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ABSTRACT 

 

A numerical study was conducted to assess the performance of a Two-Fluid Model (TFM) 

developed for gas-solid flow in predicting liquid-solid flow, as well as a TFM specifically 

modified for liquid-solid flow. The physics involved in gas-solid and liquid-solid flows are 

intuitively different, and some model terms that can be neglected in a gas-solid formulation turn 

out to be highly relevant in liquid-solid flow. The difference in these two flows is partly due to 

the fact that the most important physical properties of the fluid, e.g., density and dynamic 

viscosity, are much higher in a liquid compared to a gas. In order to investigate the differences 

between the two base case models, three intermediate models were proposed, and together with 

the two base case models, assessed in terms of their predictions for an experimental test case. 

The specific test case was fully developed, turbulent, steady flow of a liquid solid mixture in a 

vertical pipe. The main differences in the model formulations pertain to the fluid momentum, 

granular temperature and turbulence kinetic energy transport equations. The other model terms 

remained similar, i.e., the eddy viscosity constitutive relation, the LRN 𝑘 − 𝜀 closure and the 

turbulence modulation relations. The present study focused on the predictions for the velocity 

profile of both the liquid and solid phases, the solids volume fraction profile and budgets of the 

transport equations for the granular temperature and turbulence kinetic energy. The results 

obtained were used to identify the model terms that are most significant. These include new 

formulations for the solids viscosity and granular temperature conductive coefficient, which 

include the effects of the interstitial fluid effect. The single most important term was the model 

for the long-range particle fluctuations through the fluid, which played a dominant role in the 

balance of the turbulence kinetic energy and granular temperature transport equations. The 

present thesis proposes that this term, which was specifically developed for the case of liquid-

solid flow, should be configured as a sink term in the granular temperature equation and a 

source term in the turbulence kinetic energy equation. With this modification, the numerical 

predictions were much closer to the experimental data, especially in terms of the solids volume 

fraction profile in the near-wall region.   
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Chapter 1: Introduction 

 

 

1.1 Preliminaries 

 

Multiphase flow refers to the mixing of at least two phases, such as liquid-solid, gas-solid, or 

liquid-gas flow. In oil production, a combination of liquid-solid-gas flow can occur because of 

the different components in crude oil and the temperature and composition of the reservoir. The 

presence of any of these phases may have severe consequences for the performance of 

production and transport equipment, e.g., erosion and sedimentation in pipes and pumps. In 

two-phase flows, the fluid phase is considered as the continuum or carrier phase, while the 

particulate phase is referred to as the dispersed phase. The study of this type of flow has become 

important due to its relevance in industrial applications, e.g., hydrotransport of minerals, 

fluidized beds, water purification, chemical reactors, oilfield production and pneumatic 

transport of particles in pipes, and its occurrence in natural processes, e.g., atmospheric 

dispersion and sediment transport.  In this context, a better understanding of the underlying 

physics is required to improve our predictive capability. 

 

In typical industrial applications, most flows are turbulent. There is an extensive literature 

on single-phase turbulence and various models exist to predict it, e.g., Pope (2000), Tennekes 

and Lumley (1972) and Wilcox (2002). To predict a turbulent flow field it is necessary to solve 

a set of partial differential equations, e.g., the Navier-Stokes equations, most often by the 

application of numerical methods, which is referred as Computational Fluid Dynamics (CFD). 

The complexity and detail of the final flow solution depends on the method adopted, e.g., Direct 

Numerical Simulation (DNS), Large Eddy Simulation (LES) or Reynolds Averaged Navier-

Stokes (RANS) methods. DNS is able to model the complete details of a flow, but it is only 
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applicable to low Reynolds number flows due to the amount of computational resources 

required. LES uses less but still substantial resources to predict the large-scale motions. The 

RANS method requires the least computational resources, but only predicts the time-average 

or mean behavior of the flow field. One of the most popular turbulence closures for RANS is 

the 𝑘 − 𝜀 model, which relates the eddy viscosity to the turbulence kinetic energy 𝑘 and its 

dissipation rate 𝜀. Both, 𝑘 and 𝜀 are calculated from their respective transport equations. The 

application of RANS with a 𝑘 − 𝜀 model is frequently used to predict industrial flows.  

 

The solid (or particle) phase has a strong influence on the fluid flow field, both in terms of 

the overall transport and the turbulence field. This influence becomes less important at low 

levels of the solid volume fraction; however, at moderate levels, particles begin to interact, 

which makes the process of modeling more complex. When the volume fraction increases to 

very high levels, the fluid turbulence may no longer exist. The current focus of engineers and 

physicists is to develop models that can simulate the important physical interactions of 

multiphase flow and obtain accurate predictions of the mean flow behavior. The successful 

application of CFD to two-phase flows requires a correct understanding of the physical 

mechanisms that affect the transport of these mixtures. 

 

Experimental tests of liquid-solid flow have been documented by various studies, e.g., 

Sanders et al. (2000), Spelay et al. (2016) and Matoušek (2009). Unfortunately, this type of 

research usually demands high investment in facilities and instrumentation to measure specific 

properties of the flow. Laser Doppler Velocimetry (LDV) and Gamma-ray densitometer 

techniques are commonly used in experimental studies of multiphase flow. Due to the diverse 

combinations of particle diameter, pipe diameter, type of fluid, etc. that exist in industrial 

applications, to perform experimental studies of all cases is typically not feasible. A more 

practical approach for industry is the use of CFD. A validated CFD model provides the 

flexibility to evaluate a wide range of flow parameters. For the case of two-phase flow, both 

Eulerian-Lagrangian and Eulerian-Eulerian exist. The first method consists of following a 

particle along its trajectory through a specific domain. An advantage of this method is that 

closure models are not required. However, due to its nature, this method may not be appropriate 

for dense flows. The second method, also referred to as the two-fluid model, requires less 
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computational resources and can be applied to dense flow regimes. However, it introduces 

closure relations to solve different aspects of the flow. Unfortunately, a definitive formulation 

of this model, able to predict diverse types of two-phase flows, is still lacking.  

 

1.2 Motivation  

 

Solids transport by liquid in pipelines includes a wide variety of applications in the oil and gas 

sector, such as transport of oil sand, artificial lift production and drilling operations.  In the 

paper manufacturing industry, hydro-transport of a mixture composed of water, chemicals and 

cellulose particles is used to achieve the large production volumes this industry requires.  In 

order to obtain an effective design of liquid-solid flows, it is crucial to understand the physical 

principles involved in particle and liquid motion, and their interaction.  

 

For numerical predictions, accurate implementation of the hydrodynamic forces affecting 

the particle motion, definition of the correct boundary conditions and selection of appropriate 

mathematical models represent the major challenges. At the most specific level of description, 

the particles are surrounded by a fluid, the flow field of which can be described by the well-

known Navier-Stokes equations, and Newton’s equation of motion can be used to predict the 

particle trajectory. Unfortunately, to implement this level of detail it would be necessary to 

solve the flow field at the smallest scales, representing an extensive computational load that 

might not be feasible.  This task becomes even more demanding for the high Reynolds number 

flows with a large number of particles. The TFM represents an alternative solution to this 

problem; it describes the particle flow in terms of the continuum-like properties. The TFM 

equations are derived by applying an averaging procedure. This process generates additional 

terms, related mostly to the fluctuating velocity component of the particle flow field and the 

fluid-particle interactions. The most common averaging techniques reported in the literature 

include time averaging (Ishii, 1975), volume averaging (Drew, 1983, Brennen, 2005) and 

ensemble averaging (Hiltunen et al., 2009).  No matter the type of averaging, the final transport 

equations are very similar, with temporal, convective, diffusive and source terms: the major 

differences relate to the source terms, e.g., the hydrodynamic force. One of the most widely 

referenced set of equations were proposed by Anderson and Jackson (1967), who derived a set 
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of local averaged equations by applying a weighting function to the Navier-Stokes equations 

and the equation of motion  for a  particle.  

 

Overall, the TFM represents a group of equations for solving the mean liquid and particle 

velocity fields. The complexity of the numerical solution pertains to the additional terms 

produced by the averaging procedure related to the fluctuations of the velocity fields and the 

particle-fluid interactions. For example, to solve the fluctuating velocity of the fluid phase, a 

set of turbulence models have been proposed in the literature. However, the presence of 

particles in the flow affects the turbulence of the fluid phase, which can be either enhanced or 

attenuated. This effect is referred to as turbulence modulation and different models to predict it 

can be found in the literature. Likewise, the dispersed phase requires additional theoretical 

assumptions and formulations. One approach for the particle phase is to apply the kinetic theory 

of gases to the solid particles, as if they were molecules. This approach yields an additional set 

of differential equations that allows the dispersed phase properties such as particle viscosity, 

particle pressure, particle velocity and volume fraction to be solved as functions of a new 

variable that characterizes the particle fluctuations, i.e., the granular temperature. This theory 

is known as the Kinetic Theory of Granular Flow (KTGF), and has been relatively successful 

in predicting gas-solid flows. However, the application of this theory to liquid-solid flow is still 

limited, since it involves additional physical considerations that can be neglected in gas-solid 

flows, e.g., the effect of the interstitial fluid. The KTGF was initially derived by considering 

particles moving in a vacuum, which is not a very realistic assumption when the gas is replaced 

by a liquid as the carrier phase. As such, the TFM combined with the KTGF is still in some 

ways unsatisfactory for the prediction of liquid-solid flows. The present research is focused on 

improving the simulation of liquid-solid flow using this method. 

 

1.3 Challenges and Objectives  

 

CFD represents a potentially useful methodology for predicting multiphase flow. CFD tools 

have provided accurate approximations for gas-particle flows, e.g., pipe flow and fluidized bed 

applications, based on comparison to the available experimental data. Extensive research exists 
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for gas-solid flow, however this is not the case for liquid-solid flow, especially for vertical flow 

in a pipe. The development of a definitive TFM formulation that includes the relevant physics, 

e.g, interstitial fluid effects, is still a work in progress.  

 

The first challenge to developing a realistic model for liquid-solid flow using the Eulerian-

Eulerian TFM and KTGF is the derivation of the appropriate constitutive equations and 

boundary conditions.  Typically the constitutive equations used to model liquid-solid flows are 

the same as those used to predict gas-solid flows. This is likely not an accurate assumption 

given that the interstitial effect of the liquid is much higher compared to a gas, so that the 

particle phase properties may change considerably. In addition, when liquid is the carrier phase, 

additional forces become important. For example, the added mass or virtual mass force becomes 

important for flows with low density ratios (particle density/fluid density). 

 

To achieve accurate predictions for liquid–solid multiphase flows requires a clear 

understanding of the complex interaction between the fluid and solid phases. The source and 

sink terms in the mean and turbulence transport equations, and some of the flow properties 

change due interstitial effects. In addition, the standard TFM and KTGF constitutive equations 

are formulated for the dispersed flow regime, when the bulk solid volume fraction is less than 

5%. Additional effects for the solid phase occur when the volume fraction of the solid particles 

is in the dense flow regime, i.e., frictional forces appear as a new source of momentum transfer 

between particles, which requires that the constitutive equations be modified to include this 

behavior. For the present research the dense regime is not considered and thus the frictional 

component is not included. 

 

Finally, most of the liquid-solid flow experimental studies available in literature relate to 

horizontal flows, whereas only a few of them focus on vertical pipe flow. One reason could be 

that most industrial applications involve horizontal pipes. Horizontal flow involves additional 

features in the solid phase transport equations, i.e., the effect of gravity on the radial velocity 

component, which generates an asymmetry of the solids phase flow. In contrast, vertical flow 

offers the advantage of an axisymmetric flow for both phases, fluid and solid. It can be studied 



6 
 

in the context of a fully-developed flow configuration, which facilitates the numerical 

implementation and allows a clearer picture of different modeling features, such as the effect 

of the interstitial fluid.  

 

In response to the challenges described above, the present thesis research addresses the 

following objectives: 

 

1. Perform an extensive literature review of the constitutive equations and 

experimental studies of liquid-solid flow: The standard form of the TFM and KTGF 

models neglects the effect of the interstitial fluid. To explore the interstitial fluid effect, 

a recent model for a liquid-solid flow is identified in the literature and used for the present 

computational study. In addition, an appropriate experimental database is selected to 

document dispersed liquid-solid upward flow in a vertical pipe. 

 

2. To reconfigure an in-house code for simulation liquid-solid flow in a vertical pipe: 

An existing in-house CFD code developed in Fortran, and used by previous students to 

perform numerical simulations of turbulent gas-solid flow, is modified to consider liquid-

solid flow. This code uses the Finite Volume Method to discretize and solve a set of 

transport equations.   

 

3. To perform a comprehensive analysis of the performance of the TFM for liquid-

solid flow: Five different TFM formulations are analyzed based on comparison of 

numerical predictions to experimental data. More specifically, the effect of the additional 

source and sink terms, and the modified mathematical expressions for the solid viscosity 

and granular temperature conduction coefficient are investigated.  

 

The Eulerian-Eulerian TFM proposed by Anderson and Jackson (1967) is used for 

formulating the governing equations. Additional Fortran subroutines are integrated into the 

original in-house code in order to implement the new model formulation. The variables 

predicted include: the mean and fluctuating velocities for both phases, turbulence kinetic 
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energy, granular temperature, volume fraction, Reynold stresses, eddy viscosity and source 

terms of the turbulence transport equations.  

 

1.4 Organization of the thesis 

 

The present thesis is structured into four chapters as described below.  

 

Chapter 2 presents a broad literature review of multiphase flow. It provides a description 

and classification of multiphase flow, and outlines the main features of the Eulerian-Eulerian 

and Eulerian-Lagrangian approaches. It also presents a description of the TFM and KTGF and 

their constitutive equations. Finally, it gives a summary of the most relevant experimental 

studies for different cases of liquid-solid flow, including vertical and horizontal flows in pipes 

and channels. 

 

Chapter 3 describes the methodology of the present thesis. The objective of this chapter is 

to document the differences between the regular TFM and KTGF model, and a more recent 

version that considers the effect of the interstitial fluid. Additionally, it presents five different 

model formulations that are used to assess the effect of different terms in the overall model. 

Finally, this chapter documents the complete set of equations used in the simulations.   

 

Chapter 4 presents the numerical results. First, predictions are obtained for single phase 

flow in order to validate the performance of the code. Then, numerical predictions for the five 

model formulations are compared against the experimental data for one specific mass flow rate. 

To determine the relevance of the additional and modified terms implemented in the original 

gas-solid code, different flow variables are analyzed. At the end, the predictions of the best of 

the five model formulations considered is compared with experimental data for a range of mass 

flow rates.  

 

Chapter 5 presents the overall of this study and some recommendations for future work.  
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Chapter 2: Literature Review 

 

 

2.1 Classification of Flow Regimes 

 

The classification of the flow regime depends on the solids volume fraction 𝛼௦, which 

represents the fraction of the volume occupied by the dispersed phase. The volume fraction has 

a strong influence on many of the hydrodynamic forces, e.g., drag, added mass, etc, as well as 

the turbulence modulation. The influence of the particle and fluid phases on each other is 

normally referred to as coupling. When the density of the dispersed phase is also considered, 

the mass loading represents an additional parameter to consider. It relates to the ratio of the 

mass flux of the dispersed phase to that of the fluid phase, i.e., 𝑚 = 𝑚௦ 𝑚௙⁄ .  

 

Elghobashi (1991; 1994), considers a very dilute regime to exist when 𝛼௦ < 10ି଺ and the 

ratio of inter-particle distance to particle diameter is 100 or more ൫𝑙௣ି௣ 𝑑௣⁄ ≥ 100൯. In this 

regime only one-way coupling exists, i.e. the particle phase is coupled to the fluid phase, but 

does not affect the fluid phase. When 10ି଺ < 𝛼௦ ≤ 10ିଷ and   10 < 𝑙௣ି௣ 𝑑௣⁄ < 100, the 

regime is still dilute, but two-way coupling exists, inferring that the velocity field of the fluid 

phase is modified by the presence of the particles. If the ratio of the particle diameter to the 

turbulence length scale is lower than 0.1 ൫𝑑௣ 𝑙்⁄ < 0.1൯, turbulence is attenuated; if the ratio is 

greater than 0.1 ൫𝑑௣ 𝑙்⁄ > 0.1൯, turbulence is enhanced (Gore and Crowe, 1989). The dense 

flow regime begins at 𝛼௦ ≥ 10ିଷ and 𝑙௣ି௣ 𝑑௣⁄ ≤ 10. This regime can be considered as a 

collision-dominated flow, where a four-way coupling exists. Once the volume fraction becomes 

sufficiently large (𝛼௦ > 0.1), contact between particles results in frictional forces, so this 

regime is considered to be contact-dominated (Crowe et al., 1998). The physical behavior of 
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the contact-dominated flow consists of two sub-categories depending on whether the effect of 

the fluid can be considered negligible or not (Tsuji, 2000). 

