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ABSTRACT 

 

The purpose of this project was to determine if yellow mealworm larvae (YML) grown 

on wheat contaminated with a high concentration of deoxynivalenol (DON) would affect broiler 

chicken performance. The YML were grown in containers of wheat that contained either low 

(LDW; <1,000 µg/kg) or high DON (HDW; 30,730 µg/kg). The DON concentration in the dried 

insect meals were 0 or 17.5 µg/kg for YML grown on LDW and HDW, respectively. Seventy-

five male Ross 708 broilers were randomly placed into 15 cages and reared on one of three diets 

from day 1-35 (five replications/treatment). At day 14, bird numbers were reduced to four 

birds/replication. The diets consisted of a control containing no YML meal (CD) and two diets 

containing 5% that were grown on either LDW (LMD) or HDW (HMD). The diets were 

formulated to meet Ross 708 2019 performance standards and fed as a mash in two phases: 

starter/grower (0-21 days) and finisher (21-35 days). Titanium dioxide was included as a marker 

in the finisher diets to allow the measurement of crude protein (CP) and dry matter (DM) 

digestibility. Excreta was collected on days 33 and 34. Feed intake (FI) and body weight (BW) 

were measured over the duration of the experiment and used to calculate feed conversion ratio 

(FCR).  On day 35, all birds were slaughtered and dissected to collect weights of the breasts, 

thighs, drums, wings, abdominal fat pads, liver, spleen, bursa of Fabricius, and gastrointestinal 

tract organs. A one-way ANOVA was used to assess the effect of diet on digestibility, 

performance, and carcass traits. Crude protein retention was higher in the LMD and HMD 

treatments compared to CD (68.17, 68.61, 66.17 respectively (P = 0.0091)). Dry matter retention 

was higher in the HMD diet compared to the CD and LMD diets (76.80, 74.93, 74.88 

respectively; P = 0.0046)). Feed intake was lower in birds fed HMD compared to CD and LMD 

(2469.0, 2709.1, 2762.4 respectively; P = 0.0031)). The fatty acid profiles of the broilers fed 

diets containing YML differed from those on the CD (P < 0.05). Diet inclusion of YML did not 

affect the growth, meat yield or organ weights of the birds.   The YML reared on DON-

contaminated wheat (up to 30,730 ug/kg) and included in broiler diets at 5% could be an 

effective means of converting salvage wheat into a safe and sustainable source of protein. 
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PREFACE 

 This thesis is organized and formatted as per the guidelines for a manuscript-style thesis 

by the University of Saskatchewan College of Graduate and Postdoctoral Studies. Chapter 1 of 

this thesis is a general introduction. Chapter 2 is review of the current literature as it pertains to 

mycotoxins, animal health, insects, and animal production. Chapter 3 is a manuscript that will be 

published in a peer-reviewed scientific journal. Chapter 4 is a general discussion discussing topic 

not discussed in the other chapters. Chapter 3 is being prepared for submission to Poultry 

Science. References cited in each chapter are combined and listed in the References section of 

this thesis. 
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CHAPTER 1  

INTRODUCTION 
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 Fusarium fungi are a recurring issue for cereal grains for both crops and livestock 

production with numerous negative impacts economically. Several Fusarium species cause a 

disease called Fusarium head blight (FHB) causing reductions in yield and grade of grains by 

creating Fusarium damaged kernels (FDK; Dill-Macky and Jones, 2000). A large outbreak of 

FHB which occurred in 2016 in Western Canada resulted in an estimated one billion dollars 

worth of damage associated with lower grades being assigned due to the presence of FDK and/or 

mycotoxins (Canadian Grain Commission, 2020). On top of losses associated with FDK, some 

species of Fusarium produce secondary metabolites, mycotoxins, which can cause acute or 

chronic challenges in animals resulting in reductions in performance or increased mortality. In 

cases where the presence of FDK or mycotoxins in crops are high, the crop could be downgraded 

to salvage which has little or no economic value. Blending is a common practice, where wheat 

with high occurrence of FDK are mixed with grain that has no or a low occurrence of infection to 

be able to sell the crop. In years where Fusarium occurrence is high, salvage crops may be burnt 

or buried which can have negative effects on the environment.  With the expected increases in 

temperature and unstable weather associated with climate change, outbreaks of FHB are 

expected to become more frequent, particularly when conditions are humid (Dweba et al. 2017). 

The mycotoxin most commonly associated with Fusarium spp. is deoxynivalenol (DON; 

Tittlemier et al., 2019). Deoxynivalenol can cause reductions in feed intake, performance, or 

damage the gastrointestinal tracts of animals fed contaminated diets (Awad et al., 2013; Gallo et 

al., 2015). Recently, it has been shown that yellow mealworm larvae (YML; Tenebrio molitor) 

grown on DON-contaminated feedstuffs contained low concentrations in their bodies. Research 

by Ochoa-Sanabria et al. (2019) found that YML fed between 210 and 12,000 μg/kg DON 

retained approximately 130 μg/kg DON. Van Broekhoven et al. (2017) did not detect any DON 

in larvae reared on DON-contaminated feed. Yellow mealworm larvae are approximately 50% 

crude protein (CP) and 35% crude fat (CF) on the dry matter (DM) basis (Van Broekhoven et al., 

2017; Ochoa-Sanabria et al., 2019). Yellow mealworms also have an amino acid profile that is 

similar to dietary needs of livestock such as poultry with the exception of methionine (Bovera et 

al., 2015). When considering the potential of YML they have to be produced at a low cost.  

Feeding salvage crops would help with this mandate and the mealworm meal could be 

competitive with fish meal or soybean meal as a cost-effective feed ingredient for poultry 
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provided it can be produced on a large scale. These results suggest that YML reared on DON-

contaminated feed may be utilized as a safe, sustainable feed ingredient for use in poultry feed. 
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CHAPTER 2  

LITERATURE REVIEW 

  



5 
 

2.1 Impact of mycotoxins 

Cereals, such as wheat, are a major global crop for human and animal consumption with 

2.96 billion tonnes grown worldwide in 2018 and production has been steadily increasing since 

1961 (FAO, 2020). Losses due to fungal diseases represent a major economic loss due to cereals 

receiving lower grades or even salvage status (which has little to no monetary value), reduced 

yield due to damage to the kernels, or the presence of detectable mycotoxins. Mycotoxins are a 

secondary metabolite produced by certain fungal genera such as Aspergillus, Fusarium, 

Penicillium, and Alternaria which can have numerous negative effects on humans and animals 

(Anfossi et al., 2016). Several species of fungi can produce the same mycotoxin, and a single 

species may produce multiple mycotoxins. Commonly present mycotoxins include aflatoxins 

(AF), ochratoxin A, trichothecenes (e.g., DON; T2 toxin; HT2 toxin), fumonisins (FUM), and 

zearalenone (ZEN) (Freire and Sant’Ana, 2018). A ten-year study conducted by Gruber-

Dorninger et al. (2019) using 74,821 feed samples found 88% were positive for a minimum of 

one mycotoxin and 64% contained two or more. Globally DON, FUM, and ZEN were the most 

detected mycotoxins at 64%, 60%, and 45% respectively (Gruber-Dorninger et al., 2019). It 

should be noted that not all fungi produce toxic secondary metabolites. There are over 300 

identified mycotoxins however, most attention is directed towards those that negatively impact 

health such as AF, DON, and ZEN (Ji et al., 2016). 

 Mycotoxins cause large economic losses related to reductions in animal production, 

increased mortality, and loss of crops and feed (Tittlemier et al., 2019). Toxic consequences of 

mycotoxin inclusion in animal diets can include: damage to the intestine, liver and other organs, 

reduction in feed intake, growth and fertility, emesis, immunosuppression, teratogenic and 

carcinogenic effects, and neurotoxicity (Friere and Sant’Ana, 2018). The effect of mycotoxins 

vary based on the dose, toxicity of the compound, body weight, age, animal health, and species 

(Anfossi et al, 2016). There is also a risk of carryover into products such as eggs, milk, and meat 

(Gruber-Dorninger et al., 2019) that can have negative effects on consumers. Many mycotoxins 

are stable compounds and as such often remain in the final product even after processing 

methods such as extrusion, that generate considerable heat although concentrations may be lower 

than initially detected.  The reduction in concentration depends on the time, heat, and moisture of 

the processing method (Karlovsky et al., 2016).   
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 Due to the negative effects of mycotoxins on crop and animal production, stability and 

co-occurrence, methods to mitigate their impact are essential. Rejected shipments, downgrading 

of crops, animal and human illness have all created the impetus to find uses for mycotoxin 

contaminated product to reduce the economic damages associated with it.  

 

2.2 Fusarium 

 Fusarium species are one of the most important fungal pathogens of plants, causing 

diseases in a multitude of crops leading to devastating losses in yields globally. In cereals, 

Fusarium species cause a devastating disease called FHB (Dweba et al., 2017). The effects of 

FHB in cereals are primarily the development of FDK which are chalky, shrivelled kernels that 

can contain high concentrations of mycotoxins (Dill-Macky and Jones, 2000). The increased 

presence of FDK is associated with higher concentrations of mycotoxins, although not always as 

contamination may vary based on environmental conditions during storage. There are several 

species of Fusarium that cause FHB, the most prevalent globally are subspecies of the Fusarium 

graminearum (Ferrigo et al., 2016).  

 Fusarium primarily produce trichothecenes, but some can also produce ZEN and FUM. 

Trichothecenes consist of two groups: A and B, differentiated by the different functional groups 

in the C-8 position on the trichothecene backbone (Ferrigo et al., 2016). Trichothecenes toxicity 

is caused by inducing apoptosis of eukaryotic cells by disrupting DNA, RNA, and protein 

synthesis (Gupta, 2012). Fusarium species that infect wheat primarily produce type B 

trichothecenes DON and nivalenol (NIV), but recently a type of type A trichothecene, NX 

toxins, have been discovered (Varga et al., 2015). Trichothecenes often co-occur with ZEN, a 

phenolic resorcylic acid lactone, and FUM, polyketide-derived mycotoxins, which can further 

compound and result in more severe repercussions to livestock health and productivity (Gupta, 

2012; Ferrigo et al., 2016). ZEN is known to have carcinogenic, hepatotoxic, immunotoxic and 

hyper-estrogenic effects in animals. FUM induces apoptosis of cells by peroxidising membrane 

lipids resulting in damage to a variety of tissues as well as having carcinogenic properties 

(Ferrigo et al., 2016). 

 

2.2.1 Occurrence and species in Western Canada 

 Years where the occurrence of Fusarium is high in cereals can result in substantial loss of 



7 
 

revenue for producers and the economy. The Western Canadian provinces, British Columbia 

(BC), Alberta (AB), Saskatchewan (SK), and Manitoba (MB), produce approximately 90% of 

the wheat produced in Canada (Stats Canada, 2020). As such, in years like 2016 where the 

incidence of Fusarium was high at 32.8, 85.2, and 90.1% for AB+BC, SK, and MB respectively, 

the economic implication of the losses due to FDK and DON are substantial (Canadian Grain 

Commission, 2020). The spread of Fusarium is difficult to control and almost inevitable as 

environmental conditions that favour fungal growth will occur for quick infection and disease 

progression (Dweba et al., 2017). 

 The predominant Fusarium species in Western Canada is F. graminearum which 

produces the mycotoxins DON, 3-acetyl DON (3ADON) and 15-acetyl DON (15ADON; 

Tittlemier et al., 2019). Other species detected in Canada include: F. culmorum, F. avenaceum, 

F. crookwellense, F. pseudograminearum, F. asthroporoides, F. acuminatum, F. equiseti and F. 

poae, with the additional mycotoxins NIV and ZEN being detected (Tittlemier et al., 2019; 

Cowger et al., 2020). 

 

2.2.2 Deoxynivalenol 

 Deoxynivalenol, also called vomitoxin, is the primary mycotoxin produced by F. 

graminearum, and is one of the most prevalent in cereal crops worldwide (Gruber-Dorninger et 

al., 2019). The occurrence of DON is heavily associated with the presence of Fusarium spp. and 

FDK (Dweba et al., 2017; Tittlemier et al., 2019). Deoxynivalenol is stable at high temperatures 

and will often be present in the final product. The final concentration of DON may be lower due 

to the combined effects of time, moisture, and temperature of treatment (Liu et al. 2019). An 

increase in any of these factors can reduce DON concentrations (Liu et al., 2019). The 

toxicokinetics of DON is dependent on absorption, distribution, metabolism, and elimination 

when consumed by animals (Payros et al., 2016). Deoxynivalenol, like other trichothecenes, are 

amphipathic molecules which can move passively across cell membranes, allowing for rapid 

absorption in the gastrointestinal tract (Pinton and Oswald, 2014). In mammals, DON is 

metabolised by a glucuronidation pathway involving conjugation with glucuronic acid. Chickens 

utilize sulfonation and sulfation to reduce the toxicity of DON (Payros et al., 2016). 

