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Abstract

Aurorae often break down into elongated filaments parallel to the geomagnetic field

lines (B) with cylindrically symmetric structures. The object of this thesis is to

study the ion distribution function and transport properties in response to the sud-

den introduction of a radial electric field (E) in such a cylindrical geometry. Both

collision-free and collisional situations are considered.

The thesis starts by solving a collision-free problem where the electric field is

constant in time but increases linearly with radius, while the initial ion density is

uniform in space. The attendant Boltzmann equation is solved by tracking the ions

back in time, thereby using the temporal link between the initial position and velocity

of an ion and its position and velocity at an arbitrary time and place. Complete

analytical solutions show that the ion distribution function is a pulsating Maxwellian

in time, and all transport parameters (e.g., bulk speed, temperature, etc.) oscillate

in time but independent of radius. If the ion-neutral collisions are taken into account

by employing a simple relaxation model, analytical solutions are also obtained. In

this case, the ion distribution function can be driven to horseshoe shapes which are

symmetric with respect to the E × B direction. The bulk parameters evolve in a

transition period of the order of one collision time as they go from oscillating to the

non-oscillating steady state.

In more realistic electric field structures which are spatially inhomogeneous but

still constant in time, a generalized semi-numerical code is developed under collision-

free conditions. This code uses a backmapping approach to calculate the ion velocity

distribution and bulk parameters. With arbitrarily selected electric field profiles, cal-

culations reveal various shapes of ion velocity distribution functions (e.g., tear-drop,

core-halo, ear-donut, etc). The associated transport properties are also obtained and

discussed.

Under both collision-free and collisional conditions, the effect of the density in-
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homogeneities at the initial time is studied in an electric field which is proportional

to radius and constant in time. With two profiles of the initial ion density for the

collision-free case, and one profile for the collisional case, complete analytical solu-

tions are obtained. The results reveal that the distribution function and the bulk

properties are now strongly dependent on radial position.

If the radial electric field is unable to stay constant with time but modulated by in-

coming charged particles, a fluid formalism is used to study the excitation of several

plasma waves under different kinds of initial conditions. These identified waves

include the ion cyclotron oscillation, the ion and electron upper-hybrid oscillations,

and the lower-hybrid oscillation.

The results of this thesis are expected to be applicable to high-resolution ob-

servations. Future work should also include the mirror effect and the formation of

conics in velocity space. Finally, the velocity distributions obtained in this thesis

could trigger various plasma instabilities, and this topic should also be looked at in

the future.
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Chapter 1

Introduction

1.1 Background

1.1.1 Ion velocity distributions in space

In local thermal equilibrium (LTE), the ion distribution function is described by a

Maxwellian distribution. However, in the solar-terrestrial system, numerous non-

Maxwellian distributions have been found with non-equilibrium characteristics such

as beams, temperature or pitch-angle anisotropies. For example, the SOHO space-

craft measured the distribution function of the coronal base and the extended solar-

wind acceleration region between 2 and 10 solar radii. Coupled with interplanetary

particle measurements going back several decades, the observations strongly sug-

gest that collisionless particles exhibit non-Maxwellian velocity distributions with

anisotropic ion temperatures and differential outflows (Cranmer 2002).

Another example of large distortions from equilibrium is the Io plasma torus

(Steffl 2005). The tidal heating of Io’s interior produces volcanos which expel neu-

trals (mostly O and S atoms) outward. Through electron impact and charge ex-

change reactions, the neutrals convert to ions (very intense emissions are seen for

O+, O2+, S+, S2+, and S3+). Voyager observations demonstrate that at 65 km/s

the S+ velocity distribution has a peak and that of O+ has a sharp shoulder, while

other ions could be more Maxwellian-like (Banaszkiewicz & Ip 1993). For electrons,

Voyager and Galileo spacecrafts suggest that they may actually be non-thermal or

at least have a non-thermal, high-energy tail (Frank & Paterson 2000).

In addition, in both the upstream and downstream regions of the Earth’s bow

shock, the Interball/Tail-probe satellite detected that the upstream ion population
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has a ring-like (or, halo) distribution, while in the downstream, the distribution has a

hot bell-like core and a flat tail (Yermolaev et al. 1997). Specifically on field-aligned

beams upstream of the bow shock, Cluster observations reported that: (1) parallel

to the magnetic field, the distribution is Maxwellian, and (2) perpendicular to the

magnetic field, it has a non-thermal, high-energy tail, bringing about a ratio of ∼3

between the perpendicular and parallel temperatures (Meziane et al. 2006).

Moreover, at altitudes ranging from 1000 km up through one Earth radius and

beyond, there is another kind of non-Maxwellian distribution, ion conics (Yau et

al. 1984). Rocket and satellite measurements showed that ions are concentrated

into cones in velocity space under different conditions, and the distribution peaks at

specific pitch angles, respectively.

Even below 1000 km, many direct observations have also shown the ion velocity

distributions to depart from the Maxwellian shape over wide areas. In particular,

the retarding potential analyser onboard AE-C satellite has produced convincing ev-

idence for ion velocity distributions with flat-top shapes compared to Maxwellians

(St-Maurice et al. 1976). The EISCAT incoherent scatter radar also detected the

flat-top-shaped distributions in poleward ion flow bursts in the dayside auroral iono-

sphere (Lockwood et al. 1987). The distributions were observed whenever the ion

drift exceeded the neutral thermal speed.

Another type of low-altitude non-Maxwellian ion velocity distribution has been

found in high-resolution GEODESIC rocket experiments (Burchill et al. 2004). It

is crescent-shaped in velocity space with a ring pattern, and was found in lower-

hybrid (LH) cavities. At 980 km altitude, 12 sequenced images were produced as the

payload flew through one cavity, displaying non-thermal distributions of transversely-

heated ions (Bock 2005). Some of the distributions revealed tails associated with the

energization of the ion population (Knudsen et al. 2004).

Artificial plasma disturbances can also produce non-Maxwellian distributions.

For instance, two dedicated burns of the space shuttle engines were implemented

over the Millstone Hill incoherent scatter radar (Bernhardt et al. 2005). The radar

recorded ionospheric density depressions resulting from recombination of the molec-
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ular ions with electrons. At the same time, radar spectra revealed unusual signatures

that may have been produced by ion ring-beam distributions.

1.1.2 Goal of the present research

From the above we can see clearly that non-Maxwellian distributions are frequently

present in different regions in geospace. Several possible causes have been proposed

for the deviation of the distribution from the Maxwellian equilibrium configuration

(St.-Maurice & Schunk 1979):

(1) it can be a consequence of the collisionless nature of the medium, particularly

in the presence of large or rapidly varying forces acting on the medium, (2) it can

occur when a minor constituent of a gas mixture experiences a force (say, E×B drift,

where E and B represent electric and magnetic fields, respectively) that differs from

the forces acting on the major constituent, (3) it can be the result of ion and neutral

species chemistry, producing kinetic energies which are substantially different from

thermal energies.

For the research related to this thesis, we will study how the interplay between the

auroral ionospheric plasma and the E×B drift affects the ion velocity distribution

with and without collisions with neutrals, in the presence of transverse electric fields

that change spatially and temporally. As shown below in Section 1.3, there are

many geophysical situations in auroral regions where the localized electric fields

vary quickly in space and time.

1.1.3 Importance of the problem

The importance of gaining a deep understanding of ion velocity distributions in the

ionosphere cannot be understated. First, this is simply a case of making sense of the

observations. For instance, when we observe conics, or horseshoe distributions, it

would be highly desirable to understand how they form, and to test the data against

particular theories.

Secondly, a large departure from an equilibrium Maxwellian distribution goes

hand in hand with important modifications to transport properties. For exam-
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ple, conics are very efficient at ’expelling’ ionospheric ions into the magnetosphere

through a mirror effect. Likewise, a strong temperature anisotropy will modify the

vertical transport, and strong skewness will create heat flow, etc.

Furthermore, a proper interpretation of ionospheric measurements (satellites,

rockets, radars) often depends on a knowledge of the velocity distribution. In the

data inversion process of the satellite measurements, for example, St-Maurice et al.

(1976) found that, if the temperature is above 2000 K, the interpretation can be se-

riously affected when the normally assumed ion Maxwellian distribution is used. For

example, the atomic to ion molecular ion density ratios can be affected by a factor of

2 or more, and for the very high temperature data (> 3000 K) the ion temperature

can be underestimated by as much as 2700 K.

Similar problems also exist in the spectral analysis of the radar waves scattered

incoherently from the ionosphere above 150 km. At these altitudes, the ion-neutral

collision frequency is small compared to the ion gyrofrequency. Raman (1980) and

Raman et al. (1981) found that electric fields larger than 45 mV/m could cause a

serious underestimation of the electron-ion temperature ratio, sometimes by as much

as a factor of 2. This results in an error of several hundred degrees Kelvin in the

interpreted electron and ion temperatures.

Last but not least, large departures from Maxwellian may play a role in the

excitation of plasma micro-instabilities. In the auroral F region, for example, if the

perpendicular electric field exceeds∼50 mV/m, the non-Maxwellian distribution may

excite short wavelength instabilities of ∼10-20 cm (Ott & Farley 1975; St.-Maurice

1978).

1.1.4 Focus and organization

The thesis focuses on the high-latitude ionospheric ion velocity distributions, in var-

ious inhomogeneous electric field configurations, with and without time dependence,

and under collision-free and collisional conditions. The problem is studied in cylin-

drical geometries.

For the remainder of this chapter, we start with a brief discussion of different
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scales of electric fields that are formed in the high-latitude ionosphere. Then, we

give a review of earlier work on non-Maxwellian distributions produced by the in-

troduction of strong electric fields in the ionosphere. We finish the chapter with a

description of the work presented in subsequent chapters.

1.2 Large scale convective electric fields

In auroral regions, the ionosphere is permeated by strong electric fields which can be

as high as several hundred mV/m. Contrary to those at other latitudes, these electric

fields are not produced by neutral wind dynamos, but rather by processes that go

back to the solar-wind–magnetosphere–ionosphere (SMI) electrodynamic coupling

processes. Fig.1.1 shows a cartoon of the SMI system (Curtis 2005). Every part

is labeled for the geospace (left panel) and the magnetosphere (right panel). The

electrodynamics in the SMI system is described in great detail by, e.g., Akasofu

(1977,1981a,b); Kan & Akasofu (1989); Lyon (2000), and Oulu Space Physics Group

(2006).

The boundary between the solar wind and the magnetosphere is the magne-

topause. Roughly, it has the shape of a bullet immersed into the solar wind. On the

dayside (upstream) of the Earth, the dynamic pressure of the solar wind compresses

the magnetosphere. A bow shock is thus formed which separates the solar wind and

the magnetopause at about 10-12 Earth radii (RE) away from the Earth. The region

between the bow shock and the magnetopause is called the magnetosheath. The

reconnection between the interplanetary magnetic field (IMF) and the geomagnetic

field on the dayside leads to funnel-shaped areas, called the polar cusps. Through

the cusp, the magnetosheath plasma directly enters into the magnetosphere. On

the nightside (downstream), the magnetopause is highly elongated with a radius

of 20-25RE and stretches well past 200RE, forming the magnetotail. The night-side

magnetosphere consists of lower density tail lobes and a higher density plasma sheet.

The solar wind interacts with the magnetosphere in two ways. One is the quasi-

viscous interaction (Ratcliffe 1972), as shown in the upper panel of Fig.1.2, and the

other is the magnetic merging and reconnection (Dungey 1961), as shown in the lower
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Figure 1.1: Solar-wind–Magnetosphere–Ionosphere (SMI) system
(Curtis 2005). (a) Geospace; (b) Magnetosphere.
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Figure 1.2: Two types of the solar wind-magnetosphere interaction.
(a) Quasi-viscous processes (Ratcliffe 1972); (b) Magnetic merging and
reconnection (Dungey 1961).

panel of Fig.1.2. In the quasi-viscous mode, the solar wind produces circulatory shear

flow of plasma which creates a drag at A and B. The drag is carried by magnetic

field lines on the tubes AC and BD to enter the low ionosphere at C and D. At

the ionospheric footprint of this pattern, a two-cell pattern is formed, as shown in

Fig.1.3(a). In the figure, the green and grey shading in both diagrams indicate the

auroral oval and polar cap.

For the magnetic merging and reconnection mode, Dungey (1961) described a

cyclical motion driven by the magnetic reconnection with the solar wind. This is

believed to be the major process that transports mass, momentum, and energy from

the solar wind into the magnetosphere. Fig.1.2(b) illustrates a large-scale convection
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cycle when the IMF and geomagnetic field lines are antiparallel to each other in the

dayside magnetosphere. This pattern is now commonly referred to as the “Dungey

cycle”. When the southward IMF line in the solar wind reaches the magnetopause

to merge with a closed northward geomagnetic field line (i.e., both ends attached to

the Earth), an open field line (that is, one end attached to the Earth, and the other

end in the IMF) is produced to stretch out into the interplanetary space. The solar

wind sweeps the open lines over poles and stretches them into a long magnetic tail

downstream of the Earth, forming the northern and southern “lobes”. In the tail,

the field lines sink towards the tail center. As the oppositely directed lines anchored

in the northern and southern lobes meet with each other, magnetic reconnection

happens in the tail current sheet. After reconnection, disconnected field lines are

formed on the downstream side and flow away with the solar wind. On the upstream

side, closed field lines convect back towards the Earth and return to the dayside

magnetosphere. There, they participate in the convection cycle again. Similar to

the viscous process (but much more effective), this cycle also gives rise to a two-cell

pattern at the ionospheric footprint, as shown in Fig.1.3(a).

However, the convection pattern is different if the IMF changes. Fig.1.3(b) shows

a case when the IMF is northward. In this case, the pattern becomes four cells. More-

over, the IMF By is important for the symmetry of the convection patterns relative

to the noon-midnight magnetic meridian. For the two-cell pattern, at By = 0, the

cells are symmetric. For By > 0, the dusk cell dominates, and for By < 0, the dawn

cell dominates. For the four-cell pattern, at By > 0, the inner morning cell domi-

nates; at By < 0, the inner dusk cell dominates [see, e.g., Drayton (2006) for more

details, and Rich & Hairston (1994), Hesse et al. (1997) for much more complicated

patterns]. In any case, Reiff & Burch (1985), Ruohoniemi & Greenwald (1996), and

the Oulu Space Physics Group (2006) have provided the following basic convection

features: (1) the streamlines are equipotential lines, and no two streamlines cross

one another; (2) the total convection pattern has contributions jointly from both the

quasi-viscous interaction and the magnetic merging process. Even when the IMF is

around zero, the former can still produce a two-cell pattern; and (3) for a southward
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Figure 1.3: Convection patterns of the high latitude ionospheric
plasma: (a) Ionospheric electric fields and typical two-cell convection
pattern for a southward IMF and By = 0. (b) Four-cell convection
pattern for a strongly northward IMF and By = 0. The green and
grey shading in both diagrams indicate the auroral oval and polar cap,
respectively. Selected from Drayton (2006).

IMF, the convection pattern is usually made of two cells, and for a northward IMF,

the convection patterns may consist of several cells.

The large-scale solar wind (velocity Vsw) flowing in open field lines (magnetic

field Bsw) plays two roles following the merging process (Kelley & Heelis 1989).

On one hand, it produces a convection electric field Esw = −Vsw × Bsw (upper

left panel, Fig.1.4). This field is partially shorted by the polar cap ionosphere. As

a result, electrons are deposited at the duskside, and ions on the dawnside of the

Earth at 70◦ − 80◦ magnetic latitude (MLat). Another contribution comes from the

perpendicular current, J⊥, driven by the solar wind, which is given by

J⊥ =
1

B2
sw

(
ρBsw × dVsw

dt
+ ρg ×Bsw + Bsw ×∇p

)
(1.1)

where ρ is the plasma density, g the gravitational acceleration, and p the plasma
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Figure 1.4: Schematic electrodynamic process in the system of solar
wind, magnetosphere, and ionosphere. Adapted from Kelley & Heelis
(1989) (upper left), Israelevich (2006) (upper right, lower right), and
UCLR http://meted.ucar.edu/hao/aurora/txt (lower left).

pressure.

There are three terms which contribute to J⊥: the total time derivative, dVsw/dt,

of the plasma flow, the gravitation, g, and the pressure gradient∇p. For a a negligible

gravitational term and a small pressure gradient, J⊥ is only determined by the first

term. Clearly, J⊥ is not controlled by Esw but, rather, by the rate of change in

the solar wind momentum through the interaction between the solar wind and the

magnetosphere/ionosphere.

The ionospheric field EI serves two basic functions (Kelley & Heelis 1989). It

drives not only a plasma convection in the ionospheric F -region plasma at a speed

VI = EI ×BI/B
2
I (where BI is the ionospheric magnetic field), but a perpendicular

current JI⊥ = J⊥ at ionospheric heights by JI⊥ = ~σ ·EI (where ~σ is the ionospheric

conductivity) as well. “Region 1” field-aligned current J‖ (also called Birkeland

currents; upper right and two lower panels, Fig.1.4) can thus be obtained by the
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zero divergence of the total current J = J⊥ + J‖: ∇ · J = 0. This means that

∇⊥ · J⊥ + ∂J‖/∂s = 0, or, ∆J‖ = J top
‖ − J bottom

‖ = − ∫
s
∇⊥ · J⊥ds = −∇⊥ · (Σ⊥ ·EI)

(where s is the field-aligned distance, and Σ⊥ the height-integrated conductivity).

The current closes via horizontal ionospheric Pedersen currents, “Region 2” field-

aligned currents, and the ring current. The ring current lies in the inner part of the

plasma sheet, where ions and electrons drift in opposite directions around the earth

due to the magnetic field gradient and curvature.

“Region 2” currents flow along closed magnetic field lines. They are related to

the separation of charges in the inner magnetosphere. The charges come from the

magnetotail plasma driven sunward by the cross-tail convective electric field E. As

they drift, relatively energetic electrons are moving dawnward around the Earth

due to the presence of the gradient-curvature of the magnetic field. By contrast,

relatively energetic ions are moving duskward. In auroral regions, the charges flow

along magnetic field lines.

1.3 Electric field structuring

The large-scale convection electric field in the high-latitude regions provides a fair

context for the average flow. However, a multitude of measurements from low-

altitude satellites, rockets, radars, and from optical means have shown that electric

field measurements with insufficient temporal resolution can sometimes hide very

large fluctuations and sharp transitions over a wide range of spatial and temporal

scales.

As a first example, Fig.1.5 reproduces observations made by the S23L1 rocket

around an auroral arc (Marklund et al. 1982). The fourth panel from the top

discloses that over a short distance electric field went down from ∼110 mV/m to

∼20 mV/m. The drop occurred in about 10 s, that is, on a scale of 10 km.

Moore (1996) studied a more complicated case. At∼500 km altitudes, the ARCS-

4 rocket obtained ionic O+ and the DC electric field data shown in Fig.1.6. Some

570 s after launch time, the electric field oscillated violently. Note that the authors

argued that the oscillations were related to vortical structures (more on this below).
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Figure 1.5: S23LI rocket measurements of the sharp transition region
associated with a discrete auroral arc (Marklund et al. 1982). From top
to bottom: electron temperature (◦K), electron density (m−3), eastward
and northward components of electric field (mV/m), particle energy
flux (W/m2), and acceleration potential (kV) vs. flight time (s) and
altitude (km).

The perpendicular drift could soar up to 3 km/s, with a velocity shear ∼0.75 m/s

per meter or more. At similar altitudes, Earle et al. (1989) observed an even more

structured event, namely, a change of 180 mV/m over 363 m, corresponding a shear

of ∼11 m/s per meter. More strikingly, they even recorded a change larger than 200

mV/m over a short distance with a shear of ∼25 m/s per meter.

In addition to arcs, there are several examples of cylindrical structures or “vor-

tices” at high latitudes. Some vortices have large scales (500-1000 km in diameter)

and are seen easily by, e.g., radars like SuperDARN. Some of them have been la-
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Figure 1.6: 3D plasma drift inferred from ARCS-4 rocket data of
O+ (squares) and DC electric field (lines). X-direction northward, and
Y-direction perpendicular to X. Selected from Fig.11 in Moore (1996).

beled as “quasi-stationary convection vortices”, and have been shown to be closely

connected to the region-1 field-aligned currents, with a lifetime ∼10-20 min (up to

50 min). Fig.1.7 gives an example of such a giant vortex (∼30 min in lifetime, north-

ward IMF, geographic latitude and longitude, solid curves represent the magnetic

latitudes 70◦ and 80◦) [Huang et al. (1998)]. The related potential drop is 5-10 kV.

The center of the vortex was considered to link with a stable, upward, filament-like,

field-aligned current (Alexeev et al. 1997).

At 400-500 km altitude, smaller vortices have also been observed by rockets. A

multi-instrumental measurement campaign involving magnetometer, rocket, and all-

sky camera data detected spirals of about 100 km in diameter. These usually rotate

clockwise, but sometimes counterclockwise (Pietrowski et al. 1999; Danielides &

Kozlovsky 2001). They appear at the poleward boundary of the nightside auroral
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Figure 1.7: SuperDarn map of velocity vectors of a giant vortex (∼30
min in lifetime, northward IMF): Fig.2(c) in Huang et al. (1998).

oval. Afterwards, they form a poleward displaced bulge at the pre-or-post midnight

sector. Auroral Turbulence II Rocket data (Pietrowski et al. 1999), shown in Fig.1.8,

demonstrated that the electric field could reach up to 1.1 V/m with a shear 4 m/s

per meter or more. The peak shear region (about 1 km) was devoid of precipitation.

Much smaller scales of cylindrical structures have also been confirmed in the

topside ionosphere at 500∼1000 km altitudes. They are called lower-hybrid (LH)

cavities. They have scales of tens of meters in width (or chord lengths). Fig.1.9

gives an example measured by the GEODESIC & OEDIPUS-C sounding rockets.

The panels show the VLF electric field (upper left) & the magnetic field (lower left)

(Bock 2005), the spatially density-depletion (upper right) (Knudsen et al. 2004),
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Figure 1.8: Rocket data for vortex electric fields (top and middle
panels; blue and red curves correspond to two different payloads, re-
spectively) and field shear (bottom panel; double and single payload
measurements in black and red, respectively) (Pietrowski et al. 1999).

and count images in velocity space (lower right) (Bock 2005). Both the electric and

magnetic signals are spikelike, either single-peaked or double-peaked. The electric

field gradient can be up to 30 mV/m over a few Debye lengths (several tens of

meters).

1.4 Ion velocity distributions

Clearly, in the auroral ionosphere, the transverse electric fields can become very

strong locally (up to ∼1 V/m, as shown in the previous section). The regions are ei-
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Figure 1.9: Rocket measurements of LH cavities (Knudsen et al. 2004;
Bock 2005).

ther associated with elongated arcs (Cartesian geometry) or cylindrically symmetric.

Shears existing in these regions have been observed to reach up to 25 m/s per meter.

There are probably higher shears than that. As the spatial and temporal resolution

of the observations is improving, more and more such events should be measured.

Once a localized DC electric field E is established in a crossed magnetic field

B, an E ×B drift is the result. For strong electric fields, the drift speed can reach

several km/s. This drift is considerable compared to the normal ion thermal speed

and compared to the thermal speed of the neutral gas with which the ions collide. As

a result, there can be strong deviations for ions from a thermal (Maxwellian) velocity

distributions (St.-Maurice & Schunk 1979). This is true of both the collisional and
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collision-free problems. The later applies to time scales shorter than a collision time.

Until now, the study of ion velocity distributions in the ionosphere has been done

for a uniform electric field in both collisional and collision-free cases. An initial study

involving an inhomogeneous electric field in collisional cases has also been completed.

The goal of the present research is to expand our knowledge beyond the early work

and to see how ions respond to large electric fields in the ionosphere with arbitrary

shears in the cylindrical geometry with and without collisions. To introduce the

subject, I now offer a brief review on the subject.

1.4.1 Distributions perpendicular to magnetic field lines: Ho-
mogeneous electric fields

Understanding velocity distributions is very important if we are to understand the

small-scale physics and the fundamental measurements made by incoherent scatter

radars, rockets, and satellites. In physics, knowing what creates the distribution will

tell us about the forces that act at any given instant; in experiments, we should rely

on a known velocity distribution with the knowledge that we have a good command

of what we measure, e.g., the temperature, compositions, etc.

In a pioneering study, Cole (1971) determined how far the ion distribution can

deviate from the equilibrium Maxwellian in a uniform electric field in the collision-

less case. He found that the distribution function is determined completely by the

characteristics of ion motion, or, precisely, by the energy conservation of ion motion

in the electromagnetic field. By considering an initial Maxwellian ion distribution

in the absence of the electric field, he obtained an ion velocity distribution which

pulsated about the E × B drift. For E ≥ 10 mV/m, the average ion distribution

started to deviate significantly from a Maxwellian.

Schunk & Walker (1972) generalized Cole’s work by including the collisional

term. Formally, the collision term is described by the Boltzmann collision integral.

By expanding the distribution function using a complete orthonomal polynomial

series of the products of Sonine polynomials and spherical tensors, the authors ob-

tained a Maxwellian-weighting, infinite-component solution of the Boltzmann equa-
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tion. The results were applicable to small distortions from the initial Maxwellian,

such as can be found with small electric fields, and/or high ion-neutral collision fre-

quencies. They found that the departure from a Maxwellian was small below 120 km

(where the collision frequency is comparable to the ion cyclotron frequency). Above

that altitude, the departure was basically the same at all altitudes below 300 km.

As with Cole’s results, a 10 mV/m electric field was deemed to be strong enough to

cause appreciable non-Maxwellian effects.

St-Maurice & Schunk (1973,1974) expanded Schunk & Walker ’s work to strong

electric fields. They used a simple relaxation model in place of the Boltzmann col-

lision integral. Physically, this model assumes that the target neutral has a velocity

vn, satisfying a Maxwellian distribution. When an ion with velocity vi collides with

the neutral, the particles exchange velocities (vn is replaced by vi and vice versa).

The ion takes the neutral’s Maxwellian velocity distribution in phase space before

regaining momentum and energy from the electromagnetic fields. The neutral subse-

quently moves with the traded velocity until colliding with other neutrals. The time

scales over which the entire ion velocity distribution will change is, not surprisingly,

ν−1
in , a time long enough for all ions to experience roughly one collision.

St-Maurice & Schunk (1973,1974) obtained analytical solutions to the Boltzmann

equation for all electric field strengths and collision frequencies. In the small collision

regime (νin ¿ Ωi), namely, above 150 km, the ion distribution formed a torus for

electric fields higher than 40 mV/m. By contrast, in a region close to 120 km

(νin ∼ Ωi), the distribution was bean-shaped for electric fields of 100 mV/m or

more. The departure of the ion distribution from a Maxwellian was confirmed by

radar measurements [possibly by Swift (1975), and later by Lockwood et al. (1987)],

and, by satellite observations (St-Maurice et al., 1976).

By scaling the analytical results for data analysis purposes, St-Maurice et al.

(1976) developed a method to retrieve plasma data from the non-Maxwellian distri-

bution in the small collision frequency regime. To explain how the observed velocity

distributions were compared to the theory we introduce Fig.1.10 and 1.11. Fig.1.10

displays the shapes of the ion velocity distribution that were calculated form the
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Figure 1.10: Behavior of the one-dimensional velocity distribution
Πgi/ni versus the normalized ion velocity vi/

√
2kTn/mi for various

values of the ion Mach number D′ (see text for details). From St-
Maurice et al. (1976).

Boltzmann equation, using a relaxation model to describe ion-neutral collisions. The

parameter D′ in this case is the ion Mach number, (Ec/B)/VTn, where VTn is the

neutral thermal speed. In Fig.1.10, Πgi/ni is the one-dimensional ion distribution

function (where “Π” is just “π”, gi is the distribution function perpendicular to the

line of sight of the instrument, and ni is the ion density).

Fig.1.10 shows that, according to the solutions obtained from the simple relax-

ation model, the shape of the one-dimensional ion velocity distribution function

evolves from a singly-peaked Maxwellian form at D′ = 0 to a double-humped distri-

bution once D′ exceeds 1.3. This has to be contrasted with Maxwellian distributions

which would be broadened but remain singly peaked no matter what the Mach num-

ber would be. This brings us to Fig.1.11 which was obtained by fitting the shape of

observed one-dimensional ion velocity distributions under various electric field (and,

therefore, ion temperature) conditions. The fitting parameter was called (Ec/B)/Vac

instead of D′ in this case. In other words, D′ in Fig.1.10 becomes a shape parameter

called (Ec/B)/Vac in Fig.1.11. Thus, if the observed distributions were found to
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Figure 1.11: Shape of the drift speed Ec/B normalized by the neutral
speed Vac as a function of ion temperature Tj (“j” denotes O+ or NO+)
without scaling (see text for details). From St-Maurice et al. (1976).

be Maxwellian, the parameter (Ec/B)/Vac in Fig.1.11 would be entered as zero. If

the observed distributions were double-humped, say, like the shape obtained with

D′ = 1.5 in Fig.1.10, then we would enter a value (Ec/B)/Vac = 1.5 in Fig.1.11.

Curves A and B in Fig.1.11 are the results of theoretical calculations for the relax-

ation collision model using neutral temperatures of 800 K and 1200 K, respectively.

In these cases, the evolution of the shape parameter (Ec/B)/Vac against ion temper-

ature matches the values of D′ in Fig.1.10. Curves C and D in Fig.1.11 show that

there is a similar but less pronounced evolution in the shape of the observed distribu-

tions. Fig.1.11 shows that (1) the departures of the observed ion velocity distribution

from a Maxwellian, as quantified by the shape parameter (Ec/B)/Vac (later called

D∗ in the literature), are smaller than predicted from the simple theory; (2) the

O+ distribution function has larger departures from a Maxwellian than the NO+

distribution; and (3) double-humped distributions were not observed even though

the distributions were much flatter than Maxwellians near their peaks. Fig.1.11 also

was used to infer that departures from a Maxwellian were detectable for electric field
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strengths as small as 10 mV/m.

From the above, we can conclude that collisions play an important role in deter-

mining the shape of ion velocity distributions. Unfortunately, the relaxation collision

model is crude. This is why the analytical results had to be scaled to account for

observations. Furthermore, for very strong electric fields, the scaling does not always

work at least not for O+ ions. This was demonstrated when Winkler et al. (1992)

applied a Monte-Carlo computation scheme to the Boltzmann collision intergral.

The authors considered both the speed and angular dependence in several types of

collisions between ions and a mixture of neutral constituents, all at once. They also

included the effect of chemistry, which is important for short lived N+
2 ions. The

results showed that (1) if the electric field reaches ∼125 mV/m, the NO+ velocity

distribution will not change anymore, and will be scalable; (2) for O+ and N+
2 , if the

electric field exceeds 100 mV/m, the distribution becomes very complicated and no

simple analytical expression could describe it; (3) any change in electric fields brings

about variation in the ion temperature anisotropy, especially for O+.

1.4.2 Distributions perpendicular to magnetic field lines: In-
homogeneous electric fields

If the electric field is not homogeneous, that is, if there are spatial divergences in

E (and thus shears in the E ×B drift), the physical mechanism and mathematical

formulations become much more complex than what was presented in the last section

in solving the Boltzmann equation. Even the simplest parameter, the ion gyrofre-

quency Ωi, changes from Ωi = qB/mi in the homogeneous field to a new definition

in the inhomogeneous field.

For example, if the first derivative of the field (∇ · E = dEx/dx) is nonzero, while

the second derivative (d2Ex/dx2) is zero, Cole (1976) showed that the effective gy-

rofrequency ω satisfies ω2 = Ω2
i + Ωid(Ex/B)/dx. In addition, he found that it is

possible to accelerate ions when the gyro-radius is larger than the scale length of the

potential well. Rothwell et al. (1995) stated that for d2Ex/dx2 6= 0, there are two

criteria about the gradients: d (Ex/B) /dx ≥ Ωi, and, d2 (Ex/B) /dx2 ≥ 3ωΩi/(8v0)
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Figure 1.12: Logarithmic contours of ion velocity distributions in the
presence of drift velocity shears for a local electric field strength 100
mV/m (St-Maurice et al. 1994).

(where v0 is the initial velocity). For the first condition, the kinetic theory has to

be used instead of either ideal or non-ideal MHD theory; if the second one is satis-

fied, untrapped ions occur. For a more complicated field, Ex ∼ xe−x2
, Rothwell et

al. (1992) and Anastasiadis et al. (2004) showed that particles are either trapped

or untrapped in the potential well; and, if the characteristic length of the well is

comparable to the gyroradius, stochastic heating can occur depending upon initial

conditions of the phase angle θ = arctan(vy0/vx0) (where vx0, vy0 are initial velocity

components) and kinetic energy.

In the collision-free regime, Ganguli et al. (1988) obtained collision-free ion ve-

locity distributions again following the onset of a perpendicular electric field with a

linear divergence. The authors had in mind instability calculations in the presence

of shears at high enough altitudes, so that collisions would not affect the velocity

distributions for a sufficiently long time. After finding the invariants for the problem,

the authors used an arbitrary distribution of this invariant without attempting to

relate this distribution to a particular initial or boundary condition. This choice of

solution may have been valid for a slowly changing electric field in time. However,

the thesis shows that the task of actually linking the collision-free distribution even

just to simple initial conditions for a fast change in the electric field can actually be

surprisingly non-trivial even when all the invariants of the motion are known.
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To our knowledge, there has only been one study of more complicated problems to

obtain velocity distributions in the presence of perpendicular inhomogeneous electric

fields in the collisional regime. The work was done by St.-Maurice et al. (1994).

To solve the very complicated Boltzmann equation in the nonhomogeneous electric

field, the authors selected a model with a relatively simple electric field varying

linearly in space along a particular direction, perpendicular to the magnetic field:

E = E0(1 + y/L)ŷ in Cartesian geometry (where E0 is the field at y = 0, L the

characteristic length, y the ion position). Focusing on the collision-dominated case,

the authors found that a phase-average model involving ion characteristics could be

used to solve for the ion velocity distribution, and associated transport properties.

