Introduces the generalised sum squared error. GSSE. as a measure of the error
between calibration models over a finite set of points. The GSSE then forms
the bases of the D™ learning algorithms from which the D{V-iDACX methods

are developed.

1.1.5 Chapter overview

The remainder of this chapter begins by first defining the instrument system and
describing a number of instrument characteristics that are important to understand
in calibration and calibration transfer. The calibration transfer problem is then de-
scribed in terms of the previous notation introduced for the instrument system. This
is followed by discussing the use of the FEFNN in instrumentation application. An
introduction to the FENN based instrument calibration transfer problem is then pre-
sented. The chapter ends with a summary of the assumptions and limitations used

in the thesis and provides a brief thesis outline.



1.2 Instrument Calibration and Concerns

To consider the calibration transfer probleni as it applies to instruments with
calibration models based on the FFNN it will be convenient to first introduce the
appropriate mathematical notation and concept as it relates to calibration and recal-
ibration. This notation will allow for the precise expression of the general problems

and concerns in calibration and calibration transfer.

1.2.1 The instrument model and calibration

The concerns raised in calibration and the approaches used to address those
concerns can be described concisely by viewing the instrument measurement process
abstractly using the mathematical notion of a mapping or functional relationship.

This abstraction of the instrument is shown in Figure (1.1).

The process of making an instrument measurement can be viewed as a process

that transforms a measurement of a physical phenomenon. z = (2. z,. ... .:,}T € Z.
to a desired output reading y = [y1-y2-... - ym,’ € Y. where the notation z refers to

a column vector. z7 refers to a row vector. T is the transpose operator. £ C R repre-
sents the input measurement space and }J C R™ represents the instrument response
space. To avoid complicating the discussion and without any loss of generality. the

output reading will be confined to be a scalar quantity so that y € J C R.

To obtain an output reading. a measurement is tvpically made by physical devices.
such as sensors. which sample the measurement space and produce an intermediate
output x in the sensor output space. XY C R". x € X'. The sensor operation can then
be viewed as a vector mapping g : 2 — A’

The sensor output x is tvpically not useful in its direct form and requires that
another process. the calibration model. h. map x to a point y using # : X — ).
The measurenient operation can then be viewed as a composite map h o g or as the

functional relationship y = h(g(z)) = (h o g)(z).
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Figure 1.1. A block diagram of an ideal instrument syvstem illustrating
le] (e . o
the process of raking a measurement z from Z and providing

a corresponding output reading y.

In many tvpical instrumentation applications. g is usually fixed by the sensing
svstem. This implies that in order to obtain a useful reading y. the instrument
designer must determine an appropriate form for . Determining A is referred to as
calibration [4] and consists of selecting a model. for example. a linear model. and then

estimating the model parameters using. for exampie. linear regression.

The estimation of the parameters of the model relies on using a set of .\ calibration
samples. D = {(g(z;,) = X;.4;) : i = 1.2.... .. V}. that exemplifies the function h.
The set D is referred to as the calibration data set that can be obtained by the
common practice of controlled sampling. Controlled sampling requires setting the
input z to a series of known and fixed values so as to obtain a corresponding set of
values for x. These x values are then associated with a corresponding set of y values
that themselves where obtained independently. tvpically from another more accurate.

although more costlyv. instrument measurement of z.

Determining the calibration model h using D obtained by controlled sampling is
referred to as a controlled calibration {3]. Alternatively. a random calibration is also
possible [5] where x is not under any direct control. The random calibration case will

not be considered in this thesis.



1.2.2 Establishing the accuracy of the calibration

To attempt to reduce the number of calibration samples in D and still provide an
acceptable calibration model requires a means to measure the error in the calibration
model so as to determine whether it can be deemed acceprable. The acceptability of
the calibration model is rypically based on measuring the difference between a true

or desired model h and its approximation A obtained after calibration.

This difference between h and A can be expressed using a number of measures.
The most frequently reported measures are those based on a distance metric. d(-. -).

measuring the difference between two functions. defined as

c = d(h(x). h(x)) = [[h(x) = h(x)]]. (1.1)

where € is used to represent the error between the functions and || - || is the norm.
commonly based on the weighted Ly-norm [6]. so as to result in the error ¢ being

defined as

= [/ w(x)(h(x) - il(x))zllle . (1.2)
X

Here w(x) is a kernel type weighting function typically representing the probability
density function of x. For the present discussion. u’(x) is assumed to be the constant
function over A" equal to one. or alternatively. representing a uniform distribution of

x over X.

The difficulty in using the measure given by Equation (1.2) is that in practice h
is not known over all X. but onlyv at the values given by the calibration data set D.
This requires an estimate é of the error ¢ to be made. Again. a number of measures

are available to provide this estimate. a commonly cited measure is given by [4].

N,
%Z[h(xj) - hix)*| . (1.3)

J J=1

),
Il

where .V, is the number of samples used to determine ¢é. Since ¢ is an estimate of c.

Equation (1.3) is also referred to as being an estimator of e. The process of obtaining

il |



this estimate is part of a larger non-trivial problem referred to as model validation [4]

which has specific implications for calibration and later in calibration transfer.

To appreciate these implications of model validation. assume that a calibration
data set D has been collected and a calibration has determined 4. To instill a degree
of confidence in the accuracy of h requires obtaining ¢. Model validation methods
approach this problem typically by using a separare disjoint dataset T.i.e. TND = Q.
referred to as the test or validation data set. Pragmaticallv. this can be achieved by
splitting D into two sets and redefining D to be one set and defining T as the other

set.

The purpose in splitting the data set is to obtain an estimate ¢ using a data set
T that is independent of that used to obtain h. This splitting of the data set results
in the well known dilemma in the desire to obtain accuracvy in both é and h. To
obtain an accurate estimate of ¢ requires a large number of samples but this reduces
the accuracy of h by virtue that there are fewer representative samples of i in D on
which to base an approximation. On the other hand. using more samples in D to
improve the accuracy of h reduces the number of samples in T. hence the accuracy in
é is reduced. This dilemma can be resolved using a number of methods such as cross-
validation [7.8] which cleverly uses the entire data set to obtain é without sacrificing

the data used to obtain h.

When the error is estimated by cross-validation. using an expression similar to
that given by Equation (1.3). it is referred to as the root mean standard error of
cross validation. RMSECV. If a truly independent test set is used. the error estimate.
using Equation (1.3). is referred to as the root mean standard error of prediction.

RNSEP (4.

The temprtation of naively using all the data for calibration not only brings into
question any estimate of ¢ but it mayv also falsely indicate low error estimates. This
result is possible. especiallyv for specific tvpes of calibrarion models such as the FFNN.

when h is given great flexibility in its approximation capabilities. a characteristic re-



ferred to as over-parameterisation of the model. or an overly complex model {4]. In
general. increasing this approximation flexibility in A allows it to approach an arbitrar-
ily small error at the data points in D. that is. [|h(x,) — h(x,)ll. = 0.¥(x,. h(x,)) € D.
If this low error is approached by increasing the approximation flexibility of h then
this will increase the likelihood of greater errors for (x,. h(x,)) € D [9]. a phenomenon

often described as over-fitting [4.9] or under-smoothing [10}.

Finally. it should be noted that though the ideal calibration goal is to minimise
¢ using an appropriate h. pragmatically. that goal is not tvpically realised. Instead.
the application sets some upper bound for the estimate of the error and if any A has

an associated ¢ below this bound. then it is cousidered acceptable.

1.2.3 The need for recalibration

A number of factors. as outlined in Appendix A. influence the accuracy of
calibrations. A few of the obvious factors include. data errors. model selection. data
selection. and domain representation. All these factors will obviously also affect the
accuracy of recalibration. Additional considerations in recalibration result from those
factors that affect the error e or ¢ after a calibration has occurred. One of these factors

is the unpredictable variance of g either over time or across instruments.

In performing a calibration. the tacit assumption is that g does not varv during
the course of the calibration and. more importantly. does not vary for some period of
time after the calibration. Inevitably. g will change. thereby increasing the errors in
y by virtue that h og has changed and will no longer adequately map z to y. To more
precisely refer to rthese cases. the notation gy.. h4. and Dy will be used to represent the
Ath realisation of the sensor svstem. the calibration model. and the calibration data

set. respectively. and where & can represent a specific time interval or instrument.

The lack of invariance of g is a problem that is especially restricting for multi-
variate calibration. This restriction results from the cost burden of calibration on the

application and occurs primarily in conjunction with a high cost per sample and the



increased dimensionality of X'. Of course. any of the factors affecting calibration can

also increase the need for data samples and will also contribute to the cost burden.

Again. the pragmatic approach to counter the variation in g over time is to physi-
cally reduce the variation or to account for it explicitly in g. Explicitly accounting for
the variation in g can be accomplished by adding a sensing element that measures the
degree of the influence causing the variation. For example. if the sensor syvstem g is
particularly sensitive to temperature and the environment is thermally volatile. then
the addition of a temperature sensor will. in principle. allow the calibration model A
to account for the temperature variation. The drawback with this approach is that
the dimensionality of X' is increased. thereby increasing the number of calibration

data samples needed to determine an acceptable h.

The variation of g over instruments is also a common occurrence due to instrument
components which are not identical. Obviously. one approach to reduce the source of
this variation is to use instrument components which not only exhibit small variances
in their characteristics but also share equally small variances in their sensitivities to
influencing factors. such as temperature. humidity. and age. Components with these
attributes are typically very costly and not conducive to mass instrument production.
Another approach to reduce the variation of component characteristics is to simply
avoid exposing the instrument to the factors causing the variations. but this option

can often be impractical or very costly.

In other instances the variation in g is due to the more practical issue of compo-
nent replacement resulting from failure or due to unacceptable component operating

characteristics.

The variation in g must also be detected and this detection can present a non-
trivial and serious problem in deciding when to recalibrate. This problem in deciding
when to recalibrate will not be examined in this thesis. Instead. it will simply be
assumed that a decision to recalibrate has been made by some means. Appendix A

presents a brief discussion on the nature of this problem.

10



1.3 The Calibration Transfer Problem

In cases where it is not practical or economical to measure or control the source
of the variation in g. or where the source of the variation is not known. a recalibration
is needed to restore the calibration accuracy of the instrument. Then. if the recal-
ibration is of a multivariate instrument having a high cost per calibration sample.
recalibration will impose a severe restriction in using the instrument in that the cost
burden of calibration threatens the economic viability of the instrument. This pro-
vides a strong motivation to seek alternative approaches to a standard recalibration.
Though. as discussed previously. there are a number of specific approaches that can
be used to reduce either the need or data for recalibration. the approach that is of

interest in this thesis is that of calibration transfer.

In this section the problems in calibration transfer are described in terms of the
instrument model shown in Figure (1.1). The less treated topic of calibration transfer
for instruments using a nonparametric calibration model. such as the FFNN. is then
discussed briefly. This leads into the motivation for the use of a FENN as a calibration
model and finally into the specific concerns and problems of calibration transfer for

FFNNXN based instruments.

1.3.1 Describing the problem

Given that a variation in the sensor system g has resulted in an unacceptable
level of calibration error. the task facing the instrument user is to recalibrate the in-
strument so as to have an acceptable level of calibration error. The primary concern
in performing a recalibration is assumed to be the cost associated with the recalibra-
tion. [t is further assumed that the cost per calibration sample cannot be altered and.
therefore. the only means of reducing that cost of recalibration. besides not perform-
ing the recalibration. is to attempt to use less calibration data for the recalibration.
Again. to clearly distinguish the second calibration. or recalibration. from the first

or initial calibration. the notation g;. k. and D; will be used to represent the /th

11



realisation of the sensor svstem. the calibration model. and the calibration data set.

respectively. In this setting. the attempt to use less data for the recalibration. or

the /th calibration. is the attempt to have D; < D;. where the over set svmbol. (-).

represents the cardinality. or the number of elements. in the set.

Attempting to use less calibration data than what was used for the initial cali-
bration. known to provide an acceptable error. appears to be doomed to fail. This
failure is the consequence of the error in the approximation A having a tendency to
increase with a decrease in data samples. A calibration transfer approach is an at-
tempt to counter this tendency. when using less data. by exploiting the knowledge of
the calibration model /i by transferring the model so as to become £ or alternatively.
transferring the data obtained from g;. that is. x(/). so as to be able to use it with Ay.
Here the notation x(/) is used to indicate that x is dependent on the [th realisation

of the sensor system.

The term calibration transfer appears to have been the result of early attempts
to transfer a calibration model from a verv accurately and expensively calibrated
instrument to another instrument. The intent has been to only perform one expensive
calibration and to then use the corresponding calibration model to either obtain
additional calibration models for other instruments or to obtain a more accurate

calibration model for the same instrument.

To more precisely describe the calibration transfer problem. assume that the true
association between £ and Y is given by the map f = hog : z — y. It is also assumed
that this mapping is fixed over all time and instrument realisations. The true complete

calibration data set is then defined by Dy = Z x Y ={(z.f(z)=y):z2€ Z.y € }V'}.

The ideal instrument system then provides a kth realisation of this true association
between z and y. using by o gy : 2 — y. Pragmatically. only an approximation of this
true association is possible and for this thesis this approximation is given by the map
by o gi. Therefore. the standard calibration problem is to determine Ay using a finite

calibration data set Dy = {(gx(2:) = x, (k). he(x;(k))) i =1.2..... Vi)

12



Given a change in the sensor system from g to g; the ideal instrument will need to
provide the /th realisation of the true association given by the map hjog, = hiogi. By
definition. g; results in the approximation of the true association having unacceptable
errors. that is. the map hy o g: has unacceptable errors. A recalibration is needed
to obtain the approximation f; using the new calibration data set D, = {(gi(z,) =

X (). hy(x, (1)) :i=1.2..... AYE S

The calibration transfer problem can then be described generally as the problem
associated with the attempt to exploit an accurate. and possibly expensively obtained.
calibration model Ay so as to obtain another calibration model A; having acceptable

accuracy using less data than that used to obtain h,. that is. to have D, < Dy..

Many of the current methods of calibration transfer are based on linear or piece-
wise linear techniques where the instrument calibration model h is also assumed to
be linear. These linecar methods. as outline in Appendix B. have been shown to
achieve a transfer to A, that has acceptable accuracy with a reduction in the number
of calibration samples from that used to obtain h;. The more recent use of nonlinear.
nonparametric. multivariate calibration models. such as those provided by the FENN

have no reported methods analogous to calibration transfer.

1.3.2 Characteristics and concerns in nonparametric calibra-
tion transfer

The lack of attention in the literature regarding calibration transfer for multi-
variate. nonparametric. calibration models is not surprising when some of the more
predominant characteristics exhibited by nonparametric methods are considered. In
particular. two characteristics. the multivariate nature of the model and its non-
parametric approximation capabilities. could demand. as discussed in Appendix A.
a significant amount of calibration data. This demand for a significant amount of
data tends to portray the use of nonparametric methods in high dimensions as very
unfavourable and commonly results in citing the curse-of-dimensionality as a reason

for avoiding the use of nonparametric methods in multivariate approximations [11].
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However. this is not the case. since recently. the use of nonlinear models. obtained
with nonparametric methods. has been investigated as a means to determine A [12.13].
These nonlinear models have been shown. given a fixed number of samples and a

clearly nonlinear h. to provide greater accuracy than linear models [12.13].

In spite of this increased accuracy. nonparametric methods do raise concerns re-
garding implementation complexity and data needs. These concerns have also been
raised by Carey et al. [13] in comparing both linear and nonparametric methods in a
clearly nonlinear problem. Specifically. Carey et al. compared linear methods against
the nonparametric techniques of multivariate adaptive regression splines. \[ARS [14].
and projection pursuit regression. PPR [15]. in the calibration of nonlinear solid-state
sensor arrays. In their investigation Carey et al. noted that the nonparametric meth-
ods. though providing more than twice the accuracy of the linear methods. require
trading-off the needed calibration accuracy with the resources needed to perform the
calibration. These resources are primarily affected by the complexity of the calibration
process and the quantity of data needed to obtain acceptable accuracy. Consequently.
Carey et al. convey the impression that there is a strong desire to use nonlinear models
but that the complexity and the data requirements associatd with using these models

present serious obstacles that need to be addressed.

One specific concern regarding the calibration transfer problem in nonparametric
calibration models was also briefly noted by Naes et al. [16] in their conclusion
regarding the use of a new nonparametric method called local weighted regression.
LWR [11]. Naes et al not only claimed that LWR is simpler to use than other
nonparametric methods such as PPR but. more importantlv. LWR appears to be less
sensitive to instrument variations. that is variations in g. than linear methods based
on using PCR and PLS. This insensitivity was attributed to L\WR’s use of only the
first few principal components of the calibration data set to form a nonparametric
approximation. This is in direct contrast to linear methods based on using PCR and
PLS that tend to be used with a number of components. as determined by the user.

which account for most of the apparent relevant behaviour of g over X.
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It appears that LWR's nonlinear approximation capabilities allow it to obtain an
approximation h using fewer principal components than linear methods. It may also
be the case that the use of only a few principal components from a dimensionally
reduced &' is more effective in removing information that is due to irrelevant varia-
tions in g. regardless of the fact that the use of more components provides a better
account of the behaviour of g over A'. These observations regarding L\WR suggest
that other nonparametric methods may be able to obtain approximations using fewer
principal components than the linear methods. especially if the underlving relation-
ship is highly nonlinear. If this suggestion were true. it would tend to counter the
undesirable nonparametric characteristic of requiring more data for an approximation
by being able to operate in a lower dimensional space. Of course. the actual data
characteristics. which describe the distribution of relevant variations of g over X.

would determine the degree of dimensional reduction that is obtainable.

These observations suggest that nonparametric methods are not to be avoided in
the case of highly nonlinear g and. in addition to providing greater accuracy than
linear methods. may in fact be more conducive to calibration transfer. This then
raises the question of whether other nonparametric methods. such as those based on

using a FFNN. are. or can be made to be conducive to calibration transfer.

1.3.3 The need for FFNN calibration transfer

Motivation in using a FFNN calibration model

Very recently. the FFNN has been investigated as an alternative nonparametric
method in a wide range of instrumentation applications inciuding predicting product
quality {17]. measuring the moisture content of processed materials such as coal [18]
or wheat [19]. measuring the efficiency of suspended solid separation in a fluid [20].
measuring the concentration of ambient gases in multicomponent mixtures using ei-
ther an array of nonselective semiconductor sensors [21-26]. or an array of infrared or

ultraviolet optical sensors [27-30]. measuring and detecting specific odours [31, 32].

and numerous other applications [33-39].
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The motivation for these investigations are not without theoretical or empirical
support. Theoretically. the FFNN has been shown to be a universal approximator
in that it is capable of approximating any continuous functional relationship to any
required degree of accuracy [40--42]. Though there is a recognised gap between the
theoretical and the pragmatic results {9]. the FFNN has been shown empirically to
provide an accuracy that is better than linear methods and is comparable to or
better than other nonlinear methods in many diverse instrument applications [12. 43~
43]. In addition. the FFNN has been shown to be free from the dreaded curse-of-
dimensionality problem [46.47]. which other nonparametric methods are susceptible
to. such as those using local averaging in high dimensional spaces that include kernel
methods and spline smoothing [48]. It should be noted that FFNN is not complete
free from the curse-of-dimensionality in that conditions on the differentiability of the

underlying function to be approximated need to be satisfied ([47]. pg 114-119).

An additional motivation in selecting the FFNN for instrumentation applications
appears to be its repeated characterisation of possessing the capability of learning.
thus implyving a degree of cognitive superiority over other conventional non-FFNN
approximation methods. Though. as described in Chapter 3. FFNN learning can
be viewed as a nonlinear optimisation process. characterising the FFNN as being
capable of learning attracts attention. Relevant to this thesis. is the attention given
by a particular group of instrumentation applications: those having relationships
between the measurand and instrument reading that are tyvpified with expressions
such as. "being difficult to express analytically™ [19.34.39.49]. or simply as “being
complex. nonlinear. or multivariate” [34.38]. The successful use of the FFNN in
these applications has further characterised the FFNN as a method that is able to
handle these difficult and complex application and is relatively simple to apply. when
compared to other nonparametric methods. These statement are also supported by
the reports from instrumentation researchers who frequently cite these characteristics
as a factor in their decision in selecting the FENN for their investigations [19.20. 34.

37-39. 49. 50]
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Finally. the conclusions of many of these investigations provide another motivating
factor by conveving a sense of optimism regarding the use of the FENN in instrument
application: the FFNN represents a viable alternative as a calibration model and has
great promise in instrument applications. Though this optimism is clearly present in
the conclusion. it is usually tempered by a caveat: rhat due attention must be paid
in implementing the FFNN to avoid its known limitations. which are discussed in

Chapter 3.

Characteristics and Concerns in FFNN calibration transfer

Though the FFNN is a popular method for use in many instrumentation in-
vestigations. it is still a nonparametric technique. Therefore. it seems reasonable to
expect that it will exhibit the nouparametric characteristics that raise a concern in
both the cost of calibration and in the calibration transfer problem. As expected.
these concerns have been raised by others [51.52]. In particular. Kermani et al. [52]
have noted a concern in their investigation that mainly focuses on reducing the dimen-
sionality of a sensor array in an eclectronic nose. In briefly discussing some practical
issues regarding the use of the instrument. Kermani et al. point out that it is crucial
that the response of replacement sensors be consistent with the original sensor in
order for the neural network to provide repeatable results. However. in practice the
response of replacement sensors is always different enough to require retraining. i.e.
instrument recalibration. using a new set of calibration data. Kermani et al. then go

on to state that:

... Optimal strategies for the calibration of sensor arrayvs and their impact
on NN [neural networks| training/retraining is an important subject. . . .

L .

that requires further study. [emphasis added]

It is evident that the FFNN is playving a role in instrumentation applications but
that it exhibits undesirable nonparametric characteristics and has raised concerns
regarding calibration transfer. It is also clear. by virtue of the continuing investiga-

tions. that there are advantages in using a FFNYXN in these complex. nonlinear. and
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multivariate applications. Though the FFNN has been shown to be capable of ob-
taining an approximation of these complex relationships with a greater accuracy and
with relatively less effort than conventional approximation methods. its requirement
for data and the unaddressed problem of calibration transfer threatens the economic
viability of the instrument. It therefore seems appropriate to address this problem
and provide a solution that can increase the likelihood of the economic viability of

instruments using FFNN as their calibration model.

1.4 Assumptions and Limitations

Throughout the discussion in Chapter 1. a number of assumptions regarding the
calibration transfer for a FENN based instrument were stated. Additional assump-
tions will be made in the remainder of the thesis. For convenience these assumptions

are listed here.

In addition to these assumptions. the limitations and scope of the thesis are also
enumerated. A number of these items. in either list. are treated or discussed in later
chapters but are listed here to provide a sense of the direction taken by the thesis

investigation.
1. Assumed calibration conditions.

(a) The cost of calibration is a significant burden.

(b) The true or desired calibration model h cannot be adequately described

using a linear model.
(¢) An acceptable initial calibration model /i has been obtained.
(d) The calibration model A is implemented with a FFNN.

(¢) The true association between Z and ) is given by the map f = hog:z > y

that is assumed to be fixed over all time and instrument realisations.

(f) The kth realisation of the sensor system. represented by gi. changes in an

unpredictable wayv. This changed state is denoted as g;.
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(g) The sources contributing to the variation in g are unknown. Alternatively.
if the sources of the variation are known. it is not economically viable to

directly measure or to estimate these variations.
(h) The decision to recalibrate has been made by some means.

(1) The calibration or data samples used for the #th and /th calibration have

negligible error and are obtained using a controlled calibration.

(V]

Limitations and scope of the thesis

(a) The calibration rransfer methods to be proposed by this thesis are limited

to the following approaches:

i. An approach based on the indirect similaritv map. AH : hy — hy.
that is implemented using AH(h) = he + s;. This implementation is
realised using two methods.

A. A method. referred to as the indirect additive calibration transfer.
iDACNX. is introduced. This method implements AH by summing
fzk. realised by the FFNN. and §;. which is obtained using conven-
tional approximation methods.

B. A method. referred to as the D™ indirect additive calibration
transfer. D'"-iDACX. is developed. In this method AH is im-
plemented with the supervised learning algorithm used for the
FENN. This supervised learning algorithm uses the generalised
sum squared error. GSSE. measure that is limited to incorporating
the derivatives. up to order Ny = 1 with respect to x. of Ay and .
where 5, is obtained using conventional approximation methods.

ii. An approach based on a prior initialisation calibration transfer. PICX.
This approach initialises the weights of the FFNN to the values that
provided the approximation of a prior calibration model. that is. h,.

This approach is applied to the standard calibration emploving back-
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propagation learning and D'’ learning. This approach is also used in

conjunction with the D/W-iDACN methods.

(b) A hyvpothetical instrument calibration model will be used. It is not based
on an instrument of anyv particular class or characteristices.

(¢) The true underlying calibration model h has no restrictions. other than
continuity and a finite bandwidth. placed on it. All realisation of i can be
essentiallv considered a bandlimited random process h(x./) over x € X

and realisation / = 1.2.....

(d) The simulations are limited to the univariate calibration model. that is.

reXcR

(e) The true underlying calibration model / is known over all X’ and for all
realisations. This is simply intended to allow an accurate estimate of the
calibration error without the added complexity of cross-validation. This

information is not used to assist in the calibration transfer.

1.5 Thesis Outline

The remainder of the thesis presents the development and results of the FFNN
calibration transfer methods. This presentation begins with Chapter 2 where the
methods of calibration transfer and the prior and related literature are reviewed.
The chapter also introduces the concept of the similarity map from which the FENN
calibration transfer method is introduced. Chapter 3 presents the development of the
various FENN calibration transfer methods. Chapter 4 and Chapter 5 outline and
present the methods and results of the calibration transfer simulations. The results
of the simulations are discussed in Chapter 6. with concluding remarks provided in
Chapter 7. Numerous appendices are provided to support the development and ideas

presented in this thesis.
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2. Calibration Transfer

2.1 Overview

This chapter begins by reviewing the calibration transfer problem from a histori-
cal perspective where. from this historical vantage point. it is seen how the calibration
transfer problem arose from the need to recalibrate linear multivariate instruments.
This historical perspective also reveals. as was shown in Section 1.3. the lack of at-
tention given to the calibration transfer problem for the nonlinear. nonparametric.

multivariate calibration model.

To approach and provide attention to the calibration transfer problem for the
nonlinear calibration model. this chapter introduces the notion of a similarity map.
The similarity map provides a convenient framework from which to view and examine
linear and nonlinear calibration transfer methods. The assumptions and limitations
in using the notion of a similarity map are then outlined. The utility in using the
similarity map is then demonstrated by reviewing a number of reported calibration
transfer methods for linear calibration models and placing them within the framework
of a similarity map.

Finally. the FFNN calibration transfer problem is introduced in terms of this
similarity map. An approach to solve the FFNN calibration problem is then proposed
and a specific methodology to implement the proposed approach is outlined and
described. The results from other neural network researchers are then examined
and shown to support the approach proposed to solve the FFNN calibration transfer

problem.



2.1.1 Historical perspective of calibration transfer

Though the desire to reduce the data for a calibration has alwayvs been present.
it was the paper by Wang ef al. 2] that introduced a number of approaches that
allowed reducing the data for a calibration by a process described as transferring
calibrations from one instrument to another. specifically from one spectrometer to
another. Wang et al. referred to this process of transferring a calibration as an
“instrument standardization™ and did not refer to the process as a calibration transfer
or the problems associated with this process as a calibration transfer problem. It
was a paper by Adihetty {1} that actually referred to the process and problems of
transferring a calibration with the terms calibration transfer and calibration transfer
problem. respectively. Later papers by Wang and Kowalski [3. 53] also began to use
these terms and currently the process of transferring a calibration is referred to as

either a calibration transfer or an instrument standardisation.

The recognition of the instrument calibration problem appears to have coincided
with the maturing of the use of multivariate techniques for instrument calibration.
This perception is supported by the opening preface in the frequently cited text by
Martens and Naes [4]:

... The theory and practice of multivariate calibration has now come far
enough that a unified treatment of the topic is needed. ...

It is then evident that with the maturing of multivariate methods in instrument
calibration. its use moves from laboratory investigations to practical field and pro-
duction line applications. This then brings to the forefront the practical problems of

using multivariate calibration techniques.

The paper bv Wang ¢t al. [2] devoted a considerable portion of the introduction
to systematically describing the practical problems of multivariate calibration. Ac-
cording to Wang et al. [2]. there are three instances when calibration can become
a problem in NIR spectroscopy. These instances were discussed in general terms in

Section 1.2.3. It is instructive to summarise. in terms of Figure (1.1). these problem-

~N
o



atic instances described by Wang €t al. {2] simply to provide a sense of realism and

e

importance of the problem of calibration transfer.

According to Wang et al. [21. the first problematic instance for calibration occurs
when two or more supposedly identical instruments. at the same or different loca-
tions. require a calibration. The problem in this instance is that the instruments
are. in reality. not identical but have differences. due to sensors or other component
variations. These differences. assuming A instruments. translates to the Ath and /th
instruments having gy #g. k.l € {1.2.... . K}. Tvpically. one instrument. referred
to as the master. for example g,. is accurately calibrated with great expense to obtain
the calibration model h,. The problem is that i, cannot be placed inside. or trans-
ferred to. the other & # 1 instruments without incurring a reduction in measurement

accuracy. in spite of the instruments being similar.

The other problematic instance occurs during the use of a single instrument over
a period of time. In this instance the problem is. as generally described earlier. the
result of physicallv induced instrument changes. caused by factors such as component
aging or component replacement. This also results in g # g;. where now & represents
a time period and the next period is denoted by /. Again. the use of /; with g will
incur a reduction in accuracy so that the only recourse to maintain the initial accuracy

is to recalibrate.

The last instance occurs when an instrument is sensitive to a particular set of
uncontrollable. and difficult to measure. external factors that can exist during a par-
ticular time period. such as during an industrial production run. The problem. in
this instance. is that hi obtained during the kth period. or production run. is not
adequate given a different set of factors. or values of the factors. that exist over a
later time period or during a subsequent production run. This problem is similar
to the previous problem except now the change in g is not due to variation in the
characteristics of the internal instrument components but is due to the dependency

of g on the external factors.



In their report. Wang et al. [2] also proposed and evaluated four approaches to
address the problems in calibration transfer. These approaches are reviewed in de-
tail in Appendix B. Following the report by Wang et al. [2]. a number of other
approaches have been reported. As will be in shown Section 2.2 and in terms of the
definitions given in Section 1.3.1. most of the reported approaches use linear mul-
tivariate methods where it is also assumed that the calibration model. h as well as
g. can be adequately described using linear multivariate models. The assumption
of linearity then allows the use of well established dimensional reduction methods.
such as principal component regression. PCR. which regresses the principal compo-
nents determined by a principal component analvsis. PCA [4]. or partial least squares.

PLS. [54.533] to determine the explicit form of the needed calibration model.

The application of these reported solutions. when given nonparametric calibration
models or a highly nonlinear g. does not appear to have been given much attention
in the literature. This lack of attention also extends to the case of FENN based
calibration models. The void created by this lack of attention has been recognized by

others {13.52] as an area requiring further study.

With the increased use of highly nonlinear sensor svstems in instruments. the
need for nonparametric modelling methods grows more common. This growth also
increases the need to transfer calibrations. Therefore. it seems appropriate to ex-
amine the calibration transfer problem for a highly nonlinear g that is also used in
conjunction with a nonparametric calibration model. specifically. a calibration model

based on a FFNN.

2.2 Similarity as a Basis for Solving the Calibration
Transfer Problem

The idea presented in this section is the concept of exploiting the potential
similarity between various realisation of calibration models or sensor svstems as a

means to frame and approach the problem of calibration transfer. The concept of
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exploiting this similarity then leads into the introduction of the abstraction referred

to as a similarity map.

The motivation in approaching the calibration transfer problem with the concept
of similarity arises from the very common observation that a subjective sense of simi-
larity exists not only between many evervday objects but that this similarity appears
between curves representing a set of observations from phvsical phenomena. These
phenomena. for example. include the volume of air expelled as a function of time
(spirometer curves) for different individuals [56]. human growth curves {10]. or the
acceleration curves due to the side impact of motor vehicles [10]. The appearance of
similarity in these phenomenon is due partly to the phenomenon being governed by
some. possibly unknown. set of parameters whose values varving from one instance
of the phenomenon to another [57]. It then seems natural to consider the possibil-
ity that such similarity also exists between the responses provided by instruments
manufactured to measure the same phenomena or between the response of the same

instrument at different time intervals.

As will be discussed in later sections. the various reported approaches used to solve
the calibration transfer problem can be viewed as attempts to exploit the similarity
that may exist between components or systems forming the measurement process. as
defined by Figure (1.1). This similarity may exists between various realisations of
svstems within a single instrument or between systems of multiple instruments. This
view of a potential similarity between instrument systems is a broader perspective of
another view presented by Anderson and Kalivas [38] where some of the solutions to
the calibration transfer problem were placed in the context of Procrustes analyvsis. a

form of multidimensional similarity structure analysis [59].

This section begins by first presenting a framework that encompasses the cali-
bration transfer problem using the concept of a similarity mapping. The underlying
assumptions used to exploit the similaritvy map so as to reduce the data needed for

recalibration are then discussed.

N
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2.2.1 The framework of similarity

The observation of similarity between physical phenomena may have motivated
the approach to address the calibration transfer problem in near-infrared. NIR. spec-
trometers. In this case. using an extreme over-simplification of the instrument. it was
noticed that the differences between spectral responses. that is. x(k) = gy(2,) and
x(l) = gi(z,). of two supposedly identical instruments for a given measurement z,.
could. over many spectral regions. be approximated adequately using simple linear

relationships between x(&) and x(/) {53].

The consequence of this realisation results in the potential to represent the linear
changes in the spectra using less calibration data than the calibration data needed
to represent the entire individual spectra [2]. This realisation then became the im-
petus for the development of a number of approaches by Wang et al [2] and other

investigators to address the calibration transfer problem.

This idea of linearly transforming g;(z) into being similar to g (z). parallels many
ideas reported earlier by other researchers. One of the closest parallels was noted by
Anderson and Kalivas [38] in reporting that many of the calibration transfer solutions
can in fact be shown to be identical to Procrustes analvsis. a form of multidimensional

similarity structural analysis [39]. developed much earlier.

Procrustes analvsis attempts to fit one set of data so as to have it as similar as
possible to another set under a given series of admissible transforms referred to as
similarity transforms [59]. Similarity transforms are those that do not change the
ratio of the distances between the data points. thereby maintaining the shape or
form represented by the data. These transforms include operations such as rotation.
reflection. translation. or dilation [39]. The two data sets used in these transforms
are tvpically organized into matrices and matrix algebra and calculus are used to find

the least squares fit between the two sets of data.

In calibration transfer. the spectral data. for example. are also expressed as ma-

trices and the required transformation is obtained by estimating. in the least squared
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sense. the coeflicients of a linear set of equations. These types of calibration trans-
fer solutions were shown by Anderson and Kalivas (58] to be a form of Procrustes
analyvsis.

Another earlier idea motivated by similarities between curves or functions. that is
not based on using the matrix transformation of Procrustes analvsis. was the shape
tnvariant model proposed by Lawton et al. [56]. In this case. Lawton et al. proposed
that any /th curve. that is. function. f, : R — R from a set of related curves F. i.e.

fit € F could be represented using

(.' - ()0 )
SO r) =6y + 6, fo (10—_,)) . (2.1)
RY]

where r € R. 8,,. provides the shifting with j = {0.2} . and scaling with j = {1.3} for
the /th function. and fy is the characteristic shape for the set of curves. which can be
any member of F. Lawton et al. were interested in determining the best parametric

curve fq for a given set of similar curves.

A common approach presents itself when these methods of calibration are exam-
ined: a mapping of either a function to another function or the mapping of one set
of values to another set of values. For example. the approaches proposed by Wang et
al. {2] to address the calibration transfer problem can be viewed not only as a linear
transformation of g;(z) so as to make it similar to g.(z) but as a vector mapping
operation. f; : g/(z) — g«(2z). In this example. the NIR transformation discussed
previously. a map f; may be given bv g.(z) = gi(z)7s. where s € R” provides the
linear scaling of g;(z) over X. which represents the n wavelengths measured by the

spectrometer.

Stepping back further and viewing the entire instrument operation in conjunction
with the change of gi to g;. it seems natural to seek methods that could effectivelv
make it appear as if g, were restored back to g using any mapping operation on anv
component or systems forming the measurement process. as defined by Figure (1.1).
With this view and a perspective of calibration transfer. a number of possible mapping

strategies become evident.
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Since these mapping strategies are attempting to restore the instrument operation
so that it is similar to that of the kth calibration. they will be referred to as similarity

mappings. Then. using Figure (1.1). a number of similaritv mappings can be formed.

In expressing these similarity maps it will be convenient to designate the instru-
ment functions and spaces that where obtained with high accuracy and significant
cost as the master functions or spaces. These functions and spaces have been previ-
ously referred to as comprising the Ath realisation of the instrument. It will also be
convenient to refer to the changed functions. i.e. g;. and associated spaces obtained
for the /th realisation of the instrument as the slave functions or spaces. The terms
master and slave are also used in many of the reported calibration transfer methods

reviewed in this thesis.

Now the impetus requiring a recalibration to be performed results from changes in
the sensor system. that is. gi changes to g;. The desired similarity mapping operation
which can accommodate this change are those which can effectively make it appear to
the instrument as if g had not changed at all. This approach to obtain the similarity
maps can be viewed as a direct approach in applving the similarity map. in that it is
g that has directly changed for some physical reason. For reference. a similarity map
obtained using this approach will be referred to as a direct similarity map. The direct
similarity map can then be viewed as a process that provides a calibration transfer
SO as to attempt to achieve a transformation or transfer such that it is still possible

to use hy.

To visualise how to achieve this transfer or similaritv map. it will be instructive
to refer to Figure (1.1) and then set 4 to Ay and g to g:- The idea is to then add any
operations or functions to the block diagram of Figure (1.1). such that the resulting
instrument operation is equivalent to iz ogy. The direct similarity map is then defined
to consist of the operations or functions added to the block diagram so as to achieved
the needed equivalence. hy o gx. The direct similarity map can then be viewed as

allowing the continued use of h; in the presence of g;.
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Given this definition of the direct similarity map. a number of maps or functions
that can achieve the required equivalence become apparent. In identifving these
similarity maps. it should be noted that the maps can be considered as functions on
A. where 1 is is defined as a space that depends on the nature of the similaritv map.

For example. the direct similarity mappings on A that can be formed are listed below.

1. For 4 = { the space of calibration models }. AH : h; — hy

(8

For 4 = { the space of sensor systems }. AG : g, — g;
3. For 4 = X'. the sensor output space. f, : x(/] — x(k) or £, : g/(z) = gi(2)
4. For 4 = ). the measurement space. f. : z — (g, ' o g;)(2)

5. For A = Z. the instrument response space. f, : y; — y; which after some

work is equivalent to

[ A7)
%)
~——

foiu = ((heoge) o (hiog)) ™ (w) = uk (

Here g~! denotes the functional inverse. i.e. g='og = gog™! = I. where [ is the
identity mapping I(u) = u. and not 1/g. Again. the subscripts and dependencies &
and [ are used to denote the Ath and [th realisations of calibration model or sensor
svstemn. It should also be noted that these direct similarity maps are ideal maps in
that they result in perfectly replicating the Ath realisation of the various instrument
systems from the corresponding /th realisation.

An alternative approach to obtain similarity mappings can be achieved with the
desire to use the knowledge of gi. which was obtained during the kth calibration. In
other words. given the change in g;. how can the knowledge of gi be used to help
estimate hy.

