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ABSTRACT 

Staphylococcus aureus is a versatile pathogen causing mild to moderate to severe and 

life threatening infections including blood stream infections. Methicillin resistant 

Staphylococcus aureus (MRSA) has evolved as an important nosocomial pathogen and multi-

drug resistance limits the available antibiotics for therapy. In many healthcare facilities, 

vancomycin remains the preferred agent for treating serious MRSA infections; however, other 

drugs like linezolid and tedizolid are also useful agents. Tedizolid is a newly approved drug and 

currently only available for clinical use in some countries.  Some data suggests that as the 

minimum inhibitory concentration (MIC) of vancomycin for MRSA increases beyond 2 µg/ml, 

therapeutic failures become more common. We studied 60 blood culture of MRSA and 

determined MIC and mutant prevention concentration (MPC) values to vancomycin, linezolid 

and tedizolid.  In separate experiments, we performed in vitro kill studies. 

The minimum inhibitory concentration (MIC) is the lowest drug concentration required 

to inhibit or block the growth of 105 colony forming units per milliliter (CFU/ml) of bacteria 

and is the international standard for determining susceptibility/resistance in clinical 

laboratories. The mutant prevention concentration (MPC) defines the antimicrobial drug 

concentration blocking growth of the least susceptible cell present in high density (≥109 CFU) 

bacterial populations.   

For vancomycin, MIC values ranged from 0.5 to 1.0 µg/ml as compared to 1 – 4 µg/ml 

and 0.125 - 0.5 µg/ml for linezolid and tedizolid respectively. By MPC testing, vancomycin MPC 

values ranged from 2 to ≥32 µg/ml as compared to 2 – 4 µg/ml for linezolid and 0.25 – 0.5 

µg/ml for tedizolid. Such high vancomycin MPC values have not been previously reported. 

To further characterize strains showing high vancomycin MPC values, we compared 

pulsed field gel electrophoresis (PFGE) profiles on strains with high vancomycin MPC values to 

rule in or out, the presence of a single clone.  A single clone was not detected.  We also 

compared PFGE profiles on select strains with high vancomycin MPC values to the profiles of 

the wild type (parental) strains and found the profiles were identical. Cell wall thickness of 

strains with high vancomycin MPC values was investigated as a possible explanation for the 

higher MPC values.  For MRSA cells taken directly from agar plates containing high vancomycin 
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drug concentrations, increased cell wall thickness was seen.   Amplification of cell wall 

accessory genes by polymerase chain reaction (PCR) failed to identify a genetic marker that 

could explain the high MPC values and the presence or absence of the Panton-Valentine 

leukocidin (PVL) gene was not more frequent in strains with high vancomycin MPC values.  

Additionally, serial passage experiments increasing vancomycin drug concentrations did not 

result in a strain of MRSA with a stably resistant clone.  These experiments did not identify a 

common characteristic that could be associated with the survival of MRSA bacterial cells in 

high vancomycin drug concentrations. Therefore, further investigations to determine the 

mechanism of this observation are necessary.   

MIC and MPC testing with MRSA strains tested against linezolid and tedizolid gave 

values consistent with expectations based on values previously generated with linezolid.  For 

tedizolid, the MPC100 was 0.5 µg/ml.  MPC values for tedizolid have not been previously 

reported. 

In vitro kill experiments were conducted using a range of bacterial densities from 106 -

109 CFU/ml.  Previously reported kill experiments used bacterial densities approximating 105-

106 CFU/ml and as such the definition of bactericidal and bacteriostatic may not be relevant 

when higher bacterial densities are used.  For our measurements and depending on the 

bacterial density tested, linezolid, tedizolid and vancomycin showed both bactericidal and 

bacteriostatic activity against select strains of MRSA. 

In summary, high vancomycin MPC values are concerning and may impact the clinical 

use of the drug and be responsible for clinical failure in some patients.  The low MPC values 

for tedizolid could potentially indicate a low propensity for resistance selection with this drug. 
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1.0 INTRODUCTION 

              1.1.  Staphylococcus aureus  

               1.1.1  Laboratory Identification  

           Staphylococci are aerobic Gram-positive cocci (0.5 – 1.0 μm), grow in 

clusters, pairs and at times grow in short chains.  Staphylococcus aureus (S. aureus) is the most 

pathogenic species and characterized by golden pigment production. 

         The catalase test is the simplest laboratory method to differentiate staphylococci, which 

are characterized by being catalase positive, from streptococci which are catalase-negative.  

The coagulase test, on the other hand, distinguishes S. aureus (coagulase-positive) from 

coagulase-negative staphylococci.  S. aureus can also be identified or confirmed by applying 

polymerase chain reaction (PCR) methods.  The 16S rRNA gene is typically considered to be 

the most useful taxonomic marker molecules [Becker, et al, 2004]. 

 1.1.2    Opportunistic Infections 

           S. aureus is the most virulent species of staphylococci. It is an opportunistic pathogen 

colonizing the human epithelia and causes nosocomial and community-acquired infections.  

Research has shown that around 30% of healthy individuals are colonized with S. aureus, 

including both persistent and non-persistent carriers [Hamdan-Partida, et al, 2010].  

Colonization with S. aureus can potentially increase the risk of incurring invasive infections if 

the bacterium penetrates the subcutaneous tissues through skin cuts, abrasions or 

intravascular access devices [Aung, et al, 2017]. 

          The pathogenic capacity of S. aureus is strongly related to its capability of producing 

exoproteins and toxins, and thereby causing serious diseases, such as bacteremia, 

pneumonia, myocarditis, acute endocarditis, osteomyelitis and meningitis [Peshattiwar, et al, 

2018].  Historical data collected through the National Nosocomial Infection Surveillance 

System (NNIS) showed S. aureus as the leading cause of nosocomial pneumonia, as well as 

being the second most common cause of bloodstream infections in the USA [National 

Nosocomial Infections Surveillance (NNIS), 1996; Stevens, et al, 2002].  Staphylococcal 
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bacteremia was also reported to be a major cause of human morbidity and mortality in 

hospitals [Klevens, et al, 2007]. 

  1.1.2.1    Pathogenicity 

             S. aureus is characterized by the ability to adapt to volatile environments, including 

selective pressure posed by antibiotics. Also, it has the ability to spread and evolve new 

antibiotic resistance, which resulted in the emergence of methicillin-resistant S. aureus 

(MRSA).  

          Both MRSA and methicillin susceptible S. aureus (MSSA) can cause the same range of 

infections. Nevertheless, infections caused by MRSA usually result in worse outcomes 

compared with MSSA infections.  A wider range of antibiotic  options are available for MSSA 

infections [Pottinger, 2013].  Although there is insufficient evidence in the literature 

supporting the possibility that MRSA strains have a greater probability of causing invasive 

infections than MSSA [Watkins, et al, 2012], infections caused by MRSA are commonly severe 

and sometimes life-threatening.  Also, they are the most frequently occurring infections 

among other antibiotic resistant species [Ventola, 2015].  This pathogen has demonstrated 

exceptionally versatility in terms of gradually arising and spreading in various epidemiological 

setting, including hospitals, community and animals, thereby posing a challenge for 

controlling and preventing associated infections. 

In 2009, CANWARD data drawn from blood, wounds, urine and respiratory tract 

specimens revealed that S. aureus was the most commonly isolated organism overall and the 

second most common organism found in blood cultures.  The Canadian Ward Surveillance 

Study, also known as CANWARD, is an ongoing national study focused on pathogens isolated 

from Canadian hospitals (inpatients and outpatients) and communities to determine their 

degree of antimicrobial resistance [Hoban & Zhanel, 2013].  Royal University Hospital in 

Saskatoon has been contributing to this surveillance program annually since its inception.   

 

 

 1.2. MRSA  

  1.2.1    Associated Risks 
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            MRSA infections are associated with increased morbidity, prolonged hospitalization 

longer durations of antibiotic treatment, higher health care costs and an increased risk of 

death. Mortality risk of MRSA bacteremia is approximately two-fold higher than MSSA 

bacteremia [van Hal, et al, 2012].  In the USA, approximately 19,000 patients are killed every 

year by MRSA infections.  This number is equivalent to the mortality rate caused by AIDS, 

tuberculosis, and viral hepatitis combined [Boucher & Corey, 2008]. 

 1.2.2    Origin and Epidemiology 

 MRSA had initially been considered to be a rare phenomenon that evolved and 

spread only within hospitals.  The first strain was reported in the United Kingdom in 1961 soon 

after methicillin was first administered into clinical practice to overcome penicillin-resistant 

S. aureus in 1959 [Hardy, et al, 2004].  Within a couple of years, MRSA had become widespread 

in Japan, Europe and Australia.  In 1968, the first case of MRSA was reported in the USA.  The 

frequency of related infections continued increasing in hospitals and has since been persistent 

in American health care institutions for more than twenty years [National Nosocomial 

Infections Surveillance (NNIS), 2004; Panlilio, et al, 1992].  

             Data collected from American intensive care units (ICU) showed the MRSA proportion 

among S. aureus isolates increased by 3% per year from 1992 to 2003.  MRSA accounted for 

more than 60% of isolates in these ICUs [Klevens, et al, 2006].  

             In a case study conducted by Graffunder and Venezia, the risk factors that most 

strongly associated with MRSA infections were the use of the fluoroquinolone antimicrobial 

levofloxacin and macrolide antibiotics (macrolide antibiotic OR 4.06 was higher than enteral 

feeding 2.55) [Graffunder & Venezia, 2002].  Other risk factors include extensive previous 

exposure to antibiotics, admission to ICU, presence of an endotracheal tube or a catheter, 

long hospitalization and poor hand hygiene among healthcare workers [Pottinger, 2013].   

             Apart from the previously discussed incidents of the outbreak in hospitals, substantial 

outbreaks of MRSA infections were reported in the early 1980s among non-recently-

hospitalized subjects in Detroit, USA [Pottinger, 2013]. It was determined that 85% of hospital 

patients were diagnosed with community-associated (CA)-MRSA and 47.5% of healthy 

community members were found to be subjected to at least one health-care associated risk 
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factor or had contact with persons with risk factors.  In other words, the prevalence of MRSA 

among healthy community individuals was mainly due to health-care associated risk factors.  

Identifiable risk factors include recent hospitalization, outpatient visits, nursing home 

admission, antibiotic exposure, chronic illness, drug injections, and close contact with people 

subjected to risk factor [Beam & Buckley, 2006]. 

1.2.3    CA-MRSA VS HA-MRSA 

             Community MRSA strains are more likely to be susceptible to classes of antibiotics 

other than b-lactams, whereas hospital-associated (HA) strains are typically multi-drug 

resistant.  This is probably due to the presence of higher selective pressure in hospitals.  

Genomic analysis of isolates from CA-MRSA and HA-MRSA cases indicates molecular 

differences beyond their drug susceptibilities.  For example, the chromosomal elements for 

CA-MRSA are smaller and more mobile than those commonly found in HA-acquired MRSA 

(SCCmec types I–III) [Cameron, et al, 2011; David & Daum, 2010].  The larger gene elements 

found in HA-MRSA strains are characterized by having reduced bacterial fitness and decreased 

toxin production [Collins, et al, 2010].  For example, the Panton-Valentine leukocidins (PVL) 

toxin is more prevalent in CA-MRSA strains.  There is also an increased expression of certain 

virulence determinants in CA-MRSA, such as phenol-soluble modulins (PSMs), which act as an 

aggravating factor causing more severe diseases [Wang, et al, 2007].  

              Although there are common diseases caused by both CA and HA MRSA strains, 

distinction can be identified to some degree by the types of infections observed.  For example, 

CA-MRSA is most commonly associated with skin and soft-tissue infections (SSTIs), e.g., 

abscesses and cellulitis whereas HA-MRSA causes more invasive infections, e.g., pneumonia, 

bacteremia and osteomyelitis [Watkins, et al, 2012].  The prevalence of CA-MRSA SSTIs in the 

United States has been reported to constitute 15-74%  of all known SSTIs [Khawcharoenporn, 

et al, 2010; Moran, et al, 2006], however, 80% of the invasive infections were caused by HA-

MRSA [Dantes, et al, 2013]. 

   1.2.3.1  Virulence Factors 

           CA-MRSA, particularly the USA 300 genotype, are well known for transmitting virulence 

genes including the PVL toxin through the staphylococcal cassette chromosome (SCC) which 
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confer a survival advantage to CA-MRSA strains.  It has been demonstrated in vitro that β-

lactam antibiotics induce the production of PVL as opposed to antibiotics like linezolid that 

block bacterial protein synthesis in which decreases the production of PVL [Bernardo, et al, 

2004].   

           PVL has been extensively studied as a virulence factor used by CA-MRSA to escape the 

host’s immune response. It is a bi-component exotoxin, encoded by lukF-PV and lukS-PV 

genes, and destroys the host’s leukocytes by forming pores in their membranes.  The genes 

encoding PVL were found in fewer than 5% of clinical S. aureus isolates before the emergence 

of CA-MRSA in the mid-1990s [David & Daum, 2010; Ma, et al, 2006].  During the early stages 

of MRSA epidemic development, researchers believed that PVL was the leading cause of the 

high-level virulence of CA-MRSA strains [Vandenesch, et al, 2003].  More recent evidence has 

questioned whether PVL is truly a major virulence determinant, considering that clones 

lacking PVL genes still show significant virulence [Otto, 2010].  Some experimental data 

including a meta-analysis study demonstrated that PVL expression is independently 

associated with skin and SSTI, but not necessarily with invasive infections [Shallcross, et al, 

2013] which have raised arguments/ controversy in regard to the role of PVL in pathogenicity.  

Additional virulence factors that have been recently scrutinized and may contribute to the 

pathogenesis of both CA-MRSA and HA-MRSA are α-toxin, arginine catabolic mobile element, 

superantigens and biofilms [Watkins, et al, 2012]. 

1.2.4    Evolution of MRSA 

             Resistance to methicillin and other b-lactam derivatives in MRSA is caused by the 

acquisition of the mecA gene on a transmissible genetic element (SCC).  This gene encodes an 

alternative penicillin-binding protein that has lower/reduced affinity for β-lactam antibiotics 

and consequently prevents these antibiotics from binding and inhibiting the synthesis of the 

bacterial cell wall.  In turn, this transpeptidase facilitates cell wall synthesis and growth of 

MRSA in the presence of b-lactam antibiotics.  

             Diversity of SCCmec has evolved through the horizontal transfer of mecA gene in 

independent situations.  To date, at least 11 types have been identified [Ito, et al, 2014].  It 

has been demonstrated that SCCmec (type I-VII) cause resistance to β-lactam antibiotics, 
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whereas SCCmec types II and III encode additional drug resistance genes to multiple classes 

of antibiotics include macrolide, lincosamide and streptogramin agents [Deurenberg & 

Stobberingh, 2009]. 

  1.2.4.1    MRSA Clonal Theory 

       Two opposing theories have been proposed to describe the relationship between the first 

MRSA evolved and MRSA clones that recently have been identified. The single-clone theory 

suggests the presence of a common ancestor for all MRSA clones and that the SCCmec was 

introduced once into S. aureus at one specific time.  On the other hand, the multi-clone theory 

hypothesizes that the SCCmec was introduced into multiple S. aureus lineages at different 

times [Deurenberg & Stobberingh, 2009].  

            It was believed that horizontal transfer would rarely occur due to the relatively large 

size of the mecA gene, and thereby all MRSA strains descended from a single clone and the 

SCCmec was acquired by S. aureus only once.  Clonal similarity between all MRSA isolates 

supports this theory.  However, modern molecular typing has revealed that the mecA gene is 

associated with multiple lineages of S. aureus and not restricted to a particular subgroup, 

which justifies the hypothesis that multiple horizontal transfers occurred in different clonal 

groups.  It has been reported that at least 20 occasions of SCCmec integration have occurred 

in different lineages of MRSA [Deurenberg, et al, 2007].  This multi-clone theory has since 

received more widespread support [Deurenberg & Stobberingh, 2009; Matouskova & Janout, 

2008].  

              The presence of multiple genotypes of MRSA colonizing European swine herds has led 

to the theory that swine may have served as a type of mixing carrier vessel between S. aureus 

and coagulase-negative Staphylococci before this form of bacteria was transmitted to humans 

thereafter[Pottinger, 2013]. 

 

 

1.2.5   MRSA Susceptibility to Vancomycin 

           Vancomycin had been the only available effective intravenous therapy for serious MRSA 

infections for decades.  This glycopeptide was discovered in 1952 and approved in 1958 by 
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the USA Food and Drug Administration (FDA) for treating MRSA and penicillin-resistant S. 

aureus infections in humans [Levine, 2006].  To date, vancomycin remains to be the first-line 

treatment for MRSA infections for over forty years.  However, the increasing prevalence of 

MRSA worldwide and the consequent increased consumption of vancomycin has since led to 

the emergence of MRSA phenotypes with reduced susceptibility to vancomycin.  These 

phenotypes include vancomycin-intermediate Staphylococcus aureus (VISA), hetero-resistant 

vancomycin-intermediate Staphylococcus aureus (hVIS), and vancomycin-resistant 

Staphylococcus aureus (VRSA).   Subsequently, reports of vancomycin clinical failures began 

to appear, thereby raising global alarms [Di Gregorio, et al, 2017; Hiramatsu, 1998; Howden, 

et al, 2010].  

 1.2.5.1  MRSA phenotypes with reduced susceptibility to vancomycin 

            The first reported S. aureus with reduced susceptibility to vancomycin was isolated in 

Japan in 1996 [Hiramatsu, et al, 1997].  This particular strain, known as Mu50, had an MIC of 

8 μg/ml vancomycin which interpreted as intermediate (non-susceptible) according to the 

Clinical Laboratory Standards Institute (CLSI) breakpoints [Clinical and Laboratory Standards 

Institute, 2015; Conly & Johnston, 2002].  Since 1997, a number of infections caused by VISA 

strains have been reported in France, Japan, the United States, Germany, and South Korea.  

These strains were recovered from patients who failed prolonged therapy (six to eighteen 

weeks) with vancomycin [Denis, et al, 2002; Weinstein & Fridkin, 2001].   

           A different category of vancomycin resistance in S. aureus was reported in Japan in 1997 

and given the term hVISA [Conly & Johnston, 2002; Hiramatsu, et al, 1997].  These strains are 

susceptible to vancomycin (MIC <4 μg/ml), but also contain subpopulations having the 

capability to grow at higher concentration of vancomycin (>4 μg/ml) and with a MIC of ≥8 

μg/ml.  Cases of hVISA have been reported in Europe, Asia and Brazil [Denis, et al, 2002].               

            Although the increased MIC to vancomycin falls within the susceptible range, clinical 

failures among patients with infections caused by MRSA isolates with MICs of 4 μg/ml have 

been reported [Holmes, et al, 2011; Lodise, et al, 2008; Park, et al, 2013].  This raised concerns 

about the clinical relevance/outcome of reduced susceptibility to vancomycin in S. aureus.  

CLSI, therefore, reduced vancomycin breakpoints for S. aureus from 4 μg/ml to 2 μg/ml in 
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2006 [Clinical and Laboratory Standards Institute, 2006; Holmes, et al, 2012].  Currently, VRSA 

and VISA are defined as MIC ≥16 μg/ml and 4-8 μg/ml respectively by the broth microdilution 

method.  

              Due to difficulties in confirming hetero resistance and the probability of treatment 

failure of vancomycin when MIC >2 μg/ml, both the British Society for Antimicrobial 

Chemotherapy and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 

consider S. aureus to be resistant to vancomycin when MIC is above 2 μg/ml [Holmes, et al, 

2012].   

  1.2.5.2    VISA and hVISA 

           Both VISA and hVISA strains belong to a restricted range of epidemic MRSA genotypes 

[Denis, et al, 2002].  The genetic and biochemical mechanisms behind their reduced 

susceptibility to vancomycin remain unknown.  However, VISA strains demonstrate thickened 

cell walls, less penicillin-binding protein and a slower growth rate [Hiramatsu, et al, 1997].   It 

has been suggested that intermediate susceptibility to vancomycin is mediated by cell wall 

thickening and reduced cross-linking, which thereby facilitates trapping the drug within the 

peptidoglycan layers of cell wall.  This prevents vancomycin from reaching the peptidoglycan 

precursor attached to the cell membrane [Maor, et al, 2007].     

           HVISA are known to be phenotypically susceptible by routine laboratory methods, such 

as broth micro-dilution, but contain subpopulations of vancomycin-intermediate “daughter” 

cells with proportions ranging from 1x105 to 1x106 cells [Maor, et al, 2007].   HVISA strains 

represent the first-step mutants that serve as precursors of VISA strains in patients 

undergoing prolonged therapy with vancomycin.  Recent studies have reported the rate of 

hVISA resistance among MRSA isolates ranged between 6% and 11% [Garnier, et al, 2006; 

Maor, et al, 2007]. 

           Vancomycin creates selective pressure favorable for the outgrowth of hVISA clones; 

continued exposure yields a uniform population of VISA clones [Liu & Chambers, 2003].  Yet, 

the lack of standardized criteria for identifying hVISA strains complicates the determination 

of their clinical significance and role in treatment failures.  However, uncontrolled studies on 

patients with hVISA infections demonstrated complicated clinical courses as well as high rates 
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of mortality attributed to the infection [Ariza, et al, 1999; Denis, et al, 2002; Howden, et al, 

2004].  One study comparing hVISA bacteremia to MRSA bacteremia indicated that patients 

with hVISA bacteremia were at a greater risk of having prolonged bacteremia and being less 

responsive to vancomycin [Charles, et al, 2004] 

  1.2.5.3    Vancomycin Resistant S. aureus (VRSA) 

           VRSA is a separate entity that entails the acquisition of the vanA gene, thereby 

conferring complete resistance to vancomycin in S. aureus.  VanA encodes an altered 

structure of peptidoglycan precursor, replacing the d-alanine-d-alanine structure with a d-

alanine-d-lactate.  This alteration precludes vancomycin from binding to the peptidoglycan 

precursor.  

            The earliest documented case of clinical infection caused by a fully vancomycin-

resistant S. aureus (MIC >32 µg/mL) was published in Michigan, USA in 2002.  Fortunately, 

VRSA infections have remained relatively rare.  To date, fourteen cases have been reported 

in the USA [McGuinness, et al, 2017]with additional cases documented in India and Iran 

[Azimian, et al, 2012; Banerjee & Anupurba, 2012; Chang, et al, 2003; Emaneini, et al, 2007; 

Saha, et al, 2008; Sievert, et al, 2008] 

           The first reported case of VRSA in the USA was isolated in April 2002 from a catheter 

exit site from a forty-year-old diabetic patient suffered from peripheral vascular disease and 

chronic renal failure, which necessitated hemodialysis.  This patient had chronic foot 

ulcerations which were treated in 2001 with multiple antibiotics including vancomycin.  In 

April 2002, the patient developed MRSA bacteremia following the amputation of his 

gangrenous toe.  He was treated with vancomycin for three weeks and rifampin for ten days.  

Two months later, he developed a catheter exit-site infection caused by S. aureus.  This strain 

was resistant to vancomycin (MIC >128 µg/mL) and oxacillin (MIC >16 µg/ml).  After 7 days, 

the patient developed an infection in his foot ulcer.  Multiple organisms were recovered from 

the ulcer culture including Klebsiella oxytoca, vancomycin-resistant Enterococcus faecalis 

(VRE) and VRSA.  The VRSA isolate had the vanA (vancomycin resistance gene) and mecA 

(oxacillin-resistance gene).  MIC were >128 µg/ml, 32 µg/ml and >16 µg/ml for vancomycin, 

teicoplanin and oxacillin respectively by broth microdilution testing [Chang, et al, 2003].   
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           The number of VRSA and VISA cases that have been reported thus far remain relatively 

small.  The associated risk factors and epidemiology of theses infection are still unclear. 

However, there is evidence that patients who are colonized with MRSA and have a prior 

exposure to vancomycin are at higher risk of developing a S. aureus infection with reduced 

susceptibility to vancomycin [Giri, 2012]. 

  1.2.5.4    MIC Creep 

             Further recent cases of poor clinical outcomes after vancomycin treatment have been 

reported in patients with S. aureus infections, where the vancomycin MIC is in the upper limit 

of the susceptible range (2 μg/ml) [Holmes, et al, 2012; van Hal, et al, 2012].  The existing 

literature provides inconsistent information in regard to the clinical outcome of vancomycin 

in patients infected by MRSA with high ‘susceptible’ compared to MRSA with ‘low susceptible’ 

MICs [Jacob & DiazGranados, 2013].  Some studies ruled out any significant association 

between higher MICs and poor outcomes [Crompton, et al, 2010; Liao, et al, 2008], whereas 

others have suggested an association between higher MICs and reported treatment failure 

[Maclayton, et al, 2006; Moise-Broder, et al, 2004; Neoh, et al, 2007; Sakoulas, et al, 2004; 

Soriano, et al, 2008].  A study undertaken by Moise et al indicated a 21% success rate of 

vancomycin treatment in bacteremia caused by MRSA with ‘high susceptible’ MICs (2g/ml) 

compared with 77% success rate of vancomycin treatment for bacteremia caused by MRSA 

with low ‘susceptible’ MICs (0.5 g/ml) [Moise, et al, 2007].  

              Between 2002 and 2006 some clinical centers observed a changing pattern of 

increased MICs within the susceptible range to vancomycin and cited this phenomenon as 

“MIC creep” [Sader, et al, 2009].  Creep is defined as a “gradual and unnoticed movement or 

shift” i.e., the mean of vancomycin MICs is gradually increasing for the dominant wild-type 

population [Sader, et al, 2009]. This observation demonstrates a drift in clinical isolates of S. 

aureus towards reduced susceptibility to vancomycin, but not necessarily a corresponding 

amount of resistance.  It also varies depending on the associated epidemiological and clinical 

factors of the study location.  Variable conditions include the differences in medical therapy 

of S. aureus infections, dosing of vancomycin, the severity of illness, and the used method of 

susceptibility testing.  Also, since susceptibility testing methods evaluate the MIC on a base of 
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2 logarithmic scale, this gradual shift may not be identified until the mode shifts to the next 

highest tested dilution. 

           Although MIC creep is limited and emerging very slowly [Sader, et al, 2009], its 

occurrence would raise a concern because such gradual loss of vancomycin activity may 

compromise the drug’s efficacy immediately and over time [Hidayat, et al, 2006; Kollef, 2007; 

Neoh, et al, 2007; Soriano, et al, 2008].   

            Published studies that have reported instances of vancomycin MIC creep in MRSA have 

indicated conflicting results [Sader, et al, 2009].  Data analysis in most studies was based on 

the measurement of the proportion of strains with vancomycin MIC of 1-1.5 µg/ml or on the 

comparison of MICs means during specified periods.  However, the high frequency of elevated 

MICs to vancomycin in the isolates tested does not reflect an increase in vancomycin MIC for 

the wild-type.  Moreover, the higher proportion of strains with vancomycin MICs of 1- 1.5 

µg/ml may be caused by an extensive use of vancomycin or dissemination of clones with 

reduced susceptibility to vancomycin when dealing with S. aureus.  Therefore, it is critical to 

differentiate between MIC creep and increased frequency of certain epidemic clones with an 

elevated MIC to vancomycin.  False perceptions of vancomycin MIC creep could be caused by 

an escalated emergence of clonal strains with elevated MICs (>1 μg/ml).  Rapid spread of these 

MRSA clones has been documented by Sader et al [Sader, et al, 2009].  In addition, combining 

data from multiple centers can obscure potential trends within a given institution or region as 

a result of differences in patient populations and drug usage patterns [Joana, et al, 2013]. 

 

 

 1.3   Antimicrobial Resistance 

          The principles of evolution make the rise of antibiotic resistance in microbial populations 

unavoidable. Antibiotic resistance can evolve naturally through random mutation and 

amplified by applying an evolutionary stress, like antibiotics, on a population [Gaude & 

Hattiholli, 2013].  Antibiotics eliminate drug-sensitive competitors from the population which 

then serves to leave the resistant residual bacteria to survive and proliferate, and thereby 

remain as the surviving population due to natural selection [Ventola, 2015].  In such a 
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scenario, a single bacterial mutant cell can benefit from the selection pressure applied by an 

antibiotic and resistance emerges.  

            Antibiotic resistance is considered when a drug loses its ability to effectively prevent 

the growth of pathogenic bacteria; thus, resistant bacteria continue to multiply in the 

presence of the drug and may result in greater illness severity or complications.  Moreover, 

bacteria may collect multiple resistance traits over time, in the course of which they gain 

resistance towards multiple classes of antibiotics.  It is a matter of concern that the problem 

of resistance is steadily increasing globally and the available therapeutic options for certain 

infections have become limited [Zaman, et al, 2017]. 

   1.3.1    Surveillance Data 

        An estimated 25,000 patients die every year in Europe due to infections caused by multi-

drug resistance bacteria [Colomb-Cotinat, et al, 2016].  Similarly in the USA, at least 23,000 

people die from similar infections every year in addition to a substantial economic impact of 

an extra $20 billion yearly [Demirjian, et al, 2015].  Recent reports estimate that deaths from 

drug-resistant infections will increase from 700,000 to 10 million by 2050, with an associated 

cost of $100 trillion [Jasovsky, et al, 2016]. 

   1.3.2    Selection of Resistance 

           Developing resistance to a particular antibiotic may also select resistance (cross-

resistance) to other compounds belonging to the same class.  For instance, resistance to 

tetracycline may cause resistance to oxytetracycline, chlortetracycline, doxycycline and 

minocycline [Zaman, et al, 2017].  The level of antibiotic-resistance is also strongly correlated 

with the dosage and duration of antibiotic therapy.  Development of antibiotic resistance is 

expedited by the overuse and misuse of antibiotics.  This includes unnecessary prescription, 

suboptimal dosing, inappropriate drug choice, self-medication, and non-compliance with the 

(prescribed) antibiotic regimen.  

