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ABSTRACT

This thesis presents a self-restored current-mode CMOS multiple-valued logic
(MVL) design architecture which consists of an input block, a control block, and
an output block. A r-valued logic function to be implemented by this architecture is

expressed in a sum of r - 1 binary logic functions, j • Vj where j is from 0 to r - 1.
That is, each binary function has an unique value for logic high. The binary logic
functions are in sum-of-product (SOP) form, where a product term (PT) consists of

multiple and operations on up-literal operators and the sum is an or operation. For
a given MVL function, the input block implements up literal operations with current

mirrors and thresholds. The control block implements the r - 1 binary functions.
The control signals from the control block turn on/off switches in the output block
to generate the desired output signals directly from the current sources.

According to this architecture, the sum operation of the r -1 binary functions is an

arithmetic sum and the min operation between j and Vj is implemented by properly
connecting outputs of the control block to the switches - no extra transistors are

required for these operations in a current-mode design. Also the input block functions
as a MVL-binary converter and the control block is a voltage-mode binary logic circuit
and therefore, they can be used as interfaces to external binary logic circuits without
extra MVL-binary converters. The average transistor count of resulting circuits is 1.1

to 2.5 times smaller than that of other operator-based MVL designs without sacrificing
speed and power. Variations to the architecture that make use of the arithmetic sum

and diJJ in the input block and output blocks can further reduce the circuit size.

The self-restored MVL architecture allows MVL synthesis using a binary logic
synthesizer. A computer program was developed to work together with a binary logic
synthesizer to generates an area-optimized circuit for a given MVL function according
to the self-restored MVL design architecture. An additional computer program was

also designed to automatically derive equivalent binary logic circuits for a given MVL
function for comparison purposes.

This thesis also proposes a new VHDL library for high-level simulation ofmultiple­
valued Current-Mode CMOS Logic (CMCL) designs supporting faster verification of

synthesized results without using a time-consuming circuit simulator such as SPICE
or Spectre. The library has basic MVL entities (behavioral), complex MVL entities

iii



(behavioral and structural) as well as standard binary logic gates. A bus resolution
function working cooperatively with the basic MVL entities allows MVL logic levels

(currents) in individual connections to be displayed. Design examples of a quaternary
full adder and bit-slice circuit of a transversal matched filter are presented along
with both VHDL and circuit simulation results. The design examples verify that
the CMCL library allows the VHDL simulation of current-mode CMOS logic using
Leapfrog. Spectre was used to confirm that the VHDL simulations were correct. The
circuits were also verified by importing the CMCL library into VSS and performing
the simulation.
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1. Introduction

As the result of the advance of integrated circuit (Ie) fabrication processes and

the development of electronic design automation (EDA) tools, the design complex­

ity of very large scale integrated (VLSI) circuits has increased dramatically over the

past decade. Together with the increasing complexity of VLSI circuits many prob­
lems arose, such as higher percentage of interconnection area, routing difficulty and

packaging. Improper interconnections not only result in larger chip area but also

cause timing and cross-talk problems. These problems are more prominent in deep­
submicron designs. Partial solutions to these problems include multiple metal layers,

flip-chip, etc. A deep submicron process normally has four to six metal layers. For

example, LSI Logic G 11 O.18p,m technology provides five metal layers.

It is well known that multiple-valued logic (MVL) circuits are suitable for reducing
the interconnecting complexity [1, 2]. Unlike binary logic, MVL allows more than

two values to exist in a logic system. Aside from the philosophical meaning of these

logic values, an immediate benefit is improved overall information efficiency. Each

r-valued signal can carry log2 r times the information available in a binary signal.

Wiring area is reduced on a logarithmic scale with the increase of r. Referring to

Figure 1.1, the wiring area of a 4-valued logic design could be log24 or (log24)2
times smaller. Moreover, for a r-valued n-variable function, f(xo, Xl,' . " xn-I), where

X· E R = {O 1 2 ... r - 1}z , " ,

there are rrn different possible combinations of outputs. For example, if r = 4,

f(xo, xI) can implement 442 possible functions. It has been therefore believed that

1
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Figure 1.1 Reduction of wiring area by using MVL.

multiple-valued logic is advantageous in reducing the number of interconnections and

attaining higher functional density.
In fact, the optimal logic radix in terms of implementation cost were studied by

several researchers before.

• According to G. Abraham [3], optimal logic radix is equal to the Euler constant,

e:=::::2.71S.

• According to S. L. Hurst [4], the circuit implementation cost is decreasing with

increasing logic radix.

• According to C. M. Allen and D. D. Givone [5], the optimal radix is greater
than e.
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Their conclusions are quite different since they are based on different assumptions,
but they all agree that the optimal logic radix is greater than 2. In practice the

value of r must be an integer. This implies that the radix should be at least 3, i.e.,
ternary logic. Ternary logic circuits can be interfaced with binary logic circuits by
using two binary bits to represent a ternary value. For example, for ternary logic
values {0,1,2}, 002 represents 03, 012 represent 13, and 102 represents 23; for ternary

logic values {-1,0,1}, 002 again represents 03, 012 represent 13, and 102 represents

-13. Using these schemes (two of many), one combination of two binary bits, i.e.,
112 in this case, is not assigned to any logic value. In order to allow full utilization of

the available functions, it is preferable to have radix, r, be a power of 2. Higher radix
enables more information per bit in MVL designs, but the noise tolerance limits the

value of r. No matter whether a current-mode design approach or a voltage-mode
design approach is used, the most practical choice of the radix is r = 4. The next

most interesting radix is r = 8.

As far as CMOS dominates IC technologies, current-mode CMOS logic (CMCL)
appears to be the natural choice for MVL designs since the radix is less limited by
the combination of device and supply properties [1]. CMCL is able to implement the
arithmetic sum and subtraction by simply connecting wires together by Kirchhoff's

Current Law (KCL). That is, no additional transistors are required for implementing
the arithmetic operations. This feature of CMCL is very useful for further reducing
the chip area of arithmetic processing chips [6, 7].

Voltage-mode CMOS logic (VMCL) is good for MVL memory design [8]. In 1997,
Intel uriveiled the first two bit/cell StrataFlash™ memory device based on their

multiple-levels-per-cell (MLC) technology [9, 10]. It is reported that the 64 Mbit two

bit/cell Intel StrataFlash memory is just 5% larger than the 32 Mbit one bit/cell
device on the same standard 0.4J,l ETOX™ flash memory process at the same yields,

delivering on the promise of 2x the bits in Ix the space and setting a new cost paradigm
for flash memory devices. The current StrataFlash series memory are manufactured



4

on Intel's 0.1811 and 0.2511 process technologies with 2.7V to 3.6V Vee operation.

Summing up the above, the major reason for using MVL circuits in VLSI is that

MVL can make better use of the chip area through increased functional density and

reduced number of interconnections. The reduced number of interconnections also

implies fewer pins needed on IC packages and reduced touting complexity. Consid­

ering the increasing need of arithmetic processing chips, there should be substantial

room for MVL circuits to compete with binary circuits.

1.1 Research Motivation

Despite the potential advantages of MVL design and recognition of the optimal
radix, today's digital designs are still dominated by binary logic. Investigation into

the current MVL designs shows there exist problems hindering MVL from growth,
such as deteriorating signal integrity and low noise immunity. It has been therefore

difficult to convince IC designers to explore MVL alternatives as long as CMOS

dominates the IC industry. These drawbacks must be overcome.

The most significant reason for slow progress in MVL VLSI is tighter device tol­

erances and reduced noise immunity. Unlike the currently dominant voltage-mode
CMOS binary logic, MVL circuits are not self-restoring. It is necessary to insert

a logic-level restorer after several stages to recover signals. The number of stages

depends on various factors such as fabrication processes, design architecture and op­

erators. There has not been a general rule to determine when to use a logic-level
restorer. The extra level-restorers increase the implementation cost of CMCL MVL

significantly and neutralize the benefit of MVL design. This is against the MVL

researcher's recognition of optimal logic radix. Therefore, they should be able to

reduce the circuit size of MVL designs. One way to accomplish it is to remove the

level- restorer.

CMCL MVL signals are not self-restored due to the limitation of the range of
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the operating current and the sloped 1-V characteristic of the basic elements. The

first factor can be eliminated by keeping the total input current to a node below the

maximum current, but the second factor exists as a property of the basic elements.

The overall performance of a CMCL design can be greatly improved if the problem
can be resolved.

The problem of self-restoration can be tackled from four levels: device level, circuit

level, gate level and architecture level. A realization of this idea at the device level is

the Multi-Step Function (MSF) MOSFET [11] with a stair-like J-V curve. This device

can be used as a current mirror or as a single transistor quantizer to construct robust

multiple-valued CMCL circuits. However, the MSF MOSFET prototype is quite large

(500j.lmx500j.lm) and fabrication of this device requires process modification. Also,
lack of a SPICE model for the MSF MOSFET means that it cannot be simulated

using SPICE without using an equivalent circuit.

A study of this problem at the circuit level is disclosed in [12]. It can be seen

that the different elements cause different levels of the adverse effect. For example,
threshold elements cause little problem with logic levels. A constant element also

functions as a 'constant' current source in most cases. The most problematic element

is the current mirror. Although other types of current mirrors, such as cascode current

mirrors and active current mirrors provide better signal integrity than a simple current
mirror does, the signal still deteriorates stage by stage. The active current mirror

also increases circuit size significantly. The MVL operators constructed by using the

CMCL elements also suffers different degrees of signal deterioration. For example,
output signals from min, max, and cycle operators are the worst among the MVL

operators. tsum and modsum operators are worse than the literal operators. The

problem caused by current mirrors must be compensated for.

The problem of self-restoration appears to be best solved at the architecture level.

In 1994, Chang, et al. [13] proposed a hybrid-mode CMOS MVL architecture to

attack this problem. The average cost of circuits using Chang'S scheme seems lower
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than other synthesis schemes as mentioned in the paper. As MVL circuits will not

survive unless they possess an overwhelming advantage over binary logic circuits or

at least have no fatal drawbacks, it is important to evaluate whether there is such

an advantage or drawback of a MVL design architecture. Chang's scheme is not

comparable to binary implementation in cost. Output signals are vulnerable because

they are the difference of a P-type current mirror output and a N-type current mirror.

Speed is slow as P-type thresholds are used. Also, there is static power consumption
when inputs are logic O.

The lack of appropriate EDA tools also retards the progress ofMVL. The method­

ology of high-level design and synthesis is widely used in the binary design world, but
the EDA tools for MVL designs are still in their infancy. MVL researchers have de­

veloped a number of algorithms and programs for minimization of MVL functions.

In general, they are following in the same footsteps as the binary logic to develop
synthesizers for MVL designs. A variety of minimization techniques have been pro­

posed in the past. For circuit implementation of MVL designs these techniques are

all based upon implementation-oriented multiple-valued algebra. The two well-known

implementation-oriented multiple-valued algebras were proposed by C. M. Allen, et
al. [5, 14] and Z. G. Vranesic, et al. [15] separately. Allen, et al. also proposed a

minimization technique in the same paper based on min, max, and literal opera­

tors. In the Vranesic algebra, MVL functions are expressed and minimized by using
min, max, and cycle operators. The definitions of these operators are given in Sec­

tion 2.3.2. One of the most notable CAD tools is HAMLET (Heuristic Analyzer for

Multiple-valued Logic Expression Translation) developed by Yurchak and Butler [16].
Some recent developments are proposed in [17, 18, 19, 20, 21, 22, 23].

Nowadays, most MVL researchers [24, 25] are generally of the opinion that MVL

cannot survive on its own and has to coexist with binary logic. It is quite normal to use

binary gates inside a MVL circuit to generate control signals or outside the circuits to

interface with binary logic circuits. This implies that mixed-radix system architecture
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will be a future trend of MVL designs. For a mixed-radix design, it is essential to allow

communications between binary and MVL subsystems. Two bus structures to handle

the interface between MVL and binary circuits were proposed by Z. G. Vranesic [4, 26]:
a binary bus structure and a MVL bus structure. Figure 1.2 is a schematic diagram
of the binary bus structure. Figure 1.3 is a schematic diagram of the MVL bus

structure. Both bus structures can have the MVL circuits implementable by the

same fabrication process used for binary logic circuits, thus minimizing process-related
overhead. Therefore the use of MVL circuits in VLSI design must consider the ease

of interfacing MVL sub-systems with binary sub-systems. To this end, EDA tools

for MVL designs must incorporate capabilities to handle both the MVL and binary
logic.

Considering the fact that a variety of binary logic synthesizers, such as Synopsys
Designer Analyzer and Cadence Ambit, are commercially available and well accepted
in the industry, it is interesting to see if those binary logic synthesizers can be ex­

tended to MVL synthesis. For example, the use of the Synopsys Design Analyzer for
structural synthesis of VHDL description of MVL designs was studied in [12]. The

use of binary logic synthesizers for MVL synthesis also allows us to explore the use

of a single tool for a mixed-radix logic design.

Since MVL designs involve multiple logic levels, it was inevitable to verify them

using analog simulators. Circuit simulators such as SPICE are widely available to­

day. A major inconvenience of using a circuit simulator is the time required to

perform the simulations. A more convenient method would be to use a high-level
hardware description language (HDL) for circuit designs so that functional simu­

lation of the circuit description can be performed. Nevertheless, both VHDL and

Verilog were not designed for analog simulation as a primary requirement. The Ac­

cellera Verilog-AMS Technical Subcommittee and the IEEE 1076.1 Working Group
have been working on analog and mixed-signal extensions to both languages. By

taking advantages of VHDL's flexible value system and customizable bus resolution
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function [27, 28, 29, 30], a library which allows VHDL simulation ofmixed CMCL and

binary designs was proposed in the author's Masters thesis [12]. The library in [12]
suffers from two drawbacks. First of all, the resolution function is so complex that

maintenance and improvement are extremely difficult. A complex resolution function
also slows down simulation speed. Secondly, the switch models are not robust enough
to handle designs with more than two series-connected switches. It is therefore desir­

able to redesign the library to further increase the simulation speed while adding the

capability to deal with various circuit topologies.

1.2 Research Objectives

The objectives of this thesis are to address the aforementioned problems and to

propose solutions to the problems.

• To reduce the circuit size of MVL designs.

• To propose a self-restored MVL design architecture.

• To use a binary logic synthesizer for synthesis of the self-restored MVL design
architecture.

• To design a new VHDL library for high-level simulation of mixed CMCL and

binary logic designs.

1.3 Outline of Thesis

Chapter 2 gives the background material of MVL including multiple-valued alge­
bra, notation, definitions, and circuit design.

Chapter 3 describes the self-restored design architecture and associated theorems.

Design examples are also provided in this chapter to demonstrate the minimization

scheme with the self-restored design architecture.
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Chapter 4 describes the approaches of using the arithmetic sum and dill operators
to reduce circuit size of the self-restored current-mode CMOS MVL design.

Chapter 5 presents two computer programs, WMS and M2B. The WMS program,

working together with a binary logic synthesizer, is used to synthesize a MVL function

based upon the self-restored design architecture. The M2B program, which is modified

from the WMS program, is used for generating an equivalent binary logic circuit for
a given MVL function.

Chapter 6 describes a VHDL library by which synthesized results can be verified

using a VHDL simulator. It starts with the library structure, followed by the detailed

design of VHDL packages, bus resolution function, circuit functions, operator func­

tions, and binary function. Most importantly, interaction between resolution function

and circuit functions to determine currents in interconnections will be described.

Chapter 7 compares the self-restored MVL design with other MVL design schemes

and binary logic in terms of area, speed and power dissipation.
Thesis conclusions and potential future research work are given in Chapter 8.



2. Multiple-Valued Logic

MVL originated from doubt about the so-called Law of the Excluded Middle by
ancient Greek philosophers. However, this topic had been only within the scope of

philosophy [31, 32] until in the early twentieth century when mathematicians began
devising multiple-valued algebras [33, 34, 35]. A variety of circuit realizations of

MVL design have been widely discussed over the past three decades. The application
of CMCL to MVL design has received more attention than VMCL in recent years.

CMCL design allows higher radix and better noise margin than VMCL implementa­
tion of MVL functions.

In this chapter, fundamental knowledge of MVL is introduced with emphasis on

the implementation-oriented multiple-valued algebra and notation, as well as CMCL

circuit elements and design.

2.1 Definitions

In order to explain the multiple-valued algebra and MVL design, some definitions
are given in this section. It should be noticed that there are no standard notation and

definitions ofMVL operations. In the following definitions, it is assumed that a, b, c, k

are elements of a finite set, defined as R = {a, 1, ... , r
- I} where r > 1, and a ::; b

when they appear in a same definition. Also, it should be noted that Definitions 2.4

to 2.11 are unary operators while Definitions 2.12 and 2.13 are binary operators.

Definition 2.1 A r-valued variable X can take on values from R = {a, 1,···, r -I}
where r > 1.

11
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Definition 2.2 A r-valued function F of n variables is a mapping

(2.1)

where Xi is a r-valued variable and n 2: 1.

Definition 2.3 A r-valued-input binary-output function F of n variables is a map­

ping [36]

(2.2)

where Xi is a r-valued variable, B = {O, I}, I 2: 1, and n 2: 1.

Definition 2.4 A clockwise cycle operator, denoted as X4, is defined as [15, 33]:

X4 = (X + c) mod r (2.3)

Definition 2.5 A counter-clockwise cycle operator, denoted as X?, is defined as [15]:

X? = (X - c) mod r (2.4)

c r-c

Comparing Definition 2.4 and Definition 2.5, it can be found that X� = X -t because

(X - c) mod r = (X - c + r) mod r.

Definition 2.6 A literal of X, denoted as ax-, is defined as [14]:

aXb = { r - 1 when a � X � b

o otherwise.
(2.5)

Definition 2.7 A complement of literal of X, denoted as aX", is defined as [37):

- {r
- 1 when X < a or X > b

aXb=
o otherwise.

(2.6)
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It should be noted that 0xr-l = r - 1 and 0Xr-l = O. That is, aXb and aXb are

constants when a = 0 and b = r - 1.

Definition 2.8 An up literal of X, denoted as
aX, is defined as [38]:

{ r - 1 when X > a
ax=

-

o otherwise.
(2.7)

Definition 2.9 A complement of up literal of X, denoted as aX, is defined as [39]:

_ {r - 1 when X < a
aX=

o otherwise.
(2.8)

Definition 2.10 A down literal of X, denoted as x', is defined as [39]:

Xb = { r - 1 when X � b

o otherwise.
(2.9)

Definition 2.11 A complement of down literal ofX, denoted as X", is defined as [39]:

- {r
- 1 when X > b

Xb=
o otherwise.

(2.10)

It can be seem from the definitions that all of the literal operators are actually r­
valued input binary output mapping functions. The up literal and down literal are

both . threshold literals [38].

Definition 2.12 A min operation, denoted as ., is defined as [5]:

{X when X < Y
X.y=

-

Y otherwise,
(2.11)

where X and Yare two r-valued variables.
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Definition 2.13 A max operation, denoted as +, is defined as [5]:

{X when X > Y
X+Y=

-

Y otherwise,
(2.12)

where X and Yare two r-valued variables.

Definition 2.14 A product term (PT) is min operations of a non-zero constant in

R and a set of unary operations on Xl, X2,' • " Xn where an unary operations is any

one of Definitions 2.4 to 2.11.

Definition 2.15 A literal product term (literal PT), denoted as

(2.13)

is defined as a min operations of a set of literals and complement of literals, where k

is a non-zero constant in R, aiXfi is either aixibi or <x», and. represents the min

operation.

Definition 2.16 A literal minterm is a product term of the form

(2.14)

which contains each variable of a function F.

Definition 2.17 Two literal minterms, ka • alXlal • a2 x2a2 •.•.• anXnan and kb•
blXl b: • b2 X2b2 •...• bnXnbn where ka and kb are non-zero constants in R, are said

to be distinct if at least one aiXiai =1= b;Xib; regardless of ka and kb. There can be

a maximum of r" number of distinct literal minterms for an-variable r-valued logic
function [40].

For 2-variable 4-valued logic functions, the maximum number of distinct literal minterms

is 42 = 16.
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2.2 Multiple-Valued Algebra

Multiple-valued algebras were developed independently by J. Lukasiewicz [35] and
E. Post [33] in the 1920's. According to L. Bolc [35],

"Lukasiewicz made an attempt to modify the propositional calculus so as

to achieve a kind of conceptual synthesis of determinism and indetermin­

ism. This gave rise to three-valued logic.".

Post developed the first functionally complete many-valued logic of order n [33].
Unlike Lukasiewicz, however, Post was not led by any philosophical motivations [35].

The usage of multiple-valued algebra in circuit design emerged just three decades

ago. The reason is that neither the original definition of Post algebra nor the mod­

ified definitions [34, 41] are implementation-oriented. In order to put MVL to prac­

tical use, several implementation-oriented algebras have been formulated, such as

the algebra of Vranesic et al. [15], and the algebra of Allen and Givone [5]. The

implementation-oriented multiple-valued algebras have similar definitions as that of

Boolean algebra. For example, the implementation-oriented multiple-valued algebra
of Allen and Givone uses min, max and literal operators. It can be seen the axioms

shown in Table 2.1 hold for any r-valued variables, X, Y and Z.

From definition of the max operator it can be seen that

(2.15)

if and only if a = al • a2, b = bl + b2, a2 - 1 :::; bl, and al - 1 :::; b2. Similarly, from
the definition of the min operator it can be seen that

(2.16)

if and only if a = al + a2, b = b1 • b2, al :::; b2, and a2 :::; bl. Eqs. 2.15 and 2.16 are the

major rules in the algebra of Allen and Givone for minimization. The multiple-valued
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Table 2.1 Axioms for r-valued variables X, Y, Z of a multiple-valued algebra.

closure

idempotent
commutative

associative

absorption
distributive

null element

X+YER

X+X=X

X+Y=Y+X

(X + Y) + Z = X + (Y + Z)
X + (X. Y) = X

X.YER

X.X=X

X·y=y.X

(X. Y) • Z = X • (Y. Z)
X. (X + Y) = X

X + Y • Z = (X + Y) • (X + Z) X. (Y + Z) = X • Y + X • Z

universal element X + (r - 1) = r - 1

X. 0= 0

X. (r -1) = X

algebra of Allen and Givone is equivalent to Boolean algebra when r is 2. However,
the only meaningful unary operator is the complement in Boolean algebra. Multiple
unary operations can be used in a multiple-valued algebra. There are r" possible
definitions for unary operations in theory. Some of the unary operators were given
in Definitions 2.6 to 2.11. In order to simplify the design task and to take advantage
of the Ie fabrication process, other operators like nand, nor, xor and xnor are also

used in binary logic designs even though not, and and or operators are functionally
complete. MVL design also uses additional operators for the same reason. Two

additional operators, tsum and modsum, are defined in 2.18, and 2.19.

Definition 2.18 A tsum (truncated sum) operator, denoted as I±I, is defined as [42]:

tSUn1(X1,X2,'" ,Xn)

min(Xl + X2 + ... + Xn, r - 1) (2.17)

It should be noted that the tsum operation and the max operation give the same

result if and only if only one Xi E R = {O, 1, .. " r - 1} is not zero at a time.
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Definition 2.19 A modsum (modulus sum) operator, denoted as EEl, is defined as [43]:

(2.18)

It can be seen from Definition 2.19 that the modsum operator corresponds to the xor

operator in binary logic when the logic radix r = 2.

There are rr2 possible definitions of binary MVL operators. Other binary MVL

operators have been also proposed in the past (Appendix B), but only the above

operators will be used in this thesis. An important MVL theory is also given in

Theorem 2.1.

Theorem 2.1 Any multiple-valued logic function F of n variables can be expressed
in a max-of-products (MOPs) form [5]:

F = 2: + Ck. aklXlbkl • ak2X2bk2 ••.•• aknXnbkn
k

(2.19)

The expression stated in Theorem 2.1 is not the only form to represent n-variable

r-valued logic functions. For example, a more general form using both literal and

complement of literal was proposed in [37]. The max operations can be also replaced
with tsum [44, 45] or modsum [43] operations. Another form that uses arithmetic sum

in place of the max operator will be described below.

Lemma 2.1 Any n-variable r-valued logic function, F, can be expressed with a

maximum of r" number of distinct literal minterms in a MOP form.

Proof: Let (aI, a2, .

", an) be an element in R" such that F(al' a2,' . " an) = k where

k E R. Then F can be represented by

(2.20)
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This expression is a MOP form. The maximum number of distinct literal minterms

is r" by Definition 2.17.

Definition 2.20 Two n-variable r-valued functions F and G are disjoint if and only
ifF. G = o. In other words, there is no (aI, a2, ... , an) E R" such that

(2.21)

Lemma 2.2 For disjoint MVL functions FI, F2 ... Fn

(2.22)

where + is an arithmetic sum.

Proof: By Definition 2.20 there does not exist a (aI, a2, ... , an) E R" such that more

than one F, =1= 0 at a time where i E {O, 1,···, n} since F1, F2,···, E; are disjoint.
Therefore, Fl + F2 + ... + Fn = FI + F2 + ... + Fn = Fi or FI + F2 + ... + Fn =

FI + F2 + ... + Fn = 0 for any (aI, a2,···, an) ERn. As a result, the max operations
on F; functions give the same result as the arithmetic sum operations do.

Lemma 2.3 Distinct literal minterms are disjoint.
Proof: Assume m.; = ka• alXl al • a2 x2a2 •...• anXn an and tru, = kbb1Xl b1 • b2X2b2 •
. . . • bnXn bn

are two distinct literal minterms where ka =1= 0 and kb =1= o. Then there is

at least one ai =1= b, by Definition 2.17; i.e., there does not exist a (aI, a2, ... , an) E R"

such that ma =1= 0 and mb =1= o. Therefore, m.; and mb are disjoint.

Theorem 2.2 Any multiple-valued logic function F of n variables can be expressed
in an arithmetic-sum-of-products (ASOPs) form:

F = L+ Ck. aklXlbkl • ak2X2bk2 •...• aknXnbkn
k

(2.23)
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where Ck, aki' bk; E R.

Proof: An-variable r-valued logic function can be represented with t" distinct literal
minterms by Lemma 2.1. Since distinct literal minterms are disjoint by Lemma 2.3,
the max operations on the literal minterms can be replaced with arithmetic sum

operations by Lemma 2.2.

Lemma 2.4 aXb = aX • Xb and aXb = aX + X",

Proof: The proof is self-evident by Definitions 2.6 to 2.11. aXb =
axr-l .0Xb =

ax. x», and aXb = aXr-l +OXb = aX +Xb.

Lemma 2.5 kX = Xk-l and Xk-1 = kX for k 2': 1.

Proof: By Definitions 2.8 and 2.11 the up literal is equal to its corresponding com­

plement of down literal. By Definitions 2.10 and 2.9 the down literal is equal to its

corresponding to complement of up literal.

Theorem 2.3 Any many-valued logic function F of n variables can be represented
with up literal, min and arithmetic sum operators.
Proof: By Lemma 2.4, every literal in Eq. 2.23 can be represented with min operation
of a up literal and a down literal. By Lemma 2.5, every down literal can be replaced
with a complement of up literal. Therefore, Eq. 2.23 can be expressed in terms of up

literal, min and arithmetic sum.

As will be described in Chapters 3 and 4, Theorems 2.2 and 2.3 are important to
current-mode MVL design as the arithmetic sum operation can be realized by simply
wiring signals together according Kirchhoff's Current Law (KCL). In other words,
the arithmetic sum operation does not require additional circuit elements as opposed
to max operators.
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2.3 Circuit Realizations of Multiple-Valued Logic

Based upon the multiple-valued algebra defined in the previous section, different

circuit implementations have been proposed in the past. The first successful approach
to realization ofMVL operators was using integrated injection logic (I2L) circuits [46].
This technology led to a commercial multiple-valued IC. Unfortunately, the lack of

acceptance of binary 12L directly caused the failure ofmultiple-valued 12L design [47].
Nowadays, multiple-valued circuits designers generally agree that current-mode logic,
in particular that which uses CMOS technologies, is the most appropriate one for

multiple-valued circuits [1].
Voltage-mode logic is not chosen as the potential candidate because it limits the

available radix. Voltage-mode logic will be increasingly difficult to fabricate due to

device tolerances and noise margins at low voltages. Despite this, an interesting

possible exception is the applications of the neuron MOS (vMOS) transistor [48, 49].
With the exception of vMOS, current-mode CMOS logic will be the mainstream of

MVL design since its range is less limited by the combination of device and supply

properties [1].
In either CMCL or current-mode BiCMOS logic, two adjacent logic levels are

normally different by lOj.lA or 20j.lA, defined as the base current, 10, For example, if

the base current is 20j.lA, then logic 1 is represented by 20j.lA(Io), logic 2 is represented

by 40j.lA(210) , and so on. For higher radix (r 2: 4) MVL circuits, 10j.lA is usually
used as base current [50], but considering noise immunity and process variations, it

is preferable to use 20j.lA as the base current for ternary or quaternary logic. This

thesis focuses on quaternary logic with the base current 10 equal to 20j.lA.