The calculations were carried out for a simple relaxation collision model; a similar

model had been used in earlier work to get the basic physical description of the

velocity distribution for the uniform perpendicular electric field case. By comparison

to the uniform case, the new velocity distributions in the F region were crescent-(or

horseshoe-) shaped, while retaining their symmetries along the electric field direction

(in agreement with the fact that Pedersen currents are weak in the F region). The

distortions from the toroidal shape were found to be due to the fact that ions coming

from more distant points in space had suffered more acceleration and were therefore

more energetic than ions coming from closer locations. The study also established

that the inhomogeneity in the field had to be on scales of the order of a few gyroradii

in order for the departures from the more familiar toroidal shape to be substantial.

To set up the phase-averaging, the model used the phase angle ωt instead of

time t in the integration over time. As a result, either the collisionless or collisional

velocity distribution could be analytically expressed by a series of Bessel functions.

The results showed “horseshoe-shaped” ion distributions as given in Fig.1.12. The

stronger the electric field is, the more evident the horse-shoe shape becomes. Note

that the mean ion drift velocity is different from the E × B drift velocity in the

plots. This was shown to be the result of the shears in the mean flow. In spite of the

different geometry, the theoretical results offer some similarities with recent rocket

data of LH cavities (Burchill et al. 2004; Knudsen et al. 2004; Bock 2005).
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1.4.3 Distributions parallel to magnetic field lines: With or
without parallel electric fields

In the magnetosphere-ionosphere coupling, there are three main categories of non-

Maxwellian ion outflow fluxes. They are thought to be connected with evaporation,

or, wave-particle interaction (WPI), or, a “pressure cooker” effect from the lower

ionosphere.

“Evaporation” is triggered when frictional heating increases the ion temperature

in the region where collisions with neutrals are frequent enough (below 400 km). The

heating is the result of temporary strong electric fields that accelerate the ions to

large speeds. The region across which the ions stop colliding with neutrals is called

the exobase and is near 400 km altitude (Loranc & St.-Maurice 1994; Lundin &

Guglielmi 2006). Above the exobase, the newly created hot ions gradually replace

the colder background ions.Rapidly, a net upward flux of ions is created with relative

speeds that can exceed 1 km/s in the high-latitude F -region. By 1000 km altitude,

the bi-modal nature of the velocity distribution can be very impressive. The parallel

ion velocity distribution becomes a non-Maxwellian between 500 km and 2500 km

with two groups of ions with different temperatures, as shown in Fig.1.13.

WPI is commonly accepted as a mechanism responsible for the energy gain of

ions that produce conics in velocity space [see, e.g., Gorney et al. (1985); Chang

et al. (1989); Andre & Chang (1994)]. Specific mechanisms include perpendicu-

lar acceleration through turbulent perpendicular electric fields near the lower-hybrid

frequencies at lower altitudes (particularly in the region of discrete auroras), and,

the perpendicular heating by broad-band waves overlapping the local ion cyclotron

frequency over a large range of altitudes. Especially, the broad-band low-frequency

(BBLF) waves extend over very long distances while interacting with ions. Alterna-

tively, the ions could be bouncing between the mirror points of the two hemispheres

as they slowly gain perpendicular energy.

Within the WPI mechanism, the presence of a parallel electric field (E‖) could

produce the ion conics through a so-called “pressure-cooker effect”. For this, the

presence of E‖ is important. As early as in 1950s, Alfvén (1958) first predicted the
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Figure 1.13: Ion parallel velocity distributions at different heights
above the exobase and different elapsed time. Parameter φ‖ is the
parallel ion flux (Loranc & St.-Maurice 1994).

existence of parallel electric fields, and then numerous rockets and satellites verified

their existence in auroral regions [see, e.g., McIlwain (1960), Albert (1967), Hoffman

& Evans (1968), Evans (1974), Haerendel et al. (1976), Mozer (1980), Mizera et al.

(1982), Carlson et al. (1998), Ergun et al. (2000), Mozer & Hull (2001), Janhunen

et al. (2004)]. Above 1RE, the measured parallel electric field strengths can be

very strong, up to even higher than 1000 mV/m in general [see, e.g., Mozer & Hull

(2001) and references therein]. They are connected with Birkeland currents, auroral

electron precipitation, double layers, anormalous resistivity, etc.

With the presence of the cooking mechanism, if a downward E‖ is present, the

energized ions may be pushed back. In that case, they keep gaining perpendicular

energy but they are retarded by E‖ and then reflected at the mirror point and go

up again while gaining yet more perpendicular energy. This process could happen

repeatedly and the result of the confining parallel field is to keep all ions within the
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heating region [see Paschmann et al. (2003), and references therein]. After some

time when E‖ is taken away, all ions can escape with a conic distribution in velocity

space. The first ion conic was measured by satellite 1976-65B (Sharp et al. 1977).

Fig.1.14 shows an example detected by the S3-3 satellite (Kintner 1980).

Figure 1.14: An ion conic measured by S3-3 (Kintner 1980).

1.5 Thesis description

This thesis will focus on the non-Maxwellian ion velocity distributions produced by

inhomogeneous and time-dependent electric fields with and without collision effects

in the auroral ionosphere. As discussed above, ionospheric plasmas have two types of

geometries of interest: auroral arcs and vortices of various scales. These geometries

can be described by a Cartesian frame (x, y, z) and a cylindrical frame (r, φ, z).

Considering most previous work was done in the x, y, z-frame, but observations have

shown many instances of cylindrical charge/electric field arrangements in the auroral

ionosphere, I turn my attention to the ion velocity distributions that one should

expect in the auroral plasma in a cylindrical geometry.

On larger scales, convection vortices, 1000 to 3000 km in size, have been reported
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and studied by a number of authors [e.g., Vogelsang et al. (1993); Huang et al.

(1998)]. Smaller cylindrical regions are also known to exist, for example in auroral

rays (Baranoski et al. 2003). The smallest ionospheric cylindrical structures that we

are aware of can be as small as 10 to 20 m, and have been described as lower hybrid

cavities (Schuck et al. 2003). Based on the results obtained by St.-Maurice et al.

(1994), the smaller the radii of the cylinders become, the more the inhomogeneity of

the electric field is likely to affect the ion velocity distribution.

From a review of similar problems to a certain extent studied in other types of

plasmas (fusion plasma, for example) by, e.g., Vandenplas & Gould (1964), Whealton

& Woo (1971), Roig & Schoutens (1986), Date & Shimozuma (2001), and Takahashi

et al. (2004), we realize that the complexity of the calculation in a cylindrical

geometry requires that we approach the cylindrical geometry through a series of

incremental steps, so as to be able to understand the physics and develop suitable

approaches, and, based on which to solve more realistic problems.

As a first step, we deal with the most basic problem we can solve in Chapter 2

towards the goal to gain important insights into the more complicated situations,

while still being able to obtain complete analytical solutions: we tackle a situation for

which the strength of the ambient electric field increases linearly with the radius of

the cylinder, but is constant in time. We focus on ions that are well inside the cylin-

der, thereby neglecting radial edge effects and features associated with the decaying

field outside the cylinder. We also make the cylinder have negative space charge,

and we solve the collision-free problem. The underlying physical model is that of a

uniformly charged cylinder of excess electrons (i.e., space charge) that forms on a

time scale much shorter than the ion gyroperiod. These electrons need not exceed

the ambient density by more than one charge in 105. The ambient electrons, with

their small gyroradii and large thermal speeds can be assumed to simply remain

Maxwellian while experiencing E×B drift in response to the radially linear E pro-

duced by the uniform space charges. In this initial work, E-field is assumed to be

maintained, irrespective of the ion response. The solutions thus obtained have proved

useful for more realistic applications such as in a collisional case, in E-configurations
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where E is not proportional to the radius, or, in temporally changing E-fields.

Chapter 3 applies the approach developed in Chapter 2 to solve ion velocity

distributions and velocity moments for collisional F region problems in the electric

field model used in Chapter 2. By simplifying the ion-neutral collision term with the

relaxation model as done by St.-Maurice et al.(1994), we derive analytically the ion

velocity distribution function, and related transport properties, e.g., the ion density,

temperature, pressure, etc. I also show the connection between the collision-free

solutions and collisional ones.

By generalizing the above analytical work, we introduce a semi-numerical method

in Chapter 4 to produce various shapes of ion velocity distribution functions, as

well as transport properties at the same time. The approach is under collision-free

conditions for different electric field models which vary nonlinearly with radius, but

are still constant in time. A backward ray-tracing method is applied to trace back

ions from any position and velocity to the initial ones at the initial position and

velocity.

Chapter 5 studies the effects of density inhomogeneities at initial time on the ion

velocity distribution function at any time under temporally constant, but radially

nonlinear electric field structures. In the collision-free case, a couple of space-charge

models are adopted to give analytical solutions. In the collisional case, one space-

charge model is used to produce analytical solutions.

Chapter 6 discusses the excitation of several fundamental plasma oscillations

(such as cyclotron wave, hybrid waves, etc.). A fluid formalism is used in which the

radially linear electric field is modulated by incoming particles and thus is a function

of time.

The final part of the thesis, Chapter 7, summarizes the thesis work, and discusses

some important extensions based on what we obtained.

Throughout the thesis, SI units are used. Physical constants and input parame-

ters used in the analytical and numerical studies are summarized in Table 1.1.
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Table 1.1: Physical constants and input parameters.

Notation Definition Value Unit
B Auroral F -region geomagnetic field 5×10−5 Tesla
e Elementary charge 1.6022×10−19 C
Ec Radially linear electric field -Er at Rc 0.1 V/m
me Electron mass 9.110× 10−31 kg
mi Ionic O+ mass 2.6768× 10−26 kg
mn Atomic O mass 2.6768× 10−26 kg
n0 Nonuniform ion density at maximum 1010∼12 m−3

ni0 Uniform ion density at equilibrium 1010∼12 m−3

δne Electron space-charge density 1.11×106 m−3

rT Ionic O+ thermal gyroradius (vth/Ω) 3.3 m
Rc Cylindrical radius at which Er = −Ec 10 m
t0 Initial time at which Er is turned on 0 s
T0 Ionic O+ temperature at equilibrium 1000 K
vth Ionic O+ thermal speed at equilibrium 1000 m/s
vTe Electron thermal speed at equilibrium 242 vth m/s
ε0 permittivity of space 8.8542×10−12 F/m
νin Ion-neutral collision frequency 0.3 s−1

ω Ionic O+ cyclotron frequency in linear Er 1.915Ω rad/s
ωpe Electron plasma frequency 6×104 rad/s
Ωi Ionic O+ gyrofrequency 300 rad/s
Ωe Electron gyrofrequency, eB/me 8.813× 106 rad/s
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Chapter 2

Linear, Constant Electric Field:

Collision-Free Case

The goal of this Chapter is to describe a fundamental approach to obtaining

an ion velocity distribution and transport properties by solving a Boltzmann equa-

tion analytically in a simple radially linear, temporally constant electric field under

collision-free conditions. The structure of the Chapter is as follows: At first, the ion

motion in a cylindrical geometry will be discussed for an inward electric field that

increases in proportion to radial distance and constant in time. These trajectories

will then be used to obtain the collision-free ion distribution functions that are ap-

propriate to our cylindrical geometry. The behavior of the ion transport properties

will then be described in association with these distributions. Some mathematical

details regarding the ion orbits are provided in Appendices at the end of this thesis.

2.1 Properties of electrons and ions

The simplest useful model we can consider for cylindrically symmetric electric fields

is the one for which the net charge density is uniform within the cylindrical region.

This model requires excess electrons but does not mean that the plasma violates

quasi-neutrality: we assume here that the cylindrically charged region is made of a

small number of electrons and that these electrons can be very dynamic so that the

net charge produced by their accumulation over a cylindrical region can appear over

a time scale that’s faster than the ion gyroperiod. The time scale must not be so

short as to produce magnetic perturbations that could compete with the ambient
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Figure 2.1: Cylindrical coordinates with reference to the Cartesian
frame.
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magnetic field. However, even with electric fields of 1 V/m at a distance of 100 m

from the center it can be shown that a magnetic perturbation having 1% of the value

of the ambient field would require a time scale as short as 1 nanosecond, which is

much shorter than the time scales we have in mind here.

The framework for the problem considered in the present paper is described in

Fig.2.1. As shown in that figure, we use coordinates (r, φ, z) in real space. We

assume that at time t = 0 a negatively charged region is created along an infinitely

long column, in which the plasma density in the column (nc) is assumed to be uniform

everywhere. The electric field, E, points radially inward in the −r direction.

As stated already, inside our cylinder, the background electron density ne0 and

the ion density n0 satisfy nc ≈ ne0 ≈ n0 and the plasma is taken to be quasi-neutral.

Let δne be the perturbed uniform electron density associated with the creation of the

electric field. The spatial distribution of the resulting electrostatic field E=Er=Erêr

(where êr is the unit radial vector) can be obtained from Gauss’ law

∇ · E = −eδne

ε0

(2.1)

in which ε0 is the permittivity of space. As a result the electric field is given by the

expression

Er = −Ec
r

Rc

(2.2)

where Ec = δne[eRc/(2ε0)] is positive and Rc is a characteristic radius at which

Er = −Ec. Clearly, the electric field within the cylinder is linear, and points radially

inward. We can check that the plasma is quasi-neutral with the following numbers:

if we were to let Ec=100 mV/m at Rc=10 m, the corresponding space-charge number

density would need to be δne ≈ 1.11 × 106 m−3. This is 104 to 106 times smaller

than the ambient plasma density in the ionosphere.

In our model, the axis of the charged cylinder is along a geomagnetic field line.

For the problem at hand, the magnetic field B can furthermore be assumed for now

to be homogeneous in space: B = Bêz (where êz is the unit axial vector). It follows

that the electric field is perpendicular to the ambient magnetic field. When B is

upward, E×B points in the φ-direction. Using a typical value of 5×10−5 Tesla (0.5
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Gauss) for the magnetic field, the E×B drift speed E/B becomes 2 km/s for a 100

mV/m electric field.

For O+ ions in the auroral ionosphere at an equilibrium temperature T0 = 1000

K, the speed E/B is typically larger than the ion thermal speed (vth =
√

2kbT0/mi

where kb is the Boltzmann constant, and mi is the ion mass) which is of the order of

1 km/s. The drift speed from a 100 mV/m field is likewise also large compared to the

thermal speed of the neutral gas (< 1 km/s) with which the ions collide (although

collisions are not considered in the present Chapter). We note, however, that for

electrons, the E × B drift speed is very small relative to the thermal speed, which

exceeds 100 km/s. Any departures from a Maxwellian velocity distribution due to

the Lorentz force under such small ratios of the drift speed to the thermal speed

have to be negligible [e.g., St.-Maurice and Schunk (1979)]. This also means that

the thermal electrons can simply be assumed to be E ×B drifting and Maxwellian

for the situation at hand.

2.2 Solutions of ion equations of motion

In addition to the above considerations, we can of course safely neglect the influence

of gravity in directions perpendicular to the geomagnetic field since it can easily be

shown that the gravitational force is several orders smaller than the electromagnetic

forces. In the crossed electric field E and magnetic field B, individual ion trajectories

in the plane perpendicular to the geomagnetic field are therefore determined by the

following equations of motion:

dr

dt
= v , mi

dv

dt
= e(E + v ×B) (2.3)

where r and v are the position and velocity vectors of the ion, respectively, in phase

space.

The kinetic solutions that we seek require that we integrate the ion equations

of motion for the situation at hand. This can be done using several methods, all

of which have their advantages. It is appropriate to first express the equations in

cylindrical coordinates in space. For our particular electric field model, Eq.(2.3) is
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then written as

r̈ = r(φ̇2 + Ωiφ̇)− Ec

B
RcΩi

r

R2
c

, rφ̈ = −2ṙφ̇− Ωiṙ (2.4)

in which Ωi = eB/mi is the ion gyrofrequency. Eq.(2.4) provides expressions for

Newton’s second law of motion in both the radial and azimuthal directions.

It also proves useful to express the equations in terms of non-dimensional vari-

ables. Normalizing with respect to the thermal speed (vth), the ion gyro-period

(TΩ = 2π/Ωi), and the mean ion thermal gyro-radius (rT = vthTΩ) for the speeds

(vr = ṙ and vφ = rφ̇), time (t), and radial position (r), respectively, Eq.(2.4) gives a

dimensionless set of first-order linear differential equations, along with initial condi-

tions {r0, φ0, vr0, vφ0} at t = 0, as follows:

ṙ = vr , v̇r = −π2r − (2π)2

[
cdr − c2

k

r3

]
, φ̇ =

ck

r2
− 1

2
(2.5)

in which cd = (Ec/B)/(RcΩi), and ck = r0[vφ0/(2π) + r0/2] with the normalized

variables.

In general the equations would have to be integrated numerically. However, for

the linearly varying electric field used here, the equations are analytically integrable.

In section 3, we use a direct integration of Eq.(2.4) to obtain the orbits. However,

while this method works fine mathematically, it hides a lot of the important physics.

In Appendix A and B, we therefore introduce two other methods of integration

inspired from a presentation by Davidson (2001). These methods prove useful in

that they deliver a much clearer physical understanding of the orbits. The first

alternative approach expresses the equations in what is at first an arbitrary rotating

coordinate system. In that system a centrifugal and a Coriolis acceleration term are

both present.

As shown in Appendix A, there is one particular choice of a rotating frame,

with a frequency ωr, in which the acceleration is actually simply perpendicular to

the velocity. Therefore, from the point of view of that rotating frame, the ions

follow a circle in velocity space. The angular frequency observed in the rotating

frame is a generalization of the usual cyclotron frequency. The frequency of the
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rotating frame itself is much smaller than that. At small enough values of Ec/B (or

large values of Rc), the period of rotation is in fact simply the time it takes for an

E×B drifting particle to go around the cylinder. The emerging picture, at least in

the presence of weaker electric fields, is that of ions suffering cyclotron-like velocity

oscillations as they E×B drift around the cylinder. For larger electric fields the basic

picture remains, but the frequencies are no longer equal to the simple expressions

just discussed.

Another analytical approach that we studied is discussed in Appendix B. This

method uses the complex variable Z = x + iy to solve the coupled differential equa-

tions in x and y. The starting point is to express the original variables in the form

Z = Z ′ exp(iωrt). In effect, this is the same thing as expressing the equations in a

suitable rotating frame. Not surprisingly, the frequency of choice is identical to what

was found using rotating coordinates as our starting point. Beyond that, however,

the integrals to perform are all first order differential equations. This has the virtue

to produce analytical solutions in terms of clearly stated initial conditions and clear

rotation frequencies.

In Figure 2.2a we have used our analytical solution from Appendix B to show how

the ions travel in the x−y plane (we double-checked that the solutions were the same

as those obtained with a numerical integration). Initially, the ions are accelerated

towards the center of the cylinder. As they move in, however, the electric force

decreases (weakening electric field) while the velocity increases. This means that at

some point the magnetic force becomes large enough to turn the ion around and

send it back to a point where the initial conditions in r and v will be repeated so

that the cycle will start anew. The velocity in the x− y plane also oscillates, except

that it goes through sign reversals and therefore passes through zero at the largest

distances reached in the orbits: this can be seen in Figure 2.2b. In that figure we also

note that the velocity oscillations undergo a systematic rotation in the vx−vy plane.

This suggests that a better way to look at the results is to examine the velocity

components along the radial and tangential direction instead of in a fixed direction
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specified by x or y. Namely, we should be looking at

vr = ṙ =
v · r
r

, and vφ = rφ̇ =
v × r

r
(2.6)

When this is done, the velocity field becomes much simpler, taking the form of a

somewhat distorted circle (see Figure 2.2c). This confirms that the better way to

visualize the solution is to picture the ions in the rotating frame undergoing a circular

motion, while the ions oscillate around the center of the circle. This way to look at

the ion velocity is described by the first expression given in Eq.(B.25) (Appendix B)

and is indeed the motivation for the approach used in the appendix.

2.3 Retrieval of the ion velocity distribution

To obtain the ion distribution function fi in the absence of collisions, we have to solve

the following Boltzmann equation, subject to proper initial and boundary conditions:

Dfi

Dt
=

∂fi

∂t
+ v · ∇fi +

e

mi

(E + v ×B) · ∇vfi = 0 (2.7)

Notice here that the electric field is assumed to be ‘external’, i.e., maintained by

dynamical processes that are supposed for now to be unaffected by the local behavior

of the ions. In that sense, we are solving a Boltzmann equation, rather than a

Boltzmann-Vlasov equation in which the electric field contains both ‘external’ and

‘internal’ components.

The function fi describes the probability of finding an ion in a particular volume

element in six-dimensional phase space. The system, in this case the ion component

of the gas, is composed of identical particles occupying the volume element drdv

around the phase-space point {r,v} [Gartnhaus (1964); Schmidt (1979); Humphries

(2002)]. Eq.(2.7) states that, owing to the neglect, in the present work, of the short-

range collision term (∂fi/∂t)c, fi remains constant along 6-dimensional trajectories

followed by the ions in phase space, once a particular initial condition is stated.

This latter statement is important: the task at hand is not only simply to obtain the

invariants of motion, but also to identify the one function of these invariants that

satisfies the initial condition that we wish to impose on the ions (in this case, a cold

stationary Maxwellian at the time the electric field is suddenly turned on).
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Figure 2.2: Ion orbits in real space (Panel a), in velocity space in terms
of vx and vy (Panel b), and in velocity space in terms of the velocity
components projected along the radial direction and perpendicular to
it (Panel c). Input parameters are: Ec = 0.1 V/m, B = 0.5× 10−4 T,
Rc = 10 m, Ωi = 300 rad/s, and initial parameters {r0, φ0, vr0, vφ0} =
{5, 0, 2, 0} in a temporal interval from t = 0 to 12 (or, 80π ms). The ion
thermal gyro-radius rT and the thermal speed vth at the equilibrium
are ∼21 m and ∼1 km/s, respectively (O+ ions at 1000 K). Note that
RT > Rc is allowable since Rc is not the radius of the space-charge
cylinder but, rather, the radius at which the linearly increasing electric
field reaches the value Ec.
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To be more specific: after the initial time t = 0 (hereafter we will use the subscript

‘0’ to indicate the initial state), we must first be able to describe the ions’ phase-space

trajectory that starts at an initial phase-space vector point {r(t0),v(t0)} = {r0,v0}.
If we can do this, the distribution function fi(r,v, t) at any time t > 0 will remain

constant. That is to say, the solution to the problem Dfi/Dt = 0 is simply formally

given by

fi[r(t),v(t), t] = fi(r0,v0, 0) = f0 (2.8)

Of course, writing the solution in the above formal way still leaves us with the

task of finding an explicit expression for fi since

{r,v, t} 6= {r0,v0, 0} (2.9)

The connection between the two phase-space positions can be obtained if we solve

the set of differential equations of motion given by Eq.(2.4). We take advantage

of the fact that these equations are symmetric in time, namely, that for two states

{r0,v0, t0} and {r,v, t}, there are two identical solutions for the same set of equations

of motion [Gartnhaus (1964)]: one provides {r,v, t} expressed by using {r0,v0, t0}
(forward tracking), while the other provides {r0,v0, t0} expressed by using {r,v, t}
(backward tracking), whereby the description of the characteristics of motion is traced

backwards but is otherwise unaltered. Here, we use backward tracking to solve

fi(r,v, t). The backward tracking method allows us to relate the 6-dimensional

phase point {r,v} at any time t to {r0,v0, 0} and to therefore find the distribution

at time t, since the initial distribution is assumed to be fully known. Finding the

distribution function is then just a matter of expressing r0 and v0 in terms of r,v,

and t in the expression for the initial condition f0.

The most straightforward way to obtain the orbits is to use the conservation of

energy and angular momentum and integrate. See Appendix C for details. Specifi-

cally, after a first integration, Eq.(2.4) produces the following set [Eq.(C.28)]:

rvφ +
r2Ωi

2
= r0vφ0 +

r2
0Ωi

2
=

K

mi

v2
r + v2

φ +
Ec

B
RcΩi

[(
r

Rc

)2

−
(

r0

Rc

)2
]

= v2
r0 + v2

φ0





(2.10)
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in which K is the angular momentum. The first expression describes the conservation

of angular momentum, and the second one describes the conservation of energy.

We can combine the two equations in Eq.(2.10) to obtain a canonical equation of

motion that is sometimes associated with the ‘pseudo-potential’ method, where the

angular momentum represents a form of potential energy. The final equation is then

given by [Eq.(C.29)]:

v2
r +

(
Ωir

2

)2

+

(
K

mir

)2

+
Ec

B
RcΩi

[(
r

Rc

)2

−
(

r0

Rc

)2
]

= v2
r0

+

(
Ωir0

2

)2

+

(
K

mir0

)2

(2.11)

A detailed derivation of the solution to this equation of motion is given in Eq.(D.25)

in Appendix D.

2.3.1 First form of the expression for the distribution func-
tion

Applying the backward tracking method to our system is a simple matter of noting

that vr0 = dr0/dt, and integrating Eq.(2.11) for r0 instead of r (first part of Appendix

D). This amounts to formally integrating the expression

dx0√
−b1x2

0 + b2x0 − b3

= ± 2

Rc

dt0 (2.12)

in which

x0 = (r0/Rc)
2

b1 = (ΩiRc/2)2 + (Ec/B)RcΩi

b2 = b1(r/Rc)
2 + v2

r + (vφ + Ωir/2)2

b3 = [K/(miRc)]
2 = (r/Rc)

2 (vφ + Ωir/2)2





(2.13)

The integration of Eq.(2.12) produces the solution:

(
r0

Rc

)2

= A0[1∓ ε0 sin(ωt + φ0)] (2.14)

in which the sign “∓” before ω takes “−” for vr > 0 and “+” for vr < 0, and

A0 =
b2

2b1

, ε0 =

√
1− 4

b1b3

b2
2

, ω = Ωi

√
1 + 4

Ec/B

RcΩi

, φ0 = sin−1

(r/Rc)
2

A0

− 1

ε0

(2.15)
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Note that ω = 2ωr +Ωi is nothing but the effective gyro-frequency given in Appendix

A. Using, for example, the parameters given in Section 2, we obtain ω = 1.915Ωi.

Eq.(2.14) indicates that the mapping from r2 to r2
0 oscillates with a frequency ω

as a function of time. Physically, this is because even though r0 actually describes a

fixed initial position, the parameter r itself oscillates with time so that the backward

tracking sends us to different values of r0 (recall that we are supposed to know f0

for any value of r0). The oscillations in r can be seen in Fig.2.2(a).

Using Eqs.(2.10,2.14), we can now write an explicit expression for the ion velocity

distribution function fi via Eq.(2.8), assuming the initial distribution f0 is known.

Here we choose a stationary Maxwellian that is initially independent of position,

with a uniform temperature T0. A first expression for the ion velocity distribution

function in terms of our non-dimensional variables therefore becomes

fi(r,v, t) = f0 =
n0

π
e−(v2

r0+v2
φ0) =

n0

π
e−(v2

r+v2
φ) · eB2∓B1sin(ωt+φ0) (2.16)

In this expression,

B1 = c0ε0A0

B2 = c0

[
A0 −

(
r

Rc

)2
]

c0 =
Ec

B
RcΩi





(2.17)

Also, recall that the velocities are normalized with respect to the thermal speed

vth =
√

2kbT0/mi.

Eq.(2.16) is useful in that it offers a formal solution to the problem at hand.

This turns out to be of interest both in semi-numerical solutions to the more general

problem of arbitrary electric fields or for the collisional problem (as will be seen in

subsequent Chapters). However, the solution, as described here, does not describe

the behavior of the distribution function in a way that is particularly enlightening. It

allows the solution to be plotted for any time at any place, but the velocity moments

of the velocity distribution are, for instance, difficult to obtain analytically. This

stated, the expressions can be manipulated further to reveal a rather simple behavior

which is speaking volumes about the nature of the distribution function (fi), while

making it easy to obtain velocity moments of fi.
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2.3.2 Second form of the expression for the distribution func-
tion

Using Eq.(2.14) back in the second equation of Eq.(2.10), we obtain, after a substan-

tial amount of algebra (second part of Appendix D),

v2
r0 + v2

φ0 = a0 [(vr − vdr)
2 + (vφ − vdφ)

2] (2.18)

in which

a0 = 1− 1

2

[
1−

(
Ωi

ω

)2
]

(1− cosωt)

vdr = −Ec

B

r

Rc

1

a0

Ωi

ω
sinωt

vdφ =
Ec

B

r

Rc

1

a0

(
Ωi

ω
)2 (1− cosωt)





(2.19)

Rewritten in the form:

(vr − vdr)
2 + (vφ − vdφ)

2 =
1

a0

(
v2

r0 + v2
φ0

)
(2.20)

Eq.(2.18) states that, at any given time t, the velocities (vr, vφ) are organized as loci

of concentric circles in velocity space. The radii of the circles depend both on time

t through a0 and on the initial velocity conditions.

Furthermore, it can easily be seen from Eq.(2.19) that vd = (vdr, vdφ) itself

describes a circle, namely,

v2
dr +

(
vdφ − Ec

B

r

Rc

)2

= R2
v (2.21)

in which the radius Rv is simply given by |E×B/B2| = Ec

B

r

Rc

.

In concise vector form, Eqs.(2.20,2.21) can be rewritten as:

(v − vd)
2 =

v2
0

a0

,

(
vd − E×B

B2

)2

=

(
E

B

)2

(2.22)

The vector vd behaves as a velocity space guiding center which rotates around

the E × B drift. Note that the radius of that velocity space circle, E/B, is not

constant in space since it varies with the linearly varying electric field. Furthermore,
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Figure 2.3: Characteristics of ion motions at an arbitrary radius r and
time t described by the two velocity-vector circles shown in Eq.(2.22):
v circulating around vd, and, vd around the E × B drift point. The
curved arrows outside the Rv-circle denote the directions of rotations
while Rv = |E×B|/B2.

one curious thing about vd is that it does not go around its circle at a steady rate:

when ωt is around 0 or a multiple of 2π, vd changes more slowly than if ωt is near

an odd multiple of π.

Fig.2.3 illustrates how the loci of velocities at some time t and radial position r

are related to a particular initial condition given by a particular choice of v0. It also

illustrates the circular trajectory of vd for a full rotation of values for a particular

value of E/B (or choice of r), with the E×B drift as its center.

The radius of the circle that is centered on vd(t) is determined by a0(t). While,

for clarity, the change in this radius with time is not shown, notice that it is always

a minimum at the beginning of a cycle (ωt = 0 or multiple of 2π) and reaches its

maximum value in the middle of a cycle, when ωt is an odd multiple of π. At any

time other than 0 or a multiple of 2π/ω, the radius is greater than v0 and oscillates

between the two extreme values.

42



Using the first expression from Eq.(2.22), we can now write our ion distribution

function in its second, physically more insightful form, namely,

fi(r,v, t) =
n0

π
e−a0[(vr−vdr)2+(vφ−vdφ)2] (2.23)

We have verified numerically that Eq.(2.16) and Eq.(2.23) are indeed identical

solutions for the ion velocity distribution in the collision-free case. It is easy to see

from the second form in particular that they clearly satisfy our initial conditions.

However, we should also check that our solution(s) satisfies the Boltzmann equation.

2.3.3 Verifying the correctness of the solution

Checking that the solution not only satisfies the initial conditions but also the Boltz-

mann equation turns out not to be as trivial as it looks. Since we use cylindrical

coordinates in real space and cartesian coordinates in velocity space with one com-

ponent of the velocity pointing in the radial direction and the other in the tangential

direction, a first task consists of describing the Boltzmann equation in these specific

coordinates.

For our coordinates the Boltzmann equation takes the form

∂fi

∂t
+ ṙ · ∇fi + r̈ · ∇vfi|CR = 0 (2.24)

where the symbol |CR reminds us that the velocities are expressed as Cartesian ve-

locities in a rotating cylindrical system. Specifically, at a particular radial distance r

and angle φ, one component of the velocity is chosen to be along the radial direction

and the second component along the tangential direction. The procedure is valid

as long as the acceleration is expressed properly in the non-inertial rotating frame

of reference associated with a rotation rate φ̇ = vφ/r. This means that the Coriolis

and centripetal acceleration terms have to be added to the acceleration terms, but

that in return the acceleration is given by the components v̇r and rφ̈. These accel-

eration terms have already been described in Eq.(2.4): in addition to the Lorentz

force contribution, the tangential component of the acceleration contains a Coriolis

acceleration given by −2ṙφ̇ = −2vrvφ/r. The radial contribution has an additional

43



non-inertial (centrifugal) contribution equal to +rφ̇2 = v2
φ/r which can be viewed as

a superposition of an outward Coriolis contribution +2rφ̇2 and a centripetal accel-

eration term equal to −rφ̇2.

Therefore, for polar coordinates in real space and for Cartesian coordinates in

velocity space that are attached to the polar coordinates, the equation Dfi/Dt = 0

takes the form

Dfi

Dt
=

∂fi

∂t
+ vr

∂fi

∂r
+

(
v2

φ

r
+ vφΩi − Ec

B
ΩiRc

r

R2
c

)
∂fi

∂vr

−
(
2
vrvφ

r
+ vrΩi

) ∂fi

∂vφ

= 0

(2.25)

For an alternate derivation that is more direct but less physical we can state that

we choose to express fi in terms of fi = fi(r, φ, ṙ, φ̇; t). For this choice of variables

the total rate of change in f with time is given by

Dfi

Dt
=

∂fi

∂t
+

∂r

∂t

∂fi

∂r
+

∂φ

∂t

∂fi

∂φ
+

∂ṙ

∂t

∂fi

∂ṙ
+

∂φ̇

∂t

∂fi

∂φ̇
=

∂fi

∂t
+ ṙ

∂fi

∂r
+ φ̇

∂fi

∂φ
+ r̈

∂fi

∂ṙ
+ φ̈

∂fi

∂φ̇
(2.26)

After this, we introduce the new notation vr = ṙ and vφ = rφ̇ to end up with the

expression
Dfi

Dt
=

∂fi

∂t
+ vr

∂fi

∂r
+

vφ

r

∂fi

∂φ
+ r̈

∂fi

∂vr

+ rφ̈
∂fi

∂vφ

(2.27)

and we use equation (2.4) to describe r̈ and rφ̈ and end up with Eq.(2.25).

