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Abstract

A regular texture is formed from a regular congruent tiling of perceptually meaningful texture

elements, also known as textons. If the tiling statistically deviates from regularity, either by texton

structure, colour, or size, the texture is called near-regular. If we continue to perturb the tiling,

the texture becomes stochastic. The set of possible textures that lie between regular and stochastic

make up the texture spectrum: regular, near-regular, irregular, near-stochastic, and stochastic.

In this thesis we provide a solution to the problem of creating, from a near-regular texture,

a lattice which defines the placement of textons. We divide the problem into two distinct sub-

areas: finding textons within an image, and lattice creation using both an ad-hoc method and a

graph-theoretic method.

The problem of finding textons within an image is addressed using correlation. A texton selected

by the user is correlated with the image and points of high correlation are extracted using non-

maximal suppression. To extend this framework to irregular textures, we present early results on

the use of feature space during correlation. We also present a method of correcting for a specific

type of error in the texton finding result using frequency-space analysis.

Given texton locations, we provide two methods of creating a lattice. The ad-hoc method is

able to create a lattice in spite of inconsistencies in the texton locating data. However, as texture

becomes irregular the ad-hoc lattice construction method fails to correctly connect textons. To

overcome this failure we adapt methods of creating proximity graphs, which join two textons whose

neighbourhoods satisfy certain criteria, to our problem. The proximity graphs are parameterized

for selection of the most appropriate graph choice for a given texture, solving the general lattice

construction problem given correct texton locations.

In the output of the algorithm, centres of textons will be connected by edges in the lattice

following the structure of texton placement within the input image. More precisely, for a texture

T , we create a graph G = (V, E) dependent on T , where V is a set of texton centres, and E = (vi, vj)

is a set of edges, where vi, vj ∈ V . Each edge e ∈ E connects texton centre v ∈ V to its most

perceptually sensible neighbours.
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Chapter 1

Introduction

Almost all visual scenes contain textured area; tiled floors, grass covered hills, and cloudy

skies provide a small sampling. Due to its prevalence, texture plays a role in most applications

of computer vision and computer graphics. Image segmentation, depth perception, and scene

recognition are problems in computer vision that can partially be solved using knowledge of texture

within a scene. In computer graphics, texture is applied to almost all objects in a scene to provide

realism or to enhance visual effect.

The research presented in this thesis addresses a problem in texture analysis and synthesis,

with a solution providing applications in computer vision and computer graphics. Section 1.1

presents background knowledge on the problem, Section 1.2 describes the problem exactly, Section

1.3 provides motivation for the problem in the context of texture synthesis, Section 1.4 discusses

our contribution to the computer science literature, and Section 1.5 provides an outline for the

remainder of this thesis.

1.1 Background

Texture is often described as the feel of a surface or fabric. In an image, texture provides a

measure of the intensity variation of an image region, quantifying properties such as smoothness,

coarseness, and regularity. However, there is no universally agreed upon definition of texture despite

its prevalence. One thing most researchers agree on is that a texture possesses both stationarity and

locality [70]. Stationarity implies that the mean, variance, and auto-correlation of a function do not

change at different function locations, making different neighbourhoods within the function look

similar. Locality implies that function values are related to a small set of neighbours, so that each

point of the function exerts local influence on its neighbourhood. By varying the neighbourhood

size used in the definitions of stationarity and locality we arrive at different texture definitions, from

stochastic texture with wide variability within a small neighbourhood, to structured texture with

similar neighbourhoods distributed regularly throughout the image. Thus, texture can be defined

as a statistical arrangement of perceptually meaningful texture neighbourhoods [77]. Commonly,

the neighbourhoods are referred to as textons [29].
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Figure 1.1: The texture spectrum.

Statistical deviations in the probability distribution governing texton placement can determine

a texture’s regularity. A regular texture is formed from a congruent tiling of textons with no

statistical deviations in texton placement. As the tiling deviates from regularity, either in texton

structure, colour, or size, we call the texture near-regular [45]. If we continue to perturb the tiling,

the texture becomes stochastic. The set of possible textures that lie between regular and stochastic

make up the texture spectrum: regular, near-regular, irregular, near-stochastic, and stochastic.

Figure 1.1 depicts the texture spectrum, and a sampling of textures within it.

Liu et al. [43–46] provide both motivation and background for the problem at hand. Liu et

al. approach the problem of texture synthesis by treating near-regular texture as a deformation of

regular texture. A lattice is used to extract the deformation. The lattice extraction procedure begins

by having the user create two vectors that approximate texton placement, which the computer

overlays on the texture as in Figure 1.2(a). The user must then alter the overlaid lattice to create

the final lattice, as in Figure 1.2(b). Finally, the computer uses an energy minimization procedure

to deform the texture to a regular version, as in Figure 1.2(c). The regular version of the texture is

synthesized and the extracted deformation applied to create a near-regular texture synthesis result.

Liu et al. provide a measure of texture regularity computed along two axes: geometric structure

(G) and colour appearance (A). After manually extracting a lattice from a texture, G and A scores

are computed by comparing the contents of each texton of the lattice. A texture with a low G

score has more regular placement of textons than a texture with a high G score. Similarly, a

texture with a low A score has more similarly coloured textons than a texture with a high A score.

Depending on the results of these measurements, the textures were classified as one of Type I, II,

or III. Type I texture implies regular texton geometry with irregular texton appearance, Type II

texture implies irregular texton geometry with regular texton appearance, and Type III texture

implies irregular texton geometry and appearance. The near-regular texture synthesis algorithm

of Liu et al. depends heavily on the geometric regularity of the input texture, or the G score, and

2



(a) The user created vectors overlaid
on the input texture.

(b) The user-edited lattice. (c) The regular version of the input
texture.

Figure 1.2: Motivation for this work is provided through texture synthesis; we wish
to automate the extraction of a lattice in order to automate the texture synthesis
method of Liu et al. [45]. Image source: Liu et al. [45]

less heavily on the appearance regularity of the input texture, or the A score; having a low G score

significantly aids the texture synthesis procedure. In fact, textures having a high G score cannot

be synthesized using the method of Liu et al. In this thesis, we provide a method of extracting a

lattice from texture with both low and high G scores, implying that our method will work for some

irregular as well as near-regular texture.

1.2 The Problem

In mathematics, a lattice commonly refers to a regularly spaced array of points, which can be

subdivided into regions using particular polygonal shapes. Within this work, conventions developed

in texture analysis and synthesis are followed [44–46], and the lattice is referred to in an imprecise

sense; a lattice is a graph joining textons in a perceptually sensible way.

We provide a solution for the following problem: given a near-regular texture, extract a lattice

defining the placement of textons. In the output of the algorithm, centres of textons will be

connected by edges in the lattice following the structure of texton placement. More precisely, for

a texture T , we wish to create a graph G = (V, E) dependent on T , where V is a set of texton

centres, and E = (vi, vj) is a set of edges, where vi, vj ∈ V . Each edge e ∈ E connects texton

centre v ∈ V to its most perceptually sensible neighbours.

Perceptually sensible is an imprecise term, and we provide no exact definition. We use the term

in an informal sense which appeals to intuition. Good characteristics that we strive for are graph

planarity, adequate coverage of empty space, edges of similar length, and lattice regions of similar

size. Bad characteristics that we wish to avoid are large areas of empty space, long graph edges,

distorted lattice regions, and spurious edges.

3



We divide the problem of extracting a lattice from near-regular texture into two distinct sub-

areas. The first is finding textons within an image, which we address in Chapter 3. The second

is lattice creation using both an ad-hoc method and a graph-theoretic method. We address lattice

creation in Chapter 6.

1.3 Motivation

The user-guided lattice extraction method described by Liu et al. [45] provides immediate motiva-

tion for our work in automatically extracting a lattice from near-regular texture to further automate

near-regular texture synthesis. Furthermore, motivation for this work exists outside of texture syn-

thesis. A texture lattice has been used to perform texture replacement in images and in video [41].

Applications of this work include interior design and digital movie making. In the method, each

texton is located and its local scale computed, textons are then replaced by the textons of another

texture. Another common problem that motivates this thesis comes in the form of detecting and

grouping repeated elements in a scene [36]. A solution to this problem provides applications in

computer vision and object recognition. Furthermore, a texture lattice can be used to determine

the shape of an object by analyzing the relative placement of textons on the object [19]. Lastly,

future applications of a texture lattice may include texture classification, texture compression, and

texture blending.

1.4 Contribution

The contribution of this thesis is a novel lattice extraction method for near-regular and some

irregular texture. We require a single texton selection from the user as input to the algorithm.

Our method involves locating image areas that are highly correlated with a user-selected sample

texton, and then connecting these locations to form a lattice. We also provide two extensions to

this method. The first comes from using image features to more accurately compute the correlation

between the texton and the image. The second comes from using frequency-space analysis to find

textons that were not identified using the correlation process.

We provide two methods of constructing a lattice from texton locations. The first method is

ad-hoc and correctly connects texton locations while ignoring erroneous data. However, the method

fails as texture becomes irregular. The second method is graph-theoretic and uses proximity graphs

to connect texton locations to their sensible neighbours.

A limitation of our approach is that we do not provide a method of automatically evaluating the

quality of an extracted lattice. This limitation is important because in difficult lattice extraction

cases we require user input in deciding the right combination of techniques required to correctly

extract a lattice. If lattice quality could be accurately and automatically measured, we could

4



fully automate the lattice extraction procedure following the initial texton selection. We leave this

limitation as an area of future work.

1.5 Thesis Outline

In the next chapter of this thesis, we review literature pertinent to the problem of lattice extraction

from near-regular texture. Chapter 3 then details our method of locating textons in an image using

correlation. In some cases our texton locating method returns erroneous data. To improve our

texton locating result we provide extensions to our texton locating method, which are described

in Chapters 4 and 5. We then present two methods of connecting texton locations in Chapter 6.

Finally, we conclude the thesis and present avenues for future work in Chapter 7.

Throughout the thesis reference is made to several image processing techniques. Consult Ap-

pendix A for brief explanations of Canny edge detection, the Laplacian-of-Gaussian filter, the Sobel

operator, morphological shrinking, and non-maximal suppression. Detail on colour spaces can be

found in Appendix B. An introduction to the Fourier transform is presented in Appendix C. Ap-

pendix D provides listings of the algorithms used in the thesis. Finally, Appendix E reports the

full test results presented in this thesis.

5



Chapter 2

Literature Review

In this chapter we present a survey of past and current research. This survey outlines research in

texture modelling, texture analysis, feature extraction from images, texture regularity measurement,

texture synthesis, and proximity graphs. These rather disparate areas all contribute to, and provide

precedent for, lattice extraction from near-regular texture.

Texture modelling establishes a working definition of texture. We do not deal explicitly with a

texture model, but use the ideas from texture modelling theory to approach the problem at hand.

Texture analysis generally uses properties of a texture model to understand the underlying proper-

ties of an image. We may use these ideas to characterize image attributes when locating potential

textons in the image. Feature extraction and image segmentation provide methods of locating ob-

jects within an image, providing us with ideas for locating textons. Regularity measurement aids in

the problem of locating textons within an image, and in deciding where textons lie in relation to one

another. Lastly, texture synthesis provides the initial motivation for this problem: automatically

extracting a texton lattice.

2.1 Texture Modelling and Texture Analysis

No consensus texture model has been established; the wide variety of texture has led to a wide

variety of explanatory models. Currently the most widely adopted model, and arguably the most

sophisticated, is FRAME [77]. FRAME is a statistical modelling technique combining ideas from

filter modelling theory, where a texture is decomposed into sub-bands using filters, with ideas

from statistical modelling theory, where texture is a realization of a probability distribution on a

random field. The combination of these two theories produces a probability model, with a maximum

likelihood estimate of the model parameters providing the simplest explanation of the given texture.

Zhu and Guo [23,76], along with other researchers, provide a thorough treatment of textons with

respect to texture modelling. Specifically, they integrate descriptive texton models, such as Markov

random field, with generative texton models, such as hidden variable, under a single framework.

The result is a multi-layer texture model, each layer made up of textons embedded in the image

by a stochastic process. Treated within a probabilistic framework, the model assumes a number
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of hidden variables: the number of layers, the arrangement of textons at each layer, and noise.

Computationally learning the variables amounts to discovering the texture model.

Gimel’farb [20] models texture using Gibbs random fields, which are specific instances of Markov

random fields. He argues that true model parameters, approximated using the FRAME method-

ology, are not the goal of texture synthesis. Rather, the goal is proximity between a training

distribution and a generated distribution. The training distribution is derived from a texture sam-

ple; Gimel’farb produces a probability model from the sample based on translation invariant pixel

pairs and minimizes the error between distributions using simulated annealing. Using pixel pairs

increases the capability of modelling structural texture by accounting for relative spatial distance

between pixels in the distribution. The Gibbs random field model has generated interest in texture

modelling, leading Gimel’farb [21] to address the short-comings of the FRAME model and argue

for the use of a Gibbs model (or something similar) in its place.

Many attempts at defining texture properties derive from the assumption that textures sharing

second order statistics cannot be immediately distinguished by the human visual system [29, 30].

Using second order statistics, texture analysis can consider texture structure and provide global

methods of quantifying texture properties [2,22,25]. Another method of analyzing texture is through

the frequency-space representation of an image [28, 42], providing a global similarity measure for

texture. The steerable pyramid, presented by Simoncelli and Freeman [61], defines a translation

and rotation invariant wavelet representation for images that can be used to provide a statistical

model of texture at different resolutions [58].

The choice of texture model is important in defining our problem and deriving a solution. We

do not deal explicitly with a texture model, though many ideas and insights into a lattice extraction

algorithm come from assuming various properties of near-regular texture, as defined by the models

presented here.

A texture model provides the basis for methods of texture analysis, which provide a working

definition of texture, as well as techniques to analyze texture properties. Such texture information

can be used to identify textons with certain characteristics. However, we have found that statistical

texture analysis does not allow for the segmentation of textons from near-regular texture, due to

the variability of textons within each texture.

2.2 Texture Synthesis

Texture synthesis methods can be divided into two broad categories: statistical and structural. Sta-

tistical methods involve manipulation of the parameters responsible for creating random fields, and

sampling these fields to synthesize a texture. Structural methods, on the other hand, involve ma-

nipulation of pixels while preserving their spatial relationships, thereby preserving the appearance
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of structures in a texture.

A widely used statistical texture synthesis method based on noise was given by Perlin [57].

Adequately defined texture models can be used to synthesize texture by sampling pixels from the

texture model [77]. Another common statistical texture synthesis method involves modifying an

image of random white noise to portray the characteristics of a texture sample; the statistical

model of the texture sample may be found using an image histogram, co-occurrence matrix, sub-

band decomposition, or other texture analysis artifact [23, 26, 76, 77].

Moving away from statistical synthesis methods, structural texture synthesis originated as the

copying of individual pixels from a sample texture into a new texture, taking care to preserve

local relationships in the sample texture [7, 18, 70], and has been extended in a number of ways

to increase the speed, appearance, quality, and dimension of synthesis [1, 14, 17, 32, 37, 52, 72, 73].

Around the year 2000, researchers began using texton structure to guide the texture synthesis

process [15, 59, 71, 74, 75].

Liu et al. [44–46] provide a near-regular texture synthesis method using the idea of deformation

fields. Deformation fields model near-regular texture as a deformation of regular texture. This

deformation may occur along one of three axes: texton colour, scale, and geometry. A lattice is

used to extract the deformation. The lattice extraction procedure begins by having the user create

two vectors that approximate texton placement which the computer overlays on the texture. The

user must then alter the overlaid vectors to create the final lattice. Finally, the computer uses an

energy minimization procedure to deform the texture to a regular version. The regular version of

the texture is synthesized and the extracted deformation applied to create a near-regular texture

synthesis result. The user-guided lattice extraction process provides immediate motivation for our

work in automatically extracting a lattice from near-regular texture.

The work of Liu et al. inspired several researchers to examine near-regular texture more thor-

oughly. Specifically, Nicoll et al. [53] use frequency-space texture analysis to determine the periodic-

ity of a texture, which guides the texture synthesis process. Work by Djado [16] discusses a problem

similar to ours; the extraction of a representative tile from a near-regular texture. However, the

method assumes that textons are geometrically identical, which severely limits the applicability of

the result.

Our research is directly related to the work of Liu et al. [44–46]. Specifically, having to manually

extract the deformation field required for near-regular texture synthesis provides motivation for this

thesis. In this thesis, we develop a semi-automatic procedure for the extraction of a lattice, which

can in turn be used to automatically extract the deformation field required for near-regular texture

synthesis.

8



2.3 Feature Extraction and Segmentation

For our purposes, determining the correct location of textons in an image is integral to constructing

a sensible lattice. Much research has been performed in extracting objects from images, with results

that correctly extract textons in certain situations. However, since we are dealing with near-regular

texture our approach requires extraction of textons with varying geometry, colour, and size. This

is a previously unsolved problem.

The most common approach to texton extraction is measurement of the response of an image

to a filter set. If a location in the image provides high response to an applicable filter set, a texton

exists at this location. If a location in the image provides low response to an applicable filter set,

no texton exists at this location.

Blostein and Ahuja [6] convolve many Laplacian-of-Gaussian filters over an image, each filter

having a different standard deviation. The filter is particularly sensitive to regions having little

colour variation; these regions are reported as texture elements. Unfortunately, textons with varying

colour will be incorrectly extracted, and the general texton extraction problem remains.

Grouping of repeated image elements has been examined by Malik, Leung, and colleagues [36,

47, 48] as a method of segmenting texture. In 1996 [36], they proposed a method of detecting,

localizing, and grouping repeated image elements using ideas from temporal tracking; repeating

scene elements can be represented by affine transformations of a single parent scene element. Given

a parent element, the search for transformed versions is straightforward, though time consuming.

A problem lies in determining the parent element, where Malik and Leung use a second moment

statistic computed within a window to determine the significance of a region. After computing the

statistic at each point in the image, the most significant region is selected as the parent element.

Unfortunately, through our own implementation, we have found that the second moment statistic

does not allow us to locate textons in general.

Malik and Leung [47,48] continued to make progress on segmenting textons in 1999 and 2001 by

measuring the response of each image pixel to a set of linear filters of different size and orientation.

A total of 36 filters are used and their response is mapped to a 36-dimensional space. Clusters

in this space represent image locations with similar filter response, and hence similar appearance.

By combining cluster information with data from contours, texton locations can be found. This

feature extraction method shows promise for texton locating but is computationally demanding.

In 1999, Schaffalitzky and Zisserman [60] reported a different algorithm for detecting repeated

image elements. In their algorithm, elements are extracted based on edge information, corners,

and closed curves. Regions with roughly uniform pixel intensity surrounded by closed curves are

assumed to represent textons. Textons are grouped by searching the image for affine transformed

versions of each scene element. However, near-regular texture allows for textons with varying colour,
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and regions with uniform pixel intensity do not correspond directly to textons.

Belongie et al. [3–5] developed a shape descriptor based on image context. First, the image

is processed to highlight edges. Sample points from the image edges are then used to compute a

descriptor roughly describing the shape of a region. This is done by creating a set of bins subdividing

the image into partitioned concentric circles surrounding a sample point. A histogram records how

many sample points lie within each bin. The set of histograms for all sample points becomes the

descriptor of shape for the image, which highlights contextual information in the form of location

with respect to other sample points. However, having to evaluate the descriptor for each potential

texton location in the image is computationally demanding.

Feature extraction and image segmentation applies to our research. If a method of extracting

textons from any texture is found, our research can create a perceptually sensible lattice. However,

we have found that the feature extraction literature does not provide significant insight into general

texton extraction. Because of this, we require the user to select a typical texton sample from the

image, which we use to search for locations in the image with characteristics similar to the texton

sample. This approach is able to locate the majority of textons in a texture, but failure cases do

occur.

2.4 Regularity Measurement

Quantifying texture regularity commonly involves extracting a periodic signal based on texton

locations. The most widely used tools in this pursuit, the Fourier transform and auto-correlation,

come from the digital signal processing literature.

Matsuyama et al. [50] analyze texture structure by looking at the frequency-space representation

of an image using the Fourier transform. Peaks in the frequency surface represent frequencies

that occur regularly in the image. For near-regular texture, such regularly repeating frequencies

correspond to the frequency of texton placement. Vectors representing relative texton placement

are extracted from the frequency surface and region growing around frequency peaks is used to

isolate individual textons.

Assuming that textures are characterized by textons and their spatial arrangement, Vilnrotter et

al. [68] compute an edge repetition array, essentially a co-occurrence matrix for edges, to determine

texton size and spacing. From this description, texton primitives are extracted based on similarity

to the edge repetition array.