2.3.1 MVL Circuit Elements

The basic current-mode building elements for analog VLSI, including constants,

current mirrors, thresholds, switches, and sum [51, 52, 53], have been successfully
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applied to current-mode MVL operators in the past using 3J1,m or 5pm technolo­

gies [42, 54]. They are listed in Figure 2.1. The detailed descriptions of the circuit

elements are covered in Appendix A.

It should be noted that an N-type threshold function as the up literal, while a

P-type threshold function as the down literal. A current source is a constant. Sum is

not shown in the figure as it is realized by simply wiring signals together.

2.3.2 Circuit Realization of MVL Operators

A variety of circuit realizations of MVL operators using the basic CMCL circuit

elements have been proposed, fabricated, and tested in the past [17, 55, 56, 57, 58].
Two examples are shown in Figure 2.2. Figure 2.2(a) is amultiple-input min operator.

Figure 2.2(b) is a multiple-input tsum operator. Circuit implementation of other

operators and their detailed description are given in Appendix B. It should be noted

there are no standard symbols for the MVL operators.

2.4 Multiple-Valued Logic Design

MVL design varies dramatically with choice of logic operators. Depending upon

a set of logic operators, the resulting circuit and the minimization procedure are very

different. C. M. Allen et al. [5] used a set of operators consisting of min, max and

literal. Z. G. Vranesic et al. [15] used a set operators consisting of min, max and

cycle. Researchers have compared several sets of MVL operators in order to obtain

the most efficient expression for a given MVL function. In [17], comparison among the

following three sets of operators has been made for 2-variable 3-valued logic functions.

Set A: literal, min, and tsum.

Set B: literal, complement of literal, min, and tsum.

Set C: literal, cycle, complement of literal, complement of cycle, min, and tsum.
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Figure 2.1 CMCL circuit elements



23

r----------------------- ,
I

I

r--------------------------,
I I
I I

. . . . . :
I
I
I

I

I
L �

I

L �

(a)

(b)

Figure 2.2 CMCL circuit realization of MVL operators. (a) Multiple-input min
operator. (b) Multiple-input tsum operator
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MVL design using different sets of operators can be more easily understood

through examples. Figure 2.3(a) shows an 2-variable 4-valued logic function mini­

mized using Set A. 6 PTs are required for realizing this functions as shown below:

F = (2.0XIO).(2.oXoO)I±J(2.2XI3).(2.oXoO)1±J
(1. °Xl0) • (1 .2X02) I±J (1.2X13) • (1 .2X02) I±J

(2. °Xl0) • (2 • 3X03) I±J (2.2X13) • (2.3X03) (2.24)

If Set B is used the same function can be expressed with 2 PTs as follows:

(2.25)

As shown in Figure 2.3(b), The function can be further minimized to a single PT

using Set C. The truth table on the left is 2. IXII, the truth table on the right is
3

Xo"""', and the. between the two truth tables is the min operator; i.e., the single PT

can be expressed as follows:
-- 3

F=2.IXI1.XO""'" (2.26)

By comparing the PTs required for implementation of all 332 functions, the results

F
3

Xo .......

Xo 0 1 2 3

0 (�2�) (2-- --£�l
__

J
'- -- --�
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__)
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1

2 1 1 1 1

3 2 2 2 2

•
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Figure 2.3 MVL design using different sets of operators. (a) Set A. (b) Set C.
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show that Set C provides a lower average and maximum number of PTs. However,
the minimization is not obvious using Set C. As a result, heuristic techniques have

been used to realize efficient circuits.

In [59] MVL functions are first expressed in a sum-oj-terms (SOTs) form as:

(2.27)

where T; is a logic term. For example, the 2-variable 4-valued functions shown in

Figure 2.4 can be expressed as follows:

(2.28)

The circuit realization of this equation is shown in Figure 2.5. This circuit includes

both MVL circuit elements and MVL operators (i.e., tsum). However, a systematic
approach to minimization was not mentioned in [59].

MVL functions can also be realized at the circuit level. In [13], Chang et al. pro­

posed a hybrid mode CMOS MVL architecture. According to Chang's architecture,
a given MVL function is expressed as an arithmetic sum of min-oJ-down-literal terms.
For example, a 3-variable 4-valued logic function, F = 2 • 1X12 • 3X1 • X21, can be

expressed as

(2.29)

Basically, Chang et al. use three subcircuits to implement a MVL function in this

form. As shown in Figure 2.6, subcircuit 1 is a simple current-mirror; subcircuit 2 is

a threshold comprised of a current source and a current comparator; and subcircuit

3 consists of a current mirror, two current sources and parallel-connected switches,
where one current source is connected to the input of the current mirror through
the switches and the other current source is directly connected to the output of the

current mirror.
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Figure 2.6 Subcircuits for Chang's design scheme.
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Figure 2.7 General architecture for Chang's design scheme.

Subckt 3

The general architecture of Chang's design scheme is shown in Figure 2.7.1 To

implement a MVL function, a current-mode MVL variable is duplicated by a subcir­

cuit 1. The number of subcircuit 1 elements corresponds to the number of variables

in a MVL function. The number of outputs of a subcircuit 1 is determined by how

many different literal terms are related to that MVL variable. For example, there

are two literal terms related to the variable Xo in Eq. 2.29. The input Xo should be

connected to a subcircuit 1 with two outputs. It should be noted that complement

Subckt 2

Subckt 2

lit should be noted that Figure 2.7 is modified from the one in Chang's paper so as to more

precisely match Chang'S synthesis scheme.

Subckt 3
Subckt 2
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of down literal and down literal are considered as the same literal term here. Each

output of a subcircuit 1 is connected with a subcircuit 2 input and converted into a

voltage binary signal. That is,

V;(X) = { binary high if X ;:::: i

binary low otherwise,
(2.30)

It should be noted that an output of a subcircuit 2 is actually a complement of
down literal. Each voltage binary signal from a subcircuit 2 controls a switch in a

subcircuit 3. Subcircuit 3 performs min operation on literal outputs from several

subcircuit 2. Therefore, an output of a subcircuit 3 is a min-of-down-literal. The

number of switches in a subcircuit 3 corresponds to the number of down literal terms

in a min-of-down-literal term. For example, a subcircuit 3 for Eq. 2.29 has four

switches. A N-type switch is used for a normal literal term, while a P-type switch is

used for an inverted literal term. Outputs from subcircuit 3 are then wired together to

perform arithmetic sum operation. The following equation is another example taken

from Chang's paper [13].

(2.31)

The circuit realization of this function is shown in Figure 2.8.

2.5 Summary

A r-valued logic system allows r" unary operators and r" binary operators. Unlike

Boolean algebra, MVL allows using multiple unary operators to implement a function

effectively. Some of the definitions and their circuit realization are given in this

Chapter. Other MVL operators and their current-mode CMOS circuits are described

in Appendix B.
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There are various approaches to implement MVL functions. MVL researchers have

compared several different sets of operators for minimal number of PTs for a given
set of MVL functions. Depending on the chosen set of operators, a MVL function

is expressed with different number of PTs and the minimization algorithms are also

different from each other.



3. Self-Restored Design Architecture - I

CMOS technologies have evolved dramatically over the past decades from 5J.lm
in the early 90s to 0.18J.lm in 2000. According to the 2000 edition of International

Technology Roadmap for Semiconductors (ITRS), 30nm technology will be the main­

stream process in 2014 [60]. The success of CMOS technology with binary logic design
is underlied by an important fact that for all input assignments there is always a path
from a voltage supply (VDD or Vss) to the output and that the full supply voltages
appear at the output. This feature leads to a fully restored or self-restored logic fam­

ily. By taking advantage of the CMOS technologies, total gate account for binary
logic design chips is breaking through 100 million.

However, it has been questionable that current-mode MVL design can be self­

restored in a cost-effective way. This chapter addresses the self-restored techniques
for current-mode CMOS MVL design. The theoretical basis will be described first,
followed by explanation of the self-restored design architecture. The self-restored

design architecture and one of its variants are described with examples. Other variants
using arithmetic sum and diff operators are discussed in the next chapter.

3.1
.

Theoretical Analysis
A conventional CMOS binary logic design is self-restored as outputs are either

connected to a voltage source through PMOS transistors or grounded through NMOS

transistors as shown in Figure 3.1(a). For example, Figure 3.1(b) is a typical 2-

input NAND gate. The output is connected to VDD through a PMOS transistor or

grounded through two NMOS transistors. In view of this fact the block diagram of a

31



(a)

VDD

PMOS Inl
Transistors

Out

In2

NMOS
Transistors

32

(b)

Figure 3.1 (a) The conventional CMOS architecture for binary logic designs. (b) 2-
input nand gate.

self-restored current-mode MVL design architecture should be similar to Figure 3.2

where output signals come directly from separate current sources through switches.

Since current sources can be turned on/off through series-connected switches, the

problem associated with a self-restored CMCL MVL design architecture becomes

how to design a control circuit and how to arrange switches. It is well known that

switches can be controlled using binary gates. Binary gates are preferable, as they

MVL Inputs
Control

Logic
MVL OutputSwitches

Figure 3.2 A block diagram that shows the concept of a self-restored MVL archi­
tecture.
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are self-restored and do not have adverse effects on output signal integrity. As well,
binary design can be synthesized by using existing binary logic synthesizers such as

Synopsys Design Compiler™. This further implies that less effort will be involved

with the MVL synthesis. In order to make use of binary gates in the self-restored

design architecture, current-mode MVL inputs signals must be converted to voltage­
mode binary signals. It can be seen from the above preliminary analysis that a self­

restored current-mode MVL design architecture should consist of three blocks: an

input block for converting MVL signals to binary signals, a control block consisting
of binary gates for controlling switches, and an output block consisting of switches

and current sources where each current source connected with a switch. The fan-out

problem can be solved by duplicating current sources in the output block. Figure 3.3

shows a general schematic. The operators such as min, max and tsum must not

be included in the architecture because they adversely affect the output signals and

increase circuit size drastically.

�------------------------� r---------------, r-------------------------,I I I I I I
I I I I I

, ,

,
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Binary

MVL 0 F
Xl �

1 Ito o
Binary 0

�•

• • �• •

-<• •

Z• • �

• Q:l

Xn-l MVL
to -

- -

Binary
L ____________________ ,____ � , , ,

L _______________ � L _________________________ �

Figure 3.3 The schematic diagram of a self-restored MVL architecture.
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On the other hand, as stated by Lemma 2.1, any n-variable r-valued function

can be expressed with the max operations on a maximum of t" number of distinct

literal minterms. If the distinct literal minterms of a function, F, that result in the

same logic value are grouped together, there are a maximum of r - 1 groups. The

minterms that result in logic 0 are not included since they are not to be implemented
with circuits.

Definition 3.1 For a r-valued function F of n-variables, a subfunction, Fj, denoted
as

Fj = L+ j.ajklXlbjkl.ajk2X2bjk2 ••..• ajn2Xnbjk2,
k

(3.1)

is the MOPs of the distinct literal minterms of F that result in only one logic value,
j, of F, where i, ajki' bjk; E R, k :::; -».

For example, referring to Figure 3.4, the 2-variable 4-valued function with its truth

table shown in Figure 3.4(a) can be expressed in terms of minterms in a MOP form

as:

F 1.0XOO.lXll+1.oXOO.2X12+1.1XOl.lXll+1.1XOl.2X12+
2.2X02 .2X12 + 2. 2X02 .3X13 + 2.3X03 .2X12 + 2.3X03 .3X13

Therefore the subfunctions of Fare

F, - 1.0XOO.lXll+1.oXOO.2X12+1.1XOl.lXll+1.1XOl.2X12
F2 - 2.2X02.2X12+2.2X02.3X13+2.3X03.2X12+2.3X03.3X13

By Eqs. 2.15 and 2.16 as well as the axioms of of Chapter 2, subfunctions F, and

F2 can be minimized as:
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Figure 3.4 Three examples of 2-variable 4-valued logic functions expressed in a

MOP form.

1. (OXoo• eX11 +2X12) + lX01• eXll +2X12))
1. (OXOO + lXOl). eXol +2X02)
1. °XOI. lX12

F2 2 • 2X02 • 2Xl 2 + 2 • 2X02 • 3Xl 3 + 2 • 3Xo 3
•

2Xl 2 + 2 • 3Xo 3
•

3Xl 3

2. eXo2. eX12 +3X13) +3Xo3• eX12 +3X13))
_ 2. ex02 + 3X03) • (2Xl 2 + 3X13)

Similarly, the subfunctions of the MVL truth table shown in Figure 3.4(b) can be

expressed as:

g 2.0X02.1X12

F3 3.1XOl.lX12+3.3X03.1X12,

and the subfunctions of the MVL truth table shown in Figure 3.4(c) can be expressed
as:

Fl 1.0XIO+1.1X02.3X13
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F2 - 2. 1X02 • 1X/

F3 3 • 1X02 • 1Xl 2 .

As can be seen from the examples, a benefit of using literal operations to represent
a MVL function is that the MVL expression can be obtained from a truth table in a

similar way to the minimization of Karnaugh maps. The basic concept is to combine

the minterms according to Eqs. 2.15 and 2.16 for each subfunction.

Let Fj = j • Vj; i.e.,

Vj = L+ ajklXlbjkl .ajk2x2bjk2 ••••• ajn2Xnbjk2,
k

(3.2)

By the definition of Fj (Definition 3.1), a r-valued function F can be decomposed
into r - 1 subfunctions as described below by Lemma 3.1.

Lemma 3.1 Any r-valued functions can be represented with a maximum of r - 1

subfunctions in the form:

r-1

F L+Fj =F1+F2+ ... + Fr-1
j=l
r-1

- L + j • Vj = 1 • Vi + 2. 112 + ... + (r - 1) • v,.-1 (3.3)
j=l

As defined in Eq. 3.2, Vj is a max of literal PTs. Every literal operation, ajki Xibjki,
is actually a multiple-valued input binary output mapping function (Definition2.3),
which is either 0 or r - 1. Therefore, each literal PT is 0 or r - 1 because the result

of min operations on a series of literal PTs remains 0 or r - 1 (Definition 2.12). Vj
also has only two output values, 0 or r - 1 (Definition 2.13). In other words, Vj can
be considered as a binary function with r - 1 as logic high and 0 as logic low. The

min operation on j and Vj doesn't affect the binary feature of Vj. A subfunction

Fj = j. Vj is still a binary function except that the value of binary high changes from
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r -1 to j. Therefore, Eq. 3.3 indicates that a r-valued logic function is actually a max

operation on r - 1 binary logic subfunctions each having an unique logic high value..

In other words) any r-valued logic function, F, of n variables can be decomposed into
a max of r - 1 binary subfunctions. Referring to Fig. 3.4(a), a 2-variable 4-valued

logic function F is decomposed into 1 • Vi + 2 • 112 as shown in Figure 3.5, where

TT Ox 1 IX 2 d V' 2X 3 2X 3
vi = o. 1 an 2 = o. 1

Va does not appear in the figure because it is always O.

When hardware implementation is considered, Eqs. 3.2 and 3.3 are not the best

representations of a MVL function because they don't result in the most economical

circuit design. For example, the CMOS implementation of a single literal needs on

average 13 transistors [12]. Multi-input min and max circuits are not self-restored -

nor are they small. Depending on the circuit implementation, the transistor counts

of min and max operators are 9 to 13 [12]. Eq, 3.3 must be rewritten into other forms

for smaller circuit realization.

Lemma 3.2 The Vi subfunctions of a MVL function are disjoint.
Proof: Assume Fa = a. Va and Fb = b. Vb are two subfunctions of a function F.

Since Fa and Fb consists of the distinct literal minterms of a function F, there are no

F

Xo 0 1 2 3

0 1 1

1 1 1

2 2 2

3 2 2

Xo 0 1 2 3

0 3 3

1 3 3

2

3

Xo 0 1 2 3

0

1

2 3 3

3 3 3

= 1. +2.

Figure 3.5 Decomposition of a 2-variable 4-valued logic function into two binary
logic functions.
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equivalent minterms in Fa and Fb. Accordingly, subfunctions Fa and Fb are disjoint
and therefore Va and Vb are disjoint as well.

In order words, a r-valued function F can be decomposed to r - 1 disjoint binary
subfunctions. This leads to the Theorem 3.1 by Lemma 2.2.

Theorem 3.1 Any MVL functions can be represented with an arithmetic sum of

binary subfunctions, "'J, in the form:

F = 1. VI + 2. V2 + ... + (r - 1) • Vr-I (3.4)

That is, the max operations are replaced with algebraic sum operations. As described
in Chapter 2, algebraic sums are preferred in current-mode design because it can be

realized by simply wiring signals together (Kirchhoff's Current Law). Referring to

Figure 3.3, the "'J subfunctions can be implemented in the binary logic block since

they are binary functions, and their outputs can then be used for controlling the

current sources at the output end. The literals correspond to the MVL-to-binary
blocks. The binary logic block consists of VMCL binary circuit. This implies that
a binary logic synthesizer can be applied to MVL synthesis. The question now is

how to realize a current-input voltage-output literals circuit and how to represent "'J
subfunctions in binary logic expressions.

3.2 Design Architecture

From Lemma 2.4 we know that ax- = aX. x-. Therefore, Eq. 3.2 becomes

"'J =L + ajk1XI • XIbjk1 • ajk2X2• X2bjk2 •.•.• ajknXn• Xnbjkn (3.5)
k

In Eq. 3.5, ajkiXi is a (up literal) xs». is a (down literal). As mentioned in Chapter 2,
the up literal and down literal operators are threshold literals. From a circuit design
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point of view, they are threshold circuits. The CMOS threshold literal can be realized

with only one transistor. The up literal is an N-type threshold, while the down literal

is a P-type threshold.

The voltage output of a threshold is a binary signal. If threshold output signals
are used directly as inputs for implementing a Vi subfunction, the Vi subfunction can

be realized by a conventional voltage-mode binary circuit. By doing so, all of the min

and max operations within a Vi subfunction can be replaced by binary and and or

operations. This means reduction of circuit size. The implementation of j • Vi does
not need a min circuit either. The min operation on j and Vi can be realized by
connecting a switch to a logic j current source, where the switch is controlled by the

binary circuit of Vi,
Since Xk-l = kX by Lemma 2.5, Eq. 3.5 can be expressed in terms of up literals

and complement of up literals only.

l"j =L + ajklX1• qjklX1 • ajk2X2 • »-.x, •...• ajknXn • QjknXn (3.6)
k

where qjki = bjki + 1 if bjk1 < r - 1 or qjki = r - 1 if bjk1 = r - 1 and can be

omitted from a PT. The up literal should be used when applicable because an N-type
threshold is faster than a P-type threshold [12]. The complement of up literal can be

implemented by an N-type threshold with an inverter connected to its output. Two

examples are given below. The 4-valued logic function shown in Figure 3.6(a) can be

expressed by

F = 1.0 + 2.0 + 3. V3 = 3. IX,

o 1 2 3

X I �)�1)�1)=;1
(a)

o 1 2 3

X

(b)

Figure 3.6 Derivation of Vi subfunctions from truth tables using the up literal

operator.



40

and the 4-valued logic function shown in Figure 3.6(b) can be expressed by

Based on the above analysis, a general architecture of self-restored current-mode

MVL designs is obtained as shown in Fig. 3.7. The design architecture consists of

three blocks: an input block, a control block and an output block. The input block

implements up literal operations, ajkiXi and qjkiXi, in each Vi subfunctions by using
current mirrors and thresholds. Since current-mode MVL signals are automatically
converted to voltage-mode binary signals when ajkiXi and qjkiXi are implemented

by thresholds, additional MVL-binary conversion circuits are not required to inter­

face with binary logic circuits. The control block is a voltage-mode binary design
for realization of the binary counterpart of Vi, denoted as vs The output block is

comprised of switches and current sources. Each switch is connected with a current

r--------------------------------� , r------------, r-------------------------,
I I I I I
I I I I I
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,
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____________________________________ � � L �

Figure 3.7 A general self-restored MVL design architecture.
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source. The binary output signals from the control block control switches in the out­

put block. Therefore, each output of a current source corresponds to a F, = j • Vj.
The outputs of the current sources are wired together to obtain an algebraic sum.

Since Fj subfunctions are disjoint, only one switch is on at a time. It should be noted

that not all types of thresholds, switches and current sources are required for a MVL

function. In other words, the total number of the threshold is always less than or

equal to (n - 1) x (r - 1) while the number of switches and current sources should

always be equal to or less than (r - 1).
As described in the previous sections, a MVL function expressed in terms of

literal operators can be obtained from its truth table in a very similar way to the

minimization of Karnaugh maps. The procedure is easy to those skilled in binary

logic design. Let Xi,j represent a binary signal from a logic j threshold of variable Xi

and Xi,j is written as Xj for a single-variable MVL function; that is,

_ { binary high when Xi � j
Xi,j -

binary low otherwise.
(3.7)

Then the binary function to be implemented by the control block for the MVL function

in Figure 3.6(a) is expressed as

V3 = XO,1 = Xl ,

and the binary functions to be implemented by the control block for the MVL function

in Figure 3.6(b) are expressed as

where '+' represerits the binary logic or operator and '.' represents the binary logic

and operator. Fig. 3.8 is the circuit realization of Fig. 3.6(b). The input block

includes a 3-output current mirror and three thresholds to detect logic 1, 2, and
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Figure 3.8 MVL circuit realization of Figure 3.6{b) according to the self-restored
design architecture.

3, respectively. The output block includes two switches. The switch controlled by
signals VI is connected with a logic 1 current source, while the switch controlled by V2

is connected with a logic 2 current source. If the base current (i.e., difference between

two adjacent logic levels) is 20j.lA, then the logic 1 current source generates 20j.lA and

the logic 2 current source generates 2 x 20j.lA = 40j.lA. More examples are given in

Section 3.4.

3.3 Variants of the Architecture

The self-restored architecture can be modified in various ways. For example,
the control block can be implemented with CMOS structure as shown in Figure 3.1

instead of using binary gates. This section presents a simple variant. More variants

will be presented in Chapter 4 where an approach of applying arithmetic operators

to the design architecture is discussed.

The self-restored architecture can be modified to merge the control block into the

output block by constructing an NMOS switch network connected to current sources.

This design architecture then consists of two blocks: an input block for converting
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MVL signals to binary signals and a control/output block of current sources and

switches where each current source is connected with an NMOS switch network. In

other words, all binary gates in Figure 3.7 are merged into the control/output block.
The design of an NMOS switch network is very similar to the design of a CMOS binary

gate at the transistor level. The difference is that only the NMOS configuration is of

interest. The general design architecture based on this idea is shown in Figure 3.9.

It should be noted that some inverters and current sources might not be used when

implementing a given MVL function.

Circuit implementation of MVL functions according to this architecture follows

the same idea described in Sections 3.1 and 3.2. For example, for the MVL function

shown in Figure 3.6(b), the same Vj subfunctions, i.e., VI = Xl + X3 and V2 = Xl •

X2, are needed to be realized with the NMOS transistors. Figure 3.10 is a circuit

realization of Figure 3.6(b) based upon this variant of the self-restored architecture.

Assume a simple current mirror is used. The circuit shown in Figure 3.8 consists of

23 transistors and the circuit shown in Figure 3.10 consists of 17 transistors. The

circuit implementation of MVL functions based upon the variant is smaller. However,
it should be noted that the variant is not good for complex MVL functions such as

multiple-input functions because series-connected NMOS transistors could deteriorate

output signals from current sources. Also, a new set of library cells for the output

block must be developed. The new library cells should include various combinations

of NMOS switch network and current sources.

3.4 Examples

One of the advantages of the proposed architecture is that the minimization pro­

cedure is very easy to understand for those who are skilled in binary logic design. The

minimization procedure will be more clear with reference to the following examples.

Three examples will be presented in this section. Example 3.1 implements the truth
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design architecture.

x



45

table shown in Figure 3.11 (a) which is taken from Chang's paper [13]. Example 3.2

implements the truth table shown in Figure 3.1l(b). Example 3.3 implements the

truth table shown in Figure 3.1l(c).

Example 3.1 First of all, consider the implementation of the truth table shown in

Figure 3.11(a). � subfunctions can be obtained from the three implicants in the

figure:

Binary Vj subfunctions for the control block can be obtained from Eq, 3.8:

(3.9)

The circuit implementation of these three expressions are shown in Figure 3.12. The

total number of transistors is 34. This number is lower than Chang's implementation
(37) as shown in Figure 2.8 on page 28.

Example 3.2 In this example, the truth table shown in Figure 3.11(b) is imple­
mented using the NMOS structure according to the self-restored architecture of Fig-
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Figure 3.11 Truth table of three examples.
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ure 3.9. First of all, the corresponding Vj subfunction of the control block can be

expressed as

(3.10)

The circuit realization of this expression is shown in Figure 3.13. The total transistor

count is 19.

Example 3.3 Another example is shown in Figure 3.11(c). Again, the control block

can be expressed with two binary functions, VI and V2, where

(3.11)

(3.12)

The circuit implementation of these two expressions are shown in FIgure 3.14. The

total transistor count is 28.

Xo
-

Figure 3.14 Circuit realization of Example 3.3.

F
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3.5 Summary

Through the above theoretical analysis and examples, it can be seen any r-valued

logic function can be represented with r - 1 binary Vj subfunctions. Once a MVL

function is decomposed into this form, it can be realized according to the proposed
self-restored design architecture. The design architecture consists of three blocks, an

input block, a control block and an output block. The most important part is the

control block as it realizes the binary functions and the binary functions contain all

the information of a MVL function. Since the control block is a binary circuit, it can
be minimized using a binary logic synthesizer as will be described in Chapter 5.

The self-restored architecture is characterized by implementing MVL functions

using those logic operators that correspond to current-mode circuit elements together
with voltage-mode binary gates. Using voltage-mode binary gates to control output
switches, output signals are restored simultaneously. N-type thresholds and binary
gates are used within the design architecture so that extra MVL-binary or binary­
MVL conversion circuits are not required to interface with binary circuits. Three

examples are presented to illustrate MVL design using this architecture. The mini­

mization procedure is easy to understand to those who are already skilled in binary
logic design.



4. Self-Restored Design Architecture - II

A self-restored current-mode CMOS Multiple-Valued Logic (MVL) design archi­

tecture is proposed in Chapter 3, which consists of three blocks: an input block, a

control block and an output block. The theoretical analysis of Section 3.1 also indi­

cates that any r-valued logic functions can be realized with this design architecture.

The self-restored architecture is advantageous over conventional operator-based MVL

design schemes in many aspects in addition to self-restoration. With the self-restored

architecture, logic minimization of MVL functions can take advantage of existing bi­

nary logic synthesizers. Also, up literals and binary logic gates that serve as part

of the function implementation allow a design to interface with binary logic design
without using extra MVL-binary encoders.

Similar to a binary logic design, a MVL function can be implemented in more than

one way. Circuit size varies with different implementations. It is well known that the

circuit size of a current-mode design can be reduced by using the arithmetic sum and

diff operators because they are realized through simply wiring signal lines together

according to Kirchhoff's Current Law. In other words, implementation of the sum

and diff operations virtually does not need any transistors. Therefore, by using the

sum and diff operators in self-restored MVL designs, a number of transistors should

be saved. This chapter describes how these two arithmetic operators can be used in

a self-restored MVL design and examines the size of resulting circuits. Section 4.1

focuses on the use of the sum operator in an output block along with a minimization

approach using different types of output blocks. With the sum operator in an output

block, minimization of a MVL function becomes more complicated since selection of

the output block configuration will affect the control block. Proper minimization in

49
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conjunction with appropriate choice of an output block results in a smaller circuit.