 

2.2 Numerical Techniques for Two-Phase Flows 

 

A variety of models exists for the analysis of two-phase flows. However, a successful 

mathematical formulation that provides accurate predictions and is applicable to a broad range 

of two-phase flows has not yet been developed. Two of the most popular formulations are given 

below (Comer, 1998): 

 

1. Two-fluid model (Eulerian-Eulerian) 

2. Particle trajectory model (Eulerian-Lagrangian) 

 

The two-fluid model (TFM) presents some advantages over the particle trajectory approach. 

The TFM considers both phases as interpenetrating continua that interact with each other. It 

requires less time and computational effort to simulate the system of particles, since it analyzes 

the system in an Eulerian framework instead of a Lagrangian one. Both phases occupy a fraction 

of the flow domain, and micro-scale effects are not considered. This advantage becomes more 

significant as the number of particles increases. 

 

2.2.1 Eulerian-Lagrangian approach 

 

The main distinction of this approach is the concept of tracking the path of each particle 

suspended in a fluid. The local instantaneous differential equations (Messa, 2013) for 

describing the motion of the fluid phase 𝑓 and a solid particle 𝑠 are given by: 

 

Local instantaneous transport equations for the fluid phase: 

𝜕𝜌௙

𝜕𝑡
+

𝜕൫𝜌௙𝑢௜൯

𝜕𝑥௜
= 0                                                                                                                             (2.1) 
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𝜕൫𝜌௙𝑢௜൯

𝜕𝑡
+

𝜕൫𝜌௙𝑢௜𝑢௜൯

𝜕𝑥௝
=

𝜕𝜏௜௝

𝜕𝑥௝
+ 𝜌௙𝑔௜ + ෍ 𝐹௡(𝑥௜

௡)𝛿(𝑥 − 𝑥௜
௡)

ேೞ

௡ୀଵ

                                               (2.2) 

Local instantaneous equations of motion for the particles: 

𝜕𝑥௜

𝜕𝑡
= 𝑣௜                                                                                                                                                  (2.3) 

𝑚௣

𝜕𝑣௜

𝜕𝑡
= 𝐹௜                                                                                                                                           (2.4) 

 

This method can be attributed to Tsuji et al. (1993). In this approach, the fluid flow field is 

solved within an Eulerian framework. It is determined from the continuity and momentum 

equations, which can be solved by any appropriate method, e.g. DNS, LES or RANS. On the 

other hand, the particle trajectories are solved using Newton’s equation of motion, i.e., in a 

Lagrangian framework. Both fields are connected by interphase forces. Unfortunately, the 

application of the Eulerian-Lagrangian method demands large computational resources, which 

limits its application for large-scale industrial applications. It is used mostly for dispersed flow 

conditions. 

 

An extreme application of this method considers particles as point masses with no volume, 

i.e., the point-particle assumption. This assumption allows the continuity and momentum 

equations for the fluid to be solved as for single-phase flow. For the case of exceptionally small 

particles, DNS can be applied for grid sizes smaller than the Kolmogrov scale to solve the 

instantaneous flow field. Since turbulence is a main factor in determining the particle 

trajectories, solving the instantaneous fluctuations of the fluid velocity field becomes important. 

For averaged methods such as LES or RANS, the turbulence is modeled, which becomes a 

source of uncertainty in Eulerian-Lagrangian solutions (Portella and Oliemans, 2003). 

Nonetheless, the Eulerian-Lagrangian method is regularly used together with LES or RANS 

(Armenio et al., 1999, Frawley et al., 2010, Lain and Sommerfield, 2008).  

 

Some of the most successful implementations of this approach are obtained in combination 

with the Discrete Element Method (DEM). This method includes inter-particle interaction 
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forces derived from the concepts of the Hertzian contact stress (Cundall and Strack, 1979, 

Xiaoliang et al., 2018). This method has achieved an impressive development (Zhu et al., 2007, 

Chu et al., 2009, Zhou et al., 2010), and the most successful applications are related to gas-

solid flows and chemical reactions processes (Wu et al., 2010, Zhao et al., 2010, Zhuang et al., 

2014). Several commercial software packages (e.g., ANSYS) and open source codes (e.g., 

OpenFOAM) are capable of applying CFD-DEM in gas-solid flows. 

 

2.2.2 Eulerian-Eulerian approach 

 

In this approach, for each control volume, some volume fraction is occupied by the fluid phase 

𝑓 and the remainder by the solid phase 𝑠, with an interphase that defines the boundary between 

both phases. The particle phase is modeled as another fluid, so its behavior can be described by 

similar transport equations. The instantaneous local transport equations (Messa, 2013) 

applicable to any phase are:  

 

Local instantaneous balance equations for any phase 𝑝: 

𝜕𝜌௣

𝜕𝑡
+

𝜕൫𝜌௣𝑢௜൯

𝜕𝑥௜
= 0                                                                                                                             (2.5) 

𝜕൫𝜌௣𝑢௜൯

𝜕𝑡
+

𝜕൫𝜌௣𝑢௜𝑢௜൯

𝜕𝑥௝
=

𝜕𝜏௣௜௝

𝜕𝑥௝
+ 𝜌௣𝑔௜                                                                                           (2.6) 

 

Equations (2.5) and (2.6) are complemented by another set of equations called the local 

instantaneous jump conditions, which represent the transfer of mass, energy and momentum 

across the interface between phases (Messa, 2013, Ishi, 1975, Drew and Passman, 1999). In the 

Eulerian-Eulerian method, both phases are analyzed in an Eulerian reference frame. The 

application of any of the various averaging techniques, i.e., time, volume or ensemble, to the 

local instantaneous equations (2.5) to (2.6) to produce a set of averaged equations results in 

what is referred to as a two fluid model (TFM). In the averaging process that is performed over 

the flow domain for both phases, which are treated as continuous and interpenetrating, and the 

solid phase loses its discrete nature. The averaged mass and momentum conservation equations 



12 
 

for each phase are similar in form. The main advantage of the Eulerian-Eulerian method 

compared to Eulerian-Lagrangian is that it requires much less computational resources, 

introduces the volume fraction variable and is able to include the frictional stresses for particle-

particle interaction in dense flows cases. However, it does require closure relations to solve the 

main momentum and turbulence transport equations.  

 

The TFM can also be applied to flows with more than two phases (Ishii, 2006). Some 

applications for three phases include slurry reactors (Troshko and Zdravistch, 2009), fluidized 

bed reactors (Panneerselvam et al., 2009), biomass analysis (Wang et al., 2011) and gas-liquid-

solid fluidized beds (Hamidipour et al., 2012). The TFM has been used extensively for gas-

solid pipe flows and fluidized beds. In addition, the TFM has been widely applied to gas-liquid 

mixtures, assuming the same bubble size and homogeneous flow (Law et al., 2008, Ekambara 

and Dhotre, 2010), as well as applications to polydisperse  flow (Chen et al., 2004, Ekambara 

et al., 2008). However, research on liquid-solid applications is still limited, especially for dense 

flow conditions (Krampa, 2009, Yerrumshetty, 2007). 

 

The modeling of the particles as a continuous phase flow remains a challenge. Different 

constitutive relations exist to model the particle stress, particle viscosity and particle drag. Some 

of them consider empirical expressions (Gidaspow, 1994, Enwald et al., 1996) and even 

constant values for the solids viscosity (Sun and Gidaspow, 1999). A better option is the KTGF, 

which models the solid particles as molecules in a gas to obtain the pseudo-fluid properties, 

e.g., the solid phase stress, solids viscosity and solids pressure. The properties are dependent 

on the velocity fluctuations represented by the granular temperature, which is obtained from its 

own transport equation. The principal reference for this theory is Lun et al. (1984), who used 

the Maxwell transport equation from the kinetic theory of gases to develop a set of constitutive 

equations to describe the particle phase flow parameters, e.g., granular temperature, particle 

volume fraction, particle stresses and velocity fluctuations. Louge et al. (1991) used the TFM 

and KTGF in a gas-solid flow to study the influence and interaction between both phases when 

the fluid flow was turbulent. Bolio et al. (1995) modified the KTGF to consider the particle 

mean free path and added a low-Reynolds number 𝑘 − 𝜀 model to predict the gas phase 
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turbulence. Their predicted results were in good agreement with the experimental data of Tsuji 

et al. (1984). In another approach, Cao and Ahmadi (1995), Krampa (2009) and Messa and 

Stefano (2014) modeled the particle fluctuations in a similar way to the fluid turbulence, 

considering an eddy viscosity model based on a 𝑘 − 𝜀 closure for the solid phase.  For all 

approaches, an important aspect is the turbulence modulation effect that particles have on the 

fluid (e.g. Sinclair and Mallo,1998, Louge et al., 1991, Mandø et al., 2009).   

 

2.2.3 Conservation equations 

 

The TFM conservation equations are generally independent of the averaging process applied to 

the local instantaneous equations. The Eulerian-Eulerian TFM formulations for the continuity 

and momentum equations in tensor form are given by (Haghgoo et al., 2018): 

 

𝜕𝛼௣

𝜕𝑡
+

𝜕൫𝛼௣𝑈௣௜൯

𝜕𝑥௜
= 0                                                                                                                          (2.7) 

𝜌௣ ቈ
𝜕൫𝛼௣𝑈௣௜൯

𝜕𝑡
+ 𝑈௣௝

𝜕൫𝛼௣𝑈௣௜൯

𝜕𝑥௝
቉ = −𝛼௣

𝜕𝑃௙

𝜕𝑥௜
+

𝜕𝜏௣௜௝

𝜕𝑥௝
− 𝛿

𝜕𝑃௦

𝜕𝑥௜
+ 𝑀௜ + 𝛼௣𝜌௣𝑔௜                      (2.8) 

 

Here, 𝑝 refers to the fluid (𝑓) or particle phase (𝑠), respectively; the subscripts i and j represent 

the coordinate index used in tensor notation; and the variable  𝛿 is equal to 1 for the solid phase, 

and otherwise is equal to 0. The variables 𝛼, 𝑈, 𝛽, 𝜌, 𝑔, 𝑃, 𝜏 represent the volume fraction, 

mean velocity, interfacial drag coefficient, density, gravity, pressure and stress tensor, 

respectively.  

 

The first term in the momentum equation (2.8) represents the temporal change, the second 

is the convective transport, the third is the pressure component due to the fluid phase, the fourth 

represents an effective stress that includes both the viscous and Reynolds stress components, 

the fifth is the particle pressure, the sixth is the interfacial momentum transfer and the seventh 

is the body force due to gravity. The interfacial momentum transfer can include different forces, 

e.g., Drag, Virtual Mass, Turbulent Dispersion, History, Lift and Brownian motion, each of 
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which could be important depending on the flow conditions. For example, the virtual mass can 

be considered negligible for flows with very large density ratios ൫𝜌௦ 𝜌௙⁄ ≫ 1൯, whereas it 

becomes important for very small density ratios ൫𝜌௦ 𝜌௙⁄ ≪ 1൯. For steady state conditions, the 

temporal term on the left-hand side of both equations (2.7) and (2.8) disappears. For fully 

developed flow conditions the convective terms on the left-hand side of Equation (2.8) also 

vanish. 

 

2.3 Additional Concepts 

 

2.3.1 Turbulence  

 

The effective fluid stress tensor 𝜏௙௜௝ in equation (2.8) includes the viscous and Reynolds stresses 

as shown in equation (2.9). For an incompressible fluid phase, the viscous stress follows the 

model of a Newtonian fluid (equation 2.10), while the Reynolds stress represents correlations 

of the turbulent velocity fluctuations (equation 2.11). The latter is modeled using an eddy 

viscosity approach (equation 2.12).  

 

𝜏௙௜௝,௘௙௙ = 𝜏௙௜௝ + 𝑅௜௝ = 𝜏௙௜௝ − 𝜌௙𝑢ప
ᇱ𝑢ఫ

ᇱതതതതതത                                                                                              (2.9) 

𝜏௙௜௝ = 𝜇௧,௙ ቆ
𝜕𝑈௜

𝜕𝑥௝
−

𝜕𝑈௝

𝜕𝑥௜
ቇ                                                                                                                 (2.10) 

−𝑢ప
ᇱ𝑢ఫ

ᇱതതതതതത = 𝜈௧,௙ ቆ
𝜕𝑈௜

𝜕𝑥௝
−

𝜕𝑈௝

𝜕𝑥௜
ቇ −

2

3
𝑘௙𝛿௜௝                                                                                           (2.11) 

𝜈௧,௙ =
𝐶ఓ𝑘௙

ଶ

𝜀௙
                                                                                                                                        (2.12) 

 

Here, 𝜇௙ is the viscosity of the fluid,  𝑘௙ =
௨ഢ

ᇲ௨ഢ
ᇲതതതതതതത

ଶ
 is the fluid turbulence kinetic energy, 𝜀௙ =

𝜈௙ ൬
డ௨ഢ

ᇲ

డ௫ണ

డ௨ഢ
ᇲ

డ௫ണ

തതതതതതതത
൰ is its rate of dissipation, 𝛿௜௝is the Kronecker delta and 𝜈௧,௙ = 𝜇௧,௙ 𝜌௙⁄  is the eddy 

viscosity. Both variables, 𝑘௙ and 𝜀௙, are calculated by solving a two-equation 𝑘 − 𝜀 model, 
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which for two-phase flow is given by: 

 

𝜕൫𝛼௙𝜌௙𝑘௙൯

𝜕𝑡
+

𝜕൫𝛼௙𝜌௙𝑈௝𝑘௙൯

𝜕𝑥௝
=

𝜕

𝜕𝑥௝
ቈ𝛼௙ ൬𝜇௙ +

𝜇௧,௙

𝜎௞
൰

𝜕𝑘௙

𝜕𝑥௝
቉ + 𝛼௙𝐺௞,௙ − 𝛼௙𝜌௙𝜀௙ + 𝑆௞,௙        (2.13) 

𝜕൫𝛼௙𝜌௙𝜀௙൯

𝜕𝑡
+

𝜕൫𝛼௙𝜌௙𝑈௝𝜀௙൯

𝜕𝑥௝

=
𝜕

𝜕𝑥௝
ቈ𝛼௙ ൬𝜇௙ +

𝜇௧,௙

𝜎ఌ
൰

𝜕𝜀௙

𝜕𝑥௝
቉ + 𝛼௙

𝜀௙

𝑘௙
൫𝐶ఌଵ𝐺௞,௙ − 𝐶ఌଶ𝜌௙𝜀௙൯ + 𝑆ఌ,௙                (2.14) 

 

where 𝐺௞,௙ = −𝑢ప
ᇱ𝑢ఫ

ᇱതതതതതത డ௎೔

డ௫ೕ
 is the production of turbulence kinetic energy. The source terms, 𝑆௞,௙ 

and 𝑆ఌ,௙, represent the influence of the particle phase on the fluid turbulence, i.e. the turbulence 

modulation.  

 

Table 2.1: Numerical constants of 𝑘 − 𝜀 model (Crowe et al., 2012). 

𝝈𝒌 𝝈𝜺 𝑪𝜺𝟏 𝑪𝜺𝟐 𝑪𝜺𝟑 𝑪𝝁 

1.00 1.30 1.44 1.92 1.00 0.09 

 

Turbulence changes significantly in the near-wall region, and reduces to zero at the wall. In 

order to reproduce this behavior, a variety of damping functions have been implemented in 

equations (2.13) and (2.14), resulting in so-called low Reynolds number formulations. Hrenya 

et al. (1995) performed a study of ten models and concluded that the LRN model of Myong and 

Kasagi (1990) performed the best. An alternate approach is the so-called two-layer model of 

Chen and Patel (1988), which was later modified by Durbin et al. (2001) to include the effects 

of the surface roughness.  

 

2.3.2 Turbulence Modulation 

 

Turbulence modulation relates to the coupling of the fluctuating velocity fields of both phases. 