In 1989, Hamey [24] proved many of the results necessary for further work in texture regular-

ity measurement. Working with image features rather than raw pixel intensities, Hamey showed

how a dominant feature can be tiled along the plane using a minimally short vector, called the

fundamental frequency vector, to produce a regular texture. These fundamental frequency vectors
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form an orthogonal texton basis of minimum size. Hamey extracts features, using Blostein and

Ahuja’s algorithm [6], and associates a prominence value to each feature. Using the dominant fea-

ture assumption, Hamey connects prominent features using minimal length fundamental frequency

vectors. Regular texture is synthesized by placing the dominant feature at integer displacements

of the fundamental frequency vectors.

Most attempts at measuring texture regularity find locations of a repeating element, then con-

nect repeating elements with fundamental frequency vectors. However, finding locations of repeat-

ing elements using a frequency-space image representation is difficult; extracting peaks from the

frequency image is challenging due to noise. Auto-correlation, on the other hand, produces an

image with significantly less noise, making finding fundamental frequency vectors robust.

Lin et al. [39] were early adopters of auto-correlation for regularity extraction. In their method

an auto-correlation surface is found for an image, and peaks within this surface are isolated using

a novel Gaussian smoothing algorithm. Finally, a generalized Hough transform determines the

direction of the fundamental frequency vectors, which are found by truncating lines found by the

Hough transform at peaks of the auto-correlation surface. Later, Lin et al. [40] used texture

features computed for a texture primitive found using this method as a means of classifying images

for database retrieval. We have adapted the work from Lin et al. to extract the locations of

textons within an image. However, instead of using auto-correlation to compute a surface with

peaks defining image regularity, we use correlation to create a surface with peaks defining texton

locations.

Chetverikov [11] used the auto-correlation approach to find a contrast function of an image. The

contrast function is a profile of the auto-correlation surface along the direction of a fundamental

frequency vector. This profile provides a measure of texture regularity based on how close the

profile models a harmonic function. Chetverikov [12] showed that a grey-level difference histogram

can be used as an alternative to auto-correlation, with the same purpose and result. Leu [35]

used a similar approach to provide a measure of regularity using the auto-correlation of an image’s

gradient.

Detecting regular repetitions under perspective skew has been addressed by Tuytelaars et al. [66].

Regularity is detected as periodicity, symmetry, and reflection. The authors wish to extract repeat-

ing elements from real-world scenes, rather than from images. They avoid auto-correlation, which

requires a homogeneous input image; they use filter-based search for regions of similar intensity or

geometry. Groupings of repeated elements are found via Hough transform.

Liu et al. [43] provide an algorithm for determining the underlying pattern of regular textures.

Again, auto-correlation and the Hough transform are used. However, Liu et al. use a measurement

of auto-correlation peak prominence that is indirectly related to peak height; the region of dom-

inance of each peak is computed as the distance of a peak to one of larger height. After finding
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the fundamental frequency vectors with the Hough transform, the pattern may be classified into a

frieze or wallpaper group.

As an alternative to the signal processing approach to regularity measurement, Parkinnen et

al. [56] use co-occurrence matrices to detect periodicity. By computing the co-occurrence matrix

at different distances, and comparing these matrices using χ2 and κ statistics, periodicity of a

texture can be measured. Starovoitov et al. [63] use co-occurrence to measure periodicity, defining

structural features based on the co-occurrence matrix. The authors compare Haralick’s texture

features [25] with their own, concluding that no feature correctly quantifies structure for all texture

samples. Finally, Oh et al. [54] use the diagonal property of a regular texture’s co-occurrence matrix

to find an equivalent, but less computationally expensive, method of calculating regularity.

Lastly, as part of the MPEG-7 image standard, Manjunath et al. [49] define a Perceptual

Browsing Component, which measures degree of texture structure. To obtain this measure, an

image is processed with a set of Gabor filters of varying size and orientation, with the result of each

filter stored. A projection of the filtered images along the horizontal and vertical axes is made,

creating a periodic signal for regular textures.

In much of our early research on lattice extraction from near-regular texture we relied on an

estimate of texture regularity gained using auto-correlation to determine the placement of tex-

tons within the image [62]. Our current method uses correlation as a means of extracting texton

locations. Given a sample texton, we correlate the sample with the image and isolate maxima

in the resultant surface to determine the locations of textons in the image. The procedure cor-

rectly extracts a lattice from most near-regular texture, but fails as texture becomes irregular.

We offer improvements to this method using correlation within feature space, and by analyzing the

frequency-space representation of texton locations to correct for errors in the texton locating result.

We also offer a method of creating a lattice from irregular texture using proximity graphs.

2.5 Proximity Graphs

We use proximity graphs as a means of connecting texton locations in a perceptually sensible

manner. The material in this section provides background on proximity graphs but is not intended

as an exhaustive review of the literature.

Given a set of points in the plane, we can construct a graph that connects every two points

satisfying certain conditions. For our purposes, we take the location of each texton and construct

a graph connecting each texton to its appropriate neighbours. The problem of creating a graph

given a set of points is well studied, and we adapt the literature on proximity graphs to the lattice

construction problem.

The most sparse proximity graph that could realistically be applied to our problem is the nearest
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Figure 2.1: The lune of influence (a) and circle of influence (b) of a point pair.
Image source: Kirkpatrick and Radke [31].

neighbour graph (NNG). For a set of points S, a NNG connects each point p to the point q ∈ S \ p

having minimum Euclidean distance to p. The NNG is not necessarily connected, and so fails as a

suitable lattice. Insisting that the texton lattice be described by a connected graph, we turn to the

minimum spanning tree (MST) as a means of constructing a lattice. The definition of a spanning

tree ensures that every point in the graph is connected through some sequence of edges. The MST

chooses such a tree with minimal total edge length. Unfortunately, the MST is a sparsely connected

graph, and thus we cannot use this graph to construct a texton lattice where textons may have

many neighbours.

Toussaint [64, 65] provides a definition of the relative neighbourhood graph (RNG), which is a

slight variation of the original definition given by Lankford [34]. Two points x and y in point set S

are said to be relative neighbours, and joined by an edge in the graph, if

d(x, y) ≤ min (max (d(x, z), d(y, z)) |z ∈ S),

where d(x, y) measures Euclidean distance between points x and y. Visually, x and y are relative

neighbours if the lune of influence described by the equation above is empty. The lune of influence

is constructed as the intersection of the two circles of radius d(x, y), centred at points x and y.

Figure 2.1(a) depicts the region of influence of two points x and y.

A graph constructed in a manner similar to the RNG is described using the circle enclosing two

points. The Gabriel graph (GG) [51] connects points x and y in S if the unique circle with radius
d(x, y)

2
passing through points x and y is empty. Figure 2.1(b) depicts the circle of influence of two

points x and y.

A unifying property of the preceding graphs is that they are all subgraphs of the Delaunay
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Figure 2.2: NNG, MST, RNG, GG, and DT of a fixed point set. Image adapted
from: Kirkpatrick and Radke [31].
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Figure 2.3: Lune-based neighbourhoods for various β. Image source: Kirkpatrick
and Radke [31].

triangulation (DT). The DT is the unique triangulation that maximizes the minimum of the angles

in the triangulation, creating a triangle of edges from each three points residing in a circle enclosing

only themselves. In general, NNG ⊆ MST ⊆ RNG ⊆ GG ⊆ DT [65]. Figure 2.2 depicts the

preceding graphs for a fixed point set.

Kirkpatrick and Radke [31] extend the idea of proximity graphs to a continuous spectrum.

The hierarchy of the NNG, MST, RNG, GG, and DT suggest a unifying framework based on the

region of influence between each pair of points. Kirkpatrick and Radke call such a unification the

β-skeleton spectrum of a point set; for a given β, they construct a graph called the skeleton, and

the combination of all such skeletons defined for 0 ≤ β < ∞ make up the β-skeleton spectrum.

For β ≥ 1, the β region of influence is defined as the intersection of two circles of radius
βd(pi, pj)

2

centred at points (1 −
β

2
)pi + (

β

2
)pj and (

β

2
)pi + (1 −

β

2
)pj . By this definition, when β = 1 the β

region of influence is equal to a circle, and the β-skeleton equals the GG, and when β = 2 the β

region of influence between two points pi and pj is a lune, and the β-skeleton equals the RNG. As

β approaches ∞, the β region of influence between two points pi and pj is the strip between points

pi and pj , and the β-skeleton equals the MST. Extending the definition for 0 ≤ β < 1, the β region

of influence between two points pi and pj becomes the intersection of two circles of radius
d(pi, pj)

2β
passing through pi and pj . As β approaches 0, the β region of influence becomes the line segment

joining pi and pj , resulting in a fully connected graph except in cases with three or more collinear

points. Figure 2.3 shows the effect that varying β has on the region of influence of two points.

In our solution to the lattice extraction problem, we use proximity graphs to connect texton

locations that have been found using correlation. We have also developed a second method of
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connecting texton locations which provides an ad-hoc solution to the problem [62]. Procedures

for connecting texton locations using both the ad-hoc method and proximity graph method are

discussed in Chapter 6. However, before textons can be connected, they must be found. The next

chapter discusses how we use correlation to locate textons within a texture.
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Chapter 3

Locating Textons

Locating textons is the major problem encountered in creating a lattice from near-regular tex-

ture. We cast the problem as a search for locations in the image similar to a candidate texton.

Other methods of locating textons exist (see Section 2.3 of the Literature Review), and the prob-

lem is closely related to research in image segmentation, but our method is robust, while still being

simple.

The primary tool of our texton locating method is correlation. In Section 3.1 we discuss the

properties of correlation, and how correlation has been applied to the problem of finding texton

locations. We then present, in Section 3.2, analysis of the success of our texton locating procedure.

3.1 Sample Correlation

To locate textons within an image we create a surface with maxima at texton locations. Such a

surface may be computed using frequency-space analysis, correlation, co-occurrence matrices, or

object recognition [11, 12, 40, 43, 50, 54, 56, 63, 66, 68]; we chose correlation. We have found, and

recent literature confirms [43,66], that correlation is a robust and effective technique for producing

such a surface.

Correlation exists in many fields, and possesses many definitions depending on context and

need. We refer to correlation as it exists in the signal processing literature. To this end, we view

texture as a two-dimensional signal. Figure 3.1(a) shows a sample texture, Figure 3.1(b) shows a

small region of the texture, and Figure 3.1(c) shows the texture sample in Figure 3.1(b) represented

as a two-dimensional signal.

To produce a correlation surface with peaks corresponding to texton centres, a sample texton

is correlated with the input texture. We have attempted to automatically extract a sample texton

from the input image without success. Automatically extracting a sample texton is a difficult

problem because of the generality of texture. To correctly solve the problem would require a

method which can correctly locate a sample brick, tomatoe, roof tile, rock, reptile scale, etc., with

no a priori information about the image. Furthermore, we have not been able to find a method

from the image segmentation literature which can be applied to our problem. Therefore, we request
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(a) A texture. Image Source: Bro-
datz [9].

(b) A sample from the texture. (c) The sample represented as a two-
dimensional signal.

Figure 3.1: A texture may be represented as a two-dimensional signal.

user input in selecting a typical texton from the image. In our implementation the selected region

is always rectangular; we have found that rectangular regions are easy to implement and provide

good results for the majority of texture samples.

Correlation can be described as a filtering operation. A correlation coefficient is calculated as

the piecewise multiplication of the pixels in the sample window with the pixels of the image under

the sample window. In general, when given a sample window h of size I × J pixels, and an input

image f , we can compute correlation value for window position (m, n) as:

g(m, n) =

I
2

∑

i=−I
2

J
2

∑

j= −J
2

h(i, j)f(m + i, n + j)

We produce a correlation surface by repeating the above computation at each location in the

image, multiplying the contents of the user-selected sample texton, h, with the contents of the

image, f . However, care must be taken near image boundaries; the contents of the sample window

centred at a particular location may extend beyond the image domain. In our implementation

pixels outside the image domain contribute a coefficient of zero so that

h(i, j)f(m + i, n + j) = 0,

for (m + i, n + j) /∈ D, where D is the image domain. As a final note, the image must be mean

centred before extracting a texton sample and before correlation of the sample with the input

image. Mean centreing is accomplished by subtracting the average value in the image from every

pixel, resulting in a correlation surface that is independent of image brightness.

Within the correlation surface, maxima represent image locations that are similar to the sample

window and minima represent image locations that are dissimilar to the sample window. Figure

3.2(a) depicts a texture, and Figure 3.2(b) depicts a sample extracted from the texture. The

correlation procedure described above is applied to filter Figure 3.2(a) with the contents of Figure

18



(a) A texture. (b) A sample from the texture. (c) The result of (b) correlated with
(a).

Figure 3.2: A texture is correlated with a sample texton to produce a correlation
surface with maxima at texture locations that appear similar to the sample texton.

3.2(b) to produce the correlation surface given in Figure 3.2(c). Appendix D references Matlab∗

code that implements the above correlation procedure; Program Listing D.2 is used to select a

sample from the input image and Program Listing D.3 performs the correlation procedure.

The correlation surface is sometimes noisy. However, the work of Lin [38, 39] provides a con-

venient way to smooth a correlation surface using a Gaussian function. A Gaussian function, also

known as a normal function, is symmetric about the origin, with amplitude decreasing with move-

ment away from the origin. The spread parameter, σ, defines the rate of amplitude decrease. A

small value of σ produces a Gaussian with narrow width and rapid amplitude decrease. A large

value of σ produces a Gaussian with thick width and slow amplitude decrease. Filtering the image

using a Gaussian function averages the value of each pixel using contributions from the pixel’s

neighbours; the contribution of each pixel corresponds to the amplitude of the Gaussian function

at that pixel. Therefore, small σ will smooth each pixel using small contributions from its neigh-

bourhood, smoothing slightly, while large σ will smooth the surface using large contributions from

its neighbourhood, smoothing greatly.

Lin’s smoothing algorithm initially sets σ to a small value, σ = 1, and filters the surface with

the Gaussian. The smoothed surface should have fewer maxima than the original surface. If this is

true, σ is increased to the square root of the maximum distance between any two minimally close

peaks and filtering is repeated. This sequence repeats until the number of maxima does not decline

as σ is increased, meaning that no maxima are eliminated between iterations, and thus maxima

attributed to noise have been eliminated. Though the potential for over-smoothing exists, using this

algorithm generally provides improved texton locating results compared to texton locating without

smoothing. Finally, in order to renew the prominence of maxima in the correlation surface, we add

a step to Lin’s algorithm by sharpening the image once using a 3×3 unsharp contrast enhancement

filter, described in Section A.6. Matlab code for the smoothing procedure is provided in Program

∗ c©1994-2006 by The MathWorks, Inc. MATLAB is a registered trademark of The MathWorks, Inc.
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(a) NMS result overlaid on correlation surface. (b) NMS result overlaid on input texture.

Figure 3.3: The result of non-maximal suppression applied to a correlation surface.

Listing D.4.

The correlation surface contains maxima at locations with appearance similar to the user-

selected sample texton. We can extract these maxima, using non-maximal suppression, to obtain

locations of potential texton centres; the locations are termed potential texton centres because the

extraction process will sometimes return an incorrect location. This incorrect location is either an

artifact of the correlation process or of the non-maximal suppression process; when a location in

the image which is not an actual texton correlates highly with the sample texton this location may

be reported as a texton centre in error. Our ad-hoc lattice construction algorithm, presented in

Section 6.1, adds potential texton centres to the lattice based on the likelihood that they belong

in the lattice. In most cases, the algorithm correctly ignores incorrect texton locations, but the

potential for incorrect lattice extraction exists whenever incorrect texton locations are present. The

graph-theoretic lattice construction algorithm, presented in Section 6.2, will include all erroneous

texton locations in the output, implying that errors in the texton locating procedure are propagated

to the lattice extraction result.

Figure 3.3(a) shows the result of applying non-maximal suppression to a smoothed correlation

surface. Figure 3.3(b) shows the result of non-maximal suppression overlaid on the original texture

of Figure 3.2(a). Program Listing D.5 provides the Matlab implementation.

The texton locating procedure is not without faults. In some cases, too few textons are located,

too many textons are located, or textons are located in improper positions. Figures 3.4 and 3.5

depict inaccurate texton locating results due to poor correlation. In Figure 3.4, non-maximal

suppression does not locate all textons in the image since the correlation surface does not contain

peaks at locations which differ in colour from the user-selected sample texton. In Figure 3.5, the

correlation surface contains peaks at incorrect texton locations, and at too few locations.
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(a) NMS result overlaid on correlation surface. (b) NMS result overlaid on input texture.

Figure 3.4: Non-maximal suppression is not accurate all of the time.

(a) NMS result overlaid on correlation surface. (b) NMS result overlaid on input texture.

Figure 3.5: Another poor texton locating result due to inaccurate correlation.
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3.2 Results

We tested our texton finding algorithm on 100 images gathered from various sources [9, 13, 33, 67].

Unfortunately, there is currently no automatic way of measuring the quality of a texton locating

result. Therefore, we use human judgement as a measure of quality and compare results of our

texton locating algorithm to “ground-truth” results obtained from manually locating textons.

To test our algorithm, we attempted to re-create the ground-truth results using our texton

locating algorithm. We consider the texton locating algorithm successful if we are able to re-

create the ground-truth result without significant errors. We classify significant errors into two

categories: (1) missing textons and (2) misplaced textons. In missing texton errors, the texton

locating procedure fails to identify a texton where a manually located texton exists. In misplaced

texton errors, the texton locating procedure identifies textons where no manually located texton

exists, or identifies multiple textons where only one manually located texton texton exists. The

success of texton locating is judged with a pass-fail marking, ignoring errors for textons partially

occluded by the image boundary. The reason for this pass-fail marking scheme is that it is difficult

to manually evaluate the quality of the texton locating result, and with a simple pass-fail grade we

are able to quickly provide an objective measure of the quality of our texton finding algorithm.

During the test, the user manually selected a texton which was used as input to our algorithm.

If the result was unsatisfactory, the user was allowed to select another texton, up to a maximum

of 5 times. If after 5 attempts at texton locating the algorithm fails to properly select textons, we

consider the case a failure. Using this criteria, we tested our algorithm on 100 near-regular textures.

In total, the ground-truth result can be successfully obtained in 71 cases using our texton locating

process. The results of this test are summarized in Figure 3.6.

We classified the 29 failed texton locating cases using the two error categories previously dis-

cussed: (1) missing textons and (2) misplaced textons. In total, 27 of the failed texton locating

results contain missing textons, while 13 contain misplaced textons. 11 cases contain both missing

textons and misplaced textons. Full results of these classifications are given in Table E.1. This

classification of errors has provided motivation for developing methods of correcting or accounting

for errors in the final lattice construction result. The ad-hoc lattice construction method, described

in Section 6.1, ignores misplaced textons, but fails for missing texton errors, which account for the

majority of texton locating errors. Due to this short coming, we developed a method of correcting

missing texton errors, which we describe in Chapter 5.

The algorithm that we have developed is sensitive to the initial choice of texton. To test the

robustness of our algorithm to alterations in initial texton choice, we selected five textons from 25

images, and compared each result to the ground-truth result. The textons were chosen based on

their suitability as an ”average” texton in the image. The results of this test show that sensitivity to
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Figure 3.6: Our procedure correctly extracts textons in a total of 71 out of 100
images.

Table 3.1: Success rates for each texton choice.

Texton Choice Number Success Rate on Texton Choice Number

1 76%

2 60%

3 76%

4 68%

5 68%

Table 3.2: Cumulative success rates after each texton choice.

Texton Choice Number Cumulative Success Rate After Texton Choice Number

1 76%

2 80%

3 92%

4 96%

5 100%
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.7: Texton locating successes. Figure 3.7(a) is from the database of
DeBonet. Figures 3.7(i), 3.7(j), 3.7(l), and 3.7(h) are from the CMU near-regular
texture database [13]. Figures 3.7(d), 3.7(k), and 3.7(g) are from the Brodatz
texture album [9]. Figures 3.7(f) and 3.7(e) are from the VisTex texture database
[33]. Figures 3.7(b) and 3.7(c) are from the database of Simoncelli.
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Texton locating failures. Figures 3.8(a) to 3.8(b) are from the Brodatz
texture album [9]. Figure 3.8(e) is from the VisTex texture database [33]. Figure
3.8(f) is from the CMU near-regular texture database [13].

texton choice is largely dependent on the input texture. In some cases the choice of texton does not

affect the texton locating result, while in other cases the choice of texton greatly affects the texton

locating result. In total, we have found that, on average, the texton locating result is correct 3.48

times out of 5 initial texton choices. Using this data, we also determined the number of successful

texton locating results after each texton selection. The number of successful texton locating results

after the first, second, third, fourth, and fifth texton selection is 19, 15, 19, 17, and 17 respectively.

