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ABSTRACT 

The stochastic nature of surface myoelectric signals (MES) requires the use 

of power spectral analysis for effective characterisation. Spectral changes during 

different types of muscular activity are monitored using spectral parameters like 

mean power frequency, ratios of powers in several arbitrarily chosen spectral 

bands and median frequency. The median frequency has been shown to be a 

reliable indicator of such changes during static contractions. Few such studies, 

however, are available in the literature for dynamic contractions. 

In this work, non-fatiguing, isotonic, constant velocity contractions of the 

right biceps brachii m. were studied. The median frequency and the spectral 

power were chosen as test indicators of any changes that may occur due either 

to the loading of the muscle, the angular velocity of contraction or the changes 

in joint angle (and hence the muscle length). 
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A significant increase in median frequency was found with the loading of 

the muscle and also for a decrease in joint angle. On the other hand, no 

variation was observed due to velocity changes. The spectral power confirmed 

the expected dependence with loading, angular velocity of contraction and joint 

angle. 
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Chapter 1 

MUSCLE AND MYOELECTRIC SIGNALS 

1.1. Introduction 

Inherent movement is a prime sign of the existence of life. For this and 

many other reasons, man has studied locomotion of his own and of other 

creatures and continues to do so even today. 

When Galvani's experiments brought to light the electrical aspect of 

muscle movement, a new dimension was added to the study. Further discoveries 

connecting electricity and muscle contraction caused the study to be an area of 

its own importance and thus, the field of electromyography was born. 

For detecting the electrical signal which emanated from the muscle upon 

its contraction, two kinds of electrodes came into being. The surface or skin 

electrodes to be used on the skin surrounding the muscle and the needle 

electrode which was inserted into the muscle. 

In the early part of this century, Hill, Sherrington and others using both 

kinds of electrodes conducted a large number of experiments, and with the 

results that followed, they formulated simple but elegant theories concerning 

muscular activity. Electromyography became a quantitative discipline 



encompassing not only electrical and mechanical but also, thermal and chemical 

studies. Subsequent theories and experimental techniques derived from mechanics, 

biochemistry, microscopy, molecular biology, electronics and thermodynamics, 

have yielded a great amount of information about the structure and function of 

the muscle and the myoelectric signal acquired from it. A synopsis of the above 

stated information gleaned from perusing the relevant literature is presented in 

the following sections. 

1.2. Motor Units and Motor Unit Action Potentials 

The muscle tissue is specifically differentiated from the other tissues in the 

mammalian body for the purpose of contraction and in the process effecting 

motion either in an organ (smooth and cardiac muscle types) or upon the 

skeletal framework of the body (skeletal muscles). In this study, only the latter 

muscle type will be referred to since it is of direct relevance to it. 

In normal skeletal muscle, its structural units - the muscle cells or fibres - 

never contract individually. Instead small groups of them contract almost 

simultaneously, the reason being they are innervated by individual nerves, each 

nerve associated with a group ranging from 7 to 1200 muscle fibers. The 

variation in the size of these groups called motor units, is due to the variable 

sensitivity required of a movement associated with a contraction. Again, 

biochemically, muscle fibres have been differentiated into Slow Twitch and Fast 

Twitch fibres based upon their contracting response to a nerve impulse 

descending down the axon from a nerve cell of the central nervous system. 

Thus, a single muscle equipped with both kinds of fibres (slow and fast) and an 



admixture of different sized motor units all in a proportion dependent upon the 

role of the muscle is a very flexible and efficient biological machine. 

The electrical activity associated with a motor unit is the summated 

response of the individual muscle cells and is called a motor unit action 

potential (MUAP). During a muscle contraction, the motor units are fired 

repetitively, and the resulting discharge of MUAPs is called a motor unit action 

potential train (MUAPT). Also, for a given muscular contraction several motor 

units become active, the number of them and the rates at which they 'fire' 

differ, depending upon the load put upon the muscle. Indeed, the increase in 

the number of active motor units is called 'Recruitment' while, the variation of 

the firing rate to accomodate the given load upon the muscle, is called 'Rate 

Coding'. Hence, a detecting electrode will detect a summated response of 

MUAPTs each with its own 'firing rate' and this response is called a 

myoelectric signal (MES). Both the firing rate and the recruitment processes 

being random in nature, therefore, the myoelectric signal ensues to be a 

stochastic process. To illustrate the above, use is made of a simple model 

proposed by De Luca [11] and which is schematically illustrated in Figure 1-1. 

The MES is synthesised by linearly summing the MUAPTs as they exist 

when they are detected by the electrode. In the figure, the integer p represents 

the total number of MUAPTs which contribute to the potential field at the 

recording site. Each of the MUAPTs are modelled by considering them to be 

the output of a transfer function h(t) with a model of a MUAP (in this case, 

that proposed by De Luca), with the input being Dirac delta impulse trains 



4 

N 

S 

L 

O 
R 

7.
Dirac Delta Motor Trains 

Impulse Trains Unit 
(ft motpneuron Action 

firing) Potentials 

h (t) 

h2(t) 

hi(t) 

m(t,F) 

Observed 
EMG 

Signal 

hp(t) 

Physiological 
G 

SEigMnal 

mp(t,F) 

Detection Site 

r(t) 

n(t) 

Electrode 
a 

Recordnding 
Equipment 

 S-1 

System 
Noise 

A 
N 

0 
M 
Y 

H 

S 

o
I 

0 
G 

M 

L 

D 
E 
L 

N 

U 

N 

S 

o
NI

Figure 1-1: Schematic Illustration of the Physiological and Electrical 
Correlates of the Myoelectric Signal 
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representing the nerve axonal impulses travelling down from the motoneurons. 

The observed MES could be that using a needle electrode or a surface electrode. 

The noise introduced during detection and the filtering properties of the 

electrode set-up, and possibly other instrumentation are shown as time 

dependent functions n(t) and 

signal m(t,F) both have time 

Though the indwelling needle 

r(t). The real MES mp(t,F) and the observed 

dependence as well as force dependence too [11]. 

electrodes could detect the individual MUAPTs 

upon weak muscle contractions, it is an invasive method of obtaining 

information. A non-invasive method such as surface electrodes is therefore 

preferable and is the one used in this study. 

During the 1960s, the widespread use of computers in communication 

systems analysis and signal processing brought into light the advantages of using 

what was called 'power spectral analysis', related very much to Fourier analysis 

which has been widely studied for over two centuries. The enormous amount of 

calculations required for computing signal spectra had deterred researchers from 

approaching it as a means for obtaining information from random signals. Thus 

the development of low cost, faster computers and computing techniques for 

signal processing helped bring about such a move, and very soon, spectral 

analysis became a widely used and researched tool for the analysis of 

myoelectric signals as well. 
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1.3. Objectives of the Study 

In this study, power spectral analysis was decided to be used in analysing 

non-fatiguing isotonic contractions of the right biceps brachii m. The factors 

studied in relation to this were the Applied Torque, the Angular Velocity of 

Contraction and the Muscle Length itself (in terms of the Joint Angle, which is 

the angle between the upper arm and the forearm), since it undergoes changes 

during the contraction. Two parameters associated with a power spectrum, 

namely, the Median Frequency and the Total Spectral Power, were used as 

indicators for any spectral changes that may occur due to either or all of the 

above factors. To the knowledge of the author, no complete study has been 

made so far along the lines described. The prime purpose of this study was 

intended to get a better understanding of the relationships that may exist 

between the underlying physiological processes and the emanated myoelectric 

signal. Also, it could have potential clinical application in diagnosing muscular 

dysfunction. Another significant application could be found in the fact that 

noise-immune frequency-control methods are sought for in the presently 

amplitude-controlled prosthetic devices. In this context, the median frequency 

and/or the spectral power could be used as control parameters individually or 

augmenting the present mode of amplitude control. 

1.4. Outline of the Thesis 

With the objectives of the study as stated above, chapter 2 is therefore, 

devoted to explaining spectral analysis and its usefulness in the analysis of 

myoelectic signals, compared to amplitude analysis methods used so far. 
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The experimental aspects of this study viz., the apparatus used, the 

analytical tools employed and the experimental procedure itself, are detailed in 

Chapter 3. Reasons for choosing the said factors and spectral parameters are 

also put forth. 

Chapter 4 shows the results of all the analyses. These include the power 

spectral analyses and several statistical analyses involved in getting a clearer 

picture of the results obtained. 

The discussion of the results of the analyses is dealt with in Chapter 5. 

Correlating the obtained results with those available from related work is also 

done. 

Chapter 6 carries the conclusions of the work detailed in this thesis. A few 

speculations as to the important results of the work are put forth. 

Appendices A and B detail the mathematical aspects of power spectral 

analysis and the specific computer procedures employed to do the same. 

Appendix C carries the raw tabulated data as obtained in the several 

experiments conducted in this work. 



Chapter 2 

SPECTRAL ANALYSIS 

2.1. Introduction 

The power spectrum is perhaps the single most descriptive characteristic of 

a random process of which the myoelectric signal is a typical example. Power 

spectral estimation or analysis of MES has had a growing importance during the 

past two decades, since it proved to be a method of obtaining more information 

from this noise-like signal than time domain analysis could provide. 

Spectral analysis can be better understood to be the decomposition of a 

signal into sinusoids of different frequencies or into travelling waves of different 

length in the case of propogating action potentials. The strength of these 

components or potentials as a function of the frequency is called the spectrum 

of the signal. The strength may be in terms of amplitude which would be to 

the same scale as of the signal or it may be in terms of power, which is on a 

amplitude-squared scale. The latter is specifically called the power spectrum 

and being of more relevance to this study, it would henceforth be used 

synonymously with the term 'spectrum' or 'spectral analysis'. 

There are two important aspects to the technique of spectral analysis. 

One is that it is a means of detecting hidden periodicities in the signal, be it 
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deterministic or probabilistic. The other aspect is its ability to characterise 

random signals which in the time domain, could only be characterised in 

probability terms. That is, a probability distribution is all that could 

characterise the signal and this was not sufficiently informative. The power 

spectrum is thus an important source of information applicable to a variety of 

signals: random as well as deterministic, either periodic or aperiodic ones. 