Deoxynivalenol and its metabolites will typically be present in excreta and most species will 

rapidly clear them. Ruminal and intestinal bacteria can remove the epoxide group of DON, 
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primary determinant of toxicity, generating de-epoxy-DON (DOM-1) which is less harmful 

(Payros et al., 2016).  

 Due to the negative health impacts fusariotoxins can have on humans and livestock, the 

Canadian Food Inspection Agency (CFIA) has imposed regulatory limits that determine what 

grains can be used for depending on the concentration of mycotoxin present. If the concentration 

of mycotoxins exceeds the regulations set out by the CFIA for feed and single feed ingredients, 

the grains will be deemed salvage. Unfortunately, Fusarium spp. are difficult to control, 

requiring a mixture of biological, chemical and host resistances to adequately control incidences 

of FHB and as a result mycotoxin contamination (Dweba et al., 2017). 

 

2.3 Impacts of deoxynivalenol in animals 

 Mycotoxins like DON can have negative effects on livestock production. Effects can 

result in significant losses incurred due to loss of productivity related to reduced feed intake, 

reduced fertility, or death of animals caused by high concentrations of DON present in feed 

ingredients and feed. 

 

2.3.1 Effects on animals 

 Exposure to DON can have a variety of deleterious effects on animal health and 

productivity. The severity of mycotoxicosis can range from reduced feed intake, lesions, 

gastrointestinal disorders, reproductive issues, and immunosuppression (Awad et al., 2013 and 

Gallo et al., 2015). The severity of effects will vary dependent on the livestock species, age, 

dose, and duration of exposure (Freire and Sant’Ana, 2018). Subacute effects of chronic 

mycotoxicosis are more common as concentrations of mycotoxins in feed are typically relatively 

low. Mycotoxin concentrations in feed are normally not high enough to cause the acute form of 

mycotoxicosis (Payros et al., 2016). 

 

2.3.1.1 Swine 

 Swine are particularly susceptible to the effects of DON (Awad et al., 2013). The reason 

for the high sensitivity is thought to be due to the rapid absorption of DON in swine, it is 

detectable in blood in less than 30 minutes after being ingested (Eriksen and Pettersson, 2004). 

Swine also have a low rate of metabolizing DON and other mycotoxins, relative to poultry and 
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ruminants (Pinton and Oswald, 2014). Due to their high susceptibility to DON, exposure as low 

as 1,000 µg/kg can result in reduced feed intake, immunosuppression, emesis, lesions in the 

gastrointestinal tract, and kidney problems (Cortinovis et al., 2013). The effects of DON can also 

continue even after contaminated feed is removed due to changes in feeding behaviour as 

observed by Serviento et al. (2018). Pigs grown on DON-contaminated feed were shown to feed 

less frequently and eat slowly. This changed feeding behaviour resulting in reduced overall feed 

intake (FI) causes the animals to take longer to reach market weight. Exposure to the DON-

contaminated diet also caused changes in feeding behaviour which resulted in a two-to-three-day 

lag before FI increased once the challenge was removed (Serviento et al., 2018). Gilts can also 

have reduced oocyte maturation and embryo development resulting in reduced reproductive 

success (Cortinovis et al., 2013) which greatly affects the productivity of a swine operation.  

 

2.3.1.2 Ruminants 

 Deoxynivalenol primarily causes feed refusal or reduced FI in ruminants although it can 

also cause gastrointestinal ulceration in the rumen (European Food Safety Authority; EFSA, 

2014). The reduced FI translates into a direct decrease in productivity. Common symptoms of 

high DON exposure are reduced FI, reduced productivity, immunosuppression, reproductive 

failure, and gastrointestinal disease. Dairy cattle can have reduced milk yield, reduced fertility, 

and increases in somatic cell counts (Gallo et al., 2015). Deoxynivalenol impairs rumen 

fermentation and reduces microbial protein flowing to the duodenum (Marczuk et al., 2012).  

 

2.3.1.3 Poultry 

 Relative to swine, poultry have reduced susceptibility to DON. This is partly thought to 

be due to lower absorption and faster metabolization rates of DON in poultry making acute 

effects unlikely unless mycotoxin concentrations are high (Eriksen and Pettersson, 2004; Pinton 

and Oswald, 2014). Dietary concentrations of DON in excess of 5,000 µg/kg can cause 

reductions in growth rate, productivity, and immune function, increasing susceptibility to 

disease. Layers and broilers will typically have reduced FI resulting in lower egg production or 

feed efficiency (FE) and weight gain respectively (Awad et al., 2013). Lesions may form in the 

gastrointestinal tract and mouth due to the cytotoxic effects of DON (Stoev, 2015). A study and 

Wang and Hogan (2019) observed reductions in the bodyweights (P<0.01) of male Ross 308 



10 
 

broilers fed diets containing > 6,000 µg/kg DON coinciding with reductions in FI (P<0.01). 

Broilers fed DON-contaminated diets for the duration of the trial were also found to have shorter 

ileal villi and shallower crypts (Wang and Hogan, 2019). Antonissen et al. (2014) found that 

exposure to DON at 3,000-4,000 µg/kg in broiler diets increased the incidence of sub clinical 

necrotic enteritis from 20% to 47% while increasing protein availability in the lumen, reducing 

intestinal barrier function which could stimulate growth and toxin production of Clostridium 

perfringens. Grenier et al. (2016) observed increased severity of coccidiosis in broilers exposed 

to DON and FUM below regulatory limits relative to unexposed birds. Awad et al. (2019) found 

that 5,000 and 10,000 µg/kg DON increased intestinal paracellular permeability in broilers which 

led to increased Escherichia coli counts in the spleens and livers indicating an increased risk of 

infections.  

 

2.3.2 Regulation of DON in feed in Canada 

 Currently the CFIA has regulations regarding limits for contaminants such as mycotoxins 

in feed, under the RG-8 Regulatory Guidelines, in accordance with the Food and Agriculture 

Organization (FAO; Canadian Food Inspection Agency, 2017a). The RG-8 contains legislated 

and recommended maximum tolerated concentrations of mycotoxins including: DON, HT-2, AF, 

T-2, ZEN, FUM, and ochratoxin A. Regarding DON, current maximum tolerated concentrations 

are 2,000 µg/kg for soft wheat for human consumption, 5,000 µg/kg for cattle and poultry diets, 

and 1,000 µg/kg for swine and lactating dairy animal diets (Canadian Food Inspection Agency, 

2017a). In 2017 the CFIA released a proposal: Contaminant Standards for Aflatoxins, 

Deoxynivalenol, Fumonisin, Ergot Alkaloids and Salmonella in Livestock Feeds (Canadian Food 

Inspection Agency, 2017b). This document proposed limits for both single feed ingredients and 

overall diets including additional species such as sheep, equine, and rabbits. Another document 

was released in 2018 with stakeholder input where salmonids were added onto the list (Canadian 

Food Inspection Agency, 2018). The current and proposed maximum concentrations of DON are 

displayed in Table 2.1. 
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Modified from Canadian Food Inspection Agency (2017a and 2017b) 

  

Table 2.1 Canadian Food Inspection Agency current and proposed maximum concentrations of 

deoxynivalenol (DON) for feed and single feed ingredients for domestic animals 

Species/class of 

animal 

Current dietary 

limits of DON 

(µg/kg)  

Proposed limits of 

DON for single feed 

ingredients (µg/kg) 

Proposed limits for 

diets of DON 

(µg/kg) 

Cattle – calves (<4 

month) 
1,000 5,000 1,000 

Cattle – beef 5,000 10,000 5,000 

Cattle – dairy 5,000 10,000 5,000 

Lactating dairy 

animals 
1,000 NA NA 

Swine 1,000 5,000 1,000 

Poultry (Chickens, 

turkeys, ducks) 
5,000 10,000 5,000 

Other (Sheep, equine, 

rabbits) 
NA 10,000 5,000 

Salmonids NA 2,000 600 
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2.4 Dealing with deoxynivalenol contaminated wheat 

 There are strategies that have been developed to mitigate the effect of Fusarium spp. in 

the food and feed industries. There are methods to prevent the occurrence of Fusarium spp. and 

mycotoxins revolving around agricultural practices such as monitoring for FHB, fungicides, and 

good storage practices. The creation of resistant cultivars to FHB is still in the early stages of 

development and still requires further research in identifying traits which work synergistically 

(Su et al., 2019). Wheat strains resistant to FHB have been reported to have reduced baking 

quality in previous studies which is undesirable (Gaikpa et al., 2019). During years with high 

occurrence of Fusarium spp. due to environmental factors involving high humidity and mild 

temperatures (Wegulo, 2012) crops must be managed utilizing postharvest detoxifying methods. 

 

2.4.1 Physical methods 

 Current effective physical methods of reducing DON-contamination in grain revolve 

around separating out FDK, thereby reducing the concentration of mycotoxins. Kautzman et al. 

(2015) utilized near- infrared transmittance (NIT) to separate FDK utilizing kernel CP. 

Separating out FDK does not necessarily mean that DON concentration would be reduced 

however, there is a correlation between the two (Tittlemier et al., 2019). Another method of 

sorting grain utilizes air aspiration, which separates kernels based on density with lighter kernels 

(including FDK) blown further than heavier. Maygar et al. (2019) found that air aspiration 

reduced the detected concentrations of DON by 24%.  

 

2.4.2 Chemical methods 

 Current chemical methods of reducing DON in harvest grain revolve around the use of 

ozone. A study by Wang et al. (2016) tested if ozonation could reduce concentrations of DON in 

contaminated wheat. Wheat was exposed to 75 mg/L ozone for times of 0, 30, 60, and 90 

minutes. Ozone treatment reduced DON by 26.4 to 53.5% over the time intervals in the treated 

wheat. No changes were observed in the nutritional properties of the wheat when analyzed, 

although the toxicity of ozone treated wheat is not yet published.  

 A study by Kong et al. (2014) found that adsorbent agents such as activated charcoal, 

bentonite, cellulose and microorganisms adsorbed approximately 3.24 – 22.9% in vitro compared 

to rates of over 80% in the case aflatoxin. Solís-Cruz et al. (2017) found that chitosan, 
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hydroxypropyl methylcellulose, sodium carboxymethylcellulose, and microcrystalline cellulose 

adsorbed 3.55, 31.43, 36.27, and 16.69% of DON in an in vitro analysis of a poultry 

gastrointestinal model. Adsorption rates of other mycotoxins was higher ranging from 35.42-

44.58% in the case of aflatoxin B1 (Solís-Cruz et al., 2017). Synthetic magnetic nano-zeolite 

bound DON at a rate of 1.8% while binding >99% of aflatoxins (Karami-Osboo et al., 2020). 

Hahn et al. (2014) tested twenty feed additives in vitro to measure DON reduction over 24 hours. 

One product reduced DON concentration by 97% while the other products detoxified 12% or less 

(Hahn et al., 2014). 

 

2.4.3 Insects 

 Recently some insect species have been grown on DON-contaminated feed with little to 

no effect on production.  The DON retention within their bodies was reduced significantly or 

completely eliminated. A study by Van Broekhoven et al. (2017) found that YML had 

undetectable concentrations of DON (<100 µg/kg) with no effects on mortality and growth when 

grown on naturally (4,900 µg/kg) and artificially (8,000 µg/kg) contaminated wheat flour. 

Excreted DON concentrations were also lower than that ingested (Van Broekhoven et al., 2017). 

Ochoa-Sanabria et al. (2019) in contrast to Van Broekhoven et al. (2017) detected 122-136 µg/kg 

DON in the YML when reared on DON-contaminated wheat (200-12,000 µg/kg).   There were 

no differences between treatments nor was the growth and survival of the YML affected. A study 

by Camenzuli et al. (2018) reared black soldier fly larvae (BSFL; Hermetia illucens) on DON-

contaminated wheat ranging from 5,000 to 125,000 µg/kg that was undetectable within their 

bodies. Overall, rearing insects on DON-contaminated wheat could provide an excellent method 

of utilizing salvage wheat which has no economic viability due to exceeding regulatory limits. 