The next step in checking over the solution amounts to inserting Eq.(2.23) into

our explicit Boltzmann equation Eq.(2.25). Note that Dfi/Dt = 0 is equivalent to

f−1
i Dfi/Dt = 0, or, D(lnfi)/Dt = 0. Eq.(2.23) gives

lnfi = ln
(n0

π

)
− a0[(vr − vdr)

2 + (vφ − vdφ)
2] = ln

(n0

π

)
− F (2.28)

in which F = a0[(vr − vdr)
2 + (vφ − vdφ)

2]. Using Eqs.(2.11,2.14) [or, directly from

Eq.(2.16)], the function F is given by

F = a0[(vr − vdr)
2 + (vφ − vdφ)

2] = v2
r + v2

φ+

+
Ec

B
RcΩi




rvr

Rc

√
b1

sinωt +

(
r

Rc

)2

b1 − v2
r −

(
vφ +

rΩi

2

)2

2b1

(1− cosωt)








(2.29)
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By using Eq.(2.29) in Eq.(2.25), and after a fair amount of algebra (see Appendix

E for details), we obtain dF/dt = 0 as we should. Therefore, Dfi/Dt = 0, that is,

Eq.(2.23) satisfies the Boltzmann equation and is the solution for the ion distribution

function for our particular choice of initial condition.

2.3.4 Physical description of the ion distribution function

Fig.2.4 describes in cartoon form how the collision-free ion velocity distribution

evolves as a function of time after the initial jump in the ambient electric field.

For the purpose of comparison we also present a cartoon of the velocity distribution

for a uniform electric field in the top panel and a similar cartoon for the case studied

here, namely, that of an electric field that grows linearly with radius in a cylindrical

geometry (bottom panel).

In the top panel, which is the solution initially studied by Cole (1971), the ions

oscillate in phase at the gyrofrequency, with sinusoidal motions in both their Pedersen

and Hall drift components. The temperature (i.e., the width of the distribution)

does not change and the rotation rate is constant, with the period equal to the ion

gyroperiod.

In the bottom panel, the velocity distribution is rotating about the local E×B

drift point at r, just as in the uniform electric field case. However, there are two

important differences from the top panel. First, the width of the distribution is

changing. The mathematical reason for this is easy to see from Eq.(2.23), which at

any given time describes a drifting Maxwellian, albeit one with a variable width [as

determined by 1/
√

a0 in our non-dimensional description where a0 is described by

Eq.(2.19)]. As discussed above, this means that when the drift is the largest in the

Hall (E×B) direction, the width is also the largest. The second feature of interest

is that while, like the uniform electric field case, the distribution oscillates about the

local (E×B) drift point, we find that the rotation rate is not uniform, being faster

when the Hall drift is larger. Specifically, while the phase angle θ relative to the

E × B drift is a linear function of time in the uniform electric field case (θ = Ωit),

in the case of the electric field strength that increases linearly with radial distance,
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it evolves into a nonlinear function of time satisfying

tanθ =

1

a0

Ωi

ω
sinωt

1− 1

a0

(
Ωi

ω

)2

(1− cosωt)

(2.30)

In summary, our collision-free distribution is a pulsating Maxwellian distribution,

just like in the uniform electric field case. However, the width (temperature) of that

pulsating distribution clearly oscillates with time, while the Hall and Pedersen drifts

do not follow the simple sinusoidal behavior of the uniform case, even though the

center of the drift pattern is still given by the E×B drift.

The above discussion, quite naturally, brings us to a discussion of the various

velocity moments (transport properties) of our velocity distribution. This subject

is, of course, particularly easy to study using our second formula for the distribution

function since it describes the velocity part of the distribution function in terms of

a pulsating Maxwellian.

2.4 Velocity moments and related transport coef-

ficients

The velocity moments of the ion velocity distribution are defined by the kth-order

velocity moment 〈vk
j 〉 =

∫
vk

j fidv/ni where ni is the integral of the distribution

function over all velocities (zeroth-order velocity moment). Using these definitions,

plus Eq.(2.23), and switching back to dimensional units, it is very easy to show that

ni = n0/a0 , 〈vr〉 = vdr , 〈vφ〉 = vdφ

〈v2
r〉 = v2

dr + v2
T0/(2a0) = v2

dr + kbT0/(mia0)

〈v2
φ〉 = v2

dφ + v2
T0/(2a0) = v2

dφ + kbT0/(mia0)

〈v3
r〉 = v3

dr + 3[v2
T0/(2a0)]vdr = v3

dr + 3[kbT0/(mia0)]vdr

〈v3
φ〉 = v3

dφ + 3[v2
T0/(2a0)]vdφ = v3

dφ + 3[kbT0/(mia0)]vdφ





(2.31)

Note that the density expression depends on time but not in position. It depends

on time through a0 which has been posted in Eq.(2.19).
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Figure 2.4: Temporal evolutions of a pulsating distribution function
in a crossed uniform magnetic field. Upper: a uniform electric field
E = Ec; Lower: a radially linear electric field E = −Ecr/Rc.
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The above integrals are easily related to the various average transport properties

[e.g., Schunk & Nagy (2000)]. Noticing that T0 is not only the equilibrium temper-

ature, but in the present context, also the temperature T‖ which is parallel to the

magnetic field direction, we end up with the following transport properties:

vaver = 〈vr〉 , vaveφ = 〈vφ〉
Tr =

mi

kb

(〈v2
r〉 − 〈vr〉2) =

T0

a0

, Tφ =
mi

kb

(〈v2
φ〉 − 〈vφ〉2) =

T0

a0

, T‖ = T0

prr = nikbTr , pφφ = nikbTφ , p‖‖ = nikbT0

qr = mi(〈v3
r〉 − 〈vr〉3)− 3〈vr〉(kbTr) = 0 ,

qφ = mi(〈v3
φ〉 − 〈vφ〉3)− 3〈vφ〉(kbTφ) = 0 , q‖ = 0





(2.32)

where Tr and Tφ are the ion temperature along the r and φ directions, respectively;

prr, pφφ and p‖‖ are the rr- φφ- and ‖‖- elements of the ion pressure tensor
~~P i; and qr

and qφ are components of ion heat flow qi in the radial and φ directions, respectively.

As a result we can write

Ti =
Tr + Tφ + T‖

3
=

1

3
T0

(
1 +

2

a0

)
,

{prr, pφφ, p‖‖} = p0

{
1

a2
0

,
1

a2
0

, 1

}

qi = 0





(2.33)

Note that (1) all non-diagonal elements of the pressure tensor are zero, (2) the

scalar pressure pi, defined as one-third of the trace of the pressure tensor, is pi =

p0(2/a
2
0 + 1).

Fig.2.5 displays the bulk parameters for one cycle of oscillation. It shows the

average velocity vave through the drift velocity vd = {〈vr〉, 〈vφ〉}. It also shows

just how the density, temperature and pressure undergo their temporal oscillations.

We note that both the ion density and perpendicular temperatures share the same

temporal variation, namely, ni(r, t)/ni0 = Tr(r, t)/T0 = 1/a0. Furthermore there is

no heat flow at any given time in either the r, φ, or z directions, consistent with the

fact that the distribution is symmetric about its drift point at all times.

One feature that requires comment is the in-phase oscillation in the density and

the perpendicular temperatures, which resembles adiabatic heating in the sense that
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Figure 2.5: Bulk properties associated with the ion velocity distribu-
tion function in our cylindrical geometry in the collision-free case.

the higher densities are accompanied by internal ion heating. The physical origin

of this behavior is that when the electric field, Er, is turned on at t = 0, the ions

are all attracted to the negative center of charge and, on average, move towards the

center of the cylinder. However, because the electric field is stronger at larger radial

distances, distant ions starting at larger electric fields are accelerated more than inner

ions. This means that the distant ions travel more and gain more energy than inner

ions. During the first half of an acceleration cycle the ions, which oscillate in phase

in our particular case, therefore converge (higher densities) and are on average more

energetic (higher perpendicular temperatures). The peak density and temperature

values are reached when the magnetic force becomes large enough to deflect the ions

back to their initial radial positions.
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2.5 Summary and discussion

In this Chapter, the collision-free Boltzmann equation has been solved in a cylindrical

geometry for a uniform magnetic field crossed with a negative electric field that

increases linearly in strength with radial distance and keeps constant in time. The

electric field was assumed to be produced by a cloud of electrons brought about by

external processes, e.g., precipitating beams of electrons. In order to provide a useful

reference and offer physical insights into solving more complicated situations, I used

as simple a model as possible. This meant that there are no attempts to compute

the ion feedback on the ambient electric field, and that collisions were neglected.

The solutions were meant to apply well inside the uniformly charged cylinder. Also

neglected were the gravitational field, possible electric field components parallel to

the magnetic field, and changes in the magnetic field with position.

For the problem at hand, the resulting ion distribution function took a surpris-

ingly simple shape, becoming a pulsating Maxwellian (if initially assumed to be a

uniform Maxwellian in space). During the pulsation, the density, the two compo-

nents of the perpendicular drift and temperature, were all found to change with

time. The drift velocity oscillated about the local E × B drift, but the oscillation

was not represented by a simple sinusoidal oscillation, with the mean drift spending

more time at the smaller values than at the larger ones. The temperature and den-

sity were found to oscillate in phase and to take their largest values when the drift

reached it maximum value.

One interesting feature of the solutions is with the ion density oscillation. If

this oscillation were not to be accompanied by a similar oscillation in the electron

density, the charge neutrality assumption would break down. This means that, were

the electrons not able to follow the ions, the ions would be able to modify the

ambient electric field. However, if the initial electric field were to be maintained

by some voltage generator, extra electrons would have to be brought up along the

magnetic field to compensate for the reduction. This would contrast with an initial

value problem, where the ions would change the electric field so that the system
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that we have studied here might start to behave more like a large-amplitude upper-

hybrid (UH) oscillator (I will pursue this study in Chapter 5). One important point

to notice is that the density oscillation is caused by the fact that all ions oscillate

in phase, which is a peculiarity of the linearly increasing electric field in a collision-

free environment. Therefore, the density oscillation will disappear once collisions

are added, since one of the features collisions add is a randomization of the phases

(this is clearly seen in the homogeneous problem when we compare collisional and

collision-free solutions). Also, for fields that do not depend linearly on radius, the

ions do not oscillate in phase, so that the density response would at least be less

pronounced, if present at all. A few possibilities along these lines are considered in

Chapter 4.
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Chapter 3

Linear And Constant Electric Field:

The Collisional Case

The approach used in the previous Chapter provides a reference and offers phys-

ical insights in the process of obtaining ion distribution functions and transport

properties for more realistic, but also more complicated, electric field configurations.

In this Chapter, I will show that the solutions given in Chapter 2 turn out to prove

very useful for the solution of the collisional F region problem.

Above 80 km in the atmosphere, the gas is dilute enough that we need only

consider binary collisions between neutrals, or, between charged particles and neutral

atoms or molecules. The general collision operator in the case is the Boltzmann

collision operator, e.g., Bernstein (1964).

3.1 Selection of a collision operator

Ideally, an appropriate full collision operator (i.e., the Boltzmann collision integral)

should be used to describe ion-neutral collisions [e.g., Schunk & Nagy (2000)]:

(
∂fi

∂t

)

c

=

=
∫

dvn

∫
gσin(g, θ)[fi(x,v′i, t)fn(x,v′n, t)− fi(x,vi, t)fn(x,vn, t)]dΩ





(3.1)

where the subscripts “i, n” denote “ion, neutral”, respectively; dvn is the velocity-

space volume element for neutrals; vi and vn are the ion and the neutral velocities,

respectively, before the collision, while v′i and v′n are their velocities, respectively,

after the collision; g = |vi−vn| is the relative speed of the colliding ions and neutrals;

σin is the differential scattering cross section, defined as the number of particles
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scattered into an element of solid angle, dΩ, per unit time in the colliding particles’

center-of-mass reference frame; and, θ is the center-of-mass scattering angle.

In Eq.(3.1), the first term in the brackets corresponds to the particles scattered

into a given region of velocity space (production term) and the second term corre-

sponds to the particles scattered out of the same region of velocity space (loss term).

This operator is so complicated that it is impossible to obtain simple analytical

solutions for the ion velocity distribution with it.

Series expansion based on arbitrary zeroth order functions are normally used to

obtain limited solutions that are associated with the convergence of the series being

used [Minther (1965)]. Note that the series converges faster if an appropriate guess

is used for the zeroth order distribution function.

When collisions play a dominant role, Maxwellian velocity distributions are of-

ten used as appropriate weighing functions. However, in cases collisions are infre-

quent enough, the zeroth order distribution may itself depart significantly from a

Maxwellian (see Chapter 1). It therefore proves useful to use other methods than

series expansions after the zero order weighing function.

One approach that has been used in reference to the ionosphere is the Monto

Carlo method [Winkler et al. (1992)]. However, this method does not converge

rapidly away from the peak of the distribution function.

A second approach that has been used in the ionosphere with some success has

been to use a relaxation model (RM) [e.g., St-Maurice & Schunk (1973)]. This model

has a simple form that allows the collisional Boltzmann equation to be integrated

relatively easily. The model is similar to the BGK model originally proposed by

Bhatnagar et al. (1954), except for the fact that the latter was created to describe

self-collisions whereas the former is describing collisions between different species.

One important difference is with what the collisions drive the distribution to. In the

BGK model, collisions drive the species to a Maxwellian that has the actual drift

and temperature of the species under consideration. In the RM used by ionospheric

physicists, the collisions drive the distribution function of a minor constituent to the

distribution function of the major constituent. The latter is usually assumed to be
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a Maxwellian at rest. The collision operator is then described by

(
∂fi

∂t

)

c

= −νin

(
fi − ni

nn

fn

)
(3.2)

where fn is a Maxwellian distribution at rest and having the temperature of the

neutral gas. In this equation, νin is the ion-neutral momentum transfer collision

frequency, ni the ion density, and nn the neutral density.

A first point to realize is that the RM does not conserve energy and momentum

unless the ion and neutral masses are equal. Fortunately, this is often the case in

the ionosphere. A second point to realize is that the RM can greatly exaggerate

the effect of collisions. The reason for this has been highlighted by St.-Maurice &

Schunk (1979), who showed that the RM can be derived from the Boltzmann collision

operator under the assumption that the collision cross-section is given by

σin(g, θ) =
C

g
δ(θ − π) (3.3)

and mi = mn, where C is a constant. The angular dependence means that, in a RM,

all collisions are “head-on” collisions in the center of mass system. In the laboratory

system, this is akin to a pure charge-exchange between an ion and a neutral of the

same mass (as often happens to ions in their parent gas).

The (1/g)-dependence in σin is also needed to insure that the RM is recovered.

When the cross section has this speed dependence, the interaction is described as

a “Maxwell-molecule” interaction. This interaction turns out to be a good descrip-

tion of the induced dipole interaction between an ion and a neutral particle (1/r4-

potential). It often applies to the kinds of energies that ionospheric particles have.

Note that the collision frequency is a constant in this case.

We will in this Chapter use the RM in order to obtain a first order description of

the non-Maxwellian characteristics of the ion velocity distribution under a strongly

driven cylindrical electric field configuration. From the above discussion, we will

expect that (1) the distortions driven by collisions will be exaggerated; (2) all velocity

moments will have a same relaxation time; and, (3) particle diffusion driven by

temperature gradients will not be present because of the constant collision frequency
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implied by the RM. In spite of these limitations, the solutions should offer valuable

insights into the effect of ion-neutral collisions on the ion velocity distribution. This

has been demonstrated by St.-Maurice et al. (1976) and Winkler et al. (1992)

when comparing RM solutions to observations or to Monte-Carlo calculations. The

comparisons showed that while the RM solutions did indeed exaggerate the trends

away from Maxwellian distributions, the essential characteristics of the distribution

function could be recovered, to the point that a simple scaling of the solution to

weaker actual conditions could often be enough to produce a very realistic description

of the actual distribution function.

3.2 Collisional ion velocity distribution solutions

With the RM collision term the Boltzmann equation becomes

Dfi

Dt
=

∂fi

∂t
+ vr

∂fi

∂r
+ vz

∂fi

∂z
+

(
v2

φ

r
+ vφΩi − Ec

B
ΩiRc

r

R2
c

)
∂fi

∂vr

−

−
(
2
vrvφ

r
+ vrΩi

) ∂fi

∂vφ

= −νin

(
fi − ni

nn

fn

)





(3.4)

where ∂fi/∂φ = 0 is used owing to cylindrical symmetry. This equation has

Dfi

Dt
= −νin

(
fi − ni

nn

fn

)
, or,

Dfi

Dt
+ νinfi = νin

ni

nn

fn (3.5)

from which the ion distribution function can be formally solved as

fi = fi1e
−νint +

νin

nn

e−νint

∫ t

0

ni(t
′)fn(t′)eνint′dt′ (3.6)

where the time integral must be performed by following the characteristics of ion

motion, and, where fi1 is the collision-free ion velocity distribution function solved

in Chapter 2, namely,

fi1(r,v, t) =
ni0

π
e−(v2

r+v2
φ) · eB2∓B1sin(ωt+φ0) (3.7)

or

fi1(r,v, t) =
ni0

π
e−a0[(vr−vdr)2+(vφ−vdφ)2] (3.8)
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where all parameters have been given in Chapter 2. Eq.(3.6) requires that we use

another equation for the density, which can be obtained by integrating this equation

itself, namely,

ni =

∫
fi(v)dv =

∫
fi1(v)dv · e−νint +

νin

nn

e−νint

∫
dv

∫ t

0

ni(t
′)fn(t′)eνint′dt′ (3.9)

Defining Ni = nie
νint, the above equation becomes

Ni =
ni0

a0(t)
+

νin

nn

∫ t

0

Ni(t
′)

[∫
fn(t′)dv

]
dt′ (3.10)

where Eq.(2.23) has been used to get the first term on the RHS.

Note that 0 ≤ t′ < t in Eqs.(3.9,3.10), and, at t′ ion and neutral collide with each

other.

Clearly, there are three problems to solve before obtaining a final solution for fi in

Eq.(3.6). The first is the expression of the distribution function fn(t′), the second is

to obtain the density ni(t
′) or Ni(t

′) for ions colliding with neutrals, and the last is to

perform the integration from 0 to t. Fortunately, St.-Maurice et al. (1994) provided

an effective approach in solving these problems, though the authors focused on ion

velocity distributions in electric fields that varied linearly along the x-direction. In

particular, they developed a “phase-angle integration” method. I apply the same

method here to obtain fi in the cylindrical geometry.

3.2.1 Expression for fn(t
′)

The RM states that when the ions collide, their velocity distribution immediately

after a collision is that of the neutrals, namely, a Maxwellian at the neutral drift

and temperature, i.e., a stationary Maxwellian at a temperature Tn. While this is

not necessary, we will assume here that this temperature is also Ti0, the temperature

of the ions prior to the electric field onset. This means that we will use the same

normalization for fn as we used for fi1. In reality we should expect to have Ti0 > Tn in

ionospheric situations above 200 km. However, this would only change the parameter

normalization in solving Eq.(3.6).

The task to find fn(t′) given that fn(0) is a stationary Maxwellian is identical

to the task of finding fi1(t
′) when fi1(0) is a Maxwellian. This means that we have
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already solved the problem of finding fn(t′): if the distribution is a Maxwellian at

t′ = 0, then for t′ 6= 0, we only need to follow the characteristics of motion to

determine how fn evolves. This is to say,

fn(t′) =
nn

π
e−(v2

r+v2
φ) · eB2±B1sin[ω(t′−t)+φ0] (3.11)

or

fn(t′) =
nn

π
e−a′0[(vr−v′dr)2+(vφ−v′dφ)2] (3.12)

in which

a′0 = a0(t
′) =

a1 + a2cosω(t′ − t)

a1 + a2

v′dr = vdr(t
′) =

Ec

B

r

Rc

1

a0

Ωi

ω
sinω(t′ − t)

v′dφ = vdφ(t
′) =

Ec

B

r

Rc

1

a0

(
Ωi

ω

)2

[1− cosω(t′ − t)]





(3.13)

where a1 = 1 + 2
Ec/B

RcΩi

, a2 = 2
Ec/B

RcΩi

. It follows from these considerations that

∫
fn(t′)dv =

nn

a′0
(3.14)

3.2.2 Obtaining ni from the collisional solution

Using Eq.(3.14) in Eq.(3.10) we obtain

Ni =
ni0

a0(t)
+ νin

∫ t

0

Ni(t
′)

a0(t′)
dt′ (3.15)

the differential form of which is

dNi

dt
=

d

dt

(
ni0

a0

)
+

νin

a0

Ni (3.16)

or
dNi

dt
− νin

a0

Ni =
d

dt

(
ni0

a0

)
(3.17)

Applying the initial condition Ni|t=0 = ni|t=0 = ni0, the solution of Eq.(3.17) is

Ni =
ni0

a0(t)
+ ni0νine

∫ t
0 [νin/a0(t′)]dt′ · ∫ t

0

e−
∫ t′
0 [νin/a0(t′′)]dt′′

a2
0(t

′)
dt′ (3.18)

Introduce as a new variable, the phase angle is α = ωt. Eq.(3.18) then becomes

Ni =
ni0

a0(t)
+ ni0

νin

ω
e

νin
ω

∫ ωt
0 dα′/a0(α′)

∫ ωt

0

e−
νin
ω

∫ ωt′
0 dα′′/a0(α′′)

a2
0(α

′)
dα′ (3.19)
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Appendix F introduces the mathematical steps to obtain the final expression of

Ni. For a sufficient number of gyro-cycles, the integer of [ωt/(2π)] is ∼ ωt/(2π),

Eq.(F.16) gives

Ni = ni0

[
1

a0

+ a1

(
e

νin
Ωi

ωt − 1
)]

(3.20)

Then, by definition of Ni, we obtain

ni

ni0

=

(
1

a0

− a1

)
e−νint + a1e

(ω/Ωi−1)νint =





1

a0

for t → 0

a1e
(ω/Ωi−1)νint for t →∞

(3.21)

which reveals that the ion density contains two components. One is determined by

a0, oscillating with time. But this term decreases exponentially in time. By contrast,

due to the fact that ω > Ωi, the other one increases exponentially in time. There are

two extreme cases. At t = 0, Eq.(3.21) states that ni = ni0/a0, which is the same

as that in the collision-free case covered in Chapter 2. The other extreme situation

is t → ∞. Now the first component disappears and the second one controls the

evolution of the density.

The relative importance of the two components can be estimated as follows.

Using a1 = 1 + 2(Ec/B)/(RcΩi) = 7/3, a2 = 2(Ec/B)/(RcΩi) = 4/3, ω/Ωi = 1.915,

we know that after a half relaxation time 0.5ν−1
in , the second RHS term in Eq.(3.21)

is 6.1, more than four times greater than the first term which is between -4/3 and

4/3. For longer times, the first term is negligible. For shorter times, it should not

be dropped off. This allows the relation of ni → ni0/a0 for t → 0 to be kept. Fig.3.1

shows the density evolution under different electric fields. In this figure and from

this point on, the unit of time is T = 2π/ω.

At this point the time-dependence of ni needs to be discussed briefly. For small

times during which the effects of collisions are not being felt yet, the density oscillates,

as discussed in Chapter 2. The oscillation is rooted in the fact that after the negative

charges are suddenly introduced in the system, the ions are drawn to the negative

charges. As a result, the density increases. However, after some time, the ions are

reflected by the magnetic field and the density decreases again. This is basically

the physics behind electrostatic ion cyclotron waves in general (here though the
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Figure 3.1: Evolution of ion density under different electric fields Ec.

oscillation is at ω > Ωi, it is still the basic cyclotron physics).

When collisions with the neutrals are introduced we find that the ion density

increases. At first, this is because with collisions, weak currents are set up along

the electric field direction (these are called “Pedersen currents” in the ionospheric

literature). The currents are set up because the ions are gaining kinetic energy as

they approach the negative center of charges. This also means that the ion density

increases as well. As long as the electric field is maintained, more electrons will have

to be brought up from outside to maintain the electric field. Thus, as the ions are

accumulating, the total density (ion plus electron) will increase first so as to maintain

the electric field strength. This situation does not necessarily happen in ionospheric

situations, but it is consistent with our model.
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3.2.3 Putting the two components of fi together

By substituting Eq.(3.21) directly in Eq.(3.6), Appendix F also gives the expression

of fi as shown in Eq.(F.21). From it, we have

fi = fi1e
−νint +

ni0

nn

e−νint·

·
{

νint

2π

∫ 2π

0

(
1

a0

− a1

)
fn(α

′)dα′ + a1
Ωi

ω

e
ω
Ωi

νint − 1

2π

∫ 2π

0
fn(α

′)dα′
}

=

=

[
fi1 − ni0

nn

a1
Ωi

ω

1

2π

∫ 2π

0
fn(α

′)dα′
]

e−νint+

+
ni0

nn

{
νint · e−νint

2π

∫ 2π

0

(
1

a0

− a1

)
fn(α

′)dα′ + a1
Ωi

ω

e
( ω
Ωi
−1)νint

2π

∫ 2π

0
fn(α

′)dα′
}





(3.22)

Clearly, the first term in the “{·}”-expression of the result is smaller than the second.

Similar to the previous discussion, this term can be neglected after several gyrations

of ions due to its insignificance in the contribution to fi, e.g., only a half collision

time, the second term contributes five-fold more. Consequently, we have

fi =

[
fi1 − ni0

nn

a1
Ωi

ω

1

2π

∫ 2π

0
fn(α

′)dα′
]

e−νint+

+

[
ni0

nn

a1
Ωi

ω

1

2π

∫ 2π

0
fn(α

′)dα′
]

e

(
ω
Ωi
−1

)
νint





(3.23)

As a test for the fi-solution given above, let’s integrate it over velocity space to

see if it gives the same density ni as shown in Eq.(3.21):

ni =
∫

fidv =

[
ni0

a0

− ni0

nn

a1
Ωi

ω

1

2π

∫ 2π

0

nn

a0(α′)
dα′

]
e−νint+

+

[
ni0

nn

a1
Ωi

ω

1

2π

∫ 2π

0

nn

a0(α′)
dα′

]
e

(
ω
Ωi
−1

)
νint

=

=

(
ni0

a0

− ni0a1

)
e−νint +

(
ni0a1e

ω
Ωi

νint
)

e−νint





(3.24)

or,

ni

ni0

=

(
1

a0

− a1

)
e−νint + a1e

( ω
Ωi
−1)νint

=





1

a0

for t → 0

a1e
( ω
Ωi
−1)νint

for t →∞
(3.25)

the same expression as Eq.(3.21).

Using Eqs.(3.8,3.11), Eq.(3.23) provides

fi

ni0

=
1

π
e−a0[(vr−vdr)2+(vφ−vdφ)2] · e−νint+

+
Ωi

ω

a1

2π2
· ∫ 2π

0
e−(v2

r+v2
φ)+(B2±B1sinα′)dα′

(
e

ω
Ωi

νint − 1
)

e−νint





(3.26)

60



Noting the following points: (1) parameters B1 and B2 are neither explicit functions

of α (or t), nor of α′ (or t′), (2) the integration
1

2π

∫ 2π

0
e±B1sinα′dα′ is the zeroth-order

modified Bessel function I0(±B1) = I0(+B1) = I0(−B1), we rewrite Eq.(3.26) as

fi

ni0

=
1

π
e−a0[(vr−vdr)2+(vφ−vdφ)2] · e−νint+

+
1

π
eB2−(v2

r+v2
φ) · Ωi

ω
a1 · I0(B1) ·

(
e

ω
Ωi

νint − 1
)

e−νint





(3.27)

Obviously, fi contains two components. One is the collision-free term fiCfree, and the

other is the collisional term fiCnal, satisfying

fi = fiCfree + fiCnal = fi1 · e−νint + fi2 ·
(
e

ω
Ωi

νint − 1
)

e−νint (3.28)

in which

fiCfree = fi1 · e−νint

fiCnal = fi2 ·
(
e

ω
Ωi

νint − 1
)

e−νint

fi1/ni0 =
1

π
e−a0[(vr−vdr)2+(vφ−vdφ)2]

fi2/ni0 =
1

π
eB1+B2−(v2

r+v2
φ) Ωi

ω
a1

[
e−B1I(B1)

]





(3.29)

Fig.3.2 shows the ratios, fiCfree/fi1 and fiCnal/fi2, versus time. Obviously, the first

ratio decreases exponentially to zero from the initial value of 1, while the second one

increases exponentially from zero to 20 at the end of time selected in calculations.

3.2.4 Evolution of fi

The evolution of fi depends on the temporal behaviors of fiCfree(t) [which contains

fi1(t)] and fiCnal(t) [which contains fi2(t)]. Chapter 2 has shown that fi1(t) is a

shifted, pulsating Maxwellian in time. The shifting center rotates around the E×B

drift, while the distribution relative to the center pulsates periodically. As one com-

ponent of fi, however, this shifted, pulsating Maxwellian decays with time exponen-

tially, as shown by fiCfree in Eq.(3.29).

By contrast with fi1(t), fi2 is not a function of time, but it contains a Bessel

function. Figs.3.3 & 3.4 describe the evolution of fi2 as a function of radial position

and electric field strength, respectively. The panels in the two figures show that

the collisional component in the ion velocity distribution exhibits a horse-shoe shape
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Figure 3.2: Evolution of the two ratios: fi1/fiCfree and fi2/fiCnal.

which can be with a hollow or a solid core. In the extreme cases (large distance from

the center, or strong electric field), energetic tails form. This means that ions are

heated transversely.

As discussed earlier, though fi2 is independent of time, fiCnal(t) grows exponen-

tially with time due to ω > Ωi. This term increasingly dominates fi. Fig.3.5 presents

the temporal evolution of fi at t = 5T , t = 10T , t = 50T , and t = 500T in four panels,

respectively. Let’s consider two extremes. In the first panel, t = 5T = 10π/ω = 55

ms. Then, νint = 1.6 × 10−2, producing e−νint ≈ 1, and e(ω/Ωi)νint − 1 ≈ 0. Con-

sequently, fi is chiefly determined by fiCfree(t), showing a Maxwellian shape. By

contrast, in the last panel, t = 500T = 5500 ms. Then, νint = 1.6, producing

e−νint ≈ 0.2, and e
ω
Ωi

νint − 1 ≈ 23.5. Consequently, fi is completely controlled by

fiCnal(t), exhibiting a horse-shoe shape.
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Figure 3.3: Development of fi2 horse-shoe distribution versus radial
position r.

3.3 Velocity moments and transport properties

In Appendix G, a series of mathematical expressions is provided in order to calculate

velocity moments. The six formulae in Eq.(G.19) are used in following expressions.

Using Eqs.(3.8,3.12) with the velocity in vector form, the velocity moments can

63



Figure 3.4: Development of fi2 horse-shoe distribution versus electric
field Ec.

be obtained as follows:

〈vk
j 〉 =

1

ni

∫
vk

j fidv =

=

∫
vk

j

[
fi1

ni0

+
a1

nn

Ωi

ω

1

2π

∫ 2π

0
fn(α

′)dα′ ·
(
e

ω
Ωi

νint − 1
)]

dv

(
1

a0

− a1

)
+ a1e

ω
Ωi

νint
=

=

1

π

∫
vk

j e
−a0(v−vd)2dv +

a1Ωi

2π2ω

∫ 2π

0

[∫
vk

j e
−a′0(α)[v−v′d(α)]2dv

]
dα

(
e

ω
Ωi

νint − 1
)

1

a0

+ a1

(
e

ω
Ωi

νint − 1
)





(3.30)
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Figure 3.5: Evolution of fi horse-shoe distribution versus time t.

which provides following dimensionless components of velocity moments:

〈vr〉 =
vdr

1 + a0a1

(
e

ω
Ωi

νint − 1
) =





vdr for t → 0

0 for t →∞
(3.31)

〈vφ〉 =
vdφ +

Ec

B

r

Rc

a0a1

(
e

ω
Ωi

νint − 1
)

1 + a0a1

(
e

ω
Ωi

νint − 1
) =

=





vdφ for t → 0
Ec

B

r

Rc

for t →∞





(3.32)
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Figure 3.6: Evolution of the average ion velocity for Ec/B = 4 at
r = 0.5Rc.

〈v2
r〉 =

v2
dr +

1

2a0

+

[
1

2

(
Ec

B

r

Rc

)2

+
a1

2

]
a0a1

(
e

ω
Ωi

νint − 1
)

1 + a0a1

(
e

ω
Ωi

νint − 1
) =

=





v2
dr +

1

2a0

for t → 0

1

2

(
Ec

B

r

Rc

)2

+
a1

2
for t →∞





(3.33)

〈v2
φ〉 =

v2
dφ +

1

2a0

+

[
3

2

(
Ec

B

r

Rc

)2

+
a1

2

]
a0a1

(
e

ω
Ωi

νint − 1
)

1 + a0a1

(
e

ω
Ωi

νint − 1
) =

=





v2
dφ +

1

2a0

for t → 0

3

2

(
Ec

B

r

Rc

)2

+
a1

2
for t →∞





(3.34)

〈v3
r〉 =

v3
dr +

3vdr

2a0

1 + a0a1

(
e

ω
Ωi

νint − 1
) =





v3
dr +

3vdr

2a0

for t → 0

0 for t →∞
(3.35)
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Figure 3.7: Evolution of the ion temperature for Ec/B = 4 at r =
0.5Rc.
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+
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r
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+
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2
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ω

Ωi

)2

− Ec/B

RcΩi

]}
a0a1

(
e

ω
Ωi

νint − 1
)

1 + a0a1

(
e

ω
Ωi

νint − 1
) =

=





v3
dφ +

3vdφ

2a0

for t → 0

Ec

B

r

Rc

{
5

2

(
Ec

B

r

Rc

)2

+
3

2

[(
ω

Ωi

)2

− Ec/B

RcΩi

]}
for t →∞





(3.36)

The normalization for the ion density ni is ni0, for the average velocity compo-

nents vaver and vaveφ is vTi0, for the temperature components Tr and Tφ is Ti0, for

the pressure tensor compponents prr and pφφ is ni0kbTi0, and for the heat-flow com-

ponents qr and qφ is mv3
Ti0. The velocity moments are therefore provide transport
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Figure 3.8: Evolution of the ion pressure for Ec/B = 4 at r = 0.5Rc.

parameters as follows in dimensional units:

vaver = 〈vr〉 =





vdr for t → 0

0 for t →∞

vaveφ = 〈vφ〉 =





vdφ for t → 0
Ec

B

r

Rc

for t →∞





(3.37)

Tr = 2(〈v2
r〉 − 〈vr〉2) =





1

a0

for t → 0

a1 +

(
Ec

B

r

Rc

)2

for t →∞

Tφ = 2(〈v2
φ〉 − 〈vφ〉2) =





1

a0

for t → 0

a1 +

(
Ec

B

r

Rc

)2

for t →∞





(3.38)
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Figure 3.9: Evolution of the ion heat flow for Ec/B = 4 at r = 0.5Rc.

prr = niTr =





1

a2
0

for t → 0

a1

[
a1 +

(
Ec

B

r

Rc

)2
]

e
( ω
Ωi
−1)νint

for t →∞

pφφ = niTφ =





1

a2
0

for t → 0

a1

[
a1 +

(
Ec

B

r

Rc

)2
]

e
( ω
Ωi
−1)νint

for t →∞





(3.39)

qr = (〈v3
r〉 − 〈vr〉3)− 3

2
〈vr〉Tr =





0 for t → 0

0 for t →∞

qφ =
(〈v3

φ〉 − 〈vφ〉3
)− 3

2
〈vφ〉Tφ =





0 for t → 0

3

2

(
Ec

B

r

Rc

)
Ec/B

RcΩi

for t →∞





(3.40)

For Ec/B = 4 and at r = 0.5Rc (that is, the E×B drift is 4× 0.5 = 2), Eqs.(3.37-

3.40) state that at t = 0, the bulk parameters have their initial values as follows:

vaver = vaveφ = 0, Tr = Tφ = 1, prr = pφφ = 1, and, qr = qφ = 0; for t = 1000, they

have the final values as follows: vaver = 0, vaveφ = 2, Tr = Tφ = 7.67, prr = pφφ =
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1237, and, qr = 0, qφ = 4.