2.2. Time Domain Analysis of MES 

If a physical phenomenon of interest is random, then each time history 

record x(t) of that phenomenon represents a unique set of circumstances which 

is not likely to be repeated in other independent measurements of that same 

phenomenon. Hence, to completely define all properties of the phenomenon, it is 

necessary to conceptually think in terms of all the time history measurements 

(x(t)) that might have been made. In general, an infinite number of such 

conceptual measurements is required to fully describe the phenomenon. It 

follows that the instantaneous amplitude of the phenomenon at a specific time ti

in the future or from a different experiment has to be defined in probabilistic 

terms. Two probability measures used to do so are the Probability Distribution 

Function and the Probability Density Function. The probability distribution 

function P(x) is defined as the probability of the event that the observed 

random variable, say 'X', is less than or equal to an allowed value 'x'. That is, 

P(x)=Prob[X< x ]. Although the distribution function is a complete description 

of the probability model for a single random variable, it is not the most 

convenient form for many calculations of interest. For such cases, the probability 

density function p(x), which is the derivative of the probability distribution 
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function p(x)=d1dx[P(x)] is used. For non-stationary random processes, both 

the functions vary as time t1 varies. On the other hand, both remain constant, 

with time, for stationary processes. The relevance of these two functions lies in 

the fact that random data can be effectively characterised by using them. That 

is, the central tendency (Mean) and the dispersion (Variance), gathered from the 

probability distribution and the density functions characterise the random 

process in the time domain. Indeed, time domain analysis of MES has been 

widely done and some of the results so obtained are reviewed below. 

Milner-Brown et al. [33] using the average rectified value of the surface 

MES in isometric contractions, found that a linear relationship existed between 

it and and the force applied. Hagberg et al. [14] using the rectified and filtered 

MES found a correspondingly linear relationship between the force and the 

amplitude during both isometric and isotonic contractions. 

Integration of the MES has been the most widely studied and abused 

procedure [1]. The output from a linear envelope detector following rectification 

of the MES had been wrongly considered as an integration operation and the 

output was termed as `IEMG' (Integrated ElectroMyoGram). Reasons quoted 

by De Luca [1] as to such a usage are its historic precedence and also the 

observation that for a sufficiently long integration time, the integrated rectified 

value of the MES provides a smoothly varying measure of the signal as a 

function of time. 

Bigland et al. [4] had stated that a linear relationship existed between the 
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integrated MES amplitude and force in different types of contractions. This has 

been confirmed by Komi [20], Bouisset et al. [6], Moritani [35] and others. 

Other mechanical parameters such as velocity of contraction, acceleration 

and work output have also been studied but not so widely as for force as listed 

above. For example, Bigland and Lippold [4] showed that the IEMG bore a 

direct linear relationship to the angular velocity of movement under conditions 

of constant load. Komi [20] and Danoff [10] also found similar relationships. 

Studying the triceps, Scherrer et al. [41], found a linear correlation between 

IEMG and mechanical work. Patla et al. [38] developed a model relating a 

muscle's mechanical output to the MES upon the basic assumption that a 

constant quantum of energy (chemical) is released per MU firing. They suggest, 

on the basis of their model being successful in corroborating the experimental 

results obtained from literature, that the MES is directly related to the muscle 

mechanical power via a non-linear differential equation in terms of the velocity 

of contraction. 

Miwa and Matoba [34] found that the amplitude of the MES varied as the 

joint angle of the biceps brachii changed. At 160 deg joint angle, they observed 

maximum myoelectric activity while at 90 degrees it was almost 

From the foregoing paragraphs, one may observe that quite a bit of 

information has been gleaned from the noise-like myoelectric signal. But there 

was always felt a need to obtain more information than could be gathered from 

its amplitude aspect alone. Power spectral analysis which had been effectively 
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used in analysing random phenomena in engineering processes was therefore 

resorted to. An important advantage of using spectral analysis stems from the 

fact that a wide range of engineering applications of random data analysis 

centers around the determination of linear relationships between two or more 

sets of data. These linear relationships are possible to be extracted in terms of 

spectral density functions. For example, it is possible to correlate the spectra 

related to the input nerve impulse trains with that of the output MES using 

models such as the one detailed in the previous chapter. Thus, the usage of 

power spectral analysis is found favourable for a better understanding of the 

MES and its physiological counterparts. 

2.3. Spectral Analysis of MES 

Once the need for spectral analysis of MES was felt, there have been 

many rigorous methods, mathematical and physical, developed for the analysis 

and several experiments have been conducted to formulate and prove some of 

the important mathematico-physical models of the MES and its underlying 

physiological processes. From these researches, much knowledge has been gained 

which has since then been confirmed. A review of the literature for some of 

the important observations made regarding the MES and its related power 

spectra follows in the forthcoming paragraphs. 

To study or monitor the spectral changes, however, requires some 

parameters or measures for detecting and to quantify them. Some of the well-

defined measures are the mean power frequency, median frequency, bandwidth, 

spectral power or energy, and peak power frequency. These terms are defined 
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in appendix A. Using one or more of these parameters, the following 

observations have been made about the MES. 

McLeod et al. [31] noted that the power spectra of the MES detected from 

intramuscular electrodes generally has a bandwidth ranging from 0 to 1 kHz 

while using surface electrodes the bandwidth was just 0 to 500 Hz. 

Zipp [44] studying different electrode configurations (such as monopolar or 

bipolar), noted that the inter-electrode spacing in bipolar configuration is 

inversely proportional to the spectral bandwidth. Shifting of the electrodes 

around the circumference of the limb however, did not alter the bandwidth. 

Lindstrom [30] using computer simulated action potentials noted that the 

envelope of the spectrum corresponding to a single MUAP was preserved with a 

spectrum corresponding to a summation of randomly selected MUAPs. 

Le Fever and De Luca [27], studying the contribution of individual MUs to 

the ME power spectra, showed that, in the frequency range of DC to 40 H 

the power spectrum of the individual MUAPT is affected primarily by the 

interpulse intervals (IPI) statistics. A significant peak was observed at a 

frequency corresponding to the firing rate and progressively lesser peaks at 

harmonics of the firing rate. Beyond 40 Hz, they observed that the power 

spectrum is essentially determined by the shape of the MUAP. 

A similar observation was made by Lago and Jones [25] who suggested 
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that from the analysis of the low frequency region of the MES spectrum it is 

possible to extract some information on the MU firing properties. This 

information, they said was the average discharge rate of the population of active 

units, and the dispersion of those discharge rates. 

In confirmation with both of the above, Boxtel and Schomaker [7] upon 

studying non-fatiguing, sub-maximal, static contractions of the facial muscles, 

noticed a distinct peak in the power spectral region below 40 Hz. They showed 

it to be a genuine MES activity and not a motion artifact. An increase of 

contraction strength resulted in a shift of the peak to higher frequencies and a 

decrease in its amplitude relative to the estimates above 40 Hz. According to 

their mathematical model, this peak indicates the dominant firing rate of the 

sampled MUs and which is that of the first recruited low-threshold MUs. 

Differences in firing rate statistics, they speculate, might cause its non-

appearance in the spectra of larger muscles such as those of the limbs. 

Sato [40] having studied the surface MES of different muscles, observed 

that, the spectral patterns differ from one muscle to another. For example, the 

upper limb muscles displayed a narrower bandwidth (0 to 160 Hz) compared to 

those from the lower limb and abdominal muscles (0 to >300 Hz). He 

discounts the hypothesis that differences in MU activities, such as variations in 

amplitude, duration, and discharge rate, explain the different MES spectra in 

different muscles systematically. He suggests that many more studies are 

required to look into the factors affecting the MES power spectra before any 

firm conclusions could be drawn. He also studied the effect of right or left-

handedness and found no variation in the power spectra. 
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Lindstrom et al. [29] attempted an interpretation of the MES power 

spectrum based on a mathematical model and then analysed different parameters 

which influence the spectrum. Some of the observations they put forth are: 

- there exists a distance-dependent, low-pass filtering effect of the tissue 

intervening between the electrodes and the active MUs. For example, a distance 

of only a millimeter from an active fiber causes an attenuation of frequencies 

greater than 1.5 kHz by nearly 30 dB. 

- MU size cause differences in the low and high frequency content of the 

spectra. Small muscles, which generally have fewer fibers per MU, will show 

power spectra containing relatively higher amount of high frequency activity 

than will muscles with larger MUs. This is because, as a greater number of 

MUs combine, the greater is the chance of high frequency waves cancelling one 

another while the low frequency waves summate. An estimate of the number of 

MU fibres could thus be formed by observing the MUAP's power spectrum. 

- the bipolar electrode configuration (when lined along the direction of the 

fibres) introduced so-called 'dips' in the power spectrum at those frequencies 

which correspond to the inter-electrode distance being a multiple of the 

wavelengths. The positions of these dips are uniquely determined by the 

electrode size and the propogation velocity of the MUAPs. Therefore, they 

proved to be an effective means of computing the conduction velocity in the 

MU fibres. The conduction velocity, as one may note from the forthcoming 

observations is closely associated with the muscle's internal conditions such as 

its temperature, acidic level, and state of fatigue. 
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The effectiveness of the use of MES in the assessment of neuromuscular 

disorders has often been investigated. Frequency analysis has yielded consistent 

observations regarding spectral changes in both neuropathy and myopathy. 

Larsson [26] studied neuropathies induced by lesions of the peripheral motor 

neurons. His results suggested that the spectrum shifted to lower frequencies in 

neuropathies with a clinical history of at least 6 months. This was consistent 

with the observation made of the MUAPs to have longer time durations in such 

cases. He suggests that, since a characteristic frequency (median frequency, for 

example) is sensitive to the 'average' shape of the MUAPs, therefore, it could 

be useful in following the development of the disorder. In the case of 

myopathy, an opposite effect on the shape of the MUAPs was noted by 

Kugelberg [22] who found that they are generally shorter in duration and more 

often polyphasic. This result was confirmed in the frequency domain by Kopec 

and Hausman [21] who noted that the spectra shifted to higher frequencies in 

such cases. 

Environmental factors (internal and external) such as temperature, 

ischemia, and blood lactate levels have also been observed to cause significant 

spectral changes. For example, Merletti et al. (32] showed that the median 

frequency decreased upon occlusion by external compression of the blood vessel 

in the contracting muscle. Their results are consistent with the fact, they state, 

that when the blood is occluded, acidic by-products accumulate in the 

environment of the muscle fiber membrane and they decrease the conduction 

velocity of the fiber. Also, an increase in muscle temperature from 100 to 400C 

was found to cause an increase in the median frequency by Petrofsky and 
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Lind [39]. Merletti et al. [32] found the median frequency to decrease linearly 

with decreasing muscle temperature. Both groups attribute the cause to the 

conduction velocity being directly related to muscle temperature. 