Section 4.2 discusses the uses of the sum and the dill in an input block. Combina­

tional use of the two operators in an input block as well as in both an input block
and an output block at the same time is also described in this section. A summary

is given in Section 4.3.

4.1 Use of the Sum Operator in an Output Block

Using the sum operator in an output block not only reduces the circuit size but

also allows the use of other types of output blocks. According to the minimization

approach for the self-restored MVL architecture proposed in Chapter 3, both the

input block and the output block are fixed for a given function. For a 4-valued logic
function, an output block must be either one or a combination of the subcircuits

shown in Figure 4.1. Each subcircuit consists of a current source and a switch. For

example, subcircuit 1 has a logic 1 current source. The current source is controlled by
a binary signal VI through a switch SW1. If the base current (the difference between

two adjacent logic levels) is set to 20J.-lA, logic 1 current source generates 20J.-lA, logic
2 current source generates 40J.-lA, and so forth. If a MVL function has logic 1 output
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Figure 4.1 Three output subcircuits of the self-restored 4-valued architecture.
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only, the corresponding output block consists of a subcircuit 1. If a MVL function

has both logic 2 and logic 3 outputs, then the corresponding output block consists

of subcircuits 2 and 3. For simplification a single subcircuit output block, such as

subcircuit 2, is denoted as {2}. An output block with two subcircuits, for example
subcircuit 1 and subcircuit 3, is denoted as {I,3}. Two rules are followed by the

self-restored architecture and its variants in Chapter 3; first it uses one subcircuit

i to implement all logic i entries in a truth table, and the other is that only one

subcircuit is activated at a time. As a consequence, identical output subcircuits are

never used in an output block at the same time. Except for the single subcircuit

output blocks, {I}, {2} and {3}, the possible combinations of subcircuits are {I,2},
{1,3}, {2,3}, and {1,2,3}. Other combinations of output blocks including {I,I},
{2,2}, {3,3} {I,I,I}, {I,I,2}, {I,I,3}, {I,2,3}, {1,2,2}, {2,2,2}, {2,2,3}, {2,3,3}, or
{3,3,3}, are never used. This approach greatly simplifies MVL minimization because

the only block that changes in a circuit is the control block and the control block can

be realized by using a binary logic synthesizer. However, implementation of a MVL

function with a limited selection of output blocks does not always end up with the

smallest circuit. It is desirable to take the unused combinations into consideration

during minimization so as to choose a better output block for a given MVL function.

As well the output block for a 4-valued logic design can be one of various combi­

nations of the output subcircuits shown in Figure 4.1. For example, instead of using
all three subcircuits (i.e, {I,2,3}), subcircuit 1 and subcircuit 2 (i.e., {I,2}) can work

cooperatively to generates 20j.LA, 40j.LA and 60j.LA. In this case, 20j.LA is generated
by a 20j.L current source, 40j.LA is generated by a 40j.LA current source, and 60j.LA is

generated by turning on both switches connected to a 20j.L current source and a 40j.LA
current source, respectively. Alternatively, three subcircuit Is (i.e., {I,l,I}) can be

used to generates 20j.LA, 40j.LA and 60j.LA. In this case, 20j.LA is still generated by a 20j.L
current source, 40j.LA is generated by two 20j.L current sources, and 60j.LA is generated

by three 20j.L current sources. It should be noted that anyone of the combinations is
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not absolutely better than another in terms of circuit size.

In the above two examples, both {1,2} and {1,1,1} can be used for generating
20J.lA, 40J.lA and 60J.lA because the sum operation is involved. However, a problem
associated with the sum operator is that the output block is no longer fixed. It is

now possible for the MVL function to be implemented with different output blocks.

For example, a {2} output block can now be replaced with an {1,1} output block.
A {1,2,3} output block can be replaced with other output blocks such as {1,1,2},
{1,1,3}, or {1,2,2} in addition to {1,2}, {1,1,1}, In other words, the flexibility offered

by the sum operator complicates the MVL minimization process. As a result, the

output block must be used together with proper minimization so that the circuit size

of MVL designs can be reduced.

Further study has shown that selection of an output block is not obvious even

for a single-variable MVL function. Figure 4.2 shows two different approaches to

minimize a single-variable 4-valued logic function. It is very straightforward to use

an {1,2} output block to implement this function as shown in Figure 4.2(b) where the

Vj subfunctions are

The circuit realized according to this minimization is shown in Figure 4.3(a). The

circuit consists of 12 transistors. Another way to minimize the function is shown in

Figure 4.2(c) where the function is realized by using a {1,1} output block is used,

i.e., two identical subcircuits are used in the output block. The two subcircuits are

controlled by two Vj subfunctions, v� and v�, respectively, where

o 1 2 3

X 1 2

(a) (b)

o 1 2 3

X I�)J])=)I
(c)

o 1 2 3

X

Figure 4.2 (a) Truth table of a single-variable 4-valued function. (b) minimization
by using {1,2} output block. (c) minimization by using {1,1} output block.
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Figure 4.3 Circuit realizations of a single-variable 4-valued function by using two
different types of output blocks. (a) {1,2} output block. (b) {l,l} output block.
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Figure 4.3(b) is the circuit realization according to these Vj subfunctions. The re­

sulting circuit consists of only 9 transistors. It can be seen from this example that a

smaller circuit can be obtained by replacing a {2} output block with a {1,1} output
block.

The selection of an output block is more complicated for a MVL function with

multiple input variables. Figure 4.4(a) is a 2-variable 4-valued function. If a {1,2,3}
output block is chosen, the MVL function can be minimized into five implicants as

shown in Figure 4.4(b) and the three corresponding binary Vj subfunctions are:

VI XO,l • XO,2 • Xl,2 + XO,l . XO,3 • Xl,3

V3 XO,2 • XO,3 • Xl,2 • XI,3

The total transistor count of this circuit implementation is in the range of 60 to 70 with

different implementations. If a {1,2} output bl�ck is chosen, the MVL function can

be minimized into two implicants as shown in Figure 4.4(c) when the sum operator
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Figure 4.4 (a) Truth table of a 2-variable 4-valued function. (b) minimization by
using an {1,2,3} output block. (c) minimization by using an {1,2} output block.
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is used and the two corresponding binary Vj subfunctions are:

VI XO,l . XO,3 • Xl,2

The circuit realization of these Vj subfunctions is shown in Figure 4.5. The total

transistor count of this circuit is 38 which is almost 40% smaller than the previous
implementation. The {1,2} output block is better than the {1,2,3} output block in

this case. It should be noted that the {1,2} output block instead of the {1,2,3} output
block does not always end up with a smaller circuit.

Three more examples are shown in Figure 4.6 to demonstrate the concept of

minimization using different types of output blocks. More complex functions can be

minimized based upon the same concept.
The function shown in Figure 4.6(a) can be minimized to two implicants by using

r-------------------------'r-------------'r---------------,I II II I
I

II I

Xo : : ._
- I

I

__�'-< I F

II
II
II
II
II
II

I

II I

_____________ JL J

Figure 4.5 Circuit realization of a 2-variable 4-valued logic function according to
the minimization of Figure 4.4(c).
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Figure 4.6 Minimization of 2-variable 4-valued logic functions using the sum opera­
tion in an output block. (a) {l,l} output block. (b) {1,1,2} output block. (c) {1,2,3}
output block.

a {l,l} output block, where

I -

VI = XO,l . XO,2 and

and the resulting circuit consists of 24 transistors. Without using the sum operator
in the output block, the same function is minimized to three implicants by using a

{1,2} output block, the resulting circuit consists of 34 transistors.

The function shown in Figure 4.6(b) can be minimized to three implicants by using
a {1,1,2} output block, where

V'1 XO,l • XO,2 • X1,1

V"1 XO,3 • X1,3

XO,3 • X1,2 • X1,3

and the resulting circuit consists of 39 transistors. Alternatively, this function can be

minimized to another set of implicants by using a {l,l,l} output block where

V'1 XO,l • XO,2 • Xl,l
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V"1 XO,3 • Xl,2

VIII1 XO,3 • X1,2 • X1,3

and the resulting circuit still consists of 39 transistors. Without using the sum

operator in the output block, the same function is minimized to seven implicants by

using a {1,2,3} output block; the resulting circuit consists of 68 transistors.

Figure 4.6(c) can be minimized to three implicants by using {1,2,3} output block
where

VI XO,l • X1,1

V2 XO,2 • XO,3 • (X1,1 + Xl,3)

V3 XO,3 • Xl,l • Xl,3

and the resulting circuit consists of 44 transistors. Again, without using the sum

operator in the output block, the function is minimized to five implicants by using
the same {1,2,3} output block; the resulting circuit consists of 53 transistors.

The three examples show that circuit size can be reduced significantly through
choice of a proper output block resulting in better minimization. The tradeoff is that

the minimization becomes more complicated because the output block for a given
function is not fixed and neither are the Vj subfunctions. For a self-restored MVL

design realized without using the sum operator most of the minimization work is

done by a binary logic synthesizer. If the sum operator is used, a computer program
that is able to take over part of minimization work from the binary logic synthesizer
is needed. The program must work interactively with a binary logic synthesizer in

order to choose an output block from a number of candidates and obtain a proper set

of Vj subfunctions.
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4.2 Use of the Sum and Diff Operators in an Input
Block

The sum operator can also be used in the input block of a self-restored design, but
minimization becomes quite different from that previously discussed. For example,
for a 2-variable 4-valued logic truth table, entries can now be merged diagonally or

triangularly. The diff operator can be used in an input block in a similar manner

with the sum operator except that implicants are flipped horizontally or vertically as

will be described below. The sum and diff operators can also be used in an input
block or in both an input block and an output block at the same time. Examples are

given for each case to demonstrate how to use these two operators in an input block.

Figure 4.7 shows three examples ofminimization of 2-variable 4-valued logic func­

tions using the sum operator in an input block. The function shown in Figure 4.7(a)
can be minimized to a single implicant and the corresponding Vj subfunction is ex­

pressed in mathematical form as

V3 = high if Xo + Xl > 3.

Circuit realization of this function is shown in Figure 4.8(a). The total transistor
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Figure 4.7 Minimization of 2-variable 4-valued logic functions using the sum oper­
ation in an input block.
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F

Figure 4.8 Circuit realization of the 2-variable 4-valued logic functions in Figure 4.7.
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count of this circuit is 5. The equivalent MVL circuit without using the sum operator

consists of 31 transistors.

The function shown in Figure 4.7(b) can be minimized to a single implicant and
the correspond Vj subfunction is expressed in mathematical form as

V2 = high if 1 < Xo + Xl < 3.

Circuit realization of this function is shown in Figure 4.8(b). The total transistor

count of this circuit is 13. The equivalent MVL circuit without using the sum operator

consists of 41 transistors.

The function shown in Figure 4.7{c) can also be minimized to a single implicant
and the corresponding Vj subfunction is expressed in mathematical form as

VI = high if 2Xo + Xl > 1, Xo < 3 and Xl < 3.

Circuit realization of this function is shown in Figure 4.8(c). The total transistor

count of this circuit is 20. The equivalent MVL circuit without using the sum operator

consists of 21 transistors.

As shown from these examples, using the sum operator in an input block can

reduce circuit size in certain cases. As mentioned previously, minimization of a MVL

function using the diff operator in an input block is similar to that of using the sum

operator except implicants are flipped horizontally or vertically. However, it should

be noted logic minimization using diff operation instead of sum operation contains

N-type current mirrors in resulting circuits. Figure 4.9 shows three examples of

minimization of 4-valued logic functions using the diff operator in an input block.

The function shown in Figure 4.9(a) can be minimized to a single implicant and

the corresponding Vj subfunction is expressed in mathematical form as

V2 = high if Xl - Xo > 1.
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Figure 4.9 Minimization of 2-variable 4-valued logic functions using the diff oper­
ation in an input block.

Circuit realization of this function is shown in Figure 4.10(a). The total transistor

count of this circuit is 9. The equivalent MVL circuit without using the diff operator
consists of 26 transistors.

The function shown in Figure 4.9(b) can be minimized to a single implicant and

the corresponding Vj subfunction is expressed in mathematical form as

V3 = high if Xo - Xl = o.

Circuit realization of this function is shown in Figure 4.10(b). The total transistor

count of this circuit is 18. The equivalent MVL circuit without using the diff operator
consists of 50 transistors.

The function shown in Figure 4.9(c) can be minimized to a single implicant and

the corresponding Vj subfunction is expressed in mathematical form as

VI = high if Xo - Xl < 2, Xo < 3, and Xl < 3.

Circuit realization of this function is shown in Figure 4.10(c). The total transistor

count of this circuit is 21. The equivalent MVL circuit without using the diff operator
consists of 34 transistors.
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Minimization using both the sum and the diff operators in an input block is

suitable for some special MVL functions and results in smaller circuits. Figure 4.11

shows three examples of minimization of 2-variable 4-valued logic functions using
both the sum and the diff operators in an input block.

The function shown in Figure 4.11(a) can be minimized to a single implicant and
the corresponding Vj subfunction is expressed in mathematical form as

VI = high if 2Xo - Xl > 2.

Circuit realization of this function is shown in Figure 4.12(a). The total transistor

count of this circuit is 10. The equivalent MVL circuit without using both the sum

and the diff operators consists of 17 transistors.

The function shown in Figure 4.1l(b) can be minimized to a single implicant and
the corresponding Vj subfunction is expressed in mathematical form as

V2 = high if Xo - 2X1 < 0, and Xo < 3.

Circuit realization of this function is shown in Figure 4.12(b). The total transistor

count of this circuit is 18. The equivalent MVL circuit without using both the sum

and the diff operators consists of 26 transistors.
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Figure 4.11 Three examples of minimization of 4-valued logic functions using the
sum and the diff operators in an input block.
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The function shown in Figure 4.11(c) can be minimized to a single implicant and

the corresponding Vj subfunction is expressed in mathematical form as

V3 = high if 0 < Xo - 2XI < 3.

Circuit realization of this function is shown in Figure 4.12(c). The total transistor

count of this circuit is 19. The equivalent MVL circuit without using both the sum

and the diff operator consists of 28 transistors.

To conclude this section, combined use of the sum and diff operators in both

the input block and the output block is described through three examples. Circuit

realization of these three example are not shown as they can be easily built based

on the previous examples. Only the transistor counts are provided for comparison
with equivalent MVL circuits. Needless to say, the tradeoff between the complexity
of minimization and the resulting circuit size also applies here.

The function shown in Figure 4.13(a) can be minimized to two implicants by using
a {1,2} output block where the Vj subfunctions are expressed in mathematical form

as

VI XO,1 • XO,3 • XI,1 . XI,3

V2 high if Xo + x, < 3

Circuit realization of this function needs 31 transistors. The equivalent MVL circuit

without using the sum and the diff operator either in the input block or the output

block consists of 53 transistors.

The function shown in Figure 4.13(b) can be minimized to two implicants by using

a {I, I} output block where the Vj subfunctions are expressed in mathematical form

as

V� - high if 2Xo - Xl :::; 0 and Xl < 3
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Figure 4.13 Three examples of minimization of 4-valued logic functions using the
sum and dill operations in both the input block and the output blocks.

V"I - XI,3

Circuit realization of this function needs 26 transistors. The equivalent MVL circuit

without using the sum and the dill operator either in the input block or the output

block consists of 37 transistors.

The function shown in Figure 4.13(c) can be minimized to two implicants by using
a {1,2} output block where the Vj subfunctions are expressed in a mathematical form

as

VI high if Xo - Xl > 0

V2 high if Xo + Xl < 3

Circuit realization of this function needs 20 transistors. The equivalent MVL circuit

without using the sum and the dill operator either in the input block or the output

block consists of 63 transistors.

The transistor counts of the twelve examples in this section are summarized in

the table shown below.
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Figure 4.7 Figure 4.9 Figure 4.11 Figure 4.13

Examples (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)
with sum/diff 5 13 20 9 18 21 10 18 19 31 26 20

without sum/diff 31 41 21 26 50 34 17 26 28 53 37 63

It can be seen from the table that the circuit size of some self-restored MVL

designs can be significantly reduced by using the sum and diff operators in an input

block. The average transistor count of these twelve examples is 17.5, for MVL designs

using the arithmetic operators, 33.5 for MVL designs without using the arithmetic

operators, and 22.5 for the equivalent binary logic designs. In the best (worst) case,

the circuit can even be reduced to about 16% (95%) of the original size. Even so, using
the sum and diff operators does not always result in a smaller circuit. For example,
it is obvious that using the sum and diff operators does not produce a smaller circuit

for the MVL function shown in Figure 3.4(a). Figure 4.14(a) shows that a function

using the sum and diff operators does not obviously result in a smaller circuit. When

the arithmetic operators are used, the function can be minimized to three implicants
as shown in Figure 4.14(c) and the corresponding Vj subfunctions are
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Figure 4.14 An example showing that using the arithmetic operators might not
result in a smaller circuit.
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Without using the arithmetic operators, the function can still be minimized to three

implicants as shown in Figure 4.14(b) and the corresponding Vj subfunctions are

The former representation results in a slightly larger circuit. For non-obvious cases, a

synthesis program must be able to work interactively with a binary logic synthesizer
to determine Vj subfunctions for this kind of MVL functions.

4.3 Summary
This chapter discusses the approaches of using the arithmetic sum and dill op­

erators to reduce circuit size of a self-restored current-mode CMOS Multiple-Valued

Logic (MVL) design. The sum and dill operators can be applied to an input block

and/or an output block. The approach of using these arithmetic operators in an input
block is quite different depending on how they are used in an output block. With

proper minimization, circuit size of many self-restored MVL designs can be reduced

significantly in term of transistor count. This chapter begins with the discussion of

an approach to use the sum operator in an output block along with selection of an

proper output block for a given MVL function, followed by an approach of using the

sum and dill operators in an input block. Combined use of the two approaches is

also discussed.



5. MVL Synthesis

A self-restored CMOS Multiple-Valued Logic (MVL) design architecture was pro­

posed in Chapter 3, which consists of three blocks: an input block, a control block and
an output block. The minimization procedure associated with the design architecture

is also explained by examples. Theorem 3.1 stated that any r-valued multiple-valued
function can be represented with r - 1 disjoint binary Vj subfunctions and imple­
mented with this design architecture. Each Vj subfunction consists of up literal PTs

in a MOP form. Since the output of a up literal PTs is either 0 or r - 1 because

of the nature of the up literal, Vj subfunctions can be converted into corresponding
binary subfunctions, denoted as Vj, by replacing min with binary and and max with

binary or. The binary Vj subfunctions can then be realized by a control block using
VMCL binary circuits. Replacing min and max operators with and and or operators

implies possible reduction of resulting circuit size. This also implies that a binary

logic synthesizer can be used for synthesis of a control block.

This chapter focuses on an approach to use a binary logic synthesizer with the

self-restored MVL design architecture. It should be noticed that the approach to be

described in this chapter works only for the self-restored architecture in Chapter 3. It

does not extend to the variants of the self-restored architecture using the arithmetic

sum and diff operators. Minimization of a MVL function using the two arithmetic

operators, particularly in the input block, results in different solutions for the prime

implicants as discussed in Chapter 4. This requires interative program executions

and significantly increases the complexity and difficulties of finding a set of prime

implicants that yield a smaller circuit. As stated in Chapter 8, the minimization

algorithm of using the two arithmetic operators is one of the future research topics.

69
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A wrapper program for MVL synthesis, WMS, will be discussed with examples to

show how to apply the approach for the self-restored architecture. The WMS wrapper

program works together with Synopsys Design Compiler to generate a self-restored

MVL circuit in VHDL format from a MVL function in a truth table format. The

current version can synthesize any-radix MVL functions with a reasonable number of

input variables. Other features of the program include estimation of circuit size of the

synthesized MVL circuits and automatic generation of Spectre netlists. The program

is also able to generate a Veri log netlist for the control block. The Verilog netlist can

be imported to the Cadence environment for Spectre simulation of the whole circuit

or for other purposes.

Another wrapper program, M2B, is also designed based on the WMS program.

The M2B program basically has the same features of the WMS wrapper program

except that it generates the equivalent binary circuit from a given MVL truth table

instead of a MVL circuit. The generated binary logic VHDL and SPICE netlists are

used for comparison of the MVL design and binary design as will be discussed in

Chapter 7.

5.1 WMS Wrapper Program

The binary Vj subfunctions of a MVL function can be obtained from its truth

table in a very similar way to the minimization of a Karnaugh map. As Karnaugh

maps are based on Venn diagrams, only even number ofminterms can be merged into

an implicant. A MVL truth table, on the other hand, is not restricted to this rule.

Several examples of 2-variable 4-valued logic functions are given in Chapters 3. The

minimization method also applies to higher radix logic functions. Figure 5.1 shows

truth tables of two 2-variable 5-valued logic functions. The binary Vj subfunctions

corresponding to the function of Figure 5.1(a) are
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Figure 5.1 Truth tables of two 5-valued logic functions.

V3 XO,1 . XO,3 • (XI,1 + XI,3) and

(5.1)

Similarly, the corresponding binary Vj subfunctions for the 2-variable 5-valued logic
function of Figure 5.1(b) can be expressed as

VI XO,1 + XO,3 • XI,4 + XO,2 • XO,3 • (XI,1 + XI,4),

(5.2)

For a given MVL function, the control block implements the binary Vj subfunc­

tions. The input block and the output block for a given MVL function can be deter­

mined from the control block if the sum and diff operators are not considered in the

binary Vj subfunctions. Once a set of binary Vj subfunctions is obtained, the MVL

circuit is determined. That is, binary Vj subfunctions contain all the information

required for realizing a MVL function. For example, consider the 2-variable 5-valued
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function of Figure 5.1(b). It can be determined from the binary Vj subfunctions of

Eq. 5.2 that the control block must have three outputs, Vl, v2 and V3, where Vl controls

a switch connected with a logic 1 current source to generate 1 x 20 = 20j.tA, V2 controls

a switch connected with a logic 2 current source to generate 2 x 20 = 40j.tA. and V3

controls a switch connected with a logic 3 current source to generate 3 x 20 = 60j.tA,
It can also be determined from Eq. 5.2 that a 3-output current mirror is required for

both inputs, Xo and Xl' The 3-output current mirror for input Xo has its outputs

connecting to a logic 1 threshold, a logic 2 threshold and a logic 3 threshold, respec­

tively in oder to generate binary signals, XO,I, XI,2 and XO,3. The 3-output current

mirror for input Xl has its outputs connecting to a logic 1 threshold, a logic 2 thresh­

old and a logic 3 threshold, respectively in oder to generate binary signals, XI,I, XI,3,
and XI,4' These binary signals including XO,I, XO,2, XO,3, XI,I, XI,3, and XI,4, are the

inputs to the control block. Therefore, the control block is a 6-input 3-output binary

design.

The binary Vj subfunctions often have common input variables, which indicates

they should be checked for the possibility of minimization before being realized with

binary gates. For example, in Eq, 5.2, VI, V2 and V3 are all functions of XO,3 and

XI,3, and VI and V2 are also functions of XO,I' Since the binary Vj subfunctions are

binary functions, minimization of this multi-input multi-output binary control block

can be done with a binary logic synthesizer. However, it should be noted that the Xi,j

variables are considered as independent variables by a binary logic synthesizer. While

a binary logic synthesizer recognizes the fact that xu,v . xu,v = 0 and xu,v + xu,v = 1,

it does not recognize rules such as xu,v covers xu,v+l or Xu,v+l covers xu,v, Therefore,
the binary Vj subfunctions passed to a binary logic synthesizer are better expressed

in terms of prime implicants instead of minterms. Passing prime implicants to a

binary logic synthesizer also guarantees that input variables will not disappear during
minimization by the binary logic synthesizer. Referring to Figure 5.1(b) and Eq. 5.2,

none of the input variables, XO,I, XO,2, XO,3, XI,I, XI,3, and XI,4, will be cancelled by
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minimization. In brief, the task of MVL synthesis with respect to the self-restored

architecture is reduced to finding prime implicants and passing them to a binary logic
synthesizer.

The truth table method described in Chapter 3 is an effective way to simplify
MVL functions which have a smaller number of input variables. When the number of

input variables is large or if several functions must be simplified, use of a computer

program is desirable. A wrapper program for MVL synthesis, WMS, was therefore

developed for replacing manual deduction of binary Vj subfunctions as well as many

other tasks. The WMS wrapper program generates a structural model of the top

level circuit in VHDL format of a given MVL function according to the self-restored

architecture and also generates a separate VHDL file for binary Vj subfunctions in

terms of prime implicants. As part of the program, the WMS wrapper program

then automatically invokes a binary logic synthesizer to synthesize the VHDL file

and generate an actual circuit of the control block. The current version of the WMS

wrapper program was designed to work with Synopsys Design Compiler, but any other

binary logic synthesizer can also be used provided they accept VHDL. A number of

other aspects were also considered during development for easy and fast comparison of

a self-restored MVL design with an equivalent operator-based MVL design as well as

with an equivalent binary design. As will be described in Chapter 7, the comparison
involves many tasks. For example, in order to compare time delay and average power

dissipation, it is necessary to run circuit simulations. In other words, SPICE netlists

are required. A SPICE netlist can be generated from a given MVL truth table by
schematic entry or manual input. Both approaches are time consuming and error

prone. Automatic generation of SPICE netlists is preferred. The program should

also be able to calculate the size of a synthesized MVL circuit in terms of transistor

count so as to compare circuit size.

The algorithm for obtaining prime implicants of binary Vj subfunctions is sim­

ilar to the Quine-McClusky method [61, 62]. The major difference is the rules for
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combining minterms. The Quine-McClusky method combines minterms by system­

atically applying the theorem xy + xi} - x. The WMS program combines minterms

by applying the following rules.

Rule 5.1

Rule 5.2

Rule 5.3 °Xu + vXr-1 = u+1Xv-1 if u + 1 :s V - 1

Rule 5.4 aXb = °Xa-1 + HIXr-I

where °Xa-I = 0 if a = 0, and HIXr-1 = 0 if b = r - 1.

Rule 5.5 °xr-I = r - 1

It can be seen from the rules that, unlike the Quine-McCluskey method, two minterms

differing in only one literal do not necessarily cancel that literal or might not be even

mergeable. Allen and Givone [14] and W. R. Smith [63] proposed algorithms similar
to Quine-McCluskey method in the past, but their algorithms are based on different

set of rules. More importantly, the algorithms are not suitable for implementation
of disjoint binary Vj subfunctions since a prime implicant in one scheme may not be

considered as one in another scheme.

The notation, (a, b), represents a literal aXb-I when a < b or a complement of
literal bXa-I when a > b. The only exceptions are (r - 1,0) and (0,0). (r - 1,0)
represents r-IXr-I and (0,0) represents a canceled variable. It should be noted

that a is never equal to b unless both are zero. For example, for a 4-valued logic
system, (0,1) means 0Xu, (2,3) means 2X2, (3,2) means 2X2, and (3,0) means 3X3•

In addition, (ai, bi)(aj, bj) represents a min operation on (ai, bi) and (aj, bj). Since

up literal operators are to be used in the self-restored architecture, (a, b) actually
represents ax. bX when a < b or ax + bX when a > b. If a = 0 or b = 0, the

corresponding variable associated with that up literal term is cancelled. Therefore,
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(0, 1) means IX and the corresponding binary logic term is Xl' (2,3) means 2X • 3X

and the corresponding binary logic term is X2 • X3' (3,0) means 3X and (3,2) means
3X + 2X and the corresponding binary logic term is X3 + X2' (3, 0) means 3X and the

corresponding binary logic term is X3.

Table 5.1 shows the results of a step-by-step procedure (discussed below) for a

4-valued logic function given in Figure 5.2. In Figure 5.2, each minterm is labeled by
a letter. For example, the five minterms for logic 1 are labeled with A, B, C, D and

E respectively. These minterms are listed in Table 5.1 according to their logic values.