           Antibiotics used in food animals may also select for resistance to antibiotics used in 

humans because resistance to antibiotics in both humans and animals occurs by similar 

mechanism, which constitutes a grave concern to the World Health Organization [World 

Health Organization, 2017].  There is a demonstrable association between antibiotic 



 

13 

 

consumption in animals and the presence of commensal organisms resistant to the same 

antibiotic class in humans [Chantziaras, et al, 2014].  A recent report issued in Europe in 2017 

identified that resistance to fluoroquinolones in humans in Salmonella and Campylobacter 

bacteria was due to the consumption of fluoroquinolones in animals with the potential of 

other factors being included as well [European Medicines Agency, 2017].  Although many 

antibiotics are solely designed for veterinary use the majority have similar structures to 

antibiotics used in humans [Heuer, et al, 2009; Swann, 1969].  In the USA, 62% of the 

antibiotics used in animals represent structurally related compounds that are considered 

“medically important” for human therapy [Laxminarayan, et al, 2013].  

            Moreover, large amounts of antibiotics are used in the agricultural sector worldwide 

to supply the needs (eggs, meat, dairy products) of a rapidly growing human population 

[Rassow & Schaper, 1996; Roura, et al, 1992; Vazquez-Moreno, et al, 1990].   In 2015, the FDA 

estimated the nation's annual antimicrobial consumption in food animals to be approximately 

80%, with 74% being administered non-therapeutically as growth promotors [Food and Drug 

Administration, 2016].   

            In the 1940s, it was observed that animals that consumed dried mycelia of 

Streptomyces aureofaciens containing chlortetracycline residues increased their rate of 

growth; thus, the growth promoting effect of antibiotics was recognized [Modi, et al, 2011].  

In 1951, the FDA approved the use of antibiotics, without prescriptions, as additives for animal 

feed [Jones & Ricke, 2003].  In 1969, the British government started to restrict the use of 

antibiotic growth promoters (AGPs) in order to reduce the risk of resistance developing to 

human antibiotics.  That said, in the 1990s, vancomycin-resistant Enterococcus (VRE) was 

identified in European patients due to the use of avoparcin as a growth promoter.  As a result, 

the European Union (EU) banned avoparcin and between 1999 - 2006 they banned additional 

AGPs that are medically important in human medicine [Cogliani, et al, 2011].  In 1986, Sweden 

became the first country to withdraw AGPs in food animal production.   

            More recently, the FDA established new regulations in 2017 to limit the use of 

antibiotics in farm animals and banned the use of “medically important” antibiotics as AGPs 

in animal husbandry [Brussow, 2017].  The increasing concern about antimicrobial resistance 
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in recent years has likewise led Health Canada to apply certain changes in regard to the 

accessibility to veterinary antibiotics.  As of December 1st, 2018, a prescription will be required 

from all livestock producers in order to buy antibiotics for therapeutic use in animals.  

Moreover, veterinary drug manufacturers will voluntarily be removing growth promotion 

claims on their antimicrobial products.  Health Canada made these policy changes to reduce 

the development of antimicrobial resistance in animals and to promote the responsible use 

of antimicrobials in animals [Canadian Animal Health Institute, 2018; Food and Drug 

Administration, 2016]. 

1.3.3   Development of Resistance 

            Some bacteria are naturally resistant, through their inherent characteristics, to certain 

antimicrobial agents.  This natural ability is known as intrinsic resistance and is mediated by 

innate mechanisms.  For example, mycoplasma species are naturally resistant to β-lactams 

due to the absence of the drugs’ target site (peptidoglycan),i.e. mycoplasmas do not have a 

cell wall [Marinescu, et al, 2017].  

            Bacteria can also exhibit antimicrobial resistance through spontaneous mutations (de 

novo) in genes encoding drug targets or acquire resistance through horizontal gene transfer 

(encoding a resistance gene) from donor bacteria, phages, or free DNA [Sharma, et al, 2016].  

Brown reported horizontal gene transfer as a major factor for the acquisition of antibiotic 

resistance in clinical isolates [Brown, et al, 2003].  Foreign DNA can also enter the bacterium 

on plasmids via cell-to-cell contact (conjugation) by bacteriophage (transduction) or by 

cellular uptake of naked DNA (transformation).  Conjugation has been considered the most 

important mechanism for the dissemination of antibiotic resistance genes.   

           Acquired resistance involves genetic exchanges that could lower susceptibility to the 

extent that resistance arises in a single step, unlike de novo resistance which develops in a 

gradual and stepwise manner by the accumulation of mutations that lower susceptibility by 

slight increments [Drlica, 2003]. 

  1.3.3.1   Mechanisms of Resistance in Bacteria 

            Both the acquired and de novo resistance enable a bacterium to resist the antibiotic 

through one of the following mechanisms: 1) by acquiring a mutation that limits the access of 
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drug via down-regulating porin genes,2) by acquiring genes encoding destructive enzymes 

which inactivate the drug, 3) by acquiring genes encoding efflux pumps that expel the 

antibiotic before reaching the target site or 4) by acquiring genes encoding altered binding 

sites [Tenover, 2006]. 

 

1.4 Tolerance 

            In contrast to acquired resistance, non-inherited resistance is phenotypic, transient 

and reversible, where bacterial subpopulations become transiently resistant to the drug’s 

action even though they are genetically homogeneous and susceptible to the antibiotic.  

Different forms of non-inherited resistance, such as persistence and tolerance, could extend 

the duration of antimicrobial therapy and cause treatment failure in patients undergoing 

treatment [Levin & Rozen, 2006] 

1.4.1    Tolerance versus Resistance 

            Resistance describes the ability of bacteria to grow and multiply at high/lethal 

concentrations of an antibiotic and it is measured by the MIC whereas tolerance describes the 

ability of bacteria to survive at high concentrations of drug while the MIC remains the same.  

Tolerance, as defined by Kester and Fortune “enables bacterial cells to survive a transient 

exposure to antibiotics at lethal concentrations” [Kester & Fortune, 2014]. Tolerance can 

occur against bactericidal antibiotics, but not with bacteriostatic agents where bacteria arrest 

their growth and are expected to survive the transient exposure to a non-lethal drug [Brauner, 

et al, 2016]. 

           Tolerance may be acquired through a genetic mutation or encouraged by 

environmental conditions such as poor growth conditions or antibiotic administration. 

Lederberg and Zinder utilized the poor growth environment to generate tolerance and isolate 

auxotrophic mutants, where non-growing auxotrophs only survived after exposing the 

bacterial population to penicillin in a medium lacking a necessary amino acid for bacterial 

growth [Lederberg & Zinder, 1948].  Antibiotic application can also induce a non-growing state 

(drug-induced tolerance), which protect the bacteria from the bactericidal activity of the 

drugs.  
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           This phenomenon has been observed in a number of bacterial species, such as S. 

pneumoniae and S. aureus, against antibiotics that interfere with cell-wall synthesis such as 

glycopeptides and β-lactams [Levin & Rozen, 2006].  Studies show that vancomycin tolerance 

often occurs in staphylococci and more often in strains with reduced vancomycin 

susceptibility, such as VISA and hVISA [Jones, 2006; Rose, et al, 2012].   

1.4.2    Persistence 

           Persistence is observed when the majority of the bacterial population are killed rapidly, 

while a small subpopulation persists for a much longer period of time due to slow growth or 

dormancy [Brauner, et al, 2016].  In 1994, Bigger observed this property and coined the term 

‘persisters’ to indicate the survivors.  He recognized that when treating S. aureus with high 

concentrations of penicillin a small fraction survived (<106) [Bigger, 1944] and when the drug 

was removed, this fraction re-grew and was as sensitive to penicillin as the wild type.  He 

demonstrated the persisters’ dormancy by exposing the bacterial population to penicillin in 

non-nutritive medium, where the drug did not effectively kill all the cells and their regrowth 

in a rich medium was delayed.  

 

1.5    Antimicrobial Agents 

1.5.1    Mechanism of Antibiotics 

            Antimicrobial agents are categorized based on their principal action mechanism. 

Antibiotics target essential cellular processes causing growth delay and death of bacterial cells 

using various mechanisms.  These mechanisms include interference with cell wall synthesis, 

interference with nucleic acid synthesis, inhibition of intermediary metabolic pathways, 

inhibition of protein synthesis and disruption of the cytoplasmic membrane [Richardson, et 

al, 2001].   
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Figure  1.5.1.1  Antibiotic targets and mechanisms of action [Richardson, et al, 2001]. 

1.5.2    Glycopeptides 

            Glycopeptide antibiotics are frequently used in the treatment of life-threatening 

infections caused by MRSA and other Gram-positive pathogens.  First generation glycopeptide 

antibiotics, including teicoplanin and vancomycin, are natural products produced by 

Actinomycetes species and composed of glycosylated non-ribosomal heptapeptides.  The 

antibacterial activity of this class is initiated by the interaction with dipeptidyl residues of 

peptidoglycan precursors in the bacterial cell wall to inhibit its formation. 

1.5.2.1   Vancomycin 

            Vancomycin is a relatively large glycopeptide, with a molecular weight of 1,485.7 Da 

and is derived from Nocardia orientalis.  It has time-dependant bactericidal activity against 

most Gram-positive bacteria such as Streptococci, Staphylococci, Corynebacteria, Clostridia, 

Listeriae and Bacillus species.  Unlike b-lactams antibiotics, vancomycin does not inhibit the 

enzymatic activity involved in cell wall synthesis but rather blocks the substrates for cell wall-

synthesizing machinery, i.e., the D-alanyl-D-alanine residue (DDR) of the lipid II precursor. 

Therefore, it inhibits the use of the substrates by the glycosyltransferase enzyme, preventing 

the production of the nascent peptidoglycan chain [Hiramatsu, 2001]. 
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            For over five decades, vancomycin has been considered as the cornerstone and first-

line agent for treating MRSA, Gram-positive b-lactams–resistant bacteria, and sensitive Gram-

positive bacteria in patients allergic to penicillin. 

            Although vancomycin has limited bacterial resistance to vancomycin among Gram-

positive bacteria [Geraci, et al, 1958] has been seen to date, there are major concern about 

the decreased susceptibility of this agent in S. aureus [Choo & Chambers, 2016].  In addition, 

suboptimal results (i.e., a slower bactericidal activity) have been demonstrated in patients 

with MSSA infections being treated with vancomycin in comparison to treatment with b-

lactams [Crotty, et al, 2016].  Further issues include the challenges of dose adjustments, drug 

monitoring and associated toxicity that complicate the use of vancomycin in certain settings 

[Crotty, et al, 2016].  

            Vancomycin can be administered intravenously for treatment of systemic infections 

through home IV programs or hospitalization.  The standard infusion time for its 

administration is set to minimize infusion-related adverse effects such as Red Man's 

Syndrome  [Levine, 2006].  During this reaction, histamine is released from mast cells leading 

to generalized flushing, pruritus and an erythematous rash.   

              The pharmacokinetic profile of vancomycin is complex as it has a variable tissue 

distribution and may be influenced by the patient’s conditions such as renal function, age, 

body weight and type of infection.  This agent is eliminated primarily by glomerular filtration 

(renal route), with over 80% recovery in urine during the first 24 hours of a single dose, 

therefore, renal dysfunction is a major factor affecting the pharmacokinetics of vancomycin. 

Toxicity/nephrotoxicity is another major issue due to the narrow-therapeutic index for 

vancomycin i.e., the therapeutic and toxic doses are in close proximity.  For this reason, 

vancomycin therapy requires weekly drug monitoring of serum trough concentrations along 

with monitoring of serum creatinine, blood urea nitrogen and a complete blood count [Bauer, 

2008]. 

             Achieving the appropriate dose of vancomycin to treat S. aureus infections could be 

difficult considering the pharmacokinetic/pharmacodynamic complexity in addition to the 
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clinical impact of vancomycin MIC creep and hetero resistance subpopulations among MRSA 

strains. 

 1.5.3    Oxazolidinones 

        The oxazolidinones (linezolid and tedizolid) represent a novel class of antibacterial agents 

that have a unique structure (containing 2-oxazolidine) and potent activity against susceptible 

and multidrug-resistant Gram-positive bacteria.  Oxazolidinones exhibit their antibacterial 

effects by binding to the bacterial ribosome and preventing the formation of the 70S initiation 

complex; thus, inhibiting bacterial protein biosynthesis.  

  1.5.3.1    Linezolid 

            Linezolid was the first oxazolidinone that served as an alternative to vancomycin. This 

agent inhibits the synthesis of bacterial proteins by binding to 23S rRNA in the catalytic site of 

the 50S ribosome. It is classified as bacteriostatic with significant post antibiotic effect (PAE), 

i.e. continuous effect of drug’s action when its concentration dropped below the MIC.   In 

April 2000, it was approved by the FDA for treating community-acquired and nosocomial 

pneumonias and SSTIs caused by MRSA [Watkins, et al, 2012].  It has shown superior efficacy 

over vancomycin in treating complicated skin and soft-tissue infections (SSTIs) and was also 

evaluated for treating bacteremia as an alternative to vancomycin [Shorr, et al, 2005].  

           Due to the unique formulation and full bioavailability of linezolid, it offers the option of 

being administrated orally.  It is characterized by good penetration and accumulation in 

various tissues including skin, bone, lung, hematoma and cerebrospinal fluid which increases 

the range of infections that can be treated by linezolid.  Moreover, patient conditions such as 

age and sex have no significant effect on the pharmacokinetics of this drug.  Its clearance is 

not dependent on hepatic enzyme action and thereby dosage adjustments are unnecessary 

for patients with hepatic insufficiency [Birmingham, et al, 2003]. 

          Side effects of linezolid are reported to be mild such as diarrhea, nausea and headaches.  

Laboratory abnormalities include anemia and thrombocytopenia, which might be aggravated 

by liver disease.  Longer treatments (over 28 days) can be associated with more serious 

adverse events such as lactic acidosis, irreversible peripheral neuropathy and optic neuritis.  
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It is also associated with serotonin toxicity when used concomitantly with other serotonin 

releasing agents [Watkins, et al, 2012]. 

             Resistance to linezolid is rare, though the involvement of the cfr gene in conferring 

resistance was recently discovered [Zhanel, et al, 2015].  This finding is a matter of concern 

because this gene is horizontally transferable and therefore, a high potential for its 

widespread dissemination exists.  However, another study reported the rate of linezolid 

resistance among MRSA strains in the USA to be as low as 1%, which has been stable since 

2006 [Flamm, et al, 2012; Watkins, et al, 2012].  A recently published surveillance study has 

reported <1% resistance rates to linezolid observed in Africa, Asia, Europe, North America and 

South America between 2014 and 2016 [Seifert, et al, 2018].  

  1.5.3.2    Tedizolid 

             Tedizolid is a second generation oxazolidinone that has been engineered to improve 

the efficacy and bioavailability over linezolid with less toxicity.  Tedizolid inhibits protein 

synthesis in a similar mechanism to linezolid.  In terms of their structural difference, linezolid 

lacks the D-ring found in tedizolid, which offers greater interaction with additional sites on 

bacterial ribosomes and consequently increases of antimicrobial potency of tedizolid [Shaw 

& Barbachyn, 2011; Shaw, et al, 2008].  Additionally, it has an added phosphate which 

increases its bioavailability and water solubility. 

             Tedizolid has notable activity against Gram-positive bacteria including MRSA including 

linezolid-resistant strains.  It has been approved in Canada, USA, EU and some other countries 

for treating acute bacterial skin and skin structure infections (ABSSSI) [McCool, et al, 2017].  

Choi and colleagues showed in vitro that tedizolid has four-fold greater potency compared to 

linezolid against penicillin-resistant S. pneumoniae [Bassetti, et al, 2013; Choi, et al, 2012].  It 

has also been demonstrated in vitro that tedizolid has a 4-16 fold higher activity than linezolid 

against MSSA, MRSA, Streptococci and Enterococci [Burdette & Trotman, 2015]. 

              The pharmacokinetic characteristics of tedizolid allow for a single dose per day, which 

offers similar efficacy and a better safety profile than does twice daily linezolid.  It has been 

published that a 6-day course of tedizolid (200 mg once daily) is as effective as a 10- day course 

(600 mg twice daily) of linezolid in the treatment of ABSSSI [Joseph, et al, 2017]. Furthermore, 
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tedizolid is metabolized predominantly in the liver with 82% eliminated in feces and 12% in 

urine.  For this reason, no dosage adjustment is needed for patients with renal or hepatic 

impairment [Crotty, et al, 2016]. 

          Apart from nausea and headache, no major side effects were reported to tedizolid in 

clinical trials.  Also, no hematological adverse effects have been reported for the therapeutic 

dose of tedizolid.  Additionally, it does not inhibit monoamine oxidase in vitro, and therefore 

there are no potential interactions with serotonergic drugs which provides a safer dosage 

regimen [Crotty, et al, 2016].  

             Although such newer drugs may offer some advantages over vancomycin, they 

generally are bacteriostatic against MRSA and have significant limitations.  Time-kill studies 

have indicated bacteriostatic activity of tedizolid against enterococci, staphylococci and 

streptococci [Crotty, et al, 2016].  Superior efficacy of newer agents compared to vancomycin, 

as far as treatment of serious MRSA infections is concerned, has only been demonstrated in 

limited studies.  Therefore, vancomycin remains the treatment of choice for severe MRSA 

infections. 

 1.5.4     Pharmacodynamic Approach 

            Pharmacokinetic (PK) and pharmacodynamic (PD) principles are important to optimize 

the antimicrobial therapy through investigating various factors include the onset, magnitude 

and duration of the drug response [Finberg & Guharoy, 2012].  The pharmacokinetic profile 

of a drug outlines the time course of drug concentration in the body and describes its 

absorption, distribution, metabolism and elimination, whereas pharmacodynamics describes 

the impact of the drug plasma concentration on the pathogen and patient by monitoring the 

drug concentrations in plasma at different time intervals and also measuring the volume of 

distribution and clearance of the drug.   The integration of PK/PD helps to assess the 

interactions between a pathogen, host and antimicrobial agent as well as to define the 

effective dosage regimens and required duration of antimicrobial therapy [Finberg & 

Guharoy, 2012]. 

              Some drugs such as quinolones and aminoglycosides are known as concentration-

dependent agents because as the drug concentration increases, the rate and extent of the 
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bactericidal activity increase correspondingly [Ambrose, et al, 2007].  In addition, these agents 

have a prolonged post-antibiotic effect (PAE).  The efficacy of these antibiotics is determined 

by the peak concentration (Cmax) and area under the concentration curve (AUC). For this 

group, concentrations of ten times the MIC (at least) have been suggested to achieve optimal 

bactericidal effect [Quintiliani, 2004]. 

           On the other hand, agents like glycopeptides and β-lactams display a time-dependent 

pattern of bactericidal activity that occurs over a narrow range of drug concentrations (2 to 4 

times the MIC) and depends largely on the exposure periods.  The optimal bactericidal effect 

of these agents obtained when drug concentrations are maintained above the minimum 

inhibitory concentration (MIC) for prolonged periods of the dosing intervals [Barger, et al, 

2003].  This group also tends to have minimal PAE [Levison, 2004].  

             A third group consists of bacteriostatic agents, like linezolid, and is characterized by 

moderate to prolonged PAE. Their efficacy is determined by the area under the drug 

concentration curve (AUC) and AUC to MIC ratio [Al-Dorzi, et al, 2014]. 

   

Figure 1.5.4.1:  Pharmacokinetic and pharmacodynamic parameters [Al-Dorzi, et al, 2014]. 
AUC= area under the curve; Cmax=peak antibiotic concentration; MIC=minimum inhibitory concentration. 

AUC/MIC ratio measurement for time and concentration dependent antibiotics; Cmax/MIC ratio measurement for 

concentration-dependent antibiotics; T>MIC measurement for time-dependent antibiotics. 
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1.6    Susceptibility Testing 

            Antimicrobial susceptibility testing (AST)  methods are standardized and updated 

annually by the CLSI in the USA and the EUCAST in Europe [Schofield, 2012].  These methods 

serve as therapeutic guidance tool to confirm susceptibility to drugs of choice for particular 

pathogens and to detect possible drug resistance, especially with species that may possess 

acquired resistance mechanisms (e.g., members of the Enterobacteriaceae, Pseudomonas 

species, Staphylococcus species, Enterococcus species and Streptococcus pneumoniae) 

[Jorgensen & Ferraro, 2009]. According to CLSI standards, only clinically problematic 

pathogens are tested. 

            The AST can be performed using qualitative methods, like conventional disk diffusion 

(Kirby-Bauer) or quantitative methods such as broth dilution, agar dilution, antimicrobial 

gradient (e.g., the E-test, AB Biodisk) or by employing semi-automated instrumentation.  

Dilution methods are used to determine the MICs of antimicrobial agents and are considered 

the reference method for testing antimicrobial susceptibility [Jorgensen & Ferraro, 2009].  

They measure the micro-organisms’ ability to produce visible growth in broth (so called broth 

dilution) or on agar plates (agar dilution) against various concentrations of the drug, usually 

in doubling dilutions.  Broth microdilution is the most widely used method; however, for 

fastidious bacteria such as Campylobacter species that require special culture media, agar 

dilution is applied [Sykes & Rankin, 2012]. 

1.6.1 Minimum Inhibitory Concentration (MIC) 

             MIC is defined as “the lowest drug concentration that will inhibit the visible growth of 

an organism in broth”  based on utilizing a standardized bacterial inoculum of 105 CFU/ml 

[Andrews, 2001].   MIC testing is the ‘gold’ standard of susceptibility testing and serves as an 

indicator for the accuracy of all other methods of susceptibility testing.  It assists physicians 

to make better decisions in selecting ideal treatments.  It is also used to confirm unusual 

resistance or to confirm a borderline result of other methods of testing.  Data studies and 

trials on MIC determination have been used to determine susceptibility breakpoints and have 

served as a guidance for the management of most patients with infectious diseases [Andrews, 

2001].  
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           The broth micro-dilution technique is performed in microtiter plates with a capacity of 

<500 µl per well.  Bacteria are inoculated into a broth culture medium in the presence of 

different concentrations of an antimicrobial agent (doubling dilutions).  Visual growth of 

bacteria is assessed after overnight incubation (16-20 h) under ambient conditions and the 

MIC value is defined [Wiegand, et al, 2008].  Similarly, agar dilution involves the incorporation 

of different concentrations of the drug into agar medium, followed by inoculating plates with 

a standardized number of bacterial cells of interest. 

   The MIC value is designated as being susceptible, intermediate or resistant based on 

the established breakpoints.  Results are generally accepted within one doubling dilution (i.e., 

+ or - dilution of the end point).  MIC values below the breakpoint typically indicate an 

organism’s susceptibility to the drug which represents a good prediction for a favourable 

outcome.  On the contrary, high MIC values represent resistance and predict unfavourable 

outcomes, although the correlation of in vitro susceptibility to clinical outcomes is not 100% 

accurate. 

 

1.6.2 Mutant Prevention Concentration (MPC) 

MPC determines the drug concentration that is required to block the growth of the least 

susceptible (single-step mutant) cell in a bacterial population based on an inocula of >109 CFU.  

The rational for selecting ≥109 cells is to ensure that the bacterial population is large enough 

for mutant subpopulations to be detected.  Also, it’s rare for infections to contain more than 

1010 organisms, and testing a higher number of cells is often difficult [Drlica, 2003].  In the MPC 

method, 109 CFU of a bacterial suspension is applied to multiple blood agar plates prepared 

with different antimicrobial concentrations.  The MPC is identified as the lowest drug 

concentration preventing 100% visible growth and recorded following 24 and 48 hours of 

incubation under ambient conditions. 

              This novel measurement of in vitro antimicrobial activity was described by Dong et al 

as “minimal concentration of antibiotic that will prevent the selection of first step resistant 

mutants from a large  bacterial inoculum” [Dong, et al, 1999].  It has been published that 

spontaneous mutations evolve in bacterial inocula that range between 107- 109 bacterial cells 
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[Komp Lindgren, et al, 2003].  Therefore, spontaneous mutations are expected to occur in 

bacterial populations ≥109 CFU.  However, it would normally not be detected by the lower 

inoculum used in traditional susceptibility testing.  

               Consequently, isolates considered susceptible by MIC testing may contain an 

undetected subpopulation of resistant cells.  Blondeau et al demonstrated that first-step 

resistant mutants may be present in a bacterial population despite the fact that the organism 

was deemed susceptible by routine susceptibility testing methods [Blondeau, et al, 2001; 

Hansen, et al, 2003; Metzler, et al, 2004]. 

                Blondeau et al reported MPC results for Streptococcus pneumoniae isolates that were 

fluoroquinolone susceptible by MIC testing.  Greater than 20% of more than 100 strains 

indicated higher MPC values than the susceptible breakpoints  [Blondeau, et al, 2001].  An 

observation was reported by Lim et al who showed 59% (48/82) of pneumococcal strains with 

MICs of 2 µg/ml (susceptible) to levofloxacin contained a first step parC mutation [Blondeau, 

et al, 2006; Lim, et al, 2003]. 

 A group of select studies comparing MIC and MPC values for various pathogens and 

antibiotics is summarized in Table 1.6.2.1 

Table 1.6.2.1:  Comparison studies of MIC and MPC values for various pathogens and 
antibiotics. 

Antibiotic N MIC90 MPC90 References 

 Streptococcus pneumoniae 

Moxifloxacin 100 0.25 4 [Blondeau, et al, 2001] 

 Levofloxacin 100 1 4 

Azithromycin 177 0.125 4 [Blondeau, et al, 2006] 

Clarithromycin 206 0.063 1 

Erythromycin 201 0.125 2 

Tigecycline 47 0.031 0.5 [Hesje, et al, 2015] 

 Staphylococcus aureus MSSA 

Levofloxacin 1 0.125 1 [Allen, et al, 2004] 

Moxifloxacin 1 0.015 0.25 
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Cefazolin 26 2 64 [Blondeau & Metzler, 

2005] Cloxacillin 26 0.25 2 

Vancomycin 26 1 4 

Tigecycline 50 0.125 1 [Hesje, et al, 2015] 

Ciprofloxacin 4 0.5 2 [Hedlin & Blondeau, 

2004] 

 Staphylococcus aureus MRSA 

Ciprofloxacin 1 0.125 1 [Allen, et al, 2004] 

Levofloxacin 1 0.125 0.5 

Moxifloxacin 1 0.063 0.125 

Cefazolin 24 16 512 [Blondeau & Metzler, 

2005] Cloxacillin 24 32 >512 

Vancomycin 24 1 8 

Tigecycline 50 0.5 4 [Hesje, et al, 2015] 

 Haemophilus influenzae 

Ciprofloxacin 31 0.016 0.5 [Metzler, et al, 2004] 

Ofloxacin 31 0.031 0.5 

Levofloxacin 31 0.016 0.125 

Gatifloxacin 31 0.031 0.125 

Moxifloxacin 40 0.031 0.25 [Blondeau & Borsos, 

2007] Gemifloxacin 40 0.008 0.125 

Azithromycin 40 2 32 

Telithromycin 40 2 16 

Clarithromycin 40 8 ≥64 

Cefuroxime 40 16 ≥16 

 Citrobacter freundii 

Ciprofloxacin 20 0.125 2 [Hansen & Blondeau, 

2005] Levofloxacin 20 0.5 2 
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Garenoxacin 20 4 8 

 Enterobacter cloacae 

Ciprofloxacin 20 ≤0.06 1 [Hansen & Blondeau, 

2005] Levofloxacin 20 0.125 4 

Garenoxacin 20 1 >8 

 Klebsiella pneumoniae 

Ciprofloxacin 20 ≤0.06 1 [Hansen & Blondeau, 

2005] Levofloxacin 20 1 2 

Garenoxacin 20 0.25 4 

Moxifloxacin 18 0.25 ≥2 [Blondeau, et al, 2007] 

 Pseudomonas aeruginosa 

Ciprofloxacin 20 1 4 [Blondeau, et al, 2007] 

Levofloxacin 20 4 16 

 Escherichia coli 

Ciprofloxacin 20 ≤0.06 0.05 [Sievert, et al, 2008] 

Levofloxacin 20 ≤0.06 1 

 

            In all instances MPC values are higher than MIC values.  Differences are noted between 

antibiotics within the same drug class. Therefore, MPC cannot be assumed from an MIC 

measurement.  Drlica et al showed that R2 values were usually below 0.8, when MIC and MPC 

values for a number of bug-drug combinations were compared [Drlica, et al, 2006].  As such, 

an MPC must be measured and not assumed or predicted.  

Even though Smith et al suggested that MPC testing does not apply to many 

antimicrobial drug classes, in which horizontal gene transfer represents the main mechanism 

of resistance [Smith, et al, 2003], MPC can be measured for all bug-drug combinations to 

determine the drug concentrations blocking novel resistance that may arise by point 

mutations. Moreover, multiple reports have documented differences in MIC and MPC values 

for antimicrobial agents against bacteria where the major mechanism of resistance was a 

transmissible resistance element [Blondeau, 2009; Hesje, et al, 2007]. 
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            Furthermore, high bacterial burdens have been identified in humans during various 

infectious such as meningitis, respiratory and urinary tract infections. Frisch et al confirmed 

these findings by reporting a bacterial load of 1010-1012 organisms to be present during 

community-acquired pneumonia. Another report by Fagon et al identified bacterial densities 

of H. influenzae and S. pneumoniae to exceed 107 CFU/ml during bronchitis [Fagon, et al, 1990; 

Frisch, et al, 1942].  Accordingly, resistant subpopulations are most likely to be present in these 

infections and these could be enriched during treatment [Metzler, et al, 2013]. 