The fluid and solid phases are connected through a generalized interfacial drag term that 
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couples the mean velocities of both phases. When only the drag force is considered, the 

selection of the appropriate expression for the drag coefficient 𝐶஽ becomes relevant. Following 

Mandø et al. (2009), turbulence modulation models can be classified as given in Table 2.2. 

 

The standard and consistent models are able to predict only turbulence attenuation and 

enhancement, respectively. On the other hand, the new model proposed by Mandø et al. (2009) 

is able to predict both effects. In the equations above, |𝑈௜ − 𝑉௜| is the modulus of the relative 

mean velocity, 𝑢ప
ᇱ𝑣ప

ᇱതതതതതത represents the correlation between the fluctuating velocity fields of the 

fluid and solid phases, 𝑣ప
ᇱ𝑣ప

ᇱതതതതതത represents the turbulence fluctuations in the solids velocity field 

and 𝜏௣ is the particle response timescale. Crowe et al. (2012) performed volume averaging and 

in the consistent model obtained similar terms, i.e., the term |𝑈௜ − 𝑉௜|
ଶ refers to the generation 

of  𝑘௙ due to particle drag and the term 𝑣ప
ᇱ𝑣ప

ᇱതതതതതത − 𝑢ప
ᇱ𝑣ప

ᇱതതതതതത is the redistribution of 𝑘௙.  

 

Table 2.2: Turbulence modulation models based on drag force. 

Approach 𝑺𝒌,𝒇 Prediction capability 

Standard  𝛼௦𝜌௦ ൫𝑢ప
ᇱ𝑣ప

ᇱതതതതതത − 2𝑘௙൯ 𝜏௣ൗ  Attenuation 

Consistent 𝛼௦𝜌௦ (|𝑈௜ − 𝑉௜|
ଶ + 𝑣ప

ᇱ𝑣ప
ᇱതതതതതത − 𝑢ప

ᇱ𝑣ప
ᇱതതതതതത) 𝜏௣ൗ  Enhancement 

New model 𝛼௦𝜌௦ (|𝑈௜ − 𝑉௜|
ଶ + 𝑣ప

ᇱ𝑣ప
ᇱതതതതതത − 2𝑘) 𝜏௣ൗ  Both 

 

 2.3.3 Kinetic Theory of Granular Flow (KTGF) 

 

Based on equation (2.8) the momentum transport equation for the solid phase can be expressed 

as follows:  

 

𝜕(𝛼௦𝜌௦𝑉௜)

𝜕𝑡
+

𝜕(𝛼௦𝜌௦𝑉௜𝑉௜)

𝜕𝑥௝
= −𝛼௦

𝜕

𝜕𝑥௜
𝑃௙ −

𝜕

𝜕𝑥௜
𝑃௦ +

𝜕

𝜕𝑥௝
൫𝛼௦𝜏௦௜௝൯ + 𝛼௦𝜌௦𝑔௜ + 𝑀௜              (2.15) 

 

Here, the first term on the right hand side of equation (2.15) represents the buoyancy force of 

the particle. In the next term, 𝑃௦ is the particle pressure that is extracted from the particle stress, 
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and 𝜏௦௜௝ is function of the solid viscosity 𝜇௦. To calculate these properties, one can model the 

particle flow as that of a pseudo-fluid. The KTGF is an analogy to the kinetic theory of gases 

in thermodynamics, but applied to a dispersed field of particles. The KTGF yields constitutive 

relations for the particle stresses, as well as the relevant particle properties such as 𝜇௦. Both 𝑃௦ 

and 𝜇௦ can be decomposed in two main contributions, i.e., equations (2.16) and (2.17). The first 

contribution is the kinetic component that applies when particles travel freely between collision 

periods, and the second is the collisional component that derives from collision between 

particles. 

 

𝑃௦ = 𝑃௦,௄௜௡ + 𝑃௦,௖௢௟௟                                                                                                                           (2.16) 

𝜇௦ = 𝜇௦,௄௜௡ + 𝜇௦,௖௢௟௟                                                                                                                          (2.17) 

 

The particle velocity fluctuations, represented by the granular temperature 𝑇, can be 

obtained by solving its respective transport equation (2.18), given by: 

 

3𝛼௦𝜌௦

2
ቈ
𝜕𝑇

𝜕𝑡
+

𝜕൫𝑉௝𝑇൯

𝜕𝑥௝
቉ =

𝜕

𝜕𝑥௝
ቆ𝜅௦

𝜕𝑇

𝜕𝑥௝
ቇ − 𝑃௦

𝜕𝑉௜

𝜕𝑥௜
+ 𝜏௜௝

𝜕𝑉௜

𝜕𝑥௝
−

𝛼௦𝜌௦

𝜏௣

(3𝑇 − 𝑢ప
ᇱ𝑣ప

ᇱതതതതതത) − 𝛾௦         (2.18) 

 

Here 𝑇 = 𝑣ప
ᇱ𝑣ప

ᇱതതതതതത 3⁄  is the granular temperature, 𝜅௦ is the granular conductivity, 3𝑇 is the 

dissipation rate resulting from the drag force (viscous damping), 𝑢ప
ᇱ𝑣ప

ᇱതതതതതത term is the production 

due to interaction between fluctuation fields and 𝛾௦ is the dissipation due to particle collisions. 

 

Constitutive equations for the solids viscosity 𝜇௦, solids pressure 𝑃௦ and their respective 

dependence on the granular temperature have been proposed by several authors for a wide range 

of applications (Lun et al., 1984, Gidaspow, 1994, Sinclair and Jackson, 1989, Johnson et al., 

1990, Schaeffer, 1987, Lun and Savage, 1986, Srivastava and Sundaresan, 2003, Ocone et al., 

1993). Some of these are considered further in Chapter 3 of the present thesis. 
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2.4 Previous experimental studies 

 

Since liquid-solid flow in vertical pipes is not often encountered in industry, it has not been 

studied as extensively as flow in horizontal pipes. For slurry flows, the work of Sumner (1992) 

remains one of the most cited for vertical pipes. He used five types of particles, i.e, gravel, 

medium sand, coarse sand, fine plastic and coarse plastic, and obtained measurements for the 

particle velocity and concentration profiles for bulk solids concentrations ranging from 10% to 

50% in pipes of diameter 25.8 and 40 mm. Krampa (2009) performed experiments using glass 

beads of diameter 0.5 mm and 2 mm in a 53 mm pipe for bulk solids concentration up to 45%.  

He collected data on the local solids velocity and pressure drop. For dispersed flow, 

Alajbegovic et al. (1994) worked with bulk solids concentrations ranging from 1% to 4%. He 

used ceramic and polystyrene particles in a vertical pipe of diameter 30.6 mm. For horizontal 

applications, Gillies (1993) performed measurements of the pressure drop, as well as the solids 

concentration and velocity profiles for coarse-particle slurry flows using sand and coal up to a 

volume fraction of 35%. A broad summary of some of the most significant experimental work 

is presented in Table 2.3 and 2.4. 

 

Table 2.3: Experimental studies for liquid-solid flow in channels. 

Channel Flow direction ρp / ρf 𝜶𝒔 dp (mm) Re 

Suzuki et al. (1999)  Vertical Down 3850 3.2×10-4 0.4 7200 

Kiger and Pan (2002)  Horizontal 2.5 2.4×10-4 0.195 25000 

Sato et al. (1995)  Vertical Down 2.5 0.002 - 0.013 0.34, 0.5 5000 
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Table 2.4: Experimental studies for liquid-solid flow in pipes. 

Pipe 
Flow 

direction 
ρp / ρf 𝜶𝒔 dp (mm) Re U(m/s) 

 Pipe 
D(m) 

Gillies (1993) Horizontal 2.65 0.19 - 0.33 
0.09-
0.27 

103,000 –  
515,000 

1.0 - 
5.0 

0.103 

Korving (2002)  Horizontal 2.65 0.18 - 0.48 0.1 
237,000 – 
 632,000 

1.5 - 
4.0 

0.158 

Schaan (2001)   Horizontal 2.44 - 2.65 0.139 - 0.40 
0.085-
0.09 

62,500 -   
800,000 

1.25 - 
5.0 

0.05 - 
0.16 

Sumner (1992)  Vertical Up 1.05 - 2.65 0.1 - 0.5 0.29-1.7 
50,000 -   
280,000 

2.0 - 
7.0 

0.025 - 
0.04 

Krampa (2009) Vertical Up 2.5 < 0.45 0.5 - 2.0  
53,000 -   
265,000 

1.0 - 
5.0 

0.053 

Hashemi et al. (2014)  Horizontal  0.2 - 0.35 0.1 
104,000 –  
260,000 

2.0 - 
5.0 

0.052 

Kameyama et al. (2014) Up/down 2.5 0.006 0.625 19,500 0.75 0.026 

Hosokawa and 
Tomiyama (2004) 

Vertical Up 3.2 0.007 - 0.018 1 to 4 15,000 0.5 0.03 

Alajbegovic et al. 
(1994) 

Vertical Up 
0.032, 
2.45 

0.009 - 0.036 
1.79, 
2.32 

42,000 - 
68,000 

1.3 - 
2.2  

0.0306 

Zisselmar and Molerus 
(1979)  

Horizontal 2.5 0.017 - 0.056 0.053 100,000 2.0 0.05 

19 
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2.5 Previous in-house numerical research 

 

Several research studies that consider simulation of two-phase flow, using either commercial 

software or in-house codes, have been performed at the University of Saskatchewan by the CFD 

group headed by Prof D. J. Bergstrom. For example, Krampa-Morlu et al. (2004) used ANSYS 

to compare numerical results to the experimental data of Sumner et al. (1990) and obtained 

good agreement for the mean solids velocity profile; however, the solids concentration 

prediction gave mixed results. In a later work, Krampa-Morlu (2009) used the commercial 

software ANSYS CFX to analyze three closure models (i.e., 𝑘௙ − 𝜀௙ − 𝑘௦ − 𝜀௦, 𝑘௙ − 𝜀௙ − 𝑘௦ −

𝜀௦ − 𝑇௦, 𝑘௙ − 𝜀௙ − 𝑘௦ − 𝑘௙௦). He compared the predicted results with the experimental data of 

Sumner et al. (1990), and obtained good predictions for the mean solids velocity and 

concentration profiles for all three models for concentrations below 10%, but was less 

successful for higher concentrations. More recently, Haghgoo et al. (2018) used the Multiphase 

Flow with Interphase eXchanges (MFIX) software to perform numerical simulations of 

bubbling fluidized beds. 

 

Yerrumshetty (2007) used an in-house code based on the two-fluid model of Bolio et al. 

(1995) and the LRN 𝑘 − 𝜀 model of Myong and Kasagi (1990) to predict both gas-solid and 

liquid-solid flows. For the gas-solid case, results were compared to the data of Tsuji et al. (1984) 

obtaining good agreement with the mean velocity profile for both phases, i.e., gas and solid. 

For the liquid-solid case, predictions for the flows of Alajbegovic et al. (1994) and Summer et 

al. (1990) showed mixed results, especially for the volume fraction profile. Zaman and 

Bergstrom (2012) modified the in-house code used by Yerrumshety (2007) to perform 

simulations of gas-solid flows in vertical pipes. They compared the performance of some 

turbulence modulations models, i.e., Rao et al. (2012) and Crowe (2000), obtaining good 

predictions for the mean velocity profile for both phases, but unrealistic predictions for the 

granular temperature. A complementary work was performed to analyze the performance of the 

two-layer model in rough pipes. The theory of granular temperature was used to describe the 

solid-phase velocity fluctuation and the 𝑘 − 𝜀 model for the gas-phase turbulence. Das (2017) 

worked with the same in-house code reconfigured to simulate gas-solid flow in horizontal 
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channel. He used the two-layer model of Durbin et al. (2001) to analyze the effect of wall 

roughness on the particle transport. His simulation adopted the two fluid model formulation of 

Rao et al. (2012) and made comparison to the experimental work of Sommerfeld and Kussin 

(2004). 
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Chapter 3: Methodology 

 

 

3.1 Introduction 

 

The present chapter focuses on the study of the TFM for the specific case of a fully developed 

turbulent liquid-solid flow in a vertical pipe. In this chapter, specific equations in radial 

coordinates are derived from the ones presented in Chapter 2. The main intention is to evaluate 

and compare the TFM formulations for gas-solid flow with respect to a recent version used for 

liquid-solid flow, which considers the interstitial fluid effect. In this context, both formulations 

are presented and discussed to highlight the difference between them, and three intermediate 

formulations are included with the main purpose of evaluating the effect of the extra terms in 

the predicted results when compared to the experimental data. The evaluation includes variables 

such as mean velocity, solids volume fraction, turbulence kinetic energy, Reynolds shear stress, 

and a profound study of the source terms of the turbulence kinetic energy and granular 

temperature transport equations. Finally, the best formulation is compared with experimental 

data for different mass flow rates. As a preliminary step, before the multiphase flow results, a 

single-phase flow evaluation is performed with the intention to validate the performance of the 

in-house code. 

 

The TFM has been shown to perform well for gas-solid flows and fluidized beds, but is still 

deficient for liquid-solid flow. The main difficulties relate to modeling the additional physics 

that become relevant in liquid-solid flow, i.e., the interstitial fluid effect. To include this effect 

requires additional source terms in the transport equations for the turbulence kinetic energy and 

granular temperature. In the literature, Peirano and Leckner (1998) highlight the relevance of 
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the interstitial fluid in the granular flow model  

 

Solid particles suspended in a fluid can enhance or diminish the intensity of the turbulence 

depending on the solids volume fraction 𝛼௦. Note that, both conditions can occur in the same 

flow, i.e., particle contact in regions of high concentration reduces the turbulence, while in low 

concentration regions the generation of wakes enhances turbulence. In general, flows with a 

high mass loading display an attenuation of turbulence.  In addition, following Crowe (2000), 

if the ratio of the particle diameter to the turbulence length scale is smaller than 0.1, turbulence 

is attenuated, while for a ratio higher than 0.1, turbulence is enhanced. This description 

indicates that small particles tend to diminish turbulence, while larger particles tend to enhance 

it due to the generation of particle wakes.  

 

An important parameter to measure particle behavior is the particle response timescale (𝜏௉), 

which represents the time for a particle to achieve 65% of the fluid field velocity starting from 

rest. A related parameter is the Stokes number (𝑆்), which is the ratio of the particle response 

timescale to the timescale of the flow field ൫𝜏௙൯. For example, for a pipe flow, the value of  𝜏௙ 

is often taken as the pipe diameter divided by the bulk fluid velocity. For this case, Stokes 

number can be referred to as the domain Stokes number (Loth, 2011), i.e., 𝑆் = 𝜏௉/𝜏௙. If 𝑆் ≫

1, the particle responds very slowly to a change in the macroscopic flow field, so that the 

turbulence field only weakly affects the particle motions. Whereas, for 𝑆் ≈ 1 the macroscopic 

fluid flow substantially affects the particle motion. Similar arguments can be applied when 

considering the influence on the particle motion of the time scales of the turbulence, i.e., the 

smallest scales such as the Kolmogorov scale are characterized by the micro-scale Stokes 

number.  As noted previously, the effect of particles on the fluid turbulence is usually referred 

to as Turbulence Modulation, and is often modeled by an additional source terms in the 

turbulence transport equations typically used with the TFM. Popular turbulence modulation 

models are those of Crowe (2000), Louge et al. (1991) and Rao et al. (2012); the latter includes 

an explicit term for the wake generation. 

 

To simulate the physical properties of the solid phase, the KTGF has been successful in 
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applications to gas-solid flows (Lun et al., 1984, Jenkins and Savage, 1983) and fluidized beds 

(Ding and Gidaspow, 1990, Lun et al., 1984). The KTGF uses the Maxwell transport equation 

to develop a set of equations to calculate the properties of particle phase, e.g., granular 

temperature, particle pressure, volume fraction, velocity fluctuation and solid phase stress. 

Louge et al. (1991) incorporated the KTGF into a TFM to study the influence of the fluctuating 

velocity field of one phase on the other for gas-solid flow in a pipe. Bolio et al. (1995) expanded 

this work and used a LRN 𝑘 − 𝜀 model to simulate the gas phase turbulence. The predictions 

of Bolio et al. (1995) showed good agreement with the experimental data of Tsuji et al. (1984). 