In these tests, the average number of successful texton locating results for each of the five texton

choices is 17.4. This data is summarized in Table 3.1. We also determined the cumulative success

rate of texton locating after each texton choice. Each entry of Table 3.2 reports the total number

of successful texton locating results after each texton selection, remembering previously successful

results. Full results are given in Table E.2.

Figure 3.7 depicts successful texton locating results. Figures 3.7(a) to 3.7(c) show successful

texton locating results in images with varying texton appearance and geometry. Figures 3.7(d) to

3.7(h) depict successful results in images with varying texton geometry, but similar appearance.

Finally, Figures 3.7(i) to 3.7(l) depict successful texton extractions from images with varying texton

appearance, but similar geometry.

Figure 3.8 depicts unsuccessful texton locating results. Figures 3.8(a) and 3.8(b) show two

near-misses. The majority of textons in these two images are found properly, but some noticeable

errors exist. Figure 3.8(c) is a failure case. This failure is due to the texture being irregular. Figure

25



Figure 3.9: Results of texton extraction for textures with known G and A scores.
Squares around circles indicate successful texton extraction. Image Source: Liu et
al. [45].

3.8(d) fails due to high frequency components in the image. The algorithm we have developed

has difficulty in such cases. Finally, Figures 3.8(e) and 3.8(f) fail due to wide variations in texton

colour.

The content of this thesis has been inspired by the work of Liu et al. [45], who provide a near-

regular texture synthesis algorithm described in the Literature Review of Chapter 2. Further results

from the research provide a method of measuring regularity along two axes: geometric structure

(G) and colour appearance (A). After manually extracting a lattice from a texture, G and A scores

are computed by comparing the contents of each texton of the lattice. Depending on the results of

these measurements, the textures were classified as one of Type I, II, or III. Type I texture implies

regular texton geometry with irregular texton appearance, Type II texture implies irregular texton

geometry with regular texton appearance, and Type III texture implies irregular texton geometry

and appearance.

To validate the effectiveness of our texton extraction method with textures of varying regularity
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we obtained a set of 13 images with known G and A scores, shown in Figure 3.9, and applied our

texton locating method to each image. Currently this is the largest set of available images with G

and A scores. We then noted the textures where our algorithm successfully locates textons. The

results of our validation are also shown in Figure 3.9, where successful texton locating results are

outlined with a black box. In total, our algorithm resulted in 2 out of 3 Type III textures having

incorrect texton locations, though the leopard skin sample could be viewed as an irregular texture,

and the remaining failure case contains a highly irregular patch in the centre of the image. The

only other failure case occurs with the Type I soda cracker texture. In this case, the majority of

textons are similar in appearance, leading to a low A score, and textons with drastically varying

appearance, i.e. dark patches in the cracker, do not get properly extracted. Unfortunately, no

strong trends emerge from the data, due mostly to the small data set and the small size of the

texture samples within the data set.

We can see from these tests that in some cases our algorithm is able to successfully locate textons

from texture with high G scores. The results of Liu et al. [45] have difficulty synthesizing irregular

textures with a high G score. In this thesis, we suggest alternate uses for the lattice extracted from

irregular texture. These include texture replacement [41], grouping of repeated scene elements [36],

object recognition, shape from texture, texture classification, texture compression, and texture

blending.

Our texton locating procedure is robust and accurate for the majority of texton locating

cases [62]. However, we have also identified two error cases where our texton locating procedure

fails. As a means of overcoming both errors, we introduce a potentially more accurate correla-

tion method using feature spaces in Chapter 4. We also provide methods of overcoming each

error case individually. For the case of missing textons, we have developed a procedure that uses

frequency-space analysis to introduce unreported texton locations into the texton locating result.

This procedure is described in Chapter 5. For the case of misplaced textons, we have developed

an ad-hoc lattice construction method that correctly ignores erroneous textons. We discuss this

procedure in Chapter 6.
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Chapter 4

Improving Texton Locating Using Image Features

The texton locating procedure described in Chapter 3 can be used to create a perceptually

sensible lattice for near-regular texture [62]. However, the range of texture that allows successful

texton locating is limited using this procedure. In some cases, textons within a texture do not

correlate with the colour of a chosen texton sample. In Section 4.1, we discuss some common image

features and how they may be applied to the problem of texton locating. In Section 4.2, we present

test results of the use of image features for texton locating.

4.1 Correlation Within Feature Space

As an example, Figure 4.1 depicts a failed texton extraction. The texton in Figure 4.1(b) is

correlated with Figure 4.1(a) to produce the surface in Figure 4.1(c). The correlation surface in

Figure 4.1(c) is noisy, peaks in the surface are not visually identifiable, and non-maximal suppression

fails to properly extract texton locations, resulting in Figure 4.1(d). Note that the correlation

surfaces in this section are displayed using a cool to warm colour map, with blue representing low

values and red representing high values. Figure 4.2 provides the mapping from pixel intensity to

colour used for the images that follow.

We can improve the texton locating result of Figure 4.1 by first computing the image’s colour

gradient magnitude and correlating this gradient image with the gradient magnitude of a texton

sample. Figure 4.3 shows the result of correlation using the magnitude of the image’s gradient. This

(a) A texture. (b) A texton sample from
(a).

(c) The result of (b) corre-
lated with (a).

(d) Non-maximal suppres-
sion of (c) overlaid on (a).

Figure 4.1: Failed texton extraction using RGB colour space as feature space.
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Figure 4.2: The colour bar used in the images of this section. Pixel intensity is
mapped to a colour between light blue and dark red.

example shows how correlation with image features may improve the result of the texton locating

process.

An image feature is a characteristic of an image calculated using image data. We call the feature

space for an image the set of image features used during correlation. In feature space, each pixel

within the image is characterized by a vector, where each vector component measures a particular

feature value. Correlation within feature space operates as expected; correlation is applied inde-

pendently to each component of the feature vector at each pixel. For example, correlating within

the red, green, blue (RGB) colour space, as in Figure 4.1, implies a 3-dimensional feature space,

where each pixel in the image is specified as a vector in feature space.

A careful selection of the feature space for a texture may improve the results of texton locating

considerably. However, it is difficult to know a priori what features may improve a result; feature

selection is a large open problem. Instead of performing an exhaustive study of the performance of

image features for texton locating, we tested four simple feature spaces along with several feature

spaces derived from alternate colour spaces. We report these results here. For technical information

on each of the feature spaces discussed, consult Appendix A.

We have already seen, in Figures 4.1 and 4.3, how using an image’s gradient magnitude as

feature space can improve the results of texton locating. In addition to the gradient magnitude,

the second derivative of an image, computed using a Laplacian-of-Gaussian filter, provides another

feature space. Typically, the second derivative of the image is noisy and the feature space produced

by the second derivative does not allow us to easily locate textons. However, in some cases the

second derivative feature space can provide good texton locating results, as depicted in Figure

4.4. In general, features derived from changes in pixel intensity provide a good feature space for

locating textons. These features include the gradient magnitude and second derivative, which we

have already discusses, as well as image edges, which are discussed below.

Edge information provides another example of the improvements gained through correlation in

feature space. The Sobel filter can be used to detect strong image edges; given the approximation of

the first derivative, edges are detected as local maxima. Local maxima are found using a threshold

determined by Otsu’s method [55]. We have obtained favourable results using the Sobel edge

detection feature space. The Sobel edge detection process only detects strong edges, and as a result

only prominent features of textons are detected. Typically, the surface produced by the Sobel edge

detector is sparsely populated and devoid of noise, allowing non-maximal suppression to detect
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(a) A gradient magnitude
image.

(b) A texton sample from
(a).

(c) The result of (b) corre-
lated with (a).

(d) Non-maximal suppres-
sion of (c) overlaid on (a).

Figure 4.3: Improved texton extraction using image gradient magnitude as feature
space.

(a) A Laplacian-of-
Gaussian image.

(b) A texton sample from
(a).

(c) The result of (b) corre-
lated with (a).

(d) Non-maximal suppres-
sion of (c) overlaid on (a).

Figure 4.4: Improved texton extraction using a Laplacian-of-Gaussian feature
space.

maxima in the correlation surface. Figure 4.5 depicts the result of locating textons using features

detected by the Sobel edge detection filter.

Another method for calculating image edges is the Canny edge detector [10]. The method finds

edges by looking for local maxima of the image’s gradient magnitude. The strength of the method

lies in its use of two thresholds for detecting strong and weak edges. Weak edges are included in the

output only if they are connected to strong edges, making the edge detector less likely to produce

errors due to noise. We use this method as an alternative to Sobel edge detection, which doesn’t

detect weak edges. Figure 4.6 depicts the result of locating textons using features detected by the

Canny edge detection filter.

The features discussed up to this point have been derived from gray scale information or from

RGB colour space. However, it is known that distances in RGB colour space do not accurately

map to perceptual distance [69]. As an alternative, we tested the texton locating procedure using

the hue, saturation, value (HSV) colour space, which mimics more accurately the method in which

humans perceive colour. For our testing, we created four feature spaces from the HSV colour

space. The first feature space is the full HSV colour space. The remaining three are the individual

components of the HSV colour space: hue, saturation, and value. A failed result of our texton

location algorithm using RGB feature space is shown in Figure 4.7. In comparison, Figures 4.8 to
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(a) A Sobel edge detection
image.

(b) A texton sample from
(a).

(c) The result of (b) corre-
lated with (a).

(d) Non-maximal suppres-
sion of (c) overlaid on (a).

Figure 4.5: Improved texton extraction using Sobel edge detection as feature
space.

(a) A Canny edge detec-
tion image.

(b) A texton sample from
(a).

(c) The result of (b) corre-
lated with (a).

(d) Non-maximal suppres-
sion of (c) overlaid on (a).

Figure 4.6: Improved texton extraction using Canny edge detection as feature
space.

4.11 demonstrate the improvements obtained using portions of the HSV colour space. Figure 4.8

depicts a result using HSV feature space, Figure 4.9 depicts a result using hue feature space, Figure

4.10 depicts a result using saturation feature space, and Figure 4.11 depicts a result using value

feature space.

Finally, we followed the suggestions of Hertzmann et al. [27] and tested our texton locating

procedure using luminance feature space. Hertzmann et al. suggest that a feature space based on

luminance alone offers improvements over RGB feature space, with a claim that the human eye is

more sensitive to changes in luminance than changes in colour. To compute luminance, they use

(a) A texture. (b) A texton sample from
(a).

(c) The result of (b) corre-
lated with (a).

(d) Non-maximal suppres-
sion of (c) overlaid on (a).

Figure 4.7: Failed texton extraction using RGB colour space as feature space.
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(a) An HSV image. (b) A texton sample from
(a).

(c) The result of (b) corre-
lated with (a).

(d) Non-maximal suppres-
sion of (c) overlaid on (a).

Figure 4.8: Texton extraction using HSV colour space as feature space.

(a) A hue image. (b) A texton sample from
(a).

(c) The result of (b) corre-
lated with (a).

(d) Non-maximal suppres-
sion of (c) overlaid on (a).

Figure 4.9: Texton extraction using colour hue as feature space.

(a) A saturation image. (b) A texton sample from
(a).

(c) The result of (b) corre-
lated with (a).

(d) Non-maximal suppres-
sion of (c) overlaid on (a).

Figure 4.10: Texton extraction using colour saturation as feature space.

(a) A value image. (b) A texton sample from
(a).

(c) The result of (b) corre-
lated with (a).

(d) Non-maximal suppres-
sion of (c) overlaid on (a).

Figure 4.11: Texton extraction using value as feature space.
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(a) A luminance image. (b) A texton sample from
(a).

(c) The result of (b) corre-
lated with (a).

(d) Non-maximal suppres-
sion of (c) overlaid on (a).

Figure 4.12: Texton extraction using colour luminance as feature space.

the Y channel from the YIQ colour space. Figure 4.12 depicts the result of using luminance as

feature space.

The consideration of feature space has improved our texton locating procedure. However, due

to its vast literature a complete investigation of feature space is outside the scope of this thesis. We

therefore defer further exploration of this topic to future work. A particularly interesting avenue

of future work lies in using sophisticated edge detection and feature selection methods to obtain

a feature space that consistently improves failed texton locating results. Wu and Yu [71] use an

edge detection approach to improve texture synthesis for structured texture. Another avenue of

interest lies in using features computed on multiple scales to improve a texton locating result.

The steerable pyramid [61] offers a structure useful for computing features on multiple scales, and

several researchers have used multiple scale analysis to improve texture synthesis results [7,26,27].

4.2 Results

To determine if any of the features discussed in this chapter can consistently locate the correct

textons, we performed some additional tests. We use the same measure of success that was used

when testing the texton locating procedure of Chapter 3. That is, the texton locating algorithm is

successful if no significant errors exist, where significant errors are classified into the two categories

of (1) missing textons and (2) misplaced textons.

We first ran the lattice extraction algorithm on 50 images using four feature spaces, starting

with the same initial texton selection. The feature spaces were the gradient magnitude obtained

using a Sobel filter, the second derivative approximated using the Laplacian-of-Gaussian filter,

the Sobel edge detection method, and the Canny edge detection method. We then compared the

texton locating results of correlation using each feature space to the result obtained using RGB

feature space. We attempted to determine whether using any of these four feature spaces leads to

consistently accurate texton locating results. For each of the four feature spaces, we totalled the

number of successful texton locating results observed and derived a success rate by dividing this
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Figure 4.13: Common image features generally do not improve upon RGB colour
space.

total by the number of images tested.

The results are decidedly in favour of using the RGB feature space, with a success rate of 78%,

for the majority of lattice extraction problems. The gradient magnitude, derivative, and Canny

edge detection feature spaces had texton extraction success rates of 12%, while Sobel edge detection

feature space had a texton extraction success rate of 16%. Figure 4.13 shows a bar graph of these

results. Full test results are given in Tables E.3 and E.4.

We ran a similar test using feature spaces derived from colour. The feature spaces consist of

image hue, saturation, value, and luminance. We tested these features on a a new test set of 50

colour images with a texton extraction success rate of 64% using semi-automatic extraction in RGB

colour space. Again, the test results are in favour of using the RGB feature space for the majority

of texton extraction problems. The hue, saturation, and value feature spaces correctly extracted

textons from the image 34%, 36%, and 28% of the time, respectively. The full HSV feature space

correctly extracted textons from the image in 38% of cases. Finally, the luminance feature space

correctly extracted textons from the image in 50% of cases, lending support to Hertzmann et

al.’s [27] claim that luminance is an accurate indicator of visual similarity, though we found that

it is not as accurate as RGB colour space for locating textons. Figure 4.14 shows a bar graph of

these results. Full test results are given in Tables E.5 and E.6.

Finally, we tested the 29 failure cases from the 100 test textures cited in Section 3.2. From the

29 failure cases, we successfully located textons in 14 cases, approximately 50% of previous failures.

34



Figure 4.14: Changing the colour space generally does not improve upon texton
locating.

Figure 4.15: Using image features we successfully locate textons in 85% of cases.
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This results in a total of 85 successful texton locating results out of 100 test images when using the

simple image features presented in this chapter. Figure 4.15 graphically depicts these results.
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Chapter 5

Correcting Localized Texton Locating Errors

In Chapter 3 we showed how to locate textons in an image, and in the previous section we showed

how to improve the texton locating procedure using correlation with feature space. In this section,

we use frequency-based repair to correct errors in the texton locating procedure. The feature-

based correlation and the frequency-based improvements can be used in sequence or in isolation,

depending on the situation. We have found that locating textons in difficult cases requires first

choosing an appropriate feature space for the particular texture, which reduces errors during texton

locating. This is followed by frequency-based repair, which can correct any remaining errors. In

Section 5.1, we discuss the frequency-based repair method, and in Section 5.2, we discuss the results

of correcting localized errors using frequency-based repair.

5.1 Frequency-Based Repair

In the discussion that follows we use the Fourier and inverse Fourier transforms. For an introduction

to these transforms, refer to Appendix C.

To reduce noise in a function, we can analyze the function’s power spectrum; applying the inverse

Fourier transform to only the dominant peaks in a function’s power spectrum eliminates random

noise from the function. With this approach, the contributions from non-dominant frequencies in

the power spectrum are not mapped to the time domain, and therefore the resulting signal will

contain contributions only from the dominant frequencies of the original function.

Using this knowledge, a typical method for eliminating noise from a function is by threshold-

ing the function’s power spectrum, and then applying an inverse Fourier transform to the result.

Thresholding removes frequencies below a certain power, isolating dominant frequencies from the

power spectrum. For example, consider Figure 5.1. Figure 5.1(a) depicts a sinusoidal function with

random noise, and Figure 5.1(b) depicts the power spectrum of the function in Figure 5.1(a). In

Figure 5.1(c), a threshold has been applied to Figure 5.1(b). The threshold eliminates frequen-

cies from the power spectrum which contribute an insignificant power to the function. Figure

5.1(d) depicts the inverse Fourier transform of this thresholded power spectrum, which captures

the dominant frequency of the function in Figure 5.1(a).
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(a) A function with ran-
dom noise.

(b) The function’s power
spectrum.

(c) The thresholded power
spectrum.

(d) The inverse Fourier
transform of the thresh-
olded power spectrum.

Figure 5.1: The Fourier transform projects a function varying over time to a func-
tion varying over frequency. Applying a threshold to the frequency representation
and inverse Fourier transforming the result removes unwanted frequencies from the
image.

The principles discussed above also apply to functions in two dimensions using the following

equations of the Fourier and inverse Fourier transforms:

F (u, v) =

∫

∞

−∞

∫

∞

−∞

f(x, y) e−i2π(ux+vy) dx dy,

f(x, y) =

∫

∞

−∞

∫

∞

−∞

F (u, v) ei2π(ux+vy) du dv.

An image can be represented as a discretization of a two-dimensional function. Furthermore, the

Fourier transform can be applied to any physically realizable function [8] and thus a power spectrum

exists for any image. However, since an image is a discrete entity, we must apply the discrete Fourier

transform rather than the continuous Fourier transform. The discrete Fourier transform applies

the same principles as the continuous Fourier transform, but for discrete functions. For an image

of size M × N the discrete Fourier transform in two dimensions is given by

F (u, v) =
1

MN

M−1
∑

x=0

N−1
∑

y=0

f(x, y) e−i2π( ux
M

+ vy

N ),

and the discrete inverse Fourier transform in two dimensions is given by

f(x, y) =

M−1
∑

u=0

N−1
∑

v=0

F (u, v) ei2π(ux
M

+ vy

N ).

For a two-dimensional discrete function, the Fourier transform is represented using complex

numbers arranged on a grid. Each discrete location in the image’s power spectrum encodes the

power in the image attributed to a specific frequency; the specific frequency is provided by the

(x, y) location in the grid, and the power is provided by the value stored at the (x, y) location. To

illustrate this, consider the image in Figure 5.2(a). It is represented using a power spectrum in

Figure 5.2(b).

If we extract the dominant frequencies of texton placement from the power spectrum of an image

and then recreate the image using only these frequencies, maxima in the recreated image would
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(a) A texture. (b) The texture’s power
spectrum.

(c) A threshold applied to
the power spectrum.

(d) Inverse Fourier trans-
form of the thresholded
power spectrum.

Figure 5.2: An image’s power spectrum can be thresholded, but this does not
allow us to locate textons.

likely correspond to texton locations, much as removing noise from the one-dimensional function

in Figure 5.1 allowed us to isolate the function’s dominant frequency and remove random noise.

Unfortunately, using a threshold to isolate the dominant frequencies in an image’s power spectrum

does not provide a solution to our problem; it does not allow us to locate textons because in texture

many frequencies interact in concert to create an image. Isolating only the dominant frequencies

does not give an accurate representation of the frequency of texton placement. As an example, we

can take the power spectrum of Figure 5.2(b), and apply a threshold, resulting in Figure 5.2(c).

Applying the inverse Fourier transform to this thresholded power spectrum results in Figure 5.2(d),

whose maxima are difficult to extract and do not accurately represent the locations of textons in the

original texture of Figure 5.2(a), and our texton locating method fails to accurately locate textons

in this case.

Fortunately, if a rough estimate of texton locations is provided, rather than the original image,

we can use the frequency of texton placement in the rough estimate as a means of determining the

dominant texton placement frequencies. We obtained a rough estimate of texton locations using the

correlation procedure described in Chapter 3 and the improvements described in Chapter 4. The

output of the texton locating algorithm is a binary image encoding texton locations. The discrete

Fourier transform calculated on this binary image is able to isolate the dominant frequencies that

determine texton placement. Figure 5.3(a) depicts the output of the texton finding procedure

for the texture of Figure 5.2(a), and Figure 5.3(b) depicts the power spectrum of Figure 5.3(a).