An important and most studied muscle characteristic is fatigue. Since the 

concept of fatigue is a very broad one and hence ambiguous if stated just as 

fatigue, there has been developed a specific term localised muscular fatigue 

relevant to the study of the MES. This term refers to that state of the muscle 

which is induced by a sustained muscular contraction and which is associated 

with external manifestations such as the inability to maintain a desired force 

output, muscular tremor and localised pain [1]. 

In the study of localised fatigue, it has been predominantly observed that 

the power spectrum shifts significantly towards the lower frequencies in a variety 

of muscles throughout the human body. For example, Kadefors et al. [18] 

found that the low frequency components of the ME power spectra, in the 

biceps brachii, increased while the higher frequency components decreased as 

fatigue developed. At the same time there was noted a significant increase in 

the MES amplitude. Lindstrom et al. [28] and Kwatny et al. [24] among a host 

of others, have noted similar changes. It has been consistently observed that the 

spectral shift to the lower frequencies is due to a decrease in muscle fiber 

conduction velocity which in turn was caused by an accumulation of acidic by-

products. Motor unit synchronization and recruitment of larger MUs along with 

a decrease in conduction velocity as fatigue developed have been noted as 

significant factors in the amplitude increase and the spectral shift by Naeiji and 

Zorn [37]. 
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During a sustained muscular contraction, both the mean and the median 

frequencies were noted to decrease as a function of time. More than 50% 

decrease in value from the beginning to the end of the sustained contraction has 

been noted at around 50% MVC by Clamann and Broecker [9] and was 

confirmed by Tesch and Karlson [42] who found that maximal lactate 

concentration was found in muscles which contracted isometrically at 50% MVC 

to exhaustion. This phenomenon has again been attributed by all of these 

researchers as due to a decrease in conduction velocity. Indeed the currently 

known factors that determine directly or influence the waveform of the MUAPs 

and hence the power spectrum are outlined below: 

1. Tissue filtering caused by differences in muscle fiber and electrode 
locations. 

2. Conduction velocity of muscle fibers which is monotonically related to 
the fiber diameter and is greatly affected by the intramuscular pH. 
The latter is dependent upon the functional capacity of the 
vascularization in the muscle and the force level of contraction. 

Apart from the study of the basic characteristics of the ME power 

spectrum briefed above, the relations that exist between the strength of 

muscular activity and the associated myoelectric power spectra have also been 

looked into. There have been various studies concerning force or tension upon 

the muscle. These concern static muscular contractions at both low levels and 

high levels of tension. 

Hagberg and Ericson [15] studied the isometric contractions at 5-80% MVC 

of the biceps brachii, brachialis and brachioradialis. They found that the mean 

power frequency increased with contraction level up to 30% MVC and then 
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flattened out, for all the three muscles. They attribute the observed shift at low 

levels to tissue filtering effect. That is, as contraction level increased, large MUs 

closer to the surface are recruited, the electric potential from these muscle fibers 

suffer less high frequency attenuation through the overlying tissue and thus the 

power spectrum shifts to higher frequencies. The flatter aspect of the 

relationship is, they state, possibly caused by fatigue due to insufficient rests 

given to the subjects. 

Gander and Hudgins [12] studying non-fatiguing static contractions of the 

biceps brachii confirmed those results. They also show that a peak appearing in 

the low frequency region (below 40 Hz) shifted to higher frequencies with an 

increase in load. They have noted, therefore, that a combination of recruitment 

and rate coding is responsible for the increase in median frequency. Their 

observations are consistent with those of Gydikov and Kosarov [13] and 

Blinowska et al. [5]. 

However, Sato [40] studying the effect of contraction level on the MES and 

its power spectra found no systematic variation in their pattern. 

Consistent observations have been made by both Inbar et al. [17] and 

Bazzy et al. [2], concerning muscle length changes causing shifts in the spectrum 

towards the higher frequencies. The former group computed the median 

frequencies at three joint angles (45,90 and 135 degrees) of the biceps brachii 

and extensor digitorum and they found it to decrease with the increase in joint 

angle (and correspondingly the muscle length). They reason that the change in 
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muscle shape with flexion of the biceps may cause the shift while it was less 

likely in the extensor digitorum. Bazzy et al., also, studied the relationship 

between changing elbow angle and the ME power spectra of the biceps brachii, 

during sub-maximal non-fatiguing isometric contractions. Two joint angles (45 

and 135 degrees) were held against a constant load of 3 kgs. They found a 

decrease in mean power frequency with the increase in joint angle. A change in 

the electrode position relative to the underlying muscle or the activated motor 

units was stated to be a cause for such an effect. 

Myoelectric activity during dynamic contractions of a muscle has been 

studied almost exclusively in the time domain. A briefing about some of the 

results pertaining to the same was done in the previous section. However, in the 

frequency domain, very little work has dwelled upon this important area. Muro 

et al. [36] studying non-fatiguing isotonic contractions at different loads ranging 

from 0.25 to 3.0 kgs, at an angular velocity of 900 per second, observed that 

the mean power frequency progressively increased (total increase around 8 Hz) 

with load. Actually, they conducted the experiments with different groups 

(healthy, neurogenic and myogenic) to obtain clinically useful information 

regarding neuromuscular changes affecting the surface MES and its power 

spectrum. Besides this work, there has been no other, to the author's knowledge, 

in the literature, pertaining to power spectral analysis of dynamic contractions. 
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2.4. Summary 

In the field of engineering, power spectral analysis has been effectively used 

to characterise random signals. Therefore, analysis of the power spectra of the 

myoelectric signal may be a reasonable starting point for an exploration of its 

properties as well. Indeed, much information is currently available relating 

spectral parameters to changes in the muscle's internal and external 

environments. Muscle pathology has been studied with reference to differences 

between normal and pathology related MES spectra. As regards muscular 

activity, static contractions have been widely studied and many observations 

have been repeatedly confirmed. But, the dynamic contraction of a muscle has 

not been equally well studied. Much remains to be known in relating muscle 

movement to spectral changes. Hence, as stated in the previous chapter, the 

study relating to this thesis was undertaken to try fill up the "gap". In the 

next chapter, the experimental aspects of the study as regards the apparatuses 

used, the experimental methodology and the processing of the data are discussed 

in detail. 
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Chapter 3 

MATERIALS AND METHODS 

3.1. Selection of Muscle 

Amongst the several muscles of the human body, the biceps brachii is the 

most studied with reference to kinesiological studies. Much information of more 

or less a priori character is available about the muscle as regards its anatomical 

and physiological aspects. Also, it is one of the few easily accessible muscles for 

use with surface electrodes. As such, it was chosen as the test muscle for this 

study as well. 

3.2. Choice of Spectral Parameters 

As was mentioned in the previous chapter, there have been a few very 

widely used spectral parameters for monitoring spectral changes such as the 

mean power frequency, median frequency, peak power frequency and ratios of 

powers in spectral bands. Amongst these the peak power frequency is the least 

reliable since it is highly susceptible to statistical variations in power spectral 

estimation. The ratio parameter is again a matter of choice since the spectral 

bands are arbitrarily chosen, and it would be difficult to make any objective 

comparisons with other studies in the literature. However, looking at the power 

spectrum one can note that there can be two variations possible. There could be 

a shift in the spectrum either towards the lower frequencies or to the higher 
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frequencies or there could occur an overall magnitude increase or decrease. Thus, 

either the mean power frequency or the median frequency would serve to 

monitor the first case; while the spectral power (equal to the area beneath the 

power spectral curve) is the ideal parameter for the second and hence was 

readily chosen. The median frequency was chosen over the mean power 

frequency because of its being relatively less sensitive to noise than the mean 

frequency, its ease of computation and moreover, it has been shown by Inbar et 

al. [17] that the two are related to each other through a constant multiplier. 

3.3. Experimental Protocol 

The experimental protocol of this work consisted of two studies. The first 

study dealt with spectral analysis of signals obtained during non-fatiguing static 

contractions at different joint angles. Two loads were used so as to serve two 

purposes. Firstly, it could enable confirmation of results available in literature of 

the median frequency varying at any joint angle with a change in loading. 

Secondly, any changes in the median frequency and/or spectral power with 

changes in joint angle itself could be noted and thence confirmed using two 

different loads. 

The second study pertained to non-fatiguing, isotonic, constant velocity 

contractions. Changes in the applied torque or the angular velocity of 

contraction, causing any spectral changes which could be noted by the median 

frequency and/or the spectral power, were to be studied. The details of the 

protocol so defined are put forth in the subsequent sections. 
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3.4. Experimental Details 

3.4.1. Apparatus Used 

The skeleton at all its joints has lever arrangements with the muscles 

associated with those joints. During a voluntary contraction of a muscle acting 

across its associated joint, it is important to know not only the external force 

applied but also its point of application. That is, the applied torque has to be 

known. Since in this study various loads were to be moved at various velocities, 

the points of application of these loads must be the same for comparisons to be 

made. A distance of 250 mm distal to the elbow joint was found convenient 

and therefore was selected as the point of application of the four loads selected 

(see next section). 

The applied torque, however, should be the same during the course of the 

forearm movement for comparison purposes again. This necessitates a wheel-like 

arrangement exerting a force at a fixed angle at the same point of application, 

throughout the course of the movement of the forearm, and with the elbow 

joint coinciding with the axis of the wheel. This indeed was the arrangement 

used in this study. After due considerations of the biomechanical aspects of the 

upper limb, a mechanical forearm loading apparatus, shown in the photograph 

in Figure 3-1 was designed and fabricated in the College of Engineering 

Workshop. 

Supports shown at the wrist and at the upper arm levels prevent 

undesirable motion at either of them. The apparatus also had a provision for 
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Figure 3-1: The Forearm Loading Apparatus used for the 
experiments 

coupling a potentiometer to the shaft of the wheel so as to monitor, with the 

help of an osciiloscope, the movement the position of the wheel and hence of 

the forearm. 
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3.4.2. Test Parameters Used 

For the first study, there were two loads to be held as mentioned earlier. 

In the first case• a load of 19.6N was to be held at eight joint positions (165 to 

60 degrees with intervals of 15 degrees). In the other, a load of 29.4N was to 

be held at three joint angles (150, 90 and 60 degs). 