Figs.3.6-3.9 illustrate the time evolution of the above transport properties. Sim-

ilar to the evolution of ion density, the temporal variation of these parameters also

show two parts, namely, an oscillating one and a monotonic one. Initially, the oscil-

lating part takes the leading role. With time, it gives its way to the second part.

3.4 Summary and discussion

By contrast with Chapter 2 where the case (∂f/∂t)c = 0 has been discussed for time

scales much shorter than a collision time (or, t ¿ ν−1
in ; νin ¿ Ωi in the ionosphere),

this Chapter has focused on the response of the ion velocity distribution function

to intense electric fields under collisional conditions, namely, (∂f/∂t)c 6= 0. In this

Chapter, we have dealt mainly with long time scales (t À ν−1
in ).

In this collisional case, the Boltzmann collision integral is replaced by a relaxation

model. The solution to the full collision operator would have required a numerical

Monte Carlo approach [Winkler et al. (1992)]. Several results have been obtained:

distribution functions with horseshoe shapes in velocity space; ion density increasing

exponentially; mean drift speed equal to the local value of the E×B drift; the two

temperatures in the r and φ directions, respectively, leveling off with a same value;

no ion heat flow in the r-direction, and a strong ion heat flow in the φ-direction.

One interesting aspect of the results is the ion density increasing with time, which

is illustrated in Fig.3.1. In other words,

∂ni

∂t
6= 0 for t →∞ (3.41)

However, the continuity equation,

dni

dt
=

∂ni

∂t
+∇ · (ni〈v〉) = 0 (3.42)

shows
∂ni

∂t
= −ni

r

∂

∂r
(r〈vr〉) = −2

ni

r
〈vr〉 → 0 for t →∞ (3.43)

when using Eqs.(3.25,3.31). These are contradictory results.
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We have shown in Chapter 2 that in the collision-free case the density oscillates.

We will also show in Chapter 6 that this is consistent with Eq.(3.43) and the result

of the fluid equations. However, when we introduce collisions, the oscillations not

only decay, but are replaced with a steady density increase. We now argue that this

is due to small Pedersen currents that were neglected when we obtained 〈vr〉. This

can be seen relatively easily if we consider situations over which the nonlinear effects

are not large. In that case we expect to have the Pedersen drift given by

〈vr〉 =
νin

Ωi

〈vφ〉 = −νin

Ωi

Ec

B

r

Rc

(3.44)

for small νin (i.e., νin/Ωi ¿ 1). In the above equation, the sign “-” is because the

ions are drawn in by the negative charges. Then, Eq.(3.43) gives

∂ni

∂t
= 2ni

νin

Ωi

Ec

B

1

Rc

(3.45)

the solution of which is

ni = n′i0exp

(
2
Ec

B

1

RcΩi

νint

)
(3.46)

Note that n′i0 is an ion density at t > 0 which is not known after a transition from

collision-free to collisional conditions. But it can be considered as an initial condition

here.

Now let’s see what we have for ni as t → ∞ under the same weakly nonlinear

condition using Eq.(3.25). After a long time, this equation tells us that

ni → ni0a1e
(ω/Ωi−1)νint = ni0a1exp







√
1 + 4

Ec/B

RcΩi

− 1


 νint


 (3.47)

For small nonlinear effects, the argument under the square root is close to 1 (see

Chapter 6 for more), and we then obtain

ni ≈ ni0a1exp

(
2
Ec/B

RcΩi

νint

)
(3.48)

So, indeed if nonlinear effects are weak we recover what is expected from the con-

tinuity equation. Roughly, we also have n′i0 ∼ ni0a1 by balancing Eq.(3.46) and

Eq.(3.48).
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In fact, this ionic Pedersen drift can be derived from Eq.(F.19) in Appendix

F by using a leading order correction through a Taylor expansions of e(νin/Ωi)α
′ ≈

1 + (νin/Ωi)α
′. This produces an extra term in Eq.(F.21), namely,

∆fi =
ni0

nn

νin

ω
· a1

2π

∫ 2π

0

α′fn(α
′)dα′ · [e(ω/Ωi)νint − 1

]
e−νint (3.49)

Using Eq.(3.25), we obtain the additional term for the average radial speed ∆〈vr〉
for t →∞, namely,

∆〈vr〉 =

∫
vr(∆fi/ni0)dv

ni/ni0

=
νin

ω

a1

2π

∫ 2π

0
α′

vdr(α
′)

a0(α′)
dα′ = −C∗νin

Ωi

Ec

B

r

Rc

C∗ = −a1 + a2

2π

∫ 2π

0

α′sinα′

(a1 + a2cosα′)2
dα′ > 0





(3.50)

in which C∗ is a coefficient less than 1 and anti-correlated with Ec/B. For example,

at Ec/B = vth, 2vth, 3vth, 4vth, C∗ = 0.7461, 0.6348, 0.5635, 0.5124, respectively. For

Rc = 10 m at Ec/B = 0.001vth (or, Ec = 50 µV/m), C∗ = 0.969; at Ec = 0, C∗ = 1.

The same result holds if Rc is large (weak nonlinearities).

Thus, for long times, Eq.(3.31) now gives a general ionic Pedersen drift under

any electric field strengths which is equal to

〈vr〉 = ∆〈vr〉 = −C∗ ν

Ωi

Ec

B

r

Rc

(3.51)

and

ni = n′i0exp

(
2C∗Ec/B

RcΩi

νt

)
→ n′i0exp

(
2
Ec/B

RcΩi

νt

)
(3.52)

if the electric field is so weak or Rc so large that Eq.(3.48) is valid, and Eq.(3.51)

simplifies to Eq.(3.45).

The final question is: what is the physics behind the increase in density? To

answer this, recall that the electric field is kept constant in our calculations. This

means that in order to maintain the electric field, every time an ion gets trapped in

the negative charge region, an additional electron has to be brought in to neutralize

it. For this reason, the plasma density has to go up. This increase is feasible because

the electrons that provide the electric field come from “outside generator(s)”, like

precipitating electrons, or those that get trapped by high frequency turbulence. One
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alternative would be to let the ions neutralize the electric field with Pedersen currents

instead of triggering an increase in the plasma density.

Some caution should also be exercised before applying our horseshoe results to

actual observations in that our results have been obtained under the assumption of

cylinders with infinite radii. In practice, we should expect our results to be valid well

inside cylinders with finite radii, but certainly not near their edges, or, outside of

them. We discuss those situations for collision-free conditions in the next Chapter.
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Chapter 4

Electric Fields That Are Constant In

Time But Vary Arbitrarily With Radial

Distance:

Collision-Free Situations

The analytical model and calculations of ion velocity distributions and transport

properties in a linear and constant electric field presented in Chapter 2 and 3 are a

first step in the evaluation of more complicated situations. In this Chapter we now

study the response of ions to spatially more realistic electric field structures.

The situation is now more complicated because the space-charge cylinder no

longer has an infinite radius. This forces the electric field strength to change nonlin-

early. Even the collision-free problem becomes complicated because the ion orbits are

no longer locked in phase, except, maybe, in the extreme inner part of the cylinder.

Elsewhere, ions that start at different radial distances will feel different oscillation

frequencies.

To study this problem, I have generalized the analytical work to produce a semi-

numerical method. By establishing a backmapping model to get ion trajectories of

motion, the approach describes numerically various shapes of ion velocity distribu-

tion functions, as well as the associated transport properties, for arbitrary electric

field structures. These fields are radially nonlinear but still constant in time. Only

collision-free cases are considered. A flow chart describing the computer procedure

used to solve the problem is given in Fig.4.1.
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Figure 4.1: Flowchart of the semi-numerical approach used for gen-
eralized nonlinear electric fields which are constant in time.
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4.1 Electric field profile and potential energy

For an arbitrary electric field structure, the cylindrically symmetric space charges

are no longer extending to infinity but localized to form a cylinder in real space.

Various situations are possible for the electric field strength as a function of radial

distance. These can, for instance, be a negative charge density peaking near the

edge of the cylinder, or, fast or slow changing profile crossing the edge, etc. Differ-

ent charge density distributions produce different space-charge electric fields. The

general problem is simply described by

E = Err̂ = Ec · f (r) r̂ (4.1)

in which f(r) is constant in time, but an arbitrary radial function versus r/Rc,

defined as f(r) = Er/Ec, and Ec is a constant. Fig.4.2 gives several examples of

f(r) that will be considered in this Chapter. For comparison, the linear electric field

used in Chapter 2 and 3 is also given.

As discussed in Chapter 2, the ion velocity distribution is evidentally affected by

the electrostatic potential energy P . The change in P as an ion moves from r0 to r

is given by

Prr0 = Pr−Pr0 = e[ϕ(r)−ϕ(r0)] = e

∫ r

r0

E ·dr = e

∫ r

r0

Erdr = eEc

∫ r

r0

f(r)dr (4.2)

For a linear electric field as supposed in Chapter 2, f(r) = r/Rc, we have obtained

P =
1

2
eEcRc

[(
r

Rc

)2

−
(

r0

Rc

)2
]

=
1

2
mi

Ec

B
RcΩi

[(
r

Rc

)2

−
(

r0

Rc

)2
]

(4.3)

For nonlinear electric fields, however, the potential energy may not take such

a simple analytical shape. Furthermore, even even for simple cases [e.g., Er =

Ec(Rc/r)], we still do not know how to connect r to r0 and then to determine

the potential energy. The problem gets worse for the “exponential” or the “cube”

electric field structures introduced in Fig.4.2. However, this relation can be provided

by solving the equation of motion analytically or numerically.
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Figure 4.2: Arbitrary radial electric field examples which are constant
in time: (1) Er = −Ec(r/Rc); (2) Er = −Ec(r/Rc)/[1 + 0.1 (r/Rc)

3];

(3) Er = −Ec(r/Rc)e
−0.1(r/Rc)

3

; and (4) Er = −Ece
−(r/Rc−1)2/0.12

.

4.2 Numerically solving the equation of motion

The equation of motion in an arbitrary radial electric field has the form [e.g., Eq.(2.5)]

dr

dt
= vr ,

dvr

dt
= −

(
Ωi

2

)2

r− Ec

B
Ωi · f(r) +

K2

m2
i r

3
,

dφ

dt
= ω =

K

mir2
− 1

2
Ωi (4.4)

For convenience, I use a dimensionless formulation hereafter. However, in this set

of differential equations of motion, the exact relation between the effective gyro-

frequency ω and the magnetic gyro-frequency Ωi is unknown. I therefore choose Ωi

as the timescale parameter in the numerical calculations. Using the backmapping
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Figure 4.3: Analytical and numerical results for the evolution of r (in
Rc units) and vr (in vth units) with time and their respective numerical
errors under the radially linear electric field structure used in Chapter
2.

ray-tracing technique, Eq.(4.4) becomes

dr0

dt
= − 2π

RcΩi

vr0

dvr0

dt
=

2π

RcΩi

[(
RcΩi

2

)2

r0 +
Ec

B
RcΩi · f(r)− c2

k

r3
0

]

vφ0 =
r

r0

vφ +
1

2
RcΩi

(
r2

r0

− r0

)

ck = r2

(
vφ

r
+

1

2
RcΩi

)





(4.5)

where all parameters of position, speed, or time are dimensionless in units of Rc, vT ,

or, 2π/Ωi, respectively. Note that {r, vr, vφ} are input parameters, {r0, vr0, vφ0} are

outputs, and r0 = r0(r, vr, vφ), vr0 = vr0(r, vr, vφ), vφ0 = vφ0(r, vr, vφ). To verify the

agreement between analytical and numerical calculations, Fig.4.3 offers the errors of

ion radial position and radial speed produced in two ways in the case of the radially

linear electric field structure used in Chapter 2. The analytical expressions of r and

vr are obtained simply from Eqs.(2.6,2.14).
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4.3 Numerical calculations for distribution func-

tion and bulk properties

In the absence of collisions, Chapter 2 tells us that the ion distribution function

fi[r(t),v(t)] in phase space at any time t is determined by the initial distribution

function fi(r0,v0) at t = 0, as given in Eq.(2.8):

fi[r(t),v(t), t] = fi(r0,v0, 0) = f0 =
n0

π
e−(v2

r0+v2
φ0) (4.6)

Here, I still assume the initial ion distribution function to be Maxwellian.

Using Eq.(4.2), we immediately find

fi[r(t),v(t), t] =
n0

π
e−[v2

r+v2
φ+(Pr−Pr0 )] =

n0

π
e−[v2

r+v2
φ−2Ec

B
RcΩi

∫ r0
r f(r)dr] (4.7)

in which P is dimensionless with mv2
T /2, and r0 = r0(r, vr, vφ) is numerically calcu-

lated from Eq.(4.5). Using fi, the following velocity moments can be expressed from

the definitions:

ni =
∫

fidv

〈vr〉 =
1

ni

∫
vrfidv , 〈vφ〉 =

1

ni

∫
vφfidv

〈v2
r〉 =

1

ni

∫
v2

rfidv , 〈v2
φ〉 =

1

ni

∫
v2

φfidv

〈v3
r〉 =

1

ni

∫
v3

rfidv , 〈v3
φ〉 =

1

ni

∫
v3

φfidv





(4.8)

The moments are obtained numerically by applying the Gauss-Hermite weight in-

tegrations. From there, the bulk parameters can be calculated as follows:

vdr = 〈vr〉 , vdφ = 〈vφ〉
Tr = 2 (〈v2

r〉 − 〈vr〉2) , Tφ = 2
(〈v2

φ〉 − 〈vφ〉2
)

prr = niTr , pφφ = niTφ

qr = 〈v3
r〉 − 〈vr〉3 − 3

2
〈vr〉 · Tr , qφ = 〈v3

φ〉 − 〈vφ〉3 − 3

2
〈vφ〉 · Tφ





(4.9)

The validity of the semi-numerical code was checked against analytical solutions

from Chapter 2. Specifically, the analytical solutions came from Eq.(2.14). The

radial position is at r = Rc and the time is at t/T = 3/4 where T = 2π/ω. The

check is shown in Fig.4.4. The error is within 9× 10−6.
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Figure 4.4: Numerical verifications for the ion velocity distribution
function in the case of the radially linear electric field used in Chapter
2.
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Figure 4.5: Upper: Verification of numerical calculations for the ion
bulk properties in the case of the radially linear electric field used in
Chapter 2. Lower: Error between the numerical and analytical calcu-
lations.
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In addition, I have also checked the fit of the bulk parameters between the ana-

lytical and numerical calculations. The analytical expressions I used are Eq.(2.32).

Fig.4.5 shows that they are in good agreement, except that in t ∈ (0.2 ∼ 0.3) and

t ∈ (0.7 ∼ 0.8) the heat flow deviates from zero up to 0.0839.

The next section presents the results of calculations of the velocity distributions

and associated transport properties for the electric field variations introduced in

Fig.4.2, which should cover a reasonable range of ionospheric possibilities at least

qualitatively.

4.3.1 Ion distribution function

Fig.4.2 shows three types of radial electric field structures which are not proportional

to the radial position:

(1) Curve 2: Er = −Ec(r/Rc)/[1+0.1 (r/Rc)
3]. Within r = Rc, Er is proportional

to r; outside r = Rc, Er decreases to zero slowly relative to Curve 3.

(2) Curve 3: Er = −Ec(r/Rc)e
−0.1(r/Rc)3 . Within r = Rc, Er is proportional to

r; outside r = Rc, Er decreases to zero quickly relative to Curve 2.

(3) Curve 4: Er = −Ece
−(r/Rc−1)2/0.12

. At an arbitrary position in space (r = Rc

is taken as an example), there is an electric field jump.

Case 1

Fig.4.6 uses nine panels to show the evolution of the ion O+ distribution function

in velocity space from t = 0 to the same length of time in a magnetic gyro-period

[T = 2π/Ωi = 2πm/(eB)]. Notice that this gyro-period is that of ions under zero

electric field. So, it is not the actual “gyro-period” of ions gyrating under the electric

field 2 in Fig.4.2.

However, there may or may not be such a “gyro-period” shared by all particles in

motion. In a field which does not change linearly along the radial direction, ions are

not in phase. This is the difference from what Chapter 2 describes: the motion of all

ions are in phase under linear electric fields. This means in the present case that ions

with different initial conditions move in different characteristics in space with their
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Figure 4.6: Ion velocity distribution function versus time at r = Rc

and at Ec/B = 2 for Er = −Ec(r/Rc)/
[
1 + 0.1 (r/Rc)

3]. In all panels,
T = 2π/Ωi.
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respective gyro-frequencies. Thus, when we use the phrase “guiding center (GC)”

in the following text, we do not refer to the center of the distribution function for

all ions as a whole, but only to the so called “center” of the dominant part of the

distribution functions (maybe several parts) in velocity space.

Fig.4.6 is plotted with two input parameters: the radial position is at r = Rc

and Ec/B = 2. Though the electric field is nonlinear in the radial direction, we

notice that it contains a linear component: if r is small, the field turns out to be a

linear electric field, meaning the charge density is still uniform close to the center

of the space charge cylinder as discussed in Chapter 2. Thus, we guess that the ion

velocity distribution at r = Rc, a radial position not very far from and not very close

to the center, should bring, more or less, the features of the distributions introduced

in Chapter 2. Let’s have a close look at the figure.

Firstly, the figure shows a similar rotation feature as that in Chapter 2: the ion

distribution function rotates continuously around some center related to the E×B

drift on the vφ-axis. The panels at t/T = 3/8 and t = T illustrate that the center

seems to be located at vφ = 2. We know from Chapter 2 that the E × B drift is

Er/B = (Ec/B)× (r/Rc) = 2 at r = Rc. Secondly, all panels together show roughly

a periodic change in sizes of the evolving ion distribution function. At first as in the

panel at t/T = 0, the area of the distribution is small; then it increases, decreases,

and increases, oscillating in time. This is exactly the feature shown in Chapter 2 for

the evolution of the ion distribution in time. Lastly, the gyration of ions appears

to have the same effective gyro-frequency as that given in Chapter 2: In a linear

electric field, the effective gyro-frequency ω is given by Eq.(2.15) which turns out

to be ∼ 1.9Ωi for Ec/B = 2. This means during one magnetic gyro-period (1/Ωi),

ions have experienced approximately 2 rotations with the effective gyro-frequency

ω. See the nine panels in Fig.4.6: they roughly have rotated twice from t = 0 to

t = T = 2π/Ωi.

Though with so many similar features to the case in Chapter 2, Fig.4.6 does tell

us obvious differences of ion velocity distributions from that under the linear radial

electric field structures. For example, because ions are no longer in phase, the ap-
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pearance of the distribution function does not keep the original “cake” shape at panel

t/T = 0 they are evolving from, unlike that in Chapter 2. At panel t/T = 3/8, the

distribution function becomes teardrop-shaped; while at panel t = T , it is scattered

to such a weird shape that a tail emerges out from the core body. Another related

feature different from that in Chapter 2 is: both the density and temperature are no

longer keeping the same variations; more than that, each of them does not oscillate

in the same way from one gyration to the other. For instance, it is impossible to

find two panels in Fig.4.6 which have areas (indicating ion density) or the diameters

(indicating ion temperature), respectively, of the same size. Moreover, the so called

“GC” speed never reaches twice the E×B drift as obtained in Chapter 2. See panel

t/T = 2/8. The “GC” speed is obviously lower than 4. Unlike the linear field case

where ions at larger radius feel stronger electric force to accelerate them inward to

higher speeds when deflected into the region of interest by the magnetic field, the

nonlinear field we are using is localized and no ions outside several Rc are driven in-

ward. Thus, ions with higher speeds are lacking in the region of interest. Naturally,

the bulk speed of all ions is unable to touch the top of the circle delineated by the

GC motion in velocity space around the E×B drift shown in Fig.2.3 in Chapter 2.

Case 2

If the space charge diffusion outside the region of interest is not as high as in Case

1, the ion velocity distribution function is still determined by the localized electric

field structure in the region. Curve 3, on the one hand, is not much different from

Curve 2 for small r and is still linear along the radial direction. This means the

evolution of the distribution function should still have, more or less, the features

given in Chapter 2. On the other hand, at larger radius, the electric field falls to

zero, just like in Curve 2. Thus, we can predict reasonably that the evolution of the

distribution function should have, more or less, the features given in Case 1. See

Fig.4.7 for these similarities.

The nine panels show nearly the same evolving features as Case 1 in the gyration

period, the top GC speed, the distribution shapes, etc. The only conspicuous differ-
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Figure 4.7: Ion velocity distribution function versus time at r = Rc

and at Ec/B = 2 for Er = −Ec(r/Rc)e
−0.1(r/Rc)3 . In all panels, T =

2π/Ωi.
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Figure 4.8: Ion velocity distribution function versus Ec at r = Rc and
at t = 3T/8 (where T = 2π/Ωi) for Er = −Ec(r/Rc)e

−0.1(r/Rc)3 . The
halo is flying away from the core distribution. In an enlarged figure
given by Fig.4.12 below, the center of the halo is at vr = 1 and vφ = 7.3
for Ec/B = 6.
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ence lies in the tail shown in the last panel at t = T : the ion distribution appears

to be larger even in the core and tail parts than that shown in Fig.4.6. This may be

explained by the fact that a narrower space charge boundary brings about a sharper

drop in the electric field strength, which leads to fewer energetic ions in the tail to

be deflected away by the E×B drift from the region of interest.

At this point, I would like to show another interesting feature the ion veloc-

ity distribution function reveals: a core-halo shaped appearance. This unexpected

shape originates from the application of stronger electric field strengths, as shown

in Fig.4.8. With an increasing electric field, the ion distribution function first moves

in velocity space as a whole. But at Ec/B = 4, the teardrop-shaped distribution is

separated into two parts: a core continuing to move downward, and a halo peeling

off but moving upward. Different from the core-tail case, this core-halo distribution

is directly related to the formation of an energetic ion beam. If the electric field

continues to increase, the halo flies away from its parental core as shown in panel

Ec/B = 5. Noticeably, the core shrinks to a smaller size than before giving off the

halo. In an enlarged figure given by Fig.4.12 below, numerical calculations show that

the center of the halo is at vr = 1 and vφ = 7.3.

Case 3

We intentionally choose r = Rc as the layer (or surface) where space charges produce

a δ-function-like radial electric field. Both inside and outside the layer, the electric

field drops to zero abruptly (Curve 4 in Fig.4.2).

This kind of electric field structure brings about a few bizarre features to the ion

velocity distribution function. First of all, at any time, the distributions are com-

pletely deformed in shape from the initial Maxwellian. However, generally speaking,

the incomplete “bee”-shaped body is staying still at the initial position in velocity

space, though some parts of the body move in time. An associated feature is that

though there exists the strong electric field at r = Rc, no GC motion related to the

E×B drift is seen to be triggered as happened in Cases 1 and 2. Both Figs.4.9 and

4.10 confirms this static evolution of the distribution function in time, respectively.
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Figure 4.9: Ion velocity distribution function versus time at r = Rc

and at Ec/B = 2 for Er = −Ece
−(r/Rc−1)2/0.12

: panels for time t = 0−T .
In all panels, T = 2π/Ωi. In the central panel, “ ‘bee-like’ shape”, “ear”,
“collar” are labeled.
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Figure 4.10: Ion velocity distribution function versus time at r = Rc

and at Ec/B = 2 for Er = −Ece
−(r/Rc−1)2/0.12

: panels for time t =
T − 2T . In all panels, T = 2π/Ωi.
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Figure 4.11: Ion velocity distribution function versus radial posi-
tion at t = 7T/8 (where T = 2π/Ωi) and at Ec/B = 2 for Er =

−Ece
−(r/Rc−1)2/0.12

.

Finally, an ear-collar shaped distribution is evolving on the bee-shaped body. At

panel t/T = 1/8 in Fig.4.9, a bigger LHS ear first develops. This ear extends wider

in velocity space and then moves up to the top to meet with another smaller RHS

ear which is also moving up from another side. At the same time, a collar is formed

and moves downward while the ears move up. Fig.4.10 depicts this process more

clearly.

At this stage, it is intriguing to know the dependence of the ion velocity distribu-

tion function on the radial position. From the profile of the electric field structure,

Er = −Ecexp[− (r/Rc − 1)2 /0.12], we know that the field strength decreases to zero
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if r deviates far away from Rc. So, at both small or large r/Rc, there is no elec-

tric field locally to drive ions. Thus, either inside or outside the cylinder the ion

distribution function should keep its initial Maxwellian form. Luckily, Fig.4.11 re-

veals this feature: from panel r/Rc = 0.0375 to r/Rc = 0.375, we can see that the

distribution functions are mainly Maxwellian at smaller radius. However, closer to

r/Rc = 1, the ear-collar bee-shaped distribution is emerging from the Maxwellian till

panel r/Rc = 1.5. After that, at larger radius the distribution returns to Maxwellian

again.

4.3.2 Back-tracking phase-space parameters

In case 2, a core-halo distribution function has been found under Ec/B ≥ 4. The

ions in the halo are more energetic with a much larger drift speeds. For example,

at Ec/B = 6, t/T = 3/8, numerical calculations show that the center of the halo

is at vr = 1 and vφ = 7.3 in velocity space at the radial position r = Rc. This

gives a perpendicular speed v⊥ =
√

v2
r + v2

φ ∼
√

54 which is 5.2 times the initial

perpendicular speed. Accordingly, the perpendicular ion energy has increased to 27

times of the initial energy.

The origin of these energetic ions has been found by using a back-tracing ap-

proach. By picking up a halo point in velocity space and then using the {vr, vφ}
values as the initial conditions in the back-mapping equation of motion, we can im-

mediately obtain {r0, vr0, vφ0, φ0} in phase space. Let’s use the above velocity point

{vr = 1, vφ = 7.3} in the halo as an example, at which the halo distribution func-

tion is maximal, fi10 = 0.07758 as shown in Fig.4.12. The numerical results are

shown in Fig.4.13: this maximum halo distribution has contributions from all the

ions with initial phase-space values designated by the curves from t = 0 to t = 3T/8,

respectively.

4.3.3 Transport properties

Various transport properties (density, average speeds, temperatures, heat flows, etc.)

are numerically calculated from velocity moments of the ion velocity distributions.
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Figure 4.12: Core-halo distribution function and its peak at Ec/B = 6
(in units of vth) at r = Rc and at t = 3T/8 (where T = 2π/Ωi) under

the electric field structure Er = −Ec(r/Rc) · e−0.1(r/Rc)
3

.

Figure 4.13: Ion parameter spectra in phase space resulting in a halo
distribution peak of fi10 = 0.07758 at r = Rc and at t = 3T/8 (where
T = 2π/Ωi) under the electric field structure used in Fig.4.12 for vr = 1
and vφ = 7.3. 93
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Figure 4.14: Ion bulk properties as a function of time for two nonlin-
ear electric field structures: (1) Er = −Ec(r/Rc)/[1 + 0.1(r/Rc)

3]; (2)
Er = −Ec(r/Rc)e

−0.1(r/Rc)3 .
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For a direct comparison, Fig.4.14 shows these bulk parameters under the first two

nonlinear electric field structures.

The evolution of these parameters in time reveals a quasi-periodic feature under

either electric field structure. There is not much difference in the quasi-oscillations

for the two different electric fields. However, the quasi-oscillations are not totally the

same. For example, the electric field which drops more slowly outside the cylinder

[electric field (1) in the figure] appears to give oscillations with higher amplitudes in

density (ni) and azimuthal components of the bulk properties (e.g., vφ, Tφ, and qφ).

By contrast, the electric field which drops more quickly outside the cylinder [elec-

tric field (2) in the figure] triggers oscillations with higher amplitudes in the radial

components of the bulk parameters (e.g., Tr and qr). It deserves to be mentioned

here that the existence of the heat flows indicates local temperature gradients in real

space.

Under the situation of the sharp electric field case, Fig.4.15 shows two nine-panel

plots. The upper nine panels tell us the evolution of the bulk parameters with time,

while the lower nine ones show their changes as a function of radial position. A

striking feature of the upper panels is that all bulk parameters oscillate relatively

steadily with time in comparison to those under previous two electric fields. For

example, they all have a time-average value plus a fluctuating component; and, the

time-average values of both qr and qφ are around zero.

The lower nine panels describe that these bulk properties are localized ones. For

example, outside r = 2Rc, they all turn out to be zero. However, in the region

from r = 0 to r = 2Rc, the parameters changes violently. No doubt there are radial

gradients for all of them.

4.4 Summary

This Chapter has discussed the ion velocity distribution functions and transport

properties under different radial electric field structures which change arbitrarily in

space. Three typical examples of the fields have been chosen: an electric field which

is proportional to the radius inside a space charge cylinder but drops off slowly out
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Figure 4.15: Ion bulk properties under a nonlinear electric field struc-
ture Er = −Ece

−(r/Rc−1)2/0.12
. Upper 9 panels: as a function of time.

Lower 9 panels: as a function of radial position.
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side the cylinder, an electric field which is still proportional to the radius inside

a space charge cylinder but drops off more quickly out side the cylinder, and, an

electric field which is localized at the edge of the cylinder.

A back-mapping semi-numerical technique has been applied in the study. Nu-

merical calculations have shown that these electric fields produce various shapes

of ion distributions in velocity space: “pancake”-like, “teardrop”-like, “core-halo”,

“ear-collar”, etc. In addition, by employing the back-tracing calculation, the orig-

inal phase-space parameters of ions can be found to contribute to the ion velocity

distribution at any specific points in velocity space. Moreover, the features of ion

transport parameters under three electric field structures have been revealed.
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Chapter 5

Linear, Constant Electric Field But With

Initial Ion Density Inhomogeneities

Chapters 2 and 3 discussed the ion velocity distributions and related transport

properties in the collision-free and collisional cases, respectively, when the electric

field produced by an electron space charges is radially linear and temporally constant.

The initial ion density ni0 was assumed to be homogeneous in space.

This Chapter will relax the density constraints and take into account the inhomo-

geneities of an initial ion density to study how they affect the ion velocity distribution

function and its velocity moments. I will only consider the collision-free case. A mo-

tivation for this study is that small cylindrical regions with density cavities (known

as “lower hybrid cavities”) are often seen in the ionosphere, in conjunction with elec-

tric fields that also happen to be radial in space (but not necessarily to be DC in

time) [see, e.g., Pécseli et al. (1997); Knudsen et al. (2004)].

5.1 General considerations

In Chapter 2, Eqs.(2.16,2.23) give two different interpretations for the solution of

the Boltzmann equation, Eq.(2.7), in a linear and constant electric field under the

following conditions: (1) no ion-neutral collisions; (2) an initial Maxwellain distribu-

tion function in velocity space; and (3) an initial ion density, ni0, which is constant

in time and homogeneous in real space. For convenience, they are rewritten here.

The first description is given by Eq.(2.16), namely,

fi(r,v, t) = f0 =
ni0

π
e−(v2

r0+v2
φ0) =

ni0

π
e−(v2

r+v2
φ) · eB2+B1sin(∓ωt+φ0) (5.1)
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in which the sign “∓” before ω takes “−” for vr > 0 and “+” for vr < 0, and

B1 = c0ε0A0 , B2 = c0

[
A0 −

(
r

Rc

)2
]

,

ω = Ωi

√
1 + 4

Ec/B

RcΩi

, φ0 = sin−1

(r/Rc)
2

A0

− 1

ε0





(5.2)

where

c0 =
Ec

B
RcΩi , ε0 =

√
1− 4

b1b3

b2
2

, A0 =
b2

2b1

(5.3)

with

b1 =

(
ΩiRc

2

)2

+ RcΩi
Ec

B

b2 = b1

(
r

Rc

)2

+ v2
r +

(
vφ +

Ωir

2

)2

b3 =

(
r

Rc

)2 (
vφ +

Ωir

2

)2





(5.4)

The other description, which is totally equivalent, is in terms of a pulsating

Maxwellian mode:

fi(r,v, t) =
ni0

π
e−a0[(vr−vdr)2+(vφ−vdφ)2] (5.5)

in which

a0 = 1− 1

2

[
1−

(
Ωi

ω

)2
]

(1− cosωt) =
a1 + a2cosωt

a1 + a2

vdr = −Ec

B

r

Rc

1

a0

Ωi

ω
sinωt and vdφ =

Ec

B

r

Rc

1

a0

(
Ωi

ω

)2

(1− cosωt)





(5.6)

where

a1 = 1 + a2 , and a2 = 2
Ec/B

RcΩi

(5.7)

Now, consider the initial ion density to be a function of position, that is, ni0 =

ni0(r0, t = 0). Fig.5.1 shows a few arbitrary examples. Note that a background

ion density, n0, is included, which is constant in time and homogeneous in space.