The power spectrum of the texton location binary image contains distinct peaks at frequencies

responsible for texton placement. If we isolate the proper peaks in this spectrum we can remove

any noise from the original texton location data, offering an improved estimate of texton locations.

We offer a sophisticated thresholding algorithm that isolates the dominant frequencies of texton

placement from texton location data. As a pre-processing step, we apply a binary threshold to the

power spectrum. This is depicted in Figure 5.3(b). We set the threshold to one third of the average

power in the image, given by the DC component in the centre of the power spectrum. We have
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(a) A texton locating re-
sult.

(b) The power spectrum of
(a).

(c) A threshold applied to
the power spectrum.

(d) Morphological shrink-
ing of (c).

Figure 5.3: Thresholding the texton location binary image allows us to correctly
extract the frequencies responsible for texton placement.

obtained positive results with this threshold, and did not need to change it for any image samples.

However, it is conceivable that some texture samples would require a different threshold and so

we set it as an optional parameter of the algorithm. Figure 5.3(c) depicts the binary threshold

of the power spectrum of Figure 5.3(b). To locate exact points within the thresholded image,

morphological shrinking is applied, which removes pixels from the boundary of a region, ultimately

reducing each region in the image to a single pixel. This result is depicted in Figure 5.3(d).

To isolate the dominant frequencies from the thresholded and morphologically shrunk power

spectrum, we make some assumptions. First, from the definition of near-regular texture [45] we

assume that texton placement can be approximated using two translation vectors [24], implying

that texton placement is determined by two dominant frequencies. Second, we assume that the

binary image specifying texton locations contains few errors. Unfortunately, we have not been able

to obtain an analytical rule stating the tolerated amount of error; the acceptable quantity allowed

depends on each particular texture.

The locations in the power spectrum closest to the image centre correspond to the lowest

frequencies in the image. Thus, the frequency located at the peak closest to the power spectrum’s

centre determines the lowest frequency necessary for texton placement. Figure 5.4(a) highlights

this peak and its symmetric partner (the power spectrum is symmetric about the origin [8]). These

peaks specify one frequency that governs texton placement. Through the definition of near-regular

texture, we assume that the two peaks determining the second frequency that governs texton

placement are at locations approximately orthogonal to the line between the two peaks determining

the first frequency governing texton placement. We find these next two peaks by searching within

the β region of influence defined by the closest peak and its symmetric pair.

The success of the β region of influence in constructing a lattice from texton location data lends

support to the use of the same structure in determining the frequency of texton placement. In fact,

peaks in the power spectrum of the texton locating data are placed in arrangements similar to the

local arrangements found in texton location data, especially when assuming that texton placement
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(a) Points closest to the image centre
have been located.

(b) β = 0.4. (c) β = 0.8.

(d) β = 1.3. (e) Four peaks defining texton place-
ment have been found.

(f) Gradient descent creates a region
around each peak.

Figure 5.4: Locating the translation vectors of texton placement.

is approximated by two translation vectors.

We thus search for points within the β region of influence determined by the peak closest to

the image centre and its symmetric pair. β is initially set to 0, and iteratively increased until a

peak lies within the lune defined by β. At each iteration β is increased by 0.1, which has provided

good results for our tests. Figure 5.4 depicts several iterations of the iterative procedure. Once a

peak is found within the β region of influence, that peak and its symmetric partner are deemed the

next nearest peaks to the image centre and the four peaks necessary in extracting the translation

vectors which determine texton placement have been found. Figure 5.4(e) highlights all four peaks

discovered using this procedure.

However, the peaks that have been found each represent single frequencies, and texton placement

is often defined by multiple frequencies. We account for this by expanding the region around each

peak found using a gradient search, performed within the power spectrum, to include multiple

frequencies in the final output. The gradient search is straight-forward. First, we account for errors

in the morphological shrinking process by performing a gradient ascent at each of the four found

peaks. If a neighbour of one of the peaks is larger than the peak itself, we move the peak to

the larger neighbour, pushing each peak to a local maxima. From these local maxima we create

regions encompassing a selection of frequencies by marking the points visited during a gradient

descent. The marked regions form an image mask that selects the proper frequencies from the

power spectrum (Figure 5.4(f)).
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(a) Inverse Fourier transform of Figure
5.4(f)

(b) Non-maximal suppression applied to
the inverse Fourier transform.

Figure 5.5: Inverse Fourier transformation of the frequencies responsible for texton
placement followed by extraction of maxima.

The gradient descent procedure isolates the frequencies responsible for texton placement from

the power spectrum. To determine an estimate of the actual locations of textons, these frequencies

are transformed to the spatial domain using the inverse Fourier transform, resulting in Figure

5.5(a). Non-maximal suppression locates peaks in this new surface, and provides an estimate of

texton locations in the original image. The final result is depicted in Figure 5.5(b).

Maxima in the surface of Figure 5.5(a) offer an alternate vision of texton locations. There is

now a problem with choosing between this vision and the one already obtained through correlation.

To obtain improved texton location data, we can combine these two visions using multiplication or

addition, producing a new surface by applying the mathematical operations to the original correla-

tion surface and the surface obtained through inverse Fourier transforming the proper frequencies

of the power spectrum. Non-maximal suppression is then applied to the new surface to obtain a

repaired texton locating result.

Figure 5.6 depicts the result of using multiplication and addition to repair a texton locating

result. Viewing the surfaces derived from each repair procedure, it is clear that for this texture mul-

tiplication results in prominent peaks, allowing non-maximal suppression to easily locate textons.

However, multiplication does not take into account much information about the original correlation

surface and may introduce errors into the texton locating result. We have found during testing that

multiplication introduces errors into the texton locating result more often than addition. On the

other hand, addition often does often not introduce textons at improper locations. However, addi-

tion may not include new textons where they may be needed because of the similarity of the new

surface to the original correlation surface. From this discussion, it is evident that both methods of

repair fail because they do not take into account the data already present from the original texton

locating procedure. Thus, we have developed a procedure that takes this data into account to

obtain an improved estimate of texton locations. We call this procedure local examination.
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(a) Original correlation surface. (b) Result of non-maximal suppression applied to the
original correlation surface.

(c) Multiplication of original and inverse Fourier trans-
formed surfaces.

(d) Result of non-maximal suppression applied to the
multiplication of surfaces.

(e) Addition of original and inverse Fourier transformed
surfaces.

(f) Result of non-maximal suppression applied to the
addition of surfaces.

Figure 5.6: The results of frequency-based repair on the success rate of texton
locating using addition and multiplication.
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Figure 5.7: We use N to augment O by searching for empty regions in O which
are centred at texton locations in N .

(a) Before frequency-based repair using local examina-
tion.

(b) After repair frequency-based repair using local ex-
amination.

Figure 5.8: The results of frequency-based repair using local examination. Errors
in the original texton locating process are highlighted with circles in Figure 5.8(a).
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To describe the local examination repair procedure we make a few definitions. We call the

non-maximal suppression result given as input to the repair algorithm O, and the non-maximal

suppression result acquired from the isolation of dominant frequencies of the power spectrum N .

In summary, we begin with O, and use N to add peaks to O that were not properly extracted

during non-maximal suppression. Figure 5.7 provides a visual example of this process. For each

texton location in N we centre a region at that texton location. We leave the size of the region

as a parameter of the algorithm, but have obtained good results with a size four thirds the width

and height of the user-selected texton. We now use N to augment O by introducing new texton

locations in O that previously did not exist. To do this, we look at each texton location n ∈ N

and project the region centred at n to O. We then search for texton locations in O that lie within

this projected region. If no texton locations in O lie within the projected region, we augment O

by including n. If a texton location in O lies within the projected region, we do not augment O.

Figure 5.8 depicts the result of repair overlaid on a texture sample. Program Listing D.8 lists the

frequency-based repair algorithm using local examination in full.

5.2 Results

We tested our frequency-based repair procedure and found that the method produces a corrected

estimate of texton locations given an accurate estimate of original texton locations. However, the

method is only useful on a small subset of textures, those that have few errors in the texton location

data despite correlation with an adequate feature space. Unfortunately, we have been unable to

find an analytical method for determining how many errors are allowed in the original texton

locating result in order for our procedure to still work. Furthermore, the procedure works only if

textons are placed using the assumption of two dominant texton placement frequencies. Despite

these drawbacks, we have found frequency-based repair an adequate method of obtaining texton

locations in difficult cases.

To test the performance of the frequency-based repair procedure, we repaired the texton locating

result of 30 textures. We first recorded a texton locating success rate for each texture given a single

user-selected sample texton. The success rate, S, is calculated as the number of correct texton

locations detected, C, minus the number of erroneous texton locations detected, E, divided by the

total number of textons in the image, T :

S =
C − E

T
.

Within the 30 images tested, the success rate ranged from 0.40 to 1.00 on a scale of 0.00 to 1.00.

We then ran the frequency-based repair algorithm using the multiplication, addition, and local

examination strategies on each of the 30 results, and recorded the new success rate. Note that

the local examination repair strategy can be applied given any estimate of texton locations. We
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(a) Addition of surfaces. (b) Multiplication of surfaces.

(c) Local examination of surfaces. (d) Addition of surfaces followed by local examination.

(e) Multiplication of surfaces followed by local examina-
tion.

Figure 5.9: The results of frequency-based repair on the success rate of texton
locating.
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therefore applied local examination to the texton location data produced from the multiplication

and addition repair strategies to see if combining these strategies can create a more accurate repaired

texton locating result than using these strategies in isolation.

During testing, we encountered some cases where the texton locating success rate increased

dramatically after frequency-based repair, and some cases where the texton locating success rate

decreased. Figure 5.9 graphically depicts the results of these tests. Table E.7 contains the full

results of these tests. In the figures, the vertical axis records the success rate of texton locating

and the horizontal axis records the texture being tested. For all test cases, the local examination

strategy used a region size of four thirds of the width and height of the user-selected sample texton

size.

We have found that no repair strategy is able to improve the texton locating result in every

case. From the data we can establish that multiplication is not a good method of repairing a texton

locating result. A common problem with this technique is that too many texton locations are re-

ported. These erroneous locations dramatically decrease the texton locating success rate. Addition

provides better results than multiplication, and at times better results than local examination.

However, local examination most consistently improves upon the texton locating result. Overall,

repairing the texton locating result using local examination either increases or does not change the

success rate of texton locating in 27 out of 30 cases. Sequencing local examination with multiplica-

tion or addition generally provides better results than repair with multiplication or addition alone.

However, repair using local examination alone still provides the most consistent results out of any

method, and we examine the results of local examination more thoroughly in the remainder of this

section.

Two interesting data points in the results of repair with local examination have been highlighted

with letters in Figure 5.9(c). Data Point A depicts a vastly improved texton locating result, while

Data Point B depicts a reduced texton locating result.

Figure 5.10 depicts the successful repair result of Data Point A. The original texton locating

result is shown in Figure 5.10(a). The texton locating success rate in this example is 56% (textons

partially occluded by the image boundary are ignored when calculating success rate). After repair,

the texton locating success rate increases dramatically to 100%. The result is shown in Figure

5.10(b). This example shows how the frequency-based repair procedure is particularly useful in

correcting texton locating defects in textures with regularly arranged textons.

Figure 5.11 depicts the unsuccessful repair result of Data Point B. Figure 5.11(a) shows a correct

texton locating result. However, after applying the frequency-based repair procedure, errors in the

texton location data are introduced. The repaired result is shown in Figure 5.11(b). The repair

procedure fails on this texture sample because the placement of textons within the texture are not

accurately approximated by two translation vectors due to the perspective skew of the image.
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(a) Before frequency-based repair using local examina-
tion.

(b) After frequency-based repair using local examina-
tion.

Figure 5.10: The results of frequency-based repair using local examination with
a window four thirds the width and height of the user-selected texton size. Given a
texture with regularly spaced textons our procedure can repair many texton locating
defects.

(a) Before frequency-based repair using local examina-
tion.

(b) After frequency-based repair using local examina-
tion.

Figure 5.11: The results of frequency-based repair using local examination with
a window four thirds the width and height of the user-selected texton size. In this
case the repair procedure introduces errors in the texton locating result.

48



Figure 5.12: Using image features and frequency-based repair we are successfully
able to locate textons 90 out of 100 times.

In further testing, we attempted to correctly isolate textons in the 15 remaining failure cases out

of the 100 near-regular test textures cited in Section 3.2. Within these failure cases, we determined

that 5 results could be repaired. This gives a total of 90 successful texton extractions out of 100

textures using a combination of the standard correlation procedure of Chapter 3, and the extensions

discussed in this chapter. Figure 5.12 visually depicts this result.

As a last test, we tried to determine the number of textons which can be removed from a correct

texton locating result before frequency-based repair with local examination fails. To run the test

we first gathered 20 near-regular textures with perfect texton locating success rates. Success rate

is measured in the same way reported earlier:

S =
C − E

T
.

Texton locations were then randomly removed from the texton locating data of each of the 20

texture samples. At intervals where 1, 5, 10, 15, ..., and 75 percent of the texton locations had

been removed, we recorded the texton locating success rate after frequency-based repair. We then

repeated the experiment four times for each texture to remove any bias related to the random order

with which texton locations had been removed.

Figure 5.13 depicts the results of these tests for four textures. Full results can be found in

Figures E.1 to E.9. The curve in each figure represents the average texton locating success rate

of the four trials. Error bars at each data point record the lowest and highest texton locating

success rate of the four trials. The four results displayed here have been chosen based on the

perceived regularity of each texture. We can see from Figure 5.13(a) that the frequency-based

repair procedure using local examination is able to create a correct texton locating result from

regular texture when as many as 60% of textons have been removed. The results are not as strong
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(a) Regular texture. (b) Near-regular texture.

(c) Slightly irregular texture. (d) Irregular texture.

Figure 5.13: Results of testing for robustness of the local examination frequency-
based repair strategy. The horizontal axis records the number of texton locations
removed from the data and the vertical axis records the texton locating success rate
after frequency-based repair.

Figure 5.14: A histogram recording the point of first failure after a percentage of
textons have been removed.
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when texture becomes irregular, where in some cases as little as 5% of textons need to be removed

from the data before the frequency-based repair procedure using local examination fails to create

a correct texton locating result. In fact, 5% and 60% represent the extreme ranges of the number

of texton locations which may be removed from the data before frequency-based repair fails. The

median value of the number of textons that may be removed before the repair algorithm fails is

10%, however, this number does not take into account the severity of error, which is in most cases

1 error in the entire texton locating result. On average during our tests, about 18% of textons may

be removed from the data before frequency-based repair fails.

Figure 5.14 depicts a histogram recording the point where frequency-based repair first fails to

recreate the texton locating result. The horizontal axis reports the percentage of texton locations

removed from the data, and each bin stores the quantity of test textures which failed when that

percentage of texton locations had been removed. From the histogram, we can see that the majority

of failures occur when between 10% and 15% of texton locations have been removed from the data.

Thus, the texton locating data must be nearly correct for our frequency-based repair procedure to

improve the texton locating result.

We have found evidence that frequency-based repair works well on textures whose textons are

located approximately the interesection of two translation vectors. In other words, textures without

much geometric variation in texton placement are good candidates for frequency-based repair. A

second trend we have witnessed during evaluation of frequency-based repair is that errors in the

texton locating result must be localized for frequency-based repair to work. If, for example, an

entire row of texton locations is missing from the data, the frequency-based repair procedure will

incorrectly estimate the frequencies responsible for texton placement, and fail to repair the result.

The frequency-based repair algorithm discussed in this section can be applied to only a small

number of texture cases. The algorithm works well in cases where the majority of textons are

correctly extracted, with a only a few textons missing. Although there is no method of analytically

determining the maximum number of holes that are allowed before the algorithm fails, we have

estimated that approximately 90% of textons must be present for the algorithm to work correctly.

This seems like an imposing number, but the texton locating techniques already developed ensure

we are able to locate most, if not all, textons in a typical texture. The algorithm does not work

well when given a poor estimate of initial texton locations. If this is the case the algorithm has a

difficult time determining the true frequencies responsible for texton placement. The results of our

testing are not strong enough to allow us to recommend using frequency-based repair in all texton

locating cases. However, the frequency-based repair procedure is meant to be used as a last resort

when texton locating is mostly accurate, and in this situation it provides a corrected estimate of

texton locations suitable for repairing a texton locating result.
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Chapter 6

Lattice Construction

In Chapter 3 we discussed the problem of locating textons in a near-regular texture. Given

this texton location information, we now turn to the problem of joining the textons in a graph

structure in order to form a lattice. The texton locations will be connected by edges in the graph.

More precisely, we wish to create a graph G = (V, E), where V is a set of texton locations, and

E = (vi, vj) is a set of edges, where vi, vj ∈ V . Each edge e ∈ E connects texton location v ∈ V to

its most perceptually sensible neighbours.

We present two methods of constructing a lattice from texton locations. The first method is

ad-hoc, and produces a sensible lattice for near-regular texture [62]. The ad-hoc method ignores

erroneous texton locations, but as texture becomes irregular this method fails to construct a per-

ceptually sensible lattice. We discuss the ad-hoc method in Section 6.1. To extend our result for

constructing a sensible lattice from irregular texture, we apply results from the proximity graph

literature to our problem. This graph-theoretic lattice construction method is described in Section

6.2

6.1 Ad-Hoc Lattice Construction

We present here an ad-hoc lattice construction procedure. Given a binary image of texton locations,

the procedure creates a lattice connecting the texton locations. This procedure can be used to create

a sensible lattice for many textures [62]. Furthermore, this procedure is able to create a sensible

lattice despite errors in the texton location data; the procedure correctly ignores texton locations

that are at improper positions, successfully overcoming errors due to misplaced textons.

The ad-hoc lattice construction procedure assumes that textons are placed in the texture at the

intersection points of two translation vectors defining texton placement, as described by Hamey [24].

This assumption is valid for many texture samples by the definition of near-regular texture [45].

We provide a method of estimating translation vectors by examining the correlation surface of a

texture sample.

A texture sample is given in Figure 6.1(a), and its smoothed correlation surface is given in

Figure 6.1(b). The largest peak in the correlation surface is the location where the image is exactly
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(a) An input texture. (b) The input texture’s smoothed
auto-correlation surface.

(c) Translation vectors determined
from the texture’s auto-correlation
surface.

Figure 6.1: The correlation surface of a texture can be used to find translation
vectors.

correlated with itself, which serves as the origin of the translation vectors. The next largest peak

in the surface is the maximum correlation of the image with a translated version of itself. The

vector from the image origin to this largest peak is the first translation vector. Similarly, the vector

from the origin to the third largest peak in the correlation surface is the second translation vector.

Following the advice of Leu [35] we require that the angle between the two translation vectors lie

between π
4 and 3π

4 , ensuring that the translation vectors can be used to approximate a tiling of the

plane. Until this condition is satisfied, we continually choose the next largest peak in the correlation

surface as the new second translation vector. Figure 6.1 depicts the result of translation vector

estimation.

During the lattice construction algorithm, texton locations can be of two types: actual and

potential. Texton locations are called actual when they have been added to the constructed lattice.

Texton locations are called potential when they have yet to be added to the constructed lattice,

but are still under consideration for addition to the lattice. Potential texton centres are points

of high correlation with the user-selected texton sample, and are determined by the locations of

local maxima in the surface produced by correlating the user-selected texton sample with the input

texture.

The lattice is constructed iteratively by extending edges from actual texton locations, and

searching for a potential texton location to add to the lattice. The algorithm makes use of a queue

storing actual texton locations; texton locations newly attached to the lattice are inserted into the

queue to be processed at a later time. Each texton location in the queue is processed by extending

edges to potential texton locations. The processing stops when the queue becomes empty, signalling

that no other potential texton locations can be added to the lattice.
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Listing 6.1: Pseudo-code of the ad-hoc lattice construction algorithm.

i n i t := s t a r t i n g texton cent re

Q. push ( i n i t )

while (Q i s not empty )

cu r r en t := Q. pop ( )

i f ( cu r r en t has not been v i s i t e d )

cu r r en t . v i s i t e d := t rue

for each 4 t r an s l a t i o n v e c t o r s s t a r t i n g at cu r r en t

l o c a t e best p o t e n t i a l texton cent re p near t r an s l a t i o n vec tor endpoint

Q. push (p)

end for

end i f

end while

We will now explain the lattice extraction algorithm in more detail. Program Listing 6.1 provides

pseoudo-code of the algorithm under discussion. First, we insert the texton location initially selected

by the user into the queue. This location should have the highest value in the correlation surface

for this texture. However, Lin’s smoothing algorithm may have distorted the correlation surface,

creating a higher correlation value at a different location, or altering the location of maxima.