For logic 3, A and B can be merged into one term by Rule 5.1. The new term is then

appended at the end of the list and labeled as E. Since A and B are now covered by
E, both are marked with J. Similarly, A and C are merged into F, and Band Fare

merged into G by Rule 5.3. D can not be merged with any other terms. E is covered

by G by Rule 5.2 and is therefore marked with J. F is covered by G by Rule 5.2 and

is therefore marked with J. The process stops when no further mergers can be made.

The entries without J means they are not covered by others and those are the prime

implicants. Hence, the prime implicants for logic 3 is D:(2, 3)(3,0) and G:(3, 2)(2, 3),
where G covers B,F and in turn B,A,C. The lists of prime implicants for logic 2 and

logic 3 can be obtained by using the same process. The prime implicants for logic
2 are 1:(3,1)(3,1) which covers E,H and in turn A,B,C,D. The prime implicants for

logic 1 are K:(2, 3)(0, 3) and L:(l, 3)(0, 2), where K covers E,H and in turn E,B,D,
and L covers F,I and in turn A,B,C,D. The corresponding binary Vj subfunctions can

be express as:

VI XO,1 . XO,3 . XI,2 + XO,2 • XO,3 • XI,3,

V2 (XO,1 + XO,3) • (XI,1 + XI,3) and

XO,2 • XO,3 • XI,3 + XO,2 • XO,3 • (XI,2 + XI,3). (5.3)

The pseudocode of a subprogram that implements this algorithm is shown in
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Figure 5.2 A 4-valued logic function and its minterms.

Table 5.1 The result of merging process yielding the prime implicants of the 2-
variable 4-valued logic function of Figure 5.2.

No. logic 1 logic 2 logic 3
A A (1,2)(0,1) vi A (0,1)(0,1) vi A (0,1)(2,3) vi
B B (2,3)(0,1) vi B (3,0)(0,1) vi B (1,2)(2,3) vi
C C (1,2)(1,2) vi C (0,1)(3,0) vi C (3,0)(2,3) vi
D D (2,3)(1,2) vi D (3,0)(3,0) vi D (2,3)(3,0)
E E (2,3) (2,3) vi A,B (3,1)(0,1) vi A,B (0,2)(2,3) vi
F A,B (1,3)(0,1) vi A,C (0,1)(3,1) vi A,C (3,1)(2,3) vi
G A,C (1,2)(0,2) vi B,D (3,0)(3,1) vi B,F (3,2)(2,3)
H B,D (2,3)(0,2) vi C,D (3,1)(3,0) vi
I C,D (1,3)(1,2) vi E,H (3,1)(3,1)
J D,E (2,3)(1,3) vi
K E,H (2,3)(0,3)
L F,I (1,3)(0,2)
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Figure 5.3. The subprogram starts with logic 1 and ends with logic r - 1. It follows

the algorithm to compare a pair of impIicants at a time to see whether Rules 5.1 to 5.5

are applicable. If a start implicant covers a current implicant, then mark the current

implicant. If the start implicant is covered by the current implicant, then mark the

start implicant. If two implicants are mergeable, call the merge_implicants() function
and mark both the start and current implicants. The merqe.implicasitst] function

merge the two implicants into a new implicant and check if there is an identical

implicant on the list. If not, append the new implicant at the end of list.

Figure 5.4 is the pseudocode of the WMS core subprogram. After initialization and
command option handling, the geLminterm_list() subprogram reads in a MVL func­

tion and generates a minterm list for each logic value. There are up to r - 1 minterm

lists. The core subprogram then calls the qet.prime.implicomt.listi} subprogram to

get prime implicants for each logic value based on the minterm lists as explained
above through an example and the pseudocode shown in Figure 5.3. The resulting
prime implicant lists correspond to binary Vj subfunctions. Based on the prime im­

plicant list, the geLcircuiLelements() subprogram generates circuit topology which

is used by the qenerate.control.oluilt}, generate_top_vhdl() and qenerate.iop.spicei}
subprograms to generate VHDL and SPICE files.

The WMS wrapper program then invokes Synopsys Design Compiler to synthesize
and optimize the behavioral VHDL description of the control block and to generate a

structural VHDL description and a structural Verilog description of the control block.

The structural Verilog code will be used later for generating a Spectre net list of the

control block. The WMS program also reports the total transistor count as well as

circuit elements used in the input and output blocks.

As shown in Figure 5.5, the WMS program generates three VHDL files for the

MVL function. One is the top level circuit description of the MVL functions which

contains the structural description of the flattened input and output block circuit

and an instantiated control block. The other two files are behavioral description of
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procedure geLprime_implicanUist()
begin

logic.value := 1
while logic.value < radix
begin

if logic.value implicant list is not empty
start implicant := first implicant
while start implicant is not the last implicant
begin

current implicant := start implicant
while current implicant is not the last node
begin

current implicant := next node
compare start implicant and current implicant
case compare result

identical:
remove current implicant

start is covered by current :

mark start implicant
current is covered by start :

mark current implicant
mergeable:

merqe.implicants (start, current)
mark both start and current implicants

default:
do nothing {can't merge}

end case

end while
if start implicant is marked
delete start implicant

end if
start implicant := next implicant

end while
end if
increment logic.value

end while
end geLprime_implicanUist

Figure 5.3 Pseudocode of the subprogram for finding prime implicants.
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procedure unns.corei}
begin ,

initialization()
qet.command.options ()
{generate minterm lists for each logic value of a MVL function}
qet.minierm.lisii]
{get the prime implicant list for each logic value}
qet.prime.implicant.Iistt}
{derive binary Vj subfunctions and the corresponding circuits}
qet.circuit.elements ()
{generate behavioral VHDL code for control block}
qenerate.control.ohdli]
{generate top level structural VHDL code}
qetierate.iop.sruiu]
{generate top level SPICE netlist}
qenerate.iop.spicet}

end unns.core

Figure 5.4 Pseudocode of the WMS core subprogram.

the control block: one for simulation and the other synthesis. The behavioral VHDL

code for simulation is used to verify the synthesis result, which will be discussed in

Chapter 6. The WMS program then invokes a binary logic synthesizer to optimize
the synthesizable VHDL code of the control block in terms of area and to generate a

structural VHDL description and a structural Verilog description of the control block.
In the current version, the WMS program is designed to launch the Synopsys Design
Compiler. The structural VHDL description is later automatically modified to the

format that can be simulated by a VHDL simulator with the CMCL library. The

structural Verilog code will be used later to generate a SPICE netlist of the control

block. The binary logic synthesizer also saves the total transistor count of the control

block in a report file. This information is sent back to the WMS program to estimate

the total circuit size as well as the circuit elements used in the input and output
blocks.
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Figure 5.5 Output files generated by the WMS wrapper program from a MVL
function.

As the Cadence Spectre circuit simulator is used for power estimation, the SPICE

netlist generated by the WMS program is in Spectre format. The Spectre file de­

scribes the top level circuit as well as option cards, analysis cards, include cards, local

declarations, input sources, and output load. There are five include cards in a Spectre
file:

• Global declarations such as VDD, Vss, Prel, Nrel, etc.
• MVL library including MVL circuits such as current mirrors, current sources,

thresholds, etc.

• Model file, i.e., SPICE parameters of PMOS and NMOS transistor models.

• Input file in which a variety of ideal and non-ideal input sources are defined.

• Control block. At this time, the Spectre file for the control block is still empty.
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5.1.1 Generation of Spectre Netlist

The Spectre netlist of a control block is obtained according to the procedures
shown in Figure 5.6. First of all, the Verilog code of the control block is automati­

cally converted into a schematic by using the VerilogIn utility provided by Cadence.

Cadence Analog Artist is then invoked on the schematic to generate a Spectre netlist

from the schematic. Analog Artist provides an integrated environment for circuit sim­

ulation. A variety of application programs can be accessed through Analog Artist.

The application programs include a waveform displayer, a calculator, a result browser,
and various circuit simulators such as Spectre and HSPICE. Since a number of Spectre
simulations are to be carried out to obtain an average power dissipation, batch simu­

lation is preferred. As well, a control block has to be simulated with a corresponding
top level circuit. Therefore, Analog Artist is only used for generating Spectre net lists

for all control blocks. All MVL circuits were then simulated in batch mode afterward.

Control Block
Optimized
Verilog
Code

......... __ .

, '
, ,

Control Block
SPICE
Netlist

, '

, '

, '

:

Cadence
:

VerilogIn
UtilityControl Block

Schmetic
Diagram

Cadence

Analog
Artist

Figure 5.6 Procedures to obtain Spectre net list of a control block based on Verilog
codes generated by the WMS program from a MVL truth table.
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5.1.2 An Example

The truth table below represents a 2-variable 4-valued function.
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To obtain the circuit for this function, it is required to obtain three Vj subfunctions
corresponding to logic values 1, 2 and 3. This truth table can be expressed with three

binary subfunctions, Vi, V2 and VS, where

(5.4)

The actual binary subfunctions implemented by the control block are

Vg XO,l • (Xl,l + Xl,3). (5.5)

It can be seen from these equations that the input block consists of a logic 1 threshold,
a logic 3 threshold, as well as a 2-output current mirror for variable Xo, and a logic
1 threshold, a logic 2 threshold, a logic 3 threshold, and a 3-output current mirrors
for variable Xl. The output block has three switches. The switch controlled by Vi is

connected with a i x 20ILA current source. For example, the switch controlled by V2

is connected with a 40ILA current source.
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The result of the procedure of getting prime implicants carried out by the WMS

program is shown in Table 5.2. It can be seen from the table that the the prime
implicants for logic 1 consists of (3,1)(2,3) and (0,1)(0,0), the prime implicants for

logic 2 (1,3)(1,3), and the prime implicants for logic 3 (1,0)(3,1). As mentioned

previously, (3,1)(2,3) corresponds to XI,2 . i\3 . (XO,1 + XO,3) and (0,1)(0,0) means

X2 is canceled by Rule 5.5 and corresponds to XO,I. The result conforms with VI in

Eq. 5.5. Similarly, (1,3)(1,3) for logic 2 corresponds to XO,1 . XO,3 • XI,l . Xl,3 and the

result conforms with V2 in Eq, 5.5, and (1,0)(3,1) corresponds to XO,l . (Xl,l + Xl,3)
and the result conforms with V3 in Eq. 5.5.

The output files generated by the WMS wrapper program are shown in Figures 5.7

to 5.10. Figure 5.7 is the structural VHDL code of the top level circuit of the given
MVL function. Figure 5.8 is the VHDL code of the control block, i.e., behavioral

Table 5.2 The result ofmerging process yielding the prime implicants of a 2-variable
4-valued logic function.

No. logic 1 logic 2 logic 3
A A (0,1)(0,1) J A (1,2)(1,2) J A (1,2)(0,1) J
B B (0,1)(1,2) J B (1,2)(2,3) J B (2,3)(0,1) J
C C (0,1)(2,3) J C (2,3)(1,2) J C (3,0)(0,1) J
D D (0,1)(3,0) J D (2,3) (2,3) J D (1,2)(3,0) J
E E (3,0)(2,3) J A,B (1,2)(1,3) J E (2,3)(3,0) J
F A,B (0,1)(0,2) J A,C (1,3)(1,2) J F (3,0)(3,0) J
G A,D (0,1)(3,1) J B,D (1,3)(2,3) J A,B (1,3)(0,1) J
H B,C (0,1)(1,3) J C,D (2,3)(1,3) J A,D (1,2)(3,1) J
I C,D (0,1)(2,0) J E,H (1,3)(1,3) B,C (2,0)(0,1) J
J C,E (3,1)(2,3) B,E (2,3)(3,1) J
K C,F (0,1)(0,3) J C,F (3,0)(3,1) J
L C,G (0,1)(2,1) J C,G (1,0)(0,1) J
M D,F (0,1)(3,2) J D,E (1,3)(3,0) J
N D,H (0,1)(1,0) J E,F (2,0)(3,0) J
0 D,K (0,1)(0,0) F,M (1,0)(3,0) J
P H,J (1,3)(3,1) J
Q I,N (2,0)(3,1) J
R K,P (1,0)(3,1)
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LIBRARY CCMVL, IEEE;
USE CCMVL.cmcl.ALL, IEEE.std_logic_1164.ALL;

END top;

ENTITY top IS
PORT ( inO, inl INOU! node; fxout INOUT node );

ARCHITECTURE structural OF top IS
SIGNAL xOtl, xOt3, xltl, xlt2, xlt3 node:= initNODE;
SIGNAL yl, il node:= initNODE;
SIGNAL y2, i2 node:= initNODE;
SIGNAL y3, i3 node:= initNODE;

COMPONENT nth

GENERIC (wgt REAL);
PORT (inoutA INOU! node );

END COMPONENT;
COMPONENT nsw

PORT (ctrl IN node; inoutA, inoutB INOUT node );
END COMPONENT;
COMPONENT control

PORT ( xOtl, xOt3, xltl, xlt2, xlt3 INOUT node; yl, y2, y3 INOU! node );
END COMPONENT;
COMPONENT pcm2

__ GENERIC ( wgtl, wgt2 : REAL );
PORT ( inA: INOU! node; outA, outB INOU! node );

END COMPONENT;
COMPONENT pcm3

__ GENERIC wgtl, wgt2 : REAL );
PORT (inA INOU! node; outA, outB, outC INOU! node );

END COMPONENT;

FOR ALL:nth
FOR ALL:nsw
FOR ALL:control
FOR ALL:pcm2
FOR ALL:pcm3

BEGIN

XCMO pcm2
XCMl pcm3
THOl nth

TH03 nth

THll nth

TH12 nth

TH13 nth

XCTa control
NSWl nsw

SRCl nth

NSW2 nsw

SRC2 nth

NSW3 nsw

SRC3 nth

END structural;

USE ENTITY CCMVL.nth(behavioral);
USE ENTITY CCMVL.nsw(behavioral);
USE ENTITY CCMVL.control(behavioral);
USE ENTITY CCMVL.pcm2(behavioral);
USE ENTITY CCMVL.pcm3(behavioral);

PORT MAP (inO, xOtl, xOt3);
PORT MAP (inl, xltl, xlt2, xlt3);
GENERIC MAP (wgt => 0.5)
PORT MAP (xOtl);
GENERIC MAP (wgt => 2.5)
PORT MAP (xOt3);
GENERIC MAP (wgt => 0.5)
PORT MAP (xltl);
GENERIC MAP (wgt => 1.5)
PORT MAP (xlt2);
GENERIC MAP (lIgt => 2.5)
PORT MAP (xlt3);
PORT MAP (xOtl, xOt3, xltl, xlt2, xlt3, yl, y2, y3);
PORT MAP (yl, il, fxout);
GENERIC MAP (lIgt => 1.0)
PORT MAP (il);
PORT MAP (y2, i2, fxout);
GENERIC MAP (lIgt => 2.0)
PORT MAP (i2);
PORT MAP (y3, i3, fxout);
GENERIC MAP (lIgt => 3.0)
PORT MAP (i3);

Figure 5.7 Top level VHDL code generated by the WMS wrapper program.
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LIBRARY CCMVL, IEEE;
USE CCMVL.cmcl.ALL, IEEE.std_logic_1164.ALL;

ENTITY control IS
PORT ( xOtl, xOt3, xltl, xlt2, xlt3 INOUT node;

yl, y2, y3 : INOUT node );
END control;

ARCHITECTURE behavioral OF control IS
BEGIN

yl <= force(
__ For (3,1) (2,3) :

«xOt3.B OR (NOT xOtl.B» AND (xlt2.B AND (NOT xlt3.B») OR
__ For (0,1) (0,0) :

«NOT xOt1.B»);
y2 <= force(
__ For (1,3) (1,3) :

«xOtl.B AND (NOT xOt3.B» AND (xltl.B AND (NOT xlt3.B»»;
y3 <= force(
__ For (1,0) (3,1) :

«xOtl.B) AND (xlt3.B OR (NOT xltl.B»»;

END behavioral;

Figure 5.8 VHDL code of control block for simulation generated by the WMS
wrapper program.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY control IS
PORT ( xOtl, xOt3, xltl, xlt2, xlt3 : IN std_logic;

yl, y2, y3 : OUT std_logic );
END control;

ARCHITECTURE behavioral OF control IS
BEGIN

yl <=
__ For (3,1) (2,3) :

«xOt3 OR (NOT xOtl» AND (xlt2 AND (NOT xlt3») OR
__ For (0,1) (0,0) :

«NOT xOtl»;
y2 <=
__ For (1,3) (1,3)

«xOtl AND (NOT xOt3» AND (xltl AND (NOT xlt3»);
y3 <=
__ For (1,0) (3,1)

«xOtl) AND (xlt3 OR (NOT xltl»);

END behavioral;

Figure 5.9 VHDL code of control block for synthesis generated by the WMS wrapper
program.
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library CCMVL, IEEE;

use CCMVL.cmcl.ALL, IEEE.std_logic_1164.all;

package CONV_PACK_control is

__ define attributes
attribute ENUM_ENCOOING STRING;

end CONV_PACK_control;

library CCMVL, IEEE;

use CCMVL. cmcl.ALL, IEEE. std_logic_1164.all;
use work.CONV_PACK_control.all;

entity control is

porte xOtl, xOt3, xltl, xlt2, xlt3 IN node; yl, y2, y3 out

std_logic);

end control;

architecture SYN_behavioral of control is

component NOR4Dl

porte Z : OUT node; Al, A2, A3, A4 IN node);
end component;

component A03101

porte Z : OUT node; Al, A2, A3, B IN node):
end component:

component AOI2101
porte Z : OUT node; A1, A2, B IN node);

end component;

component INVDO

porte Z : OUT node; A IN node);
end component;

signal n4, n5, n6 std_logic;

begin

U7 NOR401 port map( Z => y2, Ai => xOt3, A2 => xlt3, A3 => n4, A4 => n5);
U8 A03101 port map( Z => yl, Ai => xlt2, A2 => n6, A3 => xOt3, B => n5);
U9 AOI2101 port map( Z => y3, Al => xltl, A2 => n6, B => n5);
Ul0 INVDO port map( Z => n4, A => xltl);
Ull INVOO port map( Z => n5, A => xOtl);
U12 INVDO port map( Z => n6, A => xlt3);

end SYN_behavioral;

Figure 5.10 Optimized VHDL code of control block generated by the Synopsys
Design Compiler.
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description of the binary Vj subfunctions. As will be described in Chapter 6 the VHDL
codes are in the format for MVL simulation with the CMCL library. Figure 5.9 is

the VHDL codes of the control block for synthesis; i.e., the code is in the format

that can be read into Synopsys Design Compiler for minimization. All three files are

automatically generated by the WMS program from the truth table. Comparing the

two behavioral VHDL codes for the control block, it can be found that both signal
types and formats of output equations are different. The signals in the VHDL file for

simulation are declared as 'node', while the the signals in the synthesizable VHDL

file are declared as 'std.Iogic', The 'std.Iogic' type is the IEEE standard binary logic
signal declaration for VHDL, while the 'node' type is defined in the CMCL package
for VHDL simulation of mixed CMCL MVL and VMCL binary logic designs. The

complete package is attached as Appendix C.l and the detailed description is given
in Chapter 6. Also, every output equation in the simulation file is assigned to an

Boolean expression by using the 'force' function, which converts 'std.logic' type to

'node'type. Figure 5.10 is the structural VHDL code of the control block after being
minimized by the Synopsys Design Compiler. It should be noted that xitj in the

VHDL codes corresponds to Xi,j'

5.2 M2B Program

In order to compare a number of self-restored MVL designs and equivalent binary
logic designs on speed, area and power dissipation, it is desirable to have a computer

program similar to the synthesis program which is able to generate a Spectre netlist

of an equivalent binary logic circuit form a MVL truth table. Such a program, M2B,
was therefore developed. A large portion of the M2B program is the same as the

WMS wrapper program. Basically, the M2B program works in a similar fashion as

the WMS program does. First of all, the M2B program converts a MVL function into

equivalent binary functions, and then generates a file containing Boolean equations.
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Figure 5.11 shows two Karnaugh maps to explain how a MVL function is converted
to its equivalent binary logic functions. Figure 5.11 (a) is a binary Karnaugh map

equivalent to the truth table shown in Figure 3.11(b) on page 45. Figure 5.11(b) is a

binary Karnaugh map equivalent to Figure 3.11(c) also on page 45. An example is

given in Figure 5.12 to show a MVL function (column MVL) is converted to Boolean

equations (column Boolean Equations in Synopsys format) by the M2B program ac­

cording to its equivalent binary function (column Binary). It should be noted that

the format of Boolean equations is acceptable by the Synopsys Design Compiler. Un­
like the WMS program that passes prime implicants to Synopsys Design Compiler,
the M2B program passes minterms instead. As mentioned in Section 5.1, the input
variables of binary Vj subfunctions come from outputs of up literals and their com­

plements. A binary logic synthesizer does not trace back their original relationships
during minimization and therefore is unable to recognize, for example, Xl . £3 covers

Xl' £2 for a single-variable MVL function. Those variables, Xl, X2 and X3, are deemed
as independent variables by a binary logic synthesizer. Equivalent binary expressions
however do not have such a problem and are not necessary to be in the form of prime
implicants before being passed to a binary logic synthesizer.

The complete procedures for obtaining the Spectre netlists are shown in Fig­
ure 5.13. As shown in Figure 5.13, the M2B program, working together with a binary
logic synthesis, to optimize the Boolean equations in terms of area and to generate
VHDL or Verilog codes as well as transistor count. The remaining procedures for gen­
erating Spectre net lists are omitted because they are same as Figure 5.6, are already
covered in Section 5.1.1.

5.3 Summary

An approach to using a binary logic synthesizer for MVL synthesis of the self­

restored CMOS MVL design architecture is discussed in this chapter. A computer
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Figure 5.11 (a) Corresponding binary Karnaugh map of Figure 3.11(b). (b) Corre­
sponding binary Karnaugh map of Figure 3.11(c).

MVL Binary Boolean Equations
Xl Xo F Xll XlO XOI XOO fl fo in Synopsys Format
0 0 1 0 0 0 0 0 1 .design_name control
0 1 1 0 0 0 1 0 1 .inputnames xOO x01 x10 x11
0 2 1 0 0 1 0 0 1 .outputnames fO f1
0 3 0 0 0 1 1 0 0
1 0 2 0 1 0 0 1 0 fO=«xO'*x1'*x2'*x3')+
1 1 3 0 1 0 1 1 1 (xO'*x1'*x2 *x3')+
1 2 2 0 1 1 0 1 0 (xO'*xl'*x2'*x3 )+
1 3 1 0 1 1 1 0 1 (xO *xl'*x2 *x3 )+
2 0 1 1 0 0 0 0 1 (xO'*x1 *x2'*x3')+
2 1 0 1 0 0 1 0 0 (xO *x1 *x2 *x3') +
2 2 0 1 0 1 0 0 0 (xO *x1 *x2'*x3 )+
2 3 0 1 0 1 1 0 0 (xO *xl'*x2 *x3'))
3 0 0 1 1 0 0 0 0
3 1 1 1 1 0 1 0 1 f1=«xO *x1'*x2'*x3')+
3 2 1 1 1 1 0 0 1 (xO *x1'*x2 *x3 )+
3 3 0 1 1 1 1 0 0 (xO *x1'*x2 *x3'))

Figure 5.12 The conversion of a MVL function into Boolean equations by the M2B
program.
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program for this purpose, WMS, was also developed to work with Synopsys Design
Compiler to synthesize MVL functions according to the self-restored architecture

without considering the arithmetic sum and diff operators. For a given MVL func­

tion, the WMS program obtains a list of minterms for each logic values from the

functional description in a truth table format. Based on the minterm lists, the pro­

gram derives prime implicants and corresponding disjoint binary Vj subfunctions. The

algorithm used to to derive prime implicants is similar to Quine-McCluskey method,
but the rules of combining two terms are completely different. The binary Vj subfunc­

tions contains all the information required to construct a self-restored circuit for its

corresponding MVL function. The WMS program generates several VHDL files for

both simulation and synthesis from binary Vj subfunctions. The VHDL simulation

files are ready for simulation by using a VHDL simulator with the CMCL library to

verify synthesized results. The details of the VHDL simulation will be covered in the

next chapter. The VHDL synthesis file is passed to Synopsys Design Compiler for

synthesis. The program also generates Spectre netlist for the top level circuit as well

as a Verilog code of the control block. The Verilog code can be imported to Cadence

Analog Artist for generating Spectre net list of the control block. By combining the

top level Spectre netlist and the control block Spectre netlist, circuit level simulations
can be conducted to measure time delay and power consumption.

Based on the WMS wrapper program, a M2B program was also developed. For a

given MVL function in a truth table format, the M2B program, working cooperatively
with Synopsys Design Compiler and Cadence Analog Artist, generates equivalent
binary logic circuit in three formats: VHDL code, Verilog code and Spectre netlist.



6. VHDL Simulation

In order to verify the self-restored architecture and test the WMS program, a

tremendous amount of simulation must be carried out on the resulting circuits. As the
self-restored MVL circuits consists of CMCL circuit elements such as current source

and current mirror, it was inevitable to verify designs using analog simulators. Circuit
simulators such as SPICE are widely available today. A major inconvenience of using
a circuit simulator is the time required to perform the simulations. A more convenient

method would be to use a high-level hardware description language (HDL) for circuit
designs so that functional simulation of the circuit description cari be performed.
Nevertheless, both VHDL and Verilog were not designed for analog simulation as

a primary requirement. The Accellera Verilog-AMS Technical Subcommittee and

the IEEE 1076.1 Working Group have been working on analog and mixed-signal
extensions to both languages.

Despite this, by taking advantages of VHDL's flexible value system and customiz­

able bus resolution function [27, 28, 29, 30], a library (referred to as the "CMCL

library" hereafter) which allows VHDL simulation of CMCL designs was proposed
in the author's Masters thesis [12]. The CMCL library has undergone a number of

refinements and is being improved on a continuing basis. In particular, the old CMCL

library in [12] suffers from two drawbacks. First of all, the bus resolution function is

so complex that maintenance and improvement are extremely difficult. Secondly, the
switch model is not robust enough to handle various circuit topologies.

This chapter discusses the design and use of a new CMCL library for use with

VHDL simulators. Starting with the library specification in Section 6.1, this chapter
will provide the background knowledge of the CMCL library specification, followed by

92
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the implementation details of new VHDL packages and library with emphasis on the

bus resolution function, circuit functions, operator functions, and binary functions in .

Section 6.2. The interaction between the bus resolution function and circuit functions

to determine currents in interconnections will also be explained. Section 6.3 presents
two examples to show the usage of the CMCL library. Both VHDL simulation and

SPICE transient analysis results are presented for comparison.

6.1 Library Specification

During the development of the CMCL library, a number of decisions had to be

considered in its implementation. The first task in the development of the CMCL li­

brary was to specify what the library was expected to accomplish. Where possible, the
CMCL library was written in a general way. This section describes the specification
and structure of the VHDL library.

6.1.1 Current Distribution

The most complicated feature in the CMCL library is the current distribution. An

example will explain the effect it had on the implementation of the library. A simple
MVL circuit is shown in Figure 6.1{a). It consists of an input MVL signal, an N-type
current mirror, a P-type current mirror, and an N-type threshold. The threshold

has been set to a value of 2.510, where 10 is the base current (i.e., the difference

between two adjacent logic levels). As long as the input current, lin, is below 2.510,
the circuit operates normally and 12 = II = lin' When the input current exceeds

2.510, a resolution problem exists. Since the threshold element cannot conduct more

than 2.510, a method of setting the P-type current mirror's output to 2.510 must be

provided. Thus the threshold controls the value of the current 12,

A variation of the simple MVL circuit is shown in Figure 6.1(b). An N-type switch

has been added between the P-type current mirror and the N-type current threshold.
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Figure 6.1 CMCL bus resolution example circuits.

First consider the case where the control signal to the switch causes it to he OFF. In

this case no current must flow from the P-type current mirror output or through the

N-type threshold. The switch controls the value of the current 12 and 13 (i.e., both
are D.Dj..lA). Next consider the case where the control signal to the switch causes it to

be ON. In this case the operation of the circuit is as above. The switch passes current

without modification (note that 12 must be equal 13)'

This implies that all MVL inputs are, in fact, of mode INOUT since they must

also be capable of driving the output connection when necessary. This also implies
that all MVL outputs are of mode INOUT since they must also be capable of being
driven when necessary. This further implies that the various components (or entities)
must have different driving types to resolve a node. In order to implement these

refinements in the CMCL library, the mode of the PORTs on the MVL entities was

set to INOUT and the basic MVL entities were assigned driving types. The latter

further forced the use of aggregate type for MVL signals.
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6.1.2 Terminal Types

Before designing a bus resolution function it is necessary to classify the terminals

of elements which affect resolved logic value of a node. Basically, CMCL elements can

be classified into the following three major categories in terms of terminal types.