In terms of Figure (1.1). set / to Iy and g to g,.. In this case. a similarity mapping is
formed by the addition of any admissible operations or functions to the block diagram

that will achieve a mapping equivalent to h; o g;. For reference. similarity maps
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obtained in this manner will be called indirect similarity maps. in that the change
is viewed to be indirectly occurring through A, with g, still present. The indirect
similarity maps that can achieve this equivalence are then identical to those listed

previously. except all the A and [ subscripts and dependencies should be interchanged.
\ p I a

It should be noted that a number of the listed items are. in terms of instrument cal-
ibration. effectively nonsense mappings in that thev require knowledge of the changed
sensor system g;. or g,‘l. or calibration model fz,. If g or h; were known there would
be no need to calibrate.

For any valid similarity map. the actual relation or transformation defining the
map can be expressed in a number ways. so long as the definition of the actual
mapping is still identical to the valid similarity map. For example. the indirect
similarity mapping for the space A of calibration models. AH item (1) with the &kth

and [th subscripts interchanged. can be defined as

hy = hy + s;. where s; = hy — hy.. (2.3)
or using

hy = hgsy. where s; = hy/hy. (2.4)
or as

hy = AH(hy). where AH = h; o /1;1. (2.5)

where s, € R is referred to as the similarity function. In the same manner. the direct
similarity map for the space A of sensor outputs. f.. item (3). can be defined. for

example. using

x(k) = ge(z) = gi(z) + s/(z) where s/(z) = x(&) — g(2). (2.6)

where. in this example. s; € R". other definitions include

~~
[
.
=1

~—

x(k) = gu(2z) = gi(z)s;(2) where si(z) = x(k)/g(z).
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or

x(k) = fr(x(!])) where f, = g, og(_'. (2.8)

2.2.2 The underlying assumptions in using similarity maps

In general. a calibration transfer. viewed as a similarity mapping. does not imply.
for example. that the /th calibration model can be obtained with less data than the
kth calibration model. The similarity maps simply show that it is possible to obtain.
for example. the Ith calibration model using knowledge of the kth calibration model.
The question of whether it is possible. in using a calibration transfer. to reduce
the calibration data can be answered by first viewing the calibration transfer as a
similarity map.

A similarity map. in the context of a calibration transfer. is simply another func-
tion that needs to be determined from a set of data. Having obtained the similarity
map then allows a calibration transfer. In other words. the answer to the question
of whether it is possible to reduce the data needed for a calibration transfer is given
by the answer to the question of whether the data needed to obtain an acceptable
similiarity map is less than the data needed to obtain. for example. the [th calibration

model without the use of a similarity map.

Qualitative answers to this latter question are not difficult to obtain. Consider the
case where the similarity map is as compler as. for example. h;. it becomes apparent
that the similarity map will require a quantity of data that is comparable to that
needed to obtain /. In other words. there is no advantage in using a similaritv map
in this case. Alternatively. if the similarity map is sitnple relative to k. then the data
needed to obtain the similarity map will be less than the data needed to obtain ;.

thus allowing a reduction in the data needed for a calibration transfer.

These qualitative answers imply that the degree of complerity or simplicity of the
similarity map is related to the degree of similarity. or alternatively. the degree of rel-

evant dissimilarity. that exists between the kth and /th realisation of the instrument.
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Ignoring for the moment the lack of precise mathematical definitions for terms such
as. "complexity’ and ‘similarity’. it is reasonable to expect that a minimal amount
data would be needed to obtain the similarity map in the case. for example. of iden-
tical Ath and /th realisation of an instrument. In contrast. obtaining either the kth
or [th realisation of h or g. regardless of whether they were identical. mav require a
quantity of data that is greater than the minimal amount data needed to obtain the
similarity map. In other words. the assumption in using the similarity map. that is
a calibration transfer. is the assumption of similarity between the kth and /th real-
1sations of the instrument. such that as the similarity increases the amount of data

needed to obtain an acceptable similarity map decreases.

Unfortunately. given unpredictable. nonlinear instrument realisations. it is a non-
trivial matter to define complezity and similarity so as to allow determining the degree
of data needed to obtain the similarity map or perform a calibration transfer. Further
misfortune is provided by realising that even if a measure of similarity were given. it
is not possible. unless prior information is used. to obtain an estimate of the degree of
similarity without first obtaining the data needed for recalibration. In other words.
the data needed to obtain an acceptable estimate of the degree of similarity may

exceed the data needed to actually perform the calibration transfer.

Therefore. in spite of the obvious relationship that exists between the similarity
in instrument realisations and the data needed to obtain the similarity map. it is not
at all obvious how to explicitly determine this relationship. It is also not the intent
of this thesis to dwell on the problems associated with determining this relationship.
Instead. it is more important. in the context of this thesis. to point out that it is the
assumption of similarity between the Ath and /th instrument realisations that is relied

upon to allow a potential reduction in the data needed for a calibration transfer.

The practical consequence of the assumption of similarity. in the context of a cal-
ibration transfer. is that it is used without knowing the degree of simnilarity prior to

the calibration transfer. Therefore. the resulting calibration error from a calibration
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transfer will vary with the approximation error of the similiarity map whose com-
plexity is dependent on the underlying similarity between the Ath and /th instrument

realisations.

The impact of changes in the underlving similaritv between the Ath and {th in-
strument realisations on the calibration error can be reduced by using additional
information to assist in obtaining the similarity map. For example. if it were known
that the similarity between the unpredictable. nonlinear Ath and /th instrument re-
alisations could always be adequately described using a linear relationship. then it
would only be necessary to collect two data points to determined this relationship so

as to allow an acceptable calibration transfer.

A simple attempt to understand the relationship that similarity has with the data
needed for a calibration transfer and impact that the use of prior information has on
this relationship can be obtained by viewing either h. g. and the difference between
the Ath and /th realisations as objects. Here the difference between the Ath and /th
realisations is defined by the similarity map and its implementation that is selected
to be used. For example. in using the similaritv map AH. the difference between by
and h; can be given by h; — h; or by h;/hi depending on which implementation is
selected for the map. Regardless of the definition of this difference. it is the view that
allows determining the information needed to adequately describe these objects that
is of interest. This view is well developed in the field of information theory [60.61]
and it is used here in a very elementary manner without rigorous supporting proofs

for statements.

It will be convenient to assume that all possible objects. as defined previously. form
a set. It is also necessary to assume that one of the objects can be designated as a
reference object. Now assume the existance of a metric I, which indicates the quantity
of information needed to describe the difference between object a and the reference
object. In this context. I, = 0 indicates that no additional information is needed to

describe object a. that is. object a is equivalent to the reference object. In addition.
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let I, < I, indicate that the information needed to describe the difference between
object @ and the reference object is less than the information needed to describe the
difference between object b and the reference object. Also. let I, = [, # 0 indicate
that object a is equivalent to object b. both of which require the same amount of
information to describe their difference between the reference object. Note that the

equivalence of object @ with b is in terms of the metric 7.

Now. let [;.. I; and I;_;. denote the information needed to adequately describe
the Ath and /th objects. and the difference between them. respectively. In practical
terms. the possibilties that confront a calibration transfer can be then described with

the following conditional relationships.

1. [k._.( < [l .

[EV]

. [k-—bl - 1[ .

3. [k._.{ > 1.

Now assume it is possible to relate the measure given by [ to the data needed to
describe an object. In this context. only item (1) allows the potential to reduce the
data needed for a calibration transfer. that is the data needed to obtain the similarity
map which describes the difference object & and I. The degrec of potential data
reduction is related to AJ = I} — I;.,,. that is. A] = 0 would indicate that it is
not possible to reduce the data and A/ = I, would indicate that the reduction could
potentially be equal to that needed to describe object /. In this case. if the quantity of
data is reduced to below the point specified by /,..,. then the calibration transfer will
introduce calibration errors by virtue that the information is insufficient to adequately
describe the similarity. Obviously. a further reduction in the data. in this case. would
tend to increase the calibration errors. Item (2) indicates that it is not possible to
reduce the data needed for a calibration transfer and item (3) indicates that the data
needed to perform a calibration transfer will be greater than that needed to perform

a standard calibration which obtains A,.
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The use of relevant prior information 0 < I, < i to assist in obtaining the
similarity map will appear as an additional term on the righthand side of the previous
conditional relationships. that is. the appearance of the expression I; + I, will result.
Note it is assumed that the measure of this prior information can not exceed that
given by Ii_;. Now. for item (1) the degree of potential data reduction would then
be related to [, + I, — I,y > I; — It.;. which when given 0 < I, < I, results
in I} — Ity < Al < I, For item (2). the data potential reduction is related to
0 < Al < Ii;. When item (3) is true. the reduction in data is only possible when

Ip > ey — 1.

Though the use of a metric given by I allows a very simple understanding of
the limits in using similarity maps. in practice the use of I is severely restricted.
This restriction results from the difficulty that can be associated with determining an
adequate metric [ for the objects of interest and to the difficulty in then relating this
measure to the data needed to describe the objects. In this context. the importance
of the previous discussion is in the awareness it raises regarding the limits of using

similarity maps or calibration transfer methods.

2.2.3 Conventional calibration transfer solutions in the con-
text of similarity maps

Instrument standarisation

Wang et al [2] proposed a number of linear and piecewise linear methods to
approach the calibration transfer problem. The relationship between these methods
and the similarity maps is reviewed in detailed in Appendix B and is brieflv described

here.

The calibration transfer methods proposed by Wang et al. are referred to as a
standarisation with the classical calibration model. a standardisation with the inverse
calibration model. a direct standarisation. DS. and a piecewise direct standardisation.
PDS. Appendix B discusses and shows how the standarisations methods proposed by

Wang et al can be placed within the framework of the similarity map. Specifically.
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it is shown that the classical calibration model can be placed in the context of an
indirect similarity map over the space of sensor svstems. Standardisation with the
inverse calibration model can also be placed in the context of an indirect similarity
map. but the map is now over the space of calibration models. Both DS and PDS
can be place in the context of a direct similarity map over the sensor output space.
The PDS method differs from DS by forming a mapping f, that consists of piecewise

series of individual linear maps on various subspaces of the X'.

Following the publication of the paper by Wang et al. [2]. the results of a num-
ber of additional investigations were reported that applied the calibration transfer
methods described by Wang et al. [2]. In particular. the DS and PDS methods were
the subject of many of investigations which showed that standarisation. or a cali-
bration transfer. could provide a calibration accuracy comparable to that obtainable
from a full instrument recalibration [3]. that is. a recalibration not using a calibration
transfer method. It was also shown by Wang et al. [62] that the accuracy of a less
capable instrument could be improved. over that provided by a full recalibration.
by standarising the less capable instrument with an instrument capable of greater
accuracy. \Wang and Kowalski also applied PDS to account for temperature induced
variations of the instrument response {53]. The PDS method was later modified to
allow it to correct for baseline offsets. also known as background corrections which
corrects for the case of x # 0 given g(0) [63]. A problem with PDS. and a solution.
were also reported by Gemperline et al. [64]. who had noticed the introduction of
discontinuiries in spectra transferred by PDS. \More recently. PDS has been success-
fully applied to transfer calibrations of spectrometers used with fibre optic probes of

various lengths [65].

Other methods of calibration transfer

Calibration transfer is. in a broad sense. an attempt to exploit the information
in an accurately calibrated instrument so as to allow the use of another acceptable

realisation of the instrument. The essence of this attempt is reflected in the simple
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analytical framework provided by similarity maps which also reveals that the number
of direct and indirect similarity maps. each with anv number of implementations. is
not restricted to a handful of realisations. With this insight. it is not surprising that

a number of calibration transfer approaches have been reported.

One of the simplest calibration transfer methods that has been reported is a
method based on linear slope and bias corrections of the calibration model (66G]. In
terms of a similarity map. this is given by the indirecr similarity map NH : he — A,
that is implemented using AH (hy) = shy +b. where s.b € R. represent the regression
coefficients that need to be estimated. Bouveresse et al. [66] compared this simple
method to PDS using various real data sets and showed that in some cases. slope and
bias calibration transfer provided results as good as PDS. Since the slope and bias
calibration transfer is simpler than PDS. Bouveresse et al. also cautiously proposed
a diagnostic tool. using a statistical F-Test on the data. to decide when to use slope

and bias correction as opposed to PDS.

Blanco et al. [67] proposed an almost identical approach. except in this case the
regression coefficients b and s are based on using a few select reference points in X
that appeared to provide reasonable accuracy in the calibration after transfer. It
should be noted that the selection of values used to estimate the parameters of the

similarity map. b and s in this case. is a non-trivial problem.

Another method. proposed by Blank et al. [68]. is based on using a digital filtering
process to transfer the spectra obtained from the slave instrument. g;(z) = x(!). so as
to allow it to be used on the master instrument. The filtering operation was referred
to by Blank et al. as a mapping of the slave’s spectra to the master’s spectra. In
terms of similarity mappings. this method can be placed in the context of a direct
similarity map f; : x({) — x(k) or f; : g/(z) — gi(z). where the mapping operation
is defined by a tvpe of finite impulse response filter. The coefficients of the filter
are determined using the actual spectral data from the master instrument. In one

respect. the method proposed by Blank et al. resembles PDS in that both methods
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use a selected set of subspaces from X’ to determine a series of maps which are then
combined to form f;. The method proposed by Blank et al. also differs from PDS
in that the selected set of subspaces is determined with a “moving window™. or a

“moving subspace” of X

This "moving window™. in terms of the similarity map. can be visualised by first
noting that the dimensionality of X is n. where n also represents the n wavelengths at
which the spectrometer performs measurements. Now consider that any sensor svstem

output can be represented as a point x € X'. which can be expressed as an n-tuple

the coordinates of x with respect to that basis. A “window™ of "width™ p, = a + b
at the /th “position” can be defined as the subspace X, C R* C X. whose elements
are given by the pg-tuple (r,_,.r,_qoy.... .25y, .. Lyp_1..I—p). where Py < n.
1 <i<n-p,+1. and p,.a.b € N. For cach i. a map from X,, to A}, is formed.
where the subspace &, C R”” C X is a window of width p. = 1. The notion of
a "moving window” arises from the practice of setting 7 = 1 and then repeatedly
incrementing / by one until its limit is reached. In contrast. it should be noted that
PDS may use any set of values for i that is deemed appropriate for the application
and DS can be considered in this context by setting p, = p, = n. Blank et al. went on
to report that one distinct advantage of their method over PDS is that the mappings
can be determined using calibration data samples from only the master instrument
as opposed to PDS which requires calibration data samples from both the master and

slave instrument in order to determine the maps.

The similarity map f. : x(/) — x(k) given bv the DS. PDS. or Blank's et al.
method is used as a basis for many calibration transfer methods. each with various
implementations and approaches to an implementation. Another such method was
proposed by Swierenga et al. [69] where the idea of preprocessing the spectra. given by
x. was reported. Preprocessing of the spectral data can also be viewed as an attempt
to transform X into a domain which is invariant to sensor syvstem changes. thereby

allowing a single calibration model to be used for any realisation of a sensor system.
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Swierenga et al. examined various preprocessing techniques and then compared the
resulting instrument calibration error to the error obtained using PDS and concluded
that PDS provided slightly better accuracies than the data preprocessing methods.
They also suggested that if only a slight improvement in accuracy is obtained. then
the use of data preprocessing is preferred over PDS since data preprocessing does
not require the calibrarion set D, to be measured on both instruments. In their
conclusion. Swierenga et al. also noted that if a principal component analysis of the
spectral data from both instruments “show similar patterns™. then it is likely that
an acceptable calibration transfer is possible using a reduced quantity of calibration
data. This statement by Swierenga ef al. is also suggesting a potential rechnique
that can provide an answer to the question motivating a Procrustes analysis: are the
spectral data sets from the master and the slave instrument in fact the same under

admissible transforms®’

Another interesting approach in calibration transfer was proposed by Ozdemir et
al. [70]. In this case. the similarity map is described as f, : x — r. The idea proposed
by Ozdemir et al. was to use the calibration data from both the master and the slave
instruments to determine f. so that a common calibration model & could be used for
both instruments. They referred to the calibration model. determined in this manner.
as a hybrid calibration model. HCM. The HC)I was itself based on a linear univariate

model that was explicitly determined using conventional least squares.

The interesting aspect of the approach reported by Ozdemir et al. was their use of
a genetic algorithm [71] to not only determine which wavelengths to use to form the
spectral response vector x for f;. but to also determine an explict expression for f;. In
this case f, was limited to a class of functions defined as f, = Z;\;[ filxg,.xr, ). where
N>2 q.r,e{l.2....n}. fi € {(rg+ 1+).(rg — I;). (Tq2r). (xq/x,)}. The genetic
algorithm then determined a value for V. and for each /. determined the elements g;.
r,. and f,. Note that the spectral response vector X = [Tg,. Ir,. Tg, . Tryee Tgu-Try]? -
where it is assumed that for i/ # j. 1y # 1, Vi.j=1.2.... .. \. By using spectral

data from both instruments. the genetic algorithm attempts to find a map f, such
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that the resulting transformed data is invariant to differences in either instrument.
The transformed data is then used to build a simple linear univariate calibration

model /. which can be used for either the A&th or /th realisation of the instrument.

Another approach to determine f; is to use a FFNN. as implemented by Despagne
et al. [72]. Their method resembles the FIR filtering method of Blank «# al. [68] in
that a moving type “window™ is used. This “window™ is also defined using X, . that
is. the window is associated with a “width™ given by p, = ¢ +band a “position™ given
bv i. A mapping from & to X, is also determined for each /. Bevond this similarity.
the method differs in that mapping is determined using a neural network whose
training data set consists of the inputs i,, and the desired outputs r,,. Specifically.
the training data is given by the set D; = {G,.r,):i=12....n—p,+1.j=
1.2..... \;}. where \} is the number of spectra x, used in the calibration. i, =
R P S S S T .Iiep-1-T,-p)]! is the input resulting from placing the
A, “window™ at the ith position over the jth spectra of the slave instrument. and
1;; is the desired output obtained from the &, ~window” placed at the /th position
of the jth spectra of the master instrument. The FFNN is then trained to minimise
the SSE. over D;. between the desired output and the output of the FFNN using the
Levenberq-Marquardt algorithm. The resulting approximation determined by the

FENN is the map f; representing the approximation of f,.

Despagne et al. [72] compared the calibration error of the instrument after stan-
dardisation using the FFNN determined f; and after standardisation using PDS. The
calibration error. resulting from using either the FEFNN standarisation method or the
PDS method. was very sensitive to the selection of the data for D;. Over all the
examined sets of calibration data. the FFNN standarisation method provided lower

levels of calibration error than that provided by PDS.

One final method to be mentioned is that proposed by Koehler et al. [73]. Again.
in terms of a similarity map this is another implementation of f, : x(I) — x(k).

Their method is essentially a preprocessing of dara in X'. which represents a Fourier
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transform infrared spectra. The preprocessing in this case consists of using very
selective digital filters to isolate specific regions of the spectra. The resulting filtered
set of spectral regions is claimed to allow a better discrimination of the signatures
of various analytes. The filtering is also claimed to provide a spectral response that
has an increased invariance to sensor system changes and to background interference
effects. The end result is that the spectral data from anv [ # Ath instrument can
be used with a single calibration model hi. In terms of the similarity map. this
method is again using a map f. that transforms the data X into a domain that is
less suseptible to sensor system changes and external interference. thereby allowing a

single calibration model to be used.

Summary

The framework of the similarity map allows viewing the calibration transfer
problem in a simple unifving manner. As was demonstrated. all the reported calibra-
tion transfer methods reviewed could be placed within this framework of similarity
maps. This allowed a relatively easy identification of the underlving approach used
in these reported methods. In this sense. the framework of the similarity map is just

a method of categorising various calibration transfer techniques.

2.3 The FFNN Calibration Transfer Problem

This section introduces the FFNN calibration problem within the framework
defined by the terms. concepts. and results presented previously in Section 1.2 through
to Section 2.2 Within this framework the problem in FFNN calibration transfer is

approached using the notion of similarity maps.

2.3.1 Selecting a similarity mapping approach

Section 2.2.1 outlined. in a simple manner. a number of approaches from which

a similarity map could be determined. Determining a suitable mapping strategy and
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its implementation is not as easily outlined by virtue that there appears to be a sig-
nificant number of possible combinations of strategies and implementations. Instead
of examining the merits of one particular combination over another. a pragmatic
approach is used: select what appears to be the simplest combination in terms of

implementation and. more importantly. for later analvsis.

Using this pragmatic approach the indirect similarity map for rhe space of cali-

bration models is selected. This mapping is given by
AH e =y (2.9)

Briefly. this similarity map achieves the equivalent mapping requirement hy o g so as
to allow an attempt to transfer the Ath calibration model to the /th model. Also note
that the mapping is from h; and not from h;. This notation is used to indicate that
an approximation of h; has been obtained and that the map AH exists allowing A,

to be determined from izk.

An additional motivation in selecting the map given by Equation (2.9) is that Ay
can represent the FENN approximation of k. This implies that AH represents the
process of approximation that is performed by the FFNN when it attempts to obtain
hy. given that it has already approximated hy. In other words. the similarity mapping

operation appears to be inherently performed by the FFNN!

This appearance is deceiving in that the actual implementation of A H used by the
FFXNNXN is not as precisely defined as it was. for example. in the case of the linear the
PDS or DS methods. The problem in defining AH for the FFNN is due in part to AH
not being a simple mapping operation. Instead. AH can be more accurately viewed
as describing the path taken along the FEFNN's error surface during its approximation
of h;. As will be shown in Chapter 3. this path along the error surface is difficult
to specifv and is a complex function of the initial starting point of the path. the

calibration data. the learning algorithm. and the FFNN architecture.

The FFNN mapping operation AH also hides another crucial view: that the

similarity map AH. as implemented by the FFNN. does not require knowledge of b
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to determine /;. More precisely. the operation of the FFNN can be described as
AH}:F_\'_\' . il € 7'.‘,, i iI[. (210)

where h is anv member of the class of functions. H,. that the FENN can determine

and h; is the approximation of /.

The mapping given by Equation (2.10) is not the map AH that is desired. The
initial appearance of the FENN inherently performing the similarity map is an illusion.
The FENN actually performs the mapping from anv h € H, to h;. which in terms of
recalibration. also includes. A, € 7:(,,. thereby providing the illusion that the needed

similarity map is being implemented.

Given that the FFNN does not actually perform the desired similaritv mapping.
a specific implementation of the map needs to be given. Again. simplicity in the

implementation is desired. so the desired mapping operation is defined by
AH (b)) = hy = hy + 5. (2.11)

where s; represents the ideal change that is needed to obtain h; from f;. This map-
ping is analogous to calibration transfer method of Wang et al. (2] referred to as
standarisation with the inverse calibration model but also differs by not assuming

linearity in hg. h;. or s;.

2.3.2 The problems

Given the [th set of calibration data. D; = {(x,.y; = hi(x;)): i = 1.2.... . \}}.
where N} < N the [th calibration can be approached either by using D, to deter-
mine an approximation A, or. as described earlier. using D; and Ay to determine the
similarity map and then using map. along with he. to obtain h;. The former approach
will be referred to as a standard recalibration. The latter approach is recognisable as
a calibration transfer. Some of the concerns and problems in performing a calibration

transfer given a FFNN calibration model h; are now discussed.
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Unknown similarity between /zk and fz,

As discussed in section 2.2.2. the advantage in using a similarity map onlyv
occurs if an adequate map can be obtained with N\, < Ni.. To obtain this advantage
in using the similarity map requires that either one or both of the following be true:
the similarity map is simpler in form than the form of A;: or that external relevant

information can be used to help obtain the similarity map.

The existence of a simple similarity map is not known in advance. so it must be
assumed that as the similarity of hy and h; increases. the information. as reflected
by the data needed to describe the differences berween Ay and h;. approaches zero.
Of course. this assumption may be wrong. in which case reducing the data will incur
calibration errors by virtue that the similarity map will become less accurate and

therefore h; will become less accurate.

The impact of an incorrect assumption about the simplicity of the similarity map
can be weakened by using additional information to help obtain the map. Though.
these tactics of using additional information is justified theoretically. implementing
a technique that uses this information to help obrain the similarity map presents

problems.

Implementation of the similarity map: Approximation of 3,

Equation (2.11) provides the desired mapping operation needed to obrain a
calibration transfer. In terms of an FFNN calibration model. represents the current
FFNXN approximation that is now inadequate and s, is some unknown additive term
that is needed to obtain h; using A;. As used in the approach by Wang et al. [2]. 5,
needs to be approximated. This approximation is simply based on the ideal difference
between the true or desired model h; and the current FENN approximation of hy.

that is. Ag. Specifically. this ideal difference is given by

()
—
(]
~—

s = hy — ilk. (:
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Figure 2.1.  An implementation of the direct similarity map NH(h,) =
/l( = /Ik + S

In practice. the function A, is not known over all X'. but only at the data points given
in D = {(x,(0).y, = hy(x,(1))) : i = 1.2.....N}. The FFNN approximation. Fi.
on the other hand. is known over all X and therefore at any x,(/). It then becomes
apparent that the approximation of s; needs to be based on the data set given by 5; =
{(x:(D). h(x() = e (x, (D)) 1 i =1.2.... . \;}. where hy(x;(1)) —fzk(xi(l)). represents
the difference between the /th calibration data set D; and the kth calibration model

output at the calibration points given in D;.

From the data in S;. any method of approximation can be used to determine 5.

In this sense. determining $, is simply another problem in function approximation.

In an equally simple manner. the straightforward application of the similaritv map
AH. using 5. results in the calibration model shown in Figure (2.1). As can be seen
from Figure (2.1). it is not necessary to modify the FFNN once 5, is determined. All
that is needed to implement AH is to place the § in parallel with izk and then sum
the outputs. Since the approximation $; is used. this implementation of the similarity
map provides the approximation h;.

The approach shown in Figure (2.1) represents a viable alternative to calibration
transfer not only for calibration models based on a FFNXN but any nonparametric

calibration model. Note that 3 may even be implemented with another FFNN.

145



However. the use of two FFNNs begs an answer to the question of whether or not it
is possible to combine these two FFNN into one FENN. More generally. the question
is whether or not 5 can be combined with a FFNN. or in ideal terms. whether or not

it 1s possible to embed knowledge of s into the FFNN s0 as to have it approximate

hi + 5.

Constraining the FFNN approximation with similarity

As was discussed previously. the FENN does not explicitly use iy when deter-
mining A,. Instead. the FFNN. as commonly used in instrumentation application.
uses D; to determine an approximation. not of h;. but of the data in D,. This char-

acteristics is due directly to the process of approximation used by the FENN.

It should be noted that though the FFNN does not explicitly use izk when deter-
mining k. the FENN can. in a sense. be made dependent on h.. This can be achieved
by not randomising the initial weights of the FFNN at the start of learning. Instead.
if the initial weights are set to the values that provide the approximation I then
in this sense. h; is being used by virtue that the initial state of the FFNN is set to
provide the approximation h;. This is not required by the FFNN. as it will attempt
to determine A, regardless of its initial state. This idea is explored in greater detailed

in the following chapters of the thesis.
Now consider that in its approximation process. the FFNN attempts to minimise
A ) )
c=% (/1,(x,) _ h,(x,)) . (2.13)
=1

where C is referred to as the cost or objective function of the FENN. Equation (2.13)

is also referred to as the sum squared error. SSE.

As can be seen from Equation (2.13). only points at (x;. hi(x;)) € D, are used to
guide the approximation. points (x. h;(x)) € D, are not considered. Therefore. if the

similarity map defined by Equation (2.11). that is. h;(x;) = izk(xi) + s(x;). is simply
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substituted into Equation (2.13). so as to obtain

\ .
=3 (thetx) + s(x) = ulx)) (2.14)

=1
no change in the cost function has occurred. Therefore. in spite of explicitly expressing

s¢ in the cost function. no advantage is gained as no new information has been added.

The solution to this problem lies in not viewing Ay (x;) = he(x,) + si(x;) simply as
a series of data points but as points from a continuous underlying function. The next
kev realization then follows: that in addition to the data values given by Ay (x,)+51(X, ).
there exists a set of corresponding values given by the data set D,(r). which represents
the rth order partial derivatives of fzk(x,) + s1(x,) with respect to x at x,. where

r=0.1...... N\,. In this setting D, = D,‘U).
To obtain D,‘”. requires that h;(x;) = he(x,) + s:(x,) have at least a rth order
partial derivative. that is

Orflll . 0rilk. ) ar.s'[

—_

oxr x=x, - ox” ' axr

/-\
(B
—
(1]

~

X=X,

is assumed to exist. For convenience Equation (2.13). can be more concisely expressed
using

(V) hu(x) = (Vi) he(x,) + (V) s1(x,). (2.16)

where (V) h;(x,) represents the rth order partial derivative of /;(x,) with respect to

x at the point x,.

To allow the FENN to use this additional information requires that cost function
. i 0
be modified so as to incorporate both the D(® data set as well as the D,"” ' data set.
This can be done by using

N. o

AV
C"\.') = Z Z ((Vx)’(izk(x,) + Sl(xz)) - (Vx)rill(xz)).-

1=1 r=0
With N, = 0. Equation (2.17). reduces to the SSE of Equation (2.13). therefore.

Equation (2.17) will be referred to as the generalized sum squared error. GSSE. that
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is also recognisable as consisting of the sum square of the Sobolev norm for functions

in L. having derivatives up to order N, ({47]. pg. 118-119).

[t can be seen from Equation (2.17). that the gradients of the FFNN's previous
approximation /zk and its current approximation fz,. as well as. the gradients of s; are
needed to determine C**). \What this means. in terms of a FFNN approximation. is
that the FENN learning algorithm is not only trving to approximate the data points
in D,(O) = D, but thar it is also trving to simultancously approximate the rth order

partial derivatives at those points.

The use of these gradients has achieved the desired result of implementing the
mapping AH. The FFNN must now use f, to obtain ;. Of course. this implies
that not only must all the rth order derivatives be used. which mayv not be bounded.
i.e. V. — oc. but that precise knowledge of (V) s;(x,) needs to be available. It
should be noted that precise knowledge of (Vx)rfz,(x,) and (Vx)’izk(x,) is available by
virtue that these expressions represent the partial derivatives of the FFNN calibration
model. which is known. Pragmatically. it may be sufficient to use only the first few
derivatives and to allow some degree of error in (V,)"s;(x;). This pragmatic approach
raises a number of unaddressed concerns. such as will the use of the GSSE improve the
calibration error relative to either the error resulting from using the direct approach of
simply adding the output of 3 to Aj. or to the error resulting from using \; < Ny ina
standard calibration with conventional FFNN learning methods. such as the method

of backpropagation [74].

An additional concern in applying the GSSE is the use of ;. and not 3. in Equa-
tion (2.17). In pragmatic terms. 5 will need to be used. which then implies that
the rth order partial derivatives will be based on ;. thereby resulting in unavoidable

errors in the derivatives.

As it will be shown in the next section. some guidance into addressing theses con-
cerns can be obtained from the works of neural network researchers. where related

ideas of embedding knowledge such as. izk(xi) + s1(x;). into a FFNN have been ex-
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amined. In addition. the idea of a FFNN approximating the derivatives of a function

has also been examined. to some degree. by others.

2.4 Supporting Research and Ideas

It was shown that the use of only D; to approximate the similarity map.
AH(iz,) = izk(x,) + sk(x,). with a FFNN does not achieve the desired mapping. The
FFNN must use information over and above that provided by the calibration data set
Dy. such as that provided by D,(”. This additional information can be viewed as prior
information regarding the smoothness of the similarity map AH at the data points
given in D;.

The explicit exploitation of prior information has been frequently reported in the
neural network. NN. literature [75-82] where its implementation. for example. as a
set of constraints in learning [80. 82.83]. has been shown to result in a reduction in
the data and time needed for learning and in improving generalisation. Obviously.
these are the same results that are desired in a calibration transfer. It then seems
reasonable to expect. in using a FFNN as a calibration model. that equivalent results

will surface when prior information is used in a calibration transfer.

It will be shown that this expectation is more than reasonable by virtue that the
FENN cost function given by Equation (2.17) resembles key features of a number of
FENN learning approaches that were intended to exploit prior information. These
particular FEFNN learning approaches have been shown to require less data and time
to obtain an approximation and to provide improved generalisation. Though a resem-
blance to these FFNN learning approaches does not ensure comparable performance
in a calibration transfer. it does increase the confidence that Equation (2.17) is a vi-
able FFNN cost function that can potentially reduce the data needed for a calibration

transfer.

Though this section will point out the similarities and differences between the

reported NN cost functions and the proposed FFNN cost function. given in Equa-
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tion (2.17). it will also point out that derivative learning is not as well developed as

is the standard learning of data values. i.e. zero order derivative values.

2.4.1 Using prior information

One method of using prior information in a FFNN was the idea of hints proposed
by Abu-Mostafa [76. 77]. A hint represents information regarding h,; that is obtained
independently from D,;. Information such as invariance. monotonicity. and evenness
or oddness of a function can be used as a hint or set of hints. In this context. assuming
the existence of each nth order derivative of h; can also be considered a hint regarding

the smoothness of h,.

Hints are represented using. what Abu-Mostafa termed. duplicate and virtual
examples. Duplicate examples resemble real samples. say in D,. and can be used
together with the real samples to obtain an approximation. such as ;. In other words.
each duplicate example has an input value x’ and an associated desired output value
hi(x'). The duplicate example is generated by both D, and the hint. For example.
given the hint of evenness. then V(x,.h(x;)) € D;. (X' h)(X")) = (—x;. hi(x;)).

which represents duplicate examples.

Virtual examples. on the other hand. do not have an associated desired output
value. Instead. virtual examples consist of a pair of input values. (x,. x») where the
NN is to have equal outputs. i.e. iz,(xl) = hy(xs). To incorporate this hint into the
NN requires expanding the scope of the cost function used by the NN to not only
minimise the error in approximating the data in D,. but to also minimise the error in
the rth hint. using ¢, = j|l_z,,(x,~) - iz,,(x,)l!'-’. where e, is the NN's error in using the

rth hint and Ay, is the output of the NN using the rth hint.

The existence of multiple error measures ¢,.. for r = 0.1..... V;. requires a method

to combine them into one global cost function. Abu-Mostafa suggests a number of
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strategies to combine these error measures. One common method is to simply use

N,
C = Z(:,Er. (2.18)
r=0

where a, is a weighting factor assigning a relative importance to the error and E, is

the estimated error of e, over all virtual examples of the rth hint.

The similarity of Equation (2.18) to Equation (2.17). the GSSE. is apparent.
3

simply set E, = Y ((Vx)r(/}k(x,) + Sk(x,)) — (Vx)'fz,(x,))-. and 3 _a, = 1. In
other words. Abu-Mostafa’s error measure for the rth hint has a correspondence to
the rth order derivative error in the cost function of Equation (2.17). In terms of the
virtual example. this is where the similarity ends. but in terms of the duplicate sample
there is an additional likeness. In the same wayv duplicate examples are generated
using D; and the hint. the derivative data samples need to be generated using D; and

a hint. that is. the rth partial derivative of $; with respect to x at each x,. In this

view. the GSSE requires the use of duplicate examples.

Abu-Mostafa then provides both an argument and empirical evidence supporting
the claim that virtual and duplicate examples do improve generalisation. In this
context. it appears that the GSSE represents a viable cost function by virtue that it
requires the use of duplicate examples generated by the hints consisting of the rth

order partial derivatives.

Additional support in using duplicate examples is provided by the work of Nivogi.
Girosi. and Poggio [75]. In this case. Nivogi et al. refers to duplicate examples as
virtnal examples. To avoid confusion. Abu-Mostafa's term. duplicate example will
be used. Essentially. Nivogi et al. showed that the generation of duplicate examples
from an existing data set. say D; = {(x,. h(x;) : i = 1.2.... .. \7}. and the use of some
legal set of transform that resemble Abu-Mostafa’s hints was equivalent to a form of
regularisation. The importance of this equivalence is that regularisation is a well
known technique [81.84] to solve ill-posed problems. In other words. using duplicate
examples has a stabilising effect on the approximation solution [9]. in the sense that

small changes in the data values do not result in large changes in the solution [84].
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Another approach in using prior information was suggested by Kramer et al. [79].
where they proposed to explicitly embed known theoretical models and other con-
straints into a hybrid FFNNXN structure. The importance of their work is that the
hybrid FFNN structure thev proposed has a strong resemblance to the similarity
map shown in Figure (2.1). In the Kramer et al. FENN structure. a theoretical
model s is placed in parallel with the FEFNN model and the output of both models
are summed together. Kramer et al. refers to the theoretical model 5 as providing a
default behaviour which can be viewed as providing information at points over entire
the input space X. including those given by the set D;. Constraining information
is said to represent prior knowledge of the underlying process that is being mod-
eled. Kramer et al combine these ideas by defining the FFNN cost function using
C = ||(ly(r) — I‘(iz,(r) + s(x))||*. where h;(r) is the desired output for a given r.
hi(x) is the FFNN approximation. s(r) is the theoretical model output for a given r.
and I is an auxiliary function selected to satisfy the constraints placed on the model.
Similar approaches were also reported by Johansen and Foss [85] and Thompson and

Kramer [78].

The difference between the approach used by Kramer and the similarity mapping
approach. besides the use of an auxiliary function I'. is that in Kramer’s approach the
model s is specified and based on known physical laws describing at least a portion
of the underlyving phenomenon being modelled. In the similarity mapping approach
there is no a prior specification of s,. it is approximated using only the data D, and
the prior calibration model ilk. The only a prior specification of s; that may be
emploved is to assume some underlving functional form for s;. such as linearity or
piecewise linearity. But the modeling approach used by Kramer et al. does suggest the
option of specifving a functional form for s; that can be based on prior knowledge of
the underlving process. Finallv. an additional difference between the similarity map
and Kramer's approach is that s; in the similarity mapping represents the difference
between h; and h;. whereas in Kramer's approach. s represents a default model of

some physical process.
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2.4.2 Derivative learning

Another important aspect that needs to be examined is the proposed use of
derivatives in the GSSE measure. [n support of using derivatives in FENN learning
there are a number of reports [86-95! oriented towards specific applications or pure
algorithm derivations. This support is not ideal in thar none of the reports directly
consider calibration transfer. In addition. only the use of the zero and first order
derivative terms. i.e. Zl:o V) hi(x,) — (V) h(x,) |2 are considered. For conve-
nience in presentation. conventional learning based on minimising the error between
the desired output and the network output data values will be referred to as D
learning. whereas learning which uses the GSSE up to and including the nth order

derivatives will be referred to as D'™ learning.

In spite of the non-ideal support of the GSSE. all the reports which do provide
results. tend to indicate that generalisation improves and learning speed increases
with the use of D'V learning. More importantly. a number of reports [87.91-93] have
indicated that. for a given level of generalisation error. D!) learning requires less data
than that needed in D'®) learning. In addition. results have suggested that the use
of only DU learning can also provide improvements in generalisation error over the
error obtainable with D® learning. Though these results are shown empirically. other
results have also indicated that D) Jearning does not always provide improvements

in generalisation error.