Because r0 can be traced back from a phase-space position {r, vr, vφ} at time t, or,

written as r0 = r0(r, vr, vφ, t), we can easily see that ni0(r0, t = 0) can be obtained by

the backmapping method and expressed as ni0(r0) = ni0[r0(r, vr, vφ, t)], or directly,

99



0 1 2 3 4 5
1.0

1.2

1.4

1.6

1.8

2.0

 

 

     

n i0
(r

0) /
 n

0

r0 / Rc

 (1)
 (2)
 (3) 
 (4)

Figure 5.1: A few initially inhomogeneous ion density profiles (κ = 1

is assumed): (1) ni0(r0)/n0 = 1 + e−(r0/Rc−1)2 ; (2) ni0(r0)/n0 = 1 +

e−[(r0/Rc)
2−1]

2

; (3) ni0(r0)/n0 = 1 + e−(r0/Rc)
2

; (4) ni0(r0)/n0 = 1 +

(r0/Rc)
2 e−(r0/Rc)

2

.
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Figure 5.2: A check for the (r0/Rc)
2 expressions.

ni0(r0) = ni0(r, vr, vφ, t). This means that ni0 is a function of position r and velocity

v = {vr, vφ} when looking back from an arbitrary time t to the initial time t = 0.

Let’s derive the collision-free ion distribution function in this complicated case.

First of all, we must know the relation between r0 and {r, vr, vφ, t}. Luckily, Eq.(D.25)

in Appendix D has given this relation:

(
r0

Rc

)2

= A0[1 + ε0 sin(∓ωt + φ0)] =
1− a0

c0

[
(vr − β1vdr)

2 + (vφ − β1vdφ)
2] (5.8)

where c0 = (Ec/B)RcΩi and β1 = −a0/(1 − a0) are used. In a more compact form

using vector notation, Eq.(5.8) can be expressed as

(
r0

Rc

)2

= A0[1 + ε0 sin(∓ωt + φ0)] =
1− a0

c0

(v − β1vd)
2 (5.9)

Fig.5.2 shows that these two expressions for (r0/Rc)
2 are indeed equivalent for

an arbitrary phase space position: {r = Rc, vr = 2, vφ = 0.5}.
Using Eq.(5.8), we immediately obtain

r0 = Rc

√
1− a0

c0

[
(vr − β1vdr)

2 + (vφ − β1vdφ)
2] = r0(r, vr, vφ, t) (5.10)
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Therefore, when the electric field strength increases linearly with radial distance, and

when the initial ion density is inhomogeneous, we can calculate the ion distribution

function at any time for t > 0 by using Eq.(5.10), namely,

fi(r,v, t) =
ni0[r0(r, vr, vφ, t)]

π
e−(v2

r+v2
φ) · eB2+B1sin(∓ωt+φ0) (5.11)

or

fi(r,v, t) =
ni0(r, vr, vφ, t)

π
e−a0[(vr−vdr)2+(vφ−vdφ)2] (5.12)

where the new parameter occurring in Eq.(5.12) is ni0(r, vr, vφ, t, c0).

Our next purpose is to find simple enough ni0 expressions for which an analytical

expression for fi, as well as all velocity moments, could be derived. This will provide

a reference for future numerical studies with arbitrary initial ion densities. We have

tried a few cases for ni0(r0).

5.2 Distributions with various inhomogeneous ini-

tial ion densities under collision-free condi-

tions

5.2.1 Case 1: ni0(r0) ∼ e−(r0−Rc)2/R2
c

Define

ni0(r0) = n0

[
1 + κe−(r0−Rc)2/R2

c

]
(5.13)

where n0 is the background ion density, constant in time and homogeneous in space.

Parameter κ is an arbitrary coefficient. By applying Eq.(5.10), Eq.(5.13) becomes

ni0(r0) = n0

[
1 + κe−(

√
Γ−1)2

]
(5.14)

in which

Γ =
1− a0

Ec

B
RcΩi

[(
vr +

a0

1− a0

vdr

)2

+

(
vφ +

a0

1− a0

vdφ

)2
]

(5.15)

Thus, the ion distribution function can be expressed as

fi(r,v, t) =
n0

π
e−a0[(vr−vdr)2+(vφ−vdφ)2]

[
1 + κe−(

√
Γ−1)2

]
(5.16)
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However,

ni(r, t) =

∫
fi(r,v, t)dv (5.17)

does not seem to reduce to a simple analytical expression. This means in both the

collision-free case and the collisional case we cannot obtain analytical bulk properties

for the initial ion density given by Eq.(5.13). Thus, we have to look for other simple

cases.

5.2.2 Case 2: ni0(r0) ∼ e−(r2
0−R2

c)
2

We now try

ni0(r0) = n0κe−(r2
0−R2

c)2 (5.18)

By applying Eq.(5.10), Eq.(5.18) becomes

ni0(r0) = n0κe−R4
c(r2

0/R2
c−1)

2

= n0κe−R4
c{Γ−1}2 (5.19)

Thus, the ion distribution function can be expressed as

fi(r,v, t) =
n0

π
κe−a0[(vr−vdr)2+(vφ−vdφ)2]e−R4

c(Γ−1)2 (5.20)

Clearly,

ni(r, t) =

∫
fi(r,v, t)dv (5.21)

still does not reduce to a simple analytical expression. Thus, we continue to look for

simple initial ion density models.

5.2.3 Case 3: ni0(r0) ∼ (r2
0/R

2
c)e

−r2
0/R2

c

Considering that (1) the ionospheric plasma would have a background density n0 on

which a cylindrical distribution of inhomogeneous initial ion density is superposed,

and (2) the density should peak away from the origin, let’s consider a profile of the

form

ni0(r0) = n0 + n0κ
r2
0

R2
c

e−r2
0/R2

c (5.22)

Using Eqs.(5.10), Eq.(5.22) becomes

ni0(r0) = n0 + n0κΓ · e−Γ (5.23)
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Thus, the ion distribution function can be expressed as

fi(r,v, t) =
n0

π
e−a0[(vr−vdr)2+(vφ−vdφ)2] +

n0

π
κΓe−Γ · e−a0[(vr−vdr)2+(vφ−vdφ)2] (5.24)

With the following definitions:

n0r = n0κe−β3(v2
dr+v2

dφ) , α0c =
1− a0

Ec

B
RcΩi

β1 = − a0

1− a0

, β2 =
α0cβ1 + a0

α0c + a0

, β1 − β2 =
β1

α0c + a0

β3 = α0cβ
2
1 + a0 − (α0cβ1 + a0)

2

α0c + a0

=
a0/(1− a0)

1 + a0

(
Ec

B
RcΩi − 1

)





(5.25)

Eq.(5.24) becomes

fi(r,v, t) =
n0

π
e−a0[(vr−vdr)2+(vφ−vdφ)2]+

+
n0r

π
α0c

[
(vr − β1vdr)

2 + (vφ − β1vdφ)
2] e

−(α0c+a0)
[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]



 (5.26)

The density n0r depends on time through both a0 and vd, and on position through

vd only. For convenience in the following derivations of velocity moments, we write

Eq.(5.26) in one of the two forms. One is

fi(r,v, t)

n0κ
=

1

π

1

κ
e−a0[(vr−vdr)2+(vφ−vdφ)2]+

+
e−β3(v2

dr+v2
dφ)

π
α0c

[
(vr − β1vdr)

2 + (vφ − β1vdφ)
2] ·

·e−(α0c+a0)
[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]





(5.27)

and the other is

fi(r,v, t) =
n0

π
e−a0[(vr−vdr)2+(vφ−vdφ)2]+

+
n0r

π
α0c

[
v2

r + v2
φ + β2

1

(
v2

dr + v2
dφ

)− 2β1 (vdrvr + vdφvφ)
] ·

·e−(α0c+a0)
[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]





(5.28)

As an integral of the distribution function over velocity space, the ion density is

ni =

∫
fidv =

n0

a0

+
n0rα0c

α0c + a0

[
1

α0c + a0

+ (β1 − β2)
2 (

v2
dr + v2

dφ

)]
(5.29)

or
ni

n0

=
1

a0

+
κα0c

(α0c + a0)
2

(
1 + β2

1

v2
dr + v2

dφ

α0c + a0

)
e−β3(v2

dr+v2
dφ) (5.30)
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Due to the fact that the background terms in the distribution and density ex-

pressions have been studied in Chapter 2 and 3, I have excluded them from the

calculations. The remaining calculations has been performed in two ways: analyt-

ical and semi-numerical. The former uses the analytical solutions just shown, and

the other employs the backtracking approach of Chapter 4.

The first task is to verify that the analytical and numerical calculations agree

with one another. Fig.5.3 offers such a comparison for the ion velocity distribution

at r/Rc = 0.03 and t/T = 3/16 where T = 2π/ω. The error is within one part in

10−6. For the ion density, Fig.5.4 presents a similar comparison at r/Rc = 0.5. The

two curves are superimposed upon each other with an error of 0.00112 on average.

These comparisons not only provide a verification for the analytical work but also

illustrate that we have a proper numerical algorithm for doing arbitrarily complicated

initial density problems if necessary.

Both the radial and temporal evolution of the ion velocity distribution are de-

scribed in Figs.5.5-5.7, based on Eq.(5.27). In the three figures, the LHS bottom

panel shows the vr and vφ scales used in all the panels where the data have been

normalized with respect to the maximum value of the velocity distribution function.

As the radial position increases, the ion distribution function in Fig.5.5 at t/T =

3/16 evolves from being a torus at the center, to a horse-shoe, to a crescent, and

finally to a more Maxwellian like “pancake” at r/Rc = 3. Another obvious feature is

the shift in the center of the distribution, which rotates clockwise about the initial

position in velocity space. At r/Rc = 0.1 and 1.0, the distribution function rotates

about a pseudo-E×B drift periodically, as shown in Figs.5.6 and 5.7. This drift no

longer has a value of E/B. Meanwhile, the shape deviates from a conventional shifted

Maxwellian. Especially at r/Rc = 0.1, the shape throughout a period is changing

continually in a pancake-crescent-horseshoe-crescent-pancake form. However, the

gyrofrequency is still ω, i.e., the same as that for the uniform initial ion density case

presented in Chapter 2.

Finally, we have a look at the ion density as a function of position and time.

105



Figure 5.3: Difference between the analytical and numerical calcu-
lations of the ion distribution function resulting from the non-uniform
initial ion density in Eq.(5.23).
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Figure 5.4: Difference between analytical and numerical calculations
of the ion density resulting from the non-uniform initial condition in
Eq.(5.23).

We turn to Panel ni in a later Fig.5.13, where all bulk parameters are calculated,

shows the evolution of the density over two gyroperiods and radial positions to 5Rc.

Obviously, the density stays periodic in time, similar to Fig.5.1 under the initially

homogeneous ion density profile. However, along the radial direction, the position of

the density maximum is at a radius smaller than Rc. By comparing with the initial

ion density profile as given by curve (4) in Fig.5.1, we find that the maxmum ion

density moves closer to the center and the region periodically comes into being after

the negative electric field is switched on.

5.2.4 Case 4: ni0(r0) ∼ e−r2
0/R2

c

For a simpler case that can still be solved analytically, we turn to

ni0(r0) = n0κe−r2
0/R2

c (5.31)

By applying Eq.(5.10), Eq.(5.31) after t = 0 turns into

ni0(r0) = n0κe−Γ (5.32)
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Figure 5.5: Evolution of the ion velocity distribution function versus
radial positions at t/T = 3/16 resulting from the non-uniform initial
ion density in Eq.(5.23).
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Figure 5.6: Evolution of ion velocity distribution function versus time
during one gyroperiod at r/Rc = 0.1 for the same conditions as in
Fig.5.5.
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Figure 5.7: Same as Fig.5.6, but for r/Rc = 1. The white spot is the
center of the panels.
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Figure 5.8: Evolution of ion velocity distribution function versus time
during one gyroperiod at r/Rc = 1 resulting from the non-uniform
initial ion density in Eq.(5.31). The white spot is the center of the
panels.
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Figure 5.9: Evolutions of β3, n0r, α0c, and ni versus time during
two gyroperiods at r/Rc = 1 resulting from the non-uniform initial ion
density in Eq.(5.31).
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Thus, the ion distribution function can be expressed as

fi(r,v, t) =
n0

π
κe−Γ · e−a0[(vr−vdr)2+(vφ−vdφ)2] (5.33)

Define as before

α0c =
1− a0

Ec

B
RcΩi

, and β1 = − a0

1− a0

(5.34)

Eq.(5.33) becomes

fi(r,v, t) =
n0r

π
e
−(α0c+a0)

[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]

(5.35)

in which

n0r = n0κe−β3(v2
dr+v2

dφ) , β2 =
α0cβ1 + a0

α0c + a0

β3 = α0cβ
2
1 + a0 − (α0cβ1 + a0)

2

α0c + a0

=

a0

1− a0

1 + a0

(
Ec

B
RcΩi − 1

)





(5.36)

As with Case 3, the density depends on time through both a0 and vd, and on position

through vd only. This can easily be seen if we rewrite the ion velocity distribution

as
fi(r,v, t)

n0κ
=

1

π
e−β3(v2

dr+v2
dφ) · e−(α0c+a0)

[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]

(5.37)

This distribution is plotted in Fig.5.8. It has the same temporal features as formed

in Fig.2.4 in the linear electric field case. For the ion density, we obtain

ni =

∫
v0

j fidv =

∫
fidv =

n0r

α0c + a0

(5.38)

which is a function of both position and time. Both Fig.5.9 and Panel ni in Fig.5.11

give the density evolution in two gyroperiods. The former is at r = Rc and the latter

is for radial positions up to 5Rc. Similar to Fig.5.1 under the initially homogeneous

ion density profile, the density stays periodic in time. However, along the radial

direction, the density is no longer independent of the radial position but decreases

with it. Initially at t = 0, the maximum density occurs at r0 = 0 as shown by curve

(3) in Fig.5.1. For t > 0, the maximum density is in a region within r < 0.5Rc, and

this region oscillates in time.

The advantage of having an analytical expression for the ion density function at

any time is that it makes the velocity moments and transport properties relatively

easy to obtain from analytical work. This is demonstrated in the next section.
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5.3 Transport properties with two inhomogeneous

initial ion densities under collision-free condi-

tions

5.3.1 A brief review

For the last two cases presented in the last section, we now derive various velocity

moments of the ions under collision-free conditions of the form

〈vk
j 〉 =

1

ni

∫
vk

j fidv (5.39)

The transport properties are then obtained from these moments.

When k = 0, we obtain the ion density from
∫

fidv. This first moment of the

velocity distribution for the inhomogeneous situation was already discussed in the

last Section. Here we deal with k = 1, 2, 3. We recall that the drift, temperature,

and heat flow are recovered from the velocity moments through the same relations

that were posted in Chapter 2, namely,

vaver = 〈vr〉 , vaveφ = 〈vφ〉 , v‖ = v‖0

Tr =
mi

kb

(〈v2
r〉 − 〈vr〉2) , Tφ =

mi

kb

(〈v2
φ〉 − 〈vφ〉2) , T‖ = T0

prr = nikbTr , pφφ = nikbTφ , p‖‖ = p0r

qr = mi(〈v3
r〉 − 〈vr〉3)− 3〈vr〉(kbTr) ,

qφ = mi(〈v3
φ〉 − 〈vφ〉3)− 3〈vφ〉(kbTφ) , q‖ = 0





(5.40)

from which the average temperature and pressure are also given by

Ti =
Tr + Tφ + T‖

3
, pi =

prr + pφφ + p‖‖
3

(5.41)

The velocity moments in the inhomogeneous case differ from the uniform initial

density case because ni0(r0) maps into a function of r, v, and t. That was simply

equal to ni0 itself in the uniform case. These are therefore new contributions to the

original velocity moments that are superimposed on the moments formed in Chapter

2. Appendices G and H have listed a series of useful Gaussian integrations for the

calculation of velocity moments.
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5.3.2 Transport properties for Case 4

As seen in Section 5.1.5, the velocity distribution has the form of a pulsating Maxwellian,

albeit with a more complicated character than in Chapter 2 [see Eq.(5.37)]. The ve-

locity moments are therefore similar in form to those obtained in Chapter 2, once

the proper coefficients are adjusted properly. Aside from the density, which is given

in Eq.(5.38), we obtain

〈vr〉 = β2vdr , 〈vφ〉 = β2vdφ

〈v2
r〉 = β2

2v
2
dr +

v2
T0

2(α0c + a0)
= β2

2v
2
dr +

kbT0

mi(α0c + a0)

〈v2
φ〉 = β2

2v
2
dφ +

v2
T0

2(α0c + a0)
= β2

2v
2
dφ +

kbT0

mi(α0c + a0)

〈v3
r〉 = β3

2v
3
dr + 3β2vdr

v2
T0

2(α0c + a0)
= β3

2v
3
dr + 3β2vdr

kbT0

mi(α0c + a0)

〈v3
φ〉 = β3

2v
3
dφ + 3β2vdφ

v2
T0

2(α0c + a0)
= β3

2v
3
dφ + 3β2vdφ

kbT0

mi(α0c + a0)





(5.42)

This means that the bulk transport properties are given by

vaver = 〈vr〉 = β2vdr , vaveφ = 〈vφ〉 = β2vdφ , v‖ = v‖0

Tr =
mi

kb

(〈v2
r〉 − 〈vr〉2) =

T0

α0c + a0

,

Tφ =
mi

kb

(〈v2
φ〉 − 〈vφ〉2) =

T0

α0c + a0

, T‖ = T0

prr = nikbTr =
p0r

(α0c + a0)2
, pφφ = nikbTφ =

p0r

(α0c + a0)2
, p‖‖ = p0r

qr = mi(〈v3
r〉 − 〈vr〉3)− 3〈vr〉(kbTr) = 0 ,

qφ = mi(〈v3
φ〉 − 〈vφ〉3)− 3〈vφ〉(kbTφ) = 0 , q‖ = 0





(5.43)

in which p0r = n0rkbT0, and

Ti =
Tr + Tφ + T‖

3
=

T0

3

(
2

α0c + a0

+ 1

)

pi =
prr + pφφ + p‖‖

3
= p0r

[
2

(α0c + a0)2
+ 1

]





(5.44)

Note that all non-diagonal elements of the pressure tensor are zero, and the scalar

pressure pi is, as usual, defined as one-third of the trace of the pressure tensor.

In fact, these bulk parameters can be directly written out from Eq.(5.37) by

following the same procedure as shown in Chapter 2. Fig.(5.10) shows the temporal

change of the bulk properties at r/Rc = 0.5 in two gyroperiods. Interestingly, all
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Figure 5.10: Bulk parameters in time at r = 0.5Rc for Case 4 under

Er = −Ec(r/Rc): ni0(r0) = n0

(
1 + κe−r2

0/R2
c

)
(κ = 1 is assumed).

the bulk parameters change in a very similar way to those in Chapter 2, especially

with zero heat flows. This feature can be easily seen from the temporally pulsating

Maxwellian distributions given in Eq.(5.35). In Fig.5.11, all bulk parameters are

depicted versus time and radial position.

5.3.3 Transport properties for Case 3

The transport properties for Case 3 are more complicated than in Case 4 because the

factor r2
0/R

2
c introduces extra polynomials in the velocity moments. The calculation

of these moments remains straightforward but is a bit tedious. The details are

116



Figure 5.11: Bulk parameters in time and radial position for Case 4.
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Figure 5.12: Bulk parameters in time at r = 0.5Rc for Case 3 un-

der Er = −Ec(r/Rc): ni0(r0) = n0

[
1 + κ(r2

0/R
2
c)e

−r2
0/R2

c

]
(κ = 1 is

assumed).

therefore left to Appendix H, where I1 − I6 relates to the final products, namely,

〈vr〉 =
I1

ni

, 〈vφ〉 =
I2

ni

, 〈v2
r〉 =

I3

ni

, 〈v2
φ〉 =

I4

ni

, 〈v3
r〉 =

I5

ni

, 〈v3
φ〉 =

I6

ni

(5.45)

The bulk parameters associated with these moments do not have more simplified

analytical expressions than Eq.(5.40) above. By making use of these expressions, we

compute the transport properties and show them in Fig.5.12 and 5.13.

Fig.5.12 describes the temporal change of the bulk properties at r/Rc = 0.5 over

two gyroperiods. Though other bulk parameters change in a very similar way to those

in Chapter 2, the heat flows are at present nonzero. This means that the initially

inhomogeneous ion density brings about thermal interchanges with the background

plasma. In the figure, analytical and numerical results are shown together as a check

for the equivalence of the calculations. In Fig.5.13, all bulk parameters are given as
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Figure 5.13: Bulk parameters in time and radial position for Case 3.
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a function of time and radial position.

5.4 Distribution and transport parameters with

an inhomogeneous initial ion density under

collisional conditions: Case 4

The inhomogeneous initial ion density also has an impact on the ion distribution

function and transport properties under collisional conditions. However, the alge-

bra becomes much more complicated. Only under an initial ion density structure

described by Case 4 can we derive the math to obtain analytical results. The steps

are completely the same as done in Chapter 3, but with extra parameters (e.g., α0c,

β) in all expressions introduced by the inhomogeneous Initial Ion Density. A new

parameter, η, is defined.

5.4.1 Expressing the ion density

Considering a process identical to that done in Chapter 3 but with ni0(r0) ∼ e−r2
0/R2

c ,

we obtain that

fi1(r,v, t) =
n0r

π
e
−(α0c+a0)

[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]

(5.46)

and

Ni =
n0r

α0c + a0

+
νin

nn

∫ t

0

Ni(t
′)

[∫
fn(t′)dv

]
dt′ (5.47)

which eventually turns out to be

Ni = n0κ

[
e−β3(v2

dr+v2
dφ)

α0c + a0

+ η
(
e

ω
Ωi

νint − 1
)]

(5.48)

in which η is an integration coefficient defined by

η =
1

2π

Ωi

ω

∫ 2π

0

e
−β3v2

d−
νin
Ωi

α

a0(α)[α0c(α) + a0(α)]
dα

=
1

2π

Ωi

ω
C1

∫ 2π

0

e
−β3v2

d−
νin
Ωi

α

cos2α + C2cosα + C3

dα





(5.49)
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Figure 5.14: Change of η and a1 versus Ec/B.
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in which

C1 =

(
1 +

a1

a2

)2
(Ec/B)RcΩi

(Ec/B)RcΩi − 1

C2 =
1

a2

2a1(Ec/B)RcΩi − 1

(Ec/B)RcΩi − 1

C3 =

(
a1

a2

)2 (Ec/B)RcΩi +
a2

a1

(Ec/B)RcΩi − 1





(5.50)

This is a new, nonzero parameter determined by the electric field. If the initial ion

density is uniform in space, parameters β3 and α0c disappear in Eq.(5.49) and then

η is simplified to a1 [see Eq.(F.15) in Appendix F]. Fig.5.14 shows the change of

η versus Ec/B, in which the linear a1 variation is also given for comparison. η is

always smaller than a1, about one order lower. With the increase of the electric field,

η changes nonlinearly. Around Ec/B = 5, η has a maximum value ∼1.3.

Because η is smaller than a1, the ion density ni with the nonuniform initial density

becomes different from that with the uniform initial density given in Chapter 3. From

Eq.(5.48), we obtain the ion density changes with time via

ni = Nie
−νint = n0κ

{[
e−β3(v2

dr+v2
dφ)

α0c + a0

− η

]
e−νint + ηe(ω/Ωi−1)νint

}
(5.51)

in which the first term in the bracket on the RHS oscillates with time but decreases

exponentially, whileas the second one increases exponentially. Two panels in Fig5.15

show ni as a function of time and of radial position, respectively. The upper panel

contains two curves versus time at r/Rc = 0.5 under Ec/B = 2 and Ec/B = 8,

respectively, and the small panel inside it gives the density variation in the range

350-360 cycles under Ec/B = 8. The lower panel gives two curves versus radius

under Ec/B = 2 at 45 and 450 cycles, respectively.

A direct comparison between the upper panel and Fig.3.1 tells us that smaller

η values give lower ion densities. However, the oscillation remains in the density

evolution. More importantly, unlike the result found in Chapter 3, the density is

at present a function of r. But the related parameters (β3 and α0c) occur only in

the first term in the RHS brackets. See Fig.5.1. Initially, the density ni0(r0) is 1 at

r0 = 0 and around 0 at r0 = 2Rc (curve 3; note that we are now discussing a case

excluding the background density n0 for simplicity). When more ions are attracted
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Figure 5.15: Upper: Profile of ion density versus time under Ec/B = 2
and Ec/B = 8 at r/Rc = 0.5. Lower: Profile of ion density versus radius
under Ec/B = 2 at t/T = 45 and t/T = 450. The arrows indicate the
curves are linked to corresponding vertical coordinates, respectively.
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to the center, the ion density should increase, while the gradient of the density in

the radial direction should decrease. This feature is shown in the lower panel. At

45 cycles, the ion density drops from 1.2 to 0.3; but at 450 cycles, it decreases from

4.3 to 4.08. That is to say, the density becomes higher while the gradient becomes

more even. However, at any time, the region with higher density is within r ≤ 2Rc,

in agreement with the initial density profile.

5.4.2 Expressing the ion velocity distribution function

By using the ni solution, a series of tedious derivations then gives

fi = fi1e
−νint +

n0κ

nn

Ωi

ω

η

2π

∫ 2π

0

fn(α
′)dα′

[
e(ω/Ωi)νint − 1

]
e−νint (5.52)

in which fn has been shown in Eq.(3.11) or Eq.(3.12). Using Eq.(5.36,5.46), we

rewrite Eq.(5.53) as follows:

fi

n0κ
=

e−β3(v2
dr+v2

dφ)

π
e
−(α0c+a0)

[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
e−νint+

+
Ωi

ω

η

2π2

∫ 2π

0
e−(v2

r+v2
φ)+(B2±B1sinα′)dα′

[
e(ω/Ωi)νint − 1

]
e−νint





(5.53)

This equation is similar to Eq.(3.26), except for a few minor differences: in the second

term, a1 is now substituted by η; in the first term, an extra factor, e−β3v2
d , occurs,

a0 is substituted by α0c + a0, and β2 is present. In a more convenient form to use as

done in Chapter 3, Eq.(5.53) is rewritten as follows:

fi = fi1 · e−νint + fi2 ·
(
e

ω
Ωi

νint − 1
)

e−νint

fi1

n0κ
=

e−β3(v2
dr+v2

dφ)

π
e
−(α0c+a0)

[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]

fi2

n0κ
=

1

π
eB1+B2−(v2

r+v2
φ) · Ωi

ω
η · [e−B1I0(B1)

]





(5.54)

where I0 is the zeroth-order modified Bessel function as introduced in Chapter 3.

Similar to Eq.(3.27), the distribution function fi also contains two parts. The first

part decreases exponentially in time, while the second one increases exponentially.

At the beginning t = 0, the result gives the collision-free result. For t → ∞, the

first component disappears and the second one controls the evolution. In the two

components of fi in the present nonuniform initial density case, fi1 decreases more
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Figure 5.16: Factor, χ, in fi1 as a function of time and radius at
Ec/B = 2.
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quickly with time than that in Eq.(3.29) (the uniform initial density case discussed

Chapter 3), due to an extra factor introduced as

χ = e−[α0c+β3(v2
dr+v2

dφ)] (5.55)

As shown in Fig.5.16, χ is always smaller than 1. Only at around complete cycles can

it reach the maximum, but only within r < 0.3Rc. Beyond that range to r ∼ 2Rc, it

turns to zero quickly.

It is thus reasonable to conclude that in regions r > 2Rc, the ion velocity dis-

tribution is only controlled by fi2. Within 2Rc, term e−νint tells us that after 320

cycles (in one collision time, ν−1
in = 3.3s), the contribution of fi1 becomes 1/e (even

faster, as argued in the last paragraph), and can then be neglected. This is the same

consideration as discussed in Chapter 3. Naturally, fi2 determines fi everywhere and

at any time after one or two relaxation times.

Figure 5.17: Horse-shoe distribution fi2 versus radial position r.
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Figure 5.18: Horse-shoe distribution fi2 versus electric field Ec.

Let’s turn to fi2 in Eq.(5.54). A comparison with Eq.(3.29) shows that this

function is totally a reiteration of what is given in Chapter 3, except for substituting

η for a1. Consequently, fi2 should have toroidal shapes. Fig.5.17 shows the variation

of fi2 versus the radial position r for Ec/B = 4. When the radius increases, the horse-

shaped distribution deforms to a ring-shaped ones, similar to Fig.3.3. At r = 0.5Rc,

Fig.5.18 exposes the evolution of fi2 versus the electric field strength Ec. The trend

is still the same as Fig.3.4 by being a Maxwellian-like distribution under a smaller

electric field to horseshoe and ring shapes when the field goes up. When looking

at the development of the total ion velocity distribution function, fi, with time, a

similar change is also presented to that in Fig.3.5 of Chapter 3. It deserves to be

mentioned that although these figures resemble those in Chapter 3, the distributions

are all weaker in magnitude than those figures. No doubt this is caused by the

difference between a1 and η occurring in fi2.
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Figure 5.19: Horse-shoe distribution fi versus time t.

5.4.3 Expressing the bulk parameters

With the ion distribution function at hand, it is feasible to obtain velocity moments

and then bulk parameters as done in Chapter 3. To produce the ion velocity moments

and then the transport properties, we must calculate the neutral velocity moments

first of all. This means we have to deal with a 2-fold integration in velocity and time

space by using Eq.(5.53). A generalized expression of the velocity moments is
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Figure 5.20: Evolution of the average ion speeds for Ec/B = 4 at
r = 0.5Rc.

〈vk
j 〉 =

1

ni

∫
vk

j fidv =

=

∫
vk

j

1

π
e−(α0c+a0)(v−β2vd)2dv

e−β3v2
d

α0c + a0

+ η
(
e

ω
Ωi

νint − 1
)e−β3v2

d+

+
η

2π

Ωi

ω

∫ 2π

0

[∫
vk

j

1

π
e−a′0(α)[v−v′d(α)]2dv

]
dα

e−β3v2
d

α0c + a0

+ η
(
e

ω
Ωi

νint − 1
)

(
e

ω
Ωi

νint − 1
)





(5.56)

from which we obtain

〈vr〉 =
β2vdr

1 + eβ3v2
d(α0c + a0)η

(
e

ω
Ωi

νint − 1
) =





β2vdr for t → 0

0 for t →∞



 (5.57)
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Figure 5.21: Evolution of the ion temperature for Ec/B = 4 at r =
0.5Rc.

in which the first integration in Eq.(G.19) in Appendix G is used. And,

〈vφ〉 =
β2vdφ + eβ3v2

d(α0c + a0)η
Ec

B

r

Rc

(
e

ω
Ωi

νint − 1
)

1 + eβ3v2
d(α0c + a0)η

(
e

ω
Ωi

νint − 1
) =





β2vdφ for t → 0
Ec

B

r

Rc

for t →∞





(5.58)

in which the second integration in Eq.(G.19) is used. Clearly, 〈vφ〉 < (Ec/B)(r/Rc)

is always valid for large t. And,
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Figure 5.22: Evolution of the ion pressure for Ec/B = 4 at r = 0.5Rc.

〈v2
r〉 =

(β2vdr)
2 +

1

2(α0c + a0)

1 + eβ3v2
d(α0c + a0)η

(
e

ω
Ωi

νint − 1
)+

+

eβ3v2
d(α0c + a0)η

[
1

2

(
Ec

B

r

Rc

)2

+
a1

2

] (
e

ω
Ωi

νint − 1
)

1 + eβ3v2
d(α0c + a0)η

(
e

ω
Ωi

νint − 1
) =

=





(β2vdr)
2 +

1

2(α0c + a0)
for t → 0

1

2

(
Ec

B

r

Rc

)2

+
a1

2
for t →∞





(5.59)
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Figure 5.23: Evolution of the ion heat flow for Ec/B = 4 at r = 0.5Rc.

in which the third integration in Eq.(G.19) is used. And,

〈v2
φ〉 =

(β2vdφ)
2 +

1

2(α0c + a0)

1 + eβ3v2
d(α0c + a0)η

(
e

ω
Ωi

νint − 1
)+

+

eβ3v2
d(α0c + a0)η

[
3

2

(
Ec

B

r

Rc

)2

+
a1

2

] (
e

ω
Ωi

νint − 1
)

1 + eβ3v2
d(α0c + a0)η

(
e

ω
Ωi

νint − 1
) =

=





(β2vdφ)
2 +

1

2(α0c + a0)
for t → 0

3

2

(
Ec

B

r

Rc

)2

+
a1

2
for t →∞





(5.60)
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in which the fourth integration in Eq.(G.19) is used. And,

〈v3
r〉 =

(β2vdr)
3 +

3β2vdr

2(α0c + a0)

1 + eβ3v2
d(α0c + a0)η

(
e

ω
Ωi

νint − 1
) =

=





(β2vdr)
3 +

3β2vdr

2(α0c + a0)
for t → 0

0 for t →∞





(5.61)

in which the fifth integration in Eq.(G.19) is used. And,

〈v3
φ〉 =

(β2vdφ)
3 +

3β2vdφ

2(α0c + a0)

1 + eβ3v2
d(α0c + a0)η

(
e

ω
Ωi

νint − 1
)+

+eβ3v2
d(α0c + a0)η

Ec

B

r

Rc

(
e

ω
Ωi

νint − 1
)
·

·

{
5

2

(
Ec

B

r

Rc

)2

+
3

2

[(
ω

Ωi

)2

− Ec/B

RcΩi

]}

1 + eβ3v2
d(α0c + a0)η

(
e

ω
Ωi

νint − 1
) =

=





(β2vdφ)
3 +

3β2vdφ

2(α0c + a0)
for t → 0

Ec

B

r

Rc

{
5

2

(
Ec

B

r

Rc

)2

+
3

2

[(
ω

Ωi

)2

− Ec/B

RcΩi

]}
for t →∞





(5.62)

in which the last integration in Eq.(G.19) is used.

Using these velocity moments and employing Eq.(5.40), we can compute trans-

port properties, e.g., average speeds vaver and vaveφ (with a unit vth), temperatures

Tr and Tφ (with a unit T0), pressures pr and pφ (with a unit niT0), and heat flows qr

and qφ (with a unit mv3
th), as done in Chapter 3. Figs.5.20-5.23 show their evolutions

with time at r/Rc = 0.5 and Ec/B = 4 in 1000 cycles, for convenience to compare

with Figs.3.6-3.9. All the bulk parameters run in agreement with the trends shown

in Chapter 3, especially when t is long. This is because η plays no role at this time.

For short times, several large fluctuations within 400 cycles exhibited in figures of

Chapter 3 are compressed to be absent in the present nonuniform initial density case.