Therefore, we require a search for the potential texton location closest to the user-selected texton

location. This potential texton location is the first location to be added to the queue and deemed an

actual texton location of the lattice. Having populated the queue with one texton location, we begin

a processing loop of removing a location from the queue, attaching the location to four neighbouring

potential texton locations using translational vectors, and adding these potential texton locations

to the queue as actual texton locations.

After removing a texton location from the queue, we check to see if it has been processed. If

so, we ignore this point and process the next location in the queue. If not, we mark this point as

processed and attempt to connect it to potential texton locations. To connect to potential texton

locations, we first compute the most likely position that actual locations exist. These locations are

given by the position of the current texton location added to the two translation vectors and their

negations. In total, we attempt to connect the actual texton location to four potential locations.

To make a connection we search within an ellipse described by a third of the length of each

translation vector, centred at the most likely texton location. The potential texton location with

highest correlation value lying within this ellipse is connected to the lattice; its endpoint is added

to the priority queue as an actual texton location. If no potential texton location exists within this

ellipse, we increase the ellipse size until a connection can be made. This increase in ellipse size

continues until a potential texton location is found and connected to the lattice. To avoid searching
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over a disproportionately large area of the image, we cancel the search if the ellipse extends outside

of the image boundary, and do not connect to a potential texton location in this direction.

Figure 6.2 depicts one lattice extraction iteration. The algorithm begins by inserting the first

actual texton location, the one selected by the user, into the processing queue (Figure 6.2(a)). This

texton location, call it a for actual, is then removed from the queue and processed. Processing

begins by extending a translation vector from a (Figure 6.2(b)), and searching in an ellipse around

this translation vector’s endpoint (Figure 6.2(c)). Once a texton location, call it p for potential,

has been found within this ellipse, it is marked as an actual texton centre and the edge (a, p) is

stored as an edge of the lattice (Figure 6.2(d)). Finally, p is added to the queue for later processing.

The algorithm continues by extending a translation vector from a in the opposite direction of the

first translation vector (Figure 6.2(e)), and a search is performed at the vector’s endpoint for a

potential texton location to add to the lattice (Figure 6.2(f)). If the search is successful, the edge

is added to the lattice, and the location found added to the queue (Figure 6.2(g)). The algorithm

continues in the same manner for the second translation vector (Figures 6.2(h) to 6.2(l)), until we

have completed processing a and extended the lattice in four directions (Figure 6.2(m)).

Each texton location added to the queue is then processed in turn in the same manner. Upon

completion of the algorithm, each texton location in the lattice will have been connected to its

perceptually sensible neighbours, given the assumption that two translation vectors approximate

texton placement. Figure 6.3 depicts the final result of lattice construction using this algorithm.

The output of the algorithm is the edge list corresponding to the texture’s lattice.

There are three special cases to note. The first special case occurs when our search for a texton

location extends outside of the image boundary, or if the translation vector endpoint lies outside

of the image boundary. In this case, we cancel the search since the correlation surface is often not

reliable near the boundary, and any texton locations found near the boundary may be erroneous.

This special case is depicted in Figure 6.4. We begin at the scenario depicted in Figure 6.4(a),

with the next actual texton location being processed circled in Figure 6.4(b). Figure 6.4(c) shows

the extension of a translation vector, and Figure 6.4(d) depicts the search ellipse centred at the

translation vector endpoint. No texton location is found within this ellipse, and so the size of the

search ellipse is increased. Eventually, in Figure 6.4(e), the size of the search ellipse is increased

until it intersects with the image boundary, and the search for a new texton location is cancelled,

resulting in Figure 6.4(f).

The second special case is if within our search ellipse we encounter two or more potential texton

locations. In this case we choose the texton location with highest correlation value. This case

is depicted in Figure 6.5. Figure 6.5(a) depicts the starting point, when an actual texton centre

has connected to three of its potential neighbours. We then extend a translation vector to the

neighbourhood of a fourth potential texton location in Figure 6.5(b), and in Figure 6.5(c) we
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure 6.2: One iteration of the lattice construction algorithm. The algorithm
begins at the user-selected sample texton and extends translation vectors out in
search of texton locations.
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(a) Extracted lattice overlaid on the correlation
surface.

(b) Extracted lattice overlaid on the input tex-
ture.

Figure 6.3: A lattice extraction result.

(a) (b) (c) (d)

(e) (f)

Figure 6.4: When a search for a texton location extends outside of the image
boundary, we cancel the search, and make no lattice edge extending in this direction.

(a) (b) (c) (d)

Figure 6.5: When two potential textons lie within the search ellipse, the one with
higher value in the correlation surface is chosen.
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(a) (b) (c) (d)

Figure 6.6: When the search ellipse encounters an actual texton location, we
connect to this texton location regardless of the contents of the remainder of the
search ellipse.

encounter within our search ellipse two potential texton locations. Here we choose the potential

texton centre most highly correlated with the user-selected texton sample, leaving the extra texton

not connected to the lattice in its current position. The resulting scenario is depicted in Figure

6.5(d).

The third special case is if within our search ellipse we encounter an actual texton location. In

this case we create an edge to the actual texton location without regarding the remaining contents

of the search ellipse. This case is depicted in Figure 6.6. The starting point is shown in Figure 6.6(a)

with the texton location being processed highlighted. From this location we extend a translation

vector to the right, which is shown in Figure 6.6(b), and create a search ellipse, which is shown

in Figure 6.6(c). Within the search ellipse lies an actual texton location, and regardless of the

remainder of the contents of the search ellipse we connect to the actual texton location, resulting in

Figure 6.6(d). A Matlab implementation of the lattice construction algorithm is given in Program

Listing D.6.

We have tested this lattice construction algorithm on a wide variety of textures, with good

results [62]. A distinct advantage of this algorithm is its adaptation to improperly located textons.

Specifically, the second special case, depicted in Figure 6.5, shows how the algorithm selects between

multiple potential texton locations. However, the algorithm fails when texton placement is not

determined by two translation vectors; even local irregularities in texton placement may result in

an inaccurate lattice construction. We have overcome this problem by obtaining more accurate

texton locating data using feature space, described in Chapter 4, using frequency-based repair to

correct for errors in the texton locating result, described in Chapter 5, or by using graph-theoretic

lattice construction methods, which do not assume that texton placement is determined using two

translation vectors. We describe the graph-theoretic methods in Section 6.2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.7: Ad-hoc lattice construction successes. Figure 6.7(b) is from the VisTex
database [33]. Figures 6.7(e) and 6.7(f) are from the database of Simoncelli. Figure
6.7(a) is from the database of DeBonet. All remaining figures are from the Brodatz
texture album [9].
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: Ad-hoc lattice construction failures. Figure 6.8(a) is from the database
of Simoncelli. The remaining figures are from the Brodatz texture album [9].

6.1.1 Results

Figure 6.7 depicts lattice extraction successes. Figure 6.7(a) shows our algorithm handle significant

irregularity in geometry and pixel intensity. Figures 6.7(b) to 6.7(f) depict extraction results

from a common class of near-regular textures, containing textons of slightly varying geometry

and colour. The honeycomb geometry of Figure 6.7(d) presents no problems for our algorithm.

Figures 6.7(g) and 6.7(h) depict a correct lattice extraction result from textures with significant

irregularities. Figures 6.7(i) to 6.7(k) depict successful lattice extractions from textures with similar

texton geometry, but varying texton colour. Finally, Figure 6.7(l) depicts a successful lattice

extraction from a texture with varying texton geometry, but similar texton colour.

Figure 6.8 depicts lattice extraction failures. Figures 6.8(a) and 6.8(b) are from irregular texture.

Strong texton similarity exists, but irregular texton placement hampers lattice extraction results.

Figure 6.8(c) contains a local irregularity, where our algorithm will sometimes fail. The brick texture

of Figure 6.8(d) is a failure case due to significant variation in brick colour. In Figures 6.8(e) and

6.8(f) the graph construction begins admirably but becomes lost amidst the high frequency noise.
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The ad-hoc lattice extraction algorithm has been shown successful for a wide variety of tex-

tures [62]. Our algorithm is successful particularly for textures with little geometric variation. In

this class of texture, if at least one potential texton centre lies within each texton, the ad-hoc lattice

construction algorithm will correctly construct a lattice by searching for the most plausible texton

centre in the area. Knowing this, we can relax the accuracy of the correlation and non-maximal

suppression procedures by selecting a smaller sample texton to use during correlation, increasing

the likelihood of more texton centres being located. This leads to the main strong point of the

algorithm, which is ignoring incorrectly placed texton centres to arrive at a sensible lattice despite

errors in the texton locating procedure.

Unfortunately, our algorithm may fail when textons are not aligned according to two translation

vectors. Even small irregularities in texton placement have the potential to severely affect the

output of the algorithm since errors may become compounded as new potential texton locations

are inserted into the processing queue based on erroneous texton locations already included in the

lattice. Due to this drawback, we have adapted research on proximity graphs to properly extract a

lattice from textures with irregular texton placement.

6.2 Graph-Theoretic Lattice Construction

Proximity graphs are a natural fit for the problem of connecting each point in a set to its nearest

neighbour. We reviewed proximity graphs in the Section 2.5 of the Literature Review, and showed

how a continuum of graphs are available for any point set. In what follows we apply the idea of

proximity graphs to the problem of lattice construction for near-regular texture.

Each of the graph types discussed in Section 2.5 may be applied to the problem of lattice

extraction, with varying results. As previously mentioned, the NNG may not be connected, and so

fails as a candidate lattice. The MST is by definition connected, but to have minimum length it

will connect each texton location to only one neighbouring texton location, violating the conditions

of a perceptually sensible lattice. We call these two graph structures sparse, in the sense that the

number of edges in the graph is below the required amount for a sensible lattice. On the other hand,

the DT is dense, in the sense that too many edges in the graph are present to provide a sensible

lattice. Eliminating these graphs leaves the RNG and the GG as candidates for constructing a

sensible lattice.

We have successfully used both the RNG and the GG to produce a lattice given accurate texton

locations. To compare the two graph types, consider four texton locations forming an approximate

square. The RNG connects the perimeter of the four points with edges, while the GG will add a

diagonal edge between the four points (see Figure 6.9). In this case, it is arguable which graphing

method produces the most sensible lattice. Now consider a set of texton locations that form a
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(a) The Gabriel graph of
four points.

(b) The relative neighbour-
hood graph of four points.

Figure 6.9: The Gabriel graph adds additional diagonal edges to a lattice con-
necting four points approximating a square, while the relative neighbourhood graph
does not.

rectangle with height significantly greater than width. In this case, the RNG may fail to create an

edge between the long sides of the rectangle, while the GG will create edges around the perimeter

of the points (see Figure 6.10). In this case, the GG is the sensible choice for lattice construction.

These observations imply that the RNG and GG can be used to create a sensible lattice in certain

situations, and that they can be used as complements towards the same goal. Often times, where the

RNG fails the GG will succeed, and vice-versa. Together, these two graphing methods succeed on a

wide variety of texture samples, but in some cases provide poor notions of neighbourliness between

texton locations, and thus fail to create a sensible lattice. We thus turn to a parameterized notion

of neighbourliness to provide a means of constructing a sensible lattice under conditions where the

RNG and GG fail.

We use the β-skeleton spectrum as a means of constructing a lattice from a set of texton

locations. Varying the value of β results in varying graph formations, ranging from the MST for β

approaching ∞, to a fully connected graph for β = 0. Figure 6.11 depicts the result of varying β on

a set of points, and Figures 6.12 and 6.13 depict the result of varying β in two lattice construction

examples. We have found that the β-skeleton spectrum allows for lattice construction that can be

tailored for the user’s needs. It would be advantageous to predetermine the β value necessary for

constructing a sensible lattice, so that no user intervention is necessary, but we leave this idea as

an area of future work.

6.2.1 Results

Lattice construction using a graph-theoretic approach provides a solution to our problem of ex-

tracting a lattice from near-regular texture. Unfortunately, a specific problem with the approach is

that it is unclear whether a certain value of β produces a more sensible lattice than another value

of β. However, because of the continuum of possibilities that are given by the β-skeleton spectrum,
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(a) Gabriel Graph of four
points.

(b) Relative Neighbourhood
Graph of four points.

Figure 6.10: The Gabriel graph sensibly connects four points approximating a
rectangle, while the relative neighbourhood graph does not.

(a) β = 80.0 (b) β = 5.0 (c) β = 4.0 (d) β = 2.0

(e) β = 1.0 (f) β = 0.8 (g) β = 0.6 (h) β = 0.4

Figure 6.11: A sequence of β-skeletons for a texture sample.
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(a) β = 0.0 (b) β = 0.5 (c) β = 0.8 (d) β = 1.0

(e) β = 1.3 (f) β = 1.5 (g) β = 1.8 (h) β = 2.0

Figure 6.12: A sequence of β-skeletons for a texture sample.

(a) β = 0.0 (b) β = 0.5 (c) β = 0.8 (d) β = 1.0

(e) β = 1.3 (f) β = 1.5 (g) β = 1.8 (h) β = 2.0

Figure 6.13: A sequence of β-skeletons for a texture sample.
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if we are given correct texton locations a suitable lattice may be found using this method. We leave

automatic determination of an appropriate β value as future work. Program Listing D.7 references

a Matlab program for constructing β skeleton for a set of textons.

Figure 6.14 shows some results of graph-theoretic lattice construction. Figures 6.14(a) and

6.14(b) show how graph-theoretic lattice construction can produce a sensible lattice in cases where

the ad-hoc method fails. Specifically, the textons in these two images follow an irregular placement

pattern, which poses no problem for graph-theoretic lattice construction when the textons are

correctly located. Figures 6.14(c) and 6.14(d) depict successful lattice construction in quite regular

images using β values of 1.0 and 2.0, respectively. Figures 6.14(e) and 6.14(f) show two forms of

lattice construction using β values of 1.0 and 2.0, respectively. The result of using β values of 1.0

and 2.0 are shown again in Figures 6.14(g) and 6.14(h). Figure 6.14(i) depicts a lattice construction

result with a β value of 1.8.

These results highlight the importance of using a proper value of β for lattice construction. In

our tests, we have found that a good value for β is in the range 1 ≤ β ≤ 2, with values of β = 1

(GG) and β = 2 (RNG) satisfactory in most cases. As noted previously, it is common for a β

value of 1 to create additional edges between textons that form an approximate square, and for a β

value of 2 to fail when considering a lattice with textons that form an approximate rectangle. By

altering β between the values of 1 and 2, we can consistently arrive at a correct lattice extraction.

A notable area of future work would be to adaptively choose a β value depending on the layout of

texton locations.

In this chapter, we have discussed two methods of constructing a lattice given the location of

textons. Both methods construct a sensible lattice given appropriate input, with the ad-hoc method

having the benefit of being able to ignore erroneous data, and the graph-theoretic method having

the benefit of being able to construct a lattice given irregularly placed textons.
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(a) β = 2.0 (b) β = 2.0 (c) β = 1.0

(d) β = 2.0 (e) β = 1.0 (f) β = 2.0

(g) β = 1.0 (h) β = 2.0 (i) β = 1.8

(j) β = 1.0 (k) β = 2.0 (l) β = 2.0

Figure 6.14: Graph-theoretic lattice construction results. Figures 6.14(a) and
6.14(b) are from the database of Simoncelli. Figure 6.14(c) is from the Brodatz
texture album [9]. Figure 6.14(i) is from the VisTex texture database [33]. The
remaining figures are from the CMU Near-Regular Texture Database [13].
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Chapter 7

Conclusions and Future Work

In this thesis, we have presented a method for extracting a lattice from near-regular texture.

The method has been divided into two core portions: texton locating and texton graphing. We

use correlation to locate textons; correlation of a sample texton with the input texture produces

a surface whose maxima correspond to texton locations. Extracting these maxima using non-

maximal suppression locates textons in the input texture. To connect textons to form a lattice, we

have presented two texton graphing procedures: an ad-hoc procedure is used to connect textons

which are placed in the texture at the intersections of two translation vectors, and the graph

theoretic procedure uses the idea of proximity graphs to connect textons whose neighbourhoods

contain no other texton locations. Furthermore, we have presented work on improving the accuracy

of the texton locating method by correlating within feature space, and by repairing a result using

frequency-space analysis.

Our texton locating procedure has minor shortcomings. One of the goals of this research was to

automate lattice extraction for near-regular texture, which is only partially achieved with the results

presented in this thesis. A specific problem is the reliance on a user-selected sample texton which

is used to locate subsequent textons in the image. A method for algorithmically locating such

a sample texton would increase the automation of our result. Though many advances in image

segmentation and object recognition hold promise in automatically locating such a texton, the

generality of near-regular texture implies that this problem will remain unsolved for the foreseeable

future.

A similar problem arises when the user must blindly select the sample texton that yields the

best results for a texture sample. In some cases the choice of sample texton greatly affects the

texton locating result. However, it is not known a priori which sample texton will produce the

best result. If, given a texture sample, a method of evaluating the likelihood of success of texton

locating was available, we could further automate and further improve our algorithm.

Image features have improved the texton locating procedure in special cases. However, a large

avenue for future work is in evaluating and choosing image features suitable for texton locating. For

a given texture, a certain set of features may improve the texton locating result considerably, while

for a separate texture the same set of features may decrease the texton locating result. Applying
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and evaluating new image features is a rich area for future work.

Frequency-based repair may improve or reduce the texton locating success rate. In some cases

the procedure can repair a result to perfectly locate every texton in an image, while in other cases

the procedure can introduce errors into an already perfect result. A method for evaluating when

frequency-based repair should be applied would increase the automation and effectiveness of our

lattice extraction method.

In addition to the texton locating algorithm and its enhancements, we have provided two meth-

ods for constructing a lattice from texton locations. The first method is an ad-hoc procedure

designed specifically for the problem at hand. This procedure takes advantage of the structure of

most near-regular textures in assuming that texton placement is determined by two translation

vectors. The second graphing procedure handles those textures which do not meet this criteria,

solving the lattice construction problem in the general case.

Reliance on textons being placed using two translation vectors limits the applicability of our

ad-hoc lattice creation algorithm. More specifically, the range of textures that allow for successful

lattice extraction is limited. On the other hand, the procedure is able to ignore incorrect tex-

ton locations, and therefore contains an implicit method for removing unwanted texton locations

from the result, which we have found produces a correct lattice for a large variety of near-regular

texture [62].

The graph-theoretic lattice construction algorithms are able to construct a sensible lattice from

arbitrary input. However, a careful parameter selection for the algorithm is important as the

parameter choice affects the output result; an automated method for choosing the appropriate

parameter for each specific texture would be a worthwhile contribution. Furthermore, the graph-

theoretic algorithm has no method for ignoring incorrect texton locations, and so any errors in

texton locating propagate into the lattice construction process.

Another avenue of future work lies in combining the two lattice construction methods. Specifi-

cally, texton locations could be discovered using the ad-hoc lattice construction method of extending

translation vectors from textons which have already been located, and β graphs could be used to

determine if an edge should join each texton location found. Combining the two lattice construction

methods may result in a new method which correctly ignores incorrect texton locations and yet

creates a sensible lattice for arbitrary input.

A general problem we discovered during this research is the need for a method of evaluating

the quality of a lattice. For future work, an automatic lattice quality measure would be immensely

useful in automating lattice extraction for near-regular texture. Using the procedures provided

in this thesis along with a quality measure would allow us to locate textons using combinations

of several image features along with frequency-based repair, evaluating the texton locating result

for each combination, and choosing the combination best suited for the input texture. Through
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(a) Failure due to an irregularity of the input texture. (b) Failure due to high frequency detail within textons.

Figure 7.1: There are two cases where lattice extraction fails: irregularity of the
input texture and high frequency detail within textons.

the experience gained in this thesis, we make the claim that an adequate lattice will be planar,

and that in the majority of near-regular texture each texton will be connected to four neighbours.

These criteria combined with an analysis of the per-pixel deviation within each region defined by

the lattice may be used as a starting point for developing a lattice quality measure.

Perceptually sensible is an imprecise term, and we have provided no exact definition in this

thesis. An area of future work, closely related to measuring lattice quality, lies in creating a formal

specification of perceptually sensible. A starting point for this research may be creating an energy

function containing terms related to edge length, angle between adjacent edges, and the size of

lattice regions. Minimizing such an energy function may amount to discovering a quality lattice.

A last area of future work lies in removing any failure cases from our algorithm. In our database

of 100 near-regular textures, we observed 10 textures where we could not correctly extract a lattice.