For example. Lee and Oh [93] suggested that the use of DY) learning may re-
quire “tuning” of the step sizes during learning to help insure that improvements in
generalisation error occur. Essentially. one step size 74 is used to control the rate of
optimising. that is. minimising. the error in data and another step size 1, is used for
the same purpose to minimise the error in the first derivatives. i.e. the slope data.
Lee and Oh claim that the tuning of the step sizes is required in order to balance the
desire to learn the slopes with that of fitting the data. A strategy to properly balance

or tune these step size. during learning. was not described.
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In one simulation example Lee and Oh attempted to learn a function using noise
corrupted slope values. Their strategy in this case was to initiallv set 7y = 101, and
then after a set number of epochs. begin to reduce both step sizes linearly as learning
progressed. One important observation is that the reduction in 1, was started sooner.
thereby reaching zero much early than 1. This effectively reverted the learning back
to D learning during the latter portion of the FENN training session. The rationale
provided by Lee and Oh in using this particular strategy was based on the idea that
the error in the slope data was not conducive in reducing the generalisation error
during the “fine-tuning™ stage of the learning. i.e. the latter portion of the learning.
The impression left by Lee and Oh is that. if 1,, had not been reduced to zero.
the generalisation error may have exceeded the error resulting from using only D!

learning.

Evidence that the additional use of slope learning can potentially increase the gen-
eralisation error over that of using only data learning was reported by Masuoka [92].
In one series of simulations. ({92]. pg..46-48). Masuoka compared the generalisation
error of D) and D'') learning as a function of number of training data samples.
In this simulation. D® learning was shown to have achieved a lower generalisation
error than that achieved with D' learning. when fewer than four or more than 50
input samples were used. A reason for these results was hypothesised but no sup-
porting analysis or additional empirical results were provided. Essentially. the brief
hvpothesis. that was provided. was based on the idea of either over constraining the
approximation with a large number of points or that slope learning with only a few
points tends to dominate data learning so as to sacrifice a small generalisation error
for a small slope error. However. it was also pointed out that on average. D" learning

does reduce the generalisation error over that of D' learning.

The importance of these observations is that thev show a nondeterministic be-
haviour for DY learning. Though this simplv mirrors the known behaviour in D'
learning. the important difference is that in some instances the advantage of D)

does not appear to significantly improve the generalisation error over that obtained
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with D9 learning. Currently. no reports have been found conclusively identifving
the instances or conditions under which D' and D'V learning provide comparable
levels of generalisation error. or more importantly. when the error obtained from D

learning is lower than that obtained from D'" learning.

Though. no conclusive analvsis identifies these conditions. it was shown that the
estimated average of the generalisation error resulting from D' learning is lower than
the average generalisation error resulting from D' learning. These estimated average
errors are measured over various initial starting conditions. i.e. neural weights. while
the NN topology. the underlyving function. and the number of training data samples is
held fixed. It was also brieflv noted that the difference between these average errors
decreases as the number of sample points increases. In addition. it was shown that as
the error in the slope data increased the average generalisation error resulting from
D' learning increased. where at some variable level of slope error. the generalisation

error was greater than that resulting from D'9 learning [91-93].

Finallv. one additional observation regarding the use of derivatives in the GSSE
should be made. As discussed previously. setting .\, = 0 reduces the GSSE to the
conventional SSE measure. The SSE effectively: provides one measure to estimate the
difference between two functions over a set D, consisting of \\; points. It is shown in
Chapter 3 that if the functions are expanded about these points using a Tavlor series
expansion. then the SSE can be viewed as being obrained by simply truncating the
series after the first term and then measuring the distance between the two points
representing the functions in a \\; dimensional space. The GSSE. on the other hand
truncates the series after the \\, term and measures the distance between two points

R . N, . . .
ina N Y7 n" dimensional space. assuming » € R".

Using the Tavlor series representation. the GSSE appears to be a stronger measure
of the difference between two functions by virtue that the GSSE includes higher order
terms. A similar measure was also proposed by Bajcsy and Ahuja [96] in the area

of image segmentation. Bajcsy and Ahuja proposed a measure of homogeneity to



indicate the degree of similarity that exists between sample points in an image. Each
sample point was assigned a nth order feature consisting of the point’s nth order
derivatives. If the difference in the similarity measures of two points was less than
some predefined threshold. then the points were considered to belong to the same

image segment.

With this view. the use of the GSSE can be said to more strongly emphasise the
error between two functions. Therefore. it is reasonable to expect that reducing the
generalisation error in the approximation of h; = h; + s¢. by reducing the the GSSE.
will. for a given N}, result in a tendency for fz, to approach. not just A, but h; = fzk+.sk
more quickly as .\, increases. This is in direct contrast to reducing the SSE which. for

a given .\, will result in obtaining A, without regards to the relationship b = hy + s¢.



3. FFNN Calibration Transfer Methods

3.1 Overview

The calibration transfer methods described in this chapter assume that an in-
strument has been previously calibrated to obtain the Ath realisation of the calibration
model. . This calibration model hi. implemented with a FFNN. also provides in-
strument readings y = izk(gk(z)) = /‘lk(X) having acceptable calibration errors. It is
then assumed that instead of using g;(z) the instrument is confronted with using a
changed sensor svstem g;(z) which results in instrument readings having unacceptable

calibration errors.

To provide acceptable calibration error. a new calibration model h; is desired. This
new calibration model can be obtained using the conventional approach: performing
a standard recalibration using the FFNN with the data set D; to obtain the needed

approximation h;.

Alternatively. ii; can be obtained by using a calibration transfer method. The cal-

ibration transfer methods considered in this thesis can be described by the expression
AH(hg) = hy = by + 51 (3.1)

Equation (3.1) can be viewed as an additive implementation of the indirect similarity
map AH which represents an ideal expression in that it assumes the use of an ideal
$1 0 as to obtain h;. More realistically. s, will need to be approximated with $; using
a data set S; based on both D, and knowledge of izk.. The approximation §; is then

determined using conventional parametric approximation methods and substituted

Ut
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into Equation (3.1) to obtain
AH(/Z&) = /711 = l.);‘- + 5. (32)

where A, is used to distinguish this approximation from that obtained with the FENN.
In terms of a calibration transfer. methods based on using Equation (3.1) will be
referred to as an indirect additive calibration model transfer. that is identified with

the acronym iDACNX.

In addition to the indirect additive implementation of AH. this thesis also exam-
ines the approximation of h; by the same FFNN which has already approximated /.
The FENN approximation. given by /. is obtained by minimising. with NV, = 1. the
GSSE between h; and k. as measured over the data set G;”. The data set G}” is
defined as G!'' = D!V G D'V where D, = D;”" and D}" represents an estimate of the
first derivatives of /i, = /i, + 5, with respect to X at x, given (x,. h(x,)) € D,. For
convenience. this approach to calibration transfer will be referred to as a first order
approximation of the iDACX. identified with the acronvimm D'V-iDACX. It should

be noted that in general. nth order approximations to the iDACX method can be

formed.

In all. three different calibration transfer methods are considered in this chapter.

Each method obrains the approximation of h; using the following approaches:

1. A, representing the FFNN approximation obtained by determining a minimum
in the SSE between h; and h; as measured over the data in D;. where the weights
of the FFNN are initialised to values that provided the previous approximation
hi. This is method is referred to as a prior initialisation calibration transfer.

PICX.

[V

Iy representing the approximation obtained using a iDACX method. where 3
is obtained with conventional parametric approximation techniques using the

data in S;.



3. h; representing the FFNN approximation obtained using a D'/"'-iDACN method
and the data in G}”. where the weights of the FENN are cither randomly

initialised or initialised as per the PICX method.

The calibration error resulting from using these transfer methods are. in later simu-
lations. compared to the calibration error resulting from a standard calibration using

conventional backpropagation learning of the dara D,.

The calibration error resulting from these approximations is assessed using an
error measure. such as the RMSEP defined by Equation (1.3). where the validation
data set T satisfies the condition (T C Dy) " D; = 0 and where Dy represents the

complete calibration data set.

It is apparent that the calibration error. resulting from using anv one of the
transfer methods. will depend on a number of factors. For example. it is clear that
not only will the calibration error depend on the actual calibration data in D, but also
on number of data samples in D;. \; = 5,. which is also assumed to be less than Ek.
In addition. the error will also depend on factors. such as the underlving similarity

between h; and hi. the specific FENN architecture. and the learning algorithms.

To appreciate these dependencies. this chapter discusses the details of obtaining
the approximation of h; using the calibration transfer methods listed previously. This
discussion begins by brieflv reviewing the FFNN and the architecture chosen for this
thesis.  This is followed by a review of the FENN learning process. Finallyv. the

introduction and development of the calibration transfer methods are presented.

3.2 The FFNN as an Instrument Calibration Model

In chapter 1 the FENN was simply described as a nonlinear multivariate map-
ping h; : x — y that could be used to implement the instrument calibration model.
This section will show that the FFXN selected to implement the instrument calibra-

tion model can be viewed as a nonlinear approximator. Though the FFNN. viewed
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as a nonlinear approximator. is nothing more than another mathematical approxi-
mation model. the FFNN selected for this thesis represents a specific class of neural
network from a large family of neural network models. This section will not present
a detail review of all neural network models as this review is available in a number of
texts [9.47.97.98]. Instead. the intent of this section is to provide a sufficient level of
detail to allowing identifving the FFNN model chosen for this thesis from within the
large family of neural network models and to gain an understanding of the capabilities

and limitations of the selected FENXN as it relates to calibration transfer.

3.2.1 The FFNN

The FFNN selected for this thesis represents a specific class from a large family
of neural network. NN. models. These NN\ models are also known as artificial neu-
ral network models. connectionist models. parallel distributed processing models. or
neuromorphic syvstems [99]. To appreciate the impetus in using terms such as neural
or connectionist to describe these models. it is only necessary to note that the devel-
opment of the NN models were motivated by the desire to emulate various observed
physiological behaviour such as word and object recognition. language comprehen-
sion. and muscular motor coordination in tasks as simple as reaching and grasping

for an object [100].

To attempt to emulate these physiological behaviours. the NN models were in-
spired by the vast interconnection of large numbers of mammalian neurons in the
brain. This inspiration lead to forming NN models that also exhibited the intercon-
nection of a large number of simple processing units [99. 100]. that for obvious reasons.

are also commonly referred to as neurons.

Borrowing from the know neurophvsiological characteristic of the nervous syvstemn.
Rumelhart et al. [101] proposed a general framework from which most of the specific
instances or classes of NN models could be identified as special cases. Though the

components of the framework proposed by Rumelhart et al. [101] to generalise NN

60



models were motivated by neurophysiological characteristics. the components of the
framework are formed using a simplistic interpretation of these characteristics. It
should also be noted that many of the known neurophysiological characteristic ({102].
pg. 985-986) are not used in this framework. The simplification and exclusion of
neurophysiological characteristics results in Rumelhart and McClelland ({103]. pg.
135-138) conceding that at best the NN models are a coarse approximation of neuro-
physiological processing and the models may fall at a level between the macro struc-
ture of cognition and the details of neurophysiological. Essentially. it is likely that the
simplification and exclusion of neurophysiological characteristics could mean the dif-
ference hetween providing an accurate emulation of observed physiological behaviour
or a poor emulation. Rumelhart et al. [101] also cite the works of Kohonen {104. 105].
Amari [106]. and Feldman and Ballard [107] as those also attempting to generalise a

framework for NN models.

The components from the framework proposed by Rumelhart et al [101] that are

used to form a NN model are listed below.

1. A set of processing units. Processing units. also referred to as neurouns.
receive inputs from other processing units. Then using these inputs and a
set of rules. the processing unit sends an output to other processing units. [t
has become a common practice to identify units as being either input units.
hidden units. or output units. Input and output units tvpically interface to the
environment. Hidden units simply connect to input. output. or other hidden

units. thereby. effectively hiding the units from view from the environment.

(EV]

A state of activation. Each jth processing unit is associated with being in a
state v, at time {. where v;(t) € R. or v,(t) € {—1.+1}. Other definitions for

the state v, are also possible.

3. An output function. Given the state v, of jth processing unit. a set of rules.
is used to determine the output value o; of the jth unit. Typically a mapping

D, :v;(t) = 0,(t) € R is used.
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1.

—'
.

A pattern of connectivity. The individual connection from the output of the
zth unit to the input of the jth unit is commonly specified by a weight w,, € R.
where |u};| represents the strength of the connection and w,; = 0 represents no

connection.

A propagation rule. The input to each unit is formed by using propagation
rules to obtain the jth unit's net input v,(t) = [rj[. Cyae - .('J,,j}. where ¢,
is the Ath type of net input and n, is the total number of net inputs to unit
J. Each kth net input is formed by first defining its elements using the set
Pi = {P. = (0,.w,,) : i € It}. where o,(t) is the output from the ith unit. w, is
the weight connecting the output of the /th unit to the jth unit. and [} is the
Ath indexed set such that Vi € I. P, is a valid output and weight connecting to
the jth unit. The propagation rule is commonly a mapping that is. in general.
unique for each set Py. i.e. vy : Py = v, Tvpically. instead of multiple types
of net inputs. only one tvpe of net input is used. that is & = 1. so that only
one propagation rule is needed. such as v,(t) = v,(t) = S_._, w,;0,(t). which is

commonly used given n outputs connecting to the jth unit.

An activation rule. This rule determines the next state of activation of a
unit by using the unit’s current state and its net input. This rule is commonly
referred to as the unit’s activation function o. where o; : (v, (). v,(t)) = v, (t +
At). and where t + At defines the instant of the next state. One important
characteristic that is often given to the activation function is a thresholding
behaviour where the output of o is bounded over the domain of the argument.
ie. 07 < o(-) € o7. where 7 and o™ are respectively. the lower and upper
bounds of 0. and where —> < () < x. The thresholding from ¢~ to a7 usually
occurs over some finite subinterval. or point. in the domain of the argument of

0.

A learning rule. The process of adding. removing. or modifving the value of

the weights is governed by the learning rule. The learning rule. also referred
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to as a learning algorithm [9]. is tvpically designed to adjust the pattern of
connectivity to the jth unit in an attempt achieve some objective for the jth

unit. such as achieving a specific activation state or output ~alue.

Many learning rules can be formulated as variants of a generalised Hebbian
learning rule [101} expressed as Muw;; = (v, (1). dy (1), (0,(t). w,,). where du),
is the change or adjustment for weight wy,. 1y (vy(H).d, (1)) — R with d, (t)
representing a desired state for the jth unit. and [/, : (0,(t).u,;) = R. For
example. setting I.(v,(t).d, (t)) = n;i () (d, (£)—v;(t)) and {,((0:(1). w,,) = o,(t).
results in duw,, = n,(t)(d,, (t) — v)(t))o,(¢t) which is known as the delta rule or

Widrow-Hoff rule [9.101]. and where n,() is the learning rate parameter.

The environment. The NN operates within some environment. To interact
with this environment the NN must accept inputs and provide outputs with
specific characteristics suitable for the environment. In addition. the environ-
ment can either be stationary. pseudostationary. or not stationary. A stationary
environment is one whose statistical measures do not varv with time [9.108]. A
pseudostationary process can be considered stationary over a suitability short

interval of time ([9]. pg. 83-84).

Using this the components of this framework. the FFNN selected for this thesis

consists of a set of processing units. which. along with the output function. (item

3). the propagation rule. (item 3). and the activation rule. (item 6). are described

in Section 3.2.2. Also. the FFNN chosen for this thesis is a static NN. in that the

NN weights are not adjusted after learning has stopped. that is. the weights are

independent of time ¢. Other specific characteristics of the FENN selected for this

thesis include. not using the current state of activation. (item 2) of the processing

units to determine the next state. that is.. o,(r;) = v,. In addition. the pattern of

connectivity. (item 4). is that of a fullyv connected single hidden laver FFNN. which is

described in Section 3.2.3. The learning rule. (item 7). chosen for the FFNN supports

the learning paradigm know as supervised learning. which is described in section 3.3.
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Figure 3.1. A single processing unit or neuron used in the FENN selected
for this thesis. The neuron is based on transforming the
weighted sum of its inputs. Note that the bias term wj, has
been absorbed into the input.

Finally. for this thesis the environment for the FFNN is assumed to be stationary and
is specified over the spaces X and ). It should be noted that a learning paradigm
refers to a specific example or type of learning that the NN is attempting within
its defined environment. In this view there are two commonly recognized learning

paradigms. supervised and unsupervised learning ([9]. pg. 52).

3.2.2 The processing units

A FENNXN consists of set of interconnecting processing units. referred to as as
neurons. The neuron used for the FFNN considered in this thesis is shown diagra-

matically in Figure (3.1).

In terms of the general framework of NN components presented in section 3.2.1. the
Jth neuron. shown in Figure (3.1). consists of a linear output function. specifically
this implies. 0, = ®,(v;) = v, = o(r;). The propagation rule chosen for the jth
neuron is simply given by v;(¢) = 3_"  w;;a;(t). where a; is used to denote the ith

input to the neuron. It should be noted that the / = 0 input is a constant and the
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corresponding product agu;q is referred to as the bias for the jth neuron. which can
also be denoted as b,. The bias determines the centre of the thresholding interval of
o. This bias term has been transferred to appear as an auxiliary input simply for
convenience in analvsis.

The operation of the jth neuron. shown in Figure (3.1). can then be expressed
using

my;

0, =0, E Wwyid, + W,

=1

Ty

— Cofls = — Tor =
=0, E wiiap+bh, | = o, (a W - I)J).

1=

ny

=0, Z wya, ) = o, (asza) . ag = 1. (3.3)
=0

where o, € R is the output of this jth neuron. o,(-) is its activation function o :
R™ — R. my is the number of inputs. w,, € R is the weight connecting the ith input
a; € R to this jth neuron. and wjo = b, is the bias input. i.e. with a constant input
ag = 1. The vector aaT and w, are the augmented vectors of a’ and w obtained by
absorbing the bias term. and where the vectors are normally assumed to be column

vectors and the superscript T is the transpose operator.

Of particular importance to the operation of the neuron is the specific properties
of the activation function o,(-). Leshno et al. [109] have provided an important result
showing that if the activation function can be characterised as a continuous non-
polynomial function that is locally bounded. then it is capable of allowing a FFNN

to be a universal approximator.

Note that the non-polynomial activation function also requires that it have a fi-
nite number of open intervals [47. 109]. Also. a single neuron does not. by itself. form
an universal approximator. but a set of neurons. with a reasonably general pattern
of connectivity. can approximate any continuous function to an arbitrary degree of
accuracy [109]. given enough neurons. This results indicates that the universal ap-

proximation property is not entirely due to the activation function but is more a
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function of the pattern of connectivity ([97]. pg. 239. [17]).
One frequently used class of activation functions with these properties is the class

of sigmoidal functions defined by [47]

x> limo(u)=a” >0 = lim ao(u) > —x. (3.4)

u—2x — =2

where @™ and o~ represent the upper and lower bound of o(u). A few of the specific

forms from this class of sigmoidal functions are the logistic function.

1
o(u) = ——. (3.9)
1 —+ e-wu
or the hyperbolic tangent
et — g-uu
tanh(uu) = ——— = 20(2u) - 1. (3.6)

()IL‘U + (;-u'u
which is simply a scaled and offset version of the logistic function.

The results of Leshno et al. [109] show that almost any arbitrary activation func-
tion can be used to form a FFNN capable of universal approximation. In these terms.
it should be noted that the output neuron commonly uses a linear activation function
o(u) = u that is not bounded and is also a first order polvnomial. This linear output
neuron is simply used to provide a weighted sum of the output of hidden neurons and

does not remove the universal approximation property of a FFNN.

3.2.3 The FFNN architecture

A number of NN architecture can be constructed using neurons having the
structure shown in Figure (3.1) [9.47]. One of the most common is a fully connected

multilaver architecture referred to as a FFNN or a multilayer perceptron [9.47].

The pattern of connectivity for this architecture can be characterised as consisting
of L layvers of neurons. Each jth neuron in the [th laver accepts the output of all the

neurons in the ([ — 1) laver. The jth neuron in the /th layver then has its output sent

to all the neurons in the next (/ + 1) laver.
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Laver | =0 Laverl=1 Layer =L~ Laveri=L

Figure 3.2. A fully connected L lavered FFNN based on the neuron

structure shown in Figure (3.1). Note that not all the weights
are labeled.

This pattern of connectivity for the neurons is shown in Figure (3.2) which. for a
single output FFNN. can be expressed as a nested set of activation functions o(-) [9].

Assuming L lavers. this nested set of activation functions can be expressed as

my 1 myp_» mag=n
1(X. W) = 0o who - o Ao
yiX. = 0y, 1kQ(L-Dk We, Ow-2;1{---C1p Wpi Iy
k=0 =0 1=0
(3.7)
where y is shown as a function of the input x € X C R" and the vector of network
weights w € Rt =me=wmi=L Javer | = 0 is the input laver. laver | = L is the
output laver. and the lavers [ = 1.2.... . L — 1 are referred to as the hidden lavers.

The weights ’ll'_l,», refer to the weight connecting the 7th input to the jth neuron in the
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[th laver. m; is the the number of neurons in the {th laver. Though oy refers to the
kth activation function in {th laver. it is common to use the same functional form
for all the hidden layver activation functions. therebv allowing the Ath subscript to
be dropped. It should be noted that in Equation (3.7) the bias terms in the hidden
layers are formed with o,(-) = 1./ =1.2....L - 1. which then serve as the input to

the next. i.e. [ + 1 laver.

In selecting the number of lavers L to use for a FENN. the notion suggested by the
precept of Occum’s razor has been typically invoked: of all the architecture that can
provide the needed level of approximation accuracy. the simplest architecture. that
is. the architecture with the fewest number of lavers and neurons per laver. should be
selected. It is well known that simpler FFNN architectures tend to be less prone to
overfitting and to provide improved generalisation when compared to more complex
FEXNN architectures [9]. In this setting. having L = 1. i.e. no hidden lavers. represents
one of the most simplest architectures. but unfortunately. it has been shown that a
FENXN with L = 1 is limited in the class of functions it can approximate [9.47.97].
Obviously. setting L = 2 represents the next simplest architecture and fortunately it
has been shown that a FFNN. having an appropriate set of activation functions in the
hidden laver and a linear output layer. is capable of approximating any continuous
function to any required degree of accuracy [40-42]. For this reason. this thesis uses.
as have many other reported applications [18.26.43.110]. a FFNN architecture with

a single hidden layer.

Again. it should be noted that though a single laver hidden FFNN has been shown
to be an universal approximator. it may not be the optimum architecture in terms
of the total number of neurons. For example. the use of a FFNN having two hidden
layers. L = 3. can. in some simple problems. provide an approximation with zero
error. as measured by the L,-nornm. In contrast. a FFNN with a single hidden laver
having a finite number of neurons. will provide an approximation with some degree of
error ([47]. pg. 108-109). In addition. it is known that it is possible to find an approx-

imation using a more complex FENN which results in having a generalisation error
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the is equivalent to that provided by a simpler FFNN. This particular result requires
determining a suitable initialisation of the network weights and then determining the
instance. during learning. when the generalisation error begins to increase. so as to

terminate learning [111].

3.2.4 The single hidden layer FFNN with shape-tunable neu-
rons

The architecture of a single hidden laver FFNN is shown in Figure (3.3). The

operation of this FENN can be expressed using

ney ngy=n
- 2 .
ylx.w) = o, E WipOLk E ll’kl_l.l', + Uk
k=0 =1

where 0, is selected to be a linear function. so that the operation of the FFNN is

then given by

my n
9 P .
= E WOk E Wiy + Wi | + Wi (3.8)
k=1 1=}
N - 2 9 R
=oT(x7w{.+u',{.0)w;+u;O. A=1.2....m,.
-~ )
= of (xTw w2 k=0.1.2....m.
where o] (-) = [010 = Loy (XTI W], ). ... .01, (xTw], )] is the augmented row vector
of hidden layer activation functions. w, = [wg. w;.... . w1, ] Is the augmented
weight vector without the superscript identify the laver. and x, = [1..r). ra. ... .J',,}T

is the augmented FFNN input vector.

Now instead of expressing the operation of the single hidden laver FENN using

Equation (3.8). consider the following alternative. but mathematically equivalent.

form
Ty n
yx.w) = Z ('{.olk Z w,i,-ri + u'kl.o -+ bk'. . (3.9)
k= =1
g
=S al.
k=1
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Laver | =0 Laver | =1 Layer =2

Figure 3.3. A single hidden layver FFNN architecture.

or in vector form

=[oT(x

Twl +w}y) + (bY)7T]c'. k=1.2....m.

= [o“T(xTw,t.ﬂ) + (bH)T]c!. k=0.1.2....m;.

a

= (a")7k.

where the equivalence in this alternative form is given by setting uyj, = c}. u?, =
Yoibi. and where k = [1.1.....1]7 is a (m; x 1) column vector of ones. This
alternative expression has taken the bias term for the output neuron and simply
distributed it over the outputs of the hidden neurons. In addition. the input weights

for the output neuron have heen moved to the output of the hidden neurons.
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Layer | =0 Layer 1 =1 Laver i =2

Figure 3.4. The instrument calibration model used in this thesis is based
on a single hidden layer FFNN architecture with shape-
tunable neurons in the hidden laver. Note that this archi-
tecture is mathematically equivalent to the single laver ar-
chitecture shown in Figure (3.3).

Mathematically. Equation (3.8) and Equation (3.9) are equivalent. but the FENN
architecture has changed form slightly to that shown in Figure (3.4). The hidden
layer now consists of m; neurons whose operation is given by the square bracketed
term on the righthand side of Equation (3.9). Note that the output laver now consists
of a lincar neuron whose input weights. wi. for & = 1.2.... . m,. are simply set to

unity,

These hidden neurons resemble the shape-tunable neurons described bv Chen et

al. [112]. but appear without a specific slope tuning parameter. The slope tuning
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parameter m, € R would appear as an additional argument in the hidden laver

activation functions o. that is. for the jth hidden neuron. oy, (m, xJw} ) {112,

The primary difference between a shape-tuning neuron and the conventional hid-
den neuron can be more precisely expressed by assuming for both neurons the case
of of-) belonging to the class of sigmoidal functions defined by Equation (3.4). In
this case. the upper and lower bounds of a conventional neuron’s response or output
would be given by (67.07). whereas the shape-tuning neuron would have its upper
and lower bounds given by (¢co™ + b.ca™ + b). For example. using the hvperbolic
tangent function as the activation function. the output bounds of conventional neuron
are given by (67 = +1.07 = —1). whereas the shape-tuning neuron would have its
upper and lower bounds given by (b+¢.h—¢). Similarly. for the logistic function. the
conventional neurons upper and lower output bounds are (1.0). whereas the shape-
tuning neuron has it upper and lower output bounds at (6+c.b). Given that b.c € R.
1t is easy to see that for the shape-tuning neuron. the upper and lower bounds can
be made be equivalent for either the hvperbolic tangent or the logistic form of the

activation function.

The claimed advantage in using the shape-tuning neuron was made empirically
by showing that the shaping-tuning neurons. based on functions from the class of
sigmoidal functions. appear to have superior fleribility and greater nonlinearity ca-
pacity than the non shape-tuning neurons. In addition. FFNN architectures using
these shape-tuning neurons were shown to convergence to an approximate solution

more quickly than that of an equivalent architecture using non shape-tuning neurons.

3.3 FFNN Learning

NN learning was briefly characterised in Section 3.2.1 as a process that adjusts
the weights of a NN according to a given learning rule. This characterisation of
learning encompasses many different forms of NN learning. It is not the intent of

this section 10 review all these forms of learning but to discuss one specific tvpe of

~1
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learning algorithm drawn from the learning paradigm known as supervised learning.
In particular. this discussion will focus on the features of supervised learning that are

relevant to instrument calibration and calibration transfer.

This discussion begins by drawing an analogy between supervised FFNN learning
and instrument calibration where it is shown that the generalisation error ¢,. used
to assess the adequacy of the FFNN approximation. is equivalent to the SEP used
in instrument calibration. It is then noted that the SSE in the approximating the
calibration data. ep. has a relationship to ¢, that can be described as stochastic. The
importance of noting this relationship is formed by the realisation that supervised
learning is guided by ep. but that it is ¢, that is used to determine the acceptability of
the FFNN approximation of the calibration model. Therefore. it becomes important

to understand the factors influencing this error relationship.

To understand this error relationship and its relevance to calibration. this section
uses the view that supervised FFNN learning is a nonlinear numerical optimisation
process. The process of supervised learning then becomes a search for a minimum
over a complex error surface. The techniques and the associated difficulties in finding
acceptable minima are then discussed in terms of FFNN learning and calibration. This
discussion then allows presenting a framework from which the relationship between

ep and ¢, can be more clearly seen.

3.3.1 Supervised FFNN learning
Supervised learning and instrument calibration

In chapter 1 the true instrument calibration model h was viewed abstractly
as a mapping h : X — y. Pragmaticallv. h needs to be approximated by h which
is obtained by performing an instrument calibration. A conventional instrument
calibration consists of first selecting a model for h and then estimating the model
parameters using a set of calibration data D = {(x,.h(x,)) : j = 1.2..... \,}. The

goal in calibration is to minimise a calibration error ¢ = d(h(x). h(x)). over all x € X
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Figure 3.5. A block diagram representing the process of supervised learn-
ing for a FFNN.

In this section it will be shown that the calibration process is analogous to the FFNN
learning paradigm known as supervised learning. as well. it will be shown that the
calibration error € is analogous to the error know as the FFNN generalisation error

€q-

To see these analogies. consider the block diagram of the supervised learning
process shown in Figure (3.5). The essential process of supervised learning consists
of a supervisor. also referred to as a teacher. that selects a jth training example.
(x,. h(x,)) € D. from the training set D and presents to the FFNN. the example of the
Jth input x, and the corresponding jth desired output h(x,). The intent in presenting
these examples of input and output values to the FFNN is to show the FFNN. by
example. the correct association between the inputs and outputs. This presentation

of input and output values then allows the FFNN to learn the association between all
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inputs and outputs as exemplified in D. In other words. the FENN attempts to learn
the mapping h : x, = h(x,) = y,. s0 as to achieve the minimisation of the data error
€4 = d(lw(xj).}r(xj))'-’. over all (x. h(x)) € D and where fz(xj) represents the output
of the FENN given the jth input x,. This minimisation is achieved by the learning

algorithm appropriately adjusting the weights w of the network bv an amount Aw.

Note the similarity and subtle difference between the process of instrument calibra-
tion and FENN learning. The similarity is seen in that both processes are attempting
to approximate the true mapping h using only the data provided in the set D. The
difference in the processes. as presented here. is that the intent of instrument cal-
ibration is reduce the calibration error ¢ over all X’. whereas in supervised FFNN

learning. only the error ep is directly reduced at (x.h(x)) € D.

It is clear that ¢ and ep are not the same and this difference in ep and e. given
that the FFNN is used as the instrument calibration model A. then begs an answer
to a verv important question: what is the magnitude of the error at (x.h(x)) € D
given that a FFNN has determined h over (x. h(x)) € D with an error given by ep”
Fortunately. this question has been examined by others. (Fine [47]. chapter 7). and
aspects of the answer relevant to calibration are discussed in section 3.3.2. For the
present discussion. it suffices to state that. in terms of FFNN learning. the error over
x € X is referred to as the generalisation error e, and is commonly expressed using
€y = d(h(x). h(x))?. which. ignoring the squaring of the distance metric. resembles
the definition of the calibration error ¢ and becomes identical if d(-.-) is defined to
be the same metric for both errors. In addition. it should be noted that ¢ and ¢,
represent frue errors and in practice estimates are obtained with an appropriately

sized validation or test data set [113-113].

As is discussed in section 3.3.2. the relationship between e, and ¢, is complex [116-
118! and exhibits random characteristic [119]. thereby eluding formulation of a direct
analytical relationship. Fortunately again. it is known that as D — x. ep — ¢, [47.

115.120]. In other words. given sufficient data. the minimisation of e, will result



in an e, that should be acceptably close to €. that is d(¢,.¢p) < €. where € > 0
represents the acceptable degree of closeness using the distance metric d(-.-). Again.
some guidance as to the likelihood of achieving d(e,.€p) < € for some D has been
provided by others [9. 47.121.122]. Therefore. the remainder of this section will focus
on the process of supervised learning. that is learning to provide the mapping h

x — h(x) = y. for (x.h(x)) € D with the understanding that though ¢, is being

minimised. ¢, can be made to be acceptable close to ¢ p.

Given this relationship between ¢, and ep. the problems in using a FENN as a
calibration model can be already be anticipated. In order to insure an acceptable €.
or alternatively an acceptable calibration error ¢. requires a sufficient representation
in D. The problems. of course. will revolve around answering the question of whether
or not D provides a sufficient representation and whether or not the estimate of e, has
acceptable accuracy. Determining an answer to these questions may require using an
excessive quantity of data. a prospect that is not looked at favourably in instrument

calibration.

The learning error surface

It will be instructive to visualise the process of learning using the concept of a
hypersurface surface. A hypersurface is nothing but a higher dimensional version of
common surface in a three dimensional space. RxRxR = {(w,. wa.€) 1 wo. wy. e € R}.
such that the height of the surface at (wyg. w;) is given by e. The extension to higher
dimensions Rx Rx ... xR = {(w.e) = (w).u.... .up.€):uw,.e ERi=1.2....p}.

does not invalid any insight gained with the three dimensional case.

In the case of supervised learning. the height of the hypersurface is given by the
orror € = d(h(x,).h(x,))"’. where the height is the perpendicular distance from the
plane formed by the orthogonal axes w.uw..... .u, and the point (w.¢,). where
w,; for 1 = 1.2....p represent the p parameters or weights of the FFNN. such that

w € W C RP. This hypersurface over all w is known as the error surface of the

FENN. It should be pointed out that even though €p, is a surface over all the weights
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of the FFNN. ep is also dependent on the data set D. If a different D is chosen. €p
will change. This particular point is important in that it will help to understand the
complexity of the relationship between ¢p and e, and the role this relationship will

have in instrumenrt calibration.

The utility in using the error surface is that the supervised learning process can be
visualised as the movement of a point on the surface to another point. Since super-
vised learning is attempting to minimise ep by appropriately adjusting the weights
by Aw. supervised learning can be viewed as a search for the lowest point on the
error surface. This lowest point. referred to as the global minimum. then corresponds

to a set of weights w* that results in #* such that

@f:&%(ﬂhmyhunﬂ. V(x. h(x)) € D.

= d(h(x). h*(x))? < d(h(x). h(x))>.

where it should be noted that for a single hidden layer FFNN using a sigmoidal
class of activation functions for the hidden laver and a linear output layer. w* is not
unique [47.123].

Viewing the process of supervised learning as a search for w* over an error surface
has been used by others to gain insight into the potential difficulty in locating these
global minima. These difficulties. of course. then translate directly into the potential
difficulties of instrument calibration and calibration transfer. Therefore. reviewing
the insight provided by others will help in understanding the use of a FFNN as an

instrument calibration model.

One obvious insight is the realisation that it is the form of the error surface that
will contribute to the difficulty in locating these global minima. The existence of
multiple global minima [47.123] implies that the error surface is not at all simple.
More accurartely. it is known that for the FFNN considered in this thesis. that the
error surface can be characterised as complex. consisting of long narrow troughs and
many regions that are essentially flat [124]. Contributing to this complexity is the

existence of multiple local minima. Auer et al. [125] have shown that the error surface



for a NN consisting of a single neuron. using a data set with \ = [:) samples where
x, € R". will exhibit ()" local minima. Given a FFNN with multiple hidden
neurons. the existence of large number of local minima is a verv real concern that
imposes a significant problem for most methods that are searching for acceptable

minima in the error surface.

Under certain cases it is possible for an error surface. as given by the SSE. of
a FFNN not to have local minima. This has been shown to occur if the FFNYN is
capable of exact approximation of the data D such that each sample (x. h(x)) € D is

unique [126]. Exact approximation of D is possible with a single hidden laver FENN

having D — 1 hidden nodes. In addition. the density of local minima. that is the
number of minima per unit volume in W. can also be reduced by using a logarithmic

error function [127].

Local minima present a problem in that thev may correspond to generalisation
errors e, that are unacceptable. In addition. most search methods can not distinguish
the difference between a local and global minimum without further extending the
search. Fortunately. many of the local minima can correspond to acceptable levels of
ey [47] so as to reduce the motivation to search for a lower minimum. It also becomes
apparent that as the level of acceptable error is lowered. the number of acceptable

minima will decrease. thereby increasing the difficulty in finding acceptable minima.

As a simple example. Figure (3.6) illustrates the characteristics of a tvpical error
surface for a single neuron for different data sets over the same h(x). As the figure
shows. ¢ is dependent on the data set D. It should be noted that for any fixed number
of data samples. that is l:) = V. randomly selected from X C X. the resulting error

surfaces will all be different so long as the elements of anv two data sets are different.

Figure (3.6) also shows an important characteristic of the error surface: that the
error surface becomes smoother as the number of data samples increases. Specifically.
Figure (3.6) is graphically showing how the error surface defined by ep is approaching

some asymptotic form. If this error surface is scaled by 1/.V then Figure (3.6) is more
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Examples of the error surface for a single neuron with a single
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The error surface ¢, is given by the squared /,-norm over
the data set D = {(x;. h(r,)) : i = 1.2..... \'}. and where
h(r) = 37 = 5r* +3r. X = [0.1]. In (a). N = 2. and
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accurately showing how e, — ¢, as D — ~.

In terms of instrument calibration. the search for a minimum should ideally use
the error surface given when B — o in that the minimum on the ideal surface
corresponds directly to the generalisation error ¢,. In reality, 1:) is finite so that the
minimum is searched over a less ideal error surface. By visualising the overlaying of
this less ideal error surface with the ideal surface. it becomes more clear as to why

the relationship between ep and e, is described as being stochastic.

Supervised learning as a nonlinear optimisation

It becomes clear that a successful search for w* is highly unlikely in the gen-
eral case of multilavered FFNN using the SSE as an error measure for ep. \ore
realistically. a search will find one of many local minima. The success in finding an
acceptable local minimum over the error surface will depend not only on the complex-
ity of the error surface but also on the method used to perform the search. Though no
best method to determine an acceptable minimun [47.128]. for all types of problems
and data sets has been established. a number of methods based on numerical or iter-
ative nonlinear optimisation techniques have been developed and used successfully in
supervised learning. In particular. the use of descent techniques [129] have become

methods of choice when implementing supervised learning algorithms.

Though it is quite common to view the supervised learning problem as a numer-
ical nonlinear optimisation problem. ([9]. pg. 234-245. [47]. pg. 129-136). descent
techniques are not the only means to perform the optimisation. techniques such as

direct search methods [129] can also be used.

To be able to place the D™ learning algorithm within the context of these descent

methods the essential elements of these methods will now be considered.

To reduce the ambiguity in describing these descent methods over various error

surface. let C'(w. D;) = ep, denote the error surface over w € W for the kth data set

D = {(x,-h(x;):i=1.2 N} where Ny = Ek. The notation C(w) will also be

80



used for the error surface to simplify the notation but where the dependance on D is
understood to be present. Since a search for the lowest point on C'(w. D;) must begin

from some point. let w,(n = 0) represent the coordinates of the jth starting point.

given that the search began at the jth starting point w;(0). Also. let w; designate
the coordinates of the /th global minimum on C(w. Dy). i.e. there is more than one
global minimum. In addition. given that the search can be terminated before finding
the global minimum or that the search may find a local minimum. let w " (n) represent
the coordinates where the search. that began from jth starting point. is stopped at
the nth instant. Also. let A(x: w;(n)) describe the output of the FFNN for x € X
given a set of weights set to w;(n). and let h* and h™ denote the FFNN having its
weights set to a w* and w™. respectively. without regard to the /th global minimum

or jth starting point. Finally. define

dC (w. Dy)
8(w(1) = Voo OOV Di)lmuin = =0 |
_ [8C(w.Dy) OC(w.Dy) aC(w. D)7 (3.10)
= au'l . a'u'z s e e e azL‘p w=w(n) . il

as the gradient vector representing the first partial derivatives of C(w. D;) with re-
spect to the weights w; evaluated at w(n). Also define
_ 8*C(w.Dy)|

|w:w(n)

H(w(n)) = (V) C(w. D)l g —win

ow?
FC(w.Dy) FCw.Dy) . 3C(w.Dy)
duwiow; duy Gun _r’iu;l dwy,
8*Ciw.Dy)  8°C(w.Dy) L. (WD)
. duaduny dwrdun Juwaduwy ( 3.11 )
A2C(w.D)  3*C(w.Dy) L dC(w.Dy)
Supdury durpduwa duwpduy, w=w(n)
= [H;]. i.j=12....p. (3.12)

as the Hessian matrix of second order partial derivative of C(w. D;) with respect to
the weights evaluated at w(n) and where

= = Hj. 13
= vae, =1 (3.13)
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Descent methods are based on performing the following iterative steps [129] that

begin from some initial starting point at w,(0):

1. From the current point at w,(n). determine a descent direction

d(n)=[d\(n).ds(n). ... .(1,,(n)}7‘.