This is also related to the factor χ given in Eq.(5.55).
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5.5 Discussion

In this Chapter, we have solved for the first time a problem for which the initial

ion density was not uniform in auroral ion velocity distribution calculations. Under

both collision-free and collisional conditions, completely analytical solutions of the

distribution and bulk properties have been obtained with two initial ion density

profiles and one initial ion density profile, respectively.

In the collision-free case, the distribution function and bulk parameters still main-

tain the basic pulsating features identified in Chapter 2. However, there are three dif-

ferences: (1) The distribution function is not restricted only to the shifted Maxwellian

distribution. It can be either a pulsating Maxwellian, or, a pulsating horseshoe dis-

tribution. (2) Even when the distribution remains a pulsating Maxwellian, the mag-

nitude of the distribution function in velocity space (or, equivalently, the ion density)

is smaller than that given in Chapter 2. (3) Both the distribution and the transport

parameters depend on the radial position.

In the collisional case, the ion distribution functions and bulk parameters are

the same as those obtained in Chapter 3, namely, the dependence on electric field,

radial position, and time. However, there are two new features: the magnitude of the

distribution function is smaller than in Chapter 3; and the ion density is at present

a function of radial position.

The inhomogeneity of the initial ion density certainly influences the ion distri-

bution functions and transport properties. Without doubt, introducing the density

inhomogeneity into the Chapter 3 case makes originally complicated solutions more

complicated. We have therefore chosen simple profiles of the initial ion density to

produce complete analytical results as the first study on practical situations where

the inhomogeneous initial plasma density influences measurable distribution func-

tions and bulk parameters. This approach will provide a reference to solve this kind

of problems numerically, at least semi-numerically. It also opens the door for devel-

oping a data-fitting algorithm for the modeling of measurements obtained via rockets

and satellites in real situations.
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Chapter 6

Exploring The Connection Between Fluid

Equations And The Kinetic Results From

Chapter 2

For the purpose of gaining additional insights into the physics, we explore the fluid

equations that describe the system explored in Chapter 2, namely, (1) an electric field

that is proportional to radius and does not change with time, (2) initially stationary

ions with temperature T0.

In the second part of this Chapter, we explore additional possibilities, namely,

situations for which the electric field is not maintained by a constant generator. In

particular, we explore situations for which either ions or electrons are allowed to

modify the initial electric field. We end by speculating on the kinds of conditions

that could lead to the various situations.

6.1 Fluid results when the electric field is constant

with time

The momentum equation for ions states that

∂ui

∂t
+ ui · ∇ui = − 1

ρi

∇ · P+ Ωi
E

B
+ ui ×Ωi (6.1)

in which ui = {ur, uφ} is the bulk velocity of ions. In the above equation, P denotes

the pressure tensor. Cylindrical symmetry implies ∂/∂φ = 0. Also, the electric field

is proportional to the radius, namely,

E = Ec
r

Rc

êr (6.2)
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Using

ui · ∇ui = {ur, uφ} ·
{

∂

∂r
,
1

r

∂

∂φ

}
ui =

{
ur

∂ui

∂r
,
uφ

r

∂ui

∂φ

}
(6.3)

where

∂ui

∂r
=

∂

∂r
(urêr + uφêφ) =

∂ur

∂r
er + ur

∂êr

∂r
+

∂uφ

∂r
êφ + uφ

∂êφ

∂r
=

{
∂ur

∂r
,
∂uφ

∂r

}
(6.4)

∂ui

∂φ
=

∂

∂φ
(urêr + uφêφ) = ur

∂êr

∂φ
+ uφ

∂êφ

∂φ
= urêφ − uφêr = {−uφ, ur} (6.5)

and then Eq.(6.3) changes to

ui · ∇ui =

{
ur

∂ur

∂r
− u2

φ

r
, ur

∂uφ

∂r
+

uruφ

r

}
(6.6)

Thus, Eq.(6.1) becomes

∂ur

∂t
+ ur

∂ur

∂r
− u2

φ

r
= −Ωi

Ec

B

r

Rc

+ Ωiuφ + êr · (∇ · P)

∂uφ

∂t
+ ur

∂uφ

∂r
+

uruφ

r
= −Ωiur + êφ · (∇ · P)





(6.7)

At this stage, let’s do power series expansions for ur and uφ in powers of r. Due to

the fact that the electric field term on the RHS of the upper equation is proportional

to r, the valid power is 1 for both ur and uφ. We then come to the conclusion that

ur ∝ r and uφ ∝ r. As a result, we then express

ur = Vrr, and uφ = Vφr (6.8)

where Vr and Vφ are coefficients independent of r. Consequently, Eq.(6.7) becomes

∂Vr

∂t
+ V 2

r − V 2
φ = −Ωi

Rc

Ec

B
+ ΩiVφ +

1

r
êr · (∇ · P)

∂Vφ

∂t
+ 2VrVφ = −ΩiVr +

1

r
êφ · (∇ · P)





(6.9)

in which, by looking for a similar power decomposition in P as done to Eq.(6.7), we

know that either ∇ · P ∝ r or ∇ · P = 0.

Interestingly, if we use Eq.(6.8) in the continuity equation of ions, it turns out to

be as follows:
∂ni

∂t
= −∇ · (niui) = −1

r

∂

∂r
(rniur) =

= −1

r

∂

∂r
(r2niVr) = −2niVr − rVr

∂ni

∂r





(6.10)
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The initial condition for ni is that it is uniform in space at t = 0, i.e., ni0 is in-

dependent of r. Another expansion for ni in Eq.(6.10) tells us that either ni(t) is

independent of r at any time, including t = 0. This agrees with the initial condition.

We conclude that

∂ni

∂t
= −2niVr , or, ni(t) = ni0e

−2
∫ t
0 Vr(t)dt (6.11)

As stated above, the components of the divergence of the pressure tensor, ∇ · P,

should be zero or proportional to r. The pressure tensor P is a 3× 3 matrix:

P =




prr prφ prz

pφr pφφ pφz

pzr pzφ pzz


 (6.12)

and the components in three directions of ∇ · P are as follows:

(∇ · P)r =
1

r

∂

∂r
(rprr)− pφφ

r

(∇ · P)φ =
1

r

∂

∂r
(rprφ) +

1

r

∂pφφ

∂φ
+

∂pzφ

∂z
+

pφr

r

(∇ · P)z =
1

r

∂

∂r
(rprz) +

1

r

∂pφz

∂φ
+

∂pzz

∂z





(6.13)

The ionospheric plasma is so magnetized and so rarified that only the normal

viscous stress part (the diagonal elements in P with the same two indices) are dom-

inant, whileas the shear viscous stress part (off-diagonal elements with two different

indices) are often neglected [see, e.g., Dartevelle (2003), Smirnov (2007)]. Thus,

only the thermodynamic pressure components (i.e., prr = nikbTr and pφφ = nikbTφ)

are left in P. Also, ∂/∂φ = 0 due to the cylindrical symmetry. Moreover, we do not

consider the changes of components in the z-direction along magnetic field lines and

thus ∂/∂z = 0, as adopted in Chapter 2. Therefore, we obtain

(∇ · P)r =
nikb(Tr − Tφ)

r
+

∂

∂r
(nikbTr), (∇ · P)φ = 0, (∇ · P)z = 0 (6.14)

In the momentum equation, Eq.(6.9), since the momentum terms are proportional

to r, while ni is independent of r, we require that either (Tr, Tφ) be proportional to

r2, or be independent of r. In the latter case, we must impose Tr = Tφ in order to

avoid a 1/r term in Eq.(6.9).
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Because the initial condition is that Tr0 = Tφ0 = T0 independent of r, the solution

is therefore Tr = Tφ independent of r.

The above tell us that Tr = Tφ and is independent of r. But it does not tell

us how Tr or Tφ changes with time. However, the conservation of entropy in an

adiabatic process gives us

prrρ
−γ = Const. , and, pφφρ

−γ = Const. (6.15)

where γ = 1+2/ι is the ratio of specific heat at constant pressure to that at constant

volume and ι is the number of degrees of freedom. In our case, we have two degrees

of freedom in the r and φ directions. Thus, γ = 2. Eq.(6.15) then gives

niTr = Const.× n2
i , and, niTφ = Const.× n2

i (6.16)

Employing the initial isothermal conditions, Tr0 = Tφ0 = T0 at t = 0 while the ion

density is ni0, we obtain
Tr

T0

=
Tφ

T0

=
ni

ni0

(6.17)

This is the same as what was obtained from the kinetic approach in Chapter 2. Note

that the above equation is consistent with having Tr and Tφ independent of r, since

ni is also independent of r.

We are now left with solving the following momentum equations

∂Vr

∂t
+ V 2

r − V 2
φ = −Ωi

Rc

Ec

B
+ ΩiVφ

∂Vφ

∂t
+ 2VrVφ = −ΩiVr





(6.18)

to reproduce the bulk parameters given in Chapter 2. Define a complex variable,

V = Vr + iVφ which gives V 2 = V 2
r −V 2

φ + i2VrVφ. The sum of the first equation and

the product of i× the second one in Eq.(6.18) gives

∂V

∂t
= −V 2 − iΩiV − Ωi

Rc

E (6.19)

in which E = Ec/B is a constant. Noticing that V is only a function of time, we can

rewrite Eq.(6.19) as

dV

dt
= −

[(
V + i

Ωi

2

)2

+
Ωi

Rc

E +

(
Ωi

2

)2
]

(6.20)
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or

d

(
V + i

Ωi

2

)

(
V + i

Ωi

2

)2

+
Ωi

Rc

E +

(
Ωi

2

)2 = −dt (6.21)

Before integrating this equation, we have to look at the singularities in the complex

plane. They are at

V = i
Ωi

2

[
±

√
1 +

4E
RcΩi

− 1

]
(6.22)

We can choose an integration path along a large circle when V → ∞ to integrate

above singularities. Thus, there is no residue and we can deal with the integral as if

the argument were real. The result of the integration is

1√
Ωi

Rc

E +

(
Ωi

2

)2
tan−1

V + i
Ωi

2√
Ωi

Rc

E +

(
Ωi

2

)2
= −t + C (6.23)

Using the initial condition: V = 0 at t = 0, we then find

C =
1√

Ωi

Rc

E +

(
Ωi

2

)2
tan−1

i
Ωi

2√
Ωi

Rc

E +

(
Ωi

2

)2
(6.24)

The final solution is therefore

V =
ω

2

(Ω2
i − ω2)tan

(
ωt

2

)
+ iωΩi

[
1 + tan2

(
ωt

2

)]

ω2 + Ω2
i tan2

(
ωt

2

) − i
Ωi

2
(6.25)

in which
ω

2
=

√
Ωi

Rc

E +

(
Ωi

2

)2

is used. This means that we have

Vr = −ω

4

[
1−

(
Ωi

ω

)2
]

sinωt

cos2

(
ωt

2

)
+

(
Ωi

ω

)2

sin2

(
ωt

2

)

Vφ =
Ωi

2

1

cos2

(
ωt

2

)
+

(
Ωi

ω

)2

sin2

(
ωt

2

) − Ωi

2





(6.26)
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These expressions can be easily converted to those already given in Chapter 2:

cos2

(
ωt

2

)
+

(
Ωi

ω

)2

sin2

(
ωt

2

)
= 1− 1

2

[
1−

(
Ωi

ω

)2
]

(1− cosωt) = a0

Vr = −E 1

Rc

1

a0

Ωi

ω
sinωt =

vdr

r
=

ur

r

Vφ = E 1

Rc

1

a0

(
Ωi

ω
)2 (1− cosωt) =

vdφ

r
=

uφ

r





(6.27)

What is more, it is easy to obtain a relation between Vr and a0 from the above set

of equations:

Vr =
1

2a0

da0

dt
=

1

2

d(lna0)

dt
(6.28)

From this expression we obtain the ion density by using Eqs.(6.11,6.28), namely,

ni(t)

ni0

= e−2
∫ t
0 Vr(t)dt = e−

∫ t
0 (d(lna0)/dt)dt =

1

a0

(6.29)

which with Eq.(6.17) leads to the result of

ni

ni0

=
Tr

T0

=
Tφ

T0

=
1

a0

(6.30)

This is exactly what was obtained in Chapter 2 for the density and the temperature.

In summary, we have shown here that the kinetic solutions of Chapter 2 are

describing an adiabatic system that is initially isothermal and at rest. In addition,

the changes in the density are due to the fact that ∇·〈v〉 is constant in space though

oscillating in time. The velocity dependence is related to the fact that E ∝ r so that

both components of the velocity increase linearly with radial distance. What is more,

the temperature variation is similar to the density variation with time because the

system is adiabatic (no outside heat source or heat flow) and because it has only

two degrees of freedom. Finally, the frequency of oscillation is not Ωi but ω because

the Coriolis and centrifugal forces introduce the V 2
r − V 2

φ and 2VrVφ terms in the r

and φ components of the momentum equations, respectively. Notice that ω = Ωi if

we can neglect the nonlinear terms in the momentum equation. These points are

reminiscent of the arguments used in Appendix A & B except that we are now using

them for the mean flow as opposed to the individual particles.
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6.2 Fluid results when the electric field is modi-

fied by ions

We now consider a situation for which the fixed voltage generator is replaced by a

system where the electrons are introducing a radial electric field, but ions are able

by their motions to change the electric field by changing the charge density. The

important difference with the previously described system is that in the old system

the net electron density would have increased in sync with the ion density to maintain

the net electric field. Notice that this mechanism is the way by which electrostatic

ion cyclotron waves are generated (just generate a system for which the Coriolis and

centrifugal terms are too small to compete with the magnetic force).

In the new system, we have to add the contribution from Gauss’s law to relate

it to the changing ion density. We have

∇ · E =
e

ε0

(ni − ne) (6.31)

Since the charge densities are uniform we have

E = Ec
r

Rc

êr (6.32)

where Ec = Ec(t) is introduced at t = 0.

If somehow the electron density is kept fixed, Gauss’s law implies next that

2
Ec

Rc

=
e

ε0

(ni − ne0) =
e

ε0

δni (6.33)

Even for large electric fields we still have δni ¿ ni0. The continuity equation

therefore becomes

∂δni

∂t
= −2ni(t)Vr ≈ −2ne0Vr (6.34)

In the previous section, we used ni on the RHS, and not ne0 (or ni0), but here we

use the approximation because δni is linked to the electric field as given in Eq.(6.33),

namely,

∂δni

∂t
= 2

∂

∂t

[
ε0

eRc

Ec(t)

]
(6.35)
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From Eqs.(6.34,6.35) we obtain

∂Ec(t)

∂t
= −ene0Rc

ε0

Vr (6.36)

Defining E(t) = Ec(t)/B, we have

∂E
∂t

= −λVr ; λ =
ene0Rc

ε0B
(6.37)

The radial component of the momentum equation is given in Eq.(6.18), namely,

∂Vr

∂t
= −Ωi

Rc

E − V 2
r + V 2

φ + ΩiVφ (6.38)

Taking ∂/∂t and using the previous equation, we get

∂2Vr

∂t2
= λ

Ωi

Rc

Vr − ∂

∂t

(
V 2

r − V 2
φ − ΩiVφ

)
(6.39)

However,

λ
Ωi

Rc

=
ene0Rc

ε0B

Ωi

Rc

=
ne0e

2

ε0mi

= ω2
pi (6.40)

At this step, using the other momentum equation in Eq.(6.18), we obtain

∂2Vr

∂t2
= − (

ω2
pi + Ω2

i

)
Vr − ∂

∂t

(
V 2

r − V 2
φ

)− 2ΩiVrVφ (6.41)

A dimensional analysis in terms of a frequency ω gives

ω2 =
(
ω2

pi + Ω2
i

)− i(ωVr)

(
1− V 2

φ

V 2
r

)
+ 2(ΩiVr)

Vφ

Vr

(6.42)

From this we can see that the two nonlinear terms on the RHS can be neglected if

|ωVr| ∼ |ΩiVr| =
∣∣∣Ωi

vdr

r

∣∣∣ ∼
∣∣∣∣Ωi

Ec/B

Rc

∣∣∣∣ < |Ωi · Ωi| = Ω2
i ¿ ω2

pi + Ω2
i (6.43)

That is, if ω2
pi À Ω2

i and ω ∼ Ωi, the central inequality was already met in Chapter

2, namely, ω and Ωi are of the same order, and∣∣∣∣
Ec/B

RcΩi

∣∣∣∣ < 1 (6.44)

even for very strong cylindrical electric field structures with Ec/B ∼ 2 km/s and

RcΩi ∼ 3 km/s. Therefore, the nonlinear terms can be dropped even for these

strong fields. This being the case we then get

ω2 = ω2
pi + Ω2

i = ω2
UH (ions) (6.45)

Therefore, the oscillation frequency is now at the ion upper-hybrid frequency unless

the ion plasma frequency (i.e., the ion density) is very small. However in the latter

case we are back to the case discussed in Section 6.1.
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6.3 Fluid results when the electric field is modi-

fied by electrons

It is also possible that a small number of electrons may be sent down magnetic field

lines through precipitation. If the onset of these charges were to be very fast, the

ambient electrons would react to the lack of charge neutrality. But the ions have

not enough time to respond because of their inertia. In the present case, Poisson’s

equation becomes

2
Ec

Rc

=
e

ε0

(ni0 − ne) (6.46)

while all the other equations would be identical to those of the previous section with

Ωe replacing Ωi and ωpe replacing ωpi. That is to say, the frequency of oscillation

would now be the electron upper hybrid frequency, ωUH (electrons).

In both upper hybrid situations discussed in last two sections, the background

charges are drawn to (or repelled from) the cylinder. At first, the motion is that of the

cyclotron oscillation. However, the electric field is quickly affected by the new charge

density and the ambient charges may overshoot but not by much. The situation is

very similar to a plasma oscillation with a frequency ω2
p À Ω2. At low densities,

the magnetic field is responsible for the return of the charge and the oscillation is

then that of electrostatic cyclotron waves. Indeed, the electric field modification is

negligible if ω2
p is small.

6.4 Lower-hybrid oscillations

If the electric field increases more slowly than the electron upper hybrid period, lower

hybrid waves may also be excited. In this case, the description proceeds the same

as the previous two sections except that both ions and electrons are reacting to the

electric field. Gauss’s law now applies to (δni − δne), both of which are changing

with time.

Take electrons as an example for a discussion. As done in the last Section, we

consider the perturbed electron density δne (i.e., the electron space-charge density)

as a function of time and the background electron density ne0 to be uniform in space
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and constant in time. Note that ne ≈ ne0 due to the very small δne. The continuity

equation for electrons gives

δne = −2
ne0

iω
V (e)

r (6.47)

From the momentum equation, we have, using the same treatment as in the previous

subsections:

V (e)
r = − 1

iω

Ωe

Rc

E ω2

Ω2 − ω2
e

(6.48)

Thus, the last two equations give

δne =
2ne0

ω2 − Ω2
e

Ωe

Rc

E (6.49)

The ions have a similar density perturbation:

δni = 2
ni0

Ω2
i − ω2

Ωi

Rc

E (6.50)

Using Eqs.(6.49,6.50) in Gauss’s law: ∇ · E =
e

ε0

(δni − δne), and noticing that

∇ · E = −2Ec/Rc, we obtain

ω2
pi

ω2 − Ω2
i

− ω2
pe

Ω2
e − ω2

= 1 (6.51)

Applying the condition Ωi ¿ ω ¿ Ωe, we then have

ω2 =
ω2

pi

1 +
ω2

pe

Ω2
e

= ω2
LH (6.52)

which is the LH frequency. If Ωe ¿ ωpe, we find

ωLH =
√

ΩiΩe (6.53)

under weak magnetic field conditions. In addition, if Ωe À ωpe,

ωLH = ωpi (6.54)

which appears under strong magnetic field conditions (e.g., pulsar/black-hole plas-

mas).
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6.5 Summary and discussion

Using a fluid formalism, we have established the origin of the oscillations found under

the particularly simple situation depicted in Chapter 2. We have found that as long

as the electric field could be maintained by a generator so that ion feedbacks could

not affect the field the system produced electrostatic ion cyclotron waves that were

modified by the Coriolis and centrifugal forces.

We have showed that for similar systems based on uniform cylindrical distribu-

tions of charges, the oscillations would become (1) ion upper-hybrid waves if the

electron density was not allowed to change; (2) electron upper-hybrid waves if the

electrons were fully able to respond to the electric field perturbations; and, (3) lower-

hybrid waves if the external field was introduced slowly enough for intermediate

frequencies involving both ion and electron electrostatic responses.

Thus, in collision-free situations, much depends on the processes responsible for

the introduction of the electric field in the system. For the problem of interest

in this thesis, the electron response has to be taken out. This can be done if the

electrons are the cause of the electric field. For instance, we could surmise that if high

frequency turbulence was affecting the electrons in the process of, say, currents along

the magnetic field lines, anomalous resistivity would slow down the electrons, and

introduce cylindrical regions of space charge. At this point, all the electrons would

be involved in the introduction of the electric field, leaving it to the ions to respond.

Under small plasma density conditions (i.e., ωpi ¿ Ωi), the results of Chapter 2

would automatically apply. The results would also apply if the space charge was

introduced as a voltage generator, so that the neutralizing ion effect could not take

place. One way or the other, the fact remains that cylindrical electric fields are

maintained in the ionosphere, so that something allowing the processes described

here has to take place.
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Chapter 7

Summary, Conclusion, and Future Work

7.1 Summary of problems addressed in this thesis

This thesis has made progress toward a better understanding of the physics of ion

velocity distributions, transport properties, and wave excitation mechanisms in the

auroral ionosphere under various perpendicular electric fields (E) crossed to the local

geomagnetic field (B) in a cylindrical geometry. This subject had been studied in

detail in the past, but only for situations in which the ambient electric field was

homogeneous in space and constant in time after an initial quick transition.

The emphasis of this thesis has been on more realistic general problems when the

electric field is inhomogeneous and/or modulated by charged particles. There had

only been one study of these problems so far [St.-Maurice et al. (1994)] in which

the electric field changed linearly in space along a particular direction perpendicular

to the local magnetic field. However, in last two decades, space observations via

satellites, rockets, and radars, have shown that there are numerous instances of

cylindrical space-charge/electric-field arrangements in the auroral ionosphere (such

as traveling vortices, auroral rays, and lower-hybrid cavities) in different spatial and

temporal scales. This motivated the present study of ions response to electric fields

in cylindrically symmetric situations.

Starting from a simple electric field structure which is proportional to the radius,

we have used the Boltzmann equation coupled with equations of motion to study the

ion kinetics, velocity distribution function, and bulk parameters of the distribution

function. Complete analytical solutions have been obtained (Chapter 2). Next, to

investigate the effects of ion-neutral collisions on the ion velocity distribution, we
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have introduced a relaxation model for collisions so as to obtain complete analytical

solutions and gain physical insights into the problem (Chapter 3). Further, under

more realistic inhomogeneous electric field structures that were constant in time, we

have developed a semi-numerical back-mapping model to calculate the distribution

function and transport properties in a number of collision-free cases (Chapter 4). The

model developed in that Chapter can be applied to any electric field structures which

are either homogeneous or inhomogeneous in space. In a further generalization, we

have also relaxed the constraint of uniform initial ion density to the above problems

(Chapter 5). As the first step for this study, we have chosen a couple of initial ion

density profiles that produced completely analytical solutions under both collision-

free (with two profiles) and collisional (with one profile) conditions. Finally, we have

employed a fluid formulation to discuss the excitation of ion cyclotron waves, ion

upper-hybrid waves, electron upper-hybrid waves, and lower-hybrid waves within

the content of our cylindrical geometry and initial conditions (Chapter 6).

7.2 Basic results from the thesis

Non-Maxwellian velocity distribution function and related observable transport pa-

rameters (e.g., bulk velocity, temperature, etc.) produced by different auroral electric

field structures have been studied since the early seventies. Earlier studies had estab-

lished that the ion velocity distributions under homogeneous electric fields can differ

in important ways from the conventionally assumed Maxwellian (Gaussian) velocity

distribution by becoming ring-shaped in velocity space under very strong electric

field conditions. By comparison to this homogeneous case, early studies had also

shown that the velocity distributions under an inhomogeneous electric field which

increases linearly in a specific direction in space were found to be crescent-shaped

(as opposed to ring-shaped) in the velocity plane transverse to the magnetic field

direction under similarly very strongly driven conditions.

However, the aurora often breaks down into elongated filaments that are aligned

with the geomagnetic field. It is natural to infer from this that when important

structures are found in the electrostatic fields they, too, will follow a cylindrical
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geometry. Our work has been oriented towards these types of ionospheric electric

field structures.

Our first study (Chapter 2) acts as the basis of the thesis. We have assumed a

simple electric field structure which is “constant” in time, but proportional to the

radial position, i.e., a “radially linear” electric field in space. In addition, the initial

ion density was assumed “uniform” in space, and we considered only collision-free

conditions. We solved the Boltzmann equation by tracking the ions back in time,

using the temporal link between the initial position and velocity of an ion and the

arbitrary position and velocity at any time. We obtained completely analytical so-

lutions for the ion trajectories and the ion distribution function, in addition to the

transport properties everywhere in space and at any time. We found that individual

ions gyrate in phase at an effective gyrofrequency (ω) which is different from the

conventional magnetic gyrofrequency (Ωi), while the associated velocity distribu-

tion pulsated at a non-steady rate with time. Nevertheless, for an initially uniform

Maxwellian velocity distribution, the distribution remained Maxwellian for all the

times, although the drift, density and temperature of that distribution kept changing

with time but stayed independent of position.

The purpose of Chapter 3 was to elucidate the effects of collisions on the evolu-

tion of velocity distributions and bulk parameters in cylindrical situations at lower

altitudes. We have selected a relaxation model to replace the Boltzmann collision

integral in the Boltzmann equation. This model provides a simple description of ion-

neutral interactions that makes it possible to solve the Boltzmann equation entirely

analytically. Our calculations showed that collisions drive the velocity distribution

to a horseshoe-shaped velocity distribution over long enough times. This feature

has been found to extend to any radial positions at which the radially linear electric

fields exists. The transition period from pulsating Maxwellians to horseshoe shapes

is of the order of one collision time and the transport properties evolve accordingly

from oscillating to non-oscillating in the same short time intervals.

In a third part of this thesis, we removed the “radially linear” constraint from

the electric field structures (Chapter 4). We solved the problem of an electric field
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that could follow any radially nonlinear evolution in space. At this stage, there was

no way to seek a generalized approach for complete analytical solutions. We instead

developed a back-mapping semi-numerical method based on energy conservation

and the equations of motion. We verified first of all the validity of the code by

reproducing all the results given in the first study. After that, we calculated the

ion velocity distributions and bulk properties under several realistic electric field

models. In regimes where the electric field dropped outside a space-charge region,

the evolving velocity distribution with time was found to have many possible types of

shapes, such as, deformed pancake, horseshoe, teardrop, core-halo, etc. If the electric

field dropped sharply on both sides of the boundary of a region, the distribution

developped an ear-collar appearance with time. Under all electric field structures,

the non-Maxwellian distributions and related transport parameters were localized to

the region with an electric field. In this study, we also used a backward ray-tracing

technique to find where those ions contributing to a specific distribution point in

velocity space came from.

In the fourth part of the thesis, we have relaxed the “uniform” condition from the

initial ion density (Chapter 5). The complexity brought about by the new factor is

that the initial density, as a function of initial radius (r0) at t0, is now linked through

r0 to the phase-space parameters (r, vr, vφ) at t. We obtained analytical solutions

for a couple of initial density profiles as a function of radius. The results were at

first sight similar to those for which the ion density was initially uniform. However,

the results became strongly radially dependent for the inhomogeneous initial density

conditions. This was a common feature in both the collision-free and collisional cases

we investigated.

In the collisional case, the ion distribution functions and bulk parameters have

the same evolutions as those obtained in Chapter 3, namely, the dependence on

the electric field, the radial position, and time. Especially for bulk parameters at

r = 0.5Rc, their steady-state values are very much the same as those in Chapter

3. However, there are two differences: one is that the magnitude of the distribution

function is smaller than in Chapter 3; and the other is that the ion density depends
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on the radial position and increases exponentially with time, unlike in Chapter 3.

In the last part of the work, we established a fluid context for our kinetic results

and investigated the origin of the velocity oscillations and other results obtained in

Chapter 2. We then discussed how different sorts of initial conditions would lead to

the excitation of other oscillations in the context of our cylindrical geometry. Not

too surprisingly, we identified electrostatic ion cyclotron modes and various hybrid

modes where excitation depended on the particular generator and ambient plasma

density.

7.3 Future work

The present thesis offers both qualitative and quantitative insights into auroral ion

distributions, as well as into their bulk properties as they are driven by different

types of electric fields in auroral regions. The work has also been related to the

excitations of fundamental plasma oscillations. Still, much work is needed for more

complicated situations and to explain important ionospheric phenomena measured

by rockets and/or satellites.

For one thing, the thesis work should be extended to tackle an important issue

in auroral physics: transverse ion energization and ion outflows in the formation of

ion conics in velocity space. The first ion conic was measured by Satellite 1976-65B

[Sharp et al. (1977)]. In that work, conic H+ and O+ ions were detected at about

1RE in the northern dayside polar cusp. Since then, many satellites have observed

ion conics in geospace [e.g., Klumpar (1986); Ergun et al. (2001); Ergun (2003);

McFadden et al. (2003)].

A widely accepted process for the evolution of ion conics was described by, e.g.,

Mozer (1980); Mozer et al. (1980); Gorney et al. (1985); Lysak (1986); Wu et

al. (2002): at first, some kind of mechanism has to produce transverse ion heating;

heated ions are then driven upward by the geomagnetic mirror force which is propor-

tional to the transverse kinetic energy under the conservation of the first adiabatic

invariant; the total velocity of the ions takes a conic appearance at higher altitudes;

the presence of parallel electric fields may contribute to a more complicated picture
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through “a pressure cooker” effect [Gorney et al. (1985); Barakat & Barghouthi

(1994); Wu (2000)].

The mechanism underlying the transverse ion heating is not yet clear enough.

Wave energization is one possibility, with a term to represent the perpendicular en-

ergy gain from the “wave-particle interactions (WPI)” in the conic equations [Gorney

et al. (1985)]: dE⊥/dt|WPI. This term has been assumed constant (at 1 eV/s) for

protons over the altitude range 0.1RE < h < 1RE, and suggested to scale as mα−1

for heavy ions (α is a power-law index from the spectral fit)[Gorney et al. (1985);

Lund et al. (1999)].

However, there are some problems with the WPI explanation. When taking a

close look at the measurements of ion energy distributions [Sckopke et al. (1983);

Klumpar (1986); Moore et al. (1986)], it was found that (1) a one-to-one correspon-

dence between heated ions and any particular type of plasma waves to heat them is

not obtained; (2) the energy is not always transferred from wave(s) to ions, or rather,

it can flow from ions to the wave(s); and (3) the interaction of ions with small-scale

potential structures (a special form of wave-particle interactions) seems closest to

being responsible for the transverse ion heating. These potential structures were de-

scribed as spikelets (or cavitons) [Chang (1993); McFadden et al. (1999a,b)]. How-

ever, the correlation between the ion energization and the pulsative field strengths

is still open [Schuck & Bonnell (2003)].

The present work can be used to address the transverse ion energization question.

First of all, Chapter 2 tell us that after the electric field is switched on, ions start

a cyclotron oscillation (ω) about the E ×B drift, with a temperature that changes

with time (see Fig.2.3 for a reference). If at some point the electric field is switched

off, ions will at first have the drift velocity and temperature reached just before

the electric field disappears, but now the mean velocity will start to pulsate around

the origin. If the electric field continues to be on and off repeatedly, ions could be

heated or accelerated continuously to extraordinary levels (St.-Maurice 2006: private

communication).

Fig.7.1 describes the above process in two cartoons under two simple electric field
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Figure 7.1: Two cartoons showing transverse ion heating by peri-
odically occurring electric fields at frequencies that match the local
cyclotron frequency (not a requirement for the heating mechanism, but
used to dramatically illustrate the point) (St.-Maurice 2006: private
communication).

structures taken at the maximum heating efficiency. In the figure, pink-colored areas

represent ion distributions. Dotted circles depict the GC orbits around the E × B

drift in velocity space. Both pink areas on both sides of the dashed double-head

arrows are used to illustrate that at one given moment in time when two different

electric field states are formed (on or off). For the uniform electric field case, though

the areas are constant (saying both density and temperature are not changing at any

stages), the drift velocity increases step by step. So, the kinetic energy goes up. By

contrast, under electric field structures that increase linearly with radius, not only
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the drift velocity but also the density and temperature of the heated ions become

larger and larger. The figure demonstrates that even when the electric field has gone

back to zero, we still have cyclotron oscillations but with a new amplitude and a

zero mean-velocity. In the process, the mean v⊥ is never zero (that is, the bulk of

the perpendicular flow is not zero).

Of course, we have already seen a more direct alternative mechanism for the for-

mation of conics in Chapter 4 of this thesis, when dealing with electric fields that

were not proportional to the radius, particularly near the edge of a negatively charged

region. As seen in Fig.4.8, some “halo-core”“halo” populations can be formed and

some ions can have very high v⊥ gains under these conditions. Indeed, many obser-

vations of conics see a non-thermal, energetic population outside the colder thermal

“core” population [e.g., Garbe et al. (1992)].

What was not done in this thesis is a description of the parallel acceleration

process under the trigger of strong perpendicular speeds away from the origin in

velocity space. The way to tackle this process with kinetic theory is to describe the

acceleration produced by small radial component of the magnetic field in situations

where the magnetic field is very strong along the z-direction, but nevertheless changes

along that direction. From the ∇ ·B = 0 condition this means

∂Bz

∂z
= −1

r

∂

∂r
(rBr) (7.1)

For a small |∂Bz/∂z|, this indicates |Br| ¿ |Bz|. The classic mirror force then

describes the effect of the Br field on the perpendicular drift. It is easy to show that

the result is an upward expulsion of both ions and electrons if |Bz| is larger at lower

altitude.