Of these 10 failures, 3 may be classified as irregular. Although our procedure works for some

irregular textures, irregular texture in general is outside the scope of this thesis. Recalling the

statement of our problem, we wish to extract a lattice from near-regular texture, and we do not

consider failures due to texture irregularity as failures of our algorithm. Figure 7.1(a) depicts

a failed lattice extraction due to a texture being irregular. The 7 remaining failure cases occur

when textures possess high frequency detail within textons. In these cases, correlating a candidate

texton with other textons in the image proves difficult since all components of each texton must be

similarly aligned. An area of future work is in allowing our algorithm to correctly extract a lattice

from texture containing textons with high frequency detail. Figure 7.1(b) depicts a failed lattice

extraction due to a texture having textons which possess high frequency detail.

Applications of our work are varied. The problem was initially approached as a means of further

automating the near-regular texture synthesis algorithm of Liu et al. [45]. We have also extended
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our lattice extraction method to handle some textures which Liu et al.’s algorithm has difficult

synthesizing. Specifically, we are able to extract a lattice from textures with high G score, implying

that the texture is irregular. Given this limitation of Liu et al.’s algorithm, we have suggested a few

applications of an irregular texture lattice: texture replacement [41], grouping of repeated scene

elements [36], object recognition, shape from texture, texture classification, texture compression,

and texture blending.

Our algorithm can successfully extract a lattice from a wide variety of near-regular texture [62].

The procedure does have drawbacks, which have been outlined above, but these drawbacks are not

significant enough to limit the applicability of our result. The generality of near-regular texture

ensures that the problem of lattice extraction will be difficult to completely solve, and we believe

that our result is a step in the right direction.
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Appendix A

Image Processing Techniques

A.1 Canny Edge Detection

The Canny edge detection algorithm [10] contains five steps. First, filter out noise from the original

image by convolution with a Gaussian filter. Second, compute the image gradient using the Sobel

operator described in Section A.5. Third, compute edge direction of each pixel using the Sobel

method discretized into one of four directions: north, south, east, and west. Fourth, use non-

maximal suppression to create a eliminate thick edges. Fifth, use hysteresis to eliminate broken

edges.

A.2 Laplacian-of-Gaussian Filter and the Second Derivative

To approximate the second derivative of an image a Laplacian-of-Gaussian filter is used. The

Laplacian, denoted ▽2, is defined for continuous functions as

▽2g(x, y) =
∂2g(x, y)

∂x2
+

∂2g(x, y)

∂y2

and calculates the magnitude of the second derivative. However, the Laplacian function applied to

images is sensitive to noise. Smoothing the image with a Gaussian function,

G(x, y) = e−
x2+y2

2σ2 ,

removes noise from the image. Furthermore, both the Gaussian and the Laplacian functions are

applied to an image using convolution, which is a linear operation. Because of this linearity the

two functions can be combined before being applied to the image without compromising the result.

The resultant function is called the Laplacian-of-Gaussian,

h(x, y) =
(x2 + y2 − 2σ2)G(x, y)

2πσ6
∑

x

∑

y G(x, y)
.

We set the size of our Laplacian-of-Gaussian filter to a constant 5 × 5, with σ = 0.5.

A.3 Morphological Shrinking

Morphological shrinking reduces each connected region in a binary image to a single point using

multiple applications of erosion.

Erosion is performed by filtering a binary image with the structuring element
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









1 1 1

1 1 1

1 1 1











.

For each image location matching the structuring element we populate a new image with a single

value 1. This operation eliminates values of 1 from a regions boundary, making the region smaller.

To shrink each region to a single point we continually apply erosion, noting when only one pixel

remains in a region. When each region is reduced to a single pixel, morphological shrinking is

complete.

A.4 Non-Maximal Suppression

Non-maximal suppression eliminates an image pixel p if there is any pixel in p’s neighbourhood

with value larger than p. p is also eliminated if the neighbourhood around p intersects with the

image boundary.

Non-maximal suppression is sensitive to neighbourhood choice, and so care must be taken to

choose an appropriate neighbourhood. In our algorithm neighbourhood size is equal to the user-

selected sample window size.

A.5 Sobel Edge Detection and Image Gradient

The Sobel operator performs a gradient measurement on an image, emphasizing regions of high

frequency which correspond to edges. The filter can be used to approximate the image gradient,

as well as to detect image edges.

The Sobel operator consists of the pair of 3 × 3 filters

h1 =











1 2 1

0 0 0

−1 −2 −1











, h3 =











1 0 −1

2 0 −2

1 0 −1











.

These filters have high response to vertical and horizontal edges, respectively. The filters are

applied separately to the image and return a gradient measurement in each direction. For an

input image g, we represent the horizontal gradient as ∂g(x,y)
∂x

and the vertical gradient as ∂g(x,y)
∂y

.

Gradient magnitude at each pixel position (x, y) is thus calculated as

|▽g(x, y)| =

√

(

∂g(x, y)

∂x

)2

+

(

∂g(x, y)

∂y

)2

using the Pythagorean theorem.
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To detect edges in the image, we isolate maxima in the gradient image using a threshold; values

in the gradient greater than the threshold are reported as image edges. We use Otsu’s method [55]

to select the threshold.

The output of the Sobel operator can also be used to compute edge direction. Given the image

gradient in the x and y directions, edge direction is computed as

tan−1
(y

x

)

.

A.6 Unsharp Contrast Enhancement Filter

The unsharp contrast enhancement filter, also known as the unsharp mask, is a well-known tech-

nique for increasing the contrast of a photograph by sharpening image edges. In our implementation,

we use Matlab’s built-in unsharp filter, which is computed as the negative of the Laplacian with

parameter α. We set α to 0.2. The filter is given by

h =
1

α + 1











−α α − 1 −α

α − 1 α + 5 α − 1

−α α − 1 −α











.
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Appendix B

Colour Spaces

B.1 HSV Colour Space

HSV stores individual values of hue, saturation, and value. Hue varies from red through yellow,

green, cyan, blue, and magenta, specifying a colour. Saturation measures the amount of white in

the colour; a fully saturated colour contains no white and an unsaturated colour is a shade of gray.

Saturation is often referred to as the vibrancy or purity of the colour. Finally, value measures

colour brightness.

B.2 RGB Colour Space

RGB stores individual values of red, green, and blue. RGB is an additive colour model where

combinations of red, green, and blue are combined to form a colour.

B.3 YIQ Colour Space

YIQ stores a luminance value (Y) with two chrominance values (I and Q). The luminance records

the brightness of a colour in an image. Another way of looking at it is that luminance alone provides

gray-scale information for an image. The two chrominance values I and Q roughly correspond to

the amounts of blue and red in the image.
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Appendix C

The Fourier Transform

(a) A signal with added random
noise.

(b) The signals frequency based rep-
resentation.

Figure C.1: The Fourier transform projects a function varying over time to a func-
tion varying over frequency. Applying a threshold to the frequency representation
and inverse Fourier transforming the result removes unwanted frequencies from the
image.

The Fourier transform calculates the series expansion of a function in terms of its sine and

cosine components. For a continuous function f(x), the Fourier transform is defined as

F (s) =

∫

∞

−∞

f(x)e−i2πxsdx.

The Fourier transform returns complex numbers, but is typically represented by its magnitude and

phase rather than its real and imaginary parts. The magnitude, commonly referred to as the power

spectrum, is defined as

MF =
√

ℜ(F )2 + ℑ(F )2,

where ℜ(x) and ℑ(x) return, respectively, the real and imaginary factors of a complex number

x. The power spectrum provides the quantity of each frequency component in the function. On

the other hand, the phase provides the position where the frequency component lies within the

function. The phase is defined as

PF = arctan

(

ℑ(F )

ℜ(F )

)

.

To interpret the preceding formulae, it is advantageous to visualize the result in terms of a

function varying over time. The Fourier transform projects a function in the time domain to the

frequency domain, which is conveniently analyzed using the power spectrum. As an example, Figure

C.1(a) depicts a function varying in time. The function is a sinusoid with added random noise.

It is difficult to visually ascertain the frequency of the sinusoid from this function. However, the
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power spectrum of the function, depicted in Figure C.1(b) contains a distinct peak showing the

prominent frequency in the image.

The inverse Fourier transform is the reverse of the Fourier transform, projecting a function

in the frequency domain to the time domain. Mathematically, we can apply the inverse Fourier

transform to F (s) using the formula

f(x) =

∫

∞

−∞

F (s)ei2πxsds.

As a visual example, given the function in Figure C.1(b), the inverse Fourier transform reproduces

the original signal in Figure C.1(a).
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Appendix D

Program Listings

Listing D.1: The lattice extraction algorithm.

function [ edges ] = l a t t i c eEx t r a c t ( im)

% Perform the l a t t i c e e x t r a c t i o n a l gor i thm

%

% Input :

% im The image to e x t r a c t a l a t t i c e from

%

% Output :

% edges The edge l i s t r ep r e s en t i n g the e x t r a c t ed l a t t i c e

% Mean cen tre the image

imm = meancentre ( im ) ;

% Compute image f e a t u r e s here ( op t i ona l )

% Disp lay the inpu t image

f igure ;

imagesc( im ) ;

colormap gray ;

% Se l e c t a sample

sample = se l e c t s amp l e (imm) ;

% Corre l a t i on

surface = co r r e l a t e ( sample , imm) ;

% Smooth ( sharpens upon complet ion )

surface = smooth ( surface ) ;

% NMS

nms = nonmaximalsuppression ( surface , [ s ize ( sample , 1 ) s ize ( sample , 2 ) ] ) ;

% Frequency−based r epa i r ( op t i ona l )

nms = repa i r (nms , sample ) ;
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% Get the c en t r e s

[Y X] = find (nms ˜= 0 ) ;

% Graph

hold on ;

edges = relat iveNeighbourhoodGraph ( [Y X] ) ;

p lotgraph ( [Y X] , edges ) ;

Listing D.2: Selection of a sample from the input image.

function sample = se l e c t s amp l e ( im , fignum )

% Se l e c t a r e c t ang l e ( [ xmin ymin width he i gh t ] ) from the f i g u r e

% passed in to the func t i on . I f no argument i s given , the l a s t

% a c t i v e f i g u r e i s used .

%

% Input :

% im The image to s e l e c t a r e c t ang l e from

% fignum The f i g u r e where im i s drawn ( op t i ona l )

%

% Output :

% sample A rec t ang l e ( [ xmin ymin width he i gh t ] )

% Check i f we are g i ven a f i g u r e number

i f (nargin == 2)

f igure ( fignum ) ;

end

% Get a r e c t ang l e from the f i g u r e

r e c t = ge t r e c t ;

% Round the r e s u l t

r e c t = round ( r e c t )

% Extrac t a window from the image s e l e c t e d by the user

sample = im( r e c t ( 2 ) : r e c t (2)+ r e c t (4)−1 , r e c t ( 1 ) : r e c t (1)+ r e c t (3) −1 , : ) ;

Listing D.3: Correlation of an image window with an image.

function surface = co r r e l a t e (window , im)

% Corre l a te the con ten ts o f window wi th the con ten ts o f the image .

%

% Inputs :
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% window The window to c o r r e l a t e wi th

% im The image to c o r r e l a t e wi th

%

% Outputs :

% su r f a c e The c o r r e l a t i o n su r f a c e .

% Corre l a te each image p lane

for ( i = 1 : s ize ( im , 3 ) )

surface ( : , : , i ) = f i l t e r2 (window ( : , : , i ) , im ( : , : , i ) ) ;

end

% Average the r e s u l t s to g e t a s i n g l e su r f a c e

surface = mean( surface , 3 ) ;

Listing D.4: Lin’s smoothing algorithm [39].

function smoothed = smooth ( surface , windowSize )

% Smooths the su r f a c e parameter using the automatic Gaussian f i l t e r cho i ce

% gi ven by Lin e t a l . 1997. Sharpens once b e f o r e re turn ing .

%

% Inputs :

% su r f a c e The su r f a c e to smooth

% windowSize The s i z e o f the Gaussian window ( op t i ona l , d e f a u l t i s 5x5 )

%

% Outputs :

% smoothed The smoothed su r f a c e

% Check i f window s i z e i s s p e c i f i e d

i f (nargin < 2)

windowSize = 5 ;

end

% Set the i n i t i a l parameters

sigma = 1 ;

p0 = Inf ;

% Keep l oop ing

i t e r a t i o n = 0 ;

while ( i t e r a t i o n <= 10)

% Create a Gaussian f i l t e r
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g = f s p e c i a l ( ’ gauss ian ’ , windowSize , sigma ) ;

% Create an image o f the Gaussian f i l t e r padded wi th zeros

gCorr = zeros ( s ize ( surface ) ) ;

gCorr ( 1 : s ize ( g , 1 ) , 1 : s ize ( g , 2 ) ) = g ;

% Fourier transform each image

f 1 = f f t2 ( gCorr , s ize ( surface , 1 ) , s ize ( surface , 2 ) ) ;

f 2 = f f t2 ( surface , s ize ( surface , 1 ) , s ize ( surface , 2 ) ) ;

% Mul t i p l y the transforms

fR e su l t = f1 .∗ f 2 ;

% Inverse transform the r e s u l t

smoothed = i f f t 2 ( fR e su l t ) ;

% Ci rcu l a r l y s h i f t the r e s u l t back to the proper l o c a t i o n

% This va lue depends on the s i z e o f the window used in f i l t e r i n g

smoothed = c i r c s h i f t ( smoothed , [− f loor ( windowSize /2) −

. . . f loor ( windowSize / 2 ) ] ) ;

% Extrac t the number o f peaks in the su r f a c e

peaks = find ( imregionalmax ( smoothed ) == 1 ) ;

p1 = length ( peaks ) ;

% Check i f the peaks have increased or are l e s s than or equa l to zero

i f ( ( p1 >= p0) | | ( p1 <= 1))

break ;

end

% Get the peaks a c tua l l o c a t i o n s o f peaks from the su r f a c e

[ I J ] = ind2sub ( s ize ( surface ) , peaks ) ;

% Bui ld a kd t r e e based on the peaks

kd = kdTreeIn it ( [ I J ] ) ;

% Find the maximin d i s t ance between po i n t s

[ n m de l t a ] = kdTreeMaxiMin ( [ I J ] , kd ) ;
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% Update sigma using the new d i s t ance

sigma = sqrt ( d e l t a ) ;

% Update p0

p0 = p1 ;

% Increase the i t e r a t i o n count

i t e r a t i o n = i t e r a t i o n + 1 ;

end

% Sharpen the image as a f i n a l s t e p

smoothed = f i l t e r2 ( f s p e c i a l ( ’ unsharp ’ ) , smoothed ) ;

Listing D.5: The non-maximal suppression algorithm.

function Y = nonmaximalsuppression (X, windowSize )

% Compute the non−maximal suppress i on o f the image X wi th a s l i d i n g window

% of s i z e windowSize (1) by windowSize ( 2 ) . windowSize i s an array o f s i z e

% two , f i r s t e lement i s width and second element i s h e i gh t .

%

% Inputs :

% X The image to suppress

% windowSize The s i z e o f the s l i d i n g window ( d e f a u l t = 5) .

%

% Outputs :

% Y The suppressed image

% I n i t i a l i z e the output

Y = X;

% Set the d e f a u l t window s i z e

i f (nargin < 2)

windowSize (1) = 5 ;

windowSize (2) = 5 ;

end

% Make sure t ha t the window s i z e i s odd

i f (mod( windowSize ( 1 ) , 2) == 0)

windowSize (1) = windowSize (1) − 1 ;

end
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i f (mod( windowSize ( 2 ) , 2) == 0)

windowSize (2) = windowSize (2) − 1 ;

end

% I n i t i a l i z e some v a r i a b l e s

window = zeros ( windowSize ) ;

middle = ce i l ( windowSize /2 ) ;

% Pass the s l i d i n g window over the image

for ( i = 1 : s ize (X, 1 ) )

for ( j = 1 : s ize (X, 2 ) )

% Test i f we are i n s i d e the v a l i d reg i on

i f ( ( i >= middle ( 1 ) ) && ( i <= ( s ize (X, 1 ) − middle (1) + 1) )

. . . && ( j >= middle ( 2 ) )

. . . && ( j <= ( s ize (X, 2 ) − middle (2) + 1) ) )

% Gather the curren t window

window = X( i−middle (1)+1: i+middle (1)−1 ,

. . . j−middle (2)+1: j+middle (2) −1);

% Gather the cen tre p i x e l

midval = window( middle ( 1 ) , middle ( 2 ) ) ;

% I f any va l u e s in the window are g r ea t e r than the cen tre p i x e l ,

% d e l e t e the cen tre p i x e l

i f (max(max(window ) ) ˜= midval )

Y( i , j ) = 0 ;

end

else

% We don ’ t have a proper window so s e t the co l o r to b l a c k

Y( i , j ) = 0 ;

end

end

end

% Shrink u n t i l each po in t i s e x a c t l y one

Y = bwmorph(Y, ’ sh r ink ’ , Inf ) ;

Listing D.6: Ad-hoc lattice construction.

function edges = graph ( cen t r e s , s ta r t Index , primary , secondary , p a r t i a l )
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% Connect the c en t r e s found during tex ton l o c a t i n g i n to a l a t t i c e . The

% cons t ru c t i on beg ins at s tar t Index , and ex tends out using the primary and

% secondary t r a n s l a t i o n ve c t o r s to f i nd new tex ton l o c a t i o n s to add to the

% l a t t i c e .

%

% Inputs :

% cen t r e s 2xn array o f tex ton l o c a t i o n s

% s ta r t I ndex The i n t i a l t ex ton l o c a t i o n

% primary Primary t r an s l a t i o n ve c t o r

% secondary Secondary t r a n s l a t i o n ve c t o r

% p a r t i a l Corre l a t i on su r f a c e

%

% Outputs :

% edges The graph as an edge l i s t

% Keep a l i s t o f nodes a l ready processed , edge number , node degree and

% known cen t r e s

proce s sed = zeros ( s ize ( cen t r e s , 1 ) , 1 ) ;

edges = zeros ( 1 , 2 ) ;

edgeNumber = 0 ;

degree = zeros ( s ize ( cen t r e s , 1 ) , 1 ) ;

knownCentres = zeros ( s ize ( cen t r e s , 1 ) , 1 ) ;

boundary = zeros ( s ize ( cen t r e s , 1 ) , 1 ) ;

% Create a p r i o r i t y queue to ho ld the nodes o f the graph

pq = pqIn i t ( ) ;

% Create and i n s e r t the f i r s t node o f the queue

point . l o c a t i o n = star t Index ;

point . p r i o r i t y = 1 ;

pq = pqInse r t ( point , pq ) ;

% Check which v e c t o r l i e s c l o s e r to the x−ax i s and then :

% Compute a th r e sho l d based on the s i z e o f the major and minor axes o f the

% e l l i p s e de f i ned by the primary and secondary t r a n s l a t i o n ve c t o r s

i f (abs ( secondary ( 2 ) ) > abs ( primary ( 2 ) ) )

xAxis = d i s t (0 , 0 , secondary ( 1 ) , secondary ( 2 ) ) ;

yAxis = d i s t (0 , 0 , primary ( 1 ) , primary ( 2 ) ) ;

else
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yAxis = d i s t (0 , 0 , secondary ( 1 ) , secondary ( 2 ) ) ;

xAxis = d i s t (0 , 0 , primary ( 1 ) , primary ( 2 ) ) ;

end

% Divide x and y ax i s by three to c r ea t e a t h r e sho l d

% The yAxis i s the e l l i p s e a x i s l y i n g on the y ax i s ( x = 0)

yAxis = f loor ( yAxis /3 ) ;

xAxis = f loor ( xAxis /3 ) ;

% Loop u n t i l a l l p o i n t s have been processed

while ( pq . cu rS i ze ˜= 0)

% Get the next node to process

[ po int pq ] = pqRemove(pq ) ;

% Process t h i s node i f i t hasn ’ t a l ready been processed and i t ’ s not a

% boundary node

i f ( ( p roce s sed ( point . l o c a t i o n ) == 0) &&

. . . ( boundary ( point . l o c a t i o n ) == 0))

% Mark t h i s reg i on as processed

proce s sed ( point . l o c a t i o n ) = 1 ;

% Get the i , j l o c a t i o n o f the cen tre

I = cen t r e s ( point . l ocat ion , 1 ) ;

J = cen t r e s ( point . l ocat ion , 2 ) ;

% Get the t r a n s l a t i o n ve c t o r s

Py = primary ( 1 , 1 ) ; Px = primary ( 1 , 2 ) ;

Sy = secondary ( 1 , 1 ) ; Sx = secondary ( 1 , 2 ) ;