[

Determine a descent step length n(n).

3. Perform the descent step using w(n + 1) = w(n) + ninyd(n) = w(n) + Aw(n).

where Aw(n) = n(n)d(n).

4. Determine if a termination criteria has been met so as to stop the descent at

w(n+1).

An acceptable descent direction is given by anv d(n) in which the error surface

decreases. that is
Cw(n+1)) = C(w(n)+n(n)d(n)) < C(w(n)). (3.14)

The condition under which this inequality is met can be determined by simply dif-
ferentiating C'(-) on both sides of the inequality in Equation (3.14) with respect to
1n(n). that is determine the slope of C(-) with respect to the step length at the point

w(n). This results in. by using the chain rule.
(d(n)) g(w(n)) < 0. (3.15)

which is the well known descent condition [47.129.130]. The left hand side of Equa-
tion (3.13) is also by definition the directional derivative of C(w(n)) in the direction
of d(n) evalutated at the point w(n).

The direction providing the greatest decrease will depend on the unit of distance
used along each of the coordinates axes of W and on the metric used to measure the
distance. The distance metric that is commonly chosen is based on a form of the

weighted [, norm. Therefore. using this metric. the distance between w(n + 1) and
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w(n)is

diw(n+1).w(n) = ((wn+1)—-wn) An)(w(n + 1)~ w(n)))é .

= (A(wW(n))TA(m) Aw(n)) - . (3.16)

where A(n) is a (p x p) matrix referred to as a metric matrix that by definition
is required to be definite positive. If the axes are rescaled using u = Bw. than
A = B"B. This rescaling can be performed at ecach iteration n and is the bases of

variable-metric descent methods ([129]. pg. 100).

Given the measure of distance provided by Equation (3.16). it can be shown.

([129]. pg. 99-101). that the direction of steepest descent is given by

d(n) = —(A(n)'g(win)). (3.17)

All descent methods can be differentiated by their choice of A(n). which deter-
mines the descent direction d(n). and the technique used to determine the descent
step length n(n) [129.130]. In this context. some of the more well known descent
techniques include those referred to as steepest descent. conjugate gradient. quasi-
Newton. and the Levenberg-Marquardt methods. Many of these methods have been

used to perform supervised learning in a FFNN [74.131-137].

Though no best method has been established to determine w* [47.128]. the use of
methods based on steepest descent are frequently emploved in supervised learning.
The method of steepest descent is one of the simplist descent methods and is based
on setting A(n) = I. where I is the (p x p) identitv matrix. This results in a descent

direction given by
d(n) = —g(w(n)) = =V,C(w(n)). (3.18)

which is simply the negative gradient of C(-) with respect to w.

In selecting the step length n(n). an optimum value can be determined by searching

along the chosen direction d(n) for the minimum in C(-). In other words. the optimum
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step length 1*(n) occurs when

()C(W II -+ 1 '
! =0.
0,,( ) Ir;n):n'(n)
which. from Equation (3.15). results in
(d(n))g(w(n +1)) =0. (3.19)

which shows that an optimal step length results in a gradient of C(-) at w(n + 1)
that is orthogonal to the direction used to get to w(n +1). It can be shown [47. 129]
that if C'(-) is at least twice differentiable. that differentiating a second order Tavlor
series expansion of C'(-) about the point w(n + 1) with respect to n(n) and setting

that expression to zero. results in

T(w(n))A(n)g(w(n))

. = — . 3.20)
T = T () A (w (g (w0 (
which for A(n) = I. as used in the steepest descent method. reduces to
T ,
8" (w(n))g(w(n)) (3.21)

~ g7 (w(n)H(w(n))g(w(n))’

In practice. determining an optimum step length using Equation (3.21). is compution-
ally expensive and it has been determined that the information from the Hessian is
better used to help determine an improved descent direction [129]. In this light.
nonoptimal step lengths are typically chosen where a common and simpie choice is
to select a fixed step size. that is to set n(n) = n. Other nonoptimal strategies in se-
lecting a step length 7(n) are also possible. In the context of supervised learning. the
step length is referred to as the learning rate parameter or as the step size in learning.
In this context. other nonoptimal strategies in setting 1(n) include performing a line
search for n°. applying learning rate schedules. and using ad hoc adaptive learning
rates [17].

The simplicity in selecting a fixed valued for 1 is traded-off for the possibility of
cither a very slow descent or an unstable descent. Avoidance of these possibilities is
tyvpically approached by trial and error where experience has shown that values in the

range of 0.01 < 5y < 0.1 are appropriate.
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Gradient Evaluation, batch, and on-line learning

The need to determine the gradient ¥ C(-) is present in most descent methods
and it can pose a significant challenge when the parameters given by w are within a
h having a complex nonlinear structrure such as that of a Equation (3.7) describing
a multilayered FFNN. To approach this challenge. the method of backpropagation.
as reintroduced by Rumelhart et al. [7T4] to the neural network community and as
described by others [9.47]. is an effective method to calculate the gradient vector

needed in most descent methods.

In a single hidden laver FENN. such as that shown in Figures (3.3) and (3.4).
the direct application of the chain rule of differentiation will also vield the gradient
vector without resorting to the back propagation of errors as is used in the method of
backpropagation. For this reason. this thesis does not use the method of backpropa-
gation to evaluate the gradients needed for the D'V learning algorithm. instead the

gradients are determined by direct application of the chain rule of differentiation.

Now consider the error surface C(w. Dy) = €p, - based on the /,-norm. as described

in section 3.3.1. The gradient in this case is given by

_9C(w(n).Dy) _ Bep, _ dd(h(x. h(x,))?

VC(w(n).Dy) . (x;. h(x;)) € Dy.

ow(n) ~ ow(n) ow(n)
P N ‘ , N
= dwin) ; ("("‘) - "("')) : (3.22)

It is apparent from Equation (3.22) that the entire set of data in Dy is used to
determine the true gradient of C(w. D) at w(n). In terms of NN learning. using all
the data to determine the weight adjustment is referred to as batch learning. Also.

it should be noted that using all the data in Dy is referred to as a learning epoch.

[t is also possible to use an instantaneous value or estimate of the gradient based
on a single data sample from D;. More precisely. this method forms Vi data sets
Dy, = {(x,.h(x;)} for i =1.2..... \i. and where D = 1. Dy, C Dy. This method

of gradient evaluation is also referred to as on-line or sequential learning. In this

method. a gradient direction and step are determined Ny times for a single learning

(0 9]
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epoch. that is a learning epoch still consists of using all the data samples in Dj. but
instead NV, descent steps per epoch are taken. In applyving this method. it is also
recommended that the order. in which the samples are used to estimate the gradient.

be randomised for each epoch ([9]. pg. 171).

The use of single data samples to estimate the gradient. in conjunction with a
possible random ordering for each epoch. results in descent path over the error surface
that resembles a random walk. This has prompted the use of an alternative term for

the on-line learning algorithm: a stochastic gradient algorithm.

The stochastic nature of the descent in on-line learning makes it difficult to es-
tablish convergence results. that is will the algorithm find and settle into a minimum.
Recently. Wang et al. [138] have suggested that convergence is not guaranteed for
on-line learning using the backpropagation algorithm. In spite of this potential non-
convergence problem. overviews regarding on-line training have indicated that it can
and has been used successfully and provides computational advantages over batch

learning [9. 47].

3.3.2 Limitation in FFNN learning

From the previous sections. it is clear that given the complexity of the error
surface. limited data. and nonideal search techniques. that finding a minimun on the
error surface which corresponds to an approximation with an acceptable generalisation
error is not a trival problem. This section presents an alternative view of this nontrival
problem that provides additional insight into the limits of FFNN learning accuracy
given finite data sets and limited numbers of hidden neurons. It is obvious that
this insight helps in understanding the limitations of using a FFNN as as instrument
calibration model.

To present this alternative view. the processes used in supervised FFNN learning.
instrument calibration. and function approximation are all considered as attempts

to reconstruct a continuous mapping [81] or hypersurface. h : X — Y. using only a
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finite set of samples Dy = {(x,. h(x,)) : j=1.2.... .. Vie. x, € X.h(x,) € V}. that
exemplifv the true underlving hvpersurface h.

To avoid complicating the present discussion. the data set Dy is assumed to have
a probability density function for x that is uniform over all X', In addition. it is
assumed Vx € AX'. that there is only one corresponding value of h(x) that is deter-
mined uniquely. thar is. there is no associated error or noise. Finallyv. since the terms
mapping. function. and hyvpersurface are. in the context of this discussion. equivalent

thev will be used interchangabiy-.

As a problem in hyvpersurface reconstruction. the ideal goal is to achieve perfect

accuracy in reconstructing or approximating h. Alternatively. this goal can be ex-

can be defined as a distance measure d(-.-). The ideal approximation would then
correspond to distance or error of zero. that is
e =d(h(x). h(x)) = 0. for x € X.

The distance measure is usually taken to be one of the L, norms [| - ||,. tvpically the
least square or Euclidean norm [6]. i.e. p = 2. so that the error can then be expressed

as

llh(x) — h(x)|l2 = 0. for x € X.

®
il

= (/ (h(x) — iz(x)zdx> g (3.23)

X
For convenience in presentation. let e, = €. where e, is the generalisation error. In
the context of instrument calibration. e, is the true squared error in prediction. In
instrument calibration. it is the error e, over X’ that is important in that provides an

indication of instrument’s measurement performance.

Regardless of the context ¢, is placed in or its importance. it is apparent that to
approach this ideal goal requires addressing a number of concerns. First. it is clear
that to achieve a zero error. or to even measure e,. requires knowledge of h and A

over all X'. which is not available. i.e. only the data in D, is available. In addition.
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having e, = 0 presumes that h can in fact approximate h identically over all X. In
instances when h can not approxmate h. then ¢, # 0. regardless of whether /& and A

is known or not known over all X. These instances can occur when /h is the wrong

model or it does not have sufficient power or complexity to represent h {47.120].

The nature of these concerns in measuring ¢, and approaching ¢, = 0 can be
discussed more precisely by introducing additional abstractions and notation. Let
H be a set representing the family of functions that A belongs to. i.e. h € H. Let
H, be the set representing the family of functions having a number of parameters
proportional to p > 0 and where h e H,. As an example of a family of functions. H,
may represent univariate polvnomials of degree (p — 1) or it may represent a single
hidden laver FFNN with p hidden neurons. Finally. it is assumed that H, C Ha C
-+~ C Hp C --- C H. in other words. it is assumed that H does include H, as a

subset.

Using this abstraction. it is apparent that given some h € H. the process of
attempting to attain e, = 0 requires first selecting a H, and then determining a
specific h € H,. Now. assume a H, has been selected. it is also clear that to attain
e, = 0 requires that h.he H,. If h ¢ H,. then e, # 0 and the only recourse is to
either select another H,. ¢ > p. with the intent of having h.h € H,. or to accept H,

and determine a h € H, that is acceptably close to h.

It is now seen that to select H, and to determine a specific h € H, requires
measuring the closeness of h to h. This closeness is essentially what is measured by
Equation (3.23). but as was noted previously. it is not possible to directly measure

¢, given only a finite set of data Di. Instead. ¢, needs to be estimated using an

‘g

estimator. which in considering Equation (3.23). can be given by [47]

:\]ll

N
L ENY : .
(= f%; (hx,) = hix,)) " for (x, hix,) € T. N, = (3.24)

where T C Dy. is the test or validation set. In the context of learning. €, is referred to
as the empirical generalization error. In the context of instrument calibration. /€, 1s

known as the RMSEP. It should be noted that in spite of defining the true calibration
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model / as having no error. the error measure ¢, is essentially a random variable. This
1s true in the sense that T may be randomly selected and that h depends on both
the data D which may be randomly selected and the search process that may start

at some random point on the error surface.

The use of a finite data set must not only be used to estimate ¢, but it is also
needed to select Ai. In selecting A. the dara set D is used. where D ¢ Dy and DT = Q.
Again. the selection of h € H,, requires a means of measuring the closeness of htoh
using only the data in D. This can be achieved by viewing the set of points given A(x,)
and il(xj). for j = 1.2.... .. Vi as two vectors h = [h(x). h(xa). ... .lz(x,\-‘)}"' and
h = Uz(xl ). h(Xa). ... ./-z(x_\-& N7 that also represent two points in RY% . The distance
between these two points d(h. fl). then provides a measure of the closeness of hto h.
not over all A’. but only over (x,.h(x,)) € D. Again. anv measure of distance can
be used. but typically. the squared l»-norm is commonly chosen [9.47] and can be

expressed as
Al . 2 =
C =3 (htx)=h(x)) . for (x,.h(x,)) € D. Ny = D. (3.25)
=1

which is also referred to as the sum squared error. SSE. measure. Now. since the
closest distance is desired. the selection of 4 is such that
C* = min (C). (3.26)
heH,,
is ideally obtained. In the context of this minimisation. Equation (3.253) is also more
generally referred to as a quadratic cost. objective. or error function [47.129.139] in

that the minimum cost or error is the objective.

In a strict sense. it is well known [9.81. 84] that the selection of h using only the
data in D is ill-posed in that it is not possible to determine a unique mapping h in
regions between the data samples. or alternatively. there are an infinite number of
mappings over A" that also include the data samples D. i.e. where C* = 0. One simple
pragmatic solution is to provide additional prior information. such as assuming that

h € H,. so as to restrict the number of selections for A. If sufficient prior information
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is used along with the data set. then the selection of h. using Equation (3.25). can be

reduced to a single evaluation.

For example. assume that h € H.. where H., is the family of mulitvariarte linear
hyperplanes. fi(x) = x"w. Now the selection of h. given D having \; data samples
can. by rewriting ' in matrix form. be determined by solving 9(h — Xw)7(h —
Xw)/dw = 0. where X = [x;.Xo. ... . Xy 1. w = [wg.uiT.x = [y = L.ry]7. and
0 is a (Vi x 1) matrix of zero elements. In other words. the selection of A using
D and Equation (3.25) then reduces to estimating the parameters w of i so as to
minimise C'. The direct solution for this minimisation is the well known least squares
estimate [4]. w = (X”X)~!X7h. The resulting selection of /. achieving C~. then
simply becomes h(x) = xTw. If the inverse does not exist. the generalised inverse

X7, where XX~X = X. may be used [4].

[n cases where M, is a family of functions that are not linear in parameters. the
selection of A by a direct minimal solution of Equation (3.23) becomes a much more
difficult task. In these cases. one common approach. as discussed previously. is to
search for a set of parameters w of /i that achieves a minimisation. Again. the success
of the search. i.e finding C*. is not always assured by virtue that it depends on the
complexity of the search space. i.e error surface. and on the technique used to perform
the search. \ore importantly. and as was shown in section 3.3.1. the minimisation
of C = d(h. h)2. which is dependent on D. is generally not the same as the desired
minimisation of e, = (1(/1(x).iz(x))2. In other words. the optimal minimum of C.
may not correspond to the optimal minimum of e, by virtue of using a finite D to
represent the h and h. Second. the optimal minimum of C. referred to as a global
minimum. may not be found. Instead. it is likelyv that due to the complexity of the
search space and the limitation of the search technique that the search will find a less

than optimal miminisation. referred to as a local minimum.

To emphasis this important idea - that the optimal minimum of C. mayv not

correspoud to the optimal minimum of ¢, - consider Figure (3.7) which shows the
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Figure 3.7. The relationship between generalisation error ¢,. approxima-
tion error ¢,. and estimation error €.. The inner most closed
area represents the class of functions in the set ‘H,. the outer
most area represents H. The true calibration model is h € H
and the best approximation available in #, is h*. A search
for h*. using C and only D. may find h* instead.

true calibration model h being represented as a point in a plane defined by #. Also.
shown is H encompassing a closed area defined by M, ;. which similarily. encompasses
another closed area defined by #,. This succesive encompassing of areas can be
expressed using H, € H, C --- C H, C --- C H. Now assume that class of
functions represented by #, has been selected to provide an approximation h. Using
the minimum of ¢, = d(h(x). h(x))?. given by Equation (3.23). to define the best
approximation. it is clear that the point identified as h*. located in H,p. is the best
approximation but ¢, # 0 since h ¢ H,. Now further assume that search for h*.
which is the closest approximation to h as measured by C = d(h.h)2. results in a less

than ideal ending in that a local minimum C is found at the point identified as h~.
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As can be seen in Figure (3.7). there arc three distances between the points h.
h*. and h= that are related bv e, = e, + e.. where e is an error vector providing
both the distance and direction between points in #. The distance given by e, =
d(h(x). iz(x))" represents the true generalisation. introduced in Equation (3.23). and
consists of two components. The first component has a squared magnitude given by
€, = d(h(x).fz‘(x))z and is referred to as the approximation error which represents
the inability of the selected class of functions to approximate A. This error is also
known as the bias in / and is independent of the data D [4]. The second component
has a square magnitude given by ¢, = d(ir‘(x). h™(x))? and is called the estimation
error which represents the error due to using both a finite data set D and a search
technique that may not find the global minimum of C. that is A" may not be found.
Note that random error associated with /. that is. data having zero mean normally
distributed noise. D = {(x,.h(x;) + N(0.0)) : j = 1.2..... V;}. will also contribute

to the estimation error ¢, ([4]. pg. 261).

As a simple example of these ideas. consider the case of using H, representing the

univariate linear class of functions. i.e. h(r) = w,r+wy € H,. to approximate h(r) =

r?. Now it is obvious that h ¢ H,. so that there will alwavs be an approximation

error. L.e. €, # 0. It is also easily shown the least squares estimate for w = [u. wo]T
over X = [0.4]. is. regardless of any D = {(r; h(x,))) - j=1.2..... \i}. given by
w" = [uy =b.we = —}b*]". This results in h*(zx) = x"w* = br — 1b? and represents

the minimum in the L,-norm approximation of ~. Now assuming that only the data
in D is available. the selection of h using C will result in the least squares estimate
of w over D given by w = (X"X)~'X"h which minimises C'. i.e. C* is found. It is
apparent that w is dependent on D and if the calibration data is randomly chosen
by the instrument user. then it is likely that w # w* so that selection of A results
in h~ #* h*. This difference between h* and A" is the estimation error e, and is due
entirely to not having sufficient or optimal data provided in D. Also in this case.
the search process for h. which is a direct solution to the minimisation of C. does

not contribute to the estimation error since w is always the global minimum of C.
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In more complex search spaces using search techniques with limited capabilities. it
is also likely that w will correspond to a local minimum of C. thereby contributing

additional error to e,..

3.4 FFNN Calibration Transfer Methods

This section presents the theory and methodology used to develop the cali-
bration transfer method referred to as PICX. iDAXC. and D'"-iDACX for a single
hidden layer FFNN. This presentation begins by briefly restating the calibration trans-
fer problem and then defining the notation needed to discuss the development of the
theory and methods of calibration transfer. Next. the simpler forms of calibration
transfer for the given FFNN are discussed. that is. the methods referred to as PICX

and iDACNX. Finally. the D'"-iDACX method is developed.

3.4.1 Preliminaries

The instrument and the calibration transfer problem

To describe the calibration transfer methods of this section. it will be instructive
to briefly review the instrument calibration problem. For convenience. the instrument

svstem. as shown in chapter 1. is reproduced in Figure (3.8).

The true association between 2 and Y is given by the map f = hog:2z — y. It
is assumed that this mapping is fixed over all time and instrument realisations. The
true complete calibration data set is then defined by Dy = Z x Y = {(z. f(z) = y) :

ze Z.ye)}.

The ideal instrument syvstem provides a kth realisation of this true association
between z and y given by hy o g : z — y. Pragmatically. only an approximation of
this true association is possible. and for this thesis this approximation is given by the
map hy ogi. Therefore. the standard calibration problem is to determine A, from the

finite calibration data set Dy = {(g(z;) = x;. he(x;)) 1 i = 1.2.. ... s
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Figure 3.8. A block diagram of an ideal instrument svstem illustrating
the process of taking a measurement z from Z and providing
a corresponding output reading y.

Given a change in the sensor syvstem from gi to g. the ideal instrument will
need to provide the /th realisation of the true association given by the map h; o
g:- By definition. g;. used in conjunction with /. results in the approximation of
the true association. f. having unacceptable errors. that is. the map hy o g has
unacceptable errors. A recalibration is needed to obtain the approximation h; using

the new calibration data set D, = {(g(z;) = x;. hy(x,)) :i=1.2... .. \}.

A calibration transfer. in the context of this thesis. consists of an attempt to
exploit an accurate. and possibly expensively obtained. calibration model A, so as to
obtain another calibration model h; having acceptable accuracy using less data. that

is. to have D; < Dy.

Notation

To discuss calibration transfer and to compare its accuracv with other meth-
ods. various realisation of data sets. calibration models. sensor system. and the corre-
sponding error measures will. at times. be used together. To avoid confusion. it will

be necessary to more precisely specify some of the notation introduced earlv.
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Calibration and test sets. The complete calibration data set was defined as Dy =
{(x.h(x)) : x € X.h(x) € YV}. A specific finite element subset used as the actual
data set for the calibration of h was also denoted as D or as Dy. both of which are
subsets of D,. A finite calibration data set was also defined as Dy = {(x,.h(x,)) :
J=12...... Ve.x, € X h(x,) € YV}. It is now necessary to introduce additional

notation to distinguish between the various data and data sets.

The complete calibration data set Dy is dependent on the instrument system. To
see this dependency and its relevance to the calibration transfer. consider that the
goal in instrument design is to associate an input measurement z, with an instrument
reading y,. The true association is given by the true underlying mapping f :z — y.
The true complete calibration data set is then defined as Dy = {(2z. f(z)) =y :z €
Z. f(z) = y € Y}. More practically. an ith true finite calibration set is drawn from
the true complete calibration. This ith true finite calibration set D, is defined as
D, = {(z;(i). f(z;(i))) = y;(i) - j = L.2...... Ni.z; € 2. f(z;) = y;, € YV}. where
= 1.2..... and where it may be necessary to use z,;{i) and y;(i) to refer to data
belonging to the ith true finite calibration set. It should be noted that f is assumed

to be fixed. therefore. the true complete calibration data set Dy does not change.

Now the instrument is designed to provide a kth realisation of the true underlving
mapping f = h; o gi. In this context. the complete calibration data set is given by
Do = {(gr(2) = x(k). f(z) = y) : x(k) € X}. where the Dy refers to the complete
calibration data set generated using the kth realisation of the sensor syvstem and
where x(A) mayv be used to indicate that the data was generated with the Ath sensor
svstem. Also note that the sensor output space X is defined such that ge(z) € X'. Vk.
More tvpically. the calibration and test set will be determined by the ith true finite
calibration set D,. so that in its complete form Dy, = {(gk(2,(i)) = x;(k.i). f(z;({)) =
y, (1)) je{1.2.... .. \:}.x;(k.i) € X'}. where x;(k. i) may be used to indicate data
generated with kth realisation of the sensor svstem given the jth data point from the

ith true calibration data set. Note that i = 0 indicates data drawn from D,.
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Given the [th realisation of sensor system g;. the calibration data set is given by
Dy = {(g(z,(1)) = x,(I.0). flz,(1)) = y, (i) : j € {1.2.... .. Vbox, (i) € X} As
discussed previously. it is alwavs the case that ¥i. D;, C Dy, and T;, C Dyy. where

again D, N T, = 0.

Finally. it is also possible to draw a number of different calibration and test sets
from a given true finite calibration data set D,. To identifv these instances the
notation Dy, (m) is used to represent the mth draw of data from the /th true finite
calibration data generated with the kth sensor svstem. The coordinates of the data
drawn for Dy, (m) are given by x, (k. {). where j € I,,, € {1.2..... \,} and I, represents
the mth indexed set whose elements specifv the values to be used for the jth index.
The number of data points in Dy, is given by N, = Dzk, = Ifn. Fori=0.\N,=x. If

the indexed set is not specified then the Dy;(mn) will be explicitly defined.

Note that this complete and cumbersome notation for the data or data sets will
only be invoked when there is a possibility of confusion as to which data or data set
is being used. In cases. where it is clear from the context or if it is not necessary to
distinguish these cases. the notation introduced earlier will be used. For example. if
it is only necessarv to identify that the calibration data set is based on the [th sensor
system. regardless of which ith true calibration set it is drawn from. then the notation

D, is used. where the number of data samples is given by \; = D.

Error measures. The error measures were used to evaluate the difference between
the & realisation of the desired calibration model A, and its approximation h;. The
true generalisation error was then given by the ¢, = d(/i(x). izk(x))'-’. where x € X'.
Implicit in this definition is that x = g;(z). In the context of calibration transfer it is
also possible to have x = g;(z) and to use this as the argument for either #,. f),. or izk.

Using x(/) to indicate that the data is generated by the {th realisation of the sensor

*)

svstem. the generalisation error may be denoted as eg(h;. hy) = d(h(x(1)). hy(x({)))
if the meaning is not clear. If the meaning of the generalisation error is clear. the error

will be simply denoted as €,. In the case of using different realisations of instruments.
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as when the error in using the £th calibration model with the /th sensor svstem is mea-

sured. the generalisation error will be denoted as cqlhy. hy) = d(h(x(!)). /zk(x(l)))"’.

The notation becomes cumbersome if finite data sets are used to estimate errors
and if it becomes important to distinguish between data sets used to estimate the
error. In the most cumbersome case. an estimated error measure ¢ will. for example.
be denoted as é(lz,.itk. Dy;(m)). This error represents an estimated error measure
between h; and h; over the data set Dy, (m) having .\, data samples. and where
X, Is generated by the [th sensor system when given data drawn from the ith true
calibration data set D, according to the mth indexed set I,,. that is j € I, and

-\.J = [m .

3.4.2 Calibration transfer using the PICX methods

The objective in performing a calibration transfer is to exploit the calibration
model /i, so as to obtain another calibration model /i, with acceptable accuracy using
less data than that used to obtain /.. The simplest approach. which moves towards
meeting this goal. is to attempt a standard calibration. that is. obtain /; with the
data set D; having 5; < Dzk.

Given that a FFNN is implementing the calibration model. a standard recalibra-
tion requires a relearning to obtain fu using the data D;. In using a data set D; having
51 < 5&- it is likelyv that the new calibration model iz, will exhibit an increase in the

calibration error. that is ¢(h;. hy. D) > é(hg. izk. Dy.).

hiough. this increase in calibration error appears intuitively obvious. the super-
vised learning algorithm displayvs a characteristic that warrants considering it a form
of calibration transfer. The particular FENN characteristic that is of interest can be

illustrated using a simple example of a calibration transfer problemn.

To define the noration for this example. let + € X C R and assume that a
FFNN has already determined a hy(.r) having an acceptable level of calibration error

€(hi. hi. Di) < emax. where €may represents an arbitrary level of acceptable calibration
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error. The calibration model izk was obtained using the data set D, C Dy having
N = li. calibration data samples. Now assume that a change in the sensor svstem
from gi to g has occurred which results in a calibration error é(h,. izk. Di) > cmax-
To reduce the calibration error. a new calibration model fz,. is needed. To obtain iz,.
the calibration data sets D;(1) C Dy and D,(2) C D, are made available. Also to be
consistent. the calibration error é will be measured using the empirical generalisation

~*)

error. that is. €, = ¢

Figure (3.9a). illustrates a specific instance of this calibration transfer example.
where X' = [0.1] and he(x). hi(x). Dy. Di(1). and D,(2) are as shown. Note that
li- = 8. D:,(l) = 3. and 5[('2) = 5. and that fzk and h; are subjectively similar.
Figure (3.9b) illustrates the same calibration transfer problem of Figure (3.9a). but
viewed using only the data sets D;(1) and D;(2). It is apparent that without the
visual aid of interpolating lines for h; and Ay. the approximation of A;. given only the
data D;(1) or D;(2). will be difficult. particularly if the level of calibration error is to

remain under e,,.

Now. for illustrative purposes and for latter comparisons. consider attempting to
perform a standard calibration to obtain A;. not by retraining the FENN. but by more

conventional means. such as using a piecewise linear or a cubic spline interpolation [6].

Figure (3.10) and Figure (3.11) provides a sense of both the characteristics of
the approximation h;(r) and the magnitude of the squared error over X’ using a
piecewise linear and a spline interpolation of the data D;(1) and D,(2). For reference.
the estimated empirical generalisation errors. as defined by Equation {3.24) with

N

; = 200. are also listed in the figures. In addition. the squared error behaviour

of the previously trained FFNN. providing the approximation /.. is also shown in

Figure (3.10b) and Figure (3.11b) as a solid line.

It is apparent from Figure (3.10) and Figure (3.11) that the use of either a piece-
wise linear or a cubic spline interpolation method. with D_l < ﬁk. causes a significant

increase in the calibration error as compared to the error associated with hy.
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Figure 3.9.

A calibration transfer problem. In (a). a FFNN has deter-
mined hi(r) using Di. A recalibration is required to ap-
proximate h;(z) using the calibration data D;(1) or D;(2).
In (b). the same calibration transfer problem of (a) without
the visual aid of interpolating lines.
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Figure 3.10. The results of a standard calibration using a piecewise lincar
and a cubic spline interpolation to obtain /i, with five calibra-
tion data points. given by D;(2). are shown in (a). where the
true h; is shown as a solid line. The squared errors between
h; and iz,. are shown as a function of r in (b).
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The results of a standard calibration using a piecewise linear
and a cubic spline interpolation to obtain A; with three cali-
bration data points. given by D(1). are shown in (a). where
the true A, is shown as a solid line. The squared errors be-
tween h; and h;. are shown as a function of z in (b).

Figure 3.11.
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Now given that the FFNN has already learned hy. a standard calibration entails a
new training. or learning. session so as to have the FFNN obtain the approximation
izl using the calibration data given by D;. As was discussed in section 3.3.1. a FFNN
requires its weights to be initialised. One of the most common techniques used to
initialise the weights is to randomise them according to some heuristic. such as the
Nguyen-Widrow method [140]. or by simply using values selected from a zero mean

normal random distribution. N (0.0 < 1).

Another possible technique to use to initialise the weights. which is not considered
in most FENN applications. is to set the weights to the values that provided that
previous approximation i)k. The motivation in using the previous weights values is
based on the potential similarity between h; and A, and the notion that a degree of
information regarding /i may be embedded in the weights. More precisely, given that
a similarity between h; and h; may exist. there is a possibility that the error surface
C(w. Dy) used to obtain A may also share a degree of similarity to the error surface
C(w. D;) that will be used to obtain #;. More importantly. it may be possible that a
minimum on C(w. D;.). corresponding to by may be close to a minimum on C(w. D)

which may correspond to a iz, that is similar to izk.

As an example of this idea. Figure (3.12) shows the approximations resulting from
retraining the FFNN using the data defined by D;(1) and D,(2). In Figure (3.12a) the
weights are initialised to the values which provided the previous approximation. that
is. the initial weight values are set to provide the approximation hy. Figure (3.12b).
shows the approximations resulting from retraining the FFNN using the same data

with weights that are randomly initialised using the Nyvugen-Widrow method [140].

Though the results shown in Figure (3.12) are but one specific instance in ap-
proximating A;. the results indicate that initialising the weights to provide a previous
approximation is likelv to provide an approximation of h; that has less error than an
approximation resulting from using a random initialisation. In addition. these results

suggest that a random initialisation of the weights can result in approximations hav-
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Figure 3.12. The results of a FFNN approximating (). as defined in
Figure (3.9). using the data sets D;(1) and D;(2). In (a)
the FENN weights are initialisation to the values providing
the approximation h;. In (b) the initial weight values are
randomised.
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ing calibration errors that are comparable to. or greater than. the calibration error
resulting from a linear piecewise or a cubic spline interpolation. It therefore. seems
advantageous to use the weights found from a previous approximation as the initial
weight values for a FENN when performing an instrument recalibration. In partic-
ular. it also seems intuitive to expect this advantage to improve as the siniarity
between hy and A, increases. These results are also suggesting that when the FFNN
weights are initialised to the weight values providing the approximation /.. the FENN

appears to be performing the similarity map A, = AH (hy).

Therefore. this simple example has shown that. for instrument calibration and
calibration transfer. it is important to identifv how the weights are initialised. In this
regard. the complete notation w(0. iz;(x: w,}) may be used to represent the initjal
weights set to the values providing the jth approximation of A;. The initialisation
using w(0. iz;(x: w;)) will be referred to as a prior initialisation. A calibration trans-
fer using this prior initialisation. in conjunction with a learning algorithm using an
error measure based only on the data in D. will be referred to as a prior initiali-
sation calibration transfer. PICX. method. A random initialisation will be denoted
as w(0. ). where P, represents a set of random weight values generated according
to some defined ith method. for example. i = NW. would indicate values generated

according to the Nguyen-Widrow method [140).

The next approach to calibration transfer to be discussed is the iDACX method
which is a very simple non-FFNN based method that attempts to obtain the ap-
proximation h; using izk in conjunction with the data set D;. As will be shown. the

calibration errors resulting from using the iDACX and PICXN methods are comparable.

3.4.3 Calibration transfer using the iDACX methods

The iDACNX method that is considered in this thesis is based on the indirect

additive similarity map on the space of calibration models. The ideal mapping is
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defined using
h(r) = he(x) + si(x). (3.27)

where it is assumed. without loss of generality. that r € X € R The ideal map
requires perfect knowledge of s; which represents the exact difference hetween the
current approximation ki and the desired approximation h;. Pragmatically. this level
of knowledge of s, is not available. instead it is necessaryv to approximate this difference

in iy and hy using $;. so that the less ideal mapping
hi(r) = he(r) + S(x). (3.28)

results. It should be noted that hy(r). representing the FFNN approximation. is

known over all X.

To obtain 3. the difference between h; and h; over the data in D, is used.
Specifically this data set is given by S, = {(x,.h(z;) — he(x;) = si(xi) = i =
1.2 Ny (z,.hy(x;)) € Dy}. The approximation 5, can then be obtained using

any number of parametric or nonparametric techniques.

It is not the intent of this thesis to determine an optimum technique to obtain
51. as it is not likely to be easilv determined given an arbitrary s;(z). Instead. two

techniques will be considered. a piecewise linear and a cubic spline interpolation [6].

Continuing with the example from section 3.4.2. let S;(m) = { T hy(x)—hi (1) =
sf(r):i=12..... N, = lz)l(m). (z,. h(x;)) € Dy(m)}. for m = 1.2. The approxima-
tions of 5;(r) obtained from both a piecewise linear and a cubic spline interpolation
using S;(2) are shown in Figure (3.13a). Figure (3.13b) shows the result of using

Si(1). The true difference. s;(z). is also shown in both figures.

It is not surprising that using more data provides a more accurate approximation
of the difference s;(r). An important property of the piecewise polvnomial approxi-
mators is that as the number of samples go to infinity, $, — s, [6].

With hx(z) and s((r) known over all X. Equation (3.28) can be used to obtain

hi(z). The resulting approximations of h; are shown in Figure (3.14a) and (3.15a).
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Figure 3.13. The approximated difference $, between Ay and h; obtained
using a piecewise linear and a cubic spline interpolation. The
data used to obtain the interpolation is 5;(2) in (a) and S;(1)
(b). The true s; is shown as a solid line.
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Figure 3.14. A calibration transfer using iDACX based on the five cali-
bration data points in D;(2). A piecewise linear and a cubic
spline interpolation are used with the data S;(2) to obtain
s1- The squared errors in h; = hy + 5; are shown (b).
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(b)

A calibration transfer using iDACX based on the three cali-
bration data points in D;(1). A piecewise linear and a cubic
spline interpolation are used with the data S)(1) to obtain
;1. The squared errors in h; = hy + § are shown (b).
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A plot of the squared errors over X for these approximations of h; are also shown
in Figure (3.14b) and (3.13b). A comparison of these approximation results and
that provided by the PICX method can be made by considering the results shown in

Figure (3.12a).

It is evident that. in spite of its simplicity. iDACX is highly effective in obraining
approximations that are significantly more accurate than approximations obtained
with conventional interpolation methods using only the data in D;. This effectiveness
can be seen bv noting that the iDACX method can be considered a form of instrument
standardisation. as introduced by Wang et al [2]. which has been shown to be a viable

method of calibration transfer.

It is also clear that the iDACX method is capable of providing approximations
having errors that are comparable to that of the PICX method. The improvement
provided by either the iDACX or the PICX methods will. of course. be dependent
on the degree of similarity that exists between h; and h;. The degree of similarity.
in a sense. determines the amount of relevant information that is available to use
to obtain h;. Of course. the difficulty in quantifving these observations centers on

defining similarity and its measure.

3.4.4 Calibration transfer using the D"-iDACX methods

Given that prior knowledge of b appears to reduce the calibration error. it is
natural to inquire as to the possibility of further reductions in the calibration error by
providing the FFNN with the prior knowledge that i, = h + §,. Section 2.4 described
a number of methods that allowed a FENN to incorporate prior knowledge. Of these
methods. it is the method of hints. as reported by Abu-Mostafa [76. 77] and the use
of virtual examples. as described by Nivogi. Girosi. and Poggio [75]. that provide a

point from which to begin to describe the development of the D™-iDACX methods.

The idea in using the method of hints is to generate. what Abu-Mostafa calls du-

plicate examples. A straight forward application of this idea is to use the relationship
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hi + 5, as a hint and to then provide these duplicate examples by generatine the data
I Vg g

set 1 = {(xj.izk(xj) +s5(x,)) =120 ] V,.x, € imin(x € \). max(x € AR
where \; = {x, : j = 1.2..... \,}. Note that the real data examples. provided by
Dy = {(x,.h(x)):i=1.2...... \;} are obtained physically. whereas the duplicate

examples can be generated algorithmically. Thus. any number of duplicate examples

can be generated.

The problem with this idea is that the supervised learning algorithm of the FFNN
is now attempting to approximate the iDACX method which has alreadv determined
hi + 5. In other words. the best approximation that the FFNN could achieve. using
these duplicate examples. would be that already determined directly by the iDACX

method.

The information provided by data. or duplicate examples. generated using the hint
that by = hy + §,. Vo € X. though representing prior information. does not provide
additional information over that already used by the iDACN method. Additional
information becomes available when it is realised that h; is formed by a smooth

functional relationship given by hx + 5. Vx € X.

To obtain this additional information. it is necessary to realise that the data in
D, is not only a series of points exemplifving the relationship h; = izk + s;. but that
the series of points are drawn from a continuous underlyving function. This realisation
then allows the relationship h, = he + s; at D; to be expressed with a Tayvlor series

expansion about each point in D;.