There were four loads to be associated with four different velocities for the 

second study. In all, therefore, sixteen test conditions were subjected upon each 

volunteer. The choice of the torques (1.23, 2.45, 3.68 and 7.35 Nm) and of the 

velocities (40, 80, 120, 160 deg/s) were based on the need for a sufficiently wide 

range of parameter values to be imposed and upon the comfort of the subject 

too. The latter refers to the fact that since we were studying non-fatiguing 

contractions, we had to have conditions which will not induce, in short time 

durations, localised muscle fatigue to set in. 

There were five males, (ages 25-27 yrs., average height 1.65 m) as subjects 

in the first study, and the second study also had five males, (ages 26-28 yrs., 

average height 1.67 m). In both the cases, the subjects had no neuromuscular 

pathologies in their clinical histories. Written consents were obtained from all of 

these volunteers. 
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3.4.3. Test Procedure 

In the first study, each subject was comfortably seated with his right arm 

secured at the two supports of the apparatus. He was asked to maintain the 

different joint positions for 10 seconds each. To avoid fatigue, sufficient rests 

ranging from 5 to 10 minutes were allowed in between two positions. Visual 

feedback of his forearm position with comparison to a reference line on the 

oscilloscope screen helped the subject maintain a particular joint position. The 

experiments were repeated once with a different sequence of positions 

maintained. 

For the second study, the subject was secured to the apparatus as in the 

first case, and with a load (randomly selected) imposed, the subject then was to 

train himself moving the load at a particular angular velocity. Visual feedback 

of his forearm movement, as stated above, helped the subject maintain constant 

velocity movements. About 8 to 10 repetitions were done after the initial 

training period was completed. Rests ranging from 3 to 5 minutes were given 

between repetitions to avoid fatigue. The whole experiment was later repeated 

once. On the average two different loads or velocities were applied in any 

single session. 

3.4.4. MES Detection 

For comfortable, long term recording of the MES, non-invasive means of 

recording such as by surface electrodes must be employed. Although problems 

such as cross-talk from other muscles and electrode movement can cause low 

frequency noise to exist, these are minimised in our case with: the selection of 
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the biceps brachii as our test muscle, the type of forearm movement involved 

(concentric motion of a supinated forearm) and the filtering scheme incorporated 

in the amplifier, which is detailed in the next section. 

Two Ag/AgC1 electrodes were paste coupled to the skin across the long 

axis of the muscle at a region midway between the cubital fossa and midpoint 

of upper arm (where the innervation zone of the biceps brachii is approximately 

located). The reason for doing so was obtained by perusing the results of 

Basmajian and De Luca [1] wherein they state that the region midway between 

the point of insertion and the innervation zone of the muscle yields a maximum 

level of MES activity. Before attaching the electrodes, the skin was abraded 

very well to reduce the skin-electrode impedance values to less than 8 kfl. The 

inter-electrode distance was 20mm and the overall position was maintained the 

same for a subject during all of his experimental sessions. It is important that 

interelectrode spacing be as consistent as possible to reduce signal bandwidth 

variations as noted previously [44]. The ground [reference] electrode was placed 

over the acromion of the right shoulder after abrading the skin at that region. 

3.5. Analog Signal Conditioning 

The MES detected as above, had a maximum amplitude of 4 mV. So a 

high gain bio-instrumentation amplifier (Nihon Kohden polygraph) was used for 

amplification to a range of ± 5 Volts. After amplification, a bandpass filtering 

between 5 and 450 Hz was done to eliminate low frequency movement noise as 

well as to satisfy the Nyquist criterion. That is, the maximum bandwidth of the 

signal being sampled must be less than half the sampling frequency which in 
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this case was 1 kHz. The differential input impedance of 10 M1 with a CMRR 

of 80 dB served to keep distortion of the input MES to a minimum. The 

amplified signal to be processed using the computer had to be stored and 

faithfully reproduced off-line. For this purpose, the Tandberg Instrumentation 

tape recorder featuring frequency modulation was used with a tape speed of 3.75 

inch/s and a signal to noise ratio of 60 dB. 

3.6. Data Analysis 

The data in analog form stored in the recorder had to be converted into 

digital form before processing it in the computer. For this purpose, a 12 bit 

analog to digital converter was used. However, the conversion and subsequent 

processing and analysis was performed using a software package called the 

`Interactive Laboratory System' AS] and available on the VAX 11/780, which 

was the mainframe used in this study. 

Thus, through ILS, the analog data stored in the FM tape recorder was 

digitised at a rate of 1000 samples/second and stored in the ILS domain as 

record files which list the digitised data alongside their sampling instants. For 

data manipulation during processing or analysis, each such record file was 

subdivided into several frames, each frame containing a few hundred samples. 

For the second study, only those data records which corresponded to the 

movement of the forearm between the angles of 120 and 80 degrees were 

considered for analysis. The reason for doing so, was that since this study was 

to effect constant velocity conditions, those segments of the signal which 

corresponded to acceleration or decelaration were not to be considered. 
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3.6.1. Pre-Analysis 

Usage of power spectral analysis for MES requires it to be at least weakly 

stationary; that is, the mean and the autocorrelation must both be time-

invariant. To test for weak stationarity, two non-parametric (i.e., statistically 

distribution independent) statistical tests called the 'RUNS' and 'TRENDS' tests 

detailed by Bendat and Piersol [3] were used. These tests are based on the 

notion that the statistical properties (the mean and the variance) computed by 

time averaging over each of a sequence of short segments into which a sample 

time history record is divided, will not vary significantly from one segment to 

another if the data is stationary. The RUNS test is valid for testing for long 

term variation while the TRENDS test is for short term variations. 

Nearly all (182 out of 190) of the data records proved to be weakly 

stationary. Hence, the power spectral analysis of the stationary records could 

be performed. The next section details the estimation procedures employed. 

3.6.2. Power Spectral Estimation 

Of the various methods of power spectral analysis detailed in appendix A, 

two time tested and proven ways of spectral estimation for both short and long 

time records were chosen. These were the Blackman-Tukey (B-T) method and 

the Welch's method. Initially, only the B-T approach was used for the first 

study. Subsequently, the Welch's method was applied to all of the records of 

the second study along with a re-analysis of the spectral estimation for the first 

study by the same method. The re-analysis was done to compare the results 

obtained by the two methods. Incidentally, hardly any difference existed (by 
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way of either the median frequency or the spectral power) between the spectra 

so estimated. 

In the B-T method, as stated in the appendix, the maximum number of 

lags was made to be 1/20th of the number of values in the record file. 

Specifically, each of the data records being 10 seconds long, the autocorrelation 

was computed for 500 milli-seconds. Upon autocorrelation and subsequent fast 

Fourier transformation with a Hamming window, the power spectra were 

obtained for each of the records. 

For the Welch's method, each of the segments (the size of the segment 

depending upon the width of the data) into which a record file was divided 

into, had its power spectrum estimated by squaring the FFT values of the 

Hamming windowed samples and by averaging the power spectra in the manner 

detailed in the appendix to yield the final spectrum. For the data records 

pertaining to the first study (10 secs long) the number of segments used were 

20. In the second study, the number of segments were 8 to 10, the segment size 

ranging from 1 second for the 40, deg/sec case to 250 milli-seconds for the 160 

deg/sec case. Both the methods discussed here are listed as Command 

Procedures (on the VAX 11/780) in appendix B. 

Once the power spectra were obtained, their median frequencies and 

spectral powers were computed. This was done as follows. The power spectra 

were integrated between 0 and 500 Hz and the integrated value so obtained 

yielded the spectral power. The frequency which corresponded to an integrated 
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value equal to half of the total gave the median frequency. Thus the median 

frequencies and the spectral powers were computed and tabulated for later 

analysis. 

3.7. Review of the Assumptions Made 

Several assumptions have been implicitly made in the experimental protocol 

detailed above. The significant ones amongst them are enumerated below. 

The contribution of the torque due to the weight of the forearm segment 

to the external applied torque is assumed to be constant, in both the studies, 

for any single subject. Since we are interested in noting the relative spectral 

changes with the test parameters, this assumption is, therefore, plausible. 

Though, in the flexing of the supinated forearm, the biceps brachii takes 

the major load, the other two flexor muscles, viz., the brachialis and the 

brachioradialis, also share some of the load. However, the detected surface MES 

is assumed to be manifested from the biceps brachii alone. The validity of this 

assumption is given by Patla et al. [38]. 

Lastly, changes in the velocity or the position of the forearm segment, 

which are what are actually measurable using the experimental scheme 

employed, are assumed proportional to that of the test muscle. This is a valid 

assumption considering the specific experimental objectives and constraints 

pertaining to these two test variables. 
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3.8. Summary 

The experimental protocol, the choices of the various aspects of it, like the 

test parameters, the test muscle, the apparatus etc., all have been detailed in 

this chapter. Also some of the significant assumptions that were implicitly made 

in this protocol have been briefed. The power spectral estimation procedures 

which were chosen in this work have been discussed in terms of the signal 

processing software (ILS) employed for implementing the same. 

In short, this chapter details the data collection and the data processing 

aspects of the work reported in this thesis. Analysis of the results so obtained 

after the processing, along with a discussion of the same, follows in the 

forthcoming chapters. 
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Chapter 4 

RESULTS 

The experimental aspects of the two studies reported in this work have 

been discussed in detail in the previous chapter. The median frequencies and 

the spectral powers computed with reference to applied torque, the angular 

velocity of contraction and change in joint angle (muscle length) as obtained for 

all of the subjects are recorded in tables in appendix C. The statistical analysis 

of those data are detailed with the aid of figures in the following sections. 

4.1. Spectral Changes with Joint Angle 

Herein is the analysis of the results obtained in the first study which, as 

mentioned before, consists of two cases (for the two loads, 19.6 and 29.4 N). 

The typical power spectra obtained, in one of the cases (29.4 N) for two 

different joint angles are illustrated in Figure 4-1. The magnitudes are in a 

normalised scale (to the maximum value obtained) to aid comparison. A 

frequency shift of the spectra as well as a magnitude change are readily 

observable. 

The spectral power variation with joint angle for the first case is 

illustrated in Figure 4-2 below. The term average normalised power needs some 

explanation here. For any particular subject, the set of spectral power values 

obtained are normalised to the maximum amongst them to get the pattern of 
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variation of the test parameter for that subject. Similarly, such sets of 

normalised values are obtained for the other subjects too and then averaged to 

arrive at the average normalised power values. The spectral power is seen to 

have a concave depression to the top, the minimum being around 90 0 joint 

angle. Studying the lever arrangement of the muscle with the forearm and 

upperarm would make us expect that a greater muscular effort (and hence a 

greater electrical activity) would be required to lift a load placed at the wrist 

level at angles other than 90 . The results obtained indeed confirms our 

expectation. 