% Get the l o c a t i o n s o f t h i s node

% p l u s the t r a n s l a t i o n a l v e c t o r s

for ( i = 1 : 4 )

% Compute iNew jNew depending on the d i r e c t i o n

switch ( i )

case 1 ,

% ( I , J) + (Px ,Py)

iNew = I + Py ;

jNew = J + Px ;

case 2 ,
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% ( I , J) − (Px ,Py)

iNew = I − Py ;

jNew = J − Px ;

case 3 ,

% ( I , J) + (Sx , Sy )

iNew = I + Sy ;

jNew = J + Sx ;

case 4 ,

% ( I , J) − (Sx , Sy )

iNew = I − Sy ;

jNew = J − Sx ;

end

% Check i f the l o c a t i o n we are connected to l i e s ou t s i d e the

% boundary

i f ( ( iNew <= 1) | | ( iNew >= s ize ( p a r t i a l , 1 ) ) | | ( jNew <= 1)

. . . | | ( jNew >= s ize ( p a r t i a l , 2 ) ) )

boundary ( point . l o c a t i o n ) = 1 ;

else

e l l i p s e I n d e x = 1 ; % The number o f po i n t s w i th in e l l i p s e

b = yAxis ; % The Y ax i s t r e s h o l d

a = xAxis ; % The X ax i s t h r e sho l d

i f ( exist ( ’ w i t h i nE l l i p s e ’ ) == 1)

clear w i t h i nE l l i p s e ;

end

% Check i f each po in t l i e s w i th in an e l l i p s e

% de f ined by the primary and secondary

% t r an s l a t i o n ve c t o r s .

done = 0 ;

while ( t rue )

% Spec i f y some e l l i p s e parameters

h = jNew ; k = iNew ;

for ( j = 1 : s ize ( cen t r e s , 1 ) )

% Get a po in t to compare to

iComp = cen t r e s ( j , 1 ) ;

jComp = cen t r e s ( j , 2 ) ;
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% Define e l l i p s e parameters

x = jComp ; y = iComp ;

% Check i f t h i s po in t l i e s w i th in the e l l i p s e

i f ( e l l i p s e (x , y , h , k , a , b ) <= 1)

i f ( j ˜= point . l o c a t i o n )

w i t h i nE l l i p s e ( e l l i p s e I nd ex , 1 ) = j ;

e l l i p s e I n d e x = e l l i p s e I n d e x + 1 ;

end

end

end

% Check i f we connected to something

i f ( exist ( ’ w i t h i nE l l i p s e ’ ) == 0)

% No? Increase the t h r e sho l d

b = b + 0 . 2 5 ;

a = a + 0 . 2 5 ;

else

% Yes? Break from the loop

break ;

end

% Check i f t h i s e l l i p s e i s search ing ou t s i d e the

% boundary .

i f ( ( ( h−b) <= 1) | | ( ( h+b) >= s ize ( p a r t i a l , 1 ) ) | |

. . . ( ( k−a ) <= 1) | | ( ( k+a ) >= s ize ( p a r t i a l , 2 ) ) )

done = 1 ;

break ;

end

end

% Check i f we have exceeded the boundary in our search

i f (˜ done )

% Check i f one o f t h e s e i s a known tex ton cen tre

known = 0 ;

for ( j = 1 : s ize ( w i t h inE l l i p s e , 1 ) )

i f ( knownCentres ( w i t h i nE l l i p s e ( j ) ) == 1)

known = 1 ;
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knownLocation = w i t h i nE l l i p s e ( j ) ;

end

end

% Check i f a po in t i s a known cen tre do tha t

i f (known)

% Yes? Set t h i s as the next l o c a t i o n

best Idx = knownLocation ;

else

% No?

% Find the h i g h e s t c o r r e l a t i o n l o c a t i o n

maxCorrelat ion = 0 ;

for ( j = 1 : s ize ( w i t h inE l l i p s e , 1 ) )

% Get the coord ina tes o f a po in t

iLoc = cen t r e s ( w i t h i nE l l i p s e ( j ) , 1 ) ;

jLoc = cen t r e s ( w i t h i nE l l i p s e ( j ) , 2 ) ;

% Obtain the c o r r e l a t i o n va lue

c o r r e l a t i o n = pa r t i a l ( iLoc , jLoc ) ;

% Check i f we have a maximum

i f ( c o r r e l a t i o n > maxCorrelat ion )

maxCorrelat ion = co r r e l a t i o n ;

best Idx = w i t h i nE l l i p s e ( j ) ;

end

end

end

% bes t I d x = h i g h e s t c o r r e l a t i o n va lue

% Make sure t ha t the degree o f the curren t

% po in t i s l e s s than four

i f ( degree ( point . l o c a t i o n ) < 4)

% Check i f t h i s edge i s a l ready par t

% of the graph

done = 0 ;

for ( k = 1 : s ize ( edges , 1 ) )

i f ( i s e q u a l ( edges (k , : ) ,

. . . [ po int . l o c a t i o n best Idx ] )
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. . . | | i s e q u a l ( edges (k , : ) ,

. . . [ best Idx point . l o c a t i o n ] ) )

done = 1 ;

end

end

% Is t h i s edge a l ready par t o f the graph

i f (˜ done )

% No?

% Store t h i s edge as par t o f the graph

edges ( edgeNumber + 1 , : ) =

. . . [ po int . l o c a t i o n best Idx ] ;

edgeNumber = edgeNumber + 1 ;

% Increase the degree o f each o f t h e s e nodes

degree ( point . l o c a t i o n ) =

. . . degree ( point . l o c a t i o n ) + 1 ;

degree ( best Idx ) = degree ( best Idx ) + 1 ;

% Labe l t h e s e as known cen t r e s

knownCentres ( point . l o c a t i o n ) = 1 ;

knownCentres ( best Idx ) = 1 ;

% I f t h i s i s not a boundary node

% add the new cen t r e s

i f ( boundary ( point . l o c a t i o n ) == 0)

% Create the new po in t to add

newPoint . l o c a t i o n = best Idx ;

newPoint . p r i o r i t y = point . p r i o r i t y + 1 ;

% Add the new cen tre to the queue

pq = pqInse r t ( newPoint , pq ) ;

end

end

end

end

end

end

end
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end

function z = e l l i p s e (x , y , h , k , a , b)

z = ( ( ( x−h )\ˆ2)/ a \ˆ2) + ( ( ( y−k )\ˆ2)/b \ˆ2 ) ;

Listing D.7: Beta skeleton lattice construction.

function edges = betaGraph( cen t r e s , betaV)

% Construct a be ta graph o f the tex ton cen t r e s g i ven .

% Use the bru te f o r c e O(nˆ3) a l gor i thm .

%

% Input :

% cen t r e s The tex ton cen t r e s to graph

% be ta The be ta va lue f o r graph con s t ru c t i on

%

% Output :

% edges The edges o f the r e l a t i v e neighbourhood graph

% Cal cu l a te whether a po in t l i e s w i th in the reg i on de f ined by

% and the two inpu t po i n t s

edgeNumber = 0 ;

edges = zeros ( 1 , 2 ) ;

for ( i = 1 : s ize ( cen t r e s , 1 ) )

for ( j = 1 : s ize ( cen t r e s , 1 ) )

i f ( i == j )

break ;

end

draw = 1 ;

for ( x = 1 : s ize ( cen t r e s , 1 ) )

i f ( ( x == i ) | | ( x == j ) )

% Do nothing

else

% Check i f x i s i n s i d e the be ta reg i on

i n s i d e = in s ideBeta ( c en t r e s (x , : ) , c en t r e s ( i , : ) ,

. . . c en t r e s ( j , : ) , betaV ) ;

i f ( i n s i d e == 1)

draw = 0 ;

break ;
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end

end

end

i f ( draw)

% Check i f t h i s edge i s a l ready par t o f the graph

done = 0 ;

for ( k = 1 : s ize ( edges , 1 ) )

i f ( i s e q u a l ( edges (k , : ) , [ i j ] )

. . . | | i s e q u a l ( edges (k , : ) , [ j i ] ) )

done = 1 ;

end

end

i f (˜ done )

% Create an edge

edgeNumber = edgeNumber + 1 ;

edges ( edgeNumber , : ) = [ i j ] ;

end

end

end

end

Listing D.8: Frequency-based repair. Uses Program D.9 and D.10.

function rep = repa i r (nms , sample , th re sho ld )

% Look at the f requency domain r ep r e s en ta t i on o f the su r f a c e peaks in order

% to r epa i r i t

%

% Input :

% nms The su r f a c e to repai r , represen ted by a sequence o f

% impul ses

% sample The sample window

% th re sho l d The th r e sho l d app l i e d to the power spectrum

%

% Output :

% rep The repa i red su r f a c e

% Create the output su r f a c e

seg = zeros ( s ize (nms ) ) ;
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% Transform the su r f a c e to the f requency domain

fp = f f t sh i f t ( f f t2 ( double (nms ) ) ) ;

% Find the cen tre o f the image

I c en t r e = f loor ( s ize (nms , 1 ) /2 ) + 1 ;

Jcen t r e = f loor ( s ize (nms , 2 ) /2 ) + 1 ;

% Equa l i ze the image

mfp = equa l i z e (abs ( fp ) ) ;

% Find the maximum va lue in the image

maxval = max(max(mfp ) ) ;

% Set t h r e sho l d

i f (nargin == 3)

th re sh = mfp > th re sho ld ;

else

th re sh = mfp > maxval /3 ;

end

% Shrink u n t i l each po in t i s e x a c t l y one

th re sh = bwmorph( thresh , ’ sh r ink ’ , Inf ) ;

% Find the f our reg i ons in the su r f a c e corresponding to the fundamental

% f r e quenc i e s o f the image

% Find po in t l o c a t i o n s in the image

[ I J ] = find ( th re sh ˜= 0 ) ;

% Calcu l a te the d i s t ance to the cen tre

i f ( s ize ( I , 1 ) == 1)

rep = zeros ( s ize (nms ) ) ;

return ;

end

for ( i = 1 : s ize ( I , 1 ) )

d i s t an c e ( i ) = mdist ( [ I c en t r e Jcen t r e ] , [ I ( i ) J ( i ) ] ) ;

end
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% Sort the peaks by d i s t ance

[ s o r t ed idx ] = sort ( d i s t an c e ) ;

% Find the f i r s t po in t ( c l o s e s t )

f r eqp (1 ,1 ) = I ( idx ( 2 ) ) ;

f r eqp (1 ,2 ) = J ( idx ( 2 ) ) ;

% Find the second po in t ( symmetric to c l o s e s t )

f r eqp (2 ,1 ) = I c en t r e − ( f r eqp (1 ,1 ) − I c en t r e ) ;

f r eqp (2 ,2 ) = Jcent re − ( f r eqp (1 ,2 ) − Jcent re ) ;

% I t e r a t i v e l y increase the be ta reg i on determined by po i n t s c l o s e1 and

% c l o s e2 u n t i l one o f the o ther po i n t s in the image i n t e r s e c t wi th t h i s

% reg i on . The f i r s t po in t to i n t e r s e c t i s the next fundamental f requency

% ( along wi th i t s symmetric pa i r )

for ( betaV = 0 . 1 : 0 . 1 : Inf )

% Sc r o l l through a l l the po i n t s

found = 0 ;

for ( i = 2 : s ize ( I , 1 ) )

% Check i f we have encountered t h i s po in t b e f o r e

done = 0 ;

for ( j = 1 : s ize ( f reqp , 2 ) )

i f ( ( I ( idx ( i ) ) == freqp ( j , 1 ) ) && ( J ( idx ( i ) ) == freqp ( j , 2 ) ) )

done = 1 ;

end

end

% Check i f a po in t i s i n s i d e the be ta reg i on

i f (˜ done )

i f ( in s id eBeta ( [ I ( idx ( i ) ) J ( idx ( i ) ) ] ,

. . . f r eqp ( 1 , : ) , f r eqp ( 2 , : ) , betaV ) )

found = 1 ;

break ;

end

end

end

% Check i f we ’ ve found a reg i on i n s i d e the be ta graph
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i f ( found )

% Mark the po in t i n s i d e the be ta reg i on

f r eqp (3 ,1 ) = I ( idx ( i ) ) ;

f r eqp (3 ,2 ) = J ( idx ( i ) ) ;

% Find i t s symmetric pa i r ( su b t r a c t v e c t o r to prev i ous po in t from

% or i g i n )

f r eqp (4 ,1 ) = I c en t r e − ( f r eqp (3 ,1 ) − I c en t r e ) ;

f r eqp (4 ,2 ) = Jcent re − ( f r eqp (3 ,2 ) − Jcent re ) ;

% Quit a l l l oops

break ;

end

end

% Expand the reg i ons found wi th the be ta graph

repnms = expandregions ( freqp , mfp ) ;

% Mutiply the segmented image by the f o u r i e r image

repnms = f f t sh i f t ( repnms .∗ fp ) ;

% Transform the r e s u l t back to the s p a t i a l domain

repnms = real ( i f f t 2 ( repnms ) ) ;

% Find the maxima o f the repa i red c o r r e l a t i o n su r f a c e

repnms = nonmaximalsuppression ( repnms , [ s ize ( sample , 1 ) s ize ( sample , 2 ) ] ) ;

% Combine the o l d nms r e s u l t and the new repa i red nms r e s u l t . To do th i s ,

% f i nd a l l o f the peaks in the repa i red nms and cen tre the sample window

% around t h i s po in t . I f any peaks from the o l d su r f a c e l i e in t h i s window ,

% keep the o l d peaks . I f the window i s empty , we have a new peak .

% Find the peaks in the repa i red nms

peak = find ( repnms ˜= 0 ) ;

% For each peak in the repa i red nms su r f a c e

for ( i = 1 : s ize ( peak , 1 ) )

% Convert the peak to ( i , j ) coord ina tes

[ I J ] = ind2sub ( s ize (nms ) , peak ( i ) ) ;
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% Extrac t a window wi th in the o l d nms su r f a c e around the peak in the new

% nms su r f a c e

% Get the window coord ina tes

I sma l l = I − round ( s ize ( sample , 1 ) / 3 ) ;

I l a r g e = I + round ( s ize ( sample , 1 ) / 3 ) ;

Jsmal l = J − round ( s ize ( sample , 2 ) / 3 ) ;

J l a r g e = J + round ( s ize ( sample , 2 ) / 3 ) ;

% Make sure the coord ina tes are w i th in image range

i f ( I sma l l <= 0)

I smal l = 1 ;

end

i f ( I l a r g e > s ize (nms , 2 ) )

I l a r g e = s ize (nms , 2 ) ;

end

i f ( Jsmal l <= 0)

Jsmal l = 1 ;

end

i f ( J l a r g e > s ize (nms , 1 ) )

J l a r g e = s ize (nms , 1 ) ;

end

% Extrac t the window from the o l d image

window = nms( I smal l : I l a r g e , Jsmal l : J l a r g e ) ;

% Find the peaks w i th in the window

conten t s = find (window ˜= 0 ) ;

% Check i f the window i s empty

i f ( s ize ( contents , 1 ) == 0)

% The window i s empty , so i n c l ude the new peak in the o l d su r f a ce

nms( I , J ) = 1 ;

end

end

% Output the repa i red su r f a c e

rep = nms ;
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Listing D.9: Test if a point is indside a β region.

function i n s i d e = in s ideBeta (x , p , q , betaV)

% Returns 1 i f x i s i n s i d e the reg i on de f ined by p , q , and beta , 0

% otherw i se .

%

% Input :

% x The po in t to t e s t f o r i n c l u s i on

% p Point 1 o f the be ta

% q Point 2 o f the be ta

% betaV be ta parameter

%

% Output :

% i n s i s e 1 i f x i s i n s i d e the region , 0 o therw i se

% Error check

i f ( betaV < 0)

betaV

error ( ’ beta out o f range . Range i s : 0 <= beta <= In f ’ ) ;

return ;

end

% Handle the two s p e c i a l cases

i f ( betaV == Inf )

% The neighbourhood f o r be ta = In f i s a s t r i p between p and q

% Find the s l op e o f the l i n e pe rp i nd i cu l a r to l i n e p , q . ( s l o p e o f

% perp i nd i cu l a r l i n e i s n e ga t i v e r e c i p r o c a l o f r e gu l a r s l o pe )

m = −(q (1) − p (1 ) ) / ( q (2) − p ( 2 ) ) ;

% Find a second po in t on the l i n e y = mx − mp(1) + p (2) by

% s e t t i n g x to 0 and computing y

y1 = −m∗p (1) + p ( 2 ) ;

% Find a second p ion t on the o ther l i n e y = mx − mq(1) + q (2) by

% s e t t i n g x to 0 and computing y

y2 = −m∗q (1) + q ( 2 ) ;

% Check f o r i n c l u s i on in t h i s s t r i p

% Use s i gned area to determine t h i s (O’ Rourke )
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i f ( ( ( d e l t a (p , [ 0 y1 ] , x ) == 1) && ( de l t a (q , [ 0 y2 ] , x ) == −1))

. . . | | ( ( d e l t a (p , [ 0 y1 ] , x ) == −1) && ( de l t a (q , [ 0 y2 ] , x ) == 1) ) )

i n s i d e = 1 ;

else

i n s i d e = 0 ;

end

return ;

end

i f ( betaV == 0)

% The neighbourhood i s the l i n e between p and q .

% Return true i f x i s on t h i s l i n e .

% Use s i gned area to determine t h i s (O’ Rourke )

i f ( d e l t a (p , q , x ) == 0)

i n s i d e = 1 ;

else

i n s i d e = 0 ;

end

return ;

end

% Calcu l a te the d i s t ance between p and q

d i s t an c e = mdist (p , q ) ;

i f ( betaV >= 1)

% The neighbourhood f o r be ta >= 1 i s the i n t e r s e c t i o n o f two c i r c l e s

% of rad ius be ta ∗d (p , q )/2 cen tred at (1− be ta /2)p + ( be ta /2) q

% and ( be ta /2) p + 1−be ta /2) q .

% Find the cen tre and rad ius o f b a l l one

centreB1 = ((1 − betaV /2 ) .∗p + (betaV /2 ) .∗ q ) ;

radiusB1 = ( betaV/2)∗ d i s t an c e ;

% Find the cen tre and rad ius o f b a l l two

centreB2 = ((1 − betaV /2 ) .∗ q + (betaV /2 ) .∗p ) ;

radiusB2 = radiusB1 ;
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else

% The neighbourhood f o r be ta < 1 i s the i n t e r s e c t i o n o f two c i r c l e s

% of rad ius d (p , q )/2 be ta pass ing through both p and q .

% h t t p :// mathforum . org/ l i b r a r y /drmath / view /53027. html

% The midpoint between p and q

mid = [ ( p (1) + q (1) )/2 (p (2) + q ( 2 ) ) / 2 ] ;

% Find the cen tre and rad ius o f b a l l one

radiusB1 = d i s t an c e /(2∗betaV ) ;

centreB1 (1) = mid (1) + sqrt ( radiusB1 \ˆ2 −

. . . ( d i s t an c e /2)\ˆ2)∗ ( ( p (2) − q ( 2 ) ) / d i s t an c e ) ;

centreB1 (2) = mid (2) + sqrt ( radiusB1 \ˆ2 −

. . . ( d i s t an c e /2)\ˆ2)∗ ( ( q (1) − p (1 ) ) / d i s t an c e ) ;

% Find the cen tre and rad ius o f b a l l two

radiusB2 = radiusB1 ;

centreB2 (1) = mid (1) − sqrt ( radiusB2 \ˆ2 −

. . . ( d i s t an c e /2)\ˆ2)∗ ( ( p (2) − q ( 2 ) ) / d i s t an c e ) ;

centreB2 (2) = mid (2) − sqrt ( radiusB2 \ˆ2 −

. . . ( d i s t an c e /2)\ˆ2)∗ ( ( q (1) − p (1 ) ) / d i s t an c e ) ;

end

% Test i f x i s i n s i d e the two c i r c l e s

i f ( ( c i r c l e ( x ( 1 ) , x ( 2 ) , centreB1 ( 1 ) , centreB1 ( 2 ) ) <= radiusB1 )

. . . && ( c i r c l e ( x ( 1 ) , x ( 2 ) , centreB2 ( 1 ) , centreB2 ( 2 ) ) <= radiusB2 ) )

i n s i d e = 1 ;

else

i n s i d e = 0 ;

end

function z = c i r c l e (x , y , i , j )

% Function f o r a c i r c l e

z = sqrt ( ( x−i )\ˆ2 + (y−j )\ˆ2 ) ;

function a = area ( v1 , v2 , v3 )

% Calcu l a te the s i gned area o f the v e r t i c e s v1 , v2 , v3
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a = ( ( v2(1)−v1 ( 1 ) )∗ ( v3(2)−v1 ( 2 ) ) ) − ( ( v3(1)−v1 ( 1 ) )∗ ( v2(2)−v1 ( 2 ) ) ) ;

function d = de l t a ( v1 , v2 , v3 )

% Calcu l a te the d e l t a va lue . 1 i f v3 i s r i g h t o f v1−v2 , −1 i f l e f t , and 0

% i f on .

i f ( area ( v1 , v2 , v3 ) < 0)

d = 1 ;

e l s e i f ( area ( v1 , v2 , v3 ) == 0)

d = 0 ;

e l s e i f ( area ( v1 , v2 , v3 ) > 0)

d = −1;

end

Listing D.10: Expand regions using a gradient descent.

function exp = expandregions ( reg , surface )

% Expand the reg i ons using the su r f a c e as a guide . F i r s t ascend to the

% h i g h e s t connected p i x e l , then g rad i en t descend and add every p i x e l

% encountered to the l i s t .