To appreciate how this realisation can provide this additional information. con-

sider the n dimensional Taylor series expansion of A;(x) about the jth point x, =

B TN r]7 € X;. This expansion is given by [141]
~ h(x) | a O*hy(x) |
h(x) = h(x,) - e Ar, + ! Ar,Arg
"o, | ;; or,0rq |y
(3.29)
where x = [r;.ro. ... .I,,] Ar, =r; —r,. and r,, represents the jth component of
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the ith point x;. In vector form Equation (3.29) becomes

1
hi(x) = hy(x,) + — [< Ax. T, >! h,(wc)‘ « T 31 (< Ax. T, >? hl(x)J e

i
= Z ] [< Ax. Ve > hy(x N x, - (3.30)

r=0
where < -.- > is the inner product. Ax = [(&r| — 1y,). (0] — ro)e. .. (2, — o)
and Uy = [J'II % e %‘,T Now use h(x) = hi(x) + %(x) in Equation (3.30) to
obtain

ii [< Ax. VU, >7 /zk(x)] ~:—iil< Ax. Uy >7 s(x)] o, - (3.31)

—0 r. X=X, —o l. X

Given that hy is described by a FFNN. the terms in its Tavlor series expansion about
any X; can be determined. The terms for the Tavlor series expansion of s; about x,
are only know for the zero order terms and are given by 5/(x,) = hy(x,) — he(x,). The

higher order terms are not explicitly known and need to be estimated.

One approach to estimate these higher order terms is to use §,. which as de-
scribed earlier. can be obtained by selecting an approximation model and using
S = {(x;. hi(x;) - fu.(x,-)) cl=1.2.... .. \:} to estimate the parameters of 5,. The
higher order Tayvlor series terms of s; can then either be directlv obtained from the
higher order Taylor series terms of 5; or can be based on some estimator using 5. In

the context of this estimation of the higher order terms. Equation (3.31) becomes

=1 . = 1 o
h, Z = [< Ax. ¥y >7 Ae(x) - + s1(x;) Z =] [< Ax. Ty >7 SHUX) oy, -
r=0 ! =1

(3.32)
where h; is used to represent the approximation of h; using hi + §,. Note that for the
zero order rerms. iy (x,) = hi(x;).

Equation (3.32) indicates that additional information is available in the higher
order Tavlor series terms of hy. the zero order terms of s;. and potentially in the
higher order terms of §,. The information that is of most interest within the terms

of the Taylor series expansion. is the information provided at the points x = x;. At
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these points Ax will be zero. but the values provided by (V) h;(x) evaluated at x,
will not be zero. Therefore. at x,. it is the n dimensional rth order partial derivatives

of the functions that are available as additional information.

This additional information regarding the n dimensional rth order partial deriva-
tives. then raises the question of whether or not this information can be used advan-
tageously. Some insight into answering this question can be gained by considering

the generalised Shannon sampling. GSS. theorem {142. 143].

Briefly. the GSS theorem states that if samples of a bandlimited process include
its derivatives up to order .\N,.. then the Nvquist sampling interval can be increased
by a factor of N} + 1. The bandlimited process can then be uniquely reconstructed
using the ideal GSS interpolation formula. For example. assume A(t) is a time ¢
domain process bandlimited to B hertz. If the only samples of h(t) are those given
by D = {(t,.h(ty)) : t, =nT.n=....0.1....}. where T is the sampling interval in
seconds. then the sampling interval must be set to T < (2B)~! in order to reconstruct
h(t) completely using only the samples in D. If the samples in D also include the
first derivative of h(t) with respect to ¢. then the sampling interval can be increased
by a factor of N, +1 = 2. or T < B~!. In general if the derivatives up to order .\,

are used. the sampling interval can be increased to T < (N, + 1)/2B.

The GSS theorem suggests that the derivatives do provide additional information
that is useful in reconstructing h. This additional information then allows the separa-
tion between sample points to be increased. Alternatively. the GSS theorem suggests
that. if the interval between the sample points are fixed. then using derivatives up
to order N, allows h to increase its bandlimit without losing information vital to its

reconstruction.

[t should be noted that the idea of derivative sampling has been explored and
found to be of limited usefulness for functions in the time domain by virtue that the
noise in h(t) limits the accuracy of the derivative samples [144]. which become more

susceptible to noise as the order of the derivative sample increases.
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The relevance of this theorem to calibration transfer are rwo fold. First. the
calibration model h; is based on some underlving phvsical process which tvpically
exhibits finite rates of change. not over time. but over x. that is. /, is in a sense
bandlimited. Second. the use of higher order derivatives of h; may provide an effect
that is similar to that of decreasing the sampling interval by N, + 1. or alternatively.

provide an effect similar to that of increasing the number of samples.

The key point to note in the GSS theorem is the existence of an ideal GSS inter-
polation formula {142. 143] which allows the effective use of the rth order derivative
information to uniquely reconstruct the bandlimited process. A FFNN is not an ideal
interpolator in the context of the GSS. therefore. it will likely not use the rth order
derivative information as effectively as the ideal GSS interpolation formula. Empir-
ical results from Masuoka [89.92]. Thrun [91.93]. and Lee et al. [95] suggest that a
FENN can be made. by changing its learning algorithm. to take some advantage of
this information. Specifically. these results have shown that use of partial derivatives
up to only the first order can. in most cases. provide improvements in generalisation

error and learning speed.

The D' and D'"’ learning algorithm

The most direct manner to proceed to allow the FFNN to use the information
provided by the higher order partial derivatives is to simply extend the approach used
in supervised learning. In conventional supervised learning the goal is to

)

min d (h,(x,:w)./‘z,(x,:w))- Vix,e \}).i=1.2...... N (3.33)

wSly

where distance metric d(-. -) is tvpically defined with the /;-norm in a .\N; dimensional
space. The minimisation is then over

C=d (h,(x,).l.z,(x,))-_)
N Y

=3 (ltx) = hu(x)) . (3.34)

1=1
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which as noted in section 3.3.1. is also referred to as the SSE and defines the error

surface over which learning occurs.

To apply the higher order derivative information. the goal would be to

)

nu‘x{ d (h( '(x w).ﬁ;'\"’(x,zw)) Vix, € X)) (3.33)
where. it should be noted that. h{""" = [A{” A{". . AT represents the vector

with .V, +1 components. where the mth component represents the n dimensional mth
order partial derivative of h; with respect to x. that is (V,)™h,. In other words. the
Vr + 1 components of h; represent a point in a \; + 1 dimensional space. This allows
measuring the distance between h; and h; by simply using the distance between the
two points represented by h™) and h*"). Again. the /,-norm is the basis on which

the measure of the distance between h'“") and h™*) is made.

Now. instead of a single point at x,. there are \; points provided by D;. There-

: : . . rr(Nr
fore. in the same manner as was done for a single point at x,. define H( e

(R )T (R )T, .. A(B)TIT and BV = [(h“ T (b )T (R TT

two vectors that represent two points in a \,(5_‘ +—on") dimensional space. Express-

as

ing the distance between these points with
ey ) 2
CN) = ¢ (Hg-").H,""’)

provides the needed cost function to be minimised. Again. using the />-norm as the

basis for the distance measure. results in the expanded expression

L ~ - 2 ()}21 8;11(X,' )

C(.\-r) — /\OZ (hl(xt) —hl( ) +A[ZZ 01 - al_
1=1 =1 ry=1 i m
Noon n 03}‘2 (X,) 82/11(xi) 2 ’
& ; r12=1 r_z=l a‘l"lia'rr: B ar,, drr, T

Y c T )
| o . AN hy(x,) AN hy(x,) ‘
AN, Z Z Z Or;, -0z,  Oxy - Oxry | (3.36)

=1 ry=1 Ty, =1

where the partial derivatives are evaluated at x; and ) represents a weighting factor

for each term. such that A € [0.1] and 3, A\; = 1. To more conveniently represent
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Equation (3.38). the expression

NN,
N = ZZ A ((Vx)'f,,(x,) - (Vx)’fz,(x,,))

=1 r=0
= =" —HM)2 (3.37)

23

is used. where (V) h(x;) is the n dimensional rth order partial derivative of A with
respect to x evaluated at x = x, and || - |, is the /,-norm. The expression for (7).
given by Equation (3.37). is referred to as the generalised sum squared error. GSSE.
It should be noted that for N, = 0. the GSSE reduces to the SSE. The GSSE also
defines a new error surface over which learning occurs. The use of C'™ as the cost or

error function for supervised learning will be referred to as a D'’ learning algorithm.

Based on previous results. as reported by Masuoka [89.92]. Thrun [91.93]. and Lee
et al. [95]. only the terms up to the first order derivative in C*) will be considered

in this thesis. that is .V, = 1. so Equation (3.37) reduces to

. Ohi(x,)  Bhy(x,)

cm—\oz( (x:) = hu(x,))’ ‘/\IZZ T oy | ) - (338
J J

=1 =1 =1

The learning algorithm proposed in this thesis. which is essentially a search for a
minimum in CY, is based on steepest descent and will also be referred to as the D!

learning algorithm. The use of C'© will be referred to as the D learning algorithm.

To implement these learning algorithms requires explicitly determining the gradi-
ents of C*Y or C'© with respect to the weight parameters of the FFNN. These weight

parameters are expressed in the Equation (3.9). which for convenience. is repeated

here as
my n
Py 1 S 1
h(x,) = E Ok Z Wi Ly + Weo | + by
k=1 J=1
or in vector form. as
= [O (x,ka + i) + b7 Je. A=1.2.....m,. (3.39)
= [O (xfwka) + bT]c. Ak=0.1.2..... mi.
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where. for the single laver FENN. the superscripts have been drop. the weight param-
eters are wio. W. b. and c. and where wy, = luyg. (Wi)717. Also. 0 = [o1(xTw,).

o-_,(xTw-zd )ooi. .Om, (XZ Win., )]7. my is the number of hidden neurons. and where

olu) = 1—1—- (3.40)

—uu -

- ¢
is the logistic function.
Now the resulting gradient of C'!' with respect to the weight parameters wy. wyy.

b. and c can. as described in appendix C. be given by

R

oct ohi(x) - -
(?T = /\0 W(/I[(Xi) - h,(x,))

+ Al i w [vrjill(xx) - vrjill(xz))

J=1
w € {Wk. IL'ko.b.C}. (341)

where V. h(x;) is the gradient of i with respect to jth component of x. that is. r,.

evaluated at x = x;. Equation (3.41) can be more compactly expressed using

act) oC0 3(C‘” — C(O))
ow  Ow + ow ’

(3.42)

It is clear from Equation (3.41) that there are four gradient components and that
each gradient component consists of term due to the difference in the data values and

a term due to the difference in slope values.

The explicit expressions for each of the gradient components requires evaluating

()h 7 oV - il (x,;) . - . - . . 7
—{.%. Vo hi(x;). and -—gwl— which is the partial derivative of gradient of V', h;(x,)

with respect to the weight parameter w. These expressions are derived in appendix C.
The updating of the weights is then made according to the method of steepest
descent

w(n + 1) =w(n)+ Aw(n).
all

m wW € {Wk. Weg. b. C}. (343)

=w(n) — n(n)
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where 7 is the learning rate parameter that generally depends on the descent progress.
Note that n can be distributed over \q and A, resulting in a total of eight learning

rate parameters that in general are not equal.

Continuing with the same example used to illustrate the PICN and iDACN meth-
ods. consider the initial calibration that obtains A, with the data in Dy using a
standard calibration with backpropagation learning and DY) learning. Figure (3.16)
shows the results of this initial calibration obtaining hx. As an initial calibration.
there is no prior calibration model that can be used to help in the current calibration.
Therefore. an initial calibration is not preciselyv the sanie as a calibration transfer. in
the sense described in this thesis. On the other hand. the initial calibration can be
viewed as a calibration transfer where the prior calibration model is not used. Regard-
less. of the view of the initial calibration. the learning algorithms need to initialise the
weights of the FFNN. Given that there is no prior calibration model to use. the initial
weight values of the FFNN are randomised using the Nguven-Widrow method [140]
method. In addition. the the D" learning algorithm requires a set of desired slope
values to learn. that is. the calibration data set for the D' learning algorithm is
given by G, = D; US,(”. where S,“) = {(z;.dhe(2)/dz|r=s,) : (x; h(x;)) € Di}. In
other words. for this example the true slope values of h; are used as the desired slope
values. In a more practical setting S,(” would to be based on estimated slope values
having some degree of error. The influence of this error on D!} learning is explored
in chapter 5. Figure (3.16b) shows the squared error of the resulting approximation

over X" and lists é, that is estimated with 2N, = 200.

Figure (3.16) does suggest that D!!) learning can provide a reduction in the calibra-
tion error as compared to the calibration error resulting from a standard calibration
using backpropagation learning. Of course. this is but one calibration example and
the degree of reduction in the calibration error will change as the calibration condi-
tions change. that is. as conditions such as. the number of calibration data samples

and the error in the slope estimates are changed.
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Figure 3.16. The results of an initial calibration using D! learning and
standard calibration using backpropagation learning. In (a)
the resulting FENN approximations of hy using Dy are shown
and in (b) the squared error in the approximations over X
are shown.
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Figure 3.17. The squared calibration error after a calibration transfer
from h; to h; using D-iDACX True and PICX with back-
propagation. PICX BP. In (a). D;(2) having five calibration
data points is used and in (b) D;(1) having three calibration

data points is used. See Figure (3.9) for hi. h; and calibra-
tion data set.
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Now consider performing a calibration transfer using the DM-iDACX and the
PICX methods with the data defined by D;(1) and D,(2). In this example. the
calibration transfer is from /i, to h,. Again. the D iDACNXN. which is based on D'V
learning. requires a desired slope value to learn. For this example the calibration
data set used for the D'"-iDACNX method is given by G;(m) = D, U S,"™. where
sim = {(xi.dhy(r)/dris=r,) : (£, h(1;)) € Di(m)}. for m = {1.2}. In other words.
the true slope values of h; are used as thé desired slope values. In a more practical
setting S, would to be based on estimated slope values having some degree of error.

Again. the influence of this error on D'''-iDACX method is explored in chapter 5.

To distinguish the use of different slope estimates for the D'V-iDACN method.
the nomenclature given by. for example. D'V-iDACX True. will be used. where the
adjective “True” will be replaced with an appropriate adjective describing the esti-
mation technique used to obtain the desired slope values. In a similar manner the
learning algorithm used in the PICX method will be identified using. for example.
PICX BP. where the adjective "BP™ will be replaced with an appropriate adjective

describing the learning algorithm used in the PICX method.

It should also be noted that both the PICX BP and D(W-iDACX True methods
used weight values that were initialised to the values that provided their corresponding
prior approximation of hx. In other words. the initial weight values for the PICX
BP method were set to provide the approximation h obtained using a standard
calibration with backpropagation learning. In the same manner. the initial weight
values for the D'V-iDACX True method were set to provide the approximation A,

obtained using D'V learning.

Figure (3.17) shows the squared calibration error over X resulting from approx-
imating f; using the PICX BP and D'W-iDACNX True methods. Specifically. Fig-
ure (3.17a) shows the squared error when using only five calibration data points. that
is. the data defined by D;(2) for the PICX BP method and G,(2) for D/"V'-iDACX

True method. Figure (3.17b) shows the squared error when using only three calibra-
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tion points. again defined by data sets D;(1) for the PICX BP method and G;(1) for

DW_iDACN True method.

Again. it is apparent from Figure (3.17} that the use of the D!V-iDACN method
can achieve calibration errors that are less than that provided by the PICN BP
method. As noted earlier. this reduction in the calibration error will dependent on
the calibration conditions such as. the error in the slope estimates. the degree of
similarity between A, and A;. and the actually data used to perform the calibration
transfer. The dependency of the calibration error on these calibration conditions will

be explored in chapter 3.
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4. Simulation Methods

4.1 Overview

The chapter describes the methodology used to perform the initial instrument

calibration and subsequent calibration transfer simulations. The initial calibration

simulations of the FFNN based instrument are designed to obtain the calibration

model Ay that is subsequently used in the calibration transfer simulations. To obtain

the initial calibration model. five different learning strategies are used. These strate-

gies. as identified with the acronvms listed below. employ the following methods:

1.

[4%]

BP. Learning with conventional backpropagation using only the data set Dy

where the weights are initialised using the Nguven-Widrow method [140].

D9 Learning with the D'® learning algorithin using only the data set Dy
where the weights are initialised using a modified version of the Nguyven-Widrow

method.

D' True. Learning with the D' learning algorithm using the data set G that

includes the true slope values of Ay at r,.

D'V Spline. Learning with the D) jearning algorithm using the data set Gy

that includes slope values based on a cubic spline approximation of Ay at ;.

D' Linear. Learning with the D'V learning algorithm using the data set Gy
that includes slope values based on a piecewise linear approximation of h; at

I;.

All the D' learning strategies initialise the FFNN weights using a modified ver-

sion of the Nguven-Widrow method. The calibration error resulting from the initial



calibration using the methods listed in items (2) through (3) are compared to the

calibration error resulting from the BP method. item (1).

The calibration transfer simulations from h; to A, apply the three methods de-

scribed in chapter 3. that is the methods referred to as PICX. iDACX. and D'V-iDACX.

Each method. as identified with the acronvm listed below. are applied with specific

variations.

[

-

. Std. Cal. BP. A transfer that is simply a standard calibration of the FENN

instrument obtaining h; with conventional backpropagation learning using only
the data set D, where the weights are initialised using the Nguven-\Vidrow

method [140].

PICX BP. A transfer that obtains /i, from hy using the data set D; and a
learning algorithm based on conventional backpropagation where the weights

are initialised to the state providing the approximation Ay.

PICX D . Similar to PICX BP. except the learning algorithm is based on D‘®

learning.

iDACN Spline. A transfer that obtains hy using izk + 5. where 5, is based on a

cubic spline approximation using the data in S;.

iDACN Linear. A transfer that obtains h; using hx + 5;. where 5, is based on a

piccewise linear approximation using the data in 5;.

( . - . ? . ( 1
D'V-iDACX True. A transfer that obtains /; using the data set G{") = D,uD}"
and the D" learning algorithm. The slopes at x, € X are true slope values of

dh(r)/dr.

D'W-iDACN Spline. A transfer that is similar to DY-iDACX True. except that
the slopes at r, € X are obtained from d(he(r) + 5((7))/dr where 5 is based

on a cubic spline approximation using the data in S;.
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8. D'V-iDACNX Linear. A transfer that is similar to DW-iDACX Spline. except
the slopes at r, € X are obtained from d(hy(r) + 5(r))/dr where 5 is based

on a piecewise linear approximation using the data in S;.

The calibration error resulting from the calibration transfer using the methods listed
in items (2) through (8) are compared to the calibration error resulting from using

the Std. Cal. BP method. item (1).

The chapter begins by defining the calibration parameters used for the simulations
as well as discussing the rationale used in selecting the values for these parameters.
The values used for the FFNN parameters in the initial calibration and calibration
transfer simulations are then presented. Finally. the methods used to analyvse the
calibration errors are discussed. It should be noted that for any given set of values
assigned to these parameters constitute what will be referred to as the calibration
condition for a simulation trial. A change in the value of any one parameter results

in a new calibration condition.

4.2 Calibration Parameter Definitions
4.2.1 Sensor output space X

To more easily visualise. interpret. and understand the results. the simulations
are limited to occur over X C R. that is. the calibration model h(x) is univariate. In
using a univariate calibration model. it is hoped that the behaviour of the calibration
error resulting from changes in the values of the calibration parameters will be more
easily identified over X C R than over X C R". It is assumed that the calibration
transfer methods will have analogous behaviour over X C R". though the behaviour

may be more difficult to recognise and analyvse in higher dimensions.

The use of only one dimension will also reduce the computational burden in per-
forming the simulations by virtue that with only n = 1 there are less terms to evaluate

in the gradient calculations required by Equation (3.41). In addition. with only one
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input dimension the number of representative points needed for a calibration or a

calibration transfer are also reduced.

It should be noted that. with X € R. it is a simple matter to obtain piecewise
linear and cubic spline approximations of either fi; or 5. Analogous approximation in
R" will be more difficult and will demand more data to obtain adequate approxima-
tions. Note that the actual simulations will be limited to some finite interval defined

bv the set \" C .Y. that is. the set X" is subset of the set associated with the space X

4.2.2 The true calibration model h

It is difficult to determine the characteristics of the true underlying calibration
model h that are needed to accentuate or reveal the limitations of the various calibra-
tion transfer methods. In this sense. the selection of the true underlying calibration
model h is almost arbitrary. Therefore. a practical approach in selecting h is used:
the calibration model is selected from a class of functions that are reasonably gen-
eral. in that theyv include a subset of functions that can represent a wide range of
tvpical instrument calibration models. Of course. the rationale for choosing this ap-
proach is that it is assumed that if the calibration transfer methods provide adequate
performance for this general h. then the transfer methods should provide adequate

performance for a less general subset of functions.

To help guide the generalisation of h. consider some of the characteristics of an
instrument calibration model that are desirable. First. in most real instruments h is
assumed to be smooth. in that it is assumed to possess at least a first order derivative
with respect to r over all X. Second. h should possess an inverse. that is. hoh~!' =1
where [ is the identitv function /(r) = r. Also. it is conducive in instrument design
to have h be monotonic: Vry.o» € X. ry < Iy results in y; = h{ry) < y2 = h{r,).
Finally. characteristics of h that are in many instances simply taken for granted
include h being bounded. that is. Vo € X. [h(r)] £ Bn, < . and having bounded

rates of change over X: Vr € X. |dh(r)/dr| < B, < . A more insightful concept
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in conveving a sense of finite rates of change is that of assigning a bandlimit to h

evaluated not over time but over X.

Though these characteristics can be attributed to many real instrument calibration
models. in this thesis A is simply assumed to be smooth. bounded. and having a finite
bandlimit. The need for an inverse and monoticity is not relied upon. It is clear that
removal of the need to have an inverse and to be monotonic over X' provides a more
general h. in that functions that are smooth and have finite bandlimits include. as

their subsets. functions which also have inverses and are monotonic.

Another characteristic that is to be attributed to A is in excluding functions that
can be precisely approximated with a FENN using a small finite number. p. of hidden
neurons having sigmoidal tvpe activation functions. In other words. it is assumed that
to reduce the approximation error e,. the FFNN's approximation will require more
neurons. that is. ¢, = 0 as p — oc. Though ihis attribute of A is typically satisfied by
many functions. it is simply stated to prevent the possibility of all calibration transfer
methods exhibiting very small calibration errors simply because ¢, = 0 for some finite
number of neurons. Exhibiting small calibration errors would then make it difficult to

determine the relative error performance of the various calibration transfer methods.

Given these characteristics. two classes of functions will be used in these simula-

tions for the calibration model h:

1. The class P which includes 8th order univariate polynomials defined by

8
hp (r) = Za,f'. a, e Rer e X. (4.1)

1=0

where the notation /p, is used to identify the Ath element from the set Hp C P.

The class R which includes normal random processes defined as a function of

[V

r € R. bandlimited to By cvcles per unit r and having zero mean and variance
of one. N(0.1). A segment of the process over R is taken so as to span X'. The

resulting function over X is then defined as hp,(r). where again the notation
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hg, is used to identify the kth element from the set Hp C R. It should be

noted that the bandlimit B, is set such that a number of cycles of hp, span A'.

Note that the notation for the calibration model h or h will be used if it is not
necessary or relevant to the discussion to identifv which of the above two classes of

functions is being considered.

4.2.3 Calibration model similarity

To generate sirnilar functions of h. the selected functions are made to vary over
a second dimension that can either be interpreted as time or as other instances of an
instrument model. For convenience. this second dimension will be denoted as u. The

true calibration model can then be viewed as being described by h(x. u).

To provide a degree of control. the changes in h over u are described using another
normal random process that is bandlimited to B, cycles per unit u. The kth instance
of the calibration model 4y is then represented by setting u = uy and using h(r.u =
ug) for r € X. To obtain the [th instance of the calibration model k;. a sample is
taken at a different instance of u. that is at u = u;. To obtain instances of h; that are
more similar to hy. the interval 7 = u; — u; is made smaller. With a bandlimit of B,

cveles per unit u. setting 7 = (2B,)~! will result in instances of h at any r € X" to

be uncorrelated to each other. that is

Ry(7.1;) = ETh(a,. up)h(x,. up + 7). r, e Xx.
= E[llk(.’ri)lu(l‘,‘)] = 0.

where R, (7.r;) is the autocorrelation function and E[-] is the expectation operator
evaluated over u. and where zero means are assumed. Decreasing 7 will increase the
correlation of the instances of h and provide an increase in the similarity between hy
and /hy.

For the class of function P describing the 8th order polvnomial. the coefficients a;

are set to be independent normal random processes each bandlimited to 0.0625 cycles
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per unit u. The polynomial process is then given by
\‘
hp (r.u) = E a,(u)r'. a, € R.r e . (4.2)
1=0

Specific instances of hp over X are taken at intervals of one unit of u. so that
u=hFr=....0.1.2..... Therefore. every (2B,)7! = (2(0.0625))~! = 8th instance of
hp, will have corresponding coefficients a, (k) and a, (A +7) that. given zero means. will
have small. that is. near zero correlation. In the case of non zero means. the correlation
will be a constant non zero value. Figure (4.1a) shows the specific realisation of the
8th order polynomial random process over the instance of v = {7.8.9....14}. The
specific elements of P are shown as solid lines over r and u and represeut specific

realisations of hp, .

For the class of functions defined by R. which is described by a normal random
process bandlimited to B, cvcles per unit r. the variation over u is also defined as
another independent normal random bandlimited process defined over u. The specific
parameters used to define some of the members of R include setting B, = 0.125 cyvcles
per unit r and B, = 0.0625 cycles per unit u. The domain over A" is defined to span
16 units of r. that is arbitrarly defined as X' = [0.15] C X'. Again. instances of the
process over u are sampled at intervals of one unit of u. Figure (4.1b) shows the
general random process over the instance of u = {1.2....8}. The specific elements

of R are shown as solid lines over r and u and represent specific realisations of hg, .

Figure (4.2} illustrates the degree of similarity. over X. that exists between the

elements of i for both P and R.

The similarity between the approximation of h; and h; is therefore obtained by
using different members from P or R. The members in either group have been selected
to provide. Vr, € X. a decreasing correlation between A (r,) and khi(x,) as [ increases
relative to k. For example. the estimated correlations between hp.(r = 0)and hp(r =
0) for | = {8.10.14} are. given by f?,,,,(r =1-7.r=0) = {0.97.0.8.0.2}. It should
be noted that in general the correlation varies with r. For example. the estimate

correlation at r = 1. given ! = {8.10.14}.is Ry .(7 ={=7.r = 1) = {0.95.0.75.0.05}.
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Figure 4.1.

The two sets of true underlyving calibration models h used
for the simulations shown over X" and instances u. In (a) the
models are drawn from P and in (b) the models are drawn

from R.
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The elements from the set of true calibration models of Fig-
ure (4.1) overlaved amongst each other over .X'. (a) shows
elements from P and (b) shows elements from R.
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which also represents the largest variations in the estimated correlation Ry, relative

to estimated correlation at + = 0.

For the initial calibrations. the target calibration model. denoted by Ay. is drawn
from the sets defined by Hp = {hp.. hp. . hp,.hp,} andby Hg = {hg,.hp, hg, hr.}.

whose elements are shown in Figure (4.2).

For the calibration transfer simulations. the target calibration model. denoted by
hy. is drawn from the sets defined Hp = {hp.. hp,. hp, } and by Hg = {hp,.hg, hr.}
whose elements are shown in Figure (4.2). It should be noted that the elements hp,
and hp, are not part of the set of target calibration models. For the calibration
transfer simulations the initial calibration model is defined as hy = fip. when using

models from P and as hy = hg, when using models from R.

The calibration transfers are therefore performed from izk to iz, for ¥ = 7 and
[ = {8.10.14} when the calibration model h is drawn from Hp. For calibration
transfers using models from Hg. k = 1 and ! = {2.4.8}. As/ increases. the similarity

between hj to h;. at any r,. decreases. as given by the correlation measure.

4.2.4 Selecting the number, coordinates, and quality of the
calibration data

The calibration data values used for calibration are chosen to be noise free to
eliminate the possibility of error in the data values contributing to the estimation
error €, in the approximation of A. In other words. the noise in the data values is
eliminated to prevent the noise from potentially masking the inherent error behaviour
of the calibration transfer methods. Alternatively. the calibration slope values consist
of both error free values. that is the true slope values. and slope values having an
error due to inaccuracies in the slope estimation based on using piecewise linear and

cubic spline interpolation of the calibration data.

To expand on the reason for eliminating the error in the data values. consider

that the generalisation error e, consists of two components. the approximation error
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€,. that is due to the FFNN's inabilitv to precisely approximate i given a finite
number of neurons. and the estimation error €, that results from the inablility to find
the best FENN approximation given a finite data set and the use of a non-optimal
search process. Therefore. with a fixed set of neurons. sample points. and learning
parameters. the observed changes in the generalisation error in approximating h are
due entirelv to changes in €,. These changes in e, are then due entirely to the learning
algorithm finding different acceptable approximations of the calibration data given

different initial weight values.

Adding error to the values of the data points effectively adds another component
to ¢.. thereby potentially masking the behaviour exhibited by the learning algorithm.
In other words. the question is raised as to whether the observed generalisation error
is due to the learning algorithm or to the error added to the data values. The issue

of error in the calibration data and slope values is discussed further in chapter 6.

A common calibration strategy is used to select the location of the calibration
data points. The points are placed to simply partition X into equal intervals. It
is well known. as discussed in Appendix A. that this strategy may not provide an

optimum placement. in that it may influence the potential for h to approach h-.

The desire in instrument calibration to avoid using significant number of samples
needs to he considered when selecting the number of points to use in the simulations.
Given that onlv one dimensional inputs are used. it seems reasonable. for these sim-
ulatons. to limit the number of samples to a maximum of sixteen and a minimum of
four. It is also apparent that for the calibration models selected for these simulations.
the use of sixteen samples provides. to within a given ¢,. a potential for h to approach

h® that is greater than the potential provided by using only four samples.

The specific calibration data values used for the initial calibration simulations
are obtained by sampling hi(r) at N, points evenly spaced over X. When h; is
member of Hp. N = {4.5.6.8} and .\ = [0.1]. When /i is member of Hp. Ny =

{5.6.8.10} and X' = [0.15]. The specific set of coordinates used for the initial
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calibration points are given by \, = {r, = AN -+ :/=0.1.2..... \i — 1}. where

N -1
AN = max(.\') — min(.\").

The various sets of data used in the initial calibration simulations are described

by the following definitions. The set of data values is defined as D, = D(kU" =

{(r,.hp(r)):i=1.2.... .. V.1, € X € X'}, The set of slope values used in the D'

learning algorithms is defined as DL” = {(r,. dizM.r)/d.r] Yoi=1.2.... .. Np.r, €
\r=r,

X C X}. where. dhy(r)/dr represents the slope estimate of by at r, obtained using

the methods described in section 1.2.5.

Therefore. for the initial calibration simulations the calibration data sets are de-
( 1 . . y
fined by Gx = D, U D, "for D'V learning algorithms and by Dy for the BP and D%

learning algorithms.

For the calibration transfer simulations. the calibration data values used for the

simulations are obtained by sampling h;(r) at N} = {4.5.6.8} points that are evenly

spaced over X'. \When #; is member of Hp. X' = [0.1] and when A, is member
of Hg. X = [0.15]. The specific set of coordinates used for the [th calibration
data set are given by \X; = {r, = _X.\'(—_\—.l‘_—” i =0.1.2..... \; — 1}. where AN =

max(.\') — min(.\").

The various sets of data used in the calibration transfer simulations are described

by the following definitions. The set of data values is defined as D, = D,(O)
{(,. Iy(r)) :i=1.20... .0 \i.r; € X; € X}. The iDACX transfer methods use the
data set defined as S; = {(z,. hy(x;) — ha(x)) ci=1.2...... \;.r, € X; C X}, which

consists of using the vector defined by the points h;(r,) and hi(z;). The set of slope
values used in the D'V'-iDACX methods is defined as D,“) = {(z,. diz,(r)/d.r . ) :
r=1.2.... .. \,.r, € X; C X}. where. depending on the transfer method used. ;.I,X(.r)
represents either the approximation of i, obtained using hy + &, or the true model h;.

It should be noted that in using hx + 5;. the data set S; is used to obtain s,.

Therefore. the calibration data sets defined for the calibration transfer simulations

are given bv G; = D;U D" for the D!V-iDACX transfer methods. by D, for the PICX

133



and Std. Cal. methods. and by S, for the iDACNX methods.

4.2.5 Selecting the slope estimates

It is clear from the discussions in chapter 3 that the accuracy of the slope esti-
mates will influence the D! learning algorithm’s generalisation performance. Given
that there is a lack of published results precisely defining how the slope error influ-
ences the generalisation error. the simulations will attempt calibration transfers using
slope estimates having various types of error. These error tvpes will range from using
an error free or true slope estimate. to estimates based on either a piecewise linear or

a spline approximation of s, or hy.

The initial calibration simulations use slope estimates based on either the piecewise
linear or spline approximation of h; using the data D, or the true slope values of A
at r; € X;. The calibration transfer simulations use slope estimates based on either
the piecewise linear or spline approximation of s; using the data S; or the true slope
values of Iy at r, € X;. It is clear that the degree of error in these slope estimate will

vary with the number of calibration points used for the approximation.

The slope estimates based on the piecewise linear approximation of s; or A tech-
nically do not have a defined slope value at the calibration points. that is. at the
break points or knots. In this case. the slope at the knot is taken to be average of
the slopes of the line segments on either side of the knot. In the case of calibration
points on the boundaries of X'. or the end points. the slope value is taken to be equal
to the slope of the line segment connecting the boundary point to the next adjacent

point.

The slope estimates based on the cubic spline approximation are obtained using
the slopes from a cubic spline approximation of s; or h;. The estimated slope at a
calibration point is obtained from the slope of the line formed by two closely spaced
points on the cubic spline approximation that are centered about the calibration

point. The term closely is taken to be a value of approximatelv 0.5% of the interval
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spanned by X over the appropriate dimension.

4.3 FFNN Parameter Definition
4.3.1 Selecting the number of hidden neurons

Determining the number of hidden neurons to use inorder to obtain approxima-
tions with acceptable generalisation error. or calibration error. is in itself a non-trival
problem and will not be explored in the proposed simulations. Instead. for the pur-
pose of the proposed simulations. it becomes more important to observe how the error
behaviour of the calibration transfer methods is affected as the number of hidden neu-
rons is varied.

The problem then becomes one of selecting the range over which to vary the num-
ber of hidden neurons so as to observe changes in the error behaviour of the calibration
transfer methods. In this regard. the choice of using a single input dimension helps in
determining this range. Since the calibration model A is univariate and known over all
X'. it becomes a simple matter to plot h(«) over r and to then inspect the functional
form of h. This inspection then allows a visually decompositon of h(x) into regions of
piecewise segments of sigmoidal functions. Though. the process is highly subjective
and crude. it does provide a reasonable value for the lower limit on the number of
hidden neurons needed to at least begin to reflect the functional form A(x) over most

of its domain.

It should be noted that this visually decomposition of A(x) can be placed in the
context of an analytical approach proposed by Huang and Babri {145]. They showed
that given .V points and .V — 1 hidden neurons in a single hidden layver FENN. that
not only is it possible to preciselv interpolate the N\ points but that it is also possible
to directly determine. without learning. the value of the weights needed to provide the
needed interpolation of the data points. Visual decomposition of A(x) can be viewed
as a non-analyvtical application of these results. in that the V' points are mentally

placed at appropriate points on h(r) and one visually places .\ — 1 neurons so as to
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span the N — 1 regions.

For example. consider Figure (4.2) showing instances of borth sets of h(r). that is.
Hp and Hg. A visual inspection of these sets reveals that four or five neurons will
be needed to provide an approximation that begins to follow the functional form of

h(r) over its domain.

Increasing the number of neurons above this lower value provides the FFNN with
the potential to obtain approximations with generalisation errors that decrease in
proportion to the number of hidden neurons in a single laver FENN [9.47]. In other
words. increasing the number of hidden neurons by a factor of two potentially allows

the FENN to achieve a two-fold decrease in the generalisation error.

The initial calibration model # is implemented using N, = {5.8.10. 16} hidden
neurons to approximate the calibration models in Hp and by N, = {5.8. 10} hidden

neurons to approximate the calibration models in Hp.

In general. for the calibration transfer simulations. the calibration model h; con-
sists of the same number of hidden neurons as that used to implement hg. Again. to
limit the number of simulations. the calibration transfers are restricted to calibration
models having NV, = {5.8. 10} hidden neurons when hy represents the approximations
of members in Hp. When Ay represents the approximations of members in Hg. only

models using \,, = {5.8} hidden neurons are used.

4.3.2 Weight initialisation for initial calibrations

The initial value of the FFNN weights for the initial calibration simulations
are. in the case of using the BP learning algorithm. randomised using the Nguyen-
Widrow method {140] or a modified version of the Nguven-Widrow method. Briefiy.
the modified method simply ensures that the weights for n hidden neurons are set
so as to have their activation functions effectively span. in a random manner. one
of m non-overlapping regions in X. A total of N, = (n)(m) hidden neurons are

then needed to cover X and Y. To identifv this method. the notation ORm-n is
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used. The Nguven-Widrow method only insures that the activation functions of the
(r:)(m) hidden neurons randomliy span X and ). Here. random is taken to mean a
normal distribution of values with appropriatedly set means and variances to allow the
spanning of X and ). The D" learning algorithms uses weights that are initialised
using only the modified version of the Nguven-Widrow method.

It should be noted that since the resulting FENN approximation. h. is dependent
on the randomised values of the initial weights. the weights will be initialised to new
random values a number of times. thus providing a number of different approximations

of the initial calibration models ;..

4.3.3 Weight initialisation for calibration transfers

The calibration transfer simulations set the initial value of the weights to the
values that provide the approximation hi which is determined by the initial calibration
simulations. Because of the large quantity of initial calibration models to chose from.
the calibration transfer simulations are limited to selecting models. h. obtained using
Nt = 8 calibration points.

It should be noted that the PICX BP method only draws /iy from initial calibra-
tions obtained using BP learning. The PICX D@ iDACX. and D/")-iDACNX methods
draw the same A, from initial calibrations obtained using any D™ learning algorithm.

The Std. Cal. BP method represents a conventional learning trial using backprop-
agation to approximate the data D;. Technically. there is no initial calibration model
from which to begin learning. Therefore. the FENN weights for the Std. Cal. BP

method are initialised using the Nguyven-\Widrow method.

4.3.4 Selecting the learning termination criteria

The termination of the learning algorithm for the initial calibration simulations
is set to occur whenever the total number of epochs exceeds 3 x 107 or when the SSE

between the target and desired values for either the data or slope falls below 1 x 10710,
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For the calibration transfer simulations learning is terminated when the toral number
of epochs exceeds 1.2 x 10° or when the SSE between the target and desired values for
either the data or slope falls below 1 x 107%. In addition. termination of learning in
either simulations occurs whenever either the total SSE begins to increase. indicating
an unstable gradient descent. or when the total SSE changes less than 0.1% over 3000

epochs of learning.

In some instances the learning algorithms fail to achieve the specified SSE goals.
In these cases. the results of the simulation trials using data obtained from Hp are
excluded from the results if. after termination of learning. the SSE in the approxi-
mation of the data values is greater than 0.03 for the BP and D'’ learning methods.
For the D'! learning methods. the simulation results are excluded if the SSE in the
approximation of the data values is greater than 0.03 or if the SSE in the approxi-
mation of the slope values is greater than 0.25. For the simulation trials using data
obtained from H g. exclusion of the results occurs when SSE in the approximation of
the data and slope values is greater than 0.06 and 1.25. respectively. These criteria
for excluding results were obtained by simply noting that most of the approximation
of h; or h; had. subjectively. generalisation errors that were not ercessively large. It
should also be noted that values used for these criteria are not critical to the resulting

analyvsis.