 

2.5 Insects 

 Insects could fill a unique niche of converting salvage crops into a nutritious potential 

food and feed ingredient. Insects contain large quantities of CP, amino acids, CF and fatty acids 

(Makkar et al., 2004) making them an excellent source of protein and energy. With a projected 

world population of 9 billion people by 2050, 70% of which is expected to be urban, current 

farming practices are not expected to be able to meet future food demand (Alexandratos and 

Bruinsma, 2012). Insect production could help sustainably bridge the gap required to meet an 
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increased demand for animal protein and as a feed ingredient while not having as severe 

environmental effects compared to an increase in intensive livestock production. 

Insect production has numerous benefits. They can be grown on a small land area, even 

in or near cities, and many insect species have reduced greenhouse gas emissions relative to 

traditional livestock operations (Halloran et al., 2016). Insects also have similar feed conversion 

ratios (FCR) to those of poultry and can accumulate protein quite efficiently. Oonincx et al. 

(2015) reported that YML and BSFL convert 22-45% and 43-55% of crude protein into edible 

body mass respectively compared to poultry at 33%. Further work is still required to optimize 

insect productivity and diets so this could be improved even further, although the associated 

costs for insect diets may not be sustainable in the long term in comparison to rearing insects on 

salvage crops or organic side-streams (Oonincx et al., 2015; Halloran et al., 2016). Studies in 

insects are also becoming more common with 147 papers published pertaining to “edible insects” 

in 2019, and 18 studies published between January 1-29, 2020 compared to 25 publications in 

2013 (Baiano, 2020). Due to the potential to produce insects on unutilized crops and foodstuffs, 

insect farming has grown in interest in Canada. Enterra Feed Corporation produces BSFL on pre-

consumer food waste. Insect farming is a rapidly growing industry that in time has the potential 

to be quite sustainable, environmentally friendly, and profitable. 

 

2.5.1 Yellow mealworms 

  Yellow mealworms (Tenebrio molitor) are a member of Tenebriondidae family, of the 

order Coleoptera, also called the darkling beetle family which also include Zophobas morio 

(superworm) and Alphitobius diaperinus (lesser mealworm). Currently 468 species within the 

Coleoptera order are reported as edible, mostly it is the larvae that are eaten (Anankware et al., 

2014). Yellow mealworm larvae primarily feed on and are considered a pest of starchy materials, 

such as wheat (Ribeiro et al., 2018). Female beetles produce a hormone, 4-methyl-1-nonanol, 

when ready to copulate that attracts males (Park et al., 2014). Females will typically lay 250-500 

eggs singly or in clusters which they attach to substrate or walls of containers (Ghaly and 

Alkhoaik, 2009). The eggs will normally hatch into larvae between 4-10 days (Selaledi et al., 

2019) but eggs taking up to 34 days to hatch have been reported (Kim et al., 2015). The larvae 

grow and go through 14-20 instars before entering the pupal stage, (Park et al., 2014) the number 

of instars influences the duration of the life cycle. The pupal stage lasts between 6 to 20 days 
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(Hill, 2002; Ghaly and Alkhoaik, 2009). Adults emerge as whitish beetles with soft exoskeletons 

which will then harden and darken. Oviposition begins approximately 3 days after emergence 

and the adult stage typically lasts for approximately 60 days but has been reported to up to 173 

(Ribeiro et al., 2018). The entire life cycle takes place in the same habitat and in optimal 

condition can be as short as 75 days (Selaledi et al., 2019) but will typically be approximately 

80-84 days (Park et al., 2014).  

 Yellow mealworms, like most insects are poikilothermic, thus reliant on environmental 

conditions for heat. Optimal temperatures are in the range of 25-28ºC (Ribeiro et al., 2018; Kim 

et al., 2015), below 17ºC will inhibit embryonic development and above 30ºC increases death 

rates (Ribeiro et al., 2018). Optimal humidity is approximately 75% (Punzo and Mutchmor, 

1980). Higher growth rates in larvae have been observed at 90-100% humidity although this high 

humidity will favour the growth of contaminants such as fungi. In cases of extremely dry 

conditions, less than 10% relative humidity, larvae may stop feeding and become inactive until 

humidity rises (Ribeiro et al., 2018). 

 The YML can be grown on a wide variety of feedstuffs but grow best on diets high in 

protein (Van Broekhoven et al., 2015). Diets low in protein have been shown to result in a longer 

development time (Oonincx et al., 2015; Van Broekhoven et al., 2015), increasing the number of 

days to reach a harvestable size.  

 

2.5.2 Nutrient profile of yellow mealworm larvae 

 Due to their high nutritive value, YML are being considered for use in animal feed and as 

food. Reported CP and CF typically range from 40.7-68.9% and 23.0-36.0% on a DM basis 

respectively (Ghaly and Alkoaik, 2009; Ravzanaadii et al., 2012; Ochoa-Sanabria et al., 2019). 

This variance is likely dependent on the type and composition of the feed YML are grown on 

(Nowak et al., 2016). A study by Van Broekhoven et al. (2015) found that dietary CP and starch 

content did not affect YML CP (45.1-48.6%DM) and CF (18.9-27.6%DM). This study found 

high protein diets (32.7% CP) improved survival rates to 88% and higher compared to the 

control (17.1% CP) at 71%. Another study by Oonincx et al. (2015) found diets high in protein 

reduced total fatty acids in YML compared to the control (26.5 vs 30.9% DM). Oonincx et al. 

(2015) also found that diets low in protein decreased the survival rates of YML compared to 

those grown on high protein diets (52 vs 79%). It was also found that the addition of a carrot as a 
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water source improved larvae survival (Oonincx et al., 2015). Research has shown that YML are 

high in amino acids (Table 2.2) and fatty acids (Table 2.3) although some amino acids and fatty 

acids may not be present depending on the composition of the feed the larvae were grown on 

(Van Broekhoven et al., 2015). 

  Chitin (N-acetyl-D-glucosamine), is a molecule similar in structure to cellulose, 

and makes up the majority of the fibre content of insects (Finke, 2007). Chitin contains 

acetamides at the C2 position of monomers instead of hydroxyl groups on cellulose. Chitin is a 

structural compound used in the exoskeleton of insects and is replaced periodically during 

growth and development (Doucet and Retnakaran, 2012). The similarities between chitin and 

cellulose allows chitin to be measured using a combination of acid detergent fibre (ADF; the ash 

from ADF) and acid detergent insoluble nitrogen (ADIN). The chitin content of YML have been 

reported between 2.7 to 6.7% DM of YML (Marono et al., 2015; Ochoa-Sanabria et al., 2019). 

Chitin has been shown to stimulate serum immunoglobulin G (IgG) and immunoglobulin A 

(IgA) concentrations in birds. Broilers fed diets containing 0.4% YML meal cultured with 

Lactobacillus plantarum and yeast (Saccharomyces cerevisiae) had increased survival, FI and 

average daily gain (ADG) than those fed the control diet when challenged with Escherichia coli 

and Salmonella. Salmonella and E. coli population were also reduced in the gastrointestinal 

tracts of broilers, thought to be due to the probiotic and prebiotic effects of the cultured insect 

meal (Islam and Yang, 2017). Chitin does have the potential to reduce nutrient digestibility 

(Bovera et al., 2016) which could limit the use of insects in diets to avoid the negative effects on 

performance. Insects have small amounts of vitamins and minerals but are not a good source for 

them. 
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Table 2.2 Amino acid profile of yellow mealworm larvae from 3 studies (% dry matter) 

 Studies 

Amino acid Ghosh et al. (2017) Ravzanaadii et al. 

(2012) 

Ochoa-Sanabria et 

al. (2019)1 

Aspartic acid 2.76 3.6 4.2 

Threonine 1.8 1.8 2.1 

Serine 2.2 2.1 2.6 

Glutamic acid 5.8 5.7 6.2 

Proline 1.7 3.0 3.3 

Glycine 2.6 2.4 2.7 

Alanine 4.0 3.7 4.0 

Cysteine 3.2 0.5 0.4 

Valine 2.9 2.4 3.0 

Methionine ND 0.7 0.6 

Isoleucine 2.0 3.6 2.0 

Leucine 3.4 3.4 3.7 

Tyrosine 3.5 3.5 4.0 

Phenylalanine 1.8 1.8 1.9 

Histidine 2.8 1.5 4.8 

Lysine 2.0 2.9 2.6 

Arginine 2.2 2.4 2.6 

Crude protein 53.2 46.4 50.2 

1Oven dried larvae 

ND: not detected 
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Table 2.3 Fatty acid composition of yellow mealworm larvae from 3 studies (percent of crude 

fat) 

Fatty acid Studies 

Name Lipid 

number 

Ghosh et al. 

(2017) 

Finke (2015) Ochoa-

Sanabria et al. 

(2019)1 

Crude fat (% dry matter)  34.5 34.4 34.4 

Lauric acid C12:0 0.32 - - 

Tricedecanoic acid C13:0 0.43 - - 

Myristic acid C14:0 4.72 1.43 7.0 

Myristoleic acid C14:1 0.20 - - 

Pentadecanoic acid C15:0 0.06 - - 

Palmitic acid C16:0 13.65 12.30 20.4 

Palmitoleic acid C16:1 2.58 0.84 - 

Heptadecanoic acid C17:0 0.06 - - 

Heptadecenoic acid C17:1 0.09 - - 

Stearic acid C18:0 0.23 2.56 - 

Oleic acid C18:1 45.10 27.30 55.1 

Linoleic acid C18:2 21.94 24.30 18.2 

Linolenic acid C18:3 0.32 1.03 - 

Arachidic acid C20:0 0.12 - - 

Eicosenoic acid C20:1 0.06 0.19 - 

Eicosadienoic acid C20:2 0.12 - - 

Eicosapentaenoic acid C20:5 0.00 0.22 - 

Docosadienoic acid C22:2 0.12 - - 

Tricosanoic acid C23:0 0.43 - - 

Lignoceric acid C24:0 0.03 - - 

1Oven dried larvae 

-: Not measured 
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2.5.3 Large scale production 

 Currently, insect production is costly and must compete with conventional feed 

ingredients like soybean meal. This is largely due to the cost of labour and implementation of 

automation but also part of the issue is related to the cost of the feed substrate (Van Huis, 2020).  

Organic side streams, such as food waste, may be an option, but laws and regulations may limit 

their use (Van Huis, 2020). The question comes up as to what can be used. Enterra Feed 

Corporation (Maple Ridge, B.C.) has been approved to use pre-consumer food waste such as 

urban and catering waste to raise BSFL but these sources are not suitable for other species of 

insect. Not all side streams work; crickets grown on straw were shown to have high mortality 

(Lundy and Parella, 2015). Using insects as a feed results in the addition of another conversion 

cycle: using organic products to produce insects (Van Huis 2020). With interest in lowering costs 

associated with producing animals there is interest in making feed ingredients with low cost or 

directly usable for production animals (Van Hal et al., 2019). Insects could be grown on 

substrates with little to no value for animal production and be cost competitive to conventional 

feed ingredients. Insects grown on substrates that are too toxic for feed or food, such as DON-

contaminated grain could help alleviate this issue and reduce potential costs. This combined with 

insects requiring low land area, 1 kg of YML requires less than half the land area required to 

produce 1 kg of chicken (Miglietta et al., 2015), could allow insects to be competitive to feed 

ingredients like fishmeal and soybean meal. 

Progress towards increased efficiency and productivity with insect rearing is possible 

with investment and genetic improvement. An eight-year study by Morales-Ramos et al. (2019) 

was able to improve growth rate, fecundity, FCR, larvae size, and pupa size in YML, although at 

the cost of survival. And since insects have short life spans there are more frequent opportunities 

to select for desired traits. It also may be possible to select for insects that can survive on certain 

substrates (Fowles and Nansen, 2019). Overall, the insect industry is in its early stages of 

development and will continue to improve with time and research. 

 

2.5.4 Rearing yellow mealworm larvae on mycotoxin-contaminated feed 

 Recent studies have assessed how exposure to mycotoxins such as DON, ZEN, AF, T-2 

toxin, and ochratoxin A affects the growth, breeding, and behaviour in YML (Van Broekhoven 

et al., 2017; Niermans et al., 2019; Ochoa-Sanabria et al., 2019). Van Broekhoven et al. (2017) 
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and Ochoa-Sanabria et al. (2019) reported no differences in mortality, growth and weights in 

YML reared on wheat contaminated with up to 8,000 μg/kg and 12,000 μg/kg DON respectively. 