                 Dosing choices based on MPC drug concentrations would theoretically prevent the 

selective amplification of the resistant subpopulation during infections.  Hence, MPC testing 

may offer better guidance for optimal antimicrobial therapy. Yet there is no clinical study 

evaluating the quantitative relationship between in vivo and in vitro values [Drlica, 2003]. 

Besides, some MPC values for various drug-bug combinations are beyond realistically 

achievable drug concentrations with the currently approved dosing and higher drug dosages 

may result in unacceptable toxicities. 

  1.6.2.1    Mutant Selection Window (MSW) 

The mutant-selection window (MSW) defines the drug concentration zone, or “danger 

zone”, where selective amplification of resistant mutants may occur [Blondeau, 2009].  The 

MPC value represents the upper boundary of this MSW, whereas the lower boundary is 

defined by the MIC, or lowest drug concentration inhibiting the growth of susceptible cells.  

It has been demonstrated in vitro that when drug concentrations exceed the MPC, both 

susceptible and mutant organisms are inhibited.  Above this concentration, cell growth 

requires at least the presence of two simultaneous resistance mutations and growth is 

therefore rarely expected to occur [Iseman, 1994; Zhao, et al, 1997].  Consequently, 

maintaining the dose above the MPC during the entire dosing interval would prevent 

resistance selection. However, concentrations above the MPC for certain drugs cannot be 

reached  due to toxicity limits [Olofsson & Cars, 2007]. 

           On the other hand, susceptible cells are likely to be inhibited when drug concentrations 

fall within the MSW, as the drug concentration is in excess of the MIC. However, mutant cells 

will continue to proliferate while the drug concentration is below the MPC, which suggests 
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that therapeutic drug concentrations would possibly induce the amplification of mutant cells 

during infections [Hesje, et al, 2007].  The longer the antibiotic remains within the MSW, the 

greater likelihood for resistant mutants to be selected and amplified. Therefore, reducing this 

time by choosing compounds with narrower MSWs, for instance, may reduce the likelihood 

for resistance selection during therapy.  

 For time-dependent antimicrobial agents, doses are commonly adjusted to achieve 

antibiotic plasma concentrations above the MIC for the respective pathogen throughout the 

dosing interval [Mueller, et al, 2004].  Yet, the traditional recommendations concerning 

dosing, which is to exceed the MIC, would probably place drug concentrations within the 

selection window where they will act for the enrichment of resistant mutant subpopulations.  

Low drug concentrations, on the other hand, allow for pathogen population to multiply, and 

consequently promote the generation of new mutants over time.   

1.6.3 Time Kill Curve 

            Previous methods (MIC and MPC) were established to measure the inhibition of 

bacterial growth, rather than the degree of bacterial killing.  Time kill assays are used to assess 

the killing activity of an antimicrobial agent against a particular pathogen over time and 

provides a detailed assessment of the PK-PD relationships.  This method is standardized and 

has been described in multiple papers [Blondeau, et al, 2006; Blondeau, et al, 2012; Blondeau, 

et al, 2015], where a bacterial culture is grown at 5 × 105 - 5 × 106 CFU/ml and treated with 

antibacterial agents. Viable cell numbers are then determined at different time intervals.  

Bactericidal activity is defined as ≥3 log10 decrease in CFU/ml at 24 h following drug exposure 

[Haas, et al, 2010].  

            Time-kill in vitro models consider both drug concentration and time course of 

antibacterial effects and by this approach can be conducted with constant antibiotic 

concentrations or variable antibiotic concentrations.  Determination of  the degree of killing 

at various bacterial densities provides more in-depth information about the in vitro 

performance of an agent, especially when the bacterial burden varies throughout the course 

of infection [Blondeau, et al, 2006].  Such a dynamic PK-PD approach is more rational in 

providing a description of drug-bacteria interactions [Mueller, et al, 2004].  
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          Measuring in vitro killing is also important for differentiating bacteriostatic from 

bactericidal antimicrobial which is critical when determining how to treat complicated 

infections and infections in immunosuppressed patients.  Bacterial eradication has been 

linked to clinical outcomes in respiratory infections [Dagan, et al, 2001].  Complete and rapid 

killing of bacteria may impact clinical outcome significantly by reducing duration of therapy, 

probability for relapse, and occurrence of  selection for resistance [Blondeau & Shebelski, 

2016].  

 

 

 

 

1.7 Objectives 

 The objectives of this thesis were as follows:   

1. To determine mutant prevention concentration (MPC) values for blood culture isolates of 

methicillin-resistant Staphylococcus aureus (MRSA) to linezolid, tedizolid and vancomycin. 

2. To characterize the genetic and/or biological basis for high vancomycin MPC values in 

some MRSA isolates. 

3. To assess the in vitro killing of MRSA strains by linezolid, tedizolid and vancomycin. 
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2.0 MATERIALS AND METHODS 

2.1 Standard Laboratory Methods 

2.1.1 Isolate Collection and Identification 

Bloodstream isolates of Methicillin Resistance Staphylococcus aureus (MRSA) and 

Methicillin Susceptible Staphylococcus aureus (MSSA) used in this study were collected through 

the Clinical Microbiology Laboratory at Royal University Hospital, Saskatoon, SK. Identification of 

S. aureus was determined by the Vitek II (BioMerieux, St. Laurent, QC).  Isolates were confirmed 

as being methicillin-resistant by the Mueller-Hinton oxacillin screen plate [Demir, et al, 2016] or 

by PCR amplification of the mecA determinant gene [Pournajaf, et al, 2014].  MRSA Isolates were 

collected from sixty patients with bacteremia from January (2011) to August (2012).  No pre-

selection criteria were used that would favor the inclusion of isolates with specific susceptibilities 

to vancomycin or other agents.  American Type Culture Collection (ATCC) strains used included 

methicillin-susceptible Staphylococcus aureus (MSSA) (ATCC 29213), E. coli (ATCC 25922), P. 

aeruginosa (ATCC 27853), and E. faecalis (ATCC 29212) and were obtained from the American 

Type Culture Collection.  ATCC strains were used as controls for susceptibility testing and were 

tested each time a susceptibility test was performed. 

2.1.2 Storage of the Bacterial Isolates 

MRSA isolates were streaked for isolated colonies on blood agar plates and incubated 

in ambient air (O2) at 35-37° for 18-24 hours.  Isolated colonies were then picked from the agar 

plate and inoculated into 1.2 ml Corning cryo vials containing 0.5 ml of skim milk. The vials 

were stored at -70°C. 

 

2.2 Antimicrobial Compounds 

The antimicrobial agents used for in vitro experiments were obtained from 

their respective manufacturers or purchased commercially and used in accordance with the 
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manufacturers’ instructions. Sources of antimicrobials are listed in Appendix D. 

 

2.3 Susceptibility Testing 

  2.3.1 Broth Micro-dilution 

 Broth micro-dilution is the reference method used by diagnostic laboratories to 

determine MIC values.  In our experiments, MIC values were determined in accordance with 

the Clinical and Laboratory Standards Institute (CLSI) recommended procedure.  Ninety-six 

well flat bottom microtiter panels were filled with 100 μl of Mueller-Hinton Broth (MHB) 

(Becton Dickinson and Co, Sparks, MD) in each well of columns 2 to 12.  The antimicrobial 

agent was then serially diluted across the panel with column 1 containing the highest 

concentration of the drug and column 12 receiving no drug (growth control).  Isolates were 

sub-cultured onto blood agar plates and incubated overnight in ambient air (O2) at 35-37°C.  

Each isolate was transferred to MHB and the concentration standardized to a 0.5 McFarland 

(∼1.0 X 108 CFU/ml) standard using a colorimeter.  The bacterial suspension was then diluted 

with MHB to reach approximately 1.0X 106 CFU/ml.  One hundred μl of diluted cells were 

added to each well in the panel achieving a final bacterial density of ~1.0 x105 CFU/ml in a 

total volume of 200 μl.  Purity of the bacterial suspensions was confirmed by plating each 

sample onto blood agar plates.  Purity plates and inoculated panels were then incubated in 

ambient air at 35-37°C for 16-20 hr.  The ATCC strain S. aureus 29213 was used as a control to 

confirm the accuracy of each MIC test.  The MIC value was recorded as the lowest drug 

concentration at which there was no visible growth of organism. Susceptible, intermediate, or 

resistant phenotypes were evaluated based on CLSI breakpoints [Clinical and Laboratory 

Standards Institute, 2015]. 

2.3.2 Mutant Prevention Concentration (MPC) 

 MPC values for S. aureus were determined by a protocol (Metzler et al., 2004) 

developed in Dr. J. Blondeau’s laboratory at Royal University Hospital, Saskatoon, SK.  This 

protocol was established based on modification to the protocol for S. pneumoniae [Blondeau, 

et al, 2001]. 
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  2.3.3 Inoculum 

 Each S. aureus isolate was streaked from thawed skim milk onto a blood agar plate 

(Tryptic Soy Agar [TSA - Fisher Scientific, Toronto, ON] with 5% Sheep red blood cells [Oxoid, 

Nepean, ON]) and incubated in ambient air at 35-37°C for 18 -24hours. Bacteria were then 

collected from each plate with a sterile swab and sub-cultured onto two blood agar plates.  

One plate was entirely covered with the bacteria and the second one was streaked for isolated 

colonies. All plates were then incubated in ambient air at 35-37°C for 24 hours.  Sterile swabs 

were used to transfer the content of the plates to sterile glass bottles containing 100 ml of 

MHB and incubated overnight as described.  A spectrophotometric absorbance measurement 

(at 600 nm) was done for each sample to ensure a reading of ≥0.3 which corresponds to a 

bacterial density of ≥109 CFU/ml (previously determined in Dr. Blondeau’s lab).  From this 100 

μl were taken and streaked onto blood agar plates containing various concentrations (in 

doubling dilutions) of antimicrobial agent.  The range of drug concentrations tested included 

the MIC value, one doubling dilution below the MIC and five doubling dilutions above the 

measured MIC value.  Inoculated plates were incubated for 48 hours in ambient air at 35-37oC 

and screened for growth at both 24 hours and 48 hours.  The MPC was recorded as the lowest 

drug concentration that had no visible bacterial growth  following 48 hours of incubation. 

 

  2.3.4 Antimicrobial plates 

 The range of drug concentrations used varied depending on the behavior of the 

organism, i.e. MPC drug concentration range was lowered or extended based on what drug 

concentrations the organism grew at. Antimicrobial agents were prepared as described in 

Appendix B. TSA was prepared according to the manufacturer’s instructions as described in 

Appendix A.  Addition of 5% sheep blood cells to the TSA was necessary for proper growth of 

the isolates.  The agar was kept at 55oC in a water bath (Polyscience, Burlington, ON) until it 

was ready to pour into sterile petri plates (Fisher Scientific, Toronto, ON).  The following 

formula was used to determine the amount of antimicrobial agent to be added. 

C1V1=C2V2 

C1= stock concentration of antimicrobial agent 
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V1= volume of antimicrobial agent to be added in order to obtain the desired drug 

concentration 

C2= desired concentration 

V2= total volume 

 Approximately 20 ml of agar containing the drug was poured into each sterile petri 

plate and each plate. 

  2.3.5 Viable Counts 

 For each measurement of MPC, viable counts were performed. The initial bacterial 

suspensions were diluted to 107, 108 and 109; 100μl of each dilution were then plated in 

triplicate on blood agar plates. The plates were incubated in ambient air for 24 hr at 35-37°C. 

Colony counts were then performed on each plate. Finally, colony forming units per ml was 

calculated by multiplying the average of three plates count by the reciprocal of the dilution 

factor and then multiplying by 10. 

  2.3.6 Time - Kill Experiments  

 The method used for kill studies was performed in accordance with the kill protocol 

published for Staphylococcus pseudintermedius [Blondeau & Shebelski, 2016].  Bacterial 

isolates were grown overnight on blood agar plates.  The inoculum from one-half plate was 

transferred to 9ml MHB and incubated in ambient air for 2 hours at 35-370C. 

Spectrophotometric readings of ≥0.3 at 600 nm were recorded to verify a cell density of ≥109 

cells/ml.  To achieve lower cell densities (105-108 CFU/ml), further dilutions in MHB were 

performed and then the antimicrobial agent was added. The drug concentrations used were 

based on the measured MIC and MPC for each antimicrobial agent in addition to the published 

maximum serum and tissue drug concentrations.  Measurement of kill (log10 reduction in 

viable cells and percentage of organism killed) was recorded at 0, 0.5, 1, 2, 3, 6, 12 and 24 

hours after drug exposure by culturing 100 μl aliquots of each dilution to drug-free blood agar 

plates in triplicate.  Plates were incubated overnight at 35-37°C in ambient air.  The number of 

colonies from three plates at each time interval was averaged; the log10 reduction and percent 

killing of viable cells were calculated and recorded. 
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 2.4 Characterization of Bacterial Isolates 

  2.4.1 Polymerase Chain Reaction 

2.4.1.1 Primer preparation 

Primers used in this study were supplied by Integrated DNA Technologies, Inc. (Coralville, 

Iowa) and are listed in Table 2.4.1.1. 

Table 2.4.1.1:  Various  primers used for PCR. 

Gene Primer Sequence (5’ – 3’) Amplicon 
size (bp) 

Reference 

agrI 
Forward ATGCACATGGTGCACATGC 

441 

[Cazares-

Dominguez, et 
al, 2015] 

 

Reverse GCTACAAGTACTATAAGCTGCGAT 

agrII 
Forward ATGCACATGGTGCACATGC 

575 
Reverse TATTACTAATTGAAAAGTGGCCATAGC 

agrIII 
Forward ATGCACATGGTGCACATGC 

323 
Reverse GTAATGTAATAGCTTGTAAAAAGTGGCCATAGC 

agrIV 
Forward ATGCACATGGTGCACATGC 

659 
Reverse CGATAATGCCGTAATACCCG 

SCCmecI 
Forward GCTTTAAAGAGTGTCGTTACAGG 

613 
Reverse GTTCTCTCATAGTATGACGTCC 

SCCmecII 
Forward CGTTGAAGATGATGAAGCG 

398 
Reverse CGAAATCAATGGTTAATGGACC 

SCCmecIII 
Forward CCATATTGTGTACGATGCG 

280 
Reverse CCTTAGTTGTCGTAACAGATCG 

SCCmec IV 
Forward GCCTTATTCGAAGAAACCG 

776 
Reverse CTACTCTTCTGAAAAGCGTCG 

SCCmec V 
Forward GAACATTGTTACTTAAATGAGCG 

325 
Reverse TGAAAGTTGTACCCTTGACACC 

MecA 
Forward AAAATCGATGGTAAAGGTTGGC 

533 
[Maina, et al, 
2013] 

Reverse AGTTCTGCAGTACCGGATTTGC 

PVL 
Forward ATCATTAGGTAAAATGTCTGGACATGATCCA 

432 
Reverse GCATCAASTGTGTTGGATAGCAAAAGC 

ClpP 
Forward GGATCCGACATTGCGGGATTCTCT 

1300 
[Springer, et al, 
2016] Reverse AAGCTTACCAAGTCTTGCAATGCGTC 

   

 Each primer was dissolved at a concentration of 100 μM by adding the appropriate 

volume of TE buffer (10mM Tris: 0.1mM EDTA; pH 8.0) to generate the primer stock solution. 

This solution was then diluted to 20 μM with TE buffer to generate a working primer solution. 

Equal volumes of the upstream and downstream primer were added to a single tube and 

stored at -200C.  

   2.4.1.2  Polymerase Chain Reaction (PCR)       
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 Bacterial isolates were plated on blood agar plates and incubated overnight in 

ambient air at 35-37oC for 18-24 hours.  From each plate, a visible loop of bacteria was added 

to 100μl of InstaGeneTM Matrix (Bio-Rad, Hercules, CA) in a 1.5 ml Eppendorf tube (Fisher 

Scientific, Toronto, ON).  Specimens were then resuspended by vortexing and boiled for 10 

min.  After 10 min, tubes were vortexed again and centrifuged for 30 seconds at high speed. 

Three μl of the upstream plus downstream primer solution was added to each tube of PuReTaq 

Ready-To-Go PCR Beads (Fisher Scientific, Toronto, ON), followed by adding 19.5μl of sterile 

distilled water.  Finally, 2.5μl of supernatant from each specimen was then added to the 

appropriate PCR reaction tubes resulting in a final volume of 25μl.  PCR reaction tubes were 

then vortexed and transferred immediately to a thermal cycler (Applied Biosystem 2720).  The 

thermal cycling program shown in Table 2.4.1.3 was then begun.  Upon completion of the 

cycling program, reaction products were visualized by agarose gel electrophoresis.  A 1% 

agarose gel was prepared as described in Appendix A. Five μl of tracking dye (Fisher Scientific, 

Toronto, ON) was added to each reaction tube and a sample volume of 20μl was loaded into 

a designated lane of the gel.  Six μl of 100 base pair DNA ladder (Fisher Scientific, Toronto, ON) 

was loaded in the first lane of each gel as a molecular weight marker.  Electrophoresis was at 

117 volts for 20 minutes.  Separated PCR products were then visualized under UV light and 

was captured by a gel documentation system (Syngene GeneGenius, UK) [Hookey, et al, 1998].  

   2.4.1.3  Thermocycler Setting 

  Settings for the thermocycler varied, depending on the primers that were used. The 

following table summarizes the thermocycler settings that were used for each primer set. 

Table 2.4.1.3:  Thermocycler settings. 

Gene 

Initial 

Denaturation 
Denaturation Annealing Elongation 

Number 

of cycles 

Final 

Elongation 

Temp Time 
(min) Temp Time 

(sec) Temp Time (sec) Temp Time 
(sec) Temp Time 

(min) 
MecA & 
PVL 

950C 5 94 35 57 35  720C 35 37 720C 7 

agr & 
SCCmec 

940C 5 94 35 51 35  720C 40 38 720C 7 

ClpP 950C 5 94 40 55 40  720C 40 38 720C 7 

 

 2.5 Pulsed field gel electrophoresis (PFGE) 
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  2.5.1 Preparation of samples 

 A few (3-5) isolated colonies were picked from a pure culture of MRSA streaked on 

blood agar plates and inoculated into 3 ml MHB. Samples were then placed in a shaking water 

bath at 37oC for 16-18hr. Each sample was then centrifuged at 14,000rpm for 1 min. Each 

pellet was re-suspended in 150μl of cell suspension buffer (CSB) described in Appendix A 

[Prevost, et al, 1992].  PFGE conditions are described in Appendix B. 

  2.5.2 Casting Plug 

 Preparation of a 2.0% low melting point agarose was in CSB was used for the casting 

plugs (Appendix A).  Two μl of lysostaphin at 1mg/ml was added to each tube followed by the 

immediate addition of 150μl of 2% LMP agarose and mixed well with a pipetter. The mixture 

was then transferred to the casting mold. The casting plugs were left to solidify for 15 min at 

room temperature and another 15 min at 40C. 

  2.5.3 Lysis of Cells in LMP Agarose 

 Lysis Buffer (Appendix A) was prepared fresh and 900 μl was added to a clean tube 

for each sample. The plugs were gently transferred from the mold to their corresponding 

labeled tubes containing lysis buffer. Tubes were then incubated in a water bath at 37oC for 1 

hr.  The lysis buffer was then aspirated off with a 1 ml pipette (VWR, Mississauga, ON).  Then, 

900 ml of proteinase K/PK buffer solution (Appendix A) was added to each tube containing the 

plugs. The tubes were then incubated in a shaking water bath at 50oC for 24hr. 

  2.5.4 Washing LMP Plugs 

 Tubes were removed from the water bath and the proteinase K solution was aspirated 

off. The plugs were rinsed once with 1.4 ml of wash buffer (Appendix A).  Three additional 30 

minute washes with 1 ml of fresh wash buffer (each time) was performed.  The wash buffer 

was removed after the final wash and 1 ml of fresh wash buffer was added for long-term 

storage of the plugs at 4°C. 

  2.5.5 Restriction Enzyme Digestion of LMP Plugs 

 Plugs were removed from the microfuge tubes and placed on sterile Petri dishes 

(Fisher Scientific, Toronto, ON).  One-third of each plug was cut and placed into a new 1.5 ml 

microfuge tube. Three hundred µl of 1 X buffer A were added to each tube containing plugs 
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and incubated at room temperature (20°C-25°C) for 10 min.  Sma I enzyme (New England 

BioLabs Inc., Whitby, ON) was used to restrict DNA in the plugs.  A total of 25 Units were used 

per sample.  The volume required was calculated as follows: 

#$%&'	)*+,-)	.)/01.)2	(4*1%5
6789	:$*:)*%.&%1$*	(4*1%5/0' = Volume required 

Buffer A was removed from the plugs and 150μl of buffer A/Sam I mixture were added to each 

tube and incubated overnight at 25C.  

  2.5.6 Casting Agarose Gel 

 The samples were run on 1% pulsed field agarose gels prepared as described in 

Appendix A.  Two liters of 0.5X Tris-Borate-EDTA Buffer (TBE) was added to the Counter 

Clamped Homogenous Electric Field (CHEF) chamber.  The cooling mold was set at 14oC and 

the pump was turned on to allow the buffer to cool.  The enzyme/buffer solution was aspirated 

from each sample and the plugs were melted in a water bath at 70oC for 10min.  A lambda 

DNA ladder (New England BioLabs Inc.) was run in at least one lane as a marker to help 

determine molecular weight sizes of the resulting bands.  Forty-five μl of each sample (melted 

plug) were loaded into designated lanes. The gel was then placed into the electrophoresis 

chamber.  

  2.5.7 Staining the Gel 

 After 18 hours of electrophoresis, the gel was placed into a plastic container of 

ethidium bromide (ETBr) (Appendix A).  The gel was stained at room temperature for 30 min 

on a slowly rocking surface while prohibiting its exposure to light.  The ETBr solution was then 

drained and de-staining was performed by adding 500 ml of distilled water to the container 

and placing it back on the rocking surface at low speed for another 30 min.  Finally, the gel 

was examined and photographed after ultraviolet light illumination (Gel Doc 1000). 

 

 2.6 Electron Microscopy (EM) 

 MRSA isolates for EM were incubated under the selective pressure of the 

antimicrobial agent (vancomycin) at 32 µg/ml on agar plates and serially passaged three 

times on MHB agar plates containing 32 µg/ml of vancomycin.  Colonies were collected 

and suspended in 300 μl saline and centrifuged at high speed for 1 min.  Saline was then 
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decanted and 300 μl of 3% glutaraldehyde in 1.1M NaCAC (sodium cacodylate buffer) was 

added immediately to each eppendorf tube as a fixative.  Samples were then sent to the 

Western College of Veterinary Medicine (WCVM) Imaging Center at the University of 

Saskatchewan to be processed.  Briefly, after three hours in fixation, pellets were rinsed.  

Fixed cells were pelleted and the fixative was aspirated; the pellet was then mixed with 

warm 1% agarose and the cells re-pelleted. The centrifuge tubes were placed in the 

refrigerator at 4° C to allow the agar to firm up. The agar was then removed from the 

centrifuge tubes and the pelleted cells cut away from the excess agar.  The pellet was cut 

into several pieces and placed in wash buffer (0.1 M sodium cacodylate buffer pH 7.2) and 

stored at 4° C overnight.  Various fields of view containing 3-4 cells were photographed at 

50,000X. Measurements were taken for multiple intact cells walls.  For measurements of 

cell wall thickness, 3 random locations around the bacterial cell were selected and then 

applied to each subsequent measurement and results averaged. 
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3.0 RESULTS 

 3.1 Description of the MRSA and MSSA blood culture Isolates 

 A total of 61 MRSA blood culture isolates collected from 2011 to 2012 were used in 

this study.  All isolates were collected from specimens submitted to the clinical microbiology 

laboratory, Royal University Hospital, Saskatoon, Saskatchewan, Canada.  All isolates were 

confirmed as S. aureus by Vitek II (BioMerieux, St. Laurent, QC) by the clinical microbiology 

service. 

 Table 3.1.1 summarizes characteristics of 37 selected patients with blood cultures 

positive for MRSA.  For the S. aureus isolates from these 21 patients, vancomycin MPC values 

ranged from 2->32 µg/ml with 14/21 (66.7%) having MPC values >8 µg/ml.  A total of 19/21 

(90%) patients were being treated with vancomycin at or around the time of blood culture 

collections or following the report of MRSA bacteremia.  The MRSA isolates from patients with 

a history of vancomycin use had vancomycin MPC values of >8 µg/ml (1 isolate had an MPC 

value of 4 µg/ml). 
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Table 3.1.1:  Characteristics of patients with MRSA bacteremia. 

Patient Age 
Vanco 
MPC Acute Diagnosis Past Medical History Abx History* Current Abx + Dose 

1 35 >32 MRSA Endocarditis (TV) HIV (CD4 10) on ARVs (2010) Azithromycin (2010) Clindamycin 300mg IV q8h x 1d 
    Septic emboli (lung, kidney IVDU Fluconazole (2010) Vancomycin 1-1.5g IV q8-12h x 60d 
       Bactrim (2010) Azithromycin 1250mg po weekly x 60d 
         Septra I po BD x 9d 
         Fluconazole 100mg po OD x 1d 
         Gentamicin 60mg IV q8h x 5d 
           PipTaz 3.375g IV q6h x 7d 

2 20 8 MRSA Bacteremia Type 1 DM No documented/available Vancomycin 1-1.5g IV q8-12h x 13d 

     Abscess right thigh/buttock 
Frequent DKA (2006, 2008, 2009, 
2010x2)     

3 27 8 MRSA Endocarditis (TV)  HIV (2009) Clindamycin (2009) PipTaz 3.375g IV q12h x 2d 
    Septic PE HCV (2009) Azithromycin (2010) Vancomycin 1g IV q12h x 2d 
      IVDU Amoxil (2009, 2010) Septra ii po OD x 6d 
      MRSA + (2009) SMX-TMP (2010, 2011) Cefotaxime 2g IV STAT 
      Pneumonia (2011) ARVs (2010, 2011) Zithromax 500mg po STAT 
      Multiple dental abscesses (2008-2010)     
      Breast abscess (2009)     

4 48 >32 Hemodialysis CRF secondary to post-infectious GN Moxifloxacin (2008) Nil on record 
      HPT     
      EtOH, cannibas, IVDU     
      Asthma/COPD     
           

5 27 8 MRSA Endocarditis (TV)  HIV (2009) Clindamycin (2009) Vancomycin 750mg-1g IV q12h x 35d 
    Septic PE HCV (2009) Azithromycin (2010, 2011)   
      IVDU Amoxil (2009, 2010)   
      MRSA + (2009) SMX-TMP (2010, 2011)   
      Pneumonia (2011) ARVs (2010, 2011)   
      Multiple dental abscesses (2008-2010) PipTaz (2011)   
      Breast abscess (2009) Vancomycin (2011)   
       Cefotaxime (2011)   

6 34 4 MRSA Endocarditis (TV) HIV (not on Rx) Polysporin (2010) Vancomycin 1.5-2g IV q12-8h x 60d 
     Septic emboli HCV Ciprofloxacin (2010) CTX 2g IV q12h x 2d 
     Persistent ankle wound IVDU Bactrin (2010,2011) Rifampin 600mg po OD x 14d 
       Osteomyelitis R ankle (2010) Clindamycin (2010)   
       Pneumonia (2011) Levofloxacin (2011)   
       Ankle injury (2010)    
       Assault with brain injury (2007)     

7 34 2 Endocarditis (TV) with septic emboli HIV (not on Rx) Polysporin (2010) Vancomycin 1.5-2g IV q12-8h x 60d 
    Persistent ankle wound HCV Ciprofloxacin (2010) CTX 2g IV q12h x 2d 
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      IVDU Bactrin (2010,2011) Rifampin 600mg po OD x 14d 
      Osteomyelitis R ankle (2010) Clindamycin (2010)   
      Pneumonia (2011) Levofloxacin (2011)   
      Ankle injury (2010)     
      Assault with brain injury (2007)     

8 34 16 Hemorrhagic R frontal CVA HCV (not on Rx) Vancomycin (2011) with dialysis Vancomycin 500mg IV 3x/week x 14d 
      Decompensated cirrhotic liver dx PipTaz (2011) CTX 1g IV q24h x 1d 
      MRSA+ (2010)     
      End stage CRF on dialysis (FSGS)     
      IVDU, EtOH     
      Endocarditis     
      Osteomyelitis, epidural abscess     
       Cardiac tamponade (2010)     

9 65 4 Necrotising pneumonia Rheumatoid arthritis Erythromycin (2011) Vancomycin 1.25g IV q24-36h x 13d 
      COPD Amoxil (2011) PipTaz 3.375g IV q6h x 7d 
      Brain tumour (benign)   Meropenem 1g IV q12h x 6d 
      Appendicectomy   Erythromycin 250mg IV q6h x 2d 
      Laproscopic Cholecystectomy     
       UGITB (hematemesis)     

10 52 >16 
MRSA Bacteremia secondary to line 
infection Seizure disorder with frontal lobectomy Cotrimox (2011) Cefotaxime 2g IV STAT 

      Multiple strokes (most recent 2011) Nitrofurantoin (2011) CTX 2g IV q24h x 2d 

      CAD & MI (2007, 2010) Clotrimazole cream 1% (2011) 
Vancomycin 500mg - 1.5g IV q72h x 
13d 

      PVD with amputation L toe     
      DM (insulin requiring)     
      HPT     
      ESRD on HD     
       MRSA+       

11 14 16 Osteomyelitis L wrist post-fracture Dental procedure @ 4y Nil known Cefazolin 2g IV q8h x 2d 
      Born full term, no complications   Vancomycin 1g IV q12h x 4d 
           Clindamycin 600mg IV q8h x 16d 