Hadinoto and Curtis (2004) noted that Jones and Sinclair observed that the predicted velocity 

fluctuations of particles were larger than the experimental values, i.e., there was some energy 

that going somewhere else. In this case, it was inferred that the interstitial fluid dissipates part 

of the solids fluctuating energy (granular temperature). The reason behind this erroneous model 

performance can be attributed to the fact that model of Lun et al. (1984) neglected the effect of 

the interstitial fluid, i.e., the equations were derived considering vacuum conditions. Hadinoto 

and Curtis (2004) investigated how the particle-particle collisions are influenced by the 

interstitial fluid in dispersed liquid-solid and gas-solid flow with reference to the previous 

works of Lun and Savage (1987) and Lun and Savage (2003). Hadinoto and Curtis (2004) used 

the KTGF for predicting the solid phase properties, but included some modifications in the 

calculation of the solids viscosity and the diffusion coefficient of the granular temperature. In 

addition, they introduced two different particle coefficients of restitution to evaluate the fraction 

of kinetic energy dissipated by the inelasticity of the particle-particle collisions, one in a 

vacuum (𝑒௦) and the other when an interstitial fluid exists ൫𝑒௙൯. Here, 𝑒௙ includes the viscous 

effect of the fluid on the collision of the particle surfaces, which was documented in the 

experimental research of Gondret et al. (2002). In a more recent study, Hadinoto (2010) 

expanded his previous work to analyze the prediction of turbulence modulation by comparing 

the turbulence closure expressions of Louge et al. (1991) and Sinclair and Mallo (1998) at 

different Reynolds numbers, which resulted in some additional modifications in the turbulence 

kinetic energy transport equations.  

 

As mentioned, most of the research in two-phase flow of particles in a fluid has been 

developed for gas-solid flow (e.g. Bolio et al., 1995, Peirano and Leckner, 1998, Sinclair and 
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Jackson, 1989, Kenning and Crowe, 1997, and Zhang and Reese, 2001, Zhang and Reese, 2003, 

Zaman and Bergstrom, 2014). In contrast, only a few references are found in the literature for 

liquid-solid flow (e.g. Krampa-Morlu et al., 2004, Hadinoto and Curtis, 2004, and Hadinoto, 

2010). For gas-solid flow the interstitial fluid effect can be neglected, but for liquid-solid flow 

this contribution is significant. In this context, the present research work is intended to compare 

the formulations of Bolio et al. (1995), Hadinoto and Curtis (2004) and Hadinoto (2010), and 

apply them to the same experimental case of dispersed liquid-solid flow in a vertical pipe.  

 

The numerical predictions are compared to the experimental data of Alajbegovic et al. 

(1994), who studied dispersed liquid-solid flow (upward direction) in a vertical pipe of 30.6 

mm diameter with bulk volume fractions from 1% to 4%. The carrier phase was water and the 

dispersed phase was ceramic particles (𝑑௣= 2.32 mm, 𝜌௙= 2443 kg/m3). Their paper presents 

substantial information on the experimental conditions, which is essential for replication using 

numerical simulations. In addition, this work is readily handled by the in-house numerical code 

since it considers fully developed flow. The extensive experimental data set includes 

measurements of the solid volume fraction, and both mean and fluctuating velocities of both 

phases.  

 

3.2 Models Description 

 

A detailed description and discussion of the models of Bolio et al. (1995) for gas-solid flow 

and Hadinoto and Curtis (2004) for liquid-solid flow is presented below. These two base models 

and three additional models are studied. The three additional models each include parts of the 

base models, and are used to analyze the effect and relevance of the additional terms intended 

to incorporate the effects of the interstitial fluid for a liquid-solid flow. Of special interest is the 

effect of the modeling on the profiles of the granular temperature and volume fraction profile 

in the near-wall region. In addition, the behavior of the different terms in the transport equations 

for the turbulence kinetic energy and granular temperature is analyzed to elucidate their 

relevance and contribution in the numerical predictions. The present section develops the 

general equations presented in Chapter 2 for the specific case of fully developed upward vertical 
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flow in a pipe using the model formulations given above. 

 

3.2.1 Momentum Transport Equations 

 

The TFM of Bolio et al. (1995) and Hadinoto and Curtis (2004) in radial coordinates and 

simplified for the case of fully developed flow can be summarized as follows:    

 

Fluid momentum balance: 

0 =
1

𝑟

𝜕

𝜕𝑟
ൣ𝛼௙𝑟𝜏௥௭

௙
൧ − 𝛼௙

𝜕𝑃௙

𝜕𝑧
− 𝛽(𝑈 − 𝑉) + 𝛼௙𝜌௙𝑔 + 𝐺௜௡௧௘௥                                                     (3.1) 

Fluid shear stress 

𝜏௥௭
௙

= 𝜇௘௙

𝜕𝑈

𝜕𝑟
− 𝜌௙𝑢௭

ᇱ 𝑢௥
ᇱതതതതതത = ൫𝜇௘௙ + 𝜇௧൯

𝜕𝑈

𝜕𝑟
                                                                                 (3.2) 

Particle momentum balance: 

0 =
−1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏௥௭

௦ ) − 𝛼௦

𝜕𝑃௙

𝜕𝑧
+ 𝛽(𝑈 − 𝑉) + 𝛼௦𝜌௦𝑔                                                                       (3.3) 

0 =
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜎௥௥) −

𝜎ఏఏ

𝑟
                                                                                                                       (3.4) 

Solids shear stress: 

𝜏௥௭
௦ = −𝜇ௌ

∗(𝜔𝐺ଵ௞ + 𝐺ଵ௖)
డ௏

డ௥
                                                                                                              (3.5)   

Solids normal stresses:  

𝜎௥௥
௦ = 𝜌௦(𝜔𝐺ଶ௞ − 𝐺ଶ௖)𝑇                                                                                                                    (3.6)   

 

Here, 𝜏௥௭
௙  is the total shear stress of the fluid, 𝑢௭

ᇱ 𝑢௥
ᇱതതതതതത is the Reynolds shear stress and is modeled 

using the eddy viscosity approach where 𝜇௧ = 𝐶ఓ𝑓ఓ𝜌ఓ 𝑘ଶ 𝜀⁄  , and 𝜇௘௙ is the effective fluid 

viscosity, which includes the effect of the particles in the fluid.. The subscripts 𝑘 and 𝑐 in 

equations (3.5) and (3.6) indicate the kinetic and collisional contributions, respectively, and 𝜎௥௥ 

and 𝜎ఏఏ are the normal stresses in the radial and azimuthal direction, respectively.  
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For Bolio et al. (1995) the effective viscosity is the same as the molecular viscosity, 

i.e., 𝜇௘௙ = 𝜇௙, whereas for Hadinoto and Curtis (2004) is calculated using equation (3.7): 

 

𝜇௘௙ = 𝜇௙(1 − 𝛼௦ − 0.33𝛼௦
ଶ)ିଶ.ହ                                                                                                      (3.7) 

 

Equation (3.7) indicates that the higher the solids volume fraction, the larger the effective 

viscosity. 

 

Table 3.1: Constitutive equations for particle stress. 

𝝉𝒓𝒛
𝒔  𝝈𝒓𝒓

𝒔  

𝐺ଵ௞ =
1

𝜂(2 − 𝜂)𝑔௢
൤1 +

8

5
𝜂𝛼௦𝑔௢(3𝜂 − 2)൨ 

𝐺ଶ௞ = 𝛼௦ 

 

𝐺ଵ௖ =
8𝛼௦

5(2 − 𝜂)
൤1 +

8

5
𝜂𝛼௦𝑔௢(3𝜂 − 2)൨ +

768𝛼௦
ଶ𝑔௢𝜂

25𝜋
 

𝐺ଶ௖ = 4𝜂𝛼௦
ଶ𝑔௢ 

 

The work of Hadinoto and Curtis (2004) includes a new source term in the fluid momentum 

equation (3.1) to account for the effects of particle collisions, i.e., 𝐺௜௡௧௘௥ =

ఎೞିఎ೑

ఎ೑

ଵ

௥

డ

డ௥
ቀ𝑟𝜇ௌ

∗𝐺ଵ௖
డ௨ೞ

డ௥
ቁ, where the parameter 𝜂 is calculated as a function of 𝑒௙, i.e., 𝜂 =

ଵା௘೑

ଶ
.  

The 𝐺௜௡௧௘௥ term is based on the previous work of Lun and Savage (1987) and Lun and Savage 

(2003), which included the contribution of the particle collision as a new source term in the 

fluid momentum equation. The rationale is that when particles move in a vacuum, some energy 

is dissipated by particle-particle collisions, which is represented by the coefficient of 

restitution 𝑒௦. However, to account for the presence of a real fluid, it is necessary to consider 

that particles lose energy during collisions by displacing the fluid; thus, particles lose additional 

energy as they do work on the fluid, which is accounted for by a new coefficient of 

restitution 𝑒௙ < 𝑒௦. Note that Bolio et al. (1995) assumed 𝐺௜௡௧௘௥ = 0 and 𝜂 =
ଵା௘ೞ

ଶ
. The 

constitutive expressions to calculate the solid viscosity 𝜇ௌ
∗  and the drag coefficient 𝛽 for each 

model are presented in Table 3.2 and Table 3.3, respectively. 
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Table 3.2: Constitutive expressions for the solids viscosity 𝜇ௌ
∗  for both models. 

Bolio et al. (1995) 

𝜇ௌ
∗ = 𝜇௦ =

5√𝜋𝑑௉𝜌௦√𝑇

96
 

𝜔 =
1

1 − 𝜆 𝑅⁄
      𝜆 =

𝑑௉

6√2𝛼௦

           𝑔௢ =
𝛼௢

ଵ ଷ⁄

𝛼௢
ଵ ଷ⁄

− 𝛼௦
ଵ ଷ⁄

 

Hadinoto and Curtis (2004) 

𝜇ௌ
∗ =

𝜇ଵ
∗

𝜇ଵ
𝜇௦            𝜇௦ =

5√𝜋𝑑௉𝜌௦√𝑇

96
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𝑐௦𝜌ௌ𝑔௢𝑇
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            𝜆 =

𝑑௉

6√2𝛼௦

              𝜉ௗ =
3

4

𝜌௙

𝜌௦

𝐶஽

𝑑௣
ห𝑢௙ − 𝑢௦ห       𝑔௢ =

𝛼௢
ଵ ଷ⁄

𝛼௢
ଵ ଷ⁄

− 𝛼௦
ଵ ଷ⁄

 

 

Here,  𝜇ௌ represents the particle shear stress in a vacuum,  𝜇ௌ
∗  is the modified expression for the 

particle viscosity when an interstitial fluid is present, 𝜉ௗ is the specific friction coefficient of 

the fluid, 𝑔௢ is the radial distribution function, 𝜔 is a damping function, 𝜆 is the mean free path 

and 𝑇 = 𝑣ప
ᇱ𝑣ప

ᇱതതതതതത 3⁄  is the granular temperature.  

 

Table 3.3: Constitutive expressions for the drag coefficient 𝛽 for both models. 

Bolio et al. (1995) Hadinoto and Curtis (2004) 

𝛽 =
3𝜌௙𝐶஽𝛼௦|𝑈 − 𝑉|

4𝑑௉(1 − 𝛼௦)ଶ.଺ହ
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3𝜌௙𝐶஽𝛼௦|𝑈 − 𝑉|

4𝑑௉(1 − 𝛼௦)ଶ.଺ହ
 

𝐶஽ = ൭
24

𝑅௣
+

4

𝑅௣
ଵ ଶ⁄

+ 0.4൱ (1 − 𝛼௦ − 0.33𝛼௦
ଶ)ିଶ.ହ 

𝑅௣ =
𝜌௙𝑑௣|𝑈 − 𝑉|

𝜇௙
 

 

Here, 𝑑௣ is the particle diameter, 𝐶஽ is the drag coefficient and 𝑅௣ is the particle Reynolds 

number. Note that the interfacial drag coefficient 𝛽 does not consider the fluid volume fraction 

as defined in the original expression proposed by Wen and Yu (1966). A possible reason may 
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be that the flows studied by Bolio et al. (1995) only considered the dilute flow regime, for 

which 𝛼௙ = 1 − 𝛼௦ ≈ 1. The same consideration may apply to the 𝑅௣ used by Hadinoto and 

Curtis (2004). For the drag coefficient  𝐶஽, Bolio et al. (1995) used the expression of Wen and 

Yu (1966), whereas Hadinoto and Curtis used the expression of Lun and Savage (1987).  

 

3.2.2 Turbulence Equations 

 

To account for turbulence, the eddy viscosity 𝜇௧ = 𝐶ఓ𝑓ఓ𝜌ఓ 𝑘ଶ 𝜀⁄  and the LRN 𝑘 − 𝜀 turbulence 

model of Myong and Kasagi (1990) are used for calculation of the turbulence kinetic energy 𝑘 

and dissipation rate 𝜀. The transport equations in radial coordinates and simplified for fully 

developed flow are given by: 

 

Turbulence kinetic energy: 
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Dissipation rate:  
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𝜇௧

𝜎ఌ
൰

𝜕𝜀

𝜕𝑟
൨ + 𝑐ఌଵ𝑓ଵ

𝜀

𝑘
(1 − 𝛼௦)𝜇௧ ൬

𝜕𝑈

𝜕𝑟
൰

ଶ

− 𝑐ఌଶ𝑓ଶ𝜌௙(1 − 𝛼௦)
𝜀ଶ

𝑘

+ 𝑐ఌଷ𝑓ଶ𝐼௞

𝜀

𝑘
+ 𝑆ఌ,ூ்                                                                                                    (3.9) 

 

Table 3.4: Damping functions and constants for the LRN model of Myong and Kasagi 

(1990). 

𝑓ଵ = 1.0,     𝑓ଶ = 1 − (2 9⁄ )𝑒𝑥𝑝{−(𝑅௧ 6⁄ )ଶ},      𝑓ఓ = 1 + 3.45 ඥ𝑅௧⁄  

𝑦ା =
(𝑅 − 𝑟)𝑢ఛ

𝜈௙
    ,       𝑅௧ =

𝑘ଶ

𝜈௙𝜀
 

𝝈𝒌 𝝈𝜺 𝑪𝜺𝟏 𝑪𝜺𝟐 𝑪𝜺𝟑 𝑪𝝁 

1.4 1.3 1.4 1.8 1.2 0.09 
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The first four terms in Equation (3.8) represent the diffusion, production, dissipation and 

turbulence modulation, respectively, and 𝑆௞,ூ் is an additional source term due to the interstitial 

fluid effects as proposed by Hadinoto and Curtis (2004). In addition, 𝑦ା is the wall-normal 

distance in wall units, 𝑢ఛ is the wall velocity, 𝜈௙ is the fluid kinematic viscosity and  𝑅௧ is the 

turbulence Reynolds number. Similarly, the expression for the turbulence modulation 𝐼௞ and 

the turbulence closure to model the correlation between the fluid and solids fluctuating velocity 

fields 𝑢ప
ᇱ𝑣ప

ᇱതതതതതത are given by Sinclair and Mallo (1998) as follows: 

 

𝐼௞ = 𝛽(𝑢ప
ᇱ𝑣ప

ᇱതതതതതത − 2𝑘)                                                                                                                            (3.10) 

𝑢ప
ᇱ𝑣ప

ᇱതതതതതത = √2𝑘√3𝑇                                                                                                                                (3.11) 

 

With respect to the interstitial fluid source term 𝑆௞,ூ், Bolio et al. (1995) assumed 𝑆௞,ூ் =

𝑆ఌ,ூ் = 0, whereas Hadinoto and Curtis (2004) proposed the models given in Table 3.5.  

 

Table 3.5: Additional source terms for the turbulence kinetic energy and dissipation 

rate transport equations when the effect of the interstitial fluid is included.  