Van Broekhoven et al. (2017) did not detect DON in the larvae while Ochoa-Sanabria et al. 

(2019) detected approximately 130 μg/kg regardless of the DON concentration in the diet.   This 

was likely due to experiment by Ochoa-Sanabria et al. (2019) taking place over a longer time 

period (33.6 vs 15 days). Van Broekhoven et al (2017) and Ochoa-Sanabria et al. (2019) did not 

observe changes in mortality of YML produced on DON-contaminated wheat. There may be 

some impact of DON on YML as Janković-Tomanić et al. (2019) found that feeding 8,000, 

16,000 and 25,000 μg/kg DON resulted in reduced weight of larvae after 2 weeks compared to 

larvae grown on the control diet (101.4, 113.2, and 116.34 vs 126.2 mg). Yellow mealworm 

larvae grown on the 25,000 μg/kg DON diet also had a lower protein content than the control 

(1.50 vs 1.83 mg/g). It was also found that YML grown on DON-contaminated diets had reduced 

locomotor activity, with reduced travel distance, speed, and time in movement (Janković-

Tomanić et al. 2019). Part of the reason for this may have been due to the short duration of the 

experiment at 14 days, which may not have allowed the YML to adapt and recover from the 

initial exposure to DON.  

 The mechanisms pertaining to how the YML metabolize DON and other mycotoxins are 

currently unknown. Some residual mycotoxins are present in the frass of the larvae ranging from 

less than 10% (Ochoa-Sanabria et al., 2019) to 14% (Van Broekhoven et al., 2017) DON in 

naturally contaminated diets. Yellow mealworms produce enzymes such as cellulase, chitinase, 

licheninase, and β-glucosidase which have known catalytic effects on DON (Genta et al., 2006). 

Soil microbes such as Pseudomonas sp. Y1 and Lysobacter sp. S1 have also been shown to 

transform DON into 3-epi-DON which is less toxic (Zhai et al., 2019). Cytochrome P450 

monooxygenases have been suggested as an important mechanism for the oxidation-reduction 

reactions involved with detoxification of mycotoxins (Scott and Wen, 2001). Yellow mealworms 

could possibly deal with DON utilizing a mixture of enzymes they produce complemented with 

microbial degradation of DON to maximize efficiency. 

 

2.5.5 Use in animal feed 

 Insects for use in animal feed is a new practice for the modern animal industry. In 

Canada, only BSFL produced by Enterra Feed Corporation (Maple Ridge, B.C.) are approved for 
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use in aquaculture and poultry production. Yellow mealworms have not been approved for use in 

feed for animal production in Canada. Research has shown that dietary inclusion of YML does 

have positive effects in animal production.  

 In aquaculture, YML in diets has had considerable success. Defatted YML were included 

in red seabream diets at up to 65% of the diet (Ido, et al., 2019). Fish grown on diets containing 

YML meal had improved performance compared to those grown on diets containing 65% 

fishmeal. Body weight gain in the diet containing 65% YML was 12.8 g compared to 7.2 g for 

those fed 65% fishmeal. The addition of the YML fat into diets did however result in a reduction 

in growth rates relative to the diets containing defatted meal (Ido et al., 2019). A study by Jeong 

et al. (2020) found in rainbow trout fry that a YML inclusion of 14% resulted in optimal weight 

gain at 1,115 g compared to 943 g fed the control diet. Yellow mealworm larvae inclusion also 

resulted in a reduction in feed conversion ratios and feed intake indicating an increase in 

efficiency. Another study found that replacing fishmeal with defatted YML improved growth 

and immunity of pacific white shrimp (Motte et al., 2019). The study found that a 50% 

replacement of fishmeal with defatted YML resulted in the greatest improvement of biomass at 

79.0 g compared to 63.8 g per tank in the control. Feed-to-gain ratios were also improved 

dropping from 1.588 in the control to approximately 1.287 in the diets containing YML (Motte et 

al., 2019). Yellow mealworm larvae reduced protein digestibility in the omnivorous Nile tilapia, 

likely due to the chitin content (Sánchez-Muros et al., 2016). Overall YML could be used to 

replace fishmeal in many aquatic species diets. 

 The use of YML in pig diets also have had positive results. Current studies have focused 

on weaned pigs. Jin et al. (2016) found that supplementation of YML up to 6% increased linearly 

FI, ADG, and body weight during days 0-14 and improved body weight and FI during days 14-

35. Nitrogen retention, DM, and CP digestibility increased linearly with the concentration of 

YML. Inclusion of YML did not change IgA and IgG indicting no effect on immune response 

(Jin et al., 2016). Another study by Meyer et al. (2020) found growth parameters (weight, FI, 

FCR) in 5-week-old pigs were unaffected when fed diets containing 0, 5, or 10% YML. 

Inclusion of 10% YML did increase activation of genes, related to the urea cycle which was 

likely in response to the 10% reduced ileal digestibility of amino acids in pigs on that treatment 

relative to the control. As a result, inclusion of YML can also be beneficial for inclusion in swine 

diets, although more research is required for pigs as they get older. 
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 Insects have been suggested as a high-quality alternative protein source for poultry. Other 

benefits include chitin, lauric acid and antimicrobial peptides present in insects as these have also 

been shown to improve chicken health (Gasco et al., 2018). Most research has pertained to 

broilers. Research has been inconsistent for poultry performance when grown on insect meal. 

Elahi et al. (2020) found that inclusion of YML meal at 4% performed the same as those fed a 

conventional diet.  Ballitoc and Sun (2013) found that inclusion of YML meal at 0.5, 1, 2 and 

10% increased FI while lowering the feed conversion ratio. Research by Bovera et al. (2015) 

found lower FI in broilers from day 46-62 with the inclusion of YML meal at 29.6% but the FCR 

of birds were also lower during that same period. No studies have found any impacts on carcass 

weight and meat yields (Ballitoc and Sun, 2013; Bovera et al., 2015; Biasato et al., 2018; Elahi et 

al., 2020). Yellow mealworm larvae meal has not impacted meat or carcass quality when fed to 

broilers (Dabbou et al., 2019). Broilers, in a study by Biasato et al. (2017), showed a quadratic 

response when fed diets containing 0, 5, 10 and 15% YML in erythrocyte counts, peaking at 10% 

YML inclusion. Albumin concentrations decreased linearly with increasing YML inclusion. Gut 

histology and morphological results were found not to differ with inclusion of YML. Feed intake 

and body weight increased in birds fed diets containing YML while FCR was not affected 

(Biasato et al., 2017). Another study by Biasato et al. (2019) found that inclusion of YML at 

10% or higher resulted in a reduction in Firmicutes spp.  and an increase in species such as 

Clostridium, Sutterela, and Alistipes present in the ceca. Firmicutes may have an impact on bird 

health and feed digestion so this change could be negative. The increase in Clostridium, 

Sutterela, and Alistipes are positive for bird health as they have known positive effects on bird 

health. Overall, the study concluded that YML inclusion above 10% had an effect on the cecal 

microbiota and intestinal mucin dynamics, but that more work was required to determine if this 

would be a positive or negative change (Biasato et al., 2019). With these results from feeding 

experiments and the results from growing YML on DON-contaminated wheat it might be 

possible to produce a cost-effective high-quality feed ingredient for use in animal production 

competitive with fishmeal and soybean meal. 

 

2.6 Hypothesis and Objectives 

 The objective of this project was to determine if yellow mealworm larvae reared on 

DON-contaminated wheat could be included in the diets for broiler chickens as a safe feed 
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ingredient for animal production. Yellow mealworm larvae were grown on either low and high 

DON-contaminated wheat (<1,000 µg/kg or 30,730 µg/kg respectively), then analyzed 

nutritionally and for the presence of mycotoxins. The YML were included in broiler diets that 

were then assessed for growth rates, feed intake, meat yield, organ weight and hematological 

parameters. 

 

The hypotheses of the project were: 

• Yellow mealworm larvae will convert DON-contaminated wheat into a high-quality feed 

ingredient with less than 1,000 µg/kg suitable for poultry as they can break down DON. 

• Broilers grown on diets containing YML meal (fed wheat not contaminated with DON) 

will perform comparably to conventional diets as insects are highly nutritious and easily 

digestible. 

• Mealworm meals produced from low and high DON wheat will not affect broiler growth, 

feed intake, meat yield, organ weight and hematological parameters. 
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CHAPTER 3:  

YELLOW MEALWORM LARVAE (TENEBRIO MOLITOR) REARED ON 

DEOXYNIVALENOL-CONTAMINATED WHEAT AS A FEED INGREDIENT FOR 

BROILER CHICKENS 
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3.1 Introduction 

 Fusarium contamination of crops is a global problem for food and feed production. 

Fusarium is a genus of fungi of which more than 16 species cause a disease in cereal crops called 

FHB (Dweba et al., 2017). Fusarium species produce a variety of mycotoxins, of which DON 

and ZEN that have toxic effects in humans and animals are the most prevalent (Ferrigo et al., 

2016). In 2016, a large outbreak of FHB occurred in Western Canada which resulted in an 

estimated one billion dollars worth of damage associated with lower grades being assigned due 

to the presence of FDK and/or mycotoxins such as DON (Canadian Grain Commission, 2020). 

With current global warming effects related to increasing temperatures and unstable weather, 

major outbreaks of FHB are likely going to be more frequent in the future, especially during 

conditions with high humidity (Dweba et al., 2017). 

 Fusarium graminearum is the most prevalent species in Western Canada and is harmful 

due to its production of mycotoxins such as DON, 3ADON, and 15ADON (Tittlemier et al., 

2019). Due to the effects DON can have in animals, the CFIA have set limits on the 

concentrations allowed in food and feed. The CFIA have further proposed limits on mycotoxins 

in single feed ingredients which would limit DON concentrations to a maximum of 10,000 µg/kg 

(CFIA, 2018). Any crops measuring above these concentrations would be condemned as salvage 

which has no economic value representing a loss to producers or would be blended into crops 

with low degrees of contamination. If large quantities of salvage crops are produced due to 

outbreaks of fungal disease, blending will not be an option, crops will be burnt or buried which 

can have negative environmental effects. 

 One novel method of utilizing DON-contaminated crops could be to rear insects such as 

YML (Tenebrio molitor) on them. Studies by Van Broekhoven et al. (2017) and Ochoa-Sanabria 

et al. (2019) fed YML DON-contaminated wheat, at concentrations up to 12,000 µg/kg, and 

reported no impacts on larval survival, fecundity, or growth. Van Broekhoven et al. (2017) and 

Ochoa-Sanabria et al. (2019) reported excretion of DON in frass at 14 to 41% and 6 – 15% of 

ingested concentrations respectively. Van Broekhoven et al. (2017) did not detect the presence of 

any mycotoxins in the YML reared on DON-contaminated wheat, while Ochoa-Sanabria 

detected approximately 130 µg/kg, which was still much less than the ingested concentrations 

indicating that they may have some means of metabolizing DON.  

Yellow mealworms in their larval stage are rich in CF and CP at 34.4% and 50.2% 
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respectively (Ochoa-Sanabria et al., 2019). Yellow mealworm larvae also have an amino acid 

profile similar to soybean meal, with the exception of methionine, which could make them 

excellent as both a protein and energy source when included in animal diets (Bovera et al., 

2015). These observations indicate that YML may have potential when reared on DON-

contaminated crops to be a cost effective, highly nutritious, and safe ingredient for use in poultry 

diets. The aim of this study was to determine if YML raised on low or high DON wheat could be 

used as a feed ingredient for broiler diets, and investigate any effects that may occur in growth, 

survival, and efficiency. 

 

3.2 Materials and methods 

3.2.1 Wheat samples 

 Two sources of Canadian Western Red Spring wheat were purchased from producers in 

Saskatchewan, Canada that had low or high infection with Fusarium. Mycotoxin panel testing 

was conducted at Prairie Diagnostic Services (Saskatoon, Canada) using HPLC-tandem MS. The 

mycotoxin panel included mycotoxins DON, Nivalenol (NIV), 3ADON, and 15ADON. The low 

and high DON wheat (LDW and HDW) had <1,000 µg/kg and 30,730 µg/kg DON respectively.  