12  8 Metastatic uterine sarcoma CML (2008) Amoxil (2011 x 2) Vancomycin 1.25g IV q16-24h x 24d 
    Febrile Neutropenia  Amoxiclav (2011) PipTaz 3.375 - 4.5g IV q6h x 1d 
    Thrombocytopenia  Flagyl (2011) Bactroban 2% ointment x 10d 

    

R arm DVT (PICC line) with 
thrombophlebitis  Moxifloxacin drops 0.5% (2011)   

       Bactroban (2011)   

13 46 8 Osteomyelitis IVDU Multiple abx regimens previously 
PipTaz 3.375g IV q6h x 2d, missed 2d, 
then x 24d 

    Diabetic foot HCV Cephalex (2011) Cloxacillin 2g IV q4h x 1d 
    Sepsis DM with chronic foot ulcers Amoxiclav (2011) Vancomycin 1-1.5g IV q8-12h x 28d 
           Moxifloxacin 400mg po OD x 2d 
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15 41 8 Hepatorenal syndrome Autoimmune hepatitis with cirrhosis  Amoxiclav (2011) PipTaz 2.25-3.375g IV q6-8h x 5d 
    Intracranial hemorrhage Oesophageal varices   Flagyl 500mg IV q8h x 2d 

    CHF with pneumonia & sepsis CRF   
Vancomycin 750mg - 1.5g IV q12-36h x 
12d 

     UGITB     Linezolid 600mg IV q12h x 2d 

16 41 8 Hepatorenal syndrome Autoimmune hepatitis with cirrhosis  Amoxiclav (2011) PipTaz 2.25-3.375g IV q6-8h x 5d 
    Intracranial hemorrhage Oesophageal varices   Flagyl 500mg IV q8h x 2d 

    CHF with pneumonia & sepsis CRF   
Vancomycin 750mg - 1.5g IV q12-36h x 
12d 

     UGITB     Linezolid 600mg IV q12h x 2d 

17 41 8 Hepatorenal syndrome Autoimmune hepatitis with cirrhosis  Amoxiclav (2011) PipTaz 2.25-3.375g IV q6-8h x 5d 
    Intracranial hemorrhage Oesophageal varices   Flagyl 500mg IV q8h x 2d 

    CHF with pneumonia & sepsis CRF   
Vancomycin 750mg - 1.5g IV q12-36h x 
12d 

     UGITB     Linezolid 600mg IV q12h x 2d 

18 57 8 MRSA Bacteremia   Lumbar spinal stenosis Clarithromycin (2011) Ciprofloxacin 400mg IV STAT 
    Staph pneumonia Previous facial # with plates in-situ Amoxil (2011) Cloxacillin 2g IV q6h x 3d 
         Cefuroxime 500mg IV po q12h x 2d 
         Azithromycin 250mg po q24h x 2d 
         Clindamycin 600mg IV q8h x 3d 
           Vancomycin 1.75g IV q8-12h x 10d 

19 41 8 Hepatorenal syndrome Autoimmune hepatitis with cirrhosis  Amoxiclav (2011) PipTaz 2.25-3.375g IV q6-8h x 5d 
    Intracranial hemorrhage Oesophageal varices   Flagyl 500mg IV q8h x 2d 

    CHF with pneumonia & sepsis CRF   
Vancomycin 750mg - 1.5g IV q12-36h x 
12d 

     UGITB     Linezolid 600mg IV q12h x 2d 

20 27 4 MRSA Endocarditis HIV (2008) - CD4 140, no Rx 
Vancomycin IV (2010) x 9d, left 
AMA Cefotaxime 2g IV x 1 dose 

      HCV Clindamycin po (2010) Zithromax 500mg IV x 1 dose 
      IVDU Cephalexin (2011)   
      MRSA+ Cotrimox (2011)   
      Endocarditis (2010) Metronidazole (2011)   
      TB Fucidin 2% cream (2011)   
       Multiple Admissions with D/C AMA Doxycycline po (2011) x 7d   

21 26 4 Kidney transplant failure Neurogenic bladder Miconazole cream 2% (2010) Gentamicin (bladder) OD x 150d 
      Intellectual delay  Ciprofloxacin (2010, 2011) Bactroban 2% BD x 17d 
      Kidney transplant (1986) Gentamicin (2011) Vancomycin 500mg IV q72h x 40d 
      Polycystic kidney disease (congenital) Amoxil (2011) Tobramycin 40mg IV q72h x 2d 
      Birth Injury Doxycycline (2011) Cefazolin 2g IV q72h STAT 
      Epilepsy Nystatin (2011) Nystatin 500,000 IU po qid x 14d 
      HTN Fluconazole (2011)     
      Depression     
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23 37 8 LRTI IVDU Cefazolin IV (2009) 
Clindamycin 400mg po qid x 
undocumented duration 

    Cellulitis thigh HCV (2009) Valacyclovir (2009)   
      HIV (2009) Clarithromycin IV (2009)   
      Smoker Amoxicillin (2010)   
      Recurrent bronchitis Nitrofurantoin (2010, 2011)   
       Moxifloxacin (2011)   
       Cephalex (2011)   

24 59 8 Diabetic foot DM Tobramycin (2011) PipTaz 2.23g IV q6-8h x 40d 
     Sepsis HTN Cefazolin (2011) Vancomycin 1.5-2g IV q96h x 34d 
       GERD Cotrimox (2011)   
       CRF on peritoneal dialysis Bactroban cream (2011)   
       MRSA+ Vancomycin IV (2011, q5/7)   
       Severe CHF     

26 35 8 Cellulitis (L) arm IVDU - methadone program Not available Vancomycin 1-1.75g IV q8h x 8d 
     MRSA Bacteremia HCV   Ancef 2g IV STAT 
       HTN     
       Smoker (20PYH)     

27 37 8 Sepsis IVDU Amoxil (2011) CTX 1g IV q12h x 1d 
    L Acromioclavicular jnt septic arthritis HCV   Vanco 1-2g IV q8-12h x 10d 
      HIV   Linezolid 600mg po BD x 19d 
       Asthma     

28 37 16 Sepsis IVDU Amoxil (2011) CTX 1g IV q12h x 10d 
    L Acromioclavicular jnt septic arthritis HCV   Vanco 1-2g IV q8-12h x 10d 
      HIV   Linezolid 600mg po BD x 19d 
      Asthma     

29 37 16 Sepsis IVDU Amoxil (2011) CTX 1g IV q12h x 10d 
    L Acromioclavicular jnt septic arthritis HCV   Vanco 1-2g IV q8-12h x 10d 
      HIV   Linezolid 600mg po BD x 19d 
       Asthma     

30 22 4 General malaise IVDU - on methadone program Cotrimox (2009) D/Chome with no Abx 
    Treated as an out pnt HCV (2009) Clindamycin (2010 x 2)   
      HIV (2009) Vancomycin (2010)   
      Known MRSA (2009) Cefotaxime (2010)   
      EtOH CTX (2010)   
      Endocarditis (2010) Amoxil (2010, 2011)   
      Septic arthritis (2010)     

41 35 4 Sepsis HIV Fluconazole (2011) x 10d Fluconazole 100mg po OD x 2d 
      IE (TV) (2011) Vancomycin (2011) x 6w CTX 1g IV q12h x 3d 

      Hemolytic anemia (drug induced) PipTaz (2011) STAT 
Vancomycin 500mg IV q12-16h x 9d, 
missed 17d, then x 14d 

      Neutropenia (drug induced) CTX (2011) x 10d 
PipTaz 3.375g IV q6h x 21d, missed 4d, 
then x 5d 
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      MRSA cellulitis R finger Azithromycin (2011) x 2m Clarithromycin 500mg po BD x 10d 
      CMV colitis (Nov 2011) Meropenem (2011) x 19d Ethambutol 600mg po OD x 10d 
       Keflex (2011) x 2w Linezolid 600mg IV q12h x 15d 
       Gancyclovir (2011) Azithromycin 1250mg weekly x 180d 

       Valgancyclovir (2011) 
Nystatin 500,000 IU po qid x 2d, missed 
37d, then x9d 

       Dapsone (2011) Caspofungin 50mg IV OD x 22d 
       Caspofungin (2011) Foscarnet 1800mg IV q8h 23d 
       Pentamidine (2011) Valganciclovir 900mg po OD x 13d 
       Foscarnet (2011) Acyclovir 150mg IV q8h x 7d 

43 30 4 Infective Endocarditis (TV) IVDU, EtOH Ampicillin IV (2007) x 3d Vancomycin 1.25-1.5g IV q8-16h x 42d 
    Newly dx HIV (CD4 34) HCV (2004) Erythromicin IV (2007) x 3d CTX 2g IV q12-24h x 16d 

    Opioid dependence G6P3M1 
Cefazolin IV (2007,2008) STAT 
(C/S, NVD) Metronidazole 500mg IV q8h x 2d 

    Anaemia GBS+ Moxifloxacin IV (2011) x 9d SMX-TMP 400/800 ii po 3x/week x 90d 
      Pancreatitis (2005)   Azithromycin 1250mg po weekly x 90d  

44 33 8 Spetic L knee HIV on ARVs (2010) Penicillin G IV (2008) x 1m Vancomycin 1g IV q8-12h x 7d 
      HCV (2010) Vancomycin IV (2008) x 1d Moxifloxacin 400mg IV/po q24h x 4d 
      Known MRSA Tazocin IV (2008) x 1d Septra I po OD x 5d 
      IVDU (quit 2009) Azithromycin (2010) Px   
      Spetic arthritis L knee (2008 - Strep) Cefotaxime IV (2010) x 2w   
      Pneumonia (2010) Septra (2010) Px   
         Vancomycin IV (2010) x 10d   

49 86 32 Sepsis AF Ciprofloxacin (16-Feb-2012) Cefotaxime 2g IV q8h x 6d 

    UTI Left ACA Stroke (1994, 2009, 2010) 
Erythromycin eye ointment 0.5% 
(2010) Ciprofloxacin 400mg IV q12h x 1d 

    Aspiration Orbital lymphoma (2012) Ciprofloxacin (2010) Azithromycin 250mg po q24h x 5d 
    Malnutrition Type 2 DM Flagyl (2011) Clindamycin IV q8h x 6d 
      HPT Cefotaxime (2011) Tobradex drops x 13d 
      OSA  Clotrimazole cream 1% x 5d 
      ITP (refractory)  Ciprofloxacin 400mg IV q12h x 2d 
      Bilateral TKR  PipTaz 3.375g IV q6h x 2d   
      Prostate surgery  Vancomycin 1.5gIV q16h x 2d 
      R leg DVT (2011)    
      Bilateral Cataracts    
      Kidney stones    

51 33 4 Open perineal wounds post APR Crohn's disease (18y) Significant # courses Ciprofloxacin 500mg po BD x 8d 
    Pyoderma gangrenosum 2 x colostomies, APR Metronidazole (last Jan 2012) Metronidazole 500mg po BD x 8d 
      Recurrent perianal abscesses (I&D) Cipro (last Jan 2012) Ciprofloxacin 400mg IV q12-24h x 20d 

      Psoriasis 
(Course duration & # no 
documented) Metronidazole 500mg IV q8h x 70d 

      Endocarcitis (TV) (2008)  

Ciprofloxacin 500mg po BD x60d, 
missed 4d, then x9d 
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      MRSA+ (2007)  Vancomycin 1.25g IV q12h x 10d 
      IVDU    
             

52 33 8 Open perineal wounds post APR Crohn's disease (18y) 
Significant # courses (2006, 2008, 
2011) Ciprofloxacin 500mg po BD x 8d 

    Pyoderma gangrenosum 2 x colostomies, APR Metronidazole (last Jan 2012) Metronidazole 500mg po BD x 8d 
      Recurrent perianal abscesses (I&D) Cipro (last Jan 2012) Ciprofloxacin 400mg IV q12-24h x 20d 

      Psoriasis 
(Course duration & # no 
documented) Metronidazole 500mg IV q8h x 70d 

      Endocarcitis (TV) (2008) Nystatin (2006) 
Ciprofloxacin 500mg po BD x60d, 
missed 4d, then x9d 

      MRSA+ (2007) 
Vancomycin + PipTaz (2007, 2008, 
2011) Vancomycin 1.25g IV q12h x 10d 

      IVDU Ketoconazole cream (2010)   
         Ancef (2010)   

57 34 16 T/F to RUH HCV Bactrin (2010) Cefotaxime 2g IV STAT  
      IVDU Clindamycin (2010)   
      Known MRSA (2012)     
      Bronchopneumonia (2011)     
      Cellulitis /L hand     
      L clavicular # (2010)     
      Neutropenia (drug use)     
      Asthma     
       Antiphospholipid syndrome     

58 64 32 
Post op seroma/hematoma with facial 
swelling 

Pituitary tumour (transphenoidal 
resection, 2012) Cefazolin IV (2012) STAT CTX 1g IV q8h STAT 

      MI with stents x 5 
Pnt from BC - no further hx 
available   

      HTN     
      Pancreatitis     
      Type 2 DM     
      CVA     
      Degenerative disc disease, lumbar     

59 47 4 
Osteomyelitis with septic emboli (lung, 
psoas) Assault (2012) Macrobid (2010) x 1w 

Vancomycin 1.25-1,75g IV q8-24h x 
35d 

      Osteoporosis + Scoliosis   PipTaz 3.375g IV q6h x 4d 
      Smoker   Rifampin 600mg po OD x 30d 
      EtOH     
      HCV     
      IVDU (stopped 2007)     
      Previous CVA     

60 40 2 Septic arthritis L shoulder HIV (2009) Doxycycline (2012) Vancomycin 1.25-1.5g IV q8-12h x 21d 
    Endocarditis (TV) HBV, HCV (2009) Fucidin ointment (2012) CTX 2g IV q24h x 2d 
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      IVDU Moxifloxacin (2012) x 10d Septra ii po TDS x 21d 
      Smoker 20PYH   ARVs (since 2011) 
        Known MRSA     
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 3.1.1  In vitro Susceptibility Measurements of MSSA Blood Isolates 

MPC values for tedizolid, linezolid and vancomycin had not previously been published for 

MSSA isolates.  A total of 20 MSSA clinical isolates were tested for susceptibility to vancomycin, 

linezolid and tedizolid.  Table 3.1.1.1 shows the MIC and corresponding MPC values for each 

isolate.  For vancomycin, MIC values ranged from 0.25-1µg/ml as compared to 0.5 µg/ml for 

tedizolid and 1-2 µg/ml for linezolid.  MPC values were similar to MIC values at 0.5 µg/ml for 

tedizolid.  For linezolid, MPCs were similar to MIC values or 1-2 fold higher (2-4 µg/ml).  For 

vancomycin, however, MPC values were 3-5 fold higher than MIC values and ranged between 

4-16 µg/ml with 16/20 (80%) having MPC values >8 µg/ml and 2/20 (10%) having MPC values 

of 16 µg/ml. 

Table 3.1.1.1: MIC and MPC values for 20 MSSA strains against 3 antimicrobial agents. 

Isolate # Vancomycin Tedizolid Linezolid 
 MIC MPC MIC MPC MIC MPC 
1 1 8 0.5 0.5 2 4 
2 0.5 4 0.5 0.5 1 2 
3 0.5 4 0.5 0.5 2 4 
4 0.5 8 0.5 0.5 1 4 
5 0.5 8 0.5 0.5 1 4 
6 0.5 8 0.5 0.5 1 2 
7 0.5 8 0.5 0.5 1 4 
8 0.5 8 0.5 0.5 1 2 
9 1 8 0.5 0.5 1 4 
10 0.5 8 0.5 0.5 1 2 
98 0.5 4 0.5 0.5 2 2 
93 0.25 8 0.5 0.5 2 2 
80 0.5 16 0.5 0.5 2 2 
72 0.5 8 0.5 0.5 2 2 
92 0.5 16 0.5 0.5 2 2 
83 0.5 8 0.5 0.5 2 2 
70 0.5 8 0.5 0.5 1 4 
65 0.5 4 0.5 0.5 2 2 
63 0.5 8 0.5 0.5 2 4 
45 0.25 8 0.5 0.5 2 2 

 

 The distribution of MIC and MPC values, their percentage and mutant prevention 

index are summarized in Table 3.1.1.2.  MIC50 and MPC50 values represent the drug 
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concentrations inhibiting the growth of 50% of isolates tested by MIC and MPC testing, 

respectively.  Similarly, MIC90 and MPC90 are the drug concentrations at which 90% of isolates 

were inhibited from growth.  Such data are useful for comparing in vitro antimicrobial potency 

between drugs.  MIC90 values were equal to MIC50 values for all three drugs against the MSSA 

strains tested.  The MPC90 value was one fold higher than the MPC50 value for linezolid and 

equal to the MPC50 values for tedizolid and vancomycin.  MPC/MIC ratios were higher for 

vancomycin at 1:16 compared to linezolid (1:2) and tedizolid (1:1). The lower ratio 

(selection/prevention index) is the better ability of the drug to curb the resistant mutant 

subpopulations growths. 

Table 3.1.1.2:  MIC and MPC distribution data for 20 MSSA strains tested against 3 
antimicrobial agents. 

MIC Mutant 
Prevention Index 

 0.125 0.25 0.5 1 2 4 8 16 MIC50 MIC90 MPC50/
MIC50 

MPC90/
MIC90 

Linz    9 
(45%) 

11 
(55%) 

   2 2 1 2 

Vanco  2 
(10%) 

16 
(80%) 

2 
(10%) 

    0.5 0.5 16 16 

Ted   20      0.5 0.5 1 1 
MPC 
         MPC50 MPC90   

Linz     12 
(60%) 

8 
(40%) 

  2 4   

Vanco      4 
(20%) 

14 
(70%) 

2 
(10%) 

8  8   

Ted   20 
(100%) 

     0.5 0.5   

 
 The Clinical and Laboratory Standards Institute (CLSI) is a multidisciplinary committee 

of experts that set minimal standards and recommendations for diagnostic laboratories in a 

number of testing areas including antimicrobial susceptibility testing. The susceptibility 

breakpoints as recommended by CLSI for Staphylococcus aureus against the drugs we tested 

are summarized in Table 3.1.1.3.   Based on CLSI recommended breakpoints, all 20 MSSA 

strains were susceptible to linezolid and tedizolid by both MIC and MPC testing. However, for 

vancomycin all strains were susceptible by MIC testing but only 25% were susceptible (<4 
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µg/ml) by MPC testing; 65% were non-susceptible (at 8 µg/ml) and 10% were resistant at 16-

32µg/ml. 

Table 3.1.1.3:  Comparative susceptibility of 20 MSSA strains against 3 antibiotics. 

Drug Vancomycin Tedizolid Linezolid 
Susceptibility Breakpoint ≤ 4 ≤ 0.5 ≤ 4 

Susceptibility % by MIC 100% 100% 100% 

Susceptibility % by MPC 20% 100% 100% 

 

 3.1.2 In vitro Susceptibility Measurements of MRSA Blood Isolates 

 Susceptibility testing was performed against a variety of antimicrobial agents to 

provide a comprehensive susceptibility/resistance profile of the MRSA isolates investigated.  

Table 3.1.2.1 summarizes individual MIC values for 60 blood culture MRSA strains tested 

against 13 anti-microbial agents.  All isolates were susceptible to vancomycin, linezolid and 

tedizolid; the majority (90-95%) were susceptible to tigecycline, gentamicin and amikacin.  

Fewer isolates (40-70%) were susceptible to the other drugs tested including ciprofloxacin, 

moxifloxacin, azithromycin and trimethoprim/sulfamethoxazole.   None of the tested isolates 

were susceptible to chloramphenicol.  
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  Table 3.1.2.1:  Individual MIC values for 60 MRSA strains against 13 antimicrobial agents*. 

 Vanco Tig Linz Genta Tobra Amik Ted Gati Azith Cipro Moxi Chloro TMP/SMX 

1 0.5 0.063 1 1 0.5 4 0.25 2 >8 8 2 >16 0.125/3.375 

2 1 0.063 2 0.5 1 4 0.25 0.125 1 0.5 0.016 >16	 0.5/9.5 

3 0.5 0.063 2 0.5 1 8 0.25 0.125 1 0.5 0.016 >16	 0.125/3.375 

4 0.5 0.063 2 0.5 1 4 0.25 0.125 >8 0.25 0.016 >16	 0.063/1.158 

5 1 0.063 2 1 2 4 0.25 0.5 4 0.5 0.063 >16	 0.5/9.5 

6 1 0.063 2 1 0.5 4 0.25 0.125 >8	 0.5 0.016 >16	 0.125/3.375 

7 0.5 0.063 2 0.5 0.5 4 0.25 0.063 >8	 0.25 0.016 >16	 0.125/3.375 

8 0.5 0.063 2 1 0.5 2 0.25 4 >8	 >8	 2 >16	 0.125/3.375 

9 0.5 0.125 2 1 1 8 0.25 4 >8	 >8	 1 >16	 0.125/3.375 

10 0.5 2 2 1 >32 16 0.25 >8 >8	 >8	 8 >16	 0.125/3.375 

11 0.5 0.063 2 1 0.5 2 0.125 0.125 1 0.25 0.031 >16	 0.125/3.375 

12 0.5 0.125 2 0.5 0.5 2 0.25 0.125 1 0.25 0.031 >16	 0.25/4.75 

13 0.5 0.125 2 0.5 0.5 4 0.125 0.125 >8	 8 1 >16	 0.063/1.158 

15 0.5 0.25 2 0.5 0.25 2 0.25 4 >8	 8 2 >16	 0.125/3.375 

16 0.5 0.125 2 1 0.25 2 0.25 4 >8	 8 2 >16	 0.125/3.375 

17 0.5 0.125 2 0.5 0.5 4 0.25 4 >8	 8 2 >16	 0.125/3.375 
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18 0.5 0.063 2 0.5 0.5 2 0.125 0.063 1 0.125 0.016 >16	 0.063/1.158 

19 1 0.063 2 0.5 1 4 0.125 0.125 1 0.25 2 >16	 0.125/3.375 

20 0.5 0.063 2 1 1 2 0.125 0.125 0.5 0.25 0.031 >16	 0.125/3.375 

21 1 0.063 2 1 1 8 0.25 0.063 >8	 0.125 0.016 >16	 0.063/1.158 

22 1 0.125 2 0.5 >32 8 0.25 8 >8	 >8 4 >16	 0.125/3.375 

23 0.5 0.25 2 0.5 0.5 8 0.25 4 >8	 8 2 >16	 0.125/3.375 

24 0.5 0.063 4 1 >32 8 0.25 >8 >8	 >8	 0.016? >16	 0.125/3.375 

25 0.5 0.063 2 0.5 >32 4 0.25 8 >8	 >8	 4 >16	 0.5/9.5 

26 0.5 0.063 2 32 8 4 0.125 0.125 >8	 0.25 0.063 >16	 1/19 

27 0.5 0.125 2 1 2 4 0.25 0.125 1 0.25 0.016 >16	 0.125/3.375 

28 0.5 0.125 2 2 2 4 0.25 1 > 8 0.5 0.016 >16	 0.125/3.375 

29 0.5 0.125 2 1 2 4 0.125 0.125 1 0.5 0.016 >16	 0.25/4.75 

30 0.5 0.125 2 1 0.5 2 0.25 0.125 1 0.25 0.016 >16	 0.25/4.75 

31 1 0.125 2 0.25 0.5 4 0.125 2 >8 4 1 >16	 0.063/1.158 

32 0.5 0.25 2 1 0.5 8 0.125 0.125 1 0.5 0.031 >16	 0.125/3.375 

33 0.5 0.125 2 0.25 0.5 2 0.125 0.063 >8	 0.25 0.031 >16	 0.125/3.375 

34 0.5 0.063 4 0.5 >32 8 0.25 1 >8	 >8 4 >16	 0.063/1.158 

35 0.5 0.063 2 0.25 4 4 0.125 4 >8	 8 1 >16	 0.063/1.158 
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36 0.5 0.063 2 0.5 0.5 4 0.125 4 >8	 8 1 >16	 0.125/3.375 

37 0.5 0.063 2 0.5 >32 16 0.25 8 >8	 >8 4 >16	 0.25/4.75 

38 0.5 0.125 2 0.5 1 8 0.125 2 >8	 8 1 >16	 0.063/1.153 

39 0.5 0.063 2 0.25 0.5 2 0.25 0.125 >8	 0.25 0.016 >16	 0.125/3.375 

40 0.5 0.125 2 0.5 >32 8 0.5 >8 >8	 > 8 >4 >16	 0.125/3.375 

41 0.5 0.25 2 32 16 4 0.25 0.081 >8	 0.25 0.008 >16	 0.125/3.375 

42 0.5 0.125 2 0.5 1 4 0.5 0.125 2 0.5 0.031 >16	 0.5/9.5 

43 0.5 0.125 2 0.5 0.5 2 0.25 8 0.5 >8 2 >16	 0.125/3.375 

44 0.5 0.125 2 1 0.5 4 0.5 0.125 1 0.25 0.031 >16	 0.25/4.75 

45 1 1 2 0.5 >32 16 0.5 >8 >8 >8 4 >16	 0.25/4.75 

46 0.5 0.125 2 0.25 0.5 4 0.25 0.125 1 0.25 0.016 >16	 0.125/3.375 

47 1 0.125 2 0.5 0.25 4 0.5 2 >8	 4 0.016 >16	 0.125/3.375 

48 0.5 0.125 2 0.5 1 8 0.25 2 >8	 4 2 >16	 0.125/3.375 

49 0.5 1 2 1 >32 16 0.5 8 >8	 >8 4 >16	 0.125/3.375 

50 0.5 0.063 1 0.5 32 4 0.25 2 >8	 4 2 >16	 0.125/3.375 

51 1 0.5 4 1 >32 16 0.5 8 8 >8	 4 >16	 0.125/3.375 

52 0.5 2 2 2 >32 16 0.5 >8 8 >8	 4 >16	 0.125/3.375 

53 0.5 0.063 2 1 1 8 0.25 2 >8 8 1 >16	 0.125/3.375 
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54 0.5 0.125 2 4 >32 16 0.5 >8 >8 >8 >4 >16	 0.25/4.75 

55 0.5 0.125 2 0.5 0.5 2 0.25 0.063 4 0.25 2 >16	 0.25/4.75 

56 0.5 1 2 0.5 >32 16 0.5 8 >8 >8	 4 >16	 0.125/3.375 

56- 0.5 1 2 0.5 >32 16 0.25 8 >8 >8	 4 >16	 0.125/3.375 

57 0.5 0.125 2 1 1 2 0.25 2 0.5 8 1 >16	 0.125/3.375 

58 0.5 0.125 2 1 1 2 0.25 0.031 1 0.125 0.063 >16	 0.125/3.375 

59 1 0.125 2 1 1 2 0.5 4 >8 8 4 >16	 0.125/3.375 

60 1 0.125 2 2 1 4 0.25 0.125 1 0.25 1 >16	 0.25/4.75 

 
* amik=amikacin; azith=azithromycin; chloro=chloramphenicol; Cipro=ciprofloxacin; gati=gatifloxacin; genta=gentamicin; 
linz=linezolid; moxi=moxifloxacin; ted=tedizolid; tig= tigecycline; TMP/SMX=trimethoprim/sulfamethoxazole; tobra=tobramycin; 
vanco=vancomycin.
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 MIC distribution data for investigated antimicrobial agents against MRSA are 

summarized in Table 3.1.2.2.  MIC values for the tested drugs ranged as follows; vancomycin 

0.5-1 µg/ml, tigecycline 0.63-2 µg/ml, linezolid 1-4 µg/ml, gentamicin 1-4 µg/ml, tobramycin 

0.25-32 µg/ml, amikacin 2-16 µg/ml, tedizolid 0.125-0.25 µg/ml, gatifloxacin 0.63-8 µg/ml, 

azithromycin 1-8 µg/ml, ciprofloxacin 0.125-8 µg/ml, moxifloxacin 0.016-8 µg/ml, 

chloramphenicol >16 µg/ml and trimethoprim/sulfamethoxazole.   The MIC90 value was one 

dilution higher than the MIC50 value for vancomycin (1 µg/ml versus 0.5 µg/ml), tedizolid 0.25 

µg/ml versus 0.125 µg/ml), tigecycline (0.25 µg/ml versus 0.125 µg/ml), gentamicin (1 µg/ml 

versus 0.5 µg/ml) and ciprofloxacin (8 µg/ml versus 4 µg/ml), 2 dilutions higher for 

moxifloxacin 4 µg/ml versus 1 µg/ml), amikacin (16 µg/ml versus 4 µg/ml) and gatifloxacin (8 

µg/ml versus 2 µg/ml) and 4 dilutions higher for tobramycin (>16 µg/ml versus 1 µg/ml). 
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Table 3.1.2.2:  Comparative MIC distribution data for 13 antimicrobial agents*. 
 MIC 
 0.016 0.031 0.063 0.125 0.25 0.5 1 2 ≥4 ≥8 ≥16 ≥32 MIC5

0 
MIC9

0 
Linz       2 (3%) 55 

(92%) 
3 (5%)    2 2 

Vanco      48 
(80%) 

12 
(20%) 

     0.5 1 

Ted    13 
(22%) 

36 
(60%) 

11 
(18%) 

      0.12
5 

0.25 

Tig   23 
(38%) 

26 
(43%) 

4 (7%) 1 (2%) 4 (7%) 2 (3%)     0.12
5 

0.25 

Genta     5 (8%) 27 
(45%) 

22 
(37%) 

3 (5%) 1 (2%)   2 (3%) 0.5 1 

Tobra     3 (5%) 20 
(33%) 

15 
(25%) 

4 (6%) 1 (2%) 1 (2%) 1 (2%) 15 
(25%) 

1 >16 

Amik        15 
(25%) 

24 
(40%) 

12 
(20%) 

9 (15%)  4 16 

Gati  1 (3%) 6 (10%) 19 
(31%) 

  3 (5%) 8 (13%) 9 (15%) 14 
(23%) 

  2 8 

Azithro      2 (3%) 14 
(23%) 

2 (3%) 2 (3%) 40 
(67%) 

  >8 >8 

Cipro     17 
(28%) 

8 (13%)   6 (10%) 29 
(48%) 

  4 8 

Moxi 16 (26.5%) 7 
(11.5%) 

3 (5%)    9 (15%) 11 
(18%) 

13 
(21%) 

1 (3%)   1 4 

Chloro           60 
(100%) 

 >16 >16 

 0.063/1.158 0.125/3.375 0.05/4.75 0.5/9.5 1/19 MIC50  MIC90  
TMP/SMX 8 38 9 4 1 0.125/3.375 0.25/4.75 

*amik=amikacin; azith=azithromycin; chloro=chloramphenicol; Cipro=ciprofloxacin; gati=gatifloxacin; genta=gentamicin; 
linz=linezolid; moxi=moxifloxacin; ted=tedizolid; tig= tigecycline; TMP/SMX=trimethoprim/sulfamethoxazole; tobra=tobramycin; 
vanco=vancomycin.
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 Table 3.1.2.3 summarizes individual MPC values for blood culture MRSA strains tested 

against 13 antimicrobial agents.  The numbers of strains tested by MPC were lower than the 

number of strains tested by MIC for some antimicrobial agents summarized.  MPC testing was 

only performed on strains tested as susceptible by MIC testing following CLSI susceptibility 

testing criteria and breakpoints.  For example, MPC testing was applied to 44 MRSA strains 

against tobramycin, 27 strains for gatifloxacin, 23 strains for moxifloxacin, 27 stains for 

ciprofloxacin and 18 strains for azithromycin. 