Though the number of epochs appears to be excessive and the SSE threshold very
small. thev have been selected to allow. or at least attempt to allow. the learning
algorithm to achieve a true local minimum on the error surface C(w. D). where D =
{Ds. D,.G\.G,} represents the possible data set used for learning. These termination
criteria for learning will potentiallv allow the learning behaviour known as ower-
learning to occur. Over-learning results when the generalisation error e, begins to
increase in spite of a decrease in the SSE measured between the desired data and
FFNN's approximation of the data. Again. the consequence of over-learning on the
resulting analysis is discussed in Chapter 6. but it should be noted that the effect of

over-learning is not crucial in influencing the analysis.
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4.3.5 Selecting and adjusting the learning rate parameters

The learning rate parameters are determined by trial and error. in that a number
of trials are performed and the set of learning rate parameters that provide reasonably

consistent and acceptable results are used for the remaining simulations.

The difficulty in using the trial and error approach for D'') learning is that there
are a total of seven learning rate parameters. or step sizes. that can be varied. Varying
cach parameter individually to determine an acceptable learning rate can easily result
in a significant number of trials. For example using only three values for each learning
rate parameter results in 3° = 2187 combinations that would have to be repeated given
a change in either the number of neurons. the number of calibration data points. or
the true calibration model h. Again. this represents a significant number of trials.
Instead. as to be discussed in chaper 6. careful inspection of the learning process using
a limited number of trials with different values of learning rate parameters. revealed a

range of values that appeared to provide reasonably consistent and acceptable results.

4.4 Calibration Error Analysis
4.4.1 Estimating the calibration error

The effectiveness of the calibration transfer methods is indicated by the magni-
tude of the calibration error e. For consistency. ¢* will be used as the measure of the

calibration error and is defined as

N, R _
=g, = LZ (hta)) - /}(J-J)) L () h@))ET,.N, =T, (43)

J 3
where T, is the test or validation data set and ¢, is referred to as the empirical
generalisation error or standard error of prediction. SEP.

The value of .\, is taken to be approximately 200. that is. 200 points over .\, for
Hp and approximately 130 when using Hpg. The use of these values of .V, allows an

acceptable estimate of the generalisation error. In addition. the use of this number
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of sample points to estimate the generalisation error does not overly burden the

simulations wirh excessive computations.

4.4.2 Comparing calibration errors

The resulting calibration error. as measured by €,. from each simulation can
essentially be viewed as a random variable. in that ¢, is dependent on the initial
weight values used during the initial calibration. Examining a single occurrance of the
random variable €, is not of much use: therefore. a set of é, will tvpically be considered.
Each set will consist of anywhere from 4 to 50 independent occurrances of ¢,. These
sets will be referred to as a group of simulations. where the group membership is
determined by satisfving some pre-selected set of calibration parameters. For example,
a simulation group may be defined as all simulations with N, = 6. using 5 hidden
neurons. attempting to approximate the data and slope. that is. D'V learning. of Hp.

and using random initial weight values.

The random nature of é, introduces a degree of difficulty in determining whether
a particular calibration method. when compared to another method. improves the
calibration error for a fixed number of calibration samples or whether for a fixed
calibration error less calibration samples can be used. The essential difficulty is that
of establishing whether a difference between é, from two groups of simulations actually

exists and whether that difference is significant.

The difficulty in determining whether a differences in é, exists and whether it
is significant centers on evidence suggesting that the distribution of é, cannot be
assumed to follow a normal distribution and is more likely to be multimodal [146].
In other words. reporting the mean and standard deviation of ¢, for the various
calibration transfer methods and then comparing these statistics may not reveal any

meaningful results.

These difficulties do not prevent the simulations from providing useful results.

Instead. it simple means that to compare é, obtained from different groups of simu-
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lations requires the use of less powerful measures. In this context. the median values
will be used to measure the middle value of a group of simulations and percentiles

will be used to provide an indication of the variability of ¢, within a group.

Standard box plots are used to graphically show the median and 25th and v5th
percentile values. \Whiskers extending from the ends of the boxes will indicate the
nearest data point to the location defined as being 1.5 times the interquartile range
from the end of the box. Data points bevond the whiskers are shown as outlier points.

The median is indicated by an appropriate symbol within the box.

In addition. a nonparametric statistical test referred to as the Kruskal-Wallis one-
way analysis of variance by ranks [147] will be used. This test. when given two or
more groups of samples. is used to determine if at least one of the groups represents a
distribution with a median value different from the medians of the other groups. If
the test statistic provided by the Kruskal-Wallis test is greater than the chi-squared
value at a particular significance level. 0 < S < 1. then the test indicates that at
least one of the groups has a median which is different from one or more of the other
medians with a significance given bv S. The test can then be applied pairwise to any
two of the groups to determine which of the groups has a median that is significantly

different.

In applyving the test pairwise to determine which pairs have significant differences
in their medians. care must be taken to inadvertently prevent increasing the likelihood
of a type [ error. that is to declare that there is a significant difference between medians
when in fact there is no difference. For example. assume that the type I error level.
or the significance level S. is set to 0.05. indicating that it is desired to have less
than one chance in twenty of committing a type I error. If £ pairwise comparisons
are made. then there is approximately a £ times 0.05 chance of committing a type |
error. This approximation is only accurate for small values of £ and S. that is the
chance of committing a tvpe one error is actually given by 1 — (1 — S)* so that the

adjustment to S is actual given by the factor 1 — /1 — S ([147]. pg. 340).
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To accommodate this problem. the tyvpe I error level is adjusted according to the
Bonferroni-Dunn method [147] which essentially divides S by the number of compar-
isons that are to be made. For all the simulations the significance levels for the type
I errors are set to S = {0.1.0.05.0.01.0.001}. which then require to be divided by
the number of comparisons. It should be noted that. for these simulations. simply
dividing S by A to obtain the adjusted values for S provides a reasonably accurate
approximation to the actual adjustment required. If the test statistic. p. returned
by the pairwise test is less than or equal to this adjusted significance level. then the
pairs have medians that are significantly different. In all these tests the nondirectional
hypothesis is used. that is. the alternative hvpothesis H, is that the medians are not
equal.

For these simulations the only pairwise comparisons between é, medians that will
be made are those comparing medians from each of the calibration transfer methods
with the median associated with the Std. Cal. BP method. A Comparison of the
medians associated with the various calibration transfer methods with one another
will not be done. For the initial calibrations simulations. the medians associated with
each of the D' learning algorithms and the median associated with the BP learning
algorithm will be compared. Again. comparisons between the medians associated
with the various forms of D™ learning algorithms and the medians of other D'™

learning algorithms will not be done.

The application of the Kruskal-Wallis test requires the following assumptions to

be satisfied:

1. Each sample is randomly drawn. that is. each simulation result is random.

o

Each sample is independent of any other sample.

3. The dependent variable. that is. é, in this case. should be a continuous random

variable.

4. The distributions of the groups are the same. though it is not necessary for the
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distribution to be normal. It should be noted. as discussed in Sheskin ({147].
pg. 397-398). thart there is empirical evidence to suggest that the test Is not

affected by violation of this assumption.

By virtue that each calibration or calibration transfer begins by using a set of weight
values that are independently and randomly determined. assumption one and two are
met. In addition. assumption three is met since the random variable €, is continu-
ous. Though it is not known if the distribution of ¢, is the same for each group of
simulations. the evidence suggesting that the test has a degree of invariance to these
differences provides confidence in its applicability for these simulations. Therefore.
given that the distribution of €, from each group of simulations is likely not normal.
the Kruskal-Wallis one-wayv analysis of variance by ranks appears to be an appropriate

test.

Given that the medians are significantly different. the ratio of the median error
of the Std. Cal. BP method to median error of the calibration transfer methods is
defined as the improvement factor Ir-. In other words. I > 1 indicates that the
calibration transfer method reduces the median of the calibration error by a factor
given by Ir. The improvement factor for the initial calibrations is defined as the
ratio of the median error in BP learning to median error of one of the other learning
algorithms. Obviously. /r < 1 indicates that the calibration transfer methods or the
particular learning algorithm have median errors greater than that provided by the

Std. Cal. BP method or the BP learning algorithm.
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5. Simulation Results

5.1 Overview

This chapter presents the results of simulations that estimate the calibration
error ¢, of a hvpothetical FFNX based instrument after it has been initiallv calibrated

to obtain A and after it has under gone a calibration transfer from Ay to ;.

The purpose of the simulations is to show that the proposed methods of calibration

transfer achieve the objective of the thesis:

e For a given number of calibration samples. an improvement in the calibration
accuracy. as compared to that achievable in a standard recalibration emploving

conventional backpropagation learning.

The achievement of this objective is tested under various calibration conditions that
include. varying the number neurons in the FFNN. using different number of calibra-
tion points in D,. varving the similarity between h; and h;. and using two different

classes of functions for the calibration model h.

The results of this chapter show that under most of the calibration conditions
simulated. the calibration error from at least one of the PICX. iDACNX. or DV-iDACX
methods achieves the objectives of the thesis. In addition. the results show that the
D" learning algorithm achieves a median é, that is less than the median ¢, achieved

with the BP learning algorithm.

The chapter first presents the summary of the initial calibration simulation results

and then the calibration transfer simulation results.
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5.2 Initial Calibration Simulation Results

Figure (5.1) through Figure (5.9) and the accompanying tables. summarises the
results of the initial calibration simulations as performed according to the methods

described in chapter 4.

The figures are organised to show for each learning algorithm the estimated cal-
ibration error. defined using ¢,. as a function of the calibration points. \y. given
a particular number of hidden neurons. \\,. For anv specific number of calibration
points. number of neurons. and type of learning. the error é, of a series of simulation
trials are summarised as a single box plot item that is drawn in the figure. The
number of trials used to obtain the specific form of the box plot item is listed directly

below the corresponding item.

Each box plot item summarises the initial calibration simulation trials for all the
members of either Hp or Hg as indicated in the corresponding figure caption. For
example. the box plot item associated with the D!) learning algorithm. using a FFNN
with N}, = 5 hidden neurons. and N = 4 calibration points. shown in Figure (5.1).
sumrnarises the error ¢, from 35 initial calibration simulation trials. These simulation

trials include using hp.. hp_. hp,. and hp,, as the target calibration model.

To help visualise the trend of ¢, as a function of N} for any particular learning
algorithm. guide lines connecting the error medians at each value of N} are drawn.
The guide line used for the backpropagation. BP. learning algorithm is drawn as a

solid line as opposed to the dotted lines used for the other learning algorithms.

Below each figure is a table listing the level of significance. S. the p values. and the
improvement factor. Ig. associated with the difference between the median error in
BP learning and the median errors in D'™) learning at each value of N. For the initial
calibration simulations. the significance levels are adjusted for four comparisons using
the Bonferroni-Dunn method [146]. It should be noted that only results achieving a

p value less than or equal to the adjusted significance level 0.1 are listed in the table.
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In other words. unlisted simulation results did not achieve median errors that are
significantly different than median error in BP learning.

Figure (5.10) through to Figure (5.13) summarises the initial calibration simula-
tions. not as a function of the number of calibration points. but as a function of the

number of hidden neurons. .\, for anyv given number of calibration points.
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Figure 5.1.

The initial calibration errors. as measured by €,. in approx-
imating all hp, € Hp are shown as a function of the number
of calibration data points. \y. for each of the learning algo-
rithms. The calibration model consists of a FENN having

N, = 5 hidden neurons.
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Figure 5.2, The initial calibration errors. as measured by é,. in approx-
imating all hp, € Hp are shown as a function of the number
of calibration data points. Nj. for each of the learning algo-
rithms. The calibration model consists of a FFNN having
2N,, = 8 hidden neurons.
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Figure 5.3.

i~ adjusted for four comparnsons using the Bonferroni-Dunn method

The initial calibration errors. as measured by ¢,. in approx-
imating all hp_ € Hp are shown as a function of the number
of calibration data points. Ni. for each of the learning algo-
rithms. The calibration model consists of a FFNX having
N, = 8 hidden neurons with weights initialised using the
ORS8-1 method.
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Figure 5.4.  The initial calibration errors. as measured by ¢,. in approx-
imating all hp, € Hp are shown as a function of the number
of calibration data points. \y. for each of the learning algo-
rithms. The calibration model consists of a FENN having

N, = 10 hidden neurons.
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The initial calibration errors. as measured by ¢,. in approx-
imating all hp, € Hp are shown as a function of the number
of calibration data points. V. for each of the learning algo-
rithms. The calibration model consists of a FFNN having
.V,, = 16 hidden neurons.
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The initial calibration errors. as measured by €,. in approx-

imating all hp_ € Hp are shown as a function of the number
of calibration data points. V. for each of the learning algo-
rithms. The calibration model consists of a FFNN having
N, = 16 hidden neurons with weights initialised using the

ORS-2 method.
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of calibration data points. V. for each of the learning algo-
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Figure 5.8.

The initial calibration errors. as measured by €,. in approxi-

mating all hr,_ € Hp are shown as a function of the number
of calibration data points. V. for each of the learning algo-
rithms. The calibrarion model consists of a FFNN having
.N,, = 8 hidden neurons.
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Figure 5.10. The initial calibration errors. as measured by é,. in approx-
imating all hp_€ Hp are shown as a function of the number
of hidden neurons. .\N,,. for each of the learning algorithms.
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Figure 5.12. The initial calibration errors. as measured by ¢,. in approxi-
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Figure 5.13.
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5.3 Calibration Transfer Simulation Results

The calibration transfer simulation results. as performed according the methods
described in chapter 4. are summarised with twenty six figures given by Figure (5.14)
through Figure (5.39). The presentation of the data is given in the same format as

was used to present the initial calibration simulations.

Specifically. the figures are organised to show. for each learning algorithm. the
estimated calibration error. measured by é,. as a function of the calibration points.
V. given a particular number of hidden neurons. N, and the use of a particular initial
calibration model. In a manner similar to the initial calibration simulation results. for
any specific number of calibration points. number of neurons. and tvpe of calibration
transfer method. the error €, of a series of simulation trials are summarised as a single
box plot item that is drawn in the figure. The number of trials used to obtain the

specific form of the box plot item is listed directly below the corresponding item.

Also. each figure has an associated table listing the level of significance. S. the p
values. and the improvement factor. Ir. associated with the difference between the
median error in the Std. Cal. BP method and the median errors in the various other
transfer methods at each value of V.. For these calibration transfer simulations. the
significance levels are adjusted for the number of comparisons using the Bonferroni-
Dunn method [146]. Again. it should be noted that only simulation results that had
achieved a p value less than or equal to the adjusted significance level 0.1 are listed

in the table.

The overall structure of the presentation of the simulation results is formed by
first grouping the results obtained using models drawn from H p. that is. Figure (5.14)
through Figure (5.28). Within this group the results are organised in order of increas-
ing number of hidden neurons. For the results at any specific number of neurons. the
results are further organised to first show calibration transfer using models similar
to each other and then models that are not similar to each other. Finally. for any

one particular result with .\, neurons using models with a specified similarity. the
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individual figures represent the calibration transfers using initial calibration models

drawn from a particular set.

The next group of simulation results are those using models drawn from Hp.
shown in Figure (5.29) through Figure (5.39). The structure of the presentation of

these results follows that described for the models drawn from Hp.

As an specific example of this organisation of the results. consider the first three
figures. that is. Figure (5.14) through Figure (5.16). Here the results are organised
to first show the calibration transfer from h, = A p- 10 I = hp,. that is. the transfer
between the 8th order polynomial models that are similar to each other. All three of
these figures show the results of the calibration transfer using a FENN having N, =5
hidden neurons. In addition. each figure represents the results of the calibration
transfer using a different set of initial calibration models. The particular set of initial
calibration models that are used for the results shown in a figure are identified within
the figure's caption.

Table (5.1) and Table (5.2) identify the sets from which the initial calibration
models are drawn. For each set of initial calibration models. the median error. 25th
and 75th percentile values are listed. In addition. the number of members in a specific

set are also given.
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Number of Median. 25th and 75th percentile Error in Hp,,
Neurons used Hp | th } 'Hp .
for hy median ; : median -,-‘: : median ; ’
| Hp, =17 Hp, =10 | Hp =11
1.2 x 10~ 1.4 x 1071 1.5 x 1074
5 6.7x 1077, _ 5] 63 10—55‘4 w10-5 | 12X 1074, - 9 % 10
Hp, =16 Hp, =T Hp, =11
2.2 x 1077 1.6 x 1071 3.0 x 1077
8 1.2 x 10--"5 = q0-6 | BIx 10—*70  10-5 1.7 x 10-39 - % 106
Hp, =12 Hpg, = 13 Hpyo = 15
6.1 x 107° 9.0 x 107 3.2 x 10
10 2.4 x 10-58'0 w10-6 | TAXI0T s 13X 10—44.9 < 107
Table 5.1. The median. 25th and 75th percentiles associated with the

error €, in the sets of the initial calibration models h; used in
the calibration transfer simulations involving models selected

from Hp.

Number of

Median. 25th and 75th percentile Error in Hg,,

Neurons used 7:{3,“ Hr, 7—'2}2 .
for hy (median ;g:‘) (medlax Z:Z) (media ;?i)
r ';iR,", = 10 ;{RS,, =10 ';ln‘,,‘. =9
I 5.1 x 1073 1.3 x 1073 2.1 x 10~2
! 5 2 -3 ‘ 3 , -2
2 23107 6 10m3 | X0 0 5 10-8 [ 19X 105 4 1103
7_'.1125‘1 =9 ﬁRsb =11 ';in&_ =8
1.1 x 1073 0 x 10” 1.0 x 1073
. -1 -5 -3
8 9.4x 1074, | 8Ix107N s 18X 1073
Table 5.2. The median. 25th and 75th percentiles associated with the

error €4 in the sets of the initial calibration models 4 used in
the calibration transfer simulations involving models selected

from Hg.
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Figure 5.15.

calibration transfer from hk

a function of the number of calibration data points.

each of the transfer methods.
of a FFNXN having .\,

The aigniicance level. S0 s adjusted for seven comipansons using the Bonferroni-Dunn method

The calibration errors. as measured by ¢,. in performing a

hp to h, = hp_ are shown as

.\[. for
The calibration model consists
= 5 hidden neurons that. excluding

the PICX BP method. are initialised to values providing h, €
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Figure 5.16. The calibration errors. as measured by ¢,. in performing a
calibration transfer from h; = ilp'. to hy = }.lpi are shown as
a function of the number of calibration data points. \\;. for
each of the transfer methods. The calibration model consists
of a FFNN having N, = 5 hidden neurons that. excluding
the PICX BP method. are initialised to values providing h;. €
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Figure 5.18.

The calibration errors. as measured by é,. in performing a

calibration transfer from ilk = iz;)T to hy = hp,, are shown as
a function of the number of calibration data points. .\;. for
each of the transfer methods. The calibration model consists
of a FFNN having \N,, = 5 hidden neurons that. excluding
the PICX BP method. are initialised to values providing h; €
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Figure 5.19. The calibration errors. as measured by €é,. in performing a
calibration transfer from hy = hp. to by = ilpH are shown as
a function of the number of calibration data points. .\\;. for
each of the transfer methods. The calibration model consists
of a FFNN having N, = 5 hidden neurons that. excluding
the PICX BP method. are initialised to values providing h; €
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Figure 5.20. The calibration errors. as measured by ¢,. in performing a
calibration transfer from h, = izp7 to by = ilp_ are shown as
a function of the number of calibration data points. .\;. for
each of the transfer methods. The calibration model consists
of a FFNN having N, = 8 hidden neurons that. excluding
the PICX BP method. are initialised to values providing by €
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Figure 5.21.

The calibration errors. as measured by ¢,. in performing a
calibration transfer from iz,\. = il,:T to fz, = h p. are shown as
a function of the number of calibration data points. \,. for
cach of the transfer methods. The calibration model consists
of a FENN having \\,, = 8 hidden neurons that. excluding
the PICX BP method. are initialised to values providing hx €
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Figure 5.22.

level, 5. 1> adjusted for seven comparisons using the

Bonferroni-Dunn method

The calibration errors. as measured by €,. in performing a
calibration transfer from h; = i)p, to hy = hp, are shown as
a function of the number of calibration data points. .\\;. for
each of the transfer methods. The calibration model consists
of a FFNN having V,, = 8 hidden neurons that. excluding
the PICX BP method. are initialised to values providing hy €
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Figure 5.23. The calibration errors. as measured by ¢,. in performing a
calibration transfer from hy = hp. to h; = hp,, are shown as
a function of the number of calibration data points. \\V;. for
each of the transfer methods. The calibration model consists
of a FFNN having N, = 8 hidden neurons that. excluding
the PICX BP method. are initialised to values providing hy €
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Figure 5.24.

The significance level. S, 1» adjusted for seven comparisons using the Banterront-Dunn method.
J

The calibration errors. as measured by €,4. in performing a

calibration transfer from izk = E,,T to hy = hp,, are shown as
a function of the number of calibration data points. \;. for
each of the transfer methods. The calibration model consists
of a FFNX having N, = 8 hidden neurons that. excluding

the PICX BP method. are initialised to values providing /i,
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Figure 5.25.

The calibration errors. as measured by €,. in performing a
calibration transfer from Ay = ilp, to by = h p. are shown as
a function of the number of calibration data points. \;. for
each of the transfer methods. The calibration model consists
of a FFNXN having .\, = 10 hidden neurons that. excluding
the PICX BP method. are initialised to values providing A €
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Figure 5.26.

fevel. 8, 1s adjusted for seven compansons using the Bonferroni-Dunn method.

The calibration errors. as measured by ¢4. in performing a
calibration transfer from Ay = izp, to by = ilph are shown as
a function of the number of calibration data points. \;. for
cach of the transfer methods. The calibration model consists
of a FFNN having .V, = 10 hidden neurons that. excluding
the PICX BP method. are initialised to values providing i €
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Figure 5.27. The calibration errors. as measured by €,. in performing a
calibration transfer from h; = i)p, to h, = il,pH are shown as
a function of the number of calibration data points. \\;. for
each of the transfer methods. The calibration model consists
of a FFXNN having .V, = 10 hidden neurons that. excluding
the PICX BP method. are initialised to values providing h; €
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Figure 5.28. The calibration errors. as measured by ¢,. in performing a

calibration transfer from hy = hp, to iy = hp,, are shown as
a function of the number of calibration data points. \\;. for
each of the transfer methods. The calibration model consists
of a FFNXN having .V,, = 10 hidden neurons that. excluding
the PICX BP method. are initialised to values providing i €
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Figure 5.29. The calibration errors. as measured by ¢,. in performing a
calibration transfer from iy = hpg, to h, = hg, are shown as
a function of the number of calibration data points. .\;. for
cach of the transfer methods. The calibration model consists
of a FENN having .\, = 5 hidden neurons that. excluding
the PICX BP method. are initialised to values providing h; €
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Figure 5.30. The calibration errors. as measured by €¢,. in performing a
calibration transfer from Ay = izRi to iz, = f-zR._, are shown as
a function of the number of calibration data points. .\;. for
each of the transfer methods. The calibration model consists
of a FENN having .\}, = 5 hidden neurons that. excluding
the PICX BP method. are initialised to values providing hy €
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The significance level, ¥,

The calibration errors. as measured by ¢4. in
calibration transfer from h; = hg, to hy = hg,

1> adjusted for six compansons using the Bonferron:-Dunn method.

performing a
are shown as

a function of the number of calibration data points. \\;. for
cach of the transfer methods. The calibration model consists
of a FFNN having \V,, = 5 hidden neurons that. excluding
the PICX BP method. are initialised to values providing /i €
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Figure 5.32. The calibration errors. as measured by é,. in performing a
calibration transfer from /.zk = l-le to i), = izR_ are shown as
a function of the number of calibration data points. \\;. for
each of the transfer methods. The calibration model consists
of a FFNN having .V,, = 5 hidden neurons that. excluding
the PICX BP method. are initialised to values providing A, €

%RSO *

181



[
o
t:

i
E Transfer Methods ( h ton, ), N =5 E
F 5 3
L A (20 - - » T3 1
[ D " -iDACX Linear ® 1DACX Spline ]
o
1 (L . -
10 3 ¥ D "'-iDACX Spline x 1iDACX Linear =
E ]
—_— “ - 3
. ; ® > - _iDACX True ¢ sStcd. Cal. BP ]
(0]
= e t . ® picx D%
10" ¢ E
S t 3
o) :
54 :-
33 r
= 10_'[:‘ 3
o r 3
e E ]
T ! ]
ol - .
. o=t
— 10 "¢ =
ot 3 3
— 4 b
o £ ]
2 : ™ ]
< + IS 4
o] A i
107 lo i,
E i 3
a Trials Trials Trials Trials 1
10" aves s x ¢ A ves = x9¢ Ave . x @ Aven s x 6
P& L ¢ 17 :Coico:s 4 3 oIfoI0 1l Ilis i3 ¢ It @ £ 5 T F 1010 &
£ . : L ) 3
4 5 6 8
Number of calibration points (N, )
Med:ian of Significance level. 5, p values. and Improvement Factor [g
BP S = {(Blank) = Not significant. 1=+ < 0.1, «*, < 0.05. ("% < 0.01,/°**) < 0.00!}
compared to at N =4 at \y =5 at Ny =6 at N; =~
median of = p values e s p values 1 = p values 1y s ! p values IF
D''' 4DACX Linear
D'!'4xDACX Sphne . 0.0025 0.36 .. 0.00030 30
D'} iDACX True ses i < 0.0001 | 3%
PICX D'
{DACX Sphine === i <0.0001} 040 | |
\DACN Linear = | 00wy 23 -~ 0.0136 0.4 | j i

Note -

The significance ievei. N, 1s adjusted for six compansons using the

Bonferroni-Dunn method

Figure 5.33. The calibration errors. as measured by €,. in performing a
calibration transfer from h; = ile to ly = h r. are shown as
a function of the number of calibration data points. \;. for
each of the transfer methods. The calibration model consists
of a FFNN having N, = 5 hidden neurons that. excluding
the PICX BP method. are initialised to values providing i €
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Figure 5.34. The calibration errors. as measured by ¢é,. in

The significance level, S, 15 adjusted for six comparisons using the Bonferroni-Dunn method

performing a
calibration transfer from h; = I—zR.A to hy = hpg, are shown as
a function of the number of calibration data points. \j. for
each of the transfer methods. The calibration model consists
of a FFNN having .V, = 5 hidden neurons that. excluding
the PICX BP method. are initialised to values providing hx €
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Figure 5.35. The calibration errors. as measured by é,. in performing a
calibration transfer from h, = iznl to hy = h r. are shown as
a function of the number of calibration data points. V. for
each of the transfer methods. The calibration model consists
of a FFNN having N, = 8 hidden neurons that. excluding
the PICX BP method. are initialised to values providing k. €
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Figure 5.36. The calibration errors. as measured by
calibration transfer from hy = hp, to hy

- The significance level, 8. s adjusted for six comparnisons using the Bonferroni-Dunn method

4. in performing a
= l g, are shown as

a function of the number of calibration data points. \;. for
each of the transfer methods. The calibration model consists
of a FENN having .\\;, = 8 hidden neurons that. excluding
the PICX BP method. are initialised to values providing h; €
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Figure 5.37. The calibration errors. as measured by é,. in performing a
calibration transfer from hy = hp, to by = hg,. are shown as
a function of the number of calibration data points. .\;. for
each of the transfer methods. The calibration model consists
of a FFNX having N, = 8 hidden neurons that. excluding
the PICX BP method. are initialised to values providing i €
HRﬁa .
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Figure 5.38. The calibration errors. as measured by ¢,. in performing a
calibration transfer from h; = ile to hy = iLRS are shown as
a function of the number of calibration data points. .\\;. for
cach of the transfer methods. The calibration model consists
of a FFNN having \;, = 8 hidden neurons that. excluding
the PICX BP method. are initialised to values providing fi;. €

HR!I: *

187



I ] '
1 - - e . ~ - -3
10 £ Transfer Methods ( h, to h_ ), N =8 3
i A ©H'-'-:iDACX Linear = 1iDACX Spline ]
107 = ¥ D -'-iDACX Spline x 1DACX Linear 3
s : ® D' -'-iDACX True ® Std. Cal. BP
T
Q r (0
- c ® pICX D'
10" v . E
4 L i
o] o ]
~ 3 4
~ o 4
® 10% ?
c 3 E
(o] e p
- F p
o F
[1s] .
9] -
10 g =
—1 £ 3
< E ]
~ L p
Q + 4
= L P
w 1
©C 107 = E
3 [‘ 3
10_.; Trials Trials Trials Trials
f A ve e = x @ Avewss x 9o Aveess x ¢ Aveoees s x @ ]
[ ¢ 2 3 3 = - i3 ¢ 3 3 2 = ° 18 3 9 ¢ @ - 7 @9 s R 32 3 7T T 8 ]
b . ! ! 1 3
4 5 6 8
Number of calibration points (N. )
Median of Significance level, 5, p values, and Improvement Factor /¢
BP N = {(Blank) = Not significant, (+) < 0.1, (", < 0.05, (**: < 0.0l. (***) < 0.001}
compared 0 at Ny =4 at Ny =5 at N; =6 at Ny =8
median of S p values lg = p values Ie = p values Iy = p values I
D'VDACX Linear - 0.0077 2.4 . 0.0043 0.36
D'V UDACKX Spline see < 0.0001 | 0.27 + 0.0103 2.9 .= 0.00043 8.5
D'V .\DACX True b < 0.0001 | 4.5 oo < 0.0001 { 26 eee < 0.0001 | 66
PICX D' ® 0.0056 3.2 b < (1.0001 16
1DACX Spline M 0.0027 0.35
tDACN Linear bt 0 00UV1L5S 3.6 )
Note . Sigminicance level, N, adjusted for <ix comparisons. and five for N, = 1, using the Bonferroni-Dunn method

Figure 5.39. The calibration errors. as measured by €4. in performing a
calibration transfer from hy = iLRK to hy = iz;g, are shown as
a function of the number of calibration data points. \\;. for
each of the transfer methods. The calibration model consists
of a FENN having \\;, = 8 hidden neurons that. excluding
the PICX BP method. are initialised to values providing h; €
Hr.. -
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6. Discussion

6.1 Overview

[t is apparent from the results shown in Chapter 5 that the calibration transfer
methods. when compared to the Std. Cal. BP method. provides a reduction in the
error €,. Though this reduction in ¢, occurs under many of the calibration conditions.
the simulation results also revealed that the calibration transfer methods do not
always provide a significant reduction in é, and under some conditions the methods

can actually increase the error over that obtained with the Std. Cal. BP method.

This chapter discusses these results and uses them to provide a series of arguments
that not only support the objectives of the thesis but also proposes a set of reasons
explaining the instances when the methods do not provide significant improvements
in e,.

The chapter begins by first discussing the calibration transfer results. The intent
of these discussions is to point out that the variability of the simulation results is
due to both the characteristics of FFNN supervised learning and the use of a prior
calibration model with various degrees of calibration error. The initial calibration
results are discussed next. These initial calibration results. though appearing not to
be calibration transfer. can be viewed as a special case of a calibration transfer in
which there is no prior calibration model to rely on. In this view. the initial calibration
results not only provide an indication of the degree of performance. in terms of ¢,.
achievable by these methods. but also provide additional insight into the factors that
influence the performance of the transfer methods. The limitations of the simulations

are then considered and. finally. suggestions for future work are provided.
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6.2 Calibration transfer
6.2.1 Summary

The calibration transfer methods do provide the opportunity to improve the
calibration error over the standard calibration using backpropagation. These im-
provement do not occur under every possible calibration condition examined in this
thesis. Instead. the calibration conditions under which an improvement can be ex-
pected are dependent on a number of factors that include. the nature or complexity
of the underlving calibration model. the approximation capability of the FFNN or
other approximation method. the degree of similarity between models that are to be
transferred. the accuracy of the initial calibration model. and the data set used to

perform the transfer.

The simulations highlight how these factors influence the improvement in ¢, over
that of the Std. Cal. BP method. It also becomes clear from these simulations that.
because of the complexity of these influences. it is not possible to generalise on the
conditions of a calibration transfer that will always provide improvements in é,. If any
generalisations can be made. they are generalisations that relate to the characteristics
of supervised learning in a FFNN. The most important of these generalisations is the
need to match the approximation capabilities of the FFNN to the complexity of the
underlyving function. As shown in the simulations. achieving this match results in

increasing the likelihood of improving €, using a calibration transfer.

In place of specific generalisations regarding calibration transfer. the simulation
results provide insight into the nature of the influence that a particular factor has
on ¢,. In a practical sensec. these simulation results. along with the insights gained.
suggest that a trial and error approach must be taken when investigating whether a

particular transfer method will result in improving é,.

Predicting whether a calibration transfer using a FENN will improve ¢, is difficult.

However. when an improvement in ¢, is possible. it can be significantly large. These
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sitnulation results have shown that improvements in ¢, by a factor as high as 1000
over that of the Std. Cal. BP method are possible using half the number of calibration
points of the initial calibration. The potential benefit that these improvements in é,
can provide for an instrument calibration must be weighted against the difficulties

imposed in determining whether ¢, will improve.

6.2.2 The approach in discussing the results

The discussion regarding the calibration transfer results presents a complex
situation in that there are seven calibration transfer methods simulated under more
than 100 different calibration conditions. Therefore. to approach these results in
a meaningful manner the calibration transfer results are discussed in the following
sequence. First. the transfers from izk = iz,,-, to hy = izm using .\, = 5 and then
N, = 8 hidden neurons are considered. These simulated transfers represent the
use of models that are very similar to each other. that is. Vor, € X', the estimated
correlation is given by. RhR(T = 1.x,) = 0.9. Next. calibration transfers that occur
from hy = hg, to i = hg,. again using N, = 5 and then N, = 8 hidden neurons.
are discussed. This represents the case of using models that are less similar to each
other. that is. there is a low estimated correlation between the models. Vr, € X.

Ru (r=7.1;)<0.25.

The calibration transfers using models from Hp are then discussed in the same
sequence as that used to discuss the transfers for models from Hp. that is. first
from very similar models using increasing number of neurons to less similar models
using increasing number of neurons. It should be noted that the level of dertail in
the discussion regarding the calibration transfers results using models from Hp is
reduced significantly from the level of detail provided in discussing the calibration
transfers results using models from M. The reason for this change in the detail of
the discussion is simply the consequence of the results of the calibration transfers
for models in Hp exhibiting characteristics that have already been explained and

discussed previously. In many instances though. the results of the calibration transfer
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for models in Hp have characteristics that are less accentuated than those provided
in the calibration transfer results using models from Hg. This is also the reason for

first discussing the calibration transfer results using models from Hg.

To appreciate the meaning of the calibration transfer results. it will be instructive.
as noted previously. to examine the first set of simulated calibration transfer results
using models from Hg in detail. after which the remaining results can be interprered
more concisely. In addition. before examining these results it is important to review

the context in which the calibration transfers are used in a practical setting.

To consider this context. recall that the intent of anv calibration transfer is to
attempt to obtain a new calibration model /i, using both a prior model i, and data
D,. where B, < lz)k. It is the goal of the transfer to obtain hy such that its calibration
error ¢, is either comparable to that of Ay or at some other acceptable level. Ob-
taining hy with comparable or less error than that of b using less data would be the
most desirable outcome of the calibration transfer. More realistically. the calibration
transfer method will. with the use of less data. tend to introduce some degree of
error over that associated with hAx. Again. it is the intent of the calibration transfer

methods to introduce less error than that resulting from using no calibration transfer.

Therefore. in anticipation of some degree of additional calibration error in h, over
that of the prior calibration model ht. the model Ax can be made highly accurate.
Using a highly accurate A; will counter the effect of additional errors being introduced
by the calibration transfer method. The end result of this tactic is to provide a final
CITOT €4 In hy. that though greater than that of /. is still less than what is deemed

acceptable to an application.

The calibration transfer results are therefore interpreted within this context. that
is. the error in h;. after a calibration transfer. is compared to the error that would
have been obtained from a standard calibration or recalibration of the instrument.
In performing this comparison. it may be the case that the error resulting from the

calibration transfer and the standard recalibration are approximately the same. In
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this case. there is no point in attempting a transfer since it is clear that the transfer
method is either not effectively using the information from a prior calibration model
or there is insufficient information from the prior calibration. Therefore. in this case.
the tactic in using a highlyv accurate initial calibration model /4. to obtain #; having

an acceptable level of error. will not work.

In the case where the calibration transfer method does reduce the error over that
of the standard calibration. it is likely that the transfer method is effectively using
information from a prior calibration. Whether the degree of reduction of the error
has a practical significance depends on the application. For example. if a calibration
transfer method provides an improvement in the error by a factor of five over the
error provided by the standard calibration. but the standard calibration error is ten
times the application’s level of acceptable error. then the transfer method does not
achieve a practical significance.

Finally. the calibration transfer method may cause the error to increase over that
of the standard calibration. In this case. it is apparent that the transfer method is

using information that is either insufficient or inaccurate or both.

Given that it is the improvement in the error relative to the error obtained using
the standard calibration method that is of importance. the interpretation and dis-
cussion of the results is focused towards determining the calibration conditions that

tend to produce these improvements.

6.2.3 Calibration transfers from hpg, to hg, using N, =5

The first set of calibration results to be discussed are those shown in Fig-
ure (5.31) on page 180. Since these results will be considered in more detail than
the remaining results. Figure (5.31) is reproduced here and appears in Figure (6.1)

for convenience in presentation.

Now recall from the simulation methods. described in chapter 4. that the calibra-

tion transfers occur from the initial calibration model h; to h;. where for these specific
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Figure 6.1. The calibration errors in performing a calibration transfer
from hk = /LRl to h, = hR. as a function of N, for each of
the transfer methods using a FENN having .\, = 5 hidden
neurons initialised to values associated with hy € 'HR_,,F.

simulation results hy = hg, and h; is the approximation of h, = hg,. Consider first
the characteristics of the initial calibration models used for these calibration transfer
simulations. The median. 25th and 75th percentile values of the error é, of the initial
calibration models A, used to obtain the simulations results shown in Figure (6.1).
are listed in Table (5.2) as being 1.5 x 1072, 2.4 x 1072 and 5.4 x 107%. respectively.
These initial calibration models form the set H g, having the largest median errors of
the sets of initial models used in the simulations for models in Hp. Each of the initial
calibration models h;. € ‘H r.. were obtained with D, having N, = 8 calibration points
using the D@ learning algorithm. Therefore. given that eight calibration data points

are used to obtain the initial calibration model. only eight or less data points are
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used in the calibration transfer simulation. The use of more than eight data points
no longer meets the spirit of calibration transfer: the intent to find h; with less points

with acceptable accuracy.

Now consider ¢, in #; obtained using the Std. Cal. BP method. that is. the error
resulting from a standard recalibration using conventional backpropagation learning.
The trend of these errors is shown using a solid line in Figure (6.1). Again. it should be
noted that the median errors of all the other transfer methods are compared with the
median error resulting from Std. Cal. BP method and that the Std. Cal. BP method
can also be viewed as another initial calibration to obtain f;. If the median error of
the other transfer methods is significantly less than the median error of the Std. Cal.
BP method. then the thesis objective is met for those particular set of calibration con-
ditions. The degree of improvement in é,. that is. the reduction in ¢, relative to that
of the Std. Cal. BP method. is given by the Improvement factor. [r. As can be seen
in Figure (6.1). the trend of the median error resulting from the Std. Cal. BP method
tends to increase as the number of calibration points decreases. This behaviour in

the trend is expected from methods based on conventional backpropagation learning.