Hadinoto and Curtis (2004) 

𝑆௞,ூ் = 𝐸ௐ +
𝜂௦ − 𝜂௙

𝜂௙
𝜇ௌ

∗𝐺ଵ௖

𝜕𝑉

𝜕𝑟

𝜕𝑈

𝜕𝑟
+ 𝛾ி௄ா் − 𝑆௣ି௣ 

𝑆ఌ,ூ் = 𝑐ఌଷ𝑓ଶ

𝜀

𝑘
𝐸ௐ + 𝑐ఌଵ𝑓ଵ

𝜀

𝑘

𝜂௦ − 𝜂௙

𝜂௙
𝜇ௌ

∗𝐺ଵ௖

𝜕𝑉

𝜕𝑟

𝜕𝑈

𝜕𝑟
+ 𝑐ఌଵ𝑓ଵ

𝜀

𝑘
𝛾ி௄ா் − 𝑐ఌଷ𝑓ଶ

𝜀

𝑘
𝑆௣ି௣ 

𝐸ௐ = 2𝜋𝐶ௐ𝑛𝑑௣𝜌௙𝜈௧𝑘               𝜈௧ = 𝜈௙0.017𝑅௣                      𝐶ௐ = 16 3⁄  

𝛾ி௄ா் = ൫1 − 𝛽̅൯𝛾                       𝛽̅ =
1 − 𝑒௦

ଶ

1 − 𝑒௙
ଶ 

𝑆௣ି௣ = 3𝜑𝛽𝑇                                𝜑 = 1 + 0.88𝛼௦ 

 

The first term of 𝑆௞,ூ் is the energy generated by particle wakes 𝐸ௐ, the second is the 

generation due the collisional fluid stress, the third is a source of fluid turbulence kinetic energy 

due to particle collisions, 𝛾ி௄ா், and the fourth is a sink term due to the long range effects of 

particle interactions within the fluid phase, 𝑆௣ି௣. In the model relations, 𝑛 is the particle number 
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density, 𝛾 is the dissipation of granular temperature, 𝜑 is the absorption coefficient of the 

turbulence kinetic energy and 𝛽̅  is a ratio of the particle fluctuating energy lost by heat due to 

particle-particle inelastic collisions relative to the total energy lost by heat and fluid 

interactions. 

  
3.2.3 Granular Temperature 

 

The granular temperature 𝑇 represents the averaged fluctuating kinetic energy of the particles, 

in a similar way as the thermodynamic temperature represents an average of the kinetic energy 

of the molecules in a gas.  Transport equation (3.12) is used to calculate the distribution of the 

granular temperature. The first term represents conduction (also referred to as diffusion), the 

second term is the production of 𝑇 due to the particle shear stress and velocity gradients, the 

third term is the dissipation due to inelastic particle-particle collisions (Sinclair & Jackson, 

1989), the fourth term is the turbulence modulation and the last term is a contribution due long-

range interaction between particles via the fluid.  

 

0 =
−1

𝑟

𝜕

𝜕𝑟
(𝑟𝑞௉்) − 𝜏௥௭

௦
𝜕𝑉

𝜕𝑟
− 𝛾 + 𝐼் + 𝑆௣ି௣                                                                            (3.12) 

𝑞௉் = −𝜆∗(𝜔𝐺ଷ௄ + 𝐺ଷ௖)
𝜕𝑇

𝜕𝑟
                                                                                                          (3.13) 

𝛾 =
48

√𝜋
𝜂௙൫1 − 𝜂௙൯𝑔௢𝛼௢

ଶ
𝜌௦

𝑑௉
𝑇

ଷ
ଶ                                                                                                     (3.14) 

 

In the transport equation for 𝑇, 𝑞௉் is the flux of pseudo-thermal energy and 𝛾 is the 

dissipation rate of the granular temperature. If particle-particle collisions are perfectly 

elastic (𝑒௦ = 1), then 𝛾 → 0 and the energy dissipation is zero. The turbulence modulation term 

is given by 𝐼் = 𝛽(𝑢ప
ᇱ𝑣ప

ᇱതതതതതത − 3𝑇). For Bolio et al. (1995) who considered particles in a gas, 

𝑆௣ି௣ = 0, whereas for Hadinoto and Curtis (2004) who considered particles in a liquid, 𝑆௣ି௣ =

−3𝛼𝛽𝑇. The constitutive equations developed by Lun et al. (1984), with a few variations from 

Hadinoto and Curtis (2004), are given by equations (3.13), (3.14) and the model relations in 

Table 3.6 and 3.7. 
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Table 3.6: Constitutive equations for granular temperature. 

𝒒𝑷𝑻 

𝐺ଷ௞ =
8

𝜂௙൫41 − 33𝜂௙൯𝑔௢

൤1 +
12

5
𝜂௙

ଶ𝛼௦𝑔௢൫4𝜂௙ − 3൯൨ 

𝐺ଷ௖ =
96𝛼௦

5൫41 − 33𝜂௙൯
൤1 +

12

5
𝜂௙

ଶ𝛼௦𝑔௢൫4𝜂௙ − 3൯൨ +
16𝜂௙𝛼௦𝑔௢൫41 − 33𝜂௙൯

15𝜋
 

 

Table 3.7: Different expressions for the conduction coefficient. 

Bolio et al. (1995)  

𝜆∗ = 𝜆 =
75

384
√𝜋𝑑௉𝜌௦√𝑇 

Hadinoto and Curtis (2004) 

𝜆∗ =
𝜆ଵ

∗

𝜆ଵ
𝜆           𝜆 =

75

384
√𝜋𝑑௉𝜌௦√𝑇         𝜆ଵ =

8𝜆

𝜂௙൫41 − 33𝜂௙൯
         𝜆ଵ

∗ =
𝜆ଵ

1 +
6𝜉ௗ𝜆ଵ

5𝑐௦𝜌ௌ𝑔௢𝑇

 

 

In the above relations, 𝜆 represents the conduction coefficient for granular temperature in a 

vacuum and  𝜆∗ is the modified expression when an interstitial fluid exists.  Note that Bolio et 

al. (1995) use  𝜂௙ = (1 − 𝑒௦) 2⁄ , whereas Hadinoto and Curtis (2004) use 𝜂௙ = ൫1 − 𝑒௙൯ 2⁄ .  

 

3.2.4 Boundary Conditions 

 

In their simulation of fully developed pipe flow, both reference studies, i.e., Bolio et al. (1995) 

and Hadinoto and Curtis (2004), used an axisymmetric boundary condition, i.e., the gradients 

of all the variables are equal to zero at the centerline of the pipe. At the wall, the no-slip  

condition applies for the fluid and turbulence kinetic energy, and the LRN formulation 

determines the wall condition for the dissipation, i.e., 𝜀 = 𝜈௙ 𝜕ଶ𝑘 𝜕𝑟ଶ⁄ . For the particle phase, 

the boundary conditions (3.15) and (3.16) of Johnson and Jackson (1987) are considered, which 

represent a partial slip condition at the wall for the mean particle velocity and an energy balance 

in the near wall region which determines the granular temperature at the wall.  
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Mean velocity: 

𝜏௥௭
௦ =

𝜌௦𝜋𝑉௭∅√𝑇

2√3 ൬
𝛼௢

𝛼௦
−

𝛼௢
ଶ ଷ⁄

𝛼௦
ଶ ଷ⁄ ൰

                                                                                                                (3.15) 

Granular temperature: 

𝑞௉்௥ =
√3𝜌௦𝜋(1 − 𝑒௪

ଶ)𝑇ଷ ଶ⁄

4 ൬
𝛼௢

𝛼௦
−

𝛼௢
ଶ ଷ⁄

𝛼௦
ଶ ଷ⁄ ൰

−
𝜌௦𝜋𝑉௭

ଶ∅√𝑇

2√3 ൬
𝛼௢

𝛼௦
−

𝛼௢
ଶ ଷ⁄

𝛼௦
ଶ ଷ⁄ ൰

                                                                (3.16) 

 

In the above equations, ∅ is the specularity coefficient and 𝑒௪ is the coefficient of restitution 

for particle-wall collisions. The specularity coefficient varies from 0 (for purely specular 

collisions on a perfectly smooth wall surface) to 1 (for completely diffuse collisions on a rough 

wall surface.) The specularity coefficient can be viewed as a measure of the loss of momentum 

of the particle in the tangential direction after a particle-wall collision.  

 

3.2.5 Description of model formulations 

 

This section offers a description of the five models used to analyze the modeling of the effects 

of an interstitial fluid.  The main objective is to develop a group of model formulations that 

show a transition from the TFM developed for gas-solid flow to one that is applicable to liquid-

solid flow. By evaluating the different modifications introduced, their influence on the 

prediction of dispersed liquid-solid flow can be assessed. Table 3.8 gives a summary of the 

main model features considered.  

 

Model 1 represents the formulation of Bolio et al. (1995) and is used as a base model for 

the case of gas-solid flow. The second model formulation highlights the importance of the new 

expressions for the solids viscosity and granular temperature conduction coefficient when an 

interstitial fluid exists. The third model formulation focuses attention on the contribution of the 

particle fluctuating energy due to long-range inter-particle interaction as new source and sink 

terms, respectively, in the turbulence kinetic energy and granular temperature transport 
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equations. The fourth model formulation is the model of Hadinoto and Curtis (2004), while the 

fifth model formulation treats the long-range term as a sink of energy instead of as source, as 

in the fourth model. For all simulations, 𝑒 = 𝑒௦ = 0.94, 𝑒௙ = 0.5 , 𝑒௪ = 0.5 and ∅ = 0.002 

(Hadinoto and Curtis, 2004). 

 

Table 3.8: Description of cases to analyze in numerical simulation. 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Model Bolio et al. 

(1995) 

Bolio 

modified 

Bolio 

modified 

Hadinoto and 

Curtis (2004) 

Hadinoto 

modified 

Main 

features 

No 

interstitial 

effect 

Interstitial 

effect for 

𝜇ௌ
∗  and 𝜆∗ 

only 

Interstitial 

effect for 

𝜇ௌ
∗  and 

𝜆∗only  

Interstitial 

effect for 𝜇ௌ
∗ , 

𝜆∗ and all 

source terms 

Interstitial 

effect for 𝜇ௌ
∗ , 

𝜆∗ and all 

source terms 

Equation 

(2.3) 

𝛼௙ ≈ 1 𝛼௙ ≠ 1 𝛼௙ ≠ 1 𝛼௙ ≈ 1 𝛼௙ ≠ 1 

Equation 

(2.5) 

𝜇ௌ
∗ = 𝜇௦ 

𝜇ௌ
∗ =

𝜇ଵ
∗

𝜇ଵ
𝜇௦ 𝜇ௌ

∗ =
𝜇ଵ

∗

𝜇ଵ
𝜇௦ 𝜇ௌ

∗ =
𝜇ଵ

∗

𝜇ଵ
𝜇௦ 𝜇ௌ

∗ =
𝜇ଵ

∗

𝜇ଵ
𝜇௦ 

𝑞௉் 𝜆∗ = 𝜆 
𝜆∗ =

𝜆ଵ
∗

𝜆ଵ
𝜆 𝜆∗ =

𝜆ଵ
∗

𝜆ଵ
𝜆 𝜆∗ =

𝜆ଵ
∗

𝜆ଵ
𝜆 𝜆∗ =

𝜆ଵ
∗

𝜆ଵ
𝜆 

𝐼௞ 𝛼௙ ≠ 1 𝛼௙ ≠ 1 𝛼௙ ≠ 1 𝛼௙ ≈ 1 𝛼௙ ≠ 1 

𝐼் 𝛼௙ ≠ 1 𝛼௙ ≠ 1 𝛼௙ ≠ 1 𝛼௙ ≈ 1 𝛼௙ ≠ 1 

𝑆௣ି௣ 0 0 −3𝜑𝛽𝑇 3𝜑𝛽𝑇 −3𝜑𝛽𝑇 

 

As discussed in section 3.1, the predictions of particle fluctuations were larger than the 

measurements, which indicates that some energy is lost by particles due to the presence of the 

interstitial fluid. This suggests there should be an additional sink term in the transport equation 

for the granular temperature that accounts for this effect, and due to energy conservation, at the 

same time acting as a source term for the fluid turbulence. This effect can be achieved by 
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changing the sign of the term  𝑆௣ି௣ from positive, as originally proposed by Hadinoto and 

Curtis (2004), to negative. It is a major hypothesis of this thesis that this term is in fact a sink 

instead of a source of energy for the particle fluctuations. Due to the long distances between 

particles in a dilute flow, the long-range effect of particle fluctuations conveyed through the 

fluid is to enhance the fluid turbulence, instead of increasing the particle velocity fluctuations.  
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Chapter 4: Results and Discussion 

 

 

4.1 Single-Phase flow 

 

The present section assesses the ability of the 1-D in-house code to predict single phase fully-

developed turbulent pipe flow prior to considering multiphase flow simulations. The predicted 

results are compared with the results of Wu and Moin (2008), who performed DNS of turbulent 

single phase flow in a pipe. DNS is a useful alternative source of data compared to experimental 

research since it solves the complete flow field including the smallest scales of motion. The 

present comparison between the in-house code results and DNS data is also relevant since the 

in-house code includes various approximations including use of a LRN formulation to model 

the turbulence behavior in the near-wall region. In this context, the present section will validate 

the present code based on prediction of a single-phase flow. 

 

Figure 4.1 presents the predicted results for the mean velocity normalized by the bulk 

velocity for a Reynolds number of ReD = 44,000. The predictions are compared to the DNS data 

of Wu and Moin (2008), also for ReD = 44,000, as well as the measurements of McKeon et al. 

(2004a) for ReD = 74,000 and Zagarola and Smits (1998) for ReD = 41,700. The profiles of the 

normalized mean fluid velocity look similar for all cases, except near the centerline, where the 

in-house code underpredicts the value compared to the DNS data. These observations agree 

with the results presented in Figure 4.2, where the velocity profile is displayed in inner 

coordinates, i.e., 𝑢ା as function of 𝑦ା.  The predictions of the in-house code agree with the 

DNS data, as well as the log-law and viscous sublayer. The conclusion obtained from Figures 

4.1 and 4.2 is that the in-house code accurately predicts the mean velocity profile for a single-

phase flow, with some small discrepancies in the centerline region. 
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Figure 4.3 shows the Darcy friction factor as a function of the Reynolds number predicted 

by the in-house code, the theoretical expression of Prandtl 
ଵ

ඥ௙
= 2𝑙𝑜𝑔൫𝑅𝑒ඥ𝑓൯ − 0.8, the DNS 

results of Wu and Moin (2008) and various experimental studies. The DNS data and 

experimental measurements are both closer to the theoretical result of Prandtl. Regarding the 

in-house code, predictions of the friction factor were at most approximately 4.5% above the 

values obtained from Prandtl expression. However, the error decreases as the Reynolds number 

increases as shown in Table 4.1. In general, these results document a reasonably good 

agreement between the numerical predictions and the theoretical results. 

 

Table 4.1: Predicted friction factor compared to Prandtl expression results. 

dP/dz (Pa/m) Ubulk (m/s) ReD f (code) f (Prandtl) Dif (%) 

450 1.07 32731 0.02399 0.02302 4.25% 

770 1.45 44379 0.02234 0.02150 3.88% 

1300 1.95 59642 0.02088 0.02007 4.04% 

2000 2.49 75997 0.01978 0.01912 3.47% 

3000 3.13 95407 0.01883 0.01819 3.54% 

 

Figure 4.4 displays the predicted normalized Reynolds shear stress obtained from the in-

house code compared to the DNS data of Wu and Moin (2008) and LDV measurements of 

Toonder  and Nieuwstadt (1997). The predicted results are in close agreement with DNS data, 

which shows that the LRN 𝑘 − 𝜀 is able to capture this profile. The difference between the 

numerical results and experimental measurements partially relates to the Reynolds number, i.e., 

the larger the value of ReD, the higher the peak value of the stress. 

 

Since Wu and Moin (2008) do not show results for the turbulence kinetic energy, Figure 

4.5 presents the fluctuating velocity components in the axial and radial directions as functions 

of 𝑟 𝑅⁄  respectively. The in-house code calculates the turbulence kinetic energy; the fluctuating 

components have been approximated by the relation 𝑢௥
ᇱ = 𝑢ఏ

ᇱ = 𝑢௭
ᇱ 2⁄    following Sheen et al. 

(1993). The fluid-phase fluctuating velocities in the azimuthal and radial directions are assumed 

to be equal, which is an acceptable approximation in fully developed pipe flows (Kasagi and 
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Shikazono, 1995). For the axial component, the profile derived from the in-house code under-

predicts the DNS results in the near-wall region and over-predicts them in the centerline region.  

On the other hand, the profile based on the in-house code overpredicts the radial component in 

the near-wall region, but agrees with the DNS data at the centerline. The shape of the 

approximate curves compared to the DNS data reflects the isotropic property of the EVM in 

the near-wall region, which makes the EVM unable to reproduce the near-wall anisotropy. In 

this context, Figure 4.5 cannot be used to validate the model predictions, but shows interesting 

comparisons between the DNS in-house code based on the relation of Sheen et al. (1993).  