Table 3.1.2.3:  Individual MPC values for 60 MRSA strains tested against 12 antimicrobial 
agents. 

 Vanco Tig Linz Genta Tobra Amik Ted Gati Azithro Cipro Moxi TMP/SMX 
1 >16 0.25 2 8 >16 ≥32	 0.25 X* X X X >32/609 
2 8 0.25 2 >16 8 ≥32	 0.25 0.25 2 2 0.125 >32/609	
3 8 0.25 2 8 >16 ≥32	 0.25 0.25 8 4 0.125 >32/609	
4 >16 0.25 2 >16 8 ≥32	 0.25 0.25 X 2 0.125 >32/609	
5 8 0.25 2 8 >16 ≥32	 0.25 0.25 X 4 0.125 >32/609	
6 4 0.25 2 8 8 ≥32	 0.25 0.25 X 2 0.125 >32/609	
7 2 0.25 2 8 8 ≥32	 0.25 0.25 X 2 0.125 >32/609	
8 >16 0.25 2 8 8 ≥32	 0.25 X X X X >32/609	
9 4 0.5 4 8 X ≥32	 0.25 X X X X >32/609	
10 >16 1 2 8 X ≥32	 0.25 X X X X >32/609	
11 >16 0.25 2 8 8 ≥32	 0.25 0.25 8	 2 0.125 >32/609	
12 8 0.5 2 8 8 ≥32	 0.25 0.25 8	 2 0.125 >32/609	
13 8 0.5 2 8 >16 ≥32	 0.25 0.25 X X X >32/609	
15 8 0.25 2 4 8 32 0.25 X X X X >32/609	
16 8 0.25 2 >16 8 32 0.25 X X X X >32/609	
17 8 0.25 2 8 8 32 0.25 X X X X >32/609	
18 8 0.25 2 >16 >16 ≥32	 0.25 0.25 8	 2 0.125 >32/609	
19 8 0.25 2 8 8 ≥32	 0.25 4 8	 8 X >32/609	
20 4 0.25 2 >16 >16 ≥32	 0.25 4 8	 8 1 >32/609	
21 4 0.25 2 8 >16 ≥32	 0.25 1 X 4 1 >32/609	
22 8 0.25 2 8 X ≥32	 0.25 X X X X >32/609	
23 8 0.25 2 8 >16 ≥32	 0.25 X X X X >32/609	
24 8 0.25 4 >16 X ≥32	 0.25 X X X X >32/609	
25 4 0.25 2 8 X ≥32	 0.25 X X X X >32/609	
26 8 0.25 2 >16 >16 ≥32	 0.25 2 X 2 1 >32/609	
27 8 0.25 2 8 16 ≥32	 0.25 0.25 8 8 1 >32/609	
28 >16 0.25 2 8 >16 ≥32	 0.25 X X 2 0.5 >32/609	
29 >16 0.25 2 8 >16 ≥32	 0.25 0.25 8	 8 0.125 >32/609	
30 4 0.25 2 8 >16 ≥32	 0.25 0.25 8	 2 0.125 >32/609	
31 >16	 0.25 2 8 >16 ≥32	 0.5 X X X X >32/609	
32 >16	 0.25 4 8 >16 ≥32	 0.5 0.25 8 2 1 >32/609	
33 8 0.5 2 8 8 32 0.5 0.25 X 2 1 >32/609	
34 >16 0.25 4 8 X ≥32	 0.5 X X X X >32/609	
35 >16 0.25 2 8 >16 ≥32	 0.5 X X X X >32/609	
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36 4 0.25 4 4 8 ≥32	 0.5 X X X X >32/609	
37 8 0.25 4 8 X ≥32	 0.5 X X X X >32/609	
38 8 0.25 2 8 >16 ≥32	 0.5 X X X X >32/609	
39 >16	 0.25 2 4 8 32 0.5 0.25 X 4 1 >32/609	
40 >16	 0.25 4 8 X ≥32	 0.5 X X X X >32/609	
41 4 0.5 2 >16 X ≥32	 0.25 0.25 X 2 0.125 >32/609	
42 8 0.25 4 >16 >16 ≥32	 0.5 0.25 8 2 0.125 >32/609	
43 4 0.25 2 16 16 ≥32	 0.5 X 8 X X >32/609	
44 8 0.5 4 8 8 ≥32	 0.5 4 8 X 1 >32/609	
45 8 1 4 8 X ≥32	 0.5 X X X X >32/609	
46 >16 0.5 2 8 8 ≥32	 0.5 0.25 8 2 0.125 >32/609	
47 32 0.25 2 8 8 ≥32	 0.5 X X X 0.125 >32/609	
48 32 0.25 2 >16 >16 ≥32	 0.5 X X X X >32/609	
49 32 2 4 8 >16 ≥32	 0.5 X X X X >32/609	
50 4 0.5 2 8 X ≥32	 0.25 X X X X >32/609	
51 4 1 4 >16 X ≥32	 0.5 X X X X >32/609	
52 8 1 4 8 X ≥32	 0.5 X X X X >32/609	
53 32 0.25 2 8 >16 ≥32	 0.5 X X X X 16/304 
54 >16	 0.25 2 8 X ≥32	 0.5 X X X X >32/609	
55 >16	 0.25 2 8 8 ≥32	 0.5 0.25 X 2 X >32/609	
56-1 >16	 1 4 8 X ≥32	 0.5 X X X X >32/609	
56-2 >16	 1 4 8 X ≥32	 0.5 X X X X >32/609	
57 >16	 0.5 2 8 >16 ≥32	 0.5 X 8 X X >32/609	
58 32 0.25 2 8 8 ≥32	 0.5 0.25 8 4 X >32/609	
59 4 0.25 2 8 >16 ≥32	 0.5 X X X X >32/609	
60 2 0.25 2 8 >16 ≥32	 0.25 4 8 8 X >32/609	

*X=Not tested by MPC as MIC was the resistance breakpoint. 

  

 The number of strains tested by MPC differs for each drug based on prior MIC testing. 

As summarized in Table 3.1.2.4 for the strains tested, MPC values for vancomycin ranged from 

4->32 µg/ml as compared to tigecycline 0.25-1 µg/ml, linezolid2-4 µg/ml, gentamicin 4->16 

µg/ml, tobramycin8-≥16 µg/ml, amikacin ≥32 µg/ml, tedizolid 0.25-0.5 µg/ml, gatifloxacin 

0.25-4 µg/ml, azithromycin 2-≥4 µg/ml, ciprofloxacin 2-≥8 µg/ml, moxifloxacin 0.125-≥1 µg/ml 

and trimethoprim/sulfamethoxazole ≥16 µg/ml. 
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Table 3.1.2.4:  Comparative MPC distribution data for 60 MRSA strains tested against 11 antimicrobial agents. 
 

MPC 
Drug/N* 0.063 0.125 0.25 0.5 1 2 4 8 ≥16 32 ≥32 MPC50 MPC90 MPC90/MIC90 

Linz 60      45 

(75%) 

15 (25%)     2 4 2 

Vanco 60      2 (3%) 12 (20%) 22 (37%) 24 

(40%) 

  8 >16 >16 

Ted 60   32 

(53%) 

28 

(47%) 

       0.25 0.5 2 

Tig 60   44 

(73%) 

9 (15%) 6 (10%) 1 (2%)      0.25 1 4 

Genta 60       3 (5%) 45 (75%) 12 

(20%) 

  8 16 16 

Tobra 44        19 (43%) 25 

(57%) 

  ≥16 ≥16 1					

Amik 60          7 (12%) 53 

(88%) 

32 32 2		

Gati 27   21 

(77%) 

 1 (4%) 1 (4%) 4 (15%)     0.25 4 0.5 

Moxi 23  15 

(65%) 

 1 (4%) 7 (30%)       0.125 1 0.25 

Cipro 27      17 

(63%) 

5 (18.5%) 5 (18.5%)    2 16 2 

Azithro 18     1 (6%)   17 (94%)    8 8 1 

*N=total isolates tested by MPC (susceptible by MIC). 

* amik=amikacin; azith=azithromycin; cipro=ciprofloxacin; gati=gatifloxacin; genta=gentamicin; linz=linezolid; moxi=moxifloxacin; 

ted=tedizolid; tig= tigecycline; tobra=tobramycin; vanco=vancomycin.
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 Published CLSI MIC breakpoints for S. aureus against the tested drugs are summarized 

in Table 3.1.2.5.  Based on CLSI recommended breakpoints, the percentage of strains 

susceptible by MIC and MPC testing were calculated for each drug.  By MIC testing, all strains 

(100%) were susceptible to vancomycin, trimethoprim/sulfamethoxazole, linezolid, tedizolid 

and amikacin.  The majority (95%) of strains were susceptible to gentamicin, 90% were 

susceptible to tigecycline 90% and 73% were susceptible to tobramycin.  Fewer than half of 

the strains were susceptible to gatifloxacin (45%), moxifloxacin (42%), ciprofloxacin (45%) and 

azithromycin (30%).  Unlike linezolid and tedizolid which showed 100% susceptibility by MPC 

testing, none of the strains were susceptible to amikacin, ciprofloxacin or tobramycin.  Only 5-

6% of strains were susceptible to azithromycin and gentamicin.  Between 60-70% of strains 

were susceptible to gatifloxacin and moxifloxacin and over 80% were susceptible to tigecycline 

by MPC testing.  None of the strains were susceptible to chloramphenicol either by MIC or 

MPC testing.  None of the 60 MRSA strains were at or below the susceptibility breakpoint for 

TMP/SMX. 

  



 

61 
 

Table 3.1.2.5:  Comparative susceptibility data for MRSA strains tested against 13 drugs. 

Drug Genta Gati Moxi Vanco TMP/SMX Tobra Cipro Azithro Tig Linz Chloro Amik Ted 

MIC S.BP ≤ 4 ≤ 0.5 ≤ 0.5 ≤ 4 ≤ 2/38 ≤ 4 ≤ 1 ≤ 2 ≤ 0.5 ≤ 4 ≤ 8 ≤ 16 ≤ 0.5 

Susceptibility % 
by MIC 

95% 45% 42% 100% 100% 73% 45% 30% 90% 100% 0% 100% 100% 

susceptibility% 
by MPC 

5% 78% 67% 20% NT 0% 0% 6% 88% 100% NT 0% 100% 

NT= not tested. 

MIC S.BP=MIC susceptibility breaking point. 

amik=amikacin; azith=azithromycin; chloro=chloramphenicol; Cipro=ciprofloxacin; gati=gatifloxacin; genta=gentamicin; linz=linezolid; 
moxi=moxifloxacin; ted=tedizolid; tig= tigecycline; TMP/SMX=trimethoprim/sulfamethoxazole; tobra=tobramycin; 
vanco=vancomycin;  
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 The following experiments were performed to determine if viable colonies of MRSA 

isolated from agar plates containing >16 µg/ml of vancomycin retained an elevated MIC value 

upon retesting.  Data summarized in Table 3.1.2.6 is based on experiments where colonies 

were collected from vancomycin-containing agar plates (≥16 µg/ml) and tested by the MIC 

assay to determine if the recovered MIC was elevated from the original parental MIC value.  

Parental MICs were compared to recovered MICs (from drug-containing plates and drug-free 

plates) for MRSA strains with high MPC values of vancomycin. All recovered MICs retained the 

same value as the parental MIC at 0.5 µg/ml. This data suggests some type of tolerance effect, 

which is potentially critical for patients being treated with vancomycin and with high bacterial 

burdens whereas organisms survive in the presence of high vancomycin concentrations. 

Table 3.1.2.6:  MIC results for 24 MRSA strains comparing wildtype parental MIC values to 
those recovered from MPC plates containing >16 µg/ml of vancomycin.  

Isolate# MPC MIC original MIC rec/direct MIC rec/sub 
32 16 0.5 0.5 0.5 
35 ≥16 0.5 0.5 0.5 
40 ≥16 0.5 0.5 0.5 
48 16 0.5 0.5 0.5 
49 ≥16 0.5 0.5 0.5 
53 ≥16 0.5 0.5 0.5 
54 16 0.5 0.5 0.5 
55 16 0.5 0.5 0.5 
57 16 0.5 0.5 0.5 
58 ≥16 0.5 0.5 0.5 
46 16 0.5 0.5 0.5 
1 16 0.5 0.5 0.5 
 8  16 0.5 0.5 0.5 
10 16 0.5 0.5 0.5 
11 16 0.5 0.5 0.5 
28 16 0.5 0.5 0.5 
29 16 0.5 0.5 0.5 
31 16 0.5 0.5 0.5 
34 16 0.5 0.5 0.5 
47 16 0.5 0.5 0.5 
48 16 0.5 0.5 0.5 
56 16 0.5 0.5 0.5 
4 ≥16 0.5 0.5 0.5 
56-b 16 0.5 0.5 0.5 
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 3.2 MIC and MPC at Various Bacterial Densities 

 MPC values for 6 MRSA strains were determined against vancomycin at different 

bacterial densities ranging from 105-109 CFU/ml as shown in Table 3.2.1.  MPC values at 108 

CFU/ml was < 3 double dilutions lower when compared to the 109 CFU/ml density while the 

105-107 CFU/ml densities showed no growth at all drug concentrations tested.  The following 

experiments were to determine how the MPC for vancomycin against MRSA strains changed 

by altering the cell density of the bacteria being tested.   

Table 3.2.1:  Inhibition of 6 MRSA strains by different concentrations of vancomycin exposed 
to varying bacterial densities. 

Isolate # Density Vancomycin concentration 
2 4 8 16 32 64 

35 109 +* + + -** - - 
108 + + - - - - 
107 - - - - - - 
106 - - - - - - 
105 - - - - - - 

40 109 + + + - - - 
108 + - - - - - 
107 - - - - - - 
106 - - - - - - 
105 - - - - - - 

28 109 + + - - - - 
108 + + - - - - 
107 - - - - - - 
106 - - - - - - 
105 - - - - - - 

29 109 + + + - - - 
108 + + - - - - 
107 - - - - - - 
106 - - - - - - 
105 - - - - - - 

8 109 + + + + - - 
108 + - - - - - 
107 - - - - - - 
106 - - - - - - 
105 - - - - - - 

11 109 + + - - - - 
108 + - - - - - 
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107 - - - - - - 
106 - - - - - - 
105 - - - - - - 

Control SA 109 + + + - - - 
108 + + - - - - 
107 - - - - - - 
106 - - - - - - 
105 - - - - - - 

*+ = growth 
**- = no growth.  
  

Isolate #5 was picked from a vancomycin containing plate at 32, 16 and 8 µg/ml and 

the MIC was determined at densities of 104-109 CFU/ml and compared to recovered MIC 

values from drug-free plates.  In all instances the recovered MIC values were the same or 

within 1 doubling dilution of each other.   

 The following experiments summarized in Table 3.3.2 investigated if recovery of 

MRSA colonies from vancomycin-containing plates at different drug concentrations affected 

the recovered MIC value when tested using different bacterial cell densities. 

Table 3.2.2:  Comparative MIC values for 1 MRSA strain exposed to varying concentrations 
of vancomycin. 

Drug 
concentration in 
plate subbed to 

32 µg/ml  16 µg/ml 8 µg/ml 
DC* plate DF** plate DC plate DF plate DC plate DF plate 
MIC (µg/ml) MIC (µg/ml) MIC (µg/ml) 

109 0.5 0.5 0.5 0.5 0.5 0.5 
108 1 1 1 1 1 1 
107 1 1 1 1 1 1 
106 1 1 0.5 0.5 0.5 0.5 
105 1 0.5 0.5 0.5 0.5 0.5 
104 1 1 1 1 1 1 

  *DC = drug-containing;  
**DF = drug-free 
  

For MIC testing, the MIC is read as the lowest drug concentration without visible growth.  As 

an MIC assay is not a measurement of bacterial killing, viable organisms may still be present 

at the MIC drug concentration.   

3.3 Visual End Point vs Actual End Point 
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 In this next series of experiments, we were interested in determining if the visible 

endpoint for MPC assays had viable organisms.  Negative (no visible colonies) MPC plates were 

sub-cultured to drug-containing plates (same drug concentration as isolated from) and to 

drug-free plates.  MRSA (Tables 3.3.1. to 3.3.3) and group A b-hemolytic streptococci (GABHS) 

or Streptococcus pyogenes (Tables 3.3.4 to 3.3.7) were tested at different drug concentrations 

and against different antimicrobial agents including linezolid, vancomycin, moxifloxacin, 

azithromycin and penicillin.  Growth was recovered when negative plates (with no visible 

bacterial growth) were sub-cultured to drug-free plates but not when sub-cultured to drug-

containing plates.  Therefore, visual end points do not necessarily reflect the end point 

defining the drug concentration in which no viable organisms remained.  This might be 

expected when considering testing of bactericidal or bacteriostatic agents. 

Table 3.3.1:  Comparison of visual versus actual MPC endpoints for 15 MRSA strains exposed 
to linezolid. 

MRSA - Linezolid 

Isolate # MPC 
Re-sub 

4  µg/ml 8 µg/ml 16 µg/ml 32 µg/ml 
4 DF 8 DF 16 DF 32 DF 

1 4 - + - + - + - + 
2 4 - + - + - + - + 
3 4 - + - + - + - + 
4 4 - + - + - + - + 
5 4 - + - + - + - + 
6 4 - + - + - + - + 
9 4 - + - + - + - + 
22 4 - + - + - + - + 
30 4 - + - + - + - + 
34 4 - + - + - + - + 
44 4 - + - + - + - + 
45 4 - + - + - + - + 
51 4 - + - + - + - + 
52 4 - + - + - + - + 
56 4 - + - + - + - + 

DF = drug-free; - = no growth; + = growth. 

Table 3.3.2:  Comparison of visual versus actual MPC endpoints for 9 MRSA strains exposed 
to vancomycin. 

MRSA-Vancomycin 
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Isolate # MPC 
Re-submit 

4 µg/ml 8 µg/ml 16 µg/ml 
4 DF 8 DF 16 DF 

6 4 - + - + - + 
7 4 - + - + - + 
16 16 - + - + - + 
20 8 - + - + - + 
21 8 - + - + - + 
25 8 - + - + - + 
29 4 - + - + - + 
30 8 - + - + - + 
50 16 - + - + - + 

DF = drug-free; - = no growth; + = growth. 

 
Table 3.3.3:  Comparison of visual versus actual MPC endpoints for 8 MRSA strains exposed 
to moxifloxacin. 
MRSA-Moxifloxacin 

Isolate # MPC 
Re-sub 

0.125 µg/ml 0.25 µg/ml 0.5 µg/ml 
0.125 DF 0.25l DF 0.5 DF 

6 0.125 - + - + - + 
7 0.125 - + - + - + 
4 0.125 - + - + - + 
5 0.125 - + - + - + 
11 0.125 - + - + - + 
12 0.125 - + - + - + 
41 0.125 - + - + - + 
42 0.125 - + - + - + 

DF = drug-free; - = no growth; + = growth. 

 
Table 3.3.4:  Comparison of visual versus actual MPC endpoints for 10 GABHS strains 
exposed to azithromycin. 

GABHS-Azithromycin 

Isolate 
# 

 
MIC MPC 

Re-sub 
0.125 µg/ml 0.25 µg/ml 0.5 µg/ml 1 µg/ml 

0.125 DF 0.25 DF 0.5 DF 1 DF 
1 0.063 0.125 - + - + - + - + 
2 0.125 0.25 - + - + - + - + 
3 0.125 0.25 - + - + - + - + 
4 0.125 0.125 - + - + - + - + 
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5 0.125 0.125 - + - + - + - + 
6 0.125 0.125 - + - + - + - + 
7 0.125 0.125 - + - + - + - + 
8 0.125 0.125 - + - + - + - + 
9 0.125 0.125 - + - + - + - + 
10 0.125 0.25 - + - + - + - + 

DF = drug-free; - = no growth; + = growth. 

 
Table 3.3.5:  Comparison of visual versus actual MPC endpoints for 10 GABHS strains 
exposed to penicillin. 

GABHS-penicillin 

Isolate # 
 

MIC MPC 
Re-submit 

0.16 µg/ml 0.31 µg/ml 0.63 µg/ml 
0.16 DF 0.31l DF 0.63 DF 

1 0.008 0.125 - + - + - + 
2 0.008 0.25 - + - + - + 
3 0.004 0.25 - + - + - + 
4 0.004 0.125 - + - + - + 
5 0.004 0.125 - + - + - + 
6 0.004 0.125 - + - + - + 
7 0.008 0.125 - + - + - + 
8 0.008 0.125 - + - + - + 
9 0.008 0.125 - + - + - + 
10 0.004 0.25 - + - + - + 

DF = drug-free; - =no growth; + = growth. 

 
Table 3.3.6:  Comparison of visual versus actual MPC endpoints for 10 GABHS strains 
exposed to moxifloxacin. 

GABHS-Moxifloxacin 

Isolate # 
 

MIC MPC 
Re-submit 

0.25 µg/ml 0.5 µg/ml 1 µg/ml 2 µg/ml 
0.25 DF 0.5 DF 1 DF 2 DF 

1 0.25 0.25 - + - + - + - + 
2 0.25 0.25 - + - + - + - + 
3 0.25 0.25 - + - + - + - + 
4 0.25 0.25 - + - + - + - + 
5 0.25 0.25 - + - + - + - + 
6 0.25 0.25 - + - + - + - + 
7 0.25 0.5 - + - + - + - + 
8 0.25 0.25 - + - + - + - + 
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9 1 1 - + - + - + - + 
10 0.125 0.5 - + - + - + - + 

DF = drug-free; - = no growth; + = growth. 

 
Table 3.3.7:  Comparison of visual versus actual MPC endpoints for 10 GABHS strains 
exposed to vancomycin. 

GABHS-Vancomycin 

Isolate 
# 

 
MIC MPC 

Re-submit 
0.5 µg/ml 1 µg/ml 2 µg/ml 4 µg/ml 

0.5 DF 1 DF 2 DF 4 DF 
1 0.25 0.125 - + - + - + - + 
2 0.25 0.25 - + - + - + - + 
3 0.25 0.25 - + - + - + - + 
4 0.25 0.125 - + - + - + - + 
5 0.25 0.125 - + - + - + - + 
6 0.25 0.125 - + - + - + - + 
7 0.25 0.125 - + - + - + - + 
8 0.25 0.125 - + - + - + - + 
9 0.25 0.125 - + - + - + - + 
10 0.5 0.25 - + - + - + - + 

DF = drug-free; - =no growth; + = growth. 

 The MIC determination utilized 105 CFU/ml against vancomycin, linezolid and 

tigecycline.  Negative wells (showing now growth) were sub-cultured to drug-free blood agar 

plates to test if viable organisms could be recovered.  For vancomycin, the majority of negative 

wells showed no growth when sub-cultured to drug-free plates. For tigecycline and linezolid, 

most negative wells had bacterial growth on drug-free blood agar plates as shown in Table 

3.3.8-3.3.10.   

 In the following experiments shown in Tables 3.3.8-3.3.10, sub-culturing of visually 

negative wells was performed to determine if viable organism existed in the MIC assay in wells 

with no visual growth. 

 
 
 
 
 
Table 3.3.8:  Subculture results from negative MIC wells for MRSA strains tested against 
tigecycline. 
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Tig 8 4 2 1 0.5 0.25 0.125 0.063 0.031 0.016 0.008 µg/ml 
1 - - - - - - - - - + + + 
4 - - - - - - - - - + + + 
8 - - - - - - - - + + + + 
10 - - - - - - + + + + + + 
11 - - - - - - - - + + + + 
35 - - - - - - - - + + + + 
40 - - - - - - - - + + + + 
44 - - - - - - - - + + + + 

Negative wells sub-cultured to drug-free agar plates 
1 - - + + + - - + +    
4 - - - - + + + + +    
8 + + + - + + + +     
10 - + + + + +       
11 - + - - - + - +     
35 + + + + + - + +     
40 - + + - + + + +     
44 + - + - + + + +     

- = no growth; + = growth. 
 
Table 3.3.9:  Subculture results from negative MIC wells for MRSA strains tested against 
linezolid. 

Linz 8 4 2 1 0.5 0.25 0.125 0.063 0.031 0.016 0.008 µg/ml 
1 - - - - + + + + + + + + 
4 - - - + + + + + + + + + 
8 - - - + + + + + + + + + 
10 - - - + + + + + + + + + 
11 - - - + + + + + + + + + 
35 - - - + + + + + + + + + 
40 - - - + + + + + + + + + 
44 - - - + + + + + + + + + 
Negative wells sub-cultured to drug-free agar plates 
1 + + + +         
4 + - +          
8 + + +          
10 - + +          
11 - + +          
35 - + +          
40 + + +          
44 + + +          

- = no growth; + = growth. 
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Table 3.3.10:  Subculture results from negative MIC wells for MRSA strains tested against 
vancomycin. 

vanco 16 8 4 2 1 0.5 0.25 0.125 0.063 0.031 0.016 µg/ml 
1 - - - - - - + + + + + + 
4 - - - - - + + + + + + + 
8 - - - - - + + + + + + + 
10 - - - - - + + + + + + + 
11 - - - - - + + + + + + + 
35 - - - - - - + + + + + + 
40 - - - - - - + + + + + + 
44 - - - - - - + + + + + + 
9 - - - - - - + + + + + + 
10 - - - - - - + + + + + + 
11 - - - - - - + + + + + + 
12 - - - - - + + + + + + + 
13 - - - - - - + + + + + + 
15 - - - - - - + + + + + + 
16 - - - - - - + + + + + + 
17 - - - - - - + + + + + + 
Negative wells sub-cultured to drug-free agar plates 
1 - - - - - -       
4 - - + - -        
8 - - - - -        
10 - - - - -        
11 - - - - -        
35 - - - - - -       
40 - - - - - -       
44 - + - - - -       
9 - - - - - -       
10 - + - - - -       
11 - - - - - -       
12 - - - - -        
13 - + - - - -       
15 - + - - - -       
16 - + - - - -       
17 - + - - - -       

- = no growth; + = growth.  
 The MIC was investigated at bacterial densities ranging from 105-108 CFU/ml for 6 

MRSA strains tested against vancomycin. Negative wells (8, 16 & 32 µg/ml) were sub-cultured 
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to drug-free agar plates and to drug containing agar plates (same concentration as isolated 

from) (Table 3.3.11).  Bacteria from the latter plates – if negative – were then sub-cultured to 

drug-free plates to test if growth could be recovered (Table 3.3.12).  Isolates from the 106 - 

108 CFU/ml wells showed growth when sub-cultured to drug-free plates, but no growth was 

recovered from 105 CFU/ml density wells on drug-free plates. Growth also was not recovered 

when sub-culturing isolates (105-108 CFU/ml) to drug-containing plates (Table 3.3.11).  When 

these negative drug containing plates were sub-cultured to drug-free plates, growth was 

recovered from 107-108 CFU/ml wells but not from 105 – 106 CFU/ml wells as summarized in 

Table 3.3.12. 

Table 3.3.11: Subculture results of negative wells following MRSA MIC testing against 
vancomycin at varying bacterial densities. 

Drug-containing plates Drug free plates 
MRSA 
isolate # 

108 
32 16 8 32 16 8 

8 - - - + + + 
11 - - - + + + 
39 - - - + + + 
47 - - - + + + 
48 - - - + + + 
49 - - - + + + 

107 

8 - - - + + + 
11 - - - + + + 
39 - - - + + + 
47 - - - + + + 
48 - - - + + + 
49 - - - + + + 

106 

8 - - - + + + 
11 - - - - - + 
39 - - - - + + 
47 - - - + + + 
48 - - - + + + 
49 - - - + + + 

105 

8 - - - - - - 
11 - - - - - - 
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39 - - - - - - 
47 - - - - - - 
48 - - - - - - 
49 - - - - - + 

- = no growth; + = growth. 