Category 1: Single-terminal elements including N-type current source, P­

type current source, N-type threshold, and P-type threshold.

Category 2: Multi-terminal elements including N-type current mirror and

P - type current mirror.

Category 3: Binary gates.

If a current sink is deemed to be the same as a N-type threshold and a P-type cur­

rent source is deemed as the same as a P-type threshold, only the following terminals
will affect the resolved logic value of a node.

• Output of N-type current source (same as N-type threshold).

• Output of P-type current source (same as P-type threshold).

• Input of N-type current mirror.

• Output of N-type current mirror.

• Input of P-type current mirror.

• Output of P-type current mirror.

• Output of binary gates.

It should be noted that input terminals of a CMOS binary gate do not affect the

logic value of a node in the ideal case because their input terminals are normally gate
terminals of either PMOS or NMOS transistors. In other words, the gate capacitors of

MOS transistors are simply charged or discharged by their driving current or voltage
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signals. From the digital simulation point of view, charging and discharging is related

to timing processing. On the other hand, the output terminals of CMOS binary gates·
cannot be connected to a pure MVL node because output terminals of CMOS binary
gates would source or sink an error output current (rv lOOj.LA) during switching and

in turn, cause errors at this node. Excluding binary gates, only six different types of

ports are left; output of current sink, output of current source, input of NCM, output
of NCM, input of PCM, and output of PCM.

6.1.3 Binary Logic Packages

A VHDL package is a means of sharing portions of code that are used frequently
for VHDL modeling, simulation, and synthesis. Based on packages, models as small

as a cell or as large as a whole system can then be built. A VHDL package consists

of two sections, package declarations and package body, which can include component
declarations, signal declarations, disconnection specification, attribute declarations,
type declarations, and subprograms. The package declarations define the interface

for the package. The package body specifies the actual behavior of the package [64].
All the items specified in the package are accessible to other design units either by
selection or directly [65].

The CMCL library must be able to handle both current-mode MVL and voltage­
mode binary logic. As mentioned in Chapter 2 to 4, binary logic circuits are used in

a multiple-valued CMCL system to generate control signals for switches or for other

purposes through a threshold. As these binary logic signals are directly connected

MVL nodes, the aggregate type of MVL signal must also include binary logic state of
a node. Instead of defining all the necessary types and functions for the binary logic,
existing binary packages should be used. There are many choices for the VHDL pack­
ages for binary logic. In order to make the CMCL library as portable as possible, The
CMCL library should use the industrial standard VHDL packages. STD and IEEE

libraries and packages were selected for this purpose. Extensive use has been made
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of these two packages. The libraries STD. standard, STD.texio, IEEE.std_login_1164,
and IEEE.std_logic_texio are all used. The details of these package can be found in

most popular VHDL books [29, 64] and will not be described.

6.1.4 CMCL Packages

The CMCL library should contain several VHDL packages in order for easy main­

tenance and later enhancement. Where applicable, the packages should be designed
in a way to avoid compilation of one package causing recompilation of other packages.

i. CMCL Package: The basic concept of the CMCL package is similar to that of

binary logic packages. A variety of types and constants should be declared

first. A bus resolution function should then be defined based on the types.

However, multiple-valued CMCL circuits differ from binary logic circuits in that
the output signal of a multiple-valued CMCL element is much more sensitive to

W:L ratios of PMOS or NMOS transistors and loadings. This difference must

be considered carefully in the CMCL package. Debug capability should also be

included that supports debugging output in ASCII format. Additions should

be made to the CMCL library to use this feature. The use of ASSERTions

to monitor the user's circuit specification, i.e., improperly connected entities,
should also be added. An example of this is checking that current sources and

current mirrors are not connected to an output from a binary gate. Finally,
basic element and operator functions should be designed based on the CMCL

package.

H. CIRCUIT Package: This package implements functions of the CMCL circuit

elements. The functions should include every basic CMCL circuit elements:

switches, thresholds, current sources, and current mirrors. Both N-type and

P-type versions should be available. The sign of current should be defined in

terms of driving signals. All N-type driving signals have negative value, while
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all P-type driving signals have positive value. For instance current flowing into

both input and output of an N-type current mirror or an N-type threshold is

negative, current flowing out from both input and output of a Pvtype current

mirror or a P-type threshold is positive.

iii. OPERATOR Package: This package implements functions of the CMCL MVL

operators and binary operators. Operator overload functions should be sup­

ported, including vector forms. MVL functions should include min, max, tsum,
ltrl (literal operation), ltrlb (complement of literal operation), eye (clockwise
cycle operation), and cycb (counter-clockwise cycle operation). Binary logic
functions should include and, nand, or, nor, xor, xnor and not.

6.1.5 Library Structure

Considering parameter transfer, logic simulation, and logic synthesis, VHDL sim­

ulation models in the CMCL library are divided into three types. Type 1 are simple
entities including the basic CMCL building elements. Type 2 are binary entities in­

cluding basic binary gates. Type 3 are complex entities including MVL operators
and macrocells made of simple entities. A diagram showing the organization of the

CMCL library is shown in Figure 6.2.

The simple behavioral entities should be developed by using the circuit functions

defined in the CIRCUIT package. Re-defining each circuit element as a separate

entity is an inevitable step for not only structural modeling of complex entities but

also parameter transfer through GENERIC mapping. The parameters can be timing
information, transistor size, fan-in, fan-out, and so on. It is possible to create a

behavioral model for each element without using the CIRCUIT package. Functions

must then be redundantly defined in models.

The complex entities should have two units: structural description and behavioral

description. The structural description should be created by using the simple entities
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CMCL MVL Library

Complex Entities
Structural Architecture

Basic Entities
Behavioral Architecture

Binary Logic Entities
Behavioral Architecture

Complex Entities
Behavioral Architecture

Basic Entities
Behavioral Architecture

and binary gates. The behavioral description should be created by using the functions
defined in the OPERATOR package.

Binary Logic Entities
Behavioral Architecture

Figure 6.2 Block diagram of the CMCL library.

6.1.6 Library Cells

The entities contained in the CMCL library should be based upon the necessary
basic MVL circuits [25] and standard binary logic gates. As well, a number of more

complex MVL functions were implemented [42, 17]. A list of cells implemented in the

CMCL library is given in Table 6.1.

For the basic CMCL behavioral entities such as N-type threshold and P-type
threshold, a generic port should be used for setting the logic level they can detect.

Similarly, a generic port should also be used in the current sink and current source

entities to set the logic level that they can generate. Although only three types of

NCM and PCM entities are shown in the table, current mirror entities with more

than 3 inputs can be easily created based on the these models. A list of standard

binary entities is also given in Table 6.1. All the entities have two inputs except
the inverter. A general purpose test-bench was developed to allow verification of

models. As shown in Table 6.1, a set of complex MVL structural and behavioral
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Table 6.1 VHDL models of the CMCL cells.

Circuit Elements Logic Operators
Cell Description Cell Description
ncm1 1-0utput NCM and2 2-Input AND gate
ncm2 2-0utput NCM nand2 2-Input NAND gate
ncm3 3-0utput NCM or2 2-Input OR gate
pcm1 1-0utput PCM nor2 2-Input NOR gate
pcm2 2-0utput PCM xor2 2-Input EXOR gate
pcm3 3-0utput PCM xnor2 2-Input EXNOR gate
nth N-type Threshold mv Inverter
pth P-type Threshold min2 2-Input Min
snk Current Sink max2 2-Input Max
src Current Source tsum Truncated Sum
nsw N-type Switch cycle Clockwise Cycle
psw P-type Switch ltrl Literal

entities are also included. Most of the complex MVL circuits are implementations
of desirable operators. Where appropriate, N-type and P-type versions are available

by using different architecture names. An N-type version should use 'n.type' for
its architecture name, while a P-type version should use 'p.type' for its architecture

name. Other models, for example, multiple-input min and max, counter-clockwise

cycle, complement of literal, window literal, and complement can be created easily
based on the available models.

6.2 Library Design

The second task in the development of the CMCL library was to implement the

library specification. This section describes the design of the bus resolution function

and the modeling of circuit elements, emphasizing how they work out branch current

values of a node through seamless interactions. Type declarations, which are closely
related to the bus resolution function, will be explained first.
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6.2.1 Type Declarations

The most important declarations in the new VHDL package are the new logic
value system and the resolved signal. This section therefore focuses on declarations

related to these two items. Other declarations are explained in Appendix C.l. Since

logic levels are represented in terms of current in the CMCL design, the logic values

can simply be defined as REAL type. According to the specification, the aggregate
type for the MVL signals must consist of at least current and binary logic. In this

implementation, a resolved MVL signal, node, is defined in a CMCL package as

follows:

TYPE unode IS RECORD
I current_vee;
B std_logie;
W weight_vee;
PDR real;
NDR real;
EQ integer;

END RECORD;
TYPE unode_vee IS ARRAY (NATURAL RANGE <» OF unode;
FUNCTION mresolved (s: unode_vee) RETURN unode;
SUBTYPE node IS mresolved unode;

The major subelements ofthe aggregate type are current vector (I), binary logic (B)
and weight vector (W). The size of the current vector and weight vector is equal to the

number of signal driving types defined in node_type. The noda.type is defined as:

TYPE node_type IS (
unknown, 0

nemin, 1

pemin, 2

nemout, 3

nthio, 4

pemout, 5

pthio, 6

bout; 7
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swio);
TYPE current_vee
TYPE weight_vee

8

IS ARRAY (0 TO typeno-l) OF real;
IS ARRAY (0 TO typeno-l) OF real;

where nemin represents the input of N-type current mirrors; nemout is the output of

N-type current mirrors, nthio is the input/output of N-type thresholds and current

sinks, pcmin is the input of P-type current mirrors, pcmout is the output of P-type
current mirrors, pthio is the input/output of P-type thresholds and current sources,

swio is the input/output of bidirectional switches, bout is the output of binary gates.
The first entry in the current vector corresponds to the unknown driving current, the

second entry in the current vector corresponds to the driving current from the input
of N-type current mirror, etc. This way a signal can be assigned a value more easily.
For example, partial code of an overloaded force function in the CMCL package is

shown below:

FUNCTION force ( s : REAL; t : node_type) RETURN node IS
VARIABLE result : node := initNODE;

BEGIN

result.I(node_type'POS(t» s;

RETURN result;
END force;

where the value s is assigned to the current.vector of the variable, result, at a

position where the t located in the node.type, For example, if t is pthio and s is

20, then 1(6) is 20 because node_type'POS(pthio) is 6. It should be noted that a

node must be initialized by ini tNODE, which is defined in UTILITY package as:

CONSTANT initCUR current_vee .= ( o TO typeno-l => 0.0);
CONSTANT initMVL mvl_vec .= ( o TO typeno-l => 0.0);
CONSTANT initWGT weight_vee .= ( o TO typeno-l => 0.0);
CONSTANT initNODE unode .= (initCUR, initMVL, 'Z' , initWGT,

0.0, 0.0, 0.0, 0, unknown);
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Initialization is very important. Otherwise, the default value of a type will be used.

For example, without initialization, the initial value of result. EQ in the above ex­

ample will be -2147483648.

The weight vector contains information of the transistorW/L ratio for each driving
type. B is the binary logic state of a node. PDR and NDR are total positive and negative
driving currents, respectively. As will be described later in this section, EQ is used

by circuit functions and the bus resolution function to determine if a node reaches

equilibrium. The current is declared as a subtype of REAL so as to allow more

flexibility in signal definitions.

A global constant, base.current, is set to the MVL logic step size in fJ,A. For

example, a base.current setting of 20.0 corresponds to an 10 of 20fJ,A. If base.current
is set to 1.0, display output indicating logic levels is obtained.

6.2.2 Bus Resolution

In addition to the declarations and functions another important issue in a VHDL

package is how to handle multiple-driven nodes, namely, the bus resolution problem.
The resolution function is usually the first function implemented in a package body.
The purpose of the resolution function is to resolve the state of a node driven by
multiple drivers. In a binary logic package, the bus resolution problem is usually
handled by a resolution function in cooperation with a resolution table constant [29].

The bus resolution function must be kept as simple as possible in order to attain

fast simulation and easy implementation. Unlike old versions of the bus resolution

functions in [66] which try to resolve current distribution of each interconnection,
the resolution function used here is designed to execute three tasks: (1) combine all

driving signals together, (2) check if a node reaches equilibrium, and (3) determine
the binary logic state of a node. The mresolved resolution function is only about 150

lines of code, which is about half the size of the older version. Accompanied with

collecting the information regarding the network topology of node, the resolved signal
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also generates a new event to invoke the processes of MVL entities connected to the

node as will be described shortly. The entities then recalculate their input and/or
output currents based on the resolved signal. For example, referring to Fig. 6.1(a),
assume lin is logic O. If the base current, 10, is set to 20J-lA, the initial value of 12 is

12.1 = (0.0, 0.0, 0.0, 0.0,-50.0, 0.0, 0.0, 0.0, 0.0)
12.W = (0.0, 0.0, 0.0, 0.0, 1.0, 1. 0, 0.0, 0.0, 0.0)
12.B = °

12.POR = 0.0

12.NOR = -50.0

12.EQ = 1

12. B is 0 because the sum of 12. POR and 12. NOR is negative. Since the sum of the

elements of 12. I is not zero, i.e., this node has not reached equilibrium, the resolution

function increments 12. EQ, which invokes the P-type current mirror and the N-type
current source. In response to the new event, both entities recalculate their output
currents. The result is that the output of the P-type current mirror remains OJ-lA and

the output of the N-type current source is reduced to OJ-lA. Therefore, 12 becomes

12.1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
12.W = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0)
12.B = °

12.POR = 0.0

12.NDR = -50.0

12.EQ = °

and 12. EQ is reset to 0 by the resolution function because the sum of the elements of

12. I is zero. As will be seen below, a simple resolution function also greatly simplifies
the bi-directional switch models. Although the resolution function does not provide
accurate analog results as circuit simulators do, it can quickly and reliably verify
MVL circuits based on the self-restored architecture.



105

6.2.3 Circuit Functions

The circuit functions are implemented in a CIRCUIT package, including titli.proc,
pili.proc, ticmiti.proc, ncmoui.proc, pcmin.proc, pcmoui.proc, nsui.proc, and psui.proc.

As can be seen from the list, each circuit function corresponds to a terminal type men­

tioned in 6.1.2. MVL entities are then implemented based on these circuit functions.

The circuit functions work tightly with the resolution function to determine currents

in interconnections. Again, referring to Figure 6.1(a), assume lin is logic 1. If the

base current, 1o, is set to 20/1,A, the initial value of 12 is

12.1 = (0.0, 0.0, 0.0, 0.0,-50.0,20.0, 0.0, 0.0, 0.0)
12.W = (0.0, 0.0, 0.0, 0.0, 1. 0, 1. 0, 0.0, 0.0, 0.0)
12.B = 0

12.PDR = 20.0
12.NDR = -50.0

12.EQ = 1

12. B is still 0 because the sum of 12. PDR and 12. NDR is negative. Since the sum

of the elements of 12. I is not zero, i.e., this node has not reached equilibrium, the
resolution function increments 12.EQ, which invokes the pcmout.proc in the P-type
current mirror and the nth.proc in the N-type current source. In response to the

event, both entities recalculate their output currents. The result is that the output of

the P-type current mirror remains 20/1,A and the output of the N-type current source

is reduced from 50j.lA to 20j.lA. The resolution function resets 12. EQ to 0 because the

sum of the elements of 12. I is zero. Therefore, 12 becomes

12.1 = (0.0, 0.0, 0.0, 0.0,-20.0,20.0, 0.0, 0.0, 0.0)
12.W = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0)
12.B = 0

12.PDR = 20.0

12.NDR = -50.0

12.EQ = 0
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Now assume lin is 60Ji,A. The initial value of 12 is

12.1 = (0.0, 0.0, 0.0, 0.0,-50.0,60.0, 0.0, 0.0, 0.0)
12.W = (0.0, 0.0, 0.0, 0.0, 1. 0, 1.0, 0.0, 0.0, 0.0)
12.B = 1

12.PDR = 60.0
12.NDR = -50.0

12.EQ = 1

12. B is changed to 1 by the resolution function because the sum of 12. PDR and

12. NDR is positive. Similarly, since the sum of the elements of 12. I is not zero, the

resolution function increments 12. EQ, which invokes the pcmout.proc in the P-type
current mirror and the titli.proc in the N-type current source to recalculate their

output currents. The result is that the output of the P-type current mirror is reduced

from 60j.lA to 50j.lA and the output of the N-type current source remains 50j.lA.
Therefore, 12 becomes

12.1 = (0.0, 0.0, 0.0, 0.0,-50.0,50.0, 0.0, 0.0, 0.0)
12.W = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0)
12.B = 1

12.PDR = 60.0
12.NDR = -50.0

12.EQ = °

12. EQ is reset to 0 by the resolution function because the sum of the elements of 12. I

is zero again.

Bi-directional switch models are different from other circuit models. The simula-

tion algorithms for circuits involving bi-directional switches are known as relaxation

algorithms. An algorithm which models a bi-directional switch that can affect only
the circuits directly connected to it is known as a local relaxation algorithm. A local

relaxation algorithm implemented in VHDL was proposed by Coelho et al. and suc­

cessfully used for VHDL switch-level simulation [29]. Unfortunately this algorithm
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does not apply to CMCL design. As mentioned in Section 6.1, bi-directional switch

ports affect the logic value of a node in a very particular way. When a switch is

turned on each switch INOUT port must transfer the the circuit topology from one

side to the other side so that a new network is formed. When a switch is turned off

the circuit connected with either side should be evaluated individually. This switch

model, which can be modeled for VMCL binary gates very easily, is quite complex as

a multiple-valued CMCL element. In fact, this was the most complex model in the

older version of the CMCL library. However, thanks to the simplified node type and

bus resolution function, transferring circuit information from one side to the other

side becomes much easier.

Referring to Figure 6.1(b), assume the switch is initially OFF and and lin is logic

one, i.e., 20J-lA. Since the switch is OFF, the nsui.proc in the switch model will simply

assign initNODE to its two INOUT ports. Therefore, 12 and 13 eventually become

12.1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
12.W = (0.0, 0.0, 0.0, 0.0, 0.0, 1. 0, 0.0, 0.0, 0.0)
12.B = 1

12.PDR = 20.0
12.NDR = 0.0

12.EQ = °

13.1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
13.W = (0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0)
13.B = °

13.PDR = 0.0
13.NDR = -50.0

13.EQ = °

When the switch is turned on, the switch model generates a new event by setting

W(node_type) 'PoS(swio) to 1 to force recalculation of current distribution. There-

fore, the resolution function changes 12 and 13 to

12.1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
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12.W = (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0)
12.B = 1

12.PDR = 20.0
12.NDR = 0.0

12.EQ = 0

13.1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
13.W = (0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1. 0)
13.B = 0
13.PDR = 0.0
13.NDR = -50.0

13.EQ = 0

In response to the new event, the pcmout.proc in the P-type current mirror and

the titli.proc in the N-type current source also initialize their output currents. As a

result, new resolved results of 12 and 13 are

12.1 = (0.0, 0.0, 0.0, 0.0, 0.0,20.0, 0.0, 0.0, 0.0)
12.W = (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0)
12.B = 1

12.PDR = 20.0
12.NDR = 0.0

12.EQ = 0

13.1 = (0.0, 0.0, 0.0, 0.0,-50.0, 0.0, 0.0, 0.0, 0.0)
13.W = (0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1. 0)
13.B = 0

13.PDR = 0.0
13.NDR = -50.0

13.EQ = 0

In response to the new event, the switch model transfer the resolved value from

one end to the other to force a new event on both 12 and 13, The resolution function

generate a new results as

12.1 = (0.0, 0.0, 0.0, 0.0,-50.0,20.0, 0.0, 0.0, 0.0)
12.W = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0)
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12.B = °

12.PDR = 20.0
12.NDR = -50.0

12.EQ =, °

13.1 = (0.0, 0.0, 0.0, 0.0,-50.0,20.0, 0.0, 0.0, 0.0)
13.W = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0)
13.B = °

13.PDR = 20.0
13.NDR = -50.0

13.EQ = °

12. B is changed to 0 by the resolution function and 12 and 13 are the same. Similar

to the situation described before with reference to to Figure 6.1(b), the resolution

function increments 12. EQ and 13. EQ since 12 and 13 have not reached equilibrium,
which invokes the pcmout.proc in the P-type current mirror and the nili.proc in the

N-type current source to recalculate their output currents. The result is that the

output of the N-type current source changes its output from -50J1A to 20J.LA and the

output of the P-type current mirror remains 20J.LA. Therefore, 12 remain unchanged
and 13 becomes

13.1 = (0.0, 0.0, 0.0, 0.0,-20.0,20.0, 0.0, 0.0, 0.0)
13.W = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0)
13.B = °

13.PDR = 20.0
13.NDR = -50.0

13.EQ = °

The switch then transfers the new resolved 13 to 12 so that 12 also becomes

12.1 = (0.0, 0.0, 0.0, 0.0,-20.0,20.0, 0.0, 0.0, 0.0)
12.W = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0)
12.B = °

12.PDR = 20.0
12.NDR = -50.0

12.EQ = °
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The new resolved 12 is transfered to 13 by the switch. Since 12 and 13 are the

same, simulation stops until the next new event.

6.2.4 Library Cell Modeling

All of the basic MVL elements discussed in Chapter 2 are modeled as library cells

by defining their functions in the CIRCUIT package and then creating behavioral

descriptions by using the functions. Although only single-output, two-output and
three-output current mirror models were created, these models can easily be expanded
to handle any number of outputs. A cell model using GENERIC for parameter
transfer is shown in Figure 6.3. It should be noted each model must start with a

LIBRARY clause and a USE clause so that the CMCL package and other packages
are visible to the models.

As mentioned previously one of the reasons to re-define each circuit element as a

cell is for parameter transfer through GENERIC mapping. In this model wgt in the

GENERIC port is used to specify the width ratio Wout:Win of the output transistor

and the input transistor of the N-type current mirror, ncm1. For example, wgt<=2
means the width of the output transistor is two times larger than that of the input
transistor of the same current mirror. Every port is a bidirectional INOUT port since

all input ports must be capable of driving the output connection when necessary and

all output ports must also be capable of being driven when necessary. In the above

example, all of the ports are defined as a bidirectional port with an initial value of

initNODE. As mentioned in Section 6.2.1 initialization is very important. Otherwise,
the default value of REAL number is assigned to each branch current.

Based on the basic VHDL element models, the structural models for self-restored
CMCL MVL circuits as well as operators such as min, tsum, literal, and cycle can

be easily created. For the behavioral operator models the modeling approach is the

same as that of CMCL elements. That is, the function is declared in the OPERATOR

package and then the behavioral description was created by using the OPERATOR
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LIBRARY CCMVL; USE CCMVL.cmcl.ALL, CCMVL.circuit.ALL;
LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;

ENTITY ncm IS

GENERIC ( win, wout : REAL := 1.0 );
__ it's very important to set the iniNODE to all ports.
PORT ( inA: INOUT node := initNODE; outA : INOUT node := initNODE);

END ncm;

ARCHITECTURE behavioral OF ncm IS
SIGNAL x, y : REAL := 0.0;

BEGIN

PROCESS(inA, outA)
VARIABLE inA_delay, outA_delay : node := initNODE;
VARIABLE last_inA_change, last_outA_change : TIME := 0 NS;
VARIABLE x_int, x_ext, y_int, y_ext : REAL := 0.0;
VARIABLE total_in, total_pos, total_neg : REAL := 0.0;
VARIABLE equ : INTEGER := 0;
VARIABLE bin_state : std_logic := 'Z';
VARIABLE state_not_determined : boolean := false;

BEGIN
__ input event: recalculate output no matter of output event.
IF inA'EVENT THEN

ncmin_proc ( inA, outA, win, wout, x, y, inA_delay, outA_delay,
last_inA_change, last_outA_change,
x_int, x_ext, y_int, y_ext,

total_in, total_pos, total_neg,
equ, bin_state, state_not_determined);

__ output event : check if total current is greater than O.
__ if greater than 0 and no pcmin, then reduce current output.
ELSE

ncmout_proc ( inA, outA, wout, x, y, inA_delay, outA_delay,
last_inA_change, last_outA_change,
x_int, x_ext, y_int, y_ext,

total_in, total_pos, total_neg,
equ, bin_state, state_not_determined);

END IF;
END PROCESS;

END behavioral;

Figure 6.3 VHDL cell model of the single-output NCM.
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LIBRARY CCMVL, IEEE;
USE CCMVL.�mcl.ALL, CCMVL.operator.ALL, IEEE.std_logic_1164.ALL;

ENTITY and2 IS

port ( inA, inB INOUT node; outA INOUT node := initNODE);
END and2;

ARCHITECTURE behavioral OF and2 IS
BEGIN

outA <= CCMVL.operator.land"(inA, inB);
END behavioral;

Figure 6.4 VHDL model of the binary 2-input and gate.

package. Structural models for the CMCL MVL operators are shown in Appendix D.2.

To bind the components and models, a configuration file must be created for each

architecture.

Cell models can be separated to a plurality of files or merged into a package. In

either case each file must begin with the LIBRARY and the USE clauses to access

the CMCL package and other packages. In this implementation all the simple MVL

entities are declared and implemented in the CKT_ENT and CKT..ARCH files, respec­

tively (refer to Appendix D.l); all the complex entities are declared and implemented
in the MVL_ENT and MVL..ARCH files, respectively (refer to Appendix D�2); and
all the binary entities are declared in the BIN_ENT and BIN ..ARCH files, respec­

tively (refer to Appendix D.3).
Behavioral models of binary gates were created by using the std_logic_1164 pack­

age. An example of these behavioral models for binary gates is shown in Figure 6.4.

It can be seen from the example that the ports for binary gates are also of the type

of node. This avoids type conversion when a binary input or output is connected to

a MVL element. Also the overloaded and function is double-quoted because 'and' is

a reserved word in VHDL.
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6.2.5 Simulation Models

To run VHDL simulation the first thing to do is to create simulation models. A

simulation model does two things. First, it instantiates the model to be verified.

Secondly, it contains the input stimulus. VHDL can be used effectively as a stimulus

language. There are two approaches to create a VHDL simulation model; the test

bench approach and the simulation model approach [29].
The test bench approach has a separate input stimulus entity and model instanti­

ation entity. This stimulus entity has one OUT port and in its architecture body the
test vectors to be applied to the OUT port are declared. The force values and time

delay can be passed to the test vectors through the GENERIC ports. An instanti­

ation entity is then created to connect the stimulus entity to the circuit under test.

When this test bench is simulated, the stimulus entity provides stimulus to the cir­

cuit, which in response to these stimuli, sends results to the output until exhaustion

of all stimuli. It is also able to include assertions in the vectors to provide automatic

test for proper circuit operation.

The simulation model approach, on the other hand, has the circuit under test

and the test vectors combined into one VHDL entity. When the simulation model is

simulated stimulus processes defined in the model provide stimuli to the component,
which sends results back to output ports in responding to this stimulus.

Comparing the above two approaches, the test bench approach is better than

the simulation model approach for verifying a number of MVL circuits generated by
the WMS program because the input stimulus is used repeatedly. However, during
verification of the CMCL library it is frequently necessary to change the input stimulus

and observe simulation results. Therefore, all the VHDL simulations were carried out

using the simulation model approach. Yet another way to give input stimulus is to

use a VHDL simulator vendors' proprietary stimulus commands. However, significant
differences exist between VHDL simulators from various vendors. Considering the

portability of simulation models, the proprietary stimulus commands were not used.



114

6.3 Examples

While being developed, the CMCL library was tested on a number of circuits to

verify correct operation of the models. This section describes two of the test circuits.