 

Equation (4.1) represents the reduced form of the streamwise momentum equation in 

cylindrical coordinates for fully developed incompressible turbulent single-phase flow through 

a smooth pipe. It can be obtained from Equation (3.1) for 𝛼௦ = 0 and including the Reynolds 

shear stress term (3.2).  

 

−1

𝜌

𝜕𝑃

𝜕𝑧
+

𝜈

𝑟

𝑑𝑈௭

𝑑𝑟
+ 𝜈

𝑑ଶ𝑈௭

𝑑𝑟ଶ
−

𝑢௭
ᇱ 𝑢௥

ᇱതതതതതത

𝑟
−

𝑑𝑢௭
ᇱ 𝑢௥

ᇱതതതതതത

𝑑𝑟
= 0                                                                          (4.1) 

 

Figure 4.6 presents the predictions of the in-house code and the DNS results of Wu and 

Moin (2008) for the budget components of Equation (4.1) normalized by 𝑈௕௨௟௞
ଶ 𝑅⁄ . Overall, the 

distribution of each term exhibits remarkable agreement with the DNS data for the region 

outside  the viscous sub-layer for the pressure drop, the gradient of the viscous shear-stress, the 

gradient of the turbulent shear stress, the viscous shear-stress curvature and the turbulent shear-

stress curvature terms, i.e.,
ିଵ

ఘ

డ௉

డ௫
, 𝜈

ௗమ௎೥

ௗ௥మ
, −

ௗ௨೥
ᇲ ௨ೝ

ᇲതതതതതതത

ௗ௥
, 

ఔ

௥

ௗ௎೥

ௗ௥
 and −

௨೥
ᇲ ௨ೝ

ᇲതതതതതതത

௥
, respectively. The pressure 

drop remains constant across the pipe cross section, and becomes dominant for large values 

of 𝑦ା. In the viscous sub-layer region, both the in-house code and DNS results indicate the 

dominant source and sink terms are the gradient of turbulent shear-stress and gradient of viscous 

shear-stress, respectively. The results indicate some discrepancies in the section of the curves 

within the viscous sublayer next to the wall. Both the DNS and in-house code predict a finite 

value for the viscous stress curvature and a zero value for the turbulent shear-stress curvature 

term at the wall.   
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Figure 4.1: Numerical prediction for mean velocity in outer coordinates by the in-house 

1-D code. 

 
Figure 4.2: Predictions for mean velocity in inner coordinates by the in-house 1-D code. 
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Figure 4.3: Friction factor 𝑓 predicted by 1-D in-house code and other studies. 

 
Figure 4.4: Normalized Reynolds shear stress as a function of  𝑟 𝑅⁄  for the 1-D code 

and DNS data. 
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Figure 4.5: Normalized velocity fluctuations in the axial and radial directions as 

function of  𝑟 𝑅⁄  for the 1-D code and DNS data. 

 
Figure 4.6: Predicted budget components of equation (4.1) normalized by 𝑈௕௨௟௞

ଶ 𝑅⁄ . 
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As noted above, the present section attempts to validate the in-house code by comparing its 

predictions with DNS data for the case of single-phase flow. Overall, the code provides 

reasonable predictions for the mean velocity, Reynolds shear stress, friction factor and 

momentum source terms. However, as expected, the eddy viscosity formulation fails to capture 

the anisotropy of the turbulence near the wall.  

 

4.2 Prediction for liquid-solid phase flow 

 

This section considers the predictions for fully developed liquid-solid upward flow in a vertical 

pipe. The equations in cylindrical coordinates (presented in previous sections) were discretized 

using the finite volume method of Patankar (1980). A second-order central difference scheme 

was used to model the diffusive term. The flow domain for the present study consists of a 

constant angle circular section of the flow that extends from the centerline to the pipe wall.  The 

numerical calculations were performed using an in-house FORTRAN code that was used 

previously by Zaman and Bergstrom (2014) for gas-solid flow. It provides the flexibility to 

select, modify and implement additional functions and subroutines to simulate new terms in the 

transport equations.  This code was modified to include the model formulations given in Table 

3.8.  The consideration of the interstitial fluid introduced new non-linear coefficients and source 

terms in the transport equations, which represented the most complex task for numerical 

simulation.  The solution method for the set of discrete equations was the Tri-Diagonal Matrix 

Algorithm (TDMA) with an appropriate relaxation factor.  

  

In order to assess the grid independence of the solutions, three different grids using 𝑁 =

60, 𝑁 = 80 and 𝑁 = 120 control volumes were used for numerical simulation of a specific set 

of flow conditions for a particle diameter of 𝑑௣ = 2.3𝑚𝑚 and 𝑅𝑒 = 67000. The grid was 

configured to achieve a high-density mesh near the wall and locate the first node in the viscous 

sub-layer as required by the low Reynolds number 𝑘 − 𝜀 model adopted. The criteria to stop 

the iterative calculation was when all variables achieved a normalized difference of less than 

0.0001. Five variables were assessed: the volume fraction, granular temperature, turbulence 

kinetic energy, mean velocity of the fluid and mean velocity of the particles at three different 
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locations, i.e., 𝑦ା = 50, 𝑦ା = 200 and 𝑦ା = 400.  At 𝑦ା = 50, the maximum change for the 

five variables was 3.8% when going from 𝑁 = 60 to 𝑁 = 80, which reduced to 1.3% when 

going from 𝑁 = 80 to 𝑁 = 120. The maximum changes found at 𝑦ା = 200 and 𝑦ା = 400 

were 4.2% and 3.7%, respectively, when going from 𝑁 = 60 to 𝑁 = 80, and reduced further 

to 1.6% and 1.7%, respectively, when going from 𝑁 = 80 to 𝑁 = 120. The turbulence kinetic 

energy was the most sensitive variable, showing the maximum error in all cases. The maximum 

errors for the other variables were typically in the range of 0.2% to 0.35%. Based on the results 

above, a grid of 𝑁 = 80 was used for the present study, which is consistent with the grid used 

by Zaman and Bergstrom (2014) as well as Bolio et al. (1995). 

 

Six coupled differential equations determine the flow field. Five transport equations were 

used to obtain the mean velocity field of the fluid phase 𝑈௜ (3.1), the mean velocity field of the 

solid phase 𝑉௜ (3.3), the turbulence kinetic energy 𝑘 (3.8), the dissipation rate 𝜀 (3.9) and the 

granular temperature 𝑇 (3.12). In addition, the radial component of the solid phase momentum 

equation was used to determine the volume fraction distribution 𝛼௦ (3.4). The inputs to the 

FORTRAN code were the solid volume fraction at the centerline and the pressure drop. The 

simulations were performed by modifying the pressure drop until agreement was achieved with 

the total mass flow rate in the experiment. The solids volume fraction at the centerline was 

typically fixed, and only slightly modified in few cases to improve mass flow prediction to the 

experimental value. The total mass flow rate is given by: 

 

𝑤 = ൫𝜌௙𝛼௙ ௕௨௟௞𝑈௕௨௟௞ + 𝜌௦𝛼௦ ௕௨௟௞𝑉௕௨௟௞ ൯𝐴                                                                                     (4.2) 

 
4.2.1 Mean variables 

 

In this section, the numerical predictions are compared with the experimental data of 

Alajbegovic et al. (1994), who performed measurements using a laser-Doppler anemometer 

(LDA) for different cases of dilute upward liquid-solid flows in a vertical pipe of 30.6 mm 

diameter with bulk solids volume fractions ranging from 1% to 4%. Water was the carrier phase 

and two types of solid particles were used as the dispersed phase, i.e., ceramic and expanded 

polystyrene. The pipe wall was smooth. Measurements of the mean local velocities, solids 
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volume fraction, fluctuating solid and fluid velocities, and fluid and solid shear stress were 

obtained. The gamma-ray technique was used for the concentration measurements. The present 

section first analyzes the predictions for a specific mass flow rate of w = 1.469 kg/s using 

ceramic particles. Later, the predictions for two additional mass flow rates are presented. The 

case of expanded polystyrene particles was not studied due to the fact that it requires additional 

modifications to the code to include the virtual mass effect, which is relevant for flows with 

small density ratios. The carrier and dispersed phase properties are listed in Table 4.2. 

 

Table 4.2: Mixture properties from Alajbegovic et al. (1994). 

Properties Carrier Phase Dispersed Phase 

Material Water Ceramic Expanded Polystyrene 

Density 𝜌 (kg/mଷ) 997.1 2442.9 31.91 

Viscosity 𝜇 (kg/s ∙ m) 0.001 - - 

Diameter 𝑑௣ (mm) - 2.32 1.79 

 

The behavior of the particles is governed by the Stokes number 𝑆் = 𝜏௉/𝜏௙. Table 4.3 

shows the results for  𝑆் predicted for each model, as well as the experimental range reported 

by Hadinoto and Curtis (2004) for the experiment of Alajbegovic et al. (1994). The predictions 

for all models are relatively similar with variations within a range of 2.4 %. The predicitons are 

also within the experimental range. 

 

Table 4.3: Stokes number. 

 
Model 1 Model 2 Model 3 Model 4 Model 5 Experimental 

𝑆் 45.5 45.5 46.2 46.6 46.3 40-90 

 

For a flow with  𝑆் ≪ 1 the particles respond very quickly to any change in the flow field 

and therefore are able to follow the path of the fluid elements. This type of flow can be analyzed 

as single-phase. In the present case 𝑆் ≫ 1, which means that the particles do not immediately 

respond to changes in the flow field and therefore do not follow the path of the fluid elements. 

Therefore, a single-phase analysis is not appropriate, and coupling effects need to be considered 
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through the application of more complex models such as the TFM and KTGF. 

 

Figure 4.7 displays the predicted mean velocity profile for both phases, i.e., solid and liquid, 

for the five model formulations presented in Table 3.8. The predictions for the fluid mean 

velocity are almost identical for the five formulations, whereas larger discrepancies exist for 

the solid mean velocity. For the fluid phase, Model 3 performs the best, i.e. is closer to the 

experimental data overall. The next best prediction is given by Model 5, which marginally 

underpredicts the mean fluid velocity in the core section. For the solid phase, all models under-

predict the velocity profile when compared to the experimental data. Model 3 and Model 5 both 

give the closest agreement to the experimental data at the centerline, however, Model 5 

performs better near the wall.  For all models, the solid mean velocity predictions exhibit a 

change in curvature near the wall. The location of the inflection point is close to the location 

where  particle velocity becomes larger than the fluid velocity based on the experimental data, 

which implies a change of direction in the particle drag force, i.e., 𝐹஽ = 𝛽(𝑈 − 𝑉).  All of the 

model formulations predict a finite velocity at the wall, which is consistent with the trend of 

the experimental data.  

 

Figure 4.8 shows the results for the solids volume fraction profile. All cases share a similar 

value at the centerline, which is close to the experimental value. For models 1, 2 and 3, there is 

a consistent reduction in the predicted value at the wall, which is due to the inclusion of the 

interstitial fluid effects through the new formulations of 𝜇ௌ
∗  and 𝜆∗ (Model 2), and the addition 

of the term  𝑆௣ି௣ (Model 3). The overall reduction in the predicted value of 𝛼௦ at the wall from 

Model 1 to Model 3 is approximately 70%. Although not capturing the exact shape of the 

measurements, the profile for Model 3 does capture the trend of 𝛼௦ as the wall is approached. 

Finally, moving from Model 4 to Model 5 also improves the prediction for 𝛼௦. Model 5 shows 

the best agreement with the experimental data in the core region, but over-predicts the results 

at the wall compared to Model 3. In both cases, the predicted results support the hypothesis that 

the sign of  𝑆௣ି௣ should be such as to account for the enhanced turbulence kinetic energy due 

to the particle fluctuations. The bulk solid volume fractions for the different model formulations 

in Table 4.4 shows that the profiles with a reduced value near the wall also have lower bulk 

values.   
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Table 4.4: Consolidated bulk solid volume fraction. 

 
Model 1 Model 2 Model 3 Model 4 Model 5 

𝜶𝒔 0.0498 0.0404 0.0254 0.0403 0.0326 

 

A noticeable characteristic of the experimental data for the solids volume fraction is that it 

reduces to approximately zero at the wall, which implies there are no particles next to the wall. 

The drag and gravity forces are the main factors that influence the particle motion in the axial 

direction, i.e., Equation (3.3). However, because of the velocity gradient and turbulence of the 

fluid, additional forces on the particle are also present, e.g., the lift force, wall lubrication force, 

virtual mass, history force and buoyancy force. Some of these forces result in motion in the 

radial direction. For example, the lift force directs particles toward the centerline due to the 

fluid velocity gradient. These radial forces tend to keep particles away from the wall, which 

explains why the experimental measurements show a peak of 𝛼௦ at the centerline and a zero 

value at the wall. 

 

Figures 4.9 and 4.10, respectively, present the turbulence kinetic energy 𝑘 normalized by 

𝐽௅
ଶ and the granular temperature 𝑇 normalized by 𝐽ௌ

ଶ , where  𝐽௅ = 𝛼௙𝑈௕௨௟௞ is the fluid superficial 

velocity and  𝐽ௌ = 𝛼௦𝑉௕௨௟௞ is the solids superficial velocity. For Figure 4.9, the single-phase 

results are also included for comparison purposes. For the numerical simulations, 𝑘 and 𝑇 are 

calculated by the in-house code; however, the experimental values of 𝑘 and 𝑇 were 

reconstructed from the measurements of the axial and radial velocities of each phase using the 

approximation 𝑢௥
ᇱ = 𝑢ఏ

ᇱ  (Sheen et al., 1993, Shikazono, 1995). The reason for reconstructing 

the values of  𝑘 and 𝑇 from the velocity components is that the eddy viscosity model is 

inherently unable to predict the anisotropic behavior of the turbulence motion at the wall. From 

Table 4.5 is it evident that the predicted values of  𝐽௅ are very similar and within 3.9% of the 

experimental measurement.  However, larger differences occur for the predicted values of 𝐽ௌ, 

with Model 3 being closest to the experimental value. The value of  𝐽ௌ depends on the model 

formulation, and the effect of the new interstitial formulations is to bring Model 3 closer to the 

experimental value.   

 



47 
 

Table 4.5: Fluid and solid superficial velocities. 

 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

5 

Exp.             

Data 

Single-

Phase 

𝑱𝑳(𝐦/𝐬) 1.815 1.835 1.891 1.879 1.882 1.888 1.888 

𝑱𝑺(𝐦/𝐬) 0.077 0.068 0.045 0.067 0.058 0.045 - 

 

The predictions for the turbulence kinetic energy in Figure 4.9 indicate that Model 3 

performs the best in the core region. Moving from Model 1 to 3, the turbulence level is reduced 

in the core region and increases slightly in the near-wall region. Overall, the profile for Model 

3 is closest to the experimental data in the core region of the flow. In contrast, Models 4 and 5 

over-predict the turbulence across the entire pipe cross section, which is due to the contribution 

of the additional source terms included in 𝑆௞,ூ் to enhance the fluid turbulence. All models 

predict a peak at the same location near the wall, in agreement with the experimental data. This 

represents the production due to the interaction of the mean velocity gradient and the Reynolds 

shear stress, which is a dominant feature of turbulent near-wall flow. Surprisingly, the single-

phase results show good agreement with the experimental data, which suggests that for this 

specific flow the turbulence enhancement in the model may be calibrated to a single-phase 

value that is too high. On the other hand, it is not clear from the measurements whether the 

particles have indeed resulted in turbulence enhancement.  

 

The predictions for the granular temperature in Figure 4.10 indicate that Models 3 and 5 

give the best predictions in the core region, but over-predict the experimental results in the near- 

wall region. In contract, Model 1 over-predicts the profile in the core region, but is close to the 

experimental profile near the wall. Regardless of Model 1 results, which perform better 

agreement at the wall, this result is because of the overprediction of 𝐽ௌ instead of an accurate 

prediction of 𝑇 and 𝐽ௌ. The improved predictions for the granular temperature in the core region 

for Model 3 and 5 is due to including 𝑆௣ି௣ as a sink term in the granular temperature equation. 