The median frequency values (again the average across the five subjects) 

are shown varying with joint angle in the Figure 4-3 below. The eight joint 

angles spaced only 15 degrees apart from near full extension (165 0 ) to 

approximately full flexion (60 0 ) are sufficient enough to justify interpolation of 

the results in between the tested angles. 

Case 2 of the first study which involved three joint angles (150 , 90 
0 

and 

60 0 ) tested with five subjects for a load of 29.4 N was performed for 

confirmation of the results obtained in the previous case. Further explanation as 

regards this comparison is provided in the next chapter. However, the 

magnitudes of the average median frequency across the five sujbects for the 

three joint angles are depicted along with those obtained for the same angles in 

the previous case, for comparison purposes, in Figure 4-4 below. 
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4.2. Spectral Changes with Applied Torque and Velocity 

Studies on static contractions had revealed, as mentioned earlier, that the 

median frequency varies as a function of torque. It was therefore hypothesised, 

to start with, that not only the applied torque but also the angular velocity of 

contraction would cause changes in the median frequency. 

were set up, therefore, as constant velocity contractions with 

torque and the experimental sessions repeated with different 

The experiments 

a variable applied 

velocities. 

doing that, the spectral powers were to be correlated with the changes 

Before 

in both 

the said parameters, so that the expected linear correspondence (the mechanical 

power directly proportional to the electrical output) could be checked. As 

mentioned in chapter 3, the data analysed were of the contraction range of joint 

angle 120 to 80 degrees. The results for each of the subjects and for all of the 

torque-velocity combinations are recorded in Tables C-5 to C-14 in appendix 

C. Typical power spectra obtained for variations with torque with angular 

velocity constant and vice versa are illustrated in Figures 4-5 and 4-6. Figures 

4-7 and 4-8 both illustrate the expected linear correspondence between the 

spectral power (average normalised power) and the torque and the velocity of 

contraction. 

The average median frequency across the five subjects varies with the 

applied torque and the angular velocity of contraction as shown in Figure 4-9. 

Since the experiments conducted in the second study involved both the 

torque and velocity parameters intertwined, it was felt appropriate to analyse 

both their effects simultaneously upon the median frequency. Thus, a stepwise 
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regression analysis was performed with the median frequency as the response 

variable and the torque, the angular velocity and their product (torque times 

the velocity) as the independent variables. The repetitions of the experiments 

were also taken into consideration as was the inter-subject variability by 

incorporating dummy variables into the analysis. The stepwise regression analysis 

accepted only the torque and the velocity variables as causing any significant 

changes in the response variable. The regression analysis yielded the following 

equations for the five subjects: 

Med.Freq. = C + 2.9636*Torque - 0.0366*Velocity, 

Where, C = 49.864 for subject 1 
= 55.708 for subject 2, 
= 80.083 for subject 3, 
= 63.020 for subject 4, and 
= 69.333 for subject 5. 

The estimates of this regression equation, as derived for one of the 

subjects, are given in a tabular form in appendix C. A discussion of the results 

obtained as detailed in the foregoing sections along with some speculations as to 

their behaviour follows in the next chapter. 
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Chapter 5 

DISCUSSION 

Upon perusing the several figures in the previous chapter, one can note 

that the surface MES power spectrum exhibits significant behaviour with the 

joint angle (and hence, 

velocity of contraction. 

chapter. 

muscle length), the applied torque and the angular 

A detailed discussion of these changes follows in this 

5.1. Spectral Power Changes 

The spectral power, which is the area beneath the power spectral curve 

and proportional to the average power of the myoelectric signal, varies as 

expected with all the three parameters studied. A linear variation with the 

applied torque and the angular velocity of contraction (as shown in Figures 4-7 

and 4-8) reiterates the fact that the myoelectric activity is proportional to its 

mechanical counterpart. Also these linear relationships seem to indicate that 

neither the brachialis nor the brachioradialis are modifying the load upon the 

biceps brachii over the ranges of the applied torque and the velocity of 

contraction. The third class lever arrangement of the elbow joint with the 

biceps brachii and the applied load causes the spectral power output to vary 

with the joint angle as noticed in Figure 4-2. In the time domain, Miwa and 

Matoba [34] studying the myoelectric activity in the same muscle have similar 

observations. 
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5.2. Median Frequency Changes 

With Joint Angle 

The median frequency has been noted to linearly increase with a decrease 

in joint angle by both Inbar et al., and Bazzy et al. But their results are based 

on only two or three joint angles and which are insufficient to correctly 

determine a relationship. In this work, eight joint angles placed 15 0 apart, from 

near full extension to approximately full flexion is sufficient enough to note in a 

detailed manner, the dependence of the median frequency on the joint angle. 

Though, as shown in Figure 4-3, there does exist a linear variation of the 

median frequency from a joint angle of 165 * to 105 * , there is also a downward 

shift beyond this range up to 60 0 . 

When the supinated forearm is flexed, the diameter of the muscle fibers of 

the biceps brachii increases. Also there occurs a thinning of the fatty layer 

interposing between the skin and the muscle. Now, an increase in muscle fiber 

diameter causes an increase in action potential conduction velocity. The latter 

is related to the MES power spectrum by the following relation: 

1 kfd 
1)(f)={t7G(- 7-11} 

where 'v' is the conduction velocity of the active muscle fibers and 'G' is the 

shape function which is implicitly dependent on many anatomical, physiological, 

and experimental factors; and 'd' is the inter-electrode distance of the bipolar 

electrodes [1]. An increase in conduction velocity is noted to cause increased 

high frequency content and hence an increase in the value of the median 

frequency. Also, the distance-dependent, low-pass filtering effect would, as 



49 

mentioned in chapter 2, effect less high frequency filtering due to the thinning 

of the interposing fatty layer. Both the factors, therefore would cause an 

increase in median frequency as was observed between the. angles 165 * and 

105 * , Beyond 105 * , however, the fact that the median frequency tended to 

decrease entails further investigation. It could be hypothesised, for example, that 

an elastic compression of the muscle takes place at angles less than 90 which 

may distort the relationship between the median frequency and the joint angle. 

However, to confirm that the observed relationship is a true one and not 

due to any random cause, the experiment was repeated, as mentioned before, 

with three joint angles (case 2 of study 1) but with an increased load of 29.4 

newtons. It has been previously noted that in static contractions, an increase in 

applied torque causes an increase in median frequency at any of the joint 

angles*. If our observation is of a repeatable nature, then for the new load, a 

similar relationship should occur though with increased magnitudes. Indeed, this 

is what is noticeable upon perusing Figure 4-4. 

With Applied Torque and Velocity of Contraction 

The variation of the median frequency with the joint angle as was found 

above would cause one to speculate that underlying trends may cause the data 

records obtained during dynamic contractions, over the joint angle range 120 to 

80 degrees, to be non-stationary. But, as mentioned before, upon performing the 

two non-parametric statistical tests, weak stationarity was confirmed in nearly 

*Most of the studies pertain to a joint angle of 90 degrees. 
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all of the data records. To specifically check upon possible median frequency 

changes within the range observed, each of the data records (for the velocities 

40 and 80 deg/sec) was divided into two segments, one corresponding to the 

range of 120 to 100 degrees while, the other corresponded to 100 to 80 degrees. 

Their individual spectra were computed and also the median frequencies. Neither 

a significant (< 4 Hz) nor a systematic change was observed in the median 

frequency values between the two segments. A typical set of values obtained 

for one of the subjects is shown in Table 5-1. No such test was however 

performed for the higher velocity cases because of the danger of arriving at very 

low resolution and high variance estimates of the segmental spectral values. 

T V 

120-100 

40 80 

100-80 120-100 100-80 

1.23 70 71 83 87 

2.45 82 81 88 89 

3.68 94 96 90 90 

7.35 95 92 94 97 

Table 5-1: Median frequency values obtained for subject no.3 
for the two angular ranges 

From Figure 4-9 which records the variation of the average (across the five 

subjects) median frequency with the torque and velocity, one observes that there 

does exist a linear trend in the median frequency with increase in applied 

torque though this is not so in the case of the velocity of contraction (the inter-

subject variability and experimental errors may account for the perturbations in 

the observed trends). The biceps brachii with around 770 motor units [1] is a 
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relatively large muscle. It has been observed that in large muscles, the 

recruitment process is the predominant way of accomodating an increase in load 

[23]. Now the recruitment process has been consistently observed to follow the 

`size' principle; that is, for lesser loads, smaller motor units (smaller threshold 

too) are recruited, while, for increasing load, the larger motor units with greater 

thresholds become active. In the biceps brachii, the smaller threshold motor 

units are located deep within the muscle while the larger ones are located on 

the surface [42]. The surface MUAPs suffer less high frequency filtering, and 

hence, a median frequency increase would be observed (which is so in our case) 

with an increase in applied torque. A similar observation is made by Hagberg 

and Ericson [15] with regard to static contractions. 

Now, the velocity of contraction covers a significantly wide range of values. 

It is intriguing that no significant trend was observed as regards the median 

frequency though the spectral power exhibited a linear relation. The regression 

analysis, the estimates of which are given in appendix C, confirms this. Now, 

an increase in the angular velocity of contraction could be visualised as an 

increase in the mechanical work required of the muscle. Therefore, either the 

recruitment and/or the rate coding process must be effective to match the 

observed spectral power changes. If recruitment was at play, as was observed in 

the previous case, then distinct changes in the MUAP waveform would have 

occured resulting in changes in the power spectrum. Since this is not the case 

in our observations, an interaction with the rate coding process or the latter 

alone could be the active process. Intuitively, one could visualise the active 

motor units, the type and number corresponding to the applied torque, to 
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increase their firing rate to accomodate an increase in velocity and thus 

according some justification to the observation made above. But changes in the 

firing rate could be detected, in the power spectrum, in the frequency range less 

than 40 Hz [7] (if indeed the `subpeak' located in this range is an indicator of 

the average firing rate of the active MUs). All the power spectral records, 

therefore, were checked for distinct subpeaks. Although certain number of 

subpeaks were indeed found in all of the spectra mentioned above they were not 

systematically occurring (in their locations or in their magnitudes in the spectra 

pertaining to the experimental repetitions). As Boxtel and Schomaker [7] point 

out, in the limb muscles, the firing rates varying over a wide range as opposed 

to being of a more or less single value (as was noticeable by them in small 

muscles), may cause several subpeaks to appear and no systematic changes can, 

therefore, be observed. Again, the variations observed could have very well 

occured due to random causes in the estimation procedures. However, the non-

occurrence of significant subpeaks in our spectra in no way refutes the 

observation made above regarding the firing rate accomodating the velocity 

changes, though it remains to be investigated further. It also remains to be 

proved whether the median frequency is affected significantly by the firing rate 

changes. In most of the cases wherein median frequency was observed to vary 

with applied torque, as was the case in this study too, the recruitment process 

has been cited to be a valid cause [15]. Although Gander and Hudgins [12] cite 

the firing rate to be an equally valid factor, again, they base their observations 

upon their locating distinct subpeaks and their (subpeaks) shifting with an 

increase in the applied torque. Apart from the above, no other satisfactory 

explanation is forthcoming at this stage of the investigation. 
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Lack of reports of work on similar grounds in the literature does not 

permit either confirmation or rebuttal of the results observed in this project. 