In mathematical terms, the upward flow is then given by solving the expression

dv
(1)
z

dt
= v0

φΩr (7.2)

where superscript “(1)” means perturbation and “(0)” means ambient, and Ωr =

|eBr/mi| ¿ Ωz = |eBz/mi|.
It follows from this condition that an ion outflow is triggered during the excita-

tion of a cyclotron wave. More specifically, from Fig.7.1, we know that v0
φ on average
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goes between 0 and 2Er/B. Thus, overall, the acceleration is always positive. Nev-

ertheless we could assume to leading order that the region over which the cylindrical

electric field is present is not so long that we would need to consider the changes

along B in space. That is to say, ∂/∂z may not be zero but it is small. Either way,

it is reasonable to conclude that ion outflows are triggered by ion cyclotron oscilla-

tions. This conclusion is not new, appearing many places in the literature [See the

introduction part of Knudsen et al. (1998) in details].

Interestingly, even when the applied electric field is off, we have shown that

cyclotron oscillations still keep going, but with a new amplitude and a nonzero v⊥

(yet a zero mean-velocity) as shown by Fig.7.1. In that case, the mirror force can be

treated over large distances using the usual adiabatic invariant treatment to describe

the “unfolding” of the conics as the upward motion continues.

A related concern is the resolution of observations (with a premise that the sen-

sitivity is sufficiently high) in applying the present work to data analysis. The pay-

loads may be incapable of catching the cyclotron pulsation (except those onboard

GEODESIC rocket, FAST and Cluster II satellites). If the resolution is low, the

average of data over a period is a better description of what is observed than the

instantaneous description we obtained. In this case, it is necessary to obtain the

average features of what we have obtained in the thesis so as to provide realistic

data-fit modeling.

Let’s take the model established in Chapter 2 for example. In that model, the

cylinder extends to infinity in the radial direction, and the electric field is propor-

tional to the radius. The ion velocity distribution is given by Eq.(2.16) or Eq.(2.23).

We take a time average of the former expression over a full cycle (using α = ωt):

1

2πω

∫ 2π

0
fid(ωt) =

1

2πω

∫ 2π

0

n0

π
e−(v2

r+v2
φ) · eB2∓B1sinαdα =

=
n0

πω
eB2−(v2

r+v2
φ) · I0(B1)



 (7.3)

Clearly, this is a horseshoe-shaped distribution in the collision-free case, similar to

the result of the collisional part of the ion velocity distribution given in Chapter

3. This time-averaging result tells us that a horseshoe-shaped measurement may

indicate that the observed distribution is at the origin of the cyclotron waves.
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A further point to extend the thesis work is to elucidate the generation mechanism

of the broadband extremely low-frequency (BBELF) oscillations. In Chapter 2 and 6,

we have explained the mechanism of the excitation of cyclotron waves under electric

field structures which are proportional to radius. Given that outside the center of a

charged cylinder where the electric field is not proportional to the radial position, as

shown in Chapter 4, we might expect a broad range of frequencies in the vicinity of

the (quasi-)cyclotron frequencies. Could this be related to the excitation of BBELF

waves?

Of course, there are limitations to what can be done using the approach taken in

the present thesis. The most stringent condition imposed in the present work is the

lack of time dependence in the driving electric fields. The implicit assumption here is

that the electric field is constant over several ion cyclotron oscillations. Also, in the

collisional case, the ion (and electron) densities are found to increase exponentially

with time because we assume that the mechanism behind the production of a negative

space charge induces a fixed potential: in reality the Pedersen currents could well

lower the voltage instead of triggering an increase in the local plasma density. Finally,

many of the distributions that we have obtained are potentially unstable. Whether

or not the distributions that have been calculated in this thesis will survive depends

entirely on the growth rate of the instabilities, which has to be compared with the

rate at which the distribution functions are shaped by the kinetic processes discussed

in this thesis.

Other aspects worth of investigation in the future are the magnetic perturbations

produced by the ion motion that we have obtained, particularly in cases for which

there is a lot of coherence in the ion motion. The work should also be applied to the

laboratory and space-borne data situations.
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Vogelsang H., H. Lühr, H. Voelker, et al. (1993), An ionospheric travelling convection

vortex event observed by ground-based magnetometers and by VIKING, Geophys.

Res. Lett., 20, 2343-2346.

Whealton J. H., and S.-B. Woo (1971), Ion velocity distribution of a weakly ionized gas

in a uniform electric field of arbitrary strength, Phys. Res. A, 6 (6), 2319-2325.

Winkler E., J.-P. St.-Maurice, and A. R. Barakat (1992), Results from improved Monte

Carlo calculations of auroral ion velocity distributions, J. Geophys. Res., 97 (A6),

8399-8423.

Wu X.-Y. (2000), Auroral ionospheric ion upflows and outflows: Satellite observations

and dynamic fluid-kinetic simulations, Ph.D. thesis, University of Alabama (Huntsville).

Wu X.-Y., J. L. Horwitz, and J.-N. Tu (2002), Dynamic fluid kinetic (DyFK) simulation

of auroral ion transport: Synergistic effects of parallel potentials, transverse ion

heating, and soft electron precipitation, J. Geophys. Res., 107 (A10), 1283.

Yau A. W., W. B. Whalen, W. K. Peterson, et al. (1984), Distribution of upflowing

ionospheric ions in the high-altitude polar cap and auroral ionosphere, J. Geophys.

Res., 89, 5507-5522.

Yeh H.-C. B. (1982), Parallel electric field on auroral magnetic field lines, Ph.D. thesis,

Rice University.

Yermolaev I., A. O. Fedorov, O. L. Vaisberg, et al. (1997), Ion distribution dynamics

near the Earth’s bow shock: first measurements with the 2D ion energy spectrometer

CORALL on the INTERBALL/Tail-probe satellite, Ann. Geophys., 15 (5), 533-541.

164



Appendix A

Rotating Frame Description

In the absolute (non-inertial) frame of reference, let us express the ion acceleration
and velocity using the notation d2r/dt2 and dr/dt, respectively. In this appendix,
we choose to express the ion motion instead in a rotating frame that rotates about
the axis of the charged cylinder. We apply a constant angular velocity ~ωr relative to
the absolute frame. In the rotating frame, the ion acceleration and velocity will be
denoted by r̈ and ṙ, respectively.

As stated in the text, in the absolute frame of reference, the equation of ion motion
(in dimensional form) is given by

d2r

dt2
= −Ωi

Ec

B

r

Rc

+
dr

dt
×Ωi (A.1)

in which Ωi = eB/mi and Ωi = |Ωi|. In the rotating frame of reference, Eq.(A.1)
becomes

r̈ + 2~ωr × ṙ + ~ωr × (~ωr × r) = −Ωi
Ec

B

r

Rc

+ (ṙ + ~ωr × r)×Ωi (A.2)

or

r̈ + (2~ωr + Ωi)× ṙ = −~ωr × (~ωr × r)− Ωi
Ec

B

r

Rc

+ (~ωr × r)×Ωi (A.3)

We now choose the direction of ~ωr to be along the magnetic field, which means
that the rotation is proceeding in the same direction as the E × B direction. Next
we choose to adjust that frequency so that the right-hand-side of Eq.(A.3) is equal
to zero. Thus, two vector equations are produced. The first one is an equation
about ωr itself (a positive value has to be assumed), coming from the balance on the
right-hand-side. For positive ωr this gives:

(
ω2

r + Ωiωr − Ωi
Ec

B

1

Rc

)
r = 0 ⇒ ωr =

Ωi

2




√
1 + 4

Ec/B

RcΩi

− 1


 (A.4)

The meaning of ωr is made clear once we consider small values of the parameter
(Ec/B)/(RcΩi). It is easy to show in this case that ωr ∼ (Ec/B)/Rc. Thus, the
period 2π/ωr is equal to the time it takes for an E × B drifting ion to go around
the cylinder. We note that because we assume that all the ions of interest are in a
region where the electric field strength increases linearly with the radius, this time is
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the same no matter where the initial distance of the particle might be to the center
of the cylinder. We also recall that the direction and the sign of ~ωr were taken to be
such that the rotation was going in the E×B direction.

We obtain a second equation from the fact that the left-hand-side of Eq.(A.3) must
also equal 0 when its right-hand-side vanishes. This gives us the balance

r̈ + ~ω × ṙ = 0, or, v̇ + ~ω × v = 0 (A.5)

in which we get, using (A.4),

~ω = 2~ωr + Ωi = Ωi

√
1 + 4

Ec/B

RcΩi

(A.6)

Eq.(A.5) strongly suggests that ω is a generalization of the ion cyclotron frequency
since it takes on that value when (Ec/B)/(RcΩ) ¿ 1.

We may thus conclude that the motion described by a rotating frame with a frequency
of rotation described by ~ωr describes the ion guiding center motion. That motion is
a generalization of the usual plasma E×B drift while the motion about the guiding
center is described by a circle in velocity space, where the ion oscillates at a frequency
which is a generalization of the ion gyrofrequency. Using parameters listed in Section
3, we obtain ω = 1.915Ωi while (ωrRc)/(Ec/B) = 0.68. I label ω as the “effective
gyrofrequency” in the main text.
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Appendix B

Using Complex Variables to Solve for

{vr, vφ}

In Cartesian coordinates {x, y, z}, Eq.(2.3) can be written as:

ẍ = −Ec

B

Ωi

Rc

x + Ωiẏ , ÿ = −Ec

B

Ωi

Rc

y − Ωiẋ , z̈ = 0 (B.1)

in which {ẍ, ÿ, z̈} = {v̇x, v̇y, v̇z} is the ion’s acceleration. The position vector is
r = xi + yj + zk. The z-component is not coupled to the rest of the problem and
can be solved independently. For the acceleration in the plane perpendicular to the
magnetic field we use a complex function Z = x + iy with |Z| = r. In terms of that
function Eq.(B.1) can be written as

d2Z

dt2
+ iΩi

dZ

dt
+

Ec

B

Ωi

Rc

Z = 0 (B.2)

Letting Z = Z ′eiωrt, the equation becomes

d2Z ′

dt2
+ i(2ωr + Ωi)

dZ ′

dt
= Z ′

(
ω2

r + ωrΩi − Ec

B

Ωi

Rc

)
(B.3)

By selecting a frequency ωr which satisfies ω2
r + ωrΩi−Ωi(Ec/B)/Rc = 0, we obtain

ωr =
Ωi

2




√
1 + 4

Ec/B

RcΩi

− 1


 (B.4)

which is the same as Eq.(A.4). As a result, Eq.(B.3) becomes

d2Z ′

dt2
+ iω

dZ ′

dt
= 0 (B.5)

where ω has also been obtained before, in Eq.(A.6). The integration of Eq.(B.5)
gives

Z ′ = Z ′
0 − i

V ′
0

ω

(
1− e−iωt

)
(B.6)

in which V ′
0 =

(
dZ ′

dt

)

0

.

167



B.1 Obtaining {vr, vφ} from {vx, vy}

Using Z ′ = x′ + iy′ and V ′
0 = v′x0 + iv′y0, Eq.(B.6) becomes

x′ = x′0 +
v′y0

ω
− Acos(ωt + θ) , y′ = y′0 −

v′x0

ω
+ Asin(ωt + θ) (B.7)

revealing [
x′ −

(
x′0 +

v′y0

ω

)]2

+

[
y′ −

(
y′0 −

v′x0

ω

)]2

= A2 (B.8)

in which A =
√

v′2x0 + v′2y0/ω, θ = tan−1(v′x0/v
′
y0), and ωr is the effective gyrofrequency

of the ion in the rotating frame.

In terms of the original function Z we have to apply an additional rotation involv-
ing ωrt to the results posted in Eqs.(B.7,B.8). The new variables are then given
respectively by,

x = −r0sin(ωrt− ϑ) +
B

ω
{cos[(ωr + Ωi)t− ϑ′]− cos(ωrt + ϑ′)}

y = r0cos(ωrt− ϑ)− B

ω
{sin[(ωr + Ωi)t− ϑ′] + sin(ωrt + ϑ′)}





(B.9)

and

[x + r0sin(ωrt− ϑ)]2 + [y − r0cos(ωrt− ϑ)]2 = 2

(
B

ω

)2

(1− cosωt) (B.10)

in which r0 =
√

x2
0 + y2

0, ϑ = tan−1(x0/y0), B =
√

(ωrx0 − vy0)2 + (ωry0 + vx0)2,
and ϑ′ = tan−1[(ωry0 + vx0)/(ωrx0 − vy0)].

Eqs.(B.7,B.9) provide the following velocity components, respectively:

v′x = ωAsin(ωt + θ) , v′y = ωAcos(ωt + θ) , v′2x + v′2y = (ωA)2 (B.11)

and

vx = −ωrr0cos(ωrt− ϑ) +
B

ω
{−(ωr + Ωi)sin[(ωr + Ωi)t− ϑ′]+

+ωrsin(ωrt + ϑ′)}

vy = −ωrr0sin(ωrt− ϑ)− B

ω
{(ωr + Ωi)cos[(ωr + Ωi)t− ϑ′]+

+ωrcos(ωrt + ϑ′)}

[vx + ωrr0cos(ωrt− ϑ)]2 + [vy + ωrr0sin(ωrt− ϑ)]2 =

= B2

[(
Ωi

ω

)2

+ 2
ωr(ωr + Ωi)

ω2
(1 + cosωt)

]





(B.12)
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which gives

v2
x + v2

y +
Ec

B
RcΩi

(
r2

Rc

− r2
0

Rc

)
= v2

x0 + v2
y0 (B.13)

in which Eq.(B.9) is used. This is simply the energy conservation equation.

From Eq.(B.12), we obtain the components of the ion velocity in the cylindrical
frame viz

vr = vxcosφ + vysinφ , vφ = −vxsinφ + vycosφ (B.14)

in which φ is determined by

tanφ = y/x (B.15)

where x and y are given in Eq.(B.9). The explicit form of these expressions, while
correct, is rather complicated. A more physically meaningful expression can, how-
ever, be derived from Z.

B.2 Obtaining {vr, vφ} Directly from Z

From Eq.(B.6), we obtain

Z =

[
Z0 − i

V ′
0

ω

(
1− e−iωt

)]
eiωrt (B.16)

in which Z0 = Z ′
0 is used. Thus,

V =
dZ

dt
= iωrZ + V ′

0e
i(ωr−ω)t (B.17)

Clearly,

V ′
0 = V0 − iωrZ0 (B.18)

which gives

v′20 = |V ′
0 |2 = (vx0 + ωry0)

2 + (vy0 − ωrx0)
2 (B.19)

The above equations provide velocity components in cylindrical coordinates as fol-
lows:

vr =
V Z∗ + V ∗Z

2|Z| = v′0cos[(ωr − ω)t + φ0]

vφ =
V Z∗ − V ∗Z

i2|Z| = ωrr + v′0sin[(ωr − ω)t + φ0]





(B.20)

in which Z∗ and V ∗ are the complex conjugates of Z and V , respectively, and φ0 is
determined by

eiφ0 =
V ′

0Z
∗

|V ′
0Z

∗| , or, φ0 = tan−1 Im(V ′
0Z

∗)
Re(V ′

0Z
∗)

(B.21)
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The above also implies
v′20 = v2

r0 + (vφ0 − ωrr0)
2 (B.22)

Using Eq.(B.16), we can obtain another expression for the velocity components in
terms of ω rather than ωr − ω:

vr = v′0
r0

r
cos(ωt+φ′0)+

v′20
ωr

sinωt , vφ = ωrr−v′0
r0

r
sin(ωt+φ′0)−

v′20
ωr

(1−cosωt) (B.23)

in which φ′0 is determined by

eiφ′0 =
V ′∗

0 Z0

|V ′
0Z

∗
0 |

, or, φ′0 = tan−1 Im(V ′∗
0 Z0)

Re(V ′∗
0 Z0)

(B.24)

Eqs.(B.20,B.23) indicate, respectively, that the velocity v = {vr, vφ} can be described
in terms of two different circles with different guiding centers and radii:

v2
r + (vφ − ωrr)

2 = v′20(
vr − v′20

ωr
sinωt

)2

+

[
vφ +

v′20
ωr

(1− cosωt)− ωrr

]2

=
(r0

r

)2

v′20



 (B.25)
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Appendix C

Hamiltonian mechanics of Ion Motion

Hamiltonian mechanics employs a scalar function, H (the Hamiltonian), and a set
of special phase-space coordinates denoted by two vectors, (r,p). The two vectors
are the canonical generalized coordinates, where r is the position vector, and p the
canonical momentum conjugating to r. They constitute two canonical Hamilton’s
equations of motion to describe the kinetic characteristics for an arbitrary particle
system:

ṙ =
∂H

∂p
= ∇pH, and, ṗ = −∂H

∂r
= −∇H (C.1)

In external electric, magnetic, and gravitational fields E, B, and g, the Lagrangian
L of a non-relativistic, charged particle with rest mass m and charge e is

L = T − P =
1

2
mv2 − [e(ϕ− v ·A) + Ψ] (C.2)

in which v = ṙ is the velocity vector where the dot above r denotes the time deriva-

tive, T =
1

2
mv2 the kinetic energy, P = e(ϕ− v ·A) + Ψ the potential energy, and

ϕ, A, and Ψ are vector and scalar potentials defined by

E = −∇ϕ− ∂A

∂t
, B = ∇×A, g = − 1

m
∇Ψ (C.3)

C.1 Canonical Equation of Motion

Eq.(C.2) produces the canonical momentum p:

p = ∇vL = mv + eA, or, v =
1

m
(p− eA) (C.4)

The Hamiltonian H(r,p, t) of the particle is then given by

H = p · v − L =
(p− eA)2

2m
+ eϕ + Ψ (C.5)

Applying Eq.(C.5) in the first equality of Eq.(C.1), we obtain

p = mṙ + eA , or, ṙ =
1

m
(p− eA) (C.6)
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which is equivalent to Eq.(C.4). Then,

ṗ = mr̈ + eȦ = mr̈ + e

[
∂A

∂t
+ (ṙ · ∇)A

]
(C.7)

The other equality in Eq.(C.1) gives

ṗ = − 1

m
(p− eA)× [(p− eA)]− 1

m
[(p− eA) · ∇] (p− eA)−

−e∇ϕ−∇Ψ = eṙ×B + e(ṙ · ∇)A + e(E +
∂A

∂t
) + mg





(C.8)

in which a vector identity (1/2)∇F2 = F × (∇ × F) + (F · ∇)F (where F is an
arbitrary vector), and then Eqs.(C.3,C.6) are used successively.

Eqs.(C.7,C.8) jointly produce

mr̈ = e(E + ṙ×B) + mg (C.9)

or, in its popular form,

m
dv

dt
= e(E + v ×B) + mg (C.10)

C.2 Equation of Motion in Cylindrical Frames

In cylindrical coordinates, the kinetic energy T is

T =
1

2
m(ṙ2 + r2φ̇2 + ż2) (C.11)

in which, and hereafter, we use dimensionless speeds. The unit of speeds is the initial
ion thermal speed vth =

√
2kT0/m where T0 is the ion equilibrium temperature, and

k the Boltzmann constant.

If the electric field is an arbitrary function of r and constant in time, Er, while the
magnetic field is homogeneous in space and constant in time, B, the potential energy
P is

P = e [ϕ(r)− v ·A] = e

[
ϕ(r)− 1

2
Br2φ̇

]
(C.12)

in which the gravitational term is neglected, and

ϕ(r) = −
∫

E · dr = −
∫

Erdr (C.13)

For the linear electric field assumed in Chapter 2, Er = −Ec(r/Rc),

ϕ(r) =
1

2
EcRc

(
r

Rc

)2

=
m

2e

Ec

B
RcΩi

(
r

Rc

)2

(C.14)
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The Lagrangian L is

L = T − P =
1

2
m(ṙ2 + r2φ̇2 + ż2)− e

[
ϕ(r)− 1

2
Br2φ̇

]
(C.15)

which produces the components of the generalized momentum as follows:

pr =
∂L

∂ṙ
= mṙ , pφ =

∂L

∂φ̇
= mr2φ̇ +

1

2
eBr2 , pz =

∂L

∂ż
= mż (C.16)

The above two equations give the Hamiltonian:

H = prṙ + pφφ̇ + pz ż − L =
1

2
mv2

r +
1

2
mv2

φ +
1

2
mv2

z + eϕ(r) (C.17)

Eqs.(C.16,C.17) provide the following equations, respectively:

∂H

∂pr

=
pr

m
= ṙ = vr

∂H

∂pφ

=

pφ

r
− 1

2
eBr

m

1

r
=

mrφ̇

mr
= φ̇ =

vφ

r
∂H

∂pz

= ż = vz

∂H

∂r
= −mr(φ̇2 + Ωiφ̇) + e

∂ϕ

∂r
= −mr(φ̇2 + Ωiφ̇)− eEr

∂H

∂φ
= 0

∂H

∂z
= 0





(C.18)

in which Ωi = eB/m is used, and,

ṗr = mr̈ , ṗφ = mr
(
rφ̈ + 2ṙφ̇ + Ωiṙ

)
, ṗz = mz̈ (C.19)

Using Eq.(C.1), or, ṗr = −∂H/∂r, ṗφ = −∂H/∂φ, and ṗz = −∂H/∂z, we obtain

r̈ = r(φ̇2 + Ωiφ̇) +
e

m
Er , rφ̈ = −2ṙφ̇− Ωiṙ , z̈ = 0 (C.20)

C.3 Constants and Modified Equation of Motion

The ion Hamiltonian shown in Eq.(C.17) does not contain φ, z, and time t explic-
itly. This means that there are three constants of motion: the azimuthal angular
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momentum pφ = K, the axial momentum pz, and the total energy Ξ = H:

pφ = mr1vφ1 + mr2
1

Ωi

2
= mr2vφ2 + mr2

2

Ωi

2
= K

pz = mvz1 = mvz2

Ξ =
1

2
mv2

r1 +
1

2
mv2

φ1 +
1

2
mv2

z1 + eϕ(r1) =

=
1

2
mv2

r2 +
1

2
mv2

φ2 +
1

2
mv2

z2 + eϕ(r2)





(C.21)

in which vr = ṙ is the radial velocity, vφ = rφ̇ the azimuthal velocity, vz = ż the axial
velocity parallel to B, and {r1, vr1, vφ1, vz1} and {r2, vr2, vφ2, vz2} the parameters of
{r, vr, vφ, vz} at t = t1 and t = t2, respectively.

Eq.(C.21) introduces the following two Hamiltonian’s canonical equations:

r1vφ1+r2
1

Ωi

2
= r2vφ2+r2

2

Ωi

2
=

K

m
, and v2

r1+v2
φ1+e[ϕ(r1)−ϕ(r2)] = v2

r2+v2
φ2 (C.22)

the former of which corresponds to the conservation of canonical angular momentum,
and the latter to the total energy which can be rewritten as

v2
r1 + v2

φ1 + (P1 − P2) = v2
r2 + v2

φ2 (C.23)

where P = eϕ(r) is the potential energy.

Concisely, Eq.(C.22) gives one modified Hamiltonian’s canonical equation of motion:

v2
r1

+

(
Ωir1

2

)2

+

(
K

mr1

)2

+ e[ϕ(r1)− ϕ(r2)] = v2
r2

+

(
Ωir2

2

)2

+

(
K

mr2

)2

(C.24)

or,

v2
r1

+

(
Ωir1

2

)2

+

(
K

mr1

)2

+ (P1 − P2) = v2
r2

+

(
Ωir2

2

)2

+

(
K

mr2

)2

(C.25)

In the radially linear electric field Er = −Ec(r/Rc) produced by homogeneous elec-
tron space charges, the above two equations become

r1vφ1 + r2
1

Ωi

2
= r2vφ2 + r2

2

Ωi

2
=

K

m

v2
r1 + v2

φ1 +
Ec

B
RcΩi

[(
r1

Rc

)2

−
(

r2

Rc

)2
]

= v2
r2 + v2

φ2





(C.26)

and

v2
r1

+

(
Ωir1

2

)2

+

(
K

mr1

)2

+
Ec

B
RcΩi

[(
r1

Rc

)2

−
(

r2

Rc

)2
]

=

= v2
r2

+

(
Ωir2

2

)2

+

(
K

mr2

)2





(C.27)
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Taking phase parameters at the final stage t = t1 as {r, vr, vφ, vz} = {r1, vr1, vφ1, vz1},
and those at the initial stage t = t2 = t0 = 0 as {r0, vr0, vφ0, vz0} = {r2, vr2, vφ2, vz2}.
The above two equations change to

rvφ + r2 Ωi

2
= r0vφ0 + r2

0

Ωi

2
=

K

m

v2
r + v2

φ +
Ec

B
RcΩi

[(
r

Rc

)2

−
(

r0

Rc

)2
]

= v2
r0 + v2

φ0





(C.28)

and,

v2
r +

(
Ωir

2

)2

+

(
K

mr

)2

+
Ec

B
RcΩi ·

[(
r

Rc

)2

−
(

r0

Rc

)2
]

=

= v2
r0

+

(
Ωir0

2

)2

+

(
K

mr0

)2





(C.29)
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Appendix D

Solution of Ion Equation

of Motion, Eq.(2.11)

D.1 Derivations of Results

from Eq.(2.12) to Eq.(2.15)

For two arbitrary states {r1,v1} and {r2,v2} in phase space, the canonical equation
of motion, Eq.(2.11), or, Eq.(C.27), takes a generalized form as follows:

v2
r1

+

(
Ωir1

2

)2

+

(
K

mr1

)2

+
Ec

B
RcΩi ·

[(
r1

Rc

)2

−
(

r2

Rc

)2
]

=

= v2
r2

+

(
Ωir2

2

)2

+

(
K

mr2

)2





(D.1)

Using

vr2 =
dr2

dt2
(D.2)

this expression becomes

vr2 = ±
√√√√X1 −

(
Ωir2

2

)2

−
(

K

mr2

)2

+
Ec

B
RcΩi

[(
r1

Rc

)2

−
(

r2

Rc

)2
]

(D.3)

in which

X1 = v2
r1

+

(
Ωir1

2

)2

+

(
K

mr1

)2

(D.4)

Or,

Rcd

(
r2

Rc

)2

√
−

(
ΩiRc

2

)2 (
r2

Rc

)4

+ X1

(
r2

Rc

)2

−
(

K

mRc

)2

+ X2

(
r2

Rc

)2
= ±2 dt2 (D.5)

in which

X2 =
Ec

B
RcΩi

[(
r1

Rc

)2

−
(

r2

Rc

)2
]

(D.6)
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In a concise form, we then obtain

dx2√
−b12x2

2 + b22x2 − b32

= ± 2

Rc

dt2 (D.7)

where x2 is a new radial function, b12, b22, b32 are coefficients, shown as follows:

x2 =

(
r2

Rc

)2

b12 =

(
ΩiRc

2

)2

+
Ec

B
RcΩi

b22 = b12(
r1

Rc

)2 + v2
r1

+

(
vφ1 +

Ωir1

2

)2

b32 =

(
K

mRc

)2

=

(
r1

Rc

)2 (
vφ1 +

Ωir1

2

)2





(D.8)

The integration of Eq.(D.7) on both sides gives

(
r2

Rc

)2

= A2{1 + ε2 sin[±ω(t2 − t1) + φ2]} (D.9)

in which

A2 =
b22

2b12

ε2 =

√
1− 4

b12b32

b2
22

ω = Ωi

√
1 + 4

Ec/B

RcΩi

φ2 = sin−1 (r1/Rc)
2/A2 − 1

ε2





(D.10)

and the sign “±” before ω takes “+” for vr1 > 0 and “−” for vr1 < 0. Above results
are used in Section 2.3.1.
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D.2 Derivations of Results

from Eq.(2.18) to Eq.(2.21)

To obtain the results presented in Section 2.3.2, we start by re-expressing Eq.(D.9)
by moving its non-sine terms on the RHS of to the LHS:

(
r2

Rc

)2

/
b22

2b12

− 1

√
1− 4b12b32

b2
22

= sin


±ω(t2 − t1) + sin−1

(
r1

Rc

)2

/
b22

2b12

− 1

√
1− 4b12b32

b2
22


 =

= sin [±ω(t2 − t1)] cos


sin−1

(
r1

Rc

)2

/
b22

2b12

− 1

√
1− 4b12b32

b2
22


 +

+cos [ω(t2 − t1)] sin


sin−1

(
r1

Rc

)2

/
b22

2b12

− 1

√
1− 4b12b32

b2
22






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(D.11)

This means
(

r2

Rc

)2

/
b22

2b12

− 1

√
1− 4b12b32

b2
22

=

= sin [±ω(t2 − t1)]

√√√√√√√√
1− sin2


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Rc
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√
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(
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√
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√√√√2

(
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/
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√
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+
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
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(D.12)
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which is then converted to

(r2/Rc)
2

b22/(2b12)
− 1 =

= sin [±ω(t2 − t1)]

√√√√2
(r1/Rc)

2

b22/(2b12)
−

[
(r1/Rc)

2
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+
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2
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=
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√
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·
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)2

− b12
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(
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+
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[
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2
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]
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(D.13)

Besides, Eq.(D.10) gives
(
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Rc
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− b12
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)4

− b32
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=

=

(
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+
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(
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2
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
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(D.14)

or, √(
r1

Rc

)2

− b12

b22

(
r1

Rc

)4

− b32

b22

= ± r1

Rc

vr1√
b22

(D.15)

in which the sign “±” on the RHS takes “+” for vr1 > 0 and “−” for vr1 < 0.

Substituting Eq.(D.15) into Eq.(D.13) gives
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2
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(D.16)

Thus,
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+
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(D.17)
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which gives
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in which
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(D.19)

where the last two equations provides an important relation:
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(D.20)

Now let’s notice that Eq.(D.18) produces
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(D.21)
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Applying this expression in the generalized form of the second formula in Eq.(2.10),
we have
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in which
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2
dr1 + v2

dφ1)−

(
Ec

B
RcΩi

)2

b12

(
r1

Rc

)2
1− cosω(t2 − t1)

2
= 0 (D.23)

Therefore, Eqs.(D.18,D.20,D.22) imply

(
r2

Rc

)2

=
1− a2

E

B
RcΩi

[(
vr1 +

a2

1− a2

vdr1

)2

+

(
vφ1 +

a2

1− a2

vdφ1

)2
]

a2 [(vr1 − vdr1)
2 + (vφ1 − vdφ1)

2] = v2
r2 + v2

φ2

v2
dr1 +

(
vdφ1 − Ec

B

r1

Rc

)2

=

(
Ec

B

r1

Rc

)2





(D.24)
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Consequently, with the consideration of the phase parameters at the final stage t = t1
as {r, vr, vφ, vz} = {r1, vr1, vφ1, vz1}, and those at the initial stage t = t2 = t0 = 0
as {r0, vr0, vφ0, vz0} = {r2, vr2, vφ2, vz2} with the sign “∓” being “−” for vr > 0 and
“+” for vr < 0, we then have

(
r0

Rc

)2

= A0{1 + ε0 sin(∓ωt + φ0)} =

=
1− a0

E

B
RcΩi

[(
vr +

a0

1− a0

vdr

)2

+

(
vφ +

a0

1− a0

vdφ

)2
]

v2
r0 + v2

φ0 = a0 [(vr − vdr)
2 + (vφ − vdφ)

2] and

v2
dr +

(
vdφ − Ec

B

r

Rc

)2

=

(
Ec

B

r

Rc

)2

A0 = b2/(2b1)

ε0 =
√

1− 4b1b3/b2
2

ω = Ωi

√
1 + 4

Ec/B

RcΩi

φ0 = sin−1 (r/Rc)
2/A0 − 1

ε0

b1 =

(
ΩiRc

2

)2

+
Ec

B
RcΩi

b2 = b1(
r

Rc

)2 + v2
r +

(
vφ +

Ωir

2

)2

b3 =

(
r

Rc

)2 (
vφ +

Ωir

2

)2

a0 = 1− 1

2

[
1−

(
Ωi

ω

)2
]

(1− cosωt)

vdr =
1

a0

· 1

2
r
da0

dt
= −Ec

B

r

Rc

1

a0

Ωi

ω
sinωt

vdφ =
1− a0

a0

· 1

2
rΩi =

Ec

B

r

Rc

1

a0

(
Ωi

ω

)2

(1− cosωt)


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(D.25)

This solution was checked against a numerical integration of the trajectories so as
to verify that there were no algebraic mistakes.

182



Appendix E

Proof of dF/dt = 0

From

F = v2
r + v2

φ +
Ec

B
RcΩi·

·




rvr

Rc

√
b1

sinωt +

(
r

Rc

)2

b1 − v2
r −

(
vφ +

rΩi

2

)2

2b1

(1− cosωt)








(E.1)

we know that the partial derivatives of F and the terms in dF/dt are in following
expressions, respectively:

∂F

∂t
=

Ec

B
RcΩi




(
r

Rc

)2

b1 − v2
r −

(
vφ +

rΩi

2

)2

Rc

√
b1

sinωt + 2
r

R2
c

vrcosωt


 (E.2)

∂F

∂r
= 2

v2
φ

r
+

Ec

B
RcΩi·

·




vr

Rc

√
b1

sinωt +

(
r

R2
c

)
b1 −

(
vφ +

rΩi

2

)(
vφ

r
+

Ωi

2
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b1

(1− cosωt)








(E.3)

∂F

∂vr

= 2vr +
Ec

B
RcΩi

[
r

Rc

√
b1

sinωt− vr

b1

(1− cosωt)

]
(E.4)

∂F

∂vφ

= 2vφ − Ec

B
RcΩi

vφ +
rΩi

2
b1

(1− cosωt) (E.5)

Then,

vr
∂F

∂r
= 2

vrv
2
φ

r
+
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B
RcΩi·

·
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
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(E.6)
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(
v2

φ

r
+ vφΩi − Ec

B
RcΩi

r

R2
c

)
∂F

∂vr

= 2
vrv

2
φ

r
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RcΩi · 2 r
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c
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+
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)
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
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(E.7)

−
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r
+ vrΩi
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(E.8)

In above equations, the respective summations of all LHS terms and all RHS terms
give
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(E.9)

which gives
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(E.10)
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or

(
Ec

B
RcΩi

)−1
dF

dt
=

=

(
r

Rc

)2

b1 −
(

vφ +
rΩi

2

)2

+ v2
φ + rvφΩi − Ec

B
RcΩi

(
r

Rc

)2

Rc

√
b1

sinωt−

−2
r

R2
c

vr(1− cosωt) +
vr

r

(
r

Rc

)2

b1 −
(

vφ +
rΩi

2

)2

b1

·

·(1− cosωt)−
(

v2
φ

r
+ vφΩi − Ec

B
RcΩi

r

R2
c

)
vr

b1

(1− cosωt)+

+2
vr

rb1

(
vφ +

rΩi

2

)2

(1− cosωt) =

=

(
r

Rc

)2 (
RcΩi

2

)2

−
(

vφ +
rΩi

2

)2

+ v2
φ + rvφΩi

Rc

√
b1

sinωt−
−2

r

R2
c

vr(1− cosωt) + +
vr

rb1

·

·
[(
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(
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(E.11)

which produces

(
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RcΩi
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=

0

Rc

√
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sinωt− 2
r

R2
c

vr(1− cosωt)+

+
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(

r
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= −2
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c

vr(1− cosωt) + 2
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(E.12)

Consequently,
dF

dt
= 0 (E.13)
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Appendix F

Generalized Expressions

of Ni and fi in the collisional case

described in Chapter 3

In this appendix we derive an expression for the ion density after a sufficiently large
number of gyro-cycles has elapsed in the collisional case described in Chapter 3.
While the expression does not apply to earlier times involving only a few gyro-
cycles, it proves useful in practice for cases in which collisions have taken over the
evolution of the distribution function.