The remaining two model formulations, Model 2 and 4, over-predict the profiles across the 

entire pipe.  
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It is insightful to point out a connection between Figures 4.10 and 4.8. Irrespective of model, 

the profile of 𝑇 initially increases when moving from the centerline towards the wall, and then 

at some point direction begin to slowly decrease up to the wall. The opposite trend occurs for 

the profile of 𝛼௦ ; it begins with a peak value at the centerline and then decreases towards the 

wall, finally turning upward and increasing in value up until the wall. The inflection behavior 

for both profiles, i.e., 𝑇 and 𝛼௦, is the same for each model. Equations (3.6) and (3.4), which 

are used to solve  𝛼௦, explain this behavior. In equation (3.6) 𝑇 and  𝛼௦ are inversely 

proportional, which means that when 𝑇 increases, then  𝛼௦ decreases, and viceversa.  

 

Figure 4.11 represents a comparison of the predicted fluid Reynolds stress profiles for each 

model formulation and the experimental measurements. For all simulations, the location of the 

peak point is similar. In all cases, the profile is over-predicted compared to the experimental 

data, especially in the near-wall region. There is no significant change from Model 1 to 3 and 

from Model 4 to 5. However, the over-prediction of Models 4 and 5 is much higher compared 

to the other model formulations. 

 

Figure 4.12 compares the predictions for the normalized eddy viscosity profiles for each 

case.  The profiles clearly show how the turbulence is attenuated when moving from Model 1 

to 3, i.e., when the interstitial fluid effects are included in the base model developed for gas-

solid flow. For Models 4 and 5, the predictions for the eddy viscosity are much higher than for 

the other models, especially in the core region. The reduction in the turbulence level between 

Model 4 and 5 is due to the term 𝑆௣ି௣, which acts as a source term in Model 5 in the transport 

equation of 𝑘. In general, Models 3 and 5 clarify the effect on the turbulence enhancement of 

the interstitial source terms in 𝑆௞,ூ் included in the model of Hadinoto and Curtis (2004).  

 

Finally, Figures 4.13 and 4.14 present the normalized results for the turbulence kinetic 

energy and the Reynolds shear stress, respectively, i.e., 𝑘ା = 𝑘 𝑢ఛ
ଶ⁄  and −𝑢ଵ

ᇱ 𝑢ଶ
ᇱതതതതതതା

= −𝑢ଵ
ᇱ 𝑢ଶ

ᇱതതതതതത/𝑢ఛ
ଶ 

using inner coordinates. The calculated values of the friction velocity 𝑢ఛ for each model 

formulation are listed in Table 4.6. 
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Table 4.6: Consolidated fluid superficial velocities. 

 
Model 1 Model 2 Model 3 Model 4 Model 5 Single-Phase 

𝑢ఛ (𝐦/𝐬) 0.1040 0.1021 0.1025 0.1104 0.1076 0.0968 

 

The predictions for the friction velocity, 𝑢ఛ, are relatively similar in all cases. A lower value 

for 𝑢ఛ implies a lower pressure gradient for the same mass flow rate. The largest variation is 

approximately 8.1% and occurs for models 2 and 4. The small reduction from Model 1 to Model 

2 reflects the impact of the new formulations for 𝜇ௌ
∗  and 𝜆∗. In general, the results shown in 

Figure 4.13 and 4.14 agree with those in Figures 4.9 and 4.11, respectively.  

 
Figure 4.7: Comparison of the axial mean fluid and solid velocities with the 

experimental data of Alajbegovic et al. (1994). 
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Figure 4.8: Comparison of the solids volume fraction predictions and the experimental 

data of Alajbegovic et al. (1994). 

 
Figure 4.9: Predicted turbulence kinetic energy 𝑘 and the experimental data of 

Alajbegovic et al. (1994) normalized by 𝐽௅
ଶ. 
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Figure 4.10: Predicted granular temperature 𝑇 and the experimental data of Alajbegovic 

et al. (1994) normalized 𝐽ௌ
ଶ. 

 
 

Figure 4.11: Predicted Reynolds shear stress −𝑢ଵ
ᇱ 𝑢ଶ

ᇱതതതതതത and the experimental data of 

Alajbegovic et al. (1994) normalized by 𝐽௅
ଶ. 
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Figure 4.12: Comparison of the turbulent viscosity predictions. 

 
Figure 4.13: Comparison of the predictions for the turbulence kinetic energy using 

inner-coordinates. 
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Figure 4.14: Comparison of the predictions for the fluid Reynolds shear stress using 

inner coordinates. 
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in Figure 4.15 and 4.16. The figures use different scales on the vertical axis to highlight the 

difference in magnitudes of the source terms for each model. Note that the main reason Model 

1 performs differently than Model 3 is due to the new formulations for  𝜇ௌ
∗  and 𝜆∗and the 

addition of  𝑆௣ି௣, which is zero in Model 1. These modifications diminish the particle 

fluctuations in the outer region of the pipe cross section (see Figure 4.10) by reducing the 

magnitude of the source terms. The production term  𝑃்  is reduced dramatically in going from 

Model 1 to 3, e.g., the peak value around 𝑦ା ≈ 200 decreased by 75 %. Also, 𝑃்  becomes 

dominant in the outer region 𝑦ା > 150 for both models; however, it becomes negligible in the 

viscous sub-layer for 𝑦ା < 10. For Model 1, 𝑃்  is balanced by diffusion  𝐷்  in the log-law 

region, whereas for Model 3 it is compensated by both  𝐷்  and  𝑆௣ି௣. The diffusion term 𝐷் , 

as well as 𝑃் , reduces significantly in magnitude from Model 1 to 3, e.g., the value of 𝐷்  at the 

wall drops by around 50%. For both Models 1 and 3, 𝐷்  is the main source of energy for particle 

fluctuations in the viscous sub-layer. However, further away from the wall it becomes negative, 

and finally becomes positive again around 𝑦ା ≈ 850 in Model 1 and 𝑦ା ≈ 500 in Model 3. 

The dissipation term due to particle collisions 𝛾 is generally small, and reduces to almost zero 

going from Model 1 to Model 3. These results agreed with the expectations, i.e., in a gas-solid 

flow it is expected to have a much higher particle-particle collision frequency compared to 

liquid-solid flow. Similarly, collision velocities in a gas-solid flow are likely to be much higher 

compared to liquid-solid flow, due to the liquid viscosity being three orders of magnitude larger 

than for a gas. The higher viscosity significantly increases the kinetic energy dissipated when 

particles move freely between collisions, represented by the new term 𝑆௣ି௣. Regarding the 

modulation term 𝐼், for Model 1 it varies from a negative contribution in the viscous sub-layer, 

to a positive value in the log-law region and finally becomes negative in the outer region. This 

implies that in the outer region, the destruction due to the drag force dominates over the 

production due to interaction between fluctuating velocity fields; this reverses in the log-law 

region. For Model 3 the contribution of the modulation term is positive for both the log-law 

and outer regions, which indicates the predominance of particle energy generation due the 

interactions between particle and fluid fluctuations. For both Models 1 and 3, 𝐼் becomes large 

and negative in the viscous sub-layer, where it balances the positive contribution of diffusion.  
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Figure 4.17 presents the results of Model 5, which is the model of Hadinoto and Curtis 

(2004), but differs from it by considering 𝑆௣ି௣ as a sink of granular energy instead of a source 

as proposed originally. The source terms are similar in shape for Model 3 and 5, however, for 

Model 5 the magnitude is almost twice that for Model 3. For both models, the dissipation term 

𝛾 is almost zero, which implies a negligible energy dissipation due inelastic particle-particle 

collisions.  

 

The role of diffusion in a granular flow may be challenging to understand physically at the 

beginning. A simple approach is to recall that the KTGF is the application of the principles of 

the kinetic theory of gases to solid particles, treating them as if they were molecules. In this 

context, the role of diffusion can be understood easily by making an analogy to a pipe with a 

gas flowing through it. More specifically, it is possible to make an analogy between the pseudo-

thermal energy term 𝑞௉் = −𝜆∗(𝜔𝐺ଷ௄ + 𝐺ଷ௖)
డ்

డ௥
 and the conductive heat transfer flux 𝑞 =

− κ
డந

డ௥
, where κ is the conductivity coefficient and ψ is the thermal temperature. Just as the 

spatial gradient of thermal temperature determines the direction of the heat flux, the gradient of 

granular temperature determines the direction of the transfer of particle fluctuating energy. 

Furthermore, since the term 𝜆∗(𝜔𝐺ଷ௄ + 𝐺ଷ௖) is always positive, like the thermal conductivity 

coefficient κ, the positive or negative direction developed by 𝑞௉் is due to the gradient of 𝑇 in 

the radial direction. When a fluid develops a viscous sub-layer at the wall, there is no turbulent 

transport in this region and the thermal energy is transferred by “conduction”, referred to as 

diffusion in fluids. Diffusion is the transfer of energy by random motion of particles. This 

analogy helps to explain why the source term 𝐷்  is predominant in the viscous-sub layer.  From 

the profiles presented in Figure 4.10, there is a peak of 𝑇 near the wall, and 𝑇 decreases when 

approaching the wall. Assuming a similar profile for the thermal temperature ψ, would imply 

a heat flux from the gas to the wall. The amount of heat transferred from the gas to the wall is 

a boundary condition, which for a granular flow is represented by 𝑞௉்௥ . The coefficient of 

restitution at the wall 𝑒௪ plays an important role in the determining the diffusion and granular 

temperature profiles. 

 

Figures 4.18, 4.19 and 4.20 document the contributions of the various source terms in the 
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transport equation for the turbulence kinetic energy for Models 1, 3 and 5, respectively. Again, 

the scale of the vertical axis on the plots is different in order to accommodate the different 

magnitude of the source terms for each model. As for the granular temperature, the source terms 

for Model 1 differ from those for Model 3 in terms of  𝜇ௌ
∗ , 𝜆∗ and 𝑆௣ି௣. For both Models 1 and 

3, similar peak values of production and dissipation, i.e., 𝑃௄ ≈ 25  and 𝜀 ≈ −25, occur just 

outside the viscous sub layer at 𝑦ା ≈ 10. In addition, the value of the dissipation at the wall is 

practically the same, i.e. 𝜀௪ ≈ 12.5, for both models, and 𝑃௄ becomes negligible both near the 

wall and in the outer region. On the other hand, the modulation term 𝐼௞ changes dramatically 

from Model 1 to 3 because of the term 𝑆௣ି௣. For Model 1, 𝐼௞ is positive in the viscous sub-

layer, becomes negative in the log-law region and then positive again in the outer region; 

whereas for Model 3, the modulation is only positive in the viscous sub-layer and elsewhere 

negative. For Model 1, the diffusion term 𝐷௄ balances the contribution of 𝐼௄ over most of the 

pipe cross section, whereas for Model 3, 𝐷௄ balances the contribution of  𝑆௣ି௣. The  𝑆௣ି௣ term 

is zero for Model 1, however it becomes the dominant energy source for fluid turbulence across 

the entire the pipe cross section for Model 3. The highest value of  𝑆௣ି௣ ≈ 75 occurs at the 

wall, while the lowest value  𝑆௣ି௣ ≈ 12 occurs at 𝑦ା ≈ 10.  The effect of  𝑆௣ି௣ is opposite in 

Figures 4.19 and 4.16, for the fluctuating fluid and particle velocities, respectively. This 

behavior of the fluid turbulence and particle fluctuations agrees with the physical interactions 

expected: the energy extracted from the particle fluctuations increases the fluid turbulence. It 

is possible to observe a similar behavior between 𝐼௞ and 𝐼் , with small differences in the 

magnitudes.  

 

Lastly, Figure 4.20 presents the predicted results for Model 5. The scale of the vertical axis 

is 4 times higher than for Figure 4.19 due to an increase in the magnitude of each source term 

because of the larger contributions of 𝐸ௐ and  𝑆௣ି௣. The turbulence kinetic energy balance for 

Model 5 includes new source terms which were zero in Models 1 and 3, i.e., the contribution 

due to wakes 𝐸ௐ, generation due to the collisional fluid stress 𝐺 and particle-collisions 𝛾ி௄ா். 

The wake term 𝐸ௐ and   𝑆௣ି௣ represent the maximum and second largest source of fluid 

turbulence, respectively, outside the viscous sub-layer. These terms generate an enhancement 

of 𝑘 in the pipe core region, in agreement with the prediction shown in Figure 4.9. This model 
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outcome is based on the formation of vortex shedding due to wakes behind particles for value 

of the particle Reynolds number 𝑅௣ larger than 300 (Lun, 2000). At the same time, an enhanced 

fluid turbulence increases the particle fluctuations. Although the generation of wakes is a well 

known physical feature in particle-fluid flows, determining an appropriate formulation to model 

it is still a challenge. The formulation of 𝐸ௐ used by Hadinoto and Curtis (2004) was developed 

for a gas-particle flow (Lun, 2000), where wakes can be generated more readily than in a liquid, 

again due to the significant difference in viscosity between both fluids. The contributions of the 

other terms, i.e., 𝐺 and 𝛾ி௄ா், are almost negligible, which makes 𝐸ௐ and   𝑆௣ି௣ the main 

sources in modifying the distribution of the turbulence kinetic energy. The diffusion term 𝐷௄ 

balances both 𝐸ௐ and  𝑆௣ି௣, as well as  𝐼௞. Due to the dominance of  𝐸ௐ in Model 5, its 

implementation has a strong effect on the granular temperature, turbulence kinetic energy and 

volume fraction profiles. 

 

Figure 4.15: Source terms for the granular temperature equation predicted by Model 1. 
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Figure 4.16: Source terms for the granular temperature equation predicted by Model 3. 

 

Figure 4.17: Source terms for the granular temperature equation predicted by Model 5. 
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Figure 4.18: Source terms for the turbulence kinetic energy equation predicted by Model 1. 

 

Figure 4.19: Source terms for the turbulence kinetic energy equation predicted by Model 3. 
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Figure 4.20: Source terms for the turbulence kinetic energy equation predicted by Model 5. 

 

4.2.3 Predictions for different flow rates 

 

In this section, the numerical predictions are obtained using Model 3 for all three different mass 

flow rates, i.e., w = 1.095 kg/s, w = 1.469 kg/s and w =1.723 kg/s, considered in the experimental 

study of Alajbegovic et al. (1994). The measurements considered the same flow conditions, 

i.e., upward flow in a vertical pipe 30.6 mm in diameter, water as the carrier phase and ceramic 

particles (𝜌௦ = 2443 kg mଷ⁄ , 𝑑௣ = 2.32mm) as the dispersed phase. In general, the predictions 

showed the same level of agreement with the experimental data as documented in section 4.2.1 

for all the variables analyzed, with the exception of the solids volume fraction and normalized 

granular temperature for w = 1.095 kg/s. The predicted values of the fluid ( 𝐽௅  ) and solid ( 𝐽ௌ ) 

superficial velocities were very close to the measured values as will be shown in the figures 

below.   

 

Figure 4.21 shows the predicted mean axial velocities for the liquid and solid phases. For 
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the liquid phase, the predictions show close agreement with the experimental data for all mass 

flow rates, especially in the near-wall region. In addition, the relative velocity 𝑈௥ = 𝑈௭ − 𝑉௭ at 

the centerline remains almost constant for the three cases analyzed. At some point when moving 

from the centerline towards the wall, 𝑈௥ → 0 and the mean fluid velocity becomes slower than 

the solids mean velocity. The location where this occurs, i.e. where 𝑈௥ = 0, moves further away 

from the wall as total mass flow rate w increases. The predicted solids velocity profile shows 

less agreement with the experimental data. The simulations predict a finite velocity at the wall, 

based on the boundary condition defined for this phase in Equation (3.15). Note that the 

experimental measurements are not close enough to the wall to confirm whether the 

experimental value of the particle velocity was also finite at the wall. The difference between 

the measured and predicted mean particle velocities increases when moving towards the wall 

for all mass flow rates. These observations suggest that the interfacial drag coefficient and the 

boundary conditions of Johnson and Jackson (1987) may need to be revised in order to improve 

their application in liquid-solid flows.  

 

Figure 4.22 presents the volume fraction predictions for the different mass flow rates. For 

all three mass flow rates analyzed, the volume fraction at the centerline matches the 

experimental data, and generally decreases as the wall is approached. For the case of w = 1.095 

kg/s, the lowest mass flow rate, the experimental 𝛼௦ profile first shows a gradual increase up to 

r/R = 0.5 and then decreases rapidly to zero when approaching the wall. In general, the model 

still over-predicts the volume fraction results in the vicinity of the wall, while the experimental 

measurements indicate 𝛼௪௔௟௟ = 0 at the wall. 