 

3.2.2 Yellow mealworm larval production 

 Recently eclosed Tenebrio molitor beetles sourced from Bug Order Inc. (Morinville, 

Canada) were placed into 50 x 32 x 15 cm bins containing either LDW or HDW which was fed 

whole kernel. Beetles were left to breed and lay eggs which were then hatched into larvae that 

consumed the wheat. Larvae at a minimum weight of approximately 110 mg were harvested 

from bins once per week. The larvae were fasted for 24 hours to empty their gastrointestinal 

tract, rinsed with water to remove dust, and were euthanized by freezing and stored at -20ºC. The 

rearing room was maintained with an 8-hour photoperiod, with a temperature between 22-26ºC 

and with a minimum relative humidity of 50%. All bins had paper towels which were misted 

with water 3 times per week to maintain humidity. The frozen mealworm larvae were spread 

thinly on trays and oven-dried at 110ºC for 40 minutes. The dried larvae were then ground using 

a Cuisinart Model CH-4DCC food processor (Stamford, Connecticut) to produce mealworm 

meal and stored at -20ºC.  
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3.2.3 Mycotoxin and nutritional analysis of yellow mealworm larvae meal 

 The YML meal was analysed for mycotoxins as described by Ochoa-Sanabria et al. 

(2019) at Prairie Diagnostic Services (Saskatoon, Canada). Two grams of sample was combined 

with HPLC reagent grade 85% acetonitrile plus 15% distilled-deionized water (v/v) filtered 

through a Barnstead Nanopure water purification system. The mixture was stirred continuously 

for 10 minutes, then filtered through Whatman 41 150 mm filter paper. Three millilitres of 

supernatant were filtered through a MycoSEP 225 Trich cleanup cartridge, dried with nitrogen 

and reconstituted with 50% methanol/50% 10 mM aqueous ammonium acetate. The sample was 

filtered through a 0.45 µm syringe. A 10 uL sample of filtered material was added to 990 uL of 

the 85/15 acetonitrile/distilled-deionized filtered water. This final sample was injected into the 

LC/MS system. The detection limits for DON, NIV, 3ADON, 15ADON respectively were 4, 64, 

16, and 16 µg/kg respectively. 

 Crude protein of the YML meals was determined using the Dumas-Combustion method 

by placing duplicate 0.11 g samples in gel capsules and combusting at 800ºC, (AOAC, 1997; 

method 990.03). The amino acid profile was determined by the nutrition lab in the Faculty of 

Agricultural and Food Sciences at University of Manitoba, (Winnipeg, Canada; AOAC, 1995; 

method 994.12) utilising the S2100 Sykam amino acid analyser (Eresing, Germany). Amino acid 

digestibility values by Matin (2019) were used to estimate those of the YML meal. 

 Crude fat was analysed using a Goldfisch extraction apparatus model 3500 (Kansas City, 

Missouri) by processing and extracting 1.3 g of samples in duplicate for 5 hours using the ethyl 

ether extraction gravimetric method (AOAC, 2000; method 920.39). The fatty acid profiles were 

determined at NRC by Linnaeus Plant Science Inc (Saskatoon, Canada) in duplicate by adding 

55 mg of sample to a 16 x 100 mm glass screw cap tube containing 1.5 mL 1.5% sulfuric acid in 

100% methanol (v/v) and 0.4 mL hexane. Tubes were capped tightly and incubated overnight in 

an 80ºC heat block, mixed occasionally. Tubes were cooled and 1 mL of 0.9% NaCl and 2.5 mL 

hexane were added. Samples were vortexed briefly and centrifuged at 2000 rpm in an Allegra 

25R centrifuge (Indianapolis, Indiana) for 5 minutes at room temperature. Two hundred 

microlitres of hexane phase was transferred to gas chromatography (GC) vials and run on GC 

Agilent 6890N equipped with a flame ionization detector and DB23 column (0.25mm x 30 m, 
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0.25 um thickness; J&W Scientific, Folsom, California). A fatty acid standard mix C8-24 was 

used to verify peak identities. 

 The YML meals were also analysed for calcium, magnesium, phosphorus, potassium, 

sodium, copper, iron, manganese and zinc at Central Testing Laboratory Ltd. (Winnipeg, 

Canada; AOAC, 1996; method 985.01; AOAC 1969; method 968.08; AOAC, 1951 method 

935.13). Moisture was analyzed in 2.0 g samples in aluminum dishes that were in an oven at 

135ºC for 2 hours. The samples were then cooled, sealed, and weighed again to determine the 

loss from drying (AOAC, 1990; method 930.15). Acid detergent fibre (ADF) was determined by 

running duplicate 0.5 g samples in an ANKOM200 fiber analyzer (New York, USA; AOAC, 

1977; method 973.18). The remaining portions of the samples were used to estimate CP and 

determine acid detergent insoluble nitrogen (ADIN). Chitin was calculated from ash-free ADF 

and ADIN as described by Marono et al. (2015).  

 

3.2.4 Broiler experiment 

A research exemption was obtained from the Animal Feed Division of the Canadian Food 

Inspection Agency to include the YML meals in the diets. Approval was obtained from the 

Animal Research Ethics Board at the University of Saskatchewan to conduct this experiment. 

 

3.2.4.1 Diets 

 Diets were formulated (Table 3.1) to meet or exceed Ross 708 2019 performance 

standards (Aviagen, 2019) using the results of the analyses and produced as a mash. Corn that 

contained undetectable concentrations of DON and soybean meal made up the majority of the 

diets. The treatments consisted of the control containing no insect meal (CD), containing 5% 

YML grown on LDW (LMD), and 5% YML grown on HDW (HMD). Diets were fed in two 

phases with a starter/grower fed for the first three weeks (days 1-21) and a finisher fed during the 

last two weeks (days 21-35). The finisher included titanium dioxide as a marker to determine CP 

retention and DM digestibility. Nutrient composition (DM, moisture, CP, calcium, phosphorus, 

and sodium) of the diets were determined by Central Testing Laboratory LTD. (Winnipeg, 

Canada).  
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Table 3.1. Ingredients (% as fed) and nutrient composition (% as fed) of experimental diets1 

Ingredients Starter diets (days 1-21) Finisher diets (days 21-35) 

 

 CD LMD HMD CD LMD HMD 

Corn 60.081 56.753 57.045 65.965 67.805 68.100 

Soybean meal 29.655 32.624 32.334 22.861 21.178 20.566 

Meat meal 5.973 - - 5.942 1.968 2.238 

YML LDW - 5.000 - - 5.000 - 

YML HDW - - 5.000 - - 5.000 

Dicalcium 

phosphate 
1.543 1.744 1.755 0.291 1.008 0.969 

Calcium 

carbonate 
- 1.331 1.128 0.409 0.807 0.779 

Canola oil 1.000 1.000 1.000 2.864 0.422 0.546 

Poultry vit/min 

premix 
0.500 0.500 0.500 0.500 0.500 0.500 

Titanium 

dioxide 
- - - 0.300 0.300 0.300 

Dl-methionine 0.368 0.356 0.355 0.274 0.279 0.280 

Lysine HCl 0.315 0.345 0.258 0.197 0.228 0.224 

Salt 0.177 0.265 0.349 0.180 0.288 0.284 

Choline 

chloride 
0.165 0.165 0.165 0.150 0.150 0.150 

L-threonine 0.149 0.115 0.111 0.068 0.067 0.064 

L-isoleucine 0.038 - - - - - 

Valine 0.035 - - - - - 

Nutrient 

composition 

(% as fed) 

      

AME 3105 3111 3101 3200 3200 3200 

DM 87.60 87.32 87.56 87.26 87.00 87.54 

CP 21.66 20.92 21.25 18.53 18.74 17.52 

Crude fat 4.05 5.42 5.28 5.92 5.24 5.24 

Digestible 

lysine 
1.28 1.28 1.28 1.03 1.03 1.03 

Digestible 

methionine 
0.67 0.66 0.66 0.55 0.55 0.55 

Digestible 

cysteine + 

methionine 

0.95 0.95 0.95 0.80 0.80 0.80 

Digestible 

threonine 
0.86 0.86 0.86 0.69 0.69 0.69 

Digestible 

tryptophan 
0.22 0.24 0.24 0.19 0.19 0.18 

Calcium 1.12 1.02 1.01 1.04 0.87 1.00 
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Available 

phosphorus 
0.40 0.40 0.40 0.64 0.48 0.48 

Sodium 0.14 0.18 0.16 0.13 0.15 0.17 
Abbreviations: YML LDW, Yellow mealworm larvae reared on low DON wheat (<1,000 µg/kg DON); YML 

HDW, yellow mealworm larvae reared on high DON wheat (30,730 µg/kg DON); DM, dry matter; CP, crude 

protein. 
1 Three dietary treatments: CD = control diet; LMD = 5% inclusion yellow mealworm reared on low 

DON wheat; HMD = 5% inclusion yellow mealworm reared on high DON wheat. 
2 One kg premix contains 2,200,000 IU vitamin A, 440,000 IU vitamin D, 6,000 IU vitamin E, 400 mg 

menadione, 300 mg thiamine, 1,200 mg riboflavin, 800 mg pyridoxine, 4 mg vitamin B12, 12,000 mg 

niacin, 2,000 mg pantothenic acid, 120 mg folic acid, 30 mg biotin. 2,000 mg copper, 16,000 mg 

manganese, 160 mg iodine, 16,000 mg zinc, 60 mg selenium, 100,000 mg calcium carbonate, 125 mg 

antioxidant, 807,879 mg wheat middlings (DSM Nutritional Products Canada Inc. ON, Canada). 
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3.4.2.2 Growth performance 

Seventy-five male Ross newly hatched 708 broilers were obtained from Lilydale 

Hatchery (Edmonton, Canada) and were randomly split into groups of five birds and placed into 

one of 15 cages (five replications/treatment, 46 cm high × 51 cm wide × 51 cm long) in a 

temperature controlled room at the University of Saskatchewan Poultry Research Center 

(Saskatoon, Canada). Bird numbers were reduced to four birds/treatment on day 14, birds were 

selected randomly. The removed birds were used to collect blood samples to test if flow 

cytometry could be used to measure blood differentials and H/L ratios, and if scalding affected 

the quality of histology slides of the duodenum, jejunum, and ileum. The room the broilers were 

housed in started at a temperature of 34ºC and gradually dropped down to 22.3ºC by day 28. 

Light intensity was initially 40 lux for a 22-hour photoperiod which was reduced to 20 hours on 

day 2. Light intensity was dropped to 20 lux on day eight, then to 10 lux on day nine. Birds had 

free access to feed (tray feeders) and water (nipple drinkers) for the duration of the trial. All 

mortalities and culled birds were necropsied for cause of death or morbidity by Prairie 

Diagnostic Services (Saskatoon, Canada). 

Broiler body weight (BW, g) and feed intake (FI, g) was measured at 1, 7, 14, 21, 28, and 

35 days. Average daily gain (ADG, g/day) was calculated on a per bird basis, and feed to gain 

ratio (F:G, g feed/g weight gain) was calculated per cage. Formulas used to calculate ADG and 

F:G were: ADG (period x–y) = (BW day y – BW day x)/Days period x–y and F:G = FI(period x–

y) /(BW day y – BW day x). 

 

3.2.4.3 Excreta 

Excreta was collected over a period of 48 hours on days 33 and 34 of the trial. Samples 

were pooled, dried at 50ºC for 72 hours and ground using a Retsch ZM 100 Ultra Centrifugal 

Mill (Haan, Germany) using a 1,000-micron screen. This was used for titanium dioxide, CP, and 

DM analyses to determine dry matter digestibility and CP retention. 

 

3.2.4.4 Haematological parameters 

Blood samples were collected from 2 birds per cage and were used to prepare smears for 

white blood cell differentials and heterophil/lymphocyte (H/L) ratios. Samples were collected 

from the brachial vein using an Ethylenediamine Dipotassium Tetraacetic Acid (EDTA) anti-
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coagulation tube and vacutainer (BD Vacutainer). Smears were prepared using the two-slide 

wedge method, where a small drop of blood was transferred onto a slide from a tube utilising a 

stir stick and manually smeared. Differentials were measured by Prairie Diagnostic Services 

(Saskatoon, Canada). 