Although only Leapfrog and NC-Sim1 simulation results will be discussed, the CMCL

library was also verified by importing it into Synopsys VSS2 and performing the

simulation. All of the VHDL simulation results were confirmed.

6.3.1 Quaternary Full Adder

The first example is to demonstrate how a circuit can be described in VHDL

by using the CMCL library. A circuit realization implementing a quaternary full

adder (QFA) function [50] is shown in Fig. 6.5. The circuit uses a number of entities

in the design, namely, N-type and P-type current mirrors, N-type threshold, N-type

switch, and current sink. Ain and Bin are the two radix 4 (values <0123» MVL

signals to be added while Gin is the carry-in signal from a previous stage (value
<01». Inet is the sum of the inputs Ain, Bin and Gin' II and 12 are duplicated
current of Inet. The actual current of 12 is subject to the threshold, Xnth . If Inet is

greater than 3.510 (i.e., 3.5 times the base current), the threshold generates a binary

high signal and limits II to 3.510; otherwise the threshold generates a binary low

signal. The binary logic signal controls switches Xnsw1 and Xnsw2 through Xinv1

and Xinv2. When Inet is more than 3.510, Xnsw1 and Xnsw2 are ON which causes

80ut = II - 415 = Inet - 410 and Gout = 10, When Inet is less than 3.510, 81 and 82

are OFF which causes 80ut = II = Inet and Gout = O.

The VHDL description for the QFA is shown in Fig. 6.6. It should be noted

that multiple driving signals (Ain, Bin, and Cin) are to be delivered to the modsum

through a single input (Inet). The VHDL code was compiled with the CMCL library.

1 Leapfrog and NC-Sim are trademarks of Cadence Design Systems, Inc.
2VSS is a trademark of Synopsys, Inc.
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Figure 6.5 Circuit realization of a QFA function.

NC-Sim was then used to simulate the circuit. A part of the Signalflcarr' output is
shown in Figure 6.7. As can be seen from the simulation results, the QFA functions

as intended. Internal current are as expected. HSPICE transient analysis circuit

simulation was also carried out to verify the function of the implemented QFA as

shown in Figure 6.S. Ideal current sources were used to generate the input currents.

The outputs of the QFA are connected to a load so that the transient response of the

QFA could be measured. The HSPICE simulation output agrees with the NC-Sim

simulation.

6.3.2 A Matching and Squaring Circuit

Fig. 6.9 is one segment of a matched filter [66]. This example is chosen since

functional verification at the circuit level is very time consuming. The designers

required an alternative for shortening the design cycle. The circuit consists of 32

bit-slice blocks and an analog processing block. As shown in Figure 6.10, each bit-

3SignalScan is a trademark of Cadence Design Systems, Inc.
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LIBRARY CCMVL; USE CCMVL.cmcl.ALL, CCMVL.operator.ALL;
LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;
ENTITY qfa IS

PORT ( Inet, Sout, Cout : INOUT node initNODE);
END qfa;
ARCHITECTURE structural OF qfa IS
SIGNAL ii, i2, i3, i4, i5, i6 : node initNODE;
COMPONENT nth

GENERIC (wgt REAL);
PORT (inoutA INOUT node);

END COMPONENT;
COMPONENT ncm

PORT ( inA: INOUT node; outA INOUT node);
END COMPONENT;
COMPONENT pcm

PORT ( inA: INOUT node; outA INOUT node);
END COMPONENT;
COMPONENT pcm2

PORT ( inA: INOUT node; outA, outB . INOUT node);
END COMPONENT;
COMPONENT nsw

PORT ( ctrl : IN node; inoutA, inoutB INOUT node );
END COMPONENT;
COMPONENT inv

PORT ( inA: IN node; outA OUT node);
END COMPONENT;
BEGIN

XPCM pcm2 PORT MAP (Inet, ii, i2);
XNTH nth GENERIC MAP (3.5) PORT MAP
XINVi inv PORT MAP (i2, i3);
XINV2 inv PORT MAP (i3, i4);
XNSWl nsw PORT MAP (i4, ii, i5);
XSNKl nth GENERIC MAP (4.0) PORT MAP
XNCM ncm PORT MAP (il, Sout);
XNSW2 nsw PORT MAP (i4, i6, Cout);
XSNK2 nth GENERIC MAP (1.0) PORT MAP

END structural;

(i2);

(i5) ;

(i6) ;

Figure 6.6 VHDL code of the QFA circuit shown in Fig. 6.5.



Cursorl = 0 ns

Cursor2 = 200 ns !
TimeA = 200(0) ns�0 20 40 60 80 100 120 140 160 200 ns:

Ain = 0 0 120 140 160 10 120 140 160 10 120 140 160 10 120 140 160 10 120 140 160

Bin = 0 0 120 140 160 10

Cin = 0 0
120

Inet = 0 0 120 140 160 120 140 160 180 140 160 180 1100 160 180 1100 1120 120 140 160 180

I3.B = 1 I I L_

r-
I4.B = 0 I I

I5 = 0 0 1-80 10 1-80 10 1-80 10 1-80

I6 = 0 0 1-20 10 1-20 10 1-20 10 1-20

Sout = 0 0 1-20 1-40 1-60 1-20 1-40 1-60 10 1-40 1-60 10 1-20 1-60 10 1-20 1-40 1-20 1-40 1-60 10

Cout = 0 0 1-20 10 1-20 10 1-20 10 1-20

CMCL:QFA:SIMULATaON
Printed by OAI Signalscan 6.4p1 '(om Cadence Destgn Systems. Inc.

Figure 6.7 VHDL simulation of the QFA circuit using Cadence NC-Sim.
�
�
-.J



A
M
p

L
I
N

60.0U

40.0U

20.0U

A
M
p

L
I
N

o .

60.0U

40.0U

20.0U

A
M
p

L
I
N

o .

20.0U

1S.0U

1 0 . 0 U

S.OU

O.

7S.0U

SO.OU

A
M
p

L
I
N

2S.0U

A
M
p

L
I
N

20.0U

lO.OU

QUATERNARY rULL ADDER
19-AUG97 10: S: 14

.. 1..1. . .1
_

: ; "/ .! .. J::.:.:: : "::::.: .. :.:" T·······
_

_ .

·····;················;···1············.' ; ; -

_....L..___.'--....L..� .. J..J. .. I. •. I. .• I..J. .. I. .. I. .. t .. I. . .I. . .1 ' , , I
... I. .• t .• I .. J. . .I. .. I. •. l .. J..J. . .I. .. I.._]

- �-----------------------------T\

r., " , , " "" I", L", "" <1
- .

_ .

-

_ ••••••••••••• J •••••••

O.
= 1 1 1 1 1 I 1 1

SOO.ON 7S0.0N
TIME (LIN)

1 I "1"'1"'1'" 1 :l

1.2S0U 1.S0U
1 .60 U

I 1

2S0.0N
O.

Figure 6.8 HSPICE simulation of the QFA circuit.

QrA.TRO
AIN

QrA.TRO
BIN

QrA.TRO
eIN

QrA.TRO
SOUT

QrA.TRO
eOUT

I-'
I-'
00



119

slice block further consists of three D-type flip-flops (DFFs) for latching input signals
and codes as well as two match processing blocks comparing input signals and codes.

DFFO and DFF1 are signal registers while DFF2 is a code register. The two matching
blocks compare outputs from DFFs and generate current outputs when they match.

A circuit implementation of the matching blocks is shown in Figure 6.11. The match

processing block, MATCH_PROCO, compares SigO.ln and Code.In and sinks 5J-LA
when the states match, and the other match processing block, MATCH_PROC1,

compares SigLln and Code.In and sinks 10J-LA when the states match. The amount

of current sunk by a bit-slice block is summarized in Figure 6.12. The current outputs

from the 32 bit-slice blocks are connected together so that the total current input to

Imatch from the 32 bit-slice blocks ranges from OJ-LA to 32 x (5J-LA + 10J-LA) = 4S0J-LA.

The analog processing block contains an absolute differencing block (not shown)
and a current squaring block (not shown) to perform an operation described in equa­

tion form by [Imatch - 240J-LA!2. In order to provide the absolute value of Imatch -

240J-LA, two current differencing blocks are used. The circuit used to implement the

current squaring block was taken from [67}. The output current is sourced out of the

current squaring block and follows the relationship

I llnl
out = -S1. iff !linl! < 4lin2 and lin2 > 0

m2
(6.1)

The input to linl is provided by the output of the current differencing blocks, and

will therefore have a maximum value of 4S0J-LA - 240J-LA = 240J-LA. Thus lin2 must be

at least 240J-LA/4 = 60J-LA.

The VHDL description of the matching and squaring circuit was compiled using

Leapfrog with the CMCL library. Leapfrog was then used to simulate the circuit.

Fig. 6.13 shows partial Leapfrog simulation output. Transient analysis was also car­

ried out by using Spectre" to verify the function of the implemented circuit. Fig. 6.14

4Spectre is a trademark of Cadence Design Systems, Inc.
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shows the Spectre simulation result from O.OttS to lOOtts. The Code Register (DFF2)
was loaded with all ones. The two Signal Register (DFFO and DFF1) inputs were

tied together and was initially loaded with zeros so that the number ofmatches starts

at 0 which results in a maximum output of

I =
10ttA - 240ttAI2

= 120 A.out
8 x 60ttA

tt (6.2)

The Signal register inputs were then supplied with alternating runs of 32 ones a nd

32 zeros. The number of matches increases to 16 which result in a minimum output
of

I -
1240ttA - 240ttAI2

- Aout -

8 x 60ttA
- Ott

and then the number of matches increases to 32 resulting in the maximum output

(6.3)

(6.4)

The number of matches then ramps down to 16 and to 0 to finish the test.

In Fig. 6.13, Code.In is the voltage supplied to Code.In of BIT_SLICEO, Sig l.Jn

and Sigu.In are the voltages supplied to Sig l.In and Sigfl.In ofBIT_SLICEO, Code.Out

is Code.Out from BIT_SLICE31, SigLOut and Sigfl.Out are SigLOut and Sigfl.Out
from BIT_SLICE31, and Imatch is the sum of total current outputs from the 32

bit-slice blocks, and lout is the output current waveform from the analog process­

ing block. Similarly, in Fig. 6.14, /Code_ln is the voltage supplied to Code.In of

BIT_SLICEO, /Sigl.In and /SigO_ln are the voltages supplied to Sig l.Jn and Sigtl.In

ofBIT_SLICEO, /Code<31> is Code.Out from BIT.BLICE31, Sig1<31> is SigLOut
from BIT_SLICE31, and /R3/PLUS is the output current waveform, lout. By com­

paring lout in Fig. 6.13 and /R3/PLUS in Fig. 6.14 around 65j.Ls, it can be seen that

the VHDL simulation functionally matches the Spectre simulation. The peak value

of /R3/PLUS is approximately 120ttA which is the same as the peak value of lout in
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Transient Response
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the VHDL simulation. More importantly, the VHDL simulation is much faster than

the Spectre simulation. The Spectre simulation takes about two and half hours on

an UltraSparc machine with 128MB memory, while the VHDL simulation takes only
15 seconds on the same machine.

6.4 Summary
A new library for VHDL simulation of CMCL MVL design is discussed in this

chapter. The new library allows faster simulation of a broader range of CMCL circuits

as a result of the new bus resolution function and the new CMCL circuit element

functions. The library has basic MVL entities (behavioral), complex MVL entities

(behavioral and structural) as well as standard binary logic gates. A bus resolution

function working cooperatively with the basic MVL entities allow MVL logic levels

(currents) in individual connections to be output.

Design examples of a quaternary full adder and partial circuit of a matched filter
are presented along with both VHDL and circuit simulation results. The design
examples verify that the CMCL library allows the VHDL simulation of current-mode

CMOS logic using Leapfrog. Spectre was used to confirm that the VHDL simulations

were correct. The circuits were also verified by importing the CMCL library into VSS

and performing the simulation. All of the VHDL simulation results were confirmed.

The library is being improved on a continuing basis. The next step is to define the

CMCL library to incorporate better debugging and performance. As well, extensive
cell characterization must take place to ensure the cell-delay figures for the models

are correct.



7. Results

A self-restored CMOS MVL design architecture and its variants were proposed in

Chapters 3 and 4. An approach of using a binary logic synthesizer for MVL synthesis
was also discussed in Chapter 5. A computer program, WMS, was developed to

implement the approach. The program works together with the Synopsys Design
Compiler to generate self-restored MVL circuits in both VHDL and Verilog formats.
The generated VHDL files can then be verified by using a VHDL simulator with

the CMCL library. The Verilog files can be imported to the Cadence environment for

Spectre simulation or other purposes. Based on the WMS program, another computer

program, M2B, was also developed to derive an equivalent binary logic circuit for a

given MVL function.

This chapter focuses on comparison of self-restored MVL design with conventional

operator-based MVL design and with binary logic design. The results will be dis­

cussed from three aspects: circuit size, time delay, and power dissipation. Section 7.1

presents comparison between the self-restored MVL architecture and the conventional

operator-based MVL design as well as the comparing procedures. Section 7.2 presents

comparison of the self-restored MVL architecture with the binary logic design.

7.1 Comparison with Operator-Based MVL De-
•

signs

The self-restored architecture is advantageous over the conventional operator­
based MVL design schemes in many aspects in addition to self-restoration. With
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the self-restored architecture, a binary logic synthesizer can be used for synthesis of

MVL functions. It is also believed that the self-restored architecture can result in

smaller circuit size because of using up literal in place of literal and using binary
and/or operators in place of min/max operators.

Many examples were manually designed and compared with operators-based de­

sign prior to the development of the WMS program. In most of the cases MVL circuits

implemented with the self-restored architecture are smaller than the operator-based
MVL design. Figures 7.1 to 7.3 are examples taken from [59]. Figure 7.1 shows three

examples for comparing with operator-based design using the HAMLET program.

Figure 7.2 shows three examples for comparing with operator-based design using the

Set C operators as described in Chapter 2. Figure 7.3 shows three examples for

comparing with operator-based design using other approaches.

When max is used, Figure 7.1(a) can be expressed as:

F - ((1.0X12).(I.oX01))+(1.1X01)+
((1. OX10). (1. °X02)) + ((1.1X12). (1. 3X03)) +

((2. °X12). (2 .1X01)) + ((3 .lX11). (3 .1X01)). (7.1)

When tsum is used, Figure 7.1(a) can be expressed with fewer number of PTs:

F - ((1.0X12).(I.oX01))I±l((1.1X13).(1.1X01))1±l
( (1 • 0x,0) • (1 • 1Xl)) I±l ( (1 • 1X12) • (1 • 3Xo3)) I±l

((2.1X/). (2. 1X01)). (7.2)

Since a literal operator consists of 13 transistors, a min operator consists of 7 transis­

tors, and a tsum operator consists of 9 transistors, circuit realization of Eq. 7.2 needs

10 x 13+4 x 7+9 = 167 transistors. That actual circuit size is more than this number

because current mirrors are frequently used for reversing current direction and level
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restorer circuits are required for recovering signals. Additionally, more than one tsum

operator is required due to the limitation ofmaximum input current. If interface with
a binary logic module is needed, extra binary-MVL or MVL-binary converters make

the number even greater. The same function can be implemented by the self-restored

architecture with 44 transistors, which is about 25% of the operator-based design.
Figure 7.1(b) can be expressed as:

F _ (1.0Xo 0) l±l ((1 • 2X12) • (1 .0Xo0)) l±l ((1 • 0x, 0) • (1 .3Xo3)) l±l

((1 • 3X13) • (1 .3Xo3)) m ((3. IXII) • (3.3Xo3)) m

((2.0XII) • (2 • 0Xo 0)) l±l ((2. IXII) • (2. Ix, I)) l±l

((2.3X13) • (2.2X02)) l±l ((3.2X12) • (3.2X02)). (7.3)

Circuit realization of Eq. 7.3 needs more than 17 x 13 + 8 x 7 + 9 = 286 transistors.

The same function can be implemented by the self-restored architecture with 72

transistors.

Figure 7.1 (c) can be expressed as:

F ((1.3X13) • (1.0Xo 0) l±l ((1.0XII) • (1 .2X02) l±l

((1 • IX12) • (1 .2Xo3) m ((2.0x, 0) • (2.0Xo0) m

((3.2XI2). (3.oXoO)l±l((3.3XI3). (3.2X03). (7.4)

Circuit realization of Eq. 7.4 needs more than 12 x 13 + 6 x 7 + 9 = 207 transistors.

The same function can be implemented by the self-restored architecture with 66

transistors.

Figure 7.2(a) can be expressed as:

-- 3

F = (2.IXII) .X�. (7.5)

Circuit realization of Eq. 7.5 needs more than 1 x 13 + 1 x 7 + 14 = 34 transistors
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as a cycle operator consists of 14 transistors. The same function can be implemented
by the self-restored architecture with 38 transistors.

Figure 7.2(b) can be expressed as:

(7.6)

Circuit realization of Eq, 7.6 needs more than 2 x 13 + 2 x 14+ 7+ 9 = 58 transistors.

The same function can be implemented by the self-restored architecture with 38

transistors.

Figure 7.2(c) can be expressed as:

Circuit realization of Eq. 7.7 needs more than 3 x 13 + 2 x 14 + 2 x 7 + 9 = 90

transistors. The same function can be implemented by the self-restored architecture

with 86 transistors.

Figure 7.3(a) can be expressed as:

where '_' means arithmetic difference. That is, the output is (2. lX13). (2. lX03)
subtracted by (1.2X12).(1.2X02). If the min operator on (2.1X13) and (2.1X03) is
P-type circuit, the min operator on (1.2X12) and (1.2X02) must be N-type circuit,
and vice versa. Alternatively, a current mirror can be used for reversing current

direction when both min operators are implemented with the same type of circuit.

Circuit realization of Eq, 7.8 needs more than 4 x 13+2 x 7 = 66 transistors. The same

function can be implemented by the self-restored architecture with 34 transistors.



131

Figure 7.3(b) can be expressed as:

F (((3. °X12). (3. °Xo2)) + ((3. °X12). (1.1XOl)))-
(((2.1Xll).(2.oXo2))+((2.oX12).(2.1XOl))) (7.9)

where '+' means arithmetic sum, which does not need extra transistors. Circuit
realization of Eq. 7.9 needs more than 8 x 13 + 4 x 7 = 132 transistors. The same

function can be implemented by the self-restored architecture with 54 transistors.

Figure 7.3(c) can be expressed as:

(7.10)
.

where 'U' means the binary or operation and 'n' means the binary and operation.
Circuit realization of Eq. 7.10 needs more than 65 transistors as described in [59].
The same function can be implemented by the self-restored architecture with 66

transistors.

The transistor counts of these examples are summarized in Table 7.1. The table
shows the average size of self-restored design is 55.33, while average size of operator­
based design is 122.78 which is 2.22 times larger. However, more accurate comparison

Table 7.1 Transistor count of MVL functions of Figures 7.1, 7.2 and 7.3.

Figure 7.1 7.2 7.3

(a) (b) (c) (a) (b) (c) (a) (b) (c)
Equation 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10

Self-Restored 44 72 66 38 38 86 34 54 66

Operator-Based! 167 286 207 34 58 90 66 132 65

t The actual transistor count is larger than the number shown in this table.
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was needed to support this statement. To this end, an experiment was conducted to

obtain the average number of transistors of 2-variable 4-valued functions. Considering
the fact that there are 442 possible combinations for 2-variable 4-valued functions, a

statistical approach is preferable. Monte Carlo simulation (MCS) was adopted to esti­

mate the number of functions required for obtaining the estimation of average number
of transistors. 1 Through repeated simulations of different set of pseudo-randomly gen­
erated functions, it is found that MCS results begin converging to a value between

50 to 150 functions. That means a number larger than 150 is a good choice for the

number of functions. Two MCS results of 200 functions and 500 functions are shown

in Figure 7.4. Considering CPU power and the fact that a larger number of func­

tions results in better confidence interval, 500 2-variable 4-valued logic functions were

pseudo-randomly generated and then synthesized using the WMS program together
with the Synopsys Design Compiler using the CMC BiCMOS synthesis library. To

assure correct synthesized results, the synthesized circuits were simulated using a

VHDL simulator with the CMCL library for quick verification. Circuit simulations

were then carried out in order to obtain an average power dissipation and timing
information at the same time.

Table 7.2 shows the transistor count of the 500 pseudo-randomly generated func­

tions. It should be noted the transistor count of each function is a fractional number

because the transistor sizes and interconnection area within library cells were also

considered by the Synopsys Design Compiler. The average transistor count of the

500 MVL circuits is 79.62. The 95% confidence interval [68, 69] for this average value

is (78.66,80.58). It should be noted that the numbers are higher than the actual tran­

sistor count since the transistor sizes and interconnection area within library cells is

also taken into consideration when they are generated by the Synopsys Design Com­

piler. It should also be noted the average transistor count of the 500 self-restored

MVL designs is based on the self-restored architecture shown in Figure 3.7.

1Based on the private communication with Dr. Jinting Wang of Mathematics Department.
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Table 7.2 Transistor count of 500 2-variable 4-valued logic functions.

1 2 J 4 5 0 7 M � lU
1 !:f2.U 74.U {�.O n.o (�.4 o�.4 !:f2.� {�.O �l.tJ �4.4
2 83.2 59.6 77.6 61.6 77.2 70.4 78.8 103.2 80.8 78.8
3 66.4 92.0 88.8 67.2 84.0 88.8 96.8 73.2 92.0 85.2
4 59.2 64.0 69.2 94.0 89.2 79.6 74.8 80.4 62.8 95.6
5 90.0 105.6 68.4 80.0 75.6 83.6 67.2 76.8 73.6 76.4
6 96.0 57.2 82.4 86.0 92.4 78.4 102.0 78.4 79.2 80.0
7 70.8 71.2 86.0 66.8 93.2 82.4 99.6 88.0 89.2 84.0
8 65.2 92.4 82.0 82.0 78.8 71.2 88.0 81.2 96.0 70.4
9 94.8 83.6 85.2 89.6 62.8 70.8 102.4 86.8 68.0 78.4
10 89.6 73.6 90.8 59.6 90.4 69.2 82.8 74.8 99.6 80.4
11 80.8 79.6 85.2 77.6 60.0 84.4 81.6 94.4 78.8 76.4
12 87.6 78.0 106.8 97.2 85.2 80.8 77.2 83.2 76.4 42.8
13 79.6 84.4 85.2 74.8 75.6 77.6 65.6 76.0 100.0 58.4
14 80.4 75.2 96.8 78.4 83.6 82.4 83.6 86.0 94.8 57.2
15 85.6 90.4 66.4 91.6 82.8 91.2 76.8 76.4 71.6 84.8
16 80.0 74.0 82.0 79.2 86.0 79.6 79.2 92.8 91.2 99.2
17 65.2 60.0 69.2 58.4 82.8 86.8 92.0 71.2 91.2 70.0
18 73.6 88.0 91.6 72.0 77.2 81.2 85.6 96.0 71.6 89.6
19 98.0 68.4 69.2 76.0 89.2 67.2 80.8 99.2 87.6 67.2
20 80.8 90.8 81.2 83.6 82.0 81.6 72.4 74.4 81.2 82.8
21 89.2 83.6 81.6 77.6 86.4 75.2 72.4 78.0 74.4 86.0
22 82.0 86.4 88.0 79.6 81.2 66.4 96.0 72.4 66.8 82.0
23 87.2 93.6 79.6 90.4 66.4 82.8 72.8 75.6 81.2 81.6
24 102.8 92.8 74.4 76.0 75.2 83.6 90.8 57.2 76.0 74.0
25 95.2 59.2 83.2 77.6 48.8 83.6 69.2 68.8 74.4 69.2
26 74.4 91.6 90.0 73.6 80.4 85.6 71.2 71.2 76.8 68.0
27 97.6 70.4 97.2 88.0 64.4 71.6 76.4 84.0 96.0 80.8
28 96.0 76.0 74.4 78.8 69.6 68.4 88.4 82.0 80.4 62.0
29 73.6 56.0 63.6 68.4 80.8 91.2 82.8 73.6 62.8 75.6
30 66.4 78.8 78.8 70.0 82.0 62.0 72.4 81.6 76.8 90.8
31 79.6 86.0 53.6 61.2 85.2 87.6 57.2 98.0 76.8 61.6
32 87.6 69.2 64.0 75.2 88.0 84.8 68.4 84.4 77.2 85.6
33 66.0 78.8 81.2 89.6 90.0 98.0 68.4 66.4 84.8 95.2
34 74.4 74.8 82.0 80.4 73.2 70.4 91.6 94.8 98.4 112.0
35 91.6 73.6 85.2 78.4 83.6 70.4 88.0 84.0 85.6 79.6
36 71.2 70.4 84.8 64.0 70.0 82.8 100.4 82.0 92.8 49.6
37 81.6 66.4 84.0 75.6 72.0 75.6 84.8 77.6 78.4 80.4
38 89.2 92.0 82.0 86.8 96.0 93.2 87.6 88.4 72.8 70.4
39 69.2 61.2 91.6 73.6 94.8 96.0 78.8 84.8 66.4 66.8
40 76.8 90.4 95.2 99.2 70.0 78.8 80.4 76.4 87.2 87.2
41 62.8 78.4 70.4 56.4 60.8 61.6 84.8 82.4 70.4 82.4
42 86.4 80.4 71.6 79.6 90.4 87.2 68.4 90.8 84.8 85.6
43 73.2 68.8 88.0 80.8 63.2 70.4 90.0 83.6 97.2 74.4
44 68.4 51.6 76.4 48.8 73.6 81.6 84.4 84.4 82.8 71.2
45 80.4 82.8 64.0 90.4 84.4 71.6 70.4 77.2 76.4 98.0
46 100.4 76.0 69.6 73.6 94.8 56.8 90.4 75.6 66.8 73.6
47 56.8 91.6 65.6 104.0 60.4 67.2 85.2 77.6 84.4 82.8
48 65.6 84.8 88.8 86.0 104.0 71.2 68.4 86.0 81.6 82.8
49 60.0 74.4 78.0 68.8 72.8 93.2 67.6 84.0 86.4 73.6
50 86.0 81.6 90.8 94.0 66.0 84.8 74.8 72.4 61.6 101.6
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In order to compare with conventional operator-based MVL designs it is necessary
to know the average circuit size of 2-variable 4-valued functions in terms of transistor

count using the conventional operator-based MVL design schemes. The information

of such experimental data has not been found. However, according to [59], the average

number of product terms (PTs) for 2-variable 4-valued logic functions expressed in

a sum-oj-product form is 6.62 based on Set A operators (literal, min, and tsum)
and 6.02 for Set B operators (literal, complement oj literal, min, and tsum) using
HAMLET (Gold) [42, 17], and 5.53 for Set C operators (literal, cycle, complement oj
literal, complement oj cycle, min, and tsum).

The circuit size of conventional operator-based MVL designs can be estimated

based on the transistor counts of the MVL operators. Referring to Appendix B, a level

restorer uses 19 transistors, a tsum operator uses 9 transistors, a min operator uses 7

transistors, literal and complement oj literal operators use 13 transistors, a cycle uses

14 transistors. The following assumptions were also made for the estimation. First,
Set C operators are used. Secondly, the average number of transistors of a unary

operator is the average of a literal operator and a cycle operator; i.e., (13 + 14)/2 =

13.5. Thirdly, a multi-input tsum operator is used in place of all max operators
to implement a MVL function. Fourthly, a level restorer is required for every four

stages and a MVL function is considered as on stage; i.e, each MVL function shares

19 x 0.25 = 4.75 transistors of a level restorer. Based on those assumptions, an

estimated transistor count of the conventional operator-based design can be calculated

for different number of unary operators in a PT using the equation:

5.53 x (13.5 x x) + 7 x (x - 1) + 9 + 4.75

where x is the number of unary operators in a PT, 5.53 is the average number of PTs

for 2-variable 4-valued logic functions, 13.5 is the average number of transistors of

unary operators, 7 is the number of transistors of the min operator, 9 is the number

of transistors of the tsum operator, and 4.75 is 1/4 of the number of transistors of the
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level restorer. If each PT has only one unary operator, the total number of transistors

is 5.53 x 13.5 + 9 + 4. 75� 89. If each PT has 1.5 unary operators on average, the total

number of transistors is 5.53 x (13.5 x 1.5+ 7 x 0.5) +9+4.75� 145. If each PT has two

unary operators, the total number of transistors is 5.53 (13.5 x 2 + 7) + 9 + 4.75� 202.