 

Figures 4.23 and 4.24 show the predictions for the turbulence kinetic energy and the 

granular temperature normalized by the fluid and particle superficial velocities, respectively. 

As mentioned in the discussion of Figures 4.9 and 4.10, the measured turbulence kinetic energy 

and granular temperature were reconstructed from the axial and radial velocities measurements 

using the approximation 𝑢௥
ᇱ = 𝑢ఏ

ᇱ  (Sheen et al., 1993, Shikazono, 1995). For the turbulence 

kinetic energy profiles shown in Figure 4.23, close agreement between predictions and 

experimental data is obtained across the entire pipe cross section. The largest difference occurs 

for the case of w = 1.095 kg/s.  Both the predicted and measured profiles increase as the total 
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mass flow rate decreases. This effect is less noticeable at the centerline, but is clearly manifest 

by the peak values located near the wall for both the predicted results and the experimental data.   

 

For the granular temperature, Figure 4.24 shows that the agreement between the 

experimental data and predictions improves in the core region, while some level of over-

prediction occurs near the wall for w = 1.723 kg/s and w = 1.469 kg/s, a similar trend to that 

observed in Figure 4.10. For w = 1.095 kg/s, the predicted results show much larger differences 

with the experimental data across the pipe, which is similar to the predictions for the solid 

volume fraction predictions. This is consistent with the direct relation between these two 

properties based on the model relations. In spite of this phenomenon, the predictions are able 

to follow the same trend as the experimental data, i.e., a smooth increase when moving from 

the centerline of the pipe to the wall, followed by a peak value and finally a smooth decrease 

in the near-wall region. 

 

Figure 4.25 shows the prediction for the Reynolds shear stress normalized by the superficial 

fluid velocity. The predictions are in close agreement with the measurements in the core region, 

but over-predict the results in the near-wall region, especially near the peak. The level of 

agreement between the experimental data and predicted results appears to increase as the mass 

flow rate increases. 
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Figure 4.21: Predicted and experimental mean velocity profiles for fluid and particle 

phases. 

 
Figure 4.22: Measured and predicted solid volume fraction profiles for the liquid and 

particle phases. 
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Figure 4.23: Measured and predicted turbulence kinetic energy profiles for normalized 

by 𝐽௅
ଶ. 

 
Figure 4.24: Measured and predicted profiles of the granular temperature 𝑇 normalized 

by 𝐽ௌ
ଶ. 
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Figure 4.25: Measured and predicted profiles for the Reynolds shear stress normalized 

by 𝐽௅
ଶ. 

 

In general, the numerical predictions of the velocity profiles for both the solid and liquid 

phases agree with the experimental values for all mass flow rates. However, this  behavior does 

not extend to the other variables, e.g., the solids volume fraction, turbulence kinetic energy, 

granular temperature, and Reynolds shear stress. In the case of those variables, the agreement 

with the experimental data varies with the mass flow rate: the largest discrepancies occur for 

the lowest mass flow rate. 
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Chapter 5: Summary and Conclusions 

 

 

5.1 Summary of simulations  

 

The present work began with an extensive literature review focused on the differences between 

TFM and KTGF formulations for gas-solid and liquid-solid flows. Three test models were 

generated based on the addition and/or modification of specific terms to reproduce the physics 

of liquid-solid flow. To analyze the predictions of each model, numerical simulations were 

performed using an in-house code. First, the code was validated for single-phase fully-

developed turbulent flow in a pipe using DNS data. Subsequently, an extensive set of 

simulations were performed to assess the three test models and two other reference models  

based on comparison to experimental measurements of a mixture of water and ceramic 

particles. Finally, the model that overall best matched the experimental results was evaluated 

for a range of mass-flow rates.   

 

The present dissertation shows the importance of including interstitial fluid effects for 

simulation of liquid-solid flows. This study highlights the relevance of the new formulations 

for the solid viscosity and granular temperature conductive coefficient, as well as the 

contributions of the long-range interaction term 𝑆௣ି௣ and the wake term 𝐸ௐ. Otherwise, it 

suggests that the contribution of the turbulence source terms related to the collisional fluid stress 

𝐺 and particle collisions 𝛾ி௄ா், included in 𝑆௞,ூ், are negligible. Although the generation of 

wakes by particles in a fluid needs to be considered, the intensity of vortex shedding is different 

in a gas than in a liquid for the same size of particle.  
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5.2 Single-phase flow  

 

Numerical simulations of single-phase flow were performed to validate the performance of the 

in-house code. Predictions were compared to the DNS data of Wu and Moin (2008) and some 

additional experimental measurements. The simulations were performed using the LRN 𝑘 − 𝜀 

model of Myong and Kasagi (1990) to model the turbulence and its behavior in the near-wall 

region.  

 

In general, the predicted results were in close agreement with the DNS data for the mean 

velocity in outer and inner coordinates, the friction factor, the Reynolds shear stress and the 

source terms of the momentum equation (4.1). The mean velocity predictions, both in inner and 

outer coordinates show good agreement with the DNS results and experimental data. Some  

differences occur in the centerline region, where the predicted results were slightly lower. As 

shown in Table 4.1, the predictions for the friction factor are slightly larger (< 4.5%) than the 

theoretical curve. Another important outcome is the close agreement between the predicted 

Reynolds shear stress and the DNS values. The discrepancy with the experimental 

measurements occur due to the different values of the Reynolds number, i.e., the predicted 

results are for a larger value of ReD compared to the experimental measurements, which is 

reflected in a higher peak value near the wall. The prediction for the momentum transport 

equation also shows good agreement with the DNS data for all of the individual terms in the 

momentum equation, which demonstrates the capability of the in-house code to reproduce the 

physical behavior of the fluid in the near-wall region.  

 

For the fluctuating axial and radial velocities, some discrepancies were found in terms of 

the profile shape and peak values near the wall, as well as the value of the axial fluctuating 

velocity at the centerline. These discrepancies relate to the use of an eddy viscosity for the 

Reynolds stress tensor. The in-house code calculates the turbulence kinetic energy 𝑘, and then 

uses an eddy viscosity model to estimate the components of the Reynolds stress tensor. The 

approximation of the fluctuating velocity components was based on the assumptions of Sheen 

et al. (1993) and Shikazono (1995), i.e., 𝑢௥
ᇱ = 𝑢ఏ

ᇱ = 𝑢௭
ᇱ 2⁄ . These approximations fail near the 
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wall, where the peak values of the three fluctuating velocity components are highly anisotropic. 

Given the deficiency in the use of an eddy viscosity model for the Reynolds stress, the 

multiphase flow sections compare the predicted values of 𝑘 to a profile reconstructed from the 

measurements of the fluctuating velocity using the assumption 𝑢௥
ᇱ = 𝑢ఏ

ᇱ .  

 

Overall, the in-house code has demonstrated the capability to well predict the single phase 

flow. Predictions of the mean velocity, isotropic turbulence parameters, Reynolds shear stress, 

friction factor and momentum transport equation components are reasonably close to the DNS 

and experimental data used for comparison. These results validated the performance of the in-

house code prior to its application to multiphase-flows.  

 

5.3 Multiphase Flow 

 

The present research compares the performance of the Two Fluid Model developed by Bolio et 

al. (1995) for gas-solid flow, and the models of Hadinoto and Curtis (2004) and Hadinoto 

(2010) in predicting liquid-solid flow. Three intermediate model formulations were developed 

to incorporate different model components related to the effect of the interstitial fluid, with the 

intention to study their specific effect on the liquid-solid flow predictions. Results for each 

model, assuming a smooth surface, were compared and documented with the experimental 

measurements performed by Alajbegovic et al. (1994) for dispersed liquid-solid turbulent flow 

in a vertical pipe. Overall, the intermediate Model 3, which is a modified version of the model 

of Bolio et al. (1995) that includes new formulations for 𝜇ௌ
∗  and 𝜆∗, as well as the source term 

𝑆௣ି௣, showed the best predictions for the liquid and solid mean flow properties compared to 

the other models. The predictions for the turbulence kinetic energy and the granular temperature 

were also improved for the case of Model 3. The predictions show that this model is capable of 

including an interstitial fluid effect that increases the turbulence kinetic energy due to the 

particle fluctuations through the term 𝑆௣ି௣. Lastly, it is able to follow the trend of the solid 

volume fraction experimental data, which shows a smooth decrease when moving towards the 

wall. The effect of particle wakes is included in Models 4 and 5. Only Model 5 results in 

improved agreement between the mean velocity and granular temperature predictions and the 
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experimental measurements in the core region, however the turbulence kinetic energy is over-

predicted. Model 5 considered the term  𝑆௣ି௣ as a sink of energy for the granular temperature 

and source of energy for the turbulence kinetic energy, as did Model 3.  

 

The modification and/or addition of some terms in the gas-solid model to include the effect 

of the interstitial fluid, improves the prediction of the solids volume fraction profile: the 

predicted value at the wall reduces by about 70% for Model 3 compared to Model 1. These 

results compared to the experimental data indicate that interstitial fluid effects may become 

more important when approaching the wall. The main differences between Models 1 and 2 

principally relates to the new versions of the solid viscosity 𝜇ௌ
∗  and granular temperature 

conductive coefficient 𝜆∗, and avoiding simplifications due to the low solids volume fraction in 

the transport equations, e.g., neglecting the fraction of the fluid pressure drop in the particle 

momentum equation 𝛼௦
డ௉೑

డ௭
 for 𝛼௦ ≈ 0. In a vertical pipe, this fraction relates to the buoyancy 

force on a particle, which becomes relevant when the particle is surrounded by a liquid, but can 

be neglected in a gas. In general, retaining this term implies the contribution of the pressure 

drop in the fluid and solid momentum equations depends on the solids volume fraction level, 

instead of applying the total pressure drop to the fluid equation as in Model 1. The same occurs 

for the drag coefficient, whose original version developed by Wen and Yu (1966) is a function 

of the product of the solid and fluid volume fractions, instead of only the solid volume fraction.  

 

Another aspect of the present research is the inclusion of the long-range interaction between 

particles through the fluid term 𝑆௣ି௣ in Model 2 as an energy sink of the granular temperature 

transport equation and as an energy source in the turbulence kinetic energy transport equation, 

represented as Model 3. This approach is opposite to the original proposal of Hadinoto and 

Curtis (2004); however, the simulations have demonstrated an improvement in the agreement 

with the experimental data. Hadinoto and Curtis (2004) suggested that particles transmit and 

increase their fluctuating energy by long-range interactions between them through the 

interstitial fluid, represented by the term 𝑆௣ି௣. However, the hypothesis of the present research 

is that the term 𝑆௣ି௣ does not represent a source of particle fluctuating energy, but rather a sink. 

In a dilute flow, where the distance between particles is typically large compared to their 
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diameters, the particle velocity fluctuations generate additional turbulence in the fluid from a 

long-range perspective, which is dissipated by the fluid before another particle can feel it. In 

addition, fluid-particle interactions are expected to differ in gas-solid and liquid-solid flow 

cases. The larger density and molecular viscosity of a liquid compared to a gas may imply lower 

particle-particle collision frequencies and lower collision velocities. This in turn suggests that 

the granular temperature dissipation through inelastic particle-particle collisions should be 

considerably lower for liquid-solid flow compared to gas-solid flow. This reasoning agrees with 

the granular temperature source terms predicted by Model 3 and plotted in Figure 4.16, which 

shows that the source of the granular temperature 𝑇 in the log-law and outer regions is mainly 

due to production 𝑃்  and interactions with the fluid fluctuating velocity field given by the 

modulation term 𝐼். The sink or destruction of the granular temperature is mainly due to the 

𝑆௣ି௣ term and the diffusion 𝐷் , with a very small contribution due to the inelastic particle-

particle collision 𝛾. In the viscous sub-layer, 𝐷்  is the main source term of 𝑇 and the sink term 

is mainly due to 𝑆௣ି௣ and 𝐼். The term 𝑆௣ି௣  could be interpreted as a modulation term due to 

the fact that it exchanges energy between the fluid and particle fluctuation fields. 

 

From a balance of the source terms of the granular temperature equation, the diffusion term 

plays an important role, especially in the viscous sub-layer. This accords with the principles of 

the kinetic theory of gases, as it explains the transfer of thermal energy for gas flow in a pipe. 

The addition of the new term 𝑆௣ି௣ in turn dramatically changes the magnitudes of the other 

source terms, as can be observed in Figure 4.16 compared to Figure 4.15; however, the shape 

remains similar and diffusion remains dominant in the viscous sub-layer. Overall, the models 

based on the KTGF are not able to reproduce some important features of the experimental data, 

e.g., the correct level of the particle velocity and the zero solids volume fraction at the wall. As 

pointed out previously, there is a close relationship between the value of 𝛼௦ and 𝑇, hence, 

improving predictions for one variable would imply better predictions of the other.   

 

The analysis of the five model formulations was performed with the intention to evaluate 

the contribution and relevance of each new source term with respect to the experimental 

measurements. For example, for the budget of the turbulence kinetic energy, the behavior of 



71 
 

the production and dissipation rate terms changed in magnitude, but retained the same shape as 

for single-phase flow even with the addition of new source terms, as can be noticed in Figure 

4.18 to Figure 4.20. Based on the budget analysis for the 𝑇 and 𝑘 transport equations, it can be 

concluded that the turbulence modulation and the new term 𝑆௣ି௣ are dominant, and contribute 

to closer agreement with the experimental measurements, whereas the terms due to collisional 

fluid stress 𝐺 and particle collisions 𝛾ி௄ா் are negligible. 

 

Based on a careful analysis of the predictions for the mean variables and budget terms, 

Model 3 gave the closest agreement with the experimental data. The final part of the study 

examined its performance for different mass flow rates (or mass loadings).  The results were 

mixed. The predictions for the mean velocities were consistent for all mass flow rates. However, 

other variables, such as the granular temperature, showed a dependence on the mass flow rate: 

the discrepancy between the predicted values and measurements increased as the mass flow 

rate decreased. Similar discrepancies were observed for other variables, which may indicate a 

deficiency is the present model formulations. 

 

5.4 Future work 

 

The present research has identified the following topics that could be addressed in the future to 

further advance the TFM for prediction of liquid-solid flows: 

 

1. Investigation of novel models to better predict the wake effect in liquid-solid flow, 

opposed to using formulations developed for gas-solid flow.  

2. The implementation of improved boundary conditions. The popular model of Johnson 

and Jackson (1987) was developed for gas-solid flow, but as was demonstrated in the 

present work, liquid-solid flow includes addition physics, which may imply the need 

for modification of the boundary conditions. 

3. The need to develop an improved formulation for the  𝑆௣ି௣ term and the drag coefficient 

𝛽 for applications in liquid-solid flows. 
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4. The lack of agreement between the predicted solids volume fraction profile and the 

experimental measurements in the near-wall region suggests that solving the solids 

volume fraction profile from the particle pressure equation may not be appropriate. A 

more complete assessment of the radial force balance for the solids phase may be 

required.   

5. The additional forces characterizing the liquid-particle interaction, such as virtual mass, 

which are neglected in the present work may be important for different flows, such as 

when the particle density is much lower. 

6. The anisotropy of the turbulence in the wall region requires the use of a second-moment 

closure. This would also have significant implications for the turbulence modulation 

terms.  

7. The present study clearly shows that the granular temperature is insufficient to include 

all of the particle fluctuations. The turbulent motions of the particles would be better 

predicted using an appropriate turbulence model, such as the eddy viscosity approach 

based on a 𝑘 − 𝜀 model for the particle field. A relevant reference is the study of 

Krampa (2009).  

8. In dense slurries, a higher solids volume fraction generates contact between particles, 

which develops frictional forces that are not considered in a dilute case. The additional 

stresses generated by friction forces must be analyzed to extend the capabilities of 

simulation for dense slurries.  
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APPENDIX 

 

This appendix contains the algorithm flowchart of the in-house code used for performing 

numerical calculations in the present research work. The code is developed in FORTRAN and 

allows simulation of single-phase or multiphase flow, turbulent or laminar and in pipe or 

channel. The code gives flexibility to add additional features from different models by 

modifying specific sections of the code and declaring the respective new variables at the 

beginning.  
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Figure A.1: In-house code algorithm flowchart. 

 