It should also be noted that the median error in the Std. Cal. BP method at
N\; = 8. is consistent. that is comparable. with the median error obtained at V; = 8
in the initial calibration simulation results in Figure (5.7) on page 153. that is. both
median are approximately 1 x 1072, This simply indicates that in setting the data set
D, to be the same as D;. the BP learning algorithm. in using data sampled from hg,.
finds approximations that have levels of ¢, that are consistent with approximations
obtained using data sampled from anv h € Hr. The reason for this note is that
median error for the Std. Cal. BP method at N, = 6 points. which is = 9 x 107°. is
not consistent with the median error of 3 x 107% at N, = 6 obtained in the initial
calibrations simulations using the BP learning algorithm. This anomalous result is
due to the inherent variability in finding approximations with supervised learning
algorithms given a change in the data set used for learning. In this case. using data

sampled from hg, and data sampled from every i € Hp over six sample points
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results in a variability in the median error that is larger than that obtained eight
sample points. A more detailed discussion on nature and source of this variability in

€, is provided in section 3.3.

The comparisons of the median error of ¢, obtained with the various transfer
methods and the Std. Cal. BP method can now be discussed. Also for brevity. a
reference to comparisons or differences between medians is always taken to mean a
comparison or difference between the median error of a calibration transfer method
and the median error in the Std. Cal. method. In '(iddition. reference to a significant
difference is defined to be a difference with a statistical significance having p < Sy .os-

where Sgo5 is the Bonferroni-Dunn adjusted significance level of 0.05.

Now it is clear. from the corresponding table associated with Figure (6.1). listed
on page 180. that at .\, = 8 calibration points there are. with one exception. no
significant differences between the median errors. The one exception is that provided
by the D'W-iDACX True method which shows an improvement factor I = 7.4.
This suggests that the transfer methods based on the D! learning algorithm. when
provided with accurate slope information from h; and initial weights associated with
he. will determine A, that has approximately seven times less error than that obtained
with the Std. Cal. BP method. When less accurate slope information is provided.
such as that provided in the D'V-iDACX Spline and D'"’-iDACX Linear methods.
the median error is not significantly different from the median error of the Std. Cal.

BP method.

It should also be noted that the slope values used in the D!/-iDACX Spline and
DM iDACX Linear methods are based on estimating the slope of »; evaluated at r,.
This slope estimate is given by dhe(z)/dr + d5(x))/dr at r = r,. where d5(r)/dr

is the slope estimate based on the data given by S, = {(z,.fy(r,) — hy(1,)) = @
1.2..... \,..r, € X;}. The important point to note is that the slope estimates are also
dependent on the accuracy of hy. which. in this case. is known to be sclected from

the set having the largest median error. Therefore. using a more accurate h; should
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improve the slope estimate and therefore the resulting error in the approximation
hy. This observation is supported by the simulation results that use a more accurate
hi selected from sets having lower median errors. that is seen in Figure (3.29) and
Figure (5.30) on pages 178 and 179. respectively. In using a more accurate initial

calibration model . all the calibration transfer methods. except PICX D | have

median errors that become significantly reduced.

The iDACN transfer methods are also dependent on the accuracy of hx. In these
methods h, is given by ix+ 5. where 5 is based on a cubic spline or piecewise linear ap-
proximation model whose parameters are estimated using S; = {(x,. hy(r,) — ilk(l‘,)) :
i =1.2..... Ni.xr, € X}, Again. increasing the accuracy of izk will improve the accu-
racy of fz,. which is shown to occur with simulation results using a more accurate i)k.

Again. see Figure (5.29) and Figure (5.30) on pages 178 and 179. respectively.

Finally. the PICX D method. like the Std. Cal. BP method. is based on a
gradient descent search technique over an error surface defined by the sum squared
measure Z:\“(h,(.zr,) — hy(r))2. for (z,. hi(z;)) € D,. The only differences between the
PICX D'® method and Std. Cal. BP method are in the initialisation of the weights
and the use of a gradient with four components in D© learning instead of the two

associated with the weights and bias terms in BP learning.

Given that the PICX D'®) method initialises the weights to the values associated
with the approximation /.. it would seem that improving the accuracy of the approx-
imation fzk should also improve the accuracy of hk Unlike the iDACX methods. it is
difficult to predict in any specific instance whether the act of increasing the accuracy
of hi will increase the accuracy of h;. The difficulty in determining the course of
this action rests in the difficulty in determining whether increasing the accuracy of
/zk will correspond to a set weights that provide a location on the error surface that
is closer to a minimum representing a more accurate approximation of ;. This dif-
ficulty. as noted previously. is due to the variability observed in ¢, that results from

various attempts with supervised learning to find an approximation h; given different
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sets of initial weight values. This variability in ¢, that is associated with the PICX
D% method is also seen in the other transfer methods where. in spite of increasing
the accuracy of hy. the resulting approximation A; can exhibit either an increase or

decrease in error.

For example. consider the median error resuiting from using the D'"'-iDACX
Spline method with N} = 8. that is a median error of about 1.5 x 1073 indicated in
Figure (5.30) on page 179. Now. if the median error in h; is increased by a factor of
approximately two. the median error in the D{Y-iDACX Spline method with \; = 8
increases to about 1.5 x 1072, as seen in Figure (6.1). In contrast. if the median error
in A, is now decreased by a factor of approximately two. the median error of the
DYW_iDACX Spline method with \; = 8 still increases to about 5 x 107%. as seen in

Figure (5.29) on page 178.

The behaviour of the median error as the accuracy of hy changes mayv be the
result of two influencing factors. The first factor is simply the obvious. that is. the
error in hi. The second factor is less obvious and may be due to the differences
in the cost function and data defining the error surfaces used to obtain izk and fz,.
The most accurate set of initial calibration models are those given in Hg,, that were
obtained using D'Y True learning. the next most accurate set of initial calibration
models are those in Hg, obtained using DY) Spline learning. and finally the least
accurate models are those in Hpg, obtained using D'® learning. Now it seems that if
the cost function and data used to perform a calibration transfer to A, are consistent
with that used to obtain the initial calibration model izk. then it is more likelyv that
median error in f; may exhibit less variability rhan if the cost function and data used

to obtain A, and A, are not conststent.

To illustrate this point. consider again the median error resulting from using the
D'"_iDACX Spline method with .V, = 8. that is a median error of about 4.5 x 10~3
indicated in Figure (5.29) on page 178. In this result. by € Hpg,,. was obtained using

D' True learning and h;, was obtained using the D'"-iDACNX Spline method which

198



is based on D' Spline learning. Now using a less accurate initial calibration model.
hy € Hrg.,. for this particular transfer method results in an unexpected decrease in
median error to about 2 x 1073, as seen in Figure (5.30) on page 179. In this case.
the initial calibration model #; was obtained using D' Spline learning and hy was
obtained using the D'V-iDACX Spline which is also based on D!’ Spline learning. In
other words. the cost function and data used to define the error surface are consistent
with each other. in that the cost functions are the same and the data used for learning
are obtained using similar methods. This consistency in the cost function and the
data appears to have counteracted the tendency of an inaccurate hi to increase the
median error in ;. This result can be explained by considering that it is the cost
function and the data that define the error surface over which learning occurs and as
the differences in the error surfaces used to obtain f and le increases the more likelyv

it is that the variability in the median error between hi and ; will increase.

Now return back to the simulation results shown in Figure (6.1) and note the
trend in the median errors as the number of calibration points is decreased. The first
apparent observation is the relative insensitivity of the median errors to changes in the
number of calibration points. This insensitivity is seen in all the transfers methods.
except for the D'Y-iDACX True method. which besides having the lowest level of
error. also has a greater sensitivity to changes in the number of calibration points.
The relative insensitivity to changes in the number of calibration points suggests that.
for these particular group of simulations. the transfer methods are relving more on

the information in A than the information provided in D;.

This suggestion is supported to a degree by the other simulation results. where
the use of a more accurate Ay. selected from sets having lower median errors. tends
to increase the differences between the median errors of the transfer methods and
the median error of the Std. Cal. BP method. (compare the median errors shown
in Figure (5.29) through Figure (5.31) on pages 178 to 180 ). This behaviour then
suggests a dependence on the information in Ay by virtue that the median errors in

h; vary noticeably with changes in the accuracy of hx. Now consider the apparent
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decrease in the dependency of the median errors on D;. It is clear that the information
provided by D, decreases as the number of points in D; decreases. vet the transfer
methods exhibit relatively small changes in the median error compared to the changes
exhibited by the Std. Cal. BP method. A possible explanation for this observation.
at least for the D' learning based transfer methods. is the apparent decrease in the
dependency in D; may in fact be due to the characteristics of supervised learning.
This characteristic allows the possibility that the point used to begin learning on the
error surface C(w. D;). defined by the weight values associated with fig. results in the
learning algorithm finding h; that is in a region of the weight space where the error

surface defining the true generalisation error ¢, tends to be relatively constant.

This relatively small increase in the median errors in the transfer methods. as the
number of points in D; decreases. is important when compared to the larger increase
in the median error of the Std. Cal. BP method. This difference in the change in the
median errors results in an increase in the number of methods having median errors
that are significantly different from the median error of the Std. Cal. BP method.
For example. in the simulation results reproduced in Figure (6.1). the D'V-iDACX
Linear. D'V-iDACX True. and iDACX Linear all achieve significant differences with
improvement factors given by 7.6. 12.8. and 8.0. respectively. with .V} = 1. (as listed in
the table associated with Figure (6.1). given on page 180). Again. it should be stressed
that this improvement factor is relative to the median error provided by the Std. Cal.
BP method which has increased bv a factor of about 20 from the error it provided
at \\; = 8 points. Therefore. whether the improvement in the error provided by the
calibration transfer is of practical significance will be dependent on the application’s

level of acceptable error.

It then becomes obvious that in decreasing the median error of the initial cali-
bration model h;. which tends to decrease the median errors in h; obtained by the
calibration transfer methods. will also tend to increase the difference these median
errors have with the median error resulting from the Std. Cal. BP method. The re-

sult is more significant difference in the medians and as shown in Figure (5.29) and
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Figure (5.30) on page 178 and page 179. respectively. this is the case.

[t should be noted that the median errors in the sets of these initial calibration
models. given bv i, € Hr., - he € Hp,, and he € Hrg., correspond to median er-
rors that are approximately one half and one quarter of the median error associated
with hy € Hp... In addition. the interquartile range of the distribution of the errors
in these initial calibration models also decreases as the median decreases reflecting
a distribution that is more tightly located about its median. Specifically. these in-
terquartile ranges are approximately 2 x 1072 to 9 x 1073 and 1.5 x 10~ for the sets

Hrg,. . Hr,,. and Hp,, . respectively.

The results. shown in Figure (5.29) and Figure (5.30) on pages 178 and 179.
respectively. show. as discussed previouslv. that in spite of a factor of two increase
in the median error of the initial calibration models. the resulting median error in hy
may in fact decrease. remain comparable the same. or increase. The importance of
this observation is that it suggests that even if it were possible to have hy = hy. the
resulting errors in A; mayv not change significantly from that shown in Figure (5.30)
on page 179. In other words. though the accuracy of hy does seem to influence the
resulting error in 4. it may be the location in weight space. as indicated by the values
of the weights associated with f)k. that exerts a greater influence on the resulting error
in A;. A careful inspection of the results also shows that this suggestion only applies

to the D'"™_-iDACX and PICX methods.

The iDACN methods. which do not use supervised learning to determine in. relv
more directly on using Ay to help determine h;. In fact. because of this more direct
reliance on . it is possible to estimate the minimum €, that can be achieved by the
iDACN method for a given data set D, by using exact knowledge of h; and h; that
is available for these simulations. This minimum ¢, is determined by using iz,(.r) =
hi(r) + 5, for the approximation. where 35, is based on a cubic spline or a piecewise
linear approximation model whose parameters are estimated using S;, = {(z,. hy(z,) —

hp(r,)) 01 =1.2..... \,.r, € X;}. The error é, is then given by %Z}\’,(hl(l‘j) —
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Figure 6.2. The calibration errors. measured by €é,. in performing an
ideal calibration transfer from h; to h; using hy = hpg, to
hi = hg, as a function of N, for the iDACX Spline and
iDACX linear methods.
; | . - _1 S ‘ - , s e . .
hi(x,))". where r, (\J_:I)_} J=0.1.2..... V, — 1. and .V, = 129. These errors are

shown as a function of .\ in Figure (6.2).

It is apparent from Figure (6.2) that the iDACX Spline method can achieve ¢, =
4 x 107° at \; = 8 when using an initial calibration model with no errors. that is
hi = hi. and the data in D,. The iDACX Linear method. on the other hand. can only
achieve ¢, = 1 x 107%. If these estimates are compared to the median errors achieved
when using hy = Hrg,,. which from Figure (5.29) on page 178 are approximately
1.5 x 1073 for both iDACX methods at N, = 8. then it is clear that iDACX Spline
method can potentially achieve a 40-fold improvement in the median error if hi = hi

is used to obtain h;. The iDACX Linear method. on the other hand. appears to
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be at its limit of performance. in that its median error. when using hy = hg. is
approximately 1.5 » 1073, which is comparable to its limit of 1 x 107*. Now consider
the use of hy = Hp, . which represents initial calibration models with a median error
- -—) - . - . . .
~ 1.5 x 107-. that is also approximately four times that median error associated with
he = Hp,,. As seen in Figure (5.31). given on page 180. the resulting median error
in h;. as expected. increases. but in this case. the median error is also approximately
equal to the median error in Ay = Hpg,. . In other words. the error in the initial

calibration model appears to dominate the resulting error in hy.

[t is also clear. that in spite of knowing the limits in ¢, for the iDAXC methods
and the median error in hy. this knowledge does appear to be related in an obvious
way to the resulting error in h;. For instance. note that at \; = 4. the iDACX
Linear method has an estimated lower limit in €, of approximately 3 x 1072 but
Figure (5.29) on page 178 shows at \; = 4. the iDACX linear method achieving
errors below this level. This anomalous result is due to the use of 5. estimated
using a data set. §; = {(z,. ly(r,) — ho(a)) 7 = 1.2, \;}. having errors that
also happens to allow a better approximation to A, than a data set having no errors.
that is. S, = {(z;. hy(ry) — he()) i = 1.2... .. \:}. This result is possible for two
reasons. First. it is likelv that the coordinates of the data in S;, are not located at
points that provide the minimal error between A; and hi. Second the approximation
hi may happen to be closer to h; than h;. Here minimal error and the meaning of

closer are in the sense of the /,-norm measure of error or distance.

As discussed in section 3.3. many of the characteristics seen in these results are
due directly to the fact that the error surface. C(w. D;). used for learning is not the
same as the error surface. C(w.x). used to measure e,. Therefore. regardless of
the accuracy of hy. the weights associated with h. though providing a location on
C(w. o) that allows finding minima representing good approximations of /1;. may also
be providing a location on C(w. D;) thart is near a set of minima that correspond to

poor approximations of h; on C(w.x).



6.2.4 Calibration transfers from hp, to hp, using N, =8

In these set of calibration transfer simulations the number of hidden neurons
in the FFNN is increased to eight from the previous five. The use of additional
neurons requires the use of a different set of initial calibration models. These initial
models are drawn from three sets Hg,,. Hg.,- and Hg_.. In this case. the sets Hg,,
and Hp,, are more similar to each other than were the sets Hg,, and Hg,,. that is.
the medians. 25th and 75th percentile. and the interquartile range have very similar
values as shown in Table (5.2). The only difference between these two sets is that
Hr., was obtained using DY) True learning and Hg,, was obtained using D!’ Spline
learning. The set of initial calibration models defined by Hg, has a median that
is. again. approximately twice that of Hp,, and was obtained using D® learning.
Overall. the sets of initial calibration models for the eight hidden neuron FFNNX have
error medians that are approximately five to ten times less than the medians in the

sets used with the FFNN having five hidden neurons.

Using the arguments from the previous section. this improvement in the median
error of the initial calibration model should not cause much of a change in the median
error associated with the various calibration transfer methods. If onlv five neurons
were involved. then this would be a reasonably expectation. Instead. the FENN now
has eight neurons and the most obvious influence this increase in neurons will have

on the FFNN is to increase its approximation capabilities.

Before considering the impact of increasing the approximation capabilities of the
FEXNX on the calibration error resulting from using the calibration transfer methods.
consider Figure (5.12) and Figure (5.13) on pages 158 and 159. that show the error
€4 as a function of the number of hidden neurons. The characteristic to note in these
figures is the presence of a minimal point in é,. This characteristic is a common
feature in approximation methods. regardless of whether the approximation method
is based on a FFNN or anyv other parametric or nonparametric method. For the

FENN. it is known that this optimal point for €, is dependent on number of factors
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that include. the specific function that is to be approximated. the number of data
points used to obtain that approximation. and the learning algorithm used to find

the approximation.

As shown in Figure (5.12) and Figure (5.13). the optimal point for this minimum
in €4 occurs at about eight neurons over most values of calibration points but only for
some of the learning algorithms. The presence of this optimal point at eight hidden
neurons introduces another degree of complexity to the behaviour of the errors in the

calibration transfer simulations.

Given that a minimal €, exists using eight neurons. the use of more than eight
neurons. for any given V. or Ny, will tend to increase ¢,. This increase in error is due
to the capability of the FFNN to approximate more precisely the data points but at
the expense of possibly not approximating the underlying function. This then causes
the generalisation error. ¢,. to increase. In contrast. using less than eight neurons will
result in the FENN being less capable of approximating the data points and therefore

less able to approximate the underlyving function. Again. this will cause ¢, to increase.

Specifically. for these simulations. this optimal point for é, appears to be present
only for methods using the D'V learning algorithms and occurs at eight neurons.
The BP learning algorithm appears to be operating on the increasing tail of the
curve representing the behaviour of é, as a function of the number of neurons. These
observations suggest that the increase in the number of neurons from five to eight will
result in an increase in €, for the Std. Cal. BP method. whereas ¢, will decrease for
the transfer methods based on DY) learning. The net result will be a further widening
of the differences between the error medians. thereby making the transfer methods
more attractive to use. Give that the change in the number of neurons appears to
only influence the approximation capability of the FFNN. the overall behaviour of the
error curves formed byv calibration transfer methods. as a function of the calibration
points. is not expected to vary significantly from that of the previous section where

five neurons where used.



When Figure (5.35) and Figure (5.36). on pages 184 and 185. are compared to
Figure (5.29) and Figure (5.30) on pages 178 and 179. this expected behaviour in €,
is seen. The Std. Cal. BP method has an increase in €, and the calibration transfer
methods not only have a reduction in ¢, but also possess a more prominent slope
indicating a grearer dependency on \;. The existence of a slight difference in the
median errors of the various transfer methods. when compared to the median errors
resulting from calibration transfer simulations using five neurons. are due to cach
learning algorithm having slightly different optimal point for ¢, as a function of the
number of neurons and number of points. This variability can be seen by referring

back to Figure (5.12) or Figure (5.13).

One point that needs to be made regarding these simulation results is that the
use of two different sets of initial calibration models. having approximately the same
error distribution and obtained with different learning approaches. results in a small
overall change in the median errors associated with the calibration transfer methods.
Specificallv. by using the improvement factor as an indication of the change in the
median error. the average improvement factor. /. over all transfer methods having
significant differences in their median error. is approximately 12 for transfers using
hy € Hp,, and approximately 19 for transfers using h; € Hr,,- On the other hand.
examining and comparing individual results shows the same behaviour is seen when
five hidden neurons were used for the FFNN. that is. the median error is influenced
by consistency of the costs functions and data associated with obtaining hy and hy.

(refer to the discussion on page 198).

Though the results from using hi € Hg,. are not shown. they were consistent
with the observed results from the previous section. that is. the improvement factor

decreased given increases in the median error of the initial calibration models.

The main observation from these simulations using eight hidden neurons in the
FFNNXN. is that many of the calibration transfer methods now provide a greater degree

of improvement in é, over that provided by the Std. Cal. method. This improvement
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is attributed to the better matching of the approximation capabilities of the FFNN
using D" learning to the underlving model being approximated. This improvement
is further accentuated by the corresponding decrease in the matching of the approx-
imation capabilities of the FFNN using BP learning to tiie underlving model being

approximated.

6.2.5 Calibration transfers from hg, to hg, using N, = {5,8}

The simulation results using the less similar calibration models at both N, =5
and .V, = 8 are brieflv considered. This brevity is imposed by virtue that all the
observed behavior in these simulation results can be explained using the arguments

presented in the discussion of the previous sections.

As noted earlier. the calibration transfers from izk = ile to h; = hg. represent
transfers between less similar calibration models. The result of using a less similar
model should therefore present a greater difficulty in performing a calibration transfer.
This difficulty arises directly from the greater magnitude of error in estimating either
the slopes used in the DV)-iDACX Spline or D'"-iDACX Linear method or §; in the
iDACX methods. The decrease in similarity will also present a difficulty for the PICX
method in that the location of points on the error surface that correspond to hi and
h; will be further apart. In essence. iy will begin to resemble a random starting point

that is seen during the initial calibration.

The only transfer method that should have an immunity to this error is the
D™ -iDACX True method. which uses the true slope values of h; at r,. Of course. it
will still need to approximate h;. which. when given a set of initial weights associated

with a less similar k. will begin to resemble an initial calibration attempt.

\When Figure (5.32) through Figure (5.34). on pages 181 to 183. are examined.
showing the simulation results using five hidden neurons and the initial calibration

models defined by the sets Hg,, . Hr,,- and Hg,. . three prominent features surface.

ba

First. there exists median errors which are greater. with a statistical significance.
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than those of the Std. Cal. BP method. Second. the median error provided by the
D'W_iDACX True method is consistently less than the median of the Std. Cal. BP
method. Third. that in spite of four-fold increase in the median error of the initial
calibration results. there appears to be little change in the overall values of the median

errors.

Consider first. the existence of median errors greater than the Std. Cal. BP
method. In this case. it is clear that inaccuracy in the slope estimates for h; at
I, has resulted in the D'W-iDACX Spline and D'"'-iDACX Lincar methods having
median errors that are greater than the median error of the Std. Cal. BP. It is also
clear that since the accuracy of 5, is dependent on the number of points used to obtain
its approximation. that the slope estimates. which are based on §; will also become
less accurate as the number of data points from h; is reduced. Alternatively. increas-
ing the number of data points provides a more accurate slope estimate and. as seen
in Figure (5.32) through Figure (5.34). both the D‘V-iDACX Spline and D"-iDACX
Linear methods begin to show improvements in the median error as the number of
data points is increased. These particular results show that additional misinforma-
tion. as provided by the slope estimate having errors. can produce approximations
that have very poor accuracy. In these cases it would be better to disregard the slope

information or at the very least reduce its importance in learning.

The iDACX methods also show median errors greater than the median error of
the Std. Cal. BP method. which in this case. is due to both the error in the initial
calibration model izk and the greater magnitude of the error in the estimate of §;,. In
these methods it is obvious that. as the number of calibration points increases. the
error in $; decreases. therebv providing improved results. which is seen to occur in

Figure (5.32) through Figure (5.34).

It should also be mentioned that for the D/V-iDACX Spline and D'V-iDACX
Linear methods. the number of trials listed has decreased. This is due to the transfer

methods not being able to find an approximation meeting the sum squared error
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criteria used to select the successful trials. In particular. if the calibration transfer
methods fail to obtain approximations to the data sets having a sum squared error.
SSE. that is less than approximately 0.06 for the data values and 1.25 for the slope
values. the simulation trial is deemed unsuccessful. Therefore. it is not surprising
when given large errors in the slope estimates. that manv of the trials did not meet
these SSE criteria. Consider that slope values. if inaccurate. may actually increase
the apparent complexity of the underlyving function. In other words. given only five
hidden neurons. it may not be possible to approximate both the data values and
arbitrary. that is. incorrect slope values. In a sense. this lack of learning success is
hinting at the possibilities that either the network does not have the approximation
capabilities to fit both the given data and slope values or that the data or slope or

both values are incorrect.

The remaining prominent features from these simulation results. that is. results
showing D"-iDACX True method having median errors consistently less than the
median of the Std. Cal. BP method and the small overall change in the median errors.
given a four-fold increase in the median error of the initial calibration results. can be

explained using arguments raised in the previous sections.

The factor which appears have had the largest influence on these simulation results
is the increase in the number of neurons. This increase in the number of neurons has
resulted in the calibration transfer methods providing a greater improvement over the
Std. Cal. BP method. Again. this is due to both the calibration transfer methods
operating near their optimum number of neurons and the BP method moving away
from its optimal number of neurons. Specifically. the average improvement factor
seen using eight neurons. taken over all methods having significant differences in any
one figure. varies between 10 to 40. \Whereas. in the case of using five neurons the

average improvement factor in anyv one figure varies between an average of 2 to 16.
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6.2.6 Calibration transfers for models in Hp

The calibration transfers using models from Hp are actually more difficult to
interpret if the results from using Hy were not available for prior examination. The
reason for this difficulty can be seen in Figure (5.10) and Figure (5.11). on pages 156
and 157. showing ¢, as a function of the number of neurons for all the learning
methods given various numbers of calibration points. Instead of exhibiting a clear
optimal point for the number of neurons needed in the approximation. the errors tend
not to suggest where on the curve of €, versus .\, the simulations are operating over.
The only consistent indication is that of BP learning showing that as the number of
neurons increases from five. it becomes less optimal. The D'V Jearning algorithms
either show little change in the behaviour of €, as a function of the number of neurons
or show a complex behaviour. Specifically. the methods appear to have more difficulty
in approximation using five or ten neurons than with eight and sixteen neurons. This
behaviour is particular pronounced at N; = 4 neurons. Again. this behaviour may be
due to the specific selection of both the data set used for learning and the selection

of the particular set of models from Hp that were used in the simulations.

All the characteristic behaviours seen in the simulation results using models from
Hr are present in these simulations. The extent of anyv particular behaviour is of
course. different. The most prominent difference is the degree of improvement that
is seen to be provided by the calibration transfer methods. Whereas in the case of
using models from H . the average improvemnent factor varied from about 2 to 40. the
improvement factor seen in this group of simulations is dramatically greater. varving

from 2 to 1800 for any particular learning algorithm and set of calibration conditions.

This dramatic increase in the improvement factor may be attributed to the mod-
cls in Hp being less compler than those in Hgr. This complerity is relative to the
approximation capability of the FFNN. thus for the FEFNN with the given number
of neurons used in this thesis. the models in Hp appear to be approximated more

accurately than models in #H z. This statement is supported by the initial calibration
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simulation results which show that the learning algorithm all tend to find approxima-
tion of models in Hp that have less calibration errors than the approximation found
for models in Hg. (compare for example. Figure (5.1) on page 147 with Figure (3.7)
on page 153). In other words. what this result is also suggesting. is that if the approx-
imation capabilities of the FFNX are matched to the complerity of the underlving
function. then the calibration transfer methods will more likely provide lower levels

of calibration error as compared to the error provided by the Std. Cal. BP method.

Another prominent difference between the simulations involving Hp and these
results is the consistent improvement in ¢, provided by iDACX methods over that
of the Std. Cal. BP method. In many cases. this improvement is much greater than
the improvements provided by the other calibration transfer methods. One reason
for this result is that the difference between the izk and Ay is essentially another eight
order polvnomial that may be approximated very well with a lower order polynomial
or with cubic splines or with piecewise linear segments. This. is of course. what the
iDACX methods perform. In practical terms. these results suggest that calibration
transfer cases exist where the FFNN approach does not always provide the better

solution.

Finally. another difference that needs to be considered is the use of the PICX
BP method for models from Hp which was not used for models from Hg. The
reason for not showing or listing the results from the PICX BP method. when used
with models selected from Hg. is that the PICX BP method consistently failed to
find approximations. k;. that had median errors that were significantly different from
the Std. Cal. BP method. One reason that mayv have contributed to this failure is
the choice of using initial calibration models that were obtained only from the BP
learning algorithm and not from either Hg or Hp. The initial calibration models used
for the PICX BP method had median errors that are significantly larger than those
from either Hp or Hp. As discussed previously. increasing the error in the initial
calibration model results in the initial value of the weights appearing more random.

In other words. as the error in the initial calibration model increases. the behaviour
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of the calibration transfer method approaches that of an initial calibration. It is then
not surprising that the PICX BP method. using initial calibration models with large
errors. resulted in median errors that were not significantly different than the median

error associated with the Std. Cal. BP method.

6.2.7 Summary of calibration transfer simulations

In summary. the calibration transfer methods can provide a reduction in ¢, given
classes of functions from either Hg or Hp. The reductions seen. when using models
from H p. are also much greater than the reductions seen in calibration transfers using
models from Hp. This increase in the degree of reduction in €, is attributed to the
approximation capability of the FENN and the complerity of the models in Hp being
matched to a greater degree than the match that exists between the approximation
capability of the FFNN and the complerity of the models in Hz. The importance of
matching the approximating capability of the FENN with the calibration models is
also supported by similar results in using an optimum number of neurons. that is. the
use of a number of neurons which provide the lowest levels of calibration error. The
consequence of using a well match FFNN. with an appropriate calibration data set. is
that of increasing the likelihood that a calibration transfer will find an approximation.
iu that reduces the calibration error relative to the error resulting from a standard

calibration using conventional backpropagation learning.

6.3 Initial calibration

The initial calibration. though not a true calibration transfer. can be viewed as a
calibration transfer where it is highly certain that there is no relevant prior calibration
model /iy that can be used to assist in obtaining a current model iz,. In this view. the
initial calibration represents a worst case scenario for a calibration transfer. in that
the methods must disregard any prior information and simply rely on the learning

algorithm’s capability to find an acceptable approximation given the calibration data.

o
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Overall. the results of the initial calibration simulations showed that all D™
learning algorithms. for many of the calibration conditions. achieved significantly
lower levels of é, than that obtained using BP learning. Equally important. none of
the D' learning algorithms showed results which were significantly worse than BP

learning.

From the results of section 5.2. it is clear that the D' True learning algorithm
is more likely to find an approximation hi with a lower ¢, than the BP learning
learning algorithm. Specifically. the D) True learning algorithm obtained significant
differences in the median error in 24 of the 26 different calibration conditions used
for Hp and in all 12 of 12 conditions used for Hy. The degree of improvement in
€, over that provided by the BP learning algorithin varied from a factor of 2. (Hp.
Nn = 3. N = 6). to as high as a factor of 1300. (Hp. N, = 16. Nt = 16). The two
remaining cases. at (Hp. N, = 8. N, = 4) and (Hp. N, = 16. N = 4). which did not
show significant differences occurred when the initialisation of the FFNN presented
a particularly difficult learning situation. There were no calibration conditions under

which the errors were greater than the errors obtained from BP learning.

Both the D) Spline and D! Linear learning algorithms. though not providing as
many instances of significant reduction in the median error over the error associated
with BP learning. did show reduction in é; under many calibration conditions. For
D'V Spline learning. improvements were seen in 19 of 26 calibration conditions used
for Hp and in 8 of 12 conditions used for H . For D!} Linear learning. improvements
were seen in 16 of 26 calibration conditions used for Hp and in 7 of 12 conditions
used for Hg. Again. there were no calibration conditions under which the errors were

greater than the errors obtained from BP learning.

The D' learning algorithm showed the least number of reductions in é,. achieving
significant reductions in only 6 of 26 calibration conditions used for Hp and 4 of 12
conditions used for Hy. Again. there were no calibration conditions under which the

errors were significantly worse than the errors obtained from BP learning.
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6.4 Limitations in Interpreting the Simulation Re-
sults

Many of the limitations of the simulations were described and discussed in
section 4.2, In this section additional concerns regarding the impact that some of

these limitations imposed on the simulation are discussed.

One of the first concerns that is raised by these simulation results is whether
they are representative enough to provide meaningful insight into the behaviour of
the calibration transfer methods. Even though over a hundred different calibration
conditions. representing thousands of simulation trials. were considered in these sim-
ulations. there is alwayvs the presence of the unanswered question of whether the

sampling of calibration conditions was sufficient.

The use of two different classes of calibration models. one effectively a random
process. does provide some assurance that the behaviour of the calibration transfer
methods was captured by the simulations. This observation is supported by the anal-
vsis of the simulation results which revealed a consistent and characteristic behaviour
in all the calibration transfer methods and learning algorithms as seen with various
calibration conditions. In spite of explaining all the significant observed behaviour of
the calibration transfer methods. which suggests that the simulation were adequate. it
must be acknowledged that it is possible that a subtle and important behaviour exists
which was not reveal by the simulations. Of course. this possibility is alwayvs present
and reflects the nature of attempting to understand anyv unknown process. For these
simulations. it appears that enough calibration conditions were simulated to provide
an indication of the nature of factors that influence the calibration error. ¢,. and to
establish that the calibration transfer methods can provide a reduction in ¢, rela-
tive to that provided by a standard calibration using conventional backpropagation

learning.

In terms of factors that could influence the simulation results. it is the practice.

used in this thesis. of not stopping the learning at the first indication of over-learning
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that needs consideration. This practice is used to prevent the supervised learning
algorithm from approaching a minimum on the error surface C{w. D) that may cor-

respond to a point on C'(w. x) that increases the generalisation error.

To implement this idea of preventing over-learning requires estimating the gener-
alisation error during learning. that is. obtaining ¢,. Essentially. the idea is to use
C(w. D) for learning but at the same time obtain information as to the behaviour of
C'(w.x). In a setting where the number of calibration points are limited the estima-

tion. €,. will be difficult and may be less accurate than desired. Therefore. its use.

though desirable. may be difficult to implement.

For these simulation results it would have been possible to use an accurate é,
during learning to detect when over-learning begins to occur and to then stop the
learning algorithm. Although this was not done for these simulations. the effect of
doing this would have been to potentially reduce the calibration error resulting from
all the simulation trials. Since it is difficult to predict when over-learning occurs.
it is difficult to determine how much of an improvement would have been seen. In
addition. the importance of this improvement may not have affected the relative
performance of the calibration transfer method as it is likely that all the methods
would have experienced similar degrees of improvement. Of course. it is possible that
one or more methods would have experienced significantly greater improvements than

another set of methods.

For these simulations it was deemed more important to see how the methods per-
formed using only termination criteria based on C'(w. D) rather than criteria based on
various techniques obtaining estimates of C'(w. ). In one sense. using onlv C'(w. D)
to decide when to terminate learning provides a less distorted view of the behaviour
of the learning algorithm and the relationship between C(w. D) and C(w.x). The
importance of this view is provided by the realisation that ideally. learning should be
using C(w. oc). and not C(w. D). to obtain an approximation with minimal general-

isation error. Therefore. providing an unobstructed view of the learning algorithm'’s
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performance using C(w. D). not only provide an indication on how close C(w. D) is

to C(w. ). but also on the variability between C(w. D) and C(w. x).

It should be noted that for these simulations. knowledge of hx and h; was available
to allow a very accurate estimate of ¢, in a simple manner. This knowledge was only
utilised to avoid the error in the estimation of €, from obscuring the error performance

shown by the calibration transfer methods.

Finally. the issue of not directly controlling the slope error or adding error to it
needs to be addressed. The issue of data errors was discussed in section 4.2, It is
clear from the simulation results that the accuracy of the slope data influences ¢, in
the D'V-iDACNX transfer methods. in that the use of the true slope values tended
to provide lower levels of error. It is also clear that the slope estimates with errors.
used during the calibration transfer with models that were not similar to each other.

resulted in ¢, that exceeded that of the Std. Cal. BP method.

This observation regarding the behaviour between the slope error and é, taken at
its face value suggests that as the error in the slope increases from its true value. it
will result in an increase in é,. It would then appear to be useful to develop a strategy
so as to determine how this increase in slope error influences é, in order to decide
when not to use the slope data or to predict whether a particular slope estimate will
prevent achieving a desired level of é,. However this strategy is flawed by virtue that
it is currently not even possible to determine the specific level of ¢, that will result
from using a given set of data D. Therefore attempting to determine the level at
which the slope error causes ¢, to be unacceptable. will be highly dependent on the
data set. the learning algorithm. and the underlying function to be approximated.
This argument is also supported by the simulation results that show that in spite
of slope error due to the approximations provided by the D Spline or D'V Linear
methods. these methods will actually determine an approximation h; that has less
error ¢, than the D'"' True method. In other words. in these particular simulations

an error in the slope value actually improved é,.
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6.5 Suggestions for Future Research

The FFNN calibration transfer methods proposed in this thesis. the subsequent
simulation results. and discussion reveals a number of additional avenues that mayv
be investigated in order to improve and better understand the process of calibration

transfer in the context of supervised FFNN learning.

6.5.1 Improving the D" based calibration transfer methods

The most obvious improvement to the D'®) based calibration transfer methods
would be to use learning algorithms based on higher order gradient descent methods
such as the Levenberg-\larquardt algorithm. The use of higher order methods will
not only speed the learning process. but it should provide a better search strategyv and
therefore find approximations having values of é, that are lower than those provided
by the first order descent methods. The difficulty will be in providing an adaptation

of the algorithm that can efficiently incorporate nth order derivative fitting.

Another issue which is important to address is to determine whether the use of
higher order derivatives. that is of order n > 1. in the supervised learning algorithm
would further improve the resulting generalisation or calibration error of the various
calibration transfer methods. In this thesis onlyv derivatives to order n = 1 were used.
The GSS theorem suggests the use of higher order derivatives may further improve the
approximation potential of the FENN. but as noted in the thesis. a FFNXN does not
use this derivative information as effectively as the ideal interpolation formula in the
GSS theorem. so it becomes an open question as to whether higher order derivatives

will improve the calibration transfer methods.

Though it was argued that knowledge of the slope error would not help in deter-
mining the specific level of ¢, that would result from a particular learning trial. it may
be useful to estimate the slope error and use this information to reduce the weighting
factor assigned to the gradients associated with the slope errors. In other words. it

may prove useful to use the estimate of the slope error to change the step size of the
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slope gradients with respect to the data gradients. This would effectively provide a
mechanism of the algorithm to shift from data and slope fitting to only data fitting
if the slope estimates appear to have large errors. This would hopefully reduce the

likelihood of increasing ¢, and provide a more robust algorithm.

The thesis also showed that calibration transfer methods that do not rely on us-
ing the FFNN are also possible and that in some cases may actually out perform
the FENN based methods. The extension of the idea of using slope information to
help determine an approximation for non-FFNN methods may also prove to be use-
ful. Currently. most approximation methods only use the data values to determine
an approximation. The incorporation of nth order derivative fitting in nonparamet-
ric approximation methods is not well developed. but as shown in these simulation

results. can provide in a significant improvement in the accuracy of an approximation.

Inspite of the thesis discussing the potential impact of adding noise to the data
values of the training set. the use of data from real instruments. exhibiting various
degrees and types of noise. would provide additional insight into the behaviour of
the calibration transfer methods. The interpretation of the results using real data
would require a cautionaryv approach by virtue that the characteristics of both the
data and noise would be specific to instruments used to obtain the data. This cau-
tionary approach is imposed by the large variability of the resulting approximation or
generalisation error obtained with the calibration transfer methods. Therefore. any
generalisation of the behaviour of the calibration transfer merhods and the applica-

bility of the methods to other tyvpes of instruments must be done carefully.

6.5.2 Additional applications

The thesis focuses on the issue of recalibration of instruments based on the
static FENN. In a more general setting the methods developed in this thesis simply
attempt to obtain an approximation h of a true model h using a finite set of data. prior

knowledge from a previous model. and additional knowledge obtained by estimating
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higher order derivative data. It is apparent in this general setting that the methods
developed for the recalibation of FFNN based instruments are not the only application

that these methods may be used in.