Table 3.3.12: Subculture results of negative drug-containing plates to drug-free plates. 
Negative drug-containing plates drug free plates 

isolate # 108 
32 16 8 32 16 8 

8 - - - + + + 
11 - - - + + + 
39 - - - + + + 
47 - - - + + + 
48 - - - + + + 
49 - - - + + + 

                    107 

8 - - - + + + 
11 - - - - - + 
39 - - - - + - 
47 - - - + + + 
48 - - - - + + 
49 - - - - + + 

                          106 

8 - - - - - - 
11 - - - - - - 
39 - - - - - - 
47 - - - - - - 
48 - - - - - - 
49 - - - - - - 

                   105 

8 - - - - - - 
11 - - - - - - 
39 - - - - - - 
47 - - - - - - 
48 - - - - - - 
49 - - - - - - 

- = no growth; + = growth. 

 3.4. Serial Passage 
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 Serial passage experiments were performed in an attempt to isolate an MRSA strain 

with a stable elevated vancomycin MIC or MPC.   In order to investigate the serial passage 

effect on the susceptibility level, MRSA colonies were picked from high vancomycin 

concentration plates (32 µg/ml) and sub-cultured 7 times on 32 µg/ml drug containing plates 

to select for a stable subpopulation with elevated MIC, if possible.  Each passage was then 

subbed to a drug-free plate to compare with recovered MIC values to parental MIC values 

(Table 3.4.1).  These experiments failed to produce a strain with a stably elevated MIC.   

Table 3.4.1: Comparison of MIC values for 1 MRSA strain following serial passage on 
vancomycin (32 µg/ml) containing plates. 

32 µg/ml MIC from DC plate MIC from DF plate 
1st passage 0.125 0.063 
2nd passage 0.125 0.063 
3rd passage 0.125 0.125 
4th passage 0.125 0.125 
5th passage 0.125 0.063 
6th passage 0.125 0.063 
7th passage 0.125 0.063 

DC = drug containing; DF = drug free. 

 3.5 Molecular Characterization 

3.5.1. Polymerase Chain Reaction (PCR) Analysis 

   3.5.1.1 mecA and  Panton-Valentine Leukocidin (PVL) 

 mecA and PVL testing were performed to confirm MRSA (by confirming the presence 

of the mecA gene) and to determine if PVL positive strains were a marker for high vancomycin 

MPC values.  PCR testing for the mecA gene was performed for all isolates to confirm its 

presence in our MRSA isolates (Figure 3.5.1.1.1).  PCR for the PVL gene was also performed to 

determine if there was a correlation between its presence and high MPC values (Figure 

3.5.1.1.1).  All MRSA strains were positive for the mecA gene.   However, only some strains 

were PVL positive which did not correlate with high vancomycin MPC values (Table 3.5.1.1.1).  
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Figure 3.5.1.1.1:  PCR amplification of mecA and PVL genes. 

See Table 3.5.1.1.1 for interpretation of results. 

Table 3.5.1.1.1:  Individual mecA and PVL results for the 60 MRSA strains investigated.   

Isolate # mecA PVL 
1 + + 
2 + - 
3 + - 
4 + - 
5 + - 
6 + + 
7 + + 
8 + - 
9 + + 

10 + - 
11 + - 
12 + - 
13 + - 
15 + - 
16 + - 
17 + - 
18 + - 
19 + - 

¬  PVL 
¬  mecA  
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20 + - 
21 + + 
22 + - 
23 + + 
24 + - 
25 + - 
26 + - 
27 + - 
28 + - 
29 + - 
30 + - 
31 + - 
32 + - 
33 + - 
34 + - 
35 + - 
36 + - 
37 + - 
38 + - 
39 + - 
40 + - 
41 + - 
42 + - 
43 + - 
44 + - 
45 + - 
46 + + 
47 + + 
48 + + 
49 + - 
50 + + 
51 + - 
52 + - 
53 + + 
54 + - 
55 + + 
56 + - 
57 + + 
58 + + 
59 + - 
60 + - 
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   3.5.1.2  CLP 

As cell wall changes might be an explanation for MRSA strains with high vancomycin 

MPC values, we investigated select cell wall genes.  Caseinolytic protease (CLP) gene is 

required for stress resistance and growth recovery in S. aureus.  PCR for Clp gene on 6 random 

patients isolates of MRSA and 6 isolates of MSSA were conducted (Figure 3.5.1.2.1).  There 

were no consistent signals observed for the presence of this gene in the isolates tested. 

 
	
Figure 3.5.1.2.1:  ClpP in S. aureus versus MRSA. 

See Table 3.5.1.2.1 for interpretation of results. 

 
Table 3.5.1.2.1:  Comparison of 6 MSSA and 6 MRSA strains for the presence or absence of 
the CLP gene. 

Isolate # MSSA MRSA 
1 + - 
2 + + 
3 - - 
4 + - 
5 - - 
6 - - 

   3.5.1.3   SCCmec and agr  

 A PCR assay for agr (accessory gene regulator) and SCC mec (staphylococcal cassette 

chromosome mec) was carried out before and after vancomycin exposure.  The agr locus is a 

regulator of virulence factors and controls a large set of genes including the genetic element 

carrying the b-lactam resistance gene mecA.  Although the presence of PCRC artifacts in some 

l Ladder 
¯ 

MSSA MRSA 

1    2    3    4    5    6 1    2    3    4    5    6 
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of the lanes made interpretation difficult (Figure 3.5.1.3.1), no reproducible differences in 

gene profiles were noted. 

 
Figure 3.5.1.3.1:  Comparison of MRSA strain #58 for detection of agr and  SCCmec  genes 
before and after exposure to vancomycin.  
 

  3.5.2 Pulse Field Gel Electrophoresis (PFGE) 

To rule out that a single clone might be responsible for the strains with high 

vancomycin MPC values, strain comparisons were made.  PFGE profiles (Figure 3.5.2.1) show 

that a single dominant clone is not associated with the high vancomycin MPC values and 

similar profiles were observed between parental strains and strains recovered from drug 

containing plates.  Related or unrelated strains were determined using the criteria as 

summarized by Tenover et al (2006) where strains were considered genetically 

indistinguishable if this restriction patterns have the same apparent size.  For strains that were 

considered possible related, closely related and unrelated, comparison were based on 

differences in the number and sizes of bands in the banding profile.  In our study, no single 

banding pattern was identified and differences were seen in banding profiles between low 

and high molecular weight bands. 

l Ladder 
¯ 

l Ladder 
¯ 

1      2     3    4     5     6     7     8    9    10 

Before drug exposure After drug exposure 

Lane 1 – Lambda ladder 
Lane 2 – SCCmecI 
Lane 3 – SCCecII 
Lane 4 – SCCmecIII 
Lane 5 – SCCmecIV 
Lane 6 – SCCecV 
Lane 7 – agrI 
Lane 8 – agrII  
Lane 9 – agrIII 
Lane 10 – agrIV  

  1   2     3     4     5     6    7      8    9    10      
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Figure 3.5.2.1:  Pulsed field gel electrophoresis profiles for 9 MRSA strains.  
*Lane 1 – molecular weight markers; Lanes 2-10 – independent MRSA isolates. 
 

It was important to determine that colonies isolated off agar plates with high 

vancomycin drug concentration were the same as colonies from the parental strains.  PFGE 

analysis for recovered strains (MPC plates) and parental strains were identical for each pair as 

shown in Figure 3.5.2.2.  

 

 

 

 

 

 

MRSA 
    l  
ladder     2          3       4        5         6        7        8         9       10 
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Figure 3.5.2.2:  Pulsed field gel electrophoresis profiles of MRSA strains comparing parental 
(P) strains to organism recovered (R) from MPC plates containing >16 µg/ml of vancomycin. 
 

 3.6 Electron Microscopy 

 Cell wall thickening has been previously shown with vancomycin resistant strains.  As 

such, we investigated if cell wall thickening was present in MRSA strains recovered from 

vancomycin containing plates.  Electron microscopy examination was done to compare cell 

wall thickness of isolates that survived at high vancomycin drug concentrations (32 µg/ml) to 

parental isolates.  Colonies were collected from 32 µg/ml plate and serially passaged 3 times 

on 32 µg/ml vancomycin plates.  Some cells showed an increase in cell wall thickening after 

their exposure to high concentrations of vancomycin (Table 3.6.1).  Also, cell replication as 

indicated by septum formation was observed in the presence of vancomycin.  In order to 

eliminate the possibility of the agar interference with the drug getting to the cell, isolates 

were collected from Mueller-Hinton Broth containing vancomycin and TEM was repeated 

(Table 3.6.1).  As summarized in the table, cells wall were on average 7-11 nm thicker in the 

presence of vancomycin.   

 
 
 
Table 3.6.1:  Comparison of cell wall thickness for 6 MRSA strains prior to and after exposure 

MRSA             #1                        #4                   #35                     #39                    l ladder 
 
                P             R            P          R          P           R            P          R 
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to vancomycin. 
MSRA 

# 
MIC MPC TEM Picked 

From Plate at 
Before adding 
drug (Range) 

Average 
(3 cells) 

After adding 
drug (Range) 

Average 
(3 cells) 

    Measurement  in nanometer (nm) 
48 0.5 16 32µg/ml 18-23 21 27-30 29 
49 0.5 >16 32µg/ml 22-25 23 30 30 
32 0.5 16 32µg/ml 17-20 17 27-31 28 
47 1 16 32µg/ml 18-24 21 27-32 30 
11 0.5 16 32µg/ml 21-25 23 27-30 29 
8 0.5 16 32µg/ml 22-25 23 26-31 29 
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Figure 3.6.1:  Electron micrograph of MRSA strain #8 at x50.0 k magnification showing 
thicker cell walls following vancomycin exposure compared with non-treated cells (upper 
right corner).  Magnification is the same for picture and insert. 
 

 
Figure 3.6.2:  Electron micrograph of MRSA strain #11 at x50.k magnification showing 
thicker cell walls and septum formation following vancomycin exposure compared with 
non-treated cells (upper right corner).  Magnification is the same for picture and insert. 
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Figure 3.6.3:  Electron micrograph of MRSA strain #32 at x50.0 K magnification showing 
thicker cell walls following vancomycin exposure compared with non-treated cells (upper 
right corner).  Magnification is the same for picture and insert. 
 

 
Figure 3.6.4:  Electron micrograph of MRSA strain #47 at x50.0 K magnification showing 
thicker cell walls and septum formation following vancomycin exposure compared with 
non-treated cells (upper right corner).  Magnification is the same for picture and insert. 
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Figure 3.6.5:  Electron micrograph of MRSA strain #48 at x50.0 K magnification showing 
thicker cell walls following vancomycin exposure compared with non-treated cells (upper 
left corner).  Magnification is the same for picture and insert. 
 
 

 
Figure 3.6.6:  Electron micrograph of MRSA strain #49 at x50.0 K magnification showing 
thicker cell walls following vancomycin exposure compared with non-treated cells (upper 
right corner).  Magnification is the same for picture and insert. 
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During the experiments investigating cell wall thickness as a possible explanation for 

strains with high vancomycin MPC values, it was noticed in some EM micrographs, that 

organisms were potentially dividing (replication) as evidenced by septum formation.  To 

further investigate that cell replication might be occurring in the presence of high vancomycin 

drug concentrations, the following experiments were conducted.  For the first set of 

experiments, colonies were picked from agar plates containing 32 µg/ml of vancomycin, 

picking from the drug-containing plate occurred after serial passage 3 times on plates 

containing 32 µg/ml of vancomycin.  These experiments are shown in EM micrographs – 

Figure 3.6.7 to 3.7.12.  Strains 11, 47 and 48 selected for these experiments as colony growth 

occurred on plates containing 32 µg/ml of vancomycin.  As shown in the figures, septum 

formation was seen in a number of bacterial cells and at different stages of formation.  

Multiple EM micrographs are shown depicting multiple different cells with septum formation 

and the beginnings of cell separation.  Septum formation at various stages is also shown in 

the micrographs.  The following figures show bacterial cell reproduction when recovered from 

blood agar plates after drug exposure:  11- Figures 3.6.7 and 3.6.8; 47-Figures 3.6.9 and 

3.6.10; 48-Figures 3.6.11 and 3.6.12 respectively. 

 
Figure 3.6.7:  EM micrograph (strain 11) showing septum formation in multiple bacterial 
cells.   
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Figure 3.6.8: EM micrograph (strain 11) showing 2 bacterial cells with septum formation at 
different stages.   

 
Figure 3.6.9:  EM micrograph (strain 47) showing septum formation in multiple bacterial 
cells. 
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Figure 3.6.10: EM micrograph (strain 47) showing septum formation in 2 bacterial cells.  
 
The cell to the top right appears to be beginning the separation of the replicated cells. 
 

 
Figure 3.6.11: EM micrograph (strain 48) showing advanced septum formation in 1 cell.   
 
“Pinching” on both sides of the cell suggest cell separation has begun.   
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Figure 3.6.12: EM micrograph (strain 48) showing septum formation and the beginning of 
cell separation for 1 bacterial cell. 
 

To address the possibility that some bacterial cells recovered from agar plates 

containing vancomycin might not be exposed to the drug and this could therefore be an 

explanation for organism growth in the presence of the drug, a second set of experiments 

were conducted.  In the following experiments, 6 strains (8, 11, 39, 47, 48, 49) were picked 

from MHB containing 32 µg/ml of vancomycin.  Examination of multiple strains reduced the 

probability of a single strain phenomenon and the possibility that the observation is related 

to lack of drug exposure.   

The following figures show bacterial cell reproduction when recovered from MHB 

media after drug exposure:  Figures 3.6.13 and 3.6.14; 11-Figures 3.6.15 and 3.6.16; 39-

Figures 3.6.17 and 3.6.18; 47-Figures 3.6.19 and 3.6.20; 48-Figures 3.6.21 and 3.6.22; 49-

Figures 3.6.23 and 3.6.24 respectively. 
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Figure 3.6.13: EM micrograph (strain 8) showing septum formation in 1 bacterial cell.   
 
 
 

 
Figure 3.6.14: EM micrograph (strain 8) showing septum formation in multiple bacterial 
cells. 
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Figure 3.6.15: EM micrograph (strain 11) showing various stages of septum formation in 2 
cells. 
 

 
Figure 3.6.16: EM micrograph (strain 11) showing advanced septum formation and 
“pinching” indicating cell separation in 1 bacterial cell.  Note increased size of the dividing 
cell. 
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Figure 3.6.17: EM micrograph (strain 39) showing the final stages of cell separation for a 
dividing cell. 
 

 
Figure 3.6.18: EM micrograph (strain 39) showing a dividing cell near its final stages of cell 
division.   
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Figure 3.6.19: EM micrograph (strain 47) showing septum formation in 1 bacterial cell and 
the final stages of cell separation for 1 bacterial cell. 
 
 

 
Figure 3.6.20: EM micrograph (strain 47) showing advanced septum formation and the start 
of septum formation in bacterial cells. 
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Figure 3.6.21: EM micrograph (strain 48) showing septum formation with bacterial cells. 
 
 

 
Figure 3.6.22: EM micrograph (strain 48) showing the early stages of septum formation in 
bacterial cells. 
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Figure 3.6.23: EM micrograph (strain 49) showing septum formation and the final stages of 
cell separation in bacterial cells. 
 

 
Figure 3.6.24: EM micrograph (strain 49) showing 1 bacterial cell with a fully formed septum. 
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3.7   Time-Kill Assay 

The definition of bactericidal versus bacteriostatic is undergoing a restructuring.  It is 

based on testing of 105 CFU/ml of organisms and with a reduction of viable cells >3 log10 being 

bactericidal and <2 log10 being bacteriostatic.  Log10 reductions >2 log10 and <3 log10 are 

considered a gray zone.  In previous publications [Blondeau & Shebelski, 2016; Blondeau, et 

al, 2015; Blondeau, et al, 2015] where higher bacterial densities were used in kill assays, some 

agents thought of as bacteriostatic actually showed substantial reductions in viable cells and 

additionally, for bactericidal agents, log10 reduction <3 were associated with >99% kill of 

bacterial cells.  In light of the above published observations, we were interested in 

determining if linezolid and tedizolid inhibited bactericidal activity (these agents are currently 

considered as bacteriostatic by conventional measurements) when tested against higher 

bacterial densities.  Vancomycin kill studies were also performed against varying bacterial 

densities.  The following series of figures summarize the kill experiment for each drug.   

For these kill experiments, MIC, MPC, maximum serum (Cmax) and maximum tissue 

(Tissmax) drug concentrations were used against bacterial densities ranging from 106-109 

CFU/ml.  The graphs are arranged in pairs with the log10 data in the first graph which is then 

followed by the graph expressed as percentage kill.  Kill data is shown for each strain 

individually and 3 summary calculations: all isolates, strain 41 excluded from the summary 

analysis and strains 28 and 41 excluded from the summary analysis.  Strains 28 and 41 

consistently responded differently than the other 2 strains in the kill assay and as such, were 

included and excluded from the averaged comparisons.   
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Figure 3.7.1: Log reduction of MRSA strain at 106 CFU/ml inocula using the MIC/MPC drug 
concentration of linezolid.  
 
 

 
Figure 3.7.2:  Percent kill of MRSA strain at 106 CFU/ml inocula using the MIC/MPC drug 
concentration of linezolid. 
 
At a 106 CFU/ml inocula, MIC and MPC drug concentrations failed to achieve substantial killing 

against any of the 4 strains tested. 

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.5 1 2 3 6 12 24

Lo
g 

re
du

ct
io

n 

Time (hours)

Isolate #2
Isolate #28
Isolate #41
Isolate #61
Average (All)
Average (-41)
Average (-28 & 41)

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0.5 1 2 3 6 12 24

%
 k

ill

Time (hours)

Isolate #2
Isolate #28
Isolate #41
Isolate #61
Average (All)
Average (-41)
Average (-28 & 41)



 

96 
 

 
Figure 3.7.3:  Log reduction of MRSA strain at 106 CFU/ml inocula using the Tissmax drug 
concentration of linezolid.  
 

 
Figure 3.7.4:  Percent kill of MRSA strain at 106 CFU/ml inocula using the Tissmax drug 
concentration of linezolid.  
 

Exposure of the 4 MRSA strains to the Tissmax drug concentration of linezolid using 106 CFU/ml 

showed substantial reductions in viable cells for strains 2 and 61 with >90% kill following 24 

hours of drug exposure.  Approximately 75% of cells from strain 28 were killed following 12 

hours of drug exposure.  Note that 24 hours following drug exposure, >90% of viable cells 

were killed for some strains and this was based on a 1.3 log10 reduction.    
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Figure 3.7.5:  Log reduction of MRSA strain at 106 CFU/ml inocula using the Cmax drug 
concentration of linezolid.  
 

 
Figure 3.7.6:  Percent kill of MRSA strain at 106 CFU/ml inocula using the Cmax drug 
concentration of linezolid. 
 
Exposure of 106 CFU/ml to the Cmax drug concentration of linezolid yielded a <1 to >1 log10 

reduction for strains 41 and 61 which corresponded to a >90% kill.  
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Figure 3.7.7:  Log reduction of MRSA strain at 107 CFU/ml inocula using the MIC/MPC drug 
concentration of linezolid.  
 
 

 
 
Figure 3.7.8:  Percent kill of MRSA strain at 10 CFU/ml inocula using the MIC/MPC drug 
concentration of linezolid. 
 
Exposure of 107 CFU/ml to the MIC or MPC drug concentration of linezolid failed to yield 

significant killing for any strain tested. 
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Figure 3.7.9: Log reduction of MRSA strain at 107 CFU/ml inocula using the Tissmax drug 
concentration of linezolid.  
 

 
Figure 3.7.10: Percent kill of MRSA strain at 107 CFU/ml inocula using the Tissmax drug 
concentration of linezolid. 
 
Exposure of 107 CFU/ml to the Tissmax drug concentration of linezolid resulted in log10 

reduction of 0.4 to >1.0 following 12 and 24 hours of drug exposure respectively for strains 2 

and 61 or >50 to >90% kill.  Strain 41 showed initial decline in the presence of linezolid but 

regrew following 12 hours of drug exposure. 
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Figure 3.7.11: Log reduction of MRSA strain at 10 CFU/ml inocula using the Cmax drug 
concentration of linezolid.  
 

 
Figure 3.7.12: Percent kill of MRSA strain at 107 CFU/ml inocula using the Cmax drug 
concentration of linezolid. 
 
Exposure of 107 CFU/ml to the Cmax linezolid drug concentration showed a 0.2-0.5 log10 

reduction in viable cells for strains 61 and 2 following 12 hours of drug exposure and an 

approximately 1 log10 reduction following 24 hours of drug exposure.  Greater than 50% of 

viable cells (strains 2 and 61) were killed following 12 hours and >90% following 24 hours of 

drug exposure.  For strains 28 and 41 growth in the presence of drug occurred. 
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Figure 3.7.13:  Log reduction of MRSA strain at 108 CFU/ml inocula using the MIC/MPC drug 
concentration of linezolid.  
 
 

 
Figure 3.7.14:  Percent kill of MRSA strain at 10 CFU/ml inocula using the MIC/MPC drug 
concentration of linezolid. 
 
Exposure of 108 CFU/ml to the MIC and MPC drug concentration for linezolid failed to result 

in substantial killing for any strain tested, however, for strain 61 a 0.28 log10 reduction 

(approximately 50% kill) was seen following 24 hours of drug exposure. 
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Figure 3.7.15: Log reduction of MRSA strain at 108 CFU/ml inocula using the Tissmax drug 
concentration of linezolid.  
 
 

 
Figure 3.7.16:  Percent kill of MRSA strain at 108 CFU/ml inocula using the Tissmax drug 
concentration of linezolid. 
 
Exposure to 108 CFU/ml to the linezolid Tissmax drug concentration resulted in a 0.6-1.1 log10 

reduction for strain 2 following 12 and 24 hours respectively of drug exposure, 70% and 79% 

kill.  For the other strains either growth occurred or killing was <50% following 24 hours of 

drug exposure. 
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Figure 3.7.17:  Log reduction of MRSA strain at 108 CFU/ml inocula using the Cmax drug 
concentration of linezolid.  
 

 
Figure 3.7.18:  Percent kill of MRSA strain at 108 CFU/ml inocula using the Cmax drug 
concentration of linezolid. 
 
Exposure of 108 CFU/ml to the linezolid Cmax drug concentration yielded a 0.3 log10 reduction 

(~50% kill) following 12 hours of drug exposure for strain 2 as compared to a 0.9 log10 

reduction (>90% kill) following 24 hours of drug exposure.  Strain 61 saw a 0.2 log10 reduction 

in viable cells following 24 hours of drug exposure.  Growth was seen for strains 41 and 28. 
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Figure 3.7.19:  Log reduction of MRSA strain at 109 CFU/ml inocula using the MIC/MPC drug 
concentration of linezolid.  
 

 
Figure 3.7.20:  Percent kill of MRSA strain at 109 CFU/ml inocula using the MIC/MPC drug 
concentration of linezolid. 
 
Exposure of 109 CFU/ml to the MIC or MPC drug concentration of linezolid yielded 

inconsistent results with the overall trend being growth in the presence of the drug for all 

strains at some time points measured.  For strain 61, only 30% of viable cells were killed 

following 24 hours of drug exposure. 
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Figure 3.7.21:  Log reduction of MRSA strain at 109 CFU/ml inocula using the Tissmax drug 
concentration of linezolid.  
 
 

 
Figure 3.7.22:  Percent kill of MRSA strain at 109 CFU/ml inocula using the Tissmax drug 
concentration of linezolid. 
 
Exposure of 109 CFU/ml to the linezolid Tissmax drug concentration showed some initial 

reduction in viable cells within the first 3 hours of drug exposure followed by growth at the 6, 

12 and 24 hour intervals.  No more than 25% of viable cells were killed for strain 2 following 

24 hours of drug exposure. 
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Figure 3.7.23:  Log reduction of MRSA strain at 109 CFU/ml inocula using the Cmax drug 
concentration of linezolid.  
 
 

 
Figure 3.7.24:  Percent kill of MRSA strain at 109 CFU/ml inocula using the Cmax drug 
concentration of linezolid. 
 
Exposure of 109 CFU/ml of the linezolid Cmax drug concentration failed to result in substantial 

killing of any strain tested.  Substantial growth occurred for strain 41. 
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Tedizolid 
 

 
Figure 3.7.25:  Log reduction of MRSA strain at 106 CFU/ml inocula using the MIC/MPC drug 
concentration of tedizolid.  
 

 
Figure 3.7.26:  Percent kill of MRSA strain at 106 CFU/ml inocula using the MIC/MPC drug 
concentration of tedizolid. 
 
Exposure of 106 CFU/ml to the MIC or MPC tedizolid drug concentration failed to result in 

substantial killing for most strains tested.  For strain 41, 1 1.8-2.3 log10 reduction was seen 

following 0.5-12 hour of drug exposure, however, regrowth occurred between 12 and 24 

hours of drug exposure.   
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Figure 3.7.27:  Log reduction of MRSA strain at 106 CFU/ml inocula using the Tissmax drug 
concentration of tedizolid.  
 

 
Figure 3.7.28:  Percent kill of MRSA strain at 106 CFU/ml inocula using the Tissmax drug 
concentration of tedizolid. 
 
Exposure of 106 CFU/ml to the tedizolid Tissmax drug concentration resulted in a 1.3 log10 

reduction for strain 28 following 24 hours of drug exposure which translated to a >99% kill.  

Reductions were also seen for strains 2 and 61 with >50% kill.  Strain 41 showed substantial 

growth following 12 hours of drug exposure. 
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Figure 3.7.29:  Log reduction of MRSA strain at 106 CFU/ml inocula using the Cmax drug 
concentration of tedizolid.  
 

 
Figure 3.7.30:  Percent kill of MRSA strain at 106 CFU/ml inocula using the Cmax drug 
concentration of tedizolid. 
 
Exposure of 106 CFU/ml to the tedizolid Cmax drug concentration resulted in log10 reduction of 

<1 following 24 hours of drug exposure for strains 2 and 61.  Strain 28 showed>90% kill 

following 12 hours of drug exposure but had increased growth in the presence of the drug 

between 12 and 24 hours.  Strain 41 was not inhibited by the drug. 
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Figure 3.7.31:  Log reduction of MRSA strain at 107 CFU/ml inocula using the MIC/MPC drug 
concentration of tedizolid.  
 

 
Figure 3.7.32: Percent kill of MRSA strain at 107 CFU/ml inocula using the MIC/MPC drug 
concentration of tedizolid. 
 
Exposure of 107 CFU/ml to the MIC or MPC drug concentration for tedizolid did not result in 

substantial killing for any strains.  For all strains, substantial growth occurred between 12-24 

hours of drug exposure. 
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Figure 3.7.33:  Log reduction of MRSA strain at 107 CFU/ml inocula using the Tissmax drug 
concentration of tedizolid.  
 

 
Figure 3.7.34: Percent kill of MRSA strain at 107 CFU/ml inocula using the Tissmax drug 
concentration of tedizolid. 
 
Exposure of 107 CFU/ml to the tedizolid Tissmax drug concentration yielded reduction in viable 

cells of 0.6-0.8 log10 for strains 2 and 61 following 24 hours of drug exposure.   Strain 41 

showed substantial growth between 12 and 24 hours of drug exposure. 
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Figure 3.7.35:  Log reduction of MRSA strain at 107 CFU/ml inocula using the Cmax drug 
concentration of tedizolid.  
 

 
Figure 3.7.36:  Percent kill of MRSA strain at 107 CFU/ml inocula using the Cmax drug 
concentration of tedizolid. 
 

Exposure of 107 CFU/ml to the tedizolid Cmax drug concentration resulted in 0.8 to 1.3 log10 

reduction for strains 2, 28 and 61 following 24 hours of drug exposure.  This translated to 80-

95% killing.  Substantial growth occurred with strain 41 between 12-24 hours. 
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Figure 3.7.37: Log reduction of MRSA strain at 108 CFU/ml inocula using the MIC/MPC drug 
concentration of tedizolid.  
 

 
Figure 3.7.38:  Percent kill of MRSA strain at 108 CFU/ml inocula using the MIC/MPC drug 
concentration of tedizolid. 
 
Exposure of 108 CFU/ml to the MIC or MPC tedizolid drug concentration resulted in minimum 

killing for strain 61 following 6 hours of drug exposure following regrowth occurred. 
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Figure 3.7.39:  Log reduction of MRSA strain at 108 CFU/ml inocula using the Tissmax drug 
concentration of tedizolid.  
 

 
Figure 3.7.40: Percent kill of MRSA strain at 108 CFU/ml inocula using the Tissmax drug 
concentration of tedizolid. 
 
Exposure of 108 CFU/ml to the Tissmax drug concentration of tedizolid showed minimal killing 

of any strains.  For strains 2 and 28, a 0.01 log10 reduction was seen at 3 and 6 hours after 

drug exposure but regrowth occurred.  Strain 41 was not inhibited by tedizolid. 
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Figure 3.7.41:  Log reduction of MRSA strain at 108 CFU/ml inocula using the Cmax drug 
concentration of tedizolid.  
 

 
Figure 3.7.42: Percent kill of MRSA strain at 108 CFU/ml inocula using the Cmax drug 
concentration of tedizolid. 
 
Exposure of 108 CFU/ml for the tedizolid Cmax drug concentration showed initial killing of strain 

41 (0.5-0.7 log10 reduction; 70-80% kill) between 0.5 and 3 hours, however, growth occurred 

following 12-24 hours of drug exposure.  Killing did not exceed 30% for strain 61 following 24 

hours of drug exposure. 
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Figure 3.7.43:  Log reduction of MRSA strain at 109 CFU/ml inocula using the MIC/MPC drug 
concentration of tedizolid.  
 
 

 
Figure 3.7.44:  Percent kill of MRSA strain at 109 CFU/ml inocula using the MIC/MPC drug 
concentration of tedizolid. 
 
Exposure of 109 CFU/ml to the MIC or MPC drug concentration for tedizolid yielded a 0.25 

log10 reduction (approximately 50% kill) following 3 hours of drug exposure but growth 

occurred thereafter. 
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Figure 3.7.45:  Log reduction of MRSA strain at 109 CFU/ml inocula using the Tissmax drug 
concentration of tedizolid.  
 