These numbers are 1.1 to 2.5 times larger than that of the MVL design based on the

self-restored architecture shown in Figure 3.7.

The time delays in a current-mode CMOS MVL design are dominated by threshold

elements. Figures 7.5 and 7.6 are two typical simulation results of 2-variable 4-valued

logic functions. The functions are realized with both the self-restored architecture

and the operator-based design by using Nortel BiCMOS 0.8j.L technology. The out­

puts of both designs are shown in the figures. With a P-type current mirror as load,

the propagation delay for both the self-restored architecture and the operator-based

design ranges from 5ns to 15ns approximately, dependent on different state transi­

tions. The average propagation delay is IOns approximately. It can be seen from the

figures that even though the self-restored design and the operator-based design have

very close propagation delay, the self-restored design has much shorter rise and fall

time delays (Ins approximately) than the operator-base design (5ns approximately).

It is well known that static power is the major dissipation source in an conventional

operator-based CMCL MVL design. Since a small number of binary gates are also

used in the MVL operators implemented with CMCL and also due to the switching

activities of current sources, the total power dissipation slowly increases with fre­

quency. In the self-restored MVL design of Figure 3.7, static power dissipation and

dynamic power dissipation are equally important because static power dominates the

power dissipation in the input and output blocks while dynamic power dominates the

power dissipation in the control block. The total power dissipation increases with the

circuit size ratio between the control block and the input/output blocks. Assume the

maximum number of transistors in an input block and an output block for a 2-variable

4-valued function. That is, an input block consists of two 3-output P-type current
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Figure 7.5 Spectre simulation of transient analysis of a 2-variable 4-valued logic
function for measuring delay times.
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Figure 7.6 Spectre simulation of transient analysis of a 2-variable 4-valued logic
function for measuring delay times.
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mirrors and aN-type thresholdconnected to each output of the current mirrors, while
an output block consists of three current sources and three switches. The total tran­

sistor count of an input block and an output block is 2 x (3 x 2 + 1) + (3 x 2) = 20.

Since the average transistor count of 2-variable 4-valued functions is 79.62, the esti­

mated transistor count of a control block is 79.62 - 20 = 59.62. Therefore, the ratio

of circuit sizes between the control block and the input/output blocks for 2-variable

4-valued functions is around 3 : 1. Based on the above calculation, it can be expected
that the power dissipation increases with frequency faster than the the conventional

operator-based design.

Figures 7.7 and 7.8 are typical current waveforms flowing from VDD to Vss for

self-restored designs and equivalent operator-based designs. For each analysis, an av­

erage power dissipation is obtained by multiplying the average current flowing from

VDD to Vss with VDD which is 5 volts in this case. For example, the average cur­

rents of the two self-restored MVL designs in Figures 7.7 and 7.8 are 251.6J-tA and

306.7J-tA respectively, while the average currents of the equivalent operator-based de­

signs are 271.7J-tA and 524.0J-tA respectively. The average power dissipations of the

two self-restored designs are 1258.0J-tW and 1533.5J-tW, respectively. The average

power dissipations of the two operator-based designs are 1358.5J-tW and 2620.0J-tW,
respectively. In both figures, the top sub-figure is the current waveform of the self­

restored MVL design, the middle sub-figure is the current waveform of a equivalent

operator-based MVL design, and the bottom sub-figure is combined waveforms of the

self-restored MVL design and the equivalent operator-based MVL design for compar­
ison. Multiple transient analyses ranging from 10MHz to 50MHz for each of these

two examples were also simulated using the Cadence Spectre simulator. The upper

bound of the frequency is set to 50MHz because of the restriction on the propagation

delay. As mentioned above, the propagation delay falls in the range of 5ns to 15ns

approximately. It is safe to set the maximum propagation delay to 20ns. From fig­
ures 7.9 and 7.10 it can be seen that the power dissipation of a self-restored design
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Figure 7.7 Spectre simulation of transient analysis of the same 2-variable 4-valued
logic function shown in Figure 7.5 for measuring total current from VDD to Vss.
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increases with frequency faster than the equivalent operator-based design. Refer­

ring to Figure 7.9 the self-restored design consumes more power than the equivalent
operator-based design when the frequency is higher than 45MHz. In most cases, a

self-restored design consume less power than the equivalent operator-based design as

shown in Figure 7.10. The differences are likely caused by the smaller circuit size of

the self-restored designs.

During Spectre simulations, it was found that the threshold outputs in a self­

restored design should be connected with a buffer to drive a control block which

consists of binary gates. Otherwise, power dissipation would be higher due to slower

rise/fall time delays. Therefore, the WMS program was modified so that it can

generate circuits with or without buffers added to each threshold output. Table 7.3

summarizes the average current at 50MHz of thirty 2-variable 4-valued logic functions

implemented by the self-restored architecture with and without a buffer connected to

each threshold output. The average current in circuits with buffers is about half that

of those without buffers.

To conclude this section, it is also interesting to see the comparison between the

self-restored architecture and Chang's scheme. Three MVL functions are chosen to

Table 7.3 Comparison of average current of 30 2-variable 4-valued logic function
circuits implemented with and without buffers for threshold outputs.

with buf w/o buf
412.6 1079.0
388.8 1042.0
450.6 1150.0
455.3 1347.0
426.6 1213.0
370.5 781.6
354.3 1006.0
431.3 . 983.8
404.2 1097.0
390.9 1166.0

with buf w/o buf
333.5 837.9
456.5 1317.0
423.2 1481.0
368.9 1034.0
364.9 992.9
421.4 1172.7
397.3 992.8
352.6 1029.0
437.5 1430.0
386.7 976.4

with buf w/o buf
388.1 1171.0
385.2 1157.0
377.8 968.4
361.5 804.0
488.3 1510.0
410.5 1123.0
387.4 1187.0
460.2 1103.0
421.8 986.8
418.2 1448.0
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Figure 7.11 Truth table of three examples from Chapter 3.

compare with Chang's scheme. The truth tables are shown in Figure 7.11, which is the

same as Figure 3.11 on page 45. The circuit realizations of these functions according
to the self-restored architecture are shown in Figure 3.12 on page 46, Figure 3.13 on

page 46, and Figure 3.14 on page 47 in Chapter 3, respectively. The total number of

transistors of the three functions are 34, 19, and 28, respectively.

Figure 7.11(a) is an example taken from Chang's paper. As shown on page 28 of

Chapter 2, the circuit realization needs 37 transistors, which uses 3 more transistors

than the self-restored design as shown in Figure 3.12 on page 46. According to Chang's

synthesis procedure, the MVL function of Figure 7.11(b) can be expressed as:

F 1 • eX2 • OyO + 1X2 .3y3)
1 • eX. X2 • Oy • yO + IX. x2 • 3y • y3)
1. (XO • x2 • y3 • yO + Xo • x2 • y2 • y3). (7.11)

Referring to Figures 2.7 and 2.8 on page 28, implementation of this function needs

one 2-output subcircuit 1 (3 transistors), one 3-output subcircuit 1 (4 transistors),
five subcircuit 2 (5 x 3 = 15 transistors), and two subcircuit 3 each with four switches

(2 x (4+4) = 16 transistors). The total transistors are 38, which is 2 times larger than

the self-restored design (19 transistors) as shown in Figure 3.13 on page 46. Similarly,
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according to Chang's method, the truth table of Figure 7.11(c) can be expressed by
a MVL function F = 1 • F, + 2 • F2, where:

F, 0XO • OyO + 3X3 • Oyo

Ox • XO • oy • yo + 3X • X3 • Oy • yO

X3 • XO • y3 • y3 + X2 • X3 • y3 • y3 (7.12)

(7.13)

To implement the function Fl needs 25 transistors, including a 3-output subcircuit 1,
three subcircuit 2, and eight switches in subcircuit 3. To implement the function F2
needs another 25 transistors, including a 4-output subcircuit 1, four subcircuit 2, and
four switches in subcircuit 3. Therefore, Chang's architecture needs 50 transistors in

total. The circuit is almost twice as large as the the self-restored architecture (28
transistors) as shown in Figure 3.12 on page 46. In addition to lower implementation
cost, the new architecture is also advantageous over Chang's scheme in other aspects
such as virtually no static power consumption when inputs are logic 0 and synthesis of
MVL functions using a binary logic synthesizer. The minimization ofMVL functions

according to the self-restored architecture is also easier to understand to those who

are already skilled in binary logic design.

7.2 Comparison with the Binary Logic Design

The optimal logic radix in terms of implementation cost, as discussed in Chapter 1,
is greater than 2. As mentioned in Section 7.1, a self-restored MVL design is generally
smaller than an operator-based MVL design. It is interesting to compare the self­

restored MVL design and binary logic design to see whether a MVL circuit is smaller

than its equivalent binary logic circuit.

Like the MVL case, many examples are compared manually. In order to compare
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with Chang's design at the same time, the three MVL function shown in Figure 7.11

are chosen. Figure 7.12{a) is the same truth table of Figure 7.11{a). The Karnaugh
map of two equivalent binary functions are shown in Figure 7.12(b). These two binary
functions can be minimized for standard CMOS structure as follows:

II XlOXOl + XllXlOXOO + XllXlOXOl

XlOXOl + XllXlO(XOO + xoI), and

fo

(7.14)

(7.15)

The number of transistors needed to implement these two functions is 28 (10 x 2 = 20

plus 4 inverters) as shown in Figure 7.13. It should be noted that only the PMOS

structure is shown in the figure (the NMOS structure is complementary). Compar­
ing with the self-restored implementation which consists of 34 transistors as shown

in Figure 3.12 on page 46 and Chang's scheme which consists of 37 transistors as

discussed in Section 7.1, the binary counterpart is smaller.

Referring to the Karnaugh map of Figure 7.14(b) the corresponding binary func­

tion is

f XllXlOXOlXOO + XllXlOXOlXOO + XllXlOXOlXOO + XllXlOXOlXOO

XllXlO(XOlXOO + XOlXOO) + XllXlO(XOlXOO + XOlXOO)

(XllXlO + XllXlO) (XOlXOO + XOlXOO). (7.16)

Therefore, as shown in Figure 7.15, the standard CMOS implementation of this func­
tion needs 24 transistors (8 x 2 = 16 plus 4 inverters), which uses 5 more transistors

than the self-restored MVL design as shown in Figure 3.13, but 14 less than Chang's
scheme (38 transistors as discussed in Section 7.1).

Another example is shown in Figure 7.16(a). The Karnaugh maps of the equivalent

binary logic functions are given in Figure 7.16(b). These two binary functions II and
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Figure 7.12 The MVL truth table of Figure 7.11(a) and its equivalent binary
functions.
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Figure 7.13 The PMOS structure of circuit realization of Figure 7.12(b).
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Figure 7.14 The MVL truth table of Figure 7.11(b) and the Karnaugh map of its
equivalent binary functions.
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Figure 7.15 The PMOS structure of circuit realization of Figure 7.14(b).
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Figure 7.17 The PMOS structure of circuit realization of Figure 7.16(b).
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fo can be expressed as:

II - (XnXlO + XUXlO)(XOl + xoo), and

fo - (XnXlO + XnXlO)XOlXOO

(7.17)

(7.18)

As shown in Figure 7.17, the circuit realization of these two binary functions needs

36 transistors (12 x 2 plus 3 inverters). That is, the CMOS binary implementation of
the same function uses 8 more transistors than the self-restored MVL design as shown

in Figure 3.14, but is smaller than Chang's realization (50 transistors as discussed in

Section 7.1).

Considering the fact that MVL design can reduce interconnection area by a fac­

tor of log, r for one-dimensional effect and (log2 r)2 for two-dimensional effect, self­
restored MVL design appears superior to binary logic design in terms of circuit size.

The 500 random MVL functions, which were used for comparison of the self-restored

MVL design and the operator-based MVL design, were used for the comparison with
the binary logic design. The equivalent binary logic circuits as well as their transistor

count and Spectre netlists were obtained following procedures in Figure 5.13.

Table 7.4 lists transistors counts of the 500 equivalent binary logic circuits. As

mentioned previously in Section 7.1, the transistor count of each function is a frac­

tional number because the transistor sizes and interconnection area within library
cells were also considered by the Synopsys Design Compiler. The average transistor

count of the 500 binary logic circuits is 46.67. This number is about 58.6% of the

average transistor counts of the MVL circuits obtained in Section 7.1. This seems

contradictory to the theories of optimal logic radix. However, it should be noted that

interconnections are not taken into consideration in the above comparison. According
to reports [70, 71], interconnections can occupy as much as 70% of a chip area designed
with binary logic circuits. Therefore, the average total circuit size of an equivalent

binary logic circuit is about 46.67/0.3 = 155.57. The average total circuit size of a
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Table 7.4 Transistor count of equivalent binary logic circuits of the 500 MVL func­
tions of Table 7.2.

1 ::l 3 4 [) 6 7 8 9 10
1 bU.U 53.2 as.s bU.ts 54.ts 5U.U 3�.ti 5�.ti 44.U ss.zu
2 46.4 30.8 46.0 32.0 45.2 58.4 33.2 40.8 42.0 57.60
3 40.0 54.0 50.0 55.6 35.6 53.2 56.8 60.4 59.6 50.00
4 45.6 34.0 54.0 46.0 45.6 51.2 43.6 54.0 32.0 53.20
5 42.4 45.2 37.6 38.0 46.8 49.2 39.2 43.6 34.0 32.80
6 55.6 49.6 57.6 46.0 60.4 56.4 38.8 54.8 39.6 56.80
7 52.4 43.6 27.6 34.0 47.2 51.2 46.8 38.8 53.6 49.20
8 44.8 62.8 32.8 60.8 39.6 42.0 72.8 47.2 40.0 50.80
9 49.2 32.4 52.4 48.0 36.0 50.0 48.8 48.0 30.8 33.60
10 64.8 44.0 43.6 36.0 53.6 54.0 56.8 42.8 46.0 39.60
11 38.8 48.8 44.4 51.6 36.0 50.0 44.4 43.2 46.4 29.60
12 74.4 42.8 38.4 40.0 57.2 54.0 50.8 52.0 45.6 25.60
13 57.2 53.2 55.6 47.6 32.8 45.6 43.2 36.0 49.2 26.40
14 43.6 49.6 44.4 42.8 38.0 46.8 46.0 40.0 60.8 53.20
15 44.4 52.0 41.2 63.2 69.2 54.4 55.2 36.4 49.6 51.60
16 38.0 36.0 52.4 39.2 47.2 49.6 54.0 68.4 43.2 44.40
17 44.0 30.4- 61.2 33.6 44.4 45.2 61.6 41.2 60.0 47.20
18 38.8 64.8 42.0 55.6 33.2 53.2 39.2 47.2 50.4 57.60
19 60.4 48.0 38.0 52.8 52.0 49.2 65.6 48.8 59.2 47.60
20 38.8 46.8 50.0 56.4 40.4 40.8 44.8 52.4 50.4 47.20
21 55.2 46.4 58.0 60.0 34.8 52.4 30.8 54.4 43.6 46.80
22 33.6 54.4 59.6 58.4 58.0 47.2 43.2 28.8 47.6 47.20
23 49.2 45.2 33.6 51.2 30.0 33.6 42.0 42.0 31.6 42.40
24 48.4 45.6 59.6 51.2 33.2 53.6 46.4 30.8 54.0 41.20
25 50.0 46.4 52.0 48.0 40.8 43.6 40.4 42.8 44.4 45.60
26 48.0 46.8 40.8 46.8 50.0 62.4 54.8 57.2 40.0 42.80
27 55.2 38.0 52.4 42.4 42.0 44.8 51.2 43.6 58.4 53.20
28 46.4 47.2 30.0 53.2 45.6 48.0 59.2 50.0 46.8 51.20
29 54.0 41.6 52.8 48.4 43.6 47.6 48.4 45.2 39.6 54.00
30 53.2 43.2 20.0 56.4 42.8 44.0 48.0 51.2 32.8 32.80
31 48.4 56.4 52.4 46.8 43.6 48.8 50.0 53.2 42.0 28.80
32 43.6 41.6 41.6 50.4 51.2 42.0 43.2 38.0 55.2 41.20
33 51.2 38.8 44.4 55.2 49.2 61.6 39.2 63.2 51.6 48.80
34 28.4 45.2 38.8 40.0 35.2 50.0 44.0 51.6 46.4 53.60
35 45.2 48.0 37.2 51.2 48.4 34.8 59.6 46.0 68.4 36.00
36 36.4 49.2 45.2 44.0 49.2 53.2 43.2 53.2 65.2 48.80
37 40.0 36.4 50.8 38.4 50.4 40.0 60.4 40.8 48.4 48.80
38 34.8 46.8 45.2 54.4 53.6 48.0 34.8 59.2 52.4 42.00
39 58.8 37.2 36.8 47.2 38.8 56.4 41.2 49.6 38.0 43.20
40 52.0 51.6 32.0 51.6 37.2 28.4 43.2 50.0 34.4 40.00
41 48.4 39.2 42.0 39.2 34.0 40.0 47.2 53.2 48.0 52.40
42 67.2 52.4 44.0 44.0 55.2 43.2 46.0 44.8 38.8 50.40
43 36.0 46.4 42.0 56.8 48.0 57.2 57.2 49.2 46.8 50.00
44 61.2 35.2 44.0 36.0 27.2 42.0 46.0 36.8 58.0 45.60
45 45.2 44.4 32.8 27.2 43.2 50.4 52.0 36.8 54.4 61.60
46 25.6 48.8 47.2 50.0 47.6 26.8 44.0 29.6 46.0 44.80
47 36.8 54.4 50.4 54.0 39.2 56.0 48.4 66.0 65.6 52.80
48 48.0 44.8 47.6 34.8 50.4 48.0 50.0 57.6 28.4 47.60
49 38.0 30.4 50.8 58.4 51.6 51.2 42.0 55.6 62.0 53.20
50 51.2 50.4 38.8 63.6 26.8 54.4 45.2 48.0 48.4 40.80
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2-variable 4-valued logic function is about 79.62+ (155.57 x 0.7)/(log2 4)2 = 106.84 to

79.62 + (155.57 x 0.7)/ log2 4 = 134.07. If 50% of a chip area is occupied by intercon-

nections, the average total circuit size of an equivalent binary logic circuit is about

46.67/0.5 = 93.34. The average total circuit size of a 2-variable 4-valued logic function
is about 79.62+(93.34xO.5)/(lOg2 4)2 = 91.29 to 79.62+(93.34xO.5)/ log2 4 = 102.96.

If 30% of a chip area is occupied by interconnections, the average total circuit size of

an equivalent binary logic circuit is about 46.67/0.7 = 66.67. The average total circuit

size of a 2-variable 4-valued logic function is about 79.62 + (66.67 x 0.3)/(log2 4)2 =
84.62 to 79.62 + (66.67 x 0.3)/ log2 4 = 89.62. Let k be the ratio of interconnection

area on a chip, a be the one-dimensional ratio, and b be the two-dimensional ratio.

The following equation will be satisfied for 2-variable 4-valued logic functions:

46.67
= 79.62 +

46.67
. x k.

(1 - k) (1 - k) x (c log, 4 + b(log2 4)2) .

(7.19)

That is,

k =
32.95 x (2a + 4b)

79.62 x (2a + 4b) - 46.67 (7.20)

If a = 1 and b = 0, i.e., two-dimensional interconnection area is not considered, then
k � 58.54%. In other words, if the percentage of interconnection area is greater than

58.54, the average self-restored MVL circuit size is smaller than that of equivalent
binary circuits. The value of k decreases when a decreases (b increases) as shown in

the following table.

a 1.0 0.9 0.8 0.7 0.6 0.5

b 0.0 0.1 0.2 0.3 0.4 0.5

k 58.54 56.42 54.76 53.43 52.34 51.43

As discussed in Section 7.1 the average transistor count (79.62) of the 500 self­

restored MVL designs are obtained by using the WMS program according to the

self-restored architecture of Figure 3.7. As shown in Figure 7.18, binary Vj subfunc-
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Figure 7.18 Synthesis flow of a MVL function in terms of transistor count using
the WMS program and the M2B program.

tions in terms of prime implicants are passed to the Synopsys Design Compiler for
optimization in terms of area in the MVL case, while equivalent binary functions in

terms of minterms are used in the binary logic case. As described in Chapter 5, a

binary logic synthesizer may not remove redundant prime implicants as it does not

recognize the relationships between the up literal outputs, Xo, Xl,' . " Xn-l' Therefore,
the resulting circuits are slightly larger. Such a problem does not exist in the binary
logic case because equivalent binary functions are to be synthesized by a binary logic
synthesizer. The Synopsys Design Compiler is able to optimize equivalent binary
functions in terms of area no matter whether the binary functions are expressed in

terms of minterms or redundant prime implicants. As described previously in Chap­
ter 4, the circuit size of self-restored MVL designs can be further reduced by choosing
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an appropriate output block. For example, Figure 4.4(b) shows proper use of output
blocks can result in smaller circuit size. The tradeoff of removing redundant prime
implicants or choosing a better output block is that multiple runs of the Synopsys
Design Compiler are needed. More than one iteration between the WMS program
and a binary logic synthesizer is needed to obtain a smaller circuit size for a given
MVL function. Such a procedure is not implemented in the current version of the

WMS program.

In addition, if the NMOS self-restored architecture of Figure 3.9 is used, the size

of the control block will be reduced to half. An accurate number would better be

obtained by using a dedicated synthesis library for the architecture, but the design of
a synthesis library needs a substantial amount of work. Alternatively, an estimation
of the average transistor count for 2-variable 4-valued functions implemented with

the NMOS self-restored architecture shown in Figure 3.9 is carried out based on the

result of 79.62 for the self-restored architecture of Figure 3.7. Assume the largest
input/output blocks; that is, each input needs a 3-output current mirror and three

thresholds and the output block has three switches and three current sources. The

total number of transistors of the input and output blocks according to Figure 3.7 is

2(3 + 4) + 3 + 3 = 20. When the self-restored architecture of Figure 3.9 is used, the
number of transistors in the NMOS configuration block is (79.62 - 20)/2 = 29.81.

Therefore, the estimated average transistor count of 2-variable 4-valued functions

implemented with the self-restored architecture of Figure 3.9 is 20-3+28.81 = 46.81.

Three transistors are deducted in the above calculation because the three switches

in the output block are not required in the architecture of Figure 3.9. This number

is similar to the average transistor count of equivalent binary logic circuits. The

conventional operator-based design is approximately 1.9 to 4.3 times larger than that
of the NMOS self-restored architecture shown in Figure 3.9.

For certain MVL functions the circuit size can be reduced significantly by using
the sum and dill operations in the input block or the output block as discussed in
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Table 7.5 Comparison of the 12 examples in Chapter 4 and their equivalent binary
circuits.

Figure 4.7 Figure 4.9 Figure 4.11 Figure 4.13

Examples (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)
with sum/diff 5 13 20 9 18 21 10 18 19 31 26 20

without sum/dill 31 41 21 26 50 34 17 26 28 53 37 63

Binary 22 24 18 12 18 28 10 14 24 30 30 40

Chapter 4. The transistor counts of the twelve MVL examples shown in the Chapter 4

and their equivalent binary circuits are summarized in the Table 7.5. The average

transistor count of MVL design using the arithmetic operators is 17.50 while the

the average transistor count of equivalent binary logic circuit is 22.50. The average

transistor count of MVL design without using the arithmetic operators is 35.58.

Since power dissipation varies with frequency, multiple runs of transient analyses
at different frequencies have to be conducted in order to get an average power dissipa­

tion. Considering simulation time and disk space available, 30 of the same 500 func­

tions were simulated using the Cadence Spectre. This number is also recommended

by statisticians such that the Central Limit Theorem can safely be applied [68, 69].
Multiple transient analyses ranging from 10MHz to 50MHz for each of the 30 MVL

functions and equivalent binary logic functions were simulated by the Cadence Spec­

tre using the Nortel 0.8/L BiCMOS technology. As mentioned in Section 7.1, the

upper bound of the frequency is set to 50MHz because of the propagation delay. For

each analysis, an average power dissipation is obtained by multiplying the average

current flowing from VDD to Vss with VDD which is 5 volts in this case. Figures 7.19

and 7.20 show two example of total currents from VDD to Vss of two 2-variable 4-

valued functions and equivalent binary logic functions. The MVL functions are the

same as those shown in Figure 7.7 and 7.8. In both figures, the top sub-figure is
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Figure 7.19 Spectre simulation of transient analysis showing total current from VDD
to Vss of a 2-variable 4-valued logic function and its equivalent binary logic function.
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Figure 7.20 Spectre simulation of transient analysis showing total current from VDD
to Vss of a 2-variable 4-valued logic function and its equivalent binary logic function.
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Figure 7.21 Average current of 30 2-variable 4-valued logic functions and equivalent
binary logic functions from 10MHz to 50MHz.

the current waveform of the self-restored MVL design, the middle sub-figure is the

current waveform of a equivalent binary logic design, and the bottom sub-figure is

combined waveforms of the self-restored MVL design and the equivalent binary logic
design for comparison.

The average current of the 30 2-variable 4-valued logic circuits with buffers and

equivalent binary logic circuits from 10MHz and 50MHz is shown in Figure 7.21 and

the data is shown in Table 7.6. The average current of the MVL circuits is from

279J-lA at 10MHz to 482.81J-lA at 50MHz. The average current of the binary logic
circuits is 55.73J-lA at lOMHz to 222.67J-lA at 50MHz. That is, the MVL circuits

consume on average about 5.0 times more power than the binary circuits at 10MHz

and 2.17 times mote power at 50MHz.

A possible way to reduce the power dissipation of the self-restored architecture is

to use 10J-lA as the base current. However, lower base current slows down threshold
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Table 7.6 Average current (f.-lA) of 30 2-variable 4-valued logic functions and equiv­
alent binary functions at frequencies from lOMHz to 50MHz.

Frequency MVL Binary
(MHz) (f.-lA) (f.-lA)
10.0 279.12 55.73
10.5 281.95 57.94
11.1 284.94 60.50
11.8 288.49 63.36
12.5 292.26 66.49
13.3 296.34 70.06
14.3 301.56 73.79
15.4 307.02 78.51
16.7 313.78 83.74
18.2 321.26 89.90
20.0 330.77 97.61
22.2 342.32 107.69
25.0 356.62 118.77
28.6 374.76 134.41
33.3 399.04 153.21
40.0 432.75 181.22
50.0 482.81 222.67

circuit elements and is more susceptible to noise and process variations. Alterna­

tively, by using the NMOS configuration for the control/output block, a considerable
amount of power can be saved when circuits operate at higher frequencies due to

reduced dynamic power dissipation. Figures 7.22 and 7.23 shows average currents

of two 2-variable 4-valued functions realized by the self-restored architecture of Fig­
ure 3.7 (labeled as SR STD), the self-restored architecture using the NMOS configu­
ration (labeled as SR NMOS), and equivalent binary logic circuit (labeled as Binary).
The average current of the SR NMOS consumes less power than SR STD, but SR

NMOS still consumes more power than equivalent logic circuits.

Spectre simulation results also show that MVL circuits are slower than binary
circuits. The rise/fall time delays and propagation delays of self-restored MVL designs
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Figure 7.22 Power dissipation of the same 2-variable 4-valued logic function shown
Figure 7.5 from lOMHz to 50MHz.
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are on the order of IOns, while the time delays of equivalent binary logic circuits are

on the order of Ins. That is, the MVL circuits are about 10 times slower than binary
circuits. Such a difference is mainly caused by the threshold circuit elements.

7.3 Circuit Examples

In Sections 7.1 and 7.2, comparison between the self-restored design and the con­

ventional operator-based design as well as with equivalent binary logic design are

discussed in terms of area, speed and power. The comparison is based on pseudo­
randomly generated 2-variable 4-valued functions. The circuit examples in Chapters 3

and 4 are not particularly for certain practical functions either. As such, this section

presents three practically used circuits to conclude the description of the self-restored

design architecture.