Comparisons with results obtained in static contractions and in time domain 

analysis of dynamic contractions are however made to a certain degree. In fact, 

to reiterate, this being the first study of its nature, it is not surprising that the 

above situation is seen to occur. A few suggestions as regards further work, 

along the lines described in this study, is set forth in the next chapter. 
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Chapter 6 

CONCLUSIONS 

The study detailed in this thesis has shown that the power spectrum of 

the surface myoelectric signal obtained from the biceps brachii m. is 

significantly affected by the applied torque on the muscle, its velocity of 

contraction and changes in its length. 

Both the median frequency and the spectral power are observed to 

consistently vary with similar patterns in five different subjects with all the 

three parameters mentioned above. However, only more extensive investigations 

will ensure their being reliable indicators of such changes during dynamic 

contractions as they are in the static cases. A common pattern of variation may 

perhaps ensue from conducting similar experiments upon other muscles too. 

As was mentioned in an earlier chapter, the two basic processes which are 

activated in a muscle to meet its mechanical requirements are 'recruitment' and 

`rate coding'. To reiterate, recruitment refers to the neural stimulation of 

previously inactive motor units to meet a certain load requirement, while rate 

coding refers to increasing the firing rates of the already active motor units. 

The two either complement each other or one predominates over the other over 

a certain range of load beyond which the other takes over; the exact process of 
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how or when one process augments or predominates over the other is not very 

clear till to date. In our case, the process of recruitment coupled with the low 

pass filtering effect due to the distance intervening between the muscle and the 

detecting electrodes is considered to satisfactorily explain both the median 

frequency increase due to the applied torque and its 'hump' like variation with 

a decrease in muscle length. The spectral power for both the torque and the 

muscle length is observed to follow the magnitude of the myoelectric activity 

accompanying a specific effort exerted by the muscle. In the same context, the 

velocity of contraction is strongly suggestive of affecting the firing rates of the 

active motor units suitably recruited for the desired load or torque. Further 

investigations, along theoretical or experimental lines, are needed to reveal a 

more definitive relationship between a muscle's velocity of contraction and its 

power spectrum. Extension of the experimental protocol used in this work onto 

eccentric contractions is seen to be another logical step ahead. 

Both the spectral estimation techniques employed in this work have proved 

to be satisfactory in obtaining significant information from the power spectra. 

In attempting to use higher values of the velocity of contraction than the range 

employed in this study, both the methods, however, are limited because, the 

frequency resolution obtainable through their usage is inversely proportional to 

the data record length and which is undesirable. In this regard, the advantages 

of employing modern spectral analysis methods to help overcome this problem, 

as has been suggested by a few researchers, is debatable. 

The biceps brachii as the test muscle turned out to be a wise choice since 
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the knowledge of its biomechanical characteristics in relation to myoelectric 

activity helped correlate our observations with the underlying physiology. Its 

lever arm and the hinge movement of the elbow joint proved to be 

advantageous in that a simple forearm loading apparatus like the one designed 

and used in this study would hardly introduce any errors into the characteristics 

of the data collected and also not interfere in the process of the data collection 

itself. 

One of the reasons that static contractions have been widely studied in the 

frequency domain is that they are easily controllable as regards the number of 

test conditions to be imposed and the experimental protocol that pertains to 

them, since only the varying force or torque need be considered. Also as 

regards spectral analysis, it was feared that perhaps the surface manifested 

myoelectric signal in a dynamic contraction would be non-stationary and hence 

prove to be difficult to analyze. It was largely due to these two reasons that 

dynamic contractions have been neglected in the spectral domain. In fact, to 

the author's knowledge, this is the first work pertaining to study of the spectra 

obtained during dynamic contractions which included the velocity of contraction. 

To that effect, this study has made a small but surely significant contribution 

in analysing a muscle's dynamic nature and in bringing about a sense of 

completeness in the analysis of the myoelectric signal in the frequency domain. 
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Appendix A 

POWER SPECTRAL ANALYSIS 

The Power Spectrum or the Power Spectral Density Function (PSD) of 

random data describes the general frequency composition of the data in terms of 

the spectral density of its mean square value. It is defined as, 

1 1 i' 
2 L1P 

T
P(P= lirn lim (t,f, dt] 

/-*04-1J 
—A 

T-+00 1 13 

where, x(t,f,A f) is that portion of the random data, x(t), in the frequency 

range from f to f+A f (A f is a very small value). The quantity P(f) is always 

a real valued and non-negative function. Also, since the term x2 is the squared 

value of the random variable, say, a voltage, therefore, the power spectral 

density function could be thought of as the average power associated with a 

frequency bandwidth of 1 Hz (assuming f taking steps of 1 Hz) and centered at 

f Hz. 

To better understand the power spectral estimation procedures, a review of 

the concept of `autocorrelation function' is made below. 

Autocorrelation Function 

The autocorrelation function of random data describes the general 

dependence of the values of the data at one time on the values at another time. 
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Given a sample time history record x(t) and its value at r units later, (r 

is called the 'lag number') x(t+r), the autocorrelation function in equation form 

is, 

1 
R(r) = lim x(t)x(t+r)dt 

T oo 0 

where, T is the observation time. 

If we consider a finite data sequence {xk}, k=0,1,...,N-1, with the samples 

spaced A t apart, its autocorrelation function in discrete form is given by, 

1 N—m---1 

R(m) — 
1,1—m E xn+mxn 

n=0 
where, m, the lag number =0,1...p < N-1. 

The quantity R(r) is always a real-valued even function with a maximum 

at r=0 and may be positive or negative. In equation form, 

R(r) = R(-r) and 

jR(0)1 > 111(r)i for all r 

An important property associated with the autocorrelation function lies in 

its relationship to the power spectral density function. Specifically, for stationary 

data, the two functions are related by a Fourier Transform as follows. 

00 
P(f) =2 f R(r)e-22'f rdr 

—co 

Because R(r) is an even function of r, therefore, 

co 
P(f)=4 f R(r)e- i2'f rdr 

0 
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This relationship is called the 'Weiner-Khinchine' relation and is utilised in 

estimating the power spectra as will be noted in the next section. 

A.1. Power Spectral Estimation 

Of the several methods that have been developed for estimating the power 

spectra, only some of the widely used procedures are discussed below, and they 

are classified either as traditional or modern methods of spectral estimation. 

A.1.1. Traditional Methods 

A.1.1.1. Blackman-Tukey Method 

Consider a weakly stationary process x{t} whose PSD function is to be 

estimated. The Weiner-Khinchine relation as mentioned above relates the PSD 

with the autocorrelation function as, 

00 
P(f)=4 R(r)e- ivri rdr 

0 

Its discrete form is given by 

m=M 

P(f)=At E R(m)e-327/mAt, 
m=0 

where, A t is the sampling interval and R(m), m = 0, 

discrete estimates of the correlation function. 

• 9 M / are the 

The correlation coefficients are, therefore, first estimated from the sampled 

data record, x{k}, k=0,1, . . . , N-1, as shown in the previous section. Using 

the estimates of the correlation function thus obtained in the Weiner- Khinchine 

relation yields the power spectrum. 
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This method is computationally efficient and yields spectral records with a 

resolution approximately the inverse of the width of the autocorrelation lags. 

The normalised square error, the ratio of the variance of the estimate to 

the square of the expected value,(defined later) is given by E2 = m/N where, m 

is the maximum number of autocorrelation lags and N is the number of data 

points being analysed. As a rule of thumb, the value of m is suggested by 

Blackman and Tukey to be 10 to 20% of N. 

A.1.1.2. Welch's Method 

The Welch's method is a modification of the Periodogram. approach 

(wherein the power spectra is estimated by squaring the absolute values of the 

Fourier transform magnitudes and averaged over the period considered) to 

spectral estimation. Both the periodogram and the Welch's methods estimate the 

power spectra without first estimating the correlation function. 

The Discrete Fourier Transform (DFT) of a finite sampled data sequence, 

{xk} is given by, 

N-1 —flirmk 
X(m)=At >z ke 

k=0 

Squaring the magnitude values of the DFT (IX( )12) yields the periodogram. 

Since the squaring of the DFT magnitudes yields the energy distribution, scaling 

it down by A t (sampling rate), gives the power spectrum. That is, 

1 
13(3)—Nat IX(m)12

Since, the original definition of the power spectrum involves an averaging 
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over infinity, the above is, therefore, a poor estimate and hence would suffer 

from a large variance. Therefore, a modification was made by Welch [43]. His 

approach consists of dividing the data record into a number of equal segments 

(overlapped or non-overlapped) each of whose power spectrum is estimated as 

above. The average of these estimates (approximately over a long interval 

instead of an infinite one) would yield the final power spectrum and has been 

shown to be less prone to statistical variations. 

Mathematically, the process can be explained as follows. Consider the 

sequence {xk}, k=0,1, . . ,N-1. We define segments of length 'V, such that 

the ith segment is given by the sequence, 

Xki = x(k + (i-1)D), 

where, k=0,1, . . . ,L-1 
i=1,2, . . . ,K 
D is the overlapping number of samples (zero for no overlap) 

The periodograms of the K overlapped or non-overlapped segments are 

then calculated using the fast Fourier transform (FFT) which is nothing but a 

computer algorithm designed for a very fast computation of the DFT of a data 

record. Denoting the periodogram of the ith segment by P1[m], where, 

L-1 At -f21rmk 

Pi' 1- 712_, zee L 12

k=0 

i=1,2, . . ,K 

the Welch's spectral estimate is given by the average of all K periodograms 
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1 
Pj [m] 

K 1—s 
i= 

The variance of the averaged power spectrum can be shown to be ( 1 /K)th of 

that of the periodogram approach alone. Also the normalised square error is 

again (1 /K)th of that obtained through the Blackman-Tukey method. The 

resolution is given by the inverse of the time width of a single segment. 