 

3.2.4.5 Carcass traits 

Meat yield, organ weights and gut lengths were collected from all birds on day 35 of the 

trial. Birds were euthanized by T-61 euthanasia solution injected into the brachial vein. The birds 

were then scalded in 66±2ºC water for 25 seconds and feathers plucked by hand. Breasts, skin on 

bone-in wings, skin on bone-in drums, bone in thighs, abdominal fat pads, livers, spleens, and 

bursa were removed from the carcasses and weighed. The fat pads were frozen and stored at -

20ºC for CF and fatty acid analysis. The proventriculus and gizzard were emptied and weighed. 

The lengths of the ceca and colon were all measured, emptied, and weighed. Three-centimetre 

sections were taken from the middle of the duodenum, jejunum, and ileum after length was 

measured on all birds.  These sections were to be used for histology however, the COVID 

pandemic meant that this work was postponed indefinitely. 

 

3.2.4.6 Fat pad analyses 

Abdominal fat pads were analyzed for CF using a Goldfisch extraction apparatus model 

3500 (Kansas City, Missouri) by processing and extracting 1.3 g of samples in duplicate for 5 

hours using the ethyl ether extraction gravimetric method (AOAC, 2000; method 920.39). The 

fatty acid profile of the fat pads was analyzed at the NRC by Linnaeus Plant Science Inc 

(Saskatoon, Canada) in duplicate by adding 80 mg of sample to a 16 x 100 mm glass cap tube 

containing 2.0 mL of 3% sulfuric acid in 100% methanol (v/v) and 0.4 mL toluene. Tubes were 

capped and incubated on an 80ºC heat block overnight. Tubes were cooled, then 2.0 mL 0.9% 

NaCl and 2.0 mL hexane were added. Samples were left to settle and 200 µmL of hexane phase 

was transferred to GC vials and run on GC Agilent 7890N equipped with a flame ionization 

detector and DB23 column (0.25mm x 30 m, 0.25 um thickness; J&W Scientific, Folsom, 

California) 

 

 



33 
 

3.2.5 Crude protein and dry matter retention 

 Excreta and feed samples were measured for CP and dry matter retention in duplicate for 

TiO2 using a protocol adapted from Myers et al. (2004). Titanium dioxide was measured by 

placing samples weighing 0.5 and 1.0 g for excreta and feed respectively into 250 mL macro-

Kjeldahl digestion tubes. A catalyst tablet containing 3.5 g of K2SO4 and 0.4 g of CuSO4 was 

added to each tube. Thirteen millilitres concentrated sulfuric acid was added and samples were 

digested at 420ºC for 2 hours. Samples were allowed to cool for 30 minutes, 10 mL 30% H2O2 

(v/v) was added and left to cool for 30 minutes. Samples were transferred into 125mL 

Erlenmeyer flasks and distilled water was added to bring the liquid weight up to 100 g. Samples 

were filtered using 541 Whatman paper then transferred into cuvettes and placed into a 

spectrophotometer set to 410 nm to measure absorbance. A standard was made using 0.2 g TiO2 

with the same procedure and was serial diluted using 1:1 standard solution to distilled water and 

measured in the spectrophotometer to determine the standard curve to which the samples were 

compared to determine TiO2 concentrations.  

Crude protein of excreta samples was determined using the Dumas-Combustion method 

by placing duplicate 0.11 g samples of YML meal in gel capsules and combusting at 800ºC, 

(AOAC, 1997; method 990.03). Moisture in excreta was analyzed by placing 2.0 g samples into 

aluminum dishes and placing into a 135ºC oven for 2 hours. The samples were then cooled, 

sealed, and weighed again to determine loss from drying from which dry matter was calculated 

(AOAC, 1990; method 930.15). The equation used to determine retention was: % retention = 100 

– (100 x [% marker in diet/% marker in excreta] x [% nutrient in excreta/% nutrient in diet]) 

  

3.2.6 Statistics 

 All data were analyzed using the MIXED procedure in SAS 9.4 (SAS Institute Inc., Cary 

North Carolina). Results were analyzed as a complete randomized design using a one-way 

ANOVA and were tested for normality using the Shapiro-Wilk test.  The Grubb’s test was used 

to test for and remove outliers. Treatment means were compared using the Tukey-Kramer HSD 

test at P< 0.05 determining significance. All tests conducted on the YML meal used a pooled 

sample, thus were not statistically analyzed but the values are reported.  
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3.3 Results 

3.3.1 Yellow mealworm larvae meal nutritional and mycotoxin analyses 

 The YML meals produced on LDW or HDW were analyzed for multiple mycotoxins. 

The only detected mycotoxin was DON which was present at 17.5 µg/kg in the YML meal 

produced on HDW (Table 3.2). The YML meals had similar proximate nutritional compositions 

(Table 3.3): DM ranged from 93.60 – 94.65%, CP and CF on an as fed basis 45.28 – 47.71% and 

35.66 – 38.41% respectively. The amino acid and fatty acid profiles of the two YML meals were 

also similar (Table 3.4, Table 3.5).  The mineral profiles of the YML meals were again similar 

with the exception of manganese which was 9.35 mg/kg in the larvae produced on HDW 

compared to 1.97 mg/kg in those reared on LDW (Table 3.6). 

 

3.3.2 Broiler performance 

 There were zero mortalities in the first 14 days of the experiment after which bird number 

was reduced to four birds per cage from five to meet animal care requirements for space. One 

broiler each on the LMD and HMD diets was culled for leg issues at 21 days and 30 days, 

respectively bringing mortality/morbidity to 0%, 5%, and 5% for CD, LMD, and HMD 

respectively. Growth performance of the broilers are summarized in Tables 3.7, 3.8, 3.9, and 

3.10. Feed intake was reduced from days 8-14 (P = 0.002) at 261.8g in HMD compared to 292.0 

and 293.6g in CD and LMD respectively. Feed intake 1-35 (P = 0.003) in birds fed HMD at 

2469.0g compared to 2709.1 and 2762.4g in CD and LMD (Table .3.7) Feed intake tended to be 

reduced in birds fed HMD during days 15-21 (P = 0.094) and 29-35 (P = 0.074). Live weights of 

birds (Table 3.8) were reduced in birds fed HMD on day 14 (P = 0.029) with HMD averaging 

344.2 while CD and LMD averaged 370.2 and 373.4g. There was a tendency to be lighter on day 

21 (P = 0.082) although final body weights were not different (P = 0.204). Average daily gain 

was reduced in broilers fed HMD on day 8-14 at 30.6g while CD and LMD averaged 33.4 and 

34.6g (P = 0.017; Table 3.9). The diets did not have an impact on F:G ratio in the broiler 

chickens (P > 0.10; Table 3.10).  
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Table 3.2. Mycotoxin concentrations of dried, ground, yellow mealworm larvae (µg/kg) reared 

on low or high deoxynivalenol (DON) wheat 

 Treatments1 

Parameter Low (<1,000 µg/kg DON) High (30,730 µg/kg DON) 

Deoxynivalenol <4 17.5 

3+15 Acetyldeoxynivalenol <16 <16 

Nivalenol <64 <64 

1Pooled sample of mealworm meal 
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Table 3.3. Proximate analyses of yellow mealworm larvae grown on low or high DON wheat 

(% as fed basis) 

 Treatments 

Parameter Low (<1,000 µg/kg DON) High (30,730 µg/kg DON) 

Dry Matter 94.65 93.60 

Crude Protein1 45.28 47.71 

Crude Fat 38.41 35.66 

ADF 6.94 7.71 

ADIN 3.69 4.18 

Chitin2 3.25 3.53 

Abbreviations: DON (Deoxynivalenol) 
1 Crude protein was analyzed using the Dumas combustion method 
2 Chitin calculated based on Marono et al. (2015) 
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Table 3.4. Amino acid and estimated digestible amino acid profile of yellow mealworm meal 

produced on low or high deoxynivalenol (DON) wheat used (% as fed basis) 

 Amino acid profile 
 

Digestible amino acid 

profile 

Parameter 
Low (<1,000 

µg/kg DON) 

High (30,730 

µg/kg DON) 

Digestibility 

(%)1 

Low (<1,000 

µg/kg DON) 

High (30,730 

µg/kg DON) 

Aspartate 3.638 4.009 93.10 3.387 3.732 

Threonine 1.682 1.852 92.05 1.548 1.705 

Serine 2.110 2.351 89.77 1.894 2.110 

Glutamine 5.293 5.764 93.27 4.937 5.376 

Proline 2.783 2.920 90.97 2.532 2.656 

Glycine 2.315 2.412 - 2.315 2.412 

Alanine 3.770 4.039 93.15 3.512 3.762 

Cysteine 0.371 0.399 75.79 0.281 0.302 

Valine 2.947 3.004 72.73 2.143 2.185 

Methionine 0.573 0.617 92.13 0.528 0.568 

Isoleucine 2.041 2.069 92.06 1.879 1.905 

Leucine 3.316 3.534 93.09 3.087 3.290 

Tyrosine 3.294 3.560 92.61 3.051 3.297 

Phenylalanine 1.635 1.794 91.68 1.499 1.645 

Histidine 2.857 3.661 90.92 2.598 3.329 

Lysine 2.408 2.668 91.39 2.201 2.438 

Arginine 2.469 2.651 94.64 2.337 2.509 

Tryptophan 0.440 0.491 99.13 0.436 0.487 

Abbreviations: DON (deoxynivalenol) 

-  = no value/assumed 100% 
1Digestibility values from Matin (2019) 
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Table 3.5. Fatty acids detected in the yellow mealworm larvae grown on low or high 

deoxynivalenol (DON) wheat (% of crude fat) 

 Treatments 

Fatty acid name Parameter Low (<1,000 µg/kg 

DON) 

High (30,730 µg/kg 

DON) 

Lauric acid C12:0 0.36 0.54 

Myristic acid C14:0 4.37 4.96 

Myristoleic acid C14:1 n-5 0.24 0.37 

Tetradecadienoic acid C14:2 n-3 0.15 0.17 

Palmitic acid C16:0 19.10 18.76 

Palmitovaccenic acid C16:1 n-5 1.10 1.07 

Palmitoleic acid C16:1 n-7 2.47 1.99 

Hexadecadienoic acid C16:2 n-4 0.19 0.16 

Stearic acid C18:0 2.39 2.73 

Oleic acid C18:1 n-9 48.41 49.13 

Vaccenic acid C18:1 n-11 0.08 0.08 

 Unknown 0.22 0.21 

Linoleic acid C18:2 n-6 20.04 19.07 

Linolenic acid C18:3 n-3 0.47 0.43 

Arachidic acid C20:0 0.23 0.23 

Eicosenoic acid C20:1 n-9 0.08 0.06 

h-γ-Linolenic acid C20:2 n-6 0.10 0.12 
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Table 3.6. Minerals detected in yellow mealworm larvae grown on low or high deoxynivalenol 

(DON) wheat on an as fed basis 

 Treatments 

Parameter Low (<1,000 µg/kg DON) High (30,730 µg/kg DON) 

Calcium (%) 0.04 0.04 

Phosphorus (%) 0.74 0.68 

Magnesium (%) 0.22 0.20 

Potassium (%) 0.79 0.75 

Sodium (%) 0.07 0.04 

Copper (mg/kg) 15.46 14.42 

Iron (mg/kg) 50.77 50.34 

Manganese (mg/kg) 1.97 9.35 

Zinc (mg/kg) 112.66 119.50 
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Table 3.7.  Effect of the dietary inclusion of yellow mealworm larval meal produced on low or 

high DON wheat on feed intake of the broiler chickens (g) 

 Treatment1,2   

Period CD LMD HMD SEM P Value 

Day 1-7 136.3 137.2 135.1 2.26 0.752 

Day 8-14 292.0a 293.6a 261.8b 5.41 0.002 

Day 15-21 485.2 510.6 454.1 16.62 0.094 

Day 22-28 742.1 768.3 710.3 22.34 0.223 

Day 29-35 1,053.6 993.8 951.8 28.48 0.074 

Day 1-35 2,709.1a 2,762.4a 2,469.0b 45.43 0.003 

Abbreviations: DON (deoxynivalenol); CD (Control Diet); LMD (Diet containing mealworm meal grown on 

<1,000 µg/kg DON wheat); HMD (Diets containing mealworms grown on 30,730 µg/kg DON wheat) 
1Mean of replicates (n=5) per treatment 
2Presented on a per bird basis 

Different letters indicate significance: P < 0.05 
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Table 3.8. Effect of the dietary inclusion of yellow mealworm larval meal produced on low or 

high DON wheat on body weight of broiler chickens (g) 