The most obvious application of these methods outside of instrument recalibration
occurs in control systems where dvnamic neural networks are sometimes used. In this
case the adaptability of the neural network can be viewed as a form of recalibration.
in that both adaptation and recalibration are attempting to obtain an updated model
of the system. The difference. of course. between adaptation and recalibration is that
adaptation occurs on a relatively continuous basis. whereas. recalibration only occurs
at specific instances spread apart by rather large intervals. In addition. the difficulty
in applving the methods proposed in the thesis would be in modifving the learning
algorithms to include nth order derivative fitting and in determining an appropriate

model and estimation technique for the parameters and slopes of $(x) or §(x).

Instrument recalibration also has close parallels to system identification or other
methods of parametric approximation. In this case recalibration is simply viewed as a
process of obtaining a model that may use information from a prior model. Again. the
difficulties in applying the methods proposed in this thesis would be in the derivation
of expressions that include the use of nth order derivative data and in determining
an appropriate model and estimation technique for the parameters and slopes of 5(x)
or §(x).

The benefit in applving the methods proposed in this thesis are the potential
to use less data. that is phyvsically obtained data. and the possible improvements
in approximation accuracy. These benefits arise directly from the use of the GSSE
measure and incorporation of the potential to use information from a prior accurate

approxtmnation.
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7. Conclusions

This thesis has presented. developed. and investigated a number of previously
unavailable methods of calibration transfer for FFNN based instruments. These meth-
ods. referred to as D'™'-iDACX. iDACNX. and PICX. allow the FFNXN based instrument
to be recalibrated such that for a given number of calibration data. the calibration
error can be reduced below that achievable in a standard recalibration emploving
conventional backpropagation learning. referred to as Std. Cal. BP. Though the cal-
ibration transfer methods can provide a reduction in calibration error compared to
that provided by a Std. Cal. BP. it is difficult to predict whether a specific set of

calibration conditions will result in a reduction in the calibration error.

This difficulty in predicting whether a specific set of calibration conditions will
result in a reduction of calibration error results directly from the known difficulty
in predicting the generalisation error performance of a specific supervised learning
algorithm given a particular set of data. initial weight values. and number of hid-
den neurons. The calibration transfer methods D-iDACX and PICX increase this
difficulty in prediction by relving on the prior approximation. that is. the calibra-
tion model h;. to assist in determining the current approximation. h;. In relving on
the prior approximation. the existence of various degrees of similarity between the

underlyving models h; and Ay is the factor that adds to this prediction difficulty.

In practical terms. this difficulty in predicting whether a reduction in calibration
error will occur becomes apparent by examining both the variability in the degree of
error reduction and its distribution as the set of calibration conditions are changed.
Examining the results of the computer simulations comparing the median calibration

error of these transfer methods to the median calibration error of the Std. Cal. BP
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method support these claims of difficulty. The simulations have shown that not only
is it possible to achieve a factor of 2 to 1000 reduction in the calibration error over
that of Std. Cal. BP while using half the data of the initial calibration. but that it is
also possible to increase the error by as much as a factor of 3 over that of Std. Cal. BP.
Each of the calibration transfer methods exhibit this variability. the extent of which is
dependent on factors such as the number of hidden neurons. the learning algorithm.
the number of calibration data points. the error in the calibration data. the error in
approximation of the initial calibration model. the degree of similarity between the
initial calibration model and the desired model. and the underlying complexity of the

calibration models.

For the D™ -iDACX and PICX methods. the governing principle that determines
the degree of influence these factors have on the calibration error is given by the
principles governing the behaviour of supervised learning in a FEFNN. In this context.
it is obvious that increasing the quantity of calibration data. as well as its accuracy.
will increase the likelihood of the FFNN's learning algorithm finding an acceptable
approximation of the desired calibration model. This then translates directly into the

increased likelihood of obtaining a reduction in the calibration error.

The iDACX method. though not using a learning algorithm to determine h;. still
relies on the the FFNN's prior approximation h. as well as the degree of similarity
between h; and h;. and the calibration data set D,. Therefore. if izk is accurate. and
if the difference between h; and hy can. with the data D,. be approximated using the

model selected for the iDACX method. then the iDACX methods will perform very

well.

Of all the methods considered in this thesis the D(™-iDACX methods incorpo-
rates the most information to attempt a calibration transfer. In spite of this. the
method does not always provide the most significant reductions in calibration error
or even the most improvement in calibration error when compared to the Std. Cal. BP

method. The variability displaved by this method is. in part. the result of using in-

N
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accurate information. that is. inaccurate derivative information. However. the nature
of supervised learning also plays an important part in this variability. As was seen in
the simulation results. the use of perfectly accurate information does not ensure that
the method will provide a significant decrease in the calibration error. Alternatively.
given inaccurate information the method was seen to provide significant reductions
in the calibration error. It was not possible to predict when the method would or
would not reduce the calibration error. In spite of this apparent difficulty. when given
accurate calibration data. the D™ _.iDACX methods tend to provide a reduction in

the calibration error relative to the error associated with the Std. Cal. BP method

Taken as a group. all the calibration transfer methods provided in this thesis will
allow the FFNN based instrument to be recalibrated such that. for a given number
of calibration data. the calibration error can be reduced below that achievable in the
Std. Cal. BP method. Therefore. the methods represent novel. viable approaches to

calibration transfer for FFNN based instruments that were previously unavailable.
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A. Factors Influencing Calibration Ac-
curacy

This appendix presents an overview of the factors influencing calibration accu-
racy and its the dependency on these factors. A brief discussion regarding the methods

that have been used to change the degree of these dependencies is also provided

The importance of this overview is that it provides. in terms of the instrument
model shown in Figure (1.1). an appreciation of the complexity of calibration and.
more importantly. of the calibration transfer problem for the FFNN calibration model.
In addition. by having identified the factors influencing calibration accuracy. the
limitations and assumption used in the the development of the calibration transfer

method presented in this thesis can be more clearly appreciated.

A.1 Influencing factors in calibration

Some of the obvious factors influencing calibration accuracy are easily iden-
tifiable: theyv include the quantity of calibration data. the error in the data. the
complexity of the calibration model. and the dimensionality of X’. Similarly. the
dependency of the calibration accuracy on quantity of calibration data appears in-
tuitively obvious: increase the quantity of data to obtain greater accuracy. Almost
equally intuitive is the inter-dependency of the calibration accuracy on the quantity
of calibration data. the calibration data errors. complexity of the calibration model.
and the dimensionality of X: an increase in errors. or complexitv. or dimensionality
will demand an increase in the quantity of calibration data in order to maintain a

particular calibration accuracy.



What mayv be less obvious. besides other influencing factors. is the principles at
work in forming these dependencies and the methods used to increase or reduce these

dependencies.

Another less obvious consideration is the precise meaning of calibration accuracy.

measured with an appropriate metric. such as that given by Equation (1.3). Being an
estimate. € will itself possess a degree of variability. This variability in ¢ is influenced
not only by the data used to obtain ¢. but also by its estimator and by the potential
variability that exists in obtaining h. Therefore. to avoid complicating the discussion
with the estimated error. the true error between # and h. given by Equation (1.2). is
assumned to be measurable. In this context. improving the accuracy of the calibration

is taken to mean reducing €. i.c. e — 0.

From Equation (1.2). it is apparent that the factors influencing the error e are
those which influence the process of obtaining h. In other words. any factor that
influences the approximation of h using the data set D can be viewed as a potential
factor influencing e¢. This simple observation not only results in identifving many
of the obvious factors described earlier. it also allows identifving a number of less

obvious factors. which are now discussed.

A.1.1 Data errors.

One of the more apparent influence on the calibration accuracy is the existence of
random and systematic errors in the calibration data set. It is evident that errors in
D will make it difficult to obtain an accurate approximation of A since the data is
now no longer exemplifving A precisely.

Reducing the influence of errors on the data can be approached using statistical
techniques to obtain optimal. in some sense. estimates of the calibration model's
parameters [4.5.10]. If the estimates of the model parameters are obtained with a

consistent estimator [108]. then increasing the number of samples will improve the
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estimates of the model parameters. With improved parameter estimates it is assumed
that the accuracy in the approximation A will improve. Alternatively. reducing the
noise should also improve the accuracy of h or allow less data to be required for a

given level of calibration accuracy.

A.1.2 Model selection.

In some instances of calibration. increasing the data or reducing the error does not
improve the calibration accuracy. In these instances it may be that an inappropriate
calibration model is being used. such as selecting a linear model for a non linear
relationship. In this case. additional data will generally not improve the accuracy of

the calibration.

The appropriateness of the model can also be estimated using a number of mea-

sures [. 148].

A.1.3 Data selection.

Calibration accuracy will be influenced by the coordinates or locations selected in X’
to sample h. This data selection influence can be optimised. in some measure. during
two instances of using calibration data. The first instance occurs when h is assumed
to have a particular functional form and data has not vet been collected. Assuming
a functional form for h allows a set of optimal. in some measure. sample locations
to be determined. For example. if & i1s assumed to be linear. it is well known that
the optimal data sample locations. in terms of the mean squared errors in estimates
of the linear parameters of h. are the points along each coordinate axis of X' that
define its boundary [149. 150]. This strategy is also referred to as spanning the input
space [4]. Selecting data under this instance is also known as optimal experimental

design [151].

As the underlving relationship of h deviates from being linear. the optimum loca-

tion of the data samples becomes more difficult to determine. In this sense. selecting
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the data sample location is intimately related to model validation. As the uncer-
tainty in the assumed functional form of A increases. the strategy is to spread the

data around so as to allow the model to be validated with greater certainty.

In the case of the linear model. the strategy of spreading the data around. is to
simply partition the interval defined by the end points on each coordinate axis into
equal regions. The additional points are placed on the partition boundaries. For
example. if X = [0. 1]. then the boundary end points would be a + = 0 and r = 1.
Given a partition of X into two equal regions. the partition boundary point would
be the midpoint of interval [0.1]. i.e. r = 0.5. The extension into R" and multiple
partition for each coordinate axis is easilv made.

The second instance of data selection occurs when a set of calibration data D
is given and the task is to select a subset of data which contribute the most to the
accuracy of the calibration. This instance occurs frequently in calibration transfer

where the methods described by Wang et al [2] or Kennard and Stone [152] have been

used to select data samples.

A.1.4 Domain representation.

Another factor influencing calibration accuracy. which is related to data selection.
concerns the strategyv of spreading the data around. In addition to allowing the test-
ing of model validity. spreading the data increases the representation or sampling of
the domain of /. The problem with this strategy occurs as the dimensionality of the
domain of / increases. To maintain this strategyv in higher dimensions requires an
exponentially increasing number of sample points to fill an Euclidean space of increas-
ing dimensions {14]. This problem is often referred to as the curse-of-dimensionality.

a term coined by Bellman {133].

A pragmatic strategyv to counter the curse-of-dimensionality is to simply avoid
using a large dimensional space for X'. If the dimensionality of X’ cannot be controlled

or it is not known which dimensional components can be discarded. then an alternative
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strategy is to change the domain representation so that original data over X C R”
is projected onto a space with less dimensions. i.e. T C RP. where p < n. This
can be done using. for example. principal component analysis. PCA [1.154.133].
The premise in using these strategies is that there are dimensional components of X
which do not contribute significantly to the model. This premise. of course. is tested

in methods such as PCA.

In apply strategies such as PCA. a factor that needs to be considered is the de-
pendency of x on g. which represents the phvsical sensing syvstem of the instrument.
In other words. it mayv not be a simple matter to disregard dimensional components
of x or to project x onto a lower dimensional space without impacting on the inter-

pretation of the actual measurement.

Determining whether increasing or changing the representation of the domain
of h improves the accuracy of calibration. as given by Equation (1.2). is a difficult
analvtical problem. involving the degree of data errors. the type of model selected.
and the data selection strategyv. Instead of an analytical approach. a more pragmatic
approach is to use the estimated calibration error é. such as given by Equation (1.3).
and apply model validation techniques to estimate the influence of the changes in the

domain representation on é.

A.1.5 Unknown g(z).

One of the most difficult tvpe of problems in determining calibration accuracy occurs
in cases when g is highly nonlinear and complex. so much so. that it is difficult to
quantify analvtically. In these cases. the relationship between x and corresponding y
also becomes difficult to understand. thereby increasing the difficulty in selecting an
appropriate parametric model for h. Therefore. not only is there a problem in model
selection. but the problem in selecting the model is result of not having sufficient

information to even select an appropriate model.

Again. one pragmatic approach is to assume a simple linear model for 7 and
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estimate the calibration accuracy ¢é. Then. through either ad-hoc¢ procedures or trial
and error. the model complexity can be increased. i.e. its flexibility. the data selection
strategies can be varied. and the domain representation can be changed. until the ¢
becomes acceptable [4]. In the case of varving the model flexibility. the usual approach
is to attempt to linearise the problem by either partitioning the input space A into
regions where # can be more adequately approximated with a linear model or to find

a nonlinear transformation of the domain of X" so as to have a linear problem.

An alternative approach is ro use nonparametric modelling methods. in which case
the problem of model selection becomes less of an issue. Of course. an estimate of the
calibration accuracy ¢ is still needed and improving ¢ can also be approached using the
ad-hoc procedures mentioned previously. The potential advantage of nonparametric
modelling lies in its functional flexibility in that it is the data itself that drives the
determination of A [4.10]. This. hopefully. lessens the burden of the ad-hoc procedures

used to find an acceptable .

The use of nonparametric modelling also shifts the concern in calibration accuracy
from model selection to that of data selection and domain representation. It is well
known [4. 10]. that nonparametric modelling methods require more data samples than

parametric methods in order to achieve an acceptable approximation. /.

A.2 The decision to recalibrate

The need to recalibrate was defined in this thesis to be the result of the variation
in g producing an erroneous mapping h(g) : z — y. This need to recalibrate will now

be defined more precisely in order to emphasise a number of important points.

Let Ath calibration use the Dy calibration data set to obtain an acceptable calibra-
tion model hi. Let gi describe the sensor svstem response during the Ath calibration.

It is also assumed that the estimated calibration accuracy after the Ath calibration.
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denoted by é,. can be estimated using. for example.

[ N :
. 1 2 - "
= Z[hk(gk(zu.m)) — he(8i(Z(,x)))]”
- J=1
[ L&
N o

is below an application specific bound given by €mar. Here yguy. 2z k. and x4
denotes the jth calibration point from the kth validation or test set Ty, = {(xx) =
8:(Zm)) yuuy) = 1.2 .. AP

Assume now for whatever cause. gi changes. Let the changed g« be denoted by
g:- We define the need for a recalibration to occur whenever the estimated calibration
error ¢; based on using g; exceeds €n,,,. or when

- 3

N
. 1 - ] o
Cmax < € = T Z[hk(gk(zu.k))) - hk(gl(z(_l.k)))]-
=)

J=1

3 N
1 - ;s D)
= TZ~[U(J.‘:)_hk(x(_].l))]- . (A.2)
cJ J=t

where x(,;) = 8:(Z(; 1))

There are some practical problems with this definition. The most apparent prob-
lem is that the decision to recalibrate requires using the test or validation data set
T,.. In most practical applications this is highlv unlikely for a number of reasons.
First. Ty may not be available at a later time due to sample degradation or other
causes.  Another reason may be that it is not economically viable to perform this
test by virtue that its cost is almost equivalent to a calibration. Finallv. and most
importantly. there is no mechanism to decide when to administer the test.

These reasons present nontrivial practical problems that are typically handled in
the most elementary and pragmatic manner. In some cases. the decision to recalibrate
is based on experience with the instrument or the operators recognition of some in-

consistency with other instrument’s measurements. Other more tractable approaches
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are also available. such as monitoring a specific. and likely stochastic. attribute of
the instrument which is correlated to the calibration accuracy [156]. or developing a
separate test model. that. along with a verv small number of samples. provides an

alternative estimate of calibration accuracy or other instrument performance mea-

sures [157].

o
NS
[



B. Instrument Standardisation

This appendix presents a detailed review of the methods proposed by Wang
et al. [2] for solving the calibration transfer problem. These solutions are examined

within the framework of similarity mappings.

B.1 Instrument standarisation

Wang et al. [2] proposed four solutions to the calibration transfer problem.
Though the methods were intended to be used in NIR spectroscopy. theyv can be
applied to other spectroscopies. To review these methods. it will be instructive to
work through the first solution. as the remaining solutions are variations of the first.
These solutions show directly how calibration transfer is applied and can be viewed

as specific linear implementations of the various similarity maps introduced earlier.

[t should be noted that typicallv the number of wavelengths is much greater
than the number of samples so that multivariate linear regression is not possible.
A common practice to overcome this difficulty is to apply PLS or PCR to reduce
the dimensionality of the input space X so that the number of samples is equal to
or greater than the number of principal components. In the following solutions the
added complexity of transforming data to a reduced dimensional space and back again

using PLR and PCA will not be included.

In reviewing these methods the terms and notations introduced in the thesis are
used instead of those used by Wang et al. In addition. column vectors will be denoted
as lower case boldface letters. i.e. z and the row vector as z7. where the superscript

T is the transpose operator.



The spectrometer measures a set of samples from the set D, having N sam-
ples where each /th sample in D consists of | analvtes whose concentrations are
given by z! = [z1.22.... . 3. It is assumed that the spectrometer provides for each

T

T _ Ty  whoere
= gi(z; ). where x,

; Is & row vector con-

ith sample a sensor output response x
sisting of reflectance or absorbance values : -avelengths. x7' = [r.r. n)
sisting of reflectance or absorbance values at n wavelengths. x| = [ry. 7o 0y

and where gi(z]) = [g,(27). g (27). ... . gr. (2])]. By assuming a linear mapping

for each component of gi. ie. g, : R — Rij = 1.2....n. we have g (z]) =
Gki, St Gky S22 + oo F gk Za = I, where g, is the pth coefficient of the jth compo-
nent of gi. and z,, is the pth component of the ith sample. p = 1.2..../. In matrix

form. over all N} samples. this can all be simplified to have the sensor output response

given by
Xk = 2ZGq (B.1)

where Xy is a (N x n) matrix (samples by wavelengths) for the kth calibration data
set. Z is a (Vi x /) matrix (samples by analytes concentration). and Gy is a (I x n)
matrix (spectrometer analvte sensitivities by wavelengths) for the kth calibration

data set.

In a similar manner the instrument output reading for the ith sample is y; =
ilk(xlT). which would be a predicted value of some property of a specific analyte.
tvpically a predicted concentration value. Again. by assuming a linear mapping for hg.
we have h; : R" = R. so Yi = hg, T+ h,xri0 . ..+ hy, Tin. It is also possible to let y, be
arow vector yI € R™ . in which case there would be m expressions for cach component
of y,. cach representing a specific predicted property. i.e. concentrations. In this case.
the jth component of y, would be given by y;, = hi,, ru + hiy, T2 ... + hi, Ly In

matrix form this would be expressed as
Y, = X Hxk (B.2)

where Y, is a (\Ny x m) matrix (samples by predicted analyte properties) based on
the Ath calibration and Hy is a (n x m) matrix (wavelengths by regression coefficient

for analyte properties) estimated using the k calibration data set.
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Given this notation for the operation of the spectrometer. the methods used to

solve the calibration transfer problem can now be easily expressed.

1. Standardization with the classical calibration model. In terms of the
spectrometer. this solution attempts to adjust the response of the sensor syvstem
so as to provide an improved spectral response that is as good as the spectral
response ZGy. In other words. given a highly accurate understanding of Gg.
and a changed version Gy. the intent is to use Gy to improve G,. In terms of
similarity mappings. this is an indirect similarity mapping problemn.

To view this solution in terms of Figure (1.1). set i to H, and g to G, and tryv
to determine a block diagram that is equivalent to the mapping hy o g;. where
both functions are linear mappings. The actual mapping implementation that
was selected by Wang et al. can be viewed as an additive implementation. To
see how this was obtained by Wang ef al. . consider for the kth calibration. the

sensor output response. given by

Xy = 2+ Gy (B.3)

which represents the accurate calibration obtained with Vi samples. If N} = .V
samples are also used for the [th realisation. then the {th calibration is poten-
tiallv as accurate as the kth. The sensor output response to the [th calibration

is given by
X, =2,G, (B.4)
that. more importantly. can also be expressed in terms of Gy. using

= Z(Gy + AG). (B.5)

where Z = Z, = Z,. This represents the use of an indirect additive similarity
map. given by AG : g — g. where AG(gr) = g = g + Sk. Where obviously
i = Gk. g = G[. and S, = AG.
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Given that the mapping operation needed is gy + s, and since g; is known from
the prior accurate calibration. only s; is needed. i.e. AG. This can be found

using Equation (B.3) and Equation (B.5) to obtain

X =2Z2(Z" X + AG).
27X, =Z7X + AG.
Z7 (X, - Xy) = AG.
(B.6)

where Z~ is the pseudoinverse or generalised inverse [158-160] of Z. [t is now

possible to estimate X, using

X, =Z(G; + 27 (X, — Xy)).
=Xi + 227 (X — Xi). (B.7)

This estimate X,. along with Y,. would then be used to determine I:II. In the
current presentation there is no data advantage in using X, over X, to estimate
H,. where a data advantage is taken to mean the use of less data in the [th
calibration than was used in the kth calibration. In fact. since .V, samples were
used in determining both X; and AG. then Z*Z = I. where I is the identity
matrix. This results in X; = X,. or an estimate that is as accurate as if it were
obtain using onlv Equation (B.4).

The potential advantage occurs when .V; < .\ samples are used to obtain AG.

in which case Equation (B.7) is written as
X, =Xi +2Z7 (X, - X)). (B.8)

where X denotes quantities obtained with less than \; < N\ samples. The
trade-off in using less data is to accept an increase in error in the estimate for
X, by virtue that the similarity map is being approximated with less data. This
translates into increased error in obtaining the approximation H, and therefore.

increased error in Y.



(V]

In terms of the previous discussion regarding the information measure /. with
the assumption of linearity. the number of elements in the basis of AG and G is
the same. i.e. thev have the same dimensions. which results in I, = I;,. where
object [ is a linear G. This condition implies that it is not possible to reduce

the data without incurring an error.

It should also be noted that the hehaviour of the error in the approximation

will depend on Nj. N noom. L

Standardization with the inverse calibration model. In terms of the
spectrometer. this solution attempts to modify the calibration model H; so as

to be able to use the spectral data provided by ZG;.

In this approach the calibration model Hy is adjusted or corrected to allow
it to be used with spectral data given bv ZG;. This is a direct similarity
mapping problem. The solution used by Wang et al. can be viewed as an
additive implementation. This solution approach mirrors that of the previous

standarisation technique. In this case. Wang et al. begin with
Y. = X«Hx. (B.9)

and seek to use Hy given that Gy has changed to G;. In this case. the similarity
mapping is given bv AH : Hy, — H,. where AH(H;) = H, = H; + S;.
Again. the task is to obtain an approximation for S;. which is simply given by

S« = H, — H,.. Therefore. an approximation for H; based on using S; is given

by
H[ = Hk + Sk
= Hk + (H[ - Hk)
=X;Z+ (X, -X,)Z. (B.10)

As simple as this appears. if the estimate of S;. does in fact equal the difference

between the calibration models. an approximation of H,. equivalent to that
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obtain using .\; = .\ samples is obtained. Again. this only occurs if Ny = V.

in which case X X =I. Consequently. there is no data advantage in using S;.

If Ny < .V,. then an advantage in using less data is gained but at the expense of
incurring approximation errors in Si bv virtue that 1, —a, = 1,,. where object

a 1s a linear map H.

Direct standardization, DS. In terms of the spectrometer. this solution at-
tempts to transfer the spectral data X;. provided by G,. to Xy. thereby allowing
the data to be used with H,. This is a direct similarity map f, : g;(z) = x({) —

gi(z) = x(&) implemented using

X = X/Fy (B.11)
where F, is obtained using

F. = X7 X, (B.12)
Again. if N} = N, there is no data advantage gained and what occurs is a

standard linear mapping or transformation of the spectral data from ZG, so as
to make it stmilar to the spectral data that would have been obtain with ZGg.

If .\, < N\ samples are used to approximate Fy.
F. = X, X, (B.13)

then a data advantage is gained at the expense of incurring an error in the

approximation.

[t should be noted. in terms of the calibration. that knowledge of Z. or the
concentration of the samples used in the calibration data set. is not needed to

determine F. whereas it was required in the previous two methods.

Piecewise direct standardization, PDS. This solution is a piecewise ver-
sion of the DS method and uses the knowledge that changes in the spectral

responses tend to occur in small regions in X'. Therefore. DS is applied to those
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regions. Not using all the dimensional components of X" results in a dimensional
reduction A thereby potentially allowing a data advantage in the I/th calibra-
tion. In terms of the similarity map. the selection of the regions can be viewed
as one of the operation involved in the mapping. This operation expressed as
f. : x(7/) = x(k) and provides the nonlinear mapping implementing the selection

process. The map f;. though. is assumed to be linear.

The use of PDS results in a piecewise construct of DS over X. Each region
will typicallv have the same number of elements. though a variable number
of elements is also possible. For each element a corresponding f is estimated.
This estimation of any ith column element of X. i.e. the ith wavelength.
will be based on a small set of corresponding elements from X;. This small
set includes using the ith column element from X; as well as a number of
neighboring columnn elements from either side of the ith column. where the
number of neighboring elements from the left side. denoted by ;. and right
side. ¢, are not necessarily the same. Therefore. the estimation of the ith column
element of X. denoted as ry, . is obtained from the set of column elements in

X,. denoted as Ry, = [ry,_, .F;,_, ,\--- Fn... Ty, _,-Ty_, | using the linear

expression
Ly, = Rl,fk,- (B14)

where fi is a (i; + i, + 1 x 1) vector providing the same functionality as F in
Equation (B.11). Therefore. fi, also needs to be estimated using any of the

usual linear methods. such as
fi, = R;ry,. (B.13)

Since each /th column in the selected regions will have its own estimate for fi,.
there will be N, < n. estimates. where n is the number of dimensions in A’.

These estimates can be combined to form F.

F = diag((fi,)7. (). ... . (fiy, ) 7). (B.16)
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This combining of estimates requires placing each estimate. a vector. in a
specific position in F. Given that F is a (n x r) matrix. (wavelength by
wavelength). with most off-diagonal elements equal to zero. the /th estimate

fkl. will occupy the ith column of F. such that the ith component of fi =
Uk Sz feow fooae feoamie - oo« fae, i+ occupies the ith row of F.

As noted previously. not using regions in X reduces its dimensionality. thereby
allowing a data advantage without appreciably incurring errors. In terms of
similarity mapping. dimensional reduction can be viewed as one operation of
the similarity map. the other operations can be viewed as a series of local
mappings. each given by Equation (B.14)

It should be noted that the data advantage seen in PDS is due in part by the
existence of similarity between X, and X;. This similarity is identified using the
external knowledge of the user thereby. as discussed in Section 2.2.2. achieving

I = I + I,,. thus allowing for a potential data advantage.
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C. The DY Learning Algorithm

This appendix presents the derivation of a first order gradient descent algorithm
for a single hidden layer FFNN having .\, shape tunable neurons consisting of sig-
moidal type activation functions. The resulting algorithm fits the FENN's output to

both a set of target data points and slopes at those points in the least squared sense.

The derivation is also not based on the method of backpropagation. Instead the
derivation is based on a direct application of the chain rule of differentiation which
can also obtain the error gradients needed for the descent algorithm. In addition.
the deriviation does not begin from the GSSE. or cost function C'™ given by Equa-
tion (3.37). but. alternatively. begins by using the idea of fitting the neural network’s
output to both the data and corresponding slope values provided by the training set.
The error or cost function that results from this approach is identical to the C'!) cost
function given by Equation (3.38). This alternative approach provides another view
on the nature of the motivation used to derive the GSSE. Finally. vector notation is
avoided simply to show the details of the calculations. though it is acknowledged that

the use of vector notation would have provided a more compact presentation.

C.1 Deriving the Gradient Descent Algorithm

We begin with our definitions. Let X = R" be the n dimensional input space

and )} = R the output space. Let o(x.w) describe the activation function o :
(X, W) = y. w = {uw, € R:i=0.1.....p~ 1} represents the free parameters
of o. x, = jrig. ... .. r,,,]T € X and y, € Y. Note that the notation s, refers to

the jth coordinate of the ith point.
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Now given a data set D = {(x,.d,) : d, € Y.i = 1.2...... \'}. where d, are
the desired or target values. we would like to adjust the free parameters of h so
that the error between d, and the y,. for all /. is as small as possible. So. let d =
di.dy.....dy]" and y = [y1. 4o. ... . yx]’ be two points in a normed vector space of
-V dimensions. Our problem is to minimise the distance. or error. between these two

mnts w ‘¢ use the square of the /,-normed distance as measure of th g
oints where w e tl are of the l,-normed dist our measure of the error

Il
[~

—
~

I
N
-

[

N
=Y dl = 2dy +y; (C.1)

Equation (C.1) is commonly used as an error measure in deriving the backprop-
agation rule for feedforward neural networks which fits the neural model to a set of

target data D in the least squares sense.

What is needed now is a method to also fit the model to a set of slopes at

each target data point. We denote these desired slopes using m; = V,y(x) =
dh(x), dh{x) Oh(x) T S : - . - . LN
| o 1% o e s g x, ] fori=1.20.00 0 \". In other words. we require y to

not only approximate the points in D. but to also provide a specified slope along cach
coordinate axis at these points. Therefore. we need to measure the difference between

the actual slope of y at these points and the targer slope m,.

Let M =[(m;)”.(m)7.....(mx)7]7 be the set of desired slopes for the i =1 to
N data points and let Y = iy = (Vo)L (V)L .. . (Vxy)L " be the actual

slopes at those N data points. We can now consider the vectors M and Y as two
points in the normed vector space of (\\)(n) dimensions. Again. we can measure the

distance between these two points using the square of the />-norm which is also our

]
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measure of error or difference between the vectors .

= Z Z(”lﬂ - Sou) (C.2)

where the notation ¥, y, refers to the gradient of i with respect to the jth coordinate

of the input space at the ith data point. i.e. at x,.

Having a measure of fit for both the data and the corresponding slopes. we need to
minimise both expressions simultaneously with respect to the parameters of h. This
suggests using

(7 +¢2). (C.3)

m

.
S
1]
| r—

where .J is our error or cost function we want to minimise. Note the similarity between
the cost function defined by .J and C''"! given by Equation (3.38) and that both e3 and
ey, will always be greater than or equal to zero. so that .J itself will also be greater

than or equal to zero. Now expanding .J we have

AY N n
l «— . . 1 Y
J = 5 Zd;’ - 2d,y, + y + 5 Z Z(mj, =Ny,
“ =1 T =1 =1
1 N n
=Y | d =2+ yF ) (my = Yoy
=1 J=1
Y n
1 . . “ . )
= 3 Z d;’ - 2(11.1/1 + .l/,_) =+ Z("l;x - 27”}1‘-:J!/1 + (VI].IA)-)) . (C'l)
R J=1

To minimise this expression. we differentiate with respect to the parameter wy. set
the resulting expression to zero. and solve for all u;. Here uy represents the [th
weight parameter of the neural network. where / =0.1.2. ... p — 1. Instead of solving
directly for wy which presents a number of difficulties in the nonlinear case. we seek
an iterative solution using a gradient descent method. Therefore. we proceed by first
differentiating our expression of .J to obtain
. : N n
E)%J =V, J = %% d* = 2d,y, + 7 + Z[m'j,. - 2m,; Ny + (V:‘,y,)'-’]

1=1 1=1



where V., .J is simply the gradient of .J with respect to wuy. so continuing

1 o . d Jd .
Ve = = —d* - 2d,y, :
: 2 = (OU'[ Y duy @l O ',y’
.9 Jd
+ 2 lb—u—;m;' Ja —2m, N\, y + ——l—/(V )

1
M-
|
2
@
S
+
/]
:1
=
1
:1
=
oV
“1
:1
=

. . . 0 0 .
which requires evaluating the terms EWRL N,y and — B — (V' ; y,) in order to de-
wy uy -
termine the gradient explicitly for a given model. Again. since we are only considering
the univariant case. we only have one coordinate. i.e. j = 1. so we can drop the j

subscript and summation over j and can write the gradient as

N
- 7N\ [ 9y . 9Vy, 019 B -
V“"’J—Z(é?,(”' d,)-r-a—m(v_z/,—m,)) . 1l=0.1.2.... p— 1. (C.7)

=1

In the case of a single hidden neuron we have p = 4 weight parameters. our current
neural network model. has .V, hidden neurons. that is. we have p = 4.\, weight
parameters. For convenience we will denote these parameters such that thev can be
distinguished from each rth hidden neuron. so we write our model as

Ny

¢
) = i +br . -8
_lj(.l,) Z ([1 -'r-exp(-—u'lrfx - U'Or)] ) (C )

r=1

where N, is the number of hidden neurons and the free parameters of the rth hidden
neuron are denoted wq,. uyyr. w2 = . and w3, = b.. When we need to identify the

output of the rth hidden neuron given the /th input. we will use the notation y;,.
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We proceed to determine our gradient components from

N

Ay, IV y, i
Vu-,,J:Z( Yy —d,) + 2 y(vy,—m,)). [=0.1.2.3. r=12.._X\,.

oy, ouy,

=1

Note that the expression for the gradient components do not change in form from

that derived in the case of the single sigmoidal function.

We now derive the terms (¥, y.) explicitly for our model.

Yi- V4. and

J
all'[,- au'lm

We begin with ,iy, for I = 0.
a(L'I,-
N,

13, 0 Crn
. = by | -
8u’ory au‘O, Z ([1 + CXP(_U'[mI + “'Om)] Al )

m=|

1
i

= (=1)e,[1 + exp(—w, 1, + wOr)]""[exp(—u'lrr, + wor ).

= —¢, [l +exp(—w,r; + wor)] 1 + exp(—w, o, + wo, )] " exp(—w i,y + wor)).
-1+ 1+exp(—w;,r, + wor)

= —c [l +exp(—iw,x, + wo,)]
r[ P( Ir-d, T/} 1+ e.\'p(—ll'lrl', + ’L’Or)

= —¢/[1 +exp(—uy,r, + wO,)]"l 1 + 1) .
1 + exp( )

—Wirl; + Wor
= —C,-h,-(l‘,)[l - /L,-(l‘,)].
let D,, = h,(x,)(1 — h.(r;)). as this term will appear frequently. so
=—¢,Dir. r=12....\,. (C.10)

Now with / = 1 we proceed in the same manner as with / =0

\
3] 0 Cin )
Yy = - + b .
Ou’l,“/ owy, mz—x [1 + exp(—wipmr + wom)] ™

= (=1)e,[1 + exp(—wy,rz; + wor )] 72 (—, ) [exp(—wirx, + wor)].

= Crthr(?l'x)[l - hr(fi)]~
=c¢o,Dyr. T=1.2..... AW (C.11)



with [ = 2. ws, = ¢,. we have simply

0 Jd Al Crm
A Y= T + bm .
8u'2,y ouw,., mzz:l ([1 + exp(— U md + wWom)] )
N,
= B Z(C,-h,-(.l‘,)—l-[)r) = h(r,). r=1.2.... Ay (C.12)
Cr r=1

and finally with [ = 3. w3, = b,. we have

Nr
d 3] Cm
: Y= 53— E TE . + by ).
ous, ows, = \[1 +exp(— s + Wom )]

= > (cmhmlr) +by) =1 r=12...N\. (C.13)

We now continue by evaluating the term Vy, which is simply the gradient with

respect to r at the /th point

d ' ‘\'r (."l
Vy = — b ).
T |z mzzl ([1 + exXp(—U'im T + Wom)] )
d Ne
= E . mzzx (anhrrz(fz) + bm)
Ne
= Z Cmu'lmhm(rx)[l - hm(£z)]~
m=1
Ne
= Z cmu-'lmDnn' (Cl"l)
m=1

The final set of terms are given by the partial derivative of ¥y, with respect to wy,.

or - (Vy,). Forl = 0 we have
oy,
0
’ = ‘r‘mlm"'xl_',m .r.-
au_or(Vy,) Ey. "El:l( wimhm ()1 = hm(2,)]

= crwyy ((=Dh(o)(1 = he () (1 = A (7))
+}L,.(.'l',)(—1)(—1)}),,-(.1',)(1 — he(x:))) .
= ¢,y he (1) (1 = he(2))[— (1 — 2h.(x,)) + he(2)].

= cuw, Do [2h () = 1), r=1.2..... AV (C.15)
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Now we find the expression for [ =1

d
au'lr

. AYS
d
()ll'],- m=1

(.I‘}IY‘(‘I'[)[]‘ - hr(-rl)j + ((.r”.lr)(-l't)hr(fl){1 - /’r(lz)‘m’l - hr(-"l)}

Cm u‘lmhm(-rx)[]- - ll”l(‘rl )]

-+ (('ru'lr)hr(-rx)(-1)(-1'1)hr(-l.z)[l - hr(l't)]-
¢r Dy +cr,u D1 — he(r))] — crruy  he () Dy

L

Dy (1 + e (1 =20 (). r=1.2....\.. (C.16)

For | = 2. us, = ¢,. we have

and for [ = 3. wy,

5, 0 ‘
S (Vi) = 5 mz_:l Cmtim b (£)[1 = hpn (1))
= wrrhy ()1 = ho()].
=w ,D;. r=1.2..... Ay (C.17)

= .. we have

J b AT
au.sr(vyz) = 5{: mzm C'mlL'[,nhm(-L',)[l — hm(l',-)j.
= U. r=1.2..... \”., (C.ls)

Having determined all the required terms. we can now write the gradient with

respect to all wy,.

We then have for the error gradient with respect to wg,. by direct

substitution into Equation (C.9)

N

Ny
Vu'nr'] = Z [—('rDtr(.l/z - dl) + Cr“'ertr[Qhr(Iz) - 1](2 Cmu.lmem - '”1)]

1=1

m=1
Ne

m=1

N
= Z ¢ D, [(dt —yi)+ “.lr[“-)hr(-'rx) - 1](2 Cn Wy Dyn — 7”1)] .
=1



Now the error gradient with respect to w, becomes

N Ny
Ve d = Z[(cr.r,D,r)[y, —d|+ ;D (1 + 2wy [1 = 2k (2,)]) (Z Cmim Dy — ml)].
=1 m=1
N Ny
= Z('rDlr [-rt(.{/i - (Iz) + (1 + -I't”'lr[]- - —)hr(ll”) (Z ('m“'lthm - ,”l)]
=1 m=1

r=1.2..... V.. (C.20)

The error gradient with respect to wy, = ¢, is

N N,
Ve ] = Z he(a)(y, — d,) + u',D,r(Z ConWy Dy — m,) or=1.2..... \,.
=1 m=1
(C.21)
and finally. the error gradient with respect to uy, = b, is
N N,
vbr'] = Z {(1)(% - dz) - O(Z Cm“r'lszm + ”1,):! .
=1 m=1
J\.
=3 ly—d]. r=12..N\,. (C.22)
1=1

Note that the parameter w3, = b, is independent of 7. i.e. ¥V, _.J evaluates to the same

value for all r.

The gradient for each component consists of a factor due to the error in the data.
(y. — d,) and a factor due to the error in the slope (u»uw;D; — m,). where in the case

of w3 the factor due to error in the slope is zero. Again. we use

Quwy = =iV, J. (C.23)
to change uy so that it moves towards a minimum error. So our update rule from the
nth to the n + 1 iteration is then

wie(n + 1) = wi-(n) + duwyy

= uy(n) =V, Jn). [=0.1.2.3. r=12... .. N, (C.24)

Note that we have assumed the general case of having a different step size for each
component of the gradient. Selecting different step sizes for each component of the
gradient is essentially equivalent to rescaling the cost function along each of its coor-

dinate axes ({129]. page 99).