7.3.1 Majority Circuit

The general equation F for a majority circuit with 2n + 1 inputs can be expressed
as:

F = { 1 when Xl + X2 + ... + X2n+1 2:: n + 1

o otherwise
(7.21)

where n > 1 and Xo, XI,···, X2n+1 E {O, I}. That is, when more than half of the

inputs are 1, output is 1. Circuit realization of this equation according to the self­

restored design architecture is shown in dashed lines in Figure 7.24. The input block

circuit consists of a single-output P-type current mirror and an N-type threshold. The

control/output block consists of a switch and a current source. The input and con­

trol/output blocks use 5 transistor. This number does not increase with the number

of inputs as far asthe total current to the P-type current and the N-type threshold is

under the allowable maximum current of devices. As shown in Figure 7.24, the ma­

jority circuit can also interface with binary logic design by including 2n + 1 switches
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Figure 7.24 CMCL realization of a majority circuit according to the self-restored
architecture.

and current sources at the input end with each switch controlled by a binary input
Xi' The binary output j, which is shown in a dotted line in the figure, is

j = { 1 when Xl + X2 + ... + X2n+l � n + 1

o otherwise
(7.22)

where + is arithmetic sum. The total number of transistors including the interface is

2(2n + 1) + 5 = 4n + 7. For example, a 3-input majority circuit (n = 1) consists of

11 transistors and a 5-input majority circuit (n = 2) consists of 15 transistors.

VMCL implementation of a 3-input binary majority circuit and a 5-input binary
majority circuit is shown in Figure 7.25. As shown in the figure, the 3-input binary
majority circuit uses 12 transistors and the 5-input majority circuit uses 38 transistors.
Both circuits are larger than the corresponding CMCL majority circuits according
to the self-restored architecture. The 3-input binary majority circuit uses one more

transistor than the 3-input CMCL majority circuit, while the 5-input binary majority
circuits is 2.53 times larger than the 5-input CMCL majority circuit. The difference

in circuit size becomes larger with the increase of the number of inputs.
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Let A and B be addends, C, carry in, S sum and Co carry out. Figure 7.26(a)
shows the truth table of a ternary half-adder (THA) and a ternary full-adder (TFA),
and Figure 7.26(b) shows the truth tables of a quaternary half-adder (QHA) and a

quaternary full-adder (QFA), where U = A + B + Ci. U is in the range of 0 to 2r-1

for a r-valued full-adder. For the THA, U is in the range of 0 to 4 since A and Bare

in the range of 0 to 2 and C; is O. For the TFA, U is in the range of 0 to 5 since A

and B are in the range of 0 to 2 and C, is either 0 or 1. Similarly, U is in the range

of 0 to 6 for the QHA since A and B are in the range of 0 to 3 and C, is 0, and U is

in the range of 0 to 7 for the QFA since A and B are in the range of 0 to 3 and C, is

either 0 or 1.

A THA can be expressed as a single-input 2-output 5-valued functions and A TFA

can be expressed as a single-input 2-output 6-valued functions. Similarly, a QHA
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U S Co

0 0 0

1 (�1�) 0I I
I I
1 __ 1

2 r 2 ) 0l
__

J

3 0 (�1�)I I
I I

(�1�)
I I

4 I
1

I

{-_} l
__)

TFA

U S Co

0 0 0

1 (�1�) 0I I
I I
1 __ 1

2 r 2 ) 0l
__)

3 0 (�1�)I I
I I

(�1�)
I I

4 I I :1:
I I I I
1 __ 1 I I

5 r 2 ) I

1
I

l��) l
__

J

(a)

QHA
U S Co

0 0 0

1 (�1�) 0I I

I I

1 __ 1

2 r 21 0
I I
1 __ 1

3 r 3 1 0l
__"J

4 0 (�I�)I I
I I

(�I�)
I I

5 I I : 1 :
I I I I

1 __ ' I I

6 r 2 1 I

1
I

l��) l
__

J

QFA
U S Co

0 0 0

1 (�I�) 0I I
I I
1 __ 1

2 r 2 1 0
I I
1 __ 1

3 t 3 1 0l��)

4 0 (�1�)I I
I I

5 (�I�) : 1 :I I
I I

I I

1 __ 1 I I

6 r 21 : 1 :
I I I

1_-..1 I I

7 r 3 1 I 1 I

l
__

J <:»

(b)

Figure 7.26 Truth tables of f-bit adders. (a) Ternary half-adder (THA) and ternary
full-adder (TFA). (b) Quaternary half-adder (QFA) and quaternary full-adder (QFA).
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becomes a single-input 2-output 7-valued function and a QFA becomes a single-input
2-output 8-valued function. Referring to the truth table of Figure 7.26(a), the binary
Vj subfunctions for S of the TFA can be expressed as

V� XIX3 + X4

v� X2X3 + Xs

the binary Vj subfunction for Co of the TFA can be expressed as

(7.23)

Circuit realization of the TFA is shown in Figure 7.27(a). The wiring ofXl, X2, X3, X4, Xs
to the switches in the control/output block is not shown in the figure. Only a corre­

sponding signal name is shown at the control terminal of each switch. It should be

also noted that each P-type switch could be replaced with an N-type switch and an

inverter. The total number of transistors is 23 (21 plus an inverter). ATHA can be

obtained by removing the N-type switch controlled by Xs in the output block, and
the total number of transistors of the resulting circuit is 22.

Similarly, referring to the truth table of Figure 7.26(a), the binary Vj subfunctions

for S of the QFA can be expressed as

V� XIX4 + Xs

v� X2X4 + X6

V�' X3X4 + X7

the binary Vj subfunction for Co of the QFA can be expressed as

(7.24)
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Figure 7.27 CMCL realization of ripple carry adders according to the self-restored design architecture. (a) Ternary
full-adder. (b) Quaternary full-adder.
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Circuit realization of the QFA is shown in Figure 7.27(b). The wiring of Xl, X2, •• " Xs

to the switches in the control/output block is again omitted, and only a signal name
is shown at the control terminal of each switch. The total number of transistors is

31 (29 plus an inverter). A QHA can be constructed by removing the N-type switch

controlled by X7 and the total number of transistor is 30. An n-bit ripple carry adder

can be constructed by cascading n J-bit adders by connecting Co of bit i to C, of the

bit i + 1. The total transistors of a n-bit quaternary ripple carry adders is therefore

31n - 1. A transistor is deducted from the equation because the least significant
bit (bit 0) uses a half-adder.

A l-bit quaternary adder is equivalent to a 2-bit binary adder. The following com­

parison will show that the circuit size of a CMCL quaternary full-adder is smaller than

that of two binary adders. Two different circuit realizations of the binary full-adder

are shown in Figure 7.28 and 7.29 [72]. Figure 7.28 shows a typical VMCL circuit

realization of the binary full-adder. Figure 7.29 shows a VMCL circuit realization

of the binary full-adder using transmission gates. Both circuits use 28 transistors.

The circuit size of two binary full-adders is about 1.8 times larger than a quaternary
full-adder. As described above, an n-bit ripple carry adder can be constructed by

cascading n I-bit adders. In general, a binary n-bit ripple carry adder will always be

approximately 1.8 times larger than the size of an equivalent quaternary ripple carry

adder (n/2 bits).

7.3.3 Tally Circuit

The function of a binary tally circuit is to count the numbers of bits that are set to

logic high in n-bit inputs. The tally circuit is important to a digital implementation of
the matched filter that is briefly discussed in Section 6.3.2. It is reported in [73] that
a 32-input 33-output binary tally circuit constructed with steering logic [74] using
transmission gates requires 2,304 transistors, where only one of the outputs is logic

high at any time; i.e., if an output Yi is logic high when there are i bits of inputs are



Figure 7.28 A circuit realization of the binary full-adder.

165

s

s

Figure 7.29 A circuit realization of the binary full-adder using transmission gates.
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Figure 7.30 Circuit realization of an-input n + 1 output tally circuit according to
the self-restored design architecture.

logic high. If none of the inputs are logic high, then Yo is logic high. A CMCL circuit

realization of the n-input n + 1 output tally circuit is shown in Figure 7.30, where

the input block consists of a n-output current mirros and n threshold elements while

each output Ii is connected to a logic 1 current source through two series-connected

switches. It should be noted that each P-type switch could be replaced with an

N-type switch and an inverter. The sum of inputs, Xl + X2 + ... +Xn, tells how

many input bits are at logic 1. When the sum of inputs, Xl + X2 + ... + Xn, is O.

Xl, X2, •• " Xn are logic low and therefore, only Yo is 1. When the sum of inputs is 1,

only Xl is logic high and therefore, Yl is 1. When the sum of inputs is i, Xl, X2,' • " Xi

are logic high and Xi+1, Xi+2,' . " Xn are logic low and therefore only Ii is 1. When

all the inputs are 1, only Xn is logic high and therefore only Yn is 1. It can be seen

from Figure 7.30 that the input block uses 2n + 1 transistors and the output block

uses 5n + 1 transistors including 2n switches, 2n inverters and n + 1 current soruces.

The total transistor count of the CMCL n-input n + 1 output tally circuit is 7n + 2.

A 32-input 33-output tally circuit requires 226 transistors, which is less than 10% of

the equivalent binary tally circuit using transmission gates.
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Figure 7.31 CMCL realization of a 32-bit tally circuit using the adders according
to the self-restored design architecture. (a) Block diagram. (b) Encoder circuit.
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Figure 7.31(a) shows the block diagram of a 32-bit quaternary tally circuit. It

should be noted that this tally circuit has 3 quaternary outputs, Y1, Y; and Y3. For :

example, when.S of inputs are at logic 1, Y3Y;Y1 is quaternary 0114; when 16 of inputs
are at logic 1, Y3Y;Yi is 1004. The largest output for Y3Y;Y1 is 2004, that is equivalent
to decimal 32. The 32-bit binary inputs are converted to current signals using four

8-bit interface (IF) circuit. The IF circuit is the same as the one used in Figure 7.24

where each input controls a switch that is connected a logic 1 current source. The

output from IFs are fed to encoder (EC) circuits to obtain 2-bit quaternary outputs.

Figure 7.31(b) is the CMCL realization of the EC circuit according to the self-restored

design architecture. It should be noted that the signals, XI, X2, .•• ,X8 and Y1, Y; in

Figure 7.31(b) and Figure 7.31(a) are different signals. The encoded 2-bit outputs
are summed up by a 2-bit quaternary adder that consists of a QHA and a QFA. The

outputs from the two 2-bit adders are then summed up by a 3-bit quaternary adder

that consists of a QHA, a QFA and a TFA. A TFA is used at the most significant
bit because the largest number from a 2-bit quaternary adder at the previous stage is

quaternary 1004 that is equivalent to decimal 16. The transistor count of the 32-bit

CMCL tally circuit is calculated as follows. The four 8-bit IFs require 4 x 8 x 2 = 64

transistors. The four ECs requires 4 x 34 = 136 transistors. Assume a QHA and a

QFA are the same in size. The total number of transistors of six QFA and a TFA is

6 x 31 + 23 = 209. As a result, the 32-bit quaternary tally circuit use 409 transistors,

which is about 1/5 the size of the 32-bit binary tally circuit using transmission gates.

7.4 Summary

This chapter presents comparison results of the self-restored MVL design with the

operator-based MVL design and with the binary logic design. The comparison results

are discussed from three aspects: area, timing, and power. 500 pseudo-randomly

generated MVL functions were used to obtain an average circuit size in terms of
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transistor count. A selection (30) of the 500 MVL functions were then simulated by
using the Cadence Spectre circuit simulator to obtain average power dissipation and

timing information. The same 500 MVL functions were also used to obtain an average

transistor count of equivalent binary logic circuits. Equivalent binary logic circuits

of the same 30 MVL functions were then simulated by using Spectre to obtain an

average power dissipation and timing information.

The comparison results show that the self-restored MVL design architecture can

implement MVL functions without sacrificing circuit size, power, and speed. The

average transistor count of 500 2-variable 4-valued functions according to the self­

restored architecture of Figure 3.7 is 79.62 with using the CMC BiCMOS Synopsys
library. The average transistor count of equivalent operator-based circuits is at least

1.1 to 2.5 times larger dependent upon how many unary operators are in one product
term. Compared with the estimated circuit size of the self-restored MVL design
using NMOS configuration for the control/output blocks, the conventional operator­
based MVL design is 1.9 to 4.3 times larger. The time delays are close to each other

because threshold circuit elements dominate time delays in both cases. As for the

power dissipation, self-restored MVL designs consume similar amount of power with

operator-based MVL designs at 50MHz, while consumes less power at lower frequency.

The comparison results with binary logic design show that the self-restored MVL

design architecture of Figure 3.7 is competitive to the binary logic design in terms of

circuit size when both circuits and interconnections are considered. Dependent upon
the ratio of the one-dimensional effect and two-dimensional effect, the average circuit

size of 2-variable 4-valued logic functions is smaller than that of equivalent binary

logic functions when the ratio of interconnection area to circuit area is greater than

58.54. The comparison results also show that the circuit size of equivalent binary logic
circuits is similar to estimated circuit size of the self-restored MVL design using NMOS

configuration for the control/output blocks without considering interconnection area.

The circuit size can be further reduced with a better choice of an output block and
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using sum and diff operations. Circuit simulations using the Cadence Spectre show

the self-restored MVL architecture is about 10 times slower as a result of the threshold

circuit elements. As for the power dissipation, the MVL circuits consume about 5.0

times more power than the binary circuits at 10MHz and 2.17 times more power at

50MHz.



8. Conclusions and Future Work

This thesis proposed a new MVL design architecture along with a synthesis
scheme. The MVL design architecture is characterized by realizing MVL functions

with smaller average circuit size and self-restored output signals, which are the two

primary objectives of the thesis. A theoretical analysis was carried out to determine

the possibility of using a binary logic synthesizer for MVL synthesis according to the

self-restored MVL design architecture, which is the third objective of the thesis. A

computer program was developed for this design architecture based on the theoretical

analysis. Working together with a binary logic synthesizer, the program generates an

area-optimized circuit for a given MVL function according to the self-restored MVL

design architecture. An additional computer program was also designed to automat­

ically derive equivalent binary logic circuits for a given MVL function for comparison
purposes. By using the computer programs, this thesis compared the self-restored

MVL design architecture and its variants with other MVL design schemes and with

binary logic design in three aspects: area, speed and power. In addition, in order

to verify synthesized results, a new VHDL library was designed for fast functional

verification of CMCL design with a VHDL simulator, which is the fourth and the

final objective of the thesis.

8.1 Conelusions

The proposed MVL design architecture, consisting of a current-mode input block,
a voltage-mode control block and a current-mode output block, provides self-restored

signals because outputs always come from the current sources directly. Moreover,

171
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MVL functions implemented with this design architecture result in smaller circuit

size than the conventional operator-based MVL designs using min, max, tsum, literal,

cycle, etc., yet without sacrificing speed and power. Using Monte Carlo simula­

tion results with a 95% confidence interval, 500 2-variable 4-valued logic functions

were pseudo-randomly generated for comparing the self-restored design architecture

with other MVL design schemes. The average transistor count of 2-variable 4-valued

functions implemented with the self-restored architecture is 79.62 using the CMC

BiCMOS synthesis library. The average transistor count of equivalent operator-based
circuits is 1.1 to 2.5 times larger than the self-restored architecture. The time de­

lay and average power dissipation were similar. The average propagation delay for

both the self-restored architecture and the the conventional operator-based designs is

IOns approximately, but the self-restored design has shorter rise and fall time delays

(Ins approximately) than the operator-base design (5ns approximately). The power

dissipation of the self-restored architecture increases with frequency, while the con­

ventional operator-based MVL designs increase with frequency considerably slower

because the main source of power dissipation is static power. The self-restored de­

signs consume similar amount of power with the operator-based MVL designs at

50MHz (24I4j.LW on average), but consumes less power at lower frequency (1395j.LW
at 10MHz on average).

The self-restored architecture also offers other advantages. Unlike conventional

operator-based MVL design schemes which usually needs new minimization algo­
rithms for different sets of operators, a binary logic synthesizer can be used for MVL

synthesis. In the self-restored architecture MVL functions are decomposed into r - I

disjoint binary subfunctions, and those binary subfunctions are realized in the voltage­
mode binary control block. Therefore, a binary logic synthesizer can be used for

synthesis of the control block. A computer program, WMS, was developed, which

is capable of working with the Synopsys Design Compiler to create a self-restored

MVL circuit from a MVL function. The program is able to calculate the size of the
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resulting MVL circuit in terms of transistor count for comparing the circuit size of a

self-restored MVL design with an equivalent operator-based MVL design or with an

equivalent binary logic design. Other features include automatic generation of VHDL
and Verilog format circuit files and SPICE netlists. SPICE netlists are necessary to

compare time delay and average power dissipation. Since N-type threshold and binary

logic gates are used to implement a MVL function, direct interface to binary modules

is feasible. There is no need for extra binary-MVL or MVL-binary conversion circuits

to interface with other binary circuits.

The self-restored MVL architecture was also compared with equivalent binary logic

designs using the same 500 pseudo-randomly generated functions. The comparison.
results show that the self-restored MVL design architecture is comparable with the

binary logic design in terms of circuit size when both circuits and interconnections are

considered. For example, the average circuit sizeof 2-variable 4-valued logic functions

is smaller than that of equivalent binary logic functions when the ratio of intercon­

nection area to circuit area is greater than 51.43 (two-dimensional interconnection

effect) to 58.54 (one-dimensional interconnection effect). For some of the example

logic functions considered, the self-restored architecture results in a smaller transis­

tor count than the binary logic design even without considering interconnection area.

The average current (power) of the binary logic circuits is 55.73J.lA (278.65J.lW) at
10MHz to 222.67J.lA (1113.35J.lW) at 50MHz. The self-restored MVL circuits consume

on average about 5.0 times more power than the binary circuits at lOMHz and 2.17

times more power at 50MHz. The self-restored MVL architecture is about 10 times

slower because of the threshold elements.

Many variants to the design architecture were discussed in the thesis. Some of

these allow for reduction in circuit size and power dissipation of the self-restored MVL

architecture. In the NMOS variant, the control block and the output block can be

merged into one block by replacing the binary gates in the control block with NMOS
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transistors. The NMOS transistors are connected to current sources functioning as

both a switch circuit and a control circuit. This way the size of the control block is cut

in half. The estimated transistor count of 2-variable 4-valued function implemented
with this architecture is 46.81 on average. This number is comparable to the average

transistor count of equivalent binary logic circuits (46.67). The conventional operator­
based design is approximately 1.9 to 4.3 times larger than that of the self-restored

MVL designs using this NMOS variant architecture. The average power dissipation
for the NMOS variant is also smaller because of smaller average circuit size.

The circuit size of the self-restored MVL designs can be further reduced by select­

ing an appropriate output block and using the sum and dill operations. The sum

and dill operators can be applied to an input block and/or an output block. With

iterative minimization, circuit size of many self-restored MVL designs can be reduced

significantly in terms of transistor count because these two arithmetic operations can

be realized by simply wiring signals together according to Kirchhoff's Current Law.

The tradeoff is that the minimization becomes more complicated. For a self-restored

MVL design realized without using the arithmetic operators most of the minimiza­

tion work is done by a binary logic synthesizer. If the arithmetic operators are used,
the WMS program must be able to work interactively with a binary logic synthesizer

through multiple runs to determine which set of binary subfunctions results in the

smaller circuit. When the sum operator is used in an output block along with the

appropriate choice of an output block, the resulting circuit size can be reduced by as

much as 40% for certain MVL functions. The arithmetic sum and dill operators can

be used in an input block separately or in combination. Some of the example logic
functions show that the average transistors count is reduced from 35.58 to 17.50 as

compared to the MVL designs without using the arithmetic operators.

The self-restored MVL circuits generated by the WMS program were verified by
VHDL simulations using a new VHDL library (CMCL library) for CMCL designs.
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The new CMCL library allows faster simulation of a broader range of CMCL circuits

as aresult of the new node type, the new bus resolution function and the new CMCL

circuit element functions. The bus resolution function and the circuit element func­

tions are the most important part of the CMCL library. Library cells are created

based on the circuit element functions, and they interact with each other according
to the bus resolution function. The new bus resolution function is more concise and

robust. Unlike the old versions, the new bus resolution function does not resolve

each branch current of a node; it only combines all driving signals, checks current

equilibrium and determines binary logic state. Branch currents are now determined

by the circuit element functions. This approach is completely different from the con­

ventional usage of a bus resolution function. The new bus resolution function has

about 150 lines of code, which is about half the size of the older version. As a bus

resolution function is one of the determining factors of the simulat�on speed, more

concise coding means faster simulation. As a result of the new bus resolution function

and new node type, a new switch circuit function using the local relaxation method is

greatly simplified because transferring circuit information from one side of the switch

to the other side becomes much easier.

The CMCL library has basic MVL cells (behavioral), complex MVL cells (be­
havioral and structural) as well as standard binary logic gates. For a given MVL

function, the WMS program automatically generates VHDL description files for the

resulting circuit using the CMCL library cells. Instead of using a time-consuming
circuit simulator like other researchers do today, a quick functional verification of

CMCL circuits can be conducted with the CMCL library. The matching and squar­

ing circuit example shows the Spectre simulation takes about two and half hours on

an UltraSpare 143MHz machine with 128MB memory, while the VHDL simulation

takes only 15 seconds on the same machine. The VHDL simulation using the CMCL

library provides a much faster functional verification than circuit simulation.
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8.2 Future Work

Significant and successful designs of MVL ICs have been done in the last twenty

years, including MVL 12L and ECL circuits, MVL ROMs and CMOS MVL circuits.

However, as pointed out by D. Etiemble [47],

"the tremendous progress of binary circuit performance is the major rea­

son for the difficulties to establish a niche for MVL circuits in the binary
world."

Implementation techniques of MVL circuits must be further improved. Some future

work is proposed as follows:

1. Deep-submicron implementation
Current-mode CMOS logic (CMCL) has been believed to be a better candidate for

circuit realization ofMVL functions because CMCL allow higher logic radix and better

signal integrity. Unfortunately, these advantages are disappearing as the feature size

of CMOS technologies are becoming smaller. One of the reasons is that the maximum

source-drain current (IDS) is decreasing. For a 2-volt, 0.25J.L CMOS technology, IDS
is as low as 100J.LA to 150J.LA for a minimum sized transistor. This value is barely

large enough for 4-valued design where the base current is 20J.LA. Reduction of the

base current might not be a viable solution because of the variation of IDS caused by
short-channel effects [12, 47, 75] and the nature of submicron technologies [76]. It has
been reported that the variations in IDS for deep-submicron technologies could be as

high as 60%. In view of this variation it cannot be guaranteed that the existing circuit

designs would still function correctly when technologies are scaled down to submicron

or deep-submicron, let alone satisfying timing constraints and power budget. The

self-restored current-mode MVL design architecture might be the best chance for

MVL circuits to find a niche in the binary world while CMOS still dominates the

IC technologies. However, the self-restored MVL circuits must be verified with deep­

submicron processes.
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2. Circuit Realization with Nanoelectronic Devices

The advance of MVL technology depends much on the development of devices
that are inherently suitable for MVL, just as CM08 for binary VL81 systems. The ap­

plication of negative differential resistance (NDR) devices to MVL design have long
been studied by MVL researchers [77]. Nanoelectronic devices are promising can­

didates due to their multiple stable states. Among nanoelectronic devices, resonant

tunneling devices are attracting increasing attention due to their potential application
to practical circuits [78, 79, 80, 81].

The output current of a resonant tunneling device can be made to peak at one or

more values of the control voltage. Moreover, the widths of each peak and valley in the

current-voltage (I - V) characteristic can be programmed by the appropriate choice

of tunnel barrier/quantum well material, dimensions and doping densities. These

properties make resonant tunneling devices attractive for implementingMVL systems.
Resonant tunneling diodes (RTD) are a type of resonant tunneling device. RTD-based

MVL circuits have been applied to memory [82], analog-to-digital converters [83],
and multiplexers [84]. Among such RTD-based MVL circuits Waho et al. [85, 86,

87] propose a monostable-to-multistable transition logic (MML) quantizer, in which

series-connected RTDs are used to produce multiple-valued signals. Because the

MML quantizer has multiple thresholds, a possible use of the MML quantizer in the

self-restored MVL design architecture is to replace thresholds in the input block and

current sources in the output block resulting in smaller circuit size.

Another interesting nanoelectronic device is quantum dot (QD). QD devices are

still under development. The J- V curve of a QD shows that the current is in the

range of pA [88]. One interesting application of QDs to MVL is the superpass­

transistor (8PT) built on a conceptuallateral-resonant-tunneling QD transistor (LQT).
The 8PT is a voltage-controlled analog switch which has multiple ON-OFF switching
states corresponding to different logic values of the control voltage. The switching
state corresponding to a logic value of the control voltage is programmed in the device
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structure. A possible realization of the SPT is proposed in [89, 90]. The SPT could

be used in the self-restored MVL design architecture to replace multiple switches in

the output block and to further reduce the circuit size.

3. Power Estimation of MVL designs

By power estimation we generally refer to the estimation of the average power

dissipation of a circuit. Chip heating and temperature are directly related to the

average power [91]. Power dissipation can be estimated at different levels, such as

system-level, behavioral-level or register-transfer level (RTL), gate-level, switch-level,
and circuit-level. System-level normally provides the fastest power estimation with

least accuracy, while circuit-level normally provides the most accurate power estima­

tion with the lowest speed. As pointed out in [92], level-by-level power analysis and

estimation can provide faster and more accurate results.

Research on high-level (including system-level and RTL) power estimation tech­

niques on binary logic design has just begun [93, 92, 94, 95], while gate-level estimation
techniques on binary logic design are more mature for practical use. For example, an

event-driven simulation algorithm for gate-level estimation on binary logic design was

discussed in [96], which reports a speed increase of 2 to 3 orders of magnitude over

SPICE. It is interesting to examine the possibility of applying the existing gate-level
estimation techniques to the MVL designs so that a fast power comparison between

different MVL design schemes or between a MVL design scheme and the binary logic

design can be done without using a time-consuming circuit simulator such as SPICE.

4. MVL Synthesis Library
A synthesis library should be also developed based on the one that the author

developed in [12] so that the VHDL simulator for MVL and the synthesizer can

share one cell library. EDA tools cannot share libraries unless a standard database

is available. A logic synthesizer defines library cells in a "technology file". The

formats of technology files are different for logic synthesizers from different vendors.
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For example, Synopsys Design Compiler does not understand the technology file

for Cadence Ambit. VHDL simulators, on the other hand, can share source files

provided proprietary PLI (Programming Language Interface) coding is not involved,
because VHDL is a standard language. But the compiled designs or libraries are not

compatible. The binary files are specific to simulators. For example, Cadence NC­

VHDL does not understand a VHDL design compiled by Mentor ModelSim. That

is, logic synthesizers use proprietary technology files, while VHDL simulators use the

standard VHDL language but the compiled files are not standard. A shared library
between a VHDL simulator and a logic synthesizer means unified cell names, port

names, etc. If cell names, port names, etc. are the same, a VHDL design can be used

for both simulation and synthesis.

The synthesis library should also include cells for the self-restored design architec­

ture using the NMOS configuration for the control/output block as shown in Fig­
ure 3.9. The estimated result discussed in Chapter 7 revealed that the average

transistor count of 2-variable 4-valued functions using the NMOS configuration is

approximately the same as that of equivalent binary logic functions. A synthesis

library is required for obtaining a more accurate number of transistors.

5. Improvement on the WMS Program
The WMS program can be improved on a variety of aspects. For example,

the algorithm for searching prime implicants used by the WMS program needs to

be improved because it slows down exponentially with the increase of input vari­

ables. Another aspect is the minimization using the sum and diff operators in the

input/output blocks. The examples in Chapter 4 have shown that circuit size can

be reduced using the arithmetic operators. However, it can be expected that the

development of a minimization algorithm exploiting the two arithmetic operators is

technically difficult due to an increased number of possible solutions. A good starting

point might be the use of the sum operator only, such as restricting the use of the sum

operator in the output block. Other features that can be implemented in the WMS
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program include behavioral synthesis and the capability to handle the don't care con­

dition. By incorporating these features, the WMS program allows MVL design at the

behavioral level and in turn a faster design cycle.
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