 Treatment1,2   

Period CD LMD HMD SEM P Value 

Day 0 40.0 39.4 38.4 0.86 0.775 

Day 7 136.0 131.4 130.3 2.37 0.236 

Day 14 370.2a 373.4a 344.2b 7.31 0.003 

Day 21 723.8 788.9 698.6 26.47 0.082 

Day 28 1,232.9 1,252.1 1,173.5 31.69 0.229 

Day 35 1,908.7 1,877.0 1,786.1 47.19 0.204 

Abbreviations:  DON (deoxynivalenol); CD (Control Diet); LMD (Diet containing mealworm meal grown on 

<1,000 µg/kg DON wheat); HMD (Diets containing mealworms grown on 30,730 µg/kg DON wheat) 
1Mean of replicates (n=5) per treatment 
2Presented on a per bird basis 

Different letters indicate significant difference: P < 0.05 
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Table 3.9. Effect of the dietary inclusion of yellow mealworm larval meal produced on low or 

high DON wheat on average daily gain of the broiler chickens (g) 

 Treatment1,2   

Period CD LMD HMD SEM P Value 

Day 1-7 13.7 13.1 13.1 0.31 0.336 

Day 8-14 33.4a 34.6a 30.6b 0.86 0.017 

Day 15-21 50.5 59.4 49.2 3.43 0.154 

Day 22-28 72.7 66.2 67.8 2.68 0.228 

Day 29-35 96.5 89.3 87.5 2.93 0.229 

Day 1-35 53.3 52.5 49.9 1.33 0.200 

Abbreviations: DON (deoxynivalenol); CD (Control Diet); LMD (Diet containing mealworm meal grown on 

<1,000 µg/kg DON wheat); HMD (Diets containing mealworms grown on 30,730 µg/kg DON wheat) 
1Mean of replicates (n=5)  
2Presented on a per bird basis 

Different letters indicate significance: P < 0.05 
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Table 3.10.   Effect of the dietary inclusion of yellow mealworm larval meal produced on low 

or high DON wheat on feed to gain ratios of the broiler chickens 

 Treatment1   

Period CD LMD HMD SEM P Value 

Day 1-7 1.422 1.497 1.485 0.0288 0.190 

Day 8-14 1.247 1.215 1.225 0.0175 0.438 

Day 15-21 1.375 1.252 1.286 0.0481 0.213 

Day 22-28 1.480 1.609 1.500 0.0874 0.593 

Day 29-35 1.562 1.594 1.552 0.0301 0.606 

Day 1-35 1.448 1.443 1.440 0.0134 0.413 

Abbreviations: DON (deoxynivalenol); CD (Control Diet); LMD (Diet containing mealworm meal grown on 

<1,000 µg/kg DON wheat); HMD (Diets containing mealworms grown on 30,730 µg/kg DON wheat) 
1Mean of replicates (n=5) per treatment  
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3.3.3 Meat and organs 

 The diets did not influence meat yield, organ lengths or weights in the male broilers 

(Table 3.11 and 3.12; P > 0.10), although fats pads (g) of birds fed the CD tended to be heavier 

than birds fed LMD or HMD (P = 0.055). Gizzard weights (% BW) had a tendency to be heavier 

relative to body weight of broilers fed HMD (Table 3.11). Four females were removed from 

analysis in total: one from CD and three from HMD. 

 

3.3.4 Abdominal fat pads 

 The results for the CF and fatty acid profiles of the broiler chickens are displayed in 

Table 3.13. The CF levels in the fat pads did not differ between treatments (P = 0.879). Lauric 

acid (C12:0) was present at 0.049 and 0.047% in the fat pad of broiler fed LMD and HMD 

compared to 0.004% in CD (P = 0.0002). Myristic acid (C14:0) was 0.954 and 0.959% in 

broilers fed LMD and HMD with 0.442% in in fat of CD (P < 0.0001). Myristoleic acid (C14:1 

n-5) was present in higher levels in the fat pads of broilers fed LMD and HMD at 5.129 and 

5.682% compared to 0.144 in CD (P < 0.001). Palmitovaccenic acid (C16:1 n-5) was increased 

in the fat pads of broilers fed LMD and HMD at 0.544 and 0.559% compared to 0.411% in CD 

(P = 0.0005). Vaccenic acid (C18:1 n-11) was present in high levels in CD at 2.124% compared 

to 1.566 and 1.657% in LMD and HMD respectively (P < 0.0001). Linolenic acid (C18:3 n-3) 

was present in the fat pad of CD at 1.643% compared to 0.808 and 0.882% in LMD and HMD (P 

< 0.0001). Arachidic acid (C20:0) was increased in CD at 0.123% relative to LMD (0.101%) and 

HMD (0.103%; P = 0.0002). Eicosenoic acid (C20:1 n-9) was also increased in CD at 0.374% 

compared to LMD and HMD at 0.280 and 0.269% (P < 0.0001). Eicosadienoic acid (C20:2 n-6) 

was present in higher levels in fat pads of broilers fed CD (0.249%) compared to LMD (0.221) 

and HMD (0.222%; P < 0.05). Stearic acid (C18:0) had a tendency to be higher in the fat pads of 

broilers fed LMD compared to HMD (P = 0.078). 

 

3.3.5 Hematological parameters 

 White blood cell differentials and H/L ratios (Table 3.14) did not differ between 

treatments (P > 0.10). 
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Table 3.11. Effects of dietary inclusion of yellow mealworm larval meal produced on low or 

high DON wheat on meat yield and organs weights of male broiler chickens 

 Treatment1   

Parameter CD (n=19) LMD (n=19) HMD (n=16) SEM P Value 

Body weight (BW) (g) 1,916.6 1,886.6 1,789.4 59.04 0.329 

Breasts (g) 434.7 453.8 414.7 21.37 0.470 

Breasts (% BW) 22.6 23.8 23.0 0.54 0.263 

Thighs (g) 200.0 192.8 186.5 6.96 0.426 

Thighs (% BW) 10.4 10.2 10.4 0.14 0.419 

Drums (g) 176.1 175.0 166.4 5.15 0.392 

Drums (% BW) 9.2 9.3 9.3 0.14 0.835 

Wings (g) 145.6 145.7 141.3 4.37 0.749 

Wings (% BW) 7.6 7.7 7.9 0.11 0.158 

Fat pad (g) 21.9 17.3 17.5 1.48 0.055 

Fat pad (% BW) 1.15 0.92 0.97 0.077 0.103 

Bursa (g) 3.8 3.6 3.6 0.22 0.734 

Liver (g) 46.7 45.4 42.2 1.52 0.131 

Liver (% BW) 2.45 2.42 2.37 0.067 0.683 

Spleen (g) 1.9 1.7 1.9 0.10 0.270 

Proventriculus (g) 6.8 6.6 6.7 0.20 0.655 

Gizzard (g) 22.5 23.6 23.5 0.56 0.355 

Gizzard (% BW) 1.18 1.28 1.33 0.044 0.092 

Ceca (g) 6.3 6.2 6.5 0.24 0.751 

Colon (g) 2.1 2.2 2.3 0.19 0.778 

Abbreviations: DON (deoxynivalenol); CD (Control Diet); LMD (Diet containing mealworm meal grown on 

<1,000 µg/kg DON wheat); HMD (Diets containing mealworms grown on 30,730 µg/kg DON wheat) 
1Mean of replicates  

Different letters indicate significance: P < 0.05 

n=number of birds 
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Table 3.12. Effects of dietary inclusion of yellow mealworm larval meal produced on low or 

high DON wheat on gastrointestinal tract lengths of male broiler chickens 

 Treatment1   

Parameter CD (n=19) LMD (n=19) HMD (n=16) SEM P Value 

Duodenum Length (cm) 23.7 23.6 23.6 0.47 0.963 

Jejunum Length (cm) 61.2 61.7 61.4 1.27 0.964 

Ileum length (cm) 63.8 63.9 63.2 1.17 0.427 

Colon Length (cm) 30.1 30.9 29.9 0.70 0.535 

Ceca Length (cm) 5.7 6.1 6.2 0.30 0.495 

Abbreviations: DON (deoxynivalenol); CD (Control Diet); LMD (Diet containing mealworm meal grown on 

<1,000 µg/kg DON wheat); HMD (Diets containing mealworms grown on 30,730 µg/kg DON wheat) 
1Mean of replicates  

n=number of birds 
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Table 3.13. Effect of dietary inclusion of yellow mealworm larval meal produced on low or 

high DON wheat on crude fat (% as is) and fatty acid profile (% as is) of fat pads of broiler 

chickens 

 Treatment1   

Parameter  CD LMD HMD SEM P Value 

Crude fat (% as is)  86.2 85.4 85.7 1.17 0.879 

Lauric acid C12:0 0.004b 0.049a 0.047a 0.0016 0.0002 

Myristic acid C14:0 0.442b 0.954a 0.959a 0.0310 <0.0001 

Myristoleic acid C14:1 n-5 0.144b 0.190a 0.169a 0.0097 0.019 

Tetradecadienoic 

acid 
C14:2 n-3 0.108 0.107 0.113 0.0043 0.506 

Palmitic acid C16:0 19.466 20.091 20.248 0.4312 0.425 

Palmitovaccenic acid C16:1 n-5 0.411b 0.544a 0.559a 0.0209 0.0005 

Palmitoleic acid C16:1 n-7 5.689 5.129 5.682 0.2241 0.170 

Hexadecadienoic 

acid 
C16:2 n-4 0.088 0.101 0.104 0.0053 0.113 

Stearic acid C18:0 4.125 4.455 3.936 0.1473 0.078 

Oleic acid C18:1 n-9 37.780 37.040 36.082 0.5672 0.148 

Vaccenic acid C18:1 n-11 2.124a 1.566b 1.657b 0.0635 <0.0001 

 Unknown 0.089c 0.119a 0.105b 0.0037 0.0003 

Linoleic acid C18:2 n-6 12.570 13.686 12.817 0.4443 0.217 

 Unknown 0.125 0.141 0.129 0.0091 0.444 

Linolenic acid C18:3 n-3 1.643a 0.808b 0.882b 0.0503 <0.0001 

Arachidic acid C20:0 0.123a 0.101b 0.103b 0.0028 0.0002 

Eicosenoic acid C20:1 n-9 0.374a 0.280b 0.269b 0.0107 <0.0001 

Eicosadienoic acid C20:2 n-6 0.249a 0.221b 0.222b 0.0064 0.016 

h-γ-Linolenic 

acid 
C20:3 n-6 0.127 0.125 0.124 0.0087 0.974 

Arachidonic acid C20:4 n-6 0.084 0.097 0.100 0.0063 0.206 

Eicosatrienoic acid C20:3 n-3 0.110 0.135 0.135 0.0130 0.326 

Abbreviations: DON (deoxynivalenol); CD (Control Diet); LMD (Diet containing mealworm meal grown on 

<1,000 µg/kg DON wheat); HMD (Diets containing mealworms grown on 30,730 µg/kg DON wheat) 
1Mean of replicates (n=5) 

Different letters indicate significance: P < 0.05 
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Table 3.14.  Effect of dietary inclusion of yellow mealworm larval meal produced on low or 

high DON wheat on heterophil/lymphocyte ratios and blood differentials 

 Treatment1   

Parameter CD LMD HMD SEM P Value 

HL ratio (H/L) 1.122 1.112 0.892 0.18 0.596 

Heterophils (%) 43.6 41.5 46.7 3.84 0.911 

Lymphocytes (%) 40.9 42.5 42.2 4.03 0.955 

Basophils (%) 7.8 8.0 6.4 0.88 0.391 

Eosinophils (%) 3.6 5.3 5.7 0.89 0.215 

Monocytes (%) 4.3 3.2 4.2 0.62 0.389 

Abbreviations: CD (Control Diet); LMD (Diet containing mealworm meal grown on <1,000 µg/kg DON wheat); 

HMD (Diets containing mealworms grown on 30,730 µg/kg DON wheat) 
1Mean of replicates (n=10) per treatment  
2Mean of samples (n=9) 
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3.3.6 Crude protein and dry matter retention 

 Dry matter and CP retention results are displayed in Table 3.15. Crude protein retention 

was increased in broilers fed LMD and HMD relative those fed CD (P = 0.0091). Retention in 

broilers fed LMD and HMD was 68.17 and 68.61% respectively while CD was 66.17%. Dry 

matter retention was increased in HMD at 76.80% compared to LMD and CD at 74.93 and 