A.1.2. Some Comments on the Traditional Methods 

The exact power spectral density function cannot, in general, be calculated. 

This is because the given signal is time limited, is often corrupted with noise 

and sometimes non-stationary too. Moreover, the usage of digital methods for 

efficient and fast computations requires the data to be sampled. Therefore, one 

can arrive only at `estimates' of the power spectral density function. However, 

to quantify how close these estimates are to the true values, two important 

statistical measures are often used and these are: 

1. Variance of the Estimate: Also known as 'Mean Square Error', it 
is defined as Var EP °I = Ei ( P° —P)21, where, P' is an estimate of a true 
or expected value P and E is the expectation operator. 

2. Normalised Square Error: Also called the 'quality ratio' this is the 
ratio of the variance to the square of the true or expected value. 

That is normalised square error, E 2 - 
ERP -P)21 

P2

Since we can process or analyse only finite duration signals, we explicitly 

curb the data into a finite length suitable for analysis and processing. This 

process is called 'Windowing'. In the discussions of the concept of the 

autocorrelation function (in discrete form) and of the two spectral estimation 

methods above we implicitly allowed the curbing of the data by multiplying it 
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with a 'Window Function' which in this case is what is called a 'Rectangular 

Window' given by, 

wk=1;0 < k < N-1 

=0;k<O, 

where N is the duration of the data sequence. 

The Fourier transform of the rectangular window is given by, 

Sin(Nw/2) e—jcuNI2 F.T{wk}--- 
Sin(w12) 

Since multiplication in the time domain corresponds to a convolution operation 

in the frequency domain, the power spectral estimates are no longer exact and 

accurate but are 'smeared' and hence have reduced frequency resolution. 

Secondly, the abrupt termination of the data at either of its ends results in the 

introduction of spurious high frequency estimates (the phenomenon called 

`leakage effect'). Also, the spectrum of this window function has several 

negative excursions and therefore, may cause negative power spectral estimates. 

To avoid or at least minimise these errors different window functions with 

gradually tapering ends and non-negative spectral function have been developed, 

the most popular being the 'Hamming' and the 'Blackman' windows. A review 

of these is found in Harris [16]. Thus, the data (input data sequence or 

autocorrelation lags) upon which the above mathematical operations are 

performed is to be considered multiplied with a window function. The use of 

window functions help minimise the said errors; however, they also cause 

reduced frequency resolution because of the convolution operation mentioned 

above. Therefore, selection of the proper window function is dependent upon 

the desired application. 
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A.2. Modern Methods 

During the past two decades, several new spectral estimation procedures 

have been developed which are particularly attractive for making high resolution 

spectral estimates when the data record is short. Also they are found useful 

when one may wish to predict or extrapolate the data or the autocorrelation 

function. (In the above methods the windowing of the data or the lags makes 

the implicit assumption that the unobserved data or lag values outside the 

window are zero, which is normally an unrealistic assumption. Smeared spectral 

estimates therefore result as a consequence). Perhaps the major advantage these 

new methods offered was that they provided a mechanism for modelling the 

data. This can be better explained as follows. 

Often one has more knowledge about the process from which the data 

samples are taken, or at least is able to make a more reasonable assumption 

other than to assume the data is zero outside a window. Use of a priori 

information (or assumptions) may permit selection of an exact model for the 

process that generated the data samples, or at least a model that is a good 

approximation to the actual underlying process. It is then usually possible to 

obtain a better spectral estimate based on the model by determining the 

parameters of the model from the observations. Thus spectrum analysis, in the 

context of modelling, becomes a three step procedure. The first step is to select 

a time series model for the underlying process. The second step is to estimate 

the parameters of the assumed model using either the available data samples or 

autocorrelation lags (either known or estimated from the data). The third step 

is to obtain the spectral estimate by substituting the estimated model 
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parameters into the theoretical PSD implied by the model. One key feature of 

this modelling approach to spectral estimation is that only the output process of 

the model is available for analysis; the input driving process is not assumed 

available. However, it is promising to know that one can make realistic 

assumptions concerning the nature of the measured process outside the 

measurement interval. Thus the need for window functions can be eliminated 

along with their distorting impact [19]. Based upon such an approach several 

methods have been developed. However, only a few popular methods are 

discussed below. Again, a detailed review of these methods is beyond the scope 

of this discussion and hence, only the relevant theory and mathematical relations 

are put forth. 

A.2.1. Maximum Entropy Method (MEM) 

The MEM power spectral estimation approach can be posed as follows: 

given (p+1) consecutive estimates of the correlation coefficients of the process 

{x(t)}, R(m), m=0,1, . . . ,p, estimate the PSD of the process. Clearly what is 

needed for the estimation are the unknown correlation coefficients R(m); m > p. 

The MEM indeed does that by extrapolating the available autocorrelation 

coefficients in such a way that the time series characterized by the correlation 

has maximum entropy (The entropy is a measure of the amount of information 

we have on a process). Out of all time series having the (p+1) given 

autocorrelation coefficients, the time series that yields the maximum entropy will 

be the most random one, or in other words, the estimated PSD will be the 

flattest among all the PSDs having the given (p+1) coefficients. That is, no 

new information is added. 
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The input data is first modelled as a weighted sum of past values plus a 

noise term, that is, 

xn=— E a kx n_ k en

k=1 
The weighting coefficients are called the autoregression coefficients of order 

the above case) p. Now, the entropy function which is given by, 

H= f
00 

log2 P(f)d f 
—00 

has to be maximised. Since there are an infinite number of signals with white 

spectrum, the exact input is unknown. However, we know that we want to 

maximise the entropy (given by the relation above) subject to the constraints 

that 

00 
R(m)= f P(f)exp(j2r fnAt)d f 

n=0,1, . . . ,p 

This constraint maximization will ensure that the estimated spectrum of a 

process has the flattest spectrum of all the processes with the given p+1 

correlation coefficients. Based upon the model assumed above, the power 

spectral density estimate is then given by, 

0.2 At

P  ar (f)  p 

11 E ak ezp (— j21- fkAt)12

k=1 

where, A t is the sampling rate, and a 2 is the variance of the input data. 

Thus, to estimate the PSD one need only estimate {a1, a2, , ap, a2}. 
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To do this, a relationship between the autoregressive coefficients and the 

autocorrelation function (known or estimated) of x., called the 'Yule-Walker' 

equations, given below, are used. 

R(m)=— E a IR(m m > 0 

1=1 

.—E a R(- -I) + Q2, m = O. 

Though several algorithms have been developed to solve the above set of 

equations none of them are discussed here. 

A.2.2. AutoRegressive Moving Average Method (ARMA) 

In this method, the data sequence is modelled as the output of a p pole 

and q zero filter excited by white noise, that is, 

zn._ E akxn_k+E bknn_k

k=1 k=0 
where, nn is the white noise input sequence. The poles of the filter are 

assumed to be within the unit circle of the z-plane while, the zeros may lie 

anywhere in the plane. 

To estimate the above parameters, many techniques involving matrix 

computations and/or iterative optimization methods have been formulated 

theoretically. These approaches are not normally practical for real-time 

processing; thus, suboptimal techniques involving least error squares criterion are 

widely used. These methods generally estimate the AR (zeros) and the MA 

(poles) parameters separately rather than jointly as required for optimal 

parameter estimation [19]. Once the parameters of the ARMA (p,q) model are 

identified, the spectral estimate is obtained as, 
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P x(f)—

cr2Ati1 + E bk exp 

k=1 

( j2r fkAt)I2

11+E ak exp (—j2irfkAt)I2

k=1 

where, A t is the sampling rate, and er2 is the variance of the input data. 

A.2.3. Capon's Spectral Estimation Method 

This method is based on the idea of measuring the power output of a set 

of narrow band (optimal) filters. We have seen that the effect of unavoidable 

windowing of the data is to distort the power spectral estimation. The sidelobes 

of the window cause 'leakage' from neighbouring frequencies into the estimate of 

the frequency of interest. Suppose, however, that for each frequency of interest, 

we filter the data by means of an optimal filter in such a way that contribution 

from other frequencies be minimised. This can be viewed as a set of narrow 

bandpass filters, each optimally designed for the particular frequency. The power 

spectrum is then estimated by calculating the power output of these filters. 

Given a data sequence {ack}, to estimate its power spectrum the data is 

filtered with a Moving Average (MA) filter with coefficients to be optimally 

adjusted. Ideally, we are interested in the output power of an infinitly narrow 

bandpass filter at the frequency w. The MA filter predicts the kth value of the 

output in the following manner, 

N-1 

k= E bnx„_„ 
n=0 

In order to achieve the 'narrowness' through the above filter, we have to find 
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the optimal value of the filter coefficients bn, n =0,1, . . . N-1, such that the 

variance of xk is minimal. In other words, we consider the input to the above 

filter (the observed sequence) as given by 

k=A exp(jwkIt)+nk 

where {nk} is the noise sequence appearing due to the leakage (also the variance 

of the estimate as mentioned above) and A is the amplitude of the sinusoid 

component whose power spectral density is to be estimated. 

In proceeding further, we obtain the variance of the output as, 

0.2 = BHRxxB

where B is the transpose of the matrix of coefficients (bk), 
H is the complex conjugate transpose, and 
Itzx is the autocorrelation matrix of xk

and to minimise the above, also a constraint given as 

EHA=1 

where, E is the vector 

E=[1,exp(j27f0At), . . • ,exp(j274-11f0AtAT

The solution to the filter coefficients can be shown to be 

R X-1E 
B ,- opv EHR E

xx 
and the minimum output variance to be 

1 a 2 
nun En R

xx 
, . 

Since the minimum output variance is due to frequency components near f0 (the 

frequency response at which is seen to be unity), then cr2min A t can be 
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interpreted as a power spectral estimate. Thus, the Capon's spectral estimate is 

defined as 

At
PCE(f0)—EHR-1E. 

..
To compute the spectral estimates, therefore, one only needs an estimate of the 

autocorrelation matrix. 

A.3. Comparisons between the Traditional and Modern 

Methods 

All the three modern methods detailed above are very suitable for short 

data records. Their efficacy in both obtaining high resolution and less estimation 

errors stands out compared to the traditional methods only in short data 

records [19]. Of course, they also serve as an efficient way of modelling the 

process generating the data observed unlike the traditional methods. 