 
Figure 3.7.46: Percent kill of MRSA strain at 109 CFU/ml inocula using the Tissmax drug 
concentration of tedizolid. 
 
Exposure of 109 CFU/ml to the Tissmax drug concentration for tedizolid did not result in greater 

than 50% killing for any strain and strain 41 showed substantial growth between 12 and 24 

hours of drug exposure. 
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Figure 3.7.47: Log reduction of MRSA strain at 109 CFU/ml inocula using the Cmax drug 
concentration of tedizolid.  
 

 
Figure 3.7.48:  Percent kill of MRSA strain at 109 CFU/ml inocula using the Cmax drug 
concentration of tedizolid. 
 
Exposure of 107 CFU/ml to the tedizolid Cmax drug concentration failed to result in a >0.2 (<50% 

kill) log10 reduction for any strain.  Substantial growth occurred with strain 41 between 12 and 

24 hours of drug exposure. 
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Vancomycin 
 

 
Figure 3.7.49:  Log reduction of MRSA strain at 106 CFU/ml inocula using the MIC drug 
concentration of vancomycin.  
 

 
Figure 3.7.50: Percent kill of MRSA strain at 106 CFU/ml inocula using the MIC drug 
concentration of vancomycin. 
 
Exposure of 106 CFU/ml to the MIC drug concentration for vancomycin showed a 0.4 log10 

(70% kill) of strain 28 and a 0.85 log10 (>90% kill) reduction for strain 2 following 6 hours of 

drug exposure after which growth occurred in the presence of the drug. 
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Figure 3.7.51:  Log reduction of MRSA strain at 106 CFU/ml inocula using theMPC drug 
concentration of vancomycin.  
 
 

 
Figure 3.7.52: Percent kill of MRSA strain at 106 CFU/ml inocula using the MPC drug 
concentration of vancomycin. 
 
Exposure of 106 CFU/ml to vancomycin MPC drug concentration resulted in viable cell 

reduction for all strains (1-1.6 log10 reduction) with killing being >90% following 6-12 hours of 

drug exposure.  Growth occurred for strains 2, 41 and 61 following 6-12 hours of drug 

exposure.  Continued killing of strain 28 continued to 24 hours of drug exposure. 
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Figure 3.7.53: Log reduction of MRSA strain at 106 CFU/ml inocula using the Tissmax drug 
concentration of vancomycin.  
 

 
Figure 3.7.54:  Percent kill of MRSA strain at 106 CFU/ml inocula using the Tissmax drug 
concentration of vancomycin. 
 
Exposure of 106 CFU/ml to the vancomycin Tissmax drug concentration showed substantial 

killing of strains 2, 28 and 61 with 4-6.5 log10 reduction.  The percent kill was 81-100% for 

strains 2, 28 and 61 following 12 hours of drug exposure. 
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Figure 3.7.55:  Log reduction of MRSA strain at 106 CFU/ml inocula using the Cmax drug 
concentration of vancomycin.  
 

 
Figure 3.7.56: Percent kill of MRSA strain at 106 CFU/ml inocula using the Cmax drug 
concentration of vancomycin. 
 
Exposure of 106 CFU/ml to the vancomycin Cmax drug concentration resulted in killing of all 

strains (except 4) within the first 30 minutes of drug exposure.  Following 24 hours of drug 

exposure a 6-7 log10 reduction in viable cells was seen.  For strain 61, >99% of cells were killed 

(6.34 log10) by 12 hours of drug exposure. 
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Figure 3.7.57: Log reduction of MRSA strain at 107 CFU/ml inocula using the MIC drug 
concentration of vancomycin.  
 

 
Figure 3.7.58: Percent kill of MRSA strain at 107 CFU/ml inocula using the MIC drug 
concentration of vancomycin. 
 
Exposure of 107 CFU/ml to the vancomycin MIC drug concentration showed a 0.65-0.7 log10 

reduction for strains 2 (80% kill) following 6 hours of drug exposure but thereafter growth 

occurred.  For strain 41 approximately 80% of cells were killed following 12 and 24 hours of 

drug exposure. 
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Figure 3.7.59: Log reduction of MRSA strain at 107 CFU/ml inocula using the MPC drug 
concentration of vancomycin.  
 

 
Figure 3.7.60:  Percent kill of MRSA strain at 107 CFU/ml inocula using the MPC drug 
concentration of vancomycin. 
 
Exposure of 107 CFU/ml to the vancomycin MPC drug concentration showed killing of strain 2 

to 6 hours of drug exposure but growth thereafter.  Strain 28 had a 1 log10 reduction following 

24 hours of drug exposure which translated to 90% kill.  For strain 41, a 7.9 log10 reduction 

was seen following 24 hours of drug exposure corresponding to 100% kill. 
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Figure 3.7.61: Log reduction of MRSA strain at 107 CFU/ml inocula using the Tissmax drug 
concentration of vancomycin.  
 

 
Figure 3.7.62:  Percent kill of MRSA strain at 107 CFU/ml inocula using the Tissmax drug 
concentration of vancomycin. 
 
Exposure of 107 CFU/ml to the vancomycin Tissmax drug concentration resulted in reduction in 

viable cells for all strains, however, growth occurred for strain 61 following 6 hours of drug 

exposure.  For strains 28 and 2, 80-100% kill occurred following 24 hours of drug exposure. 
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Figure 3.7.63: Log reduction of MRSA strain at 107 CFU/ml inocula using the Cmax drug 
concentration of vancomycin.  
 

 
Figure 3.7.64: Percent kill of MRSA strain at 107 CFU/ml inocula using the Cmax drug 
concentration of vancomycin. 
 
Exposure of 107 CFU/ml to the vancomycin Cmax drug concentration resulted in 100% kill for 

strains 2, 28 and 61 following 24 hours of drug exposure.  Growth occurred with strain 41 

between 6-12 hours of drug exposure. 
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Figure 3.7.65:  Log reduction of MRSA strain at 108 CFU/ml inocula using the MIC drug 
concentration of vancomycin.  
 

 
Figure 3.7.66: Percent kill of MRSA strain at 108 CFU/ml inocula using the MIC drug 
concentration of vancomycin. 
 
Exposure of 108 CFU/ml to the vancomycin MIC drug concentration showed some initial 

reduction in viable cells following 30 minutes of drug exposure but growth thereafter. 

-0.20
-0.10
0.00
0.10
0.20
0.30
0.40
0.50
0.60

0.5 1 2 3 6 12 24

Lo
g 

re
du

ct
io

n

Time (hours)

Isolate #2
Isolate #28
Isolate #41
Isolate #61
Average (All)
Average (-41)
Average (-28 & 41)

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

0.5 1 2 3 6 12 24

%
 k

ill

Time (hours)

Isolate #2
Isolate #28
Isolate #41
Isolate #61
Average (All)
Average (-41)
Average (-28 & 41)



 

128 
 

 
Figure 3.7.67: Log reduction of MRSA strain at 108 CFU/ml inocula using the MPC drug 
concentration of vancomycin.  
 
 

 
Figure 3.7.68: Percent kill of MRSA strain at 108 CFU/ml inocula using the MPC drug 
concentration of vancomycin. 
 
Exposure of 108 CFU/ml to the vancomycin MPC drug concentration failed to result in 

substantial killing of any strain over the 24 hour time intervals investigated.  Following 12 

hours of drug exposure, 55% (0.34 log10) of cells of strain 61 were killed by vancomycin, 

however, regrowth occurred between 12 and 24 hours. 
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Figure 3.7.69: Log reduction of MRSA strain at 108 CFU/ml inocula using the Tissmax drug 
concentration of vancomycin.  
 

 
Figure 3.7.70:  Percent kill of MRSA strain at 108 CFU/ml inocula using the Tissmax drug 
concentration of vancomycin. 
 
Exposure of 108 CFU/ml to the vancomycin Tissmax drug concentration yielded no more than 

45% kill for any strain and following 24 hours of drug exposure, 20-35% kill for strains 2 and 

28.   
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Figure 3.7.71: Log reduction of MRSA strain at 108 CFU/ml inocula using the Cmax drug 
concentration of vancomycin.  
 

 
Figure 3.7.72: Percent kill of MRSA strain at 10 CFU/ml inocula using the Cmax drug 
concentration of vancomycin. 
 
Exposure of 108 CFU/ml to the vancomycin Cmax drug concentration yielded a 0.25 log10 

reduction (50% kill) for strain 61 following 24 hours of drug exposure.  Reduction was minimal 

or growth occurred for the other strains.  
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Figure 3.7.73:  Log reduction of MRSA strain at 109 CFU/ml inocula using the MIC drug 
concentration of vancomycin.  
 

 
Figure 3.7.74: Percent kill of MRSA strain at 109 CFU/ml inocula using the MIC drug 
concentration of vancomycin. 
 

Exposure of 109 CFU/ml to the vancomycin MIC drug concentration yielded approximately 

65% killing of strain 41 after which growth occurred.  Substantial killing did not occur with the 

other strains tested. 
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Figure 3.7.75:  Log reduction of MRSA strain at 109 CFU/ml inocula using the MPC drug 
concentration of vancomycin.  
 

 
Figure 3.7.76:  Percent kill of MRSA strain at 109 CFU/ml inocula using the MPC drug 
concentration of vancomycin. 
 
Exposure of 109 CFU/ml to the vancomycin MPC drug concentration did not yield substantial 

killing for any strain tested.  Less than 30% killing was seen for strains 2, 28 and 41 at any time 

point and growth occurred between 6 and 24 or 12 and 24 hours of drug exposure depending 

on strains.   

-0.20
-0.10
0.00
0.10
0.20
0.30
0.40
0.50
0.60

0.5 1 2 3 6 12 24

Lo
g 

re
du

ct
io

n

Time (hours)

Isolate #2
Isolate #28
Isolate #41
Isolate #61
Average (All)
Average (-41)
Average (-28 & 41)

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

0.5 1 2 3 6 12 24

%
 k

ill

Time (hours)

Isolate #2
Isolate #28
Isolate #41
Isolate #61
Average (All)
Average (-41)
Average (-28 & 41)



 

133 
 

 
Figure 3.7.77: Log reduction of MRSA strain at 109 CFU/ml inocula using the Tissmax drug 
concentration of vancomycin.  
 

 
Figure 3.7.78: Percent kill of MRSA strain at 109 CFU/ml inocula using the Tissmax drug 
concentration of vancomycin. 
 
Exposure of 109 CFU/ml to the vancomycin Tissmax drug concentration did not result in 

substantial killing of any strain.  Approximately 55% of viable cells were killed for strain 28 

following 2 hours of drug exposure but growth occurred thereafter. 
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Figure 3.7.79: Log reduction of MRSA strain at 109 CFU/ml inocula using the Cmax drug 
concentration of vancomycin.  
 

 
Figure 3.7.80:  Percent kill of MRSA strain at 109 CFU/ml inocula using the Cmax drug 
concentration of vancomycin. 
 
Exposure of 109 CFU/ml to the vancomycin Cmax drug concentration did not result in 

substantial killing for any strain tested. 
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Figure 3.7.81:  Log reduction of MRSA strain at 105 CFU/ml inocula without drug.   
 

 
Figure 3.7.82:  Percent kill of MRSA strain at 105 CFU/ml inocula without drug. 
 
Four independent strains were included in assays without drug.  In these experiments, 105 

CFU/ml were used.  Growth for all strains occurred at 30 minutes and at each time point 

thereafter. 
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Figure 3.7.83: Log reduction of MSSA strain at 105 -109 CFU/ml inocula using the MIC/MPC 
drug concentration of linezolid.  
 

 
Figure 3.7.84: Percent kill of MSSA strain at 105 -109 CFU/ml inocula using the MIC/MPC 
drug concentration of linezolid.  
 
Exposure of 105-109 CFU/ml to the MIC and MPC linezolid drug concentrations are shown 

above.  Killing as measured by reduction in viable cells did not occur in the presence of 

linezolid for any of the bacterial densities investigated for the MSSA strains. 
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Figure 3.7.85: Log reduction of MSSA strain at 105 -109 CFU/ml inocula using the Tissmax drug 
concentration of linezolid.  
 

 
Figure 3.7.86: Percent kill of MSSA strain at 105 -109 CFU/ml inocula using the Tissmax drug 
concentration of linezolid.  
 
Exposure of 105-109 CFU/ml to the linezolid Tissmax drug concentration is shown above.  For 

the 105 CFU/ml and 106 CFU/ml, a 0.6-0.9 log10 reduction (75-85% kill) was seen following 24 

hours of drug exposure.  Killing did not occur for the other densities tested. 
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Figure 3.7.87:  Log reduction of MSSA strain at 105 -109 CFU/ml inocula using the Cmax drug 
concentration of linezolid.  
 

 
Figure 3.7.88: Percent kill of MSSA strain at 105 -109 CFU/ml inocula using the Cmax drug 
concentration of linezolid. 
 
Exposure of 105-109 CFU/ml to the linezolid Cmax drug concentration is shown above.  A 0.2-

1.7 log10 reduction was seen for the various densities tested corresponding to 35-100% kill. 
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Figure 3.7.89:  Log reduction of MSSA strain at 105 -109 CFU/ml inocula using the MIC/MPC 
drug concentration of tedizolid.  
 

 
Figure 3.7.90: Percent kill of MSSA strain at 105 -109 CFU/ml inocula using the MIC/MPC 
drug concentration of tedizolid. 
 
Exposure of 105-109 CFU/ml to the tedizolid MIC and MPC drug concentration failed to result 

in substantial killing of any density tested. 
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Figure 3.7.91: Log reduction of MSSA strain at 105 -109 CFU/ml inocula using the Tissmax drug 
concentration of tedizolid.  
 

 
Figure 3.7.92:  Percent kill of MSSA strain at 105 -109 CFU/ml inocula using the Tissmax drug 
concentration of tedizolid. 
 
Exposure of 105-109 CFU/ml to the tedizolid Tissmax drug concentration resulted in 20-50% kill 

for 105 and 106 densities tested following 24 hours of drug exposure.  Growth occurred with 

the other densities tested. 
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Figure 3.7.93: Log reduction of MSSA strain at 105 -109 CFU/ml inocula using the Cmax drug 
concentration of tedizolid.  
 

 
 
Figure 3.7.94:  Percent kill of MSSA strain at 105 -109 CFU/ml inocula using the Cmax drug 
concentration of tedizolid.  
 
Exposure of 105-109 CFU/ml of the tedizolid Cmax drug concentration resulted in 60-70% kill of 

the 105-106 CFU/ml densities following 24 hours of drug exposure.  Growth occurred at the 

other densities tested. 
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4.0 DISCUSSION 

The MIC is the standard measurement and most commonly used parameter in clinical 

microbiology to determine the susceptibility of microorganisms to antimicrobial agents and 

to confirm unusual resistance.  It is also used as a research tool to determine in-vitro activity 

of new antimicrobial agents, compare the in vitro activity of different antimicrobial agents, 

assess the in vitro activity of antibiotic combinations, and to set antibiotic dosage 

recommendations by various committees.  

MIC testing is known to be efficient, as many isolates may be tested simultaneously. 

This type of testing also allows for results to be available within 24 hours, which is important 

for patients with serious bacterial infections. Moreover, it is cost-effective, easy to determine 

experimentally, and a reproducible (within one doubling dilution) technique.  

Nevertheless, MIC testing has a number of disadvantages. This procedure tests 

organisms at an inoculum of ~105 CFU/ml, whereas the common bacterial burdens during 

infection reported may be as high as1010 CFU/ml [Gould & MacKenzie, 2002] and resistant 

subpopulations are believed to be present in such large bacterial inoculum [Allen, 2003]. 

According to the principle of spontaneous mutation frequency at one mutation for every 106-

108 cells, an inoculum exceeding 106 cells will probably contain bacterial cells that have 

developed resistance (point mutations) and consequently reduced susceptibility to the 

antibiotic [Zhao & Drlica, 2001]. Therefore, testing based on an inoculum of 105 CFU/ml may 

not be representative of the true susceptibility of the bacterial population when there is >105 

CFU/ml at the infection site [Blondeau, 2003].  In other words, the MIC may not predict the 

resistance development, since MIC testing utilizes a lower inoculum in which resistant 

subpopulations are most likely to be absent.  The MIC may therefore not accurately represent 

a drug concentration that will inhibit all the cells in a bacteria population that is present 

during infection.   

Furthermore, MIC indicates a threshold concentration i.e., no quantitative distinction 

between all concentrations above the MIC or below the MIC.  This static approach does not 
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also reflect the in vivo interaction of exposing bacteria to continuously changing antibiotic 

concentrations.  It also fails to provide a description of pharmacodynamic scenario between 

the drug and micro-organisms in the target organ as well as the bactericidal activity and its 

persistent activity or PAE [Mueller, et al, 2004].  Regardless of these shortcomings, MIC 

testing remains the standard in vitro measurement of drugs’ potency to determine their  

therapeutic potentials [National Institute of Allergy and Infectious Diseases, 2017]. 

In our study, MIC values for the MRSA strains tested against the various antimicrobial 

agents were consistent with MIC values reported by others [Allen, et al, 2004; Blondeau & 

Borsos, 2007; Blondeau, et al, 2007; Blondeau, et al, 2006; Blondeau & Metzler, 2005; 

Blondeau, et al, 2001; Hansen & Blondeau, 2005; Hedlin & Blondeau, 2004; Hesje, et al, 2015; 

Metzler, et al, 2004; Sievert, et al, 2008] and within susceptibility or resistant designated 

categories as recommended by the Clinical and Laboratory Standards Institute.  As such, there 

was nothing unusual from a susceptibility or resistance perspective with the collection of 

MRSA strains included for investigation in our study. 

MPC is a new concept aimed to limit the prevalence of antibiotic resistance by 

preventing the selection of resistant mutants.  It determines the antibiotic concentration that 

inhibits not only susceptible cells but also the growth of first-step resistant phenotypes in a 

high-density bacterial population.  The innovativeness of this approach is the utilisation of 

bacterial populations which are equal to or exceed 109 CFU [Lu, et al, 2003; Zhao & Drlica, 

2002; Zhao, et al, 2003].    

 This approach may help to develop new dosing strategies that minimize the 

development of resistance. It can also be applied to evaluate and compare potency of 

antibiotics against single step resistant mutants, which may aid in identifying agents that are 

least likely to select for resistance [Zhao & Drlica, 2002]. However, there are no animal or 

human trials available to test this hypothesis; thus, more investigation is required.  Also, the 

concept behind this method “the MSW’ has some limitations as it excludes cases of natural 

resistance and the enzymatic inactivation of a compound grants resistance to both enzyme-

producing and non-producing cells. 

MPC has some drawbacks. It is a lengthy procedure requiring 4 days and only a few 
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isolates can be tested in one assay, and it is not as cost effective as MIC testing. Therefore, 

testing in its current format cannot be performed easily by many laboratories.  A liquid based 

microbroth MPC assay has been investigated and further development work is needed [Hesje 

& Blondeau, 2008].  

Our study also represents the first report of MPC values for the drug tedizolid, the 

newest oxazolidinone, tested against MRSA strains and also the first report of MPC values for 

linezolid against MRSA blood culture isolates.  In a summary (abstract only) of MRSA strains 

tested against linezolid, Zhao et al (2010) reported a narrow mutant selection window for 

linezolid, a finding substantiated in our research [Zhao, et al, 2010].  The width of the MSW 

is determined by the fold difference between the measured MIC and MPC for the individual 

strain tested.   Data from multiple strains can be considered by comparing the MIC90 and 

MPC90 values.  In our work the MIC90 for linezolid was 2 µg/ml and the MPC90 was identical 

meaning the MSW was narrow.  The MPCs of linezolid against Mycobacterium tuberculosis 

were previously tested by Rodriguez et al [Rodríguez, et al, 2004] and MRSA [Zhao, et al, 

2010] and showed great ability to restrict the selection of resistant mutants of MRSA.  

Similarly for tedizolid, the majority of MRSA strains (88% and 100% respectively) had both 

MIC and MPC values at or below the susceptibility break points which narrows the MSW and 

keeps the serum drug concentration in excess of the selection window over the duration of 

the dose, and consequently reduces the likelihood for resistance selection to occur for those 

drugs. 

A major finding in our study was the high MPC values for vancomycin with some MRSA 

strains. While all strains of MRSA were inhibited by an MIC <1 µg/ml, >50% of the strains were 

non-susceptible (8 µg/ml) and 40% of strains were resistant (>16 µg/ml) by MPC testing.  Such 

values have not been previously reported and are likely a major concern for clinical medicine 

as the number of such strains increase in prevalence in infected patients for whom 

vancomycin is used for therapy.  Our data shows the survival of MRSA bacterial cells in high 

or concentrations of vancomycin and such concentrations cannot be safely achieved in 

treated patients with known dosing strategies.   
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We attempted to determine the mechanism(s) responsible for the survival of MRSA 

bacterial cells in high vancomycin drug concentrations.  To do this we investigated cell wall 

thickness by electron microscopy, we tested for cell wall markers, and examined PFGE profiles 

after serial passage in increasing vancomycin drug concentrations.  Serial passage 

experiments were performed to try and induce/generate a stably resistant clone from which 

more extensive investigations could be performed as to mechanism of resistance.  

Unfortunately we were unable to generate such a clone (serial passage failed to induce a 

stably resistant bacterial cell) and others [Kosowska-Shick, et al, 2009] have reported similar 

difficulties but not with strains showing high MPC values to vancomycin.  

PFGE on select strains with the high MPC values to vancomycin were compared to the 

profiles of the wild type (parental) strains.  No single dominant clone was associated with the 

high MPC values and profiles from the parental strain were identical to the matched isolate 

recovered from the drug containing MPC plates.    

Our EM investigations did provide some interesting and previously unrecognized 

observations.  First, cell wall thickening was seen for 50% of bacterial cells from a limited 

sampling of cells removed from agar plates containing 32 µg/ml of vancomycin.   Second, 

from MRSA inoculated agar plates containing 32 µg/ml of vancomycin and from MRSA 

inoculated MH broth containing 32 µg/ml of vancomycin, apparent dividing bacterial cells 

were seen on EM micrographs (organisms continued to replicate in the presence of the 

vancomycin).   

Septum formation, indicating cell division, was originally seen on micrographs initially 

generated to investigate if cell wall thickening could be seen with MRSA cells sampled from 

agar plates containing high vancomycin drug concentrations and as such an explanation for 

cell survival in the presence of the drug.  With this unexpected observation, a series of 

experiments were designed to explore this observation further.  First, MRSA was inoculated 

to agar plates containing 32 µg/ml of vancomycin, incubated overnight and then sub-cultured 

to fresh plates containing 32 µg/ml of vancomycin and incubated overnight.  From these 

inoculated drug-containing plates, bacterial colonies were removed and placed immediately 

into fixative for electron microscopy.  Cells showing septum formation were seen.  To 
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investigate if the cells showing septum formation might have been the result of poor drug 

exposure on agar plates, the same experiments were repeated in broth media.  Again, 

bacterial cells were sampled from MHB containing 32 µg/ml of vancomycin and immediately 

placed in fixative for electron microscopy.  Once again septum formation was seen and 

confirmed the observations seen for cells taken from drug-containing agar plates.  This 

eliminated the possibility that replication was occurring due to lack of contact with drug on 

the plates.  To the best of our knowledge, we are unaware of such an observation being 

previously reported.  Surewaard et al reported replication of MRSA in Kupffler cells in the 

liver in the presence of vancomycin, however, vancomycin does not penetrate the Kupffler 

cells so their observations are different than ours and replication was acknowledged as 

occurring in the absence of the drug [Surewaard, et al, 2016].    In that study, bacterial cell 

replication was demonstrated by electron microscopy showing septum formation, images 

similar to those reported here.  As such, our observation of septum formation, indicating 

bacterial replication is consistent with the report of Surewaard et al. The observation of MRSA 

replication in the presence of high vancomycin drug concentrations is disturbing and may 

have important clinical implications for patients with MRSA infection and requiring 

vancomycin therapy. 

            The thickness of the cell wall in vancomycin-tolerant (VT) MRSA isolates has not been 

evaluated.  However, the study of Cazares-Domínguez et al indicated vancomycin induced 

cell wall thickening in VT- MRSA isolates tested.  In their study, a total of 88.88% of these 

isolates were associated with agr type II and SCCmec group II and showed adaptive resistance 

(lowered susceptibility) to vancomycin.  This type of resistance was interpreted to be 

inducible in the presence of the drug [Cazares-Dominguez, et al, 2015].  In multiple studies 

[Moise-Broder, et al, 2004; Rose, et al, 2012; Sakoulas, et al, 2003; Sakoulas, et al, 2002], agr 

type II polymorphism was identified to be strongly associated with vancomycin failures 

against S. aureus and MRSA bacteremia.  Additionally, Sakoulas et al suggested that the loss 

of agr function confer MRSA survival and resistance to a vancomycin effect [Sakoulas, et al, 

2004]  accessory gene regulator (agr) is known to regulate various metabolic pathways and 

the expression of multiple virulence factors [French, 2006]. 
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Furthermore, the ClpP role in the growth of Gram-positive bacteria under stress 

conditions has been demonstrated in multiple studies [Frees & Ingmer, 1999; Gaillot, et al, 

2000; Msadek, et al, 1998; Thomsen, et al, 2002].  Frees et al suggested the presence of S. 

aureus ClpP contribute in the degradation of stress-damaged proteins[Frees, et al, 2003], 

which was also observed in other Gram-positive bacteria, such as Bacillus subtilis, Listeria 

monocytogenes and Lactococcus lactis [Frees & Ingmer, 1999; Gaillot, et al, 2000; Msadek, et 

al, 1998]. 

Another study was conducted by Springer et al to determine the effect of ClpP and 

ClpC deletion on S. aureus persister cells following antimicrobial therapy.  That study showed 

that the removal of ClpP resulted in a significant decrease of persisters after the 

administration of erythromycin and oxacillin [Springer, et al, 2016].  Persister revival assays 

(isolating persister cells by rapidly killing normally growing cells using lytic solutions) 

demonstrated a significant delay in resumption of persisters growth, implying that the 

surviving organisms are not caused by spontaneous resistance and suggesting that ClpP plays 

a role in persisters formation, which was also affected by the antibiotic class and the growth 

phase of the bacterial cells.  In addition, Donegan et al examined the proteolytic regulation 

of toxin-antitoxin systems by the ClpP in S. aureus, and concluded that ClpP has an essential 

role in the degradation of S. aureus antitoxins [Donegan, et al, 2010].  

These aforementioned studies were performed on organisms with reduced 

susceptibility to vancomycin, as determined by MIC measurements. These differ from our 

investigations as our MRSA strains were fully susceptible to vancomycin by MIC testing (MICs 

<1 µg/ml; breakpoint for resistance is >8 µg/ml) yet survived on agar plates containing >32 

µg/ml of vancomycin.  As well, and as previously stated, organisms surviving on agar plates 

containing >32 µg/ml of vancomycin showed wildtype susceptibilities when retested by MIC 

testing.  Again, this is different than previously performed investigations where strains with 

elevated MIC values were used.  These observations from our strains suggest a tolerance or 

persistence effect for which the mechanism remains unknown. 

In our experiments, cell wall markers including agr 1-4, ClpP and SCC 1-5 did not 

identify a common factor that could be associated with the survival of MRSA bacterial cells in 
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high vancomycin drug concentrations. This has also been previously reported [Cazares-

Dominguez, et al, 2015].  Additionally, we performed PCR analysis for the pvl gene and 

confirmed its presence in a number of our MRSA strains.  This rules out the possible 

association between pvl presence and the high MPC values observed. 

In light of our observations of MRSA strains with high vancomycin MPC values, we 

were interested in determining if the visual endpoint meant that no viable organisms were 

present on the drug-containing plates.  This differentiation might be important when 

comparing bactericidal (kill bacteria) versus bacteriostatic agents (inhibit bacterial growth).   

From our experiments, we found that visual endpoints did not reflect the absence of viable 

organisms.  A negative MPC plates (no visual growth), showed growth when sub-cultured to 

drug-free plates, including bacteriostatic and bactericidal agents.  For MIC testing (performed 

at 105 - 109 CFU/ml), results varied although most of negative wells showed growth when sub-

cultured to drug-free plates (vancomycin at 105 was the only exception). 

Previously published MPC reports summarized MPC data based on the visual endpoint 

(discernable colonies present or absent) and by definition, the MPC is the drug concentration 

blocking 100% of visible growth.  For routine susceptibility testing by microbroth dilution, the 

visual endpoint is for inhibition of growth and not 100% killing of viable cells.  Neither MIC 

nor MPC testing are measurements of kill but rather inhibition of growth.  Therefore, these 

observations add to the growing body of evidence related to MPC testing.  

Time-kill curves have contributed to providing comprehensive details about the time 

course of an antibacterial effect [Mueller, et al, 2004]. This approach has been used to 

determine the kinetics of bacterial killing in-vitro and determine if the agent is bactericidal or 

bacteriostatic. Bacterial killing may be time-dependent or concentration-dependant.  

Concentration-dependent bacterial killing occurs when the rate of killing increased 

proportionally with antibacterial concentrations (e.g., for aminoglycosides and 

fluoroquinolones).  For antimicrobials that demonstrate time-dependent killing does not 

increased with higher concentrations (e.g., for oxazolidinones and ß-lactams) but rather is 

affected by the amount of time concentrations exceeding the MIC during the dosing intervals. 

Distinction between bacteriostatic and bactericidal in clinical practice is not absolute 
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and can result in inaccurate assumptions regarding antibacterial therapy.  In vitro definitions 

of bacteriostatic and bactericidal agents are applied to specific drug-bug combinations under 

strict laboratory conditions. But, it is inconsistent for a specific agent against all pathogens. 