74.88% respectively (P = 0.0046). 
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Table 3.15. Effect of dietary inclusion of yellow mealworm larval meal produced on low or 

high DON wheat on dry matter and crude protein retention in broiler chickens 

 Treatment1   

Parameter CD LMD HMD SEM P Value 

Dry matter (%) 74.88b 74.93b 76.80a 0.37 0.0046 

Crude protein (%) 66.17b 68.17a 68.61a 0.49 0.0091 

Abbreviations: CD (Control Diet); LMD (Diet containing mealworm meal grown on <1,000 µg/kg DON wheat); 

HMD (Diets containing mealworms grown on 30,730 µg/kg DON wheat) 
1Mean of replicates (n=5)  

Different letters indicate significance: P < 0.05 
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3.4 Discussion 

3.4.1 Yellow mealworm larvae meals nutrient and mycotoxin profiles 

 Deoxynivalenol was the only mycotoxin detected in the wheat and was identified in the 

YML meal produced on HDW at a concentration of 17.5 µg/kg. These results are much lower 

than Ochoa-Sanabria et al. (2019) detected, approximately 130 µg/kg when feeding up to 12,000 

µg/kg DON. This could be due to genetic differences in the breeding colonies as the YML were 

obtained from two different sources. These results are similar to those reported by Van 

Broekhoven et al. (2017) that did not detect any presence of mycotoxins in YML grown on up to 

8,000 µg/kg DON. The exact mechanisms used by the YML to metabolize DON are currently 

unknown, it is most likely a mixture of microbial and gut enzymatic activity. Genta et al. (2006) 

noted an adaptation of the gut microbiota in YML and that certain digestive enzymes 

disappeared in larvae treated with antibiotics indicating that they might have been microbial in 

origin. It was suggested that some of the microbes may have unessential digestive roles which 

can help the larvae adapt to dietary changes (Genta et al., 2006). These microbes may also play a 

role in the adaptation process to exposure to mycotoxins.  

 Crude protein values of the YML meals were consistent with previous studies that 

assessed nutritional profiles (Van Broekhoven et al., 2015; Ochoa-Sanabria et al., 2019). The 

amino acids profiles of our YML meals were similar to those measured by Ochoa-Sanabria et al. 

(2019), Ghosh et al. (2017), and Ravzanaadii et al. (2012). This study however, detected a larger 

number of fatty acids than Ochoa-Sanabria et al. (2019) but were similar in profile to those 

measured by Ghosh et al. (2017). The fatty acid profiles of the mealworms reared on LDW and 

HDW were similar. The mineral profiles were also similar between the two treatments; however, 

manganese was increased in the YML meal produced on HDW, likely due to differences in the 

nutrient composition of the wheat (Van Broekhoven et al., 2015). 

 

3.4.2 Broiler performance 

 The primary objective of this study was to determine if YML reared on high DON wheat 

(30,730 μg/kg) were safe for consumption when included in poultry diets and if any effects on 

growth performance, organ weights, organ size, and haematological measures could be observed. 

Final body weight and feed intake in the broilers were lower by 14.5 to 19.9% and 13.4 to 22.6% 

respectively when compared to the performance objective set out by Aviagen (2019). This was 
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likely due to the physical form of the feed which was fed as a mash instead of a crumble or pellet 

which have been shown to improve body weights, feed intake, and F:G ratios in broilers 

(Abdollahi et al., 2018). Feed intake was reduced in broilers fed HMD during days 8-14 which 

likely led to the reduction in body weight measured on day 14. Feed intake also had a tendency 

to be lower during days 15-21 and days 29-35. Average daily gain was also reduced in the HMD 

treatment during days 8-14 likely due to the reduction in feed intake. This may be indicative of 

the presence of DON-like metabolites or a modified mycotoxin present in the YML which could 

be accumulating through the mechanisms used in detoxification. Due to the difference in 

structure of the molecules, the mycotoxin would not be detected when using traditional means 

(Freire and Sant’Ana, 2018). The broilers fed CD and LMD had similar growth performance 

throughout the trial which agrees with the results found by Biasato et al. (2016). Elahi et al. 

(2020) also found no differences in broiler performance with inclusion of 0, 2, 4, and 8% YML 

meal in broiler diets. Bovera et al. (2015 and 2016) however, found improved growth 

performance with reductions in feed intake and F:G ratios observed when completely replacing 

soybean meal with YML meal. Most studies looking at YML meal as a feed ingredient have 

formulated diets based on total amino acids which is not ideal when formulating for broiler 

chickens (Elahi et al., 2020). Matin (2019) recently published results pertaining to amino acid 

digestibility of various insects including YML, therefore more research formulating based on 

digestible amino acid profiles of insects will likely come out in the future. 

Crude protein retention was increased in broilers fed LMD and HMD relative to those fed 

CD. Improved CP retention has been associated with a reduction in abdominal fat deposition in 

broilers (Rao et al., 2018). Crude protein retention in CD was 66.17% which is higher than 53.5 

to 57.2% with 0 to 9% inclusion of meat and bone meal in diets reported by Bolarinwa et al. 

(2012). Dry matter retention was increased in broilers fed HMD, although broiler performance 

was not improved, the exact reasons for this increase are unknown. 

 

3.4.3 Meat yield and organ weights 

Meat yield and organs were not affected by the diets analysed on a weight or as a 

percentage of live weight basis indicating no effects of carcass traits. This agrees with research 

by Bovera et al. (2016), Biasato et al. (2016 and 2018), and Elahi et al. (2020) where YML 

inclusion ranging from 0 to 15% had no observed effects on carcass traits. Elahi et al. (2020) and 
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Khan et al. (2018) also observed no effects of YML meal on meat quality. The tendency for the 

YML meals to reduce abdominal fat pad weights may in part be caused by the hypolipidemic and 

hypocholesterolemic properties of chitin that can result in reductions in body fat of broilers 

(Gasco et al., 2018). Marono et al., (2017) reported lower serum cholesterol and triglyceride 

concentrations in layer hens which were attributed to chitin being able to bind bile acids and free 

fatty acids in the gastrointestinal tract. Chitin can also act as a prebiotic to increase Lactobacillus 

populations in the gastrointestinal tract (Islam and Yang, 2017) which has been observed to 

reduce carcass fat of broilers (Kalavathy et al., 2008). The lengths of the small intestine sections, 

ceca, and colon were not affected by any of the treatments. 

 

3.4.4 Fat pads 

 The level of CF in the fat pads were similar between all diets. The differences between 

the fatty acid profiles of the fat pads are likely due to the fat sources and compositions in the 

diets. Poultry directly absorb and deposit fatty acids (Çalik et al., 2018), thus changes in 

composition directly affect the fat pad. The YML meals were the primary fat source in LMD and 

HMD while canola oil was in the CD. The YML meals had higher concentrations of lauric acid 

(C12:0), myristic acid (C14:0), myristoleic acid (C14:1) and palmitoleic acid (C16:1) at 

approximately 0.45, 4.67, 0.30, 2.23% compared to canola oil which had approximately 0, 0.1, 0, 

and 0.2% of crude fat respectively (Eskin, 2016). Canola oil in the CD had higher levels of oleic 

acid (C18:1), linolenic acid (C18:3), arachidic acid (C20:0), and eicosenoic acid (C20:1) at 61.6, 

9.6, 0.6, and 1.4% (Eskin, 2016) while the YML meals contained approximately 48.77, 0.45, 

0.23, and 0.07% of crude fat respectively. 

 

3.4.5 Hematological parameters 

 White blood cell differentials and H/L ratios were not affected by any of the treatments. 

Heterophil/lymphocyte ratios were the same across all treatments which is similar to 

observations by Biasato et al. (2017 and 2018) indicating that YML inclusion did not impact the 

health status of the birds, stimulate immune response or induce stress in the broilers (De Marco 

et al., 2013). Bovera et al. (2015) reported a decrease in albumin/globulin ratios, which was 

attributed to the chitin content of the YML meal, in broilers which is typically indicative of 

improved disease resistance and immune response. The proportion of heterophils, lymphocytes, 
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basophils, eosinophils, and monocytes were not different between treatments which indicates 

that the chitin did not have an effect on immune response. Chitin has been reported to have a 

bacteriostatic effect in Gram-negative bacteria such as Escherichia coli, Vibrio cholerae, and 

Salmonella typhimurium (Lopez-Santamarina et al., 2020). Antifungal and antimicrobial effects 

have been reported as well by Khoushab and Yamabhai (2010). Chitin also has prebiotic effects 

and has been shown to increase populations of Bifidobacterium and Lactobacillus species in gut 

microbiota (Imathiu, 2020). These effects of chitin could help reduce the severity and duration of 

some infections by decreasing the efficacy of the causative agent which in turn could result in the 

use of it as an antimicrobial agent.  

 

3.4.6 Summary 

With the need to improve sustainability of agricultural processes, the use of by-products 

and crops that are unsuitable for human and animal consumption for insect production could help 

bridge the gap required for food and feed requirements. Conventional livestock production 

requires a large landmass and resources such as water to sustain production. Insects on the other 

hand require much less land mass and can potentially be grown on crops which may not be 

suitable for feed. Insects have a nutritional profile that can meet most requirements for animal 

production. Insects are naturally consumed by livestock such as poultry, and entomophagy is a 

common practice in some regions of the world. The safety of insects produced on potentially 

toxic feed is a concern for animal and human safety as they could potentially relay these 

metabolites on. 

This project has shown that YML reared on DON-contaminated wheat up to 30,730 can 

be a feed ingredient with less than 1,000 µg/kg suitable for use in poultry diets. Inclusion of 

YML reduced overall broiler feed intake, but did not impact F:G ratios, BW, meat yield, organ 

weights, and haematological parameters. 

 In conclusion, this research suggests that YML grown on wheat contaminated with DON 

up to 30,7300 ug/kg can be used as an effective feed ingredient for use in poultry production. 

Larger scale experiments with high inclusion levels of YML should be conducted to further 

assess safety. Further research is required to establish how YML metabolize DON, if any 

metabolites are present in the larvae, and if any of those metabolites have toxic effects in 

animals.  
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CHAPTER 4  

FUTURE DIRECTIONS 
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 This project demonstrated that YML reared on DON-contaminated wheat can be utilized 

as a feed ingredient for poultry. Feed intake was reduced while no effects were observed in final 

BW and meat yield. It is possible that DON-like metabolites were present in YML meal 

produced on high DON wheat causing the reduction in FI. Further research is required to 

determine how YML metabolize mycotoxins such as DON and what metabolites accumulated in 

the larvae. It may be possible that the derivatives formed in the metabolism of DON could be as 

or more toxic than DON. This may also occur when mealworms are fed other mycotoxins such 

as aflatoxins and ZEN even though quantities detected in larvae are much less than what is fed 

(Bosch et al., 2017; Camenzuli et al., 2018). As such, the metabolism pathways utilized by 

insects must be further researched to determine pathways and accumulation of mycotoxins if 

insects produced on contaminated feed are to be used for food and feed. Currently there is a 

group researching the metabolism of DON in the YML at the National Research Council of 

Canada (Saskatoon, Canada). Further research is required to test if YML reared on mycotoxin 

contaminated feedstuffs are safe for animal consumption. 

 I believe that if insects produced on salvage crops are to be produced economically, they 

will likely need to be grown on unbalanced diets that are not optimized for maximum efficiency 

and productivity. The reason for this is that balancing diets typically involves the use of more 

expensive feed ingredients that could counter the low costs associated with using solely salvage 

crops allowing insects to better compete against ingredients such as soybean meal and fish meal 

while remaining profitable. Currently, the cost of producing insects is high due to the high levels 

of manual labour, unoptimized production systems, and lack of automation. This results in prices 

of insect meals to be high making it difficult to compete with feed ingredients like soybean meal 

(Van Huis et al. 2020). 

 It would be interesting to research further optimizations in insect production. Optimal 

average particle size might be interesting to determine if insect larvae prefer certain particle sizes 

or have improvements to performance. Morales-Ramos et al. (2019) improved average YML 

larvae size though breeding, so it would be interesting to see if further improvements can be 

made to factors such as feed efficiency and fecundity. Overall, the insect industry is still in the 

early stages of growth and has potential to further improve production as our understanding of 

insects improves. Our research shows that YML can be a viable feed ingredient for broiler 

production, but the safety of YML reared on high DON wheat needs to be further assessed. 
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