But computationally, the traditional approaches are more efficient than the 

modern methods. Having a priori information of the process would however help 

speed up the latter. In both the Blackman-Tukey and the Welch's methods, the 

variance of the estimates obtained by them can be computed, while there has 

been no consistent way of determining the same in any of the modern methods 

[8]. For short data records, the resolution obtained by the three modern 

methods have been found better than the Blackman-Tukey approach. 

Since the best choice of the model order in any of the three modern 

methods is not generally known a priori, it is usually necessary in practice to 

postulate several model orders. Based on these, one then computes some error 
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criterion that indicates which model order to choose. Too low a guess for 

model order results in a highly smoothed spectral estimate. Too high an order 

introduces spurious detail into the spectrum. Some criteria (like the Akaike 

Criterion) have been developed to select the optimal order. 

On the whole, the practice of spectral estimation, both traditional and 

modern, has more of an empirical basis and less of a solid theoretical basis. 

With finite data records as is the case in general, spectral estimation is not an 

exact science and in fact, a great deal of experimentation and subjective trade-

off is usually required. 

A.4. Definitions of some Spectral Parameters 

To characterise a power spectrum, several parameters have been 

consistently used in the study of myoelectric signals. They are all defined below: 

Mean Power Frequency 

It is that frequency, fmean which is given by, 

L c° f x P(pd f 

mean — 

fo°° 13(pd f 

Median Frequency 

It is the frequency, fined which divides the power spectrum into two power 

halves. That is, 

1. fmed f oo 00 

PUM f = P(f)d f = 1  f PCN f o 
f med 
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Peak Power Frequency 

The peak power frequency, fpeak is the frequency which assumes the 

maximum power value in the power spectrum. 

Spectral Ratios 

These are ratios of power in several arbitrarily chosen bands, in the power 

spectrum, of equal or unequal widths used to monitor spectral power shifts from 

one set of frequencies to another. 

Spectral Bandwidth 

It is that frequency range in the power spectrum which suffers no more 

than 3 dB attenuation. The 3 dB points mark the values of power equal to half 

of the maximum obtained. 

Spectral Power 

It is the area beneath the power spectral curve. Mathematically, 

Spectral Power = f oPmdf 
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Appendix B 

SPECTRAL ESTIMATION PROCEDURES 

The following two command procedures (with comments) are provided for 

computing the power spectra using the Blackman-Tukey and the Welch's 

methods. They are to be executed in the Interactive Laboratory System's (ILS) 

domain on a VAX 11/780. Both the procedures require a ILS data file 

containing the sampled data divided into segments the number of which, is an 

user's choice for each of the estimation schemes. Also a digital bandpass filter 

(5-450 Hz) has to be synthesised using the ILS and stored in the 'common file' 

(CM9999.). 

Blackman-Tukey's Spectral Estimation 

$ FIL SNIP'Pl' 
OPN S * Conversion into ILS records * 

$ SRE 1,'P3' 
$ FIL NIP'Pl' 
$ FIL SNFIP'Pl' 
$ OPN S * Bandpass Filtering (5-450 Hz) 
$ FLT R 
$ Fri NFIP'Pl' 
$ FIL SNCORIVP1' 
$ OPN S * Autocorrelation computation * 
$ COR A1,1 
$ FIL NCORR'Pl' 
$ FIL SNFFT'Pl' 
$ OPN S * Fast Fourier Transformation * 
$ FFT F,,,3, 
$ FIL NFFT'Pl' 
$ FIL SNPOW'Pl' 
$ OPN S 
$ UOP MA1,1 * Scaling performed * 
$ FIL NPOWT1' 
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$ DRE If 
$ EXIT 

* Display Power Spectrum * 

Welch's Spectral Estimation 

$ FIL SNIP'Pl' 
$ OPN S * Conversion into ILS records * 
$ SRE 1,'P3' 
$ FIL NIP'Pl' 
$ FIL SNFIP'Pl' 
$ OPN S * Bandpass Filtering (5-450 Hz) 
$ FLT R 
$ FIL NFIP'Pl' 
$ FIL SNFFT'P1' 
$ OPN S * Fast Fourier Transformation * 
$ FFT F,,,3, 
$ FIL NFFT'Pl' 
$ FIL SNABFF'Pl' 
$ OPN S 
$ UOP AB1,'P3' 
$ COPY ABFF'Pl' ABFF'P2' * Squaring absolute values * 
$ FIL NABFFT1' 
$ FIL BNABFF'P2' 
$ FIL SNTPOW'P1' 
$ OPN S * Segmental Power Spectra computed * 
$ BOP M 
$ FIL NTPOWT1' 
$ FIL SNFPOWT1' 
$ OPN S 
$ AVG 01,20 * Average Power Spectrum computed * 
$ FIL NFPOWT1' 
$ FIL SNPOWT1' 
$ OPN S 
$ UOP MA1,1 * Scaling performed * 
$ FIL NPOWT1' 
$ DRE M * Display Power Spectrum * 
$ EXIT 
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Appendix C 

TABULATED RAW DATA 

In this appendix are recorded the raw data obtained from the two studies 

comprising the work detailed in this thesis. The data have been tabulated in the 

following manner. The Tables C-1 to C-4 pertain to the data namely, the 

median frequencies and the spectral powers as obtained for the five different 

subjects in the first study. The first study comprising two cases involved the 

study of variation in joint angle (and hence muscle length) causing any spectral 

changes as could be monitored by the above two parameters. Tables C-5 to 

C-14 contain the results of the second study namely, that studying the spectral 

changes caused by varying the applied torque and the angular velocity of 

contraction. Table C-15 gives the stepwise multiple regression equation 

estimates, as obtained for one of the subjects, from the equation given in 

chapter four. The median frequency is given in terms of Hertz and the spectral 

power in Watts. 
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S JA 165 150 135 120 105 90 75 60 

1 61 72.5 76.5 88 94.5 71 64 72 

2 67.5 68.5 69 72 76 75 74 68.5 

3 58.5 63.5 78 97 103 71 78.5 73 

4 49.8 55 60.5 69 79 74.5 74 68 

5 60.5 61.5 70.5 78.5 90 108.5 97 75.5 

Table C-1: Median Frequencies obtained for different Joint Angles 
for a load 19.6 N (study 1) 

S JA 165 150 135 120 105 90 75 60 

1 2.2 1.6 1.8 1.8 1.2 0.4 0.7 1.4 

2 2.3 1.6 0.9 0.6 0.3 0.2 0.24 0.41 

3 1.3 1.1 1.5 0.99 0.58 0.41 0.99 2.2 

4 2.5 1.9 0.99 0.76 0.5 0.3 0.27 0.4 

5 1.8 1.6 1.8 1.3 0.9 0.2 0.3 0.5 

Table C-2: Spectral Powers obtained for the same 
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S JA 150 90 60 

1 44 95 106 

2 96 149 115 

3 89 109 109 

4 66 140 97 

5 62 97 87 

Table C-3: Median Frequencies obtained for different Joint Angles 
for a load of 29.4 N (study 1) 

S JA 150 90 60 

1 1.34 0.51 0.49 

2 0.64 0.44 0.54 

3 0.58 0.53 0.64 

4 0.81 0.36 0.61 

5 1.2 0.44 0.33 

Table C-4: Spectral Powers obtained for the same 
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T \ V 40 80 120 160 

1.23 54.6 43 59 53 

2.45 56 50 63 58 

3.68 64 60.5 65 63 

7.35 73 75 68.5 72 

Table C-5: Median Frequencies obtained for different 
Torque-Velocity combinations for subject no.1 

T V 40 80 120 160 

1.23 0.13 0.16 0.18 0.4 

2.45 0.2 0.3 0.85 0.87 

3.68 0.36 0.44 0.81. 1.0 

7.35 0.7 0.88 2.1 2.2 

Table C-6: Spectral Powers obtained for the same 
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T V 40 80 120 160 

1.23 61 36 55 51 

2.45 63 65 60 57 

3.68 63 70 66 64 

7.35 73 77 66 80 

Table C-7: Median Frequencies obtained for different 
Torque-Velocity combinations for subject no.2 

T V 40 80 120 160 

1.23 0.04 0.08 0.2 0.12 

2.45 0.06 0.08 0.38 0.59 

3.68 0.12 0.24 0.63 0.77 

7.35 0.39 0.42 1.6 2.2 

Table C-8: Spectral Powers obtained for the same 
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T \ V 40 80 120 160 

1.23 72 81 80 76 

2.45 83 88 80 86 

3.68 91 91 94 94 

7.35 91 96 96 98 

Table C-9: Median Frequencies obtained for different 
Torque-Velocity combinations for subject no.3 

T \ V 40 80 120 160 

1.23 0.06 0.17 0.2 0.32 

2.45 0.1 0.5 0.68 0.80 

3.68 0.17 0.19 0.41 0.8 

7.35 0.37 0.46 1.1 1.8 

Table C-10: Spectral Powers obtained for the same 
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T \ V 40 80 120 160 

1.23 71 58 65 57 

2.45 77 70 68 63 

3.68 77 73 74 65 

7.35 78 78 78 72 

Table C-11: Median Frequencies obtained for different 
Torque-Velocity combinations for subject no.4 

T \ V 40 80 120 160 

1.23 0.09 0.11 0.19 0.36 

2.45 0.1 0.3 0.62 0.64 

3.68 0.16 0.27 0.56 1.55 

7.35 0.39 0.41 1.59 2.2 

Table C-12: Spectral Powers obtained for the same 
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T \ V 40 80 120 160 

1.23 73 76 70 62 

2.45 77 79 71 70 

3.68 77 85 73 72 

7.35 89 85 84 82 

Table C-13: Median Frequencies obtained for different 
Torque-Velocity combinations for subject no.5 

T \ V 40 80 120 160 

1.23 0.05 0.14 0.31 0.24 

2.45 0.08 0.29 0.63 0.79 

3.68 0.2 0.3 0.8 1.05 

7.35 0.55 0.95 1.54 2.47 

Table C-14: Spectral Powers obtained for the same 
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T \ V 40 80 120 160 

1.23 52.05 50.58 49.12 47.65 

2.45 55.66 54.20 52.73 51.27 

3.68 59.31 57.84 56.38 54.91 

7.35 70.18 68.72 67.25 65.79 

Table C-15: Regression equation estimates of one subject 
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