The expression that we need to evaluate is given by Eq.(3.19), which reads

Ni =
ni0

a0(t)
+ ni0

νin

ω
e

νin

ω
∫ ωt
0 dα′/a0(α′) · I(α) (F.1)

in which

I(α) =

∫ ωt

0

e
−
νin

ω
∫ ωt′
0 dα′′/a0(α′′)

a2
0(α

′)
dα′ (F.2)

To simplify the notation, we use α = ωt and define

h(α) =
1

2π

∫ ωt

0

dα′

a0(α′)
(F.3)

We limit our calculation to the case α À 2π for simplicity. It is perfectly possible
to be more general. However, the algebra becomes unnecessarily tedious in that and
little of physical interest in gained by doing so.

Since a0 is 2π-periodic in ωt′ = α′, we can write

2πh(α) =

∫ 2π

0

dα′

a0(α′)
+

∫ 4π

2π

dα′

a0(α′)
+ · · ·+

∫ 2πl

2π(l−1)

dα′

a0(α′)
+

∫ 2πl+ε

2πl

dα′

a0(α′)
(F.4)

where l = INT[ωt/(2π)] and ε is the phase left in an incomplete cycle. Our interest
is in ε ¿ 2πl so that the last term can be ignored and then, l = INT[ωt/(2π)] ∼=
ωt/(2π). It follows that

2πh(α) ∼= l

∫ 2π

0

dα′

a0(α′)
= 2πlh2π

∼= ωth2π (F.5)
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where

h2π =
1

2π

∫ 2π

0

dα′

a0(α′)
(F.6)

Using the expression of a0 in Eq.(2.19), we have

∫ 2π

0

dα′

a0(α′)
= 2π

ω

Ωi

or, h2π =
ω

Ωi

(F.7)

F.1 Evaluation of the first integral

The simplest integral that we have to perform is

νin

ω

∫ ωt

0

dα′

a0(α′)
∼= νin

ω

ωt

2π
2πh2π = νint · h2π =

νin

Ωi

ωt (F.8)

after a large enough number of cycles, in which Eq.(F.7) is used.

F.2 Evaluation of the second integral

We are also required to evaluate the integral I(α) shown in Eq.(F.2). The inner
integral inside it is of the same form as that we just evaluated. Therefore,

I(α) =

∫ α

0

e−(νin/Ωi)α
′

a2
0(α

′)
dα′ (F.9)

We once again break the integration into 2π integrals and end up with

I(α) =


1 + e

−
νin

Ωi

2π

+ e
−
νin

Ωi

2π·2
+ · · ·+ e

−
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ε




∫ 2π

0

e−(νin/Ωi)α
′

a2
0(α

′)
dα′

(F.10)
We are still interested in ε ¿ 2πl so that the last term in the brackets can be ignored.
Then, using

l−1∑
j=0

e−2πj(νin/Ωi) =
1− e−(νin/Ωi)ωt

1− e−2π(νin/Ωi)
(F.11)

we have

I(α) =
1− e−(νin/Ωi)ωt

1− e−2π(νin/Ωi)

∫ 2π

0

e−(νin/Ωi)α
′

a2
0(α

′)
dα′ ∼= 1− e−(νin/Ωi)ωt

1− e−2π(νin/Ωi)

∫ 2π

0

e−(νin/Ωi)α
′

a2
0(α

′)
dα′

(F.12)
from Eq.(F.10).

187



F.3 Expression of Ni

Use Eqs.(F.8,F.12) in Eq.(F.1). We obtain

Ni
∼= ni0

a0(t)
+ ni0

νin

ω

e(νin/Ωi)ωt − 1

1− e−2π(νin/Ωi)

∫ 2π

0

1

a2
0(α

′)
dα′ (F.13)

in which e−(νin/Ωi)α
′ ∼= 1 is used. Because 1 − e−2π(νin/Ωi) ∼= 2π(νin/Ωi), Eq.(F.13)

becomes

Ni
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a0(t)
+ ni0

Ωi

ω

e(νin/Ωi)ωt − 1

2π

∫ 2π

0

1

a2
0(α

′)
dα′ (F.14)

Using the expression of a0 in Eq.(2.19) again, we have

∫ 2π

0

dα′

a2
0(α

′)
= 2πa1

ω

Ωi

(F.15)

where a1 = 1+2(Ec/B)/(RcΩi). The derivations of this result is shown below in the
last section. Therefore,

Ni = ni0

{
1

a0

+ a1

[
e(νin/Ωi)ωt − 1

]}
(F.16)

F.4 Expression of fi

For the expression of fi, let’s start from substituting Eq.(3.21) directly in Eq.(3.6):

fi = fi1e
−νint + ni0

νin

nn

e−νint

∫ t

0

{
1

a0

+ a1

[
e(νin/Ωi)ωt′ − 1

]}
fn(t

′)dt′ (F.17)

Using ωt instead of t and performing similar manipulations as done above for Ni,
this equation becomes

fi = fi1e
−νint +

ni0

nn

νin

ω
e−νint·

·
{∫ ωt

0
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
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 (F.18)

or,

fi = fi1e
−νint +
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ω
e−νint·

·
{

ωt

2π

∫ 2π

0

(
a−1

0 − a1

)
fn(α

′)dα′ + a1
1− e(νin/Ωi)ωt

1− e2πνin/Ωi

∫ 2π

0
e(νin/Ωi)α

′
fn(α

′)dα′
}

+ J ′l





(F.19)
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in which

J ′l =
ni0

nn

νin

ω
e−νint
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)
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′)dα′ + a1

∫ ε
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′
fn(α

′)dα′
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(F.20)

The fact that νin/Ωi is very small makes e2πνin/Ωi ≈ 1+2πνin/Ωi, e(νin/Ωi)α
′ ≈ 1, and

J ′l → 0. Thus,

fi = fi1e
−νint +
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nn
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ω
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·
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(F.21)
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Appendix G

Formulae for Velocity Moments

G.1 Initially homogeneous Ion Density

A series of mathematical formulae must be used in the calculation of velocity mo-
menta. I derived these formulae as follows.

There are four useful formulae,

∫ π

0

dα

a1 ± a2cosα
=

1

2

∫ 2π

0

dα

a1 + a2cosα
=

π√
a2

1 − a2
2

(G.1)

∫ 2π

0

sinα · dα

(a1 + a2cosα)3
= 0 (G.2)

∫ π

0

dα

(a1 + a2cosα)k+1
=

=
(2k − 1)a1

k(a2
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2)

∫ π

0
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− k − 1

k(a2
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2)
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0

dα
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

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(G.3)

∫ π

0

sinkα · dα

(a1 + a2cosα)k+1
=

√
π · Γ

(
k + 1

2

)

(a2
1 − a2

2)

k + 1

2 · Γ
(

k + 2

2

) (G.4)

where a2
1 > a2

2, k is an integer, and k > −1 for the upper one, and k > 0 for the
lower one.
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Above equations produce following equalities:

∫ π

0

dα

(a1 ± a2cosα)2
=
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3
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=
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2)√
(a2

1 − a2
2)

7
,

∫ π

0

cosα · dα

(a1 ± a2cosα)2
= ∓ πa2√

(a2
1 − a2

2)
3

∫ π

0

cosα · dα

(a1 ± a2cosα)3
= ∓

3

2
πa1a2

√
(a2

1 − a2
2)

5
,

∫ π

0

cos2α · dα

(a1 ± a2cosα)3
=

π(
1

2
a2

1 + a2
2)√

(a2
1 − a2

2)
5

∫ π

0

cosα · dα

(a1 ± a2cosα)4
= ∓

πa2(2a
2
1 +

1

2
a2

2)√
(a2

1 − a2
2)

7
,

∫ π

0

cos2α · dα

(a1 ± a2cosα)4
=

πa1(
1

2
a2

1 + 2a2
2)√

(a2
1 − a2

2)
7

∫ π

0

cos3α · dα

(a1 ± a2cosα)4
= ∓

πa2(
3

2
a2

1 + a2
2)√

(a2
1 − a2

2)
7

,
∫ π

0

sinα · dα

(a1 ± a2cosα)2
=

2

a2
1 − a2

2

∫ π

0

sin2α · dα

(a1 ± a2cosα)3
=

π/2

(a2
1 − a2

2)
3/2

,
∫ π

0

sin3α · dα

(a1 ± a2cosα)4
=

4/3

(a2
1 − a2

2)
2





(G.5)
Thus,

∫ 2π

0

dα

(a1 + a2cosα)2
=

2πa1√
(a2

1 − a2
2)

3
,

∫ 2π

0

dα

(a1 + a2cosα)3
=

2π(a2
1 +

1

2
a2

2)√
(a2

1 − a2
2)

5

∫ 2π

0

dα

(a1 + a2cosα)4
=

2πa1(a
2
1 +

3

2
a2

2)√
(a2

1 − a2
2)

7
,

∫ 2π

0

cosα · dα

(a1 + a2cosα)2
= − 2πa2√

(a2
1 − a2

2)
3

∫ 2π

0

cosα · dα

(a1 + a2cosα)3
= − 3πa1a2√

(a2
1 − a2

2)
5

,
∫ 2π

0

cos2α · dα

(a1 + a2cosα)3
=

π(a2
1 + 2a2

2)√
(a2

1 − a2
2)

5

∫ 2π

0

cosα · dα

(a1 + a2cosα)4
= −πa2(4a

2
1 + a2

2)√
(a2

1 − a2
2)

7
,

∫ 2π

0

cos2α · dα

(a1 + a2cosα)4
=

πa1(a
2
1 + 4a2

2)√
(a2

1 − a2
2)

7

∫ 2π

0

cos3α · dα

(a1 + a2cosα)4
= −πa2(3a

2
1 + 2a2

2)√
(a2

1 − a2
2)

7
,

∫ 2π

0

sinα · dα

(a1 + a2cosα)2
= 0

∫ 2π

0

sin2α · dα

(a1 + a2cosα)3
=

π

(a2
1 − a2

2)
3/2

,
∫ 2π

0

sin3α · dα

(a1 + a2cosα)4
= 0





(G.6)
which produces

∫ 2π

0

1− cosα

(a1 + a2cosα)2
dα =

2π√
(a1 + a2)(a1 − a2)3

∫ 2π

0

1− cosα

(a1 + a2cosα)3
dα =

π(2a1 + a2)√
(a1 + a2)3(a1 − a2)5

∫ 2π

0

(1− cosα)2

(a1 + a2cosα)3
dα =

3π√
(a1 + a2)(a1 − a2)5

∫ 2π

0

(1− cosα)3

(a1 + a2cosα)4
dα =

5π√
(a1 + a2)(a1 − a2)7





(G.7)
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Above formulae give

∫ 2π

0

v′dr

a′0
dα =

Ec

B

r

Rc

(a1 + a2)
3/2

∫ 2π

0

sinα · dα

(a1 + a2cosα)2
= 0 (G.8)

∫ 2π

0

v′dφ

a′0
dα =

Ec

B

r

Rc

(a1 + a2)
∫ 2π

0

1− cosα

(a1 + a2cosα)2
dα =

=
Ec

B

r

Rc

(a1 + a2)
2π√

(a1 + a2)(a1 − a2)3
= 2π

Ec

B

r

Rc

√
a1 + a2

(a1 − a2)3





(G.9)

∫ 2π

0

v′2dr

a′0
dα =

(
Ec

B

r

Rc

)2

(a1 + a2)
2
∫ 2π

0

sin2α

(a1 + a2cosα)3
dα =

=

(
Ec

B

r

Rc

)2

(a1 + a2)
2 π

(a2
1 − a2

2)
3/2

= π

(
Ec

B

r

Rc

)2 √
a1 + a2

(a1 − a2)3





(G.10)

∫ 2π

0

v′2dφ

a′0
dα =

(
Ec

B

r

Rc

)2

(a1 + a2)
∫ 2π

0

(1− cosα)2

(a1 + a2cosα)3
dα =

=

(
Ec

B

r

Rc

)2

(a1 + a2)
3π√

(a1 + a2)(a1 − a2)5
= 3π

(
Ec

B

r

Rc

)2 √
a1 + a2

(a1 − a2)5





(G.11)
∫ 2π

0

1

a′20
dα = (a1 + a2)

2
∫ 2π

0

dα

(a1 + a2cosα)2
= (a1 + a2)

2 2πa1√
(a2

1 − a2
2)

3
=

= 2πa1

√
a1 + a2

(a1 − a2)3





(G.12)

∫ 2π

0

v′3dr

a′0
dα =

(
Ec

B

r

Rc

)3

(a1 + a2)
5/2

∫ 2π

0

sin3α

(a1 + a2cosα)4
dα =

=

(
Ec

B

r

Rc

)3

(a1 + a2)
5/2 · 0 = 0





(G.13)

∫ 2π

0

v′3dφ

a′0
dα =

(
Ec

B

r

Rc

)3

(a1 + a2)
∫ 2π

0

(1− cosα)3

(a1 + a2cosα)4
dα =

=

(
Ec

B

r

Rc

)3

(a1 + a2)
5π√

(a1 + a2)(a1 − a2)7
= 5π

(
Ec

B

r

Rc

)3 √
a1 + a2

(a1 − a2)7





(G.14)∫ 2π

0

v′dr

a′20
dα =

Ec

B

r

Rc

(a1 + a2)
5/2

∫ 2π

0

sinα

(a1 + a2cosα)3
dα = 0 (G.15)

∫ 2π

0

v′dφ

a′20
dα =

Ec

B

r

Rc

(a1 + a2)
2
∫ 2π

0

1− cosα

(a1 + a2cosα)3
dα =

=
Ec

B

r

Rc

(a1 + a2)
2 π(2a1 + a2)√

(a1 + a2)3(a1 − a2)5
= π

Ec

B

r

Rc

(2a1 + a2)

√
a1 + a2

(a1 − a2)5





(G.16)
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Therefore,

∫ 2π

0

(
v′2dr

a′0
+

kbTn

mn

1

a′20

)
dα = π

(
Ec

B

r

Rc

)2 √
a1 + a2

(a1 − a2)3
+

+
kbTn

mn

· 2πa1

√
a1 + a2

(a1 − a2)3
= π

[(
Ec

B

r

Rc

)2

+
2kbTn

mn

a1

] √
a1 + a2

(a1 − a2)3
,

∫ 2π

0

(
v′2dφ

a′0
+

kbTn

mn

1

a′20

)
dα = 3π

(
Ec

B

r

Rc

)2 √
a1 + a2

(a1 − a2)5
+

+
kbTn

mn

· 2πa1

√
a1 + a2

(a1 − a2)3
= π

[
3

(
Ec

B

r

Rc

)2

+
2kbTn

mn

a1

] √
a1 + a2

(a1 − a2)3
,

∫ 2π

0

(
v′3dr

a′0
+

3kbTn

mn

v′dr

a′20

)
dα = 0 ,

∫ 2π

0

(
v′3dφ

a′0
+

3kbTn

mn

v′dφ

a′20

)
dα = 5π

(
Ec

B

r

Rc

)3 √
a1 + a2

(a1 − a2)7
+

+
3kbTn

mn

· πEc

B

r

Rc

(2a1 + a2)

√
a1 + a2

(a1 − a2)5
=

= π
Ec

B

r

Rc

√
a1 + a2

(a1 − a2)5

[
5

a1 − a2

(
Ec

B

r

Rc

)2

+ (2a1 + a2)
3kbTn

mn

]





(G.17)

Considering

a1 = 1 + 2
Ec/B

RcΩi

, a2 = 2
Ec/B

RcΩi

a1 + a2 = 1 + 4
Ec/B

RcΩi

=

(
ω

Ωi

)2

, a1 − a2 = 1





(G.18)

there exist following relations:

∫ 2π

0

v′dr

a′0
dα = 0

∫ 2π

0

v′dφ

a′0
dα = 2π

ω

Ωi

Ec

B

r

Rc

∫ 2π

0

(
v′2dr

a′0
+

kbTn

mn

1

a′20

)
dα = 2π

ω

Ωi

[
1

2

(
Ec

B

r

Rc

)2

+ a1
kbTn

mn

]

∫ 2π

0

(
v′2dφ

a′0
+

kbTn

mn

1

a′20

)
dα = 2π

ω

Ωi

[
3

2

(
Ec

B

r

Rc

)2

+ a1
kbTn

mn

]

∫ 2π

0

(
v′3dr

a′0
+

3kbTn

mn

v′dr

a′20

)
dα = 0

∫ 2π

0

(
v′3dφ

a′0
+

3kbTn

mn

v′dφ

a′20

)
dα =

= 2π
ω

Ωi

Ec

B

r

Rc

{
5

2

(
Ec

B

r

Rc

)2

+

[(
ω

Ωi

)2

− Ec/B0

RcΩi

]
3kbTn

mn

}





(G.19)
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G.2 Initially Inhomogeneous Ion Density

A general class of Gaussian integrals has a form of

In(λ) =

∫ ∞

0

xne−λx2

dx =





(n− 1)!!

2n/2+1λn/2

√
π

λ
for n = 0, 2, 4, · · ·

(
n− 1

2

)
!

2λ(n+1)/2
for n = 1, 3, 5, · · ·

(G.20)

which are convenient in applications. For example, for n = 6, we have

I6(λ) =

∫ ∞

0

x6e−λx2

dx =
5!!

24λ3

√
π

λ
=

15

16

√
π

λ7/2
(G.21)

A series of expressions are used in the thesis. They are given as follows:

1√
π

∫∞
−∞ e−λv2

xdvx =
1√
λ

1√
π

∫∞
−∞ e−λ(vx−vdx)2dvx =

1√
λ

1√
π

∫∞
−∞ vxe

−λv2
xdvx = 0

1√
π

∫∞
−∞ vxe

−λ(vx−vdx)2dvx =
vdx√

λ
1√
π

∫∞
−∞ v2

xe
−λv2

xdvx =
1

2λ3/2

1√
π

∫∞
−∞ v2

xe
−λ(vx−vdx)2dvx =

1√
λ

(
v2

dx +
1

2λ

)

1√
π

∫∞
−∞ v3

xe
−λv2

xdvx = 0

1√
π

∫∞
−∞ v3

xe
−λ(vx−vdx)2dvx =

vdx√
λ

(
v2

dx +
3

2λ

)

1√
π

∫∞
−∞ v4

xe
−λv2

xdvx =
3

4λ5/2

1√
π

∫∞
−∞ v4

xe
−λ(vx−vdx)2dvx =

1√
λ

(
v4

dx +
3v2

dx

λ
+

3

4λ2

)

1√
π

∫∞
−∞ v5

xe
−λv2

xdvx = 0

1√
π

∫∞
−∞ v5

xe
−λ(vx−vdx)2dvx =

vdx√
λ

(
v4

dx +
5v2

dx

λ
+

15

4λ2

)





(G.22)

where following polynomial identities are used:

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5





(G.23)

194



In addition,

I001 =
1

π

∫
vre

−a0(v−vd)2dv =
vdr

a0

I ′001 =
1

π

∫
vre

−(α0c+a0)(v−β2vd)2dv =
β2vdr

α0c + a0





(G.24)

I002 =
1

π

∫
vφe

−a0(v−vd)2dv =
vdφ

a0

I ′002 =
1

π

∫
vφe

−(α0c+a0)(v−β2vd)2dv =
β2vdφ

α0c + a0





(G.25)

I003 =
1

π

∫
v2

re
−a0(v−vd)2dv =

1

a0

(
v2

dr +
1

2a0

)

I ′003 =
1

π

∫
v2

re
−(α0c+a0)(v−β2vd)2dv =

β2
2v

2
dr

α0c + a0

+
1

2(α0c + a0)2





(G.26)

I004 =
1

π

∫
v2

φe
−a0(v−vd)2dv =

1

a0

(
v2

dφ +
1

2a0

)

I ′004 =
1

π

∫
v2

φe
−(α0c+a0)(v−β2vd)2dv =

β2
2v

2
dφ

α0c + a0

+
1

2(α0c + a0)2





(G.27)

I005 =
1

π

∫
v3

re
−a0(v−vd)2dv =

vdr

a0

(
v2

dr +
3

2a0

)

I ′005 =
1

π

∫
v3

re
−(α0c+a0)(v−β2vd)2dv =

β2vdr

α0c + a0

(
β2

2v
2
dr +

3

2(α0c + a0)

)





(G.28)

I006 =
1

π

∫
v3

φe
−a0(v−vd)2dv =

vdφ

a0

(
v2

dφ +
3

2a0

)

I ′006 =
1

π

∫
v3

φe
−(α0c+a0)(v−β2vd)2dv =

β2vdφ

α0c + a0

(
β2

2v
2
dφ +

3

2(α0c + a0)

)





(G.29)

I007 =
1

π

∫
v4

re
−a0(v−vd)2dv =

1

a0

(
v4

dr +
3v2

dr

a0

+
3

4a2
0

)

I ′007 =
1

π

∫
v4

re
−(α0c+a0)(v−β2vd)2dv =

=
1

α0c + a0

(
β4

2v
4
dr +

3β2
2v

2
dr

α0c + a0

+
3

4(α0c + a0)2

)





(G.30)

I008 =
1

π

∫
v4

φe
−a0(v−vd)2dv =

1

a0

(
v4

dφ +
3v2

dφ

a0

+
3

4a2
0

)

I ′008 =
1

π

∫
v4

φe
−(α0c+a0)(v−β2vd)2dv =

=
1

α0c + a0

(
β4

2v
4
dφ +

3β2
2v

2
dφ

α0c + a0

+
3

4(α0c + a0)2

)





(G.31)

I009 =
1

π

∫
v5

re
−a0(v−vd)2dv =

vdr

a0

(
v4

dr + 5
v2

dr

a0

+
15

4a2
0

)

I ′009 =
1

π

∫
v5

re
−(α0c+a0)(v−β2vd)2dv =

=
β2vdr

α0c + a0

(
β4

2v
4
dr + 5

β2
2v

2
dr

α0c + a0

+
15

4(α0c + a0)2

)





(G.32)
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I010 =
1

π

∫
v5

φe
−a0(v−vd)2dv =

vdφ

a0

(
v4

dφ + 5
v2

dφ

a0

+
15

4a2
0

)

I ′010 =
1

π

∫
v5

φe
−(α0c+a0)(v−β2vd)2dv =

=
β2vdφ

α0c + a0

(
β4

2v
4
dφ + 5

β2
2v

2
dφ

α0c + a0

+
15

4(α0c + a0)2

)





(G.33)

I011 =
1

π

∫
vrvφe

−a0(v−vd)2dv =
vdrvdφ

a0

I ′011 =
1

π

∫
vrvφe

−(α0c+a0)(v−β2vd)2dv =
β2

2vdrvdφ

α0c + a0





(G.34)

I012 =
1

π

∫
v2

rv
2
φe
−a0(v−vd)2dv =

1

a0

(
v2

dr +
1

2a0

)(
v2

dφ +
1

2a0

)

I ′012 =
1

π

∫
v2

rv
2
φe
−(α0c+a0)(v−β2vd)2dv =

=
1

α0c + a0

(
β2

2v
2
dr +

1

2(α0c + a0)

)(
β2

2v
2
dφ +

1

2(α0c + a0)

)





(G.35)

I013 =
1

π

∫
vrv

2
φe
−a0(v−vd)2dv =

vdr

a0

(
v2

dφ +
1

2a0

)

I ′013 =
1

π

∫
vrv

2
φe
−(α0c+a0)(v−β2vd)2dv =

β2vdr

α0c + a0

(
β2

2v
2
dφ +

1

2(α0c + a0)

)




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I014 =
1

π

∫
v2

rvφe
−a0(v−vd)2dv =

vdφ

a0

(
v2

dr +
1

2a0

)

I ′014 =
1

π

∫
v2

rvφe
−(α0c+a0)(v−β2vd)2dv =

β2vdφ

α0c + a0

(
β2

2v
2
dr +

1

2(α0c + a0)

)




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I015 =
1

π

∫
v3

rvφe
−a0(v−vd)2dv =

vdrvdφ

a0

(
v2

dr +
3

2a0

)

I ′015 =
1

π

∫
v3

rvφe
−(α0c+a0)(v−β2vd)2dv =

β2
2vdrvdφ

α0c + a0

(
β2

2v
2
dr +

3

2(α0c + a0)

)




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I016 =
1

π

∫
vrv

3
φe
−a0(v−vd)2dv =

vdrvdφ

a0

(
v2

dφ +
3

2a0

)

I ′016 =
1

π

∫
vrv

3
φe
−(α0c+a0)(v−β2vd)2dv =

β2
2vdrvdφ

α0c + a0

(
β2

2v
2
dφ +

3

2(α0c + a0)

)




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I017 =
1

π

∫
v3

rv
2
φe
−a0(v−vd)2dv =

vdr

a0

(
v2

dr +
3

2a0

)(
v2

dφ +
1

2a0

)

I ′017 =
1

π

∫
v3

rv
2
φe
−(α0c+a0)(v−β2vd)2dv =

=
β2vdr

α0c + a0

(
β2

2v
2
dr +

3

2(α0c + a0)

)(
β2

2v
2
dφ +

1

2(α0c + a0)

)




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I018 =
1

π

∫
v2

rv
3
φe
−a0(v−vd)2dv =

vdφ

a0

(
v2

dr +
1

2a0

)(
v2

dφ +
3

2a0

)

I ′018 =
1

π

∫
v2

rv
3
φe
−(α0c+a0)(v−β2vd)2dv =

=
β2vdφ

α0c + a0

(
β2

2v
2
dr +

1

2(α0c + a0)

)(
β2

2v
2
dφ +

3

2(α0c + a0)

)





(G.41)

196



Using above expressions, we have

I1 =
∫∞
−∞ vrfi(r,v, t)dv =

n0

π

∫∞
−∞ vre

−a0[(vr−vdr)2+(vφ−vdφ)2]dv+

+
n0r

π
α0c

∫∞
−∞ vr

[
v2

r + v2
φ + β2

1v
2
d − 2β1 (vdrvr + vdφvφ)

] ·
·e−(α0c+a0)

[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
dv =

= n0
vdr

a0

+
n0r

π
α0c

∫∞
−∞

[
v3

r + vrv
2
φ + β2

1v
2
dvr − 2β1 (vdrv

2
r + vdφvrvφ)

] ·

·e−(α0c+a0)
[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
dv =

= n0
vdr

a0

+ n0rα0c·
· [I ′005 + I ′013 + β2

1

(
v2

dr + v2
dφ

)
I ′001 − 2β1 (vdrI

′
003 + vdφI

′
011)

]




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I2 =
∫∞
−∞ vφfi(r,v, t)dv =

n0

π

∫∞
−∞ vφe

−a0[(vr−vdr)2+(vφ−vdφ)2]dv+

+
n0r

π
α0c

∫∞
−∞ vφ

[
v2

r + v2
φ + β2

1v
2
d − 2β1 (vdrvr + vdφvφ)

] ·
·e−(α0c+a0)

[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
dv =

= n0
vdφ

a0

+
n0r

π
α0c

∫∞
−∞

[
v3

φ + v2
rvφ + β2

1v
2
dvφ − 2β1

(
vdφv

2
φ + vdrvrvφ

)] ·

·e−(α0c+a0)
[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
dv =

= n0
vdr

a0

+ n0rα0c·
· [I ′006 + I ′014 + β2

1

(
v2

dr + v2
dφ

)
I ′002 − 2β1 (vdφI

′
004 + vdrI

′
011)

]




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I3 =
∫∞
−∞ v2

rfi(r,v, t)dv =
n0

π

∫∞
−∞ v2

re
−a0[(vr−vdr)2+(vφ−vdφ)2]dv+

+
n0r

π
α0c

∫∞
−∞ v2

r

[
v2

r + v2
φ + β2

1v
2
d − 2β1 (vdrvr + vdφvφ)

] ·

·e−(α0c+a0)
[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
dv = n0

(
v2

dr

a0

+
1

2a2
0

)
+

+
n0r

π
α0c

∫∞
−∞

[
v4

r + v2
rv

2
φ + β2

1v
2
dv

2
r − 2β1 (vdrv

3
r + vdφv

2
rvφ)

] ·
·e−(α0c+a0)

[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
dv =

= n0
vdr

a0

+ n0rα0c·
· [I ′007 + I ′012 + β2

1

(
v2

dr + v2
dφ

)
I ′003 − 2β1 (vdrI

′
005 + vdφI

′
014)

]




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I4 =
∫∞
−∞ v2

φfi(r,v, t)dv =
n0

π

∫∞
−∞ v2

φe
−a0[(vr−vdr)2+(vφ−vdφ)2]dv+

+
n0r

π
α0c

∫∞
−∞ v2

φ

[
v2

r + v2
φ + β2

1v
2
d − 2β1 (vdrvr + vdφvφ)

] ·

·e−(α0c+a0)
[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
dv = n0

(
v2

dφ

a0

+
1

2a2
0

)
+

+
n0r

π
α0c

∫∞
−∞

[
v4

φ + v2
rv

2
φ + β2

1v
2
dv

2
φ − 2β1

(
vdφv

3
φ + vdrvrv

2
φ

)] ·
·e−(α0c+a0)

[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
dv =

= n0
vdr

a0

+ n0rα0c·
· [I ′008 + I ′012 + β2

1

(
v2

dr + v2
dφ

)
I ′004 − 2β1 (vdφI

′
006 + vdrI

′
013)

]



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I5 =
∫∞
−∞ v3

rfi(r,v, t)dv =
n0

π

∫∞
−∞ v3

re
−a0[(vr−vdr)2+(vφ−vdφ)2]dv+

+
n0r

π
α0c

∫∞
−∞ v3

r

[
v2

r + v2
φ + β2

1v
2
d − 2β1 (vdrvr + vdφvφ)

] ·

·e−(α0c+a0)
[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
dv = n0

(
v2

dr

a0

+
3

2a2
0

)
+

+
n0r

π
α0c

∫∞
−∞

[
v5

r + v3
rv

2
φ + β2

1v
2
dv

3
r − 2β1 (vdrv

4
r + vdφv

3
rvφ)

] ·
·e−(α0c+a0)

[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
dv =

= n0
vdr

a0

+ n0rα0c·
· [I ′009 + I ′017 + β2

1

(
v2

dr + v2
dφ

)
I ′005 − 2β1 (vdrI

′
007 + vdφI

′
015)

]



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I6 =
∫∞
−∞ v3

φfi(r,v, t)dv =
n0

π

∫∞
−∞ v3

φe
−a0[(vr−vdr)2+(vφ−vdφ)2]dv+

+
n0r

π
α0c

∫∞
−∞ v3

φ

[
v2

r + v2
φ + β2

1v
2
d − 2β1 (vdrvr + vdφvφ)

] ·

·e−(α0c+a0)
[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
dv = n0

(
v2

dφ
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+
3

2a2
0

)
+

+
n0r

π
α0c

∫∞
−∞

[
v5

φ + v2
rv

3
φ + β2

1v
2
dv

3
φ − 2β1

(
vdφv

4
φ + vdrvrv

3
φ

)] ·
·e−(α0c+a0)

[
(vr−β2vdr)2+(vφ−β2vdφ)

2
]
dv =

= n0
vdr

a0

+ n0rα0c·
· [I ′010 + I ′018 + β2

1

(
v2

dr + v2
dφ

)
I ′006 − 2β1 (vdφI

′
008 + vdrI

′
016)

]



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Appendix H

Meetings and Publications

during Ph.D Study (2005.06-2008.12)

H.1 Meetings

Ma J. Z. G., and J.-P. St-Maurice (2008), 37th COSPAR Scientific Assembly, Montréal,
Canada, 1860: Ion velocity distributions in the presence of cylindrically
symmetric electric field perturbations: the collision-free case (oral).

Ma J. Z. G., and J.-P. St-Maurice (2007), Fall meeting, American Geophysical Union,
San Francisco, USA, SM51A-0281: Ion distribution functions in response to
cylindrically symmetric electric fields that change linearly with radius
(poster).

Ma J. Z. G., and J.-P. St-Maurice (2007), 2007 CAP, Saskatoon, Canada, MO-P10-9:
Auroral ion velocity distributions in inhomogeneous cylindrical electric
field geometries (oral).

H.2 Publications

Ma J. Z. G., and A. Hirose (2009), Phys. Scr., 79, in press: Parallel Propagation
of Ion Solitons in Magnetic Flux Tubes.

Ma J. Z. G., and A. Hirose (2009),Phys. Scr., 79, in press: High-frequency elec-
trostatic lower-hybrid waves in magnetic flux tubes.

Ma J. Z. G., and J.-P. St.-Maurice (2008), J. Geophys. Res., 113, A05312, doi:10.1029/
2007JA012815: Ion distribution functions in cylindrically symmetric elec-
tric fields in the auroral ionosphere: The collision-free case in a uni-
formly charged configuration .

Ni W.-T., Y. Bao, H. Dittus, T. Huang, C. Lammerzahl, G. Li, J. Luo, Z. G. Ma, J.
F. Mangin, Y.-X. Nie, A. Peters, A. Rudiger, E. Samain, S. Schiller, S. Shiomi, T.
Sumner, C.-J. Tang, J. Tao, P. Touboul, H. Wang, A. Wicht, X.-J. Wu, Y. Xiong, C.
Xu, J. Yan, D.-Z. Yao, H.-C. Yeh, S.-L. Zhang, Y.-Z. Zhang, Z.-B. Zhou (2006), Acta
Astronautica, 59, 598-607: ASTROD-I: Mission concept and Venus flybys.
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