%

% Input :

% reg The reg i ons to expand

% sur f a c e The su r f a c e used to con t ro l expansion

%

% Output :

% exp The segmentat ion

exp = zeros ( s ize ( surface ) ) ;

% At each point , g rad i en t ascend u n t i l we f i nd the l o c a l maxima

% nei ghbour ing t h i s po in t

for ( i = 1 : s ize ( reg , 1 ) )

% Se l e c t the po in t to dea l wi th

point = reg ( i , : ) ;

done = 0 ;

while (˜ done )

% Check i f one o f the 8 ne i ghbours i s g r ea t e r than t h i s po in t

org = surface ( point ( 1 ) , point ( 2 ) ) ;
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% North

curr = surface ( point (1) − 1 , point ( 2 ) ) − org ;

ptemp = [ point (1) − 1 , point ( 2 ) ] ;

% North−East

temp = surface ( point (1) − 1 , point (2) + 1 ) ;

i f ( ( temp − org ) > curr )

ptemp = [ point (1) − 1 , point (2) + 1 ] ;

curr = temp − org ;

end

% East

temp = surface ( point ( 1 ) , point (2) + 1 ) ;

i f ( ( temp − org ) > curr )

ptemp = [ point ( 1 ) , point (2) + 1 ] ;

curr = temp − org ;

end

% South−East

temp = surface ( point (1) + 1 , point (2) + 1 ) ;

i f ( ( temp − org ) > curr )

ptemp = [ point (1) + 1 , point (2) + 1 ] ;

curr = temp − org ;

end

% South

temp = surface ( point (1) + 1 , point ( 2 ) ) ;

i f ( ( temp − org ) > curr )

ptemp = [ point (1) + 1 , point ( 2 ) ] ;

curr = temp − org ;

end

% South−West

temp = surface ( point (1) + 1 , point (2) − 1 ) ;

i f ( ( temp − org ) > curr )

ptemp = [ point (1) + 1 , point (2) − 1 ] ;

curr = temp − org ;

end
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% West

temp = surface ( point ( 1 ) , point (2) − 1 ) ;

i f ( ( temp − org ) > curr )

ptemp = [ point ( 1 ) , point (2) − 1 ] ;

curr = temp − org ;

end

% North−West

temp = surface ( point (1) − 1 , point (2) − 1 ) ;

i f ( ( temp − org ) > curr )

ptemp = [ point (1) − 1 , point (2) − 1 ] ;

curr = temp − org ;

end

% Move the po in t in the proper d i r e c t i o n

i f ( curr > 0)

point = ptemp ;

else

done = 1 ;

reg ( i , 1 ) = point ( 1 ) ;

reg ( i , 2 ) = point ( 2 ) ;

end

end

end

% Create p r i o r i t y queue nodes out o f the po i n t s

for ( i = 1 : s ize ( reg , 1 ) )

i r e g ( i ) . l o c a t i o n = reg ( i , : ) ;

i r e g ( i ) . p r i o r i t y = 1 ;

end

% Now, p1 , p2 , p3 , p4 are the proper l o c a t i o n s f o r peaks in the su r f a c e .

% Do a g rad i en t descen t from the s e l o c a t i o n s to f i nd reg i ons to segment .

pq = pqIn i t ( ) ;

for ( i = 1 : s ize ( i r eg , 2 ) )

pq = pqInse r t ( i r e g ( i ) , pq ) ;

end
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while ( pq . cu rS i ze ˜= 0)

% Get the curren t po in t

[ po int pq ] = pqRemove(pq ) ;

% Mark t h i s po in t in the output

exp( point . l o c a t i o n ( 1 ) , point . l o c a t i o n ( 2 ) ) = 1 ;

% Get t h i s l o c a t i o n s f our neighbours , and process them

p1 = [ point . l o c a t i o n (1) − 1 , point . l o c a t i o n ( 2 ) ] ; % North

p2 = [ point . l o c a t i o n ( 1 ) , point . l o c a t i o n (2) + 1 ] ; % East

p3 = [ point . l o c a t i o n (1) + 1 , point . l o c a t i o n ( 2 ) ] ; % South

p4 = [ point . l o c a t i o n ( 1 ) , point . l o c a t i o n (2) − 1 ] ; % West

for ( i = 1 : 4 )

switch ( i )

case 1

t . l o c a t i o n = p1 ;

case 2

t . l o c a t i o n = p2 ;

case 3

t . l o c a t i o n = p3 ;

case 4

t . l o c a t i o n = p4 ;

end

% Set the po i n t s p r i o r i t y

t . p r i o r i t y = 1 ;

% Check the d i f f e r e n c e in magnitude o f the f requency domain

i f ( surface ( point . l o c a t i o n ( 1 ) , point . l o c a t i o n ( 2 ) ) −

. . . surface ( t . l o c a t i o n ( 1 ) , t . l o c a t i o n ( 2 ) ) > 0)

% Add t h i s new po in t to the queue

pq = pqInse r t ( t , pq ) ;

end

end

end
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Appendix E

Data from Testing

(a) (b)

(c) (d)

Figure E.1: Results of testing for robustness of the local examination frequency-
based repair strategy. The horizontal axis records the number of texton locations
removed from the data and the vertical axis records the texton locating success rate
after frequency-based repair. Part One.
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(a) (b)

(c) (d)

Figure E.2: Results of testing for robustness of the local examination frequency-
based repair strategy. The horizontal axis records the number of texton locations
removed from the data and the vertical axis records the texton locating success rate
after frequency-based repair. Part Two.

108



(a) (b)

(c) (d)

Figure E.3: Results of testing for robustness of the local examination frequency-
based repair strategy. The horizontal axis records the number of texton locations
removed from the data and the vertical axis records the texton locating success rate
after frequency-based repair. Part Three.
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(a) (b)

(c) (d)

Figure E.4: Results of testing for robustness of the local examination frequency-
based repair strategy. The horizontal axis records the number of texton locations
removed from the data and the vertical axis records the texton locating success rate
after frequency-based repair. Part Four.
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(a) (b)

(c) (d)

Figure E.5: Results of testing for robustness of the local examination frequency-
based repair strategy. The horizontal axis records the number of texton locations
removed from the data and the vertical axis records the texton locating success rate
after frequency-based repair. Part Five.
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(a) (b)

(c) (d)

Figure E.6: Results of testing for robustness of the local examination frequency-
based repair strategy. The horizontal axis records the number of texton locations
removed from the data and the vertical axis records the texton locating success rate
after frequency-based repair. Part Six.
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(a) (b)

(c) (d)

Figure E.7: Results of testing for robustness of the local examination frequency-
based repair strategy. The horizontal axis records the number of texton locations
removed from the data and the vertical axis records the texton locating success rate
after frequency-based repair. Part Seven.
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(a) (b)

(c) (d)

Figure E.8: Results of testing for robustness of the local examination frequency-
based repair strategy. The horizontal axis records the number of texton locations
removed from the data and the vertical axis records the texton locating success rate
after frequency-based repair. Part Eight.
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(a) (b)

(c) (d)

Figure E.9: Results of testing for robustness of the local examination frequency-
based repair strategy. The horizontal axis records the number of texton locations
removed from the data and the vertical axis records the texton locating success rate
after frequency-based repair. Part Nine.

115



Table E.1: Classification of errors in the texton locating procedure.

Texture Missing Textons Misplaced Textons

7.jpg 1 0

3.jpg 1 1

D18 s.o.jpg 1 1

D56 s.o.jpg 1 0

d18.pgm 1 1

d55.pgm 1 0

d66.pgm 1 0

d74.pgm 1 1

d84.pgm 1 1

d87.pgm 1 0

stones.jpg 1 0

yellow-peppers256.o.jpg 1 1

106 0631 IMG 001.sized.jpg 1 0

Fabric.0002.ppm 1 0

IMG 0060 001.sized.jpg 1 0

IMG 0066.sized.jpg 1 0

IMG 0070.sized.jpg 1 0

IMG 0071.sized.jpg 1 0

IMG 0081.sized.jpg 1 0

IMG 0094.sized.jpg 1 1

IMG 0112.sized.jpg 1 0

IMG 0237.sized.jpg 0 1

Texture2 025.sized.jpg 0 1

database 74.sized.jpg 1 1

fabric 01.sized.jpg 1 1

fabric 46.sized.jpg 1 1

fabric 66.sized.jpg 1 1

weave mod.jpg 1 0

Totals 27 13
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Table E.2: Test results of the sensitivity of texton extraction to choice of texton.
Column one reports the name of the texture, columns two through six report the
current texton selection, and column seven reports the total number of successful
texton extractions. 1 in the table represents a successful texton extraction. The
bottom row of the table reports the average number of successful texton extractions.

Texture One Two Three Four Five Successes

11.jpg 1 1 1 1 1 5

161.jpg 1 1 1 1 1 5

33 06 04 web.jpg 1 1 0 1 0 3

697.jpg 1 1 1 1 1 5

9.jpg 1 1 1 1 1 5

D103.jpg 0 1 1 0 1 3

D20.jpg 1 1 1 0 1 4

D22.jpg 1 1 1 1 1 5

D36.jpg 1 1 0 1 1 4

Fabric.0008 s.o.jpg 0 0 1 1 1 3

Fabric.0014 s.o.jpg 0 0 1 1 1 3

brick3 s.o.jpg 0 0 0 1 0 1

campbell256.o.jpg 1 1 1 1 1 5

d1.pgm 1 1 1 1 1 5

d22.pgm 1 0 1 0 0 2

d3.pgm 1 1 1 1 1 5

d35.pgm 1 1 1 1 0 4

d52.pgm 0 0 1 0 0 1

d55.pgm 0 0 0 0 1 1

d66.pgm 1 0 0 0 0 1

red-peppers256.o.jpg 1 0 0 1 1 3

roofing2.jpg 1 0 1 0 0 2

Buildings.0009.ppm 1 1 1 1 1 5

107 0703 IMG 001.sized.jpg 1 1 1 0 0 3

IMG 0203.sized.jpg 1 0 1 1 1 4

Average Success Rate 3.48

117



Table E.3: Test results of correlation with image features. Part One. Column
one reports the name of the texture, columns two through six report the current
feature space. Values of one in the table represent a successful texton extraction.
The bottom row of the table reports the percentage of successful texton extractions
per column.

Texture RGB Gradient Laplacian Sobel Canny

10.jpg 1 0 0 0 0

11.jpg 1 0 0 0 0

161.jpg 1 0 0 0 0

33 06 04 web.jpg 1 0 0 1 0

3.jpg 0 0 0 0 0

697.jpg 1 0 0 0 0

7.jpg 0 0 0 1 0

9.jpg 1 0 0 0 0

brick3 s.o.jpg 1 0 0 0 0

Buildings.0009.ppm 1 0 0 0 0

campbell256.o.jpg 1 0 0 0 0

cftpg45.jpg 1 0 0 0 0

checkerboard.o.jpg 1 0 0 0 0

college-inn256.o.jpg 1 1 1 1 1

d101.pgm 1 0 0 0 1

D103.jpg 1 0 0 0 0

d18.pgm 0 0 1 0 0

D18 s.o.jpg 0 0 0 0 0

d1.pgm 1 1 1 1 0

D20.jpg 1 0 0 0 0

D22.jpg 1 0 0 0 0

d22.pgm 1 0 0 0 0

D34.jpg 1 0 0 0 0

d34.pgm 1 0 0 0 0

d35.pgm 1 0 0 0 0

Percentage Successful 0.84 0.08 0.12 0.16 0.08
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Table E.4: Test results of correlation with image features. Part Two. Column
one reports the name of the texture, columns two through six report the current
feature space. Values of one in the table represent a successful texton extraction.
The bottom row of the table reports the percentage of successful texton extractions
per column.

Texture RGB Gradient Laplacian Sobel Canny

D36.jpg 1 0 0 0 0

d36.pgm 1 0 0 0 0

d3.pgm 1 0 0 0 0

d52.pgm 1 0 0 0 0

d53.pgm 1 0 0 0 0

d55.pgm 0 0 0 0 0

d56.pgm 1 0 0 0 0

D56 s.o.jpg 0 0 0 0 0

d64.pgm 1 0 0 1 0

d66.pgm 1 0 0 0 0

d6.pgm 1 1 0 0 1

d74.pgm 0 0 0 0 0

d84.pgm 0 0 0 0 0

d87.pgm 0 0 0 0 0

disc-lattice.o.jpg 1 1 0 0 0

Fabric.0008 s.o.jpg 1 0 0 0 0

Fabric.0014 s.o.jpg 1 0 0 0 0

fabric 30.sized.jpg 1 0 0 1 1

red-peppers256.o.jpg 1 1 1 0 1

roofing2.jpg 1 0 0 0 0

Tile.0007 c.o.jpg 1 1 1 1 0

tomatoes256.o.jpg 1 0 0 0 0

windowsP256.o.jpg 1 0 1 1 1

yellow-peppers256.o.jpg 0 0 0 0 0

zesta-crackers224.o.jpg 1 0 0 0 0

Percentage Successful 0.76 0.16 0.12 0.16 0.16
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Table E.5: Test results of correlation with alternate colour spaces. Part One.
Column one reports the name of the texture, columns two through seven report
the current colour space. Values of one in the table represent a successful texton
extraction. The bottom row of the table reports the percentage of successful texton
extractions per column.

Texture RGB Hue Saturation Value HSV Luminance

106 0631 IMG 001.sized.jpg 0 0 0 0 0 0

107 0702 IMG 001.sized.jpg 1 0 1 1 1 1

107 0703 IMG 001.sized.jpg 1 1 0 1 1 1

Buildings.0009.ppm 1 0 0 0 1 1

Fabric.0000.ppm 1 0 0 0 0 0

Fabric.0002.ppm 0 0 0 0 0 0

IMG 0029 001.sized.jpg 1 1 1 1 0 0

IMG 0055 001.sized.jpg 1 1 1 0 0 0

IMG 0060 001.sized.jpg 0 0 0 0 0 0

IMG 0066.sized.jpg 0 0 0 0 0 0

IMG 0068.sized.jpg 1 0 1 1 1 1

IMG 0070.sized.jpg 0 0 0 0 1 1

IMG 0071.sized.jpg 0 0 0 0 0 0

IMG 0075.sized.jpg 1 1 0 0 0 0

IMG 0079.sized.jpg 1 0 0 0 0 1

IMG 0080.sized.jpg 1 1 0 0 1 1

IMG 0081.sized.jpg 0 0 0 0 0 0

IMG 0083.sized.jpg 1 1 0 0 0 0

IMG 0085.sized.jpg 1 1 0 0 0 0

IMG 0086.sized.jpg 1 0 1 1 1 1

IMG 0094.sized.jpg 0 0 0 0 0 0

IMG 0098.sized.jpg 1 0 1 1 1 1

IMG 0112.sized.jpg 0 0 0 0 0 0

IMG 0118.sized.jpg 1 0 1 1 1 1

IMG 0125.sized.jpg 1 0 1 0 0 1

Percentage Successful 0.64 0.28 0.32 0.28 0.36 0.40
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Table E.6: Test results of correlation with alternate colour spaces. Part Two.
Column one reports the name of the texture, columns two through seven report
the current colour space. Values of one in the table represent a successful texton
extraction. The bottom row of the table reports the percentage of successful texton
extractions per column.

Texture RGB Hue Saturation Value HSV Luminance

IMG 0134.sized.jpg 1 1 1 0 1 1

IMG 0169.sized.jpg 1 0 0 0 0 0

IMG 0170.sized.jpg 0 0 0 0 0 0

IMG 0175.sized.jpg 1 0 0 0 0 0

IMG 0193.sized.jpg 1 1 1 1 0 0

IMG 0203.sized.jpg 1 0 1 0 0 1

IMG 0209.sized.jpg 1 1 1 1 1 1

IMG 0235.sized.jpg 1 0 1 0 0 0

IMG 0237.sized.jpg 0 0 0 1 1 1

IMG 1491.sized.jpg 1 1 0 0 1 1

IMG 4476.sized.jpg 0 0 0 0 0 1

IMG 4839.sized.jpg 1 0 0 0 0 1

Texture1 008.sized.jpg 1 0 0 1 1 1

Texture2 025.sized.jpg 0 0 0 0 0 0

cftpg45.jpg 1 1 0 1 1 1

database 74.sized.jpg 0 0 0 0 0 1

fabric 01.sized.jpg 0 1 1 0 0 0

fabric 30.sized.jpg 1 0 1 1 1 1

fabric 46.sized.jpg 0 1 1 0 0 0

fabric 66.sized.jpg 0 1 1 0 0 0

honeycomb2.jpg 1 1 0 0 1 1

james5.sized.jpg 1 0 1 0 0 0

weave mod.jpg 0 0 0 0 0 0

z1 honeycomb-texture.jpg 1 1 0 0 1 1

z2 101.jpg 1 0 0 1 1 1

Percentage Successful 0.64 0.40 0.40 0.28 0.40 0.60
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Table E.7: The effect of frequency-based repair on the success rate of texton
locating. Column one reports the name of the texture, columns two reports the
texton locating success rate before frequency-based repair, columns three to six
report the texton locating success rate after frequency-based repair using addition,
multiplication, averaging, and local repair methods.

Texture Original Addition Multiplication Averaging Local

IMG 4839.sized.jpg 0.40 0.54 0.18 0.20 0.23

IMG 0235.sized.jpg 0.54 0.69 0.60 0.95 0.90

IMG 0070.sized.jpg 0.55 0.57 0.62 0.48 0.45

IMG 0085.sized 0.58 0.88 0.63 0.88 0.88

IMG 0075.sized.jpg 0.61 0.50 0.44 0.22 0.39

107 0703 IMG 001.sized.jpg 0.61 0.61 0.27 0.18 0.18

IMG 0083.sized 0.63 0.70 0.77 0.80 0.70

IMG 0079.sized.jpg 0.67 0.77 0.90 0.73 0.60

Fabric.0000.ppm 0.67 0.94 0.89 0.68 0.71

Fabric.0002.ppm 0.67 0.56 0.85 0.89 0.84

database 74.sized.jpg 0.67 0.70 0.65 0.66 0.68

IMG 0175.sized.jpg 0.71 1.00 0.47 0.69 0.67

z2 101.jpg 0.75 1.00 1.00 1.00 1.00

IMG 0203.sized.jpg 0.78 1.00 1.00 0.95 0.95

107 0702 IMG 001.sized.jpg 0.80 1.00 0.98 0.96 0.96

IMG 0125.sized.jpg 0.81 0.87 0.92 0.91 0.94

Buildings.0009.ppm 0.86 0.88 0.92 0.94 0.89

IMG 0209.sized.jpg 0.88 1.00 1.00 1.00 1.00

fabric 30.sized.jpg 0.91 0.98 0.98 0.97 0.97

IMG 0080.sized.jpg 0.92 1.00 1.00 1.00 1.00

IMG 1491.sized.jpg 0.94 0.71 0.94 0.96 0.96

z1 honeycomb-texture.jpg 0.94 1.00 0.96 0.90 0.92

IMG 0134.sized.jpg 0.98 1.00 0.97 1.00 1.00

IMG 0068.sized.jpg 0.99 1.00 1.00 0.99 0.99

IMG 0098.sized.jpg 0.99 1.00 0.97 0.98 0.98

cftpg45.jpg 1.00 1.00 0.98 1.00 1.00

honeycomb2.jpg 1.00 1.00 1.00 1.00 1.00

IMG 0118.sized.jpg 1.00 1.00 0.97 1.00 1.00

IMG 0086.sized 1.00 1.00 0.69 1.00 1.00

Texture1 008.sized.jpg 1.00 1.00 0.97 1.00 1.00
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