Therefore, this classification is considered arbitrary in clinical situations [Pankey & Sabath, 

2004]. 

Moreover, some antibacterial agents that are classified as bacteriostatic may 

demonstrate bactericidal activity against some bacteria in vitro, and vice versa.  For example, 

quinupristin-dalfopristin is considered to be bactericidal against most strains of streptococci 

and staphylococci, but it is considered bacteriostatic against Enterococcus faecium. Blondeau 

et al. demonstrated killing of S. pneumoniae isolates by gemifloxacin – a fluoroquinolone – 

and with macrolide agents, which are considered to be bactericidal and bacteriostatic 

respectively [Blondeau, et al, 2015].  Furthermore, drugs considered to be bactericidal may 

also act as bacteriostatic at low concentrations.  Similarly, bacteriostatic agents at high 

concentrations can exhibit bactericidal activity against some susceptible organisms [Pankey 

& Sabath, 2004]. 

            In terms of pharmacodynamic and pharmacokinetic assessment, this approach has 

some drawbacks in regard to protein binding and tissue distribution. Protein binding should 

be considered because most drugs bind to plasma proteins, which are not identified by serum 

concentrations. It should be noted that only unbound drug will display a pharmacological 

effect. Another parameter to consider is tissue distribution, which is important due to the 

fact that most infections occur in tissues rather than in plasma [Mueller, et al, 2004].  

Kill studies were previously published for staphylococci with vancomycin [Herrera, et 

al, 2013], linezolid [Tsuji, et al, 2012] and tedizolid [Nunart, et al, 2017].  These studies are 

different than ours as they used drug concentrations that are multiples of the MIC drug 

concentration (one-half, 2X, 4X, 8X and 16X the MIC) and testing lower densities of bacteria, 

approximately 105-106 CFU/ml.  In our experiments we used bacterial densities ranging 

between 105-109 CFU/ml and drug concentrations of the measured MIC, MPC and published 

values for the Tissmax and Cmax.  Our kill studies are consistent with previous studies 

demonstrating tedizolid and linezolid as bacteriostatic agents against S. aureus.  However, for 
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some MRSA strains better killing was seen in the presence of linezolid and tedizolid than 

others and some strains showed no killing following drug exposure (at 24hr).  Therefore, 

current data is not absolutely clear for linezolid and tedizolid and the designation of 

bacteriostatic versus bactericidal might be more related to the strains tested and drug 

concentrations used.  For example, with linezolid and strain number #2, a 1.3 log10 reduction 

translated to ~99% killing following 24 hours of drug exposure at the maximum tissue drug 

concentration. 

Similarly for vancomycin, our results were consistent with previously published 

studies demonstrating its bactericidal activity against S. aureus at lower bacterial inoculum 

≤106 CFU/ml.  However, we observed that at higher bacterial inoculum (≥107 CFU/ml) the drug 

tended to act as a bacteriostatic agent.  Further kill experiments on a larger number of MRSA 

strains might help to resolve this observation. 

One consideration as an explanation for the high vancomycin MPC values with some 

MRSA strains is a tolerance or persistence effect. Conlon et al indicated that treatment failure 

following S. aureus infections in some cases was due to antibiotic tolerant cells called 

persisters [Conlon, et al, 2013].  Tomasz et al defined the antibiotic tolerance as “the ability 

of bacteria to survive, but not grow, in the presence of drug” and assumed tolerance to be 

the precursor phenotype to resistance [Tomasz, et al, 1970].  

Tolerance may be a reversible phenotypic response, which can be easily produced in 

vitro by limiting the supply of essential nutrients as well as in vivo in animal models 

[Handwerger & Tomasz, 1985; Tuomanen, et al, 1986].  Phenotypic tolerance may provide an 

explanation for the persisters subpopulation, which comprise only 0.1-1% of a total bacterial 

population [Dawson, et al, 2011].  This small population consists of cells that are replicating 

at a slower rate than the majority of the population.  Persisters are not truly resistant and 

usually are susceptible during repeat testing. Persistence can be defined as the ability of a 

subpopulation to survive high concentrations of an antibiotic which is a possible explanation 

of our observations but remains unproven. 

             The tolerance phenomenon is known to occur in staphylococci, and vancomycin 

tolerance in S. aureus has been reported in several studies [May, et al, 1998; Perry, et al, 
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1999; Voorn, et al, 1994]. In a study including nine hospitals, vancomycin tolerance was 

identified in 20% of MRSA isolates, while some institutions showed a higher prevalence at 

43% [Gemmell, et al, 2006]. 

Vancomycin tolerance has proven to be more common in MRSA than in MSSA strains, 

and especially from endocarditis cases [May, et al, 1998]. The tolerance mechanism in S. 

aureus is unclear and the clinical properties of these strains are still unknown.  However, it 

was demonstrated to be linked to autolysis deficiency [Handwerger & Tomasz, 1985].   

It has been reported in a number of studies that the infections (endocarditis and 

bacteremia) caused by VT-MRSA are more difficult to treat due to the poor responses to 

vancomycin therapy, therefore additional agents to achieve bactericidal effects are necessary 

[Faville, et al, 1978; Gopal, et al, 1976; May, et al, 1998; Reis, et al, 1995; Sorrell, et al, 1982].  

Tolerance to antibiotics allows bacterial regrowth after antibiotic removal, without 

altering the MIC. This phenomenon may reduce the drug susceptibility and thus increase the 

difficulty of treating infections that require bactericidal action e.g., endocarditis.  Tolerance, 

therefore, should be evaluated to assess the potential of clinical failure during treatment 

[Jones, 2006].  Liu  and Tomasz indicated that tolerance allows for survivors in the presence 

of the drug, which may speed up the development of resistance[Liu & Tomasz, 1985].   

Vancomycin tolerance is not only limited to S. aureus.  Novak et al  described 

vancomycin tolerance in S. pneumoniae caused by vncS mutation (the operon encoding 

histidine kinase) [Novak, et al, 1999]. Due to the vncS mutation, cells remain viable but cease 

replication without altering MIC, suggesting that the drugs still have access to their targets.  

However, such tolerant strains are difficult to detect by routine antimicrobial susceptibility 

testing [Novak, et al, 1999]. 

It remains unclear from our investigations whether the observations of high 

vancomycin MPC values are explained by tolerance or persistence.  In a series of experiments 

we conducted, MRSA colonies from agar plates containing >32 µg/ml of vancomycin were 

retested to determine the MIC and in all instances the MIC was identical to the MIC of the 

parental strain.  Our experiments neither proved nor disproved the exact mechanism 

however, and further measurements are required. Regardless of the mechanism, this 
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observation is likely clinically important, especially in patients with higher bacterial burdens 

and could be an important risk factor for vancomycin therapeutic failure. 

One consideration as an explanation for the high vancomycin MPC values with some 

MRSA strains is a tolerance or persistence effect. Conlon et al indicated that treatment failure 

following S. aureus infections in some cases was due to antibiotic tolerant cells called 

persisters [Conlon, et al, 2013].  Tomasz et al defined the antibiotic tolerance as “the ability 

of bacteria to survive, but not grow, in the presence of drug” and assumed tolerance to be 

the precursor phenotype to resistance [Tomasz, et al, 1970].  

Tolerance may be a reversible phenotypic response, which can be easily produced in 

vitro by limiting the supply of essential nutrients as well as in vivo in animal models 

[Handwerger & Tomasz, 1985; Tuomanen, et al, 1986].  Phenotypic tolerance may provide an 

explanation for the persisters subpopulation, which comprise only 0.1-1% of a total bacterial 

population [Dawson, et al, 2011].  This small population consists of cells that are replicating 

at a slower rate than the majority of the population.  Persisters are not truly resistant and 

usually are susceptible during repeat testing. Persistence can be defined as the ability of a 

subpopulation to survive high concentrations of an antibiotic which is a possible explanation 

of our observations but remains unproven. 

             The tolerance phenomenon is known to occur in staphylococci, and vancomycin 

tolerance in S. aureus has been reported in several studies [May, et al, 1998; Perry, et al, 

1999; Voorn, et al, 1994]. In a study including nine hospitals, vancomycin tolerance was 

identified in 20% of MRSA isolates, while some institutions showed a higher prevalence at 

43% [Gemmell, et al, 2006]. 

Vancomycin tolerance has proven to be more common in MRSA than in MSSA strains, 

and especially from endocarditis cases [May, et al, 1998]. The tolerance mechanism in S. 

aureus is unclear and the clinical properties of these strains are still unknown.  However, it 

was demonstrated to be linked to autolysis deficiency [Handwerger & Tomasz, 1985].   

It has been reported in a number of studies that the infections (endocarditis and 

bacteremia) caused by VT-MRSA are more difficult to treat due to the poor responses to 
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vancomycin therapy, therefore additional agents to achieve bactericidal effects are necessary 

[Faville, et al, 1978; Gopal, et al, 1976; May, et al, 1998; Reis, et al, 1995; Sorrell, et al, 1982].  

Tolerance to antibiotics allows bacterial regrowth after antibiotic removal, without 

altering the MIC. This phenomenon may reduce the drug susceptibility and thus increase the 

difficulty of treating infections that require bactericidal action e.g., endocarditis.  Tolerance, 

therefore, should be evaluated to assess the potential of clinical failure during treatment 

[Jones, 2006].  Liu  and Tomasz indicated that tolerance allows for survivors in the presence 

of the drug, which may speed up the development of resistance[Liu & Tomasz, 1985].   

Vancomycin tolerance is not only limited to S. aureus.  Novak et al  described 

vancomycin tolerance in S. pneumoniae caused by vncS mutation (the operon encoding 

histidine kinase) [Novak, et al, 1999]. Due to the vncS mutation, cells remain viable but cease 

replication without altering MIC, suggesting that the drugs still have access to their targets.  

However, such tolerant strains are difficult to detect by routine antimicrobial susceptibility 

testing [Novak, et al, 1999]. 

It remains unclear from our investigations whether the observations of high 

vancomycin MPC values are explained by tolerance or persistence.  In a series of experiments 

we conducted, MRSA colonies from agar plates containing >32 µg/ml of vancomycin were 

retested to determine the MIC and in all instances the MIC was identical to the MIC of the 

parental strain.  Our experiments neither proved nor disproved the exact mechanism 

however, and further measurements are required. Regardless of the mechanism, this 

observation is likely clinically important, especially in patients with higher bacterial burdens 

and could be an important risk factor for vancomycin therapeutic failure.   

In the thesis, density refers to CFU/ml [Blondeau, et al, 2015] whereas 

inocula/inoculum refers to the number of CFUs inoculated to agar plates or broth.  The terms 

density and inoculal/inoculum are often used interchangeably in the peer reviewed literature 

[Blondeau & Shebelski, 2016]. 

Future Considerations: 
• More extensive search for molecular markers that might provide an explanation for 

high vancomycin MPC values 

• Investigate more strains for killing by the 3 drugs over a range of bacterial densities 
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• More measurements of bacterial replication in the presence of vancomycin 

• Further investigations to define visual versus actual endpoints for MPC testing with 

more types of bacteria and drugs 

 

4.1 Conclusions 

 The conclusions from this thesis are as follows: 

1. A majority of MRSA blood culture isolates had MPC values to vancomycin >16 µg/ml 

despite the fact that MIC values ranged from 0.5-1 µg/ml. 

2. There was no single variable identified from patients that could explain high vancomycin 

MPC values. 

3. MRSA strains with high vancomycin MPC values had thicker cell walls as seen by electron 

microscopy. 

4. For both drug-containing agar media and drug-containing liquid media, MRSA strains 

showed signs of continued replication in the presence of vancomycin. 

5. The presence or absence of select cell wall accessory genes were not responsible for high 

vancomycin MPC values. 

6. Linezolid and tedizolid gave inconsistent kill results with considerable strain variability and 

appear to be bacteriostatic. 
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 APPENDIX A 

 Solutions and Buffers 

            10X TE Buffer 
 
Dissolve 12.1 g of Tris Base and 3.72 g of EDTA in 750 ml of distilled water. Bring 
to pH 8.0 using HCl. Adjust volume to 1 L and autoclave. 

 
10X TBE  
Dissolve 90.8 g of Tris Base, 15.4 g of Boric acid, and 0.37 g of 
disodium EDTA in 1000 ml of distilled water and autoclave. 

 
0.5 M EDTA  
Add 93.05 g of EDTA (disodium salt) to 400 ml distilled water. Add NaOH 
pellets one at a time until the EDTA is completely dissolved. Bring the pH to 
8.0 by adding 5 M NaOH. Adjust volume to 500 ml and autoclave. 

 
0.1M Cacodylate Buffer  
Combine 16 g of sodium cacodylate (Mol. Wt. 160.0) with 920 ml of 
distilled water. pH to 7.2 with 0.1N HCL. Adjust to 1000 ml with distilled 
water. 

 
1% Pulsed Field Agarose  
Add 1.0 g pulsed field agarose to 100 ml 0.5X TBE. Boil until agarose is 
dissolved and cool to 50°C before pouring the gel. Allow gel to solidify for a 
minimum of 30 min before use. 

 
1% Agarose Gel for PCR  
Add 0.35 g to 35 ml of TBE Buffer containing ethidium bromide (ETBr). 
Microwave on high until the agarose is completely dissolved. Pour gel and 
allow it to solidify for ~30 min. 

 
2% Glutaraldehyde  
Add 10 ml of 25% Glutaraldehyde EM grade to 115 ml of 0.1M cacodylate 
buffer.
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Cell Suspension Buffer  
Combine 100 µl of 1M Tris-HCl (pH 7.2), 200 µl of 1M NaCl, and 1.0 ml of 0.5M 
EDTA (pH 8.0). Dilute to 10 ml with sterile distilled water. 

 
ETBr Buffer  
Add 50 µl of ETBr at 10 mg/ml to 1 L of TBE Buffer for a final ETBr 
concentration of 500 µg/ml. 

 
ETBr Solution For Staining a Pulsed Field Gel  
Combine 40 ul stock ethidium bromide with 400 ml of distilled of 
distilled water. 

 
Low Melting Point Agarose  
Dissolve 1 g into 100 ml of TE Buffer at pH 8.0. Boil for 1-1.5 min and cool to 
50-65°C in water bath. 

 
Lysis Buffer  
Combine 100 ul of 1M Tris-HCl (pH 7.2), 500 µl of 1M NaCl, and 1.0 ml of 
0.5M EDTA (pH 8.0). Weigh out 20 mg of deoxycholate and 50 mg of N-
Lauroylsarcosine and add to above mixture. Dilute to 10 ml with sterile 
distilled water. 

 
PFGE Running Buffer  
Dilute 300 ml of 10X TBE in 2700 ml of distilled water for a 
concentration of 1X TBE. 

 
Proteinase K Buffer  
Combine 50 ml of 0.5M EDTA (pH 8.0) and 10 ml of 10% N-lauroylsarcosine. 
Adjust pH to 9.0, then dilute to 100 ml with sterile distilled water. 

 
Proteinase K/Proteinase K Buffer  
Add 25 µl of 20 mg/ml of Proteinase K to 10 ml of Proteinase K Buffer. 

 
Skim Milk  
Dissolve 200 g of powdered skim milk into 1000 ml of distilled water and 
autoclave. 

 
TE Buffer  
Add 5 ml of 1M Tris-HCl pH 8.0 and 8 ml of 0.25M EDTA pH 8.0 into 494 ml of 
distilled water. 

 
 
Tracking Dye  
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Add 60 g of sucrose into 100 ml sterile distilled water to make a 60% sucrose 
mixture. Add 0.25 g of xylene cyanol into 100 ml sterile distilled water. Add 
10mM Tris at pH 8.0. Combine the 60% sucrose, the 0.25% xylene cyanol, 
and the Tris. 

 
TSA  
Add 40 g to 1 L distilled water.  Autoclave. 
 
Wash Buffer  
Combine 10 ml of 1M Tris- HCl (pH 7.6) and 20 ml of 0.5M EDTA (pH 8.0). 
Dilute to 100 ml with sterile distilled water. 
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 APPENDIX B 

                PFGE Conditions 

Initial Time:   5.3 seconds  
Final Time:   34.9 seconds 
Included Angle:   120 
Voltage:    200V, 6V/cm 
Run Time:    18 hr 
Variant Speed Pump:  55 
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 APPENDIX C 
 
  MIC Breakpoints for Control Strains 
 
   ATCC S. aureus Strain 29213 
 

Amikacin  ≤16 µg/ml 
Azithromycin ≤2 µg/ml 
Ciprofloxacin ≤1 µg/ml 
Gatifloxacin  ≤0.5 µg/ml 
Gentamicin  ≤4 µg/ml 
Linezolid  ≤4 µg/ml 
Moxifloxacin  ≤0.5 µg/ml 
Tedizolid  <0.25 µg/ml 
Tigecycline  <0.25 µg/ml 
TMP/SMX  ≤2/38 µg/ml 
Tobramycin  ≤4 µg/ml 
Vancomycin  ≤2.0 µg/ml 

 
   ATCC S. pyogenes Strain 19615 
 

Azithromycin ≤0.5 µg/ml 
Moxifloxacin  <1* µg/ml 
Penicillin  ≤0.12 µg/ml 
Vancomycin  ≤1 µg/ml 

 
  *Based on S. pneumoniae ATCC 49619. 
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 APPENDIX D 

 
 Suppliers 
 

   Media  
 

Mueller Hinton Broth (MHB)  Fisher Scientific, Toronto, ON   
Todd Hewitt Broth (THB)   Becton, Dickinson and Co., Sparks, MD 
Tryptic Soy Agar (TSA)   Fisher Scientific, Toronto, ON 

                           5% Sheep Blood    Oxoid, Nepean, ON 
 

   Reagents, Chemicals, and Enzymes 
 

25% Glutaraldehyde (EM Grade) Marivac, St. Laurent, QU 
 95% Alcohol   Commercial Alcohols Inc., Brampton,  ON 

1% Agarose   Invitrogen, Corisbad, CA 
Buffer A    New England BioLabs, Mississauga, ON 
EDTA     Sigma-Aldrich Co., St. Louis, MO 
Ethidium Bromide  BioRad Loaboratories, Hercules, CA 
Hydrochloric Acid (HCl)  BDH Inc., Toronto, ON 
InstaGene Matrix   BioRad Laboratories, Hercules, CA 
Lambda Ladder   New England BioLabs, Mississauga, ON 
Low Melting Point Agarose BioRad Laboratories, Hercules, CA  
Lysostaphin   Sigma Chemical Co., St. Louis, MO 
PCR Ladder   Invitrogen, Carisbad, CA 
PCR Primers   Sigma-Genosys, Oakville, ON 
PuReTaq Ready-To-Go PC Beads Amersham/Pharmacia, Piscataway, NJ 
Proteinase K   Sigma Chemical Co., St. Louis, MO 
Pulsed Field Certified Agarose Sigma Chemical Co., St. Louis, MO 
Saline     Baxter, Deerfield, IL 
Skim Milk   Becton, Dickinson and Co., Sparks, MD 
SmaI     New England BioLabs, Mississauga, ON  
Sodium Cacodylate  Ted Pella, Inc., Millville, NJ 
Sodium Chloride (NaCl)  BDH Inc., Toronto, ON 
Tris-HCl    Sigma Chemical Co., St. Louis, MO 
 

                             Disposable Labwares 
   

Pipette Tips   VWR International, Mississauga, ON  
Corning Cryovials   Corning Inc., Corning, NY 
Cuvettes    Fisher Scientific, Toronto, ON 
Glass Tubes   Fisher Scientific, Toronto, ON 
Latex Gloves   Fisher Scientific, Toronto, ON 
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McFarland Tubes   Fisher Scientific, Toronto, ON 
Microcentrifuge Tube  Fisher Scientific, Toronto, ON 
Microtitre Plates   Sarstedt, Newton, NC 
Pasteur Pipettes   Fisher Scientific, Toronto, ON 
Sterile Plastic Petri Plates  Fisher Scientific, Toronto, ON 
Swabs     Fisher Scientific, Toronto, ON 
Wooden Applicator Sticks  Puritan, Guilford, Maine 
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 APPENDIX E 

 MIC Protocol – Microbroth Dilution 

Day One 
- Subculture microorganisms onto the appropriate agar plates and incubate overnight. 
- Label.   
 
Day Two 
Microbroth Dilution: 
- Make a 0.5 McFarland standard using the colourometer. 
- Take 50 µl of the 0.5 McFarland and add it to 5 ml of the appropriate broth (1/100 dilution). 
- Vortex the bacterial suspension and continue with step #1 in the Test Dilution. 
 
Drug Dilution: 
- In each panel add 100 µl of the appropriate broth into wells 2-12 (reverse pipette). 
- Add 200 µl of drug into well #1 (reverse pipette). 
- Take 100 µl of drug from well #1 and add it to well #2 (normal pipette), mix 3 times, aspirate 100 

µl of that suspension into the following well (#3). 
- Continue doing this until you reach well #11. 
- When you are finished mixing the contents of well #11 DO NOT TRANSFER them to well #12.  

DISPOSE OF THEM because well #12 is the growth control (contains broth and microorganism, no 
drug). 

- This result is a serial dilution (example 512, 256, 128……). 
 

Test Dilution: 
- Take 100 µl of the diluted test microorganism and add it to wells 1-12 of the appropriate row. 
- Streak out a purity plate. 
- Incubate overnight in the appropriate incubator. 
- The following day record your results (MIC=the first well showing no growth). 
 
Example of Math for Microbroth Dilution: 
 0.5 McFarland (50 µl) + 5 ml broth = 1/100 dilution 
  ¯     ¯ 
   1-2 x 108 CFU/ml        1-2 x 106 CFU/ml 
 
Microbroth Panel: 

100 µl of diluted microorganism + 100 µl of broth in the wells = 200 µl /well (1/2 dilution) 
therefore the 0.5 McFarland is diluted to total of 1/2 with a resulting cfu equaling 0.5-1 x 106 
CFU/ml or 0.5 – 1 x 105 CFU/ml. 
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 APPENDIX F 

 MPC Protocol 
Day One: 
- Subculture microorganisms onto 6½ agar plates and incubate overnight in a 35°C CO2 incubator. 
- Pour plates that you will need for the week. 
- Each plate contains approximately 20 ml of agar. 
- We usually pour 7 drug dilutions  
 eg. moxifloxacin frozen at 1756 µg/ml  c1 = 1756µg/ml = known drug stock 
  c1v1 = c2v2     v1 = x = the amount of drug we need  
  1756µg/ml (x) = 4 µg/ml(100 ml)   to add 
           x = 227.8 ul   c2 = 4µg/ml = the drug concentration 
          we want in the 
plate 
        v2 = 100 ml = the amount of agar 
made 
Day Two: 
- Transfer microorganisms to 500 ml of Todd Hewitt Broth and incubate overnight in a 35°C CO2 incubator. 
- Label supplies needed for the next day. 
 
Day Three: 
- Remove the bottles containing the bacterial suspension from the incubator and mix briefly. 
- Pipette 2 ml of the bacterial suspension into a cuvette and take a spectrophotometer read at 600nm (must 

read at 0.300 or greater). 
- Balance the remaining bacterial suspension between 2 500ml centrifuge bottles. 
- Centrifuge conditions: 600rpm, 20 minutes, 4°C. 
- When the centrifuge has fully come down, remove the bottles and pour off the supernatant being careful 

not to disturb the pellet. 
- Resuspend the pellet in 1.5 ml of fresh Todd Hewitt broth. 
- Pipette 200 µl of the bacterial suspension to the appropriately labeled drug plates. 
- Spread the inoculum on the plate with a sterile loop. 
- Streak out a purity plate (blood agar plate). 
- Incubate the plates overnight in a 35°C CO2 incubator. 
 
Day Four: 
- Remove the plates from the incubator and record your results (growth, no growth or unsure). 
- DO NOT GUESS if it is growth or not, if you are unsure, question mark it. 
- Return the plates to the incubator for another 24 hours. 
 
Day Five: 
- Remove the plates from the incubator and once again record your results. 
- This time you can streak out any plates that you are unsure of onto new drug plates. 
 Example:  Moxi 2 µg/ml has growth (visible colonies) – record as +. 

   Moxi 4 µg/ml has a smear (no visible colonies) – take a swab of this plate and replate 
           it onto a new moxi 4 µg/ml plate. 

- Incubate the streaked drug plates overnight in a 35°C CO2 incubator. 
 
Day Six: 
- Record your results. 
 

 



 

183 
 

 
 APPENDIX G 

 Kill Curve Protocol – 3 hour 

Time Condensed and only Dealing with 105 Dilution 
Day One 
v Inoculate the microorganism onto the appropriate number of plates and incubate overnight. 
v Label all the necessary supplies. 
v Figure out the math for the next day. 
 
Day Two 
v Transfer all the growth from the plate into 10 ml of appropriate broth and incubate for 2 hours. 
v Pipette 700 µl of bacterial suspension from the tube labelled 109 into the tube labelled 108, vortex. 
v Pipette 700 µl of bacterial suspension from the tube labelled 108 into the tube labelled 107, vortex. 
v Pipette 700 µl of bacterial suspension from the tube labelled 107 into the tube labelled 106, vortex. 
v Pipette 700 µl of bacterial suspension from the tube labelled 106 into the tube labelled 105, vortex 

and discard 700 µl from the 105 tube. 
v Add the appropriate amount of antimicrobial agents to the tube containing 105 bacterial 

suspension. 
v Working with the appropriate labelled rack of tubes (that contain 900 µl of MHB) start by Pipetting 

100 µl from the main 105 tube into your first set of tubes that you are going to serially dilute down 
and plate. 

v Serially dilute down your tubes of broth by removing 100 µl of the bacterial suspension from the 
first tube and placing it into the second tube, vortex, remove 100 µl of the bacterial suspension 
from the second tube and plate it into the third tube, vortex and so forth until all the tubes are 
diluted then set this rack of diluted tubes aside. 

v Pull the corresponding labelled blood agar plates and Pipette 100 µl onto each, then set aside. 
v Dispose of the tubes that were not plated and pull forward your next set of tubes to be diluted at 

the next time interval. 
v You are now ready to start spreading the bacterial suspension on the freshly inoculated plates. 
v Sterilize a yellow cell spreader; you can use the same spreader on your stack of three plates 

labelled with the same concentration and time interval. 
v Place the inoculated blood agar plates into the appropriate incubator overnight. 
v This was done at time intervals of 0 min, 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 1 hr, 2 hrs 

and then finishing at 3 hrs. 
 
Day Three 
v Remove plates inoculated on the previous date and begin counting your colonies (double digits is 

ideal, single digits are countable but are less reliable, once you get into the higher hundreds it also 
becomes unreliable) and record your results. 
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 APPENDIX H 

 Kill Curve Protocol – 24 hour (106-109 CFU/ml) 
Day One 
v Inoculate the microorganism onto the appropriate number of plates and incubate overnight. 
v Label all the necessary supplies. 
v Figure out the math for the next day. 
 
Day Two 
v Transfer all the growth from the plate into 5 ml of appropriate broth and incubate for 2 hours. 
v Vortex the bacterial suspension and pour the contents into a petri dish. 
v Pipette 3 ml into a cuvette and perform a spec read at 600 nm; when done do not discard the bacterial 

suspension, pour it into a new tube labelled 109. 
v Pipette the remaining bacterial suspension into the new tube labelled 109 remembering the volume that 

you Pipetted (nb. for the math). 
v Pipette 700 µl of bacterial suspension from the tube labelled 109 into the tube labelled 108, vortex. 
v Pipette 700 µl of bacterial suspension from the tube labelled 108 into the tube labelled 107, vortex. 
v Pipette 700 µl of bacterial suspension from the tube labelled 107 into the tube labelled 106, vortex. 
v Working with the appropriate labelled rack of tubes (that contain 900 µl of MHB) start at 109; Pipette 100 

µl from the main 109 tube into your first set of tubes that you are going to serially dilute down and plate; 
set this rack aside when done and do the same for the corresponding racks for 108, 107, and 106. 

v After adding the initial 100 µl to the first tube in each rack take the rack containing the main 109, 108, 107 
and 106 and place it in the appropriate incubator and start your timer. 

v Starting with the 109 rack, serially dilute down your tubes of broth by removing 100 µl of the bacterial 
suspension from the first tube and placing it into the second tube, vortex, remove 100 µl of the bacterial 
suspension from the second tube and plate it into the third tube, vortex and so forth until all the tubes are 
diluted then set this rack of diluted tubes aside. 

v Pull the corresponding labelled blood agar plates and Pipette 100 µl onto each, then set aside. 
v Do the exact same procedure for the 108, 107 and 106 rack of tubes. 
v Starting with the 106 rack of diluted tubes, pull the corresponding labelled blood agar plates and Pipette 100 

µl onto each then set aside. 
v Dispose of the tubes that were not plated and pull forward your next set of tubes to be diluted at the next 

time interval. 
v Do the exact same procedure for the 108, 107 and 106 racks of tubes. 
v You are now ready to start spreading the bacterial suspension on the freshly inoculated plates. 
v Sterilize a yellow cell spreader; you can use the same spreader on your stack of three plates labelled with 

the same concentration and time interval. 
v Place the inoculated blood agar plates into the appropriate incubator overnight. 
v This was done at time intervals of 0 min, 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 1 hr, 2 hr, 4 hr, 6 hr, 

12 hr and finishing at 24 hours. 
 
Day Three 
v Remove the main rack of tubes (109, 108, 107 and 106) from the incubator and set up the 24 hour results 

(same procedure as the previous day when you simply remove 100 µl from the main tube and place it into 
the corresponding rack of tubes needed to be serially diluted down and then plate 100 µl in triplicate). 

v Remove plates inoculated on the previous date and begin counting your colonies (double digits is ideal, 
single digits are countable but are less reliable, once you get into the higher hundreds it also becomes 
unreliable) and record your results. 

 

  


